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Chapter 1

Introduction

We usually denote a graph by G, its vertex set by V and edge set by E. The number
of vertices is denoted by n. If xy is an edge, then x and y are adjacent, they are also
neighbors. A path is a series of different vertices, every two consecutive being adjacent.
A path with k edges is a k-path and we denote it by Pk+1. A graph is connected, if there
exists a path between any two vertices. A set X of vertices form an independent set if
any pair in X is non-adjacent. The degree of a vertex is the number of edges incident
to it. Given a graph G, we may orient the edges in one of the two possible directions
and derive an oriented graph. The number of edges going out from a vertex v is the
out-degree of v denoted as d+(v). A graph is cubic if it is 3-regular. A graph is subcubic
if it has maximum degree 3. Otherwise, we use standard graph theory terminology as
in [35] and [42]. For any undefined terms on graph colorings, consult the excellent book
by Jensen and Toft [65].

Although graphs can be defined in a completely abstract manner, a graph theorist
would always imagine a graph as something drawn on paper or blackboard. Therefore,
it is fair to say that graph drawing and visualisation of graphs is essential in many ways.
Not the least because real-life problems often impose some practical condition on the
drawing. This has led to many interesting concepts in recent decades. Planar graphs are
visually the most fundamental objects of graph theory. Kuratowski‘s theorem is part of
everyone‘s undergraduate curriculum. It says that planarity can be checked efficiently by
looking for two particular graphs K5 and K3,3 as topological subgraphs. Euler‘s formula
implies that any n-vertex planar graph can have at most 3n − 6 edges. Since the vast
majority of graphs have more edges, it is logical to have some measures of non-planarity
describing the conceptual distance from planar graphs.

In graph theory, the most basic question is the following: Given a large graph G
and a small graph H, does G contain H as a subgraph? One can deviate from here
to a zillion of different directions. One can seek the maximum number of edges in any
n-vertex graph G without an H subgraph. This leads to Turán type problems [34].
One can modify the containment relation and seek H-minors in G. This leads to the
fascinating theory of graph minors to which we contributed ever so slightly [22, 23].

Here we take the following route. We may always assume G is connected. A meta-
theorem in several branches of Combinatorics states that any structure containing two
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copies of a basic unit R can be decomposed entirely into copies of R. In our context:
Can we find many copies of H such that we tile the entire large graph G by copies of H?
Chronologically, probably the first instance of this type of questions considered complete
graphs G and a Hamiltonian path or cycle as H. Walecki constructed Hamiltonian de-
compositions of complete graphs on n vertices, where n is odd. A more general question
is the famous Oberwolfach problem, posed by Ringel [77]. It is a natural continuation
to seek other graphs with decomposition properties. What are the necessary conditions?
What other parameters of the graph are related to the existence of a decomposition? On
the other end, the simplest H we can consider is K2. Clearly any graph G decomposes
into disjoint edges. The next simplest H is the 2-path, sometimes called a cherry. It
is already a small result by Kotzig that any graph G with an even number of edges
decomposes into cherries. There is one more attractive result, that we recall now. Every
2-edge-connected cubic graph decomposes into paths with 3 edges. It also applies for
the Petersen graph.

Historically it is necessary to mention here the following result. It was independently
proved by Győri [57] and Lovász [78] answering a question of Frank posed in 1975. Let G
be a k-connected graph, v1, . . . , vk distinct vertices of G, and n1, . . . , nk positive integers
summing up to n. There exists a partition V1, . . . , Vk of the vertices of G such that
|Vi| = ni, the induced subgraphs G[Vi] are connected, and vi ∈ Vi for every i ∈ {1, . . . , k}.
Here, the connectivity is important. This is one of the motifs we carry on in this work.

Summary of Chapter 2.

Around 2002, we studied a particular way of representing graphs, where the edges
are straight lines and bound to go in a prescribed set of directions called slopes [A].
This is a generalisation of the well-studied concept of queens graphs [27]. Any point
set A of the plane defines a graph on its elements as follows: let P and Q be adjacent
if and only if the slope of their connecting line ℓPQ belongs to a prescribed set S. A
graph G is k-slope if there exist a proper A, and a set S of size k realizing G. The slope
parameter sl(G) is the minimal such k. We posed a few very fundamental question in
[A]. Is there any graph for which sl(G) is large compared to n? Do bounded degree
graphs have bounded slope parameter? I gave a talk about this topic at ETH in Zürich
in 2004 and luckily Jirka Matoušek was in the audience. He encouraged me to read the
relevant pages of his book [85] and apply it to the slope parameter. Within 2 days we
arrived to a solution. This became the starting point of our joint paper.

Theorem 4. For all ϵ > 0 and for all sufficiently large n > n(ϵ), there exists an
n-vertex graph G with slope parameter

sl(G) ≥ n2

(4 + ϵ) log n
.

Theorem 6. For all ∆ ≥ 9 and ϵ > 0, and for all sufficiently large n > n(∆, ϵ),
there exists a ∆-regular n-vertex graph G with slope parameter

sl(G) > 1
4((1 − ϵ)∆ − 8)n.
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We compare more complicated graphs to planar graphs in many ways. The crossing
number or the maximum number of crossings on an edge are two of them. We mention
two others, which we used in [B]. The thickness of a graph G is the minimum number k
such that G can be decomposed into k edge-disjoint planar graphs. The book thickness
of G is related to the following special drawing. A book embedding is a generalisation of
the planar embedding of a graph to embedding into a book, a collection of half-planes
all having the same line as their boundary. The vertices of the graph are required to
lie on this boundary line, called the spine, and the edges are required to stay within
a single half-plane. The book thickness of a graph is the smallest possible number of
half-planes for any book embedding of the graph. The geometric thickness of a graph G
is the minimum integer k such that there is a straight line drawing of G with its edge
set partitioned into k plane subgraphs. We might think of this as k geometric graphs
drawn to transparent slides and stacked upon each other. It is known that a graph
with maximum degree ∆ can have thickness at most ∆

2 , and this is tight. Eppstein [50]
asked whether every graph of bounded maximum degree has also bounded geometric
thickness. We answered this question in the negative, by proving that for ∆ ≥ 9 there
exist ∆-regular graphs with arbitrarily large geometric thickness. The key ingredient is
to use the Milnor-Thom theorem.

Summary of Chapter 3.

Around 1985, Jünger, Reinelt and Pulleyblank [68] studied decompositions into con-
nected subgraphs of prescribed sizes. Among other things they show the following the-
orem. If G is a 4-edge-connected graph with m edges, and m1, . . . ,mk are positive
integers summing up to m, then there exists a partition E1, . . . , Ek of the edges of G
such that |Ei| = mi and each subgraph G[Ei] is connected for i ∈ {1, . . . , k}. The proof
of this result relies on the famous and very useful theorem proved independently by
Tutte [117] and Nash-Williams [93]: a graph G is 2k-edge-connected if and only if G
contains k edge-disjoint spanning trees. Jünger, Reinelt and Pulleyblank proved that
every 2-edge-connected graph with 3k edges can be decomposed into connected graphs
with three edges. These are K1,3 (the claw), C3 (the triangle) and P4 (the 3-path).
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However they did not study claw-decompositions and P4-decompositions separately.
If anyone wants to test a claim in graph theory, the Petersen graph serves as a good
test. It has 10 vertices each of degree 3, that makes 15 edges, see the figure below. Our
test is as follows.

Is it possible to partition the edges of the Petersen graph such that each part is the
same connected graph with three edges?

Clearly there is no decomposition into triangles. On the other hand, if we consider
the path with dashed lines in the figure below and rotate it by 72 degrees 4 times, then
we get a P4-decomposition of the Petersen graph.
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When we look for a claw-decomposition, it is convenient to orient the edges of a claw
away from the center towards the leaves. Since the Petersen graph is cubic, if there
was a claw-decomposition, then there would be five claw centers and five sinks (vertices
of outdegree zero). On the outer 5-cycle, centers and sinks should appear alternately,
which is impossible.
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Let H be a collection of graphs. A graph G has a H-decomposition if the edges of G
can be divided into subgraphs each of which is isomorphic to a graph in H. Often H is a
single graph H. The H-decompositions are widely studied when G is a complete graph.
If G is not complete, then it may be hard to find H-decompositions. Indeed, if H has
at least three edges, then the problem of deciding if a graph G has an H-decomposition
is NP-complete [45].

The next question we may ask is the following. Can we decompose every connected
graph into paths with 3 edges? One may find graphs showing that the answer is negative,
see Figure 1.1.
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Figure 1.1: Graphs without P4-decomposition.

These graphs have a common property, the existence of a cut-edge. The removal
of such an edge makes the graph disconnected. Therefore the following definition is
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useful. A graph G is k-edge-connected, if after removing any k − 1 edges the graph is
still connected. It is natural to ask what degree of edge-connectivity implies certain
decompositions. Which graphs admit a P4-decomposition? Several people noticed the
following: Every 2-edge-connected cubic graph G has a P4-decomposition.

Let H be the class of 2-edge-connected graphs with s edges. Jünger, Reinelt and
Pulleyblank posed the following question. Is there an edge-connectivity (depending on
s) that guarantees a graph to have a H-decomposition?

The answer to this question is negative: there is no such edge-connectivity, since
there exist graphs of arbitrarily high connectivity and large girth. If we imagine ourselves
sitting on a vertex v and looking around, the graph looks like a tree. Therefore, there is
no 2-edge-connected subgraph covering vertex v. In view of this, we must require that a
finite collection H contains a forest if we wish to show that large (fixed) edge-connectivity
implies the existence of a H-decomposition.

The investigations and techniques led Thomassen and myself to the following very
general conjecture.

Conjecture 1. For each tree T , there exists a natural number kT such that the
following holds: If G is a kT -edge-connected graph such that |E(T )| divides |E(G)|, then
the edges of G can be divided into parts, each of which is isomorphic to T .

We proved that for T = K1,3 (the claw), this holds if and only if there exists a
(smallest) natural number kt such that every kt-edge-connected graph has an orientation
for which the in-degree of each vertex equals its out-degree modulo 3. Tutte’s 3-flow
conjecture says that kt = 4. We proved the weaker statement that every 4⌈log n⌉-
edge-connected graph with n vertices has an edge-decomposition into claws provided its
number of edges is divisible by 3. We also proved that every triangulation of a surface
has an edge-decomposition into claws.

We recall that, at the time of publication, we did not know a single instance of size at
least three, for which Conjecture 1 was known to hold. The only indication was Tutte’s
3-flow conjecture and related results.

We expected the Barát-Thomassen conjecture would be the source of inspiration for
many years to come. It partly turned out to be true as it resulted in over 70 papers
referring to it. On the other hand, we were surprised that a full solution came into light
after a decade or so. One of the building blocks of the resolution was the very natural
step to show that qualitatively it suffices to prove the conjecture for bipartite graphs.
This idea first appeared in a paper by Thomassen for the special case, when the tree is
P4. The bipartite reduction was proved independently by Thomassen and by Gerbner
and myself. Let Y be the unique tree with degree sequence (1,1,2,3). In the same paper
[F], we proved that if G is a 287-edge-connected graph of size divisible by 4, then G has
a Y -decomposition. This was the first instance of such a theorem, in which the tree was
different from a path or a star.

In 2016, Bensmail et al. uploaded A proof of the Barát-Thomassen conjecture to
ArXiv. This paper was the last brick of the proof. Although the original conjecture is
resolved, many similar questions, unknown constants remain. There are already more
than 20 new papers since the above paper appeared.
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Summary of Chapter 4.

Somewhat coincidentally, around 2008, Vı́gh mentioned a real-life inspired geometric
3D question to us. Assume we have built a large k × k × k cube from elementary unit
cubes. Two unit cubes are neighbors if they share a common face. We may remove
a cube from the stack if and only if it has precisely 3 neighbors. This process is a
dismantling. How long can we go? What kind of positions may remain? To be more
symmetric, we assume it all happens in zero gravity. Since this question translates to a
claw-decomposition in the dual graph, we explored the problem. We found natural con-
nections to other branches of Combinatorics, namely Latin squares, greedy algorithms
and bootstrap percolation. Sometimes it is useful to view the reverse process: build-
ing. Assume that we would like to design a space module from preconstructed items.
These parts are conventionally made to have cubic shape. Assume there is an initially
firm-made configuration of items in the space. Later, we can add a new box to the
module, if there are three fix neighbors. A move is balanced if the three neighbours are
in three orthogonal directions. In 3 dimensions, a full dismantling results in n2 inde-
pendent vertices, that we call a solution. If we project the corresponding cubes to the 3
orthogonal directions, then we might get 3 full squares. In that case, there is a natural
correspondence of the solution to Latin squares, and the solution is called perfect.

We show that it is possible to use a greedy algorithm to test whether a set of cubes
forms a solution. For every n ≥ 2, we find at least n perfect solutions. Perfect solutions
turn out to be precisely those which can be reached using only balanced moves. Every
perfect solution corresponds naturally to a Latin square. However, we show that almost
all Latin squares do not correspond to solutions.

We construct an infinite family of imperfect solutions and show that the total size of
its three orthogonal projections is asymptotic to the minimum possible value.

Summary of Chapter 5.

Instead of the edges, one may also partition the vertices of a graph into disjoint
classes. We can impose various conditions on the graph induced by each class. The
simplest condition is to require each class to be an independent set. This is also called
vertex coloring of a graph. The chromatic number is the graph parameter minimising
the number of colors. There has been an ongoing interest to understand what structural
properties force large chromatic number. In a conjecture attributed to Hajós the follow-
ing is formulated: every k-chromatic graph contains a complete graph on k vertices as a
topological subgraph. Although this generated a lot of interest, the conjecture turned out
to be false for almost all graphs. Another innocent looking and intuitive conjecture for
complete graphs concerns the crossing number. That is, we would like to draw the edges
of a complete n-vertex graph as topological curves in the plane. It is a long-standing
conjecture posed by Hill and first published by Guy that the crossing number of Kn is
Z(n) = 1

4⌊
n
2 ⌋⌊

n−1
2 ⌋⌊n−2

2 ⌋⌊n−3
2 ⌋. Albertson realized the subtle connection between the

two areas and posed the following conjecture: If a graph G has chromatic number r,
then its crossing number is at least as much as the crossing number of Kr. Albertson,
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Cranston, and Fox proved this for r ≤ 12. We took one more little step and proved the
conjecture for r ≤ 16. Our method combined structural properties of critical graphs and
subtle improvements of bounds on the crossing number using extra information. We also
qualitatively proved the conjecture showing two results. One: if the number of edges is
more than 3.57n, then the Albertson conjecture holds. Two: if the number of edges is
less than 3.57n, then the crossing number is at least Z(n)

4 .

Summary of Chapter 6.

We returned to decompositions, when an intriguing question appeared for 2-colored
graphs, which puts an asymmetric and simple condition on the components induced by
the monochromatic vertex classes. It has connections to a much studied conjecture by
Wegner.

Thomassen formulated the following conjecture: Every 3-connected cubic graph has
a red–blue vertex coloring such that the subgraph induced by blue vertices has maximum
degree 1 (that is, it consists of a matching and some isolated vertices) and the red part
has minimum degree at least 1 and contains no 3-edge path.

Since all monochromatic components are small in this coloring and there is a certain
irregularity, we call such a coloring crumby. We proved this crumby conjecture for
Generalized Petersen graphs. In the paper, we also indicated that a coloring with the
same properties might exist for any subcubic graph. We confirmed this statement for
all subcubic trees. This last result turned out to be useful later, in a subsequent paper.

In 2020, Bellitto et al. [28] published a construction of an infinite family refuting the
crumby conjecture by Thomassen. Their prototype counterexample is 2-connected, pla-
nar, but contains a K4-minor and also a 5-cycle. This leaves the crumby conjecture open
for some important graph classes: outerplanar graphs, K4-minor-free graphs, bipartite
graphs. In this regard, we proved that 2-connected outerplanar graphs, subdivisions of
K4 and 1-subdivisions of cubic graphs all admit crumby colorings. The proof of the last
result relies on the Edmonds-Gallai decomposition of graphs.
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Chapter 2

Slope parameter and geometric thickness

If not explicitly stated, a graph has always n vertices. In the real plane, the line through
points P and Q is denoted by ℓPQ. Let P (x1, y1) and Q(x2, y2) be two different points
of the line ℓ on the real plane R2. The slope of ℓ is (y2 − y1)/(x2 − x1) ∈ R ∪ {∞},
denoted by M(ℓ). Note that M(ℓ) does not depend on the choice of P and Q, and ℓ ∥ L
if and only if M(ℓ) = M(L). Let S ⊂ R ∪ {∞} be a set of slopes. Every point set
A of the plane defines a graph in the following way: Let P,Q ∈ A be adjacent if and
only if the slope of ℓPQ belongs to S. We denote this graph by G(A;S). A graph G is
called S-slope if and only if there exists a set of points A such that G ≃ G(A;S). A
graph G is called k-slope if there exist a k-element set S of slopes and a set of points A
such that G ≃ G(A;S). Furthermore, for a given graph G the minimal number of slopes
required for this representation is called the slope parameter of G, denoted by sl(G).
The set of all k-slope graphs is denoted by Gk. Notice, that any graph G is m-slope,
where m = |E(G)|. Indeed, take an n-element point set P, each point corresponding
to a vertex of G such that there are no parallel lines among the lines determined by P.
If S consists of the slopes of the lines determined by the edges of G, then G(P;S) is
isomorphic to G. In all other notions we follow [35]. This chapter is devoted to the study
of the slope parameter, and for this purpose we assume that all graphs are connected.

For instance, queens graphs are the graphs of G(P; {−1, 0, 1,∞}), where P ⊂ Z×Z.
The vertices are positions in the infinite chessboard and adjacency is given by ‘legal
queen move’. Queens graphs were studied in [18, 26].

Example. The Petersen graph has edge-chromatic number four. Therefore, it needs at
least four slopes. The next figure shows such a representation on the chessboard, that is
with slopes (0,∞, 1,−1).

Notice the following: if G is a k-slope graph and H is an induced subgraph of G,
then H is k-slope as well. Such a graph property is called hereditary. A hereditary class
can be characterized by the minimal (respect to induced subgraphs) non-members of the
class, so called obstructions. We characterize the 2-slope graphs in this manner.
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Figure 2.1: The queen representation of the Petersen graph.

2.1 The k-slope graphs for small k

A graph is 1-slope if and only if each of its connected components is a complete graph.
We call these graphs equivalence graphs, since these are exactly the graphs where ‘to be
equal or to be adjacent’ is an equivalence relation on the vertices.

Let S = {µ,m} be an arbitrary 2-element slope set. The class of graphs defined by
S does not depend on the choice of the slopes. We can completely characterize these
graphs.

Theorem 1. The following statements are equivalent:

(i) the graph G is a 2-slope graph;

(ii) the edges E(G) can be 2-colored (by red and blue) such that in each color class the
corresponding edges define an equivalence graph;

(iii) the graph G does not contain K1,3, any odd cycle of length at least 5 or K−
4 as an

induced subgraph. Here K−
4 is the complete graph on four vertices minus an edge.

Proof. (i)⇒(ii) Let G(P; {0,∞}) be a representation of G as a 2-slope graph. We color
an edge e = uv red if and only if ℓPuPv is horizontal (and hence blue if and only if it is
vertical). The coloring proves (ii).

(ii)⇒(iii) The coloring of (ii) has the property that whenever e = uv and f = vw are
two adjacent edges of the same color, then uw is also an edge and its color is the same.

Also, every triangle is monochromatic, that is all three edges have the same color.
Let us assume that K1,3 is an induced subgraph. At least two edges of this star must
have the same color. This contradicts our first observation. Similarly, we know that any
two adjacent edges on an induced cycle of length at least 4 must have different colors.
Hence, all the induced cycles of length at least 4 must have even length. The graph K−

4

consists of two triangles glued together along an edge. So, each occurrence of K−
4 is

monochromatic, which contradicts our first observation.

(iii)⇒(ii) Take the maximal cliques of G. Each edge belongs to exactly one maximal
clique, since K−

4 is not an induced subgraph. Each vertex belongs to at most two
maximal cliques, since K1,3 is not an induced subgraph. Now, the maximal cliques can
be colored by red and blue such that two cliques have different color if they have a vertex
in common, since there is no induced odd cycle of length longer than three. The last
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statement together with the previous ones define a red-blue coloring of the edges that
verifies (ii).

(ii)⇒(i) Let R be the equivalence graph of the red edges on V (G). For the compo-
nents of R take different horizontal lines. Let B be the equivalence graph of the blue
edges on V (G). For the components of B take different vertical lines. Each vertex v
is in one component of R and in one component of B. The corresponding horizontal
and vertical lines define an intersection Pv. Let Pv be the representation of v. The
point set P = {Pv} obtained in this way defines a 2-slope representation of G, namely
G(P, {0,∞}).

Let {µ,m,M} and {µ′,m′,M ′} be two arbitrary 3-element slope sets. Next, we show
that the class of graphs defined by three slopes does not depend on the choice of slopes.
Let e, f and g be three concurrent lines such that their slopes are {µ,m,M}. Similarly
let e′, f ′ and g′ be three concurrent lines with slopes {µ′,m′,M ′}. There exists an affine
transformation φ of the real plane that maps φ(e) = e′, φ(f) = f ′, and φ(g) = g′. In this
case, if P is a representation of G with slopes {µ,m,M}, then φP is a representation of
G with slopes {µ′,m′,M ′}.

It would be a challenging task to characterize the 3-slope graphs. We show an infinite
family of graphs with slope parameter at most 3. Next, we describe a process to construct
the subcubic outerplanar graphs.

Definition 1. Let us consider the cycles of length at least 3 with a designated set of
independent edges being red. These are the base graphs. The red edges are sticky, that
is edges with glue. Let the other edges be blue. Starting with the base graphs, we build
further graphs using the following two operations:

(i) identifying a red edge of an already constructed graph with a red edge of a base cycle
such that the two red edges turn into a blue edge;

(ii) identifying a 1- or 2-valent vertex of an already constructed graph with a vertex of
an edge.

Let O≤3 be the class of graphs we can construct this way.

It is clear that O≤3 is the class of connected outerplanar graphs with maximum
degree at most three. This view is very useful to prove the following

Theorem 2. If G is an outerplanar graph with maximum degree at most 3, then
sl(G) ≤ 3.

Proof. Consider a construction of G from the base graphs. We describe a 3-slope repre-
sentation of G using the steps in this construction. We assume that the slopes are given
by three isogonal lines, that is their pairwise angles are 2π/3.

First, we describe the representation of the base graphs. The 3-slope representation
of the cycle Cn can be given by a convex n-gon in such a way that any sticky edge and
its two neighbors have three different slopes. The representation with these properties
still has a large flexibility. We can move any edge (side of the n-gon) by a translation,
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still producing the same graph. In this way we are able to move the vertices away from
an incidentally wrong position.

Assume that the current construction step requires the gluing of a cycle. Let us
consider the representation of the already constructed part and a representation of the
cycle scaled such that the two identified sides have equal length. This representation of
the cycle or its reflected image can be moved in such a way that the two representations
unite. This is not necessarily a representation of the glued graph. To exclude undesired
relations, we must use the flexibility of the representation of the cycle. Draw each line
with the given slopes through each vertex of the earlier representation. The new vertices
of the cycle should not be incident to any of these lines. This can be easily achieved.

Figure 2.2: An outerplanar graph with 3 slopes.

The gluing of a vertex can be solved in the same manner.

In [A] we posed two problems whether bounded maximum degree implies bounded
slope parameter. We were convinced this to be true for maximum degree 3. This was
proved by Keszegh et al.

Theorem 3 ([70]). Every cubic graph has slope parameter at most 7. If the graph is
subcubic, then 5 slopes suffice.

If the maximum degree is at least 5, then the situation changes dramatically. We
discuss this in the next section.

2.2 Unbounded slope parameter

We address the following two questions of [A]:
• what is the maximum slope parameter of an n-vertex graph?
• do graphs of bounded maximum degree have bounded slope parameter?

All results in the next three sections are based on the following lemma, versions of
which are due to Petrovskĭı and Olĕınik [99], Milnor [90], Thom [109] and Warren [118].
The precise version stated here is by Pollack and Roy [100]. Let P = (P1, P2, . . . , Pt) be
a system of d-variate real polynomials. A vector σ ∈ {−1, 0,+1}t is a sign pattern of P
if there exists an x ∈ Rd such that the sign of Pi(x) is σi, for all i = 1, 2, . . . , t.
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Lemma 1 ([100]). Let P = (P1, P2, . . . , Pt) be a system of d-variate real polynomials,
each of degree at most D. Then the number of sign patterns of P is at most(

50Dt

d

)d

.

Some of our proofs only need sign patterns that distinguish between zero and nonzero
values. In this setting, Rónyai et al. [102] gave a better bound with a short proof; see
[85].

Our second tool is a corollary of more precise bounds due to Bender and Canfield
[29], Wormald [123], and McKay [86]; see Appendix A in [B].

Lemma 2 ([29, 86, 123]). For all integers ∆ ≥ 1 and n ≥ c∆, the number of labelled
∆-regular n-vertex graphs is at least ( n

3∆

)∆n/2
,

for some absolute constant c.

Now we estimate the graphs with slope parameter at most k, using Lemma 1.

Lemma 3. The number of labelled n-vertex graphs G with slope parameter sl(G) ≤ k is
at most (

50n2k

2n + k

)2n+k

.

Proof. Let Gn,k denote the family of labelled n-vertex graphs G with slope parameter
sl(G) ≤ k. Consider V (G) = {1, 2, . . . , n} for every G ∈ Gn,k. For every G ∈ Gn,k, there
is a point set P = {(xi(G), yi(G)) : 1 ≤ i ≤ n} and slope set S = {sℓ(G) : 1 ≤ ℓ ≤ k}
such that G ∼= G(P, S), where vertex i is represented by the point (xi(G), yi(G)). Fix
one such representation of G. Without loss of generality, xi(G) ̸= xj(G) for distinct i
and j. Thus every sℓ(G) < ∞. For all i, j, ℓ with 1 ≤ i < j ≤ n and 1 ≤ ℓ ≤ k, and for
every graph G ∈ Gn,k, we define the number

Pi,j,ℓ(G) := (yj(G) − yi(G)) − sℓ(G) · (xj(G) − xi(G)).

Consider
P := {Pi,j,ℓ : 1 ≤ i < j ≤ n, 1 ≤ ℓ ≤ k}

to be a set of
(
n
2

)
k degree-2 polynomials on the set of variables

{x1, x2, . . . , xn, y1, y2, . . . , yn, s1, s2, . . . , sk}.

Observe that Pi,j,ℓ(G) = 0 if and only if ij is an edge of G and ij has slope sℓ in the
representation of G.

Consider two distinct graphs G,H ∈ Gn,k. Without loss of generality, there is an
edge ij of G that is not an edge of H. Thus (yj(G)−yi(G))−sℓ(G) · (xj(G)−xi(G)) = 0
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for some ℓ, and (yj(H)−yi(H))−sℓ(H) ·(xj(H)−xi(H)) ̸= 0 for all ℓ. Hence Pi,j,ℓ(G) =
0 ̸= Pi,j,ℓ(H). That is, any two distinct graphs in Gn,k are distinguished by the sign of
some polynomial in P. Hence |Gn,k| is at most the number of sign patterns determined
by P. By Lemma 1 with D = 2, d = 2n + k, and t =

(
n
2

)
k we have

|Gn,k| ≤

(
50 · 2 ·

(
n
2

)
k

2n + k

)2n+k

<

(
50n2k

2n + k

)2n+k

.

In response to the first question of [A], we now prove that there exist graphs with
surprisingly large slope parameter. All logarithms are binary unless stated otherwise.

Theorem 4. For all ϵ > 0 and for all sufficiently large n > n(ϵ), there exists an n-vertex
graph G with slope parameter

sl(G) ≥ n2

(4 + ϵ) log n
.

Proof. Suppose that every n-vertex graph G has slope parameter sl(G) ≤ k. There are

2(n2) labelled n-vertex graphs. By Lemma 3,

2(n2) ≤
(

50n2k

2n + k

)2n+k

.

For large n > n(ϵ),

2(n2) =
(
50n2

)(n2)/ log(50n2)
>
(
50n2

)(n2)/(2+ϵ/2) logn
>
(
50n2

)2n+n2/(4+ϵ) logn
.

We have 50n2k ≤ 50n2(2n + k). Thus

(
50n2

)2n+n2/(4+ϵ) logn
< 2(n2) ≤

(
50n2k

2n + k

)2n+k

<
(
50n2

)2n+k
.

Hence

k >
n2

(4 + ϵ) log n
.

The result follows.

Now we prove that the slope parameter of degree-∆ graphs is unbounded for ∆ ≥ 5,
thus answering the second question of [A] in the negative. It remains open whether sl(G)
is bounded for degree-4 graphs G.

Theorem 5. For all ∆ ∈ {5, 6, 7, 8}, for all ϵ with 0 < ϵ < ∆−4, and for all sufficiently
large n > n(∆, ϵ), there exists a ∆-regular n-vertex graph G with

sl(G) > n(∆−4−ϵ)/4.
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Proof. Let k := n(∆−4−ϵ)/4. Suppose that for some ∆ ∈ {5, 6, 7, 8}, every ∆-regular
n-vertex graph G has sl(G) ≤ k. By Lemmas 2 and 3,

( n

3∆

)∆n/2
≤
(

50n2k

2n + k

)2n+k

< (25nk)2n+k < (25n)(∆−ϵ)(2n+k)/4 .

For n > (3∆(25)1−ϵ/2)2/ϵ,

(25n)(2∆−ϵ)n/4 <
( n

3∆

)∆n/2
< (25n)(∆−ϵ)(2n+k)/4 .

Thus 2∆n−ϵn < 2∆n+∆k−2ϵn−ϵk. That is, (∆−ϵ)n(∆−8−ϵ)/4 > ϵ. Thus ∆−8−ϵ ≥ 0
for large n > n(∆, ϵ), which is the desired contradiction for ∆ ≤ 8.

For ∆ ≥ 9 there are ∆-regular graphs with linear slope parameter.

Theorem 6. For all ∆ ≥ 9 and ϵ > 0, and for all sufficiently large n > n(∆, ϵ), there
exists a ∆-regular n-vertex graph G with slope parameter

sl(G) > 1
4((1 − ϵ)∆ − 8)n.

Proof. Suppose that every ∆-regular n-vertex graph G has sl(G) ≤ αn for some α > 0.
By Lemmas 2 and 3, ( n

3∆

)∆n/2
≤
(

50αn2

2 + α

)(2+α)n

.

For n > (3∆ · 81−ϵ)1/ϵ,

(8n)(1−ϵ)∆n/2 <
( n

3∆

)∆n/2
≤
(

50αn2

2 + α

)(2+α)n

< (8n)2(2+α)n .

Thus

α >
(1 − ϵ)∆ − 8

4
.

Thus sl(G) ≥ 1
4((1 − ϵ)∆ − 8)n for some ∆-regular n-vertex graph G.

Note that the lower bound in Theorem 6 is within a factor of 2 + ϵ of the trivial
upper bound sl(G) ≤ 1

2∆n.

2.3 Geometric thickness

The thickness of an (abstract) graph G is the minimum number of planar subgraphs
of G whose union is G. Thickness is a classical and widely studied graph parameter;
see the survey [92]. The thickness of a graph drawing D is the minimum number of
plane subgraphs of D whose union is D. Every planar graph can be drawn with its
vertices at prespecified locations [58, 98]. It follows that a graph with thickness k has
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a drawing with thickness k [58]. However, in such a representation the edges might be
highly curved1.

This motivates the notion of geometric thickness, which is a central topic of this
section. A drawing is geometric, also called a geometric graph, if every edge is represented
by a straight line segment. The geometric thickness of a graph G is the minimum
thickness of a geometric drawing of G. Geometric thickness was introduced by Kainen
[69] under the name real linear thickness.

Consider the relationship between the various thickness parameters and maximum
degree. A graph with maximum degree at most ∆ is called degree-∆. Wessel [121] and
Halton [58] independently proved that the thickness of a degree-∆ graph is at most ⌈∆2 ⌉,
and Sýkora et al. [107] proved that this bound is tight. Duncan et al. [47] proved that
the geometric thickness of a degree-4 graph is at most 2. Eppstein [50] asked whether
graphs of bounded degree have bounded geometric thickness. We answer this question
in the negative in Theorem 7.

Eppstein [50] proved that geometric thickness is not bounded by thickness. In par-
ticular, there exists a graph with thickness 3 and arbitrarily large geometric thickness.
Theorem 7 and the above result of Wessel [121] and Halton [58] imply a similar result
(with a shorter proof). Namely, there exists a 9-regular graph with thickness at most 5
and with arbitrarily large geometric thickness.

A book embedding is a geometric drawing with the vertices in convex position. The
book thickness of a graph G is the minimum thickness of a book embedding of G. Book
thickness is also called page-number and stack-number ; see [46] for over fifty references
on this topic. By definition, the geometric thickness of G is at most the book thickness
of G. On the other hand Eppstein [51] proved that there exists a graph with geometric
thickness 2 and arbitrarily large book thickness; also see [32, 33]. Thus book thickness
is not bounded by any function of geometric thickness.

Theorem 7 is analogous to a result of Malitz [84], who proved that there exists ∆-
regular n-vertex graphs with book thickness at least c

√
∆n1/2−1/∆. Malitz’s proof is

based on a probabilistic construction of a graph with certain expansion properties. The
proof of Theorem 7 is easily adapted to prove Malitz’s result for ∆ ≥ 3. The difference
in the bounds (n1/2−4/∆ and n1/2−1/∆) is caused by the difference between the number
of order types of point sets in general and convex position (≈ n4n and n!). Malitz [84]
also proved an upper bound of O(

√
m) ⊆ O(

√
∆n) on the book thickness, and thus the

geometric thickness, of m-edge graphs.
Observe that a geometric drawing with thickness k can be perturbed so that the

vertices are in general position (that is, no three vertices are collinear). Thus in this
section we consider point sets in general position without loss of generality.

Lemma 4. The number of labelled n-vertex graphs with geometric thickness at most k
is at most 472knn4n+o(n).

Proof. Let P be a fixed set of n labelled points in general position in the plane. Ajtai

1In fact, a polyline drawing of a random perfect matching on n vertices in convex position almost
certainly has Ω(n) bends on some edge [98].
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et al. [11] proved that there are at most cn plane geometric graphs with vertex set P ,
where c ≤ 1013. Santos and Seidel [104] proved that we can take c = 472. A geometric
graph with vertex set P and thickness at most k consists of a k-tuple of plane geometric
graphs with vertex set P . Thus P admits at most 472kn geometric graphs with thickness
at most k.

Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two sets of n points in general
position in the plane. Then P and Q have the same order type if for all indices i < j < k
we turn in the same direction (left or right) when going from pi to pk via pj and when
going from qi to qk via qj . Say P and Q have the same order type. Then for all i, j, k, ℓ,
the segments pipj and pkpℓ cross if and only if qiqj and qkqℓ cross. Thus P and Q admit
the same set of (at most 472kn) labelled geometric graphs with thickness at most k (when
considering pi and qi to be labelled i). Alon [15] proved (using Lemma 1) that there are
at most n4n+o(n) sets of n points with distinct order types. The result follows.

It is easily seen that Lemmas 2 and 4 imply a lower bound of c(∆ − 8) log n on
the geometric thickness of some ∆-regular n-vertex graph. To improve this logarithmic
bound to polynomial, we now give a more precise analysis of the number of graphs with
bounded geometric thickness that also accounts for the number of edges in the graph.

Lemma 5. Let P be a set of n labelled points in general position in the plane. Let
g(P,m) be the number of m-edge plane geometric graphs with vertex set P . Then

g(P,m) ≤

{(
n
2m

)
· 4722m , if m ≤ n

2

472n , if m > n
2 .

Proof. As in Lemma 4, g(P,m) ≤ 472n regardless of m. Suppose that m ≤ n
2 . An

m-edge graph has at most 2m vertices of nonzero degree. Thus every m-edge plane
geometric graph with vertex set P is obtained by first choosing a 2m-element subset
P ′ ⊆ P , and then choosing a plane geometric graph on P ′. The result follows.

Lemma 6. Let P be a set of n labelled points in general position in the plane. For every
integer t such that 2m

n ≤ t ≤ m, let g(P,m, t) be the number of m-edge geometric graphs
with vertex set P and thickness at most t. Then

g(P,m, t) ≤
(
ctn

m

)2m

,

for some absolute constant c.

Proof. Fix nonnegative integers m1 ≤ m2 ≤ · · · ≤ mt such that
∑

imi = m. Let
g(P ;m1,m2, . . . ,mt) be the number of geometric graphs with vertex set P and thickness
t, such that there are mi edges in the i-th subgraph. Then

g(P ;m1,m2, . . . ,mt) ≤
t∏

i=1

g(P,mi).
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Now m1 ≤ n
2 , as otherwise m > tn

2 ≥ m. Let j be the maximum index such that mj ≤ n
2 .

By Lemma 5,

g(P ;m1,m2, . . . ,mt) ≤

(
j∏

i=1

(
n

2mi

)
4722mi

)
(472n)t−j .

Now
∑j

i=1mi ≤ m− 1
2(t− j)n. Thus

g(P ;m1,m2, . . . ,mt) ≤

(
j∏

i=1

(
n

2mi

))(
4722m−(t−j)n

)(
472(t−j)n

)
≤ 4722m

t∏
i=1

(
n

2mi

)
.

We can suppose that t divides 2m. It follows (see Appendix B in [B]) that

g(P ;m1,m2, . . . ,mt) ≤ 4722m
(

n

2m/t

)t

.

It is well known [67, Proposition 1.3] that
(
n
k

)
<
(
en
k

)k
, where e is the base of the natural

logarithm. Thus with k = 2m/t we have

g(P ;m1,m2, . . . ,mt) <

(
236etn

m

)2m

.

Clearly

g(P,m, t) ≤
∑

m1,...,mt

g(P ;m1,m2, . . . ,mt),

where the sum is taken over all nonnegative integers m1 ≤ m2 ≤ · · · ≤ mt such that∑
imi = m. The number of such partitions [67, Proposition 1.4] is at most(

t + m− 1

m

)
<

(
2m

m

)
< 22m.

Hence

g(P,m, t) ≤ 22m
(

236etn

m

)2m

≤
(
ctn

m

)2m

.

As in Lemma 4, we have the following corollary of Lemma 6.

Corollary 1. For all integers t such that 2m
n ≤ t ≤ m, the number of labelled n-vertex

m-edge graphs with geometric thickness at most t is at most

n4n+o(n)

(
ctn

m

)2m

,

for some absolute constant c.
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Theorem 7. For all ∆ ≥ 9 and ϵ > 0, for all large n > n(ϵ) and n ≥ c∆, there exists
a ∆-regular n-vertex graph with geometric thickness at least

c
√

∆n1/2−4/∆−ϵ,

for some absolute constant c.

Proof. Let t be the minimum integer such that every ∆-regular n-vertex graph has
geometric thickness at most t. Thus the number of ∆-regular n-vertex graphs is at most
the number of labelled graphs with 1

2∆n edges and geometric thickness at most t. By
Lemma 2 and Corollary 1,( n

3∆

)∆n/2
≤ n4n+o(n)

(
ct

∆

)∆n

≤ n4n+ϵn

(
ct

∆

)∆n

,

for large n > n(ϵ). Hence t ≥
√

∆n1/2−4/∆−ϵ/(c
√

3).

It remains open whether geometric thickness is bounded by a constant for graphs
with ∆ ≤ 8. The above method is easily modified to prove Malitz’s lower bound on book
thickness.

Theorem 8 ([84]). For all ∆ ≥ 3 and n ≥ c∆, there exists a ∆-regular n-vertex graph
with book thickness at least

c
√

∆n1/2−1/∆,

for some absolute constant c.

Proof. Obviously the number of order types for point sets in convex position is n!. As
in the proof of Theorem 7,( n

3∆

)∆n/2
≤ n!

(
ct

∆

)∆n

≤ nn

(
ct

∆

)∆n

.

Hence t ≥
√

∆n1/2−1/∆/(c
√

3). (The constant c can be considerably improved here; for
example, we can replace 472 by 16.)
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Chapter 3

Decomposition into copies of a tree

3.1 Introduction

Let H be a collection of graphs. We say that a multigraph G has a H-decomposition
if the edges of G can be divided into subgraphs each of which is isomorphic to a graph
in H. If H = {H}, then we speak of an H-decomposition of G. The H-decompositions
are widely studied when G is a complete graph. If H is the 3-cycle C3, then they are
the well-known Steiner triples. If G is not complete, then it may be hard to find H-
decompositions. Indeed, if H has at least three edges, then the problem of deciding if a
graph G has an H-decomposition is NP-complete [45].

Pak informed us that K1,3-decompositions were studied already in 1916 in connection
with rigidity of polyhedra. Dehn [40] proved (among other things) that every planar
triangulation (minus a 3-cycle) has a K1,3-decomposition.

Jünger, Reinelt and Pulleyblank [68] studied H-decompositions, where the graphs
in H have three edges. Among other things, they proved that every 2-edge-connected
graph G with |E(G)| divisible by 3, has a {P4, C3,K1,3}-decomposition, where P4 is the
path with three edges. They proposed the following, still unsolved problem [68]:

Question 1. Is it true that every planar 2-edge-connected bipartite graph G with |E(G)|
divisible by 3 has a P4-decomposition?

They also asked the following:

Question 2. Suppose that H is the class of 2-edge-connected graphs with s vertices.
Is there an edge-connectivity (depending on s) that guarantees a graph to have a H-
decomposition?

The answer to this question is negative: there is no such edge-connectivity, because
there exist graphs of arbitrarily high connectivity and girth. Erdős [52] proved that
there are graphs of arbitrarily large chromatic number and girth. Mader [81] proved
that any such graph has a subgraph of large connectivity. In [16], it was shown that the
subgraph can also be chosen to have large chromatic number. In view of this, we must
require that a finite collection H must contain a forest if we wish to show that large
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(fixed) edge-connectivity implies the existence of a H-decomposition. This has inspired
us to the following general conjecture.

Conjecture 1 (Barát-Thomassen Conjecture). For each tree T , there exists a natural
number kT such that the following holds: If G is a kT -edge-connected graph such that
|E(T )| divides |E(G)|, then the edges of G can be divided into parts, each of which is
isomorphic to T .

A graph has no loops or multiple edges. A multigraph may have multiple edges. In
order to emphasize that some of the results hold only for graphs we shall sometimes call
these simple graphs.

3.2 Decompositions and orientations

Conjecture 2 below is a special case of Conjecture 1.

Conjecture 2. There exists a smallest natural number kc such that every simple kc-edge-
connected graph G has a K1,3-decomposition, provided |E(G)| is divisible by 3.

The graph K1,3 is also called the claw. Claw-decompositions can be expressed in
terms of orientations. For, if a graph G has a claw-decomposition, then we can orient
the edges of G as follows. Whenever there is a claw of the decomposition with center x
and leaves y1, y2, y3, then let the edges be oriented from x towards yi, for i = 1, 2, 3. In
the resulting graph, all outdegrees are congruent to 0 modulo 3. Conversely, if G has such
an orientation, then it implies the existence of a claw-decomposition of G. Motivated by
this connection, we now focus on orientations. If v is a vertex of an oriented graph such
that d+(v) ≡ d−(v) (mod 3), then we say that the orientation is balanced at v (mod 3).
An orientation of a graph G is called a Tutte-orientation, if each vertex is balanced
(mod 3).

If a graph has a nowhere zero 3-flow, then we obtain a Tutte-orientation by revers-
ing the edges of flow value 2. Tutte’s 3-flow conjecture states that every multigraph
with no 1-edge-cut and no 3-edge-cut has a nowhere zero 3-flow. Equivalently, every
4-edge-connected multigraph has a Tutte-orientation. For more details on Tutte’s 3-flow
conjecture, see e.g. [35, 42, 65]. Jaeger proposed the following weaker conjecture.

Conjecture 3 (Jaeger [63]). There exists a smallest natural number kt such that every
kt-edge-connected multigraph has a Tutte-orientation.

Thus Tutte conjectured that kt = 4, and this would imply Grötzsch’s theorem that
every planar triangle-free graph is 3-colorable.1 Barát and Thomassen posed the follow-
ing

Conjecture 4. If G is a planar, 4-edge-connected graph, and |E(G)| is divisible by 3,
then G has a claw-decomposition.

1The dual version of Grötzsch’s theorem states that every 4-edge-connected planar multigraph has a
Tutte-orientation, see e.g. [65].
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A cubic graph G has a claw-decomposition if and only if G is bipartite. For, such a
graph G has 2k vertices and 3k edges. Hence a claw-decomposition of G must consist of
k claws, and the centers must form an independent set. So, a 3-edge-connected, planar
graph need not have a claw-decomposition, and hence Conjecture 4 is sharp.

It would be tempting to extend Conjecture 4 to the stronger statement that kc =
kt = 4. But this is false. To see this, consider three copies of K4, and add two edges
between any pair such that we get a 4-regular graph G0. This graph has 12 vertices
and 24 edges. Assume that a claw-decomposition of G0 exists. It must consist of eight
claws. Orient the edges of each claw away from the center. There must be four sinks,
that is, vertices of outdegree 0. By the pigeon-hole principle, two of them must be in
the same K4. This is a contradiction. Thus kc > 4, and the planarity condition cannot
be dropped in Conjecture 4. The construction can be iterated as follows. Take three
copies of G0 and unfold two edges between the K4’s. These altogether six edges can be
used to connect each pair of the three copies of G0 to make the graph 4-edge-connected.
Now this graph has no independent set of twelve sinks by the pigeon-hole principle.

Lai [74] disproved Conjecture 4 by a family of planar graphs with edge-connectivity 4.
The smallest one contains 24 vertices, see below.

In a recent computer search, Hasanvand [59] found a counterexample with 18 vertices,
which is smallest possible.
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Lai and Li [75] proved the existence of claw-decompositions for planar 5-edge-con-
nected graphs.

Theorem 9 ([75]). If G is a 5-edge-connected planar graph and |E(G)| is divisible by
3, then G has a claw-decomposition.

Even if we remove the planarity condition, perhaps kc = 5. If so, then kt ≤ 8, as we
prove in the theorem below.

Theorem 10. If every 8-edge-connected simple graph with size divisible by 3 has a claw-
decomposition, then every 8-edge-connected multigraph has a Tutte-orientation. In other
words, if kc ≤ 8, then kt ≤ 8.

Proof. Let us assume that every 8-edge-connected graph has a claw-decomposition. Us-
ing this, we prove that every 8-edge-connected multigraph has a Tutte-orientation. We
proceed by induction on the number of vertices. The multigraph with two vertices and
eight edges clearly has a Tutte-orientation. So we proceed to the induction step.

We may assume that G is 2-connected since otherwise, we apply the induction hy-
pothesis to each block of G.

If e1 and e2 are parallel edges in the multigraph G under consideration, then we
contract all edges parallel with e1. The resulting multigraph is called G′. We use the
induction hypothesis for G′. We orient all edges parallel with e1 and distinct from e1, e2
at random. We claim that G also has a Tutte-orientation. It suffices to consider the
endvertices x and y of e1. There are three different possible orientations of the edges e1
and e2. Since they contribute to the outdegree of x by 0, 1 or 2, one of them will give
a balanced orientation at x (mod 3). Then also y will be balanced (mod 3). We may
therefore assume that G has no multiple edges.

Suppose that v ∈ V (G) is a vertex of even degree. Using a theorem by Mader
(namely Theorem 10 in [82]), there exist two edges vx and vy that we can split (that
is, replace by a new edge xy) such that the edge-connectivity between any two vertices
of V (G) \ {v} does not change. Since the degree of v is even, we may split all edges
incident with v and complete the proof by induction. (Mader’s theorem allows multiple
edges. That theorem only requires that v is not a cutvertex and that v has degree at
least 4 and has at least two distinct neighbors.)

Assume next that v ∈ V (G) is of odd degree, 2k+9 say. If k > 0, we split two edges,
and use induction for the resulting multigraph. Note that the resulting multigraph is
8-edge-connected because v has degree at least 8 (in fact, at least 9) after the splitting.

There remains only the case in which G is 8-edge-connected and 9-regular, and has
no multiple edges. By assumption, G has a claw-decomposition, which corresponds to
an orientation with all outdegrees divisible by 3. As all degrees are 9, such an orientation
is a Tutte-orientation.

In Theorem 10, the number 8 may be replaced by any number of the form 8 + 6k,
where k is a natural number. Thus, the existence of kc implies the existence of kt.

We now prove the converse, that the existence of kt implies the existence of kc. For
this, it is convenient to study more general orientations. Let G be a multigraph, and w :
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V (G) → {0, 1, 2} a prescribed weight function on the vertices such that
∑

v∈V (G)w(v) ≡
|E(G)| (mod 3).

If there is an orientation of the edges of G with d+(v) ≡ w(v) (mod 3) for each
v ∈ V (G), then we say that G admits the generalized Tutte-orientation prescribed by w.

If, for every such w : V (G) → {0, 1, 2}, there is an orientation of the edges of G with
d+(v) ≡ w(v) (mod 3) for each v ∈ V (G), then we say that G admits all generalized
Tutte-orientations.

Conjecture 5. There exists a smallest natural number kg such that every kg-edge-
connected multigraph admits all generalized Tutte-orientations.

Clearly kt ≤ kg. Also kc ≤ kg. Just consider the generalized Tutte orientation
prescribed by the zero-function. We show that the three parameters are essentially
equal. We shall use the following fundamental result by Nash-Williams [93] and Tutte
[117].

Theorem 11 ([93, 117]). Every 2k-edge-connected multigraph G has k pairwise edge-
disjoint spanning trees.

Theorem 12. If one of kc, kt, kg exists, then they all exist. In this case, kg ≤ 2kt + 2,
kc ≤ kg, and kt ≤ kc + 5.

Proof. Assume that kt exists. We shall prove that kg exists and that kg ≤ 2kt + 2. Let
G be a multigraph with edge-connectivity at least 2kt + 2, and let w be any prescribed
weight function. By Theorem 11, G has kt+1 edge-disjoint spanning trees T1, . . . , Tkt+1.

Put w∗(v) = −dG(v) − w(v) for each vertex v. We orient some edges of Tkt+1 such
that d+F (v) − d−F (v) ≡ w∗(v) (mod 3) for each v ∈ V (G), where F denotes the resulting
oriented forest F . It is an easy exercise to show that such a partial orientation of Tkt+1

exists.

The unoriented edges of G form a kt-edge-connected multigraph H. It has a Tutte-
orientation by the assumption. That is d+H(v) ≡ d−H(v) (mod 3) for each vertex v. Thus
dH(v) = d+H(v) + d−H(v) ≡ 2d+H(v) ≡ −d+H(v) (mod 3). Similarly, dF (v) ≡ d+F (v) +
d−F (v) = 2d+F (v) − (d+F (v) − d−F (v)) ≡ −d+F (v) − w∗(v) (mod 3) for each vertex v. Hence
d+G(v) = d+H(v) + d+F (v) ≡ −dH(v) − dF (v) − w∗(v) = −dG(v) − w∗(v) = w(v) (mod 3)
for each vertex v. Hence, kg exists and kg ≤ 2kt + 2.

As noted after Conjecture 5, kc ≤ kg. The remark after the proof of Theorem 10
shows that kt ≤ kc + 5.

Corollary 2. If the 3-flow conjecture is true, then every 10-edge-connected multigraph
admits all generalized Tutte-orientations. In particular, every 10-edge-connected graph
has a claw-decomposition, provided its size is divisible by 3.

Let us call a graph mod (2p + 1)-orientable if it has an orientation such that each
vertex is balanced mod (2p + 1). Jaeger also proposed the following generalization of
Conjecture 3.
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Conjecture 6 (Jaeger [63]). For each p ≥ 1, there exists a smallest natural number
kj(p) such that every kj(p)-edge-connected multigraph has a mod (2p + 1)-orientation.
Moreover, kj(p) ≤ 4p.

A generalized mod (2p + 1)-orientation can be defined in the obvious way.
The methods in the proof of Theorem 12 show that for each natural number p ≥ 1

the following are equivalent:
(a) There exists a smallest natural number kj(p) such that every kj(p)-edge-connected

multigraph G has a mod (2p + 1)-orientation.
(b) There exists a smallest natural number kc(p) such that every kc(p)-edge-connected

simple graph G, whose size is divisible by 2p + 1, has a K1,2p+1-decomposition.
(c) There exists a smallest natural number kg(p) such that every kg(p)-edge-connected

multigraph G admits all generalized mod (2p + 1)-orientations.
Clearly, (c) implies (a) and (b). The proof of Theorem 12 shows that (a) implies

(c). We now indicate why also (b) implies (c). Specifically, we prove that kg(p) ≤
4p(kc(p) + 2p). Let G be a multigraph of edge-connectivity at least 4p(kc(p) + 2p), and
let w be a function, which we shall show prescribes a generalized mod (2p+1)-orientation.
If G has a multiple edge consisting of at least 2p parallel edges, then we contract them
and use induction. So assume there is no such multiple edge. For every multiple edge we
orient all its edges, except precisely one, at random. We delete the oriented edges and
modify the function w accordingly. The resulting simple graph has edge-connectivity at
least 2(kc(p)+2p) and contains therefore kc(p)+2p edge-disjoint spanning trees. We use
2p of these spanning trees to orient some of their edges in such a way that deleting the
oriented edges and modifying w accordingly, the modified w becomes the zero function.

The resulting graph has kc(p) edge-disjoint spanning trees and therefore edge-con-
nectivity at least kc(p). Then we complete the proof using the assumption of Conjecture
(b).

Note that, in this way we do not use Mader’s splitting theorem. That could also be
avoided in Theorem 10, but then the inequalities in Theorem 12 would become weaker.

Thomassen [113] proved the weak 3-flow conjecture by Jaeger [63]. Together with
Theorem 12 this implies the following result by Thomassen.

Theorem 13 ([113]). If G is an 8-edge-connected graph, and |E(G)| is divisible by 3,
then G has a claw-decomposition.

This was later improved to 6 by Lovász et al. [79]. A graph is essentially λ-edge-
connected if the edges of any edge cut of size strictly less than λ are incident to a common
vertex.

Theorem 14 ([41, 79]). Every 5-edge-connected, essentially 6-edge-connected graph of
size divisible by 3 admits a claw-decomposition.

Delcourt and Postle [41] proved that 4-regular random graphs do have claw-decompo-
sitions asymptotically almost surely.

Theorem 15 ([41]). A random 4-regular n-vertex graph has a claw-decomposition
asymptotically almost surely, provided that n is divisible by 3.
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Recently, Hasanvand [59] constructed planar 4-regular 4-connected, essentially
6-edge-connected graphs with no claw-decompositions.

Theorem 16 ([59]). There are infinitely many planar 4-regular 4-connected, essentially
6-edge-connected graphs of size divisible by 3 with no claw-decompositions.

By a computer search, Hasanvand determined there are only four 4-regular con-
nected graphs of order 12 with no claw-decompositions using a regular generator due
to Meringer. Among 4-regular connected graphs of order 15 (resp. 18) there are only
146 (resp. 15932) graphs without claw-decompositions, that is less than 0.02% (resp.
0.002%) of them. The above theorem by Delcourt and Postle [41] shows this ratio must
tend to zero.

3.3 Triangulations of surfaces

If a graph on a surface is 3-colorable, then its dual graph has a 3-flow, and hence a
Tutte-orientation. In particular, every triangulation of a surface, other than K4, has a
Tutte-orientation.

An n-vertex triangulation of a surface of Euler genus k has 3n − 6 + 3k edges, see
e.g. [89]. Hence, it is a natural candidate for having a claw-decomposition. In this
section, we prove the stronger result, that every triangulation distinct from K4 admits
all generalized Tutte-orientations.

We shall use four lemmas, some of which may be of independent interest.

Lemma 7. If the edges of a multigraph G can be acyclically oriented such that each ver-
tex, except one, has outdegree at least 2, then G admits all generalized Tutte-orientations.

Proof. Let w be any weight function on the vertices. The assumptions imply that the
vertices of G can be labelled x1, . . . , xn such that all arcs (directed edges) go from right
to left. Each vertex has at least two outgoing arcs. In particular, there are at least two
edges between x1 and x2. Contract these edges, and use induction. Orient the edges
between x1 and x2 such that d+(x2) ≡ w(x2) (mod 3). The condition on w implies that
also d+(x1) ≡ w(x1) (mod 3).

No graph satisfies Lemma 7, as multiple edges are needed. However, any triangulation
with one or more edges added, or one or more edges contracted satisfies the assumption
of Lemma 7. This follows easily from the following observation. If G is a triangulation,
and H is a connected subgraph containing at least two but not all vertices, then G has
a vertex v that is not in H but which is joined to at least two vertices in H. (We then
orient all edges between v and H from v to H, add v to H, and repeat.)

Lemma 8. Let k be a natural number, k ≥ 3, and let w be a weight function of the
k-wheel Wk with center c such that

∑
x∈V (Wk)

w(x) ≡ |E(Wk)| (mod 3). The k-wheel
admits the generalized Tutte-orientation prescribed by w, unless k is odd, and w(x) ≡
0 (mod 3) for all vertices x ∈ Wk \ {c}.
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Proof. Let x1x2 . . . xkx1 be the cycle Wk \ {c}. If k is even, and w(xi) ≡ 0 (mod 3), for
i = 1, 2, . . . , k, then we orient the edges of the wheel such that x1, x2, . . . , xk are sources
and sinks alternately. So assume that w(x1) ̸≡ 0 (mod 3). If w(x1) = 1, then we orient
the edge x1x2 towards x1. If w(x1) = 2, then we orient it away from x1. Then we
successively orient the two unoriented edges incident with x2, the two unoriented edges
incident with x3 etc. as prescribed by w. Clearly, it is possible to orient the last edge
incident with x1. The condition

∑
x∈V (Wk)

w(x) ≡ |E(Wk)| (mod 3) ensures that the
center receives the correct prescribed outdegree.

Lemma 9. Let k ≥ 3 be a natural number, and let Uk be a multigraph obtained from the
k-wheel Wk by adding one or more edges. The graph Uk admits all generalized Tutte-
orientations.

Proof. Let w be any prescribed weight function of Uk. Orient all added edges, except
one, at random. The last added edge can be oriented in two ways. For each of these two
orientations, we modify w accordingly. At least one of these two modifications of w is
not the exceptional weight function in Lemma 8. Hence, Lemma 8 implies that Uk has
the desired orientation.

Lemma 10. Let x and y be adjacent vertices in a triangulation G such that at least
one of x, y, say y, has degree at least 4 and such that N(x) ∩ N(y) consists of only
two vertices. Let J be the subgraph induced by N(x) ∪ N(y). The graph J admits all
generalized Tutte-orientations.

Proof. Let w be any weight function, and let x1, x2, . . . , xk−1, x be the neighbors of y
in clockwise order. The graph induced by {y} ∪N(y) is a wheel Wy and possibly some
additional edges that we first orient at random. Now we repeat the procedure from
the proof of Lemma 8 with a slight modification. We orient the edge x1x2 arbitrarily.
Next we orient successively the two unoriented edges of Wy incident with x2, . . . , xk−2

to achieve the prescribed outdegrees at these vertices. The remaining unoriented edges
of J form a wheel Wx with center x, and possibly some additional edges that we orient
at random. As the orientation of x1x2 can be chosen in two ways, we may assume that
the exceptional case in Lemma 8 does not occur now for Wx. Hence, we can orient the
edges of Wx by Lemma 8.

Theorem 17. Let G ̸= K3,K4 be a triangulation of any surface S. The graph G admits
all generalized Tutte-orientations.

Proof. If G contains a non-facial triangle, then let x be one of the vertices of this triangle,
and let J be the subgraph of G induced by x and its neighbors. The graph J is a wheel
with at least one additional edge.

If all triangles of G are facial, then we let x be any vertex. As G ̸= K3,K4, x has
a neighbor y of degree at least 4. As all triangles containing x are facial, x and y have
only two neighbors in common. In this case, we let J be the subgraph of G induced by
x, y and the neighbors of x, y.
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Let w be any weight function of G. We contract J into a single vertex, and we modify
w accordingly. By the remark after Lemma 7, the resulting multigraph has the desired
orientation. By Lemma 9 or Lemma 10, the orientation can be extended to J .

Theorem 17 shows that every triangulation has a claw-decomposition. The decom-
position may possibly be chosen such that (almost) every vertex is the center of a claw.
We now prove that this holds for triangulations of surfaces of Euler genus at most 2.
For this, we use the following well-known consequence of Edmonds’ matroid partition
theorem [48]. For completeness, we indicate a short proof.

Theorem 18. Let G be a graph with n vertices, and let k1, k2, . . . , kn be non-negative
integers. The graph G has an orientation satisfying d+(vi) ≤ ki for i = 1, . . . , n if and

only if |E(J)| ≤
∑

i:vi∈V (J)

ki for any subgraph J ⊆ G.

Proof. The necessity is obvious. For the sufficiency, let Mi be the matroid on E(G)
whose independent sets are the sets that consist of at most ki edges, each of which is
adjacent to vi. The matroid partition theorem gives us a partition of E(G) into sets
E1, . . . , En such that Ei is independent in Mi if and only if for any S ⊆ E(G) we have

|S| ≤
∑

i:S∩Mi ̸=∅

ki. Now orient the edges in Ei away from vi.

Theorem 19. Let G be a triangulation of the plane or the projective plane or the torus
or the Klein bottle. The graph G has an orientation such that all outdegrees are 3 or 0,
except when G = K4 in the plane.

Proof. We prescribe all outdegrees ki to be at most 3, except for two independent vertices
in the plane and one vertex in the projective plane for which we put ki = 0. Next we apply
Theorem 18. The required inequalities hold by Euler’s formula. Since all outdegrees
(except one or two) are at most 3, all of them (except one or two) are precisely 3, again
by Euler’s formula.

Barát and Thomassen [C] posed the following

Conjecture 7. If G is a triangulation of a surface of Euler genus k ≥ 2, then G has
an orientation such that each outdegree is at least 3, and divisible by 3.

Theorem 19 shows that Conjecture 7 holds for k = 2. Another motivation for this
conjecture is, that it can be seen as a step towards the generalization of planar Schnyder
woods to higher genus surfaces. A Schnyder wood [106] of a planar triangulation is
an orientation and a {0, 1, 2}-coloring of the inner edges satisfying the following local
rule on every inner vertex v: going counterclockwise around v one successively crosses
an outgoing 0-arc, possibly some incoming 2-arcs, an outgoing 1-arc, possibly some
incoming 0-arcs, an outgoing 2-arc, and possibly some incoming 1-arcs until coming
back to the outgoing 0-arc. Schnyder woods are one of the tools in the area of planar
graph representations and Graph Drawing. They provide a machinery to construct
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space-efficient straight-line drawings, representations by touching T shapes, and are
used to encode triangulations efficiently. In particular, the local rule implies that every
Schnyder wood gives an orientation of the inner edges such that every inner vertex has
outdegree 3 and the outer vertices are sources with respect to inner edges. Indeed, this
is a one-to-one correspondence between Schnyder woods and orientations of this kind.

Albar et al. [12] proved Conjecture 7.

Theorem 20 ([12]). If G is a triangulation of a surface of Euler genus k ≥ 2, then G
has an orientation such that each outdegree is at least 3, and divisible by 3.

3.4 Dense graphs

Lai and Zhang [73] proved that every 4⌈log n⌉-edge-connected multigraph has a nowhere-
zero 3-flow. We now prove that any such graph admits all generalized Tutte-orientations.

Theorem 21. Every 4⌈log n⌉-edge-connected multigraph with n vertices admits all gen-
eralized Tutte-orientations.

Proof. Assume for simplicity that log n is a natural number. Let w be any prescribed
weight function on the vertices. We show that G can be oriented as prescribed by w. The
idea is to find log n pairwise edge-disjoint spanning Eulerian subgraphs G1, G2, . . . , Glogn.
We orient the remaining edges arbitrarily, and modify w accordingly. We use G1 to give
half of the vertices the prescribed outdegree modulo 3. We next use G2 to take care of
half of the remaining vertices, and so on.

We now argue formally. By Theorem 11, G has 2 log n pairwise edge-disjoint spanning
trees T1, T2, . . . , T2 logn. It is well-known and easy to see that the union of any two of
these contains a connected spanning Eulerian subgraph. Therefore G contains log n
pairwise edge-disjoint spanning Eulerian subgraphs G1, G2, . . . , Glogn.

We orient all edges not in E(G1)∪E(G2)∪· · ·∪E(Glogn) at random, and we modify
w accordingly. Next we define w∗ as in the proof of Theorem 12. In other words, we are
going to orient G1∪G2∪· · ·∪Glogn such that for each vertex v, there are w∗(v) outgoing
arcs, and the remaining d(v) − w∗(v) arcs incident with v are balanced at v (mod 3).
(We assume here that w∗(v) is one of 0,1,2.) We now define the mode of a vertex v.
Initially the mode of v is w∗(v). If all vertices are in mode 0, then we just orient each
Gi, for 1 ≤ i ≤ log n, such that each vertex is balanced. If some vertices are in a mode
̸= 0, then we orient G1, G2, . . . , Glogn successively such that we use each Gi to turn at
least half of the vertices of mode ̸= 0 into mode 0. We explain how this is done for G1.
The procedure for G2, . . . , Glogn is similar. So, we let v1, e1, v2, e2, . . . , em, v1 be a closed
Euler walk of G1. There may be repetition of vertices. Suppose v2 is in mode 2. Next we
orient both edges e1, e2 away from v2. Suppose we have already oriented e1, e2, . . . , ek−1,
and that ek−1 is directed towards vk. If vk is in mode 0, then we direct ek away from
vk, and we say that vk is still in mode 0. If vk is in mode 1, then we direct ek towards
vk, and we say that vk is in mode 0. Now vk is in the required mode and will remain
there. Finally, we consider the case in which vk is in mode 2. In this case, we consider
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the first vertex vp in the sequence vk+1, vk+2, . . . which is not in mode 0. We orient the
edges ek, ek+1, . . . , ep such that vp turns into mode 0, and vk+1, . . . , vp−1 remain in mode
0. Vertex vk will be in either mode 1 or mode 2. If there are k vertices in the undesired
mode 1 or 2, then we change in this way at least (k − 1)/2 of these into the desired
mode 0. We repeat this argument for G2, . . . , Glogn. When this procedure terminates,
all vertices will be in mode 0.

Theorem 22. There exists a constant n1 such that every graph G with n vertices, n ≥
n1, and minimum degree δ, where δ(G) ≥ n

2 , admits all generalized Tutte-orientations.

Proof. If the edge-connectivity of G is at least 4⌈log n⌉, then the claim holds by The-
orem 21. Otherwise, G has an edge-cut of size smaller than 4⌈log n⌉. The minimum
degree ensures that there are at least n

2 − 4⌈log n⌉ vertices on both sides of the cut.
When n is large enough, both sides are 4⌈log n⌉-edge-connected, and hence they admit
all generalized Tutte-orientations. So, for any prescribed weight function w on V (G),
we first orient the edges in the cut and then apply Theorem 21 to each side of the cut.
We only need to make sure that the modified weight functions satisfy the congruence
relation. As the cut has at least two edges, this is always possible.

If n is even, then the graph consisting of the union of two copies of Kn
2

and one edge
between them has neither a Tutte-orientation nor a claw-decomposition. The degree
condition in Theorem 22 is therefore sharp. However, for 2-edge-connected graphs,
there is a better bound.

Theorem 23. There exists a constant n2 such that every 2-edge-connected graph G with
n ≥ n2 vertices and minimum degree δ(G) ≥ n

4 admits all generalized Tutte-orientations.

The proof of Theorem 23 is similar to, but more tedious than that of Theorem 22.
Theorem 23 is best possible in the following sense: If n is divisible by 4, then take the
union of four copies of Kn

4
. Add six independent edges such that there is precisely one

edge between any two copies of Kn
4
. The resulting graph has minimum degree n

4 −1 but
has no Tutte-orientation.

3.5 Reduction to bipartite graphs

In a nutshell, Thomassen successfully applied the following scheme for various trees T
to prove instances of Conjecture 1:

1. Remove copies of T from G such that a bipartite graph G[A,B] remains, which still
contains many edge-disjoint spanning trees.
2. Remove more copies of T such that each degree in A becomes divisible by k, and the
rest still contains some edge-disjoint spanning trees.
3. Group the edges from A such that copies of T arise, which altogether decompose the
rest.

In this section, we concentrate on step 1. We recall the following result from [112],
that we make heavy use of.
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Lemma 11. Let p be any natural number, and put m = 2p. If G is a multigraph with a
collection of m pairwise edge-disjoint spanning trees, then G has a spanning tree T such
that, for each vertex v, dT (v) ≤ dG(v)/m + 3p/2.

Using a maximum cut idea, it is easy to prove the following

Lemma 12. If k is a natural number and G is a 2k − 1-edge-connected graph, then G
has a bipartition such that G[A,B] is k-edge-connected.

In Thomassen’s scheme, the first step is to delete some copies of the tree such that
the remaining graph is a highly edge-connected bipartite graph. It was mentioned in
[112], that perhaps this method works for every tree. In this section, we validate this hy-
pothesis. We need the following result, which is practically a consequence of Lemma 11.

Lemma 13. For any natural numbers k, ℓ and m, if G contains km2ℓ edge-disjoint
spanning trees, then we can choose subgraphs M1 ⊂ M2 ⊂ · · · ⊂ Mℓ+1 such that M1

contains k edge-disjoint spanning trees T1, . . . , Tk and dMi(v) ≤ dMi+1(v)/m for every
vertex v and for 1 ≤ i ≤ ℓ− 1.

Proof. By Lemma 11, if we are given m2 edge-disjoint spanning trees, there is one of
them, T say, such that dT (v) ≤ d∗(v)/m2 + 3p/2 ≤ d∗(v)/m, where d∗(v) is the total
degree in that particular collection of m2 spanning trees. Here in the last inequality, we
implicitly use that d∗(v) ≥ m2. We prove the claim of the Lemma by induction on ℓ.
We start with the base ℓ = 1. If we are given km2 edge-disjoint spanning trees, then
we divide them into k equal sets and choose a spanning tree in each of these sets by
Lemma 11. Summing these inequalities, we get the required result for ℓ = 1.

Assume that we have proved the lemma for Mi, where i ≥ 1. In the induction step,
there are m2km2i edge-disjoint spanning trees given. Just as previously, we partition
the set of spanning trees into sets of size m2. We find the low-degree spanning trees
by Lemma 11, as before. It gives km2i edge-disjoint spanning trees. By the induction
hypothesis, we can find M1 ⊂ M2 ⊂ · · · ⊂ Mi in them. Finally, Mi+1 is the union of the
m2km2i edge-disjoint spanning trees. Therefore, also the degree conditions are satisifed
for Mi+1.

We show that it is sufficient to prove Conjecture 1 for bipartite graphs:

Theorem 24. Let T be a tree with t edges. The following two statements are equivalent.
(i) There exists a natural number kT such that for any kT -edge-connected bipartite graph
G, if t divides |E(G)|, then G has a T -decomposition.
(ii) There exists a natural number k′T such that for any k′T -edge-connected graph G, if t
divides |E(G)|, then G has a T -decomposition.

Proof. We only prove the non-trivial implication. Let k′T = 8t2t+3 + 4kT − 1.
By Lemma 12, we can find a partition (A,B) of the vertex set such that G[A,B] is
4t2t+3 + 2kT -connected. By Theorem 11, there are at least 2t2t+3 + kT pairwise edge-
disjoint spanning trees in G[A,B]. In what follows, we show how to delete all edges
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inside A and B by removing copies of T using at most 2t2t+3 of the spanning trees.
After this, the remaining kT spanning trees provide kT -edge-connectivity.

First, we greedily delete copies of T from G[A] as long as possible. We partition the
remaining edges into subgraphs of T as follows. Identify a vertex v1 of A with a vertex
x1 of T . Connect v1 to as many neighbors as x1 has in T . If the degree of x1 is too
large, then connect v1 to every possible neighbor. Continue this copy/paste process with
the neighbors of v1 trying to copy a subgraph of T . We skip those edges of G[A], which
would create a cycle in this subgraph. Once we run out of possible extensions, we finish
the subgraph, which we started at v1. We repeat this process on the set of remaining
edges starting at an arbitrary vertex. In this way, we create a set H of subgraphs of G,
which are subtrees of T .

Let H be a graph in H. A vertex v is incomplete in H, if it is identified with a vertex
of degree d in T , but the degree of v in H is smaller than d.

For every vertex v in A, there are at most t trees in H, where v is incomplete. Indeed,
consider the first occasion, when there were not enough edges to achieve the necessary
degree at v in a subgraph H. There were at most t − 1 edges incident to v, as they all
go to vertices in H. Therefore, v appears in at most t− 1 additional members of H.

Claim 1. The set H can be partitioned into t2 sets H1, . . . ,Ht2 such that for every vertex
v in A, there is at most one tree in Hi, for each i, 1 ≤ i ≤ t2, where v is incomplete.

Proof. We can do it greedily. Select trees as long as possible into H1 without violating
the property, and similarly for H2, . . . ,Ht2 . If a tree is not selected, it means that one
of its at most t + 1 vertices, v say, would violate the property, more precisely one of the
at most t − 1 other trees where v is incomplete is already in the partition class. It can
happen at most (t + 1)(t− 1) times.

Back to the proof of the Theorem: We divide the remaining spanning trees into t2

sets of size t2t+1 (each such set corresponds to a partition class Hi) and a set of size kT .
First we add edges from the corresponding spanning trees to the members of H1 to get
copies of T , and remove those copies. We repeat this process with the other partition
classes and the other spanning trees.

Consider H1 and the corresponding t2t+1 spanning trees. We apply Lemma 13 with
t = k = ℓ = m for the graph consisting only of these spanning trees, to get subgraphs
M1, . . . ,Mt and T1, . . . , Tt.

Consider now the incomplete vertices in H1. We add the missing edges using the
spanning trees T1, . . . , Tt. We only use the fact that each vertex is incident to at least
one edge in each spanning tree. For a vertex v, if there is a member H of H1, where
v is incomplete, we add an edge incident to v in T1, . . . , Tt, to H. If there are several
incomplete vertices in H, then the edges should go to different vertices of B. Those
vertices are naturally identified with vertices of T now.

More precisely, let Step 1 be a breadth-first process: we add the missing edges to the
vertices of every H in H1, and identify the other endvertices of these edges with vertices
of T . Let H(1) denote the new subtree of T , that consists of H, the new edges and
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the new vertices, and let D1(H) denote the set of these vertices. In Step i, we add the
missing edges to the elements of Di−1(H) for every H ∈ H1 in order to get H(i), and
denote the set of other endvertices by Di(H), and identify them with vertices of T .

We show that it is possible. Suppose we have finished Step i. For every vertex v
in Di(H), the degree of v in Mi+1 is at least t times more than the number of edges
incident to v used in all previous Steps. In particular, this degree is at least t times
more than the number of edges incident to v used in Step i. Hence for every such edge,
we can choose t− 1 edges from Mi+1 \Mi. Now we use those edges (independently for
every H(i), which contains v) to add the next level of T to H(i). All we need to do is
to add, say j, missing edges incident to v, and these edges should avoid those at most s
vertices, which are in H(i). It yields j + s < k, and we can choose the edges greedily.

In this way, we can find copies of T , which contain everything from H1. We delete
them and repeat the process for H2, and so on.

3.6 Y-decompositions

At the time of posing, there was no tree of size at least 3, for which Conjecture 1
was known to be true. A nice and thorough introduction to the subject is [111], where
Thomassen proved that every 207-edge-connected graph G has a set E of at most 6 edges
such that G−E has a 4-path-decomposition. Approximately the same time, Thomassen
proved

Theorem 25 ([112]). If G is a 171-edge-connected graph of size divisible by 3, then G
has a 3-path-decomposition.

The proof of Theorem 25 consists of three main ingredients. In principle, the method
could be applied to any tree T . Let G be a graph of sufficiently high edge-connectivity,
and let T be a tree on k edges.

For any fixed tree, the above edge-connectivity condition can be largely reduced. For
any such improvement, we use the same principal argument, but we can decrease the
necessary number of spanning trees, by using the structure of the fixed tree. Let Y be
the unique tree with degree sequence (1, 1, 1, 2, 3). In particular, for the graph Y , we
show the following.

Lemma 14. If G is a 4k+ 23-edge-connected graph, then we can remove some Y -copies
such that a bipartite graph with k edge-disjoint spanning trees remains.

Proof. By Lemma 12, we can find a bipartition G[A,B] of G, which is 2k + 12-edge-
connected. By Theorem 11, we find k + 6 edge-disjoint spanning trees in G[A,B]. Let
T1, T2, T3 be three of them. We remove Y -copies from G[A] greedily as long as we can.
What remains in G[A] is a collection of paths, cycles, stars and subgraphs of K4. We
cut each path and each cycle into paths with three edges and a possible shorter path.
We identify one of the middle vertices of such a 3-path with a 3-vertex of Y . The idea is
to extend these 3-paths into Y -copies using T1, and remove them from G. For a 2-path,
we identify one end-vertex with the 3-vertex of Y . For a single edge, we identify one
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end-vertex with the 3-vertex of Y , and the other end-vertex with the 2-vertex of Y . We
cut the stars into 3-stars and a remaining part, which is a 2-path or a single edge, as
above. For a 3-star, we identify a leaf with the 2-vertex of Y . Until now, any vertex in A
is identified at most once with a vertex in a Y -copy. For any subgraph H of K4, which
is different from the previous ones, we do as follows. We cut H into paths of length
at most three such that after the above identifications with 3- or 2-vertices of Y , each
vertex is used at most once. This is always possible with one exception, the triangle.

If a vertex of A is identified with a 3- or 2-vertex of Y , then we extend the subgraph
with edges of T1 and T2 to achieve a Y -copy, which we remove. It works fine except for
a single edge or a triangle. For a single edge, we have to add three additional edges to
get a Y -copy. For the vertex identified with the 3-vertex, we use edges from T1 and T2.
Now there exists an edge in T1, T2 or T3 from the other end of the single edge, which
avoids creating a cycle, hence it makes a Y -copy, which we remove. For the triangle, we
cut it into a single edge and a 2-path. We do as above for the single edge, and let v be
the vertex, which was identified with the 2-vertex. For the 2-path, we identify v with
the 3-vertex of Y . Since we used one of T1 − T3 for the single edge, there are two edges
left to use. We create a Y -copy and remove it.

We have to execute the same process for G[B], where we use three more spanning
trees. After all, a bipartite graph remains, which has at least k edge-disjoint spanning
trees.

Remark 1. Even if there are only k + 5 spanning trees in G[A,B], we can delete Y -
copies using 5 spanning trees such that a k-edge-connected bipartite graph remains. It
requires a more detailed argument, and implies an improvement by 4 in the statement of
Lemma 14.

We recall an implicit result from [112]. We emphasize a balanced property, which
was hidden in the proof of Theorem 25.

Lemma 15. Let G be a 2-edge-connected bipartite graph with classes A and B. If the
degree of each vertex in A is divisible by 3, then G can be decomposed into paths of length
3 such that every vertex v of A is the endvertex of d(v)/3 and middle vertex of d(v)/3
paths of length 3.

Our main result gives a sufficient edge-connectivity condition for Y -decompositions.

Theorem 26. Let Y denote the tree with degree sequence (1, 1, 1, 2, 3). If G is a 287-
edge-connected graph of size divisible by 4, then G has a Y -decomposition.

Proof. We first apply Lemma 14 with k = 66. As a result, we are given a bipartite graph
G[A,B] with 66 edge-disjoint spanning trees T1, . . . , T66.

In the next step, we delete some copies of Y to make all degrees in A divisible by 4.
In the first phase, we achieve that all degrees are even. Therefore, vertices in A of odd
degree are bad. Let M(1) be a subgraph of G, which is the union of 12 edge-disjoint
spanning trees T1, . . . , T12. By Lemma 11, p = 2, M(1) has a spanning tree T (1) such
that for each vertex v, dT (1)(v) ≤ dM(1)(v)/4 + 3 ≤ dM(1)(v)/2, since dM(1)(v) ≥ 12.
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Similarly, the union M(2) of 12 spanning trees T13, . . . , T24 contains a spanning tree T (2)
such that for each vertex v, dT (2)(v) ≤ dM(2)(v)/2. The union of T (1) and T (2) contains
a spanning Eulerian subgraph E1.

We start a walk on E1 at a bad vertex u1. We construct a Y -copy, which we delete,
as follows. Let e1 be the edge adjacent to u1 in E1, and let e2 be the next edge. Walking
along these two edges, we are back in A in a vertex u2. We continue this way till we
arrive to another bad vertex ur. For every i, 1 ≤ i ≤ r − 1, we consider e2i−1, e2i and
two edges in M(1) ∪ M(2) \ E1, which are incident to ui+1. We glue these four edges
together to form a copy of Y and remove them. In this way, we delete an odd number of
edges incident to u1 and ur, and an even number of edges incident to any other vertex
in A. Therefore, the number of bad vertices decreases. A vertex can appear multiple
times in the above sequence, but that does not change the parity of the degree.

Now we continue the walk along E1 and do nothing until we find another pair of bad
vertices. We repeat the above process of removing Y -copies between the bad vertices.
Iterating these two steps, we finish the Eulerian trail, and all degrees are now even. There
is a small remark, that we have to make: there are enough edges in M(1) ∪M(2) \ E1

to use. Indeed, whenever the walk arrives to a vertex v, it means there are two incident
edges in E1. Hence we can find two more edges, as the degree of a vertex v in E1 is at
most half of the degree of v in M(1) ∪M(2).

In the second phase, all degrees in A are even. Our goal is to remove some Y -copies
to make all degrees divisible by 4. Therefore, vertices in A of degree 2 mod 4 are bad.
As in the first phase, we need an Eulerian spanning subgraph for our purposes. Let M(3)
be a subgraph of G, which is the union of 15 edge-disjoint spanning trees T25, . . . , T39.
By Lemma 11, p = 3, M(3) has a spanning tree T (3) such that for each vertex v,
dT (3)(v) ≤ dM(3)(v)/8 + 4.5 ≤ dM(3)(v)/2 − 1, since dM(3)(v) ≥ 15. Similarly, the union
M(4) of the spanning trees T40, . . . , T54 contains a spanning tree T (4) such that for each
vertex v, dT (4)(v) ≤ dM(4)(v)/2 − 1. The union of T (3) and T (4) contains a spanning
Eulerian subgraph E2.

On the Eulerian trail, we mark the bad vertices. We start the marking at a bad
vertex b1. Later, we only mark the bad vertices at the first appearance. We get a list
b1, . . . , br of bad vertices, and this list reflects their order of first appearance on E2. This
direction on E2 is fixed from now on.

In what follows, we remove Y -copies to achieve that all degrees in A are divisible by
4. If v is a bad vertex, then we remove 2 or 6 edges incident to v during the process,
when we arrive to the marked copy of v. If x is an unmarked vertex, then we remove
precisely 4 edges. If x is a vertex on E2, let x+ be the next vertex of A on E2. There
are two building bricks:
1. remove a Y -copy at x is a step, when two consecutive edges of E2 starting at x, and
two edges of M(3) ∪M(4) \ E2 at x+ are removed.
2. remove a reversed Y -copy at x is a step, when two consecutive edges of E2 starting
at x, and two edges of M(3) ∪M(4) \ E2 at x are removed.

We start at b1 and remove a Y -copy. We continue along E2 and remove all edges of
E2 two by two. Every such pair of edges corresponds to a 2-path in a Y -copy, where one
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end is the 3-vertex. The only decision to make is the placement of the other two edges
from M(3) ∪M(4) \E2. Either at the current vertex x or at the subsequent vertex x+.
This is actually automatic, according to the degree condition: we either deleted 1 or 3
edges at x due to the previous Y -copy, and our goal might be to remove 2, 4 or 6 edges
in total. If we need to remove one more edge at x, we remove a Y -copy. If we need to
remove three more edges at x, we remove a reversed Y -copy. Notice here, that finishing
the Eulerian trail, we get back to b1. The last condition automatically removes one more
edge at b1, since the remaining number of edges has to be divisible by 4.

After this process, bad vertices become good, and the degrees of good vertices are still
divisible by 4. Here we also remark that there are enough edges in M(3)∪M(4) \E2 to
use, every time the walk arrives to a vertex v. This again follows from the upper bound
on dT (3) and dT (4). Whenever we arrive to v, it means there are two edges incident to v
in E2, and we need two edges (or four, at most once) in M(3) ∪M(4) \ E2. Therefore,
we need the degree of v in M(3)∪M(4) \E2 to be at least dE2(v) + 2, which is satisfied.

We are left with a bipartite graph M [A,B], where all degrees in A are divisible by
4. Let M(5) be the union of 6 spanning trees T55, . . . , T60. By Lemma 11, p = 2, M(5)
contains a spanning tree T (5) such that for each vertex v, dT (5)(v) ≤ 3dM(5)(v)/4. We
similarly define M(6) and find T (6). Now for every vertex v in A, the following holds:
dT (5)(v) + dT (6)(v) ≤ 3dM (v)/4. For every vertex v in A, we put aside 1/4 of the edges
such that T (5) and T (6) remains in the graph. The remaining graph M ′ satisfies the
conditions of Lemma 15.

Therefore, we can decompose M ′ into paths of length 3 such that for a vertex v with
degree 4d in M (hence degree 3d in the smaller graph M ′), there are d paths starting
from v, and d paths, where v is a middle vertex. For every vertex v, we glue the d edges,
which we put aside in the beginning of the third phase, one by one to the d paths, where
v is a middle vertex. This gives us a Y -decomposition.

3.7 Resolution of the Barát-Thomassen conjecture

A necessary condition for the existence of a T -decomposition is of course that |E(T )|
divides |E(G)|. There are many theorems and conjectures in graph theory stating that
this condition is also sufficient in certain cases. By a result of Wilson [122] this holds
when G is a sufficiently large complete graph, and there exist more general results
showing that this is also true for graphs of large minimum degree. More precisely, for
every tree T there exists a constant εT > 0 such that every graph G of minimum degree
(1 − εT )|V (G)| admits a T -decomposition, provided its size is divisible by the size of T ,
see for instance [25].

Barát and Thomassen [C] started a different line of research, when we observed
that T -decompositions are intimately related to nowhere-zero flows. Tutte conjectured
that every 4-edge-connected graph admits a nowhere-zero 3-flow, but until recently it
was not even known that any constant edge-connectivity suffices for this. Barát and
Thomassen showed that if every 8-edge-connected graph of size divisible by 3 admits a
K1,3-decomposition, then every 8-edge-connected graph admits a nowhere-zero 3-flow.
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Vice versa, we also showed that Tutte’s 3-flow conjecture would imply that every 10-
edge-connected graph with size divisible by 3 admits a claw-decomposition. Motivated
by this intrinsic connection, we formulated Conjecture 1.

When the conjecture was made, it was only known to hold in the trivial cases,
when T has less than 3 edges. After that, Conjecture 1 attracted growing attention.
After a decade, it was verified for different families of trees such as stars [113], some
bistars [115, F], and paths of a certain length [36, 111–114]. As the last stepping stone,
breakthrough results were obtained by Merker [88], who proved Conjecture 1 for all
trees of diameter at most 4, hence covering some of the results above. Botler, Mota,
Oshiro, and Wakabayashi [37] proved the conjecture for all paths. This result was
improved by Bensmail, Harutyunyan, Le, and Thomassé [31], who showed that, for
path-decompositions, large minimum degree is a sufficient condition provided the graph
is 24-edge-connected.

Finally, some of the above authors joined their forces and proved the Barát-Thomas-
sen conjecture in full generality. They build on several previous results. We shortly
summarize a few of their ideas and direct the interested reader to the full proof in [30].

It was shown by Thomassen [115], and independently by Barát and Gerbner [F], that
it is sufficient to verify Conjecture 1 for bipartite graphs, see Section 3.5 for details. An
important tool in the study of Conjecture 1 is the result on modulo k-orientations by
Thomassen [113]. He showed that the edges of a highly edge-connected graph can be
oriented so that any prescribed out-degrees modulo k are realised. An application is the
following decomposition result by Thomassen [115]. A highly edge-connected bipartite
graph G(A1, A2) can be decomposed into two less-highly edge-connected graphs G1, G2

such that dGi(v) is divisible by m for each v ∈ Ai.

By the aforementioned results, it is sufficient to prove Conjecture 1 for bipartite
graphs G(A,B), where all vertices in A have degree divisible by m, the size of T .

Let TA and TB denote the vertex classes of a bipartition of T. We may assume
that B contains a leaf. The T -decompositions Bensmail et al. constructed respect the
bipartitions of G and T in the sense that the vertices corresponding to TA will lie in A
for each copy of T . Vertices v ∈ V (G) and t ∈ V (T ) are compatible if v ∈ A and t ∈ TA,
or v ∈ B and t ∈ TB.

Assume G is (improperly) edge-colored. We denote by di(v) the degree of vertex v in
color i. For t ∈ V (T ), let S(t) denote the set of edges incident with t. An edge-coloring
ϕ : E(G) → E(T ) is T -equitable, if for any compatible vertices v ∈ V (G), t ∈ V (T )
and j, k ∈ S(T ), we have dj(v) = dk(v). Merker [88] showed highly edge-connected
graphs admit T -equitable edge-colorings. Since we put no constraints on the degrees in
B, necessarily the greatest common divisor of the degrees in TB must be 1, if we want to
construct a T -equitable coloring. For this reason, we chose the bipartition of T so that
TB contains a leaf.

If there exists a T -decomposition of a bipartite graph G, where all copies of T are
oriented the same way (with respect to the bipartite classes), then it gives rise to a T -
equitable coloring of G. Vice versa, a T -equitable coloring can also be used to construct
a T -decomposition. This was done in [88], when the girth of G is at least the diameter
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of T , and also in general for trees of diameter at most 4.
Finally, Bensmail et al. [30] used probabilistic methods to show that a T -equitable

coloring can be turned into a T -decomposition, whenever the minimum degree in each
color is large enough. Combining all these results one can complete the proof of the
Barát–Thomassen conjecture.
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Chapter 4

Cube dismantling

There are nd unit cubes in a d-dimensional hypercube of edge-length n. We identify
these nd unit cubes with the vertices of a graph, [n]d. Two vertices are neighbours if
the corresponding two unit cubes have a (d − 1)-dimensional face in common. In this
chapter, we consider sequences of induced subgraphs of [n]d, sometimes specifically in
three dimensions. Starting from [n]d, we successively remove vertices of degree d from
the current graph until no further vertices can be removed. Here the degree of a vertex
is a dynamic notion referring to the degree in the current graph. We prove a number of
properties of the positions that may be reached by such a dismantling process. In doing
so, we settle several conjectures posed in [24].

We also study the reverse of our dismantling process, which we call a build-up. The
build-up process is similar to well studied models of bootstrap percolation, see for in-
stance [19, 20, 105]. One difference with our process is that a new site is added only
when the number of neighbours exactly matches a prescribed value, whereas in bootstrap
percolation “exactly matches” would be replaced by “matches or exceeds”. Another is-
sue is that we only add one vertex at a time, while in bootstrap percolation all sites
satisfying the threshold condition are added simultaneously. In our setting two vertices
that correspond to independent vertices of [n]d can be added simultaneously. However,
if the vertices are neighbours and both have degree d, then they cannot both be added.
This changes the nature of the problem. On the other hand extremal results in boot-
strap percolation theory can serve as upper bounds for our problem. The size of the
percolating set is fixed in our setting, provided it consists of independent sites. This is
a consequence of a result mentioned in [20]. The proof uses the well-known Perimeter
Lemma, which is a handy tool for several extremal properties. For bootstrap perco-
lation it is of fundamental importance to decide the minimum and maximum sizes of
percolating sets [91]. Despite these differences we will show that in an important special
case, our build-up process is effectively identical to bootstrap percolation. Also, the
so-called modified bootstrap percolation in [n]d requires at least one neighbour in each
of the d directions [62]. This property is analogous to the idea of a balanced move in
our investigation.

The well-known Perimeter Lemma [20] gives us the following
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Proposition 27. Starting from [n]d, there are at least nd−1 unit cubes left after any
sequence of moves, each move being a removal of a vertex of degree d. That is, at most
nd − nd−1 vertices can be successively removed from [n]d.

In the extremal case the nd−1 unit cubes correspond to independent vertices of [n]d.
In our terminology nd−1 independent vertices of [n]d form a base position. We color
the unit cubes/vertices of the base position black, and all other cubes/vertices white.
Our task is the following. There is a given base position. Can we successively remove
all white vertices according to the degree d rule? If the answer is yes, then the base
position is a solution. A sequence of moves starting from [n]d leading to a solution is a
dismantling. The reverse process is a build-up.

Each vertex of [n]d is identified naturally with a d-tuple (x1, . . . , xd). A line is the
set of n cubes found by fixing d − 1 coordinates and allowing one coordinate to vary.
A section is the set of nd−1 cubes found by fixing one coordinate and allowing the
other (d− 1) coordinates to vary. The intersection of a solution and a section (in three
dimensions) plays an important role. A section is facial if its unit cubes touch a face of
the original cube [n]d. A projection of a vertex set in [n]d is a projection to [n]d−1 in one
of the fundamental directions.

Each step in a dismantling, that is, the removal of a vertex of degree d is a move.
A move is balanced if the neighbours lie in different lines. A dismantling or build-up
is balanced if all of its moves are balanced, otherwise it is unbalanced. We show in
Section 4.1 that if a dismantling to a solution is balanced, then the solution corresponds
to a Latin hypercube [87].

A position refers to any subset of the cubes in [n]d, that is, an induced subgraph of
[n]d. The vertices in the position are black, and the remaining vertices are white. The
degree of a white vertex is its number of black neighbours. Any base position with full
projections in all d orthogonal directions is perfect. A position is convex if no line of
[n]d contains one or more white cubes between black cubes. In particular, a perfect base
position is convex. A position is minimal if there is no black vertex with precisely d
neighbours. That is, no more dismantling moves are possible. A position is maximal if
there is no white vertex with precisely d neighbours. That is, no more build-up moves are
possible. We are mainly interested in the maximal configuration [n]d, and the minimal
configurations that are solutions. In Theorem 29 we show that the symmetric difference
of any two minimal or any two maximal positions is non-empty.

A base position B corresponds to a two-coloring of [n]d, where the vertices in B are
black, and the other vertices are white. The isometry group of the cube (in 3D) has
48 elements. Two base positions B1 and B2 are isometric if and only if there exists
an element of the isometry group of the cube mapping B1 to B2. Therefore, any base
position may be isometric to at most 48 positions. If the position has some symmetry,
then we get fewer isometric positions.

A dismantling gives us an edge-decomposition of [n]3 into copies of the complete
bipartite graph K1,3, also known as the 3-star. Decompositions are well studied in graph
theory and design theory. For example, K1,3-decompositions are in focus in [C], where
their relation to orientations and flows are described in detail. Hoffmann [61] gave a
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necessary and sufficient condition for star decompositions. His conditions — mainly
a Hall-type criterion — imply that [n]d has a d-star decomposition. In general, the
existence of a star decomposition does not imply a dismantling. It is possible that a
(sub)graph has a decomposition, but that it has large minimum degree. In such a case,
there is no vertex of degree d to be removed.

4.1 Greedy and balanced

If B is an imperfect solution, then any dismantling to B is unbalanced as was observed
in [24] for the 3-dimensional case. Formally, we have the following

Lemma 16. If all moves are balanced in a dismantling to a solution B, then B is perfect.

Proof. Assume to the contrary, that two black vertices u and v have the same projection
in some direction r, and there are only white vertices between u and v. Say u and v
are at distance k. That is, there are k − 1 white vertices and k edges between u and v
in direction d. Every edge is removed during dismantling. However, any balanced move
removes one white vertex and one edge in direction d, so it is impossible to remove the k
edges between u and v with the k−1 available white vertices. This contradiction proves
that the projection is full in all three directions.

It is challenging to compare the importance of balanced and unbalanced moves. Note
that every dismantling must use a balanced move at the start. There are dismantlings
with balanced moves only, we show one particular solution in Section 4.2. On the other
hand, there seem to be many more imperfect solutions than perfect ones. Theoretically,
it is possible to replace a few balanced moves by a few imbalanced moves. However,
the authors of [24] conjectured that the converse of Lemma 16 holds. We settle the
conjecture in the next Theorem. We need the following preliminary result:

Lemma 17. Let C be a convex position.
(0) Any build-up from C is balanced, and produces only convex positions.
(1) Any dismantling to C is balanced.
(2) Only convex positions can be reached by balanced dismantling from C.

Proof. First, consider a build-up from C. Any unbalanced move requires two non-
consecutive cubes in the same line. Therefore, only balanced moves are possible in a
convex position.

Assume D is a non-convex position formed by adding a single vertex v to the convex
position C. Since D is non-convex, there are two non-consecutive vertices in a line l
such that all vertices between them are missing. Clearly one of the vertices must be v,
the other one is, say, u. Vertex v was added in a balanced move, therefore there is a
neighbour x of v in line l. There are no vertices between v and u in D, therefore x and
u make C non-convex, a contradiction. So, by induction, only convex positions can be
reached by building-up from C.
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This proves (0), and (1) follows immediately since dismantling is the reverse of build-
up. Part (2) is straightforward, since each move of a dismantling preserves convexity
unless we remove a cube between two other cubes, and such a move is not balanced.

A Latin square of order n is an n × n array of n symbols in which each symbol
occurs exactly once in each row and exactly once in each column. Each position P in a
dismantling can be associated with a matrix MP = [mxy] of sets such that z ∈ mxy if
and only if the cell (x, y, z) is included in P . It is plausible that MP might be a Latin
square with the n symbols being the n possible singleton sets. Positions that correspond
to Latin squares in this way turn out to be quite special:

Proposition 28. For a solution B the following statements are equivalent:
(0) B is convex.
(1) B is perfect.
(2) B corresponds to a Latin square.
(3) There is a balanced dismantling of Qn to B.
(4) Every dismantling of Qn to B is balanced.
(5) There is a balanced build-up from B to Qn.
(6) Every build-up from B to Qn is balanced.

Proof. If B is convex, then there cannot be more than one black vertex in any line,
since B consists of independent vertices. However, there has to be one vertex per line
on average, which means there must be exactly one vertex in each line. So B is perfect.
Conversely, if B is perfect then there is exactly one black vertex in each line, which
means that B is necessarily convex. We conclude that (0) and (1) are equivalent.

Let MB denote the matrix corresponding to the solution B. We see that the cells of
MB consist of singletons if and only if there is exactly one cell of B in each vertical line.
This is the same as specifying one orthogonal projection of B to be full. The other two
orthogonal projections of B are full if and only if the singletons in each row (respectively,
column) of B are distinct. So (1) is equivalent to (2).

Dismantling and build-up are the reverse of each other, and balanced moves mean
the same thing in both processes. Hence (3) is equivalent to (5) and (4) is equivalent
to (6). We are assuming that B is a solution so there is a dismantling from Qn to B.
Thus (4) implies (3). Lemma 16 shows that (3) implies (1), and Lemma 17 shows that
(0) implies (6). The theorem follows.

We stress that Proposition 28 applies only to solutions B, not to all base positions B.
We have shown in [D] that (2) is very far from implying (3) for a general base position.

When the authors of [24] made a complete search for a fixed size, most of the search
time was taken up by backtracking in the search tree. They conjectured that this is
unnecessary in some sense. We validate this conjecture here. The steps of a build-up
can be encoded as follows: in each step, we record the vertex we are adding, and store
its set N(V ) of neighbours for validation of the degree. We use v∗ as short-hand for the
pair (v,N(v)).
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Theorem 29. Let P be any position. There cannot be two distinct maximal positions
M1 ⊂ M2 such that both M1 and M2 can be reached by build-up from P . Similarly there
cannot be two distinct minimal positions M1 ⊂ M2 such that both M1 and M2 can be
reached by dismantling from P .

Proof. Assume to the contrary that some build-up u∗1, u
∗
2, . . . , u

∗
f from P stops in a

maximal position M1, where M1 ⊊ M2, while another sequence v∗1, v
∗
2, . . . , v

∗
g builds up

from P to M2.

First suppose that {u∗1, u∗2, . . . , u∗f} ⊂ {v∗1, v∗2, . . . , v∗g}. Since M1 ̸= M2, there is at
least one vertex in the sequence v1, v2, . . . , vg that does not occur in {u1, u2, . . . , uf}.
Let vj be the first such vertex in the sequence, and suppose v∗j = (vj , {x, y, z}). We
claim that v∗j is a possible move in position M1, contradicting the maximality of M1. By
choice of vj , each of x, y, z must be in P or u1, . . . , uf and hence each is in M1. Thus
vj has at least 3 neighbours in M1. Suppose vj has a fourth neighbour w in M1. Since
w /∈ N(vj) it cannot be that w is in P , so there must be some k for which uk = w. By
assumption, u∗k = v∗i for some i. If i < j, then w = uk = vi ∈ N(vj) which contradicts
the choice of w. If i > j, then vj ∈ N(vi) = N(uk) ⊂ M1 which contradicts the choice of
vj . It follows that vj , which is not present in M1, has exactly 3 neighbours in M1. Thus
v∗j is a possible move in position M1, as claimed.

It remains to consider the possibility that ui = vk but u∗i ̸= v∗k for some i, k. We
choose the first such ui in the sequence u1, . . . , uf . Since u∗i ̸= v∗k, there is x ∈ N(ui) \
N(vk) and this implies that x = uj for some j < i. By choice of i, this means that
u∗j = v∗l for some l. As j < i we have vk = ui /∈ N(uj) = N(vl), which implies l < k.
Hence x = uj = vl ∈ N(vk), contradicting the choice of x and proving the first claim of
the theorem.

The proof of the other claim is similar. Suppose that there are two minimal posi-
tions M1 ⊊ M2 such that M2 can be reached from P by the dismantling u∗1, u

∗
2, . . . , u

∗
f ,

while another sequence v∗1, v
∗
2, . . . , v

∗
g dismantles from P to M1. If {u∗1, u∗2, . . . , u∗f} ⊂

{v∗1, v∗2, . . . , v∗g} then the first move in v∗1, v
∗
2, . . . , v

∗
g that is not in u∗1, u

∗
2, . . . , u

∗
f will be

a valid dismantling move from M2, contradicting the minimality of M2. Otherwise,
we have ui = vk but u∗i ̸= v∗k for some i, k. Taking the first such i yields a similar
contradiction to the build-up case.

Since any position that can be reached from P is a subset of Qn, we have:

Corollary 3. Let P be any position that can be reached from Qn by dismantling. The
only maximal position that can be reached by building up from P is Qn.

Crucially, this last result entitles us to use the following greedy algorithm to check
candidate solutions. We repeatedly traverse the white vertices (in any order) and add
any of degree 3, until a maximal position is reached.

Corollary 4. A base position is a solution if and only if the greedy algorithm terminates
with the full cube.
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In Corollary 4, if we end up with a maximal position other than the full cube,
then we started with a position that was not a solution. The maximal position is
far from being determined by the initial position. We found a set of 25 independent
vertices in Q5 from which different build-ups reach maximal positions of any size in
{37, 38, 39, 40, 43, 46, 56, 57, 58, 59, 60, 61, 63}. We also found a set of 35 vertices in Q5

such that various build-ups resulted in maximal positions of each size in {93, 94, . . . , 119}.
Figures 4.1 and 4.2 show the smallest and largest maximal positions for this example.
The numbers in shaded squares show the order in which the cubes are added. Bold
numbers in white squares are the degrees of white vertices in the final position. The
absence of a bold 3 certifies that no more moves are possible.
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Figure 4.1: The smallest maximal position.
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Figure 4.2: The largest maximal position.

These examples contrast sharply with Corollary 3. In Proposition 31 below, we will
see another situation where only one maximal position can be reached.

Next we prove another conjecture from [24]. It states that solutions are not only
stable, but in some sense the build-up is unique.

Theorem 30. Let P1, P2 be any two positions, and let u∗1, u
∗
2, . . . , u

∗
f and v∗1, v

∗
2, . . . , v

∗
f ,

be any two build-ups from P1 to P2. There exists some permutation σ of {1, 2, . . . , f}
such that u∗σ(i) = v∗i for 1 ≤ i ≤ f .

Proof. Assume to the contrary, there exist a j for which u∗j ̸= v∗i for 1 ≤ i ≤ f . Let
us fix j to be the smallest such index. Since both sequences reach the same position,
uj = vk for some k.

Suppose u∗j = (uj , {x, y, z}). By assumption, u∗j ̸= v∗k so at least one of x, y, z must
occur after vk in the sequence v1, . . . , vf . Without loss of generality, suppose that z does.
Now z is not in P1, but is in N(uj), so z = ud for some d < j. By choice of j, it follows
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that u∗d = v∗e for some e. Note that e > k by choice of z. Now vk = uj /∈ N(ud) = N(ve)
since d < j, but this contradicts the fact that vk ∈ N(ve) as k < e.

Of course, a similar statement holds for any two dismantlings from P2 to P1, since a
dismantling sequence is just a build-up sequence in reverse.

In the introduction we mentioned several differences between our build-up process
and bootstrap percolation. However, there is an important case in which they are es-
sentially the same.

Proposition 31. If C is any convex position, then the same maximal position will ulti-
mately be reached from C by any sequence of moves regardless of whether they are dictated
by our build-up process, by bootstrap percolation, or by modified bootstrap percolation.

Proof. Let S be the set of white vertices that have at least 3 black neighbours in C.
Since C is convex, no white vertex can have more than one black neighbour in any
line of C. Hence every vertex in S has exactly 3 black neighbours, and they are in 3
orthogonal directions. Thus S is the set of sites that would be filled by a single step of
either bootstrap percolation or modified bootstrap percolation. Moreover, the vertices
in S are independent; for suppose that two of them, u and v were neighbours. Since they
are in S, they both have a black neighbour in the line that contains u and v. But these
black neighbours would necessarily have the white vertices u and v between them, which
breaches the assumption that C is convex. So S is an independent set and all vertices in
it can be added (in any order, and using only balanced moves) by our build-up process.
By Lemma 17, C ∪ S is convex, so we can apply the same argument again.

Let D be the maximal position reached from C by bootstrap percolation (or modified
bootstrap percolation). By induction using the above argument we know that D can be
reached by build-up from C. So it only remains to show that no other maximal position
D′ can be reached by build-up from C. Suppose w is the first vertex that was added in
the build-up to D but is not present in D′. Then w has three neighbours in D′, namely
the neighbours that were used to add w in the build-up to D. Also w cannot have more
than three neighbours in D′, since D′ is convex by Lemma 17. So w is available as a
move in D′, contradicting the maximality of D′. We conclude that w does not exist,
meaning that D is a subset of D′. By a symmetric argument D′ is a subset of D, so they
are in fact equal. In other words, from any convex position there is a unique maximal
position that can be reached by building-up.

4.2 The cyclic base position

The graph Qn consists of n levels, each level being an n× n square of unit cubes. Each
vertex is identified naturally with a triple (x, y, z). Here the last coordinate indexes
the level, and the first two coordinates are the row and column indices. The rows are
1, 2, . . . , n from top to bottom and the columns are 1, 2, . . . , n from left to right as in
a matrix, the levels are 1, 2, . . . , n from bottom to top. We describe a specific solution,
the cyclic base position, that can be reached after dismantling Qn. The set of black
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vertices is {(i, j, k) : i + j − k ≡ 1 mod n}. The top level contains diagonal vertices.
Each consecutive level is a cyclic shift of the previous level, see Figure 4.3 for order 5.

Figure 4.3: The cyclic base position of order 5.

We define a specific subroutine, which is used several times. Let S be a facial section
of Qs, that corresponds naturally to an s×s square. Let D be a diagonal of black vertices
(1,m), (2,m−1), . . . , (m, 1), where m ≤ s. Consider the upper-left triangle T consisting
of the vertices with i+ j ≤ m. Now the diagonals parallel to D can be removed starting
from size 1 to size m− 1. This process is the diagonal peeling of T or a diagonal peeling
of size m−1 with corner (1, 1). Any rotation or reflection of it is also a diagonal peeling.

Let UTB(m) = {(i, j, k) : i + j − k = m + 1 − n} be the upper triangular base of
order m, where 1 ≤ m ≤ n. Similarly, let LTB(m) = {(i, j, k) : i + j − k = 2n−m} be
the lower triangular base or order m, where 1 ≤ m ≤ n − 1. The cyclic base position
in Qn is the union of UTB(n) and LTB(n − 1). In general TB(m), a triangular base
of order m is a copy of UTB(m) embedded and possibly rotated and reflected in Qn,
where m ≤ n. Clearly LTB(n− 1) is a TB(n− 1).

The union ∪m
i=1UTB(i) forms a heap of oranges of order m, HO(m) for short. For

any m, where 1 ≤ m ≤ n− 1, the vertices of UTB(m) are independent, and any vertex
of UTB(m) has precisely three neighbours in UTB(m + 1). Therefore, HO(n) can be
dismantled to UTB(n).

The vertices of Qn with precisely 3 neighbours in HO(n) form a TB(n−2). They
are on the other side of UTB(n). Add these vertices to HO(n). Repeating this process,
we can pack a TB(n− 4), TB(n− 6), . . . on HO(n). This is the nested heap of oranges
construction, NHO(n) for short. If n is even, then NHO(n) is HO(n) ∪ TB(n − 2) ∪
· · · ∪ TB(2). If n is odd, then NHO(n) is NHO(n)∪ TB(n− 2)∪ · · · ∪ TB(1). Observe
that NHO(n) can be dismantled to UTB(n), and a rotated copy of NHO(n − 1) can
be dismantled to LTB(n− 1).

Theorem 32. For each positive integer n, where n ≥ 2, the n × n × n cube can be
dismantled to the disjoint union of NHO(n) and a rotated copy of NHO(n− 1).

Proof. Consider the three original corners of Qn outside of NHO(n) and NHO(n− 1):
(1, n, 1), (n, 1, 1), (n, n, n). Execute diagonal peelings of size n− 1 with the above three
corners to remove vertices of form (1, y, z), (x, 1, z), (x, y, n). We remove 3Tn−1 cubes in
this step, where Tm = m(m − 1)/2 is the triangular number. In particular, we remove
(1, 2, 1), (2, 1, 1), (n, 1, n − 1), (n, 2, n), (1, n, n − 1), (2, n, n). Therefore, the following
vertices now have three neighbours: (2, 2, 1), (n, 2, n−1), (2, n, n−1). Execute diagonal
peelings of size n−2 with the above corners to remove vertices of form (x, y, 1), (n, y, z),
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(x, n, z). In these two steps, we removed all vertices outside of NHO(n) and NHO(n−1)
with any coordinate equal to 1 or n. In some sense, we peeled of one hull from the cube.

From now on, we repeat these two steps from corners, each of which is a diagonal
step away from one of the previous six. The series of corners are: (1 + a, n − a, 1 + a),
(n − a, 1 + a, 1 + a), (n − a, n − a, n − a), (2 + b, 2 + b, 1 + b), (n − b, 2 + b, n − 1 − b),
(2 + b, n − b, n − 1 − b), where 0 ≤ a ≤ ⌊n/2⌋ − 1 and 0 ≤ b ≤ ⌈n/2⌉ − 2. So the
second iteration would use diagonal peelings from the corners (2, n− 1, 2), (n− 1, 2, 2),
(n−1, n−1, n−1), and (3, 3, 2), (n−1, 3, n−2), (3, n−1, n−2) to remove vertices with
any coordinate equal to 2 or n− 1. Each new peeling is made possible by the preceding
peeling, which removed the cubes that were neighbours on the “outside” of the ones we
want to remove next.

We can perform n − 1 steps of this algorithm removing (n − 1)n(n + 1)/2 cubes in
total, 3 times the (n − 1)st tetrahedral number Hn−1. Adding these to the number of
cubes in NHO(n) and NHO(n− 1) gives us n3, certifying our algorithm. Indeed,

|NHO(n)| + |NHO(n− 1)| = Hn + Tn−2 + Tn−4 + · · ·
+ Hn−1 + Tn−3 + Tn−5 + · · ·

= Hn + Hn−1 + Hn−2.

Therefore, we need to check Hn + 4Hn−1 + Hn−2 = n3, which is true.

Corollary 5. For each positive integer n, where n ≥ 2, the n × n × n cube can be
dismantled to the cyclic base position.

If we are looking for more solutions, it is natural to consider variations of the cyclic
base position. One option is to permute the levels, which corresponds to permuting the
symbols in the corresponding latin square. Executing a computer search, we found that
of the n! permutations of the symbols, the number that produced a solution is as follows.

n 3 4 5 6 7 8 9 10

#solutions 6 16 40 96 200 352 552 800

We do not consider general permutations further, but rather work towards showing that
cyclic permutations do produce solutions.

Starting from a corner of Qn we can remove a line of cubes of length k, where
1 ≤ k ≤ n − 1. As a consequence, we can build-up a missing line of cubes on the edge
of a cube. We use this observation in a more general context, when the line of cubes is
somewhere inside Qn, but a dismantling generated an equivalent situation.

A staircase of size m and depth d is the union of lines of length d starting from a set
of vertices that form a diagonal peeling of size m.

Lemma 18. We can remove a staircase of size m and depth d from Qn, where 1 ≤ m < n
and 1 ≤ d < n.

Proof. We can either say that this is the union of d diagonal peelings of size m, or refer
to the repeated removal of lines in diagonal fashion.
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The cyclic base position is the intersection of Qn with two planes. When we permute
the levels cyclically, we get the set {(i, j, k) : i + j − k ≡ 1 − s mod n}, where 1 ≤
s ≤ n− 1. It is the intersection of Qn with three planes according to whether i + j − k
takes the value 1 − s, n + 1 − s or 2n + 1 − s. These are two triangular and one
hexagonal region. Therefore, let HBs

n = {(i, j, k) : i + j − k = n + 1 − s} be the
hexagonal board of size s in Qn, where 1 ≤ s ≤ n − 1. Let HB(m + 1 − s, s) denote
any rotated or reflected copy of HBs

m embedded in Qn, where m ≤ n. In this way
HB(1, 1) is a single cube, HB(2, 1) corresponds to three cubes, HB(2, 2) consists of
seven cubes etc. As for the triangular boards, we can put together hexagonal boards in
a nested fashion. Let m be a positive integer and Pm = 1 if m is odd, Pm = 2 if m is
even. Let DNH(n,m) be the doubly nested hexagon of size m, which is the union of
HB(Pm, 1), . . . ,HB(m, 1), . . . ,HB(m,n−m+1), . . . , HB(1, n−m+1), . . . ,HB(1, Pm).
As remarked before, the nested parts can be dismantled. That is, DNH(n,m) can be
dismantled to HB(m).

We now prove the following generalisation of Theorem 32.

Theorem 33. Any cyclic permutation of the levels of the cyclic base position gives a
solution.

Proof. Let as assume that we shifted the levels by s. That is, level n of the cyclic base
position becomes level s, and in general level i becomes level i + s mod n. We denote
this object by CC(n, s). It is the union of three connected pieces: UTB(n − s), HBs

n,
LTB(s− 1), see picture 1, in Figure 4.4. As in the preparation for Theorem 32 we can
add cubes to these three pieces to get NHO(n− s) + DNH(n, s) + NHO(s− 1) = M ,
the third picture in Figure 4.4.

Figure 4.4: Build-up from a hexagonal board via double nesting and completion of
corners.

The key observation is that the intersection of M and a Qn−s placed in (n, n, n) is
a copy of NHO(n − s) and NHO(n − s − 1). Therefore, we can apply Theorem 32.
Similarly for the intersection of M and a Qs−1 placed in (1, 1, 1). Therefore, we can
locally build-up Qn−s and Qs−1, see the fourth picture in Figure 4.4. Let F be the union
of these two cubes with DNH(n, s).

Using the above observations, we first use Lemma 18 to dismantle Qn to F . Secondly,
we use Theorem 32 to dismantle F to M . Finally, we dismantle M to CC(n, s).
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4.3 Additional geometric properties

In this section we consider further properties of solutions, particularly their sections and
projections.

We start by considering the number of black vertices in a section. Certainly, a section
cannot consist of white vertices only, since then the last vertex removed from the section
in a hypothetical dismantling would have degree at most 2, a contradiction. So each
section contains at least one black vertex. For facial sections we can say something
much stronger using the Perimeter Lemma.

Lemma 19. Every facial section contains at least n black vertices.

An analogous argument applied to a non-facial section gives no extra information.
On the other hand, we get a stronger result assuming that the dismantling is balanced.
By Lemma 16 the solution is then perfect. In a perfect solution the sections have an
average of n black vertices each, and each section contains at least n black vertices
because it has n squares in its projection. Hence, if a solution is perfect, then each
section contains precisely n black vertices. We note that the converse does not hold.
Figure 4.5 shows an example for n = 4 where each section contains precisely n black
vertices but the solution is not perfect.

Figure 4.5: Imperfect solution with n black vertices per section.

In applications such as those mentioned in [24], there might be a condition on the
location of the black cubes. One strong condition is to restrict the black cubes to being
in three sections. For specific values of the form 2t, we show a solution satisfying this
extra condition. The construction relies on the following observation. If there are three
mutually orthogonal sections, in which all cubes are present, then the rest of Qn can be
built-up. What is left to do is the selection of a base position in this restricted space of
three sections.

Lemma 20 (The corridor idea). Let n = 2t for t ≥ 1. There exists a solution In in
which the black cubes are contained in three orthogonal facial sections of Qn.

Proof. We use induction on t. For t = 1, there is only one solution. For any other t,
let I2t contain the vertex (1, 1, 1). Let the other black cubes be contained in squares of
size (2t − 1) × (2t − 1) in the facial sections (1, y, z), (x, 1, z), (x, y, 1), where x, y, z ≥ 2.
The positions of the black cubes in these sections are defined recursively. Consider four
copies of the example of size (2t−1 − 1) × (2t−1 − 1) in the corners plus an extra black
cube in the centre, see Figure 4.6.
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We can build-up Qn from this base position as follows. The four smaller parts can
be built-up by the induction hypothesis. Once they are done, the line starting from the
middle black cube can be built-up. After this step the lines starting from (1, 1, 1) can
be built-up. We now have three orthogonal facial sections filled. We can easily build-up
the rest of Qn: for instance line by line from 2 to n on level 2, and then repeating this
level by level from 3 to n.
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Figure 4.6: The recursive idea to create (n− 1) × (n− 1) squares.

We can look at this result from another point of view. In case of perfect base
positions, the three orthogonal projections cover the surface of three faces. That is,
an area of 3n2, which is clearly the maximum possible. At the other extreme, define
s(n) to be the minimum possible area obtained from the three orthogonal projections
of a solution to the faces of Qn. The following conjecture, posed in [24], says the above
solution of three planes achieves the minimal value s(n).

Conjecture 8. s(n) ≥ n2 + 6n− 4 for all n.

Using the Perimeter Lemma again, we can show that the leading term in the previous
conjecture is correct.

Proposition 34. If B is a solution in Qn then each of its 3 orthogonal projections
covers an area of at least 1

3n
2 + 2

3n. Hence s(n) ≥ n2 + 2n.
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Chapter 5

The Albertson conjecture

The crossing number cr(G) of a graph G is the minimum number of edge crossings
in a drawing of G in the plane. It is a natural relaxation of planarity, see [108] for a
survey. The chromatic number χ(G) of a graph G is the minimum number of colors in
a proper coloring of G. The Four Color Theorem states if cr(G) = 0, then χ(G) ≤ 4.
Oporowski and Zhao [94] proved that every graph with crossing number at most two is
5-colorable. Albertson et al. [14] showed if cr(G) ≤ 6, then χ(G) ≤ 6. It was observed
by Schaefer that if cr(G) = k, then χ(G) = O( 4

√
k) and this bound cannot be improved

asymptotically [13].

It is well-known that graphs with chromatic number r do not necessarily contain Kr

as a subgraph, they can even have clique number 2 only [124]. The Hajós conjecture
proposed that graphs with chromatic number r each contains a subdivision of Kr. The
origin of this conjecture is unclear, but attributed to Hajós, turned out to be false for
r ≥ 7. Moreover, it was shown by Erdős and Fajtlowicz [53] that almost all graphs are
counterexamples. Albertson conjectured the following.

Conjecture 9. If χ(G) = r, then cr(G) ≥ cr(Kr).

If G contains a subdivision of Kr, then cr(G) ≥ cr(Kr). Therefore, Conjecture 9 is
weaker than the Hajós conjecture, and it may be true.

For r = 5, the Albertson conjecture is equivalent to the Four Color Theorem.
Oporowski and Zhao [94] verified it for r = 6, Albertson, Cranston, and Fox [13] proved
it for r ≤ 12. In [E], we proved the following.

Theorem 35. For r ≤ 16, if χ(G) = r, then cr(G) ≥ cr(Kr).

In this chapter, we discuss the tools and the proof of Theorem 35. Albertson,
Cranston, and Fox combined lower bounds for the number of edges of r-critical graphs,
and lower bounds on the crossing number of graphs with given number of vertices and
edges. Our proof is very similar, but we use better lower bounds in both cases.

Albertson, Cranston, and Fox proved that any minimal counterexample to the Al-
bertson conjecture should have less than 4r vertices. We slightly improve this result in
[E] as follows. We omit the proof here.
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Lemma 21. If G is an r-critical graph with n ≥ 3.57r vertices, then cr(G) ≥ cr(Kr).

In Section 5.1 we review lower bounds for the number of edges of r-critical graphs. In
Section 5.2 we discuss lower bounds on the crossing number. In Section 5.3 we combine
these bounds to obtain the proof of Theorem 35.

The letter n always denotes the number of vertices of G. In notation and terminology
we follow Bondy and Murty [35]. In particular, the join of two disjoint graphs G and
H arises by adding all edges between vertices of G and H. It is denoted by G ∨H. A
vertex v is called simplicial if it has degree n− 1. If a graph G contains a subdivision of
H, then we also say that G contains a topological H. A vertex v is adjacent to a vertex
set X means that each vertex of X is adjacent to v.

5.1 Color-critical graphs

Around 1950, Dirac introduced the concept of color criticality in order to simplify graph
coloring theory, and it has since led to many beautiful theorems. A graph G is r-critical,
if χ(G) = r but all proper subgraphs of G have chromatic number less than r. In what
follows, let G denote an r-critical graph with n vertices and m edges.

Since G is r-critical, every vertex has degree at least r− 1, therefore, 2m ≥ (r− 1)n.
The value 2m−(r−1)n is called the excess of G. Dirac [43] proved that for r ≥ 3, if G is
not complete, then 2m ≥ (r−1)n+(r−3). For r ≥ 4, Dirac [44] gave a characterization
of r-critical graphs with excess r − 3.

For any fixed r ≥ 3 let ∆r be the family of the following graphs G. The vertex
set of G consists of three non-empty, pairwise disjoint sets A,B1, B2 with |B1| + |B2| =
|A| + 1 = r − 1, and two additional vertices a and b. Sets A and B1 ∪ B2 both span
cliques in G, and they are not connected by any edge. Vertex a is connected to A ∪B1,
and b is connected to A ∪ B2. See Figure 5.1. Graphs in ∆r are called Hajós graphs of
order 2r−1. Observe that that these graphs have chromatic number r and they contain
a topological Kr, hence they satisfy Hajós’ conjecture.

Gallai [54] proved that r-critical graphs with at most 2r − 2 vertices are the join of
two smaller graphs, i.e. their complement is disconnected. Based on this observation, he
proved that non-complete r-critical graphs on at most 2r − 2 vertices have much larger
excess than in Dirac’s result.

Lemma 22. [54] Let r, p be integers satisfying r ≥ 4 and 2 ≤ p ≤ r − 1. If G is an
r-critical graph with n = r+p vertices, then 2m ≥ (r−1)n+p(r−p)−2. Equality holds
if and only if G is the join of Kr−p−1 and G ∈ ∆p+1.

Since every G ∈ ∆p+1 contains a topological Kp+1, the join of Kr−p−1 and G contains
a topological Kr. This yields a slight improvement for our purposes.

Corollary 6. Let r, p be integers satisfying r ≥ 4 and 2 ≤ p ≤ r − 1. If G is an r-
critical graph with n = r + p vertices, and G does not contain a topological Kr, then
2m ≥ (r − 1)n + p(r − p) − 1.
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1

Figure 5.1: The family ∆r.

We call the bound given by Corollary 6 the Gallai bound.
For r ≥ 3, let Er denote the family of the following graphs G. The vertex set of

G consists of four non-empty pairwise disjoint sets A1, A2, B1, B2, where |B1| + |B2| =
|A1|+ |A2| = r−1 and |A2|+ |B2| ≤ r−1, and one additional vertex, c. Sets A = A1∪A2

and B = B1 ∪B2 are cliques in G. Vertex c is connected to A1 ∪B1, and a vertex a ∈ A
is adjacent to a vertex b ∈ B if and only if a ∈ A2 and b ∈ B2.

Clearly Er ⊃ ∆r, and every graph G ∈ Er is r-critical with 2r−1 vertices. Kostochka
and Stiebitz [72] improved the bound of Dirac as follows.

Lemma 23. [72] Let r ≥ 4 and G be an r-critical graph. If G is neither Kr nor a
member of Er, then 2m ≥ (r − 1)n + (2r − 6).

Corollary 7. Let r ≥ 4 and G be an r-critical graph. If G does not contain a topological
Kr then 2m ≥ (r − 1)n + (2r − 6).

Proof. It is not difficult to see that any member of Er contains a topological Kr. Indeed,
sets A and B both span a complete graph on r− 1 vertices. We only have to show that
vertex c is connected to A2 or B2 by vertex-disjoint paths. To see this, we observe that
|A2| or |B2| is the smallest of {|A1|, |A2|, |B1|, |B2|}. Indeed, if |B1| was the smallest,
then |A2| > |B1| implies |A2|+ |B2| > |B1|+ |B2| = r− 1 contradicting our assumption.
We may assume that |A2| is the smallest. Now c is adjacent to A1, and there is a
matching of size |A2| between B1 and B2 and between B2 and A2, respectively. That is,
we can find a set S of disjoint paths from c to A2. In this way A∪ c∪ S is a topological
r-clique.
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Figure 5.2: The family Er.

Call the bound in Corollary 7 the Kostochka, Stiebitz bound, or KS-bound for short.
In what follows, we obtain a complete characterization of r-critical graphs on r + 3

or r + 4 vertices.

Lemma 24. For r ≥ 8, there are precisely two r-critical graphs on r + 3 vertices.
They can be constructed from two 4-critical graphs on seven vertices by adding simplicial
vertices.

Figure 5.3: The two 4-critical graphs on seven vertices.

Proof. The proof is by induction on r. For the base case r = 8, there are precisely two
8-critical graphs on 11 vertices, see Royle’s complete search [103].

Let G be an r-critical graph with r ≥ 9 and n = r + 3 ≥ 12. We know that the
minimum degree is at least r − 1 = n − 4. If G has a simplicial vertex v, then we use
induction. So we may assume that every vertex in G, the complement of G has degree
1, 2, or 3. By Gallai’s theorem, G is disconnected. Observe the following: if there
are at least four independent edges in G, then χ(G) ≤ n − 4 = r − 1, a contradiction.
That is, there are at most three independent edges in G. Therefore, G has two or three
components. If there is a triangle in the complement, then we can save two colors. If
there were two triangles, then χ(G) ≤ n− 4 = r − 1, a contradiction.
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Assume that there are three components in G. Since each degree is at least one,
there are at least three independent edges. Therefore, there is no triangle in G and
no path with three edges. That is, the complement consists of three stars. Since the
degree is at most three and there are at least 12 vertices, there is only one possibility:
G = K1,3 ∪K1,3 ∪K1,3, see Figure 5.4.

Figure 5.4: The complement and a removable edge.

We have to check whether this concrete graph is indeed critical. Observe, that if we
remove the edge connecting two centers of these stars, the chromatic number remains r.
Therefore, our graph is not r-critical, a contradiction.

In the remaining case, G has two components H1 and H2. Since there are at most
three independent edges, there is one in H1 and two in H2. It implies that H1 has at
most four vertices. Therefore, H2 has at least eight vertices. Consider a spanning tree T
of H2 and remove two adjacent vertices of T , one of them being a leaf. It is easy to see
that the remainder of T contains a path with three edges. Therefore, in total we found
three independent edges of H2, a contradiction.

We need the following result of Gallai.

Theorem 36. [54] Let r ≥ 3 and n < 5
3r. Every r-critical, n-vertex graph contains at

least
⌈
3
2

(
5
3r − n

)⌉
simplicial vertices.

Lemma 25. For r ≥ 6, there are precisely twenty-two r-critical graphs on r+4 vertices.
They can be constructed by adding simplicial vertices to one of the following:
• a 3-critical graph on 7 vertices,
• four 4-critical graphs on 8 vertices,
• sixteen 5-critical graphs on 9 vertices, or
• a 6-critical graphs on 10 vertices.

Proof. For the base of induction, we use Royle’s table again, see [103]. The full computer
search shows that there are precisely twenty-two 6-critical graphs on 10 vertices. One
of them has 3 simplicial vertices, four of them has 2, sixteen have 1, and one has no
simplicial vertices. For the induction step, we use Theorem 36 and see that there are
at least r − 6 simplicial vertices. Since r ≥ 7, there is always a simplicial vertex. We
remove it and use the induction hypothesis to finish the proof.
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There is an explicite list of twenty-one 5-critical graphs on 9 vertices [103]. We
have checked, partly manually, partly using Mader’s extremal result [83], that each of
those graphs contains a topological K5. Also the above mentioned 6-critical graph on
10 vertices contains a topological K6. These results imply the following

Corollary 8. Any r-critical graph on at most r+4 vertices satisfy the Hajós conjecture.

We conjectured [E] that the following slightly more general statement can be proved
with similar methods.

Conjecture 10. There is a function g(r) with the following properties.
(i) g(r) tends to infinity,
(ii) Every r-critical graph with at most r + g(r) vertices satisfy the Hajós conjecture.

For the next value, Luiz and Richter proved the following.

Theorem 37 ([80]). Let c be a positive integer. There are numbers n(c) and r(c) such
that for any r > r(c), there are precisely n(c) r-critical graphs with r + c vertices. In
particular, r(5) = 7 and n(5) = 395. Moreover, every r-critical graph with r + 5 vertices
has a subdivision of Kr.

However, Luiz and Richter [80] disproved our conjecture for c ≥ 6 as follows. They
considered a family Fc of subgraphs of Catlin’s graphs L(kC5) [38]. They proved that
Fc is (c + 1)-critical for c ≥ 6. On the other hand, Fc does not contain a subdivision of
Kc+1.

5.2 The crossing number

It follows from Euler’s formula that a planar graph can have at most 3n − 6 edges.
Suppose that G has m ≥ 3n− 6 edges. By deleting crossing edges one by one, it follows
by induction that for n ≥ 3,

cr(G) ≥ m− 3(n− 2) (5.1)

Pach et al. [95, 96] generalized this idea and proved the following lower bounds.
Each of them holds for any graph G with n ≥ 3 vertices and m edges.

cr(G) ≥ 7m/3 − 25(n− 2)/3 (5.2)

cr(G) ≥ 4m− 103(n− 2)/6 (5.3)

cr(G) ≥ 5m− 25(n− 2) (5.4)

Inequality (5.1) is the best for m ≤ 4(n − 2), (5.2) is the best for 4(n − 2) ≤ m ≤
5.3(n− 2), (5.3) is the best for 5.3(n− 2) ≤ m ≤ 47(n− 2)/6, and (5.4) is the best for
47(n− 2)/6 ≤ m.

It was also shown in [96] that (5.1) can not be improved in the range m ≤ 4(n− 2),
and (5.2) can not be improved in the range 4(n − 2) ≤ m ≤ 5(n − 2), apart from an
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additive constant. Inequalities (5.3) and (5.4) are conjectured to be far from optimal.
Using the methods in [96] one can obtain an infinite family of such linear inequalities,
of the form am− b(n− 2), for example cr(G) ≥ 3m− 35(n− 2)/3.

The most important inequality for crossing numbers is undoubtedly the Crossing
Lemma, first proved by Ajtai, Chvátal, Newborn, Szemerédi [11], and independently by
Leighton [76]. If G has n vertices and m ≥ 4n edges, then

cr(G) ≥ 1

64

m3

n2
. (5.5)

The original constant was much larger, the constant 1
64 comes from the well-known

probabilistic proof of Chazelle, Sharir, and Welzl [10]. The basic idea is to take a
random spanned subgraph and apply inequality (5.1) for that.

The order of magnitude of this bound can not be improved, see [96], the best known
constant is obtained in [96]. If G has n vertices and m ≥ 103

16 n edges, then

cr(G) ≥ 1

31.1

m3

n2
. (5.6)

The proof is very similar to the proof of (5.5), the main difference is that instead of
(5.1), inequality (5.3) is applied for the random subgraph. The proof of the following
technical lemma is based on the same idea.

Lemma 26. Suppose that n ≥ 10, and 0 < p ≤ 1. Let

cr(n,m, p) =
4m

p2
− 103n

6p3
+

103

3p4
− 5n2(1 − p)n−2

p4
.

Then for any graph G with n vertices and m edges

cr(G) ≥ cr(n,m, p).

Proof. Observe that inequality (5.3) does not hold for graphs with at most two vertices.
For any graph G, let

cr′(G) =


cr(G) if n ≥ 3
4 if n = 2
18 if n = 1
35 if n = 0

It is easy to see that for any graph G

cr′(G) ≥ 4m− 103

6
(n− 2). (5.7)

Let G be a graph with n vertices and m edges. Consider a drawing of G with cr(G)
crossings. Choose each vertex of G independently with probability p, and let G′ be a
subgraph of G spanned by the selected vertices. Consider the drawing of G′ inherited
from the drawing of G, that is, each edge of G′ is drawn exactly as it is drawn in G. Let
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n′ and m′ be the number of vertices and edges of G′, and let x be the number of crossings
in the present drawing of G′. Using that E(n′) = pn, E(m′) = p2m, E(x) = p4cr(G),
by inequality 5.7, and by the linearity of expectations we have,

E(x) ≥ E(cr(G′)) ≥ E(cr′(G′)) − 4P (n′ = 2) − 18P (n′ = 1) − 35P (n′ = 0) ≥

≥ 4p2m− 103

6
pn +

103

3
− 4

(
n

2

)
p2(1 − p)n−2 − 18np(1 − p)n−1 − 35(1 − p)n ≥

≥ 4p2m− 103

6
pn +

103

3
− 5n2(1 − p)n−2.

Dividing by p4 we obtain the statement of the Lemma.

Note that in our applications p is at least 1/2, n is at least 13. Therefore, the last

term in the inequality 5n2(1−p)n−2

p4
is negligible.

We also need some bounds on cr(Kr), the crossing number of the complete graph.
It is known that

cr(Kr) ≤ Z(r) =
1

4

⌊
r

2

⌋⌊
r − 1

2

⌋⌊
r − 2

2

⌋⌊
r − 3

2

⌋
, (5.8)

see e.g. [101]. Hill posed and Guy [56] published first the conjecture that cr(Kr) = Z(r).
This conjecture has been verified for r ≤ 12 but still open for r > 12. The best known
lower bound is due to de Klerk et al. [71]: cr(Kr) ≥ 0.86Z(r). Balogh et al. [21] proved
that asymptotically cr(Kr) ≥ 0.985Z(r).

5.3 The Albertson conjecture for r ≤ 16

Now we show Theorem 35.

Proof. Suppose that G is an r-critical graph. If G contains a topological Kr, then clearly
cr(G) ≥ cr(Kr). Suppose in the sequel that G does not contain a topological Kr.

Therefore, we can apply the Kostochka, Stiebitz, and the Gallai bounds on the
number of edges. After that, we use Lemma 26 to get the desired lower bound on the
crossing number. Albertson et al. [13] worked along the same philosophy. However, they
used a weaker version of the Kostochka, Stiebitz, and the Gallai bounds, and instead
of Lemma 26 they applied the weaker inequality (5.3). In the next table, we include
the results of our calculations. For comparison, we also included the result Albertson et
al. might have had using (5.3). We used a simple Maple program to do the calculations
[E].

1. Let r = 13. By (5.8) we have cr(K13) ≤ 225. By Corollary 8, we only need to
consider n ≥ r + 5 = 18. If n ≥ 22, then the KS-bound combined with (5.3) gives the
desired result: 2m ≥ 12n + 20 ⇒ cr(G) ≥ 4(6n + 10) − 103/6(n− 2) ≥ 224.67.

For 18 ≤ n ≤ 21 the result follows from the table below.
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n e bound (5.3) p ⌈cr(n,m, p)⌉
18 128 238 0.719 288
19 135 249 0.732 296
20 141 255 0.751 298
21 146 258 0.774 294

2. Let r = 14. By (5.8) we have cr(K14) ≤ 315. By Corollary 8, we only need to
consider n ≥ r + 5 = 19. If n ≥ 27, then the KS-bound combined with (5.3) gives the
desired result: 2m ≥ 13n + 22 ⇒ cr(G) ≥ 4(6.5n + 11) − 103/6(n− 2) ≥ 316.

For 19 ≤ n ≤ 26 the result follows from the table below.

n e bound (5.3) p ⌈cr(n,m, p)⌉
19 146 293 0.659 388
20 154 307 0.670 402
21 161 318 0.684 407
22 167 325 0.702 406
23 172 328 0.723 398
24 176 327 0.747 384
25 179 322 0.775 366
26 181 312 0.807 344

3. Let r = 15. By (5.8) we have cr(K15) ≤ 441. By Corollary 8, we only need
to consider n ≥ r + 5 = 20. Suppose now that G is 15-critical and n ≥ 28. By the
KS-bound we have m ≥ 7n+12. Apply Lemma 26 with p = 0.764 and a straightforward
calculation gives cr(G) ≥ cr(n,m, 0.764) ≥ 441.

For 20 ≤ n ≤ 27 the result follows from the table below.

n e bound (5.3) p ⌈cr(n,m, p)⌉
20 165 351 0.610 510
21 174 370 0.617 531
22 182 385 0.623 542
23 189 396 0.642 545
24 195 403 0.659 539
25 200 406 0.678 526
26 204 404 0.700 508
27 207 399 0.725 484

4. Let r = 16. By (5.8) we have cr(K16) ≤ 588. By Corollary 8, we only need to
consider n ≥ r+5 = 21. Suppose now that G is 16-critical and n ≥ 32. By the KS-bound
we have m ≥ 7.5n + 13. Apply Lemma 26 with p = 0.72 and again a straightforward
calculation gives cr(G) ≥ cr(n,m, 0.72) ≥ 588.

For 21 ≤ n ≤ 31 the result follows from the table below.
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n e bound (5.4) p ⌈cr(n,m, p)⌉
21 185 450 0.567 657
22 195 475 0.573 687
23 204 495 0.581 706
24 212 510 0.592 714
25 219 520 0.605 712
26 225 525 0.621 701
27 230 525 0.639 683
28 234 520 0.659 658
29 237 510 0.681 628
30 239 495 0.706 593
31 246 505 0.713 601

This concludes the proof of Theorem 35.

Remarks

Our attack of the Albertson conjecture is based on the following philosophy. We calculate
a lower bound for the number of edges of an r-critical n-vertex graph G. Next we
substitute this into the lower bound given by Lemma 26. Finally, we compare the result
and Z(r). For large r, this method is not sufficient, but it gives the right order of
magnitude, and the constants are roughly within a factor of 4.

Let G be an r-critical graph with n vertices, where r ≤ n ≤ 3.57r. Then 2m ≥
(r − 1)n. We can apply (5.6):

cr(G) ≥ 1

31.1

((r − 1)n/2)3

n2
=

(r − 1)3n

31.1 · 8
≥ 1

250
r(r − 1)3 ≥ Z(r)

4
.

Let G = G(n, p) be a random graph with n vertices and edge probability p = p(n).
It is known (see [64]) that there is a constant C0 > 0 such that if np > C0 then
asymptotically almost surely we have

χ(G) <
np

log np
.

Therefore, asymptotically almost surely

cr(Kχ(G)) ≤ Z(χ(G)) <
n4p4

64 log4 np
.

On the other hand, by [97], if np > 20 then almost surely

cr(G) ≥ n4p2

20000
.

Consequently, almost surely we have cr(G) > cr(Kχ(G)), that is, roughly speaking,
unlike in the case of the Hajós conjecture, a random graph almost surely satisfies the
statement of the Albertson conjecture.

Ackerman [9] improved the constant in (5.6). This automatically improves our result
and the Albertson conjecture can be proved for r ≤ 18, as it was noted by Ackerman [9]
in the ArXiv version of his paper.
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Chapter 6

Wegner’s conjecture and crumby colorings

Decomposition of vertices also appear naturally as follows. Let us color the vertices of
graph G red and blue. We are only interested in the subgraphs of G spanned separately
by the red vertices and the blue vertices1. They induce some red components and blue
components. One might impose various conditions on the monochromatic components.
Such a condition might be that all monochromatic components are small. For instance,
Alon et al. [17] proved if G has maximum degree 4, then there exists a red-blue coloring
of the vertices of G such that the monochromatic components have size at most 57.
Haxell et al. [60] improved this to 6. They also showed an analogous result for graphs
of maximum degree 5 with a large constant bound. Alon et al. [17] proved that such
a constant does not exist for graphs of maximum degree 6. Thomassen [110] proved
that the edges of every 3-regular graph can be 2-colored such that each monochromatic
component is a path of length at most 5. In what follows, we study a problem similar to
the above mentioned, but the condition on the red and the blue components are different.

The square chromatic number of a graph G is simply the chromatic number of the
square of G. In notation, χ□(G) = χ(G2). Wegner [119] initiated the study of the square
chromatic number of planar graphs. There has been accelerated interest in this topic
due to his conjecture. We recall the case ∆ ≤ 3.

Conjecture 11 (Wegner [119]). For any subcubic planar graph G, the square of G is
7-colorable. That is, χ□(G) ≤ 7.

Thomassen published his proof of Conjecture 11 in [116]. He formulated an attractive
conjecture, which would imply Conjecture 11. This new conjecture belongs to the area
of graph decompositions. It is well-known, that subcubic graphs can be 2-colored such
that each color class induces only a matching and isolated vertices. To see this, one
distributes the vertices arbitrarily into a red and a blue class. If inside any class, there is
a vertex of induced degree at least 2, then swap the color of that vertex. At first sight,
the next conjecture is very similar, but excludes the possibility of isolated vertices in the
red class. Instead it relaxes the red part from a matching to a subgraph not containing
a 3-edge path.

1We forget the edges going between any red vertex and any blue vertex
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Conjecture 12 (Thomassen [116]). If G is a 3-connected, cubic graph on at least 8
vertices, then the vertices of G can be colored blue and red such that the subgraph induced
by the blue vertices has maximum degree 1 (that is, it consists of a matching and some
isolated vertices) and the similar red part has minimum degree at least 1 and contains
no 4-path.

Here a 4-path is a path with 3 edges and 4 vertices. Since all monochromatic compo-
nents are small in this coloring, and there is a certain irregularity, we call such a coloring
crumby.

Remark 2. The original conjecture was formulated for all 3-connected cubic graphs. The
reviewer of [G] observed that the 3-prism does not have the required red-blue coloring.
Therefore, it has to be excluded with an extra assumption.

Thomassen gave a short and elegant argument that shows how Conjecture 12 implies
Conjecture 11. We confirm Conjecture 12 for Generalized Petersen graphs. In the
context of the square chromatic number of subcubic graphs, the Petersen graph plays
a crucial role in the following sense. We know that χ□ = 10 for the Petersen graph.
Cranston and Kim [39] proved that a dramatic drop happens in the chromatic number
if we exclude only this one graph: χ□(G) ≤ 8 for any subcubic graph G different from
the Petersen graph. However, Conjecture 12 holds also for the Petersen graph, as shown
in Figure 6.1.

Figure 6.1: A red-blue coloring of the Petersen
graph satisfying Conjecture 12.

B B

Figure 6.2: A horizontal cut.

The Generalized Petersen graph GP (2k + 1, k) is defined for k ≥ 2 as follows: the
vertices are {u1, . . . , u2k+1} and {v1, . . . , v2k+1} such that {u1, . . . , u2k+1} form a cycle
(the outer cycle) in the natural order. The spoke edges are of form uivi for 1 ≤ i ≤ 2k+1.
Finally, the inner cycle is spanned by the long diagonals. That is, edges of form vivi+k,
where the indices are modulo 2k + 1 and 1 ≤ i ≤ 2k + 1.

One might define somewhat similar objects for an even number as follows: for l ≥ 3
let GP (2l, l−1) have vertices {u1, . . . , u2l} and {v1, . . . , v2l} such that {u1, . . . , u2l} form
the outer cycle in the natural order. The spoke edges are of form uivi for 1 ≤ i ≤ 2l.
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Finally, the inner 2-factor is spanned by the second longest diagonals. That is, edges of
form vivi+l−1, where the indices are modulo 2l and 1 ≤ i ≤ 2l. However, these edges
form a cycle only if 2l and l − 1 are coprime. Therefore, l needs to be even. Hence we
use l = 2k in the even part of the next section.

6.1 Generalized Petersen graphs

For the odd case, we can prove the following

Theorem 38. For any k ≥ 2, Conjecture 12 holds for the Generalized Petersen graph
GP (2k + 1, k). That is, there exists a red-blue vertex coloring such that the induced blue
components are vertices or edges and the red components are stars with 1, 2 or 3 edges.

Proof. We are going to construct an explicit coloring. There are three cases according
to the number of vertices on the outer cycle modulo 6.

We use the following building blocks: horizontal cut, red wedge, blue cross and red
syringe, shown in Figures 6.2-6.5.

A horizontal cut corresponds to vertices u1, uk and v1, vk, where u1, uk are blue and
v1, vk are red.

A red wedge corresponds to vertices ui, vi, ui+k−1, ui+k, vi+k−1, vi+k for any i, where
the vertices ui, ui+k−1, ui+k are blue and vi, vi+k−1, vi+k are red.

A blue cross corresponds to vertices (ui−1, ui, ui+1), (vi−1, vi, vi+1), (ui+k, ui+k+1),
(vi+k, vi+k+1) for any i, where (ui−1, ui, ui+1, vi), (ui+k, ui+k+1) are red and (vi−1, vi+k),
(vi+1, vi+k+1) are blue.

A red syringe corresponds to vertices ui, vi, ui+k−1, ui+k, vi+k−1, vi+k for any i, where
the vertices ui, vi, ui+k−1, ui+k are red and vi+k−1, vi+k are blue.

B B

Figure 6.3: A red wedge.

R R

Figure 6.4: A blue cross.

R R

Figure 6.5: A red syringe.

Each of these colored vertex sets cut the outer cycle into two disjoint paths P and Q
and divide the Generalized Petersen graphs into two halves in the figures: the vertices of
P and their neighbors form one half, the vertices of Q and their neighbors the other half.
Apart from the colored vertices, a building block might impose a side condition. That
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reflects the imposed color of some vertices in the inner cycle, see the vertices marked by
R or B in Figures 6.2-6.5. It means that our construction will obey the imposed colors.
(Many of the colors are necessary by the definition of the red-blue coloring.) We describe
our construction by listing the colors of the vertices on the outer cycle. The horizontal
cut is used first and precisely once in each case. After that, we are given an upper and
a lower subgraph. We list the color sequence on the outer cycle of the upper subgraph
in the clockwise order, then the color sequence on the outer cycle of the lower subgraph
in the clockwise order. The two sequences are separated by a comma. For instance,
RBBRRBBRRBBR,RRBRRRBRRRBRR, see Figure 6.7. One decodes this as follows:
syringe, wedge, cross, wedge, cross, wedge, syringe. In each decoding step, recognising
a building block, we consider the next monochromatic sequence in the color sequence
(from left to right) before and after the comma. The horizontal cut is not present in the
color sequence.

In the inductive steps below, we assume the existence of a coloring of a Generalized
Petersen graph, which is represented by the coloring of the upper and lower path of
the outer cycle, C,D say. This shorthand is used for an appropriate series of Rs and
Bs such that a comma is used as explained above. After that, we consider a one size
larger Generalized Petersen graph G and extend the coloring C,D by some appropriate
building blocks to get the required coloring of G.

Case 1. Let the number of vertices on the outer cycle be 5 + 6s. That is, we color
the graphs GP (5 + 6s, 2 + 3s), where s ≥ 0. The initial sequence (when s = 0) is
R,RR, which corresponds to the Petersen graph, see Figure 6.1. Now assume that the
coloring C,D of GP (5 + 6s, 2 + 3s) is given. We extend this coloring by adding a syringe
and a wedge (such that the number of vertices increases by 3 both in the upper and
the lower part) right after the horizontal cut. That is, RBBC,RRBD is the coloring of
GP (5 + 6(s + 1), 2 + 3(s + 1)).

Case 2. Let the number of vertices on the outer cycle be 7+6s. That is, we color the
graphs GP (7 + 6s, 3 + 3s), where s ≥ 0. The initial sequence (when s = 0) is RR,RRR
corresponding to a blue cross. Now assume that the coloring C,D of GP (7+6s, 3+3s) is
given. We extend this coloring by adding a syringe and a wedge right after the horizontal
cut. That is, RBBC,RRBD is the coloring of GP (7 + 6(s + 1), 3 + 3(s + 1)).

Case 3. Let the number of vertices on the outer cycle be 15+6s. That is, we color the
graphs GP (9 + 6s, 4 + 3s), where s ≥ 1. The initial sequence is RRBBRR,RRRBRRR
corresponding to cross, wedge, cross. Now assume that the coloring RRC,RRRD of
GP (9 + 6s, 4 + 3s) is given. We extend this coloring by adding a wedge and a syringe
after the first cross. That is, RRBBRC,RRRBRRD is the coloring of GP (9+6(s+1), 4+
3(s + 1)).

The exceptional case GP (9, 4) can be done as depicted in Figure 6.6.
After giving the recipe in our construction, we only have to check that the side

conditions are satisfied. That means, the building blocks can be put together nicely
after each other.

We always start and end the coloring sequence of the upper subgraph by a cross or
a syringe. Therefore, the side condition of the horizontal cut is always satisfied, since a
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Figure 6.6: A crumby coloring of
GP (9, 4).

hori−

tal

zon−
cut

R

R
R R
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RR

R
R
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B

B

B

B

B

Figure 6.7: A crumby coloring of
GP (27, 13).

cross or a syringe have blue vertices on the inner cycle, where the side condition of the
horizontal cut requires that.

The side condition of a wedge is always satisfied, since we can only put cross or
syringe next to a wedge. However, both a cross and an appropriately turned syringe
contains blue vertices on the inner cycle, where the side condition of the wedge requires
that.

Reversing the argument of the previous paragraph, we can similarly confirm that the
side condition of a syringe or a cross is always satisfied. Indeed, we only put a wedge
next to a syringe or a cross, and a wedge has only red vertices on the inner cycle.

For the even case, we prove the following

Theorem 39. For any k ≥ 2, the Generalized Petersen graph GP (4k, 2k − 1) admits a
crumby coloring.

Proof. We consider two cases according to the parity of k. It is easy to find the required
coloring, when k is even. In that case, the number of vertices on the outer cycle is divisible
by 8. Hence we can repeatedly color the vertices RRBB. . . , so a colored matching is
induced. Now consider two colored “diagonally opposite” edges on the outer cycle, u1u2
and u2k+1u2k+2 say. Suppose these vertices are red. Consider the vertices of the inner
cycle next to these 4 vertices: v1, v2 and v2k+1, v2k+2. We color them blue and they induce
a matching v1v2k+2 and v2v2k+1 on the inner cycle, since (2k+2)+(2k−1) ≡ 1 mod 4k.
We repeat this idea on the rest of the graph, adding 2 to all indices and interchanging
the colors. This coloring satisfies the conditions.

When k is odd, we construct the coloring by giving an initial coloring and then adding
the colored matchings as in the previous argument. Assume that k ≥ 5. The initial graph
is GP (20, 9). We use the coloring given in Figure 6.9. As before, we can identify the
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Figure 6.8: A crumby coloring of GP (16, 7).

coloring by listing the color sequence of the vertices on the outer cycle in clockwise order
starting at u1: RRRBBRRRBB,RRRBBRRRBB. Here the decoding is the following:
three red vertices correspond to a red anchor, as indicated in Figure 6.9. For instance
a red anchor represented by RRR include the 4 vertices u1, u2, u3, v2 belonging to a red
claw, and its two blue neighbors v1, v3 on the inner cycle. Here the magic works, since
the edges of the inner cycle connect vertices of opposite colors. Two consecutive blue
vertices BB on the outer cycle correspond to a blue edge, for instance u4, u5 and its two
red neighbors v4, v5 on the inner cycle.

u

u

u

u

u1

3

4

5

2

Figure 6.9: A crumby coloring of GP (20, 9).

Figure 6.10: A crumby coloring of
GP (12, 5).

When k increases by two, the number of vertices on the outer cycle increases by 8.
Therefore, the following extension works: We add two red vertices and two blue vertices
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at the end of the color sequence. Formally, if C,C was a valid coloring of GP (4k, 2k−1),
where k is odd, then CRRBB,CRRBB is a valid coloring of GP (4(k + 2), 2k + 3). This
extension corresponds to inserting two colored edges on the outer cycle and two pairs
of colored edges of the inner cycle. This is the same principle that we used in the first
paragraph of the proof for the even case.

We excluded the case k = 3 from the previous argument. To complete the proof,
Figure 6.10 shows the required coloring of GP (12, 5).

6.2 Subcubic trees

We had not found a counterexample to Conjecture 12 among the subcubic graphs (of any
connectivity). Therefore, we posed the following slight strengthening of Conjecture 12:

Conjecture 13 ([G]). Every subcubic graph on at least 7 vertices admits a crumby
coloring.

We confirm the statement for trees.

Theorem 40. Every subcubic tree T posseses a red-blue vertex coloring such that the
induced blue components are vertices or edges and the red components are stars with 1, 2
or 3 edges.

Proof. Let r be an arbitrary vertex of T . Let us draw T as a planar tree rooted at r. The
planar embedding allows us to distinguish the left and right son of a vertex. The level
of r is 0 and the neighbors of r lie in level 1 etc. We color the vertices of T according
to a breadth-first search. In each step, we color a new vertex v, that has degree 1 in the
current colored subtree. We denote the only neighbor of v by x. In certain cases, we
recolor a few previously colored vertices in a small neighborhood of v. Any other vertex
keeps its color. Our coloring algorithm works according to the rules listed below. Each
rule describes a step, when we transform a colored subtree Ti to Ti+1 adding the next
vertex of the breadth-first search. At the end of each step, we have a coloring of Ti+1

that satisfies the conditions of the theorem.
Case 0. We color r blue.
Case 1. Assume the degree of x is at most 1 in Ti and x is a singleton blue. Now we

color v blue.
Case 2. Assume the degree of x is 1 in Ti and x is red. Now we color v blue.
Case 3. Assume the degree of x is 1 in Ti and x is blue and its parent is also blue.

Now we color v red and change the color of x to red.
Case 4. Assume the degree of x is 2 in Ti and x is red. Now we set v to be blue.
Case 5. Assume the degree of x is 2 in Ti and x is blue. By the conditions, the left

son l of x must be blue and the parent p of x must be red in Ti. Let g denote the parent
of p in Ti, if it exists.

Case 5a. Assume the degree of p is 2 in Ti. Now we set l, v, x to be red and p to be
blue. This works, unless now g would be a singleton red in Ti+1. In this exceptional case,
we keep the colors of the vertices in Ti and only change the color of x to red and color v
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blue. If g does not exist, then p is the root, and p has another son x′. Now x′ plays the
role of g in the previous argument and we make the same recoloring if necessary.

Case 5b. Assume the degree of p is 3 in Ti, x is the right son of p and the left son of
p is blue. It implies that the parent g of p is also red. Now we set l, v, x to be red and
color p blue. This yields a coloring satisfying the required conditions, unless now g is a
singleton red. In this exceptional case, we do a different recoloring of Ti. We change x
to red and color v blue.

Assume the degree of p is 3 in Ti, x is the right son of p and the left son of p was
red in Ti. Now we set x to red and l, v to blue. Here we notice that the recoloring of x
might create a red 3-star, but not a red path with 3 edges.

Case 5c. Assume the degree of p is 3 in Ti, x is the left son of p and the right son of
p is blue. It implies that the parent g of p is also red. Now we set l, v, x to be red and
color p blue. This yields a coloring satisfying the required conditions, unless now g is a
singleton red. In this exceptional case, we do a different recoloring of Ti. We change x
to red and color v blue.

Assume the degree of p is 3 in Ti, x is the left son of p and the right son of p is red.
Now we set x to red and l, v to blue.

Since we covered all cases, the algorithm terminates with a crumby coloring of T .

We remark that in many cases, the following simple idea works: we repeatedly color
one level of vertices blue and the next two levels red. The failure of this coloring happens
at red leaves, if their parent’s color is blue. However, taking subgraphs does not keep
the properties required by the theorem. Therefore, it seems difficult to make this simple
idea into a full proof.

Prescribing the color of a vertex is vital for doing induction. The following result is
a strengthening of Theorem 40. It is routine to check that the proof literally holds for
this version.

Corollary 9. Every subcubic tree admits a crumby coloring such that the color of a leaf
is prescribed.

We strengthen this result further prescribing the color of a vertex of degree 2.

Theorem 41. Any subcubic tree T admits a crumby coloring such that the color of an
arbitrary vertex of degree 2 is prescribed, unless T = P3.

Proof. If T = P3, then the middle vertex cannot be blue in a crumby coloring. Therefore,
this is an exception. From now on, we assume that T has at least 4 vertices. Every tree
admits a crumby coloring by Theorem 9. Let us suppose that T is a minimal example
of a tree, which has a vertex v of degree 2 such that in any crumby coloring of T , the
color of v must be red. We think of v as the root, and denote the two neighbors of v by
x and y.

If any of the neighbors of v is of degree 2, say x, then we can delete the edge vx
and consider the two remaining trees Tv rooted at v and Tx rooted at x. We get a
contradiction by using Theorem 9 with prescribed color red on x and blue on v in the
respective trees.
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Figure 6.11: If dT (x) = 2, then we get a contradiction.

Since T has at least 4 vertices, we may assume that dT (x) = 3. As before, we get a
contradiction if the color of x can be red in a crumby coloring of Tx, since we can color v
blue and use Theorem 9 on Tv. Therefore, let us suppose that Tx is a tree, for which the
degree 2 vertex x can only be colored blue in a crumby coloring. Denote the neighbors
of x in Tx by z and w.

Due to the same reasons as above, the degree of z and w cannot be 2 in Tx. It
cannot be 1 either, since in that case Tx has a crumby coloring in which the color of
that leaf is prescribed red. Consequently x is also red, which is a contradiction. Hence
dTx(z) = dTx(w) = 3, and by the minimality of T , we know that Tz admits a crumby
coloring such that the degree 2 vertex z is blue. Now we may delete the edge xz and
precolor the degree 1 vertex x red and find a crumby coloring of a subgraph of Tx.
However, we can add back the edge xz giving a crumby coloring of Tx with red x, a
contradiction. The same holds for Tw, but there is one exception: if both Tz = Tw = P3.
In Figure 6.12, we give a crumby coloring of Tx so that x is red, which concludes the
proof.

Figure 6.12: A crumby coloring of Tx such that x is red.

Remark 3. If G is a graph that admits a crumby coloring, and T is an arbitrary tree
with a leaf v, then let GT denote a graph which we get by identifying v with any vertex
of G. Observe that if an attachment tree T is not K2 or K1,3, then it is easy to get
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a crumby coloring of GT . The key idea is to assign different colors to v and its only
neighbor x inside T . Consider a crumby coloring of G, therefore the color of v is given,
and color x differently. By Theorem 9 and Theorem 41 (depending on dT (x)), we can
extend this coloring to a crumby coloring of T − v which results in a crumby coloring of
GT .

Therefore, it is indifferent with respect to crumby colorings to attach trees, which are
not isomorphic to K2 or K1,3. In the sequel, we assume that every attachment tree is
either K2 or K1,3.

This allows us to significantly decrease the number of problematic attached trees.

6.3 Outerplanar graphs

In [H], we show that any 2-connected subcubic outerplanar graph admits a crumby
coloring even if the color of an arbitrary vertex is prescribed.

The fact that we can prescribe the color of a vertex is useful in the following sense.
We believe that crumby colorings exist for every subcubic outerplanar graph. However,
there are various difficulties to extend the results on 2-connected graphs to all outerpla-
nar graphs. In a general outerplanar graph, there might be trees attached to 2-connected
blocks or between them. Since Conjecture 12 holds for trees, it gives some hope to com-
bine these two results as building bricks, where having the extra freedom of prescribing
the color of a vertex comes handy.

In the previous Section, we showed that Conjecture 12 holds for trees. A natural
minor-closed class to be considered next is the class of outerplanar graphs. As the first
step, we proved the following in [H]. The important assumption is the 2-connectedness.
We omit the proof here since it is a bit technical.

Theorem 42. Let G be a 2-connected subcubic outerplanar graph and let v be a vertex
of G. We may prescribe the color of v and find a crumby coloring of G.

A general outerplanar graph may not be 2-connected. It is glued together from 2-
connected blocks in a tree-like manner. Some of the edges can form a tree hanging from
a vertex of a block, or connecting a number of 2-connected outerplanar blocks. In our
case, the maximum degree 3 condition gives some extra structural information. We are
convinced that the natural extension of Theorem 42 to all subcubic outerplanar graphs
holds.

Conjecture 14. Every outerplanar graph with maximum degree 3 admits a crumby
coloring.

Considering this problem, one gets the impression that particular small trees attached
to the vertices of a 2-connected outerplanar graph make the difficulty. This was described
in Remark 3.

We prove a basic instance of Conjecture 14 relying on Theorems 9 and 41.
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Proposition 43. Let C be a cycle with vertices v1, . . . , vk, plus we might attach arbitrary
trees {Ti} to vertices {vi} of C, where i ∈ I and I ⊆ [k]. The resulting graph G admits
a crumby coloring.

Proof. We may assume that each attachment tree is isomorphic to K2 or K1,3 by Re-
mark 3. Our arguments slightly vary depending on some properties of G, thus we explain
them separately.

Notice that some vertices of C have attachments and some do not. In the latter case,
the vertex is called empty. First, let us assume that there are no empty vertices at all.

We notice that the case where k is even is simple. We color the vertices of C
alternately red and blue. This gives the prescribed color of a leaf vi in the tree Ti. We
color Ti using Theorem 9 for each i = 1, . . . , k. These colorings together form a crumby
coloring of G.

Assume now that k is odd. We try to reuse the previous strategy by cutting off two
consecutive vertices vi and vi+1 and the trees Ti and Ti+1 from G. We notice that the
remaining graph H admits a crumby coloring by the previous argument. In particular,
the first and last vertices (vi+2 and vi−1) on C − {vi, vi+1} receive the same color.

For every j between 1 and k, the tree Tj−vj admits a crumby coloring. Let us record
for every j the color of uj , the neighbor of vj in Tj . Since k is odd, there is an index ℓ
such that uℓ and uℓ+1 received the same color, say blue. Now we color vℓ and vℓ+1 red
and cut the cycle C by removing {vℓ, vℓ+1}. We color H as before such that we color
the first and last vertex on C−{vℓ, vℓ+1} blue. If uℓ was red, then we interchange colors
accordingly. Altogether, a crumby coloring of G arises.

Unless there are no attachment trees at all (which case is easy), we can find two
consecutive vertices of C, say v1 and v2 such that there is a tree attached to v1, but v2
has none. We use the following algorithm to color the vertices on C starting by coloring
v1 red and v2 blue. Our aim is to color the vertices along C alternately, except in one
case, when after a blue vertex we color an empty vertex red. In that case, the next
vertex must be also red. Observe that if a red vertex is non-empty, then no matter if
the tree is K2 or K1,3, we can color its vertices maintaining the crumby property. If vi−1

is blue, and vi is an empty red, then vi+1 must also be red. However, it is attainable
that vi+1 is not an end of a red P3. Only two problems can occur during this algorithm.
Both of them might happen, when we color vk.

If vk was blue, then v1 might remain a red singleton. However, this cannot be the
case by the existence of T1. Otherwise if vk is red, then we might create a large red
component. If T1 = K2, then the leaf of T1 can be blue. Hence the red component
cannot contain a red P4, since vk was not an end of a red P3. If T1 = K1,3, then the
center of T1 must be red, which causes a problem if vk−1 is an empty red or Tk = K1,3.
If we created a red P4, then we recolor v1 to blue and color the remaining vertices in T1

red.
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6.4 Counterexamples

In 2021, Bellitto, Klimošová, Merker, Witkowski and Yuditsky [28] constructed an infi-
nite family refuting Conjecture 12 and 13.

The gadgets of the construction are defined as follows.

Definition 2. Let H be the graph consisting of an 8-cycle v0v1 . . . v7 with two chords
v2v6 and v3v7. Let H ′ be the graph consisting of two disjoint copies of H and two edges
joining the two copies as in Figure 6.13. Let H ′′ be the graph consisting of three disjoint
copies of H ′ and three edges joining the copies of H ′ as in Figure 6.13.
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Figure 6.13: The gadgets for the counterexample.

Bellitto et al. showed that a subcubic graph containing H ′′ as a subgraph does not
admit a crumby coloring. We will repeat the key steps below. Note that if H is a
subgraph of a subcubic graph G, only the vertices that have degree 2 in H can have
a neighbor in G − H. The same applies for H ′ and H ′′. In the following, we use the
notation in Figure 6.13 to refer to the vertices of H and H ′.

Lemma 27. If H is an induced subgraph of a subcubic graph G, then in every crumby
coloring of G
• At most one of the vertices v0 and v1 is colored red, and
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• If one of v0 and v1 is colored red and its neighbor in H is also colored red, then both
v4 and v5 are colored blue.

Lemma 28. If H ′ is an induced subgraph of a subcubic graph G, then in a crumby
coloring of G exactly one of the following statements holds:
• Both v0 and v1 are blue, or
• v0 is red, v1 is blue, and v0 has a red neighbor in G−H ′, or
• v1 is red, v0 is blue, and v1 has a red neighbor in G−H ′.

Theorem 44 ([28]). If a subcubic graph G contains H ′′ as a subgraph, then G has no
crumby coloring.

The smallest 3-connected cubic graph containing H ′′ can be obtained from H ′′ by
adding three edges joining the vertices of degree 2. However, there are many ways to
construct 3-connected cubic graphs containing H ′′ as a subgraph. For instance, let G
be any 3-connected cubic graph containing an induced 6-cycle C. Since H ′′ contains
precisely six vertices of degree 2, it is possible to replace C by a copy of H ′′ such that
the resulting graph is again 3-connected and cubic.

Finally, let us note that H ′′ is a 2-connected planar graph. Using H ′′, it is easy to
construct an infinite family of 2-connected cubic planar graphs admitting no crumby
coloring. It is open whether the 3-prism is the only 3-connected cubic planar graph
admitting no crumby coloring.

We notice that H ′′ contains a K4-minor and also a 5-cycle. This leaves Conjecture 12
open for some important graph classes: outerplanar graphs, K4-minor-free graphs, bi-
partite graphs.

6.5 Bipartite graphs and subdivisions

Despite the infinite family of counterexamples in [28], we still believe that Conjecture 13
holds for most subcubic graphs. We pose the following

Conjecture 15. Every subcubic bipartite graph admits a crumby coloring.

We can prove this for a special class of bipartite graphs, where the degrees are all
2 in one class and 3 in the other class. In the proof, we apply the Edmonds-Gallai
decomposition theorem [48, 55] that gives us information about the structure of the
maximum matchings of a graph G. We recall that Pk denotes a path with k vertices
and N(X) denotes the set of neighbors of a vertex set X. A graph G is hypomatchable
or factor-critical if for every vertex x, the graph G− x has a perfect matching.

Theorem 45 (Edmonds-Gallai decomposition). Let G be a graph and let A ⊆ V (G)
be the collection of all vertices v such that there exists a maximum size matching which
does not cover v. Set B = N(A) and C = V (G) \ (A ∪B). Now

(i) Every odd component O of G−B is hypomatchable and V (O) ⊆ A.
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(ii) Every even component Q of G−B has a perfect matching and V (Q) ⊆ C.

(iii) For every X ⊆ B, the set N(X) contains vertices in more than |X| odd components
of G−B.

Next, we study subdivisions of cubic graphs. If we add precisely one new vertex on
each edge, then the resulting graph is a 1-subdivision. We support Conjecture 15 by
showing the following

Theorem 46. Let S(G) be the 1-subdivision of a cubic graph G. The bipartite graph
S(G) admits a crumby coloring.

Proof. The idea of the proof is to color the original vertices (in G) red and color the
subdivision vertices blue. If G admits a perfect matching M , then we recolor the sub-
division vertices on M to red. This results in a crumby coloring consisting of red P3-s
and blue singletons. We refer to this idea later as the standard process. For instance,
every 2-edge-connected graph G admits a perfect matching by Petersen’s Theorem. If
the graph S(G) is the 1-subdivision of such G, then the standard process gives a crumby
coloring of S(G).

In what follows, we modify this simple idea to the general case, where G is any cubic
graph. If G does not possess a perfect matching, we can still consider a maximum size
matching in G and use the Edmonds-Gallai decomposition.

Let G be a cubic graph, and let B be given by the Edmonds-Gallai decomposition.
Any isolated vertex in B must be connected to at least two odd components of G− B.
The third edge might go to a third odd component, an even component or to one of the
first two odd components.

Initially, let every vertex of G be red and every subdivision vertex blue. We recolor
a few vertices as follows. In every even component, there exists a perfect matching and
we recolor the subdivision vertices on the matching edges to red.

Consider the vertex sets A and B of the Edmonds-Gallai decomposition. Contract
the components of A to vertices to get A∗. The bipartite graph (A∗, B) satisfies the Hall-
condition by property (iii). Therefore, we find a matching M covering B. We recolor
the subdivision vertices of the matching edges in M to red. We continue with the odd
components corresponding to the vertices of A∗ saturated by M . In these components,
we use property (i) and find an almost perfect matching (if it is needed because the size
of this component is greater than 1). The subdivision vertices on these matching edges
are colored red as well. So far we only created red P3-s separated by blue singletons.
What is left to consider is the union of odd components corresponding to unsaturated
vertices of A∗.

Let H be an odd component, which is a single vertex x. The G-neighbors of x are
in the set B. Suppose y is a neighbor of x. There are two different types of y-vertices
depending on the location of its 3 neighbors. Vertex y is ordinary if it has no G-neighbor
in B. Vertex y is problematic if it has precisely one G-neighbor in B. Notice that a
vertex y in B cannot have at least two G-neighbours in B by property (iii).
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Assume y is ordinary, and x is a singleton odd component. By the above coloring,
vertex y belongs to a red P3 since B was saturated, and y has two blue subdivision
vertices as neighbors in S(G). We recolor the subdivision vertex vxy on the edge xy
red and y blue. If the third G-neighbor w of y belongs to either an even component or
a saturated odd component, then it already has a red neighbor and causes no trouble.
Notice that w might be a singleton odd component or it may belong to an unsaturated
odd component as well. If w is another singleton odd component, then we recolor vwy red
and y remains a singleton blue component, which in turn further decreases the number
of isolated red vertices. However, if w belongs to a larger unsaturated odd component,
then again we recolor vwy red and finish the coloring of this odd component as it was
explained before for the larger saturated odd components using property (i).

We perform this coloring step for all of those unsaturated singleton odd components,
which have an ordinary neighbor from B. Observe that at this point among the colored
vertices of G the blue ones must be some ordinary vertices of B and all three G-neighbors
of these vertices are red and has a red neighbor.

Continue the recoloring process by considering one-by-one the unsaturated odd sin-
gleton components, which only have problematic G-neighbors from B. Assume x is such
a singleton odd component, and y is a problematic G-neighbor of x. We recolor vxy red
and y blue. Since y has a unique G-neighbor y′ in B, we consider the third G-neighbor
x′ of y′ (besides y and the one determined by M). If x′ already has a red neighbor, then
we are done and we can continue the recoloring process. Otherwise x′ must belong to
an odd component which still has isolated red vertices.

If x′ is an isolated red vertex and belongs to a large odd component H ′, then denote
one of its G-neighbors inside H ′ by z′. Use property (i) in H ′ − z′ and fix a perfect
matching there and color the subdivision vertices red on these matching edges. Now
recolor vx′z′ red and x′ blue. This way z′ is no longer an isolated red and the blue
component of x′ consists of x′ and vx′y′ .

If x′ is an isolated red vertex and belongs to a singleton odd component which only
has problematic G-neighbors from B then we continue the recoloring process with x′.
Since x′ has degree 3 in G, we can select a G-neighbor z different from y′ and do as above.
In this way, the color of y′ is unchanged and therefore y remains in a blue P2. Altogether
we created a crumby coloring locally around x and y. Now we continue with x′ and z
playing the role of x and y in the previous argument. This process terminates and
creates no loops, since every B-vertex is incident to 3 edges, one of which belongs to M .
Therefore this process have to end by finding a vertex from one of the odd components
which already had a red neighbor. Let us emphasize that this process cannot go back to
any of the unique blue vertices of some large odd component because we cannot revisit
the already visited problematic vertices of B.

At this point we either have a crumby coloring or there are some unsaturated large
odd components which haven’t been visited during the recoloring process.

Let H be such a large odd component and x ∈ H be an arbitrary vertex and consider
a perfect matching in H−x by property (i). We recolor the subdivision vertices on these
matching edges to red. Let y be a G-neighbor of x in H and recolor vxy be red and
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y blue. Since there was a matching edge zy and both z and vyz are red, moreover on
the third edge wy in G incident to y, the subdivision vertex is blue but w must be red.
Indeed, since w cannot be blue if w ∈ H and if w ∈ B then it cannot be blue because
in that case we must have already considered this edge wy and thus H cannot be an
non-visited large odd component. Hence y and vwy form a blue P2 together.

We can recolor all the remaining non-visited large odd components by the same
argument. After all these steps a crumby coloring of S(G) arises.

Next, we complement the previous result. Here we allow all longer subdivisions.

Lemma 29. Let G be a cubic graph. Let H be an arbitrary subdivision of G such that
every edge is subdivided at least twice. The graph H admits a crumby coloring.

Proof. Let us color the original vertices of G blue. We find that almost any subdivided
edge admits a crumby coloring such that the end-vertices are singleton blues. The only
exception is the case with 4 subdivision vertices. In particular, we use the following
colorings for the internal vertices (r,b stands for red and blue, respectively): rr, rrr,
rrrb, rrbrr, rrrbrr, rrbbrrr, rrbrrbrr etc.

Let us use these particular colorings on H. We might create some blue stars with
2 or 3 leaves. Apart from that, this coloring satisfies the crumby conditions. Now we
recolor the problematic blue centers of these stars red. If the vertex c is such a center,
and there was a blue 3-star at c, then we recolor the neighbor n1 of c red and recolor
the neighbor n2 of n1 blue. If vertex c was the center of a blue 2-star, then we have to
consider two cases according to the red neighbor v of c. If v was the end-vertex of a red
P3, then we do the same recoloring as in the previous case, but also recolor v to blue.
If v was the end-vertex of a red P2, then the recoloring of c creates a red P3 and we are
done.

The process terminates with a crumby coloring of H.
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ferential and Combinatorial Topology, Princeton Univ. Press, Princeton, NJ (1965),
255–265.

91

               barat.janos_51_23



[110] C. Thomassen. Two-coloring the edges of a cubic graph such that each monochro-
matic component is a path of length at most 5. J. Combin. Theory Ser. B, 75
(1999), 100–109.

[111] C. Thomassen. Edge-decompositions of highly connected graphs. Abh. Math.
Semin. Univ. Hamburg 18 (2008), 17–26.

[112] C. Thomassen. Decompositions of highly connected graphs into paths of length 3.
J. Graph Theory 58 (2008), 286–292.

[113] C. Thomassen. The weak 3-flow conjecture and the weak circular flow conjecture.
J. Combin. Theory Ser. B 102 (2012), 521–529.

[114] C. Thomassen. Decomposing graphs into paths of fixed length. Combinatorica 33:1
(2013), 97–123.

[115] C. Thomassen. Decomposing a graph into bistars. J. Combin. Theory Ser. B 103
(2013), 504–508.

[116] C. Thomassen. The square of a planar cubic graph is 7-colorable. J. Combin.
Theory Ser. B 128 (2017), 192–218.

[117] W. T. Tutte. On the problem of decomposing a graph into n connected factors. J.
London Math. Soc. 36 (1961), 221–230.

[118] H. E. Warren. Lower bounds for approximation by nonlinear manifolds. Trans.
Amer. Math. Soc., 133 (1968), 167–178.

[119] G. Wegner. Graphs with given diameter and a coloring problem. Preprint, Uni-
versity of Dortmund, (1977), 1–11.
http://dx.doi.org/10.17877/DE290R-16496

[120] E. W. Weisstein. Generalized Petersen Graph. From MathWorld–A Wolfram Web
Resource. mathworld.wolfram.com/GeneralizedPetersenGraph.html
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