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Introduction

Research has shown — but developers also experience it in their daily work — that a significant
part of software development costs, around 50-75%, can be attributed to various debugging
activities, i.e. locating faults in the software and fixing them [51, 73, 142]. Despite the
spread of various artificial intelligence-based supporting tools, this activity consists of mostly
manual work, which requires great expertise and a very good knowledge of internals of the
software in question. Thus, any solution that partially or fully automates the phases of fault
localization and repair can result in significant resource savings.

Debugging is a complex activity that, in addition to the program code itself, often relies
on other data such as test cases, error tickets, and various documentation. In most cases,
however, the source code is the most important source of information, so its analysis is a
fundamental part of any related technique [52]. Code analysis can be either static (without
executing the software), in which case we collect general information about the code such as
dependences between code elements, or dynamic, when we analyze the relationship of code
elements to each other during specific program executions or their other dynamic properties.

In this dissertation, we discuss source code analysis methods that support debugging in
various ways and which are designed to be practically usable for real size software systems
and executions. In addition to debugging, these solutions can also be used in other areas of
software maintenance, such as impact analysis, program comprehension, code documentation
or software quality measurement.

When the goal is to identify a software bug (and eventually fix it) based on a faulty
program behavior the first step is a detailed reproduction of the bug. This usually means
running the software using a set of test cases so, in this case, the greatest emphasis is on
dynamic code analysis. A significant part of the methods presented in this thesis are also
aimed at this area.

Since this type of analysis processes the program execution, a large amount of data must
be reckoned with—if we follow every detail of the program logic, for example the execution
of individual instructions or elementary data. A common feature of the presented solutions
is that they can be used in the case of real, large-scale programs since they handle the
stored data sparingly, and in many cases the analysis is performed on elements with higher
granularity (e.g., procedures instead of statements).
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Thesis points

The thesis points of the dissertation are divided into three parts, and the document follows
this structure as well. The first set of thesis points are related to Dynamic Dependence
Analysis:

T1.1 Graph-Less Dynamic Program Slicing. [ describe a general framework that can
be used to specify a set of related dynamic program slicing algorithms, the common
basis of which is the static Definition-Use relationship and the linear processing of the
execution history. The specific algorithms with their most important properties and
possible applications are provided as well (Chapter 2).

Related publication: [4].

T1.2 Dynamic Function Coupling. I present the concept of Dynamic Function Coupling,
which is based on the relative sequence and distance of procedure calls, and the related
metric. Potential applications of Dynamic Function Coupling in the field of debugging
and software maintenance are then discussed (Chapter 3).

Related publication: [3].

The topic of the following thesis point are the Dependence Clusters, for which some basic
background information is provided in Chapter 4.

T2 Computation and Analysis of Dependence Clusters. I define the concept of
Dependence Clusters based on Static Execute After relations between procedures and
present their comparison with other dependence cluster concepts of higher granularity.
The results of the theoretical and empirical investigation of such dependence clusters
with possible applications are given as well (Chapter 5).

Related publications: [9, 10, 11, 24, 25].

The third set of thesis points deals with the enhancement possibilities of Spectrum-Based
Fault Localization. Chapter 6 provides background information related to this topic which
makes the understanding of the following chapters easier.

T3.1 Reliable Code Coverage Measurement. Reliable code coverage is essential for var-
ious dynamic code analysis tasks, including Spectrum-Based Fault Localization. Here
I describe the practical difficulties we face when measuring code coverage. I present the
evaluation methodology with which code coverage tools can be objectively evaluated in
detail. The problems found during our specific tool evaluation and recommendations
for handling them are introduced as well (Chapter 7).
Related publications: [17, 30].

T3.2 Use of Call Chains in Spectrum-Based Fault Localization. The most com-
mon variants of Spectrum-Based Fault Localization methods are based on simple code
coverage. I present how dynamic call chains between procedures calculated during pro-
gram execution can be used as context information in fault localization and describe
the different ways of using call chains in existing algorithms (Chapter 8).

Related publication: [8].

T3.3 Use of Call Frequencies in Spectrum-Based Fault Localization. Traditional
code coverage-based fault localization does not take into account the number of times
each program element was called during execution. In this thesis point, I examine
how the basic algorithms can be adapted to make use of procedure call frequency and
introduce the measurement results of the different methods (Chapter 9).

Related publications: [31, 32].
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T3.4 Use of Dynamic Slicing in Spectrum-Based Fault Localization. The accuracy
of fault localization based on code coverage can be improved by using the much more
precise dynamic program slices in the spectrum matrix instead of the coverage. I de-
scribe a theoretical model which shows the mathematical relationship between the two
types of spectra, and under what conditions and to what extent the slicing-based fault
localization improves the coverage-based method. Results of an empirical evaluation
of this concept are also presented (Chapter 10).

Related publication: [26].

Finally, Chapter 11 concludes the dissertation and outlines some possible directions for
future work.
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Dynamic Dependence Analysis
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Graph-Less Dynamic Program Slicing

2.1 Introduction

Program slicing [124, 129] is a program analysis technique proposed for many software engi-
neering fields including verification and testing, maintenance, reengineering, impact analysis,
program comprehension, debugging and others. In general, a slice of a program is its subset
which is relevant from a specific computation’s point of view. A slice may be an executable
program or any other relevant subset of the program code. A backward slice is a subset that
consists of all statements that might affect a set of variables at a specific program point,
called the slicing criterion. A forward slice, on the other hand, is a set of program locations
whose later execution might depend on the values computed at the slicing criterion. Typical
applications of backward slicing are debugging and program understanding, while forward
slices can be used for impact analysis, among others. If we determine the slice such that
it involves the relations for any possible execution then it is referred to as static slicing,
whereas if only one specific execution is addressed then it is dynamic slicing. A dynamic
slicing criterion also includes the parameters of a concrete execution of the program (a test
case with a set of program inputs) and a specific occurrence of the instruction involved
during the execution.

While there are several works about the details and variations of static slicing, e.g. the
work of Horwitz et. al. [80] which served as the starting point for subsequent implementations
whose basis is the program dependence graph (PDG), a relatively few works addressed the
practical sides of dynamic slicing. The basic dynamic slicing methods use different concepts
[43, 44, 70, 88, 92, 93]. Among those, we are mostly interested in the traditional dynamic
dependence-based method by Agrawal and Horgan [44] who used a graph representation
called the Dynamic Dependence Graph (DDG). It includes a distinct vertex for each occur-
rence of a statement and the edges correspond to the dynamically occurring dependences
upon program execution. A serious drawback of this approach is that the size of the DDG
is proportional to the number of executed instructions and not to the program size, which
makes it impractical for real size software and executions.

In previous work, we proposed a backward dynamic slicing algorithm that computes all
possible dynamic slices globally with only one pass through the execution history [14]. The
details of the algorithm for C programs [6] and for Java [123] have been elaborated, and its
usefulness has also been demonstrated for various applications [2, 14]. Based on the original

7
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idea it is possible to construct similar graph-less algorithms. We investigated all practical
ways for computing the dynamic slices based on dynamic dependences but without requiring
costly global preprocessing prior to slicing.

We proposed alternative methods that are based on the same dynamic dependences but
instead of dynamic dependence graphs various data structures are maintained. These are
different depending on the slicing scenario. We investigated global vs. demand driven slicing,
computing backward vs. forward slices, and whether it traverses the execution history in
a forward or in a backward way. This totals eight possibilities, of which some give useful
algorithms, while others are impractical combinations.

2.2 Algorithms

2.2.1 Notations

All of the presented algorithms operate on two data sets: the execution history, which is
a simple list of instruction occurrences called actions, and the static D/U representation
of the program, which records the defined and used variables at each program point along
with a special handling of branching instructions. Since the aim is to introduce the basic
algorithms, the discussion will be limited to simple programs of a simple programming lan-
guage. The algorithms will process the trace in either forward or backward way to follow the
dynamic dependences. The dynamic slices will be computed “on the fly” during processing
the execution history taking into account the local definition-use information.

In the rest of the chapter, the following notations will be used. The execution history,
EH = (i\"i)%, . .. ,ijj, ...,is7), is a sequence of actions. Action i/ means that the " in-
struction of the program is executed in the j step of the execution. The length of FH
(i.e. the total number of the steps executed) is denoted by J. Furthermore, the notations
i(i') =14, j(#/) = j, EH(j) =/, and EHI(j) = i(EH(j)) will also be used.

The static representation of the program is called the D/U program representation. It
captures local definition-use relationships between the variable occurrences within each in-
struction. For simplicity, we will assume that each instruction defines exactly one vari-
able and uses zero or more variables. An instruction ¢ of a program is represented as
(i. d : U). The defined variable at i is d, while U is denotes the set of variables used to
compute the value of d. The whole program is represented as DU = ((1. dy : Uy), (2. dy :
Us),...,(i. d;i - U;),...,(I. dr : Uy)) where i is an instruction serial number and [ is the
total number of instructions in the program. We will use the following shorthand notations:

In the D/U representation control dependences are handled similarly to data dependences
using predicate variables. For each predicate instruction ¢ in the program (like if or for), we
define a predicate variable p; denoting the decision value computed in the predicate such as
d(i) = p;, and for each instruction k that is control dependent on i, p; € U(k) will hold.

For the formalization of the dynamic slicing algorithms some more notations will be
used. The last definition of a variable v before action #/ will be denoted by LD(v, j), which
is a function returning the action at which v was defined last before the j** step in the
execution history. We will also use the shorthand notations for the last defining step LD(v) =
J(LD(v,j)), statement LS(v) = i(LD(v,j)) and action LA(v) = LD(v,j) for an actual step
j that is being processed during the execution of the slicing algorithm. After processing a
step i/, LD(d(i)) = j, LS(d(i)) = i and LA(d(i)) = #/ will hold for each subsequent action
until d(i) is defined next time.

We will use the notation CB = (x,i/,V) for the backward, and CF = (x,#/) for the
forward slicing criterion, where x is a program input corresponding to a specific execution of

8
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the program, i/ is the action for which the dynamic slice needs to be computed and V C Uj;
is a subset of the used variables of ¢ for which we compute the slices. The forward dynamic
slice of i/ is computed for d;.

2.2.2 Overview

The slicing algorithms operating on a given D /U representation and execution history of the
program can be categorized according to three kinds of properties:

o Slice direction. If we search for program locations whose earlier execution affected
the value computed at the criterion, we speak of a backward slice. A forward slice is
a set of program locations whose later execution depends on the values computed at
the slicing criterion.

e Global or Demand-driven. The traditional approach is to compute one slice at a
time (in a single pass of the trace) for a single criterion. This is what we call demand-
driven slicing. However, there is an opportunity to compute multiple slices for different
criteria during a single pass over the trace. This is what we call global slicing.

e Processing direction. Given a trace, we may process it in both directions. Forward
processing of the trace seems to be the natural one (and the only feasible in some
applications), however traversing the trace backwards can also be applied in some
situations.

In Table 2.1, we list all the 8 possibilities resulting from the above classification. As
can be seen, some of them lead to practical algorithms, while others are impractical. In the
followings, the number in the first column will be used to identify the algorithms.

No. H Global/Demand-driven  Slice direction Processing direction Usefulness

0 Demand-driven Backward Backward Practical

1 Demand-driven Backward Forward Impractical
2 Demand-driven Forward Backward Impractical
3 Demand-driven Forward Forward Practical

4 Global Backward Backward Parallel

5 Global Backward Forward Practical

6 Global Forward Backward Practical

7 Global Forward Forward Parallel

Table 2.1: Overview of dynamic slicing algorithms

The last column of the table is used for a preliminary classification of the algorithm
according to its usefulness. In Section 2.2.3 the two practical demand-driven algorithms, in
Section 2.2.4 the two practical global algorithms, and finally in Section 2.2.5 the two parallel
algorithms will be discussed. The remaining two types of demand-driven algorithms are
impractical, since to compute a demand driven slice in a reverse direction would virtually
mean performing global dependence tracking.

2.2.3 Demand-driven algorithms

Given a slicing criterion, demand-driven algorithms will produce a single dynamic slice.
The algorithms traverse the execution trace starting with the action of the dynamic slicing
criterion, and follow the dynamic dependences with the help of the D/U representation going
towards the beginning or the end of the trace, depending on the slice direction.
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Backward Slice — Algorithm 0

This algorithm processes the trace starting with the action of the criterion and traces back
the dependences towards the very first action. The algorithm (formalized in Figure 2.1)
has a worklist with actions on which CB is (transitively) dependent but which are not yet
processed. When an action from the worklist is processed, its instruction is added to the
slice, and the last defining actions of its used variables are inserted in the worklist. When
the worklist becomes empty the algorithm terminates by providing the slice. (A similar
algorithm was sketched by Korel as well [91, 92].)

program Algorithm-0(P, CB)
input: P : a program
CB = (x,#,U(i)) : dynamic slicing criterion
output: S : dynamic slice of P for CB
begin

1 Read and store EH up to

2 S:=10

3 worklist < 1/

4 while worklist # ()

5 k! := remove element with biggest [ from worklist
6 if [ # j then S := SU{k}

7 for Vu € U(k) do worklist <— LD(u,l)

8 Output S as the backward dynamic slice for criterion CB
end

Figure 2.1: Demand driven algorithm for backward slices

Due to the reverse processing of the trace, the EH needs to be stored (at least up to /),
and the last defining action (in line 7) is not directly accessible, which are drawbacks of the
algorithm. The LD problem can be mitigated while the FH is stored by constructing the
so-called execution history table (EHT), which stores the defining actions in a way it can
be effectively searched for a variable (u) and then by maximum step number under a limit
(I). Note, that when removing the action in line 5, removing the one with the highest step
is not required, but helps to avoid multiple processing of the same actions and can also be
useful for FHT implementation.

Forward Slice — Algorithm 3

Computing forward dynamic slices starting from the slicing criterion means traversing the
execution trace in a natural way. The basic idea of the algorithm (given in Figure 2.2) is
to mark those variables during the processing of the trace that (transitively) dynamically
depend on CF. If the processed action uses a marked variable (line 8), its defined variable
will be marked and the instruction will be added to the slice (lines 9-10), otherwise we
unmark that variable (line 11) as it is redefined without using the value computed in CF.
The algorithm terminates if all variables gets unmarked or we reach the end of the trace.

2.2.4 Practical global algorithms

In a number of applications more than one slice may be needed at a time. It is possible to
compute many slices during one pass of the trace by executing the demand driven meth-
ods in parallel for multiple criteria. Furthermore, a clever parallelization can reduce the
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program Algorithm-3(P, CF)
input: P : a program

CF = (x,4/) : dynamic slicing criterion
output: S : dynamic slice of P for CF

begin
Read FH
mark(d(i))
S =10
k=7
while EI(U is variable and marked(v)) and k < J
k:=k+1
.= EHI(K)
if EI(u e U(l) and marked(u))
mark(d(l))
0 S = SuU{l}
else
11 unmark(d(l))
12 Output S as the forward dynamic slice for criterion CF
end

R W 00 J o U b W

Figure 2.2: Demand driven algorithm for forward slices

overall computational costs due to reusing several intermediate results. The global parallel
algorithms incorporating this kind of operation are described in Section 2.2.5.

However, in those approaches the data structures for all slicing criteria need to be main-
tained throughout the whole execution history. Fortunately, it is possible to construct more
practical algorithms in which only the actual dependence sets of the variables of the program
needs to be maintained, which significantly reduces the space requirements. An interesting
duality in these approaches is that the trace processing direction is the reverse of the slice
direction. In this section we will describe the two basic dynamic slicing algorithms, which
are able to produce all dynamic slices for a given execution of a program.

Backward Slice — Algorithm 5

The global backward slicing algorithm (in Figure 2.3) requires a forward processing of the
execution history. It keeps track of the actual transitive dynamic backward dependences
(DynDep) and the last defining statement (LS) of all variables. These information are
updated for the variable defined in the actually processed action (i) using the last defining
statement and the dynamic dependences of the variables used in the action. Right after this
update, DynDep(d(i)) will contain the backward slice for CB;.

This is the most practically usable algorithm among the 6 presented ones, as it allows
on-the-fly processing of the trace. It has been presented in previous publications, and was
implemented in different contexts [2, 6, 14, 123].

Forward Slice — Algorithm 6

The global forward slicing algorithm (in Figure 2.4) requires a backward processing of the ex-
ecution history. For each variable v it maintains a “live” set (LiveAt), which holds statements
of processed actions with defined variables (transitively) dependent on the latest previous

11
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program Algorithm-5( P, x)
input: P : a program
X : a program input
output: backward slices for all CB; = (x,4/,U(4)) criteria (j =1....J)
begin
1 Read EH
2 forj=1to J
3 i = EHI(j)
4 DynDep(d(i)) = Uy, ev( (DynDep(ux) U { LS (ur)})
5 LS(d(i)) :== 1
6 Output DynDep(d(i)) as the backward dynamic slice for criterion CB;
end

Figure 2.3: Global algorithm for backward slices

(not yet processed) definition of v. Thus, just before action #/ is processed, the LiveAt set of
the defined variable (d;) contains the forward slice of i. Then, the LiveAt set of the variables
used in instruction ¢ must be extended with ¢ and the LiveAt set of d;, as their values have
influence on the later values of d;. If d; is not dependent on itself, then the influence of the
previous definition of d; ends here, thus LiveAt(d;) must be set empty (line 6).

program Algorithm-6(P, x)
input: P : a program
X : a program input
output: forward slices for all CF; = (x,/) criteria (j =1....J)
begin

1 Read and store FH
2 for j = J downto 1
3 i:= EHI(j)

4 Output LiveAt(d(i)) as the forward dynamic slice for criterion CF);
5 for up € U(i) do LiveAt(uy) := LiveAt(uy) U Live At(d(i)) U {i}

6 if d(i) ¢ U(i) then LiveAt(d(i)) := 0

end

Figure 2.4: Global algorithm for forward slices

Backward processing of the trace is not as straightforward as forward processing, but
otherwise this algorithm is a usable counterpart of Algorithm 5 to compute all dynamic
forward slices of an execution of the program.

2.2.5 Parallel global algorithms

In this section, two global algorithms are presented that use the slice direction for processing
the trace and compute the slices for all criteria. We called these parallel global algorithms
because they compute all slices in parallel — virtually having many parallel demand-driven
algorithms. However, they still have the advantage over computing all the slices with the
demand-driven algorithms: the dependences arising from a specific action are computed only
once.
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Forward Slice — Algorithm 7

Figure 2.5 shows our parallel algorithm for computing forward slices. As the trace is pro-
cessed forward, the algorithm tracks dependences of the defined variable d(i) of the pro-
cessed action ¢/. This is similar to Algorithm 5 except that these dependences are actions,
not instructions. Then the slices of actions on which d(i) depends must be extended with
instruction 7. The slices of all actions will be ready when we reach the end of the trace.

program Algorithm-7(P, x)
input: P : a program
X : a program input
output: forward slices for all CF; = (x,) criteria (j =1...J)
begin
1 Read EH
2 forj=1to J
3 i:=FEHI(j)
4 DynDep(d(i)) := Uuyeui (DynDep(ur) U{LA(ur)})
5 LA(d(i)) =+
6 for ay € DynDep(d(i)) do S(ax) := S(ax) U {i}
7 for i/ € EH do Output S(i) as the forward dynamic slice for criterion CF;
end

Figure 2.5: Forward algorithm for forward slices

Backward Slice — Algorithm 4

Just as in the case of Algorithm 7 and &, the parallel backward slice algorithm (in Figure
2.6) is similar to the practical forward slice algorithm (Algorithm 6) that processes the trace
backwards. The main difference here is that we track actions instead of instructions in the
LiveAt sets of the variables. Slices of actions at which d(i) is live must be extended with
instruction ¢ before the LiveAt set updates. The slices of all actions will be ready when we
reach the beginning of the trace.

2.3 Conclusions

In this chapter, six algorithms for computing backward and forward dynamic slices were
presented. All of them are based on computing the dynamic dependences by traversing the
execution history, and using a simple static representation of the program containing local
definition-use information, which uniformly incorporates both data and control dependences.

Algorithms 5 and 0 were implemented for the C language [1, 6], for which we had to
solve some special problems, like handling dynamic variables and composite data types.
Converting all variable accesses to memory locations simplified all data flow problems. The
trace generation problem was solved by source code instrumentation. For the Java language,
algorithms 5 and 7 have been implemented [123]. This implementation works on Java byte
code, but the result can be converted to the source. To handle some problems (like multi-
threading and reflection) correctly, the slicer simulates some necessary tasks of the virtual
machine while processing the trace. To produce the trace an instrumented Java Virtual
Machine was used.
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program Algorithm-4(P, x)
input: P : a program
X : a program input
output: backward slices for all CB; = (x,4/,U(4)) criteria (j =1....J)
begin

1 Read and store EH
2 for j = J downto 1

3 i = EHI(j)

4 for ay € LiveAt(d(i)) do S(ax) := S(ax) U {i}

5 for v, € U(i) do LiveAt(uy) := LiveAt(uy) U Live At(d(i)) U {#}

6 if d(i) ¢ U(i) then LiveAt(d(i)) := 0

7 for i/ € EH do Output S(i) as the backward dynamic slice for criterion CB;

end

Figure 2.6: Backward algorithm for backward slices

A question arises in which contexts is each of the presented algorithms most useful.
Choosing between a global or demand-driven algorithm depends on the number of criteria
for which slices are needed. Based on our experience, if more than a few dozens of slices are
needed, the global algorithms have a better overall performance — the exact number depends
on various features of the actual program dependences. The choice between the global
algorithms has two dimensions. The practical algorithms maintain less data structures and
use less memory. However, the reverse processing of the trace might be problematic for
storage reasons if the length of the FH is large. So, in this case the global algorithms that
process the trace in a forward way might be better choices than their backward processing
counterparts.

Contribution

This chapter is based on the publication:

[4] Arpad Beszédes, Tamés Gergely, and Tibor Gyiméthy. Graph-less dynamic
dependence-based dynamic slicing algorithms. In Proceedings of the 6th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM 2006),
pages 21-30, Philadelphia, PA, USA, September 2006.

The paper received 14 independent citations so far, one of which is an international and
the other one a USA patent.

The basic concept and framework for defining the graph-less dynamic slicing algorithms
is mostly my contribution, while the details of the exact algorithms and their evaluation
from the practicality point of view and their possible applications are joint work. Some of
my other notable papers that have contributed to this result are: [1, 2, 7, 28].
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Dynamic Function Coupling

3.1 Introduction

Impact analysis [60] is an important software engineering activity which is used for change
propagation [110], regression testing [116] and debugging [84], among others. In general,
an impact set of a program element z (such as a statement or a procedure) is a set of
other program elements which, when executing or changing x, may be impacted and hence
should be considered in a follow-up activity. In a debugging scenario, investigating the
impact set of a variable being observed at a particular program point gives us important
information about how a potential fault could be propagated from that variable to other
parts of the system. Different kinds of impact set computation methods have been proposed
in literature, including static and dynamic code analysis-based ones. In this chapter, we deal
with dynamic code analysis and discuss an approach for impact analysis which is based on
the relative sequence and distance of procedure calls (we will use ‘functions’ interchangeably
with ‘procedures’ in the following to refer to the same programming concept).

Apiwattanapong et al. [48] introduced a simple dynamic approach for impact set com-
putation at function level, which is based on Execute After (EA) sequences computed from
function entry and exit events. The basic approach is that a specific function f will po-
tentially have an impact on all functions that are executed sometime after it in any of the
executions. This approach is safe but very imprecise: all functions that appear after f in
the execution trace will be in the impact set, thus no potential dependences will be missed.

Here, we further develop the notion of EA sequences by providing a method for computing
more precise impact sets with the trade-off of losing the safety of the approach by allowing
potentially missed dependences. The basic idea for refining EA relations is based on the
intuition that the “closer” the execution of two functions, the more likely they are dependent
on each other.

Our approach is the following. The measure Dynamic Function Coupling (DFC) is defined
between two functions as the minimal level of indirection between all possible occurrences of
the two functions in the execution traces. Informally, the level of indirection is the “closeness”
of the two functions taking into account the number of other intervening functions. Once we
have the DFC metric for every pair of functions, we compute the impact set of a function f
by taking those functions that have a DFC of at most some fixed cut-off value d.

Based on this heuristic, we introduce a method for computing the impact sets using a
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fixed cut-off value and discuss its variations for potential applications. Such impact sets are
proposed for the mentioned activities instead of (1) the imprecise Execute After relations, (2)
the precise but expensive dynamic slices, and (3) imprecise and/or unsafe static dependency
sets. The indirection level d serves as a parameter to balance between precision and recall.
For example, the original EA relation can be computed with an infinite d (safe but imprecise),
and only directly coupled functions can also be retrieved (more precise but unsafe).

3.2 Computation of Dynamic Function Coupling

Apiwattanapong et al. [48] defined the EA relation between functions f and g as: (f,g) € FA
iff f calls g, or f returns into g, or f returns into a function h and function A later calls ¢
(all calls and returns can be direct or transitive).

To simplify the formal definitions of our DFC relation, we will use the concept of dynamic
call trees. For a program P and its execution with the trace T" we define the dynamic call
tree as a rooted tree G with the ordering of the neighbors at each vertex. A vertex v € G
represents an instance of a function f € P, the root vertex represent the main function. An
edge v — u in G represents that instance v of f directly calls instance u of g. Edges v — u
and v — w such that u precedes w as the child of v represents v calls u before v calls w. We
will also use the term f-to-g call path (f ~» g) in G, which is a path from instance v of f
to instance u of g such that v transitively calls u through d number of calls (in other words,
the length of this call path is |f ~ g| = d).

The Ezecute After (EA'Y), Erecute Before (EBY), and Erecute Round (ER) relations
with indirection level d are defined as follows:

(f,9) € BAY), &L 3(f v g): |f ~ gl = d,
(f,g9) € EA'YY) €5 3(g~ f): g~ f|=4d,
(f,g) € BAYD L& 3 c P (b~ f), (h~ g) € G and

seq

h ~» f and h ~» g having a common instance vertex for h where
f is called before g and d = |h ~» f| 4+ |h ~> g| — 1,

(f.9) € BAY) &% 3d' < d : (f,g) € BAL) U EAY) U EAL),
(f.9) € EBY & (g, f) € EAY,
(f,9) € ERY &% (f,9) € EBY U BA@,

19
19

As can be seen, the EB relation is simply defined by reversing the roles of the two functions,
and ERY is defined by combining EB?Y and EAY. Observe that EA® corresponds to
Apiwattanapong et al.’s definition of the EA relation, while ER( gives the complete graph
with the covered functions. It is also easy to verify that the Frecute Round relation will be
symmetric, while the other two are not. Also note that only one of FA.; and EFA,. need
to be actually computed as they are the inverse of each other.

We define the Dynamic Function Coupling measure as the lowest d for which the two
functions are connected by ER:

[ min{d | (f,g) € ER} if such d exists,
DFC(f,9) = { 00 otherwise.

Observe that DFC(f,g) = DFC(g, f) and DFC(f, f) = 0 for any two functions f and g.
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The definitions above are given for one specific execution of a program, however they
can be easily extended to multiple executions. Namely, the FA, EB and ER relations for
a set of executions can be obtained by computing the respective unions of the individual
relations, while the DFC' metric for any two functions will be the minimal such value from
the executions. In the following, we will assume that the computed data are obtained from
a fixed set of test cases.

Based on the previous, we may now define the impact sets themselves. We will use three
related concepts, change impact, forward computation impact and backward computation
impact. The difference is if we follow the dependences in both directions, only forward or
only backward, respectively. These impact sets can have applications in different tasks: in
determining the impact of changes on the rest of the system a bidirectional version would be
used, the forward approach is suitable, e.g., in regression test selection, while the backward
approach is typically a debugging-related concept.

For a program, a set of test cases, a fixed indirection cut-off value d, and a set of changed
functions C, the impact sets are defined as:

ImpactSet'P(C) = {g | 3f € C : (f,g) € ER},
ImpactSetF D (C) = {g | 3f € C : (f,g) € EAD},
ImpactSetBY(C) = {g | 3f € C : (f,g) € EBD}.

3.2.1 Example

In Figure 3.1, an example trace T with function entry and return events (e and r subscripts,
respectively), the corresponding call tree, the minimal d values of function pairs for FA ..,
and EA,., subrelations, and the DFC values between functions are shown. The DFC values
can be obtained by transposing the EA subrelation matrices and for each cell selecting the
minimal value of the same cell from the two EA and two transposed matrices.

f
T = <f67 geu h'e7 h7‘7 ke? gea g'l‘7 kTv lev él/ \g)
lry grs ke, Gey Grs fes fry Eor, fT) (1) (3) (l/)}(\<2)
h/lib\l g f
(1)
g
EAY EA@
call seq
d| f|g|bh|k|1] djf|g|[h|k]|1l]| DFC|f|g|h|k]|]]
f|1 0 1 2 1 2 flloo|oco|oo | oo | oo flo|112(1]2
glloo| O 1 1 1 g 1 2 oo | 1 2 g|l1]0]1]1]1
hiloo|oo| 0 | 0| o0 hi|l 3] 2 || 1]1 hi2|1/]0|1]1
k 1 1 |co| 0 | @ kil 3 1 oo | 2 1 kif1]1]1]0]1
llfloo|oo ||| O] 1] 3] 3 || 2| 1jf2(111111]0

Figure 3.1: An example trace, its dynamic call tree, minimal d, and DFC values.

In the following, algorithms for computing E R relations (and the corresponding ImpactSet
sets) are given. We will present two variations depending on if we need impact sets for mul-
tiple functions at the same time (Section 3.2.2) or only for one (Section 3.2.3). Algorithms
for computing the other types of relations and impact sets are straightforward modifications
of these.
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3.2.2 Global algorithm for DFC

The global DFC algorithm computes the DFC metric for each function pair. The recursive
algorithm shown in Figure 3.2 works on a trace T' of length ¢, which is essentially a stream
containing function entry and exit events. The maximal depth of the dynamic call tree will
be denoted by m, while the number of functions covered will be n. For an actual subtree of
the dynamic call tree rooted at function h, the algorithm works as follows. For all subtrees
of h it first computes minimal h-to-f call path lengths recursively (line 8), and then the
sequence-indirection levels while h being the “root” between any two f and ¢ functions
(lines 9-13). It then updates call-indirection levels with A (lines 16-19) and returns with
updated call path length information.

program ComputeDFC(T)

input: T : trace

output: DIf,g] : DFC between all functions f and g
begin

1 init all elements in D with co

2 E:=ReadT

3 ComputeDistances(E.function)

4  Output D

end

procedure ComputeDistances(function h)

local: P[f] : array of previous values
NI[f] : array of next values

begin

5 init all elements in P with oo

6 E:=ReadT

7 while F is an ENTRY event

8 N := ComputeDistances(E.function)

9 forall f functions

10 forall g functions

11 DI[f,g] := min(D[f, g], P[f] + N[g] — 1)

13 P := min(P, N)

14 E :=Read T

15 Plh|:=0

16 forall f functions

17 Dih, f] := min(Dr[h, f], P[f])

18 DIf,h] := D[h, f]

19 P[f] .= P[f]+1

20 return P

end

Figure 3.2: Global DFC algorithm

Per trace element, this algorithm requires O(n?) time, while its memory requirement is
O(n - m) not counting the DFC matrix itself.
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3.2.3 On-demand algorithm for ER

The global algorithm presented in the previous section is less efficient in practice to compute
impact sets since we are generally interested in the impact of only a small number of func-
tions. In Figure 3.3, we present an algorithm that computes the set of impacted functions
for a given changed function set. Processing the trace, the algorithm maintains n 4 2 stacks.
The tops of CALL and RET stacks show the indirection levels from the last changed function
according to FA.; and EA,, respectively, while the top of SEQ[g] shows the indirection
from g, which corresponds to EA,,.

On an entry event, new values are pushed onto the stacks depending on whether the
entered function is a changed one or not (lines 6-8). The resulting impact set is also updated
according to the stack tops (lines 11-16). On return events the stacks are updated by popping
them, and the new tops of RET and SE(Q) stacks are updated using the popped value based
on whether the returned function is a changed one or not (lines 19-24).

The time requirement of this algorithm is O(n) per trace element, if appropriate data
structures are used. The memory requirement is O(n - m).

Since our method will mostly be used with a small indirection levels in practice, it is
useful to investigate more specialized versions of it for fixed d values, which can result in
significantly better complexity requirements. For example, if d = 1, worst case complexities
can be reduced to O(m-log(n)) for time and O(n-m) for space, and average costs can be even
better. Furthermore, a reduced version of the method incorporating only call-indirections
can be used, which can be implemented in O(1) time with respect to each step of the trace.

3.3 Experiments

We evaluate the DFC metric and the impact sets computed based on it in terms of the sets’
size and accuracy. The set sizes are important since they indicate the amount of reduction
that can be achieved compared to the conservative method (Section 3.3.2). The accuracy
of the sets, on the other hand, is assessed through measuring the precision and recall rates
with respect to precisely computed dynamic dependences among functions using dynamic
program slicing (Section 3.3.1).

We performed our experiments on three medium size Java programs with their sets of
test cases. The programs were JSubtitles (15 classes, 460 lines), NanoXML (27 classes, 1156
lines) and java2html (55 classes, 2290 lines) with 95-100 test cases each.

For computing precision and recall, we computed fine-grained, instruction level dynamic
dependences with the Java dynamic slicer called Jadys [123]. The dynamic slices were lifted
to function level and used as a golden standard for actual dependences. We used our global
algorithm to produce the FA.,;; and FA,., relations for different d values. Other relations
were derived from these utilizing the symmetries between the relations.

3.3.1 Precision and Recall

Precision shows the rate of true positives in the resulting impact sets, which may contain
false positives as well. Recall measures the rate of true positives over the total amount of
actual dependences, which may include false negatives. There is a trade-off between these
two measures and our parameter d provides the way to set the desired type of accuracy.
We measured the precision and recall for EA ;U FA,.;, EA as the original Execute After
algorithm and ER for DFC itself. Figure 3.4 shows the overall results for ER for the subject
programs. The other relation types showed similar shapes of the curves but with different
values. Also, the three programs produced very similar results, although with different key
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program ComputeER(T, C, d)

input: T : trace
C' : set of changed functions
d : cut-off indirection level

output: IMP : change impact set of C'

data: CALL, RET : stacks of values
SEQI[] : vector of stacks with values

begin

1 IMP:=C

2 init all stacks by pushing co in them

3 while T is not empty

4 E :=Read T

5 f = E.function

6 if E/ is an ENTRY event

7 if f € C then push(0, CALL))

8 else push(top(CALL) + 1, CALL))

9 push(RET, o)

10 forall ¢ functions do push(SEQ]g], top(SEQ][g]) + 1)
11 if top(CALL) < d then insert f into IMP

12 forall g € C functions

13 if top(SEQ[g]) < d then insert f into IMP

14 if feC

15 forall g ¢ IMP functions

16 if top(SEQ[g]) < d then insert g into IMP
17 else

18 pop(CALL)

19 u := min(pop(RET) + 1,pop(RET))

20 if f € C then push(RET, 1)

21 else push(RET, u)

22 forall g functions

23 if f € C then push(SEQ]g],0)

24 else push(SEQ[g], u)

25 if top(RET) < d then insert f into IMP

end

Figure 3.3: Algorithm for computing ER

values. It can be observed that as d grows recall also steadily grows with a relatively long
linear phase, and at some point it reaches 100%. This suggests that there is a threshold level
of d for every program with which our algorithm can be used with safety. On the other hand,
precision starts at a higher value and rapidly decreases towards the precision of the original
Execute After algorithm (but remaining somewhere above it because of EB relations).

3.3.2 Impact set size

Precision and recall are important, but when the method is applied the sizes of the impact
sets will determine the efficiency of the software engineering task in question. We computed
the set sizes for all d levels but since the tendencies of their change were very similar to
the recall curves, we will present only the interesting values (d = 1,2) for ER in a table
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Figure 3.4: Precision and recall for ER (%)

below. The mentioned similarity can be attributed to an interesting relation. Namely,
impact = psccl‘;ii — - C, where C' is a constant value. As after a few steps of increasing d
precision becomes nearly constant, the impact set size will grow proportionally to recall and
will eventually reach a certain value when recall reaches 100%. Unfortunately, the sizes
of the impact sets at 100% recall are not significantly smaller than that produced by the

original conservative method.

d=1 d=2
set size | orig. p. prec. set size | orig. p. prec.
JSubtitles | 14.3 234 48.4 | 34.5 234 35.6
NanoXML | 13.5 33.4 52.1 | 25.5 33.4 47.2
javaZhtml 4.2 8.7 285 | 9.9 8.7 23.2

Table 3.1: Impact set sizes. The set sizes are shown as percentage values relative to the respective
set sizes of the conservative method, whose precision values are shown in the second and fifth
column. The third and the sixth column are the respective precisions for ER.

In Table 3.1, the average sizes and precisions over all functions’ impact sets are shown.
At d = 1 the precision of ER is at least twice as good as of the original EA method, and
it is still very good with d = 2. But, the corresponding impact set sizes are much smaller,
although the recall is not very good compared to the 100% of the original Execute After.

3.4 Conclusions

Our initial expectation was that by reaching a good enough recall with a given d value, the
precision will not start to decline significantly. Measurements proved the opposite: precision
declines very fast, while recall steadily rises for some more indirection levels. Hence, we
conclude that one should not aim at very high recall values using this approach since the
gain in terms of impact set size and precision is minor with respect to the safe and simpler
Execute After method. However, with small d values (1 or 2), the gain is notable: the
average impact set size is much smaller than the one with the safe method and a double
precision can be obtained using DFC.

A small DFC value between two functions indicates that there may be an actual coupling
between them with higher probability. According to our measurements, all actual couplings
can be identified by the level of maximum 5-15. The recall rates show that DFC levels 1 or
2 indicate significantly more actual dependences than at higher levels. The cut-off value of
parameter d around 5-15 produces recall near 100%, having a similar precision at this point
to the safe method (20-30%). The impact set sizes increase in a similar rate to the recall,
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namely a small d will produce small sets with proportionally smaller recall as well. The
relative gain compared to the conservative approach is also scalable with a characteristic
similar to the recall values. Namely, the closest level 1 produces impact sets that are on
average 13-15% of the set sizes of the safe method, while level 2 covers about 25-35%.

The possibility for parameterizing the computation algorithm with the cut-off value d
enables its flexible application in various applications, which we list in the following.

Change impact analysis. In change impact analysis [110], when a change is made to a
part of the system, the other parts of the system that need to be investigated in order to
propagate the change may be computed using ImpactSet'? with a fixed d. The method can
be as follows. The initial impact sets are computed for all functions during a regular all-
inclusive testing process. For subsequent changes, the actual database is used to determine
the impact of the change, and during regression testing of the changes, the database can be
updated by the newly computed impact sets. Some change propagation methods rely on high
recall, in which case we can use a large d value (according to our experiments the smallest
values where it reached 100% were around 8-15) for the updates, while other approaches
benefit from better precision, in which case a close coupling (d = 1) should be chosen.

Regression testing. As far as regression testing is concerned, ImpactSetF @ can be used
with all traditional modification-based test selection strategies, again with a fixed d. We
may maintain a database of impact sets as outlined above, and the test cases to be retested
may be selected using these impact sets. Testing firewalls [116] are typically defined to
involve only the closest dependents, in which case our impact sets with d = 1 can be a good
alternative. Other regression testing approaches require the impact sets to be safer, in which
case larger cut-offs may be chosen.

Debugging. Consider a scenario where a faulty value is observed at a specific program
point, which is then marked with a breakpoint. Debugging the program step-by-step af-
ter it is not the optimal strategy. Additional breakpoints in the code could help but the
programmer is not always certain where to put them. The ImpactSetB(d) set can be used
here to determine the set of functions probably having effect on the erroneous value, and
breakpoints can be put at the exit points of these functions to check the correctness of their
return values. Varying the d value gives us flexibility: if a small value does not uncover the
place of the bug we can use a higher value until the bug has been found.

Contribution

This chapter is based on the publication:

3] Arpad Beszédes, Tamas Gergely, Szaboles Faragd, and Tibor Gyiméthy. The Dy-
namic Function Coupling Metric and Its Use in Software Fvolution. In Proceedings
of the 11th European Conference on Software Maintenance and Reengineering (CSMR
2007), pages 103-112, Amsterdam, the Netherlands, March 2007.

The paper received 32 independent citations so far. Among others, it has been included
in survey papers investigating impact analysis and program coupling literatures.

The concept of dynamic coupling based on function call sequences and distance with the
analysis of possible applications of the method in debugging and software maintenance are
mostly my contribution, while the details of computing the DFC metric with the related sets
and the empirical evaluation of the method are joint work.
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Background on Dependence Computation

Dependence Cluster analysis relies on underlying program dependence relations which are
calculated using code analysis algorithms. In particular, we deal with two static analysis
algorithms that provide the basic code dependences at two levels of granularity. Program
Slicing (PS) is a code analysis technique of finer granularity and is defined at the level of
statements. In this section, we first overview this concept, and then we introduce a coarser
granularity algorithm called Static Execute After (SEA) that computes the dependences at
the level of procedures, and enables a more efficient analysis of larger software systems. We
also introduce some basic notations that will be used throughout Chapter 5.

Program Slicing

Program slicing [124, 129] is a classical code analysis technique, which aims to determine a
subset of a program, called the program slice, by omitting the irrelevant code elements, such
as statements, with respect to a specific calculation and from a specific perspective. A slice
is computed with respect to a slicing criterion, which is a combination of a program variable
and a location. The slice of the program includes only computations that are related to the
variable at the program point defined in the criterion. Slicing approaches can be categorized
by the direction of computation, i.e., forward or backward, depending on whether the result
contains those instructions which depend on the value of the criterion variable, or affect it,
respectively. A static slice includes information computed for all possible executions of the
program, while dynamic slices are computed for a specific program input and execution.

Computing slices at the level of statements enables us to express the dependence relations
at coarser level granularities as well — by lifting the dependences based on syntactical code
structure, in particular, from statements to procedures. In the following, we will distinguish
four different slice computations, referred to as operators based on what granularity level are
the criterion and the resulting slice defined. Also, we will limit our investigation to backward
static slicing, except where noted otherwise.

The slicing operators compute slices as the solution to a reachability problem over a
program’s System Dependence Graph (SDG) [80]. An SDG is comprised of vertices, which
essentially represent the statements of the program and two kinds of edges: data dependence
edges and control dependence edges. A data dependence connects a definition of a variable
with each use of the variable reached by the definition [65]. Control dependence connects a
predicate p to a vertex v when p has at least two control-flow-graph successors, one of which
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can lead to the exit vertex without encountering v and the other always leads eventually
to v [65]. Thus p controls the possible future execution of v. When slicing an SDG, a
slicing criterion is a vertex from the SDG, and also the resulting slice includes a set of
vertices. Hence, in the following we will use the terms ‘vertices” and ‘statements’; as well as
‘procedures’ and ‘functions’ representing the same concepts, respectively.

The four SDG-based slicing operators Slice”", Slice"™, Slice™ , and Slice™ differ on the
slicing criteria considered and on the set of elements returned as the result of the slice. The
first one, Slice"", is the traditional vertex-level slicing [75] where the slicing criterion is an
SDG vertex and the result is a set of vertices, V. With such a slice the criteria is dependent
on each of the vertices found in V. The second, Slice'”, has the same slicing criteria, a
vertex, but produces a set of functions F' rather than a set of vertices. In this case, the
criteria is dependent on the (entry-point vertices of the) functions in F'.

Parallel to the first two, the output of the final two operators, Slice”Vand Slice™, is a
set of vertices V' and a set of functions F', respectively. These two differ in that the slice is
taken with respect to an entire function instead of a single SDG vertex. For function f, this
is done by taking the union of the slices for each vertex that represents source code from f.

Static Execute After

The concept of Static Ezecute After (SEA) and its counterpart Static Execute Before (SEB)
have been introduced by Jész et al. [18] as a procedure-level alternative to instruction-based
dependences captured by the SDG, which are easier to compute but only slightly more
imprecise. Another good property of SEA/SEB is that they are conservative in the sense
that they include all dependences computed by SDG-based slices. SEA/SEB does not require
the computation or use of data dependences. Rather it uses only the possible control-flow
paths and call-structures inside functions.

For functions f and g, we say that (f,g) € SEA if and only if it is possible that any part
of ¢ is executed after any part of f in any one of the executions of the program. Similarly,
functions f and g are in SEB relation if and only if, it is possible that any part of g is
executed before any part of f. It can be observed that these relations are inverse to each
other just as is the case with backward and forward slices. A dynamic counterpart of this
relation has been defined by Apiwattanapong et al. [48]. Following the notation of this
publication and that for DFC from Chapter 3, we define the SEA relation involving (f, g)
as follows (SEB can be defined in an analogous way):

SEA = CALL U SEQ U RET | where

(f.g) € CALL fcallsg
(9,f) € RET } = (g returns into f)

(f,9) € SEQ <= dh: f returns into h, then A calls
g (through a control-flow path)

Usually, the reflexive closure of this relation is considered, since any change in a particular
function can (conservatively) affect any other part of it. Computing the SEA relation means
following all possible control flow paths from a function to the rest of the system, and it
is based on the Interprocedural Component Control Flow Graph (ICCFG) [5], a program
representation that contains sufficient information to extract the required relations, while
being much smaller and simpler than other graphs such as the System Dependence Graph [80]
used for slicing.

Following the notation introduced for slice operators, we will use Slice®Z and Slice™® to
refer to function-level dependence determined by SEA and SEB relations, respectively.
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Computation and Analysis of Dependence
Clusters

5.1 Introduction

Dependences in computer programs are natural and inevitable. We can talk about depen-
dences among any kind of artifacts such as requirements, design elements, program code or
test cases, but the physical structure of the system as implemented are best captured by de-
pendences within the source code. A dependence between two program elements (e.g. state-
ments or procedures) basically means that the execution of one element can influence that
of the other, hence the software engineer should be aware of this connection in virtually
any software engineering task involving the two elements. One of the fundamental tasks of
program analysis is to deal with source code entities and the dependences between them [52].

Dependences cannot be avoided, but they do not always reflect the original complexity
of the problem. Sometimes unnecessary complexity is injected into the implementation,
which may cause significant problems. Dependence clusters in program code are defined as
maximal sets of program elements that each depend on the other [54], but other — from
a computational point of view — more practical definitions exist as well. Large dependence
clusters are detrimental to the software development process; in particular, they hinder many
different activities including maintenance, testing and comprehension [41, 55, 56, 75, 59]. The
primary problem is that in any dependence-related examination, encountering any member
of a cluster forces us to enumerate all other cluster members. If large clusters covering much
of the program code exist in a system, then it is very likely that one cluster member is
encountered and consequently a large portion of the program code has to be considered.

The root causes of this phenomenon are not well understood yet; it seems to be an inher-
ent property of program code dependence relationships. Sometimes, dependence clusters are
avoidable because they actually introduce unnecessary complexity to the implementation;
this is what Binkley and Harman call “dependence pollution” [54]. In such cases the program
can be refactored using reasonable effort, but this is not always the case.

However, dependence clusters cannot be easily avoided in the majority of cases, so re-
search should be focused on understanding the causes for the formation of clusters, and the
possibilities for their removal or reduction. Previous work revealed that in many cases a
highly focused part of the software can be deemed responsible for the formation of depen-
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dence clusters [55, 56, 53]. Namely, program elements called linchpins are seen as central
in terms of dependence relations, and are often holding together the whole program. If the
linchpin is ignored when following dependences, clusters will vanish, or at least decrease
considerably. The general approach to define a linchpin is to find a program element whose
removal results in the largest decrease of clusters according to a given metric, but more
efficient heuristic techniques are preferable.

In this chapter, we first introduce our dependence cluster concept based on Static Execute
After and its calculation possibilities (Section 5.2). Section 5.3 presents our results related
to the analysis of SEA-based dependence cluster properties using visual and metric-based
approaches. In Section 5.4, we discuss the relationship of SEA-based dependence clusters
and clusters based on SDG-based program slices. The problem of identifying linchpins
in dependence clusters is overviewed in Section 5.5, in which we discuss our manual and
metric-based identification approaches. Finally, we present our results of applying SEA-
based dependence clusters in impact analysis and related applications (Section 5.6).

5.2 Static Execute After-based dependence clusters

Dependence clusters have originally been introduced by Binkley and Harman using static
backward slices as the underlying program dependence [54]. This means that the set of
dependent code elements that form a cluster are statements, or equivalently, vertices from
the SDG program representation.

The notion of Static Execute After (SEA) relations is analogous to instruction level
program slices, with the difference that the code elements that constitute a dependence set
are procedures (functions or methods) instead of statements. This enables us to define a
concept of dependence clusters based on SEA relations instead of slices in a straightforward
way. There are two main benefits to this approach: (1) the computation of SEA is much
more efficient and (2) in the case of real size software systems, statement granularity is too
fine for general high level investigation.

We will use different definitions for the SEA-based clusters, starting from the theoretical
concept and then working towards practical computability. (We will use SEA for illustration
but all concepts can be defined in an analogous way for SEB dependences as well.)

Mutual dependence. This concept is based on the original definition given for slice-
based clusters, according to which a dependence cluster is a mazimal set of procedures that
each depend on the other based on the SEA relation. This kind of dependence clusters is
prohibitively expensive to compute because it is a form of the clique identification problem.
Hence, in practical applications dependence clusters are defined based on the coincidence of
dependence sets, as follows.

Same set. According to this definition, a SEA-based dependence cluster of a program is a
maximal set of procedures in which any two procedures have the same reflexively closed SEA
sets. The elements of these types of clusters are mutually dependent on each other (due to
reflexivity), but the associated SEA sets may contain additional dependences which are not
members of the cluster. In other words, a cluster can have at most as many elements as
the common SEA sets. This is a reasonable approximation of the mutual dependence-based
definition and is easier to compute since the dependence sets only need to be compared in a
pairwise fashion. This definition has the additional good property that it gives a partitioning
of the procedures into clusters. This still can be expensive to compute in certain situations,
so an even simpler approach is used in many applications, which is the following.
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Same size. This definition differs from the previous one only in that it does not compare
the SEA sets themselves but only their sizes. It has been empirically shown that (in the
case of non-trivial clusters) it is sufficient to test if two dependence sets have the same size
with a good error margin [11, 24, 54, 75], so in most of the following discussion we will rely
on this kind of cluster analysis.

We define our SEA-based dependence clusters more formally as follows. Let P =
{p1,p2, ..., pn} be the set of procedures in a program X (for simplicity, we assume n > 2).
The SEA relation of program X is the reflexive closure of the relation defined on its set of pro-
cedures, i.e. SEA C Px P, according to the definition in Chapter 4. Withn = {0,1,...,n},
we give the following auxiliary definitions.

For any procedure p, two sets of procedures are associated with it: the set of procedures
that are dependent on p (i.e. the procedures that are successors of p according to SEA),
and the set of procedures on which p depends (i.e. the procedures that are predecessors of p
according to SEA). The former is referred to as the SEA-set of p, while the latter is its SEB-
set (as mentioned, these notions are analogous to forward and backward slices, respectively).
Because the SEB relation is defined as the inverse of SEA, in the following we will use the
notations SEA and SEA! for simplicity. Additionally, we use a notation that emphasizes
the direction of the dependences as follows:

D(p)={q€ P|SEA(p,q)}

for forward dependences, and

P

D(p) = SEA™ ' (p) ={qe P|SEA(¢q.p)}

for backward dependences.

Based on the different cluster notions introduced above, we define two types of depen-
dence clusterings, one with set coincidence (Z) and one with size comparison (S), both
having backward and forward versions. For the latter we will need an additional definition
of the dependence set size, the weight functions w and w:

w:P—n, w(p)=|Dp)| and @w:P—n, wp)=|Dp)

The formation of dependence clusters of a program based on SEA dependences is in fact
a partitioning of the procedure set P (not being transitive, the SEA relation itself does not
exhibit partitions). For forward dependence sets, we define the set of dependence clusters
(i.e., partitioning or clusterization) of program X as:

—

2—{{ac P|Dlg) = D)} | pe P}

§={{acPlit) =)} pe P}

For any ¢ € § the weights of its members are equal, so we can assign the same weight to
cluster c itself. Clearly D(q) = D(p) implies w(q) = w(p), so Z is a refinement of S. This
also means that the weight function can be extended naturally to Z as well. Note, however,
that the weight and the size of a cluster are different notions, the former may also be referred
to as dependence set size. The corresponding backward definitions can be derived from these
easily, and the same considerations apply. R

For the discussion that follows, we will use the same size dependence cluster concept (S
and §), and together with the different slicing operators defined in Chapter 4, the following
notations will be used to denote the different clusterizations, respectively: ¢V, c*, ¢?”,
C?f , C5£,q’ and CSH;.
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5.3 Analysis of dependence cluster properties

We present the results of our empirical investigation of SEA-based dependence clusters in
a range of C/C++ subject programs of moderate (up to 200k lines) and large (millions of
lines) sizes. The main aim of this research was to find out how common are large SEA-based
dependence clusters in a variety of programs of different sizes and how can we categorize the
programs more objectively in terms of their degree of clusterization?

We introduce the term clusterization to indicate the extent programs exhibit dependence
clustering, and define novel metrics that characterize this property quantitatively. We follow
two approaches to express and analyze clusterization levels:

1. By a manual classification based on the visual inspection of the Monotone Size Graphs
of the subject program [54], which are composed of SEA dependence sets for all pro-
cedures in the system. An MSG of a program is a graphical representation of all its
dependence sets by drawing the sizes of the sets in monotonically increasing order
along the x axis from left to right (see examples in Figure 5.1). Three levels will be
used to express the clusterization level for a subject program: low, medium and high.

2. By defining different clusterization metrics, which are designed to express clusterization
in easily quantifiable numerical form (values from [0, 1]).

5.3.1 Subject programs and tool setup

We started with the collection of programs Harman et al. used in their experiments [75].
We could reuse 60% of these programs but also extended this set to finally arrive at 29
programs written in C (we will refer to this set as the moderate size programs, and they can
be observed in Table 5.1). The second part of our data set consisted of two large industrial
software systems from the open source domain. The first one was the WebKit system, which
is a popular open source web browser engine integrated into several leading browsers [127].
It consists of about 2.2 million lines of code, written mostly in C++, JavaScript and Python.
In this research we concentrated on C++ components only, which attributes to about 86%
(1.9 million lines) of the code. In our measurements we used the Qt port of WebKit called
QtWebKit on x86_ 64 Linux platform. We performed the analysis on revision 91555, which
contained 91,193 C++ functions and methods as the basic entities for our analysis.

The other large system we used was the GNU Compiler Collection (GCC), the well-known
open source compiler system [68]. The GCC system is large and complex, and its different
components are written in various languages. It consists of approximately 200,000 source
files, of which 28,768 files are in C, which was the target of our analysis. In terms of lines
of code, this attributes to about 13% of the code, 3.8 million lines in total (note that in C,
the size of individual functions is usually larger than that of an average C++ method, hence
this difference in lines of code compared to WebKit). We chose revision 188449 (configured
for C and C++ languages only) for our experiments, in which there were 36,023 C functions
as the basic entities for our analysis.

We used our custom built tools as well as some existing components. To extract base
program representations, as parser front ends we used Grammatech CodeSurfer [71] in the
case of moderate size programs and Columbus [13] for the big programs. For the SEA
dependence computation, our existing implementation of the SEA algorithm using ICCFG
graphs [5] was applied. Since we needed to process and store a large number of dependence
sets, we implemented additional tools (for MSG computation, cluster metrics computation,
etc.) that employ efficient specialized data structures and algorithms. Specifically, we used
the SoDA library [120] to store and process the dependence sets.
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To obtain the dependence clusters and investigate the level of clusterization we computed
the SEA-based dependence sets for both forward and backward directions for all procedures
in our subject programs. The structure of our dependence sets is fortunately simple: for
each procedure in a program we compute the corresponding set of procedures it is in SEA
relation with. Hence, the total number of dependence sets equals the number of procedures
in a program, and this number is also the maximal dependence set size. Altogether we
computed 23,970 dependence sets for the moderate size programs, 182,386 for WebKit and
72,046 for GCC.

5.3.2 Manual classification

A cluster reveals itself as a wide plateau in the MSG visualization consisting of a number
of equal-sized dependence sets. Typically, in a low class we cannot identify any plateaus,
while for the high class there are one or two big ones, the rest being medium. Three typical
programs from the moderate size category, one for each clusterization level, are shown in
Figure 5.1. Visual classification reveals that the first program (epwic) does not show any
plateaus and the landscape ascends in small increases, the second one (findutils) contains
some moderately wide plateaus which are not significant individually but altogether cover
much of the width of the landscape, and that in the last program (gnubg) there is a single
plateau occupying nearly the whole width of the landscape.

]

epwic findutils gnubg

Figure 5.1: Example MSGs for the visual classification (epwic: low, findutils: medium,
gnubg: high)

The MSGs for the two big programs in our dataset, GCC and WebKit, can be seen
in Figure 5.2. The differences between the two programs are clear. GCC belongs to the
low level clusterization category, while WebKit exhibits a medium level clusterization in the
visual ranking.

GCC WebKit

Figure 5.2: MSGs for GCC and WebKit

31



Chapter 5. Computation and Analysis of Dependence Clusters

beszedes 242 24
5.3.3 Metric-based analysis

We define all metrics for measuring clusterization so that they are comparable to each other
for a given program and to programs with different sizes, so we normalize them to the interval
[0, 1], where 0 means no clusterization and 1 indicates maximum clusterization (we assume
that the number of procedures, n > 1). All metrics can be defined in the same way for both
forward and backward dependences, but we will omit the direction notation in this section
for simplicity. Also, the metrics have to be interpreted in the context of a given program.

The first metric we used for the numerical expression of the level of clusterization is
based on Binkley and Harman’s work [54], who measured the area under MSG (referred to
as AREA in the following). The apparent weakness of this metric is that it increases if all
dependence sets are increased by the same amount, although — intuitively — clusterization
should not be different in such cases. Programs with no dependence clusters can have both
small and large dependence sets, and vice versa. The following is a formal definition of this
metric. Normalization is done using the maximum possible area of the MSG, which also
means that AREA is equivalent to the average dependence set size for a program:

1
AREA = " C; le| - w(e)

Our next metric is based on an analogy of entropy and measures the “(dis)order” in the
system of dependence sets in terms of their sizes (called ENTR). We consider a program
more clusterized in this respect if there is a greater number of equal-sized dependence sets,
i.e. when the entropy is lower (note, that this inverse relationship is required to obtain
comparable metric intervals with the other metrics). This metric is defined as:

Yees || -1ogy |

ENTR =
nlog, n

Our concept of regularity metrics is based on the number of partitions (REGU and REGX).
The idea is that the fewer partitions there are, the larger their size must be, so there have to
be more large clusters among them. Inversely, more partitions have to take more “regular”
different sizes hence they will represent low clusterization. This metric has two variants:
REGU is based on the same size, and REGX on the same set dependence cluster concepts,
and they are normalized over the largest possible number of dependence sets:

n—|S| n—|Z|

REGU = —— REGX =
n—1 n—1

Moderate size subjects

Table 5.1 shows the clusterization analysis results for the moderate size programs, including
the visual classification, and the clusterization metric values as well. Since the metrics are
normalized to the range [0, 1], their values could be visualized as small horizontal bars in the
last four columns of the table.

Visual analysis produced three groups with 5 (low), 11 (medium), and 13 (high) elements,
respectively. We would expect an ideal clusterization metric to yield values in such a way
that the 5 smallest would be assigned to the “low” level, the middle 11 would be assigned
to “medium”, and the largest 13 to the “high” level group. Based on these criteria, the clus-
terization metrics can be characterized by counting how many programs they fail to assign
to the group given by visual ranking. The counts are as follows: AREA — 10, ENTR — 7,
REGU — 15, REGX — 8. The differences in these counts can also be observed by visual
inspection of the metric values. It can clearly be seen that AREA and REGU are significantly
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Program LOC NP: # of Visual Clusterization metrics

name procedures class AREA ENTR REGU REGX
lambda 1766 104 Viow K] EJ1 B K]
epwic 9597 153 Viow L[] HJ] B NJ
tile-forth 4510 287 VWlow [ HJ] B [
a2ps 64590 1040 View E1 B B N
gnugo 197067 2000 Wlow L[] BHJ] BN K]
time 2321 12 Mmed W] L1 BHJ] K]
nascar 1674 23 Mmed B EJ] W] N]
wdiff 3936 290 Mmed ] EJ] W] N
acct 7170 54 M med B B ] BN N
termutils 4684 50 M med B E ] BN N
flex 22200 153 Mmed B N BN NI
byacc 8728 178 Mmed W] K] BH] ]
diffutils 17491 220 Mmed L] W] B N
li 7597 359 Mmed W] ] BN @]
espresso 22050 366 Mmed B] E] B N]
findutils 51267 609 Mmed HJ] H] B N
compress 1937 24 Ahigh B] B B N
sudoku 1983 38 Ahigch BN B B N
barcode 5164 70 A hich B B BN BN
indent 36839 116 Ahigh H] WD BN B
ed 3052 120 A high ] N B N
bec 14370 215 Ahich H] ] B N
copia 1168 242 Ahich I N BN B
userv 8009 255 A high H] B B N
fipd 31551 %4 Ahigh I H] B B
gnuchess 18120 270 A hich ] BN B N
go 29246 372 Ahigh I B BN
ctags 18663 535 A high N N B N
gnubg 148944 1592 A high B B BN B

Table 5.1: Moderate size subject programs with clusterization information, sorted by Visual
class and NP
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worse than the other two metrics, while the difference is not so great regarding ENTR and
REGX. ENTR is more precise on low and medium clusterization levels, while REGX performs
better on highly clustered programs.

Large subjects

The ENTR values are 0.4347 for GCC and 0.6980 for WebKit, while REGX is 0.3134 and
0.3552, respectively, which supports our initial (visual) classification for these two systems.
While ENTR shows a notable difference, in the case of REGX it is not so significant, which may
also reflect our finding from above that ENTR was better for low or medium clusterization.

A question arises what makes GCC not having significant dependence clusters as opposed
to WebKit: can we identify any properties that justify such a classification? After consulting
with some key WebKit developers and showing them the members of the clusters, we came to
the conclusion that clusterization is related to architectural concepts in the system. The most
notable difference between the two systems in this respect is that while WebKit is essentially
a library consisting of highly coupled elements for the distinct functional areas, GCC is
a complex application but with much clear behavioral paths that are independent of each
other. In WebKit, most complex functionalities are implemented in a set of highly interacting
procedures (for example, webpage rendering is performed by several hundred procedures
calling each other recursively). On the other hand, GCC implements functionalities like
compiler optimization passes that are more isolated from each other. In addition, the two
systems are written in different programming paradigms (C vs. C++) which may influence
their internal structure.

5.4 SEA and slice-based dependence clusters

In this section, we present an empirical investigation and comparison of the dependence
clusters identified by SEA-based and program slice-based dependence relations using a col-
lection of 20 subject programs written in the C language. The goal of the experiment was to
find out how well can SEA-based cluster analysis be used as a proxy for the more expensive
slice-based cluster analysis (function-level vs. vertex-level)? In particular, we wanted to in-
vestigate how do the slice sets compare to SEA sets, what are the differences between cluster
structures produced by slice sets and SEA sets, and how well do the different clusterization
metrics perform on the clusterization of the two types?

For the different dependence types (defined in Chapter 4) to be maximally comparable we
used a common analysis tool setup to the last point where the different dependence analyses
diverge. Particularly, we used GrammaTech’s CodeSurfer [71] to compute the common
internal program representation, the System Dependence Graph (SDG). The SDG was used
to compute the four SDG-based slice types using the two pass traversal algorithm by Horwitz
et al. [80]. To compute Slice® and Slice®®? | we created the ICCFG from the same SDGs
and applied a reachability algorithm [18].

5.4.1 Comparison of dependence sets

The first experiment seeks to verify the relationship among the different dependence types
in terms of their relative precision and recall. By definition, slice types with the same kind
of criteria (vertices or functions) differ only in how we determine the elements of the slice
since they are computed by the same underlying algorithm. Hence, Slice”V (¢) C Slice"" (c)
and Slice™" (¢) C Slice™™ (¢) for any slicing criterion ¢ (with vertices aggregated to functions
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in the results). Slice™ (¢) C Slice®?(¢) also holds due to the definition of SEB relation and
the fact that we used the same underlying program representation in all cases.

The comparison of the different dependence sets showed that their sizes were compara-
ble with the different slice types. This experiment confirmed our earlier findings that the
Slice®"P sets are not much larger than Slice™ slices: the difference is between 3%-48%,
the average being 11%, and the outliers are all in the very small programs. The difference
between the two function-level slices Slice™ and Slice”" are also very similar: on average
it was 12%. The other interesting observation from the data is that the difference between
pairs of slices that differ in the criteria used, but not the counting granularity (Slz'cevv VS.
Slice™ and Slice'™ vs. Slice™ respectively) was small, about 2% on average for both
cases. Based on this observation and to reduce the complexity of further analyses we limit

our further investigations to the three slice types that take functions as their criteria, namely
Slice™™ | Slice™ and Slice®FP.

Subject Clusterization level AREA REGX

TV crF CSEB TV cFF | 0SB v cr7 CSEB
acct none none small 0.18] 0.28 0.39| 0.02 0.19 0.52
barcode high high high 0.60| 0.79 0.82 || 0.00 0.91 0.94
bc high high high 0.65| 0.77 0.93| 0.04 0.77 0.92
byacc small small | medium 0.29| 0.31 0.55| 0.09 0.27 0.57
compress small small | medium 0.43| 0.45 0.50| 0.22 0.57 0.70
copia huge huge huge 0.49] 0.99 1.00|| 0.94 0.99 1.00
ctags large large large 0.62] 0.80 0.88 | 0.02 0.84 0.93
diffutils medium | medium | medium 0.26| 0.24 0.29| 0.10 0.59 0.75
ed large large large 0.66| 0.78 0.80( 0.08 0.88 0.90
epwic none none small 0.11} 0.11 0.13| 0.30 0.27 0.37
flex small | medium | medium 0.51] 0.61 0.78| 0.05 0.56 0.76
ftpd medium | medium | medium 0.39| 0.49 0.511| 0.03 0.69 0.74
gnuchess large large large 0.54| 0.62 0.72|| 0.13 0.70 0.82
go huge huge huge 0.90| 0.95 0.96 | 0.01 0.96 0.98
indent large large large 0.43] 0.62 0.68 | 0.00 0.78 0.88
sudoku small large huge 0.41] 0.50 0.98 | 0.00 0.41 0.97
time none none none 0.25| 043 0.69|| 0.00 0.08 0.50
userv large large large 0.41] 0.54 0.60{ 0.10 0.72 0.85
wdiff none none | medium 0.26| 0.37 0.68| 0.07 0.07 0.68
wu-ftpd none none none 0.07| 0.13 0.16 || 0.03 0.22 0.21
Average 0.4230| 0.539| 0.6525|| 0.1115| 0.5735| 0.7495

Table 5.2: Clusterization metrics and dependence cluster classification

5.4.2 Manual analysis of dependence clusters

For this set of experiments, we used a combined MSG in which all three dependence types
are shown on the same graph (see Figure 5.3). Note, that since these slice types share the
same slicing criteria, the x-axis of the MSG is common, but due to the different granularity
of the slice elements, the slices of Slice”" were scaled on the y-axis. The first observation one
can make about the graphs in Figure 5.3 is that the three slice types typically produce MSGs
with very similar shape. In only a few cases is there a significant difference (e.g., sudoku).
The result of the manual classification is shown in the columns 2-4 of Table 5.2. For
this experiment, we used the five-level Likert scale (“none”, “small”; “medium”, “large” and

“huge”), which allowed us a systematic and relatively fine grained analysis of the cluster
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Figure 5.3: Subject program MSGs. The lowest solid red line shows Slice’", the middle
dotted green line shows Slice’™, and the upper black line shows Slice®®”. Both axes on the
graphs follow the number of program elements (vertices or functions, depending on the slice
type) relative to all elements.

structures. As mentioned, clusterization was quite similar in many cases, but there are
significant differences as well. For instance, while slice-based clusters for wdiff cannot be
identified, a clearly visible cluster can be found with SEB.

5.4.3 Metric-based analysis of dependence clusters

In this section, we will rely on two clusterization metrics, AREA and REGX, adapted to be
applicable to all slice types, not only SEA /SEB, as presented in previous section. We do not
provide formal definitions for all the different variations of these metric since their adaptation
is straightforward.

Table 5.2 provides the AREA and REGX metrics for each subject program and the three
investigated dependence types. Comparing the manual cluster classifications to the metric
values, generally it is not obvious which metric best reflects the level of clusterization. There
are obvious cases such as programs copia and go, where large dependence clusters can be
easily identified by large AREA values. However, there are cases, such as wdiff, byacc, and
ctags, where AREA alone is not enough to determine clusterization. Here, REGX could provide
additional information about the regularity of different set sizes. For instance, in the case of
wdiff we observe a medium SEB-based cluster, which is reflected by the relative high value
of REGX while the same metric for the other two slice types is low, indicating the absence of
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clusters. Another example is ctags, which is classified as highly clustered. In this case the
REGX metrics are bigger than AREA metrics, which indicates that in these cases REGX may
be a better indicator than AREA.

5.5 Linchpin identification

Experience shows that in many cases, a highly focused part of the software can be deemed
responsible for the formation of dependence clusters [53, 55, 56]. Namely, program elements
called linchpins are seen as central in terms of dependence relations, and are often holding
together the whole program. If the linchpin is ignored when following dependences, clusters
will vanish, or at least decrease considerably. It is useful if one is aware of such linchpins, let
alone be able to remove them by refactoring the program. However, currently even the first
step (identifying linchpins) is largely an unexplored area. We still do not understand fully
what makes a particular program point a linchpin, how they can be identified, or whether
there is always a single element to be made responsible in the first place. The possibilities
for linchpin removal by program refactoring are even harder to assess.

In this section, we present our experiments in relation to the identification of linchpin
program elements. The general approach to locate a linchpin is to find a program element
whose removal results in the largest decrease of clusters according to a given (objective)
evaluation, but this approach is not practical due to the large number of trials, so other,
more scalable techniques are required.

We identified the linchpins for the 20 C subject programs used in the experiments from
Section 5.4. We used the mentioned brute-force method that checks all program elements
(statements or procedures) for the amount of reduction they can produce in clusterization,
and relied on both a visual inspection of the MSG graphs and a metric-based analysis. As the
biggest challenge in this topic is how to locate linchpins using more efficient methods, we also
investigated approximate heuristic methods for this task (on the subjects from Section 5.3)
and compared their results to the exact results of the brute-force method.

5.5.1 Linchpin identification by brute-force

The simplest way to identify a possible linchpin in a program is to remove code elements
one by one and see which one brings the biggest reduction in clusterization. However, this
is not so simple because the level of clusterization is not easy to objectively measure in the
first place — as we discussed in previous sections.

One possibility is manual identification by observing the resulting MSG graphs and vi-
sually determining the biggest differences in their shapes before and after removing the code
element. As this is a very laborious process, we can use a metric-based approach as well,
in which case we calculate the biggest gain (reduction in the clusterization) according to a
given metric (metrics defined in Section 5.3 can be used for this purpose). In the following,
gain will mean the amount the respective metric is reduced in percentage: m’Tm/ [%], m being
the original metric value and m’ the value after linchpin removal.

Specifically, we computed all dependence sets for a program by removing one code element
at a time, 7.e. by ignoring the candidate element and all of its dependences during dependence
set calculations. We then determined the clusters and compared the clusterization metrics
(we used ENTR and REGX in these experiments) of the reduced versions of the program to
the corresponding metrics of the original program. This calculation was then repeated for
all code elements in the program.
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Manual Linchpin Identification

First, we visually investigated the series of cluster structures represented in form of MSG
graphs. To make the classification of linchpins more structured we applied a 5-level scheme:
5 (cluster broken), 4 (almost a 5), 3 (a bit of breaking is evident), 2 (almost a 1) and 1
(clearly no breaking or just a drop in slice size). For each program we then identified all
potential linchpin elements, separately for each dependence type. We then further classified
the linchpins into what we call a “gold standard” and a “silver standard,” which form the
basis for further statistical analysis.

These two classifications capture the authors’ intuition as to the level of clusterization
with the gold standard being more rigorous and representing very obvious cases, while silver
standard is more relaxed (and is a superset of the gold standard). We decided not to include
any of linchpin candidates falling into categories 1-2, thus sliver standard included candidates
of categories 3-5, and gold standard consisted of only category 5 linchpins.

In Figures 5.4 and 5.5 we present examples of gold and silver standard functions, respec-
tively. If we compare the MSGs shown with their unreduced versions from Figure 5.3, we
can clearly see the effect of linchpin removal: in the case of gold standard it is significant,
while it is less pronounced with silver standard. For example, in the case of barcode all
slice types produce significant cluster break, however with ed only ¢**# produces a break,
the slice-based clusters do not vanish, they are just reduced. Considering example silver
standard reductions (Figure 5.5), the reduction for go is significant, however, a big cluster
remains. Program byacc is the least evident: in fact, with ¢7" and ¢?* different linchpins
could be identified than with ¢*#-based ones. The example shows a function that resulted
in the slight break of clusters with ¢5** but slice-based clusters were unaffected.

Barcode_Encode(library.c) exec_command(main.c)
—
r'_'_'—
- r’"’r.
| iy
- =
T f

I : f i

Figure 5.4: Gold Standard Patterns. Functions from barcode (left) and ed (right)

read_grammar(reader.c) get_reasons_for_moves(g23.c)

r—’r

{

Figure 5.5: Silver Standard Patterns. Functions from byacc (left) and go (right)
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Metric-Based Linchpin Identification

The clusterization reduction gain measured by the metric values can be used to identify
the potential linchpins by simply taking the code elements with the highest gain. However,
in many cases the situation is not that evident because the gains are similar for multiple
elements, and we could also use different metrics and different dependence types. Figure 5.6
shows examples of how different the rankings can be. The series of bars are given in decreas-
ing order of a relative decrease of the metric compared to the unreduced program. Note
that since the rankings are computed individually, the bars at the same rank position may
represent different code elements. From the results for program bc we can clearly observe
that the first element in the rank list is much higher than the rest in all three AREA met-
rics and in one of the REGX metrics (in this case the first element was the same), which
clearly indicates a linchpin. However, the other example in this figure (from program ctags)
exemplifies a different pattern. Here, just by looking at the ranks we could not clearly say
if the first one or more elements might be linchpins. In fact, in the case of this program it
turned out that the ranking according to REGX was closer to manual assessment than the
AREA-based.

SliceFF delta-regx  m SliceFV delta-regx  m SEB deltaregx SliceFF delta-regx  m SliceFV delta-regx ~ m SEB delta-regx
W SliceFF delta-area M SliceFV delta-area M SEB delta-area o SliceFF delta-area M SliceFV delta-area M SEB delta-area

Figure 5.6: Linchpin rankings by different metrics for bc (left) and ctags (right)

For comparing the metric-based rankings to the manually identified linchpins we used
the Average Precision (AP) and Mean Average Precision (MAP) measures, typically used
in Information Retrieval for similar purposes [100]. Average Precision is more appropriate
for ranked information retrieval than traditional precision and recall, which do not take
the ranks into account. AP is precision (at each rank position) at each relevant document
(linchpin in our case) averaged over the number of relevant documents, while the MAP value
is the mean of the Average Precision values over all sets of queries (programs in our case).
We computed AP values for each combination of program and ranking (determined by the
different metrics and slice types), using both the gold and silver standard linchpins as the
relevant documents.

Table 5.3 shows the Average Precision values for the gold standard linchpins. An obvious
thing to observe from the data is that the metric based ranking performs exceptionally
well. In other words, if the existence of linchpins is evident, it can be found by metric-
based approach with high success. Particularly, AP is 1.00 for most of the programs in the
gold standard category with the AREA metrics. Typically, the REGX metric is also a good
indicator in these cases as it usually “follows” AREA in the case of high clusterization and
evident linchpins. For silver standard linchpins, the results were similar, just slightly worse.
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ARFEA REGX
Subject || ¢® | ¢* | ¢ || ¢V | ¢ | 5B
barcode 1.00 | 1.00 | 1.00 || 1.00 | 1.00 | 1.00

bc 1.00 | 1.00 | 1.00 || 1.00 | 1.00 | 1.00
copia 1.00 | 1.00 | 1.00 || 1.00 | 0.32 | 1.00
ctags 1.00 | 1.00 - 1.00 | 0.27 | -

ed 1.00 | 1.00 | 1.00 || 1.00 |{ 0.25 | 1.00
ftpd 1.00 | 1.00 | 1.00 || 1.00 | 0.50 | 1.00

gnuchess || 1.00 | 1.00 | 1.00 || 1.00 | 1.00 | 1.00
indent 1.00 | 1.00 | 1.00 || 1.00 | 1.00 | 0.81
userv 0.50 | 0.50 - 0.33 | 0.00 -

MAP 0.94 ({0.94 |1.00 || 0.93{0.59 |0.97

Table 5.3: Gold Standard Average Precision

5.5.2 Heuristic determination of linchpins

Although being a brute-force method, we could successfully implement it in the experiment
from the previous section because the subject systems were relatively small (1-29 thousand
lines of code). However, it is not feasible in the case of real size systems, so we should look
for alternative methods to approximate the linchpins to enable practical application of this
dependence cluster related research.

The existence of dependence clusters and any related linchpins are determined by the
structure of the dependences under investigation. Therefore, it is to be expected that by
investigating the topology of the underlying dependence graph (ICCFG in the case of SEA
dependence) one could gain insight into what makes a program point a potential linchpin.

The problem does not have an obvious solution, so we wanted to investigate whether local
properties of the dependence graph nodes (procedures) could be leveraged to approximate
linchpins. We used the following heuristic metrics as potential indicators: NOI (Number
of Outgoing Invocations from the procedure), NII (Number of Incoming Invocations to the
procedure), sum of the former two (SOI=NOI+4NII), and their product (POI=NOI-NII). We
tried the sum and the product because we expected that in linchpin formation both incoming
and outgoing dependences could be important.

We used the moderate size subjects from Section 5.3 to experiment with these heuristics
because we could apply the brute-force method on these programs. To compare the actual
linchpins identified by the brute-force method to the performance of the heuristic metrics,
we related two values for each procedure in the programs: a clusterization metric (ENTR or
REGX) after removing the procedure and one of the heuristic metrics (NOI, NII, SOI, POI)
associated with the procedure We then used Pearson and Kendall correlation checks between
the corresponding vectors of these values.

In Table 5.4, we show Pearson correlation results. We marked the strongest correlation
values for each program underlined; the last two rows show the average correlation values
and the counts of strongest cases for each metric. It can clearly be seen that the NOI metric
(Number of Outgoing Invocations) is the best estimator for both ENTR and REGX. The best
values are negative in the NOI columns, which means that for the procedures of a program
there is a high correlation between a high NOI value and a low clusterization value resulting
from the removal of that procedure. In other words, the higher NOI value a procedure has,
the more likely it is that its removal would decrease the clusterization considerably, i.e. the
more likely it is that the procedure is a linchpin.
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ENTR REGX
Program| NOI NII SOI POI | NOI NII SOI POI
lambda 0.30 0.53 0.50 0.58 | -0.61 -0.49 -0.64 -0.57

epwic 0.28 0.12 0.32 0.32 | -0.50 -0.02 -0.48 -0.32
tile 0.48 0.46 0.62 0.63 | -0.27 -0.18 -0.29 -0.28
a2ps -0.27 0.03 -0.16 -0.04 | -0.57 -0.01 -0.39 -0.40
gnugo -0.45 0.04 -0.06 0.01 | -0.53 -0.01 -0.13 -0.05
time 0.70 -0.29 0.47  0.70 | -0.55 0.08 -0.47 -0.12
nascar -0.13 -0.18 -0.23 -0.41 | -0.77 0.15 -0.76 -0.33
wdiff 0.04 -0.23 -0.02 -0.50 | -0.89 0.18 -0.89 -0.66
acct -0.67 0.21 -0.52 -0.53 | -0.67 0.13 -0.57 -0.46
termutils | -0.35 0.18 -0.21 -0.13 | -0.46 0.17 -0.33 -0.20
flex -0.79 0.07 -0.70 -0.54 | -0.88 0.08 -0.78 -0.62
byacc -0.11  -0.01 -0.08 -0.20 | -0.72 0.05 -0.42 -0.40
diffutils -0.42 -0.02 -0.36 -0.51 | -0.66 -0.02 -0.56 -0.57
i -0.07 -0.17 -0.18 -0.18 | -0.09 -0.15 -0.17 -0.18

espresso | -0.55 0.03 -0.33 -0.46 | -0.70 0.04 -042 -0.43
findutils | -0.25 0.07 -0.20 -0.04 | -0.34 0.07 -0.29 -0.01
compress | -0.72 0.04 -0.63 -049 | -0.89 -0.09 -0.85 -0.63
sudoku -0.69 0.22 -0.26 -0.40 | -0.79 0.20 -0.35 -0.52
barcode -0.59 0.07 -0.55 -0.65 | -0.71 0.06 -0.66 -0.74

indent -0.64 0.04 -045 -0.17 | -0.69 0.05 -0.48 -0.16
ed -0.67 0.03 -049 -0.56 | -0.82 0.04 -0.59 -0.62
bc -0.72 0.04 -0.56 -0.57 | -0.75 0.05 -0.58 -0.59
copia -0.72  -0.66 -0.98 -1.00 | -0.70 -0.68 -0.98 -1.00
userv -0.49 0.02 -0.35 -0.40 | -0.57 0.04 -0.39 -0.39
ftpd -0.74 0.03 -0.53 -0.40 | -0.78 0.02 -0.57 -0.42
gnuchess | -0.54 0.07 -047 -0.31 | -0.55 0.06 -0.48 -0.29
go -0.49 0.03 -0.16 -0.31 | -0.58 0.04 -0.18 -0.33
ctags -0.42 0.03 -0.18 -0.23 | -0.53 0.04 -0.23 -0.24
gnubg -0.66 -0.07 -0.55 -0.68 | -0.69 -0.07 -0.57 -0.71
average -0.36 0.03 -0.25 -0.26 | -0.63 -0.01 -0.50 -0.42
strongest 17 0 1 11 23 0 2 4

Table 5.4: Pearson correlation between heuristic metrics and the ENTR and REGX metric.
Underlined numbers indicate strongest correlation in the corresponding block.

In the case of ENTR and REGX metrics, in 59% and 79% of the cases NOI showed the
strongest correlation; the average correlation was —0.36 and —0.63 (with standard deviations
0.4 and 0.18), respectively. The second best was POI showing strongest correlation in 38%
and 14% of the programs with average correlation values —0.26 and —0.42. NII performed
poorly, which was surprising because we expected NOI and NII will perform similarly. The
promising results for NOI are strengthened by the fact that the highest NOI value predicts
a linchpin correctly in most of the cases: in the highly clustered group in 12 out of 13
programs, in the medium group in 7 out of 11 programs the procedure with the highest NOI
value turned out to be a linchpin. Another interesting observation we made about the data
is that for smaller programs the agreement between the NOI metric and both clusterization
metrics was slightly better, suggesting that this heuristic will perform better for smaller
programs.

5.6 SEA dependence clusters in Impact Analysis

Impact analysis deals with the problem of identifying those parts (the impact set) of a
software system that are affected by a change in the system. The motivation behind the
analysis is that developers can concentrate their efforts to the impact set when they want
to evaluate the effects of a change. Often the developers are interested in those parts of
a program that they have to (re)test when they want to ensure that the modifications did
not break existing behavior, or in parts to (re)examine if a change turns out to cause their
program to misbehave.
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A practical impact analysis method should be as accurate as possible without losing any
dependence and sufficiently fast at the same time. Traditional dependence-based methods,
such as those based on program slicing, may be accurate but inefficient for real size systems.
Using SEA relations for impact analysis is a viable alternative: it is efficient and can be used
in practical situations but we need to cope with a certain loss of precision. In this section,
we present a set of experiments in which we wanted to verify if (1) the sizes of impact sets
computed from SEA dependences are reasonably small, and (2) despite the inaccuracy of
the impact sets, they can serve as a basis for determining the effects of a change.

5.6.1 Experiment setup

Figure 5.7 depicts our approach to evaluate the usefulness of SEA dependences for impact
analysis applications. It is based on comparing the SEA-based impact sets of fault inducing
changes to the modifications made in a software system for fixing these faults. In the figure,
the revisions of the system under examination are denoted along horizontal lines. We can
examine the differences in subsequent revisions to arrive at a set of procedures that were
modified from one revision to the next. We depict these sets between two pairs of revisions,
revision,, and revision,,.1, then later between revision,, and revision,, ;.

revision m revision m 41 revision p revision p 41
Test case(i)
Testcase() ipgssed iFailed ... Failed ... ‘Failed :Passed

Test case(k)

Changed procedures Changed procedures

e

Figure 5.7: Verifying impact analysis prediction capability using real defects

The set of test cases of the system under examination can be seen vertically. All test
cases are run on every revision to find out whether any regression errors have been introduced
by the latest modifications. The outcome of running a test case can be either Passed or
Failed. Let us consider a scenario in which there is a test case tc; that produces the
following outcomes: Passed in revision,,, then Failed a number of times from revision,, 1
up to revision,, then Passed again in revision, 1. In this scenario we can assume that the
changes made between revision,, and revision,,,, are responsible for the failed test case
tc;. The error that was introduced in revision,,,1 is worked on by the programmers, then
it is corrected in revision, 1, when test case tc; passes again. Our hypothesis is that the
impact set of the modified procedures at the time the error was introduced in revision,, 1
contains the procedures that were modified between revision,, and revision,..
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We evaluated this approach on the WebKit system which was used in previous sections
for other experiments as well. The regression test suite of WebKit consists of nearly 25 thou-
sand active test cases; its purpose is to maintain compatibility, standards compliance gains,
and check some stability, performance and other issues. WebKit has a large development
community geographically spread around the world with very lively development activity.
The development environment is a typical one for such a big, distributed open source team
which includes serious configuration management and strict integration rules. There is a
huge body of version information and historical defect data available in the version control
repository, automatic test execution logs and the issue management database. As of Jan-
uary, 2013 there were 140800 revisions, and about 94 revisions were created on average each
day, all of which are followed by either a full or selective regression test execution. The issue
management database contained nearly 108 thousand entries.

5.6.2 Impact analysis on WebKit

The first step to perform the impact analysis experiments was to determine the potentially
interesting defect introducing and defect correcting revision pairs. To arrive at a suitable
number of such pairs, we examined a wide range of revisions (r79171-r112713) and used two
different methods:

e An automatic method searched through the full range of these revisions and extracted
change information from the version control system, as well as examined the execution
logs of the regression test suite. The execution logs contain the Passed/Failed status
of every test case, so it is possible to identify defect introducing/correcting revision
pairs this way. We examined 33542 revisions and found 477 candidate revision pairs.

» We examined the WebKit issue management database, which is based on Bugzilla [128],
by manually looking for entries that reported the successful elimination of bugs. Such
entries identify a defect correcting revision, then searching backwards from that point,
we tried to find the defect introducing revision. There are a lot of uncertainties with
this method, primarily because Bugzilla entries are often incomplete or unreliable.
Nevertheless, we examined 370 bug entries, from which we managed to identify 275
candidate revision pairs in the same interval as above.

The initial set of revision pairs were filtered in a final step to exclude components of no
interest, modules in other language than C/C++, among others. Finally, we combined the
results of the two searches and used the 240 identified revision pairs as a basis for determining
the prediction capability of the Static Execute After relation. For the final revision pairs
we performed ICCFG computation on the first element of each pair (the failure inducing
revision). SEA sets were then computed for each changed procedure at these revisions,
which resulted in the total of 3792 sets. We computed individual impact sets for the changed
procedures in order to be able to compute the prediction ratios for individual procedures,
but we also computed a union of these SEA sets to show overall percentages for the revisions.

We needed a series of two measures: the sizes of the impact sets and the correspond-
ing prediction capabilities. Both measures can be expressed in percentage, relative to the
program size and the ratio of correctly identified procedures, respectively.

Our analysis framework identified about 92000 procedures (C/C++ function and meth-
ods) in the WebKit system (this number varies from revision to revision but stays around
this number for the investigated revisions). In the investigated interval approximately 10
procedures per revision were modified on average. This is a relatively low number but it
can be justified by the fact that the development process in this system involves frequent
modifications.
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We present the data about set sizes and prediction on an XY-plot in Figure 5.8. This plot
contains 240 data points which correspond to the revision pairs identified in the initial step
(the x axis is the prediction, y is SEA set size). Here, the impact sets are determined together
for all procedures in a change set by computing their union. This is a more informative
presentation of the data compared to looking at individual procedures at the failure revisions,
because that way we would not be able to identify which procedure(s) in a change set actually
caused the new failure, nor the fixing procedure(s).
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Figure 5.8: Relating prediction capability and impact set sizes for complete change sets.

An expectation about this graph is that it would be beneficial to have many small impact
sets with high prediction (towards the lower right corner). If we produced a large number
of randomly selected subsets of the procedures in different sizes, theoretically the expected
values of this data would be by the diagonal (assuming uniform distribution of the selection
and the defects). Therefore anything below the diagonal is good, and it can be determined
that the majority of the data points are below the diagonal, so we can conclude that the
results are promising as far as prediction capability is concerned.

The prediction numbers vary greatly within the whole range 0-100%; the average is
83.9% with a deviation of 27.7%. Figure 5.9 shows the distribution for this data with one
hundred value ranges. There are several cases where the prediction is 0% or close to it, and
we can observe different values at all of the ranges, but in most of the cases the prediction
was high, mostly 100%. Low prediction values, even complete misses are expected to occur
in a few cases for a number of reasons such as the inaccuracy of static analysis, and deletion
or addition of new procedures in the impacts sets, among others.

5.6.3 Dependence clusters in WebKit

We investigated the dependence Clusters in WebKit using the MSG visualization of the
subject program based on computing SEA impact sets for all procedures in the system.
Figure 5.10 shows this graph for WebKit revision r91555. By visual inspection, we identified
three clearly distinguishable clusters that we marked by, from left to right, Cluster;, Clusters
and Clusters. Considering the sizes of the SEA-based impact sets, more than half of them
were below 1% of the system size, i.e. the number of all procedures in the system. The
average size of impact sets was 17203, which is just below 19% of the system size.

Apart from the three clusters, we also considered the four regions surrounding the clusters
in the MSG. The first two columns of Table 5.5 show these sizes both in the number of impact
sets of these regions and in percentage relative to all impact sets. The largest cluster takes
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Figure 5.9: Prediction histogram (number of revisions shown on logarithmic scale)
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Figure 5.10: MSG graph of SEA impact set sizes. Grey boxes represent the three clusters,
black regions are non-cluster sets.

almost 1/3 of all impact sets while the sum of all three is 41.53%, which means that almost
half of all impact sets reside in some of the large clusters. The last column of the table
shows the impact set sizes for these three clusters. Since there are about 92000 procedures
in WebKit, we can conclude that although there are a lot of large impact sets, the largest
one contains only about half of the whole program.

The next question we considered was about the distribution of change sets that contain
defect-correcting procedures. In particular, we wanted to find out if these occur more fre-
quently in large clusters than in other parts of the system? For this, we filtered the list of all
impact sets to those which captured at least one fixing change at the corresponding failure
fixing revision. There were 2021 such procedures altogether. The third and fourth data
columns of Table 5.5 show how many of these filtered impact sets belonged to the identified
regions of the MSG. We can observe that in terms of percentage all clusters contained more
impact sets from the filtered set, most notably Clusters, which doubled. Altogether, 77.93%
of defect predicting impact sets belong to some of the big clusters. This difference to the
overall percentage of 41.53% is mostly due to the relatively few small impact sets kept by
this filtering (there are more large predicting sets than small ones).

To summarize, almost half of all of the impact sets belong to big clusters while signifi-
cantly more, over 3/4 of failure predicting impact sets belong to this category.
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All ‘ Percent || Predicted ‘ Percent || SEA size
procedures procedures

Region; | 49623 | 54.42% 360 | 17.81% -

Cluster; | 8028 8.80% 180 8.91% 28395

Region, | 1127 1.24% 28 1.39% -

Clustery | 2981 3.27% 156 7.72% 31720

Regions | 1040 1.14% 15 0.74% -

Clusters | 26864 | 29.46% 1239 | 61.31% 41892

Region, | 1530 1.68% 43 2.13% -

| Sum | 91193 | 100.00% || 2021 | 100.00% || -

Table 5.5: Dependence cluster sizes in WebKit

5.7 Conclusions

In this chapter, we presented a set of empirical studies related to SEA-based dependence
clusters. Our findings towards better understanding of dependence clusters — their forma-
tion, detection, analysis and potential elimination — raised a number of additional questions.
We think that further research is needed about the connection of dependence clusters and
the internal structures of the program, as it would help us understand how we can avoid
the formation of clusters, more reliably detect linchpin elements, and design suitable refac-
toring approaches if eliminating dependence clusters is necessary. Studies involving human
evaluation would also be required to gain more insight into the benefits and risks related to
dependence clusters in specific applications beyond impact analysis.
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Background on Spectrum-Based Fault
Localization

Debugging and related activities are among the most difficult and time-consuming ones in
software development [142]. This activity involves human participation to a large degree,
and many of its sub-task are difficult to automate. A relevant debugging sub-task is fault
localization (FL), in which the root causes of an observed failure are sought. Fault localization
is notoriously difficult, and any (semi)automated method, which can help the developers and
testers in this task, is welcome.

There exists a class of approaches to aid FL. which are popular among researchers, but
have not yet been widely adopted by the industry: Spectrum-Based Fault Localization
(SBFL) [63, 107, 109, 115, 132]. The basic intuition behind SBFL is that code elements
(statements, blocks, paths, functions, etc.) exercised by comparably more failing test cases
than passing ones are considered as “suspicious” (i.e., likely to contain a fault), while non-
suspicious elements are traversed mostly by passing tests.

The concept of spectrum in SBFL is a record of a set of program executions, 7.e. test cases,
and their relationship to the code elements. In addition, it relies on pass/fail status of the test
case executions. Several types of spectra have been defined over the past decades [76, 132],
but the most common approach is to use the so-called “hit-based” spectrum. This refers to
the simple binary information if a code element is covered during the execution of a test case
or not (also called coverage-based spectrum).

Let P denote the program under investigation, T" the set of test cases that test P, and F
the set of code elements in P according to the chosen granularity level (most often statements
or procedures). In the SBFL approach, the dynamic information from running test cases
consists of two parts, the spectrum matriz M of size |T| x |E| and the results vector R of
size |T|. Columns of the spectrum matrix represent elements of E while the rows contain
elements of T". In the coverage-based spectrum matrix, m, ; = 1 if the i-th test covers the
j-th element and 0 otherwise. Elements of the results vector R are defined as r; = 0 if the
i-th test was completed without failure and 1 otherwise.

The next step in the fault localization process is calculating the four spectrum metrics
on the matrix [63, 79], which count the number of passing and failing test cases that do or
do not include the code element e in question, in various combinations. The following four
sets provide the basis for these numbers:
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ef(e) = {teT|M(te)=1AR() =1}
nf(e) = {teT|M(t,e) =0AR(t) =1}
ep(e) = {teT|M(t,e)=1AR(t) =0}
nple) = {teT|M(t,e)=0AR(t) =0}

For simplicity, in most of the following discussions we will use the notations ef, nf, ep, and
np to denote the sizes of these sets, respectively.

Dedicated risk formulae are then used to calculate the suspiciousness levels by combining
the spectrum metrics, which in turn rank the code elements to provide a debugging aid to
the developer (by convention, a bigger score means a higher rank). When this ranked list
is given to the developer for investigation, it is hoped that the fault will be found near the
beginning of the list, hence providing useful advice in the debugging process. There is a
plethora of different risk formulae proposed by researchers that use hit-based spectrum met-
rics (good summaries can be found in [79, 104]). Also, some researchers experimented with
automatically deriving new formulae [21, 105, 140]. Some of the more important formulae
are listed in Table 6.1, which we used in our SBFL-related research.

2
Barinel [40]: o DStar [131]: o
ef +ep ep + nf
GP13 [140): ef - (14— Jaccard [39] f
cef - — accar P
2-ep+ef ef +nf + ep
, ep . ef
Naish2 [104]: ef — ———— Ochiai [39]:
ep+np+1 V(ef +nf) - (ef + ep)
ef . 2-ef
ll- : -D :
Russell-Rao [38] Y Srap—— Sorensen-Dice [99] o ol e
ef
Tarantula [85): ﬂ—nfep

ef+nf * eptnp

Table 6.1: SBFL formulae

There have been several surveys written [42, 107, 130, 132] on fault localization, and
various empirical studies performed [38, 109, 147] to compare the effectiveness of various
methods. Despite the immense literature, there are still challenges for adopting SBFL in
every day practice [12, 20, 38, 94, 122]. Often the faulty element is placed far from the
top of the rank-list [108, 135], professionals question the applicability of theoretical results
in practice [90, 94|, there are little experimental results with real faults [109], and validity
issues of empirical research have been raised [122], among others.

In particular, the traditional hit-based methods are generally seen as providing modest
performance in terms of ranking precision [89, 108, 135, 136], which contributes to the fact
that automated fault localization is still ignored by industry for the most part. Consequently,
researchers proposed different approaches that go beyond the hit-based spectrum and utilize
other information available that could help improve the overall ranking performance [64,
96, 98, 143, 145]. The presented methods in this part of the dissertation aim at bringing
closer the SBFL technique to practical applicability by addressing some of these issues.
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Reliable Code Coverage Measurement

7.1 Introduction

Code coverage refers to a measurement used in software development and maintenance to
analyze the extent to which the source code of a program has been tested. It is a metric
that helps assess the effectiveness of testing by indicating the percentage of code elements
that have been executed during testing and whether a code element was executed during
the test run or not. Code coverage measurement is the basis of several software testing and
quality assurance practices including white-box testing [106], test suite reduction [117] and
most importantly, for the purposes of our discussion, Spectrum-Based Fault Localization.

Testers have developed both the theory and practice surrounding code coverage mea-
surement, establishing various coverage criteria such as statement and branch coverage [58],
along with technical solutions like different instrumentation methods [138]. However, even in
straightforward scenarios (e.g., procedure-level analysis of medium size software using popu-
lar and stable tools), we observed significant discrepancies in the results produced by different
tools applied to the same task. These differences in computed coverages can have serious
consequences across various applications, such as generating false confidence in white-box
testing and leading to inefficient fault localization, among others.

Various factors might contribute to these differences, and tool developers face specific
challenges. In this research, we concentrated on the Java language and the challenges in
Java code coverage measurement because Java is frequently used in SBFL-related research.
In the Java environment, the most significant challenge we identified is the method of code
instrumentation. Code instrumentation involves inserting “probes” into the program, which
are triggered during runtime to gather essential data on code coverage. There are two
primary approaches to instrumentation: at the source code level and at the bytecode level.

In both instrumentation approaches, the probes which are placed within the system at
specific points enable the collection of runtime data but do not alter the behavior of the
system. Source code instrumentation means that the original code is modified by inserting
the probes, then this version is built and executed during testing. The second method
instruments the compiled version of the system, the bytecode. Here, two further approaches
exist. First, the probes may be inserted right after the build, which effectively produces
modified versions of the bytecode files (called offiine bytecode instrumentation). Second, the
instrumentation may take place during runtime upon loading a class for execution (online
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bytecode instrumentation). One benefit of bytecode instrumentation is that it does not
require the source code, thus it can be used e.g. on third party code as well. On the
other hand, it is dependent on the bytecode version and the Java VM, thus it is not as
universal as source code instrumentation. Implementing bytecode instrumentation is usually
easier than inserting proper and syntactically correct probes into the source code. However,
source code instrumentation also allows full control over what is instrumented, and in certain
applications, including SBFL, it is a better choice due to direct connection to the source code,
contrary to bytecode-based approach which is sometimes less accurate in this respect [138].

In this chapter, we present an evaluation method for assessing code coverage measurement
tools, and a corresponding empirical study that compares the code coverage results generated
by two popular tools for Java, one representative for each instrumentation approach. We
evaluated the tools on 8 open source Java projects, and systematically investigated the
differences both quantitatively (how much the outputs differ) and qualitatively (what the
causes for the differences are). We also investigate the impact of discrepancies on possible
applications, among others Spectrum-Based Fault Localization.

We concentrated on procedure-level measurements, meaning that the primary focus of
coverage information is on whether a specific Java method is invoked by the tests, without
considering which statements or branches within the method are executed. In many practical
situations, coverage analysis is conducted hierarchically, beginning with higher-level code
components like classes and methods. If the coverage results are inaccurate at this level,
they will also be inaccurate at lower levels. Across different applications, unreliable results
at the method level are likely to lead to similar or even worse outcomes at the statement or
branch level. Previous research has demonstrated significant discrepancies between bytecode
and source code coverage measurements at the statement and branch levels [95], and notable
differences in overall coverage values at the method and branch levels [46].

7.2 Evaluation method

We conducted an empirical study on eight open source systems with code coverage tools for
Java employing both instrumentation approaches. Apart from the coverage measurement
tools, our measurement framework consisted of some additional utility tools. The main
tool we relied on was the SoDA framework [29, 120]. For the representation of the coverage
data in SoDA, the data generated in different forms by the coverage tools were converted
into the common SoDA representation, the coverage matrix. Later, this representation was
used to perform the additional analyses. This framework also contains tools to calculate
statistics, produce graphical results, etc. Apart from this, only general helping shell scripts
and spreadsheet editors were used.

7.2.1 Benchmark programs

To establish our benchmark programs, we adhered to the following criteria. We aimed to
compare bytecode and source code instrumentation, so the source code had to be accessible.
Consequently, we selected open-source projects, which also facilitates the replication of our
experiments. We chose projects that could be compiled with Maven, as this framework
allows for straightforward integration of code coverage measurement tools. Finally, it was
essential that the subject programs included a practical set of realistic test cases based on
the JUnit framework [86] (preferably version 4).

We looked for potential projects on GitHub [69], favoring those that had been utilized
in prior studies. We identified eight subject programs from various domains, each with a
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substantial size (see Table 7.1). These systems exhibit varying proportions of tests and
overall coverage, adding diversity to our benchmark.

Program version‘ LOC  Methods Al tests Domain‘

checkstyle 6.11.1 | 114K 2655 1589 static analysis
commons-lang #OOfafe77 69K 2 796 3 683 java library
commons-math #2&&4681C 177K 7167 5 842 java library

joda-time 2.9 85K 3 898 4 177 java library
mapdb 1.08 | bH3K 1608 1786 database
netty 4.0.29 | 140K 8230 4 066 networking
orientdb 2.0.10 | 229K 13 118 950 database
oryx 1.1.0 | 31K 1 562 208 mach. learning

Table 7.1: Subject programs. Metrics were calculated from the source code (generated code
was excluded).

7.2.2 Selection of coverage tools

Our goal in this research was to compare the code coverage results generated by tools utilizing
the two different instrumentation approaches. To achieve this, we aimed to ensure that the
tools chosen for the analysis accurately represent the instrumentation methods and that our
results are less affected by tool-specific characteristics. The list of candidate tools identified
for our study is shown in Table 7.2.

Tool Approach Supported Java/JRE version Active Licence
Clover source 1.3+ present commercial/free
Cobertura bytecode 1.5-1.7 2015 free
JaCoCo bytecode 1.5+ present free

Jcov bytecode 1.04 present free

SD Test Coverage tools  source 1.1+ present commercial

Table 7.2: Tools for Java code coverage measurement

Among from the source code instrumentation-based tools we selected Clover by Attlas-
sian [61] (version 4.0.6) to be used in later parts of the experiments. It supports Java 8
constructs, integrates seamlessly with the Maven build system, and can measure coverage
on a per-test basis. We selected Clover for our detailed bytecode-source code measurements
due to its superior Maven integration and per-test coverage support, which facilitated its
incorporation into our experiments. To establish the source code instrumentation results as
a baseline for our experiments, we manually verified Clover’s results through selective manual
instrumentation. We chose a subset of methods, up to 300 per subject system, and manually
instrumented these methods before running the test suite. We then analyzed the results
in terms of actual test executions and program behavior at the source code level. Upon
review, we found no discrepancies between the methods covered as reported by the manual
instrumentation and Clover.

From the three candidate tools in the bytecode-based instrumentation category, we chose
JaCoCo [81] (version 0.7.5.201505241946) due to its popularity, greater visibility and easier
integration compared to the other options. This free Java code coverage library, developed by
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the EclEmma team, integrates seamlessly with Maven-based build systems. JaCoCo has plug-
ins for most of the popular IDEs (e.g. NetBeans), for CI- and build systems (e.g. Jenkins)
and also for quality assessment tools (e.g. SonarQube). These plug-ins have about 20k
installations/downloads per month in total. JaCoCo has up-to-date releases and an active
community.

7.2.3 Measurement process

To compare the code coverage results and examine the differences in detail, we needed to
calculate the coverages using different settings and variations of the tools. We wanted to
make sure that we could gather per-test case and per-method coverage results from the tools
as well (7.e. which test cases covered each method and the opposite), which is essential for
assessing some applications including SBFL.

Clover could be easily integrated in the Maven build process, and we had no issues ob-
taining the per-test case coverage data we needed. JaCoCo could also be incorporated into
a Maven-based build system; however, it initially lacked the ability to measure coverage for
individual test cases. To address this, we developed a custom listener to capture this in-
formation. We then configured each program’s test execution environment to interact with
this listener, allowing us to identify the start and end of each test case’s execution. The
two kinds of JaCoCo measurements may produce differences in the results, but these do not
affected most of our further experiments.

We needed to address another technical detail related to the Clover tool. Specifically,
when dealing with multiple modules in projects, we had two options: either integrate the
measurement at a global level for the entire project, or configure it individually for each sub-
module. Since JaCoCo adopts the latter approach, we decided to configure Clover individually
for the sub-modules as well. In the following, we will make note when these variations to
the tool configuration influence the results of the experiments.

Using the per-test case coverage data, we generated a coverage matriz for each program,
which is compatible with the spectrum matrix used in Spectrum-Based Fault Localization.
From this matrix, we were able to easily compute various coverage statistics, including per-
test case and per-method coverage.

7.3 Results

In this section, we present the results related to code coverage differences between the two
tools. As the source code-based instrumentation is more suitable for applications involving
the source code, including SBFL, we will treat Clover results as the ground truth and reference
point, and JaCoCo results will be compared to it.

7.3.1 Quantitative analysis

We compared the overall method-level coverage values obtained for our subject programs
(see Table 7.3). The results for JaCoCo and Clover are shown for each program, along with
the difference in coverage percentages. Coverage ratios are expressed as the percentage of
methods covered, out of the total methods identified by the corresponding tool.

Excluding the outlier program checkstyle, the differences between the tools range in a
relatively small interval, from -1.42% to 0.76%. In the following sections, we seek for the
reasons of the differences, and we will explain the outlier as well (in Section 7.3.2).

While Table 7.3 presents the overall coverage values generated by the entire test suite,
the coverage ratios achieved by individual test cases may reveal a different set of specific
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Program ‘ JaCoCo Clover difference
checkstyle 53.77%  93.82%  -40.05%
commons-lang 92.92%  93.28% -0.36%
commons-math | 84.92%  84.65%  4+0.27%
joda-time 89.52%  89.94% -0.42%
mapdb 74.64%  76.06% -1.42%
netty 40.92%  40.18% +0.74%
orientdb 27.01%  28.01% -1.00%
oryx 29.51%  28.75% +0.76%
average | 61.65% 66.84%  -5.19%

Table 7.3: Overall coverage values for the unmodified tools

variations. Table 7.4 provides statistics on the coverage for individual test cases for both
JaCoCo and Clover. This includes minimum, maximum, and average values (representing
the proportion of covered methods to total methods) as well as the difference in average
values (with positive values indicating higher average coverage for Clover). It is notable that
checkstyle exhibits a high global difference between Clover and JaCoCo in the per-test case
results as well, though this difference is less pronounced than in the global case. Interestingly,
for mapdb, netty, and oryx, the average individual differences between Clover and JaCoCo are
opposite in sign to the global differences.

JaCoCo results Clover results .
Program . . avg diff
min max avg min max avg
checkstyle 0.00% 15.87% 3.02% | 0.00% 30.13% 4.66% | +1.64%

commons-lang | 0.00% 3.10% 0.61% | 0.00% 2.93% 0.64% | +0.03%
commons-math | 0.00% 4.34% 0.47% | 0.00% 4.34% 0.47% 0.00%

joda-time 0.00% 8.84% 1.62% | 0.00% 9.93% 1.64% | +0.02%
mapdb 0.00% 20.86% 7.67% | 0.00% 22.08% 7.19% | -0.48%
netty 0.00% 3.43% 0.32% | 0.00% 3.69% 0.37% | +0.05%
orientdb 0.00% 9.40% 0.58% | 0.00% 9.88% 0.62% | +0.04%
oryx 0.00% 2.05% 0.45% | 0.00% 1.79% 0.48% | +0.03%

Table 7.4: Per-test case coverages

It is not obvious how individual coverage differences imply global coverage difference
and vice versa. Significant variations in individual coverages might not affect the overall
coverage. For instance, a method is considered covered if even a single test case covers it.
So, if one instrumentation technique identifies a hundred covering test cases, while another
identifies only one, the overall coverage remains unchanged, though the individual coverages
differ. Conversely, small differences at the individual level can lead to a significant overall
difference. If many test cases each have one method that is reported differently, and these
methods are exclusively covered by those test cases, the minor individual differences can
accumulate, resulting in a substantial global coverage difference.

When we compared the number of covering test cases per method, we observed three
types of differences. First, JaCoCo and Clover identified different sets of methods, the reasons
for which will be explained in Section 7.3.2. Second, in some instances where both approaches
recognized the same methods, Clover reported at least one covering test case, while JaCoCo
did not, and vice versa. The third type of difference occurred when both tools indicated
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that a method was covered, but by a differing number of test cases. Figure 7.1 illustrates
the corresponding results. Specifically, it shows the percentage of methods for each program
(relative to the total number of methods recognized by either tool) under the following
conditions: there is no difference in the covering sets of test cases, or either Clover or JaCoCo
reports more covering test cases.

0,
100% e Clover

/3 Equals

80% . |aCoCo

60%

40%

20%

0%

Clover: Clover reports more covering TCs; Equals: both tools report the same
covering TCs; JaCoCo: JaCoCo reports more covering TCs.

Figure 7.1: Summary of differences in the per-method coverage

As can be seen, the tools do not completely agree on the coverage. First, many methods
are not detected by the Clover tool, which can be attributed to various factors, mainly related
to the generated code. A significant outlier is checkstyle, with 55% of methods falling into
this category, while the others are below 15%. Next, as shown in Table 7.5, there are only a
few methods where Clover and JaCoCo disagree on whether a method is covered by at least
one test case, while both tools recognize the method (as indicated by the Czero and Jzero
columns). We manually examined all 220 of these methods to determine the causes of the
discrepancies (see Section 7.3.2). The other two columns report cases where the number of
covering test cases differed. The CltJ column indicates cases where “Clover reports fewer than
JaCoCo”, while the JItC column indicates cases where “JaCoCo reports fewer than Clover”. A
significant portion of methods in the subjects were affected by this discrepancy to some
degree (nearly 30% for mapdb and over 11% for joda-time, for example).

Program ‘ Czero CltJ JItC Jzero

checkstyle 1 9 16 0
commons-lang 0 21 131 )
commons-math 19 297 239 7
joda-time 0 358 86 2
mapdb 7 450 25 2
netty 91 300 466 76
orientdb 1 104 32 )
oryx 4 8 1 0

Table 7.5: Differences in per-method coverages of code elements of JaCoCo and Clover
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In summary, the detailed measurements for both test case and method centered data
can differ significantly from the overall coverage ratios. While there are instances where
the overall ratios align with the detailed data, this is not always the case. A large overall
discrepancy may be due to small variations at a detailed level, or vice versa. Therefore,
observing inaccuracies at the detailed level is required in order to be able to assess the
impacts on various applications and, in particular, on Spectrum-Based Fault Localization.

7.3.2 Qualitative analysis

In this section, we explore the potential causes of the differences noted in the previous section.
We manually inspected and analyzed the discrepancies between the coverage results reported
by JaCoCo and Clover. We selectively investigated representative cases to ensure that each
system and module was adequately covered. We also focused on the most problematic cases
highlighted in columns Czero and Jzero of Table 7.5.

Our investigation included both the original and instrumented versions of the source code
and bytecode, as well as other artifacts such as build configuration files to uncover additional
contributing factors. In total, we manually examined several hundred individual methods
and test cases, and identified several common causes of the discrepancies, which we will
summarize in the following.

Cross-submodule coverage. In projects with multiple sub-modules, Clover and JaCoCo
handle coverage reporting differently. Clover instruments all source code, allowing it to report
cross-module coverage, while JaCoCo only instruments the currently tested module, missing
coverage from other modules. JaCoCo would only consider methods covered if they are
tested directly within their own module, whereas Clover would aggregate coverage across all
modules. This distinction can result in varying coverage reports. The examples provided
include both multi-module projects like netty, orientdb oryx, and single-module projects.

Untested sub-modules. In the case of JaCoCo, if a module does not have any tests its
methods will not be recognized. Consequently, the methods of sub-modules will not be
recognized and they will be missed from the set of all methods of the project. Clover, on the
other hand, correctly determines the set of all methods across all sub-modules.

Test case preparation and cleanup. In testing frameworks, setup and teardown meth-
ods prepare or clean up before and after tests, often marked with annotations like @Before
and @After. In JaCoCo , these methods are counted as part of the test cases and reported
as covered. Conversely, Clover does not include setup and teardown methods as part of the
test cases, so coverage of these methods is not attributed to any specific test case.

Recognized method sets. There is a discrepancy between the results from JaCoCo and
Clover regarding the method sets they are working with, as already indicated in Figure 7.1.
This discrepancy arises because the sets of methods identified from the source code and the
bytecode can differ. We observed that several methods are identified only by Clover or JaCoCo.
The second group is not really surprising because we expected in advance a relatively large
number of generated methods in the bytecode (due to the necessary mechanisms of the Java
language). However, we were somewhat surprised to find that some methods were recognized
solely by Clover. The causes of the differing method sets include, among others: (1) different
handling of test methods, (2) compiler generated code which is impossible to be included by
a source code instrumentation approach and (3) inclusion or omission of generated code.
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Instrumentation. We discovered that in some instances, the instrumentation itself modi-
fied the behavior of the tests, potentially affecting the list of executed methods. For example,
in the joda-time program, two specific test cases failed after being instrumented by Clover.
This occurred because the tests use Java reflection to determine the number of subclasses
of the tested class. Since Clover implements coverage measurement and test case detection
by adding subclasses to the examined class, these two tests failed on assertions at the very
beginning of the test case. A similar issue arose in the checkstyle project, where two test
cases verify that the classes being tested contain a fixed number of fields. However, due to
the additional fields inserted by Clover in these classes, the assertions failed.

Exception handling during coverage measurement. When JaCoCo instruments byte-
code, it places probes at key points by analyzing the control flow of all methods within
a class. If the control flow is interrupted by an exception between two probes, JaCoCo
will not consider the instructions between the probes to be covered. This happens be-
cause if a method throws an exception early in the caller method, JaCoCo marks the caller
method as not covered since it misses the instrumentation probe at the method’s exit point.
In contrast, Clover’s instrumentation strategy can handle this scenario, marking the caller
method as covered by considering the probe at the method’s entry point. Additionally, Ja-
CoCo tends to report lower coverage for tests expected to throw exceptions (i.e. annotated
with @Test (expected=SomeException) ), which is related to its exception handling
approach and is a known limitation of JaCoCo.

Name encoding. A common cause of the discrepancies involved enums, anonymous
classes, and nested classes. The issue arises because, in some instances, when these classes
are compiled into bytecode, a method may receive additional parameters to access members
of its enclosing class. In other cases, the methods might lose some of their original param-
eters from the source code. As a result, the signatures of the same method in the source
code and bytecode can differ. These missing or additional parameters in the bytecode lead
to differing method signatures between JaCoCo and Clover measurements. This discrepancy
prevented the automatic mapping of methods between the two measurements, resulting in
lower JaCoCo coverage counts in our experiments.

Other. We also identified several occasional reasons for the deviations. The first was
the differing handling of certain built-in methods in the Object class (such as equals,
finalize, or hashcode). When these methods were redefined across multiple levels
of inheritance, both tools sometimes produced incorrect results for these methods. This
discrepancy could lead to both JaCoCo and Clover reporting lower coverage for the same
project. Another issue was that Clover sometimes struggled to detect test cases that were
invoked from within other test cases (as seen, for example, in the class ¢ in commons-math),
resulting in incorrect coverage elements being reported. While it is possible to avoid calling
test cases from within other test cases (even transitively), if this does occur, the resulting
detailed coverage data might be unreliable. However, this issue does not affect the overall
coverage of the test suite, as the coverage will still be recorded, just at a different point in
the program.

7.4 Impact on software maintenance applications

In this section, we elaborate on the possible implications of the inaccuracies of different code
coverage measurement tools. We collected some of the most important applications of code
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coverage measurement, which are summarized in Table 7.6. Note, that this analysis is not
about deciding if a source code instrumentation-based approach such as Clover or a bytecode
one such as JaCoCo is better since both tools can produce false results in both directions.

’ Application H Falsely not covering ‘ Falsely covering ‘
White-box testing, || Increased effort False confidence
quality, traceability
Fault localization Impossible localizability Moderate impact on scores
Test selection and || Suboptimal priority Suboptimal priority
prioritization
Test case genera- || Inability to check success Reduction in success
tion
Mutation analysis Minor Inability to kill mutants

Table 7.6: Summary of the impacts of inaccurate code coverage

If we compare the different cases we can observe that the level of impact is typically not
the same for falsely covering and falsely not covering. In the following, we elaborate on the
different applications in more detail.

White-box testing, quality, traceability. White-box testing may suffer from coverage
inaccuracies in two ways. The falsely covering case is a more serious one because it may
give a false confidence in the completeness of the testing. Fortunately, our results show
that bytecode instrumentation rarely results in this kind of error. The other case is much
more frequent, and falsely not covering program elements will usually result in more effort
required to action on the coverage results. Namely, it will mean more program elements to
investigate during testing.

Fault localization. Spectrum-Based Fault Localization fundamentally relies on code cov-
erage. An imprecision in the spectrum matrix will impact the suspiciousness score and hence
the chances of localizing the fault. In particular, if the fault is in the program element which
is erroneously reported as not covered it will never be localized using the standard algorithms
(most scores such as Tarantula [85] will be set to 0 in this case). Even in the case when
the coverage is not totally missing but there are fewer covering test cases reported, it will
decrease the chances for fault localization. The falsely covering case will also impact the
localization scores, though moderately.

Test selection and prioritization. Test selection and prioritization methods that rely
on code coverage [33, 72] may also be severely impacted by inaccuracies in the coverage.
Algorithms that give preference to highly covering test cases basically prioritize them either
globally according to the coverage ratio or to how much additional coverage a test case
provides [139]. Test selection methods then select the first given number of test cases from
this list. This means that any difference in the per-test case coverage will have a high impact
on the performance of the algorithms. This problem affects both the falsely not covering
and falsely covering cases.

Test case generation. The impact of inaccurate code coverage on test case generation
algorithms [66, 111] is similar to the impact on general white-box test design, except that in
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this case there is no human involved who can understand (with increased effort) that there
is a missing or superfluous coverage. Consequently, a missing coverage will result in the
algorithm not being able to check the success of a generated test case because it will always
observe that it failed to cover a program element. A superfluous coverage on the other hand,
will reduce the successfulness of the generation.

Mutation analysis. In mutation analysis [83, 125], the program is modified to insert
artificial faults (creating mutants) and verify if any of the test cases can detect the fault
(killing the mutant). If the mutant is not killed then a new test case is created or generated
to kill it. Here, the falsely covering case will have the effect that the algorithm will be
unable to kill the mutant because, due to actual non-coverage, the fault will not be detected.
A falsely not covering case will have a minor impact because the fault will be detected
regardless of code coverage information, but it will still be confusing. Also, mutation testing
will suffer from the same difficulties as with test case generation since it uses this technique
to augment the test cases in order to kill the mutants.

7.5 Conclusions

Results presented in this chapter indicate that significant differences may occur between
the bytecode and the source code instrumentation coverage approaches for Java. Some
of the differences can be eliminated, but some cannot or their elimination would not be
practical. The kind and level of influence of these differences on various applications is
difficult to predict as it depends on the subject program and the application itself. The
list of possible reasons we identified for the differences may be used as a guideline on how
to avoid and workaround the inaccuracies of the tools. Despite its disadvantages, source
code-based instrumentation proved to be beneficial both in terms of coverage accuracy and
superiority in some applications, including Spectrum-Based Fault Localization.
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[30] Dévid Tengeri, Ferenc Horvath, Arpad Beszédes, Tamés Gergely, and Tibor Gy-
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In Proceedings of the IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER 2016), pages: 225-235, Osaka, Japan, September
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These papers received 24 independent citations so far, mostly from the application side
of code coverage measurement, which demonstrates the usefulness of our results.

The evaluation process with which the different code coverage measurement tools can
be objectively assessed is mostly my contribution, while the execution of the comparison of
actual tools on a benchmark, the quantitative and qualitative evaluation of the differences,
and the impact of code coverage inaccuracies in different applications are joint work.
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Use of Call Chains in Spectrum-Based Fault
Localization

8.1 Introduction

Researchers proposed many different Spectrum-Based Fault Localization (SBFL) formulae
and scoring mechanisms, but these are essentially all based on counts of passing/failing
and traversing/non-traversing test cases in different combinations (see Chapter 6). Based
on the vast amount of research performed in the field, it seems that variations to these
basic approaches may yield only marginal improvements, and that other approaches to the
problem are required in order to achieve more significant gains. For example, by combining
conceptually different techniques [147], or by involving additional information to the process.

This additional information can either be feedback from the user [16] or should go beyond
the simple hit-based spectrum on basic code elements. This can then serve as some kind
of a context for the suspicious elements. Early attempts to incorporate control or data flow
information, for instance [76, 115], have not been further developed because it soon became
apparent that they are difficult to scale to large programs and real defects.

One specific reason why an SBFL formula may fail is what is referred as coincidental
correctness [50, 102, 126]. This is the situation when a test case traverses a faulty element
without failing. This can happen often since not all exercised elements may have an impact
on the computation performed by a test case [103], and if there are more such cases than
traversing and failing ones, the suspiciousness score will be negatively affected [102].

Motivated by the need for adding contextual information to the process, and specifically
addressing the issue of coincidental correctness, we propose to enhance traditional SBFL with
function call chains on which the FL is performed (in the following, we will use the term
‘function’ to refer to any kind of procedure, i.e. also method for object-oriented languages like
Java). Function call chains are snapshots of the call stack occurring during execution and as
such can provide valuable context to the fault being traced. Call chains (and call stack traces)
are artifacts occurring during program execution which are well-known to programmers who
perform debugging, and can show, for instance, that a function may fail if called from one
place and perform successfully when called from another. There is empirical evidence that
stack traces help developers fix bugs [118], and Zou et al. [147] showed that stack traces can
be used to locate crash-faults.
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More specifically, in this chapter we describe a novel SBFL algorithm that computes
ranking on all occurring call chains during execution, and then selects the suspicious func-
tions from these ranked chains using a function-level spectrum-based algorithm, Ochiai in
particular [38]. An example of the overall approach is presented in Section 8.2.

Our approach works at a lower granularity than statement-level approaches (previous
work suggests that function-level is a suitable granularity for the users [49, 147]). At the
same time, we provide more context in the form of the call chains, and therefore have the
potential to show better fault localization performance.

8.2 Fault localization on call chains

Figure 8.1 provides a high-level overview of our approach. Using a given set of test cases T,
the subject program P is executed while collecting the necessary execution trace information.
This is used to produce the function call chains, as well as the test case pass/fail outcomes
(more on this in Section 8.2.1). Based on that, we compute the call chain level program
spectrum information, which is used to calculate the ranking of the chains according to
their suspiciousness levels (discussed in more detail in Section 8.2.2). In the next step, two
algorithms are applied to compute the ranking of the functions for FL, which are then merged
to produce the final ranking (presented in Section 8.2.3).

@ Weighted
| @ l chain counts
Execution

& Tracing Chain FL Rank merge
| @ T Reapplied
Q“/ \Q

Output

Figure 8.1: Call chain-based SBFL

8.2.1 Function call chains

Let F' be the set of functions in a program P, and T" a set of test cases used to test P. Then,
a call chain c is a sequence of functions f; — fo — --+ — f, (f; € F'), which occur during
the execution of some test case t € T', and for which:

e fi1 is the entry point called by t,

« each f; directly calls f;1; (0 <i < n), and

o f, returns without calling further functions in that sequence.

In other words, ¢ is one of the possible deepest call stack states occurring during the
execution of t. Call stacks and the associated stack traces are well-known structures used in
everyday work by programmers during debugging. They describe a particular state during
program execution and help understand the context that led to that state. At the same
time, they are very concise as well because no previous state is maintained, and typically
the function call nesting levels are not very deep. Statement-level control or data flow infor-
mation is much more complex and more difficult to produce. Call chains can be efficiently
produced from test case executions because only the function entry and exit events need to
be recorded and stored in a stack structure.

In our method, we collect all distinct call chains occurring during the execution of T,
which will be referred to as the call chain set C. We also maintain a set of chains C(¢)
occurring for each individual test case ¢ (we say that ¢ ezecutes c if ¢ € C(t)). Finally, the
set of functions occurring in a chain ¢ will be denoted by F(c).
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Figure 8.2a contains a simple code snippet for illustrating these concepts with the as-
sociated test cases in Fig. 8.2b. In it, we can identify four test cases t1...t4. t1 and t2
are passing, while the other two fail due to an error in function g. These test cases produce
altogether five different call chains: a —+ f, a - g, b - a — £, b — g and b, which will
constitute the set C. Then, C(t1) = {a — f,a — g,b — g}, C(t2) = {a = g,b — g},
C(t3) ={a — g,b} and C(t4) ={a — f,a — g,b > a — f}.

This example is constructed so that the benefits of our method are visible. In particular,
we set the fault to be in function g, and it will be manifested if invoked directly from b but
not when invoked from a. This way, both elements, the caller and the callee, are important
from the localization point of view, and this is what the call chains will capture. As we
will see, the fault will be located at the first ranking position with our approach, while a
function-level hit-based suspiciousness score (e.g. Ochiai) will give priority to some other
code element. The call chain information is also useful because it will allow the programmer
to find other possible fixes for the failure such as modifying the call site if that is more
appropriate. A more realistic example is provided in Section 8.5, which is an actual fault
from our benchmark.

8.2.2 Chain-based SBFL

The first phase of our approach is fault localization on the call chains. This takes as inputs
the test case execution outcomes (pass/fail) and uses a program spectrum representation with
the chains as code elements. The output is a ranked list of call chains with the associated
suspiciousness scores.

public class ChainFLExample { public class ChainFLExampleTest {
private int _x = 0; @Test public void tl1l() {
private int _s = 0; ChainFLExample tester = new ChainFLExample () ;
public int x() {return _x;} tester.a(-1);
tester.a(l);
public void a(int i) { tester.b(1l);
_s = 0; assertEquals (3, tester.x());
if (i==0) return; }
if (i<0)
f(i); @Test public void t2() {
else ChainFLExample tester = new ChainFLExample () ;
g(i); tester.a(l);

} tester.b(1);
assertEquals (2, tester.x());
public void b(int i) { }

s = 1;
if (i==0) return; @Test public void t3() {
if (i<0) ChainFLExample tester = new ChainFLExample () ;
a(i); tester.a(l);
else tester.b(0);
g(i); assertEquals (1, tester.x());
} }
private void f (int i) { @Test public void t4 () {
X —= 1i; ChainFLExample tester = new ChainFLExample () ;

} tester.a(-1);
tester.a(l);

private void g(int i) { tester.b(-1);
_xX += (i+_s); error: should be _x += 1i; assertEquals (3, tester.x());
} }
} }
(a) Example for illustrating call chains. (b) Test cases for the example.

Figure 8.2: Function call chain running example

We apply a traditional program spectrum representation based on binary matrices (see
Chapter 6). Let S* denote the chain based spectrum, whose rows represent test cases
(elements of T'), and columns contain the call chains (elements of C):
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Cj

[0/1 0/1 --- 0/1 0/1] [0/1]
0/1 0/1 --- 0/1 0/1 0/1
Sch: ¢, Rch: ’
0/1 0/1 --- 0/1 0/1 0/1
0/1 0/1 --- 0/1 0/1] 0/1)

where S?(i,j) = 1 means that the call chain ¢; will occur at least once in the execution of
test case t;, and vector R denotes the test case execution results vector. It is a record of
the outcomes of test case runs, namely pass (0) or fail (1). Figure 8.3 shows the spectrum
with the matrix and the result vector for our example from Figures 8.2a and 8.2b (¢ ...c¢s5
denote the chains a — £, a — g, b —+a — £, b — g and b, respectively).

9}
A%,
Q
N
Q
w
9}
N
o)
S

t1 1 1 0 1 0 1

S“—=1¢2 0 1 0 1 0| , R= 0
t3 0 1 0 0 1 0
t4 1 1 1 0 0

Figure 8.3: Chain-based spectrum for the example

For the call chains, any basic SBFL suspiciousness score could be used. In this work
we used the Ochiai score [39] which is one of the more popular formulae and is proven to
outperform other popular formulae in many situations [49, 109, 147]. In the following, we
will refer to the Ochiai score of a call chain ¢ as O(c) (for the definition refer to Chapter 6).

Each call chain ¢ will be assigned a suspiciousness score between [0, 1]. For our example,
Ola—f)=10@—g) = %, Ob—a—1f)=0,0(b—g)=1and O(b) =0. This, in
itself, might be a useful output for the programmer seeking the faulty code element because
the high ranked chains could lead their attention to the faulty element and the context in
which it was invoked (in our case the call chain b — g). However, we proceed to compute

also the most suspicious functions, as described in the following.

8.2.3 Locating functions

A trivial approach for the user to locate the defective function (and statement, respectively)
is to consider the highest-ranked call chains and investigate the functions occurring in them
(according to our experimentation, this can be successful quite often). But, we also propose
an approach to produce a ranked list for functions as well based on the call chain scores.
We experimented with various algorithms for this purpose and eventually found out that
different strategies may produce good results in different cases. Hence, we decided to use the
two best performing strategies and then combine their results, as explained in the following.

Weighted Chain Counts

The basic idea with this strategy is to count the number of occurrences of each function in the
chains weighted by the respective chain scores from the previous phase. The intuition behind

64



Section 8.2. Fault localization on call chains

beszedes 242 24

this is that functions frequently occurring in highly ranked chains will be more suspicious.
More precisely, for each function f € F' we compute the score W as:

W)= Y O(c),where C(f) = {c| f € F(e)}.

ceC(f)

Note that this score will not fall in the interval [0,1] which is typical for many other
scoring mechanisms. However, this does not affect other parts of the approach since only
the relative ranks are subsequently used. For our example, the scores will be the following:
W(a) = 1+ %, W(b) =1, W(£) = 1 and W(g) =1+ % This leads to the defective
function with the highest score.

Reapplied Spectrum

The second idea for computing function-level scores is to re-apply the spectrum-based ap-
proach, but this time on the functions using the call chains in place of the test cases. For
this purpose, we treat a call chain as a proxy to a test case in the following manner. If its
score is greater than a threshold z € [0,1) it is treated as “failing” otherwise as “passing.”
Our function-level spectrum has the call chains in its rows and the functions in the columns:

i
[0/1 0/1 --- 0/1 0/1] [0/1]
0/1 0/1 --- 0/1 0/1 0/1
0/1 0/1 --- 0/1 0/1 0/1
0/1 0/1 --- 0/1 0/1] 0/1)

In this case, a 1 at the matrix position (¢,j) means that f; € F(¢;), and the entry
in the vector R™ for a chain ¢; is 1 if O(c;) > z. By adjusting z, one can regulate how
“strictly” a suspicious call chain should be considered as faulty. We experimented with
different thresholds, but in the following, we will set z = 0 as it provided the best results.

The final scores in this case will be computed by re-applying the Ochiai formula to this
function-level spectrum, which will be denoted by R(f) for a function f. In the example,
R(a) =3, R(b) = 3, R(f) = % and R(g) = %, which again ranks g to the first position.

Note, that the simple function-level Ochiai formula scores function £ with % and the other
three with %, which makes this approach not very useful in this particular case. It is also
interesting that the statement-level Ochiai FL will locate the call statement to g in function
b, which is also informative. However, our approach provides more context in a general case
because the whole call stack is presented and not only individual code elements. Also, with
our second phase not only the chain ranks but the function ranks will be available as well.

Merging the ranks

The reason for the two ranking methods to behave differently can be traced back to the
mentioned coincidental correctness, which can affect the chain-based approach as well. Most
SBFL formulae perform poorly when the defective element f has a high ep(f) value compared
to ef(f). In the case of our reapplied spectrum technique, this means that f is found in
many chains that have < z score, while in fewer chains that have > z score. This, in turn,
can happen if some passing test cases are complex enough to generate a lot of different
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Input R1 {rank according to W scores}
Input R2 {rank according to R scores}
Output {combined rank}
Repeat
f := next element in R1
If f is not output yet
Output f
f := next element in R2
If f is not output yet
Output
Until R1=empty and R2=empty

Figure 8.4: Rank merging algorithm

chains, contrary to the failing ones. We observed that this can happen often in the case of
the reapplied spectrum, so in this case, the weighted chain counts technique will perform
better because it is not affected by the many passing chains.

Since we do not know in advance which of the two function-level scores will lead to better
results in a particular case, we merged the two ranked lists by alternatively selecting the next
element from each of the two lists. The algorithm in Figure 8.4 depicts the approach.

The algorithm has the following property: if the rank position of the faulty element is r;
in Ry and 75 in Ry, in the worst case it will be found in 2-min(ry,72) steps. This means that
if one of the scoring mechanisms is poor compared to the other, the result will depend on
the better one. If the two ranks are similar, the output will also be similar to them and the
mentioned worst case will not be reached. Note that this algorithm does not explicitly handle
ties, situations when elements with the same score are ranked subsequently in an arbitrary
order. Also, the rank list with which the processing is started is arbitrary. Depending on
how these are implemented, the algorithm could produce different final outputs.

Consider again, our running example. The weighted chain counts approach produces the
following ranked list of functions: gabf. At the same time, the function-based spectrum
results in gafb. The merging step outputs either gabf or gafb, depending on which rank
list is the processing started on. The faulty element is in the first position in either case.

8.3 Empirical evaluation

To verify the effectiveness of our approach we conducted an empirical study in which we
compared the call chain-based SBFL to a traditional coverage-based SBFL on a benchmark
consisting of 404 bugs from the Defects4J suite [87].

8.3.1 Study settings

We performed the experiments on real defects from the Defects4J suite (v1.4.0). We selected
this benchmark because it can be seen as the state of the art in SBFL research for Java (see
e.g. [49, 109, 147] and many others), and it includes real defects and programs with non-
trivial size and complexity. The dataset provides the fix for each bug as a patch set (called
a version). Using the patch sets we were able to create change sets that contain data about
which functions (Java methods) were affected by each bug fix.

By default, Defects4J utilizes Cobertura [62], a bytecode instrumentation-based tool to
measure code coverage. However, since call chains are needed for our approach we had to
use a different technique. We developed a custom bytecode instrumentation tool based on
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Javassist [82] to collect execution traces. This tool uses a compact data structure which
was carefully engineered to handle recursive calls and the exceptional amount of data that
is generated during the execution of real life programs.

Unfortunately, some tests cases fail if the code is instrumented. These tests assert things
that the instrumentation changes e.g. structure of an object, runtime, contents of the class-
path, etc. Since the unexpectedly failing tests would affect the suspiciousness of the covered
code elements, we excluded those bugs that include this kind of tests. Finally, we considered
only those faults for which there is at least one failing and traversing test case. The final set
of programs and defects from the Defects4J dataset we used in our experiments is reported
in Table 8.1. Numbers regarding size (lines, tests, functions) vary from version to version,
here data from the last versions are provided. The last column contains the number of chains
generated (also for the last version).

Program KLOC  Tests Bugs Functions Chains

Chart 96 2 187 25 5 235 41k
Closure 91 7 867 173 8 379 889k
Lang 22 2270 60 2 353 6k
Math 84 4 371 92 6 351 228k
Mockito 11 1331 28 1433 11k
Time 28 4 019 26 3 627 150k
Total 332 22 045 404 27 378 1 325k

Table 8.1: Main properties of the defects used in the experiments

To store the spectrum information matrices and compute the various scores and ranks,
we used the SoDA framework [120]. Apart from that only various scripts and spreadsheet
editors were used for the calculations.

8.3.2 Evaluation of fault localization effectiveness

Several strategies have been proposed in the literature for measuring the effectiveness of
SBFL approaches, but they are practically all based on looking at the rank position of the
actual faulty element within the list of all possible program elements. One strategy is to
express this as the number of elements that need to be investigated by the programmer
before finding the fault [132], and another is the opposite: elements that do not need to be
investigated [114]. This is usually expressed in relative terms compared to the length of the
rank list (program size). However, Parnin and Orso argued that absolute rankings are more
helpful in practical situations [108].

Another issue with these mechanisms is the handling of ties [137], because in many
cases different program elements may get assigned the same suspiciousness scores. Some
approaches select the first (best case), last (worst case) or middle (expected case) element
for expressing this value, while others simply treat the elements with the same values as all
belonging to one position.

For computing the effectiveness of an SBFL approach, we follow the strategy to look at
“elements that need to be investigated” using the “expected case” in the case of ties and
express this in a set of measures called Ezpense. We use two variants of the measure: an
absolute one expressed in the number of code elements (£) and a relative version compared
to the length of the rank list (£”"). The following formulae express precisely how to calculate

67



Chapter 8. Use of Call Chains in Spectrum-Based Fault Localization

beszedes 242 24

this value (following [39]):

p lOls > sl el 2 s 41 p B
2 N
where N is the number of code elements, for i € {1,..., N} s; is the suspiciousness score of

the ith code element and f is the index of the faulty code element.

To compare our approach to traditional SBFL techniques, we will compute the Expense
metric for both approaches and compare them in terms of change relative to traditional
SBFL, using both absolute values and relative improvements.

Apart from the general average change, we define the notion of enabling improvement,
an improvement in which the traditional SBFL algorithm ranks the faulty element beyond
the 10th position but the proposed approach reaches it in at most 10 steps. This way, from
a practically “hopeless” localization scenario, our approach enables the user to localize the
fault by inspecting only the top elements in the list.

8.4 Results

8.4.1 Call chains and faults

The last column of Table 8.1 shows the number of generated call chains of the subject
programs (their last versions). This number seems to be related to the number of test cases
in the respective project. The distribution of chain lengths varies greatly across the subject
programs, and they can be very long as well (up to about 3,500 functions). But, our biggest
program, Closure tends to have shorter chains, i.e., about 4 to 26 functions, which means
that the call chain length is not related to the program size. Column 3 of Table 8.2 shows
the chain lengths with the average in the last row.

. . Length Length
Program Faulty in High All High
Chart 19 (73%) 8.3 5.7
Closure 98 (56%) 26.0 849.3
Lang 56 (88%) 4.4 5.1
Math 70 (75%) 14.8 13.9
Mockito 20 (69%) 7.8 58.6
Time 21 (78%) 10.1 11.7
Total / Average 284 (69%) | 24.8  749.2

Table 8.2: Faulty elements in high ranked chains and average chain lengths

We investigated what is the relationship between the faulty elements and the content of
the highly-ranked chains produced in the first phase of our approach. The second column of
Table 8.2 shows the number of times (and their ratio) the faulty element can be located in
the call chains from the very beginning of the ranked list. In particular, we considered the
chains with the highest suspiciousness scores. It is interesting to note that the highest score
was in many cases 1. We can observe from the data that, for all programs, as much as 69%
of the defective elements are found in the highest-ranked chains.

It is also interesting to investigate whether these fault-containing chains are any different
in terms of their sizes from the general statistics. Column 4 in Table 8.2 shows the related
average values. Compared to the general length of all chains, there can be variations in both
directions, but not considering the outlier Closure, the average length of chains with the
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highest score is 13.8. This finding indicates that the investigation of only the resulting call
chains may often lead to finding the fault. However, the chain with the highest score may
also be long, so this process can be supported by the ranked functions in the second phase.

8.4.2 Fault localization effectiveness

Table 8.3 reports the results for fault localization effectiveness. Columns “Ochiai” and
“Combined” show the absolute and relative Expense values for function-level Ochiai and
for the proposed approach, respectively. Column “Difference” reports the difference between
the average rankings, while column “Relative change” expresses the same as percentage in-
crease/decrease with respect to Ochiai. Column “Ochiai > 10” reports the number of defects
in the programs for which the ranking position is more than 10. “Enabling improvement”
indicates how many defects were successfully moved to the 10th or better position by our
approach (the percentage is relative to bug number), and the last column shows the average
absolute and relative difference of rankings for such cases.

P B Ochiai Combined Difference Relative | Ochiai Enabling Relative

rogram ues E(E") E(E") E(E')  change > 10 improvements improvement
Chart 25 8.3 (0.19%)  10.8 (0.25%) 2.4 (0.06%) 29% 5 2 (8%) -19.0 (-76%)
Closure 173 | 99.5 (1.33%) 131 4 (L.77%) 31 9 (0.44%) 32% 106 16 (9%) -58.8 (-93%)
Lang 60 4.7 (0.23%) 5 (0.17%) ( 0.05%) -24% 7 4 (7%) -15.4 (-66%)
Math 92 | 11.0 (0.29%) 3 (0.19%) 7 (-0.10%) -34% 27 17 (18%) -28.1 (-87%)
Mockito 28 | 25.6 (2.47%) 20 6 (1.98%) 0 (-0.49%) -19% 9 3 (11%) -92.0 (-98%)
Time 26 | 18.3 (0.53%) 9.5 (0.27%) 8 (-0.26%) -48% 7 2 (8%) -49.2 (-94%)
Total / Average | 404 | 49.3 (0.89%) 61.1 (1.00%) 11.9 (0.11%) 24% | 161 44 (11%) -43.0 (-91%)

Table 8.3: Fault localization effectiveness comparison (averages shown)

For Lang, Math, Mockito and Time, the improvement is measurable in terms of the
Expense metric: this ranges from 1 to about 9 ranking positions on average with relative
change of 19-48%. For Chart and Closure, the proposed algorithm yields ranking positions
that are worse by 29-32% on average compared to Ochiai. Note, that the average ranking that
Ochiai scores on the bugs of Closure is 99.5, which is already impractical as developers would
unlikely investigate such a large number of functions. Despite the poor average performance
on Closure, our approach can still deliver enabling improvements in 16 (9%) cases and the
improvement is very high -58.8 (-93%) in these cases.

Our final set of experiments regarding the localization effectiveness deals with the two
function localization algorithms that work on the ranked chains, which we introduced in
Section 8.2.3. As described, the two techniques performed well in different situations, and
it was difficult to predict which approach would be better for a particular case. Hence,
we follow the described merging approach, which produces an overall better result than
the two individually (in each particular case, twice the minimum is guaranteed). Table 8.4
includes the comparison of these two techniques summarized for each program, with the
overall average shown in the last row.

In columns 2 and 3 of the table, we report the average absolute Expense metrics for the
respective techniques, while column 4 includes the same data for the merged outcome. The
last two columns include the counts when the respective technique performed better than the
other. We can conclude from the data that the combined algorithm indeed is useful because
there is a similar number of cases when one of the two rankings is better. We also checked
the correlation between the scores produced by the two function-level techniques, and we
found that it is close to zero. As expected, the combined approach produced an overall better
result than any of the other two, however, both approaches are quite close to the combined.
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Proeram E Weigh. Reapp.

g Weigh. Reapp. Comb. | better better
Chart 13.5 10.6 10.8 12 9
Closure 143.6 149.9 1314 59 112
Lang 3.7 4.0 3.5 23 19
Math 9.3 7.0 7.3 17 52
Mockito 21.0 36.3 20.6 13 15
Time 16.5 8.0 9.5 9 13
Total / Average | 67.5 70.1 61.1 | 133 220

Table 8.4: Comparison of weighted chains vs. reapplied spectrum (averages shown)

When comparing function-level rankings, we found that the reapplied spectrum outperforms
the weighted chain counts in more cases (220 vs. 133). It also yields better average scores
than the combined approach in some cases, though its overall average is not as low as the
scores of the combined rank.

8.5 Case study

Besides the ranking improvement, we argue that the additional information provided by the
call chains (stack traces) could help the developer even in the situations when the function
itself will be further in the rank. As shown, the faulty element is typically found among
the highest-ranked chains. For better illustrating the support provided by call chains during
FL, let us consider a real case from our benchmark. Bug number 23 from the Joda-Time
Defects4J subject! can be located in the method DateTimeZone.getConvertedId. This
causes one test case, TestDateTimeZone.testForID String old, to fail. The traditional
function-level Ochiai SBFL approach (base) provides the localization scores as shown in
Table 8.5. Apart from the mentioned faulty element, all other functions are listed that have
a score > (. It can be seen that all functions are executed by the single failing test case and
several passing ones as well. However, two of them are executed by fewer passing tests, i.e.
the faulty one and DateTimeZone.forTimeZone, which makes them the most suspicious but
indistinguishable from each other.

Method ‘ ef ep nf np ‘ Ochiai
forTimeZone 1 6 0 3822| 0.3780
getConvertedld | 1 6 0 3822 0.3780
getZone 1 131 0 3697 | 0.0870
getID 1 528 0 3300 | 0.0435
setDefault 1 3157 0 671 ] 0.0186
getDefault 1 2884 0 944 | 0.0178

Table 8.5: Function-level Ochiai for the example (hit-based SBFL)

Figure 8.5 shows the relationship of the mentioned functions, which is an excerpt of
a call-graph belonging to this program. DateTimeZone.forTimeZone is the main function
called by the test case, which apart from the faulty DateTimeZone.getConvertedId calls
ZoneInfoProvider.getZone as well. The other directly called functions are setup and tear-
down helper functions for the test case. The reason the base algorithm cannot distinguish

Thttps://github.com/JodaOrg/joda-time/commit /14dedcb
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[ testForID_String_old ]

[

A\ 17 17 L4
getDefault getiD forTimeZone setDefault
|
A\ L4
getConvertedid getZone

Figure 8.5: Call graph of TestDateTimeZone.testForID String old

between forTimeZone and getConvertedId is that the latter is always called (both in failing
and passing test cases) by the former, and no additional information is available.

By introducing the concept of the call chains, forTimeZone — getConvertedId can
be investigated separately along with all other call chains. In particular, forTimeZone —
getZone is interesting as it also relates to the suspicious forTimeZone but represents a
different context. Table 8.6 presents the localization scores calculated by the first phase of
the proposed approach, namely the suspiciousness scores for the chains. Similarly, we only
show those chains that have > 0 scores. We can observe that apart from the two mentioned
chains, the other (one-element) chains are represented as well because they are also part of
the failing test run (and also of some passing runs as well).

Chain ‘ ef ep nf np ‘ Ochiai
forTimeZone— getZone 1 2 0 3826 | 0.5774
forTimeZone—getConvertedld | 1 2 0 3826 | 0.5774
getID 1 9 0 3819| 0.3162
set Default 1 2882 0 946 | 0.0186
getDefault 1 2887 0 941 | 0.0186

Table 8.6: Call chain-based Ochiai for the example

Again, the two highest-ranked chains cannot be distinguished from each other because
both are executed in the same situations by the failing and passing test cases. However, the
next phase of our approach can pinpoint the faulty elements, because it combines the infor-
mation about suspicious chains with the functions they contain. Namely, in the reapplied
spectrum technique, we treat all suspicious call chains as “failing” and by counting their
frequency for each function and the frequency of non-suspicious chains for the same, we can
select the most suspicious function. Table 8.7 shows the statistics for this phase. As can be
seen, the highest score is given to getConvertedId, followed by forTimeZone. The expla-
nation for this can also be seen in the corresponding numbers used by the Ochiai formula.
Although forTimeZone can be found in more suspicious chains than getConvertedId (2 vs.
1) it is found in much more non-suspicious chains as well (50 as opposed to 4). forTimeZone
is a common method called by many test cases, passing and failing, and present in many
different chains, but its specific branching to the faulty getConvertedId is less frequent and
is typical to the failing test case.

This example is realistic and shows one possible benefit of the approach. However, we
had to limit its complexity to be able to clearly explain it. The ranking positions 1 and 2,
used in the example, are equally good in practical situations, but in more complex cases, the
context provided by the call chains could be much more useful.
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Chain ‘ ef ep nf np ‘ Ochiai

getConvertedld | 1 4 4 87692 | 0.2000
forTimeZone 2 50 3 87646 | 0.1240
setDefault 1 78 4 87618 | 0.0503
getZone 1 77 4 87619 | 0.0506
getID 1 376 4 87320 | 0.0230

Table 8.7: Function-level Ochiai for the example (Reapplied Spectrum)

8.6 Conclusions

Our empirical results indicate that, except for outlier cases, the proposed approach can
achieve a significant improvement in terms of the FL expense, about 19-48%, which is even
higher in the case of worse ranking positions (over 10). The highest-ranked call chains
provide useful information for a better understanding of the context of the defect (in 69%
of the cases, the defective element is in the highest-ranked chains), and could even provide
hints for the fixation of the bug. For instance, the call chain indicates which function invokes
the defective function when the fault manifests in a failure.

The two outputs produced by our approach (i.e. the ranked list of most suspicious call
chains in the first phase and the merged ranked list of functions in the second) can be used
in different scenarios to complement hit-based approaches like Ochiai. In a first scenario, the
user can start localizing the fault by observing the ranked chains. If the fault is located this
way, the context of the investigated chains also informs about the possible ways to fix the
defect. If there are many high ranked chains with equally high scores, the user can rely on
the final result of the ranked functions from the second phase, and focus on those functions
only. In a second scenario, the user starts from the ranked list of functions from the second
phase, and if the defect is not easily found, looks at the highest-ranked call chains (and the
functions with high ranks in them) for clues about the possible contexts leading to the failed
test cases.

Contribution

This chapter is based on the publication:

[8] Arpad Beszédes, Ferenc Horvath, Massimiliano Di Penta, and Tibor Gyiméthy.
Leveraging Contextual Information from Function Call Chains to Improve Fault Local-
ization. In Proceedings of the 27th IEEE International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER 2020), pages: 468-479, February 2020,
London, Ontario, Canada.

The paper received 5 independent citations so far.

The concept of function call chains and their relation to the call stacks is mostly my
contribution, while the use of call chains as context in Spectrum-Based Fault Localization,
and the design of call chain-based SBFL algorithms on function level with the associated
empirical study are joint work.
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Use of Call Frequencies in Spectrum-Based
Fault Localization

9.1 Introduction

In this chapter, we introduce another extension to the traditional hit-based spectrum used in
Spectrum-Based Fault Localization (SBFL), which is also based on the concept on function
call chains, the topic of Chapter 8. First, we consider the simple count-based spectrum, which
records the number of executions of a particular element during runtime, thus replacing
the binary spectrum with one that has integer values. However, count-based spectra are
relatively underexplored in the literature. Early studies by Harrold et al. [76, 77] have been
conducted, and more recently, Abreu et al. [37] concluded that counts do not offer additional
benefits over hits. This result could have several explanations, a common one being that
the repeated execution of program elements (due to loops) can cause unwanted distortions
in test case statistics of the spectrum metrics.

We first verify the mentioned weakness of the simple count-based approach (we call it the
naive counts approach), and empirically evaluate its fault localization capability compared
to the hit-based approach. Then, we propose a method to improve hit-based spectra using
a more advanced count-based approach, which we call the unique counts approach. Here,
we do not count all occurrences of a program element during execution but only those that
occur in unique call contexts. Our algorithm is at procedure-level granularity, meaning that
the basic program element considered for fault localization is a function or a method. As a
call context, we rely on call stack instances. In particular, we build on observing the unique
deepest call stack instances upon executing a test case, and count the occurrences of methods
in these. This way, repeating patterns of method invocations due to, e.g., loops are excluded
and only the relevant call context patterns are considered.

We applied the approach on several traditional hit-based SBFL formulae by adapting the
spectrum metric calculations and the formulae to handle integer spectra. This adaptation
was not trivial, and we experimented with several different approaches to this end. For the

empirical assessment we relied on the popular bug benchmark, often used in SBFL research,
Defects4J [87].
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9.2 C(Call frequency-based SBFL

We work with three kinds of program spectra for SBFL. The first is the traditional hit-based
or coverage-based spectrum which is discussed in Section 9.2.1. Then, we elaborate on the
naive and unique count spectra, in Sections 9.2.2 and 9.2.3, respectively. The adaptations
of the SBFL concept to the two count-based approaches are discussed in Section 9.2.4.

9.2.1 Hit-based spectra and risk formulae

Hit-based SBFL uses a binary coverage matrix (see Chapter 6, here denoted by Cov" ) and a
test results vector (denoted by R) as the basic data structures to calculate the suspiciousness
scores for program elements.

Figure 9.1 contains an adapted version of the example from Chapter 8. Here, {a,b, f, g}
is the set of program elements (methods), and {t1,t2,t3,t4} are the test cases. As can be
seen, the four program elements are dependent on each other: method a calls methods f
and g directly, while method b calls a and g also directly. We set the bug to be in method
g, while a and b call this method. Tests t1 and t2 fail due to the bug, and the other tests
(t3, t4) are passing. The code is constructed so that we can emphasize the importance of
caller-callee relationships, different call contexts, and the frequency of method calls. The
corresponding hit-based spectrum and the spectrum metrics are presented in Table 9.1.

public class Example {
private int _x = 0;
private int _s = 0;
public int x() {return _x;}
public class ExampleTest {
public void a(int i) { @Test public void tl() {
_s = 0; Example tester = new Example();
if (1i==0) return; tester.a(-1);
if (1<0) { tester.a(l);
for (int y=0;y<=9;y++) tester.b(1);
f(i); tester.b(-8);
} else { assertEquals (13, tester.x()); // failed
g(i); }
}
} @Test public void t2() {
Example tester = new Example();
public void b (int i) { tester.a(l);
_s =1; tester.b(1);
if (i==0) return; assertEquals (3, tester.x()); // failed
if (1<0) { }
for (int y=0;y<Math.abs(i);y++)
a(0); @Test public void t3() {
} else { Example tester = new Example();
for (int y=0;y<=l;y++) tester.a(l);
g(i); tester.b(0);
} assertEquals (1, tester.x());
} }
private void f(int i) { @Test public void t4() {
_x -= 1i; Example tester = new Example();
} tester.a(-1);
tester.a(l);
private void g(int i) { tester.b(0);
_X += (i+_s); //should be _x += i; assertEquals (11, tester.x());
} }
} }
(a) Running example — program (b) Running example — test cases

Figure 9.1: Running example for call frequency-based SBFL

In this experiment, we use the 9 risk formulae presented in Chapter 6. The effectiveness
of these formulae varies significantly, as noted in the literature. It is evident that all the
selected formulae incorporate ef in some manner, given that the suspiciousness of a program
element is largely influenced by the number of failing test cases passing through it. But,
many formulae also include some or all of the other spectrum metrics.
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Hit spectrum (Cov™)  Spectrum metrics

t1 t2 t3 t4 ef ep nf np
z a 1 1 1 1 2 2 0 0
3 b 1 1 1 1 2 2 0 0
13 f 1 0 0 1 1 1 1 1
= 1 1 1 1 2 2 0 0
Results (R) | 11 0 0

Table 9.1: Hit-based spectrum (Cov?) and spectrum metrics for the running example

The suspiciousness scores for each method in our example and for each risk formula
are presented in Table 9.2. Notably, the buggy method (g) is barely distinguishable from
the other methods based on these scores. Two algorithms (Barinel and Tarantula) cannot
differentiate between the methods, each assigning a score of 0.5. For the other algorithms,
three methods (a, b, and g) share the same suspiciousness value. This means that, according
to these techniques, these methods have an equal likelihood of containing a defect.

Methods Barinel DStar GP13 Jaccard Naish2 Ochiai Russell-Rao Sgrensen-Dice Tarantula

a 0.50 2.00 2.25 0.50 1.33 0.71 0.50 0.67 0.50
b 0.50 2.00 2.25 0.50 1.33 0.71 0.50 0.67 0.50
f 0.50 0.50 1.25 0.33 0.67 0.50 0.25 0.50 0.50
g 0.50 2.00 2.25 0.50 1.33 0.71 0.50 0.67 0.50

Table 9.2: Hit-based example scores for the running example

9.2.2 Naive count-based spectra

Before we introduce our approach of a more elaborate count-based spectra, we first recall
the naive count-based method as it was proposed in previous literature, but gained little
popularity due to its inefficiency [76, 77].

This technique incorporates the call frequency by simply counting the number of invo-
cations of the methods while executing a test case. However, there is a fundamental issue
with this technique, which has been raised in other research as well, but not actually in-
vestigated empirically in detail previously [37]. Namely, with this approach, in a situation
where a method is called directly or indirectly from a loop, it will be counted potentially
many times. If this call belongs to a failing test case, then it will unnecessarily raise the
suspiciousness score of the affected non-faulty methods, which could cause that the actually
faulty elements (that are executed less times) remain hidden.

In Figure 9.2 we can see the dynamic call-tree for the example in Figure 9.1. A node is a
caller when it is a parent node and it is a callee otherwise. For example, a is a callee because
t1 and b call it (lines 4-5 in Figure 9.1b and line 21 in Figure 9.1a), but a is also caller for
the reason that it “uses” methods g in the else branch (line 13 in Figure 9.1a) and £ in the
iteration (line 11 in Figure 9.1a). The issue mentioned above can be observed in Figures 9.1
and 9.2: method £ is called ten times by t1 (failed test) in a for loop, as opposed to g
(faulty method), which is called six times in total by the failed tests (t1 and t2).

The higher execution count of non-faulty methods, such as f and a, compared to the
actual faulty method g would result in failing to locate g successfully. Repeated execution in
the loop results in high call-value: a(—1), caller method, executes f ten times (Figure 9.1a
lines 9-11) and the parameter of b can also result in cyclic repetition. In this example,
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method a is called eight times by b because the parameter (—8) affects the stop condition
of the loop (Figure 9.1a lines 19-21), so only counting the execution of a method results in
missing the faulty method. The two cases described above illustrate well one of the most
important features of the naive technique (which is also one of the biggest drawbacks): the
high degree of sensitivity to repeating code elements.

Call Tree

t1()
[

Figure 9.2: Dynamic call-tree collected during the execution of the t1 test from the running
example

The naive coverage matrix for the example is shown in Table 9.3 (middle matrix). We
will refer to this spectrum as the naive count-based spectrum and denote the matrix as Cov™
(the results vector remains R with the same properties). The naive matrix is similar to the
corresponding binary coverage matrix: where there is a 0 in the hit-matrix, there will be a
0 in the naive-matrix as well, but Cov”™ can contain not only 1s but other positive integer
values as well, 7.e., the number of times a particular test executes an actual code element (a
method or function in our case).

Hit spectrum (Cov™)  Naive spectrum (Cov™)  Unique spectrum (Cov")
tl t2 t3 t4 tl t2 t3 t4 tl t2 t3 t4
z a 1 1 1 1 10 1 1 2 3 1 1 2
o] b 1 1 1 1 2 1 1 1 2 1 1 1
& £ I 0 0 | 10 0 0 10 1 0 0 1
= g 1 1 | I 3 3 1 1 2 2 1 1
Results (R) | 11 0 0 1 1 0 0 1 1 0 0

Table 9.3: Naive (Cov™) and unique (CovY) count-based spectra for the running example
(hit-based spectrum is shown for reference)

9.2.3 Unique count-based spectra

Additional included information over hit-based and naive count-based spectra have been
explored previously, e.g., investigating the relationship of the code and the tests then giving
weights to them [97, 113], using static or dynamic call graphs [78, 143, 146], and slice-based
information [101, 133, 134, 145]. These methods resemble the approach we propose in that
they do not generate a new formula but instead “redefine” existing ones by incorporating
newly added information and adjusting spectrum metrics.

Our idea to add contextual information is to incorporate how often a specific method
has been called (directly or indirectly) and in which context from the test cases. We use the
frequency of the investigated method occurring in call stack instances and the number of
invocations during the course of executing the test cases. Motivated by research presented
in the graph- and slice-based papers (e.g. [78, 101, 143, 145]), our basic concept is that when
a method is invoked across various contexts during a failing test case, it is more likely to
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be responsible for the fault than other methods. The contextual information we use are the
function call chains, which are introduced in Chapter 8.

We extract test results and stack-trace information from projects at a per-test level with
a specially developed tool [119] that includes an online bytecode instrumentation feature.
We gather data structures called Unique Deepest Call Stacks (UDCSs). They represent
specific instances of call stack snapshots, extending until further methods are transitively
called, and halting upon method return. With UDCSs, we utilize coverage data not just in
terms of hit information but we can compute how frequently methods appear in these call
stacks. For a method under investigation, we aggregate the frequencies of its occurrences
across various UDCSs generated by relevant test cases, and this will constitute the unique
count-based spectrum.

Figure 9.3 illustrates UDCSs for our running example, in which test case t1 generates
UDCSs where four method calls originate directly from the test case. Method a is invoked
three times, and b is invoked twice. These frequencies in the resulting unique deepest call
stacks form the foundation of our approach.

Call Tree

t1()

Frerierrl ]

H g ) | |
1 1 I
v

\
6
@@@@@@é
!

0 a()
0 b()

() g() g
a() a() b

Call Stacks

Figure 9.3: Dynamic call-tree and the corresponding unique deepest call stacks (UDCS)
collected during the execution of the t1 test from the running example in Figure 9.1.

The rightmost matrix in Table 9.3, which we will denote by Cov”, presents a summary
of call frequencies within the UDCSs for each method illustrated in the example (the results
vector remains R with the same properties as earlier). Similarly to Cov™, if there is a 0 in
a hit-matrix position, there will be a 0 in Cov” as well, but it can contain not only 1s but
other positive integer values as well.

9.2.4 Count-based risk formulae

Adapting the SBFL method to handle frequency-based spectra requires the redefinition of
the four spectrum metrics and the risk formulae as well. The following are applicable to both
naive and unique count-based spectra, as the method of calculation is independent from the
type of the matrix.

Adapting the spectrum metrics

We introduce the four spectrum metrics for the non-binary matrix as follows. Calculating
the two values associated with the tests that executed the code element (|ef (m)| and |ep(m)])
is simple: we summarize the (matrix) elements belonging to method m for which the test
was failed or passed. We will use the notations C'(ef(m)) and C(ep(m)) for these quantities,
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respectively, and define them as follows:

C(ef(m) Z cem and  C(ep(m Z Ctom

teef(m) teep(m)

where ¢, is an element of the Cov™ or CovV matrix.

We aimed to incorporate frequency information into the spectrum metrics. In other
words, our approach “rewards” methods that repeatedly appear in the UDCS during the
execution of both successful and unsuccessful tests. This emphasizes the significance of
code elements throughout the execution phase. In the remaining two cases for |nf(m)|
and |np(m)|, adjusting the metrics poses a greater challenge because not executing an ele-
ment cannot be simply associated with someting like “how many times not executed”. Our
approach involves computing the average coverage of tests that remain uncovered by the
alternative methods. More precisely,

Zm’EM’ Ct.m! Zm’EM’ Ct.m!
C(nf(m)) = Z == 0 and C(np(m)) = Z ==
tenf(m) |M| -1 tenp(m) |M| -1

where M is the set of methods, M’ = M \ m and ¢, is an element of the Cov™ or Cov¥
matrix. These two values indicate the average amount of coverage a method “loses” for
passed and failed tests.

Let us consider the naive count-based spectrum (Table 9.3) and method £ of our running
example to illustrate the adapted spectrum metrics:

ef (f) = {t1} and C(ef(f)) = ce1r = 10 : t1 test calls £ ten times

o ep(f) = {t4} and C(ep(f)) = cras = 10 : £ is used ten times by t4

o nf(f) = {t2} and C(nf(f)) = Ctr{:;cfgbﬁffg = L83 — 1,67 ¢ “average coverage” of the
failed t2 not covering £

o np(f) = {t3} and C(np(f)) = Ctr{:;ctfsgbﬁffg = 5+ = 1: “average coverage” of the
passed t3 not covering f

Table 9.4 shows the four spectrum metrics for the binary (hit-based) and the two non-
binary (naive and unique count-based) spectra side by side to enable their comparison.

Hit-based Naive count-based Unique count-based

)| lep(m)] |nf(m)| [np(m) ‘ Clef(m)N Clep(m))N C(nf(m))N C(np(m))N

C(ef(m))” C(ep(m))” C(nf(m))¥ C(np(m))”
z 2 2 2 0 0 11 3 0 0 4 3 0 0
S b 2 2 0 0 3 2 0 0 3 2 0 0
Ef 1 1 1 1 10 10 1.67 1 1 1 1.33 1
“ g 2 2 0 0 6 2 0 0 4 2 0 0

Table 9.4: Naive and unique count-based spectrum metrics for the running example (hit-
based metrics are shown for reference)

Adapting the risk formulae

The adapted spectrum metrics could be used in new versions of the formulae in different
ways, and since it is difficult to predict which strategy would improve fault localization
effectiveness, we implemented and empirically evaluated various options. We define the
following strategies:
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A We teplace only the |ef(m)| in the numerator provided that it contains only [ef (m)]
(this approach cannot be interpreted for the GP13, Naish2 and Tarantula formulae).

s Each occurrence of [ef(m)] is overwritten with the new (C(ef(m))) value.

A% The values of all occurrences of |ef(m)| and |ep(m)| are changed in the formula with
the corresponding adapted values.

A%, The count-based matrix is used for the calculation of all four metric values in all their
occurrences.

These notations are templates to be instantiated with different parameters: A symbolizes
the formula (B: Barinel, D: DStar, G: GP13, J: Jaccard, N: Naish2, O: Ochiai, R:
Russell-Rao, S: Sorensen-Dice or T: Tarantula), * shows what kind of spectrum is used
(N: naive or U: unique), and the replacement strategy is indicated in subscript. Table 9.5
shows example instantiations for Russell-Rao using the naive count-based approach.

- Clef(m)) . C(ef(m))”
T Y ef(m)| + [nf (m)] + [ep(m)] + [np(m)] I Cef(m))N + [nf(m)| + |ep(m)| + [np(m)]|
RN C(ef(m))V RN Cef(m)N
¢ Clef(m)N + |nf(m)| + C(ep(m))N + |np(m)| all: Cef(m))N + C(nf(m))N + C(ep(m))N + C(np(m))N

Table 9.5: Adapted Russell-Rao formulae using the naive count-based spectrum

Table 9.6 shows the score values obtained by Russell-Rao with the techniques described
above for naive and unique count-based spectra. One of the differences to the values in
the hit-based approach is that suspiciousness score values are typically higher. The highest
value according to hit-based approach was 0.5 (see Table 9.2, column Russell-Rao), while
for the naive and unique count-based concepts, most of the methods scored 0.6 or higher.
In addition, the number of ties is much less than in the case of the traditional algorithms.

Naive count-based Unique count-based

N N N N U U U U
RN RY RN RN RYw. RY RY RY

al| 275 0.8 079 0.79 1.00 0.67 0.57 0.57
b| 075 060 0.60 0.60 0.75 0.60 0.60 0.60
£f| 250 077 045 0.44 0.25 0.25 0.25 0.23
g| 150 075 0.7 0.75 1.00 0.67 0.67 0.67

Methods

Table 9.6: Suspiciousness scores of the methods for the running example calculated using
the adapted Russell-Rao formulae

As can be seen, all naive count-based versions of the Russell-Rao formula associate the
highest suspiciousness scores to method a, which can be attributed to the corresponding
C(ef(m)) value being high while C'(ep(m)) and other values being relatively low. For a
similar reason, method f and the actually buggy method g have the second and third highest
suspiciousness values in the case of R}pwm and R[;, where only the |ef (m)] values are replaced.
The emphasis that the covering failed tests put on these methods is suppressed by RY and
RY,, where other metric values are also replaced. Interestingly, in these cases method f is
the least suspicious, hence g inherits the second position in the ranked lists.
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However, in the case of unique count-based Russell-Rao formulae the buggy method is
successfully located (except that using RYmm and RY method g is in tie with method a).
Having higher suspiciousness score based on the new spectrum metrics and the additional
contextual information that the UDCSs provide, g, the actual buggy method, can be easily
distinguished from the other methods in the case of RY and RY,.

9.3 Empirical evaluation

The main goal of empirically evaluating the proposed approach was twofold: first, to contrast
the fault localization effectiveness of the new algorithms with that of traditional hit-based
methods. Second, we aimed to determine which of the traditional SBFL formulae could
be most effectively enhanced with call frequency data. In this section, we outline the key
parameters of our experiments.

We implemented our approach for analyzing Java programs, and for the evaluation, we
selected Defects4J (v2.0.0) [35]. This version of the benchmark contains 17 open source Java
projects with manually validated, non-trivial real bugs. The initial dataset contained 835
bugs, but certain cases had to be omitted from the analysis due to instrumentation errors or
unreliable test outcomes. 786 defects were deemed suitable for inclusion in the final dataset.
Table 9.7 presents the key characteristics of each project.

Number Size Number  Number Number Avg. length

Subject of bugs (KLOC) of tests of methods of UDCS-s of UDCS-s
Chart 25 96 2.2k 5.2k 122k 8.3
Cli 39 4 0.1k 0.3k 91k 3.7
Closure 168 91 7.9k 8.4k 889k 26.0
Codec 16 10 0.4k 0.5k 6k 9.6
Collections 1 46 15.3k 4.3k 387k 4.2
Compress 47 11 0.4k 1.5k 28k 5.0
Csv 16 1 0.2 0.1k 4k 3.8
Gson 15 12 0.9k 1.0k 126k 1043.1
JacksonCore 25 31 0.4k 1.8k 27k 4.5
JacksonDatabind 101 4 1.6k 6.9k 3467k 17.8
JacksonXml 5 6 0.1k 0.5k Tk 3.8
Jsoup 89 14 0.5k 1.4k 127k 13.5
JxPath 21 21 0.3k 1.7k 215k 57.8
Lang 61 22 2.3k 2.4k 6k 4.4
Math 104 84 4.4k 6.4k 228k 14.8
Mockito 27 11 1.3k 1.4k 11k 7.8
Time 26 28 4.0k 3.6k 150k 10.1

Table 9.7: Properties of subject programs

For evaluating the fault localization effectiveness of the new SBFL algorithms, we relied
on the Ezpense and the Enabling improvement measures defined in Chapter 8. In addition,
we also looked at the Accuracy measurement which counts the bugs that have been found
at the top positions in the rank list. Several studies indicate that developers typically
examine only the initial 5 or 10 elements in the recommendation list generated by the SBFL
algorithms [90, 135]. In particular, we consider the bugs that have been localized within
the Top-5 positions. The family of similar metrics is commonly referred to as Top-N or
acc@N [108]. Higher values are better for this metric.
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9.4 Results

Note, that certain data in the following evaluation are missing from the tables due to the
impossibility to interpret specific variants of formulae, as discussed in Section 9.2.4.

9.4.1 Results for hit-based SBFL

Table 9.8 shows the baseline absolute average rank values for each traditional SBFL formula
and subject program. In this setting, the Ochiai and DStar formulae produce the best
results (33.98-33.99), but these are closely followed by Barinel, Jaccard, Sorensen-Dice and
Tarantula (with average ranks around 36). Next are GP138 and Naish2 (43.3 in both cases)
with a more significant gap to the other formulae. The worst performing formula by far is
Russell-Rao (135.96).

Subject B D G J N 0 R S T

Chart 1594 918 3434 9.46 3434 882 50.36 9.46 15.94
Cli 16.68 15.29 13.94 16.58 13.94 1540 23.10 16.58 16.68
Closure 79.44 71.63 9549 81.10 95.49 71.64 346.62 81.10 79.43
Codec 6.78  6.50 5.25  6.53 5.25  6.53 722  6.53 6.78
Collections 1.00  1.00 1.00  1.00 1.00  1.00 8.00 1.00 1.00
Compress 1749 1594 1536 17.14 1536 16.02 22.74 17.14 1749
Csv 6.50  6.50 6.50  6.50 6.50 6.50 14.81 6.50 6.50
Gson 19.27 19.23 19.50 19.17 19.50 19.23 26.53 19.17 19.27
JacksonCore 6.84 6.64 944 6.36 944 6.92 2818 6.36 6.78
JacksonDatabind 59.53 59.11  64.45 59.57 64.45 59.12 251.63 59.57 59.53
JacksonXml 18.60 18.60 17.80 18.60 17.80 18.60 29.90 18.60 18.60
Jsoup 31.25 30.48 33.31 31.19 33.31 30.44 84.30 31.19 31.25
JxPath 4424 54.36 116.86 45.00 116.86 54.07 221.95 45.00 44.24
Lang 5.18  4.46 4.39 4.55 4.39 4.46 546  4.55  5.18
Math 10.20 10.25 10.83 10.08 10.83 10.32 2145 10.08 10.20
Mockito 26.11 25.93 4244 26.07 4244 2589 81.81 26.07 26.11
Time 19.79 18.65 22.81 19.67 22.81 1838 55.50 19.67 19.79
All 36.01 33.99 4330 36.06 43.30 33.98 135.96 36.06 36.01

Table 9.8: Absolute Expense measure for hit-based formulae. Row “All” represents the mean
calculated on all bugs of the dataset. (Notations in the header: B - Barinel, D - DStar,
G - GP13, J - Jaccard, N - Naish2, O - Ochiai, R - Russell-Rao, S - Sgrensen-Dice and
T - Tarantula)

It can be observed that Closure has a much higher average than the rest of the programs.
This may be due to the fact that Closure has a different purpose than most of the other
subjects, consequently a special program and test suite structure as well. While the rest of the
subjects are smaller Java libraries, Closure is a large compiler tool for JavaScript. Therefore,
most of its tests are complex ones (system tests as opposed to unit tests), and also these
test cases have to go through a common starting phase (the initialization of the compiler,
preprocessing, parsing, etc.) before they reach the sophisticated parts of the compiler itself,
which usually contain the root cause of bugs. Hence, they generate very large UDCSs (see
Table 9.7) resulting in high Expense values.
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9.4.2 Results for naive count-based SBFL

Table 9.9 shows the average Expense values for each naive count-based formula variant. For
reference, we included the results of the hit-based SBFL formulae (row “hit”) and highlighted
the best results in bold for each column.

Var. B D G J N 0] R S T
hit 36.01 33.99 43.30 36.06 43.30 33.98 135.96 36.06 36.01
Aé\; 63.46 97.94 63.55 94.76 167.78 64.11

Af} 62.60 9794 153.43 6289 153.43 62.59 16741 62.89 37.09
AY 42,73 66.14 153.98 43.03 153.60 41.85 73.15 43.03 44.34
AN, 42,73 66.38 153.98 43.10 153.45 41.74 126.12 43.10 44.80

Table 9.9: Average Expense of naive count-based formulae. Row “hit” represents the corre-
sponding values from Table 9.8.

The data clearly shows that the naive count-based approach could not outperform the
traditional hit-based approach in terms of average Expense, except for one case with the
Russell-Rao formula. In fact, the values are much worse. However, looking at only the
average values can be misleading. First, outliers could distort the overall information on
the performance of our formula. Second, this data provides nothing about the distribution
of the different rank values. We believe that not all (absolute) rank positions are equally
important, as we discussed in Section 9.3. Hence, in the next set of experiments we will
concentrate on the Top-5 (Accuracy) findings.

In Table 9.10, we can see the number of successfully localized bugs within the Top-
5 category (with the respective percentages), accumulated for the whole benchmark, for
each naive and, for reference, the hit-based formula. The best values for each category (in
columns) are highlighted in bold.

hit Al AN AN AN,
# % # % Det. E.Im. # % Det. E.Im. # % Det. E. Im. # % Det. E. Im.
B 357 (45.4%) 288 (36.6%) 101 32 207 (37.8%) 86 26 320 (40.7%) 65 28 320 (40.7%) 65 2
D 366 (46.6%) 232 (29.5%) 164 30 232 (205%) 164 30 276 (351%) 119 20 279 (35.5%) 118 31
G 361 (45.9%) 166 (21.1%) 214 19 163 (20.7%) 219 21 163 (20.7%) 219 21
J 358  (45.5%) 286 (36.4%) 105 33 207 (37.8%) 91 30 319 (40.6%) 69 30 321 (40.8%) 68 31
N 361 (45.9%) 166 (21.1%) 214 19 163 (20.7%) 219 21 163 (20.7%) 219 21
0 367 (46.7%) 227 (28.9%) 170 30 295 (37.5%) 101 20 322 (41.0%) 74 29 321 (40.8%) T4 28
R 111 (141%) 142 (181%) 10 41 143 (182%) 9 41 220 (280%) 5 114 172 (21.9%) 9 70
5 358 (455%) 279 (35.5%) 113 34 297 (37.8%) 91 30 319 (40.6%) 69 30 321 (40.8%) 68 31
T 357 (45.4%) 350 (44.5%) 8 1 320 (40.7%) 56 19 311 (30.6%) 65 19

Table 9.10: Accuracy (number of bugs in the Top-5 category) and enabling improvements for
hit-based and naive count-based formulae (highlighted are the best values in each column)

We can instantly observe that the hit-based formulae outperformed all the rest in each
of the categories by a large margin. The only exceptions are Tarantula whose Tef variant
performed only a bit worse than its hit-based counterpart, and Russell-Rao whose naive vari-
ants were able to improve the overall worst result among the hit-based formulae. Similarly
to earlier findings, the least bad performance is achieved by the variants of Ochiai, Jaccard,
Barinel, Sgrensen-Dice and Tarantula. Considering the overall performance, the best results
were achieved by the AY and A%, variants.

Table 9.10 also summarizes the enabling improvements in the columns noted with “E.
Im. 7 for each formula. In addition, the columns noted with “Det. ” show the number of
bugs whose position was deteriorated, i.e., the rank calculated by the hit-based formula was
<=5 while the naive formula produced a rank that was > 5. Although each naive formula

82



Section 9.4. Results

beszedes 242 24

achieves enabling improvements, the number of these cases is low, except for Russell-Rao
(which is aligned to what we have observed earlier).

9.4.3 Results for unique count-based SBFL

In this section, we present the results of our experiments on the unique count-based formulae
in a similar fashion to the previous one.

Table 9.11 shows the average Expense values for each unique count-based formula variant.
Best results are highlighted in bold, and the hit-based results are included in row “hit”.

Var. B D G J N 0] R S T
hit 36.01 33.99 43.30 36.06 43.30 33.98 13596 36.06 36.01
AV 24.68  35.60 24.63 36.05 70.80 24.89

e

AeUf 24.55 3560 66.73 24.40 66.73 24.30 70.60 24.40 36.87
AY 38.63 29.08 67.19 38.64 67.04 3644 35.12 3864 8535
AY, 38.63 29.13 67.19 3834 67.00 36.99 5495 38.34 74.56

Table 9.11: Average Expense of unique count-based formulae. Row “hit” represents the
corresponding values from Table 9.8.

In this set of data we can recognize similar patterns to what we observed for the naive
count-based approach, but this time there are notable improvements compared to the hit-
based method: for 6 formulae out of 9, the hit-based method was improved significantly.
The unique count variants of Russell-Rao achieve large improvements: 65.2-100.8 ranks on
average on the whole dataset, but the performance of the hit-based Russell-Rao formula was
poor to start with.

Considering Tarantula, it could not improve the hit-based results, the least bad vari-
ant is T’ g which is behind the original Tarantula by 0.9. GP13 and Naish?2 show similar
performance. The unique count variants of Barinel, Jaccard and Sgrensen-Dice achieve
about 11.5-11.7 improvement with the Agf configuration. Different variants of DStar and
Ochiar have 4.9-9.7 advantage over the hit-based versions. Overall, the best result are 24.30
- Ochiazgc, 24.40 - JaccardeUf and Sﬁrensen-Diceg}, 24.55 - Bam’nelgc, and 29.08 - DStarg.

In Table 9.12, we can see the number of bugs belonging to the Top-5 category (with the
respective percentages), accumulated for the whole benchmark, for each unique count-based
and the hit-based formula. It also presents the enabling improvements and the number of
bugs which were moved in the opposite direction, which were deteriorated.

hit Al AL AU AY,
# % # % Det. E. Im. # % Det. E. Im. # % Det. E.Im. # % Det. E.Im.
B 357 (454%) 373 (47.5%) 78 94 376 (47.8%) 65 84 354 (45.0%) 45 42 354  (45.0%) 45 42
D 366 (46.6%) 327 (41.6%) 128 89 327 (41.6%) 128 89 391 (49.7%) 86 111 388 (49.4%) 88 110
G 361 (45.9% ) 26 (33.8%) 172 77 260 (34.2%) 170 78 269 (342%) 170 78
J 358 (45.5%) 372 (47.3%) 81 95 380 (48.3%) 69 91 357 (45.4%) 47 46 356 (45.3%) 48 46
N 361 (45.9%) 266 (33.8%) 172 77 260 (342%) 170 78 269 (34.2%) 170 78
0 367 (46.7%) 323 (41.1%) 135 Ol 380 (48.3%) T4 87 363 (462%) 51 47 361 (45.9%) 54 48
RO11 (141%) 249 (31.7%) 12 150 248 (31.6%) 12 149 380 (48.3%) 6 275 356 (45.3%) 10 255
S 358 (455%) 366 (46.6%) ST 95 380 (48.3%) 69 Ol 357 (454%) 4T 46 356 (45.3%) 48 46
T 357 (45.4%) 351 (447%) 12 6 258 (328%) 111 12 254 (32.3%) 117 14

Table 9.12: Accuracy (number of bugs in the Top-5 category) and enabling improvements for
hit-based and unique count-based formulae (highlighted are the best values in each column)

Every unique count-based formula achieves enabling improvements, but there are about
the same number of deteriorations as well. On average, the number of enabling improvements
is around 70-110, but Russell-Rao and DStar perform exceptionally well.
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There are notable improvements regarding the Top-5 accuracy as well. Traditional for-
mulae rank at most 367 (46.7%) bugs into the Top-5 thanks to Ochiai, while the best
unique count-based formulae have 380-391 (48.3-49.7%) bugs in the Top-5 which is about
4-7% improvement. The best accuracy values can be accounted to the AV variant of DStar
(391) and DStar", (388), closely followed by Jaccardgc, Ochz’azgc and Sm“ensen—Dz’cegc (380)
and Barinelﬁ}num (373). The improved Russell-Rao again outperforms the baseline hit-based
formulae by a huge margin.

Summary. In 6 out of 9 cases, the unique count-based approaches can improve the effec-
tiveness of their hit-based counterparts by 5-101 positions on average. At the same time,
the naive count-based approach is usually worse than the traditional method. Also, all new
formulae are able to achieve enabling improvements, and the accuracy regarding the number
of bugs in the Top-5 category is increased by about 4-7% as well. Considering the magnitude
of differences and the consistency of the improvements, Agc offers the best performance in
the unique count-based setting, but the other variants are only marginally behind as well.
This strategy emphasizes the importance of the relationship between the failing tests and
exercised code elements.

9.5 Conclusions

This research confirms earlier results that the naive approach of extending hit-based spectra
using execution counts does not lead to improvements. Our concept of unique counts relies
on the notion of Unique Deepest Call Stacks, data structures that capture call stack state
information occurring on test case execution, and count the number of method occurrences
within these structures, and this way we can eliminate the problem of large number of code
repetitions due to loops. Empirical measurements confirm that this approach can improve
the hit-based method to a large degree.

Our method of adapting the spectrum metrics and the risk formulae is novel in the field
of Spectrum-Based Fault Localization, and opens up possibilities for further research. For
example, it is an open question how the technique could be adapted to other granularities,
primarily statements, and what other kinds of contextual information could be used besides
call frequencies.

Contribution

This chapter is based on the publication:

[32] Béla Vancsics, Ferenc Horvath, Attila Szatméri, and Arpad Beszédes. Fault Local-
ization Using Function Call Frequencies. Journal of Systems and Software, Volume:
193, 2022, publisher: Elsevier. (conference version: [31])

These papers received 6 independent citations so far.

The definition of the two procedure call frequency concepts and the extension of the naive
counts using call stacks are mostly my contribution, while the use of call frequency based
on call chains to improve SBFL algorithms, and the adaptation of SBFL spectra, spectrum
metrics, and risk formulae with the associated empirical study are joint work.
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Use of Dynamic Slicing in Spectrum-Based
Fault Localization

10.1 Introduction

Coverage-based (hit-based) SBFL is straightforward to implement using existing profiling
tools, and the corresponding algorithms to calculate faultiness are simple, hence this provided
a fruitful ground for a large set of SBFL techniques proposed in the literature (see Chapter 6).
An important insight about coverage-based spectra is that it is based on the assumption that
a code element covered by failing tests should be treated as suspicious. However, this is an
over-approximation of the original intent to look for the code responsible for the fault. The
faulty code element must be executed in a failing run, but it also needs to cause a failure-
inducing chain toward the output [141]. If a statement is executed but it is not participating
in the computation responsible for the failure, it causes noise in the SBFL process.

In other words, instead of the simple coverage information, only its subset should be used,
which takes part in the computation. This is, precisely, the concept of the program slice [129].
In particular, we are interested in the backward dynamic program slice [92] computed from
the output statement as the criterion, and use this information in the program spectra. If
computed properly, a dynamic program slice will be a subset of the coverage information and
in the spectrum, it will provide exactly the information which is needed by SBFL formulae.
(For an overview of dynamic slicing concepts, refer to Chapter 2.)

The question then is: how big is the influence of the over-approximation caused by the
coverage-based spectrum compared to the slice-based? This depends on the relative size of
the slices with respect to the coverage information, and the way superfluous elements affect
the SBFL algorithm. In other words, what is the effect of the executed code elements that
are not in the slice on the final ranking lists?

The idea of combining program slices and SBFL is not new, and there are various ap-
proaches to do the same. Surprisingly, relatively few studies among these utilize backward
dynamic slices in place of the coverage in the program spectrum [47, 101, 112]. Also, these
studies do not elaborate on the relationship of the coverage-based and slice-based spectra,
typically only high-level measurement results are provided. The main reason for this modest
visibility could be very pragmatic: computing precise slices requires difficult algorithms, and
the computation costs can be very high compared to simply using the coverage.
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We aim at filling this gap and providing more insight into “how bad is the coverage
spectrum?” when compared to the slice-based spectrum, and what are the typical situations
where the deficiencies manifest. Given the fact that dynamic slices can be quite small (about
33% [144] to 50% [57] of the executed instructions on average), we expect a large impact on
the overall algorithm effectiveness.

It is not the aim of our experiments to discuss concrete slicing techniques and their
effect on SBFL, just the conceptual relationship backed up by an empirical case study to
illustrate the differences. We provide a theoretical analysis of why coverage-based spectra
necessarily produce suboptimal results compared to dynamic slice-based spectra. We also
implemented a dynamic slice-based SBFL method using a precise yet feasible approach, and
performed a case study using a well-known subject program and real faults. We thoroughly
analyzed every fault in the case study to understand the most typical causes of suboptimal
performance of the coverage-based approach.

10.2 Coverage vs. slice-based spectra

In fault localization literature, several works explore the possibilities of combining the
spectrum-based approach with program slicing [47, 101, 112]. In this work, we concen-
trate on the class of methods in which the traditional SBFL method based on code coverage
is modified by replacing the spectrum matrix with slice information. Several variations are
possible at this point, but we define the slice-based spectrum as the spectrum matrix whose
rows include the backward dynamic slices computed from the corresponding test cases in-
stead of their coverages (the results vector remains the same).

In this chapter, we will rely on the notations from Chapter 6 with the following extensions.
The traditional coverage-based (hit-based) spectrum matrix will be denoted by M, while we
will use M’ for its slice-based counterpart. C'(t) C E will denote the set corresponding to the
t-th row in M, i.e., the set of covered elements by test case ¢ in the coverage-based matrix.
To evaluate the fault localization effectiveness, information about the known faults will be
used from benchmark programs. It will be represented by the faults vector F of size |E| in
which f; = 1 if the j-th code element contains a fault. For simplicity, we will also use the
same notations M, R, and F' to represent not only the matrix/vectors but the corresponding
sets and functions as well, depending on the context.

This research deals with backward dynamic program slicing (see Chapter 2) with the
slicing criterion being the “output statement” of the test case. In practice, the output
statement may correspond to an assertion point in the test case with the asserted variable.
In the following, we will use DS(t) C E to denote the backward dynamic program slice
corresponding to test case t. Hence, M’ is constructed by replacing each C(t) in matrix M
by DS(t).

The benefit of a slice-based SBFL over a coverage-based one can be easily illustrated
in a simple example. Listing 10.1 includes a Java snippet of a circle implementation with
methods for calculating the area and perimeter, along with three associated unit tests in
Listing 10.2. The execution of the tests results in t2 () failing due to the bug in line 6 for
calculating the perimeter, and the other two passing. The coverage-based spectrum, along
with the spectrum metrics, and the suspiciousness scores computed by the Barinel formula
in the bottom row (see Chapter 6 for definition) are shown in Table 10.1 (left hand side).

The SBFL formula cannot distinguish between code lines 5 and 6 as the simple coverage
is over-approximating the actual calculation chains: both constructor lines are included in all
passing and failing tests. The slice-based spectrum differs from the coverage one exactly at
these two critical lines. The backward dynamic slices computed from the test cases correctly
include only the appropriate lines setting the area or perimeter fields, respectively. This
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public class Circle {
private double area;
private double perimeter;
public Circle (double radius) {
area = radius * radius x Math.PI;
perimeter = radius x Math.PI; // faulty statement
}
double getArea() {
return area;
}
double getPerimeter () {
return perimeter;
}
}

Listing 10.1: Faulty code example

public class CircleTest extends TestCase {
static Circle circle = new Circle(0);
public void t1() {
assertEquals (Math.PI, new Circle(l).getArea(), le-10);
}
public void t2() {
assertEquals (2.0xMath.PI, new Circle(l) .getPerimeter (), 1le-10);
}
public void t3() {
assertEquals (0, circle.getPerimeter(), 1le-10);
}
}

Listing 10.2: Tests for the faulty code

can be seen in the right hand side of Table 10.1, where the differences to the coverage-based
spectrum are underlined. The result is that the faulty line 6 is now correctly localized at
the first ranking position with the score 1 (ef = 1 and ep = 0), while the non-faulty line 5
gets a score 0 with ef =0 and ep = 1).

As mentioned, there are only a handful of researchers who utilized this concept to develop
a combined SBFL and slicing approach. Mao et al. [101] presented an approach that used
slices to construct more precise program spectra, and they experimented with various slicing
algorithms including Approximate Dynamic Backward Slicing and Relevant Slicing. The
algorithm called Tandem-FL was proposed by Reis et al. [112], which is able to locate and
reduce the suspiciousness of those components that are mostly involved in failing tests but
seldom covered by passing ones. Their idea uses SBFL to calculate the suspiciousness of

4 5 6 8 9 11 12|R 4 5 6 8 9 11 12|R
cery |t 1 1 1 1 0 O0]0O DSEy|1 1 0 1 1 0 0]0
c#2) |t r 1 0 O 1 1|1 DS#E)|l1 o 1 0 0 1 1|1
c#) o 0 0 0 0 1 1|0 DSE)|O 0O 0 0 0 1 10
ef 1 1 1 0 0 1 1 ef 1 0 1 0 0 1 1
ep 1 1 1 1 1 1 1 ep 1 1 0 1 1 1 1
nf o 0 0 1 1 0 0 nf o 1 0 1 1 0 0
np 1 1 1 1 1 1 1 np 11 2 1 1 1 1
Barinel | 0.5 0.5 0.5 0.0 0.0 05 0.5 | Barinel | 0.5 0.0 1.0 0.0 0.0 0.5 0.5 |

Table 10.1: Coverage (left) and slice-based (right) spectra and fault localization results for
the example
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each element, then select the top k from the list. Alves et al. [47] use the basic slice-based
approach but introduce variations to accommodate for change-based analysis. None of these
reports deal with analyzing the differences between the coverage and the slice information
nor seek to understand how much the former one is over-approximated. Furthermore, all the
other related research we are aware of combines the two techniques differently.

10.3 Theoretical analysis of coverage and slice

We will use notations M’, ef’, nf’, ep’, and np’ to denote the slice-based spectrum matrix,
and the associated spectrum metrics. For this theoretical analysis, we assume the following:

1. Program P includes exactly one fault which can be identified at a single code location,
i.e., |F| = 1. The faulty code element will be denoted by f in the following (n will be
used for all other elements).

2. All coverages include at least one code element, i.e., Vt € T : |C(t)] > 0

3. The faulty code element is executed by all failing test cases, i.e.,
VieT : Rit)y=1= M(t,f)=1

4. Each test case t can be associated with exactly one slicing criterion, which means that
rows of matrices M and M’ are compatible.

5. The backward dynamic slice is computed correctly, meaning
VteT : DS(t) C C(t) C E, furthermore

6. f contributes to the slicing criterion in all failing test cases, implying that
7. fis included in all slices for failing test cases, i.e., Vt € T : R(t)=1= M'(t,f)=1.

8. All slices include at least one code element, i.e., Vt € T : |DS(t)| > 0.

Following the property of the dynamic slice being the subset of the code coverage, we
can look at how much more precise it is. We can express this in terms of the slice size with
respect to the coverage size for each test case t in a program P. The average slice size will
be used as a proxy to the probability p € (0, 1] that a covered code element e will be also in
the slice: e

 Ter T
T

Based on the assumptions above, we can make the following observations. For the faulty
element f, ef'(f) = ef(f) and nf'(f) = nf(f) because each failing test’s slice must include f
and both M and M’ have the same T set of tests. Regarding the passing tests, there are no
such requirements, so ep’(f) C ep(f) and np'(f) 2 np(f). In the case of any other non-faulty
element n, the subset relationship will be the same for all four sets. We can calculate the
expected values of the four spectrum metrics for the slice-based spectrum as:

For f: For any n:
ef = ef ef =p-ef
nf' = nf nf' = (1—p)-ef +nf
ep) =p-ep ep) =p-ep

np'=(1—p)-ep+np  np'=(1—-p)-ep+np
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We can now investigate how values of the suspiciousness formulae relate to each other for
the same program P but computed on M and M’. For the faulty element, the value of ef
does not change while the others get smaller, and since many of the formulae include ef in
the numerator and the others in some form in the denominator, the score value will usually
be bigger in the slice-based spectrum. For the non-faulty element, the score will typically
either be the same or smaller.!

Table 10.2 shows the formulae we work with in this research in more detail (the original
definitions are given in Chapter 2, here we use abbreviated names). Here, the slice-based
spectrum metrics are simply substituted to form the slice-based formulae.

Bar'(f) = efff;ep > Bar(f) Bar'(n) = p'e]effrep = Bar(n)
/ echfnf ! e;fftf
Tar (f) = m Z Tar(f) Tar (n) = W = Tar(n)
ef+nf " eptnp ef+tnf " eptnp
Ocll(f) = o > Och Ochl(n) = p-ef = /p- Och(n) < Och
¢ (f) \/(ef+nf)'(6f+p~ep) = e (f) ¢ (TL) \/(€f+nf).(p-ef+p.ep) \/I_) ¢ (n) > Uce (n)
Ja,c'(f) - ef+nje‘f+p-ep = Jac(f) Jac'(n) - p-ef+(1*pgv-?}+nf+p-ep - if+%+ep = Jac(n)
P P
/ _ 2-ef / _ 2p-ef _ 2-ef
So!(F) = saptrdryes 2 S07(f) S0/ (0) = per B e = iy < S07(0)
/ o €f2 / o p2-€f2 o €f2
Dst(f) = paprar = Dst(f) Dst(n) = ooy = 21y TE < Dst(n)

Table 10.2: Coverage and slice-based formula relationships

We could show that, in all investigated cases, the suspiciousness score of the faulty el-
ement is the same or bigger in the slice-based spectrum than for the coverage-based one,
while all non-faulty elements’ scores are either smaller or the same for the slice-based spec-
trum. We checked several other published formulae if they exhibit this property and found
that they do, but we cannot rule out the possibility that there are some counter-examples.
However, we expect that any formula that has a meaningful combination of the spectrum
metrics will behave similarly.

We can also observe from the above that the smaller p is the bigger the difference will
be between the two methods. The effect is that, with these assumptions, the coverage-
based SBFL necessarily produces a worse ranking than the slice-based SBFL, due to the
over-approximation of the real dynamic dependences using the coverage, and the bigger this
over-approximation the worse the result will be.

The assumptions from above will not necessarily hold for realistic situations, but we
believe that they are good approximations of reality. Furthermore, the benchmarks typically
used in related research often aim at achieving these ideal situations. Slicing tools are not
perfect either, and they may violate one or more of the assumptions. Nevertheless, we
think that further research is necessary to understand what the performance of realistic
implementations and real programs and faults is. Also, the imprecision of coverage-based
SBFL with respect to slice-based SBFL should be measured in practice by looking at the
slice sizes (p) since this turns out to be an essential parameter.

Tt is worth noting that this shows the average case and the expected values based on the average slice
size, but in reality, the final scores for the individual elements can change in either direction because the
individual n elements can have various slice ratios for passing and failing cases.

89



Chapter 10. Use of Dynamic Slicing in Spectrum-Based Fault Localization

beszedes 242 24
10.4 Case Study

The goal of our case study was to verify the presented concepts in practice, which may serve
as a motivation for further research. We verify the relationship between the coverage-based
and slice-based spectra in depth, but instead of performing an extensive empirical evaluation
involving multiple programs with bugs and reporting overall high-level results, we selected
one subject program from a benchmark suite and evaluated each fault separately in detail.

Our goal with the case study was to implement the basic method outlined as closely as
possible, i.e., we did not want to use approximate slicing algorithms or other optimizations
on the matrix. There were several difficulties, however, including the imperfection of the
slicer tool we selected, and the way test cases, slicing criteria, and code elements could be
matched, as discussed in the later section.

10.4.1 Study settings
Creating Slice-Based Spectra

Coverage-based program spectra might include statements that do not affect the tested value.
These additional but irrelevant statements can lower the effectiveness of the method. The
solution already proposed by previous works is to compute the spectrum from slices [101].
We use this kind of “test-slice” spectrum in our evaluation.

In an ideal case, a test should check only one value, and there are test environments where
this is ensured. For example, sometimes the output of the program under test is written to
the standard output or a file (using a single statement) for later comparison with a reference
output. However, in practice, especially in unit test frameworks, a single test usually checks
multiple values. In unit tests, this is implemented as multiple assertions in a single test case,
and from the execution logs of a test case, it can be determined which assertion has failed.

Decomposing the tests and creating the spectrum for assertions instead of tests might
produce more detailed information on the position of the fault. In other words, we create
one row to the slice-based spectrum matrix for each assert rather than for each test case. To
be able to compare the slice-based results to the traditional coverage-based ones, we then
merge assert-slices for each test case by calculating the union of assertion slices per test case.

Slicing Tool

During the preparation of our experiments, we tested several tools that are capable of creating
dynamic backward slices, Slicer4J [36, 45], JavaSlicer [74], and Java SDG Slicer [67] amongst
others. However, most of the publicly available tools are not well-maintained, and they have
deprecated or unavailable dependences. Finally, we decided to use the open-source dynamic
slicing tool Slicer4J to collect the slices. It uses low-overhead instrumentation to collect a
runtime execution trace; it then constructs a thread-aware, inter-procedural dynamic control-
flow graph, and a set of pre-constructed data-flow summaries to compute the slice.

Determining the Slicing Criteria

Determining the slicing criterion is relatively straightforward in the case of unit tests. We
have asserts in the test cases that check some actual computed values against some expected
values. We should simply slice for the actual values used in the assert statements. As
the slicer we used is able to slice for a source code line (i.e., it is enough to give a line
number as a slicing criterion and it will compute slices for all appropriate variables of that
line), we first simply selected those lines of the test cases that contained asserts and passed
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these lines to the slicer. At the same time, we had to employ some workarounds to specific
exception-handling constructs found in the subject program.

Spectrum matrices and fault localization

Since we used the traditional coverage-based SBFL approaches as the baseline of our evalu-
ation, we had to calculate the corresponding results as well. To extract the coverage-based
program spectra and calculate the results based on them, we used the approach published
by Pearson et al. [109].

The slicer and coverage tools identified the tests and instructions in a mostly similar but
slightly different way. The basis of the instruction identifier we used is the fully qualified
name of the Java class and the line number. For the test cases, we used the fully qualified
Java method name (without return value and parameter specification). The asserts were
also identified by test case name and an additional absolute line number of the assert in the
file. While the two dimensions of our proposed spectra are asserts and instructions, in the
case study, we aggregated our slices by test cases. Thus, we computed the slices of all asserts
of a given test case and assigned their union to the test case as its slice set. We used our
own scripts to calculate the slice-based spectrum matrix from the raw data produced by the
slicer, the spectrum metrics, and the ranks.

Subject program

We focus on the qualitative evaluation of the differences among traditional coverage-based
and slice-based program spectra, hence we used a subset of the bugs of the program Time
from the Defects4]J (v2.0.0) [35] benchmark. We chose Time as our subject because its
domain is fairly easy to understand and this gives us the opportunity to demonstrate the
effects of the different approaches more easily. In addition, the complexity of the program,
the tests, and the faults is medium and could be regarded as typical for this benchmark.
There are 26 bugs (program versions) in this benchmark item with 12.9k-14.1k executable
statements and 3.7k-4.0k tests depending on the version. There are 1-8 faulty statements in
each version.

10.4.2 Results and quantitative evaluation
Data preparation

The subject program has 27 buggy versions, but bug 21 is marked as deprecated, resulting
in 26 bugs we could work with. Table 10.3 shows whether the bug was included or excluded
in our examination (column “Inc.”), as well as, the reason behind the exclusion (column
“Reason”), which is described in detail below.

Inc. Reason Bugs

Bad Slice {1, 2, 7,8, 11, 13, 19, 20}
X Omission {3, 6, 14, 15, 18, 24, 25, 27}
FEzxception {5}

v - {4,9, 10, 12, 16, 17, 22, 23, 26}

Table 10.3: Properties of the investigated bugs

We excluded 8 bugs because their fix contains only added statements (Omission). These
statements are missing from the buggy versions, i.e., neither the coverage-based nor the
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slice-based spectra can point to them. Another reason was that the slice did not contain the
faulty element, but the test cases covered it (Bad Slice). In one case, the test failed before
the assertions due to an exception (Ezception), which made the dynamic slice computation
impossible. In 7 cases, we could not find out why the slice did not contain the faulty (and
covered) statements. In two cases the faulty statements were spread across multiple lines,
and the reported location of the fault (determined from change sets) did not match the
location reported by the slicer (the first line of the multiline statements). We corrected
these two computations by hand. As a result, we had 9 bugs for which we could compute
meaningful slices.

Comparing spectra

As discussed above, in theory, the slice spectra should be a subset of coverage spectra.
Unfortunately, with our toolset, this turned out to not hold in about 60% of the slices.
We checked the reasons why slices can be inaccurate in this sense, and we found two main
reasons. One is that the slicer does not slice into Java library methods, and while losing
dependences through them it also follows some false dependences. The other cause is that the
slicer and the coverage tool can report different source code lines for multiline expressions.
To approximate the theoretical parameter p from Section 10.3 on our subject program,
we had to deal with this inaccuracy of the slicing tool. We simply ignored statements that
are not covered but are part of the slice, hence we computed the size of the intersection of
the coverage and slice sets and divided it with the coverage size. We then averaged this value
for every test case. Table 10.4 shows the resulting values along with some other statistics.

Bug Avg. Med. Min. Max. Std.dev.

4 0.4259 0.4167 0.0 1.0 0.2834

9 04321 04286 0.0 1.0 0.2847
10 0.4321 0.4286 0.0 1.0 0.2849
12 0.4335 04344 0.0 1.0 0.2836
16 0.4369 0.4378 0.0 1.0 0.2828
17 0.4345 0.4357 0.0 1.0 0.2811
22 04444 0.4463 0.0 1.0 0.2796
23 04442 0.4463 0.0 1.0 0.2798
26 0.4634 04706 0.0 1.0 0.2750

Table 10.4: Measured average slice sizes with respect to the coverage on the subject programs

The average slice size varies between 42.5% and 46.4% of the coverage. However, we
expect that the correct values would be even lower because the slicer seems to be over-
approximating as was the case with the not covered elements. Looking at the relationship
between the expected fault localization scores for the two types of matrices in Section 10.3,
we see this value to be a significant factor responsible for the differences in the final rankings.

Comparison of SBFL effectiveness

We use the Ezpense metric to assess the effectiveness of fault localization, which is essentially
the absolute average rank of faulty statements (see Chapter 8). Table 10.5 shows these results
for different formulae on the included bugs for both kinds of spectra. We can see that in
most cases the slice-based results are better, sometimes notably. There were a couple of
cases where the results were the same, and in two cases (bugs 9 and 16) the coverage-based
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method performed better. For bugs 4 and 17, the faulty element was placed on the highest
rank position by the slice-based approach but since it was tied with several other elements,
the value shown is not 1.

B D 0 T

Bug : . . . . .
cov. slice | cov. slice | cov. slice | cov. slice | cov. slice | cov. slice

4 235 15 | 205 15 | 235 15 | 235 15 | 235 15 | 235 1.5
9 3 11 2 11 3 11 3 11 3 11 3 11
10 | 21.5 9 11.5 10 | 19.5 10 | 15,5 10 19.5 10 21 9
12 2.5 25 | 295 25 8 2.5 5 2.5 8 2.5 2.5 2.5
16 8 10 8 11 8 11 8 11 8 11 8 10
17 ) 5 5 ) ) ) ) 5 5 5 5 5
22 | 235 145 | 235 135 | 235 145 | 235 135 | 235 145 | 235 145
23 | 25,5 205 | 25.5 205 | 255 205 | 25,5 205 | 25.5  20.5 | 255 20.5
26 | 270.5 20.5 | 60.5 10.5 | 1325 19.5 | 71.5 155 | 1325 19.5 | 156.5 20.5
avg | 42.6 10.5|20.7 9.5 | 27.6 10.6 | 20.1 10.1| 27.6 10.6 | 29.8 10.5

Table 10.5: Fault localization effectiveness (Expense values). B: Barinel, D: DStar, J:

Jaccard, O: Ochiai, S: Sorensen-Dice, T: Tarantula

The last row represents the overall average ranks, from which we can infer the degree
of improvement in general. The difference is notable in all cases (between 10 and 32), i.e.,
the slice-based method ranks the faulty statement higher in the suspiciousness list by 10-32
positions. Overall, DStar performed best (9.5), followed by Ochiai (10.1) but the other
formulae produced similar results.

Although we cannot draw definitive conclusions from the results due to the small sample
size, we can say that the overall performance of slice-based SBFL compared to coverage-
based one is positive: on this subject program it improved the ranking position of the faulty
elements notably, in many cases achieving the top positions. Only two bugs showed negative
results, and we attribute these to inaccuracies in the slicing tool.

10.4.3 Qualitative evaluation

We examined each investigated bug in detail to find out why coverage-based SBFL produced
sub-optimal results compared to slice-based SBFL (in the cases when the result was negative,
the reasons for it as well). The focus of the comparison was primarily on the spectrum
metrics, rather than the score and rank values. (In this section, the item names are relative
to the org.joda.time package.)

time-4: Test TestPartial Basics.textWith3 fails here because no exception is thrown.
The reason for this is that the Partial.with(DateTimeFieldType, int) method calls a wrong
constructor (in line 464). The slice of the test case contains 4 statements (lines 430, 431, 464,
466), while the coverage has 24 additional ones. In addition, 3 utility statements are covered
by only the faulty test case. This resulted in the score of the faulty statement ranking at
23.5 on average, together with 14 other statements. As the mentioned utility and additional
statements are omitted by the slicer, their ef’ values were reduced, allowing the formulae to
rank lines 464 and 466 in the first position with the same score.

time-9: Here DateTimeZone:26/ has a slice-based rank 11 with ef'=1 and ep’=5, and
shares these values with 8 statements including DateTimeZone:604. However, DateTime-
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Zone:604 was covered by not 5 but ep=11 passed tests. For example, the slice of TestDate-
TimeZone.testSerialization2 does not include the above-mentioned statement but covers it.

The computed slice of the test contains only the statements of the test except for the
10111, 1006'", and 1000%" instructions. As oos is of a stock Java class type, the slicer does
not analyze its method call in line 1004 but seems to treat it as a definition of a zone instead
of treating it as a use. This can be the reason why line 1000 is (incorrectly) not included in
the slice, so the ep’ values of the statements accessible through it (e.g. Date TimeZone:604)
are not increased by the test result of testSerialization2, thus, the scores are not decreased,
i.e. statements are ranked as more suspicious. Due to cases like this, the results of the
(passed) tests will not be counted for certain statements and, therefore, it is possible that
the coverage-based result will be better than the slice-based one.

time-10: The second assert fails in both failing test cases. While the bug is covered by
both test cases, it is contained only in the slice of the first, not failing assert of test case
TestDays.testFactory daysBetween_RPartial _MonthDay. We could not find the reasons for
this omission, it is probably due to a slicer issue.

time-12: We found that the slices of the asserts contain only a few statements, so there
is a non-negligible difference between the slice-based and coverage-based spectrum metrics.
The reason for the difference is that statement LocalDateTime:612 (in the isSupported()
method) has ef=4, which makes it among the most suspicious elements according to the
coverage-based algorithm, while the ef'=0, which puts it in the bottom of the suspicion
ranking of the slice-based approach. The ef, ep, and nf values of the faulty statement
LocalDate:211 are the same in the two spectra, so it precedes several statements in the
ranking that are more suspicious than it according to the coverage-based algorithm but
ranked lower by their slice-based spectra.

time-16: We examined the tests related to the fault at format. Date TimeFormatter:709
in method parselnto(). In the case of the coverage-based measurement, test TestDateTime-
Formatter.testParselnto _monthOnly covers the buggy statement, however, the slice-set be-
longing to the assert in line 869 includes only the first line of the parselnto() method (line
698). This is interesting because the return value of f.parselnto(result, "5", 0) function call
(and the other statements affecting it) was omitted due to a probable slicer problem and
this misled the slice-based FL algorithms.

time-17: Bug 17 has 9 instructions with the same highest score and average rank of 5.
These 9 instructions belong to 3 methods, 2 of which (Date Time.withEarlierOffset AtOverlap()
and Date Time.withLaterOffsetAtOverlap()) are simple sequential methods, and Date Time-
Zone.adjustOffset(long, boolean) is a bit longer having a decision. All instructions but the
alternative return of the last method are both covered and part of the slices. These 9 instruc-
tions are always executed together. As a result, their two spectra are identical, resulting in
the same scores and ranks.

time-22: 8 passed tests have incorrectly computed slices, e.g., the slice of the assert
in line TestMutablePeriod Basics:451 contains only 1 statement, and does not include the
constructor of class MutablePeriod and thus (incorrectly) could not reach the buggy line
base. BasePeriod:222. Yet, the scores and ranks of the faulty instruction improve, because
its ep’ < ep due to the bad computations.

time-23: Test TestDateTimeZone.testForlD String old fails when it checks the con-
tents of a map previously filled by the Date TimeZone.getConvertedID(String) method. The
coverage-based calculations rank DateTimeZone:314 to first place as it is executed by the
failing and a single passing test case. Then a tie with 48 elements follows, including the
faulty lines, lines filling the map, and other lines of the DateTimeZone.getDefault() method.
All of these are covered by the sole failing and multiple passing tests. The slicer is unable
to decompose which items in the map are used in the failing test, keeping the whole map
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filling section in the slice. However, it is able to omit the lines of the getConvertedID(String)
method from all test cases except for the passing one (and it does the same for two additional
instructions of getDefault()), while keeping them in the slice of the failing test case. This
reduction of ep’ results in a tie of 40 elements, including all faulty lines, in the first place
(with an average rank of 20.5).

time-26: There are 8 failing test cases and 8 modified lines for fixing the same bug. The
fix replaces the call to convertLocalToUTC(long, boolean) with the newly added convertLo-
calToUTC(long, boolean, long). However, only one buggy line, chrono.ZonedChronology:467
is exercised by the tests. It is covered by all faulty test cases but contained only in 4 of their
slices, while 175 passing tests also cover the line but only 49 slices of passing tests do the
same. Thus, while ef is higher than ef’, ep is much higher than ep’, causing our metrics to
give a higher score to the faulty instruction. The slicer also eliminates many instructions
from the spectrum of faulty test cases. While coverage shows 1615 instructions with non-zero
ef, there are only 872 instructions with non-zero ef’. This also helps improve the rank of
the faulty statement.

The cases when slice-based SBFL did not overtake coverage-based SBFL were due to
imperfections or defects in the slicer. In one case (Bug 10) the slicer seemed to miscalculate
slices for the faulty test, yet the ranks were still able to improve. In all other cases, the
slice-based spectrum worked as expected, and either raised the score of the faulty element
or lowered the score of non-faulty statements.

10.5 Conclusions

We argue that using code coverage in the SBFL spectrum is such an over-approximation
that it could impair the achievable effectiveness of SBFL to a level that makes it not useful
in practice. Code coverage is, in essence, a proxy to the dynamic backward program slice
which captures the code elements with an actual influence on the defective behavior. In
Section 10.3, we showed that, in principle, the coverage-based SBFL will necessarily produce
worse code element ranking compared to the slice-based spectrum because a correctly com-
puted backward dynamic slice is a subset of the coverage. Furthermore, it is expected that
the rate of imprecision of the coverage will directly and severely influence the performance
of the suspiciousness formulae.

The preconditions set in Section 10.3 will not hold in many practical situations, but
as our experimental study showed, even under imperfect conditions, the benefits of slicing
are clearly visible over coverage. In fact, the case study showed that the slice is less than
half of the coverage and that the overall localization effectiveness is typically much better
with the slice-based SBFL than with the coverage-based one. The study also highlighted
several deficiencies in the slicing tool used, but despite of these, the results were positive.
We cannot rule out the possibility that the coverage-based measurement had flaws too, but
since we used a well-established technique and mature tools, we attribute these errors mostly
to the slicer tool. Finally, through real examples, the qualitative evaluation showed why the
coverage-based spectrum was detrimental. So, the question is, why are we still using code
coverage as the basis for SBFL?

One part of the answer is that computing coverage is simple using existing tools, and the
SBFL implementations are straightforward. But, despite its several decades-long history,
program slicing is still a difficult area, and practically usable tools are not easy to develop.
Slicers that produce more precise results often require huge computation resources, while
sub-optimal and approximate slicing algorithms may be very imprecise. Another challenge
with the slicing approach is that a slicing criterion is needed for each test case, which is
often not trivial to determine in practice. Our case study dealt with unit tests, and there
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the assertions could serve this purpose, but when the tests are higher level or more complex,
this can be a challenge.

Furthermore, there are many technical limitations of practical program slicing tools,
which increases the risk of their use in fault localization, and this risk is much higher than
with the coverage-based tools. If we fail to tell whether an instruction is covered, it will affect
only that particular instruction; but when a dependency is missed or falsely added during
slicing, it can affect a significant amount of dependent instructions. Difficulties often relate
to special features like multi-threading or exception handling, dependences from 3rd party
or mixed language components, or unobservable artifacts e.g., files and databases. Many
practical tools either miss dependences, leading to false results, or employ a conservative
approach and imprecise slices, the very essence of the disadvantage of the coverage-based
approach discussed in this research.

On the positive side, it must be noted that program slicing also carries structural infor-
mation about the program and the computation paths. In a simple SBFL approach, the
programmers need to walk down the list of suspicious elements that often do not have any
relationship to each other. However, when using program slicing, the dependences can be
followed, which reflects the actual computations, and this information may be a big aid dur-
ing debugging [108]. A hybrid approach, such as the one proposed by Soremekun et al. [121],
could be considered as well.

In summary, we are convinced that this area needs more research. Slice-based spectra
should once more attain much higher focus, such as research on more efficient approximate
or hybrid slicing. There are several open questions to be addressed. One of the possible
directions is to investigate the actual performance of various slicing algorithms and tools,
and how they could be improved to better serve this application. A good alternative would
be to experiment with hybrid or approximate slicing algorithms, as some related techniques
did [101]. On a more conceptual level, one should consider specific aspects of the SBFL
process and slicing, such as the issues of multiple faults, ranking ties, the impact of various
slice concepts, as well as the question of the slicing criterion in different types of tests.

Contribution

This chapter is based on the publication:

[26] Péter Attila Soha, Tamas Gergely, Ferenc Horvath, Béla Vancsics, Arpad Beszédes.
A Case Against Coverage-Based Program Spectra. In Proceedings of the 16th IEEE
International Conference on Software Testing, Verification and Validation (ICST 2023),
pages: 13-24, Dublin, Ireland, April 2023.

Despite its recent publication, this paper already received one independent citation. Our
results can serve as evidence for the serious drawback of coverage-based SBFL, and this has
not been systematically verified before, hence we believe that the investigation of program
slicing for SBFL may receive bigger attention in the future.

The theoretical model that describes the relationship between coverage and slice-based
SBFL and the level of difference in their results with respect to the inaccuracy of code
coverage are mostly my contribution, while the use of the spectrum matrix with dynamic
slices computed from the asserts in test cases, and its quantitative and qualitative empirical
comparison to the coverage-based approach are joint work.
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Conclusion

In this thesis, various topics related to program dependence analysis have been addressed
with mention of different applications including debugging, testing, and other areas of soft-
ware development and maintenance. A large portion of the presented methods are some form
of dynamic program analysis, which in general means more precise results compared to static
analysis. However, additional challenges arise due to the need for analyzing (potentially very
large) execution traces and dynamic relations between program elements.

Our findings related to dynamic program slicing and the dynamic function coupling show
that it is possible to design cost-effective dynamic dependence algorithms by either using
efficient data structures or performing the analysis on a lower granularity level.

Results from dependence cluster analysis highlight the need to continue research in the
direction of more efficient linchpin detection and program refactoring techniques to reduce
the burden of large dependence clusters. Static analyses inherently include imprecision, so
it is not known how much these imprecisions are the cause for the formation of depen-
dence clusters. Using dynamic dependence analysis as the underlying dependence for cluster
computation instead of static analysis could provide interesting insights about this topic.

Results in this thesis related to Spectrum-Based Fault Localization aim at improving
the efficiency of fault localization, but there are a lot of possibilities to explore in this area.
Using additional context information beyond the traditional coverage-based spectra seems
to be inevitable, which is supported by multiple findings in this thesis (using call chains,
call frequencies and program slices). Involving the user knowledge into the process in an
interactive fault localization process is another promising direction [16]. Apart from that,
it is important to continue work on the development of practical fault localization tools in
development environments and debuggers [22, 23, 27]. Several challenges have already been
identified which make this task difficult [15, 17, 20, 34], and addressing these would bring us
closer to the everyday use of this technique.
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