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Introduction

This dissertation is based on five papers which I consider representative of my research over
the past twenty years. Each of these papers is on the interface of analytic number theory and
other fields of mathematics, discrete harmonic analysis, ergodic theory and geometric Ramsey theory.

The topic of the first section is the distribution of solutions of general high rank diophantine
equations, expressed in terms of pointwise ergodic theorems, the crucial ingredient being certain Lp

estimates for maximal averages over integer points on hypersurfaces. Such estimates are considered
discrete analogues of certain central results in Euclidean harmonic analysis and has been initiated
by the groundbreaking results of Bourgain, as well as systematic study of Stein and Wainger. I
have written 8 papers with my co-authors in this area where I think my work has made the most
impact. It has brought young researchers to this area, has initiated many further studies on related
problems and our papers received a substantial number of references.

The topic of the second and third chapter is geometric Ramsey theory where one studies isometric or
similar copies of finite point configurations, the underlying space being the integer lattice or in some
instances the Euclidean space the model case of vectorspaces over finite fields. This section is based
on 2 papers, which have been mainly motivated by Bourgain’s simplex theorem and a conjecture of
Graham in Euclidean Ramsey theory. It outlines a new approach, based on some notions and ideas
in additive combinatorics and graph theory. My work in this area, consisting of 7 papers, has also
raised considerable interest has initiated further research. Although less transparent, methods of
analytic number theory play a crucial role here too, in particular the Hardy-Littlewood method of
exponential sums and the theory of Siegel theta functions.

The fourth chapter is about finding solutions to diophantine systems in the primes. Here we present
one paper which may be viewed as the extension of Hua’s work on representing positive integers as
sums of a fixed power of primes. This was the first paper which have shown that any sufficiently high
rank diophantine system has many solutions in the primes as long as it satisfies certain natural local
conditions. This paper has influenced further studies on prime solutions to diophantine equations.
In another, somewhat related, in joint work I have extended the celebrated theorem of Green and
Tao on the existence of long arithmetic progressions in the primes to the multi-dimensional setting,
however the methods of that paper are mainly combinatorial and will not be discussed here.

The topic of the last chapter is our ongoing work toward the so-called Furstenberg-Bergelson-Leibman
conjecture in ergodic theory. This conjecture states that general polynomial orbits of actions of
nilpotent groups have have almost everywhere as well as norm convergence. This connects back to
the first section as the first fundamental results were due to Bourgain, who proved the conjecture
for commuting transformations by reducing it to bounds for associated maximal operators over
polynomial surfaces and employing methods of analytic number theory. I discuss our most recent
paper in this direction, which establishes the conjecture for step-2 nilpotent groups by extending
Bourgain’s approach to the non-commutative setting. A crucial arithmetic input is to derive Weyl-
type estimates for exponential sums arising from diophantine systems which are natural extensions
of the so-called Waring-Vinogradov system to free nilpotent groups. As a byproduct, we derive
asymptotics for the number of integer solutions to such systems.
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1 Diophantine equations and ergodic theorems

In this chapter we discuss ergodic theorems showing the uniformity of distribution of the solutions
to certain diophantine equations, proved in [81]. In the first section we recall Bourgain’s polynomial
ergodic theorem [15, 13, 14], as well as its relation to the lp boundedness of certain discrete maximal
operators. Next we present our main results and in the remaining sections their proof.

1.1 Polynomial ergodic theorems and discrete harmonic analysis

Let (X,µ) be a finite measure space, without loss of generality we will assume µ(X) = 1, i.e. it is a
probability space. If T : X → X is a measure preserving ergodic transformation, then a fundamental
theorem in ergodic theory, due Birkhoff [12], states that the orbits Ox := {Tnx : n ∈ N} are
uniformly distributed on X. The precise statement is as follows. Let p ≥ 1, f ∈ Lp(X,µ). Then
there exists a function f∗ ∈ Lp(X,µ) such that

ANf(x) :=
1

N

N∑
n=1

f(Tnx) → f∗(x), (1.1.1)

for µ-a.e. x ∈ X. Moreover if T is ergodic, i.e. E = T−1(E) implies that µ(E) = 0 or µ(X\E) = 0,
then f∗ is constant and equal to

´
X f dµ. An approach to Birkhoff’s theorem, due to M. Riesz, is

first to reduce proving (1.1.1) to the maximal inequality

∥A∗f∥p ≤ Cp ∥f∥p, where A∗f(x) = sup
N∈N

|ANf(x)|, (p > 1) (1.1.2)

then, using a general transfer principle, due to Calderon, reduce inequality (1.1.2) to the shift
X = Z, Tx = x − 1. Then one arrives to the so-called Hardy-Littlewood maximal inequality
∥A∗ϕ∥p ≤ Cp ∥ϕ∥p, where ϕ ∈ lp(Z) and ANϕ(m) = 1

N

∑N
n=1 ϕ(m− n).

In a series of fundamental papers [15, 13, 14] Bourgain has extended Birkhoff’s theorem to polynomial
orbits OP (x) = {TP (n)(x); n ∈ N}, P : Z → Z being an integral polynomial. He proved that for
every exponent p > 1, and for every f ∈ Lp(X,µ) there exists a function f∗ ∈ Lp(X,µ) such that
for µ-a.e. x ∈ X,

AP,Nf(x) :=
1

N

N∑
n=1

f(TP (n)x) → f∗(x). (1.1.3)

Moreover, if T is fully ergodic, that is if T k ergodic for all k ∈ N, then f∗ constant, thus the
polynomial orbits OP (x) are uniformly distributed for almost every x ∈ X. Bourgain has also
proved a multi-dimensional extension, namely that above theorem holds for the averages

AP1,...,Pk,Nf(x) :=
1

N

N∑
n=1

f(T
P1n)
1 . . . T

Pk(n)
k x), (1.1.4)

whenever T1, . . . , Tk are commuting, measure preserving transformations on X and P1, . . . , Pk are
integral polynomials on Z.

As opposed to Birkhoff’s theorem there is not a dense set of functions in Lp(X,µ) for which (1.1.3)
holds thus the corresponding maximal inequality

∥A∗
P f∥p ≤ Cp ∥f∥p, where A∗

P f(x) = sup
N∈N

|AP,Nf(x)|, (1.1.5)
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does not imply point-wise convergence in itself. Nevertheless, proving it is crucial to Bourgain’s
approach and it is not hard to show that if the family of functions {ANf(x)}n∈N do not converge
almost everywhere on X, then there exists an increasing sequence {Nk}k∈N ⊆ N and a constant
α > 0, such that for all k ∈ N,

∥A∗
P,kf∥p ≥ α, where A∗

P,kf(x) = sup
Nk≤N<Nk+1

|AP,Nf(x)−AP,Nk
f(x)|. (1.1.6)

Note that the maximal functions A∗
P,kf are measuring the oscillation of the sequence of functions

AP,Nf . It is then enough to show that ∥A∗
P,kf∥p → 0 as k → ∞, at least when one is taking Cesaro

averages that is to prove appropriate maximal inequalities.

The Calderon transference principle holds equally well for polynomial averages, effectively transferring
the maximal inequalities to the shift X = Z, Tx = x− 1. The key part of Bourgain’s proof is to
show that for any ϕ ∈ lp(Z) and for any polynomial P : Z → Z one has that

∥ sup
N∈N

A∗
P,Nϕ∥p ≤ Cp ∥ϕ∥p, where AP,Nϕ(m) =

1

N

N∑
n=1

ϕ(m− P (n). (1.1.7)

Note that AP,Nϕ = f ∗KP,N is a convolution with a kernel KP,N = 1
N

∑N
n=1 δP (n), δm being the

Dirac delta measure concentrated at m. The Fourier transform

K̂P,N (α) =
1

N

N∑
n=1

e2πi P (n)α, (1.1.8)

is an exponential sum extensively studied in analytic number theory, in particular via the so-called
Hardy-Littlewood method of exponential sums. A deep study on the structure of K̂P,N (α) is crucial
to Bourgain’s proof.

1.2 The distribution of solutions to diophantine equations

A fundamental problem in number theory is to determine asymptotically the number of integer
solutions m = (m1, . . . ,mn) of a diophantine equation Q(m1, . . . ,mn) = λ as λ→ ∞ through the
integers, and Q(m) is a positive polynomial with integer coefficients. A general result of this type
follows from a variant of the Hardy-Littlewood method of exponential sums developed by Birch [2]
and Davenport [4], which is as follows.

Let Q(m1, . . . ,mn) be a positive homogeneous polynomial of degree d with integral coefficients, and
suppose that it satisfies the non-degeneracy condition

n− dim VQ > (d− 1)2d (1.2.1)

Here VQ = {z ∈ Cn : ∂1Q(z) = . . . ∂nQ(z) = 0} is the complex singular variety of the polynomial
Q. For simplicity we’ll refer to polynomials satisfying all the above conditions as non-degenerate
forms.
Then the following asymptotic formula holds for the number of integer solutions rQ(λ) = |{m ∈
Zn : Q(m) = λ}|,

rQ(λ) = cQλ
n
d
−1

∞∑
q=1

K(q, 0, λ) + Oδ(λ
n
d
−1−δ) (1.2.2)
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for some ϵ > 0. The expression K(λ) =
∑∞

q=1K(q, 0, λ) is called the singular series, the terms are
special cases of (l = 0) the exponential sums

K(q, l, λ) = q−n
∑

(a,q)=1

∑
s∈Zn/qZ

e
2πi

a(Q(s)−λ)+s·l
q (1.2.3)

that is a goes through the reduced residue classes (mod q) and sj goes through all residue classes
(mod q) for each j. We remark that K(q, 0, λ) is a Kloostermann sum if Q(m) is a quadratic form

The asymptotic formula (1.2.2) can be valid just under a condition of type (1.2.1). Indeed consider
the polynomial Q(m) = (m2

1 + . . .+m2
n)

d/2 (d > 2 even). Then rQ(λ) = 0 unless λ = µd/2, µ ∈ N,
and in that case rQ(λ) = µn/2−1 = λn/d−2/d. Hence formula (0.2) is never valid. The reason is
that the complex singular variety: VQ = {z ∈ Cn : z21 + . . .+ z2n = 0} has dimension n− 1. It is
meaningful only if the singular series is nonzero. It can be shown, that if Q is a non-degenerate
form, then there exists an arithmetic progression Γ ⊆ N and a constant 0 < AQ such that

AQ ≤ K(λ) , for every λ ∈ Γ. (1.2.4)

We’ll refer to such sets Γ as sets of regular values of the polynomial Q. Inequality (0.4) is true
for all large λ, just under additional assumptions modulo primes. Indeed consider the polynomial
Q(m) = md

1 + pQ1(m2, . . .mn). For λ = pλ1 + s s being a quadratic non-residue, the equation
Q(m) = λ has no solution, since d is even. Such conditions will be discussed later.

A crucial observation is that a similar approximation formula to (1.2.2) holds for the Fourier
transform of the solution set:

σ̂Q,λ(ξ) :=
∑

m∈Zn,Q(m)=λ

e2πim·ξ , ξ ∈ Πn,

were Πn = ℜn/Zn is the flat torus.

Lemma 1.1. Let Q(m) be a non-degenerate form, then there exists δ > 0, such that

σ̂Q,λ(ξ) = cQλ
n
d
−1

∞∑
q=1

K(q, l, λ)
∑
l∈Zn

ψ(qξ − l)dσ̃Q(λ
1
d (ξ − l/q))) + Eλ(ξ), (1.2.5)

where sup
ξ

|Eλ(ξ)| ≤ cδλ
n
d
−1−δ.

Here ψ(ξ) is a smooth cut-off, ψ(ξ) = 1 for supj |ξj | ≤ 1/8 and ψ(ξ) = 0 for supj |ξj | ≥ 1/4.
Moreover

d̃σQ(ξ) =

ˆ
{x∈ℜn :Q(x)=1}

e2πix·ξ dσQ(x). (1.2.6)

where dσQ(x) =
dSQ(x)
|Q′(x)| , dSQ(x) being the Euclidean surface area measure of the level surface

Q(x) = 1, and |Q′(x)| the magnitude of the gradient of the form Q.

The approximation formula (1.2.5) means, that the Fourier transform of the indicator function of
the solution set Q(m) = λ is asymptotically a sum over all rational points, of pieces of the Fourier
transform of a surface measure of Q(x) = λ, multiplied by arithmetic factors and shifted by rationals.
This formula in the special case Q(m) = m2

1+ . . .+m
2
n was proved earlier in [82]. Our main purpose

is to study the distribution of the solution sets {m ∈ Zn : Q(m) = λ}. We have,
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Theorem 1.1. Let Q(m) be a non-degenerate polynomial and Λ is corresponding set of regular
values. Then for a test function ϕ(x) ∈ S(Rn) one has

lim
λ∈Λ,λ→∞

1

rQ(λ)

∑
Q(m)=λ

ϕ(λ−1/dm) =

ˆ
Q(x)=1

ϕ(x) dσQ(x). (1.2.7)

That is when the solution sets Q(m) = λ are projected to the unit surface Q(x) = 1 via the dilations

m→ λ−1/dm, they weakly converge to the surface measure
dSQ(x)
|Q′(x)| . This is well-known in case Q(x)

is a quadratic form.

Our main result concerns the uniform distribution of the images of the solution sets, when mapped to
a measure space via an ergodic family of transformations. Let (X,µ) be a probability measure space,
and T = (T1, . . . , Tn) be a family of commuting, measure preserving and invertible transformations.
Suppose for every positive integer q the family T q = (T q

1 , . . . , T
q
n) is ergodic. We recall this means,

that for every f ∈ L2(X,µ)
T q
1 f = . . . T q

nf = f

implies f = constant. We’ll refer to a family of transformations satisfying all the above conditions
as a strongly ergodic family.

Theorem 1.2. Let Q(m) be a non-degenerate form, Γ be a corresponding set of regular values and
T = (T1, . . . , Tn) a strongly ergodic family of transformations of a measure space (X,µ).
For f ∈ L2(X,µ) consider the averages

Aλf(x) =
1

rQ(λ)

∑
Q(m1,...mn)=λ

f(Tm1
1 Tm2

2 · · ·Tmn
n x)

Then one has

∥ lim
λ∈Γ,λ→∞

(Aλf −
ˆ
X
fdµ)∥L2(X,µ) = 0. (1.2.8)

This is an L2 ergodic theorem, it follows from a non-trivial estimate on the exponential sums σ̂Q,λ(ξ)
at irrational points ξ /∈ Qn. More precisely one needs the following

Lemma 1.2. Let Q(m) be a non-degenerate form, Γ be a corresponding set of regular values. Then
for ξ /∈ Qn one has

lim
λ∈Λ,λ→∞

1

rQ(λ)
|σ̂Q,λ(ξ)| = 0. (1.2.9)

To see the correspondence, suppose that f ∈ L2(x, µ), f ̸= constant is a joint eigenfunction of the
shifts: Tjf = e2πiξjf (Tjf(x) = f(Tjx)). Then Aλf = 1

rQ(λ) σ̂Q,λ(ξ)f , and the strong ergodicity of

the family T implies that ξ /∈ Qn.
The main result is the corresponding pointwise ergodic

Theorem 1.3. Let Q(m) be a non-degenerate form, Γ be a corresponding set of regular values
and T = (T1, . . . , Tn) a strongly ergodic family of transformations of a measure space (X,µ). Let
f ∈ L2(X,µ), Then for µ-almost every x ∈ X one has

lim
λ∈Γ,λ→∞

Aλf(x) =

ˆ
X
f dµ. (1.2.10)
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Theorem 1.3 means, that the images of the solution sets

Uλ = {m ∈ Zn : Q(m) = λ}, (1.2.11)

under the transformations T = (T1, . . . , Tn), that is the sets

Ωx,λ = {(Tm1
1 Tm2

2 · · ·Tmn
n x) : m ∈ Uλ}, (1.2.12)

become uniformly distributed on X w.r.t. µ for almost every x ∈ X. Let us mention a special case

Corollary 1.1. Let α1, . . . , αn be a set of irrational numbers (αj /∈ Q ∀j). If Q(m) is a non-
degenerate form, and Γ is a corresponding set of regular values, then the sets

Ωλ,α = {(m1α1, . . . ,mnαn) ∈ Πn : Q(m1, . . . ,mn) = λ}, (1.2.13)

become uniformly distributed on the torus Πn w.r.t. the Lebesgue measure.

Indeed, if X = Πn and Tj(x1, . . . , xj , . . . xn) → (x1, . . . , xj + αj , . . . xn) and αj /∈ Q, then the family
T = (T1, . . . , Tn) is strongly ergodic.

The proof of the pointwise ergodic theorem is based on the L2 boundedness of a corresponding
maximal function

Theorem 1.4. Let Q(m) be a non-degenerate form, Γ be a corresponding set of regular values. For
ϕ ∈ l2(Zn) we define the maximal function

N∗ϕ(m) = sup
λ∈Γ

1

rQ(λ)
|
∑

Q(l)=λ

ϕ(m− l) |, (1.2.14)

Then one has
∥N∗ϕ∥l2(Zn) ≤ C∥ϕ∥l2(Zn). (1.2.15)

Theorem 1.4 is a discrete analogue of a maximal theorem on Rn, corresponding to the level surfaces
of the form Q(x).

Theorem 1.5. Let Q(x) be a non-degenerate form and f ∈ L2(Rn). Then for the maximal function

M∗f(x) = sup
λ>0

λ−
n
d
+1|

ˆ
Q(y)=λ

f(x− y)
dSQ,λ(y)

|Q′(y)|
|, (1.2.16)

one has
∥M∗f∥L2(Rn) ≤ C∥f∥L2(Rn). (1.2.17)

For the polynomial Q(x) =
∑n

j=1 x
2
j this is the spherical maximal theorem of E.M.Stein [101]. For

general forms Q Theorem 1.5 does not seem to be in the literature [102]. This is due the lack
of decay estimates for the Fourier transform of surface measure dSQ,λ, which we will derive from
appropriate estimates from closely related exponential sums.

For the special case Q(m) =
∑n

j=1m
2
j , Theorem 1.4, was proved by Magyar, stein and Wainger in

[82], moreover there the lp → lp boundedness of the discrete maximal operator was shown for the
sharp range of exponents p > n

n−2 . The non-degeneracy condition (0.1) is also, sharp in the sense,

that for the form Q(m) = m2
1 +m2

2 +m2
3 +m2

4 (where codim VQ = 4 = (d− 1)2d), Theorem 4. is
not true, taking averages on any arithmetic progression Γ, see section 1.3 below. Hence the work
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presented in this chapter is the continuation of [82] to some extent.

As mentioned above, our work is motivated by Bourgain’s polynomial ergodic theorem [15, 13, 14]
where the Hardy-Littelwood method of exponential sums was used in a crucial way to obtain
lp-bounds for discrete maximal operators from known lp bounds for analogues maximal operators
in Euclidean spaces. However in the present case, the averages are over disjoint sets, the strong
ergodicity condition is also necessary, and is actually a condition on the joint spectrum of the
transformations (T1, . . . , Tn). Thus we will need the Spectral Theorem even in case of the pointwise
convergence, i.e. in the proof of Theorem 1.3.

1.3 Exponential sums and oscillatory integrals

We recall some estimates going back to Birch [11] on exponential sums, and prove the estimates and
properties of oscillatory integrals needed later. In particular we give a proof of Theorem 1.5.

Let Q(m) be a non-degenerate form of degree d, that is a positive homogeneous polynomial with
integer coefficients, satisfying the non-degeneracy condition (1.2.1). Let P > 1, 0 < θ ≤ 1 be fixed.

Definition 1.1. For 1 ≤ q ≤ P (d−1)θ, 1 ≤ a < q, (a, q) = 1 we define the major arcs

La,q(θ) = {α : 2|α− a/q| < q−1P−d+(d−1)θ} (1.3.1)

L(θ) =
⋃

q≤P (d−1)θ, (a,q)=1

La,q(θ)

If α /∈ L(θ) then α belongs to the minor arcs.

The following properties of the major arcs are immediate from the definition, see [2, Sec.4] for the
proof.

Proposition 1.1. If

(i) θ1 < θ2 then L(θ1) ⊆ L(θ2).

(ii) θ < d
3(d−1) then the intervals La,q(θ) are disjoint for different values of a and q.

(iii) θ < d
3(d−1) then |L(θ)| ≤ P−d+3(d−1)θ.

We’ll use the notation κ =
codim VQ

2d−1 throughout this chapter, and it is understood that κ
d−1 > 2

which follows from condition (1.2.1).
Let Q1(m) be a polynomial of degree d, such that its d-degree homogeneous part Q(m) is a
non-degenerate form. For a real α and a smooth cut-off function ϕ(x), consider the exponential sum

S(α) =
∑

m∈Zn

e2πiαQ1(m) ϕ(m/P ). (1.3.2)

This is a Weyl type sum, the trivial estimate is S(α) ≤ Pn. The following estimates due to Birch
[11] are of basic importance

11
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Lemma 1.3. Suppose α /∈ L(θ), then for any ϵ > 0, one has

|S(α)| ≤ CϵP
n−κθ+ϵ. (1.3.3)

If δ < κ−2(d−1)
12d(d−1) and 2δκ

d−1 − 2 < θ < 1
6d then one has for the average over the minor arcs,

ˆ
α/∈L(θ)

|S(α)| dα ≤ CδP
n−d−δ. (1.3.4)

The constants Cϵ, and Cδ depend just on the homogeneous part Q(m), on the cut-off ϕ, on ϵ and δ.

Remark. Estimate (1.3.3) is proved in [11], see Lemma 4.3, when the cut-off ϕ is replaced by
the characteristic function χ of a cube of side length ≈ 1. Choosing χ s.t. χϕ = ϕ and applying
Plancherel’s identity, one has∑

m∈Zn

e2πiαQ1(m) ϕ(m/P )χ(m/P ) =

ˆ
Πn

(
∑

m∈Zn

e2πiαQ1(m)−m·ξχ(m/P ) (Pnϕ̂(Pξ)) dξ

Here Πn is the flat torus and can be identified with [−1/2, 1/2]n. Estimate (1.3.3) holds for the first
term of the integral uniformly in ξ and it is easy to see that ∥Pnϕ̂(Pξ)∥1 ≤ cϕ.
To see (1.3.4) one uses (1.3.3) for α /∈ L(θ), with θ < θ′, together with the fact that the measure of
L(θ′) is small by (1.3.1), which gives

´
α∈L(θ′)\L(θ) |S(α)| dα ≤ CδP

n−d−δ , see [11, Lemma 4.4].

Corollary 1.2. Let Q(m) be a non-degenerate form, and 1 ≤ a < q be natural numbers s.t.
(a, q) = 1. Consider the Weyl sum,

S(a, q) =
∑

m∈Z/qZn

e
2πi a

q
Q(m)

. (1.3.5)

One has
|S(a, q)| ≤ CQ,ϵ q

n− κ
d−1

+ϵ. (1.3.6)

Proof. Choose α = a/q, P = q and notice α /∈ L(θ) for θ < 1
d−1 . Indeed for q1 ≤ q(d−1)θ < q:

|a/q − a1/q1| ≥ (qq1)
−1 ≥ q−1

1 q−d+(d−1)θ. The estimate follows from (1.3.3). □

Corollary 1.3. If |α| < P−2d/3 then |S(α)| ≤ CQ,ϵ P
n+ϵ(P d|α|)−

κ
d−1

Proof. Choose θ s.t. |α| = P−d+(d−1)θ, that is (P d|α|)
1

d−1 = P θ. The major arcs La,q(θ) are disjoint
since (d − 1)θ < d/3, moreover α is an endpoint of the interval L0,1(θ) hence α /∈ La,q(θ − ϵ) for
every ϵ > 0. By (1.3.3)

|S(α)| ≤ CQ,ϵ P
n−κθ+ϵ = CQ,ϵ P

n+ϵ(P d|α|)−
κ

d−1 □

Let Q(x) be a non-degenerate form of degree d, κ =
codimVQ

2d−1 , L > 0, and η ∈ ℜn.

Lemma 1.4. Consider the oscillatory integral

IQ(L, η) =

ˆ
e2πi(LQ(x)+x·η)ϕ(x) dx. (1.3.7)

One has, for every ϵ > 0,
IQ(L, η) ≤ CQ,ϵ(1 + L)−

κ
d−1

+ϵ, (1.3.8)

where the constant Cϵ is independent of L and η.
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Proof. The estimate is clear for L < 1. Let L ≥ 1, the gradient of the phase: |LQ′(x) + η| ≥ L if
|η| ≥ CL on the support of ϕ(x) for large enough constant C > 0, and (1.3.8) follows by partial
integration.

Suppose |η| ≤ CL and introduce the parameters P, θ, α s.t. α = P−dL, L = P (d−1)θ and P > L
3κ
d−1 .

Changing variables y = Px one has,

IQ(L, η) = P−n

ˆ
e2πiα (Q(y)+P d−1y·η)ϕ(y/P ) dy

We compare the integral to a corresponding exponential sum

P−nS(α) = P−n
∑

m∈Zn

e2πiα (Q(m)+P d−1m·η)ϕ(m/P )

If y = m+ z where m ∈ Zn and z ∈ [0, 1]n, then

|e2πiα (Q(y)+P d−1y·η) − e2πiα (Q(m)+P d−1m·η)| ≤ C|α|(|Q(m+ z)−Q(m)|+ P d−1|η|),

which is bounded by CP−1+(d−1)θ, since |α| = P−d+(d−1)θ and |η| ≤ P (d−1)θ. Thus

|IQ(L, η)− P−nS(α)| ≤ CQP
−1+2(d−1)θ ≤ CQP

− 1
3 . Corollary 1.3 implies that

|P−nS(α)| ≤ Cϵ(P
dα)−

κ
d−1

+ϵCϵL
− κ

d−1
+ϵ

and (1.3.8) follows using P− 1
3 ≤ L− κ

d−1 . □

The level surfaces of a non-degenerate form SQ,λ = {x ∈ ℜn : Q(x) = λ} are compact smooth
hypersurfaces (for λ > 0). Indeed Q(x) = λ implies that |x| ≈ λ1/d, moreover Q′(x) ̸= 0 for every
x ̸= 0. There is a unique n− 1-form dσQ(x) on ℜn − 0 for which

dQ ∧ dσQ = dx1 ∧ . . . ∧ dxn, (1.3.9)

called the Gelfand-Leray form, see [1, Sec.7.1]. To see this, suppose that ∂1Q(x) ̸= 0 on some open
set U . By a change of coordinates: y1 = ∂1Q(x), yj = xj for j ≥ 2, equation (1.3.9) takes the form

dy1 ∧ dσQ(y) = ∂1H(y) dy1 ∧ . . . ∧ dyn, (1.3.10)

where x1 = H(y), xj = yj is the inverse map. Thus the form: dσQ(y) = ∂1H(y) dy2
∧
. . .
∧
dyn

satisfies equation (1.8).

We define the measure dσQ,λ as the restriction of the n− 1 form dσQ to the level surface SQ,λ. This
measure is absolutely continuous w.r.t. the Euclidean surface are measure dSQ,λ, more precisely
one has

Proposition 1.2.

dσQ,λ(x) =
dSQ,λ(x)

|Q′(x)|
. (1.3.11)

Proof. Choose local coordinates y as before, in coordinates y level surface and surface area measure
takes the form:

SQ,λ = {x1 = H(λ, y2, . . . , yn) : xj = yj}
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and

dSQ,λ(y) = (1 +
n∑

j=2

∂2jH(λ, y))1/2 dy2 ∧ · · · ∧ dyn

Using the identity F (H(y), y2, . . . , yn) = y1 one has

∂1F (x)∂1H(y) = 1 , ∂1F (x)∂jH(y) + ∂jF (x) = 0

This implies that ∂1H(y) = (1+
∑n

j=2 ∂
2
jH(y))1/2 · |F ′(x)|−1. Then (1.3.11) follows by taking y1 = λ.

□

A key observation is that the measure dσQ,λ, considered as a distribution on Rn, has a simple
oscillatory integral representation

Lemma 1.5. Let Q(x) be a non-degenerate form and λ > 0. Then in the sense of distributions

dσQ,λ(x) =

ˆ
R
e2πi(Q(x)−λ)t dt. (1.3.12)

This means that for any smooth cut-off function χ(t) and test function ϕ(x) one has

lim
ϵ→0

ˆ ˆ
e2πi(Q(x)−λ)tχ(ϵt)ϕ(x) dxdt =

ˆ
ϕ(x)dσQ,λ(x). (1.3.13)

Proof. Let U be an open set on which ∂1Q ̸= 0, and by a partition of unity we can suppose, that
supp ϕ ⊆ U . Changing variables y1 = Q(x), yj = xj the left side of (1.3.13) becomes

lim
ϵ→0

ˆ ˆ
e2πi(y1−λ)tχ(ϵt)ϕ̃(y)|∂1H(y)| dydt =

ˆ
ϕ̃(λ, y′)|∂1H(λ, y′)|dy′

where y′ = (y2, . . . yn). The last equality can be seen by integrating in t and in y1 first, and using
the Fourier inversion formula:

lim
ϵ→0

ˆ ˆ
e2πi(y1−λ)tχ(ϵt)g(y1) dy1dt = g(λ)

On the other hand SQ,λ ∩ U = {x1 = H(λ, y2, . . . yn) : xj = yj} and dσQ,λ(y) = |∂1H(λ, y′)| dy′ in
parameters y′. □

Lemma 1.6. Let Q(x) be a non-degenerate form of degree d, κ =
codimVQ

2d−1 . Then one has for the
Fourier transform of the measure dσQ,1 = dσQ

|dσ̃Q(ξ)| ≤ CQ,ϵ(1 + |ξ|)−
κ

d−1
+1+ϵ. (1.3.14)

Proof. Suppose |ξ| > 1. Using the fact that ϕdσQ = dσQ if ϕ = 1 on a neighborhood of 0 and
formula (1.3.13), we have

dσ̃Q(ξ) =

ˆ
e−2πi x·ξϕ(x) dx = lim

δ→0

ˆ ˆ
e−2πi x·ξe2πi(Q(x)−1)tϕ(x)χ(δt) dxdt.

We decompose the range of integration into two parts

d̃σQ(ξ) =

ˆ
|t|≥C|ξ|

ˆ
Rn

+

ˆ
|t|≤C|ξ|

ˆ
Rn

= I1 + I2
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Since for fixed |t| ≤ C|ξ| the gradient of the phase: |tQ′(x)− ξ| ≥ |ξ|/2 if C > 0 is small enough,
integration by parts gives |I2| ≤ CN (1 + |ξ|)−N+1 for every N > 0. For |t| ≥ C|ξ| Lemma 1.3
implies,

|
ˆ
e2πi(tQ(x)−x·ξ)ϕ(x) dx| ≤ Cϵ| |t|−

κ
d−1

+ϵ,

hence

I1 ≤ Cϵ

ˆ
|t|≥C|ξ|

|t|−
K

d−1
+ϵ dt ≤ Cϵ |ξ|−

κ
d−1

+1+ϵ. □

First we prove a dyadic version of Theorem 1.5., together with a refinement which will be needed in
the proof of Theorem 1.3.

Lemma 1.7. Let Λ > 0 be fixed, ω(ξ) be a smooth function with supported on the set {Λ− 1
2d ≤

∥ξ∥ ≤ 1
4}, where ∥ξ∥ = maxj |ξj |.

Let Mλ and Mω,λ be the multipliers acting on L2(Rn) defined by

M̃λf(ξ) = dσ̃(λ1/dξ) and M̃ω,λf(ξ) = ω(ξ)dσ̃(λ1/dξ).

Then one has for the maximal operators,

∥ sup
Λ≤λ<2Λ

|Mλf | ∥L2 ≤ C∥f∥L2 . (1.3.15)

∥ sup
Λ≤λ<2Λ

|Mω,λf | ∥L2 ≤ C Λ− 1
2d ∥f∥L2 . (1.3.16)

Note that Mλf = λ−
n
d
+1 (f ∗ dσλ).

Proof. Using the integral representation (1.3.12) one has

dσ̃(λ1/dξ) = λ−
n
d
+1[dσ̃λ(ξ) = λ−

n
d
+1

ˆ
ℜ

ˆ
ℜn

e2πi(Q(x)−λ)t+m·ξϕ(x/Λ
1
d ) dx dt.

This means

Mλf = λ−
n
d
+1

ˆ
e−2πiλtHΛ,tf dt,

where HΛ,t is the multiplier corresponding to

hΛ,t(ξ) =

ˆ
e2πi(Q(x)t+m·ξ)ϕ(x/Λ

1
d ) dx.

Then taking the absolute values, and using Minkowski’s integral inequality

∥ sup
Λ≤λ<2Λ

|Mλf | ∥L2 ≤ CΛ−n
d
+1

ˆ
∥HΛ,tf∥L2 dt.

Using estimate (1.3.14) and the fact that − κ
d−1 + ϵ < −2 , one has

|hΛ,t(ξ)| ≤ CΛ
n
d min{(1 + Λ|ξ|)−N , (1 + Λ|t|)−2},

and (1.3.15) follows as Λ
´
(1 + Λt)−2 dt ≤ C.
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To prove (1.3.16) we have to replace hΛ,t(ξ) by ω(ξ)hΛ,t(ξ). Then one has better uniform estimates

in ξ; indeed for Λt ≤ Λ
1
2d it follows

|ω(ξ)hΛ,t(ξ)| ≤ C(1 + Λ|ξ|)−N ≤ (1 + Λ
1
2d )−N , hence

Λ

ˆ
sup
ξ

|ω(ξ)hΛ,t(ξ)| dt ≤ CΛ

ˆ
Λt≤Λ

1
2d

Λ−N
2ddt+ CΛ

ˆ
Λt≥Λ

1
2d

(Λt)−2dt ≤ CΛ− 1
2d

This proves (1.3.16). □

Proof of Theorem 1.5. If Q(x) is a positive, non-degenerate form of degree d, then Q(x) ≈ |x|d.
Then the maximal function: M̄f(x) = supλ>0 λ

−n/d|Āλf(x)|, where

Āλf(x) =

ˆ
Q(y)≤λ

f(x− y) dy

is majorized by the standard Hardy-Littlewood maximal function, hence is bounded from L2(Rn)
to itself. Note that, ˆ

Q(y)≤λ
g(y) dy =

ˆ λ

0

ˆ
Q(y)=s

g(y) dσQ,s(y)ds

hence

Āλf(x) = λ−1

ˆ λ

0
Af(x) ds

Then, using estimate (1.3.14), Theorem 1.5 follows by the standard proof of Stein’s spherical
maximal theorem, see [101]. □

1.4 Fourier transform of integer points on hypersurfaces.

First we rewrite formula (1.2.5) in the form

σ̂Q,λ(ξ) = cQ

∞∑
q=1

∑
(a,q)=1

m
a/q
λ (ξ) + Eλ(ξ), (1.4.1)

where

m
a/q
λ (ξ) =

∑
l∈Zn

e−2πiλa/qG(a/q, l)ψ(qξ − l)dσ̃Q,λ(ξ − l/q) (1.4.2)

and G(a/q, l) = q−n
∑

s∈Zn/qZn

e
2πi

a(Q(s)−λ)+s·l
q .

Here we used the fact, that dσ̃Q,λ(η) = λn/d−1dσ̃Q(λ
1/dη), which follows by scaling, since |Q′(x)| is

homogeneous of degree d− 1.

Note that in the right side of (1.4.1) there is at most one nonzero term, since the cut-off factor
ψ(qξ − l), and then (3.5.4) implies

|ma/q
λ (ξ)| ≤ Cϵλ

n/d−1q−
κ

d−1
+ϵ ≤ Cϵλ

n/d−1q−2−ϵ, (1.4.3)
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by (1.2.1) if ϵ is small enough, hence the sum in (1.4.1) is absolutely convergent.

Let Nλ and Mλ denote the convolution operators on Zn corresponding to the multipliers σ̂Q,λ(ξ)

and mλ(ξ) =
∑

q

∑
(a,q)=1m

a/q
λ (ξ) . The main approximation property we need is the following

Lemma 1.8. Let Λ > 0, δ > 0 be amall, fixed and f ∈ l2(Zn) then

∥ sup
Λ≤λ<2Λ

|(Nλ −Mλ)f | ∥l2 ≤ CδΛ
n
d
−1−δ∥f∥l2 . (1.4.4)

Lemma 1.8 in the special case Q(m) =
∑

j m
2
j is proved in [82] and note that it immediately implies

Lemma 1.1 as for fixed λ (Λ ≤ λ < 2Λ), one has

∥(Nλ −Mλ)f ∥l2 ≤ CΛ
n
d
−1−δ∥f∥l2 ∀f ∈ l2(Zn)

is equivalent to
sup
ξ

|σ̂Q,λ(ξ)−mλ(ξ)| ≤ Cλ
n
d
−1−δ

which is the content of (1.2.5).

Let P = Λ1/d, and let ϕ(x) be smooth cut-off function on Rn s.t. ϕ(x) = 1 for Q(x) ≤ 2. Then

σ̂Q,λ(ξ) =
∑

m∈Zn

e2πim·ξϕ(m/P )

ˆ 1

0
e2παi(Q(m)−λ) dα =

ˆ 1

0
S(α, ξ)e−2πiλα dα,

where S(α, ξ) =
∑

m e
2πi(αQ(m)+m·ξ)ϕ(m/P ).

Let δ and θ be chosen as in Lemma 3. and integrate separately on the major and minor arcs:

σ̂Q,λ(ξ) =

ˆ
α∈L(θ)

S(α, ξ)e−2πiλα dα+

ˆ
α/∈L(θ)

S(α, ξ)e−2πiλα dα (1.4.5)

(1.4.6)

:= aλ(ξ) + E1
λ(ξ).

The following proposition is a prototype of the error estimates in this section

Proposition 1.3. Let E1
λ be the multiplier corresponding to E1

λ(ξ) that is: Ê1
λf = E1

λ(ξ)f̂(ξ). Then
one has

∥ sup
Λ≤λ<2Λ

|E1
λf |∥l2 ≤ CQ,δΛ

n
d
−1−δ∥f∥l2 (1.4.7)

Proof. Let Sα be defined by Ŝαf = S(α, ξ)f̂(ξ), then

sup
Λ≤λ<2Λ

|E1
λf | ≤

ˆ
α/∈L(θ)

|Sαf | dα

Taking the l2 norm one gets (1.4.7) from the minor arc estimate (1.3.4),

ˆ
α/∈L(θ)

|Sα(x, ξ)| ≤ CδΛ
n/d−1−δ. □
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Suppose α ∈ La,q(θ) for some (a, q) = 1, q ≤ P (d−1)θ, and write α = a/q + β, |β| ≤ P−d+(d−1)θ,
m = qm1 + s. We have

S(α, ξ) =
∑

s∈Zn/qZn

e
2πi

aQ(s)
q

∑
m1∈Zn

e2πi(βQ(qm1+s)+(qm1+s)·ξ)ϕ(
qm1 + s

P
)

Let H(x, β) = e2πiβQ(m)ϕ(m/P ), applying Poisson summation for the inner sum∑
m1

H(qm1 + s)e2πi(qm1+s)·ξ = q−n
∑
l

e
2πi l·s

q H̃(ξ − l/q, β)

Integrating in β and summing in a, q, one has

aλ(ξ) =
∑

q≤P (d−1)θ

∑
(a,q)=1

a
a/q
λ (ξ), (1.4.8)

where

a
a/q
λ (ξ) =

∑
l∈Zn

G(a, l, q)Jλ(ξ − l/q), (1.4.9)

and

Jλ(ξ − l/q) =

ˆ
|β|≤P−d+(d−1)θ

H̃(ξ − l/q, β)e−2πiλβ dβ. (1.4.10)

We shall approximate the multipliers a
a/q
λ (ξ) by multipliers b

a/q
λ (ξ) where the cut-off function

ψ(qξ − l)have been inserted in (1.4.9) that is let

b
a/q
λ (ξ) =

∑
l∈Zn

G(a, l, q)ψ(qξ − l)Jλ(ξ − l/q) (1.4.11)

Next we extend the integration in β in (1.4.10) and define

c
a/q
λ (ξ) =

∑
l∈Zn

G(a, l, q)ψ(qξ − l)Iλ(ξ − l/q), (1.4.12)

with

Iλ(ξ − l/q) =

ˆ
ℜ
H̃(ξ − l/q, β)e−2πiλβ dβ. (1.4.13)

Note that the integral in (1.4.13) is absolute convergent. Indeed by (1.3.8) and (1.2.1)

|Ĥ(η, β)| ≤ CQ,ϵP
n(1 + P d|β|)−

K
d−1

+ϵ. (1.4.14)

A crucial point is to identify the the integrals Iλ(η):

Iλ(η) =

ˆ
ℜn

ˆ
ℜ
e−2πi(Q(x)−λ)βe2πix·ηϕ(x/P ) dβ dη (1.4.15)

=

ˆ
ℜn

dσQ,λ(x)e
2πix·ηϕ(x/P ) dη = dσ̃Q,λ(η),
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by (1.3.12). This means that c
a/q
λ (ξ) = m

a/q
λ (ξ).

Let A
a/q
λ , B

a/q
λ , M

a/q
λ denote the multipliers, corresponding to a

a/q
λ (ξ), b

a/q
λ (ξ), and m

a/q
λ (ξ).

Proposition 1.4. We have the following estimates,∑
q≤P (d−1)θ

∑
(a,q)=1

∥ sup
Λ≤λ<2Λ

|(Aa/q
λ −B

a/q
λ )f | ∥l2 ≤ CδΛ

n
d
−1−δ∥f∥l2 . (1.4.16)

∑
q≤P (d−1)θ

∑
(a,q)=1

∥ sup
Λ≤λ<2Λ

|(Ba/q
λ −M

a/q
λ )f | ∥l2 ≤ CδΛ

n
d
−1−δ∥f∥l2 . (1.4.17)

∑
q≥P (d−1)θ

∑
(a,q)=1

∥ sup
Λ≤λ<2Λ

|Ma/q
λ )f | ∥l2 ≤ CδΛ

n
d
−1−δ∥f∥l2 . (1.4.18)

Proof. Note that each of the operators A
a/q
λ , B

a/q
λ , M

a/q
λ are of the form

Tλf =

ˆ
I
e−2πiλβ Uβf dβ

where Uβ is some convolution operator acting on functions on Zn: Ûβf = µβ(ξ)f̂(ξ), and I is some
interval. Then one has the point-wise estimate

sup
Λ≤λ<2Λ

|Tλf | ≤
ˆ
I
|Uβf | dβ,

and taking the l2 norm

∥ sup
Λ≤λ<2Λ

|Tλf | ∥l2 ≤
ˆ
I
| sup

ξ
| (µβ(ξ)|) dβ · ∥f∥l2 .

For the operator A
a/q
λ −B

a/q
λ , we have

µβ(ξ) =
∑
l∈Zn

G(a, l, q)(1− ψ(qξ − l))Ĥ(ξ − l/q, β),

and I = {|β| ≤ P−d+(d−1)θ}. Let η = ξ − l/q and estimate Ĥ(η, β) by partial integration:

|Ĥ(η, β)| = Pn|
ˆ
(e2πiP

dβQ(x)ϕ(x))e2πiPx·η dx| ≤

CNP
n|Pη|−N

ˆ
|(d/dη)N (e2πiP

dβQ(x)ϕ(x))| dx ≤

≤ CNP
n|Pη|−N (1 + P d|β|)N .

Using the facts that |Pη| = P/q|(qξ− l)| ≥ cP 1−(d−1)θ(1+ |(qξ− l)|) on the support of 1−ψ(qξ− l)
(for small c > 0), (d− 1)θ ≤ 1/3 and |G(a, l, q)| ≤ 1, one has for |β| ≤ P−d+(d−1)θ

| sup
ξ
µβ(ξ)| ≤ CNP

nP−N(1−2(d−1)θ)
∑
l∈Zn

(1 + |qξ − l|)−N ≤ CNP
n−N/3
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Then choosing N large enough, (1.4.16) follows since the total length of integration for different
values of a a and q is at most 1.

For the operator B
a/q
λ −M

a/q
λ , we have

µβ(ξ) =
∑
l∈Zn

G(a, l, q)ψ(qξ − l)Ĥ(ξ − l/q, β),

but we are integrating now on |β| ≥ P−d+(d−1)θ. Note that ψ(qξ − l) ̸= 0 for at most one values of l
By estimates (1.4.16) and (1.3.12): |G(a, l, q)| ≤ Cq−2−ϵ, we have

| sup
ξ
µβ(ξ)| ≤ CNq

−2−εPn(1 + P d|β|)−
K

d−1
+ϵ

hence by changing variables β1 = P dβ one has

∥ sup
Λ≤λ<2Λ

|(Ba/q
λ −M

a/q
λ )f | ∥l2 ≤ Cϵq

−2−εPn−d

ˆ
|β1|≥P (d−1)θ

|β1|−2dβ · ∥f∥l2

≤ Cϵq
−2−εPn−d−δ.

Summing in a ≤ q and in q = 1 to ∞ proves (1.4.17).

For M
a/q
λ the multiplier µβ(ξ) is the same, but now the range of integration is the whole real line.

Thus

∥ sup
Λ≤λ<2Λ

|Ma/q
λ f | ∥l2 ≤ Cϵq

−2

ˆ
β∈ℜ

(1 + P d|β|)−2dβ · ∥f∥l2 ≤

≤ Cϵq
−2Pn−d · ∥f∥l2

Summing for a ≤ q and q ≥ P (d−1)θ one gets the estimate Pn−d−(d−1)θ ≤ Pn−d−δ. □

Lemma 1.8 immediately follows from the above said, indeed for fixed λ

|(Nλ −Mλ)f | ≤
∑

q≤P (d−1)θ

∑
(a,q)=1

|(Aa/q
λ −M

a/q
λ )f |+

∑
q≥P (d−1)θ

|Ma/q
λ f |+ |E1

λf |.

We will need the following ”dyadic” discrete maximal theorem,

Proposition 1.5. Let Λ > 0 be fixed, then for the operator:

Nλf(m) =
∑

Q(l)=λ

f(m− l),

one has
∥ sup
Λ≤λ<2Λ

|Nλf | ∥l2 ≤ CΛ
n
d
−1∥f∥l2 , (1.4.19)

where the constant C is independent of Λ.
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Proof. Note that N̂λf(ξ) = σ̂Q,λ(ξ)f̂(ξ) hence

Nλf =
∑
q,a

M
a/q
λ f +

∑
q,a

(A
a/q
λ −M

a/q
λ )f + E1

λf

By Proposition 1.4 it is enough to show that,∑
q,a

∥ sup
Λ≤λ<2Λ

|Ma/q
λ f | ∥l2 ≤ C∥f∥l2 .

In proving (1.4.18) we showed

∥ sup
Λ≤λ<2Λ

|Ma/q
λ f | ∥l2 ≤ Cq−

κ
d−1Pn−d∥f∥l2 = Cq−

κ
d−1Λ

n
d
−1∥f∥l2

The sum in a, q is convergent and the Proposition is proved. □.

1.5 The singular series

In this section we analyse the normalising factor rQ(λ) which is the number of solutions m ∈ Zn for
which Q(m) = λ. We start by showing the existence of a regular set of values Γ, defined in Section
1, corresponding to a non-degenerate form Q. Taking ξ = 0 formula (1.2.5) one has that

rQ(λ) = cQλ
n
d
−1

∞∑
q=1

K(q, 0, λ) +O(λ
n
d
−1−δ).

By the well-known multiplicative property K(q1, 0, λ)K(q2, 0, λ) = K(q1q2, 0, λ) for q1 and q2 being
relative primes, we have

K(λ) =
∞∑
q=1

K(q, 0, λ) =
∏

p prime

(
∞∑
r=0

K(pr, 0, λ)) =
∏

p prime

Kp(λ)

.
Note that K(1, 0, λ) = 1, then by estimate (1.5) it follows that Kp(λ) = 1 + O(p−

κ
d−1

+1+ϵ) =

1 +O(p−1−ε) , by our assumption κ =
codimVQ

2−(d−1) > 2. Thus there exists R = RQ s.t.

1/2 ≤
∏

p>R prime

|Kp(λ)| ≤ 2. (1.5.1)

We recall that Kp(λ) is the density of solutions of the equation Q(m) = λ among the p-adic integers,
see [11]. More precisely,

Proposition 1.6. Let rQ(p
N , λ) = |{m ∈ Zn/pNZn : Q(m) = λ (mod pN )}|, that is the number

of solutions of the equation Q(m) = λ (mod pN ). Then one has

N∑
r=0

K(pr, 0, λ) = p−n(N−1)rQ(p
N , λ). (1.5.2)

Proof. First

rQ(p
N , λ) =

∑
m (mod pN )

p−N
pN∑
b=1

e
2πi(Q(m)−λ) b

pN ,
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since the inner sum is equal to pN or 0 according to Q(m) = λ (mod pN ) or not. Next, one writes
b = apN−r, where (a, p) = 1, a < pr and r = 0, . . . , N , and collects the terms corresponding to a
fixed r which turns out to be K(pr, 0, λ). □

We remark that this implies: limn→∞p
−n(N−1)rQ(p

N , λ) = Kp(λ). To count the number of solutions
(mod pN ), one uses the p-adic version of Newton’s method, referred to as Hensel’s Lemma, see [51,
Chapter 4].

Lemma 1.9. Let p be a prime, λ and k, l be natural numbers s.t. l > 2k. Suppose there is an
m0 ∈ Zn for which

Q(m0) ≡ λ (mod pl), (1.5.3)

moreover suppose that pk is the highest power of p which divides all the partial derivatives ∂jQ(m0).
Then for N ≥ l, one has:

p−N(n−1)rQ(p
N , λ) ≥ p−l(n−1). (1.5.4)

Proof. For N = l this is obvious. Suppose it is true for N , and consider all the solutions
m1 (mod pN+1) of the form m1 = m+ pN−ks where s (mod p). Then

Q(m+ pN−ks)− λ = Q(m)− λ+ pn−kQ′(m) · s = 0 (mod pN+1),

that is a+ b · s = 0 (mod p) where apN = Q(m) − λ and bpk = Q′(m). Then bj ̸= 0 (mod p) for
some j hence there are pn−1 solutions of this form. All obtained solutions are different mod (pN+1),
and m1 satisfy the hypothesis of the lemma. □

We remark that in case of m = 1, k = 0 the above argument shows that there are exactly p(N−1)(n−1)

solutions m for which m = m0 (mod p) and q(m) = λ(mod pN ).

Lemma 1.10. Let Q(m) be a non-degenerate form, then there exists a set of regular values in the
sense of (1.2.4).

Proof. Let λ0 = Q(m0) ̸= 0 for some fixed m0 ̸= 0. Let p1, . . . , pJ be the set of primes less then
R (R is defined in (3.1)). Let k be an integer s.t. pkj does not divide dλ0 , for all j ≤ J , where

d is degree of Q(m). By the homogeneity relation Q′(m0) ·m = dλ0 it follows that pkj does not
divide some partial derivative ∂iQ(m0). Fix l s.t. l > 2k and define the arithmetic progression:
Γ = {λ0 + k

∏J
j=1 p

l
j : k ≥ kQ}. We claim that Γ is a set of regular values. Indeed, by Lemma 1.9

one has for λ ∈ Γ
Kpj (λ) = lim

N→∞
p
−n(N−1)
j rQ(p

N
j , λ) ≥ p

−l(N−1)
j .

This together with (4.6.1) ensures that the singular series K(λ) remains bounded from below, and
the error term becomes negligible by choosing kQ large enough. □

Let us remark that along the same lines it can be shown, that all large numbers are regular values of
Q(m), if for each prime p < R and each residue class s (mod p), there is a solution of the equations
Q(m) = s (mod p) s.t. Q′(m) ̸= 0 (mod p). This is the case for example for Q(m) =

∑
j m

d
j .

Let us fix a set of regular values Γ, and a rational point k/p ̸= 0 in Πn , where k = (k1, . . . , kn) ∈ Zn.
Define the measure space X to be the set of residue classes (mod p), with each element having
measure 1/p. Let Tj(x) = x + kj (mod p), then the family of transformations T = (T1 . . . Tn) is
commuting, measure preserving and ergodic. Indeed for some j, kj ̸= 0 (mod p) and then Tj is
ergodic. The function f(x) = e2πix/p is a joint eigenfunction : Tjf = e2πikj/pf , hence

Aλf =
1

rQ(λ)
σ̂Q,λ(k/p)f, (1.5.5)
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where Aλf are the averages defined in (1.2.7). We’ll show below that the mean ergodic theorem
(1.2.7) is not valid in this setting, and hence the condition strong ergodicity is necessary. Note that
T = (T1, . . . , Tn) is not strongly ergodic as T p

1 = . . . = T p
n = I.

Lemma 1.11. Let Γ be a set of regular values. Let p be a large enough prime: p > d, p > R, p > λ0
(where λ0 is the smallest element of Γ), and k ∈ Zn. Then for λ ∈ Γ, λ = λ0 (mod p) one has

1

rQ(λ)
σ̂Q,λ(k/p) =

1

rQ(p, λ)

∑
Q(m)=λ (mod p),

m∈Zn/pZn

e
2πim·k

p +O(λ−δ). (1.5.6)

Taking Lemma 1.11 granted for a moment, note that the expression:

Sk =
∑

Q(m)=λ (mod p),
m∈Zn/pZn

e
2πim·k

p ,

is the Fourier transform on the group Zn/pZn of the indicator function of the set of solutions to
Q(m) = λ (mod p), thus

∑
k |Sk|2 = pn|rQ(p, λ0)| by Plancherel’s formula. This implies that Sk ≠ 0

for at least one k ̸= 0, since otherwise the equation Q(m) = λ = λ0 (mod p) would have pn or no
solution, both cases are impossible for p being large enough.
Thus (1.2.7) is not true, assuming only that the family of transformations is ergodic. We prove now
Lemma (1.11)

Proof. For a regular value rQ(λ) = cQK(λ)λn/d−1 + O(λn/d−1−δ) where |K(λ)| ≫ 1, hence by
(1.2.5), it is enough to show

c−1
Q

1

K(λ)

∞∑
q=1

∑
l∈Zn

K(q, l, λ)ψ(qk/p− l)dσ̃Q(λ
1/d(k/p− l/q)) = (1.5.7)

=
1

rQ(p, λ)

∑
Q(m)=λ (mod p),

m∈Zn/pZn

e
2πim·k

p +O(λ−δ).

For q not divisible by p, |kp−
l
q | ≥

1
pq , hence each term in the sum is bounded by q−

κ
d−1

+ϵλ−κ/(d−1)+1+ϵ

by (1.5) and (1.13). There is at most one nonzero term in the l sum for fixed q, and thus the total
sum for q not divisible by p is of O(λ−δ).

For q = bp, only those terms for which k/p = l/q are nonzero in (1.5.7), hence the sum becomes

1

K(λ)

∞∑
b=1

K(bp, bk, λ).

We write q = cpr where (c, p) = 1 and use the multiplicative property

K(cpr+1, ckpr, λ) = K(c, 0, λ)K(pr+1, kpr, λ),

which follows by the Chinese remainder theorem. At this point it is enough to show

1

K(λ)
(
∑

(c,p)=1

K(c, 0, λ))(
∞∑
r=1

K(pr+1, kpr, λ)) =
1

rQ(p, λ)

∑
Q(m)=λ (mod p),

m∈Zn/pZn

e
2πim·k

p . (1.5.8)
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Again, by multiplicativity,

∑
(c,p)=1

K(c, 0, λ) ·
∞∑
r=1

K(pr, 0, λ) =
∞∑
q=1

K(q, 0, λ). (1.5.9)

For the other factor in (1.5.8) one has

∞∑
r=1

K(pr+1, kpr, λ) = p−(n−1)
∑

Q(m)=λ (mod p),
m∈Zn/pZn

e
2πim·k

p . (1.5.10)

Similarly as in (3.2) ∑
m (mod pN )

p−N
pN∑
b=1

e
2πi(Q(m)−λ) b

pN e
2πim·k

pN

and writes b = apN−r, where (a, p) = 1, a < pr and r = 0, . . . , N . Each term corresponding to a
fixed r is K(pr, kpr−1, λ) for r ≥ 1, while the term corresponding to r = 0 is zero.

Next, let m0 be a solution of Q(m) = λ (mod p). Then by homogeneity Q′(m0) ·m0 = dλ = dλ0 ≠ 0
it follows by the remark after Lemma 9. that the number of solutions: m (mod pN ) for which
m = m0 (mod p) and Q(m) = λ (mod pN ) is exactly p(n−1)(N−1). Thus

∑
m (mod pN )

p−N
pN∑
b=1

e
2πi(Q(m)−λ) b

pN e
2πim·k

pN = p−(n−1)
∑

Q(m)=λ (mod p),
m∈Zn/pZn

e
2πim·k

p ,

this proves (3.10). By the same argument,

Kp(λ) = p−(n−1) rQ(p, λ), (1.5.11)

and (1.5.8) follows immediately from (1.5.9), (1.5.10) and (1.5.11). □

1.6 Proof of the main results.

In this section, first we prove Theorems 1.1- 1.2 and Lemma 1.2. the

Proof of Theorem 1.1 Let ϕλ(x) = ϕ(x/λ1/d), the one has∑
Q(m)=λ

ϕλ(m) =

ˆ
Πn

σ̂Q,λ(ξ)ϕ̂λ(ξ) dξ

where
ϕ̂λ(ξ) dξ =

∑
m∈Zn

ϕλ(m)e−2πim·ξ =
∑

m∈Zn

ϕ̃λ(ξ +m)

by Poisson summation (here ϕ̃λ(ξ) denotes the Fourier transform on ℜn. Since the exponential sum
σ̂Q,λ(ξ) is a smooth periodic function on Rn it follows∑

Q(m)=λ

ϕλ(m) =

ˆ
ℜn

σ̂Q,λ(ξ)ϕ̃λ(ξ) dξ. (1.6.1)
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Write σ̂Q,λ(ξ) = mλ(ξ) + Eλ(ξ) and estimate the contribution of the error term
ˆ
ℜn

|Eλ(ξ)ϕ̃λ(ξ)| dξ ≤ Cδλ
n/d−1−δ∥ϕ̃λ∥1 ≤ Cδλ

n/d−1−δ. (1.6.2)

We used the error estimate in (1.2.5) and the fact that ∥ϕ̃λ∥1 = ∥ϕ̃∥1 ≤ C. Recall that

mλ(ξ) =
∞∑
q=1

∑
l

K(q, l, λ)ψ(qξ − l)dσ̃Q,λ(ξ − l/q)

Next we estimate the contribution of the terms corresponding to l ̸= 0. For q ≥ λ
1
2d we use∑

q≥λ
1
2d

∑
l ̸=0

|K(q, l, λ)ψ(qξ − l)dσ̃Q,λ(ξ − l/q)| ≤ (1.6.3)

≤ Cλn/d−1
∑

q≥λ
1
2d

q−2 ≤ Cδλ
n/d−1−δ,

and after integrating we get the same estimate as in (1.6.2) ( κ
d−1 > 2). For q ≤ λ

1
2d we give the

estimate ∑
q≤λ1/2d

∑
l ̸=0

ˆ
ℜn

|K(q, l, λ)ψ(qξ − l)dσ̃Q,λ(ξ − l/q) ϕ̃λ(ξ)| dξ ≤ cNλ
−N , (1.6.4)

for any N > 0 integer. For fixed l ≠ 0, on the support of the cut-off factor ψ(qξ − l), one has
∥ξ − l/q∥ ≤ 1/(4q), which implies ∥ξ∥ ≥ 1/(2q), and also ∥ξ∥ ≥ ∥l∥/(2q). Thus

|ϕ̃λ(ξ)| ≤ CNλ
n/d(1 + λ1/d|ξ|)−2N ≤ (1.6.5)

≤ CNλ
n/d(1 + λ1/d/2q)−N (1 + c|l|/2q)−N .

Integrating in ξ over the region ∥ξ − l/q∥ ≤ 1/(4q), and then summing in l and in q ≤ λ
1
2d one

obtains (1.6.4).
Estimates (1.6.3) and (1.6.4) imply together that the total contribution of the terms corresponding
to l ̸= 0 in (1.6.1), is O(λn/d−1−δ. Finally, we note that

∞∑
q=1

ˆ
|K(q, 0, λ)(1− ψ(qξ))dσ̃λ(ξ)ϕ̃λ(ξ)| dξ ≤ Cδλ

n
d
−1−δ, (1.6.6)

by the same argument as used in proving (1.6.3) and (1.6.4). Indeed, the range of integration is
|ξ| ≥ c/q where both for q ≥ λ1/2d and for q ≤ λ1/2d, one has a gain, using the decay of the the
factor K(q, 0, λ) for small, and the decay of ϕ̃λ for large values of q.
Using (1.6.3), (1.6.4) and (1.6.6), one has

ˆ
ℜn

σ̂Q,λ(ξ)ϕ̃λ(ξ) dξ = cQK(λ)

ˆ
ℜn

σ̃Q,λ(ξ)ϕ̃λ(ξ) dξ +O(λ
n
d
−1−δ) (1.6.7)

= rQ(λ)

ˆ
Q(y)=1

ϕ(y) dσQ(y) +O(λ
n
d
−1−δ).

Indeed, one replaces the singular series cQK(λ) by λ−n/d+1rQ(λ) , use Plancherel’s formula, and a
change of variables x = λ1/dy. This proves the Theorem, since rQ(λ) ≥ CQλ

n/d−1 for regular values
λ. □
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Proof of Lemma 2. One writes

frac1rQ(λ)|σ̂Q,λ(ξ)| ≤ Cδλ
−n/d+1|mλ(ξ)|+O(λ−δ). (1.6.8)

For q fixed and ξ /∈ Qn (i.e. when ξj is irrational for some j)

λ−n/d+1|mq,λ(ξ)| = cQ
∑
l

|K(q, l, λ)ψ(qξ − l)dσ̃Q,λ(ξ − l/q)| (1.6.9)

≤ CQq
− κ

d−1
+ϵ|dσ̃Q,λ(λ

1/d{qξ}/q)|,

where {ξ} = min |ξ − l|. Indeed in the l sum only term corresponding to the closest lattice point to
qξ is nonzero.

Note that {qξ} ̸= 0 for every q, since otherwise ξ ∈ Qn. Then by (1.13) and (4.10) for q ≤ λ1/2d

we have the estimate λ−n/d+1|mq,λ(ξ)| ≤ Cq−1−ϵλ−δ, while for q ≥ λ1/2d one uses the bound q−1−ϵ.
The lemma follows by summing in q. □

In both the mean and pointwise ergodic theorem the Spectral Theorem will play an essential role.
Also, strong (or full) ergodidity is a condition on joint spectrum of the shifts Tj (Tjf(x) = f(Tjx)).
To see that let (X,µ) be a probability measure space, T = (T1 . . . Tn) be a family of commuting,
measure preserving and invertible transformations. By the Spectral theorem there exists a positive
Borel measure νf on the torus Πn, s.t.

⟨P (T1, . . . , Tn)f, f⟩ =
ˆ
Πn

p(ξ)dνf (ξ), (1.6.10)

for every polynomial P (z1, . . . , zn), where

(ξ) = p(ξ1, . . . , ξn) = P (e2πiξ1 , . . . , e2πiξn),

and ⟨, ⟩ denotes the inner product on L2(X,µ). We recall two basic facts

i) For r ∈ Πn, νf (r) > 0 if and only if r is a joint eigenvalue of the shifts Tj , (i.e. there exists
g ∈ L2(X) s.t. Tjg = e2πirjg for each j.

ii) If the family T = (T1, . . . , Tn) is ergodic, then νf (0) = |⟨f,1⟩|2 = |
´
X fdµ|2.

Proposition 1.7. Suppose the family T = (T1, . . . , Tn) is ergodic. Then it is strongly ergodic if and
only if νf (r) = 0 for every r ∈ Qn, r ̸= 0.

Proof. Suppose νf (l/q) > 0 for some l ̸= 0, then there exists g ∈ L2(X,µ) s.t. Tjg = e2πilj/qg ∀j.
But then T q

j g = g ∀j but g ̸= constant since l ̸= 0.
On the other hand suppose that T q

j g = g, ∀j for some g ̸= constant. Then the functions gs1...sn for
s ∈ Zn/qZn defined by

gs1...sn =
∑

m∈Zn/qZn

e
−2πim·s

q Tm1
1 . . . Tmn

n g

are joint eigenfunctions of with eigenvalues sj/q. They cannot vanish for all s ̸= 0 (mod q), because
then one would have Tjg = g ∀j, as can be seen easily by expressing Tjg in terms of the functions
gs1...sn . □
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Proof of Theorem 2. We start by

∥Aλf − ⟨f,1⟩1∥22 = ∥Aλf∥22 − |⟨f,1⟩|2 =
ˆ
Πn/{0}

|σ̂Q,λ(ξ)|2

rQ(λ)2
dνf (ξ).

The point is that νf (Q
n/{0}) = 0 by the strong ergodicity condition, moreover the integrand

pointwise tends to zero on the irrationals by Lemma 2, and is majorized by 1. It follows from the
Lebesgue dominant convergence theorem, that the integral also tends to 0 as λ→ ∞. This proves
the theorem. □

We prove Theorem 1.4 i.e. the L2 boundedness of the discrete maximal function associated to the
form Q(m) now, which plays a crucial role in the proof of the pointwise ergodic theorem.

Let ϕ ∈ l2Zn, the averages we are interested in: 1
rQ(λ)

∑
Q(l)=λ ϕ(m− l) will be replaced by

Nλϕ(m) =
1

λn/d−1

∑
Q(l)=λ

ϕ(m− l). (1.6.11)

Indeed it is enough to prove the maximal theorem for the averages Nλ, since for regular values:
rQ(λ) ≥ cQλ

n/d−1. We write

Nλϕ =Mλϕ+ Eλϕ =
∞∑
q=1

∑
(a,q)=1

M
a/q
λ ϕ+ Eλϕ, (1.6.12)

where Mλ, M
a/q
λ , Eλ denote the mulitpliers corresponding to the functions λ−n/d+1mλ(ξ), m

a/q
λ (ξ),

Eλ(ξ). We denote by M∗, M
a/q
∗ , E∗ the corresponding maximal operators.

By Lemma 8. we have,

∥E∗ϕ∥l2 ≤
∞∑
k=0

∥ sup
2k≤λ<2k+1

|Eλϕ| ∥l2 ≤ Cδ

∞∑
k=0

2−kδ∥ϕ∥l2 ≤ Cδ∥ϕ∥l2 . (1.6.13)

The same shows, that

∥ sup
Λ≤λ

|Eλϕ| ∥l2 ≤ CδΛ
−δ∥ϕ∥l2 . (1.6.14)

Thus to prove Theorem 1.4 it is enough to show

Lemma 1.12. Let q ≥ 1, and a s.t. (a, q) = 1 be given. The one has

∥Ma/q
∗ ∥l2 ≤ Cϵq

− κ
d−1

+ϵ∥ϕ∥l2 . (1.6.15)

It is understood that Q(m) is a non-degenerate form, hence κ = 1
2(d−1)

codim VQ > 2 and ϵ > 0 can

be taken arbitrary small. Hence in the right side of (1.6.15) we can take the bound Cq−2−ϵ, but
we’d like to emphasize the explicit dependence on κ.
Assuming Lemma1.12 for a moment, by sub-additivity it follows:

∥M∗ϕ∥l2 ≤ C

∞∑
q=1

q · q−2−ϵ∥ϕ∥l2 ≤ C∥ϕ∥l2

Together with estimate (5.2) this proves Theorem 1.4 □

The proof of the Lemma 1.3.13 is based on a general transfer principle proved in [82].
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Lemma 1.13. Let q ≥ 1 be a fixed integer and B be a finite dimensional Banach space. Let m(ξ)
be a bounded measurable function on ℜn, taking values in B, and supported in the cube [− 1

2q ,−
1
2q ]

n.
Define the periodic extension by

mq
per(ξ) =

∑
l∈Zn

m(ξ − l/q)

Let T : L2(ℜn) → L2
B(ℜn) (where L2

B(ℜn) is the space of square integrable functions taking values
in the space B), be the multiplier operator corresponding to the function mλ(ξ).
Similarly let T q

dis : L2(Zn) → L2
B(Z

n) be the multiplier operator corresponding to the periodic
function mq

per(ξ). Then one has

∥T q
dis∥L2(Zn)→L2

B(Zn) ≤ C∥T∥L2(ℜn)→L2
B(ℜn), (1.6.16)

where the constant C does not depend on the Banach space B, and is also independent of q.

Proof of Lemma 12. Choose a smooth function ψ′ supported in [−1/2, 1/2]n for which ψ = ψ′ψ.

Then m
a/q
λ (ξ) can be written as the product of the functions

ma/q(ξ) =
∑
l∈Zn

G(a, l, q)ψ′(ξ − l/q), (1.6.17)

and
mq

λ(ξ) =
∑
l∈Zn

ψ(ξ − l/q)dσ̃λ(ξ − l/q). (1.6.18)

For the first multiplier operator Ma/q it is bounded from l2 to itself with norm:
supξ |ma/q(ξ)| ≤ Cϵq

− κ
d−1

+ϵ. The sequence of functions mq
λ(ξ) defined by (5.6) can be considered as

a function mapping from ℜn to the banach space BΛ which is the l∞ space of functions of 1 ≤ λ ≤ Λ
for some fixed Λ.

The multiplier corresponding to ψ(qξ)dσ̃λ(ξ) is a bounded operator from L2(ℜn) to L2
B(ℜn) (B

being the l∞ space of functions of λ > 0), which is the content of Theorem 5. Then one applies
Lemma 13. to see that the multiplier mq

λ(ξ) is bounded from l2Zn to l2BΛ
Zn with norm independent

of Λ. This implies (5.2). □

The proof of our main result, the Theorem 1.3, consists of a number of reductions. The argument is
motivated by that of Bourgain’s polynomial ergodic theorem corresponding to arithmetic subsets of
integers [15, 14]. However in our case the averages are taken over disjoint sets, a condition on the
joint spectrum must be imposed, and the Spectral Theorem will play an essential even in the proof
of the pointwise ergodic theorem.

Let f ∈ L2(X,µ), we can suppose
´
X f dµ = 0, and then we have to show that |Aλf(x)| → 0 for µ

almost every x, as λ→ ∞ and λ ∈ Γ. Then again we can replace the factor rQ(λ) by λ
n/d−1 in the

averages.

i) We start with a standard reduction to shifts on Zn. Let (X,µ) be a probability measure space,
T = (T1, . . . , Tn). For x ∈ X and L > 0 and define: ϕL,x(m) = f(Tmx) if ∥m∥ ≤ L and to be 0
otherwise. Here m = (m1, . . .mn) ∈ Zn, ∥m∥ = supj |mj | and Tmx = Tm1

1 · . . . · Tmn
n x. Notice that

for fixed Λ < L
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A∗
λf(T

lx) = sup
λ≤Λ

|Aλf(T
lx)| = sup

λ≤Λ
|NλϕL,x(l) = |N∗

λϕL,x(l), (1.6.19)

for ∥l∥ ≤ c(L− Λ) Thus taking the square, summing in l (for ∥l∥ ≤ c(L− Λ)), and integrating over
the space X one obtains

c(L− Λ)n∥A∗
λf∥L2(X) ≤

ˆ
X
∥N∗

λϕL,x∥l2 dµ (1.6.20)

using the fact that the transformations T l are measure preserving. Also

ˆ
X
∥ϕL,x∥2l2 dµ = cnL

n∥f∥2L2(x). (1.6.21)

Then letting Λ → ∞, it follows that the L2(X) → L2(X) norm of the maximal operator A∗ is
majorized by the l2 → l2 norm of the discrete maximal operator N∗. Then it is enough to prove the
pointwise ergodic theorem for a dense subset of L2(X), p.e. for L∞(X).

ii) Following [15], one reduces pointwise convergence to L2 bounds for ”truncated” maximal operators.
Suppose indirect, that

µ{x : lim sup |Aλf(x)| > 0} > 0

then the same is true with a small constant α > 0 inserted:

µ{x : lim sup |Aλf(x)| > 2α} > 2α

and using the definition of the upper limit it is easy to see, that to each λk if λk+1 is chosen large
enough then

µ{x : A∗
kf(x) = supλk≤λ≤λk+1

|Aλf(x)| > α} > α

which implies ∥Ak
∗f∥22 > α3, ∀ k . Lets fix such a sequence λk which is quickly increasing:

λk+1 > 4λk
4d. Then it is enough to prove

1

K

∑
k≤K

∥Ak
∗f∥22 < α3, (1.6.22)

for K > K(α). This means that the Cesaro averages converges in (6.4) tends to 0 (the terms
themselves may not converge to 0).
Now fix K and choose L > λK+1. The reasoning in i) leads to

c(L− Λ)n
1

K

∑
k≤K

∥A∗
kf∥2 ≤

ˆ
X

1

K

∑
k≤K

∥N∗
kϕL,x∥l2 dµ, (1.6.23)

where Nk
∗ is defined analogously to Ak

∗. Thus it is enough to prove

ˆ
X
(
1

K

∑
k≤K

∥N∗
kϕL,x∥2l2) dµ ≤ cnα

3Ln∥f∥22 (1.6.24)

for K > K(α) and L > L(K,α). By (1.6.21), inequality (6.6) would follow, if the same would be
true pointwise, that is 1/K

∑
k≤K ∥N∗

kϕL,x∥2l2 → 0 for every x, however this seems to be true just
in average, and has to do with the fact that nearby averages cannot be compared.
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i3) We use the approximations to Nλ introduced in Section 2., and the transfer principle (1.6.16) to
reduce the estimates to that of L2 → L2 norms of the corresponding maximal operators acting on Rn.

We often use the following notations; if γλ(ξ) are continuous functions on Πn, then denote by Γλ

the corresponding multipliers and by Γ∗
k the maximal operator: Γ∗

kϕ= supλk≤λ<λk+1
|Γλϕ|.

Since

λ−n/d+1σ̂λ(ξ) =
∞∑
q=1

λ−n/d+1mq,λ(ξ) + λ−n/d+1Eλ(ξ)

then by estimates (1.4.7) and (1.6.13)

∥E∗
k∥l2→l2 ≤ Cδλ

−δ
k (1.6.25)

and
∥
∑
q≥qα

M∗
q,k∥l2→l2 ≤ Cq−ϵ

α . (1.6.26)

If we apply (1.6.25) and (1.6.26) to the function ϕL,x integrate the square over X and average for
k ≤ K, the total contribution to the L2 norm is less then:

(q−ϵ
α + cδK

−1)

ˆ
X
∥ϕL,x∥2l2 dµ(x) ≤ α3Ln∥f∥L2(X)

by choosing K and qα large enough w.r.t. α and ϵ.

Thus enough to deal with the finitely many maximal operators attached to the functions m
a/q
λ (ξ),

for q ≤ qα and a ≤ q, (a, q) = 1. Then we can fix a and q, and write

λ−n/d+1m
a/q
λ (ξ) =

∑
l∈Zn

G(a, l, q)ψ(qξ − l)dσ̃(λ1/d(ξ − l/q)) (1.6.27)

=
∑

s∈Zn/qZn

G(a, s, q)ψ(qξ − s)dσ̃Q(λ
1/d(ξ − s/q))per,

where γper(ξ) =
∑

l1∈Zn γ(ξ − l1) denotes the periodization of γ. Indeed write l = ql1 + s and use
the fact that G(a, l, q) = G(a, s, q). Again we can fix s (there are at most qn ≤ qnα choice for each q).
We remark that for ϕ ∈ l2 and ϕs/q(m) = e−2πims/qϕ(m) i.e. ϕ̂s/q(ξ) = ϕ̂(ξ + s/q), one has

M∗
s/q,kϕ =M∗

kϕs/q

where M∗
s/q,k is the maximal operator corresponding to the function ψ(qξ − s)dσ̃(λ1/d(ξ − s/q))per

, while M∗
k corresponds to ψ(qξ)dσ̃(λ1/d(ξ))per. Indeed one changes variables (ξ − s/q) → ξ in

evaluating the multipliers (the factors e2πims/q vanish when taking absolute values).

We are in a position to apply the continuous spherical maximal theorem, and further decompose the
functions ψ(qξ)dσ̃(λ1/d(ξ)) to get decay estimates. Let 1 = ωk,0 + ωk,1 + ωk,2 be smooth partition
of unity on ∥ξ∥ = supj |ξ|j ≤ 1/2 such that

ωk,0(ξ) = 0 unless ∥ξ∥ ≥ 1
2λ

−2
k+1,

ωk,1(ξ) = 0 unless 1
2λ

−2
k+1∥ξ∥ ≤ λ

− 1
2d

k and

ωk,2(ξ) = 0 unless λ
− 1

2d
k ≤ ∥ξ∥
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Accordingly we have the decomposition: M∗
k ≤M∗

k,0+M
∗
k,1+M

∗
k,2 and estimate each term separately.

For fixed λ, using the fact that |dσ̃(λ1/dξ)− cQ| ≤ λ1/d|ξ| ( cQ = dσ̃(0)), one has

|ωk,0(ξ)ψ(qξ)dσ̃(λ
1/dξ)− cQωk,0(ξ)ψ(qξ)| ≤ Cλ1/dλ−2

k+1. (1.6.28)

Thus by the standard square function estimate the l2 → l2 norm of the maximal operator (taking
the sup over λk ≤ λ < λk+1) corresponding to the functions in (1.6.27) is bounded by:( ∑

λ<λk+1

λ2/dλ−4
k+1

)1/2

≤ λ−1
k+1.

To estimate the maximal operator M∗
k,1 corresponding to the functions ωk,1(ξ)ψ(qξ)dσ̃(λ

1/d(ξ))per ,

we first use the transfer principle to see that it is bounded by the L2(Rn) → L2(Rn) norm of the
maximal operator corresponding to the functions ωk,1(ξ)ψ(qξ)dσ̃(λ

1/d(ξ)). Notice that the maximal
operator (the sup taken over all λ > 0) corresponding to the functions dσ̃(λ1/d(ξ)) is bounded from
L2 → L2 by Theorem 1.5.

Thus for ϕs/q = ϕL,x,s/q one has

∥M∗
k,1ϕs/q∥l2 ≤ CQ

ˆ
Πn

|ωk,1(ξ)|2|ϕ̂(ξ + s/q)|2 dξ. (1.6.29)

The point is that since the sequence λk is quickly increasing λk+1 > 4λ4d each point can belong
to at most 3 intervals Ik on which ωk,1 supported. Hence averaging over k ≤ K the right side of
(1.6.28), gives a contribution of 3/K∥ϕ∥2l2 .
Finally, the family of functions ωk,2(ξ)ψ(qξ)dσ̃(λ

1/d(ξ)) satisfy the conditions of Lemma 7. Then
(1.16) and (5.4) imply the bound

∥M∗
k,2ϕs/q∥l2 ≤ CQλ

− 1
2d

k ∥ϕ∥l2 . (1.6.30)

Note that (1.6.27)-(1.6.29) mean, that the maximal function

1

K

∑
k≤K

∥M∗
kϕs/q∥2l2 ≤ C

ˆ
Πn

|ψ(qξ)ωk,1(ξ)|2|ϕ̂(ξ + s/q)|2 dξ +O(K−1)∥ϕs/q∥l2 .

i4) It is enough to prove now for fixed r = s/q, that

L−n

ˆ
X

ˆ
Πn

ωk,1(ξ)|ϕ̂(ξ + s/q)|2 dξ dµ(x)) < |α|3∥f∥22, (1.6.31)

if k > k(α) and L > L(k, α), where we wrote ωk(ξ) = |ωk,1(ξ)|2 for simplicity of notation.
By applying Plancherel for the inner integral in (1.6.33), one obtains

L−n

ˆ
X

∑
m,m′

ϕL,x(m) ¯ϕL,x(m
′)ω̂k(m−m′)e2πi(m−m′)s/q dξ dµ(x) (1.6.32)

= L−n
∑

∥m∥≤L, ∥m′∥≤L

⟨Tm−m′
f, f⟩ω̂k(m−m′)e2πi(m−m′)s/q

= L−n

ˆ
Πn

∑
∥m∥≤L, ∥m′∥≤L

ω̂k(m−m′)e2πi(m−m′)(θ+s/q) dνf (θ)

= L−n

ˆ
Πn

∑
l∈Zn

aL(l)ω̂k(l)e
2πi(θ+s/q) dνf (θ),
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by the spectral theorem, where aL(l) = |{(m,m′); ∥m∥ ≤ L, ∥m′∥ ≤ L, m−m′ = l}|. Finally, one
has ˆ

Πn

(L−nâL ∗ ωk) (θ + s/q) dνf , (1.6.33)

where ∗ denotes the convolution on Πn with respect to the Lebesgue measure. Note that

L−nâL(θ) = L−n|
L∑

m=−L

e2πimθ|2n ≤ Ln min(1,
1

L{θ}
)2n.

This means that L−nâL is a δ-sequence (i.e. weakly converges to a Dirac delta) as L → ∞. In-
deed it is easy to see that: L−nâL∗ωk ≤ cωk+ϵ for every ϵ > 0 if L is large enough w.r.t. to λk and ϵ.

Finally, if we substitute this estimate into (1.6.33), then using the fact that ωk(θ) = 0 unless

∥θ∥ ≤ λ
−1/2d
k , one has

ˆ
Πn

(L−nâL ∗ ωk) (θ + s/q) dνf ≤ cdνf{θ : ∥θ + s/q∥ < λ
−1/2d
k }

+ ϵ dνf (Π
n) ≤ α3∥f∥2L2(X),

if k is large enough w.r.t. α and L is large enough w.r.t. k and α.

Indeed dνf (Π
n) = ∥f∥2L2(X), and only here we use the condition strong ergodicity, that is the

condition that dνf{s/q} = 0 for every rational point s/q ̸= 0, note that by our assumption

dνf{0} =
´
X fdµ = 0 as well. This implies that dνf{θ : ∥θ + s/q∥ < λ

−1/2d
k } → 0 as k → ∞.

This finishes the proof of our main result, Theorem 1.4. □.

2 Quadratic systems and simplices in sets positive density of Zd

In this chapter we present some results on the existence of geometric point configurations in sets of
positive density of the integer lattice Zd.
Such patterns are determined by quadratic systems of equations hence number theoretic methods
developed to count integer solutions of such systems will play an important role. In particular, using
the theory if Siegel theta functions referred also to as “Siegel’s generalised circle method”, we prove
a discrete analogue of Bourgain’s simplex theorem, with the underlying Euclidean space replaced by
the integer lattice.

We then extend our results to more complex patterns such as k-dimensional boxes or direct products
of simplices, by utilizing some constructs and techniques from additive combinatorics and hypergraph
theory. In particular we will develop and make use if the so-called Gowers box-norms[48] and a weak
hypergraph regularity lemma [48, 108] in the context both Euclidean spaces and the integer lattice.

2.1 A conjecture of Graham in geometric Ramsey theory

Geometric (or Euclidean) Ramsey theory was pioneered in a series of papers [34, 35, 50] by Erdős
at al. They define a finite point configuration X ⊆ Rk to be Ramsey if for every number of
colors r, there is a large enough dimension d = d(r,X) such that every r-coloring of Rd contains
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a monochromatic, congruent (isometric) copy of X. The fundamental problem in the area is to
classify which point configurations are Ramsey.

While this problem has been studied via combinatorial means [41, 69, 70], a density of analogue
was proved by Bourgain [16] using Fourier analysis. He has shown that if X = {x1, . . . , xk} is
non-degenerate simplex, then any set A ⊆ Rk of positive upper density contains a congruent copy
of all of its sufficiently large dilates. Again a basic problem is to classify which finite point con-
figurations X, besides simplices, have this property to which we will refer to as being density Ramsey.

For k = 2 Bourgain’s theorem says that the distance set D(A) := {|x1 − x2| : x1, x2 ∈ A} of
a set A ⊆ Rk (k ≥ 2) of positive upper density contains all large numbers λ ≥ λ(A), which is
already a highly non-trivial result first shown by Katznelson and Weiss [45] via ergodic means. The
threshold λ(A) must depend on the set A not just on its density as can be seen by taking the set
A = 2λ · Zk +Bλ/2 i.e. the set of point of distance less than λ/2 from the points of the grid 2λ · Zd.
Indeed, such a set has positive density depending only on k but will not contain any two points at
distance λ.

It was observed by by Erdős at al. [34] and by independently by Bourgain [16] that Ramsey sets must
be spherical in both context. This has led Graham to conjecture that a finite point configuration X
is Ramsey or density Ramsey if and only if it is spherical, i.e. if it can be inscribed into a sphere
[50].

2.2 Simplices in sets of positive density of the integer lattice

We prove a variant of Bourgain’s result for subsets of the lattice A ⊆ Zn of positive density. Let
us recall that a subset A of Zn has upper density at least ε, and write δ(A) ≥ ε, if there exists a
sequence of cubes BRj of sizes Rj → ∞, not necessarily centered at the origin, such that for all
j ∈ N

|A ∩BRj | ≥ εRn
j

moreover the upper density δ(A) is defined to be the supremum of all ε > 0 satisfying the above
condition.

In so doing, we must avoid certain natural obstructions, which we describe below. Consider a
simplex △ = {v0, . . . , vk} ⊆ Rn, where k < n. Associated to the simplex is a positive definite matrix
k × k matrix T△ = (tij), with entries

tij = (vi − v0) · (vj − v0), (2.2.1)

where ” ·” denotes the dot product. Nota that T△ is independent of the rigid motions of the simplex.

It is clear that the simplex △ can be embedded in a set A ⊆ Zn only if T△ has all integral entries.
In this case we will call the simplex integral. It follows that we can consider dilates of the simplex of
the form

√
λ△, for positive integers λ. Let A = (qZ)n for some positive integer q then δ(A) = q−n

and
√
λ△ ⊆ A only if q2 divides λ. We can state now our main result.

Theorem 2.1. Let k ≥ 2, and let the dimension n > 2k + 4. For each A ⊆ Zn with δ(A) = δ > 0,
the following holds for all integral k-dimensional simplices △.
There is a positive integer Q = Q(δ), and a number Λ = Λ(A,△) so that for all integers λ > Λ,
there is a simplex △′ ⊆ A, which is, up to a rigid motion,

√
λQ△.
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Again, taking A = (qZ)n for all 1 ≤ q ≤ δ−1/n (so δ(A) ≥ δ), we see that the factor Q(δ) must
be divisible by the least common multiple of positive integers at most δ−1/n, thus it follows from
elementary estimates on primes that Q(δ) ≥ exp (c δ−1/n). The number Q(δ) will be constructed
explicitly and will satisfy the upper bound Q(δ) ≤ exp (C δ−4(k+1)/n−2k−4).
For k = 1, Theorem 2.1 translates to the fact that the distance set of A, d(A) = {|m − l| : m ∈
A, l ∈ A} contains all large distances of the form

√
λQ(δ). This was proved earlier in [84] in

dimensions n > 4.

To introduce our terminology, let us call two simplices △, △′ ⊆ Rn isometric, and write △′ ≃ △, if
one is obtained from the other via a rigid motion, that is when △′ = x+U(△) for some x ∈ Rn and
U ∈ SO(n). It is clear that ” ≃ ” is an equivalence relation, we call the equivalence classes k+1-point
configurations. Thus a k-point configuration preserves only the geometry, or the ”shape”, of k points.
Theorem 2.1 says, roughly, that a set A ⊆ Zn of positive upper density contains all large dilates of any
given configuration of k points in general position, satisfying the above mentioned natural conditions.

We emphasize that the above result is proved only under the assumption that the simplex
△ = {0, v1, . . . , vk} is non-degenerate. A counter-example is shown in [16] in the continuous
case, when n = k = 2, △ = {0, e1, 2e1}. In our settings when △ = {0, e1, 2e1, . . . , ke1}, the existence
of an embedding of △ in A follows from Szemerédi’s theorem on arithmetic progressions [104],
however it is not true that all large dilates of △ can be embedded in A in the sense of Theorem 2.1

We will turn now to some quantitative results. These will depend on the eccentricity e(T ) (with
T = T△) of the simplex △, defined by

e(T ) =
|T |
µ(T )

, where µ(T ) = inf
|x|=1

Tx · x, |T | = (
k∑

i,j=1

|tij |2 )
1
2 . (2.2.2)

Note that |T |1/2 is comparable to the diameter of △, and the quantity e(T ) may be viewed as a
measure of how close the simplex △ is to being degenerate.

Theorem 2.2. Let k ≥ 2, n > 2k + 4, ε > 0. Let A ⊆ Zn ∩ BR such that |A| ≥ εRn, and let
△ ⊂ Rn be a k-dimensional integral simplex and let T = T△. If

R ≥ C1 |T |
1
2 exp

(
C2 ε

− 11
2

(k+1) log (e(T ))
)
, (2.2.3)

for some positive constants C1 and C2 depending only on the dimensions n and k, then there exists
a simplex △′ ⊆ A and a λ ∈ N such that △′ ≃

√
λ · △.

In other words, if A ⊆ BR ∩ Zn contains an ε-portion of the points in the cube BR and if R is large
enough, then the set A contains a ”copy” of the simplex △, obtained by a translation, a rotation
and a dilation. Both of the above theorems are consequences of the following.

Theorem 2.3. Let k ≥ 2, n > 2k + 4, ε > 0. Let A ⊆ Zn ∩ BR such that |A| ≥ εRn, and let
△ ⊂ Rn be a k-dimensional integral simplex and let T = T△.
Then there exists a pair of integers Q = Q(ε), J = J(ε) such that for any sequence of integers
C0 ≤ λ1 < λ2 < . . . < λJ(ε), satisfying

λj+1 > 2 e(T )λj , and λ
1
2

J(ε) |T |
1
2 ≤ R
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there exists a simplex △′ ⊆ A such that △′ ≃
√
λjQ△ for some 1 ≤ j ≤ J(ε).

Moreover the numbers Q(ε), J(ε) satisfy the inequalities

Q(ε) ≤ exp (C ε−
4(k+1)
n−2k−4 ), J(ε) ≤ C ε−

11
2

(k+1), (2.2.4)

for some positive constant C depending only on the dimensions n and k.

It is not hard to see that, for k < n, △′ ≃ △, if and only if T△ = T△′ . Indeed, if △′ = {0, v′1, . . . , v′k}
and △ = {0, v1, . . . , vk} then there is a rotation U0 which takes v1 to v′1, hence assume that v1 = v′1.
If P stands for the projection to the orthogonal complement of v1, then it is easy to see that
T△̄ = T△̄′ where △̄ = P ({v2, . . . , vk}) and △̄′ = P ({v′2, . . . , v′k}). Thus, by induction, there is a
rotation U ∈ SO(n) such that U(P (vi)) = U(P (v′i)) for i ≥ 2, and U(v1) = U(v′1) = v1 = v′1, hence
U(△) = △′. Thus k+1−point configurations are in one to one correspondence with positive definite
k × k matrices.

We emphasize that the above results are proved only under the assumption that the simplex
△ = {0, v1, . . . , vk} is non-degenerate, that is the vectors v1, . . . , vk are linearly independent in Rn.
A counter-example is shown in [16] in the continuous case when n = k = 2, △ = {0, e1, 2e1}, which
can adapted to our settings as follows. If △′ ≃

√
λ△, then △′ = {x− y, x, x+ y} with |y|2 = λ. Let

α be an irrational number and let

A := {x ∈ Zn : ∥α|x|2∥ ≤ 1

100
}, where ∥β∥ := min

m∈Z
|β −m|.

It is easy to see that A has positive upper density. However, if △′ = {x− y, x, x+ y} ⊆ A then by
the parallelogram identity 2λ = 2|y|2 = |x− y|2 + |x+ y|2 − 2|x|2 we have that ∥λ22α∥ ≤ 1

10 . For
any Q ∈ N Qλ22α is uniformly distributed (mod 1) as λ2 runs through the positive integers thus
∥Qλ22α∥ ≤ 1

10 cannot hold for all sufficiently large λ > Λ. The above construction can extended to
any non-degenerate simplex in fact to any non-spherical configuration, see section 2.4.

The problem of embedding
√
λ△ into Zn is equivalent of finding integer solutions x1, . . . , xk ∈ Zn

of the quadratic system of equations xi · xj = λtij for 1 ≤ i ≤ j ≤ k, which is further equivalent of
representing the quadratic form λTy · y = l1(y)

2 + . . .+ ln(y)
2 i.e. as a sum of squares of n integral

linear forms. This problem has been extensively studied [98, 95, 67] with the strongest results due
to Kitaoka [67] whi obtained an asymptotic formula for the number of representations in dimensions
n > 2K + 2.

We remark that the existence of a dilate λ△ which can be embedded in A follows from Kitaoka’s
theorem [67] together with the so-called multi-dimensional Szemerédi theorem [39, 48, 108], which
implies that for every finite set S ⊆ Zn there is an m ∈ Zn and λ ∈ N such that S′ = m+ λS ⊆ A.
However at present, the multi-dimensional Szemerédi theorem has no Fourier analytic proof, quanti-
tative versions with reasonable bounds, while Theorem 2.2 provides a single-exponential quantitative
bound. Also, the emphasis in Theorem 2.1 is in the fact that, in a sense, all large dilates of △ can
be embedded in A which is not possible to obtain via this route.

2.2.1 Outline of the proofs of the main results.

Let us start by observing that Theorem 2.3 implies both Theorem 2.1 and Theorem 2.2. Indeed
assuming that the conclusion of Theorem 2.1 is not true, it follows that there is a set A ⊆ Zn
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with upper density δ(A) ≥ ε, and an infinite lacunary sequence λj such that
√
λjQ(ε)△ cannot

be embedded in A for all j ∈ N. Choosing a cube BR of size R ≥ C (λJ(ε)|T |)1/2 such that
|A ∩BR| ≥ εRn contradicts Theorem 2.3. Also, choosing Q(ε) and J(ε) is in Theorem 2.3, and a
lacunary sequence λ1 < . . . < λJ(ε) such that λJ(ε) ≤ exp (J(ε) log (e(T ))), it follows from (2.2.4)

that
√
λ△ can be embedded in A for some λ = λjQ(ε)

2 as long as A ⊆ Zn ∩ BR with |A| ≥ εRn

and R satisfies (2.2.6) thus Theorem 2.2 follows.

Let us outline now, the proof of Theorem 2.3. We’ll use a variant of the density increment approach
of Roth. In our settings this amounts to showing that the set A contains an isometric copy of

√
λ△

for some λ ∈ N, or the density of A increases on a large cubic grid by a fixed amount c(ε) > 0,
depending only on ε. We’ll prove a somewhat stronger statement; namely if for a fixed λ the simplex√
λ△ cannot be embedded in A, then either the density of A increases to (1 + c)ε on a large grid of

common difference q = q(ε), or the Fourier transform 1̂A, 1A being the indicator function of the set
A, is concentrated on a small set Tλ,q. Moreover if λ′ ≫ λ, then the sets Tλ′,q and Tλ,q are disjoint,
thus if λ1 < λ2 < . . . < λJ is a lacunary sequence with J ≥ J(ε) is large enough and if A does not
contain an isometric copy of any simplex

√
λj△, then A must have increased density on a large

grid of difference q = q(ε). Iterating this, will prove Theorem 2.3.

To formulate the above statements precisely, let us introduce some notations. We’ll denote by c > 0
resp. C > 0, small resp. large constants depending only on the dimensions n and k, whose value
can change from place to place. If they depend on other parameters like ε, δ and so on, we indicate
those in parenthesis c(ε), c(ε, δ). The least common multiple of a set of integers q1, . . . , ql will be
denoted by lcm {q1, . . . , ql}. To a given 0 < ε ≤ 1 we attach the integer

q(ε) = lcm {1 ≤ q ≤ Cε−
4(k+1

n−2k−4 }. (2.2.5)

The importance of this number is in the fact that the grid ( 1
q(ε)Z)

n = { m
q(ε) ; m ∈ Zn} contains all

rational points a/q ∈ Rn with denominator q ≤ Cε−
4(k+1

n−2k−4 . For given s ∈ Zn, q ∈ N and L > q we
define the cubic grid of size L and common difference q

BL(q, s) = (s+ (qZ)n) ∩BL, (2.2.6)

where BL is a cube of size L. In the Fourier space Tn = (R/Z)n, a key role will be played by the sets

T(L1,L2,q) =

(
1

q
Z
)n

+DL1,L2 where DL1,L2 =

[
− 1

2L1
,

1

2L1

]n
\
[
− 1

2L2
,

1

2L2

]n
, (2.2.7)

where q ∈ N and q < L1 < L2. Here by S + T we denote the sumset of the sets S and T . The key
is to obtain the following

Lemma 2.1. Let n > 2k + 4, 0 < ε ≤ 1, let A ⊆ BR ∩ Zn such that |A| ≥ εRn, and let △ be an
integral k-dimensional simplex.

If for a given λ ∈ N the simplex
√
λ△ cannot be embedded in A, then either there exists a cubic grid

BL(q, s) with q = q(ε) defined in (2.1), and L ≥ C
√
λ|△|, such that

(i) |A ∩BL(q, s)| ≥ (1 + α)ε |BL(q, s)| with α =
1

10(k + 1)
, or (2.2.8)

(ii)

ˆ
Tλ,ε

|1̂A(ξ)|2 dξ ≥ c ε2k+2Rn, (2.2.9)
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where Tλ,ε = T(L1(λ,ε),L2(λ,ε),q(ε)) is the set defined in (2.2.7) and

L1(λ, ε) = C−1 e(T )−4ε9(k+1)(λ|T |)1/2, L2(λ, ε) = C ε−(k+1) (λ|T |)1/2, (2.2.10)

as long as the parameters λ and R satisfy q(ε) < L1(λ, ε) < L2(λ, ε) < R.

We now describe how repeated applications of Lemma 2.1 implies Theorem 1.3. main result.

Proof of Theorem 2.3 For r = 0, 1, 2, . . . define,

εr = (1 + α)−r with α =
1

10(k + 1)
, (2.2.11)

moreover let qr = q(εr) given in (2.2.5) and Qr = q1q2 . . . qr, we set Q0 = 1. We define the numbers
Jr inductively with J0 = 1 and Jr being the smallest positive integer satisfying

Jr ≥ γJr−1 + C̄ εr
−4(k+1) log (εr

−1) with γ = e1/2. (2.2.12)

We will show by induction on r, that Theorem 1.3 holds for εr−1 > ε ≥ εr. This amounts to showing
that if A ⊆ BR ∩ Zn with |A| ≥ εrR

n, and if C < λ1 < . . . < λJr is a given lacunary sequence
with λi+1 > 2e(T )λi, then A contains an isometric copy of a simplex

√
λiQr △ for some 1 ≤ i ≤ Jr.

For r = 0, ε = ε0 = 1 thus A = BR ∩ Zn and Theorem 2.3 follows from Kiatoke’s theorem (with
Q0 = J0 = 1), as explained in the introduction.

Now, assume indirectly that there exists an r ∈ N, such that the conclusion of Theorem 1.3 holds
for the triple εr−1, Qr−1, Jr−1, but not for εr, Qr, Jr. Then none of the simplices

√
λiQr△ can

be embedded in A. Since Jr ≥ C̄ε
−4(k+1)
r log (ε−1

r ) , one may choose a subsequence {µ1, . . . , µt}
of the sequence {λj ; Jr/γ ≤ j ≤ Jr} such that t > (c ε2k+2)−1 and for all 1 ≤ i ≤ t one has
L1(µi+1, εr) > L2(µi, εr), as long as the constant C̄ is chosen large enough with respect to c
and C given in (2.2.9) and in (2.2.10). It follows that the sets Tλ,ε for λ = µiQ

2
r are disjoint,

and thus inequality (2.2.9) cannot hold simultaneously for all 1 ≤ i ≤ t as it would imply that:
|A| =

´
Tn |1̂A(ξ)|2 dξ > Rn . By Lemma 2.1 there must exist a positive integer λ = µiQ

2
r = λjQ

2
r

with Jr/γ ≤ j ≤ Jr, such that

|A ∩BL(q, s)| ≥ (1 + α)εr |BL(q, s)| = εr−1 |BL(q, s)|, (2.2.13)

for a grid BL(qr, s) of size L > C(λ|T |)1/2. The affine map Φ(m) = qrm + s identifies the set
BL(qr, s) with BR′ ∩ Zn (R′ = L/qr) and also A ∩BL(qr, s) with a set A′ ⊆ BR′ ∩ Zn.

By (2.2.13) one has that |A′| ≥ εr−1(R
′)n and one may apply the induction hypothesis for the set

A′ and the sequence λ1 < λ2 < . . . < λJr−1 . Indeed, it is easy to check that the size of the box BR′

satisfies
R′ = L/qr ≥ C (λj |T |)1/2Qr/qr ≥ C (λJr−1 |T |)1/2Qr−1,

as j ≥ Jr/γ ≫ Jr−1 It follows that A′ contains a simplex △′ isometric to
√
λiQr−1△ for

some 1 ≤ i ≤ Jr−1 , hence A contains the simplex Φ(△′) = s + qr△′ which is isometric to√
λiQr−1qr△ =

√
λiQr△.

To finish the proof one only needs to check that J(ε) and Q(ε) satisfy the quantitative bounds (2.2.4).

If εr ≤ ε < εr−1, then Q(ε) = Qr =
∏r

l=1 ql where ql ≤ exp (C ε
−4(k+1)/ (n−2k−4)
l ) by well-known
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estimates on the primes. Thus, also Q(ε) ≤ exp (C̄ ε−4(k+1)/ (n−2k−4)) for a slightly larger constant
C̄. To estimate J(ε) = Jr where εr ≤ ε < (1 + α)εr, note that dividing (2.8) by γr one obtains

Jr
γr

− Jr−1

γr−1
≤ C

ε
−4(k+1)
r log (ε−1

r ) + 1

γr−1
. (2.2.14)

Since

ε−4(k+1)
r =

(
1 +

1

10(k + 1)

)4(k+1)r

≤ e4r/10

it follows that the sum in (2.10) converges in r and hence Jr ≤ C γr = C er/2. Also log(1 + α) =
log (1 + 1

10(k+1)) ≥
1

11(k+1) , thus

J(ε) = Jr ≤ C γr = ε
− 1

2 log (1+α)
r ≤ Cε

− 11
2

(k+1)
r ≤ C ′ ε−

11
2

(k+1)

This proves estimate (2.2.4).

It remains to prove Lemma 2.1. To do that, similarly as in case of arithmetic progressions, one
introduces a multilinear form to count the number of embeddings of a given simplex

√
λ△ into the

set A. For a given k× k integral positive matrix T = (tij), let ST : Znk → {0, 1} denote the function

ST (m1, . . . ,mk) =

{
1 if mi ·mj = tij ∀ 1 ≤ i ≤ j ≤ k
0 otherwise

(2.2.15)

where mi ∈ Zn for 1 ≤ i ≤ k. For functions fi : Zn → C, (0 ≤ i ≤ k) of finite support and for a
given λ ∈ N define the corresponding form

NλT (f0, f1, . . . , fk) =
∑

m,m1,...,mk∈Zn

f0(m)f1(m+m1) . . . fk(m+mk)SλT (m1, . . . ,mk). (2.2.16)

The point is that if T = T△, that is the inner product matrix of the simplex △, and if f0 = f1 =
. . . = fk = 1A the indicator function of the set A, then NλT (1A, . . . ,1A) is the number of simplices
△′ ⊆ A such that △′ ≃

√
λ△.

Going back to Lemma 2.1, we will assume from now on that that for a given λ ∈ N the simplex√
λ△ cannot be embedded in A, that is

NλT (1A, . . . ,1A) = 0 (2.2.17)

and moreover that the set A is uniformly distributed on the grids BL(q, s) in the sense that

|A ∩BL(q, s)| ≤ (1 + α)ε |BL(q, s)| with α =
1

10(k + 1)
, (2.2.18)

for all such grids BL(q, s) ⊆ BR, for some parameters for a given q ∈ N and L > C (λ|T |)1/2 (later
we will choose q = q(ε) given in (2.2.5)). we partition BR ∩ Zn into grids BL(q, s) and define the
corresponding conditional expectation function hL,q : BR ∩ Zn → [0, 1] by

hL,q(m) = |A ∩BL(q,m)|/|BL(q,m)|, (2.2.19)
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where BL(q,m) is the grid in the partition containing the point m. Note that the function hL,q is
constant and is equal to the average of 1A on each grid BL(q, s) of the partition. Using assumption
(2.2.18) on the distribution of A, and Kitaoka’s theorem:

∥SλT ∥1 =
∑

m1,...,mk

SλT (m1, . . . ,mk) ≥ c0 det(λT )
n−k−1

2 (2.2.20)

it will be fairly easy to show that

NλT (1A, hL,q, . . . , hL,q) ≥ c det(λT )
n−k−1

2 εk+1Rn. (2.2.21)

Indeed, from (2.2.18) it is easy to see that hL,q(m) ≥ c ε for all but a small number of m ∈ BR ∩Zn.

It will be more convenient to work with functions of the form fL,q = 1A ∗ ψL,q which majorize hL,q
and whose Fourier transform is easier to handle. Indeed, if ψ > 0 is a strictly positive Schwarz
function, and if

ψL,q(m) =

{
qnL−n ψ(m/L) if m ∈ (qZ)n
0 otherwise

(2.2.22)

then fL,q ≥ c hL,q, see Proposition 3.2. Thus we get our main estimate from below

NλT (1A, fL,q, . . . , fL,q) ≥ c1 det(λT )
n−k−1

2 εk+1Rn, (2.2.23)

for some constant c1 > 0, see Lemma 2.3 for the precise statement.

The advantage of using the functions fL,q is in that their Fourier transform can be described fairly
precisely

f̂L,q(ξ) = 1̂A(ξ)ψ̂L,q(ξ) = 1̂A(ξ)
∑
l∈Zn

ψ̂(L(ξ − l/q)), (2.2.24)

moreover if ψ is chosen such that

1 = ψ̂(0) ≥ ψ̂(ξ) > 0 ∀ ξ and supp ψ̂ ⊆ [−1/2, 1/2]n , (2.2.25)

then f̂L,q(ξ) is supported on the set (1qZ)
n + [− 1

2L ,
1
2L ]

n and it essentially equals to 1̂A(ξ) on a
smaller such set.
In Section 2.2.3, we prove our crucial error estimate, namely that if q = q(ε) and if one chooses
L1 = L1(λ, ε) given in (2.2.10), with the constant C large enough with respect to c1 appearing in
(2.2.11), then

|NλT (1A,1A, . . . ,1A)−NλT (1A, fL1,q, . . . , fL1,q)| ≤
c1
2

det(λT )
n−k−1

2 εk+1Rn, (2.2.26)

see Lemma 2.4. Taking this granted for now, let us sketch the

Proof of Lemma 2.1. Using estimates (2.2.23) for L = C (λ|T |)1/2 and (2.2.26) for L1 = L1(λ, ε), it
follows from our assumption (2.2.17) that

|NλT (1A, fL1,q, . . . , fL1,q)−NλT (1A, fL,q, . . . , fL,q)| ≥
c1
2

det(λT )
n−k−1

2 εk+1Rn. (2.2.27)

Now, it is easy to see that the left side of (2.2.27) is bounded by

∥SλT ∥1 ∥1A∥2 ∥fL1,q − fL,q∥2 ≤ C det(λT )
n−k−1

2 R
n
2 ∥fL1,q − fL,q∥2, (2.2.28)
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see Proposition 2.3. It follows,

∥fL1,q − fL,q∥2 =
ˆ
Tn

|1̂A(ξ)|2 |ψ̂L1,q − ψ̂L,q|2 dξ ≥ c ε2k+2Rn (2.2.29)

This implies inequality (2.2.9) as the function |ψ̂L1,q − ψ̂L,q| is uniformly bounded by c̄ εk+1 with a
small constant, say c̄ < c/2, outside the set Tλ,ε = T(L1(λ,ε),L2(λ,ε),q(ε)) given in (2.2.10), and Lemma
2.1 follows.

The detailed proof of Lemma 2.1 will be given in Section 2.2.3. The proof the crucial estimate (2.2.26)
will be based on an estimate of the Fourier transform of the function ST at points X = (ξ1, . . . , ξk)
which are away from rational points with small denominator. Such estimates can be proved by
techniques from analytic number theory, and can be viewed as discrete analogues of stationary
phase estimates on the Fourier transforms of surface carried measures in Euclidean spaces [102]. It
is summarized in the following lemma.

Using the matrix notation, let M = (m1, . . . ,mk) ∈ Zn×k and X = (ξ1, . . . , ξk) ∈ Tn×k be n × k
matrices with column vectors mi ∈ Zn and ξi ∈ Tn (T = R/Z), the Fourier transform of the function
ST given in (2.2.15) is defined by the exponential sum

ŜT (X ) =
∑

M∈Zn×k

ST (M) e−2πi tr (Mt X ), (2.2.30)

where tr (M tX ) = m1 · ξ + . . . +mk · ξk stands for the trace of the product matrix M tX . Let
P/q = (pij/q) denote the dilate of a matrix P = (pij) by the factor of 1/q.

Lemma 2.2. Let n > 2k + 2, τ > 0, and q0 > 1 be a positive integer. Let T be a positive definite
integral k × k matrix. Then one has

ŜT (0) ≤ C det(T )
n−k−1

2 (2.2.31)

If X = (ξ1, . . . , ξk) ∈ Tn×k such that for all P ∈ Zn×k and q ≤ q0

|X − P/q| ≥ τ.

Then one has

|ŜT (X )| ≤ C

[
det(T )

n−k−1
2

(
(τ2µ(T ))−

n−2k−2
4 + q

−n−2k−2
2

0

)
+ |T |

(n−k)(k−1)
2

]
. (2.2.32)

We remark that if the parameters τ and q0 is chosen such that τ > C(ε)λ−1/2, q0 > C(ε) and if λ is
large enough with respect to |T |, then estimate (2.2.32) implies that

|ŜλT (X )| ≤ c(ε) det(λT )
n−k−1

2 , (2.2.33)

for a given constant c(ε) > 0, as long as C(ε) is chosen large enough with respect to c(ε).

The proof of Lemma 2.2 is purely number theoretic and is independent of the rest of the paper. It
will be given in Section 2.2.4 using the theory of theta functions developed by Siegel [98] and later
by Kitaoka [67], adapted to our settings.
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2.2.2 Lower bounds on the main terms.

From now on we fix k ∈ N, n ∈ N, ε > 0 and R > 1 and a set A ⊆ BR ∩ Zn such that |A| ≥ εRn.
For given parameters q ∈ N and q ≤ L < R such that R/L ∈ N, we partition the cube BR into
Rn/Ln cubes BL of size L, and them further into congruence classes of the modulus q, i.e. into sets
of the form

BL(q, s) = BL ∩ (s+ (qZ)n), (2.2.34)

where s ∈ (Z/qZ)n is running through the congruence classes of q. With a slight abuse of notation,
for given m ∈ BR we will denote by BL(q,m) the unique set BL(q, s) containing m. For given α > 0,
we say that the set A is α-uniformly distributed w.r.t. q and L if for each element BL(q, s) of the
partition

δ(A|BL(q, s)) =
|A ∩BL(q, s)|
|BL(q, s)|

≤ (1 + α)ε. (2.2.35)

Here we used the notation δ(A|B) = |A ∩ B|/|B| for the relative density of the set A on the
set B. It is immediate from (2.2.35) that δ(A|BL) ≤ (1 + α)ε for every cube BL and that
δ(A) = δ(A|BR) ≤ (1 + α)ε. It is also easy to see that δ(A|BL) ≥ (1− 2α)ε holds for many cubes
BL, such cubes BL will be called dense. Indeed

ε ≤ δ(A) =
Ln

Rn

∑
BL

δ(A|BL) ≤
Ln

Rn

∑
BL dense

(1 + α)ε+ (1− 2α)ε (2.2.36)

It follows that there are at least 2α
(1+α)

Rn

Ln dense cubes. We define the function hL,q : BR∩Zn → [0, 1]
by

hL,q(m) := δ(A|BL(q,m)). (2.2.37)

Note that hL,q is constant and is equal to the average of the function 1A on each set BL(q,m), thus
it is the so-called conditional expectation function of 1A with respect to the above partition.

Proposition 2.1. Let q ∈ N, L > 0 be given, and assume that the set A satisfies condition (3.2)
with α = 1/10(k + 1). If q ≤ βL, with β = αε/ 4n, then for any m1, . . . ,mk ∈ Zn such that
|mi| ≤ βL for each 1 ≤ i ≤ k, then one has∑

m∈Zn

1A(m)hL,q(m+m1)hL,q(m+m2) . . . hL,q(m+mk) ≥ ck ε
k+1Rn. (2.2.38)

Proof. Let BL be a dense cube and define the set G = {m ∈ BL : hL,q(m) ≥ αε}. Arguing similarly
as in (2.2.36),

(1− 2α)ε ≤ δ(A|BL) ≤ L−n
∑
m∈G

(1 + α)ε+ αε. (2.2.39)

hence |G| > (1− 4α)Ln. Let BL′ denote the cube obtained by dilating BL from its center with a
factor of 1− β. Then L′ = (1− β)L and |BL\BL′ | < 2nβLn. For m ∈ G one has

δ(A|BL′ ∩BL(q,m)) ≥ qn

Ln
|A ∩BL(q,m)| − 1

Ln
|BL\BL′ | ≥ αε− 2nβ ≥ αε

2
. (2.2.40)

For m ∈ BL′ , m+mi ∈ BL for each 1 ≤ i ≤ as |mi| ≤ βL, and the functions m → hL,q(m+mi)
are constant on the set BL′ ∩BL(q,m). Thus∑

m∈BL′

1A(m)hL,q(m+m1)hL,q(m+m2) . . . hL,q(m+mk) = (2.2.41)

∑
m∈BL′

δ(A|BL′ ∩BL(q,m))hL,q(m+m1) hL,q(m+m2) . . . hL,q(m+mk).
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If m ∈ BL′ ∩ G ∩ (G −m1) ∩ . . . ∩ (G −mk) then m ∈ G and m +mi ∈ G for each i ≤ k hence
by (2.2.40) and the definition of G the expression in (2.2.41) is further estimated from below by:
(αε)k+1

2 |BL′ ∩G ∩ (G−m1) ∩ . . . ∩ (G−mk)| . Let G′ = BL′ ∩G, then

|G′| ≥ |G| − |BL\BL′ | ≥ (1− 4α− 2nβ)Ln > (1− 5α)Ln and

|BL′ ∩G ∩ (G−m1) ∩ . . . ∩ (G−mk)| ≥ |G′ ∩ (G′ −m1) ∩ . . . ∩ (G′ −mk)| ≥
≥ (1− 5α(k + 1))Ln ≥ Ln/2.

Thus, for a dense cube BL, the expression in (2.2.31) is bounded below by ck ε
k+1 Ln, and since

there are at least 2α
(1+α)

Rn

Ln dense cubes, (2.2.38) follows.

Note that the functions fL,q = 1A ∗ ψL,q defined in (2.2.19) majorize the functions hL,q.

Proposition 2.2. There exist a constant cn > 0 such that all m ∈ Zn

fL,q(m) ≥ cn hL,q(m). (2.2.42)

Proof. By definition,

fL,q(m) = qnL−n
∑
l∈Zn

1A(m− ql)ψ(ql/L) ≥ cn q
nL−n

∑
l∈Zn, |ql|≤

√
nL

1A(m− ql) ≥

≥ cn q
nL−n

∑
m′∈BL(q,m)

1A(m
′) ≥ cn hL,q(m).

The second inequality follows as the diameter of the set BL(q,m) is at most
√
nL.

Let λ ∈ N, △ ∈ Rn be an integral k-dimensional simplex, and let T = T△ be its inner product
matrix. We proceed to estimate the expression NλT (1A, fL,q, . . . , fL,q) defined in (2.2.13) from below
under certain conditions on the parameters q, L,R, λ. To do so one needs a lower bound for the
number of integral solutions m1, . . . ,mk ∈ Zn of the system of equations mi ·mj = λtij . This was
done in [67], indeed, for A = In (the n× n identity matrix), B = λT , Theorems A-C in [67] implies
for n > 2k + 2 and λ > λ(n, k), that∑

m1,...,mk∈Zn

SλT (m1, . . . ,mk) ≥ c0 det(λT )
n−k−1

2 , (2.2.43)

for some positive constant c0 depending only on n and k. Note that the left side of (3.10) is the
number of solutions m1, . . . ,mk of (1.2). Now it is easy to show

Lemma 2.3. Let k ≥ 2, n > 2k + 2, ε > 0, R > 0 and let A ⊆ BR ∩ Zn be a set such that
|A| ≥ εRn. Let λ ∈ N and let △ ⊆ Rn be an integral k−simplex with inner product matrix T = T△.
Let q ∈ N, L > 0 be parameters satisfying

q ≤ βL,
√
λ|T | ≤ βL, with β =

ε

40n(k + 1)
. (2.2.44)

If A is α-uniformly distributed w.r.t q and L with α = 1
10(k+1) and if fL,q(m) is defined as in (2.2.22),

then
NλT (1A, fL,q, . . . , fL,q) ≳ det(λT )

n−k−1
2 εk+1Rn. (2.2.45)

42

               amagyar2024_220_24



Proof. If SλT (m1, . . . ,mk) ̸= 0 then |mi|2 = λtii (∀ 1 ≤ i ≤ k), hence |mi| ≤ βL. It follows from
(2.2.38) and (2.2.42) that∑

m∈Zn

1A(m) fL,q(m+m1) fL,q(m+m2) . . . fL,q(m+mk) ≳ εk+1Rn

Summing the above bound for all such m1, . . . ,mk, the Lemma follows from inequality (2.2.43).

Let us point out that the right side of (2.2.45) is the expected value ofNλT (1A, . . . ,1A) if A ⊆ BR∩Zn

in a random set of density ε, obtained by choosing each point of BR ∩ Zn independently with
probability ε. Indeed, for given m ∈ BR ∩ Zn and a solution m1, . . . ,mk, the probability that all
points m,m1, . . . ,mk are in the set A is εk+1.

2.2.3 Error estimates

In this section we estimate quantities of the following form

EλT (f ; f1, f2) = NλT (f, f1, . . . , f1)−NλT (f, f2, . . . , f2), (2.2.46)

where the functions f, f1, f2 : Zn → [−1, 1] are of finite support or rapidly decreasing. Note that

EλT (f ; f1, f2) =

k∑
i=1

Ei
λT (f ; f1, f2), where

Ei
λT (f ; f1, f2) = NλT (f, f1, . . . , f1, f2, . . . , f2)−NλT (f, f1, . . . , f2, f2, . . . , f2) (2.2.47)

Here, the second term in (2.2.47) is obtained from the first term by replacing the function f1 with
the function f2 at the i−th place.

For fixed 1 ≤ i ≤ k, let Ti denote the (k−1)× (k−1) matrix obtained from the matrix T by deleting
the i−th row and column. Note that Ti = T△i

, where △i is the k−1-dimensional face of the simplex
△ = {0, v1, . . . , vk} which does not contain the i−th vertex vi. For given m = (m1, . . . ,mk) ∈ Znk

let us introduce the notation mi = (m1, . . . ,mi−1,mi+1, . . . ,mk) ∈ Zn(k−1) and define the function
SλT,mi : Zn → {0, 1} by

SλT,mi(mi) =

{
1 if mi ·mj = λtij ∀ 1 ≤ j ≤ k
0 otherwise

Then, clearly
SλT (m) = SλTi

(mi)SλT,mi(mi), (2.2.48)

where the function SλTi
is defined in (2.2.15).

Proposition 2.3. Let k ≥ 2, n > 2k + 2 and let f, f1, f2 : Zn → [−1, 1] be given functions. Then
one has

|EλT (f ; f1, f2)| ≲ det(λT )
n−k−1

2 ∥f∥2 ∥f1 − f2∥2 (2.2.49)

Proof. For fixed 1 ≤ i ≤ k, using SλT (m) = SλT (−m), one may write

NλT (f0, f1, . . . , fk) =
∑
mi

∑
m

∑
mi

SλTi
(mi) f(m)

∏
j ̸=i

fj(m−mj) fi(m−mi)SλT,mi(mi)
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=
∑
mi

∑
m

SλTi
(mi) f(m) gi(m,m

i) (fi ∗ SλT,mi)(m).

Thus,

|Ei
λT (f ; f1, f2)| ≤

∑
mi,m

SλTi
(mi) |f(m)| |(f1 − f2) ∗ SλT,mi)(m)| (2.2.50)

≤ ∥f∥2
∑
mi

SλTi
(mi) ∥(f1 − f2) ∗ SλT,mi∥2

≤ ∥f∥2 ∥f1 − f2∥2
∑
mi

SλTi
(mi) ∥SλT,mi∥1

where the second line follows from Cauchy-Schwarz and the third line from Minkowski’s integral
inequality. Finally, by inequality (2.2.31)∑

mi

SλTi
(mi) ∥SλT,mi∥1 =

∑
m

SλT (m) ≲ det(λT )
n−k−1

2 .

and (2.2.49) follows.

Next, we give a different estimate on the quantity EλT (f ; f1, f2).

Proposition 2.4. Let k ≥ 2, n > 2k + 2 and let f, f1, f2 : Zn → [−1, 1] be given functions. Then
for fixed 1 ≤ i ≤ k, one has

|Ei
λT (f ; f1, f2)| ≲ det(λTi)

n−k
4 ∥f∥2

(ˆ
Tn

|(f̂1 − f̂2)(ξ)|2
∑
mi

SλTi
(mi) |ŜλT,mi(ξ)|2 dξ

) 1
2

.

(2.2.51)

Proof. Using the matrix formulation, the support of the function SλTi
consists of those integral

matrices M ∈ Zn×(k−1) which satisfy the equation M t ·M = λTi, hence by (2.2.31) the size of its

support is bounded by C det(λTi)
n−k
2 .

Starting with the second line of (2.2.50) and using the Cauchy-Schwarz inequality, one obtains

|Ei
λT (f ; f1, f2)| ≲ ∥f∥2 det(λTi)

n−k
4

(∑
mi

SλTi
(mi) ∥(f1 − f2) ∗ SλT,mi∥22

) 1
2

Inequality (2.2.51) follows by applying Plancherel’s formula to the above expression in parenthesis,
and by interchanging the summation and integration.

Expanding the sum in formula (2.2.51), one obtains∑
mi∈Zn(k−1)

∑
mi,mk+1∈Zn

SλTi
(mi)Sλ,mi(mi)Sλ,mi(mk+1) e

2πi(mi·ξ−mk+1·ξ). (2.2.52)

If one defines Gi
λ,T (m,mk+1) = SλTi

(mi)Sλ,mi(mi)Sλ,mi(mk+1) : Zn(k+1) → {0, 1}, where m =

(m1, . . . ,mk) ∈ Znk, then the expression in (2.2.52) is equal to Ĝi
λ,T (0, . . . , 0, ξ, 0, . . . , 0,−ξ) =

Ĝi
λ,T (X ) with X = (0, . . . , 0, ξ, 0, . . . , 0,−ξ) ∈ Rn×(k+1), where the entries ξ and −ξ appear the the

44

               amagyar2024_220_24



i-th and k + 1-th place. Note that Gi
λ,T (m1, . . . ,mk+1) = 1 if and only the vectors m1, . . . ,mk+1

satisfy the system of equations:

mj ·ml = λtjl, mk+1 ·ml = mi ·ml = λtil (l ̸= i), mk+1 ·mk+1 = mi ·mi = λtii, (2.2.53)

for all 1 ≤ l ≤ j ≤ k. If one writes λt = mk+1 ·mi, and defines the symmetric (k + 1) × (k + 1)
matrix T i(t) = (τj,l) with entries (1 ≤ l ≤ j ≤ k)

τj,l = tjl, τk+1,l = til (l ̸= i), τk+1,k+1 = tii, τk+1,i = t, (2.2.54)

then it is clear that
Gi

λ,T (m,mk+1) =
∑
t

SλT i(t)(m,mk+1). (2.2.55)

Note that the summation in (4.10) is finite as the function SλT i(t) is constant 0 unless there exists

an M̃ ∈ Zn×(k+1) such that M̃ tM̃ = λT i(t), in which case we will call the number t admissible.
Thus if t is admissible then, in particular, t2 ≤ t2ii and λt ∈ Z. To summarize, we have for 1 ≤ i ≤ k
and ξ ∈ Rn ∑

mi∈Zn(k−1)

SλTi
(mi) |ŜλT,mi(ξ)|2 =

∑
t admissible

ŜλT i(t)(X ), (2.2.56)

with X = (0, . . . , 0, ξ, 0, . . . , 0,−ξ). We need to collect some geometric facts about the matrices
T i(t), to estimate the right side of (2.2.56)

Proposition 2.5. Let T > 0 be a fixed integral k × k matrix and let 1 ≤ i ≤ k. Then,

(i) The number of admissible values of t is bounded by: 2 det(λT )/ det(λTi) + 1.

(ii) For each M = (m1, . . . ,mk) such that M tM = λT , there are at most 2 vectors mk+1 ∈ Zn

such that det(T i(t)) = 0, where the vectors m1, . . . ,mk+1 and the matrix T i(t) satisfy (2.2.53) and
(2.2.54).

(i3) Let t be admissible, and let M̃ = (m1, . . . ,mk,mk+1) be such that M̃ tM̃ = λT i(t). Let d denote
the distance of the vector mk+1 to the subspace Span{m1, . . . ,mk}, that is to the subspace spanned
by the vectors m1, . . . ,mk. Then

µ(λT i(t)) ≥ d2µ(T )

8|T |
. (2.2.57)

Here µ(T ) is defined in (2.2.2) and |T | = (
∑

i,j t
2
ij)

1/2.

(i4) Let 0 < δ < e(T )−4/64, where e(T ) is defined in (1.5). Then

|{t admissible : µ(T i(t)) ≤ |T | δ}| ≲ δ
1
2 det(λT )/ det(λT i). (2.2.58)

(i5) Let t be admissible, then one has

det(λT i(t)) ≤ det(λT )2/ det(λTi) (2.2.59)

Proof. Let t be admissible, and let M̃ = (m1, . . . ,mk,mk+1) be such that M̃ tM̃ = λT i(t). If P
denotes the orthogonal projection to the subspace spanned by the vectorsm1, . . . ,mi−1,mi+1, . . . ,mk

then by (4.8) Pmi = Pmk+1. Denote this vector by u, and write mi = u+ w, mk+1 = u+ w′. If
one considers the vectors m1, . . . ,mk as elements of the k-dimensional subspace Span{m1, . . . ,mk}
then the quantity | det(m1, . . . ,mk)| is well-defined and is equal to the volume of the parallelepiped
spanned by these vectors. Moreover it is easy to see that det(λT ) = |det(m1, . . . ,mk)|2, and also
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that |w′| = |w| = |det(m1, . . . ,mk)|/| det(m1, . . . ,mi−1,mi+1, . . . ,mk)|. Since λt = mk+1 ·mk =
|u|2 + w · w′ it follows that

|λt− |u|2| ≤ |w|2 = det(λT )/ det(λT i) (2.2.60)

and (i) is proved.
If det(T i(t)) = 0 then mk+1 is linearly dependent of the vectors m1, . . . ,mk, thus w

′ is also linearly
dependent of the vectorsm1, . . . ,mi−1,mi+1, . . . ,mk and w, hence w′ = ±w. It followsmk+1 = u±w
and (ii) is proved.
Let x = (x1, . . . , xk, xk+1) ∈ Rk+1, |x| = 1 such that

µ(λT i(t)) = λT i(t)x · x = |m1x1 + . . .+mk+1xk+1|2

It is clear that µ(λT i(t)) ≥ d2 |xk+1|2, thus if |xk+1|2 ≥ µ(T )/4|T | then inequality(4.12) holds.
Otherwise |xk+1|2 ≤ µ(T )/4|T | and one estimates

µ(λT i(t)) ≥ (|m1x1 + . . .+mkxk| − |mk+1||xk+1|)2 ≥
1

8
µ(λT ),

as |mk+1|2 = |mi|2 = λtii ≤ |λT | and x21 + . . . + x2k ≥ 3/4. Also d2 ≤ |mk+1|2 ≤ |λT | thus
d2µ(T )/8|T | ≤ µ(λT )/8 and (2.2.57) follows.
Writing u = m1y1 + . . .+mi−1yi−1 +mi+1yi+1 + . . .mkyk, it follows

|w|2 = |u−mi|2 ≥ (1 + y21 + . . .+ y2k)µ(λT ) ≥ |λT | e(T )−1

If v denotes the orthogonal projection of the vector mk+1 to the subspace spanned by the vectors
m1, . . . ,mk, the it is easy to see that v = u+ w w·w′

|w| . Thus

(w · w′)2

|w|2
+ d2 = |w|2 substituting λt− |u|2 = w · w′

|w|2 ≥ |λt− |u|2| ≥ |w|2 (1− d2/|w|2)
1
2

If µ(T i(t)) ≤ |T | δ then by (2.2.57) and the assumption on δ

d2

|w|2
≤ d2e(T ) |λT |−1 ≤ 8δ e(T )2 ≤ δ

1
2 .

Since δ < 1, it follows that |w|2 ≥ |λt− |u|2| ≥ |w|2(1− δ1/2) and this implies (2.2.58).
Finally, arguing as in (4.15) one has

det(λT i(t))/ det(λT ) = d2 ≤ |w|2 = det(λT )/ det(λTi),

and (2.2.59) follows.

Using Lemma 2.1, in dimensions n and k+1 it is now not hard to estimate the right side of (2.2.56).
We remark that it is here where the stronger condition n > 2k + 4 is needed.

Proposition 2.6. Let k ≥ 2, n > 2k + 4, and let T ∈ Zk×k be a positive matrix. Let q0 ∈ N and
0 < δ < e(T )−4/64 be given parameters. Then for 1 ≤ i ≤ k

∑
mi

SλTi
(mi) |ŜλT,mi(ξ)|2 ≲

det(λT )n−k−1

det(λTi)
n−k
2

(
1 + λ−

n−k
2 e(T )

(n−k)(k−1)
2

)
(2.2.61)
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holds uniformly for ξ ∈ Rn.

If |ξ − l/q| ≥ δ−1λ−1/2 |T |−1/2 for all l ∈ Zn and q ≤ q0 , then one has

∑
mi

SλTi
(mi) |ŜλT,mi(ξ)|2 ≲

det(λT )n−k−1

det(λTi)
n−k
2

(
q
−n−2k−4

2
0 + δ

1
4 + λ−

n−2k−2
2 e(T )(n−k−1)k

)
. (2.2.62)

Proof. Let us first estimate the sum in (2.2.52) over those k+1 tuples (m1, . . . ,mk,mk+1) for which
mk+1 is linearly dependent on the vectors m1, . . . ,mk. By Proposition 2.5 (i), there are at most 2
possible choices for the vector mk+1. Thus one estimates the contribution of such k + 1 tuples to
the sum in (2.2.52) by

ŜλT (0) ≲ det(λT )
n−k−1

2 ≲
det(λT )n−k−1

det(λTi)
n−k
2

λ−
n−2k

2 e(T )
(n−k)(k−1)

2 . (2.2.63)

The first inequality in (2.2.52) follows from (2.2.31), while the second follows from the facts that
det(λTi) ≤ |λTi|k−1 ≤ |λT |k−1 and |λT |k = µ(λT )ke(T )k ≤ det(λT )e(T )k.

Summing over the k+1-tuples (m1, . . . ,mk,mk+1) in formula (2.2.52) which are linearly independent,
is equal to the sum on the right side of (2.2.56) over those admissible values of t for which
det(T i(t)) > 0, and one may apply Lemma 1 to the matrix λT i(t), for each such value of t. Thus by
(2.2.31) and (2.2.59), one has uniformly in ξ ∈ Rn

|ŜλT i(t)(ξ)| ≲ det(λT i(t))
n−k−2

2 ≤ det(λT )n−k−2 det(λTi)
−n−k−2

2 . (2.2.64)

By Proposition 2.5 (i), the number of admissible values t (for which det(T i(t)) ̸= 0) is bounded by
2 det(λT )/ det(λTi) and (2.2.61) follows from (2.2.56) and (2.2.63).
Let us assume now that |ξ − l/q| ≥ δ−1λ−1/2 |T |−1/2, for all l ∈ Zn and 1 ≤ q ≤ q0 , and hence
|X − P/q| ≥ δ−1λ−1/2 for all P ∈ Zn×(k+1) and q ≤ q0 (where X = (0, . . . , 0, ξ, 0, . . . , 0,−ξ) as
before). Then one may use inequality (3.28) in Lemma 1 with τ = δ−1λ−1/2 |T |−1/2 > 0 to estimate
the left side of (2.2.52):

|ŜλT i(t)(X )| ≲ det(λT i(t))
n−k−2

2 q
−n−2k−4

2
0 + det(λT i(t))

n−k−2
2 (δ−2|T |−1µ(T i(t)))−

n−2k−4
4

(2.2.65)

+ (λ|T i(t)|)
(n−k−1)k

2 = S1(t) + S2(t) + S3(t)

Summing the fist terms over admissible values of t is estimated exactly as in (2.2.61) and one gets∑
t

S1(t) ≲ det(λT )n−k−1 det(λTi)
−n−k

2 q
−n−2k−4

2
0 .

If t is such that µ(T i(t)) ≥ δ |T | then (δ−2|T |−1µ(T i(t)))−(n−2k−4)/4 ≤ δ1/4 as n − 2k − 4 ≥ 1
and summing over such t’s gives the second term of the right side of (2.2.62). By Proposition 4.3,
the number of admissible t’s such that µ(T i(t)) ≤ δ |T | is bounded by 2δ1/2 det(T )/det(Ti) and
one get a gain by a factor of δ1/2 over the estimate in (2.2.61), thus∑

t

S2(t) =
∑

t:µ(T i(t))≥δ |T |

S2(t) +
∑

t:µ(T i(t))<δ |T |

S2(t) ≲ δ
1
4 det(λT )n−k−1 det(λTi)

−n−k
2 .
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Finally, using the facts |λT i(t)| ≲ |λT | ≤ det(λT )1/k e(T ) and det(λTi) ≤ det(λT )(k−1)/k e(T )k−1

a straightforward calculation shows, that summing the third terms on the right side of inequality
(2.2.65), one gets

∑
t

S3(t) ≲ det(λT ) det(λTi)
−1 |λT |

(n−k−1)k
2 ≲

det(λT )n−k−1

det(λTi)
n−k
2

λ−
n−2k−2

2 e(T )(n−k−1)k.

This proves the proposition.

We will apply inequalities (2.2.51), (2.2.61) and (2.2.62) to functions of the form fi = fLi,q (i = 1, 2)
defined in (2.2.22), for specific choice of Li > 0. Recall that we defined fL,q = 1A ∗ ψL,q where,
considering as distribution on Rn,

ψL,q = qnδ(qZ)n ψL where ψL(x) = L−nψ(x/L),

and δ(qZ)n denotes the discrete (counting) measure supported on the lattice (qZ)n. By Poisson
summation, if ϕ ∈ C∞(Tn) then

⟨ δ̂(qZ)n , ϕ ⟩ = ⟨ δ(qZ)n , ϕ̂ ⟩ = q−n
∑
l∈Zn

ϕ(l/q).

Thus
ψ̂L,q(ξ) = qn

(
δ̂(qZ)n ∗ ψ̂L

)
(ξ) =

∑
l∈Zn

ψ̂ (L(ξ − l/q)). (2.2.66)

We can now state the main result of this section, given a set A ⊆ BR ∩ Zn such that |A| ≥ εRn, an
integral k-dimensional simplex △ ⊆ Rn with T = T△, and a positive integer λ.

Lemma 2.4. Let k ≥ 2, n > 2k + 4, and let c̄ > 0 be a positive constant. Let C̄ > 0 and define

L1 = C̄−1 e(T )−4ε9(k+1) λ
1
2 |T |

1
2 , q(ε) = l.c.m. {q ≤ C̄ε−

4(k+1)
n−2k−4 }. (2.2.67)

If C̄ = C̄(n, k, c̄) is large enough and if

λ ≥ C̄ q(ε)2ε−18(k+1) e(T )
4k(n−k−1)
n−2k−2 , (2.2.68)

then one has
|EλT (1A;1A, fL1,q(ε))| ≤ c̄ εk+1Rn det(λT )n−k−1. (2.2.69)

Proof. Let 1 ≤ i ≤ k be fixed. Applying inequality (4.6) for f = f1 = 1A, f2 = fL1,q(ε), one has

|Ei
λT (1A;1A, fL1,q(ε))| ≤ C ∥1A∥22 det(λTi)

(n−k)
4

(
sup
ξ∈Tn

|1− ψ̂L1,q(ε)(ξ)|
2
∑
mi

SλTi
(mi) |ŜλT,mi(ξ)|2

) 1
2

.

Since ∥1A∥22 = |A| ≤ Rn, it is enough to show that

sup
ξ∈Tn

|1− ψ̂L1,q(ε)(ξ)| (
∑
mi

SλTi
(mi) |ŜλT,mi(ξ)|2)

1
2 ≤ c1 ε

k+1 det(λT )
n−k−1

2 det(λTi)
−n−k

4 , (2.2.70)
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for some constant c1 = c1(n, k, c̄) > 0 small enough. By our assumptions, L1 > q(ε), hence the
supports of the functions ψ̂(L1(ξ − l/q(ε))) are disjoint for different values of l ∈ Zn. Thus if there
is an l0 such that: |ξ − l0/q(ε)| ≤ C−1

1 εk+1L−1
1 where C1 is large enough w.r.t. c1, then

|1−
∑
l∈Zn

ψ̂(L1(ξ − l/q(ε)))| = |1− ψ̂(L1(ξ − l0/q(ε)))| ≤ c1 ε
k+1,

using the fact that |1−ψ̂(η)| ≲ |η| for η ∈ Rn, and (2.2.69) follows from (2.2.61) and the assumption
(2.2.68).

In the opposite case, for all l ∈ Zn and 1 ≤ q ≤ C̄ε−
4(k+1)
n−2k−4 , one has by (2.2.68)

|ξ − l/q| = |ξ − l′/q(ε)| > C−1
1 εk+1L−1

1 ≥ (C̄/C1) e(T )
4 ε−8(k+1)λ−

1
2 |T |−

1
2 .

Thus one can apply inequality (2.2.52) with parameters

δ = (C1/C̄) e(T )
−4ε−8(k+1) q0 = C̄ ε−

4(k+1)
n−2k−4 ,

using the fact that λ ≥ C̄ e(T )
2k(n−k−1)
n−2k−2 ε−

4(k+1)
n−2k−2 inequality (2.2.69) follows, if the constant

C̄ = C̄(n, k, c̄) is chosen large enough.

Proof of Lemma 2.1.

We will proceed as in Section 2.2.2. Assume that for a given λ ∈ N, the simplex
√
λ△ cannot be

embedded in A, that is
NλT (1A,1A, . . . ,1A) = 0. (2.2.71)

Choosing L = C(λ|T |)1/2 such that R/L ∈ Z and q = q(ε) defined in 2.2.1, Lemma 2.3 implies that

NλT (1A, fL,q, . . . , fL,q) ≥ c0 det(λT )
n−k−1

2 εk+1Rn.

Assuming that the parameters R, ε and λ satisfy R > L2(λ, ε) > L1(λ, ε) > q(ε), where

L1(λ, ε) = C̄−1 e(T )−4ε9(k+1)(λT )1/2, L2(λ, ε) = C̄ ε−(k+1) (λT )1/2

we have that both (2.2.67) and (2.2.68) is satisfied. Thus by Lemma 2.5,

NλT (1A, fL1,q, . . . , fL1,q) ≤
c0
2

det(λT )
n−k−1

2 εk+1Rn,

where we wrote L1 = L1λ, ε and q = q(ε) for simplicity of notations. Using Proposition 2.3 with
f = 1A, f1 = fL1,q and f2 = fL,q it follows

∥fL1,q − fL,q∥22 =
ˆ
Tn

|1̂A(ξ)|2 |ψ̂L1,q − ψ̂L,q|2 dξ ≥ c1 ε
2k+2Rn, (2.2.72)

for some constant 0 < c1 ≤ 1. Note that ψ̂L1,q−ψ̂L,q is supported on (1qZ)
n+[− 1

2L1
, 1
2L1

]n. Moreover,

if ξ = l
q + η with η ∈ [− 1

2L2
, 1
2L2

]n for a given L2 > C1 ε
−(k+1)L, then

|ψ̂L1,q(ξ)− ψ̂L,q(ξ)| = |ψ̂(L1η)− ψ̂(Lη)| ≤ C L/L2 ≤
c1
2
εk+1,

as long as C1 ≫ c−1
1 . Thus integrating over the complement of the set Tλ,ε = T(L1(λ,ε),L2(λ,ε),q(ε))ˆ

Tn/Tλ,ε

|1̂A(ξ)|2 |ψ̂L1,q − ψ̂L,q|2 dξ ≤ c1
4
ε2k+2Rn. (2.2.73)

Estimates (2.2.72)-(2.2.73) imply estimate (2.2.9) and Lemma 2.1 is proved.
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2.2.4 Fourier transforms and Siegel theta functions

In this section we prove Lemma 2.2 using the theory of theta functions. All arguments given here
are independent of the rest of the paper, based on the approach in [67, 95] of estimating Fourier
coefficients of Siegel modular forms vanishing at cusps. The basic difference is that the above
mentioned works dealt with the case X = 0 while we need to consider those values of X which are
”away” from rational points P/q (P ∈ Zk×k) with small denominator q. The related theta functions
are not modular forms, but behave very similarly, at such points X , and hence most arguments
of [67] can be adopted to our situation. We start by recalling some of the basic definitions and notions.

Let Hk = {Z = X + iY : Zt = Z, Y > 0} denote the Siegel upper half-plane of genus k. Following
the definition (1.3.2) in [1], let θk : Hk × Rk × Rk → C be the theta function defined by

θk(Z, ξ, η) =
∑
m∈Zk

eπi (Z(m−η)·(m−η)+ 2m·ξ− ξ·η ). (2.2.74)

Note that the above sum converges uniformly on the domain {Z : Im Z > εEk}, for every ε > 0.
Here Ek is the k × k identity matrix, and by the notation A ≥ B we mean that A− B > 0, that
is a positive k × k matrix. Next, we define the theta functions θn,k : Hk × Rn×k × Rn×k → C.
Let X = (ξ1, . . . , ξn), E = (η1, . . . , ηn) be n × k matrices with the i-th row being ξ (resp. ηi) for
1 ≤ i ≤ n. Define

θn,k(Z,X , E) =
n∏

i=1

θk(Z, ξi, ηi). (2.2.75)

Using (2.2.74) , and the fact that tr(AB) = tr(BA) for A,B ∈ Rn×k, one may also write

θn,k(Z,X , E) =
∑

M∈Zn×k

eπi tr( (M−E)Z(M−E)t+2MtX−EtX ). (2.2.76)

These theta functions will play a crucial role. Indeed, one has

Proposition 2.7. Let T > 0 be an integral k × k matrix, and let X ∈ Rn×k. Then

|ŜT (X )| ≲
ˆ
[0,2]

k(k+1)
2

|θn,k(X + iT−1,−X , 0)| dX (2.2.77)

where dX =
∏

1≤i≤j≤k dxij.

Proof. For simplicity of notation, let Ik = [0, 2]
k(k+1)

2 . If M ∈ Zn×k, then

ˆ
Ik

eπi tr ( (M
tM −T )X) dX =

{
2

k(k+1)
2 , if M tM = T

0 , otherwise

If MM t = T then tr(M tMT−1) = tr(MT−1M t) = n, thus

ŜT (X ) = 2−
k(k+1)

2 eπn
∑

M∈Zn×k

e−π tr(MT−1Mt)

ˆ
Ik

eπi tr( (M
tM −T )X−2MtX ) dX

= 2−
k(k+1)

2 eπn
ˆ
Ik

e−πi tr(TX )
∑

M∈Zn×k

eπi tr(M(X+iT−1)Mt−2MtX ) dX.

Note that the inner sum is: θn,k(X + iT−1,−X , 0), which converges uniformly for X ∈ Ik, and
hence the last equality is justified. Taking absolute values in the integral the proposition follows.
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We will use the approach of [67], in estimating the integral in formula (2.2.74), by partitioning the
range of integration Ik, and estimating the theta function separately on each part by exploiting
its transformation properties. Note that in one dimension, when k = 1, this leads to the so-called
Farey arcs decomposition. Let

Γk =

{
γ =

(
A B
C D

)
; ABt = BAt, CDt = DCt, ADt −BCt = Ek

}
. (2.2.78)

denote the integral symplectic group. The group Γk acts on Hk as a group of analytic automorphisms,
the action being defined by: γ⟨Z⟩ = (AZ +B)(CZ +D)−1 for γ ∈ Γk, Z ∈ Hk. Let us recall also
the subgroup of integral modular substitutions:

Γk,∞ =

{
γ =

(
A B
0 D

)
; ABt = BAt, ADt = Ek

}
(2.2.79)

It is immediate that writing U = At and S = ABt, that D = U−1 and B = SU−1, moreover S is
symmetric, and U ∈ GL(k,Z), that is: det(U) = ±1. The action of such γ ∈ Γk,∞ on Z ∈ Hk takes
the form:

γ⟨Z⟩ = U tAU + S. (2.2.80)

we will adopt also the notation Z[U ] = U tZU . The general linear group GL(k,Z) acts on the
space Pk of positive k × k matrices, via the action: Y → Y [U ], Y ∈ Pk, and let Rk denote the
corresponding so-called Minkowksi domain, see [KL, Definition 1, p12]. A matrix Y = (yij) ∈ Rk is
called reduced. We recall that for a reduced matrix Y

Y ≈ YD , y11 ≤ y22 ≤ . . . ≤ ykk. (2.2.81)

where YD = diag(y11, . . . , ykk) denotes the diagonal part of Y , and A ≈ B means that A− ckB > 0,
B − ckA > 0 for some constant ck > 0. For a proof of these facts, see [KL,Lemma 2, p.20]. A
fundamental domain Dk for the action of Γk on Hk, called the Siegel domain, consists of all matrices
Z = X + iY , (X = (xij)), satisfying

Y ∈ Rk, |xij | ≤ 1/2, | det (CZ +D)| ≥ 1, ∀ γ =

(
A B
C D

)
∈ Γk. (2.2.82)

The second rows of the matrices γ ∈ Γk are parameterized by the so-called coprime symmetric
pairs of integral matrices (C,D), which means that CDt is symmetric and the matrices GC and
GD with a matrix G of order k are both integral only if G is integral, see [1], Lemma 2.1.17.It
is clear from definition (2.2.79) that if γ2 = γγ1 with second rows (C2, D2) and (C1, D1) for some
γ ∈ Γk,∞, then (C2, D2) = (UC1, UD1) for some U ∈ GL(k,Z). On the other hand, if both γ1 and
γ2 have the same second row (C,D) then γ2γ

−1
1 ∈ Γk,∞. This gives the parameterization of the

group Γk,∞\Γk by equivalence classes of coprime symmetric pairs (C,D) via the equivalence relation
(C2, D2) ∼ (C1, D1) if (C2, D2) = (UC1, UD1) for some U ∈ GL(k,Z), see also [1], p.54. We will
use the notation [γ] = [C,D] ∈ Γk,∞\Γk.

It is clear that if one defines the domain: Fk = ∪γ∈Γk,∞γDk, then Hk =
⋃

[γ]∈Γk,∞\Γk
γ−1Fk is a

non-overlapping cover of the Siegel upper half-plane. Correspondingly, for a given matrix T > 0 of
order k, define the Farey arc dissection of level T , as the cover

Ik =
⋃

[γ]∈Γk,∞\Γk

IT [γ], IT [γ] = {X ∈ Ik : X + iT−1 ∈ γ−1Fk} (2.2.83)
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We will need the following transformation property of the functions |θn,k(Z,X , E)| with respect
to γ ∈ Γk, which is immediate from Proposition 1.3.2 and Theorem 1.3.6 in [1], see formulas

(1.3.7)-(1.3.10) there. Let ξ, η ∈ Rk, Z ∈ Hk, and γ =

(
A B
C D

)
∈ Γk. Then one has

|θk(Z, ξ, η)| = |det (CZ +D)|−
1
2 |θk(γ⟨Z⟩, Aξ −Bη − kγ/2, Cξ −Dη − nγ/2)|, (2.2.84)

for some vectors kγ , nγ ∈ Zk depending only on the matrix γ. If X = (ξ1, . . . , ξn) is a real n × k
matrix with the i-th row being ξi, for 1 ≤ i ≤ n, then by (2.2.75)

|θn,k(Z,X , 0)| = | det (CZ +D)|−
n
2 |θn,k(γ⟨Z⟩, XAt −Kγ/2, XCt −Nγ/2)|, (2.2.85)

for some matrices Kγ , Nγ ∈ Zn×k depending only on the matrix γ. Let us recall the following
quantity associated to a positive matrix Y ∈ Rk×k.

min(Y ) = min
x∈Zn,x ̸=0

Y x · x. (2.2.86)

It is clear that µ(Y ) ≤ min(Y ), and it follows from (5.8) that µ(Y ) ≈ min(Y ) if Y is reduced.

Proposition 2.8. Let X ∈ Rn×k, T ∈ Zk×k such that T > 0, and τ > 0 be given. If (C,D) is a
coprime symmetric pair, then for Z ∈ IT [C,D] one has

|θn,k(Z,X , 0)| ≲ |det (CZ +D)|−
n
2 . (2.2.87)

Let q = det(C), [γ] = [C,D] and Y = Imγ⟨Z⟩. If q ̸= 0, and for every P ∈ Zn×k

|X − P/2q| ≥ τ (2.2.88)

then one has

|θn,k(Z,X , 0)| ≲ |det (CZ +D)|−
n
2

(
e−cmin(Y ) + e−c τ2µ(CtY C)

)
, (2.2.89)

for some constant c > 0 depending only on the dimension k.

Proof. By formula (2.2.84) it is enough to show that

|θn,k(γ⟨Z⟩, XAt −Kγ/2, XCt −Nγ/2)| ≲ 1. (2.2.90)

Since γ⟨Z⟩ ∈ Fk, there is a U ∈ GL(k,Z) and a symmetric S ∈ Zk×k, such that γ⟨Z⟩ = U tZ1U + S
with Z1 ∈ Dk. Taking absolute values in (2.2.76) one obtains, using the notation A[B] = BtAB,

|θn,k(γ⟨Z⟩, XAt −Kγ/2, XCt −Nγ/2)| ≤
∑

M∈Zn×k

e−π tr(Y [CX t−Mt−Nt
γ/2]) (2.2.91)

=
∑

M1∈Zn×k

e−π tr(Y1[C1X t−Mt
1−Nt

1/2]),

where M1 = MU t runs through Zn×k, C1 = UC, N1 = NγU
t and Y1 = ImZ1 = U tY U . Since

Z1 ∈ Dk, Y1 ≥ ckEk for some constant ck > 0. Let M0 ∈ Zn×k be such that

|XCt
1 −M0 −N1/2| = min

M∈Zn×k
|XCt

1 −M −N1/2|,
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and write M2 =M1 −M0 . Since Z1 ∈ Dk, one has that µ(Y1) ≈ min(Y1) ≳ 1 see [1], thus the right
side of (2.2.91) is further estimated by

e−c′|XCt
1−M0−N1/2|2 +

∑
M2 ̸=0

e−c′min(Y1) |M2|2 ≲ 1. (2.2.92)

If q = det(C) ̸= 0 and one assumes (2.2.89), then det(C1) = ±q ̸= 0 and (M0+N1/2)(C
t
1)

−1 = P/2q
for some P ∈ Zn×k. Thus

tr(Y1[C1X t −M t
0 −N t

1/2]) = tr((Ct
1Y1C1) [X t − P t/2q]) ≥ τ2µ(Ct

1Y1C1).

Thus the expression in formula (2.2.92) is bounded by

e−c τ2µ(Ct
1Y1C1) + e−cmin(Y1),

for some constant c > 0 depending only on k. Since Ct
1Y1C1 = CtY C and min(Y1) = min(Y ), the

proposition is proved.

We will estimate below the sum of the integrals

JT,X [C,D] =

ˆ
IT [C,D]

|θn,k(Z,X , 0)| dX, (2.2.93)

over all coprime symmetric pairs [C,D], using bounds (2.2.87) and (2.2.89). Most of the estimates
needed, were done in [67] in the proofs of Propositions 1.4.10 and 1.4.11, which we recall without
proofs, however we give detailed proofs of similar estimates not discussed in [67].
To be more precise, define the quantities

J0
T [C,D] =

ˆ
IT [C,D]

|det(CZ +D)|−
n
2 dX. (2.2.94)

J1
T [C,D] =

ˆ
IT [C,D]

|det(CZ +D)|−
n
2 e−cmin(Y ) dX. (2.2.95)

J2
T,τ [C,D] =

ˆ
IT [C,D]

|det(CZ +D)|−
n
2 e−cτ2 µ(CtY C) dX, (2.2.96)

where Y = Imγ⟨Z⟩ and γ ∈ Γk such that [γ] = [C,D] ∈ Γk,∞\Γ. The following estimates are
proved in [K], (see Proposition 1.4.10 together with Lemma 1.4.4. and estimate (39) there)

Proposition 2.9. Let T be a positive integral matrix, and let [C,D] be a coprime symmetric pair
such that det(C) ̸= 0. Then one has the following estimates∑

St=S

J0
T [C,D + CS] ≲ det(T )

n−k−1
2 |det(C)|−

n
2 . (2.2.97)

∑
St=S

J1
T [C,D + CS] ≲ det(T )

n−k−1
2 |det(C)|−k min(T )−

n−2k
4 , (2.2.98)

where the summation is taken over all symmetric integral matrices S.

Using the same argument as in the proof of the above statements given in [67], one obtains
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Proposition 2.10. Let T be a positive integral matrix, let τ > 0, and let [C,D] be a coprime
symmetric pair such that det(C) ̸= 0. Then∑

St=S

J2
T,τ [C,D + CS] ≲ det(T )

n−k−1
2 |det(C)|−

n
2 (τ2µ(T ))−

n−2k
4 , (2.2.99)

where the summation is taken over all symmetric integral matrices S.

Proof. Using the fact that

Imγ⟨Z⟩ = ((CZ +D)(ImZ)−1(CZ̄ +D)t)−1,

it follows for Z = X + iT−1 that

Y [C] = (T [X + C−1D + iT−1])−1 = (T [X + C−1D] + T−1)−1.

Thus by (2.2.96)∑
St=S

J2
T,τ [C,D + CS] ≲ (2.2.100)

≲
∑
St=S

ˆ
Ik

| det(C)|−
n
2 | det(X + C−1D + S + iT−1)|−

n
2 e−cτ2 µ(T [X+C−1D+S]+T−1)−1

dX

≲ | det(C)|−
n
2

ˆ
R

k(k+1)
2

|det(X + iT−1)|−
n
2 e−cτ2 µ((T [X]+iT−1)−1) dX.

Let T
1
2 denote the positive square root of T , and let X1 = X[T

1
2 ]. Then by a change of variables

dX = det(T )−
k+1
2 dX1, the expression in (2.2.100) takes the form

det(T )
n−k−1

2 | det(C)|−
n
2

ˆ
R

k(k+1)
2

det(X2
1 + Ek)

−n
4 e−cτ2 µ((X2

1+Ek)
−1[T

1
2 ]). (2.2.101)

Note that the above expression depends just on the conjugacy class of the symmetric matrixX1. Thus
writing X1 = V t diag(w1, . . . , wk)V for some orthogonal matrix V ∈ O(k), with |w1| ≥ . . . ≥ |wk|
being the eigenvalues of the matrix X1, it follows that

µ(T
1
2 (X2

1 + Ek)
−1T

1
2 ) ≥ (1 + w2

1)
−1 µ(T ).

By the Weyl integral formula:

dX1 =
∏

1≤i<j≤k

|wi − wj | dw1 . . . dwk dV ≤
∏

1≤i≤k

(1 + w2
i )

k−1
2 dw1 . . . dwk dV.

Since n > 2k, using the above change of variables, one estimates the integral in (2.2.101) by

ˆ
Rk

(1 + w2
1)

−n
4
+ k−1

2 e−cτ2µ(T ) (1+w2
1)

−1
dw1 ≲ (τ2µ(T ))−

n−2k
4 .

This proves the proposition.

The map [C,D] → C−1D provides a one-one and onto correspondence between the classes of
coprime symmetric pairs [C,D] ∈ Γk,∞\Γk and the space of symmetric rational matrices R of
order k, see Lemma 1.4.6 in [67]. Note that the pairs [C,D + CS] correspond to the matrices

54

               amagyar2024_220_24



R + S with symmetric S ∈ Zk×k. Thus using Proposition 2.10 9, one needs to estimate the sum
of
∑

St=S JT,X [C,D + CS] = JT,X [R] over the space of modulo 1 incongruent symmetric rational
matrices, which we will denote by Q(1)k×k, where Q(1) = Q/Z, Q being the set of rational numbers.
Let us introduce the notation: d(R) = |det(C)| for R = C−1D, and recall the following estimate,
proved in Lemma 1.4.9 in [67]; for u > 0 and s > 1 one has

u−s
∑

1≤d(R)≤u

d(R)−k +
∑

d(R)>u

d(R)−k−s ≲ (2 +
1

s− 1
)u1−s, (2.2.102)

where the summation is taken over [R] ∈ Q(1)k×k.

Proposition 2.11. Let T be a positive integral matrix, let τ > 0 and q0 ∈ N. Let X ∈ Rn×k such
that for all 1 ≤ q ≤ q0 and P ∈ Zn×k

|X − P/q| ≥ τ. (2.2.103)

Then one has∑
R∈Q(1)k×k, d(R)̸=0

JT,X [R] ≲ det(T )
n−k−1

2

(
(τ2µ(T ))−

n−2k−2
4 + q

−n−2k−2
2

0

)
. (2.2.104)

Proof. By Propositions 2.8-2.9 one has

JT,X [R] ≲ det(T )
n−k−1

2 d(R)−
n
2 ,

thus by (2.2.102) applied for s = n/2− k > 1 and u = 1∑
d(R)̸=0

JT,X [R] ≲ det(T )
n−k−1

2 . (2.2.105)

If X satisfies (2.2.103) then for 1 ≤ d(R) ≤ q0/2 one has by (2.2.90) and (2.2.98)-(2.2.99)

JT,X [R] ≲ det(T )
n−k−1

2

(
d(R)−

n
2 (τ2µ(T ))−

n−2k
4 + d(R)−kmin(T )−

n−2k
4

)
.

Clearly |τ | ≲ 1, thus τ2µ(T ) ≲ min(T ) so the right side is bounded by

JT,X [R] ≲ det(T )
n−k−1

2 d(R)−k(τ2µ(T ))−
n−2k

4 . (2.2.106)

By inequality (2.2.102) applied for s = n/2− k, u = q0/2∑
d(R)̸=0

JT,X [R] ≲ det(T )
n−k−1

2 (q0 (τ
2µ(T ))−

n−2k
4 + q

−n−2k−2
2

0 ),

which is bounded by the right side of formula (2.2.104).

Next, we estimate the sum JT,X [C,D] over the classes [C,D] of coprime symmetric pairs for which
det(C) = 0. We will use the estimate

JT,X [C,D] ≲ J0
T [C,D] =

ˆ
IT [C,D]

| det(CZ +D)|−
n
2 dX.

which follows from (2.2.88) and (2.2.94). First we show that one may assume T is reduced in our
estimates below.
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Proposition 2.12. Let T ∈ Zk×k such that T > 0 and let T1 = T [V ] for some V ∈ GL(k,Z). Let
0 ≤ r < k, and let rank(C) stand for the rank of the matrix C. Then∑

[C,D], rank(C)=r

J0
T1
[C,D] =

∑
[C,D], rank(C)=r

J0
T [C,D] (2.2.107)

Proof. Let U ∈ GL(k,Z) such that U−1 = V t. Then T−1 = T−1
1 [U−1], and writing Z = X + iT−1

for Z ∈ IT [C,D] a straightforward calculation shows that

|det(CZ +D)| = |det(C1Z1 +D1)|,

with C1 = C(U t)−1, D1 = DU, X1 = X[U−1] and Z1 = X1 + iT−1
1 . Notice that Z1 = h⟨Z⟩ with

h =

(
(U t)−1 0

0 U

)
, and if γ =

(
∗ ∗
C D

)
then γ · h = γ1 with γ1 =

(
∗ ∗
C1 D1

)
. It follows

γ⟨Z⟩ = γ1⟨Z1⟩, hence X ∈ IT [C,D] exactly when X1 = IT1 [C1, D1] and one has

ˆ
IT [C,D]

| det(CZ +D)|−
n
2 dX =

ˆ
IT1 [C1,D1]

|det(CZ1 +D1)|−
n
2 dX1

The map [C,D] → [C1, D1] = [C(U t)−1, DU ] is one-one and onto from the classes of coprime
symmetric pairs [C,D] with rank(C) = r to itself, and the proposition is proved.

Let T > 0 be integral, and let T1 = T [U ] be reduced, with U ∈ GL(k,Z). We recall that
T1 ≈ diag(t1,1, . . . , tk,k), where ti,i (1 ≤ i ≤ k) denote the diagonal entries of the matrix T1, see
(2.2.81). For reduced matrices the estimate of the sum in (2.2.107) goes back to [98], and is given
in Lemma 1.4.11 in [67], which we recall without proofs, see formulas (39) and (43)-(44) there.

Proposition 2.13. Let T1 ∈ Zk×k be reduced, and let 0 ≤ r < k. Then∑
[C,D], rank(C)=r

J0
T1
[C,D] ≲ (tk,k · . . . · tk−r+1,k−r+1)

n−r−1
2 ,

where ti,i (1 ≤ i ≤ k) denote the diagonal entries of the matrix T1.

It is easy to see that
e(T1) ≲ e(T ). (2.2.108)

Indeed,
t1,1 = Te1 · e1 = T (Ue1) · Ue1 ≥ µ(T ) and

|T | ≥ sup
|x|=1

T1(U
−1x) · U−1x ≳ sup

|x|=1
tk,k (U

−1x)2k ≥ tk,k,

as U−1 is integral, where (U−1x)k denotes the k-th entry of the vector U−1x.

Finally, one has r(n− r− 1) ≤ (k− 1)(n− k) for 0 ≤ r ≤ k− 1, thus Proposition 2.13 and inequality
(2.2.108) implies

Corollary 2.1. Let T ∈ Zk×k such that T > 0. Then∑
[C,D], det(C)=0

J0
T [C,D] ≲ |T |

(k−1)(n−k)
2 .

Note that a proof of this corollary is also given in [95], see formulas (25)-(26) there.
Lemma 2.2 follows immediately from Proposition 2.11 and Corollary 2.1.
This finishes to proof of Theorem 2.3.
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3 A weak hypergraph regularity lemma and products of simplices
in sets of positive density

As described in Section 2 Graham has conjectured that Bourgain’s simplex theorem extends to all
finite spherical configurations S in Euclidean spaces. The first breakthrough in this direction was
obtained in joint work with Lyall [76] where it was shown that configurations of four points forming
a 2-dimensional geometric rectangle, and more generally any configuration that is the direct product
of two non-degenerate simplices in Rn are Ramsey. This section is based on the recent joint work
[79] where the results in [76] were extended to cover configurations with a a higher dimensional
product structure in both the settings of Euclidean spaces and the integer lattice Zd. Let us state
our main results.

By a d-dimensional rectangle in a space RD (or in ZD) we mean a set of the form R = {x11, x12} ×
· · · × {xd1, xd2} with side vectors vi = xi2 − xi1 (i = 1, . . . , d) being pairwise orthogonal.

Theorem 3.1. Let R be 2d points forming the vertices of a fixed d-dimensional rectangle in R2d.

(i) If S ⊆ R2d has positive upper Banach density, then there exists a threshold λ0 = λ0(S,R) such
that S contains an isometric copy of λR for all λ ≥ λ0.

(ii) For any 0 < δ ≤ 1 there exists a constant c = c(δ,R) > 0 such that any S ⊆ [0, 1]2d with
|S| ≥ δ is guaranteed to contain an isometric copy of λR for all λ in some interval of length
at least c.

Moreover, if R has sidelengths given by t1, . . . , td, then the isometric copies of λR in both (i) and
(ii) above can all be realized in the special form {x11, x12} × · · · × {xd1, xd2} ⊆ R2 × · · · × R2 with
each |xj2 − xj1| = λtj.

More generally, we have the following extension of Bourgain’s simplex theorem.

Theorem 3.2. Let ∆ = ∆1 × · · · ×∆d ⊆ Rn, where Rn = Rn1 × · · · × Rnd and each ∆j ⊆ Rnj is a
non-degenerate simplex of nj points.

(i) If S ⊆ Rn has positive upper Banach density, then there exists a threshold λ0 = λ0(S,∆) such
that S contains an isometric copy of λ∆ for all λ ≥ λ0.

(ii) For any 0 < δ ≤ 1 there exists a constant c = c(δ,∆) > 0 such that any S ⊆ [0, 1]n with
|S| ≥ δ is guaranteed to contain an isometric copy of λ∆ for all λ in some interval of length
at least c.

Moreover the isometric copies of λ∆ in both (i) and (ii) above can all be realized in the special form
∆′

1 × · · · ×∆′
d with each ∆′

j ⊆ Rnj an isometric copy of λ∆j.

Our main results in this Section are in the context of sets of positive upper density of the integer
lattice.

Theorem 3.3. Let 0 < δ ≤ 1 and R be 2d points forming the vertices of a d-dimensional rectangle
in Z5d.

(i) If S ⊆ Z5d has upper Banach density at least δ, then there exist integers q0 = q0(δ,R) and
λ0 = λ0(S,R) such that S contains an isometric copy of q0λR for all λ ∈

√
N with λ ≥ λ0.
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(ii) There exists a constant N(δ,R) such that if N ≥ N(δ,R), then any S ⊆ {1, . . . , N}5d with
cardinality |S| ≥ δN5d will necessarily contain an isometric copy of λR for some λ ∈

√
N with

1 ≤ λ ≤ N .

If R has side lengths given by t1, . . . , td, then each of the isometric copies in (i) and (ii) above can
be realized in the form {x11, x12} × · · · × {xd1, xd2} ⊆ Z5 × · · · × Z5 with each |xj2 − xj1| = q0λtj
and λtj, respectively.

The above results extend to more general patterns where d-dimensional rectangles are replaced with
direct products of non-degenerate simplices.

Theorem 3.4. Let 0 < δ ≤ 1 and ∆ = ∆1 × · · · ×∆d ⊆ Zn, where Zn = Z2n1+3 × · · · ×Z2nd+3 and
each ∆i ⊆ Z2ni+3 is a non-degenerate simplex of ni points.

(i) If S ⊆ Zn has upper Banach density at least δ, then there exist integers q0 = q0(δ,∆) and
λ0 = λ0(S,∆) such that S contains an isometric copy of q0λ∆ for all λ ∈

√
N with λ ≥ λ0.

(ii) There exists a constant N(δ,∆) such that if N ≥ N(δ,∆), then any S ⊆ {1, . . . , N}n with
cardinality |S| ≥ δNn will necessarily contain an isometric copy of λ∆ for some λ ∈

√
N with

1 ≤ λ ≤ N .

Moreover, each of the isometric copies in (i) and (ii) above can be realized in the special form
∆′

1 × · · · ×∆′
d with each ∆′

i ⊆ Z2ni+3 an isometric copy of q0λ∆j and λ∆j, respectively.

The constants N(δ,∆) and q0(δ,∆) can be taken less than exp(d)(C∆δ
−13n1···nd) where exp(k)(m) is

a k-fold tower of exponentials defined by exp(1)(m) = exp(m) and exp(k+1)(m) = exp(exp(k)(m)),
for k ≥ 1.

3.1 Outline and notations.

Our proofs are based on adapting Gowers type box-norms [48] and on developing a weak hyper-
graph regularity lemma [39, 108] and an associated counting lemma, in the context of Euclidean
spaces and the integer lattice. As the notations in the general case are quite cumbersome, in
Section 3.2 we introduce our approach in the model case of finite fields and prove an analogue
of Theorem 3.1 in this setting. In Section 3.3 we review Theorem 3.2 for a single simplex and
ultimately establish the base case of our general inductive approach to Theorem 3.2. The general
case which we present in the Section 3.4. The proof of Theorem 3.4 is outlined in Sections 3.5 and 3.6.

We will consider the parameters d, n1, . . . , nd fixed and will not indicate the dependence on them.
Thus we will write f = O(g) or alternatively f ≪ g if |f | ≤ C(n1, . . . , nd)g. If the implicit constants
in our estimates depend on additional parameters ε, δ,K, . . . the we will write f = Oε,δ,K,...(g) or
f ≲ε,δ,K,... g.

Given an ε > 0 and a (finite or infinite) sequence L0 ≥ L1 ≥ · · · > 0, we will say that the sequence is
ε-admissible if Lj/Lj+1 ∈ N and Lj+1 ≪ ε2Lj for all j ≥ 1. Moreover, if q ∈ N is given and Lj ∈ N
for all 1 ≤ j ≤ J , then we will call the sequence L0 ≥ L1 ≥ · · · ≥ LJ (ε, q)-admissible if in addition
LJ/q ∈ N. Such sequences of scales will often appear in our statements both in the continuous and
the discrete case.
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3.2 Model case: vector spaces over finite fields.

In this section we will illustrate our general method by giving a complete proof of Theorem 3.1 in
the model setting of Fn

q where Fq denotes the finite field of q elements. We do this as the notation
and arguments are more transparent in this setting yet many of the main ideas are still present.
We say that two vectors u, v ∈ Fn

q are orthogonal, if x · y = 0, where “·” stands for the usual dot
product. A rectangle in Fn

q is then a set R = {x1, y1}× · · ·× {xn, yn} with side vectors yi−xi being
pairwise orthogonal.
The finite field analogue of Theorem 3.1 is the following

Proposition 3.1. For any 0 < δ ≤ 1 there exists an integer q0 = q0(δ) with the following property:
If q ≥ q0 and t1, . . . , td ∈ F∗

q, then any S ⊆ F2d
q with |S| ≥ δ q2d will contain points

{x11, x12} × · · · × {xd1, xd2} ⊆ V1 × · · · × Vd with |xj2 − xj1|2 = tj for 1 ≤ j ≤ d

where we have written F2d
q = V1 × · · · × Vd with Vj ≃ F2

q pairwise orthogonal coordinate subspaces.

3.2.1 Overview of the proof of Proposition 3.1

Write F2d
q = V1 × . . . × Vd with Vj ≃ F2

q pairwise orthogonal coordinate subspaces. For any

t := (t1, . . . , td) ∈ F∗
q and S ⊆ F2d

q we define

Nt(1S) := Ex1∈V 2
1 ,...,xd∈V 2

d

∏
(ℓ1,...,ℓd)∈{1,2}d

1S(x1ℓ1 , . . . , xdℓd)
d∏

j=1

σtj (xj2 − xj1)

where we used the shorthand notation xj := (xj1, xj2) for each 1 ≤ j ≤ d and the averaging notation:

Ex∈Af(x) :=
1

|A|
∑
x∈A

f(x)

for a finite set A ̸= ∅. We have also used the notation

σt(x) =

{
q if |x|2 = t

0 otherwise

for each t ∈ F∗
q . Note that the function σt may be viewed as the discrete analogue of the normalized

surface area measure on the sphere of radius
√
t. It is well-known, see [62], that

Ex∈F2
q
σt(x) = 1 +O(q−1/2)

and for all ξ ̸= 0 one has

σ̂t(ξ) := Ex∈F2
q
σt(x) e

2πix·ξ
q = O(q−1/2).

Note that if Nt(1S) > 0, then this implies that S contains a rectangle of the form {x11, x12} × · · · ×
{xd1, xd2} with xj1, xj2 ∈ Vj and |xj2 − xj1|2 = tj for 1 ≤ j ≤ d.

Our approach to Proposition 3.1 in fact establishes the following quantitatively stronger result.

Proposition 3.2. For any 0 < ε ≤ 1 there exists an integer q0 = q0(ε) with the following property:
If q ≥ q0, then for any S ⊆ F2d

q and t1, . . . , td ∈ F∗
q one has

Nt(1S) >

(
|S|
q2d

)2d

− ε

where we have written F2d
q = V1 × . . .× Vd with Vj ≃ F2

q pairwise orthogonal coordinate subspaces.
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A crucial observation in the proof of Proposition 3.2 is that the averages Nt(1S) can be compared to
ones which can be easily estimated from below. We define, for any S ⊆ F2d

q , the (unrestricted) count

M(1S) := Ex1∈V 2
1 ,...,xd∈V 2

d

∏
(ℓ1,...,ℓd)∈{1,2}d

1S(x1ℓ1 , . . . , xdℓd).

It is easy to see, by carefully applying Cauchy-Schwarz d times to Ex11∈V1,...,xd1∈Vd
1S(x11, . . . , xd1),

that

M(1S) ≥
(
|S|
q2d

)2d

. (3.2.1)

Our approach to Proposition 3.2 therefore reduces to establishing that for any ε > 0 one has

Nt(1S) = M(1S) +O(ε) +Oε(q
−1/2). (3.2.2)

The validity of (3.2.2) will follow immediately from the d = k case of Proposition 3.3 below. However,
before we can state this counting lemma we need to introduce some further notation from the theory
of hypergraphs, notation that we shall ultimately make use of throughout the paper.

3.2.2 Hypergraph notation and a counting lemma

In order to streamline our notation we will make use the language of hypergraphs. For J := {1, . . . , d}
and 1 ≤ k ≤ d, we let Hd,k = {e ⊆ J ; |e| = k} denote the full k-regular hypergraph on the vertex
set J . For K := {jl; j ∈ J, l ∈ {1, 2}} we define the projection π : K → J as π(jl) := j and use
this in turn to define the hypergraph bundle

H2
d,k := {e ⊆ K; |e| = |π(e)| = k}

using the shorthand notation 2 = (2, 2, . . . , 2) to indicate that |π−1(j)| = 2 for all j ∈ J .
Notice when k = d then Hd,d consists of one element, the set e = {1, . . . , d}, and

H2
d,d = { {1l1, . . . , dld}; (l1, . . . , ld) ∈ {1, 2}d}.

Let V := F2d
q and V = V1 × . . .× Vd with Vj ≃ F2

q pairwise orthogonal coordinate subspaces. For
a given x = (x11, x12, . . . , xd1, xd2) ∈ V 2 with xj1, xj2 ∈ Vj and a given edge e = {1l1, . . . , dld}, we
write

xe := (x1l1 , . . . , xdld).

Note that the map x → xe defines a projection πe : V
2 → V . With this notation, we can clearly

now write

Nt(1S) = Ex∈V 2

∏
e∈H2

d,d

1S(xe)

d∏
j=1

σtj (xj2 − xj1)

M(1S) = Ex∈V 2

∏
e∈H2

d,d

1S(xe).

Now for any 1 ≤ k ≤ d and any edge e′ ∈ Hd,k, i.e. e
′ ⊆ {1, . . . , d}, |e′| = k, we let Ve′ :=

∏
j∈e′ Vj .

For every x ∈ V 2 and e ∈ H2
d,k, we define xe := πe(x) where πe : V

2 → Vπ(e) is the natural projection
map.
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Our key counting lemma, Proposition 3.3 below, which we will establish by induction on 1 ≤ k ≤ d
below, is then the statement that given a family of functions fe : Vπ(e) → [−1, 1], e ∈ H2

d,k, the
averages (generalizing those discussed above) which are defined by

Nt(fe; e ∈ H2
d,k) := Ex∈V 2

∏
e∈H2

d,k

fe(xe)

d∏
j=1

σtj (xj2 − xj1) (3.2.3)

M(fe; e ∈ H2
d,k) := Ex∈V 2

∏
e∈H2

d,k

fe(xe). (3.2.4)

are approximately equal. Specifically, one has

Proposition 3.3 (Counting Lemma). Let 1 ≤ k ≤ d and 0 < ε ≤ 1. For any collection of functions

fe : Vπ(e) → [−1, 1] with e ∈ H2
d,k

one has
Nt(fe; e ∈ H2

d,k) = M(fe; e ∈ H2
d,k) +O(ε) +Oε(q

−1/2). (3.2.5)

If we apply this Proposition with d = k and fe = 1S for all e ∈ H2
d,d, then Theorem 3.1 clearly

follows given the lower bound (3.2.1).

3.2.3 Proof of Proposition 3.3

We will establish Proposition 3.3 by inducting on 1 ≤ k ≤ d.
For k = 1 the result follows from the basic observation that if f1, f2 : F2

q → [−1, 1] and let t ∈ F∗
q ,

then

Ex1,x2∈F2
q
f1(x1)f2(x2)σt(x2 − x1) =

∑
ξ∈F2

q

f̂1(ξ)f̂2(ξ)σ̂t(ξ)

= f̂1(0)f̂2(0) +O(q−1/2) (3.2.6)

= Ex1,x2∈F2
q
f1(x1)f2(x2) +O(q−1/2)

by the properties of the function σ̂ given above.
To see how this implies Proposition 3.3 for k = 1 we note that sinceH2

d,1 = {jl : 1 ≤ j ≤ d, 1 ≤ l ≤ 2}
it follows that

Nt(fe; e ∈ H2
d,1) =

d∏
j=1

Exj1,xj2∈F2
q
fj1(xj1)fj2(xj2)σt(xj2 − xj1)

=

d∏
j=1

Exj1,xj2∈F2
q
fj1(xj1)fj2(xj2) +O(q−1/2) = M(fe; e ∈ H2

d,1) +O(q−1/2).

The induction step has two main ingredients, the first is an estimate of the type which is often
referred to as a generalized von-Neumann inequality, namely

Lemma 3.1. Let 1 ≤ k ≤ d. For any collection of functions fe : Vπ(e) → [−1, 1] with e ∈ H2
d,k one

has
Nt(fe; e ∈ H2

d,k) ≤ min
e∈H2

d,k

∥fe∥□(Vπ(e)) +O(q−1/2) (3.2.7)
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where for any e ∈ H2
d,k and f : Vπ(e) → [−1, 1] we define

∥f∥2k□(Vπ(e))
:= Ex∈V 2

π(e)

∏
e∈H2

d,k

f(xe). (3.2.8)

The corresponding inequality for the multilinear expression M(fe; e ∈ H2
d,k), namely the fact that

M(fe; e ∈ H2
d,k) ≤

∏
e∈H2

d,k

∥fe∥□(Vπ(e)) ≤ min
e∈H2

d,k

∥fe∥□(Vπ(e))

is well-known and is referred to as the Gowers-Cauchy-Schwarz inequality [48].

The second and main ingredient is an approximate decomposition of a graph to simpler ones, and is
essentially the so-called weak (hypergraph) regularity lemma of Frieze and Kannan [39]. We choose
to state this from a somewhat more abstract/probabilistic point of view, a perspective that will be
particularly helpful when we consider our general results in the continuous and discrete settings.
We will first introduce this in the case d = 2. A bipartite graph with (finite) vertex sets V1, V2
is a set S ⊆ V1 × V2 and a function f : V1 × V2 → R may be viewed as weighted bipartite graph
with weights f(x1, x2) on the edges (x1, x2). If P1 and P2 are partitions of V1 and V2 respectively
then P = P1 ×P2 is a partition V1 × V2 and we let E(f |P) denote the function that is constant
and equal to Ex∈Af(x) on each atom A = A1 × A2 of P. The weak regularity lemma states that
for any ε > 0 and for any weighted graph f : V1 × V2 → [−1, 1] there exist partitions Pi of Vi with
|Pi| ≤ 2O(ε−2) for i = 1, 2, so that

|Ex1∈V1Ex2∈V2(f − E(f |P))(x1, x2) 1U1(x1)1U2(x2)| ≤ ε (3.2.9)

for all U1 ⊆ V1 and U2 ⊆ V2. Informally this means that the graph f can be approximated with
precision ε with the “low complexity” graph E(f,P). If we consider the σ-algebras Bi generated by
the partitions Pi and the σ-algebra B = B1 ∨ B2 generated by P1 ×P2 then we have E(f |B), the
so-called conditional expectation function of f . Moreover it is easy to see, using Cauchy-Schwarz,
that estimate (3.2.9) follows from

∥f − E(f |B1 ∨ B2)∥□(V1×V2) ≤ ε. (3.2.10)

With this more probabilistic point of view the weak regularity lemma says that the function f can
be approximated with precision ε by a low complexity function E(f |B1

∨
B2), corresponding to

σ-algebras Bi on Vi generated by O(ε−2) sets. This formulation is also referred to as a Koopman-
von Neumann type decomposition, see Corollary 6.3 in [109].
We will need a natural extension to k-regular hypergraphs. See [108, 48], and also [26] for extension
to sparse hypergraphs. Given an edge e′ ∈ Hd,k of k elements we define its boundary ∂e′ :=
{f′ ∈ Hd,k−1; f′ ⊆ e′}. For each f′ = e′\{j} ∈ ∂e′ let B′

f be a σ-algebra on Vf′ :=
∏

j∈f′ Vj and

B̄f′ := {U × Vj ; U ∈ Bf′} denote its pull-back over the space Ve′ . The σ-algebra B =
∨

f′∈∂e′ Bf′ is

the smallest σ-algebra on ∂e′ containing B̄f′ for all
f′ ∈ ∂e′. Note that the atoms of B are of the form A =

⋂
f′∈∂e′ Af′ where Af′ is an atom of B̄f′ .

We say that the complexity of a σ-algebra Bf′ is at most m, and write complex(Bf′) ≤ m, if it is
generated by m sets.

Lemma 3.2 (Weak hypergraph regularity lemma). Let 1 ≤ k ≤ d and fe : Vπ(e) → [−1, 1] be a

given function for each e ∈ H2
d,k. For any ε > 0 there exists σ-algebras Bf′ on Vf′ for each f′ ∈ Hd,k−1

such that
complex(Bf′) = O(ε−2k+1

) (3.2.11)
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and
∥fe − E(fe|

∨
f′∈∂π(e)

Bf′)∥□(Vπ(e)) ≤ ε for all e ∈ H2
d,k. (3.2.12)

The proof of Lemmas 3.1 and 3.2 are presented in Section 3.2.4 below. We close this subsection by
demonstrating how these lemmas can be combined to establish Proposition 3.3.

Proof of Proposition 3.3.
Let ε > 0, 2 ≤ k ≤ d and assume that the lemma holds for k − 1. It follows from Lemma 3.2 that
there exists σ-algebras Bf′ of complexity O(ε−2k+1

) on Vf′ for each f′ ∈ Hd,k−1 for which (3.2.12)

holds for all e ∈ H2
d,k. For each e ∈ H2

d,k we let f̄e := E(fe|
∨

f′∈∂π(e) Bf′) and write fe = f̄e + he. By
Lemma 3.1 and multi-linearity we have that

Nt(fe; e ∈ H2
d,k) = Nt(f̄e; e ∈ H2

d,k) +O(ε) +O(q−1/2) (3.2.13)

and also by the Gowers-Cauchy-Schwarz inequality

M(fe; e ∈ H2
d,k) = M(f̄e; e ∈ H2

d,k) +O(ε). (3.2.14)

The conditional expectation functions f̄e are linear combinations of the indicator functions 1Ae

of the atoms Ae of the σ-algebras Be :=
∨

f′∈∂π(e) Bf′ . Since the number of terms in this linear

combination is at most 2Cε−2k+1

, with coefficients at most 1 in modulus, plugging these into the
multi-linear expressions Nt(f̄e; e ∈ H2

d,k) and M(f̄e; e ∈ H2
d,k) one obtains a linear combination of

expressions of the form Nt(1Ae ; e ∈ H2
d,k) and M(1Ae ; e ∈ H2

d,k) respectively with each Ae being

an atoms of Be for all e ∈ H2
d,k.

The key observation is that these expressions are at level k − 1 instead of k. Indeed, 1Ae =∏
f′∈∂π(e) 1Aef′ where Aef′ = A′

ef′ × Vj , with A′
ef′ being an atom of Bf′ when f′ = π(e)\{j}. If

e = (j1l1, . . . , jl, . . . , jklk), let pf′(e) := (j1l1, . . . , jklk) ∈ H2
d,k−1, obtained from e by removing the

jl-entry. Then we have 1Aef′ (xe) = 1A′
ef′
(xp′f(e)

) since xjl ∈ Vj , and hence

1Ae(xe) =
∏

f′∈∂π(e)

1A′
ef′
(xp′f(e)

).

It therefore follows that

Nt(1Ae ; e ∈ H2
d,k) = Ex∈V 2

∏
e∈H2

d,k

∏
f′∈∂π(e)

1A′
ef′
(xpf′ (e))

d∏
j=1

σtj (xj2 − xj1)

= Ex∈V 2

∏
f∈H2

d,k−1

∏
e∈H2

d,k, f
′∈∂π(e)

pf′ (e)=f

1A′
ef′
(xpf′ (e))

︸ ︷︷ ︸
=:gf

d∏
j=1

σtj (xj2 − xj1) = Nt(gf; f ∈ H2
d,k−1)

and similarly that
M(1Ae ; e ∈ H2

d,k) = M(gf; f ∈ H2
d,k−1).

It then follows from the induction hypotheses that

Nt(1Ae ; e ∈ H2
d,k) = M(1Ae ; e ∈ H2

d,k) +O(ε1) +Oε1(q
−1/2)
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for any ε1 > 0. If we choose ε1 := 2−C1 ε−2k+1

, with C1 ≫ 1 sufficiently large, then ε1 2
Cε−2k+1

= O(ε)
and it follows that

Nt(f̄e; e ∈ H2
d,k) = M(f̄e; e ∈ H2

d,k) +O(ε) +Oε(q
−1/2).

This, together with (3.2.13) and (3.2.14), establishes that (3.2.5) hold for d = k as required.

3.2.4 Proof of Lemmas 3.1 and 3.2

Proof of Lemma 3.1. We start by observing the following consequence of (3.2.6), namely that∣∣∣Ex1,x2∈F2
q
f1(x1)f2(x2)σt(x2 − x1)

∣∣∣2 ≤ Ex1,x2∈F2
q
f1(x1)f1(x2) +O(q−1/2) (3.2.15)

for any f1, f2 : F2
q → [−1, 1] and t ∈ F∗

q .

Now, fix an edge, say e0 = (11, 21, . . . , k1). Partition the edges e ∈ H2
d,k into three groups; the

first group consisting of edges e for which 1 /∈ π(e), the second where 11 ∈ e and write e = (11, e′)
with e′ ∈ H2

d−1,k−1 and the third when 12 ∈ e, using the notation H2
d−1,k−1 := {(j2l2, . . . , jklk)}.

Accordingly we can write

Nt(fe; e ∈ H2
d,k) = Ex∈V 2

∏
1/∈π(e)

fe(xe)
∏

e′∈H2
d−1,k−1

f(11,e′)(x11, xe′)
∏

e′∈H2
d−1,k−1

f(12,e′)(x12, xe′)
d∏

j=1

σtj (xj2 − xj1).

(3.2.16)
If for given x ∈ V1 and x′ = (x21, x22, . . . , xd1, xd2) ∈ V 2

2 × . . .× V 2
d we define

g1(x, x
′) :=

∏
e′∈H2

d−1,k−1

f(11,e′)(x, xe′) and g2(x, x
′) :=

∏
e′∈H2

d−1,k−1

f(12,e′)(x, xe′)

then we can write

Nt(fe; e ∈ H2
d,k) = Ex21,x22,...,xd1,xd2

∏
1/∈π(e)

fe(xe)
d∏

j=2

σtj (xj2 − xj1) (3.2.17)

× Ex11,x12 g1(x11, x
′)g2(x12, x

′)σt1(x12 − x11).

By (3.2.15) we can estimate the inner sum in (3.2.17) by the square root of

Ex11,x12 g1(x11, x
′)g1(x12, x

′) +O(q−1/2).

Thus by Cauchy-Schwarz, and the fact that fe : Vπ(e) → [−1, 1] for all e ∈ H2
d,k, we can conclude

that

Nt(fe; e ∈ H2
d,k)

2 ≤ Ex11,x12,...,xd1,xd2

∏
e′∈H2

d−1,k−1

f(11,e′)(x11, xe′)f(11,e′)(x12, xe′)
d∏

j=2

σtj (xj2 − xj2).

(3.2.18)
The expression on the right hand side of the inequality above is similar to that in (3.2.16) except
for the following changes. The functions fe for 1 /∈ e are eliminated i.e. replaced by 1, as well
as the factor σt1 . The functions f(12,e′), are replaced by f(11,e′) for all e′ ∈ H2

d−1,k−1. Repeating
the same procedure for j = 2, . . . , k one eliminates all the factors σtj for 1 ≤ j ≤ k, moreover all
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the functions fe for edges e such that j /∈ π(e) for some 1 ≤ j ≤ k, which leaves only the edges e
so that π(e) = (1, 2, . . . , k), moreover for such edges the functions fe are eventually replaced by
fe0 = f11,21,...,k1. The factors σtj (xj2 − xj1) are not changed for j > k however as the function fe0
does not depend on the variables xjl for j > k, averaging over these variables gives rise to a factor
of 1 +O(q−1/2). Thus one obtains the following final estimate

Nt(fe; e ∈ H2
d,k)

2k ≤ Ex11,x12,...,xk1,xk2

∏
π(e)=(1,...,k)

fe0(xe) +O(q−1/2) = ∥fe0∥2
k

□(Vπ(e0)
) +O(q−1/2).

(3.2.19)
This proves the lemma, as it is clear that the above procedure can be applied to any edge in place
of e0 = (11, 21, . . . , k1).

Proof of Lemma 3.2. For a function fe : Vπ(e) → [−1, 1] and a σ-algebra Bπ(e) on Vπ(e) define the
energy of fe with respect to Bπ(e) as

E(fe,Bπ(e)) := ∥E(fe|Bπ(e))∥22 = Ex∈Vπ(e)
|E(fe|Bπ(e))(x)|2,

and for a family of functions fe and σ-algebras Bπ(e), e ∈ H2
d,k its total energy as

E(fe,Bπ(e); e ∈ H2
d,k) :=

∑
e∈H2

d,k

E(fe,Bπ(e)).

We will show that if (3.2.12) does not hold for a family of σ-algebras Bπ(e) =
∨

f′∈∂π(e) Bf′ , then
the σ-algebras Bf′ can be refined so that the total energy of the system increases by a quantity
depending only on ε. Since the functions fe are bounded the total energy of the system is O(1),
the energy increment process must stop in Oε(1) steps, and (3.2.12) must hold. The idea of this
procedure appears already in the proof of Szemerédi’s regularity lemma [104], and have been used
since in various places [39, 108, 48].

Initially set Bf′ := {∅, Vf′} and hence Bπ(e) = {∅, Vπ(e)} to be the trivial σ-algebras. Assume that in
general (3.2.12) does not hold for a family of σ-algebras Bf′ , with f′ ∈ Hd,k−1. Then there exists

an edge e ∈ H2
d,k so that ∥ge∥□(Vπ(e)) ≥ ε, with ge := fe − E(fe|Bπ(e)). Let e = (11, . . . , k1) for

simplicity of notation, hence π(e) = (1, . . . , k). Then, with notation x′ = (x12, . . . , xk2), one has

ε2
k ≤ ∥ge∥2

k

□(Vπ(e))
= Ex11,x12,...,xk1,xk2

∏
l1,...,lk=1,2

ge(x1l1 , . . . , xklk)

≤ Ex12,...,xk2

∣∣∣Ex11,...,xk1
ge(x11, . . . , xk1)

k∏
j=1

hj,x′(x11, . . . , xj−1 1, xj+11, . . . , xk1)
∣∣∣

for some functions hj,x′ that are bounded by 1 in magnitude. Indeed if and edge e ̸= (11, . . . , k1)
then xe does not depend at least one of the variables xj1. Thus there must be an x′ for which the

inner sum in the above expression is at least ε2
k
. Fix such an x′. Decomposing the functions hj,x′

into their positive and negative parts and then writing them as an average of indicator functions,
one obtains that there sets Bj ⊆ Vπ(e)\{j} such that

∣∣∣Ex11,...,xk1
ge(x11, . . . , xk1)

k∏
j=1

1Bj (x11, . . . , xj−1 1, xj+11, . . . , xk1)
∣∣∣ ≥ 2−k ε2

k
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which can be written more succinctly, using the inner product notation, as

∣∣∣⟨fe − E(fe|Bπ(e)),
k∏

j=1

1Bj ⟩
∣∣∣ ≥ 2−k ε2

k
. (3.2.20)

For f′ = ∂π(e)\{j} let B′
f′ be the σ-algebra generated by Bf′ and the set Bj and let B′

π(e) :=∨
f′∈∂π(e) B′

f′ . Since the functions 1Bj are measurable with respect to the σ-algebra B′
π(e) for all

1 ≤ j ≤ k, we have that

⟨fe − E(fe|B′
π(e)),

k∏
j=1

1Bj ⟩ = 0 (3.2.21)

and hence, by Cauchy-Schwarz, that

∥E(fe|B′
π(e))− E(fe|Bπ(e))∥22 = ∥E(fe|B′

π(e))∥
2
2 − ∥E(fe|Bπ(e))∥22 ≥ 2−2k ε2

k+1
. (3.2.22)

Note that the first equality above follows from the fact that conditional expectation function E(f |B)
is the orthogonal projection of f to the subspace of B-measurable functions in L2. This also implies
that energy of a function is always increasing when the underlying σ-algebra is refined, and (3.2.22)

tells us that the energy of fe is increased by at least ck ε
2k+1

.
For f′ /∈ ∂π(e) we set B′

f′ := Bf′ . Then the total energy of the family fe with respect to the system

B′
π(e) =

∨
f′∈∂π(e) B′

f′ , e ∈ H2
d,k is also increased by at least ck ε

2k+1
.

It is clear that the complexity of the σ-algebras Bf′ are increased by at most 1, hence, as explained

above, the lemma follows by applying this energy increment process at most O(ε−2k+1
) times.

3.3 The base case of an inductive strategy to prove Theorem 3.2

In this section we will ultimately establish the base case of our more general inductive argument. We
however start by giving a quick review of the proof of Theorem 3.2 when d = 1 (which contains both
Theorem B and Corollary B), namely the case of a single simplex. This was originally addressed in
[16] and revisited in [76] and [77].

3.3.1 A single simplex in Rn

Let Q ⊆ Rn be a fixed cube and let l(Q) denotes its side length.
Let ∆0 = {v1 = 0, v2, . . . , vn} ⊆ Rn be a fixed non-degenerate simplex and define tkl := vk · vl for
2 ≤ k, l ≤ n where “ ·” is the dot product on Rn. Given λ > 0, a simplex ∆ = {x1 = 0, x2, . . . , xn} ⊆
Rn is isometric to λ∆0 if and only if xk · xl = λ2tkl for all 2 ≤ k, l ≤ n. Thus the configuration
space Sλ∆0 of isometric copies of λ∆0 is a non-singular real variety given by the above equations.
Let σλ∆0 be natural normalized surface area measure on Sλ∆0 , described in [16], [76], and [77]. It is
clear that the variable x1 can be replaced by any of the variables xi by redefining the constants tkl.
For any family of functions f1, . . . , fn : Q → [−1, 1] and 0 < λ ≪ l(Q) we define the multi-linear
expression

N 1
λ∆0,Q(f1, . . . , fn) :=

 
x1∈Q

ˆ
x2,...,xn

f1(x1) . . . fn(xn) dσλ∆0(x2 − x1, . . . , xn − x1) dx1. (3.3.1)

We note that all of our functions are 1-bounded and both integrals, in fact all integrals in this paper,
are normalized. Recall that we are using the normalized integral notation

ffl
A f := 1

|A|
´
A f. Since
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the normalized measure σλ∆0 is supported on Sλ∆0 we will not indicate the support of the variables
(x2, . . . , xn) explicitly.
Note also that if S ⊆ Q is a measurable set and N 1

λ∆0,Q(1S , . . . , 1S) > 0 then S must contain

an isometric copy of λ∆0. The following proposition (with Q = [0, 1]n) immediately establishes
Theorem 3.2 for d = 1.

Proposition 3.4. For any 0 < ε ≤ 1 there exists an integer J = O(ε−2 log ε−1) with the following
property:
Given any lacunary sequence l(Q) ≥ λ1 ≥ · · · ≥ λJ and S ⊆ Q, there is some 1 ≤ j < J such that

N 1
λ∆0,Q(1S , . . . , 1S) >

(
|S|
|Q|

)n

− ε (3.3.2)

for all λ ∈ [λj+1, λj ].

Our approach to establishing Proposition 3.4 is to compare the above expressions to simpler ones
for which it is easy to obtain lower bounds. Given a scale 0 < λ≪ l(Q) we define the multi-linear
expression

M1
λ,Q(f1, . . . , fn) :=

 
t∈Q

 
x1,x2,...,xn∈t+Q(λ)

f1(x1) . . . fn(xn) dx1 . . . dxn dt (3.3.3)

where Q(λ) = [−λ
2 ,

λ
2 ]

n and t + Q(λ) is the shift of the cube Q(λ) by the vector t. Note that if
S ⊆ Q is a set of measure |S| ≥ δ|Q| for some δ > 0, then for a given ε > 0, Hölder implies

M1
λ,Q(1S , . . . , 1S) =

 
t∈Q

( 
x∈t+Q(λ)

1S(x) dx

)n

dt ≥

( 
t∈Q

 
x∈t+Q(λ)

1S(x) dx dt

)n

≥ δn −O(ε),

(3.3.4)
for all scales 0 < λ≪ ε l(Q).
Recall that for any ε > 0 we call a sequence L1 ≥ · · · ≥ LJ ε-admissible if Lj/Lj+1 ∈ N and
Lj+1 ≪ ε2Lj for all 1 ≤ j < J . Note that given any lacunary sequence l(Q) ≥ λ1 ≥ · · · ≥ λJ ′ with
J ′ ≫ (log ε−1) J , one can always finds an ε-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJ such
that for each 1 ≤ j < J the interval [Lj+1, Lj ] contains at least two consecutive elements from the
original lacunary sequence.
In light of this observation, and the one above regarding a lower bound for M1

λ,Q(1S , . . . , 1S), our
proof of Proposition 3.4 reduces to establishing the following “counting lemma”.

Proposition 3.5. Let 0 < ε < 1. There exists an integer J1 = O(ε−2) such that for any ε-admissible
sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJ1 and S ⊆ Q there is some 1 ≤ j < J1 such that

N 1
λ∆0,Q(1S , . . . , 1S) = M1

λ,Q(1S , . . . , 1S) +O(ε) (3.3.5)

for all λ ∈ [Lj+1, Lj ].

There are two main ingredients in the proof of Proposition 3.5, this will be typical to all of
our arguments. The first ingredient is a result which establishes that the our multi-linear forms
N 1

λ∆0,Q(f1, . . . , fn) are controlled by an appropriate norm which measures the uniformity of dis-

tribution of functions f : Q → [−1, 1] with respect to particular scales L. This is analogous to
estimates in additive combinatorics [48], [110] which are often referred to as generalized von-Neumann
inequalities.
The result below was proved in [76] for Q = [0, 1]n, however a simple scaling of the variables xi
transfers the result to an arbitrary cube Q.
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Lemma 3.3 (A Generalized von-Neumann inequality [76]). Let ε > 0, 0 < λ ≪ l(Q), and
0 < L≪ ε6λ.
For any collections of functions f1, . . . , fn : Q→ [−1, 1] we have

|N 1
λ∆0,Q(f1, . . . , fn)| ≤ min

i=1,...,n
∥fi∥U1

L(Q) +O(ε) (3.3.6)

where for any f : Q→ [−1, 1] we define

∥f∥2U1
L(Q) :=

 
t∈Q

∣∣∣ 
x∈t+Q(L)

f(x) dx
∣∣∣2dt (3.3.7)

with t+Q(L) denoting the shift of the cube Q(L) = [−L
2 ,

L
2 ]

n by the vector t.

The corresponding inequality for the multilinear expression M1
λ,Q(f1, . . . , fn), namely the fact that

M1
λ,Q(f1, . . . , fn) ≤ min

i=1,...,n
∥fi∥U1

L(Q) +O(ε)

whenever 0 < L≪ ε6λ follows easily from Cauchy-Schwarz together with the simple observation
that

∥f∥U1
L(Q) ≤ ∥f∥U1

L′ (Q) +O(ε)

whenever L′ ≪ εL.
The second key ingredient, proved in [77] and generalized in Lemma 3.5 below, is a Koopman-von
Neumann type decomposition of functions where the underlying σ-algebras are generated by cubes of
a fixed length. To recall it, let Q ⊆ Rn be a cube, L > 0 be scale that divides l(Q), Q(L) = [−L

2 ,
L
2 ]

n,
and GL,Q denote the collection of cubes t+Q(L) partitioning the cube Q and ΓL,Q denote the grids
corresponding to the centers of the cubes. By a slightly abuse of notation we also write GL,Q for
the σ-algebra generated by the grid. Recall that the conditional expectation function E(f |GL,Q) is
constant and equal to

ffl
A f on each cube A ∈ GL,Q.

Lemma 3.4 (A Koopman-von Neumann type decomposition [77]). Let 0 < ε ≤ 1 and Q ⊆ Rn be a
cube.
There exists an integer J̄1 = O(ε−2) such that for any ε-admissible sequence l(Q) ≥ L1 ≥ · · · ≥ LJ̄1
and function f : Q→ [−1, 1] there is some 1 ≤ j < J̄1 such that

∥f − E(f |GLj ,Q)∥U1
Lj+1

(Q) ≤ ε (3.3.8)

Proof of Proposition 3.5. Let GLj ,Q be the grid obtained from Lemma 3.4 for the functions f = 1S
for some fixed ε > 0. Let f̄ := E(f |GLj ,Q), then by (3.3.6) and multi-linearity, we have

N 1
λ∆0,Q(f, . . . , f) = N 1

λ∆0,Q(f̄ , . . . , f̄) +O(ε),

and also
M1

λ,Q(f, . . . , f) = M1
λ,Q(f̄ , . . . , f̄) +O(ε)

provided for ε−6Lj+1 ≪ λ. Thus in showing (3.5.4) one can replace the functions f with f̄ . If we
make the additional assumption that λ≪ εLj then it is easy to see, using the fact that the function
f̄ is constant on the cubes Qt(Lj) ∈ GLj ,Q, that

N 1
λ∆0,Q(f̄ , . . . , f̄) = M1

λ,Q(f̄ , . . . , f̄) +O(ε).

Since the condition ε−6Lj+1 ≪ λ ≪ εLj can be replaced with Lj+1 ≪ λ ≪ Lj if one passes to a
subsequence of scales, for example L′

j = L5j , this completes the proof of Proposition 3.5.
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3.3.2 The base case of a general inductive strategy

In this section, as preparation to handle the case of products of simplices, we prove a parametric
version of Proposition 3.5, namely Proposition 3.6 below, which will serve as the base case for later
inductive arguments.
Let Q = Q1 × · · · ×Qd with Qi ⊆ Rni be cubes of equal side length l(Q). Let L be a scale dividing
l(Q) and for each t = (t1, . . . , td) ∈ ΓL,Q let Qt(L) = t+Q(L) and Qti(L) = ti +Qi(L). Note that
Qt(L) = Qt1(L)× · · · ×Qtd(L). Here Q(L) = [−L

2 ,
L
2 ]

n and Qi(L) = [−L
2 ,

L
2 ]

ni for each 1 ≤ i ≤ d.
Let ∆0

i = {vi1, . . . , vini
} ⊆ Rni be a non-degenerate simplex for each 1 ≤ i ≤ d.

Proposition 3.6 (Parametric Counting Lemma on Rn for Simplices).
Let 0 < ε ≤ 1 and R ≥ 1. There exists an integer J1 = J1(ε,R) = O(Rε−4) such that for any
ε-admissible sequence of scales L0 ≥ L1 ≥ · · · ≥ LJ1 with the property that L0 divides l(Q) and
collection of functions

f i,rk,t : Qti(L0) → [−1, 1] with 1 ≤ i ≤ d, 1 ≤ k ≤ ni, 1 ≤ r ≤ R and t ∈ ΓL0,Q

there exists 1 ≤ j < J1 and a set Tε ⊆ ΓL0,Q of size |Tε| ≤ ε|ΓL0,Q| such that

N 1
λ∆0

i ,Qti (L0)
(f i,r1,t , . . . , f

i,r
ni,t

) = M1
λ,Qti (L0)

(f i,r1,t , . . . , f
i,r
ni,t

) +O(ε) (3.3.9)

for all λ ∈ [Lj+1, Lj ] and t /∈ Tε uniformly in 1 ≤ i ≤ d and 1 ≤ r ≤ R.

The proof of Proposition 3.6 will follow from Lemma 3.3 and the following generalization of Lemma
3.4 in which we simultaneously consider a family of functions supported on the subcubes in a
partition of an original cube Q.

Lemma 3.5 (A simultaneous Koopman-von Neumann type decomposition).
Let 0 < ε ≤ 1, m ≥ 1, and Q ⊆ Rn be a cube. There exists an integer J̄1 = O(mε−3) such that
for any ε-admissible sequence L0 ≥ L1 ≥ · · · ≥ LJ̄1 with the property that L0 divides l(Q), and
collection of functions

f1,t, . . . , fm,t : Qt(L0) → [−1, 1]

defined for each t ∈ ΓL0,Q, there is some 1 ≤ j < J̄1 and a set Tε ⊆ ΓL0,Q of size |Tε| ≤ ε|ΓL0,Q|
such that

∥fi,t − E(fi,t|GLj ,Qt(L0))∥U1
Lj+1

(Qt(L0)) ≤ ε (3.3.10)

for all 1 ≤ i ≤ m and t /∈ Tε.

Proof of Proposition 3.6. Fix 1 ≤ i ≤ d. For 1 ≤ k ≤ ni and t = (t1, . . . , td) ∈ ΓL0,Q , we will abuse
notation and write

f i,rk,t(x1, . . . , xd) := f i,rk,t(xi)

for (x1, . . . , xd) ∈ Qt(L0).

If we apply Lemma 3.5 to the family of functions f i,rk,t on Qt(L0) for 1 ≤ i ≤ d, 1 ≤ k ≤ ni, and

1 ≤ r ≤ R, withm = (n1+. . .+nd)R, then this produces a grid GLj ,Q for some 1 ≤ j ≤ J̄1 = O(ε−3R),
and a set Tε ⊆ ΓL0,Q of size |Tε| ≤ ε|ΓL0,Q|, such that

∥f i,rk,t − E(f i,rk,t |GLj ,Q)∥U1
Lj+1

(Qt(L0)) ≤ ε

uniformly for 1 ≤ i ≤ d, 1 ≤ k ≤ ni and 1 ≤ r ≤ R for t /∈ Tε.
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Since f i,rk,t(x1, . . . , xd) = f i,rk,t(xi) for (x1, . . . , xd) ∈ Qt(L0) it is easy to see that

∥f i,rk,t − E(f i,rk,t |GLj ,Q)∥U1
Lj+1

(Qt(L0)) = ∥f i,rk,t − E(f i,rk,t |GLj ,Qi)∥U1
Lj+1

(Qti (L0)).

Let f̄ i,rk,t := E(f i,rk,t |GLj ,Qi) , then by Lemma 3.3, one has

N 1
λ∆0

i ,Qti (L0)
(f i,r1,t , . . . , f

i,r
ni,t

) = N 1
λ∆0

i ,Qti (L0)
(f̄ i,r1,t , . . . , f̄

i,r
ni,t

) +O(ε),

and
M1

λ,Qti (L0)
(f i,r1,t , . . . , f

i,r
ni,t

) = M1
λ,Qti (L0)

(f̄ i,r1,t , . . . , f̄
i,r
ni,t

) +O(ε)

for all t /∈ Tε provided ε−6Lj+1 ≪ λ. Finally, if we also have λ≪ εLj then it is easy to see that

N 1
λ∆0

i ,Qti (L0)
(f̄ i,r1,t , . . . , f̄

i,r
ni,t

) = M1
λ,Qti (L0)

(f̄ i,r1,t , . . . , f̄
i,r
ni,t

) +O(ε)

as the functions f̄ i,rk,t are constant on cubes Qti(Lj) of GLj ,Qi , which are of size Lj ≪ εL0.

Passing first to a subsequence of scales, for example L′
j = L5j , the condition ε−6Lj+1 ≪ λ≪ εLj

can be replaced with Lj+1 ≪ λ≪ Lj so this completes the proof of the Proposition.

We conclude this section with a sketch of the proof of Lemma 3.5. These arguments are standard,
see for example the proof of Lemma 3.4 given in [76].

Proof of Lemma 3.5. First we make an observation about the U1
L(Q)-norm. Suppose 0 < L′ ≪ ε2L

with L′ dividing L. If s ∈ ΓL′,Q and t ∈ Qs(L
′) then |t− s| = O(L′) and hence

 
x∈Qt(L)

g(x) dx =

 
x∈Qs(L)

g(x) dx+O(L′/L)

for any function g : Q → [−1, 1]. Moreover, since the cube Qs(L) is partitioned into the smaller
cubes Qt(L

′), we have by Cauchy-Schwarz∣∣∣ 
x∈Qs(L)

g(x) dx
∣∣∣2 ≤ Et∈ΓL′,Qs(L)

∣∣∣ 
x∈Qt(L′)

g(x) dx
∣∣∣2.

From these observations it is easy to see that

∥g∥2U1
L(Q) =

 
t∈Q

∣∣∣ 
x∈Qt(L)

g(x) dx
∣∣∣2 dt ≤ Et∈ΓL′,Q

∣∣∣ 
x∈Qt(L′)

g(x) dx
∣∣∣2 +O(L′/L)

and we note that the right side of the above expression is ∥E(g|GL′,Q)∥2L2(Q) since the conditional

expectation function E(g|GL′,Q) is constant and equal to
ffl
x∈Qt(L′) g(x) dx on the cubes Qt(L

′).

Suppose that (3.3.10) does not hold for some 1 ≤ i ≤ m for every t in some set Tε ⊆ ΓL0,Q of size
|Tε| > ε |ΓL0,Q|. If we apply the above observation to g := fi,t − E(fi,t|GLj ,Qt(L0)), for every t ∈ Tε,
we obtain by orthogonality that

m∑
i=1

∥E(fi,t|GLj+2,Qt(L0))∥
2
L2(Qt(L0))

≥
m∑
i=1

∥E(fi,t|GLj ,Qt(L0))∥
2
L2(Qt(L0))

+ cε2

for some constant c > 0.
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If we now define fi : Q→ [−1, 1] such that fi|(Qt(L0)) = fi,t, for 1 ≤ i ≤ m, average over t ∈ ΓL0,Q,
and use the fact ∥fi∥2L2(Q) = Et∈ΓL0,Q

∥fi,t∥2L2(Qt(L0))
, we obtain

m∑
i=1

∥E(fi|GLj+2,Q)∥2L2(Q) ≥
m∑
i=1

∥E(fi|GLj ,Q)∥2L2(Q) + cε3. (3.3.11)

It is clear that the sums in the above expressions are bounded by m for all j ≥ 1, thus (3.3.11)
cannot hold for some 1 ≤ j ≤ J̄1 for J̄1 := Cmε−3. This implies that (3.3.10) must hold for some
1 ≤ j ≤ J̄1, for all 1 ≤ i ≤ m and all t /∈ Tε for a set Tε ⊆ ΓL0,Q of size |Tε| ≤ ε |ΓL0,Q|.

3.4 The general case: products of simplices in Rd

After these preparations we will now consider the general case of Theorem 3.2. Let Q =
Q1 × · · · × Qd ⊆ Rn with Qi ⊆ Rni cubes of equal side length l(Q) and ∆0 = ∆0

1 × · · · × ∆0
d

with each ∆i ⊆ Rni a non-degenerate simplex of ni points for 1 ≤ i ≤ d.

We will use a generalized version of the hypergraph terminology introduced in Section 3.2. In
particular, for a vertex set I = {1, 2, . . . , d} and set K = {il; 1 ≤ i ≤ d, 1 ≤ l ≤ ni} we will let
π : K → I denote the projection defined by π(il) := i. As before we will let Hd,k := {e ⊆ I; |e| = k}
denote the complete k-regular hypergraph with vertex set I, and for the multi-index n = (n1, . . . , nd)
define the hypergraph bundle

Hn
d,k := {e ⊆ K; |e| = |π(e)| = k}

noting that |π−1(i)| = ni for all i ∈ I.

In order to parameterize the vertices of direct products of simplices, i.e. sets of the form
∆ = ∆1×· · ·×∆d with ∆i ⊆ Qi, we consider points x = (x1, . . . , xd) with xi = (xi1, . . . , xini) ∈ Qni

i

for each i ∈ I. Now for any 1 ≤ k ≤ d and any edge e′ ∈ Hd,k we will write Qe′ :=
∏

i∈e′ Qi, and for
every x ∈ Qn1

1 ×· · ·×Qnd
d and e ∈ Hn

d,k we define xe := πe(x), where πe : Q
n1
1 ×· · ·×Qnd

d → Qπ(e) is the

natural projection map. Writing ∆i = {xi1, . . . , xini} we have that ∆1 × · · · ×∆d = {xe : e ∈ Hn
d,d}

since every edge xe is of the form (x1l1 , . . . , xdld). We can therefore identify points x with configura-
tions of the form ∆1 × · · · ×∆d.

For any 0 < λ ≪ l(Q) the measures dσλ∆0
i
, introduced in Section 3.3.1, are supported on points

(y2, . . . , yni) for which the simplex ∆i = {0, y2, . . . , yni} is isometric to λ∆0
i . For simplicity of

notation we will writeˆ
xi

f(xi) dσ
λ
i (xi) :=

 
xi1∈Qi

ˆ
xi2,...,xini

f(xi) dσλ∆0
i
(xi2 − xi1, . . . , xini − xi1) dxi1

Note that the support of the measure dσλi is the set of points xi so that the simplex ∆i :=
{xi1, . . . , xini} is isometric to λ∆0

i and xi1 ∈ Qi, moreover the measure is normalized. Thus if S ⊆ Q
is a set then the density of configurations ∆ in S of the form ∆ = ∆1 × . . .×∆d with each ∆i ⊆ Qi

an isometric copy of λ∆0
i is given by the expression

N d
λ∆0,Q(1S ; e ∈ Hn

d,d) :=

ˆ
x1

· · ·
ˆ
xd

∏
e∈Hn

d,d

1S(xe) dσ
λ
1 (x1) . . . dσ

λ
d (xd). (3.4.1)

The proof of Theorem 3.2 reduces to establishing the following stronger quantitative result.
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Proposition 3.7. For any 0 < ε≪ 1 there exists an integer Jd = Jd(ε) with the following property;
Given any lacunary sequence l(Q) ≥ λ1 ≥ · · · ≥ λJd and S ⊆ Q, there is some 1 ≤ j < Jd such that

N d
λ∆0,Q(1S ; e ∈ Hn

d,d) >

(
|S|
|Q|

)n1···nd

− ε (3.4.2)

for all λ ∈ [λj+1, λj ].

Quantitative Remark. A careful analysis of our proof reveals that there is a choice of Jd(ε) which is
less than exp(d)(log(C∆ε

−3)), where exp(k) k(m) is again the tower-exponential function defined by
exp(1)(m) = exp(m) and exp(k+1)(m) = exp(exp(k)(m)) for k ≥ 1.

For any 0 < λ≪ l(Q) and set S ⊆ Q we define the expression:

Md
λ,Q(1S ; e ∈ Hn

d,d) :=

 
t∈Q

Md
t+Q(λ)(1S ; e ∈ Hn

d,d) dt (3.4.3)

where Q(λ) = [−λ
2 ,

λ
2 ]

n and

Md
Q̃
(1S ; e ∈ Hn

d,d) :=

 
x1∈Q̃

n1
1

· · ·
 
xd∈Q̃

nd
d

∏
e∈Hn

d,d

1S(xe) dx1 . . . dxd (3.4.4)

for any cube Q̃ ⊆ Q of the form Q̃ = Q̃1 × · · · × Q̃d with Q̃i ⊆ Qi for 1 ≤ i ≤ d. Note that if S ⊆ Q
is a set of measure |S| ≥ δ|Q| for some δ > 0, then careful applications of Hölder’s inequality give

Md
λ,Q(1S ; e ∈ Hn

d,d) ≥
 
t∈Q

( 
(x1,...,xd)∈t+Q(λ)

1S(x1, . . . , xd) dx1 . . . dxd

)n1···nd

dt ≥ δn1···nd−O(ε)

for all scales 0 < λ≪ ε l(Q).

In light of the discussion above, and that preceding Proposition 3.5, we see that Proposition 3.7,
and hence Theorem 3.2 in general, will follows as a consequence of the following

Proposition 3.8. Let 0 < ε≪ 1. There exists an integer Jd = Jd(ε) such that for any ε-admissible
sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJd and S ⊆ Q there is some 1 ≤ j < Jd such that

N d
λ∆0,Q(1S ; e ∈ Hn

d,d) = Md
λ,Q(1S ; e ∈ Hn

d,d) +O(ε) (3.4.5)

for all λ ∈ [Lj+1, Lj ].

The validity of Proposition 3.8 will follow immediately from the d = k case of Proposition 3.9 below.

3.4.1 Reduction of Proposition 3.8 to a more general “local” counting lemma

For any given 1 ≤ k ≤ d and collection of functions fe : Qπ(e) → [−1, 1] with e ∈ Hn
d,k we define the

following multi-linear expressions

N d
λ∆0,Q(fe; e ∈ Hn

d,k) :=

ˆ
x1

· · ·
ˆ
xd

∏
e∈Hn

d,k

fe(xe) dσ
λ
1 (x1) . . . .dσ

λ
d (xd) (3.4.6)

and

Md
λ,Q(fe ; e ∈ Hn

d,k) :=

 
t∈Q

Md
t+Q(λ)(fe ; e ∈ Hn

d,k) dt (3.4.7)
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where Q(λ) = [−λ
2 ,

λ
2 ]

n and

Md
Q̃
(fe ; e ∈ Hn

d,k) :=

 
x1∈Q̃

n1
1

· · ·
 
xd∈Q̃

nd
d

∏
e∈Hn

d,k

fe(xe) dx1 . . . dxd (3.4.8)

for any cube Q̃ ⊆ Q of the form Q̃ = Q̃1 × · · · × Q̃d with Q̃i ⊆ Qi for 1 ≤ i ≤ d.

Our strategy to proving Proposition 3.8 is the same as illustrated in the finite field settings, that
is we would like to compare averages Nλ∆0,Q(fe; e ∈ Hn

d,k) to those of Md
λ,Q(fe ; e ∈ Hn

d,k), at
certain scales λ ∈ [Lj+1, Lj ], inductively for 1 ≤ k ≤ d. However in the Euclidean case, an extra
complication emerges due to the fact the (hypergraph) regularity lemma, the analogue of Lemma
3.2, does not produce σ-algebras Bf, for f ∈ Hn

d,k−1, on the cubes Qf. In a similar manner to the
case for d = 2 discussed in the previous section, we will only obtain σ-algebras “local” on cubes
Qtf(L0) at some scale L0 > 0. This will have the effect that the functions fe will be replaced by a
family of functions fe,t, where t runs through a grid ΓL0,Q.

To be more precise, let L > 0 be a scale dividing the side-length l(Q). For t ∈ ΓL,Q and e′ ∈ Hd,k

we will use te′ to denote the projection of t onto Qe′ and Qte′ (L) := te′ + Qe′(L) to denote the
projection of the cube Qt(L) centered at t onto Qe′ . It is then easy to see that for any ε > 0 we have

N d
λ∆0,Q(fe; e ∈ Hn

d,k) = Et∈ΓL,Q
N d

λ∆0,Qt(L)
(fe,t ; e ∈ Hn

d,k) +O(ε) (3.4.9)

and
Md

λ,Q(fe; e ∈ Hn
d,k) = Et∈ΓL,Q

Md
λ,Qt(L)

(fe,t ; e ∈ Hn
d,k) +O(ε) (3.4.10)

provided 0 < λ≪ εL where fe,t denotes the restriction of a function fe to the cube Qt(L).

At this point the proof of Proposition 3.8 reduces to showing that the expressions in (3.4.9)
and (3.4.10) only differ by O(ε) at some scales λ ∈ [Lj+1, Lj ], given an ε-admissible sequence
L0 ≥ L1 ≥ · · · ≥ LJ , for any collection of bounded functions fe,t, e ∈ Hn

d,k, t ∈ ΓL0,Q. Indeed, our
crucial result will be the following

Proposition 3.9 (Local Counting Lemma). Let 0 < ε ≪ 1 and M ≥ 1. There exists an integer
Jk = Jk(ε,M) such that for any ε-admissible sequence of scales L0 ≥ L1 ≥ · · · ≥ LJk with the
property that L0 divides l(Q), and collection of functions

fme,t : Qtπ(e)
(L0) :→ [−1, 1] with e ∈ Hn

d,k, 1 ≤ m ≤M and t ∈ ΓL0,Q

there exists 1 ≤ j < Jk and a set Tε ⊆ ΓL0,Q of size |Tε| ≤ ε|ΓL0,Q| such that

N d
λ∆0,Qt(L0)

(fme,t; e ∈ Hn
d,k) = Mλ,Qt(L0)(f

m
e,t; e ∈ Hn

d,k) +O(ε) (3.4.11)

for all λ ∈ [Lj+1, Lj ] and t /∈ Tε uniformly in e ∈ Hn
d,k and 1 ≤ m ≤M .

3.4.2 Proof of Proposition 3.9

We will prove Proposition 3.9 by induction on 1 ≤ k ≤ d. For k = 1 this is basically Proposition 3.6.
Indeed, in this case for a given t = (t1, . . . , td) ∈ ΓL0,Q and edge e ∈ Hn

d,1 = {il : 1 ≤ i ≤ d, 1 ≤ l ≤
ni} we have that fme,t(xe) = fmil,t(xil) with xil ∈ Qti(L0) and hence both

N d
λ∆0,Qt(L0)

(fme,t; e ∈ Hn
d,1) =

d∏
i=1

N 1
λ∆0

i ,Qti (L0)
(fmi1,t, . . . , f

m
ini,t)
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Md
λ,Qt(L0)

(fme,t; e ∈ Hn
d,1) =

d∏
i=1

M1
λ,Qti (L0)

(fmi1,t, . . . , f
m
ini,t).

By Proposition 3.6 there exists an 1 ≤ j < J1 = O(Mε−4) and an exceptional set Tε ⊆ ΓL0,Q of size
|Tε| ≤ ε|ΓL0,Q|, such that uniformly for t /∈ Tε and for 1 ≤ i ≤ d, one has

N 1
λ∆0

i ,Qti (L0)
(fmi1,t, . . . , f

m
ini,t) = M1

λ,Qti (L0)
(fmi1,t, . . . , f

m
ini,t) +O(ε)

hence
N d

λ∆0,Qt(L0)
(fme,t; e ∈ Hn

d,1) = Md
λ,Qt(L0)

(fme,t; e ∈ Hn
d,1) +O(ε)

as the all factors are trivially bounded by 1 in magnitude. This implies (3.4.11) for k = 1.

For the induction step we again need two main ingredients. The first establishes that the our
multi-linear forms N d

λ∆0,Q(fe; e ∈ Hn
d,k) are controlled by an appropriate box-type norm attached

to a scale L.
Let Q = Q1 × · · · ×Qd and 1 ≤ k ≤ d. For any scale 0 < L≪ l(Q) and function f : Qe′ → [−1, 1]
with e′ ∈ Hd,k we define its local box norm at scale L by

∥f∥2k□L(Qe′ )
:=

 
s∈Qe′

∥f∥2k□(s+Q(L)) ds (3.4.12)

where

∥f∥2k
□(Q̃)

:=

 
x11,x12∈Q̃1

· · ·
 
xk1,xk2∈Q̃k

∏
(ℓ1,...,ℓk)∈{1,2}k

f(x1ℓ1 , . . . , xkℓk) dx11 dx12 . . . dxk1 dxk2 (3.4.13)

for any cube Q̃ of the form Q̃ = Q̃1 × · · · × Q̃k.

Lemma 3.6 (Generalized von-Neumann inequality). Let ε > 0, 0 < λ≪ l(Q) and let

0 < L≪ (ε2
k
)6λ. For any 1 ≤ k ≤ d and collection of functions fe : Qπ(e) → [−1, 1] with e ∈ Hn

d,k,
we have both

|N d
λ∆0,Q(fe; e ∈ Hn

d,k)| ≤ min
e∈Hn

d,k

∥fe∥□L(Qπ(e)) +O(ε) (3.4.14)

|Md
λ,Q(fe; e ∈ Hn

d,k)| ≤ min
e∈Hn

d,k

∥fe∥□L(Qπ(e)). (3.4.15)

The crucial ingredient is the following analogue of the weak hypergraph regularity lemma.

Lemma 3.7 (Parametric weak hypergraph regularity lemma for Rn). Let 0 < ε≪ 1, M ≥ 1, and
1 ≤ k ≤ d.
There exists J̄k = O(Mε−2k+3

) such that for any ε2
k
-admissible sequence L0 ≥ L1 ≥ · · · ≥ LJ̄k

with
the property that L0 divides l(Q) and collection of functions

fme,t : Qtπ(e)
(L0) → [−1, 1] with e ∈ Hn

d,k, 1 ≤ m ≤M , and t ∈ ΓL0,Q

there is some 1 ≤ j < J̄k and σ-algebras Be′,t of scale Lj on Qte′ (L0) for each t ∈ ΓL0,Q and
e′ ∈ Hd,k such that

∥fme,t − E(fme,t|Bπ(e),t)∥□Lj+1
(Qtπ(e)

(L0)) ≤ ε (3.4.16)

uniformly for all t /∈ Tε, e ∈ Hn
d,k, and 1 ≤ m ≤M , where Tε ⊆ ΓL0,Q with |Tε| ≤ ε|ΓL0,Q|.

Moreover, the σ-algebras Be′,t have the additional local structure that the exist σ-algebras Be′,f′,s

on Qsf′ (Lj) with complex(Be′,f′,s) = O(j) for each s ∈ ΓLj ,Q, e
′ ∈ Hd,k, and f′ ∈ ∂e′ such that if

s ∈ Qt(L0), then

Be′,t

∣∣
Qse′ (Lj)

=
∨

f′∈∂e′
Be′,f′,s. (3.4.17)
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Lemma 3.7 is the parametric and simultaneous version of the extension of Lemma 3.7 to the product
of d simplices. The difference is that in the general case one has to deal with a parametric family
of functions fme,t as t is running through a grid ΓL0,Q. The essential new content of Lemma 3.7 is
that one can develop σ-algebras Be′,t on the cubes Qt(L0) with respect to the family of functions
fme,t such that the local structure described above and (3.4.16) hold simultaneously for almost all
t ∈ ΓL0,Q.

Proof of Proposition 3.9. Assume the Proposition holds for k − 1.

Let ε > 0, ε1 := exp (−C1ε
−2k+3

) for some large constant C1 = C1(n, k, d) ≫ 1, and {Lj}j≥1 be an
ε1-admissible sequence of scales. Set F (ε) := Jk−1(ε1,M) with M = ε ε−1

1 .
For L ∈ {Lj}j≥1 we again write index(L) = j if L = Lj . We now choose a subsequence {L′

j} ⊆ {Lj}
so that L′

0 = L0 and index(L′
j+1) ≥ index(L′

j) + F (ε) + 2. Lemma 3.7 then guarantees the existence
of σ-algebras Be′,t of scale L

′
j on Qte′ (L0) for each t ∈ ΓL0,Q and e′ ∈ Hd,k, with the local structure

described above, such that

∥fme,t − E(fme,t|Bπ(e),t)∥□L′
j+1

(Qtπ(e)
(L0)) ≤ ε (3.4.18)

uniformly for all t /∈ T ′
ε, e ∈ Hn

d,k, and 1 ≤ m ≤ M , for some 1 ≤ j < J̄k(ε,M) = O(Mε−2k+3
),

where T ′
ε ⊆ ΓL0,Q with |T ′

ε| ≤ ε|ΓL0,Q|. Let f̄me,t := E(fme,t|Bπ(e),t) for t ∈ ΓL0,Q and e ∈ Hn
d,k. If

t /∈ T ′
ε, then by (3.4.14), (3.4.15), and (3.4.16) we have both

N d
λ∆0,Qt(L0)

(fme,t; e ∈ Hn
d,k) = N d

λ∆0,Qt(L0)
(f̄me,t; e ∈ Hn

d,k) +O(ε) (3.4.19)

Md
λ,Qt(L0)

(fme,t; e ∈ Hn
d,k) = Md

λ,Qt(L0)
(f̄me,t; e ∈ Hn

d,k) +O(ε). (3.4.20)

provided (ε−2k)6L′
j+1 ≪ λ. For given s ∈ ΓL′

j ,Qt(L0) one may write f̄me,s for the restriction of f̄me,t on

the cube Qs(L
′
j) ⊆ Qt(L0), as s uniquely determines t. By localization, provided λ≪ εL′

j , we then
have both

N d
λ∆0,Qt(L0)

(f̄me,t; e ∈ Hn
d,k) = Es∈ΓL′

j
,Qt(L0)

N d
λ∆0,Qs(L′

j)
(f̄me,s; e ∈ Hn

d,k) +O(ε), (3.4.21)

Md
λ,Qt(L0)

(f̄me,t; e ∈ Hn
d,k) = Es∈ΓL′

j
,Qt(L0)

Md
λ,Qs(L′

j)
(f̄me,s; e ∈ Hn

d,k) +O(ε). (3.4.22)

For a fixed cube Qs(L
′
j) we have that

f̄me,s =

Re,s∑
re=1

αs,re,m 1Are
π(e),s

(3.4.23)

where {Are
π(e),s}1≤r≤Re,s is the family of atoms of the σ-algebra Bπ(e),t restricted to the cube Qs(L

′
j).

Note that |αs,re | ≤ 1 and |Re,s| = O(exp (Cε−2k+3
)). By adding the empty set to the collection

of atoms one may assume |Re,s| = R := exp (Cε−2k+3
) for all e ∈ Hn

d,k and s ∈ ΓL′
j ,Q

. Then, by

multi-linearity, using the notations r = (re)e∈Hn
d,k

and αr,s =
∏

e αs,re , one has both

N d
λ∆0,Qs(L′

j)
(f̄ms,e; e ∈ Hn

d,k) =
∑
r

αs,r,m N d
λ∆0,Qs(L′

j)
(1Are

π(e),s
; e ∈ Hn

d,k) (3.4.24)
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Md
λ,Qs(L′

j)
(f̄ms,e; e ∈ Hn

d,k) =
∑
r

αs,r,m Md
λ,Qs(L′

j)
(1Are

π(e),s
; e ∈ Hn

d,k). (3.4.25)

The key observation is that these expressions in the sum above are all at level k − 1 instead of k.
To see this let e = (i1l1, . . . , imlm, . . . , iklk) so e

′ = π(e) = (i1, . . . , im, . . . , ik). If f
′ = e′\{im} then

recall that the edge pf′(e) = (i1l1, . . . , iklk) ∈ Hn
d,k−1 is obtained from e by removing the imlm-entry.

Thus, for any atom Ae′,s of Bs,e′(L
′
j) we have by (3.4.17), that

1Ae′,s(xe) =
∏

f′∈∂e′
1Ae′,f′,s,(xpf′ (e)) (3.4.26)

where Ae′,f′,s is an atom of the σ-algebra Be′,f′,s. Thus∏
e∈Hn

d,k

1Are
π(e),s

(xe) =
∏

f∈Hn
d,k−1

∏
e∈Hn

d,k,f
′∈∂π(e)

pf′ (e)=f

1Are
π(e),f′,s

(xf) =
∏

f∈Hn
d,k−1

g
r
f,s (xf). (3.4.27)

It follows that

N d
λ∆0,Qs(L′

j)
(1Are

π(e),s
; e ∈ Hn

d,k) = N d
λ∆0,Qs(L′

j)
(g

r
f,s; f ∈ Hn

d,k−1) (3.4.28)

and hence that

N d
λ∆0,Qs(L′

j)
(f̄me,s; e ∈ Hn

d,k) =
∑
r

αs,r,m N d
λ∆0,Qs(L′

j)
(g

r
f,s; f ∈ Hn

d,k−1) (3.4.29)

and similarly

Md
λ,Qs(L′

j)
(f̄me,s; e ∈ Hn

d,k) =
∑
r

αr,s,m Md
λ,Qs(L′

j)
(g

r
f,s; f ∈ Hn

d,k−1). (3.4.30)

Note that number of index vectors r = (re)e∈Hn
d,k

is RD with D := |Hn
d,k| and hence RD ≤ M if

C1 ≫ 1.
Writing j′ := index(L′

j) and J ′ := index(L′
j+1) it then follows from our inductive hypothesis

functions, applied with respect to the ε1-admissible sequence of scales

Lj′+1 ≥ Lj′+2 ≥ · · · ≥ LJ ′−1

which is possible as J ′ − j′ ≫ Jk−1(ε1, R
D), that there is a scale Lj with j′ ≤ j < J ′ so that

Nλ∆0,Qs(L′
j)
(g

r
s,f; f ∈ Hn

d,k−1) = Mλ,Qs(L′
j)
(g

r
s,f; f ∈ Hn

d,k−1) +O(ε1) (3.4.31)

for all λ ∈ [Lj+1, Lj ] uniformly in r for s /∈ Sε1 , where Sε1 ⊆ ΓL′
j ,Q

is a set of size |Sε1 | ≤ ε1|ΓL′
j ,Q

|.
Since the cubes Qt(L0) form a partition of Q as t runs through the grid ΓL0,Q the relative density
of the set Sε1 can substantially increase only of a few cubes Qt(L0). Indeed, it is easy to see that

|T ′′
ε1 | ≤ ε

1/2
1 |ΓL0,Q| for the set

T ′′
ε1 := {t ∈ ΓL0,Q : |Sε1 ∩Qt(L0)| ≥ ε

1/2
1 |ΓL′

j ,Q
∩Qt(L0)|}.

We claim that (3.4.11) holds for λ ∈ [Lj+1, Lj ] uniformly in t /∈ Tε := T ′
ε ∪ T ′′

ε1 , e ∈ Hn
d,k, and

1 ≤ m ≤M . Indeed, from (3.6.17), (3.6.18), and (3.4.31) and the fact that |αs,r| ≤ 1, it follows

N d
λ∆0,Qs(L′

j)
(f̄e,s; e ∈ Hn

d,k) = Md
λ,Qs(L′

j)
(f̄e,s; e ∈ Hn

d,k) +O(ε)
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for s /∈ Sε1 ∩ Qt(L0) since RDε1 ≪ ε. Finally, the fact that t /∈ T ′′
ε1 together with localization,

namely (3.4.21) and (3.4.22), ensures that averaging over ΓL′
j ,Qt(L0) gives

N d
λ∆0,Qt(L0)

(f̄e,t; e ∈ Hn
d,k) = Md

λ,Qt(L0)
(f̄e,t; e ∈ Hn

d,k) +O(ε) +O(ε
1/2
1 )

which in light of (3.4.19), (3.4.20), and the fact that ε1 ≪ ε2 complete the proof.

3.4.3 Proof of Lemmas 3.6 and 3.7

Proof of Lemma 3.6. The argument is similar to that of Lemma 3.1. Fix an edge, say e0 =
(11, 12, . . . , 1k), and partition the edges e ∈ Hn

d,k in to as follows. Let H0 be the set of those edges
e for which 1 /∈ π(e), and for l = 1, . . . , n1 let Hl denote the collection of edges of the form e =
(1l, j2l2, . . . , jklk), in other words e ∈ Hl if e = (1l, e′) for some edge e′ = (j2l2, . . . , jklk) ∈ Hn

d−1,k−1.
Accordingly write

∏
e∈Hn

d,k

fe(xe) =
∏
e∈H0

fe(xe)

n1∏
l=1

∏
e′∈Hn

d−1,k−1

f1l,e′(x1l, xe′).

For x ∈ Q1 and x′ = (x2, . . . , xd) with xi ∈ Qni
i , define

gl(x, x
′) :=

∏
e′∈Hn

d−1,k−1

f1l,e′(x1l, xe′) (3.4.32)

Then one may write

N d
λ∆0,Q(fe; e ∈ Hn

d,k) =

 
x2

. . .

 
xd

∏
e∈H0

fe(xe)

( 
x1

n1∏
l=1

gl(x1l, x
′) dσλ1 (x1)

)
dσλd (xd) . . . dσ

λ
2 (x2).

(3.4.33)
For the inner integrals we have, using (3.3.6), the estimate( 

x1

n1∏
l=1

gl(x1l, x
′) dσλ1

)2

≤ ∥g1∥2U1
L(Q)+O(ε2

k
) =

 
y11

ˆ
y12

g1(y11)g1(y12)ψ
1
L(y12−y11) dy11 dy12+O(ε2

k
).

provided 0 < L≪ (ε2
k
)6λ, where we use the notation

ψi
L(y2 − y1) =

ˆ
t
χi
L(y1 − t)χi

L(y2 − t) dt

with χi
L := L−ni1[−L/2,L/2]ni for 1 ≤ i ≤ k. By Cauchy-Schwarz we then have∣∣∣N d

λ∆0,Q(fe; e ∈ Hn
d,k

∣∣∣2 ≤ ˆ
y
1

 
x2

. . .

 
xd

∏
e′∈Hn

d−1,k−1

f11,e′(x11, xe′)f11,e′(x12, xe′) dσ
λ
d . . . dσ

λ
2 dω

1
L(y1)+O(ε2

k
)

where dωi
L(yi) = |Qi|−1ψi

L(yi2 − yi1) dyi1 dyi2 with y
i
= (yi1, yi2) ∈ Q2

i for 1 ≤ i ≤ k.
The expression we have obtained above is similar to the one in (3.4.2) except for the following
changes. The variable x1 ∈ Qn1

1 is replaced by y
1
∈ Q2

1 and the measure dσλ1 by dω1
L. The functions

f1l,e′ are replaced by f11,e′ , for 1 ≤ l ≤ n1, while the functions fe for all e ∈ Hn
d,k such that 1 /∈ π(e)

are eliminated, that is replaced by 1. Repeating the same procedure for i = 2, . . . , k replaces all
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variables xi with variables y
i
as well as the measures dσλi with dωi

L. The procedure eliminates all
functions fe when e is an edge such that i /∈ π(e) for some 1 ≤ i ≤ k; for the remaining edges, when
π(e) = (1, . . . , k), it replaces the functions fe with fe0 = f11,21,...,1k. For k < i the variables xi and
the measures dσλi are not changed, however integrating in these variables will have no contribution
as the measures are normalized. Thus one obtains the following final estimate∣∣∣Nλ∆0,Q(fe; e ∈ Hn

d,k

∣∣∣2k ≤ 1

|Q1|

ˆ
y
1

. . .
1

|Qk|

ˆ
y
k

∏
e∈H2

k,k

fe0(ye)
k∏

i=1

ψi
L(yi2 − yi1) dyi1 dyi2 +O(ε2

k
)

(3.4.34)
noting that these integrals are not normalized. Thus, one may write the expression in (3.4.34),
using a change of variables yi1 := yi1 − ti, yi2 := yi2 − ti, as

1

|Q1|

ˆ
t1

 
y
1
∈t1+Q1

. . .
1

|Qk|

ˆ
tk

 
y
k
∈tk+Qk

∏
e∈H2

k,k

fe0(ye) dy1 . . . dyk dt = ∥fe0∥2
k

□L(Qπ(e0)
) +O(ε2

k
)

(3.4.35)
where the last equality follows from the facts that the function fe0 is supported on the cube Qπ(e0)

and hence the integration in t is restricted to the cube Q+Q(L), giving rise an error of O(L/l(Q)).
Estimate (3.4.14) follows from (3.4.34) and (3.4.35) noting that the above procedure can be applied
to any e ∈ Hn

d,k in place of e0. Estimate (3.4.15) is established similarly.

Proof of Lemma 3.7. For j = 0 we set Be′,t(L0) := {Qt(L0), ∅} and Be′,f′,s(L0) := {Qsf′ (L0), ∅} for
e′ ∈ Hd,k, f

′ ∈ ∂e′, and t, s ∈ ΓL0,Q. We will develop σ-algebras Be′,t(Lj) of scale Lj such that
(3.4.17) holds with complex(Be′,f′,s(Lj)) ≤ j.
We define the total energy of a family of functions fme,t with respect to a family of σ-algebras Be′,t(Lj)
as

E(fme,t|Be′,t(Lj)) := Et∈ΓL0,Q

M∑
m=1

∑
e∈Hn

d,k

∥E(fme,t|Bπ(e),t(Lj))∥2L2(Qtπ(e)
(L0))

. (3.4.36)

Since |fme,t| ≤ 1 for all e, m, and t it follows that the total energy is bounded by M · |Hn
d,k| = O(M).

Our strategy will be to show that if (3.4.16) does not hold then there exist a family of σ-algebras

Be′,t(Lj+2) such that the total energy of the family of functions fme,t is increased by at least ckε
2k+3

with respect to this new family of σ-algebras, and at the same time ensuring that (3.4.17) remains

valid with complex(Be′,f′,s(Lj+2)) ≤ j+2. This iterative process must stop at some j = O(M ε−2k+3
)

proving the Lemma.
Assume that we have developed σ-algebras Be′,t(Lj) and Be′,f′,s(Lj) of scale Lj such that (3.4.17)
holds with complex(Be′,f′,s(Lj)) ≤ j. If (3.4.16) does not hold then |Tε| ≥ ε|ΓL0,Q| for the set

Tε := {t ∈ ΓL0,Q : ∥fme,t−E(fme,t|Bπ(e),t(Lj))∥□Lj+1
(Qtπ(e)

(L0)) ≥ ε for some e ∈ Hn
d,k and 1 ≤ m ≤M}.

Fix t ∈ Tε and let e ∈ Hn
d,k and 1 ≤ m ≤M be such that

∥fme,t − E(fme,t|Bπ(e),t(Lj))∥□Lj+1
(Qtπ(e)

(L0)) ≥ ε

and write e′ := π(e). Consider the partition of the cube Qte′ (L0) into small cubes Qse′ (Lj+2) where
se′ ∈ ΓLj+2,Qe′ ∩Qte′ (L0). By the localization properties of the □Lj+1(Q)-norm, and the fact that

Lj+2 ≪ ε2
k
Lj+1 we have that

∥f∥2k□Lj+1
(Qte′ (L0))

≤ Ese′∈ΓLj+2,Qte′
(L0)

∥f∥2k□(Qse′ (Lj+2))
+
ε2

k

2
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for any function f : Qte′ (L0) → [−1, 1]. Thus there exists a set Sε,e,t ⊆ ΓLj+2,Qte′ (L0) of size

|Sε,e,t| ≥
ε2

k

4
|ΓLj+2,Qte′ (L0)|

such that

∥fme,t − E(fme,t|Be′,t(Lj))∥2
k

□(Qse′ (Lj+2)
≥ ε2

k

4
(3.4.37)

for all se′ ∈ Sε,e,t.
For a given cube Q and functions f, g : Q→ R, define the normalized inner product of f and g as

⟨f, g⟩Q :=

 
Q
f(x)g(x) dx.

Then by the well-known property of the □-norm, see for example [109] or the proof of Lemma 3.2,
it follows from (3.4.37) that there exits sets

Bf′,se′ ,t
⊆ Qsf′ (Lj+2)

for f′ ∈ ∂e′ such that〈
fme,t − E(fme,t|Be′,t(Lj)) ,

∏
f′∈∂e′

1Bf′,se′ ,t

〉
Qse′ (Lj+2)

≥ ε2
k

2k+2
. (3.4.38)

If s ∈ ΓLj+2,Q then there is a unique t = t(s) ∈ ΓL0,Q such that s ∈ Qt(L0). If t ∈ Tε and se′ ∈ Sε,e,t
then we define the σ-algebras Bf′,e′,s(Lj+2) on Qsf′ (Lj+2) as follows. Write Bf′,e′,s = Bf′,se′ ,t

where
t = t(s) and let Bf′,e′,s(Lj+2) be the σ-algebra generated by the set Bf′,e′,s and the σ-algebra
Bf′,e′,s′(Lj) restricted to Qsf′ (Lj+2) where s

′ ∈ ΓLj ,Q is the unique element so that s ∈ Qs′(Lj). Note
that that the complexity of the σ-algebra Bf′,e′,s(Lj+2) is at most one larger then the complexity
of the σ-algebra Bf′,e′,s′(Lj) as restricting a σ-algebra to a set does not increase its complexity. If
t = t(s) /∈ Tε or se′ /∈ Sε,e,t then let Bf′,e′,s(Lj+2) be simply the restriction of Bf′,e′,s′(Lj) to the cube
Qsf′ (Lj+2), or equivalently define the sets Bf′,e′,s := Qsf′ (Lj+2). Finally, let

Be′,s(Lj+2) :=
∨

f′∈∂e′
Bf′,e′,s(Lj+2) (3.4.39)

be the corresponding σ-algebra on the cube Qse′ (Lj+2).
Since the cubes Qse′ (Lj+2) partition the cube Qte′ (L0) as se′ runs through the grid ΓLj+2,Qe′ ∩
Qte′ (L0), these σ-algebras define a σ-algebra Be′,t(Lj+2) on Qte′ (L0), such that its restriction to the
cubes Qse′ (Lj+2) is equal to the σ-algebras Be′,s(Lj+2).
Since the function

∏
f′∈∂e′ 1Bf′,e′,s is measurable with respect to the σ-algebra Be′,t(Lj+2) restricted

to the cube Qse′ (Lj+2) one clearly has

⟨ fme,t − E(fme,t|Be′,t(Lj+2)),
∏

f′∈∂e′
1Bf′,e′,s ⟩Qse′ (Lj+2) = 0. (3.4.40)

and hence, by (3.4.38), that

⟨E(fme,t|Be′,t(Lj+2))− E(fme,t|Be′,t(Lj)),
∏

f′∈∂e′
1Bf′,e′,s ⟩Qse′ (Lj+2) ≥

ε2
k

2k+2
. (3.4.41)
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It then follows from Cauchy-Schwarz and orthogonality, using the fact that the σ-algebra Be′,t(Lj+2))
is a refinement of Be′,t(Lj+2), that

∥E(fme,t|Be′,t(Lj+2))−E(fme,t|Be′,t(Lj))∥2L2(Qse′ (Lj+2))
(3.4.42)

= ∥E(fme,t|Be′,t(Lj+2))∥2L2(Qse′ (Lj+2))
− ∥E(fme,t|Be′,t(Lj))∥2L2(Qse′ (Lj+2))

≥
( ε2

k

2k+2

)2
for se′ ∈ Sε,e,t. Since |Sε,e,t| ≥

ε2
k

4
|ΓLj+2,Qte′

(L0)| averaging over se′ ∈ ΓLj+2,Qte′
(L0) implies

∥E(fme,t|Be′,t(Lj+2))∥2L2(Qte′ (L0))
≥ ∥E(fme,t|Be′,t(Lj))∥2L2(Qte′ (L0))

+
ε2

k+2

22k+6
. (3.4.43)

At this point we have shown that if t ∈ Tε then there exists an edge e ∈ Hn
d,k, 1 ≤ m ≤ M , and

σ-algebras Be′,t(Lj+2)) of scale Lj+2 on Qte′ (L0), with e
′ = π(e), such that (3.4.43) holds.

For all e′′ ∈ Hd,k with e′′ ̸= e′ let Bf′,e′′,s(Lj+2) be the restriction of the σ-algebra Bf′,e′′,s′(Lj) to
the cube Qsf′ (Lj+2), where s

′ is such that s ∈ Qs′(Lj). By (3.4.39) this implies that Be′′,s(Lj+2)
is also the restriction of Be′′,s′(Lj) to the cube Qse′′ (Lj+2), and hence the σ-algebra Be′′,t(Lj+2) is
generated by the grid GLj+2,Qte′′ (L0) and the σ-algebra Be′′,t(Lj).

We have therefore defined a family of the σ-algebras Be′,t(Lj+2) for e
′ ∈ Hd,k, satisfying

M∑
m=1

∑
e∈Hn

d,k

∥E(fme,t|Bπ(e),t(Lj+2))∥2L2(Qtπ(e)
(L0))

≥
M∑

m=1

∑
e′∈Hn

d,k

∥E(fme,t|Bπ(e),t(Lj))∥2L2(Qtπ(e)
(L0))

+
ε2

k+2

22k+6
.

Using the fact that |Tε| ≥ ε|ΓL0,Q| and averaging over t ∈ ΓL0,Q it follows using the notations of
(3.4.36) that

E(fme,t|Be′,t(Lj+2)) ≥ E(fme,t|Be′,t(Lj)) +
ε2

k+3

22k+6
.

As the total energy E(fme,t|Be′,t(Lj)) is bounded by O(M), the process must stop at a step j =

O(M ε−2k+3
) where (3.4.16) holds for a σ-algebra of “local complexity” at most j, completing the

proof of Lemma 3.7.

3.5 The base case of an inductive strategy to establish Theorem 3.4

In this section we will ultimately establish the base case of our more general inductive argument.
We will however start by giving a (new) proof of Theorem B′, namely the case d = 1 of Theorem 3.4.

3.5.1 A Single Simplex in Zn

Let ∆0 = {v1 = 0, v2, . . . , vn1} be a fixed non-degenerate simplex of n1 points in Zn with n = 2n1+3
and define tkl := vk ·vl for 2 ≤ k, l ≤ n1. Recall, see [85], that a simplex ∆ = {m1 = 0, . . . ,mn1} ⊆ Zn

is isometric to λ∆0 if and only if mk ·ml = λ2tkl for all 2 ≤ k, l ≤ n1.

For any positive integer q and λ ∈ q
√
N we define Sλ∆0,q(m2, . . . ,mn1) : Zn(n1−1) → {0, 1} be the

function whose value is 1 if mk ·ml = λ2tkl with both mk and ml in (qZ)n for all 2 ≤ k, l ≤ n1 and is
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equal to 0 otherwise. It is a well-known fact in number theory, see [67] or [85], that for n ≥ 2n1 + 1
we have that ∑

m2,...,mn1

Sλ∆0,q(m2, . . . ,mn1) = ρ(∆0) (λ/q)(n−n1)(n1−1)(1 +O(λ−τ ))

for some absolute constant τ > 0 and some constant ρ(∆0) > 0, the so-called singular series, which
can be interpreted as the product of the densities of the solutions of the above system of equations
among the p-adics and among the reals. Thus if we define

σλ∆0,q := ρ(∆0)−1(λ/q)−(n−n1)(n1−1)Sλ∆0,q

then σλ∆0,q is normalized in so much that∑
m2,...,mn1

σλ∆0,q(m2, . . . ,mn1) = 1 +O(λ−τ )

for some absolute constant τ > 0.

Let Q ⊆ Zn be a fixed cube and let l(Q) denotes its side length. For any family of functions

f1, . . . , fn1 : Q→ [−1, 1]

and 0 < λ≪ l(Q) we define the following two multi-linear expressions

N 1
λ∆0,q,Q(f1, . . . , fn1) := Em1∈Q

∑
m2,...,mn1

f1(m1) . . . fn1(mn1)σλ∆0,q(m2−m1, . . . ,mn1−m1) (3.5.1)

and
M1

λ,q,Q(f1, . . . , fn1) := Et∈Q Em1,...,mn1∈t+Q(q,λ) f1(m1) . . . fn1(mn1), (3.5.2)

where Q(q, λ) := [−λ
2 ,

λ
2 ]

n ∩ (qZ)n. Note that if S ⊆ Q and N 1
λ∆0,q,Q(1S , . . . , 1S) > 0 then S must

contain an isometric copy of λ∆0, while if |S| ≥ δ|Q| for some δ > 0 then as before Hölder implies
that

M1
λ,q,Q(1S , . . . , 1S) ≥ δn −O(ε) (3.5.3)

for all scales λ ∈ q
√
N with 0 < λ≪ ε l(Q).

Recall that for any 0 < ε≪ 1 and positive integer q we call a sequence L1 ≥ · · · ≥ LJ (ε, q)-admissible
if Lj/Lj+1 ∈ N and Lj+1 ≪ ε2Lj for all 1 ≤ j < J and LJ/q ∈ N. Note that if λ1 ≥ · · · ≥ λJ ′ ≥ 1 is
any lacunary sequence in q

√
N with J ′ ≫ (log ε−1) J+log q, one can always finds an (ε, q)-admissible

sequence of scales L1 ≥ · · · ≥ LJ with the property that for each 1 ≤ j < J the interval [Lj+1, Lj ]
contains at least two consecutive elements from the original lacunary sequence.
In light of these observations we see that the following “counting lemma” ultimately establishes a
quantitatively stronger version of Proposition B′ and hence immediately establishes Theorem 3.4
for d = 1.

Proposition 3.10. Let 0 < ε≪ 1 and qj := q1(ε)
j for j ≥ 1 with q1(ε) := lcm{1 ≤ q ≤ Cε−10}.

There exists J1 = O(ε−2) such that for any (ε, qJ1)-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥
LJ1 and S ⊆ Q there is some 1 ≤ j < J1 such that

N 1
λ∆0,qj ,Q

(1S , . . . , 1S) = M1
λ,qj ,Q

(1S , . . . , 1S) +O(ε) (3.5.4)

for all λ ∈ qj
√
N with Lj+1 ≤ λ ≤ Lj.
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As in the continuous setting the proof of Proposition 3.10 has two main ingredients, namely Lemmas
3.8 and 3.9 below. In these lemmas, and for the remainder Sections 3.5 and 3.6, we will continue to
use the notation

q1(ε) := lcm{1 ≤ q ≤ Cε−10}

for any given ε > 0.

Lemma 3.8 (A Generalized von Neumann inequality).
Let 0 < ε ≪ 1, q, q′ ∈ N with qq1(ε)|q′, and λ ∈ q

√
N with λ ≪ l(Q) and 1 ≪ L ≪ ε10λ. For any

collection of functions f1, . . . , fn1 : Q→ [−1, 1] we have

|N 1
λ∆0,q,Q(f1, . . . , fn1)| ≤ min

1≤i≤n1

∥fi∥U1
q′,L(Q) +O(ε) (3.5.5)

where for any function f : Q→ [−1, 1] we define

∥f∥U1
q,L(Q) :=

( 1

|Q|
∑
t∈Q

|f ∗ χq,L(t)|2
)1/2

(3.5.6)

with χq,L denoting the normalized characteristic function of the cubes Q(q, L) := [−L
2 ,

L
2 ]

n ∩ (qZ)n.

For any cube Q ⊆ Zn of side length l(Q) and q, L ∈ N satisfying q ≪ L with L dividing l(Q), we
shall now partition Q into cubic grids Qt(q, L) = t+((qZ)n ∩Q(L)), with Q(L) = [−L

2 ,
L
2 ]

n as usual.
These grids form the atoms of a σ-algebra Gq,L,Q. Note that if q|q′ and L′|L then Gq,L,Q ⊆ Gq′,L′,Q.

Lemma 3.9 (A Koopman-von Neumann type decomposition).
Let 0 < ε ≪ 1 and qj := q1(ε)

j for all j ≥ 1. There exists an integer J̄1 = O(ε−2) such that any
(ε, qJ̄1)-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJ̄1 and function f : Q → [−1, 1] there is
some 1 ≤ j < J̄1 such that

∥f − E(f |Gqj ,Lj ,Q)∥U1
qj+1,Lj+1

(Q) ≤ ε. (3.5.7)

The reduction of Proposition 3.10 to these two lemmas is essentially identical to the analogous
argument in the continuous setting as presented at the end of Section 3.3.1, we choose to omit the
details.

Proof of Lemma 3.8. We will rely on some prior exponential sum estimates, specifically Propositions
4.2 and 4.4 in [85]. First we deal with the case n1 ≥ 3. By the change of variables m1 := m1, mi :=
mi −m1 for 2 ≤ i ≤ n1, one may write

N 1
λ∆0,q,Q(f1, . . . , fn1) := Em1∈QN

∑
m2,...,mn1

f1(m1)f2(m1+m2) · · · fn1(m1+mn1)σλ∆0,q(m2, . . . ,mn1).

We now write

σλ∆0,q(m2, . . . ,mn1) = σλ∆0′,q(m2, . . . ,mn1−1)σ
m2,...,mn1−1

λ,q (mn1)

where ∆0′ = {v1 = 0, v2, . . . , vn1−1} and for eachm2, . . . ,mn1−1 ∈ (qZ)n we are using σ
m2,...,mn1−1

λ,q (m)
denote the (essentially) normalized indicator function of the subset of (qZ)n that contains m if and
only if m ·mk = λ2tkn1 for all 2 ≤ k ≤ n1.
Using the fact that |fi| ≤ 1, together with Cauchy-Schwarz and Plancherel, one can then easily see
that

|N 1
λ∆0,q,Q(f1, . . . , fn1)|2 ≤ |Q|−1

ˆ
ξ∈Tn

|f̂n1(ξ)|2Hλ,q(ξ) dξ (3.5.8)
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with

Hλ,q(ξ) =
∑

m2,...,mn1

σλ∆0′,q(m2, . . . ,mn1−1) | ̂σ
m2,...,mn1−1

λ,q (ξ)|2.

It then follows by Propositions 4.2 and 4.4 in [85], with δ = ε4 and after rescaling by q, that in
addition to being non-negative and uniformly bounded in ξ we in fact have

Hλ,q(ξ) = O(ε) whenever

∣∣∣∣qξ − l

q1(ε)

∣∣∣∣ ≥ q

ε4λ
, (3.5.9)

for all l ∈ Zn.
We note that the expression Hλ,q(ξ) may be interpreted as the Fourier transform of the indicator
function of the set of integer points on a certain variety, and estimate (3.5.9) indicates that this
concentrates near rational points of small denominator. It is this crucial fact from number theory
which makes results like Theorem B′ possible.

Since

χ̂q,L(ξ) =
qn

Ln

∑
m∈[−L

2
,L
2
)n, q|m

e−2πim·ξ

it is easy to see that χ̂q,L(l/q) = 1 for all l ∈ Zn and that there exists some absolute constant C > 0
such that

0 ≤ 1− χ̂q,L(ξ)
2 ≤ C L |ξ − l/q| (3.5.10)

for all ξ ∈ Tn and l ∈ Zn. It is then easy to see using our assumption that qq1(ε)|q′ that

0 ≤ Hλ,q(ξ)(1− χ̂q′,L(ξ)
2) ≤ Cε (3.5.11)

for some constant C > 0 uniformly in ξ ∈ Tn provided L≪ ε5λ. Substituting inequality (3.5.7) into
(3.5.8), we obtain

|N 1
λ∆0,q,Q(f1, . . . , fn1)|2 ≤ |Q|−1

(ˆ
|f̂n1(ξ)|2Hλ(ξ)χ̂q′,L(ξ)

2 dξ +

ˆ
|f̂n1(ξ)|2Hλ(ξ)(1− χ̂q′,L(ξ)

2) dξ

)
≤ ∥fn1∥2U1

q′,L(Q) +O(ε)

provided L≪ ε5λ. This proves Lemma 3.8 for k ≥ 3, as it is clear that by re-indexing the above
estimate holds for any of the functions fi in place of fn1 . For n1 = 2 an easy modification of
arguments in [78], specifically the proof of Lemma 3 therein, establishes that

|N 1
λ∆0,q,Q(f1, f2)|

2 ≤ ∥fi∥2U1
q′,L(Q) +O(ε)

for i = 1, 2 provided L≪ ε5λ.

Proof of Lemma 3.9. Let q, L ∈ N such that L|N , q|L. The “modulo q” grids Qt(q, L) = t+Q(q, L)
partition the cube Q with t running through the set Γq,L,Q = {1, . . . , q}n +ΓL,Q, where ΓL,Q denote
the centers of the “integer” grids t+Q(L) in an initial partition of Q. Let q′, L′ be positive integers
so that q|q′, L′|L and L′ ≪ ε2L. If s ∈ Γq′,L′,Q and t ∈ Qs(q

′, L′) then |t− s| = O(L′) and hence

Ex∈Qt(q,L)g(x) = Ex∈Qs(q,L)g(x) +O(L′/L)

for any function g : Q→ [−1, 1]. Moreover, since the cube Qs(q, L) is partitioned into the smaller
cubes Qt(q

′, L′), we have by Cauchy-Schwarz

|Ex∈Qs(q,L) g(x)|
2 ≤ Et∈Γq′,L′,Qs(q,L)

|Ex∈Qt(q′,L′)g(x)|2.
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From this it is easy to see that

∥g∥2U1
q,L(Q) = Et∈Q|Ex∈Qt(q,L)g(x)|

2 ≤ Et∈Γq′,L′,Q |Ex∈Qt(q′,L′)g(x)|2 +O(L′/L)

and we note that the right side of the above expression is ∥E(g|Gq′,L′,Q)∥2L2(Q) since the conditional

expectation function E(g|Gq′,L′,Q) is constant and equal to Ex∈Qt(q′,L′)g(x) on the cubes Qt(q
′, L′).

Now suppose (3.5.7) does not hold for some j ≥ 1, that is

∥f − E(f |Gqj ,Lj ,Q)∥2U1
qj+1,Lj+1

(Q) ≥ ε2.

Since Lj+2 ≪ ε2Lj+1, Lj+2|Lj , and qj+1|qj+2 we can apply the above observations to g := f −
E(f |Gqj ,Lj ,Q) and obtain, by orthogonality, that

∥E(f |Gqj+2,Lj+2,Q)∥2L2(Q) ≥ ∥E(f |Gqj ,Lj ,Q)∥2L2(Q) + cε2 (3.5.12)

for some constant c > 0. Since the above expressions are clearly bounded by 1, the above procedure
must stop inO(ε−2) steps at which (3.5.7) must hold for some 1 ≤ j ≤ J̄1(ε) with J̄1(ε) = O(ε−2).

3.5.2 The base case of our general inductive strategy

Let Q = Q1 × . . .×Qd with Qi ⊆ Z2ni+3 be cubes of equal side length l(Q) and ∆0
i ⊆ Z2ni+3 be a

non-degenerate simplex of ni points for 1 ≤ i ≤ d.
We note that for any q0 ∈ N and scale L0 dividing l(Q) if t = (t1, . . . , td) ∈ Γq0,L0,Q, then the
corresponding grids Qt(q0, L0) in the partition of Q take the form Qt(q0, L0) = Qt1(q0, L0)× · · · ×
Qtd(q0, L0).
As in the continuous setting we will ultimately need a parametric version of Proposition 3.10, namely
Proposition 3.11 below.

Proposition 3.11 (Parametric Counting Lemma on Zn for Simplices). Let 0 < ε ≤ 1 and R ≥ 1.
There exists an integer J1 = J1(ε,R) = O(Rε−4) such that for any (ε, qJ1)-admissible sequence of
scales L0 ≥ L1 ≥ · · · ≥ LJ1 with L0 dividing l(Q) and qj := q0q1(ε)

j for 0 ≤ j ≤ J1 with q0 ∈ N,
and collection of functions

f i,rk,t : Qti(q0, L0) → [−1, 1] with 1 ≤ i ≤ d, 1 ≤ k ≤ ni, 1 ≤ r ≤ R and t ∈ Γq0,L0,Q

there exists 1 ≤ j < J1 and a set Tε ⊆ Γq0,L0,Q of size |Tε| ≤ ε|Γq0,L0,Q| such that

N 1
λ∆0

i ,qj ,Qti (q0,L0)
(f i,r1,t , . . . , f

i,r
ni,t

) = M1
λ,qj ,Qti (q0,L0)

(f i,r1,t , . . . , f
i,r
ni,t

) +O(ε) (3.5.13)

for all λ ∈ qj
√
N with Lj+1 ≤ λ ≤ Lj and t /∈ Tε uniformly in 1 ≤ i ≤ d and 1 ≤ r ≤ R.

This proposition follows, as the analogous result did in the continuous setting, from Lemma 3.8 and
the follow parametric version of Lemma 3.9.

Lemma 3.10 (A simultaneous Koopman-von Neumann type decomposition).
Let 0 < ε≪ 1, m ≥ 1, and Q ⊆ Zn be a cube. There exists an integer J̄1 = O(mε−3) such that for
any (ε, qJ̄1)-admissible sequence L0 ≥ L1 ≥ · · · ≥ LJ̄1 with L0 dividing l(Q) and qj := q0q1(ε)

j for
0 ≤ j ≤ J̄1 with q0 ∈ N, and collection of functions

f1,t, . . . fm,t : Qt(q0, L0) → [−1, 1]
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defined for each t ∈ Γq0,L0,Q, there is some 1 ≤ j < J̄1 and a set Tε ⊆ Γq0,L0,Q of size |Tε| ≤ ε|Γq0,L0,Q|
such that

∥fi,t − E(fi,t|Gqj ,Lj ,Qt(q0,L0)∥U1
qj+1,Lj+1

(Qt(q0,L0)) ≤ ε (3.5.14)

for all 1 ≤ i ≤ m and t /∈ Tε.

Lemma 3.10 above is of course the discrete analogue of Lemma 3.4. Since the proofs of Proposition
3.11 and Lemma 3.10 are almost identical to the arguments presented in Section 3.3.2 we choose to
omit these details.

3.6 Proof of Theorem 3.4: products of simplices in Zd

After the preparations in Section 3.5 we can proceed very similarly as in Section 3.4 to prove our
main result in the discrete case, namely Theorem 3.4. The main difference will be that given
0 < ε≪ 1 and 1 ≤ k ≤ d, we construct a positive integer qk(ε) and assume that all our sequences of
scales will be (ε, qk(ε))-admissible. The cubes Qt(L) will be naturally now be replaced by the grids
Qt(q, L) of the form that already appear in Section 3.5 where we always assume q|L.
Let ∆0 = ∆0

1 × . . .×∆0
d with each ∆0

i ⊆ Z2ni+3 a non-degenerate simplex of ni points for 1 ≤ i ≤ d
and Q = Q1 × . . .×Qd ⊆ Zn with Qi ⊆ Z2ni+3 cubes of equal side length l(Q) (taken much larger
than the diameter of ∆0). We will use the same parameterizations in terms of hypergraph bundles
Hn

d,k and corresponding notations as in Section 3.4 to count the configurations ∆ = ∆1×. . .×∆d ⊆ Q

with each ∆i ⊆ Qi an isometric copy of λ∆0
i for some λ ∈

√
N.

Given any positive integer q and λ ∈ q
√
N we will make use of the notation∑

xi

f(xi)σ
i
λ,q(xi) := Exi1∈Qi

∑
xi2,...,xini

f(xi)σλ∆0
i ,q

(xi2 − xi1, . . . , xini − xi1) dxi1 (3.6.1)

with σλ∆0
i ,q

as defined in the previous section and xi = (xi1, . . . , xini) ∈ Qni
i .

Note that if S ⊆ Q then the density of configurations ∆ in S, of the form ∆ = ∆1 × . . .×∆d with
each ∆i ⊆ Qi an isometric copy of λ∆0

i for some λ ∈ q
√
N is given by the expression

N d
λ∆0,q,Q(1S ; e ∈ Hn

d,d) :=
∑
x1

· · ·
∑
xd

∏
e∈Hn

d,d

1S(xe) σ
1
λ,q(x1) . . . σ

d
λ,q(xd). (3.6.2)

More generally, for any given 1 ≤ k ≤ d and a family of functions fe : Qπ(e) → [−1, 1] with e ∈ Hn
d,k

we define the multi-linear expression

N d
λ∆0,q,Q(fe; e ∈ Hn

d,k) :=
∑
x1

· · ·
∑
xd

∏
e∈Hn

d,k

fe(xe) σ
1
λ,q(x1) . . . .σ

d
λ,q(xd). (3.6.3)

as well as
Md

λ,q,Q(fe; e ∈ Hn
d,k) := Et∈Q Md

t+Q(q,L) (fe; e ∈ Hn
d,k) (3.6.4)

where Q(q, L) = Q1(q, L)× · · · ×Qd(q, L) with each Qi(q, L) = (qZ ∩ [−L
2 ,

L
2 ])

2ni+3 and

Md
Q̃
(fe; e ∈ Hn

d,k) := E
x1∈Q̃

n1
1

· · · E
xd∈Q̃

nd
d

∏
e∈Hn

d,k

fe(xe) (3.6.5)

for any cube Q̃ ⊆ Q of the form Q̃ = Q̃1 × · · · × Q̃d with Q̃i ⊆ Qi for 1 ≤ i ≤ d.
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We note that it is easy to show, as in the continuous, that if S ⊆ Q with |S| ≥ δ|Q| for some δ > 0
then

Md
λ,q,Q(1S ; e ∈ Hn

d,d) ≥ δn1···nd −O(ε) (3.6.6)

for all scales λ ∈ q
√
N with 0 < λ≪ ε l(Q). In light of this observation and the discussion preceding

Proposition 3.10 the proof of Theorem 3.4 reduces, as it did in the continuous setting, to the
following

Proposition 3.12. Let 0 < ε ≪ 1. There exist positive integers Jd = Jd(ε) and qd(ε) such that
for any (ε, qd(ε)

Jd)-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJ1 and S ⊆ Q there is some
1 ≤ j < Jd such that

N d
λ∆0,qj ,Q

(1S ; e ∈ Hn
d,d) = Md

λ,qj ,Q
(1S ; e ∈ Hn

d,d) +O(ε), (3.6.7)

for all λ ∈ qj
√
N with Lj+1 ≤ λ ≤ Lj with qj := qd(ε)

j.

Quantitative Remark. A careful analysis of our proof reveals that there exist choices of Jd(ε) and
qd(ε) which are less than Wd(log(C∆ε

−3)) and Wd(C∆ε
−13) respectively where Wk(m) is again the

tower-exponential function defined by W1(m) = exp(m) and Wk+1(m) = exp(Wk(m)) for k ≥ 1.
The proof of Proposition 3.12 follows along the same lines as the analogous result in the continuous
setting. As before we will compare the averages N d

λ∆0,q,Q(fe; e ∈ Hn
d,k) to those of Md

λ,q,Q(fe; e ∈
Hn

d,k), at certain scales q and λ ∈ q
√
N with with Lj+1 ≤ λ ≤ Lj , inductively for 1 ≤ k ≤ d. As the

arguments closely follow those given in Section 3.4 we will be brief and emphasize mainly just the
additional features.

3.6.1 Reduction of Proposition 3.12 to a more general “local” counting lemma

For any given 1 ≤ k ≤ d and a family of functions fe : Qπ(e) → [−1, 1] with e ∈ Hn
d,k it is easy to

see that for any ε > 0, scale L0 > 0 dividing the side-length l(Q), and q0|q we have

N d
λ∆0,q,Q(fe; e ∈ Hn

d,k) = Et∈Γq0,L0,Q
N d

λ∆0,q,Qt(q0,L0)
(fe,t; e ∈ Hn

d,k) +O(ε) (3.6.8)

and
Md

λ,q,Q(fe; e ∈ Hn
d,k) = Et∈ΓL,Q

Md
λ,q,Qt(q0,L0)

(fe,t; e ∈ Hn
d,k) +O(ε) (3.6.9)

provided 0 < λ≪ εL0 where fe,t denotes the restriction of a function fe to the cube Qt(q0, L0).
Thus the proof of Proposition 3.12 reduces to showing that the expressions in (3.6.8) and (3.6.9)
only differ by O(ε) for all scales λ ∈ q

√
N with Lj+1 ≤ λ ≤ Lj , given an (ε, q)-admissible sequence

L0 ≥ L1 ≥ · · · ≥ LJ , for any collection of bounded functions fe,t, e ∈ Hn
d,k, t ∈ Γq0,L0,Q. Indeed, our

crucial result will be the following

Proposition 3.13 (Local Counting Lemma in Zn). Let 0 < ε≪ 1 and q0,M ∈ N.
There exist positive integers Jk = Jk(ε,M) and qk(ε) such that for any (ε, qJd)-admissible sequence
of scales L0 ≥ L1 ≥ · · · ≥ LJ1 with L0 dividing l(Q) and qj := q0 qk(ε)

j for j ≥ 1, and collection of
functions

fme,t : Qtπ(e)
(q0, L0) :→ [−1, 1] with e ∈ Hn

d,k, 1 ≤ m ≤M and t ∈ Γq0,L0,Q

there exists 1 ≤ j < Jk and a set Tε ⊆ Γq0,L0,Q of size |Tε| ≤ ε|Γq0,L0,Q| such that

N d
λ∆0,qj ,Qt(q0,L0)

(fe,t; e ∈ Hn
d,k) = Md

λ,qj ,Qt(q0,L0)
(fe,t; e ∈ Hn

d,k) +O(ε) (3.6.10)

for all λ ∈ qj
√
N with Lj+1 ≤ λ ≤ Lj and t /∈ Tε uniformly in e ∈ Hn

d,k and 1 ≤ m ≤M .
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Note that if k = d, L0 = l(Q), q0 = M = 1, then |Γq0,L0,Q| = 1, and moreover if fe,t = 1S for all
e ∈ Hn

d,k for a set S ⊆ Q, then Proposition 3.13 reduces to precisely Proposition 3.12. In fact,
Proposition 3.13 is a parametric, multi-linear and simultaneous extension of Proposition 3.12 which
we need in the induction step, i.e. when going from level k − 1 to level k.

3.6.2 Proof of Proposition 3.13

We will prove Proposition 3.13 by induction on 1 ≤ k ≤ d.
For k = 1 this is basically Proposition 3.11, exactly as it was in the base case of the proof of
Proposition 3.9.
For the induction step we will again need two main ingredients. The first establishes that the our
multi-linear forms N d

λ∆0,q,Q(fe; e ∈ Hn
d,k) are controlled by a box-type norm attached to scales q′

and L.
Let Q = Q1 × . . .×Qd with Qi ⊆ Z2ni+3 be cubes of equal side length l(Q) and 1 ≤ k ≤ d. For any
scale 0 < L ≪ l(Q) and function f : Qe′ → [−1, 1] with e′ ∈ Hd,k we define its local box norm at
scales q′ and L by

∥f∥2k□q′,L(Qe′ )
:= Es∈Qe′∥f∥

2k

□(Qs(q′,L))
(3.6.11)

where
∥f∥2k

□(Q̃)
:= E

x11,x12∈Q̃1
· · · E

xk1,xk2∈Q̃k

∏
(ℓ1,...,ℓk)∈{1,2}k

f(x1ℓ1 , . . . , xkℓk) (3.6.12)

for any cube Q̃ of the form Q̃ = Q̃1 × · · · × Q̃k. We note that (3.6.4) and (3.6.5) are special cases of
(3.6.11) and (3.6.12) with k = d, n = (2, . . . , 2), and fe = f for all e ∈ Hn

d,d.

Lemma 3.11 (A Generalized von-Neumann inequality on Zn). Let 1 ≤ k ≤ d.

Let 0 < ε ≪ 1, q, q′ ∈ N with qq1(ε)|q′, and λ ∈ q
√
N with λ ≪ l(Q) and 1 ≪ L ≪ (ε2

k
)10λ. For

any collection of functions fe : Qπ(e) → [−1, 1] with e ∈ Hn
d,k we have both

|N d
λ∆0,q,Q(fe; e ∈ Hn

d,k)| ≤ min
e∈Hn

d,k

∥fe∥□q′,L′ (Qπ(e)) +O(ε) (3.6.13)

and
|Md

λ,q,Q(fe; e ∈ Hn
d,k)| ≤ min

e∈Hn
d,k

∥fe∥□q′,L′ (Qπ(e)). (3.6.14)

The proof of inequalities (3.6.13) and (3.6.14) follow exactly as in the continuous case, see Lemma
3.6, using Lemma 3.8 in place of Lemma 3.3. We omit the details.

The crucial ingredient is again a parametric weak hypergraph regularity lemma, i.e. Lemma 3.7
adapted to the discrete settings. The proof is essentially the same as in the continuous case, with
exception that the □Lj -norms are replaced by □qj ,Lj -norms where qj = q0q

j is a given sequence of
positive integers and L0 ≥ L1 ≥ · · · ≥ LJ is an (ε, qJ)-admissible sequence of scales. To state it we
say that a σ-algebra B on a cube Q is of scale (q, L) if it is refinement of the grid Gq,L,Q, i.e. if its
atoms partition each cube Qt(q, L) of the grid. We will always assume that q|L and L|l(Q). Recall
also that we say the complexity of a σ-algebra B is at most m, and write complex(B) ≤ m, if it is
generated by m sets.

Lemma 3.12 (Parametric weak hypergraph regularity lemma for Zn).
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Let 0 < ε ≪ 1, 1 ≤ k ≤ d, q0, q, L0,M ∈ N, and let qj := q0q
j for j ≥ 1. There exists

J̄k = O(Mε−2k+3
) such that for any (ε2

k
, qJ̄k)-admissible sequence L0 ≥ L1 ≥ · · · ≥ LJ̄k

with the
property that L0 divides l(Q) and collection of functions

fme,t : Qtπ(e)
(q0, L0) → [−1, 1] with e ∈ Hn

d,k, 1 ≤ m ≤M , and t ∈ Γq0,L0,Q

there is some 1 ≤ j < J̄k and σ-algebras Be′,t of scale (qj , Lj) on Qte′ (q0, L0) for each t ∈ Γq0,L0,Q

and e′ ∈ Hd,k such that

∥fme,t − E(fme,t|Bπ(e),t)∥□qj+1,Lj+1
(Qtπ(e)

(L0)) ≤ ε (3.6.15)

uniformly for all t /∈ Tε, e ∈ Hn
d,k, and 1 ≤ m ≤M , where Tε ⊆ Γq0,L0,Q with |Tε| ≤ ε|Γq0,L0,Q|.

Moreover, the σ-algebras Be′,t have the additional local structure that the exist σ-algebras Be′,f′,s on
Qsf′ (qj , Lj) with complex(Be′,f′,s) = O(j) for each s ∈ Γqj ,Lj ,Q, e

′ ∈ Hd,k, and f′ ∈ ∂e′ such that if
s ∈ Qt(q0, L0), then

Be′,t

∣∣
Qse′ (qj ,Lj)

=
∨

f′∈∂e′
Be′,f′,s. (3.6.16)

The proof of Lemma 3.12 follows exactly as the corresponding proof of Lemma 3.7 in the continuous
setting, so we will omit the details. We will however provide some details of how one deduces
Proposition 3.13, from Lemmas 3.11 and 3.12. The arguments are again very similar to those in the
continuous setting, however one needs to make a careful choice of the integers qk(ε), appearing in
the statement of the Proposition.

Proof of Proposition 3.13. Let 2 ≤ k ≤ d and assume that the lemma holds for k − 1.
Let 0 < ε≪ 1 and ε1 := exp (−C1ε

−2k+3
) for some large constant C1 = C1(n, k, d) ≫ 1.

We then define qk(ε) := qk−1(ε1) recalling that q1(ε) := lcm{1 ≤ q ≤ Cε−10} and note that it is
easy to see by induction that qk(ε)|qk(ε′) for 0 < ε′ ≤ ε and qk−1(ε)|qk(ε). We further define the
function F (ε) := Jk−1(ε1,M) with M = ε ε−1

1 and recall that qj := q0 qk(ε)
j for j ≥ 1.

We now proceed exactly as in the proof of Proposition 3.9 but with {Lj}j≥1 being a (ε1, qJ̃)-admissible

sequence of scales, with J̃ ≫ F (ε) J̄k(ε,M). We again choose a subsequence {L′
j} ⊆ {Lj} so that

L′
0 = L0 and index(L′

j+1) ≥ index(L′
j) + F (ε) + 2, but also now set q′j = qj′ , where j

′ := index(L′
j).

Lemma 3.12 then guarantees the existence of σ-algebras Be′,t of scale (q′j , L
′
j) on Qte′ (q0, L0) for

each t ∈ Γq0,L0,Q and e′ ∈ Hd,k, with the local structure described above, such that (3.6.15) holds

uniformly for all t /∈ T ′
ε, e ∈ Hn

d,k, and 1 ≤ m ≤ M , for some 1 ≤ j < J̄k(ε,M) = O(Mε−2k+3
),

where T ′
ε ⊆ Γq0,L0,Q with |T ′

ε| ≤ ε|Γq0,L0,Q|.
Arguing as in the proof of Proposition 3.9 we can conclude from this that for each j′ ≤ l < J ′ we
have

N d
λ∆0,ql,Qs(q′j ,L

′
j)
(fme,s; e ∈ Hn

d,k) =
∑
r

αs,r,m N d
λ∆0,ql,Qs(q′j ,L

′
j)
(g

r
f,s; f ∈ Hn

d,k−1) +O(ε) (3.6.17)

and

Md
λ,ql,Qs(q′j ,L

′
j)
(fme,s; e ∈ Hn

d,k) =
∑
r

αr,s,m Md
λ,ql,Qs(q′j ,L

′
j)
(g

r
f,s; f ∈ Hn

d,k−1) +O(ε) (3.6.18)

provided (ε−2k)10L′
j+1 ≪ λ with λ ∈ ql

√
N, where each |αs,re | ≤ 1 and number of index vectors

r = (re)e∈Hn
d,k

is RD with D := |Hn
d,k| and hence RD ≤M if C1 ≫ 1.
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By induction, we apply Proposition 3.13 to the sequence of scales L′
j = Lj′ ≥ Lj′+1 ≥ · · · ≥ LJ ′ =

L′
j+1 with ε1 > 0 and for ql := q′j qk(ε)

l−j′ = qj′ qk−1(ε1)
l−j′ where j′ ≤ l ≤ J ′ with respect to the

family of functions g
r
s,f : Qsf(q

′
j , L

′
j) → [−1, 1] . This is possible as J ′ − j′ ≫ Jk−1(ε1, R

D) and our

sequence of scales is (ε1, qJ ′)-admissible. Thus there exists an index j′ ≤ l < J ′ such that for all
λ ∈ ql

√
N with Ll+1 ≤ λ ≤ Ll we have

N d
λ∆0,ql,Qs(q′j ,L

′
j)
(g

r
f,s; f ∈ Hn

d,k−1) = Md
λ,ql,Qs(q′j ,L

′
j)
(g

r
f,s; f ∈ Hn

d,k−1) +O(ε1) (3.6.19)

uniformly in r for s /∈ Sε1 , where Sε1 ⊆ Γq′j ,L
′
j ,Q

is a set of size |Sε1 | ≤ ε1|Γq′j ,L
′
j ,Q

|.
The remainder of the proof follows as just as it did for Proposition 3.9.

As explained above, this implies Proposition 3.12 and that finishes the proof of our main result,
namely Theorem 3.4.
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4 Diophantine equations in the primes

Let p = (p1, ..., pr) be a system of ri polynomials with integer coefficients of degree exactly d in
the n variables x = (x1, ..., xn). Our primary concern is finding solutions with each coordinate
prime, which we call prime points, to the system of equations p(x) = s. Here s ∈ Zr is a fixed
element. The notation Vp,s is used to denote the complex affine variety defined by this equation.
Some properties of the system only depend on the highest part of the polynomials.To each system of
polynomials is attached a system of homogenous integral forms f, which is comprised of the largest
degree homogeneous parts of each of the polynomials forming p.

If p is composed entirely of linear forms the known results may be split into a classical regime and a
modern one. With p is a system of r linear forms, define the rank of p to be the minimum number
of nonzero coefficients in a non-trivial linear combination

λ1p1 + ...+ λrpr,

and denote this quantity by B1(p). The classical results on the large scale distribution of prime
points on Vp,s are conditional on the rank being sufficiently large in terms of r (for example, 2r + 1
follows from what is shown here). In this realm are many well known results such as the ones
due Vinogradov [111] and more recently Balog [4]. The modern results are mostly summed up
in the work of Green and Tao [52], where the large scale distribution of prime points on Vp,s is
determined only on the condition that B1(p) is at least 3, a quantity independent of r1. These
results cover all scenarios that do not reduce to a binary problem. However, extending the already
stunning results of Goldston, Pintz, and Yildirim [49], it has been shown by Maynard and Tao
[86] that one of the equations x1−x2 = 2i, i = 1, ..., 123 does have infinitely many prime solutions [94].

The scenario for systems involving higher degree forms in certainly less clean cut, and even the study
of integral points on Vp,s is a non-trivial problem. General results for the large scale distribution of
integral points are provided by Birch [11] and Schmidt [97], which again require the system to be
large with respect to certain notions of rank (which is again with respect to the number of forms,
but also with respect to the degrees of the forms involved). Working within the limitations of these
results, one should expect to be able to understand the large scale distribution of prime points
as well. For systems of forms which are additive, for instance the single form a1x

d
1 + ... + anx

d
n,

this is something that has been done and the primary result here is due to Hua [57]. On the
opposite end, if the system of forms is a bilinear system, or even contains a large bilinear piece, one
can also provide similar results, a particular instance of which is given by Liu [74] for a quadratic form.

However, the main results given in this sections constitute the first instance where it was shown
that asymptotic formulas may be obtained for the number of prime solutions to general systems
of diophantine equations, provided the rank of the system is sufficiently large with respect to the
number and degree of the equations. Very recently the quantitative aspects of our results have been
improved bringing the rank condition to among the primes to be similar that those of for the integer
solutions, see [115, 75].

4.1 Main results

For a fixed system of polynomials p, let us define for each prime p the quantity

µp = lim
t→∞

(pt)RM(pt)

ϕn(pt)
,
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provided the limit exists, where M(pt) represents the number of solutions to the equation p(x) = s
in the multiplicative group Un

pt . A general heuristic argument suggests that we should have

Mp,s(N) :=
∑

x∈[N ]n

Λ(x)1Vp,s(x)

≈
∏
p<∞

µp(s)µ∞(N, s)Nn−D (4.1.1)

for an appropriate singular integral µ∞(N, s). More precisely, µ∞(N, s) should coincide with the
singular series that appears in the study of integral points on Vf,s. Here we have that Λ denotes the
von Mangoldt function and Λ(x) = Λ(x1)...Λ(xn).

What is actually shown here is a precise result of this form for systems of polynomials of common
degree provided that the system has large rank in the sense of Birch for the nonlinear forms and in
the sense described above for linear forms. Let us be given a system of forms f = (f(1), ..., f(d)) where

for 1 ≤ i ≤ d we have f(i) = (f
(i)
1 , ..., f

(i)
ri ) be a system of ri polynomials with integer coefficients of

degree exactly i. Define the Birch rank independently on each level of f, i.e., for each system f(i).
Define the singular variety, over Cn, associated to the forms f(i), i ≥ 2, to be the collection of x
such that the Jacobian of f(i) at x, given by the matrix of partial derivatives

Jacf(i)(x) =

[
∂f

(i)
k

∂xj
(x)

]r,n
k=1,j=1

,

has rank strictly less than ri. This collection is labeled as V ∗
f(i)

. The Birch rank Bi(f) is defined to

be codim(V ∗
f(i)

) provided that ri ̸= 0, in which case we simply assign the value ∞. This notion is

extended to a general polynomial system p by defining the rank by Bi(p) = Bi(f), where f is the
system of forms associated to p.

The main result that is shown here is the following.

Theorem 4.1. For a given positive integer d, there exists constants χ(r, d) such that the following
holds:

Let p = p(d) be a given system of integral polynomials with r polynomials of degree d in n variables,
and set D = dr. If we have Bd(p) ≥ χ(R, d) then for the equation p(x) = s we have an asymptotic
of the form

Mp,s(N) ∼
∏
p

µp(s)µ∞(N, s)Nn−D

as N → ∞. Moreover, if p(x) = s has a nonsingular solution in Up, the p-adic integer units, for all
primes p, then ∏

p

µp(s) > 0.

The quantitative aspects of the constants χ(r, d) are in general very poor. The terms χ1(r, d) may
be taken to be 2r + 1. The case for quadratic forms is still somewhat reasonable, for systems of

quadratics one can achieve something of the shape χ(r, 2) ≤ 22
Cr2

(to be compared to r(r + 1) for
the integral analogue). However, the constants χ(1, d) already exhibit tower type behaviour in d (to
be compared to d2d for the integral analogue), and the situation quickly worsens from there. For
recent results with exponential type rank conditions see[115, 75].
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4.2 Overview and notations

The primary technique used in the proof of Theorem 4.1 is the circle method, and the argument is
an adaptation of the following mean value approach. If a single integral form F of degree d in n
variables takes the shape

F(x) = xd1 + F1(y) + F2(z),

where x = (x1,y, z), then we have the representation

MF,0 =

ˆ 1

0

 ∑
x1∈[N ]

Λ(x1)e(αx
d
1)

 ∑
y∈[N ]m

Λ(y)e(αF1(y))

 ∑
z∈[N ]n−1−m

Λ(z)e(αF2(z))

 dα

:=

ˆ 1

0
S0(α)S1(α)S2(α)dα.

An application of the Cauchy-Schwarz inequality then gives

M2
F,0 ≤ ||S0||2∞||S1||22||S2||22 ≤ ||S0||2∞(log N)2n−2Y (N)Z(N),

where Y (N) is the number of solutions to the equation F1(y) = F1(y
′) with y,y′ ∈ [N ]m and Z(N)

is the number of solutions to the equation F2(z) = F2(z
′) with z, z′ ∈ [N ]n−1−m. If F1 and F2 are

assumed to have large rank, then Y (N)Z(N) = O(N2m−d)O(N2(n−1−m)−d) = O(N2n−2−2d)). More
generally, for any measurable subset u ⊂ [0, 1] we have

ˆ
u
S0(α)S1(α)S2(α)dα = O(||S0||∞(u)(log N)n−1Nn−1−d), (4.2.1)

where ||S0||∞(u) denotes the supremum of |S0(α)| for α ∈ u.
This partition into major and minor arcs becomes useful due to the following.

Lemma 4.1. Given c > 0, there exists a C such that ||S0||∞(m(C)) ≤ N(log N)−c.

This, together with equation 4.2.1, in turn gives the bound

ˆ
m(C)

S0(α)S1(α)S2(α)dα = O((log N)−1Nn−d). (4.2.2)

Thus one is left with the task of approximating

ˆ
M(C)

∑
x∈[N ]n

e(αF(x))dα,

which is in general susceptible to the usual methods.
Now let us at the case of a general form F of degree 2. If we introduce a splitting of the variables
x = (x1,y, z), we induce a decomposition of the shape

F(x) = ax21 + g(1)(y, z)x1 + F1(y) + F2(z) + g(2)(y, z)

for a form g(2) which is bilinear in y and z, and a linear form g(1). There are two possible approaches
to adapting the above argument to this case.
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The first involves a dichotomized argument based on the rank of g(2). If we have that g(2) has large
rank (at least five is shown in [74], one can obtain good bounds on the exponential sum∑

y∈[N ]m

∑
z∈[N ]n−1−m

Λ(y)Λ(z)e(α(F1(y) + F2(z) + g(2)(y, z))),

by simply removing the contribution of the von Mangoldt function with two applications of the
Cauchy-Schwarz inequality. In this case the methods of Birch are applicable (and the rank bounds
are comparable). If g(2) has small rank, then it must be the case that F1 and F2 each have large rank
for appropriately chosen splitting of the variables. Write g(2)(y, z) = ⟨y, Bz⟩ for an appropriately
sized matrix B whose rank is small, and split g(1)(y, z) = l1(y) + l2(z). The above argument can
then be run on the intersection of the level sets of l1(y), l2(z), and Bz, as both F1 and F2 have large
rank on this small codimension linear space. On such an intersection we get an extra power gain,
which is equivalent to the codimension. This extra compensates for the loss of originally applying
the Cauchy-Schwarz inequality on each linear space. Thus summing over all such level sets gives an
appropriate bound.

The second approach, to be fair, is simply a streamlined version of the first which removes the need
for a dichotomized approach, and this is the one we shall follow. The main requirement here is an
appropriate decomposition of F in the form

F(x) = ax21 + g(1)(y, z)x1 + F1(y) + F2(z) + g(2)(y, z)

such the rank of F1 + g(2) is large with respect to g(1), the number of variables of composing y, m,
is small, and the rank of F2 is large with respect to m. As before, we wish to fix l1(y), l2(z), and
Bz. The difference is that we have no assumption on the rank of B. However, by controlling the
value of m provides, we have a way to control the number of linear equations is z. Running the
argument as before and summing over the linear spaces leads reduces our problem to providing an
appropriate bound for the number of solutions to

F1(y) + g(2)(y, z) = F1(y
′) + g(2)(y′, z)

l1(y) = l1(y
′)

F2(z) = F2(z
′) (4.2.3)

l2(z) = l2(z
′)

Bz = Bz′

with y,y′ ∈ [N ]m and z, z′ ∈ [N ]n−1−m. This achieved by the rank assumptions of F1 + g(2) and F2

in the original decomposition.

The strategy for forms of higher degree by a similar decomposition of the form

F(x) = axd1 + g(1)(y, z)xd−1
1 + ...+ g(d−1)(y, z)x1 + F1(y) + F2(z) + g(d)(y, z),

where the g(i) forms of degree i, and F1(y), F2(z), g
(d) are forms of degree d. Again we require that

the rank of F1 + g(d) is large with respect to g(i) for each i < d, the number of variables composing
y is small, and the rank of F2 is large with respect to m. That such a decomposition is possible
is the subject of section 4. Then we view each form g(i), 1 ≤ i ≤ d as a sum of forms in y with
coefficients that are forms in z, and the number of these coefficients is bounded in terms of m. On
each of the level sets of this new system of forms in z we have a system of forms in y, the number of
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which is bounded in terms of d. Now passing to the further level of sets of these forms y provides a
place to carry out the simple Cauchy-Schwarz argument at the beginning of this section. Summing
back over the level sets then provides a system analogous to the one above.

The only problem with this so far is that the system we end up contains at least a portion of each
form g(i)(y, z) for i = 1, ..., d, and we have no control on the rank of these forms at all and therefore
have no way of dealing with the terminal system. The solution to this problem is found in the work
of Schmidt. His results provide a way of partitioning the level sets of a form by the level sets of a
system of forms that does have high rank in each degree. Section 3 is dedicated to this. Working
with this more regular system as opposed the g(i)’s does provide a manageable terminal system,
and allows for a bound on the minor arc integral.

Extending this method to systems of forms is relatively straightforward at this point, and is of
course carried out below. The major annoyance here is the need to isolate larger number of suitable
variables x1, ..., xK to get a the logarithmic gain on the minor arcs, as opposed to a randomly chosen
single variable x1.

4.2.1 Outline and notation

The outline for the rest of the paper is as follows. Sections 3 and 4 are as described above. The
completion of the bound for the integral on the minor arcs is going to be carried out in Section
5. The major arcs are dealt with in Section 6, where the asymptotic formula is shown. Section 7
is dedicated to the proof of Theorem. The final section concludes the work with a few further remarks.

Remarks on notation The symbols Z, Q, R, and C denote the integers, the rational numbers,
the real numbers, and the complex numbers, respectively. The r-dimensional flat torus Rr/Zr is
denoted by Tr. The p-adic integers are denoted by Zp, and the units of Zp are denoted by Up. The
symbol ZN represents shorthand for the groups Z/NZ. Also, the shorthand for the multiplicative
group Z∗

N is UN .

For a given measurable set X ⊆ Tr we shall use the notation ||f ||p(X) to denote the Lp norm of
the function 1Xf with the normalized Lebesgue measure on the r-dimensional flat torus. If X is
omitted it is assumed that X = Tr. Here, and in general, 1X denotes a characteristic function for
X in a specified ambient space, and, on occasion, the set X is replaced by a conditional statement
which defines it.The Landau o and O notation is used throughout the work. The notation f ≲ g is
sometimes used to replace f = O(g).

4.3 A Regularity lemma for systems of polynomials

In [97], Schimidt provides an alternative definition of rank for a form. For a single form F of degree
at least 2 defined over a field k, define the Schmidt rank hk(F) to be the minimum value of l such
that there exist a decomposition

F =

l∑
i=1

UiVi
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where Ui and Vi are forms defined over k of degree at least one. For a system f(d) = (f
(d)
1 , ..., f

(d)
rd ) of

forms of degree d we define hk(f) to be

min{hk(λ1f
(d)
1 + ...+ λrdf

(d)
rd

) : λi ̸= 0 for some i}.

A few basic properties of the Schmidt rank are important.

• If f is defined over a field k, and k′ is an extension of k, then hk′(f) ≤ hk(f).

• The Schmidt rank is invariant under invertible linear transformations of k, i.e. hk(f◦A) = hk(f)
for A ∈ GLn(k).

• If f′(x2, ..., xn) = f(0, x2, ..., xn), then hk(F
′) ≥ hk(F)− r.

The first two are clear from the definition, and the third simply follows from the fact that f(x)− f′(x)
is of the form x1g(x) for some d− 1 degree system of forms g. Also, the second and third imply
that the rank cannot drop on a codimension j subspace by more than jr.

As observed by Schmidt, the Birch rank Bd(F) and the complex Schmidt rank hC(F) are essentially
equivalent for a form of degree d, being bounded in terms of each other. Of course the same is true
for systems as well. The rational Schmidt rank hQ on the other hand is not equivalent and we need
the following, which is a weakened version of a main result in [97].

Definition 4.1. Let f = (f (d), ..., f(1)) be a graded system of forms with rational coefficients. Assume
that f(i) consists of ri forms for each 1 ≤ i ≤ d, and set R =

∑
i ri and D =

∑
i iri. The system f is

said to be regular if |Vf,s ∩ [N ]n| = O(Nn−D) as N → ∞ holds uniformly for s ∈ ZR.

Theorem A (Schmidt ’86). For a given positive integers R and d, there exists constants ρi(R, d)
for 2 ≤ i ≤ d such that the following holds:

Let f = (f(d), ..., f(2)) be given system of rational forms with ri forms of degree i composing each
subsystem f(i), R = r2 + ... + rd the total number of forms, and D = 2r2 + ... + drd. If we have
hQ(f

(i)) ≥ ρi(R, d) for each i, then the system f is regular.

One of the key observations of Schmidt is that his definition of rank has a very nice reductive quality
with respect to the degree, in the sense that forms of small rank may be replaced by a small number
of forms of lesser degree. The next result captures this idea.

Proposition 4.1 (Regularity lemma). Let d > 1 be a fixed integer, and let F be any collection of
functions Fi(R) for i = 2, ..., d mapping the nonnegative integers into themselves. For a collection
of non-negative integers r1, ..., rd, there exists constants

C1(r1, ..., rd, F ), ..., Cd(r1, ..., rd, F )

such that the following holds:

Given a system of integral forms f = (f(d), f(d−1), ..., f(1)), where each of the f(i) is a system of ri
forms of degree i, there exists a system of rational forms g = (g(d), g(d−1), ..., g(1)) satisfying:

1. The level sets of g partition those of f.

95

               amagyar2024_220_24



2. The number of forms in each subsystem of g(i), say r′i, is at most Ci(r1, ..., rd, F ) for each
1 ≤ i ≤ d.

3. Set H to be the linear subspace defined by g(1) = 0, and R′ to be the total number of forms
in g of degree at least 2. The system ((g(d), g(d−1), ..., g(2))) has hQ(g

(i)|H) ≥ Fi(R
′) for each

2 ≤ i ≤ d. Here g(i)|H denotes the restriction of g(i) to the subspace H.

Proof. The proof is carried out by a double induction on the parameters. First for a fixed d we
show that the case rd with any choice of rd−1, ..., r1 implies the similar scenario for the case rd + 1.
Then the induction on d is carried out.

The initial case we need to consider is d = 2 with a given function F2(R). Take a system of forms
f = (f(2), f(1)) with r2 = 1 and any value of r1. If hQ(f

(2)) ≥ F2(r2) + r1 then we may simply take
f = g, as restricting f(2) to the subspace defined by f(1) = 0 can only drop the rank by at most r1.
Otherwise f(2) =

∑l
i=1 UiVi for some rational linear forms Ui and Vi where l < F2(r2) + r1. We may

then adjoin the linear forms U1, ..., Vl to the system f(1) to obtain the system g = g(1). Properties
(1) and (2) are easily verified for this system, and property (3) is vacuous.

Now for a fixed value of d assume that the result holds for all systems with maximal degree d for
any given collection of functions F when rd = j and the rd−1, ..., r1 are arbitrary. Consider now
a fixed collection of functions F and a system f = (f(d), ..., f(1)) with rd = j + 1 and r1, ..., rd−1

arbitrary. Let f′ be the system (f(d−1), ..., f(1)). By the induction hypothesis, there is a system g′ of ra-
tional forms which is a regularization of f′ with respect to F ′

i (R) := Fi(R+(j+1)) for i = 2, ..., (d−1).

Now let g̃′ = (f(d), g′). If g̃′ fails to be the regularization of f, then it must happen that hQ(f
(d)) <

Fd(Rg̃′) + (j + 1)r1(g̃
′), where Rg̃′ is the number of forms of degree at least two in the system g̃′

and r1(g̃
′) is the number of linear forms in g′. As before, in this case there must exist homogeneous

rational polynomials Ui and Vi, i = 1, ..., l < Fd(Rg̃′) + r1, such that

λ1f
(d)
1 + ...λj+1f

(d)
j+1 =

∑
i≤l

UiVi,

where without loss of generality we have λj+1 ̸= 0. Now let g′′ be g′ adjoined with the those forms
Ui and Vi which are not linear combinations of forms already in g′, and set

g̃′′ = ((f
(d)
1 , ..., f

(d)
j ), g′′).

By the induction hypothesis there is a system g which is the regularization of g̃′′ with respect to
initial collection of functions F . As the number of forms in g′′ is expressible in terms of r1, ..., rd,
and d, the system g is the regularization of f.

The induction argument to go from d to d + 1 is simply the above argument carried out with
j = 0.

Apply Proposition 4.1 with the functions being given by the values of the Schmidt constants ρi(R, d)
then provides the following .

Corollary 4.1. Let f = (f(d), ..., f(2)) be given system of rational forms with ri forms of degree i
composing each subsystem f(i). There exists a regular system of forms g satisfying conclusions 1)
and 2) of Proposition 1.
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4.4 A Decomposition of forms

For I ⊂ [n], let y = (yi)i=1,...,n be the vector with components yi = xi for i ∈ I and 0 otherwise.
Also let z be the vector defined similarly for the set [n]\I. Note that y + z = x. In this section we
prove the following decomposition result.

Proposition 4.2. Let positive integers C1 and C2 be given. Let f be given system of r rational
forms with Bd(f) sufficiently large with respect to C1 and C2. There exists an I ⊂ [n] such that
|I| ≤ C1r and the associated decomposition

f(x) = f1(y) + f2(z) + g(y, z)

satisfies Bd(f1 + g) ≥ C1 and Bd(f2) ≥ C2.

The proof of this result is carried by dealing directly with the Jacobian matrices. Some notation
is helpful. Let M = M(x) be a i × j matrix whose entries depend on x. The notation M ∝ M ′

is used to imply that M is a submatrix of M ′ obtained by the deletion of columns, so that M is
an i× j′ matrix with j′ ≤ j. Let V ∗

M be the collection of x where M has rank strictly less than i.
Clearly one has that if M ∝M ′, then V ∗

M ′ ⊆ V ∗
M .

Lemma 4.2. If f(d) is a system of r integral forms of degree d in n variables, then the restriction
of f to the hyperplane defined by xn = 0 has rank at least Bd(f)− r − 1.

Proof. Denote the restriction of f to the subspace defined by xn = 0 as F . The matrix JacF is then
the matrix Jacf with the last column deleted and restricted to the space xn = 0. It follows that
V ∗
F ∩H ⊆ V ∗

f ∩ {xn = 0}, where H denotes the variety where the last column has all entries equal
to zero. As H is defined by at most r equations, it has co-dimension at most r. In turn it follows
from the definition that Bd(F) ≥ Bd(f)− r − 1.

As the rank of a non-homogeneous quadratic system is defined to be the rank of the homogeneous part,
it follows, simply by noting that the Birch rank is invariant under invertible linear transformations1,
that this result extends to general affine linear spaces, i.e., cosets of linear subspaces.

Corollary 4.2. If H is an affine linear space of co-dimension m, then the restriction of f to H has
rank at least Bd(f)−m(r + 1).

Now define Cf(k) to be the minimal value of m such that there exists an M ∝ Jacf of size r ×m
such that V ∗

M has dimension at most n− k. This is defined to be infinite if no such value exists.

Lemma 4.3. For a system f of r forms of degree d, one has that

Cf(k) ≤ kr, if (k − 1)((d− 1)r)k−1 < B(Q).

Proof. Write the singular variety V ∗
f as an intersection of varieties VI , where VI is a the zero

set of the characteristic polynomial for the r × r minor coming from the selecting the columns
I = {i1, ..., ir} ⊂ [n]. Proceeding inductively, assume we have selected V (l) = ∩l

j=1VIj such that

dim(V (l)) ≤ n− l. The degree of each VI is at most r(d− 1), so that V (l) has at most ((d− 1)r)k

components. Label the components with degree precisely n− l as Y1, ..., Yj , where j ≤ ((d− 1)r)k.
For each Yi, set N(i) to be the set of j’s such that VIj has Yi as a component, where all of

the other elements of
(
[n]
r

)
have also been enumerated. If there is a j such that j /∈ ∪N(i),

1This fact is essentially the multivariate chain rule.
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then dim(VIj ∩ V (l)) = n − l − 1. Otherwise it follows that ∪N(i) = [n]. In this case, look at

V ∗ = ∩l
i=1(∩j∈N(i)VIj ). In turn it follows that codim(V ∗) ≤

∑
i codim(∩j∈N(i)VIj ) ≤ lrl, which

cannot happen if l((d− 1)r)l < Bd(f). Thus one can choose a VIl+1
such that V (l+1) has dimension

l + 1. From this it is also clear that Cf(l + 1) ≤ Cf(l) + r, which gives the result as Cf(1) ≤ r.

Proof of Proposition 2. We begin by considering the case f = f(d). Start by applying Lemma 4.3
with k = C1, valid by the assumed lower bound on codimV ∗

f . Then there are at most C1r columns
of Jacf providing an associated singular set of dimension at most n− C1. Call this sub-matrix M ,
and let I denote the collection of the indices of these columns, noting that m = |I| ≤ C1r. The
associated decomposition into f1, f2, and fI follows. It is easily seen that M ∝ Jacf1+g, and it follows
that V ∗

f1+g ⊆ V ∗
M , and hence B(f1 + g) ≥ C1.

Now look at the the matrix W obtained by deleting the columns of M from Jacf. One now has
Jacf(z) = Jacf2+g(0, z). There are at most C1r

2 non-zero entries of Jacg which are dependent on z.
Then there is a of co-dimension at most C1r

2, say H, such that Vf2 ∩H ⊆ V ∗
Q ∩ {x : y = 0}. This

gives the inequality

dim(V ∗
f2)− C1r

2 ≤ dim(V ∗
f ) ≤ n− C1r(r + 1)− C2.

The dimension of V ∗
f2

on the subspace given by y = 0 is then at most n−C1r −C2 ≤ (n−m)−C2,
i.e., B(f2) ≥ C2.

4.5 Minor arcs estimates

Assume now throughout this section that we have a fixed system of integral polynomials p =
(p1, ..., pr), where each pi is of degree d. The system f is again the highest degree homogeneous parts
of p.
For a given value of C and an integer q ≤ (log N)C , define a major arc

Ma,q(C) = {α ∈ [0, 1] : max
1≤i≤r

|αi − ai/q| ≤ N−d(log N)C}

for each a = (a1, ..., ar) ∈ U r
q . When q = 1 it is to be understood that U1 = {0}. These arcs are

disjoint, and the union ⋃
q≤(log N)C

⋃
a∈Ur

q

Ma,q(C)

defines the major arcs M(C). The minor arcs are then given by

m(C) = [0, 1]\M(C).

The main result in this section is to deal with the integral representation on the minor arcs.

Lemma 4.4. There exists constant χ(r, d) such that if we have Bd(p) ≥ χ(r, d), then there exists a
C such that ˆ

m(C)
e(−s · α)

∑
x∈[N ]n

Λ(x)e(p(x) · α) dα = O(Nn−D(log N)−c). (4.5.1)

holds for any prescribed c with an implied constant independent of s.

Another set of minor arcs is also required for an exponential sum estimate. For each 1 ≤ i ≤ d,
define for a(i) ∈ Uq the major arc

N
(i)

a(i),q
(C) = {ξ(i) ∈ T : |ξ(i) − a(i)

q
| ≤ N−i(log N)C}.
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Set
Na,q(C) = N

(d)

a(d),q
(C)× ...×N

(1)

a(1),q
(C),

where a = a(d) × ...× a(1). The major arcs are now

N(C) =
⋃

q≤(log N)C

⋃
a∈Ud

q

Na,q(C).

Let n(C) denote a set of minor arcs n(C) = [0, 1]\N(C).
Define the exponential sum

S0(β) =
∑
x∈[N ]

Λ(x)e(βdx
d + ...+ β1x),

for (βd, ..., β1) ∈ Td.

Lemma 4.5. Given c > 0, there exists a C such that ||S0||∞(n(C)) = O(N(log N)−c).

For a proof the reader is referred to [57] (Ch. 10, §5, Lemma 10.8).

Proof of Lemma 4.4. Our first goal is to pick an appropriate splitting of the variables x = (x1, ..., xK ,y, z)
which induces a decomposition

p(x) = p0(x1, ..., xK ,y, z) + p1(y) + g(y, z) + p2(z)

such that the choice of x1, ..., xK are useful for applying Lemma 5, and y consisting of m variables
is chosen so that p1 + g has large rank with respect to K. If we assume that the rank of p is initially
large, then p2 also has large rank in terms of K and m.

To select the variables x1, ..., xK , we first consider associated system of forms f . We collect the
r coefficients of each term xi1 ...xid into a vector bi1,...,id We select r of these which are linearly
independent. The total number of indices involved is our value of K, in this choice is at most dr,
and we assume that the corresponding variables to be the first 1 ≤ i ≤ K. The variables x1, ..., xK
have now been selected.

For any choice of y and z we have some decomposition of the shape

p(x1, ..., xK ,y, z) = p(x1, ..., xK , 0, ..., 0) +

d−1∑
j=1

∑
1≤i1<....<ij≤K

(
d−j∑
k=1

G
(k)
i1,...,ij

(y, z)

)
xi1 ...xij

+

d−1∑
κ=1

∑
1≤ι1<....<ικ≤m

(
d−κ∑
k=1

H
(k)
0;ι1,...,ικ

(z)

)
yι1 ...yικ

+p1(0, ..., 0,y, 0) + p2(0, ..., 0, 0, z), (4.5.2)

where for each appropriate set of indices the G
(k)
i1,...,ij

and the H
(k)
0;ι1,...,ικ

are systems of at most r
integral forms of degree k in the appropriate variables.

Let G be the collection of all the forms G
(k)
i1,...,ij

, of which there are crudely at most RG ≤ d2Kdr ≤
dd+2rd+1. Set gG to be the regularization of G with respect to the functions Fi(R) = ρi(R+ r, d)
for i = 1, ..., d− 1, noting that the number of forms of degree i in gG is bounded in terms of r and d

99

               amagyar2024_220_24



by Proposition 4.1

The variables y are now selected by Proposition 4.2 by the choice of C1 = ρi(RgG + r, d) so that the
forms

f(0, ..., 0,y, z) = f1(y) + g(y, z) + f2(z)

have Bd(f1(y) + g(y, z)) ≥ C1 with the number of y variables, m, being at most C1r. With this
choice we have that system obtained by adjoining the systems gG and f1 + g is in fact a regular
system by Theorem A.
We breakdown further the forms of gG(y, z) by separating the y and z parts:

(gG)
(l)
i (y, z) =

l∑
κ=0

∑
1≤ι1<....<ικ≤m

H
(k;l)
i;ι1,...,ικ

(z)yι1 ...yικ . (4.5.3)

Note that the right hand side introduces at most lml ≤ dmd forms in z for the ith form of degree l

in gG. We collect the forms H
(k)
0;ι1,...,ικ

and H
(k;l)
i;ι1,...,ικ

into a system H. Then the number of forms RH

of H is at most RgGdm
d + rd2md. Now we regularize the system H with respect to the functions

Fi(R) = ρi(R+ r, d) for 1 ≤ i ≤ d− 1 and call the resultant system gH.

If the system f2(z) has rank at least as large as C2 = ρd(RgH + r, d), then system f2 adjoined
to the system gH is a regular system by Theorem A. This can be guaranteed as long the rank
of f(0, ..., 0,y, z) is sufficiently large with respect to our choices of C1 and C2 by appealing to
Proposition 4.2. As loosing the first K variables can drop the rank by at most K(r+1) ≤ r(r+1)d,
and C1 and C2 are dependent only on d and r, this is our choice of χ(r, d). We now define the
following sets:

Wz(H) = {z ∈ [N ]n−K−m : gH(z) = H},

Wy(G;H) = {y ∈ [N ]m : gG(y,Wz(H)) = G},

The number of H required is NDgH . The image of [N ]n−K under gG is O(NDgG ), and this is an
upper bound of the number of G’s for any fixed H, where the implied constant does not depend on H.

For any choice of z ∈Wz(H) and y ∈Wy(G;H), the polynomials p now take the shape

p(x1, ..., xK ,y, z) = p(x1, ..., xK , 0, ..., 0) +

d−1∑
j=1

∑
1≤i1<....<ij≤K

c
(d)
i1,...,ij

(G,H)xi1 ...xij

+

d−1∑
κ=1

∑
1≤ι1<....<ικ≤m

c
(d)
0;i1,...,ij

(H)yι1 ...yικ

+p1(0, ..., 0,y, 0) + p2(0, ..., 0, 0, z)

:= P0(x1, ..., xK , G,H) +P1(y, H) + p2(z), (4.5.4)

which are diagonal.

Define the exponential sums

S0(α,G,H) =
∑

x1,...,xK∈[N ]

Λ(x1)...Λ(xK)e(α ·P0(x1, ..., xk, G,H)).
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S1(α,G,H) =
∑

y∈Wy(G;H)

Λ(y)e(α ·P1(y, H)).

S2(α,H) =
∑

z∈Wz(H)

Λ(z)e(α · p2(z)).

Now we have to bound the expression

EC(N) =
∑
H

∑
G

ˆ
m(C)

S0(α,G,H)S1(α,G,H)S2(α,H)e(−s · α)dα.

Proceeding as in Section 4.2, we obtain

(EC(N))2 ≤ O

(
(log N)2nNDgG

+DgH sup
H,G

||S0(·, G,H)||2∞(m(C))

)∑
H

∑
G

||S1(·, G,H)||22||S2(·, H)||22.

(4.5.5)
The summands on the right hand side can be expressed as the number of solutions of P1(y, H) =
P1(y

′, H) for y,y′ ∈Wy(G;H) times the number of solutions to p2(z) = p2(z
′) for z, z′ ∈Wz(H).

The conditions z, z′ ∈W1(H) may be replaced by the conditions z, z′ ∈ [N ](n−K−m) and gH(z) =
gH(z

′) = H. The conditions y,y′ ∈W2(G;H) may be replaced by the conditions y,y′ ∈ [N ]m and
gG(y, H) = gG(y

′, H) = G.

In short, we are summing over all G and H the number of solutions to the system

P1(y, H) = P1(y
′, H)

gG(y, H) = gG(y
′, H) = G

P2(z) = P2(z
′)

gH(z) = gH(z
′) = H

for y,y′ ∈ [N ]m and z, z′ ∈ [N ](n−K−m). With a little rearrangement this becomes

P1(y, gH(z)) = P1(y
′, gH(z))

gG(y, gH(z)) = gG(y
′, gH(z)) = G

P2(z) = P2(z
′)

gH(z) = gH(z
′) = H,

and summing over G and H now simply removes the awkward looking equalities here. And after
doing so, by removing the abuse in notation with gH as an argument puts us in the final form

p1(y) + p3(y, z) = p1(y
′) + p3(y

′, z)

gG(y, z) = gG(y
′, z)

p2(z) = p2(z
′) (4.5.6)

gH(z) = gH(z
′),

for y,y′ ∈ [N ]m and z, z′ ∈ [N ](n−K−m).
Let us call the number of solutions to the system (4.5.6) W. Then (4.5.5) takes the form

(EC(N))2 ≤ O

(
(log N)2nWNDgG

+DgH sup
H,G

||S0(·, G,H)||2∞(m(C))

)
. (4.5.7)
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The result is the lemma is immediate from the following two claims.

Claim 1: Given c > 0, there is a C such that the bound

||S0(·, G,H)||∞(m(C)) = O((log N)−cNK) (4.5.8)

holds uniformly in G and H.

Claim 2: With the rank of p1(y) + p3(y, z) and p2(z) sufficiently large, the bound

W = O(N2(n−K)−2Dp−DgH
−DgG ) (4.5.9)

holds.

Let us start with claim 1. We look at α ·P0(x1, ..., xK , G,H), focusing on the coefficients of terms
of the form xi1 ...xid for 1 ≤ ij ≤ K. From our choice of x1, ..., xK , there is a collection of indices,
say (iκ1 , ..., i

κ
d) for each 1 ≤ κ ≤ d, such that the collection {biκ1 ,...,i

κ
d
} is linearly independent. Let

M denote the d × d matrix of these coefficient vectors as rows. The coefficient of xiκ1 ...xiκd in
α ·P0(x1, ..., xK , G,H) is (Mα)κ. Because M is linearly independent, there is some term of the
form xiκ1 ...xiκd with a coefficient β where β ∈ m(C ′) for some slightly larger C ′.

If it happens to be the case that the indices iκ1 , ..., i
κ
d are equal, say all 1, then the bound follows

directly from the bound in Lemma 4.5 for the x1 summation, and claim 1 follows by treating the
other sums trivially. Otherwise we assume that xiκ1 ...xiκd = xγ11 ..., x

γl
l where

∑
γi = d and l < d.

Now look at the sum S0 in the form∑
xl+1,...,xK∈[N ]

Λ(xl+1)...Λ(xK)
∑

x1,...,xl∈[N ]

Λ(x1)...Λ(xl)e(βx
γ1
1 ...x

γl
l +Q(x1, ..., xK , G,H))

where Q(x1, ..., xK , G,H) is viewed as a polynomial in x1, ..., xl of degree less than d with coefficients
in the other xi and the G and the H. Apply the Cauchy-Schwarz inequality γi times to the inner
sum for each of the variables xi gives the upper bound

(log N)d2
d
N2dl−d−l

∑
x1,...,xl

∑
w1

1 ,...,w
1
γ1

...
∑

wl
1...w

1
γl

(
l∏

i=1

∆wi
1,...,w

i
γl
1xi∈[N ]

)
e(βw1

1...w
l
γl
),

where ∆wf(x) = f(x+ w)f(x) is the multiplicative differencing operator, and ∆w1,w2 = ∆w2(∆w1),
and so on. The logarithmic gain on this latter sum now follows form the Weyl method as β ∈ m(C ′)
for C ′ large enough in terms of d2dc, and then claim 1 follows by taking the 2dth root and summing
trivially in xl+1, ..., xK .

To get the bound on W , note that the number of solutions to (5.6) is the product of the number of
solutions to

p1(y) + p3(y, z) = p1(y
′) + p3(y

′, z)

gG(y, z) = gG(y
′, z)

with the number to

p2(z) = p2(z
′)

gH(z) = gH(z
′),
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which follows as the two systems can not possibly have any terms that appear in common. As it
is the case that all polynomials of p have the same degree we see that the p1 + p3 and gG can be
treated separately because ranks have been defined independently on each degree. The same goes
for p2 and gH, and so the result of Schmidt finishes the proof.

4.6 Major arcs asymptotics

The major arcs are a union of boxes of the form Ma,q(C), where q ≤ (log N)C and C is now a fixed
constant chosen large enough so that lemma 4.4 holds with c = 1. For a fixed a and q, the small
size of the associated major arc means that the exponential sum

Tp(α) =
∑

x∈[N ]n

Λ(x)e(p(x) · α)

can be replaced by any approximation that has a sufficiently large logarithmic power gain in the
error.
Upon the actual fixing of a q ≤ (log N)C and an a ∈ Un

q , one has2

Tp(α) =
∑

x∈[N ]n

Λ(x)e(p(x) · α)

=
∑
g∈Zn

q

∑
x∈[N ]n

1x≡g (q)Λ(x)e(a · p(g)/q)e(p(x) · τ) (4.6.1)

=
∑
g∈Zn

q

e(p(g) · a/q)
ˆ
X∈NJ

e(p(X) · τ)dψg(X),

where the notations introduced here are τi = αi − ai/q, and ψg(X) = ψg1(X1)...ψgn(Xn) with

ψl(v) =
∑

t≤v, t≡l (q)

Λ(t),

and J is the unit cube [0, 1]n ⊂ Rn.

Lemma 4.6. For any given a constant c, the estimateˆ
X∈NJ

e(p(X) · τ)dψg(X) = 1g∈Un
q
ϕ(q)−n

ˆ
z∈NJ

e(p(z) · τ)dz+O((log N)−cNn), (4.6.2)

holds on each major arc Ma,q(C) provided that C is sufficiently large.

Proof. Define for a fixed l the one dimensional signed measure dνl = dψl − dωl, where dωl is the
Lebesgue measure multipled by the reciprocal of the totient of q if l ∈ Uq, and is zero otherwise.
For a continuous function f one then has

ˆ N

0
f(X)dνl(X) =

∑
x∈[N ], x≡l (q)

Λ(x)f(x)− ϕ(q)−1

ˆ N

0
f(z)dz.

Now set d|νl| = dωl + dψl, so that

ˆ
X∈NJ

e(p(X) · τ)dψg(X) =

ˆ
X∈NJ

e(p(X) · τ)
n∏

i=1

(dνgi(Xi) + dωgi(Xi)) .

2There is some ambiguity in the case where N is a prime power, however, there is no harm in assuming that this is
not so due to the fact that the prime powers are sparse.
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Expanding out the product in the last integral gives the form

ˆ
X∈NJ

e(p(X) · τ)dωg(X) +
2n−1∑
i=1

ˆ
X∈NJ

e(p(X) · τ)dµi,g(X),

where dµi,g runs over all of the corresponding product measures, barring the dωg(X) term.
Consider ˆ

X∈NJ
e(p(X) · τ)dµi,g(X),

for some fixed i. Assume without loss of generality that dµi,y is of the form

dνg1(X1)dσg(X2, ..., Xn),

where dσg may be signed in some variables and is independent of g1. The range of integration for
the X1 variable is a copy of the continuous interval [0, N ], and is to be split into smaller disjoint
intervals of size N1(log N)−c′ . Here c′ is chosen to be between (c + C) and 2(c + C) such that
(log N)c

′
is an integer, say B. The equality [0, N ] =

⋃B
j=1 Ij follows. Also set J ′

j = Ij × [0, N ]n−1,
which absorbs the factor of N .

Now, for a fixed interval Ij , select some t ∈ Ij . Then write

ˆ
X∈J ′

j

e(p(X) · τ)dµi,g =

ˆ
X∈J ′

j

e(p(t,X2, ..., Xn) · τ)dνg1(X1)dσg(X2, ..., Xn)

+

ˆ
X∈B|

(e(p(X1, ..., Xn) · τ)− e(p(t,X2, ..., Xn) · τ))

×dνg1(X1)dσg(X2, ..., Xn)

:= E1 + E2

The first error term satisfies

|E1| ≤
ˆ
X2,...,Xn∈[0,N ]

|
ˆ
Ij

dνg1(X1)| d|σg|(X2, ..., Xn) = O(Nne−c0
√
log N )

for some positive constant c0 by the Siegel-Walfisz theorem, as q ≤ (log N)C . To bound E2, note
that on Ij the integrand is

O(|p(X1, ..., Xn)− p(t,X2, ..., Xn)) · τ |) = O((log N)C−c′).

In turn,

|E2| = O((log N)C−c′))

ˆ
X∈J ′

j

d|νg1 |(X1)d|σg|(X2, ..., Xn) = O(Nn(log N)C−2c′)).

There are 2n − 1 error terms on each interval, so summing over the (log N)c
′
intervals completes

the proof.

The integral appearing in the last result has a quick reduction, namely

ˆ
NJ

e(p(X)τ)dX =

ˆ
NJ

e(f(X)τ)dX+O(Nn−1+ϵ),
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recalling that f is the highest degree part of p. Following along with the work of Birch,

ˆ
NJ

e(f(X)τ)dX = Nn

ˆ
ζ∈J

e(f(ζ) ·N2τ)dζ,

is denoted by NnI(J , N2τ) in [11]. This function is independent of a and q. Thus the integral over
any major arc yields the common integral

ˆ
|τ |≤(log N)C

I(J , N2τ)e(−s · τ)dτ.

With µ = N−2s, set

J(µ; Φ) =

ˆ
|τ |≤Φ

I(J , τ)e(−µ · τ)dτ,

and
J(µ) = lim

Φ→∞
J(µ).

The following is Lemma 5.3 in [11].

Lemma 4.7. The function J(µ) is continuous and uniformly bounded in µ. Moreover,

|J(µ)− J(µ,Φ)| ≲ Φ− 1
2

holds uniformly in µ.

By defining

Wa,q =
∑
g∈Un

q

e(p(g) · a/q),

one has

Lemma 4.8. For any given c > 0, the estimate

ˆ
Ma,q(C)

Tp(α)e(−s · α)dα = Nn−drϕ(q)−nWa,qe(−s · a/q)J(µ) +O(Nn−dr(log N)−c),

where µ = N−2s, holds on each major arc Ma,q(C).

The measure of the major arcs is easily at most N−dr(log N)K for some constant K. By defining

B(s, q) =
∑
a∈Ur

q

ϕ(q)−nWa,qe(−s · a/q)

S(s, N) =
∑

q≤(log N)C

B(s, q),

it then follows that

Lemma 4.9. The estimate

Mp,s(N) = S(s, N)J(µ)Nn−dr +O((log N)−cNn−dr) (4.6.3)

holds for any chosen value of c.
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4.7 The singular series

Following the outline of Hua ([57], chapter VIII, §2, Lemma 8.1), one can show that B(s, q) is
multiplicative as a function of q. This leads to consideration of the formal identity

S(s) := lim
N→∞

S(s, N) =
∏
p<∞

(1 +
∞∑
t=1

B(s, pt))). (4.7.1)

Lemma 4.10. If q = pt is a prime power, then

B(s, q) = O(qr−B(p)/((d−1)2dr)+ϵ) (4.7.2)

holds uniformly in s as t→ ∞. The implied constants can be made independent of p.

Proof. It is shown here that

Wa,q = O(qn−B(p)/((d−1)2dr)+ϵ),

uniformly for a ∈ Un
q , which clearly implies the result by the definition of B(s, q) and the fact that

qn/ϕ(q)n ≤ 2n independent of p.
The inclusion-exclusion principle is used to bound Wa,q when q = pt when t ≤ d. Let such a t be
fixed, and note that the characteristic function of Upt decomposes as

1Upt
(x) = 1−

∑
h∈Zpt−1

1x=hp.

Applying this in the definition gives

Wa,q =
∑
g∈Un

q

e(p(g) · a/q)

=
∑
g∈Zn

q

n∏
i=1

(1−
∑

hi∈Zpt−1

1gi=hip)e(p(g) · a/q)

=
∑
I⊆[n]

(−1)|I|
∑

h∈Z|I|
pt−1

∑
g∈Zn

q

FI(g;h)e(p(g) · a/q), (4.7.3)

where
FI(g;h) =

∏
i∈I

1gi=phi

for h ∈ Z
|I|
p . In other words, FI is the characteristic function of the set HI,h = {g : gi = phi ∀ i ∈ I}.

The sets I ⊆ [n] divided into two categories according to whether |I| ≤ B(p)/(r+1) or not. If I is a
set fitting into the latter category, then the trivial estimate is∣∣∣∣∣∣∣∣
∑

h∈Z|I|
pt−1

∑
g∈Zn

q

FI(g;h)e(p(g) · a/q)

∣∣∣∣∣∣∣∣ = p(t−1)|I|(pt)n−|I| = (pt)n−|I|/t ≤ qn−B(p)/(tr+t) ≤ qn−B(p)/((d−1)2dr).

Now let I be a fixed subset of [n] with |I| ≤ B(p)/(r + 1). For each h the restriction of p to the set
HI,h has Birch rank at least B(p)− |I|(r + 1) by corollary 4.2. By the work of Birch ([11], Lemma
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5.4) it follows that

∑
h∈Z(t−1)|I|

p

∣∣∣∣∣∣
∑
g∈Zn

q

FI(g;h)e(p(g) · a/q)

∣∣∣∣∣∣ ≲ q(t−1)|I|/tqn−|I|−(B(p)−|I|(r+1))/((d−1)2d−1r)+ϵ

≲ qn−B(p)/((d−1)2dr)+ϵ.

Summing over all I yields the bound.
Now let q = pt for t > d. Going back to the definition gives

Wa,q =
∑
g∈Un

q

e(p(g) · a/q)

=
∑
g∈Un

p

∑
h∈Zn

pt−1

e(p(g + ph) · a/q).

The system of forms in the exponent can be expanded for each fixed g as

p(g + ph) = pdp(h) + fg(h)

for some polynomial fg of degree at most d− 1. Then it follows that

|Wa,q| ≤
∑
g∈Un

p

∣∣∣∣∣∣∣
∑

h∈Zn
pt−1

e(fg(h) + pdp(h)) · a/q)

∣∣∣∣∣∣∣ . (4.7.4)

The inner sum is now bounded uniformly in g by an application of the exponential sum estimates
in [11] as follows.
Set P = pt−1 and q1 = pt−d. Then, for each i = 1, ..., r,

2|q′ai − a′iq1| ≤ P−(d−1)+(d−1)rθ

and
1 ≤ q′ ≤ P (d−1)rθ

cannot be satisfied if θ < 1/(d− 1)r. Then, by Lemma 4.3 of [11],∑
h∈Zn

pt−1

e((pdp(h)) · a/q + f(h)) = O(Pn−B(p)/((d−1)2dr)+ϵ)

for any polynomial f(h) of degree strictly less than d. In turn,

|Wa,q| ≤
∑
g∈Un

p

O(Pn−B(p)/((d−1)2dr)+ϵ) = O(qn−B(p)/((d−1)2dr)+ϵ),

which is what is needed to complete the proof in this last and final case.

Now define the local factor for a finite prime p as

µp = 1 +
∞∑
t=1

B(s, pt)), (4.7.5)

which is well defined as the series is absolutely convergent provided that B(p) > (d− 1)2dr(r + 1).
The following result is again an straight forward extension of the results for a single form.
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Lemma 4.11. For each finite prime p, the local factor may be represented as

µp = lim
t→∞

(pt)RM(pt)

ϕn(pt)
, (4.7.6)

where M(pt) represents the number of solutions to equation 4.2.1 in the multiplicative group Upt.

At our disposal now is the fact that the µp are positive, which then easily gives the following.

Lemma 4.12. If B(p) > (d− 1)2dr(r + 1) then the local factor for each finite prime satisfies the
estimate

µp = 1 +O(p−(1+δ))

for some positive δ, and therefore the product in equation 4.7.1 is absolutely convergent and thusly
is in fact well defined.

The observation that
|S(s, N)−S(s)| = o(1)

gives the final form of the asymptotic for MQ,s.

Theorem 4.2. The estimate

Mp,s(N) = S(s)J(µ)Nn−dr +O((log N)−cNn−dr) (4.7.7)

holds for any chosen value of c > 0, with the implicit constant in the error term depending on c.

5 Polynomial ergodic theorems for nilpotent group actions

In this section we discuss some of our recent joint work [58] on averages along polynomial sequences
in discrete nilpotent groups of step 2. Our main results include boundedness of associated maximal
functions and singular integrals operators, an almost everywhere pointwise convergence theorem
for ergodic averages along polynomial sequences, the first instance where Bourgain’s polynomial
ergodic theorem [15, 13, 14] is extended to the non-commutative settings. The last section is about
obtaining an asymptotic formula for the umber of solutions to a diophantine systems which is
a natural extension of the so-called Waring-Vinogradov system of equations to step-2 nilpotent groups.

Our proofs are based on analytical, number theoretic tools such as a nilpotent Weyl inequality that
we obtained earlier in [61], and on complex almost-orthogonality arguments that are designed to
replace Fourier transform tools which are not available in the non-commutative nilpotent setting.
In particular, we present what we call a nilpotent circle method that allows us to adapt some of the
ideas of the classical circle method to the setting of nilpotent groups. For the sake of readability
and limitations of space (the paper [58] is 118 pages) we do not include all the technical details,
however we include the major theorems and lemmas and sketch the crucial ideas of the proof. Our
presentation follows [59].

5.1 The Furstenberg–Bergelson–Leibman conjecture

Discrete averages, both of the maximal and singular type, have been considered motivated mainly
by open problems in ergodic theory. A fundamental problem in ergodic theory is to establish
convergence in norm and pointwise almost everywhere for the polynomial ergodic averages as in
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(5.1.2) as N → ∞ for functions f ∈ Lp(X), 1 ≤ p ≤ ∞. The problem goes back to at least the early
1930’s with von Neumann’s mean ergodic theorem [112] and Birkhoff’s pointwise ergodic theorem [12]
and led to profound extensions such as Bourgain’s polynomial pointwise ergodic theorem [13, 14, 15]
and Furstenberg’s ergodic proof [42] of Szemerédi’s theorem [105] in particular. Furstenberg’s proof
was also the starting point of ergodic Ramsey theory, which resulted in many natural generalizations
of Szemerédi’s theorem, including a polynomial Szemerédi theorem of Bergelson and Leibman [9].
This motivates the following far reaching conjecture known as the Furstenberg–Bergelson–Leibman
conjecture [10, Section 5.5, p. 468].

Conjeture 5.1. Assume that d, k ≥ 1 are integers, (X,B(X), µ) is a probability space, and assume
that T1, . . . , Td : X → X is a given family of invertible measure-preserving transformations on the
space (X,B(X), µ) that generates a nilpotent group of step k. Assume that m ≥ 1 is an integer and
P1,1, . . . , Pi,j , . . . , Pd,m : Z → Z are polynomial maps with integer coefficients such that Pi,j(0) = 0.
Then for any f1, . . . , fm ∈ L∞(X), the non-conventional multilinear polynomial averages

A
P1,1,...,Pd,m

N ;X,T1,...,Td
(f1, . . . , fm)(x) =

1

2N + 1

∑
n∈[−N,N ]∩Z

m∏
j=1

fj(T
P1,j(n)
1 · · ·TPd,j(n)

d x) (5.1.1)

converge for µ-almost every x ∈ X as N → ∞.

Conjecture 5.1 is a major open problem in ergodic theory that was promoted in person by Furstenberg,
see [2, p. 6662], before being published in [10]. Our main result Theorem 5.1 (ii) proves this conjecture
in the linear case m = 1, provided that the family of transformations T1, . . . , Td : X → X generates
a nilpotent group of step k = 2. We call a sequence A : Z → G a polynomial sequence if DkA(n) ≡ 1
for some k ∈ N, where DA(n) := A(n)−1A(n + 1) is the multiplicative differencing operator. It

can be shown that this is equivalent of writing A(n) = g
P1(n)
1 · · · gPd(n)

d for some g1, . . . , gd ∈ G
and integral polynomials P1, . . . , Pd. In particular, if G is a discrete nilpotent group generated by

measure preserving transformations T1, . . . , Td then A(n) = TP1
1 · · ·TPd(n)

d is a polynomial sequence.

Theorem 5.1 (Main result). Assume that G is a discrete nilpotent group G of step 2 and A : Z → G
is a polynomial sequence. Then:
(i) (ℓp boundedness of maximal averages) Assume f : G → C is a function and let

Mf(g) := sup
N≥0

1

2N + 1

∑
|n|≤N

|f(A−1(n) · g)|, g ∈ G.

Then, for any p ∈ (1,∞],
∥Mf∥ℓp(G) ≲p ∥f∥ℓp(G).

(ii) (Lp pointwise ergodic theorems) Assume G acts by measure-preserving transformations on a
σ-finite measure space X, f ∈ Lp(X), p ∈ (1,∞), and let

ANf(x) :=
1

2N + 1

∑
|n|≤N

f(A−1(n) · x), x ∈ X. (5.1.2)

Then the sequence ANf converges pointwise almost everywhere and in the Lp norm as N → ∞.
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5.1.1 Earlier pointwise ergodic theorems

The basic linear case m = d = k = 1 with P1,1(n) = n follows from Birkhoff’s original ergodic
theorem [12]. On the other hand, the commutative case m = d = k = 1 with an arbitrary polynomial
P = P1,1 with integer coefficients was a famous open problem of Bellow [5] and Furstenberg [43],
solved by Bourgain in his breakthrough papers [13, 14, 15].
Some particular examples of averages (5.1.1) with m = 1 and polynomial mappings with degree at
most two in the step two nilpotent setting were studied in [60, 83].
The multilinear theorym ≥ 2, in contrast to the linear theory, is widely open even in the commutative
case k = 1. Only a few results in the bilinear m = 2 and commutative d = k = 1 setting are known.
Bourgain [17] proved pointwise convergence when P1,1(n) = an and P1,2(n) = bn, a, b ∈ Z. More
recently, Krause–Mirek–Tao [66] established pointwise convergence for the polynomial Furstenberg–
Weiss averages [44, 45] corresponding to P1,1(n) = n and P1,2(n) = P (n), degP ≥ 2.

5.1.2 Norm convergence

Except for these few cases, there are no other results concerning pointwise convergence for the
averages (5.1.1). The situation is completely different, however, for the question of norm convergence,
which is much better understood.
A breakthrough paper of Walsh [113] (see also [2]) gives a complete picture of L2(X) norm convergence
of the averages (5.1.1) for any T1, . . . , Td ∈ G where G is a nilpotent group of transformations of a
probability space. Prior to this, there was an extensive body of research towards establishing L2(X)
norm convergence, including groundbreaking works of Host–Kra [53], Ziegler [116], Bergelson [6],
and Leibman [72]. See also [3, 25, 37, 54, 106] and the survey articles [7, 8, 36] for more details and
references, including a comprehensive historical background.

5.1.3 Additional remarks

Bergelson–Leibman [10] showed that convergence may fail if the transformations T1, . . . , Td generate
a solvable group, so the nilpotent setting is probably the appropriate setting for Conjecture 5.1.
The restriction p > 1 is necessary in the case of nonlinear polynomials as was shown in [20, 71].
If (X,B(X), µ) is a probability space and the family of measure preserving transformations
(T1, . . . , Td1) is totally ergodic, then Theorem 5.1(ii) implies that

lim
N→∞

A
P1,...,Pd1
N ;X (f)(x) =

ˆ
X
f(y)dµ(y) (5.1.3)

µ-almost everywhere on X. We recall that a family of measure preserving transformations
(T1, . . . , Td1) is called ergodic on X if T−1

j (B) = B for all j ∈ {1, . . . , d1} implies µ(B) = 0 or
µ(B) = 1 and is called totally ergodic if the family (Tn

1 , . . . , T
n
d1
) is ergodic for all n ∈ Z+.

5.2 The universal step-two group G0

The proof of Theorem 5.1 will follow from our second main result, Theorem 5.2 below, for averages
on universal nilpotent groups of step two. We start with some definitions. For integers d ≥ 1, we
define

Yd := {(l1, l2) ∈ Z× Z : 0 ≤ l2 < l1 ≤ d}

and the “universal” step-two nilpotent Lie groups G#
0 = G#

0 (d)

G#
0 := {(xl1l2)(l1,l2)∈Yd

: xl1l2 ∈ R}, (5.2.1)
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with the group multiplication law

[x · y]l1l2 :=

{
xl10 + yl10 if l1 ∈ {1, . . . , d} and l2 = 0,

xl1l2 + yl1l2 + xl10yl20 if l1 ∈ {1, . . . , d} and l2 ∈ {1, . . . , l1 − 1}.
(5.2.2)

Alternatively, we can also define the group G#
0 as the set of elements

g = (g(1), g(2)), g(1) = (gl10)l1∈{1,...,d} ∈ Rd, g(2) = (gl1l2)(l1,l2)∈Y ′
d
∈ Rd′ , (5.2.3)

where d′ := d(d− 1)/2 and Y ′
d := {(l1, l2) ∈ Yd : l2 ≥ 1}. Letting

R0 : Rd × Rd → Rd′ denote the bilinear form [R0(x, y)]l1l2 := xl10yl20, (5.2.4)

we notice that the product rule in the group G#
0 is given by

[g · h](1) := g(1) + h(1), [g · h](2) := g(2) + h(2) +R0(g
(1), h(1)) (5.2.5)

if g = (g(1), g(2)) and h = (h(1), h(2)). For any g = (g(1), g(2)) ∈ G#
0 , its inverse is given by

g−1 =
(
− g(1),−g(2) +R0(g

(1), g(1))
)
.

The second variable of g = (g(1), g(2)) ∈ G#
0 is called the central variable. Based on the product

structure (5.2.5) of the group G#
0 , it is not difficult to see that g ·h = h·g for any g = (g(1), g(2)) ∈ G#

0

and h = (0, h(2)) ∈ G#
0 .

Let G0 = G0(d) denote the discrete subgroup

G0 := G#
0 ∩ Z|Yd|. (5.2.6)

Let A0 : R → G#
0 denote the canonical polynomial map (or the moment curve on G#

0 )

[A0(x)]l1l2 :=

{
xl1 if l2 = 0,

0 if l2 ̸= 0,
(5.2.7)

and notice that A0(Z) ⊆ G0. For x = (xl1l2)(l1,l2)∈Yd
∈ G#

0 and Λ ∈ (0,∞), we define

Λ ◦ x := (Λl1+l2xl1l2)(l1,l2)∈Yd
∈ G#

0 . (5.2.8)

Notice that the dilations Λ◦ are group homomorphisms on the group G0 that are compatible with
the map A0, i.e. Λ ◦A0(x) = A0(Λx).
Let χ : R → [0, 1] be a smooth function supported on the interval [−2, 2]. Given any real number
N ≥ 1 and a function f : G0 → C, we can define a smoothed average along the moment curve A0

by the formula

Mχ
N (f)(x) :=

∑
n∈Z

N−1χ(N−1n)f(A0(n)
−1 · x), x ∈ G0. (5.2.9)

The main advantage of working on the group G0 with the polynomial map A0 is the presence of the
compatible dilations Λ◦ defined in (5.2.8), which lead to a natural family of associated balls. This
can be efficiently exploited by noting that Mχ

N is a convolution operator on G0.
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The convolution of functions on the group G0 is defined by the formula

(f ∗ g)(x) :=
∑
y∈G0

f(y−1 · x)g(y) =
∑
z∈G0

f(z)g(x · z−1). (5.2.10)

Then it is not difficult to see that Mχ
N (f)(x) = f ∗Gχ

N (x), where

Gχ
N (x) :=

∑
n∈Z

N−1χ(N−1n)1{A0(n)}(x), x ∈ G0. (5.2.11)

We are now ready to state our second main result.

Theorem 5.2 (Boundedness on G0). Let G0 = G0(d), d ≥ 1, be the discrete nilpotent group defined
in (5.2.6) and A0 the polynomial sequence defined in (5.2.7). Then

(i) (Maximal estimates) If 1 < p ≤ ∞ and f ∈ ℓp(G0) then∥∥ sup
N≥1

|Mχ
N (f)|

∥∥
ℓp(G0)

≲p ∥f∥ℓp(G0), (5.2.12)

where Mχ
N is defined as in (5.2.9).

(ii) (Long variational estimates) If 1 < p <∞ and ρ > max
{
p, p

p−1

}
, and τ ∈ (1, 2] then∥∥V ρ

(
Mχ

N (f) : N ∈ Dτ

)∥∥
ℓp(G0)

≲p,ρ,τ ∥f∥ℓp(G0), (5.2.13)

where Dτ := {τn : n ∈ N}. See (5.3.1) for the definition of the ρ-variation seminorms V ρ.

5.3 Remarks and overview of the proof

We discuss now some of the main ideas in the proofs of Theorems 5.1 and 5.2.

5.3.1 The Calderón transference principle

One can show that Theorem 5.1 is a consequence of Theorem 5.2 upon performing lifting arguments
and adapting the Calderón transference principle. Indeed, if G# is a connected and simply connected
nilpotent Lie group of step 2, with Lie algebra G, then one can choose so-called exponential coordinates
of the second kind associated to a Malcev basis of the Lie algebra G (see [31], Sec. 1.2) in such a
way that

G# ≃ {(x, y) ∈ Rb1 × Rb2 : (x, y) · (x′, y′) = (x+ x′, y + y′ +R(x, x′)},

where b1, b2 ∈ Z+ depend on the Lie algebra G and R : Rb1 × Rb1 → Rb2 is a bilinear form.
Moreover, if G ≤ G# is a discrete co-compact subgroup, then one can choose the Malcev basis such
that the discrete subgroup G is identified with the integer lattice Zb = Zb1 × Zb2 (see [31], Thm.
5.1.6 and Prop. 5.3.2). Recall that A : Z → G is a polynomial sequence satisfying A(0) = 1. The
main point is that one can choose d sufficiently large and a group morphism T : G0 → G# such that

A(n) = T (A0(n)) for any n ∈ Z.

Then one can use this group morphism to transfer bounds on operators on the universal group G0

to bounds on operators on the group G. Theorem 5.1 is thus a consequence of Theorem 5.2 and our
main goal therefore is to prove Theorem 5.2.
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5.3.2 The variation spaces V ρ

For any family (at : t ∈ I) of elements of C indexed by a totally ordered set I, and any exponent
1 ≤ ρ <∞, the ρ-variation seminorm is defined by

V ρ(at : t ∈ I) := sup
J∈Z+

sup
t0<···<tJ

tj∈I

( J−1∑
j=0

|a(tj+1)− a(tj)|ρ
)1/ρ

, (5.3.1)

where the supremum is taken over all finite increasing sequences in I. It is easy to see that ρ 7→ V ρ

is non-increasing, and for every t0 ∈ I one has

sup
t∈I

|at| ≤ |at0 |+ V ρ(at : t ∈ I) ≤ sup
t∈I

|at|+ V ρ(at : t ∈ I). (5.3.2)

In particular, the maximal estimate (5.2.12) follows from the variational estimate (5.2.13). The main
point of proving stronger variational estimates such as (5.2.13), with general parameters τ ∈ (1, 2],
is that it gives an elegant path to deriving pointwise ergodic theorems (which would not follow
directly just from maximal estimates such as (5.2.12)). At the same time, the analysis of variational
inequalities has many similarities with the analysis of maximal inequalities, and is not substantially
more difficult. This is due in large part to the Rademacher–Menshov inequality (see [89, Lemma
2.5]): for any 2 ≤ ρ < ∞ and j0,m ∈ N so that j0 < 2m and any sequence of complex numbers
(ak : k ∈ N) we have

V ρ(aj : j0 ≤ j ≤ 2m) ≤
√
2

m∑
i=0

( ∑
j∈[j02−i,2m−i−1]∩Z

∣∣∣a(j+1)2i − aj2i)
∣∣∣2)1/2

. (5.3.3)

5.3.3 ℓp theory

The problem of passing from ℓ2 estimates to ℓp estimates in the context of discrete polynomial
averages has been investigated extensively in recent years (see, for example, [87] and the references
therein).

The full ℓp(G0) bounds in Theorem 5.2 rely on first proving ℓ2(G0) bounds. In fact, we first establish
(5.2.13) for p = 2 and ρ > 2. Then we use the positivity of the operators Mχ

N (i.e. Mχ
N (f) ≥ 0 if

f ≥ 0) to prove the maximal operator bounds (5.2.12) for all p ∈ (1,∞]. Finally, we use vector-
valued interpolation between the bounds (5.2.13) with p = 2 and ρ > 2 and (5.2.12) with p ∈ (1,∞]
to complete the proof of Theorem 5.2.

5.3.4 Some technical remarks

Theorem 5.2 (i) and (ii) extends the results of [87, 90] to the non-commutative, nilpotent setting. Its
conclusions remain true for rough averages, i.e. when χ = 1[−1,1] in (5.2.9), but it is more convenient
to work with smooth averages.

The restriction p > 1 in Theorem 5.2 (i) and (ii) is sharp due to [20, 71]. However, the range
of ρ > max

{
p, p

p−1

}
is only sharp when p = 2 due to Lépingle’s inequality [73]. One could hope

to improve this to the full range ρ > 2, but we do not address this here since the limited range
ρ > max

{
p, p

p−1

}
is already sufficient for us to establish Theorem 5.1.
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The restriction p = 2 in the singular integral bounds in part (ii) is probably not necessary. In
the commutative case one can prove boundedness in the full range p ∈ (1,∞) (see [63]), but the
proof depends on exploiting certain Fourier multipliers and we do not know at this time if a similar
definitive result holds in the nilpotent case.

5.3.5 The main difficulty and a nilpotent circle method

Bourgain’s seminal papers [13, 14, 15] generated a large amount of research and progress in the
field. Many other discrete operators have been analyzed by many authors motivated by problems in
Analysis and Ergodic Theory. See, for example, [20, 60, 63, 65, 66, 71, 83, 87, 89, 90, 92, 93, 103]
for some results of this type and more references. A common feature of all of these results, which
plays a crucial role in the proofs, is that one can use Fourier analysis techniques, in particular, the
powerful framework of the classical circle method, to perform the analysis.
Our situation in Theorem 5.2 is different. The main conceptual issue is that there is no good
Fourier transform on nilpotent groups, compatible with the structure of the underlying convolution
operators and at the level of analytical precision of the classical circle method. At a more technical
level, there is no good resolution of the delta function compatible with the group multiplication
on the group g0. This prevents us from using a naive implementation of the circle method. The
classical delta function resolution

1{0}(x
−1 · y) =

ˆ
Td×Td′

e((y(1) − x(1)).θ(1))e((y(2) − x(2)).θ(2)) dθ(1)dθ(2),

does not detect the group multiplication correctly.

These issues lead to very significant difficulties in the proof and require substantial new ideas. Our
main new construction in [58] is what we call a nilpotent circle method, an iterative procedure,
starting from the center of the group and moving down along its central series. At every stage
we identify “minor arcs”, and bound their contributions using Weyl’s inequalities (the classical
Weyl inequality as well as a nilpotent Weyl inequality which was proved in [61]). The final stage
involves “major arcs” analysis, which relies on a combination of continuous harmonic analysis on
groups g#0 and arithmetic harmonic analysis over finite integer rings modulo Q ∈ Z+. We outline
this procedure in Section 5.5 below.

At the implementation level, classical Fourier techniques are replaced with almost orthogonality
methods based on exploiting high order T ∗T arguments for operators defined on the discrete group
g0. Investigating high powers of T ∗T (i.e. (T ∗T )r for a large r ∈ Z+) is consistent with a general
heuristic lying behind the proof of Waring-type problems, which says that the more variables that
occur in Waring-type equations, the easier it is to find solutions, and we are able to make this
heuristic rigorous in our problem. Manipulating the parameter r, by taking r to be very large, we
can always decide how many variables we have at our disposal, making our operators “smoother
and smoother”.

5.3.6 General discrete nilpotent groups

The primary goal is, of course, to remove the restriction that the discrete nilpotent groups G in
Theorem 5.1 are of step 2, and thus establish the full Conjecture 5.1 in the linear m = 1 case for
arbitrary invertible measure-preserving transformations T1, . . . , Td that generate a nilpotent group
of any step k ≥ 2. The iterative argument we outline in Section 5.5 below could, in principle, be
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extended to higher step groups. First, matters can be reduced to universal (or free) discrete step-k

nilpotent groups Gd,k with generators g1, . . . , gd and to the moment curve A0(n) = g1g
n
2 · · · gnd

d , for
higher step groups as well. Using this “universal”-type structure, one could try to go down along
the central series of the group and prove minor arcs and transition estimates at every stage.

Indeed, the l2-theory seems to carry out for step-3 and step-4 groups, however, continuing this way
is only possible if one can prove suitable analogues of the nilpotent Weyl’s inequalities in Proposition
5.1 on general nilpotent groups of step k ≥ 5. The point is to have a small (not necessarily optimal,
but nontrivial) gain for bounds on oscillatory sums over many variables, corresponding to the kernels
of high power (T ∗T )r operators, whenever frequencies are restricted to the minor arcs. In our case,
the formulas are explicit, see the identities (5.4.10), and we can use ideas of Davenport [32] and
Birch [11] for Diophantine forms in many variables to control the induced oscillatory sums, but the
analysis seems to be more complicated for the higher step nilpotent groups.

This is an interesting problem in its own right, corresponding to Waring-type problems on nilpotent
groups. A qualitative variant of the Waring problem on nilpotent groups was recently investigated
in [55, 56], see also the references given there. We prove a quantitative version on our nilpotent
group G0 in Theorem 5.4 below.

5.3.7 Organization

The rest of this paper is organized as follows: in section 2 we present several nilpotent Weyl estimates
proved in [61], which play a key role in the analysis of minor arcs. In section 3 we outline our
main new method, the nilpotent circle method, developed in [58] to prove maximal and variational
estimates on nilpotent groups. In section 4 we prove a new Waring-type theorem on the nilpotent
group g0, as an application of the nilpotent Weyl estimates discussed earlier.

5.4 A nilpotent Weyl inequality on the group G0

In this section we derive explicit formulas used in high order T ∗T arguments and discuss a key
ingredient in our analysis, namely Weyl inequalities on the group G0.

5.4.1 High order T ∗T arguments and product kernels

Many of our ℓ2(G0) estimates will be based on high order T ∗T arguments. Assume that

S1, T1, . . . , Sr, Tr : ℓ
2(G0) → ℓ2(G0)

are convolution operators defined by some ℓ1(G0) kernels L1,K1, . . . , Lr,Kr : G0 → C, i.e. Sjf =
f ∗Lj and Tjf = f ∗Kj for j ∈ {1, . . . , r}. Then the adjoint operators S∗

1 , . . . , S
∗
r are also convolution

operators, defined by the kernels L∗
1, . . . , L

∗
r given by

L∗
j (g) := Lj(g−1).

Moreover, using (5.2.10), for any f ∈ ℓ2(G0) and x ∈ G0, we have

(S∗
1T1 . . . S

∗
rTrf)(x) =

∑
h1,g1,...,hr,gr∈G0

{ r∏
j=1

L∗
j (hj)Kj(gj)

}
f(g−1

r · h−1
r · . . . · g−1

1 · h−1
1 · x). (5.4.1)
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In other words (S∗
1T1 . . . S

∗
rTrf)(x) = (f ∗Ar)(x), where the kernel Ar is given by

Ar(y) :=
∑

h1,g1,...,hr,gr∈G0

{ r∏
j=1

Lj(hj)Kj(gj)
}
1{0}(g

−1
r · hr · . . . · g−1

1 · h1 · y). (5.4.2)

To use these formulas we decompose hj = (h
(1)
j , h

(2)
j ), gj = (g

(1)
j , g

(2)
j ) as in (5.2.3). Then

[h−1
1 · g1 · . . . · h−1

r · gr](1) =
∑

1≤j≤r

(−h(1)j + g
(1)
j ), (5.4.3)

[h−1
1 · g1 · . . . · h−1

r · gr](2) =
∑

1≤j≤r

{
− (h

(2)
j − g

(2)
j ) +R0(h

(1)
j , h

(1)
j − g

(1)
j )
}

+
∑

1≤l<j≤r

R0(−h(1)l + g
(1)
l ,−h(1)j + g

(1)
j ),

(5.4.4)

as a consequence of applying (5.2.5) inductively.

In many of our applications the operators S1, T1, . . . , Sr, Tr are equal and, more importantly, are
defined by a kernel K that has product structure, i.e.

S1f = T1f = . . . = Srf = Trf = f ∗K,
K(g) = K(g(1), g(2)) = K(1)(g(1))K(2)(g(2)).

(5.4.5)

In this case we can derive an additional formula for the kernel Ar. We use the identity

1{0}(x
−1 · y) =

ˆ
Td×Td′

e((y(1) − x(1)).θ(1))e((y(2) − x(2)).θ(2)) dθ(1)dθ(2),

where e(z) := e2πiz. The formula (5.4.2) shows that

Ar(y) =

ˆ
Td×Td′

e
(
y(1).θ(1)

)
e
(
y(2).θ(2)

)
Σr
(
θ(1), θ(2)

)
dθ(1)dθ(2), (5.4.6)

where

Σr
(
θ(1), θ(2)

)
:=

∑
hj ,gj∈G0

{ r∏
j=1

K(hj)K(gj)
} 2∏

i=1

e
(
− [h−1

1 · g1 · . . . · h−1
r · gr](i).θ(i)

)
.

Recalling the product formula (5.4.5) we can write

Σr
(
θ(1), θ(2)

)
= Πr

(
θ(1), θ(2)

)
Ωr
(
θ(2)
)
, (5.4.7)

for any (θ(1), θ(2)) ∈ Td × Td′ , where

Πr
(
θ(1), θ(2)

)
:=

∑
h
(1)
j ,g

(1)
j ∈Zd

{ r∏
j=1

K(1)(h
(1)
j )K(1)(g

(1)
j )
}
e
(
θ(1).

∑
1≤j≤r

(h
(1)
j − g

(1)
j )
)

× e
(
− θ(2).

{ ∑
1≤j≤r

R0(h
(1)
j , h

(1)
j − g

(1)
j ) +

∑
1≤l<j≤r

R0(−h(1)l + g
(1)
l ,−h(1)j + g

(1)
j )
}) (5.4.8)

and

Ωr
(
θ(2)
)
:=

∑
h
(2)
j ,g

(2)
j ∈Zd′

{ r∏
j=1

K(2)(h
(2)
j )K(2)(g

(2)
j )
}
e
(
θ(2).

∑
1≤j≤r

(h
(2)
j − g

(2)
j )
)

=
∣∣∣ ∑
g(2)∈Zd′

K(2)(g(2))e
(
− θ(2).g(2)

)∣∣∣2r. (5.4.9)
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5.4.2 Weyl estimates

After applying high order T ∗T arguments we often need to estimate exponential sums and oscillatory
integrals involving polynomial phases. With the notation in Section 5.2, for r ≥ 1 let D, D̃ :
Rr × Rr → G#

0 be defined by

D((n1, . . . , nr), (m1, . . . ,mr)) := A0(n1)
−1 ·A0(m1) · . . . ·A0(nr)

−1 ·A0(mr),

D̃((n1, . . . , nr), (m1, . . . ,mr)) := A0(n1) ·A0(m1)
−1 · . . . ·A0(nr) ·A0(mr)

−1.
(5.4.10)

By definition, we have

[A0(n)]l1l2 =

{
nl1 if l2 = 0,

0 if l2 ≥ 1,
[A0(n)

−1]l1l2 =

{
−nl1 if l2 = 0,

nl1+l2 if l2 ≥ 1.

Thus, using (5.4.3) and (5.4.4), for x = (x1, . . . , xr) ∈ Rr and y = (y1, . . . , yr) ∈ Rr one has

[D(x, y)]l1l2 =


r∑

j=1
(yl1j − xl1j ) if l2 = 0,∑

1≤j1<j2≤r
(yl1j1 − xl1j1)(y

l2
j2
− xl2j2) +

r∑
j=1

(xl1+l2
j − xl1j y

l2
j ) if l2 ≥ 1,

(5.4.11)

and

[D̃(x, y)]l1l2 =


r∑

j=1
(xl1j − yl1j ) if l2 = 0,∑

1≤j1<j2≤r
(xl1j1 − yl1j1)(x

l2
j2
− yl2j2) +

r∑
j=1

(yl1+l2
j − xl1j y

l2
j ) if l2 ≥ 1.

(5.4.12)

For P ∈ Z+ assume ϕ
(j)
P , ψ

(j)
P : R → R, j ∈ {1, . . . , r}, are C1(R) functions with the properties

sup
1≤j≤r

[∣∣ϕ(j)P

∣∣+ ∣∣ψ(j)
P

∣∣] ≤ 1[−P,P ], sup
1≤j≤r

ˆ
R

∣∣[ϕ(j)P ]′(x)
∣∣+ ∣∣[ψ(j)

P ]′(x)
∣∣ dx ≤ 1. (5.4.13)

For θ = (θl1l2)(l1,l2)∈Yd
∈ R|Yd|, r ∈ Z+, and P ∈ Z+ let

SP,r(θ) =
∑

n,m∈Zr

e(−D(n,m).θ)
{ r∏

j=1

ϕ
(j)
P (nj)ψ

(j)
P (mj)

}
and

S̃P,r(θ) =
∑

n,m∈Zr

e(−D̃(n,m).θ)
{ r∏

j=1

ϕ
(j)
P (nj)ψ

(j)
P (mj)

}
,

where D and D̃ are defined as in (5.4.11)–(5.4.12).
The following key estimates are proved in [61, Proposition 5.1 and Lemma 3.1]:

Proposition 5.1. (i) (Nilpotent Weyl estimate) For any ε > 0 there is r = r(ε, d) ∈ Z+ sufficiently
large such that for all P ∈ Z+ we have

|SP,r(θ)|+ |S̃P,r(θ)| ≲ε P
2rP−1/ε, (5.4.14)
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provided that there is (l1, l2) ∈ Yd and an irreducible fraction a/q ∈ Q, q ∈ Z+, such that

|θl1l2 − a/q| ≤ 1/q2 and q ∈ [P ε, P l1+l2−ε]. (5.4.15)

(ii) (Nilpotent Gauss sums) For any irreducible fraction a/q ∈ Q, a = (al1l2)(l1,l2)∈Yd
∈ Z|Yd|, q ∈ Z+,

we define the arithmetic coefficients

G(a/q) := q−2r
∑

v,w∈Zr
q

e
(
−D(v, w).(a/q)

)
, G̃(a/q) := q−2r

∑
v,w∈Zr

q

e
(
− D̃(v, w).(a/q)

)
. (5.4.16)

Then for any ε > 0 there is r = r(ε, d) ∈ Z+ sufficiently large such that

|G(a/q)|+ |G̃(a/q)| ≲ε q
−1/ε. (5.4.17)

We also need a related integral estimate, see Lemma 5.4 in [61]:

Proposition 5.2. Given ε > 0 there is r = r(ε, d) sufficiently large as in Proposition 5.1 such that∣∣∣ˆ
Rr×Rr

{ r∏
j=1

ϕj(xj)ψj(yj)
}
e(−D(x, y).β

)
dxdy

∣∣∣ ≲ ⟨β⟩−1/ε,

∣∣∣ˆ
Rr×Rr

{ r∏
j=1

ϕj(xj)ψj(yj)
}
e(−D̃(x, y).β

)
dxdy

∣∣∣ ≲ ⟨β⟩−1/ε,

(5.4.18)

for any β ∈ R|Yd| and for any C1(R) functions ϕ1, ψ1, . . . , ϕr, ψr : R → C satisfying, for any
j ∈ {1, . . . , r}, the bounds

|ϕj |+ |ψj | ≤ 1[−1,1](x),

ˆ
R

[
|∂xϕj(x)|+ |∂xψj(x)|

]
dx ≤ 1.

These statements should be compared with classical Weyl-type estimates, which are proved for
example in [103, Proposition 1]:

Proposition 5.3. (i) Assume that P ≥ 1 is an integer and ϕP : R → R is a C1(R) function
satisfying

|ϕP | ≤ 1[−P,P ],

ˆ
R

∣∣ϕ′P (x)∣∣ dx ≤ 1. (5.4.19)

Assume that ε > 0 and θ = (θ1, . . . , θd) ∈ Rd has the property that there is l ∈ {1, . . . , d} and an
irreducible fraction a/q ∈ Q with q ∈ Z+, such that

|θl − a/q| ≤ 1/q2 and q ∈ [P ε, P l−ε]. (5.4.20)

Then there is a constant C = Cd ≥ 1 such that∣∣∣∑
n∈Z

ϕP (n)e
(
− (θ1n+ . . .+ θdn

d)
)∣∣∣ ≲ε P

1−ε/C . (5.4.21)

(ii) For any irreducible fraction θ = a/q ∈ (Z/q)d, a = (a1, . . . , ad) ∈ Zd, q ∈ Z+, we have∣∣∣q−1
∑
n∈Zq

e
(
− (θ1n+ . . .+ θdn

d)
)∣∣∣ ≲ q−1/C . (5.4.22)
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Notice that formal similarity of Propositions 5.1 and 5.3. They both involve a small but non-trivial
gain of a power of P as soon as one of the coefficients of the relevant polynomials is far from rational
numbers with small denominators. These estimates can therefore be used efficiently to estimate
minor arcs contributions.

We note, however, that the proof of the nilpotent Weyl estimates in Proposition 5.1 is much more
involved than the proof of Proposition 5.3. It relies on some classical ideas of Davenport [32] and
Birch [11] on treating polynomials in many variables, but one has to identify and exploit suitable
non-degeneracy properties of the explicit (but complicated) polynomials D and D̃ in (5.4.11)–(5.4.12)
to make the proof work. All the details of the proof are provided in [61, Section 5]

5.5 A nilpotent circle method

To illustrate our main method, we focus on a particular case of Theorem 5.2, namely on proving
boundedness of the maximal function Mχ

N on ℓ2(G0). For simplicity of notation, for k ∈ N and
x ∈ G0, let

Mkf(x) :=Mχ
2k
f(x) =

∑
n∈Z

2−kχ(2−kn)f(A0(n))
−1 · x) = (f ∗Kk)(x),

Kk(x) := Gχ
2k
(x) =

∑
n∈Z

2−kχ(2−kn)1{A0(n)}(x),
(5.5.1)

see (5.2.9) and (5.2.11) for the definitions Mχ
N and Gχ

N respectively. With this new notation, our
main goal is to prove the following:

Theorem 5.3. For any f ∈ ℓ2(G0) we have∥∥ sup
k≥0

|Mkf |
∥∥
ℓ2(G0)

≲ ∥f∥ℓ2(G0). (5.5.2)

In the rest of this section we outline the proof of this theorem. Our main new construction is an
iterative procedure, starting from the center of the group and moving down along its central series,
that allows us to use some of the ideas of the classical circle method recursively at every stage.
In our case of nilpotent groups of step two, the procedure consists of two basic stages and one
additional step corresponding to “major arcs”.
Notice that the kernels Kk have product structure

Kk(g) := Lk(g
(1))1{0}(g

(2)), Lk(g
(1)) :=

∑
n∈Z

2−kχ(2−kn)1{0}(g
(1) −A

(1)
0 (n)), (5.5.3)

where A
(1)
0 (n) := (n, . . . , nd) ∈ Zd and g = (g(1), g(2)) ∈ G0 as in (5.2.3).

5.5.1 First stage reduction

We first decompose the singular kernel 1{0}(g
(2)) in the central variable g(2) into smoother kernels.

For any s ∈ N and m ∈ Z+ we define the set of rational fractions

Rm
s := {a/q : a = (a1, . . . , am) ∈ Zm, q ∈ [2s, 2s+1) ∩ Z, gcd(a1, . . . , am, q) = 1}. (5.5.4)

We define also Rm
≤a :=

⋃
0≤s≤aRm

s . For x(1) = (x
(1)
l10

)l1∈{1,...,d} ∈ Rd, x(2) = (x
(2)
l1l2

)(l1,l2)∈Y ′
d
∈ Rd′ and

Λ ∈ (0,∞) we define the partial dilations

Λ ◦ x(1) = (Λl1x
(1)
l10

)l1∈{1,...,d} ∈ Rd, Λ ◦ x(2) = (Λl1+l2x
(2)
l1l2

)(l1,l2)∈Y ′
d
∈ Rd′ , (5.5.5)

119

               amagyar2024_220_24



which are induced by the group-dilations defined in (5.2.8).
We fix η0 : R → [0, 1] a smooth even function such that 1[−1,1] ≤ η0 ≤ 1[−2,2]. For t ∈ R and integers
j ≥ 1 we define

ηj(t) := η0(2
−jt)− η0(2

−j+1t), 1 =

∞∑
j=0

ηj . (5.5.6)

For any A ∈ [0,∞) we define

η≤A :=
∑

j∈[0,A]∩Z

ηj . (5.5.7)

By a slight abuse of notation we also let ηj and η≤A denote the smooth radial functions on Rm,
m ≥ 1, defined by ηj(x) = ηj(|x|) and η≤A(x) = η≤A(|x|). We fix also two small constants

δ = δ(d) ≪ δ′ = δ′(d) such that δ′ ∈ (0, (10d)−10] and δ ∈ (0, (δ′)4], and a large constant
D = D(d) ≫ δ−8, which depend on arithmetic properties of the polynomial sequence A0 (more
precisely on the structural constants in Propositions 5.1–5.2) such that

1 ≪ 1/δ′ ≪ 1/δ ≪ r = r(δ′, d) ≪ D. (5.5.8)

For k ≥ D2 we fix two cutoff functions ϕ
(1)
k : Rd → [0, 1], ϕ

(2)
k : Rd′ → [0, 1], such that

ϕ
(1)
k (g(1)) := η≤δk(2

−k ◦ g(1)), ϕ
(2)
k (g(2)) := η≤δk(2

−k ◦ g(2)). (5.5.9)

For k ∈ N so that k ≥ D2 and for any 1-periodic sets of rationals A ⊆ Qd, B ⊆ Qd′ we define the
periodic Fourier multipliers by

Ψk,A(ξ
(1)) :=

∑
a/q∈A

η≤δ′k(2
k ◦ (ξ(1) − a/q)), ξ(1) ∈ Td,

Ξk,B(ξ
(2)) :=

∑
b/q∈B

η≤δk(2
k ◦ (ξ(2) − b/q)), ξ(2) ∈ Td′ .

(5.5.10)

For k ≥ D2 and s ∈ [0, δk] ∩ Z we define the periodic Fourier multipliers Ξk,s : Rd′ → [0, 1],

Ξk,s(ξ
(2)) := Ξk,Rd′

s
(ξ(2)) =

∑
a/q∈Rd′

s

η≤δk(2
k ◦ (ξ(2) − a/q)). (5.5.11)

For k ≥ D2 we write

1{0}(g
(2)) =

ˆ
Td′

e(g(2).ξ(2)) dξ(2)

=
∑

s∈[0,δk]∩Z

ˆ
Td′

e(g(2).ξ(2))Ξk,s(ξ
(2)) dξ(2) +

ˆ
Td′

e(g(2).ξ(2))Ξc
k(ξ

(2)) dξ(2),
(5.5.12)

where g(2).ξ(2) denotes the usual scalar product of vectors in Rd′ and

Ξc
k := 1−

∑
s∈[0,δk]∩Z

Ξk,s. (5.5.13)

Then we decompose Kk = Kc
k +

∑
s∈[0,δk]∩ZKk,s, where, with the notation in (5.5.3), we have

Kk,s(g) := Lk(g
(1))Nk,s(g

(2)), Kc
k(g) := Lk(g

(1))N c
k(g

(2)), (5.5.14)
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and

Nk,s(g
(2)) := ϕ

(2)
k (g(2))

ˆ
Td′

e(g(2).ξ(2))Ξk,s(ξ
(2)) dξ(2),

N c
k(g

(2)) := ϕ
(2)
k (g(2))

ˆ
Td′

e(g(2).ξ(2))Ξc
k(ξ

(2)) dξ(2).

(5.5.15)

We first show that we can bound the contributions of the minor arcs in the central variables:

Lemma 5.1. For any integer k ≥ D2 and f ∈ ℓ2(G0) we have

∥f ∗Kc
k∥ℓ2(G0) ≲ 2−k/D2∥f∥ℓ2(G0). (5.5.16)

Then we prove our first transition estimate, i.e. we show that we can bound the contributions of the
kernels Kk,s corresponding to scales k ≥ 0 not very large. More precisely, for any s ≥ 0 we define

κs := 22D(s+1)2 . (5.5.17)

Lemma 5.2. For any integer s ≥ 0 and f ∈ ℓ2(G0) we have∥∥ sup
max(D2,s/δ)≤k<2κs

|f ∗Kk,s|
∥∥
ℓ2(G0)

≲ 2−s/D2∥f∥ℓ2(G0). (5.5.18)

In the commutative setting, minor arcs estimates such as (5.5.16) follow using Weyl estimates and
the Plancherel theorem. As we do not have a useful Fourier transform on the group G0, our main
tool to prove the bounds (5.5.16) is a high order T ∗T argument. More precisely, we analyze the
kernel of the convolution operator {(Kc

k)
∗Kc

k}r, where Kc
kf := f ∗Kc

k and r is sufficiently large, and
show that its ℓ1(G0) norm is ≲ 2−k. The main ingredient in this proof is the non-commutative Weyl
estimate in Proposition 5.1 (i).
To prove the transition estimates (5.5.18), we use the Rademacher-Menshov inequality and Khint-
chine’s inequality (leading to logarithmic losses) to reduce to proving the bounds∥∥∥ ∑

k∈[J,2J ]

κk(f ∗Hk,s)
∥∥∥
ℓ2(G0)

≲ 2−4s/D2∥∥f∥∥
ℓ2(G0)

(5.5.19)

for any J ≥ max(D2, s/δ) and any coefficients κk ∈ [−1, 1], where Hk,s := Kk+1,s −Kk,s. For this,
we use a high order version of the Cotlar–Stein lemma, which relies again on precise analysis of
the kernel of the convolution operator {(Hk,s)

∗Hk,s}r, where Hk,sf := f ∗Hk,s and r is sufficiently

large. The key exponential gain of 2−4s/D2
in (5.5.19) is due to the non-commutative Gauss sums

estimate, see Proposition 5.1 (ii).

5.5.2 Second stage reduction

In view of Lemmas 5.1–5.2 it remains to prove that∥∥ sup
k≥κs

|f ∗Kk,s|
∥∥
ℓ2(G0)

≲ 2−s/D2∥f∥ℓ2(G0) (5.5.20)

for any fixed integer s ≥ 0. The kernels Kk,s are now reasonably well adapted to a natural family of
non-isotropic balls in the central variables, at least when 2s ≈ 1, and we need to start decomposing
in the non-central variables.
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We examine the kernels Lk(g
(1)) defined in (5.5.3), and rewrite them in the form

Lk(g
(1)) =

∑
n∈Z

2−kχ(2−kn)1{0}(−A
(1)
0 (n) + g(1))

= ϕ
(1)
k (g(1))

ˆ
Td

e(g(1).ξ(1))Sk(ξ
(1)) dξ(1),

(5.5.21)

where g(1).ξ(1) denotes the usual scalar product of vectors in Rd, and

Sk(ξ
(1)) :=

∑
n∈Z

2−kχ(2−kn)e(−A(1)
0 (n).ξ(1)). (5.5.22)

For any integers Q ∈ Z+ and m ∈ Z+ we define the set of fractions

R̃m
Q := {a/Q : a = (a1, . . . , am) ∈ Zm}. (5.5.23)

For any integer s ≥ 0 we fix a large denominator

Qs :=
(⌊
2D(s+1)

⌋)
! = 1 · 2 · . . . ·

⌊
2D(s+1)

⌋
, (5.5.24)

and using (5.5.10) define the periodic multipliers

Ψlow
k,s (ξ

(1)) := Ψ
k,R̃d

Qs

(ξ(1)) =
∑

a/q∈R̃d
Qs

η≤δ′k(2
k ◦ (ξ(1) − a/q)),

Ψk,s,t(ξ
(1)) := Ψ

k,Rd
t \R̃d

Qs

(ξ(1)) =
∑

a/q∈Rd
t \R̃d

Qs

η≤δ′k(2
k ◦ (ξ(1) − a/q)),

Ψc
k(ξ

(1)) := 1−Ψlow
k,s (ξ

(1))−
∑

t∈[0,δ′k]∩Z

Ψk,s,t(ξ
(1)) = 1−

∑
a/q∈Rd

≤δ′k

η≤δ′k(τ
k ◦ (ξ(1) − a/q)).

(5.5.25)

Since k ≥ κs = 22D(s+1)2 we see that Qs ≤ 2δ
2k. Therefore the supports of the cutoff functions

η≤δ′k(2
k ◦ (ξ(1) − a/q)) are all disjoint and the multipliers Ψlow

k,s ,Ψk,s,t,Ψ
c
k take values in the interval

[0, 1]. Notice also that Ψk,s,t ≡ 0 unless t ≥ D(s+ 1), and that the cutoffs used in these definitions
depend on δ′k not on δk as in the case of the central variables.

We examine the formula (5.5.21) and define the kernels Llow
k,s , Lk,s,t, L

c
k : Zd → C by

L∗(g
(1)) = ϕ

(1)
k (g(1))

ˆ
Td

e(g(1).ξ(1))Sk(ξ
(1))Ψ∗(ξ

(1)) dξ(1), (5.5.26)

where (L∗,Ψ∗) ∈ {(Llow
k,s ,Ψ

low
k,s ), (Lk,s,t,Ψk,s,t), (L

c
k,Ψ

c
k)}. For any k ≥ κs we obtain Kk,s = Glow

k,s +∑
t≤δ′kGk,s,t +Gc

k,s, where the kernels Glow
k,s , Gk,s,t, G

c
k,s : Z|Yd| → C are defined by

Glow
k,s (g) := Llow

k,s (g
(1))Nk,s(g

(2)),

Gk,s,t(g) := Lk,s,t(g
(1))Nk,s(g

(2)),

Gc
k,s(g) := Lc

k(g
(1))Nk,s(g

(2)).

(5.5.27)

Our next step is to show that the contributions of the minor arcs corresponding to the kernels Gc
k,s

can be suitably bounded:
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Lemma 5.3. For any integers s ≥ 0 and k ≥ κs, and for any f ∈ ℓ2(G0) we have

∥f ∗Gc
k,s∥ℓ2(G0) ≲ 2−k/D2∥f∥ℓ2(G0). (5.5.28)

Then we prove our second transition estimate, bounding the contributions of the operators defined
by the kernels Gk,s,t for intermediate values of k.

Lemma 5.4. For any integers s ≥ 0, and t ≥ D(s+ 1), and f ∈ ℓ2(G0) we have∥∥ sup
max(κs,t/δ′)≤k<2κt

|f ∗Gk,s,t|
∥∥
ℓ2(G0)

≲ 2−t/D2∥f∥ℓ2(G0), (5.5.29)

where κt = 22D(t+1)2 as in (5.5.17).

The proofs of these estimates are similar to the proofs of the corresponding first stage estimates
(5.5.16)–(5.5.18), using high order T ∗T arguments. However, instead of using the nilpotent oscillatory
sums estimates in Proposition 5.1, we use the classical estimates from Proposition 5.3 here. We
emphasize, however, that the underlying nilpotent structure is very important and that these
estimates are only possible after performing the two reductions in the first stage, namely, the
restriction to major arcs corresponding to denominators ≈ 2s and the restriction to parameters
k ≥ κs.
We finally remark that the circle method could not have been applied simultaneously to both central
and non-central variables, as we would not have been able control efficiently the phase functions
arising in the corresponding exponential sums and oscillatory integrals, especially on major arcs.

5.5.3 Final stage: major arcs contributions

After these reductions, it remains to bound the contributions of the “major arcs” in both the central
and the non-central variables. More precisely, we prove the following bounds:

Lemma 5.5. (i) For any integer s ≥ 0 and f ∈ ℓ2(G0) we have∥∥ sup
k≥κs

|f ∗Glow
k,s |
∥∥
ℓ2(G0)

≲ 2−s/D2∥f∥ℓ2(G0). (5.5.30)

(ii) For any integers s ≥ 0, t ≥ D(s+ 1), and f ∈ ℓ2(G0) we have∥∥ sup
k≥κt

|f ∗Gk,s,t|
∥∥
ℓ2(G0)

≲ 2−t/D2∥f∥ℓ2(G0). (5.5.31)

The main idea here is different: we write the kernels Glow
k,s and Gk,s,t as tensor products of two

components up to acceptable errors. One of these components is essentially a maximal average
operator on a continuous group, which can be analyzed using the classical method of Christ [22].
The other component is an arithmetic operator-valued analogue of the classical Gauss sums, which
leads to the key factors 2−s/D2

and 2−t/D2
in (5.5.30) and (5.5.31).

More precisely, for any integer Q ≥ 1 we define the subgroup

HQ := {h = (Qhl1l2)(l1,l2)∈Yd
∈ G0 : hl1,l2 ∈ Z}. (5.5.32)

Clearly HQ ⊆ G0 is a normal subgroup. Let JQ denote the coset

JQ := {b = (bl1l2)(l1,l2)∈Yd
∈ G0 : bl1,l2 ∈ Z ∩ [0, Q− 1]}, (5.5.33)

123

               amagyar2024_220_24



with the natural induced group structure. Notice that

the map (b, h) 7→ b · h defines a bijection from JQ ×HQ to G0. (5.5.34)

Assume that Q ≥ 1 and 2k ≥ Q. For any a ∈ Zd and ξ ∈ Rd let

Jk(ξ) := 2−k

ˆ
R
χ(2−kx)e[−A(1)

0 (x).ξ] dx =

ˆ
R
χ(y)e[−A(1)

0 (y).(2k ◦ ξ)] dy,

S(a/Q) := Q−1
∑
n∈ZQ

e[−A(1)
0 (n).a/Q].

(5.5.35)

The point is that the kernels Glow
k,s and Gk,s,t can be decomposed as tensor products. Indeed, to

decompose Gk,s,t (the harder case) we set Q := Qt =
(⌊
2D(t+1)

⌋)
! as in (5.5.24). Then we show that

if k ≥ κt (so 2k ≫ Q4
t ), h ∈ HQt and b1, b2 ∈ G0 satisfy |b1|+ |b2| ≤ Q4 then

Gk,s,t(b1 · h · b2) ≈Wk,Qt(h)VRd
t \R̃d

Qs
,Rd′

s ,Qt
(b1 · b2), (5.5.36)

up to acceptable summable errors. Here

Wk,Qt(h) := Qd+d′

t ϕk(h)

ˆ
Rd×Rd′

η≤δ′k(2
k ◦ ξ)η≤δk(2

k ◦ θ)e(h.(ξ, θ))Jk(ξ) dξdθ,

VA,B,Q(b) := Q−d−d′
{ ∑

σ(1)∈A∩[0,1)d
S(σ(1))e[b(1).(σ(1))]

}{ ∑
σ(2)∈B∩[0,1)d′

e[b(2).(σ(2))]
}
,

and ϕk(h) := ϕ
(1)
k (h(1))ϕ

(2)
k (h(2)), h = (h(1), h(2)) ∈ HQt , b = (b(1), b(2)) ∈ G0, and the functions Jk

and S are defined in (5.5.35).
Finally, we show that the kernels Vs,t := VRd

t \R̃d
Qs

,Rd′
s ,Qt

(which can be interpreted as an operator-

valued Gauss sums) define bounded operators on ℓ2(JQt),

∥f ∗JQt
Vs,t∥ℓ2(JQt )

≲ 2−t/D∥f∥ℓ2(JQt )
.

Moreover, the kernels Wk,Qt are close to classical maximal operators and one can show that∥∥ sup
k≥κt

|f ∗HQt
Wk,Qt |

∥∥
ℓ2(HQt )

≲ ∥f∥ℓ2(HQt )
.

The desired bounds (5.5.31) follow using the approximation formula (5.5.36).

5.6 A nilpotent Waring theorem on the group G0

The classical Waring problem, solved by Hilbert in 1909, concerns the possibility of writing any
positive integer as a sum of finitely many p powers: for any integer p ≥ 1 there is r = r(p) such that
any integer y ∈ Z+ can be written in the form

y =

r∑
i=1

mp
i , for some non-negative integers m1, . . . ,mr. (5.6.1)

There is a vast amount of literature on this problem and its many possible extensions. In particular,
the symmetric system of equations

r∑
j=1

(ms
j − nsj) = 0 (1 ≤ s ≤ d), (5.6.2)
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first studied by Vinogradov [111] in relation to the Waring problem, have been the focus of intense
recent research, see [114] for some breakthrough results. We are interested here in understanding
the analogous question on our discrete nilpotent Lie group g0 and for our given polynomial sequence
A0: can one represent elements g ∈ g0 in the form

g = A0(n1)
−1 ·A0(m1) · . . . ·A0(nr)

−1 ·A0(mr), (5.6.3)

for some integers n1,m1, . . . , nr,mr, provided that r is large enough? We are, in fact, inter-
ested in proving a quantitative statement on the number of such representations, for integers
n1,m1, . . . , nr,mr ∈ [N ] := [−N,N ] ∩ Z.
We remark that many group elements g cannot be written in the form (5.6.3), due to local
obstructions; for instance, if g can be represented in the form (5.6.3) then necessarily g10 ≡ g20 ≡
. . . ≡ gd0 (mod 2), g10 = g30 = . . . (mod 3) etc. For integers r,N ≥ 1 and g ∈ g0 let

Sr,N (g) :=
∣∣{(m,n) ∈ [N ]2r : A0(n1)

−1 ·A0(m1) · . . . ·A0(nr)
−1 ·A0(mr) = g

}∣∣. (5.6.4)

Our main result in this section is the following:

Theorem 5.4. (i) There is an integer r0(d) ≥ 1 such that if r ≥ r0(d) is sufficiently large and
g ∈ g0 then

Sr,N (g) = N2r
( ∏

(l1,l2)∈Yd

N−|l1|−|l2|
)[

S(g)

ˆ
Rd+d′

Φ(ζ)e(−(N−1 ◦ g).ζ) dζ +Or(N
−1/2)

]
, (5.6.5)

uniformly in N ∈ N. Here the singular series S is defined by

S(g) :=
∑

a/q∈Rd+d′
∞

G(a/q)e(−g.a/q) (5.6.6)

and the singular integral Φ is defined by

Φ(ξ) =

ˆ
[−1,1]2r

e
(
D(z, w).ξ

)
dz dw, ξ ∈ Rd+d′ . (5.6.7)

In particular, all elements g ∈ g0 cannot be represented in the form (5.6.3) more than a constant
times the expected number of representations, i.e.

Sr,N (g) ≲r N
2r
( ∏

(l1,l2)∈Yd

N−|l1|−|l2|
)

for any g ∈ g0. (5.6.8)

(ii) For r ≥ r0(d) as above there is a sufficiently large integer Q = Q(r) such that

Sr,N (g) = N2r
( ∏

(l1,l2)∈Yd

N−|l1|−|l2|
)[
cr(g) +Or,g(N

−1/2)
]
, (5.6.9)

for any g ∈ HQ (see definition (5.5.32)), where cr(g) ≈r 1 uniformly in g.

Sketch of the proof: Observe that D(n,m) = A0(n1)
−1 ·A0(m1) · . . . ·A0(nr)

−1 ·A0(mr). Using the
classical delta function we can write

Sr,N (g) =
∑

m,n∈[N ]r

ˆ
Td+d′

e
(
D(n,m).ξ

)
e(−g.ξ) dξ. (5.6.10)

125

               amagyar2024_220_24



Step 1. We start by decomposing the integration in ξ into major and minor arcs. For any integer
m ≥ 1 and any positive number M > 0, we define the set of rational fractions

Rm
≤M := {a/q : a = (a1, . . . , am) ∈ Zm, q ∈ [1,M ] ∩ Z, gcd(a1, . . . , am, q) = 1}. (5.6.11)

We fix a small constant δ = δ(d) ≪ 1 and a smooth radial function η0 : R|Yd| → [0, 1] such that
index |x| ≤ 1 ≤ η0(x) ≤ index |x| ≤ 2, x ∈ R|Yd|. For A > 0 let η≤A(x) := η0

(
A−1x

)
, x ∈ R|Yd|.

Then we introduce the projections

ΞN (ξ) :=
∑

a/q∈Rd+d′
≤Nδ

η≤Nδ

(
N ◦ (ξ − a/q)

)
, ξ ∈ Td+d′ , N ∈ N, (5.6.12)

and decompose the integration in (5.6.10) into major and minor arcs, i.e. we define

Sr,N,maj(g) :=
∑

m,n∈[N ]r

ˆ
Td+d′

e
(
D(n,m).ξ

)
e(−g.ξ)ΞN (ξ) dξ (5.6.13)

Sr,N,min(g) :=
∑

m,n∈[N ]r

ˆ
Td+d′

e
(
D(n,m).ξ

)
e(−g.ξ)

(
1− ΞN (ξ)

)
dξ, (5.6.14)

Notice that Sr,N (g) = Sr,N,min(g) + Sr,N,maj(g). Moreover

|Sr,N,min(g)| ≲r N
2r−1

( ∏
(l1,l2)∈Yd

N−|l1|−|l2|
)
, N ∈ N, g ∈ g0 (5.6.15)

provided that r is sufficiently large, as a consequence of Proposition 5.1 (i) and the Dirichlet principle.
Therefore the contribution of the minor arcs Sr,N,min(g) can be absorbed by the error term in (5.6.5).

Step 2. Next, we deal with the major arcs contributions. Notice that

Sr,N,maj(g) =
∑

a/q∈Rd+d′
≤Nδ∩[0,1)d+d′

e(−g.a/q)
ˆ
Rd+d′

η≤Nδ

(
N ◦ ξ

)
Ir,N,a/q(ξ)e(−g.ξ) dξ, (5.6.16)

where

Ir,N,a/q(ξ) =
∑

m,n∈[N ]r

e
(
D(n,m).(a/q)

)
e
(
D(n,m).ξ

)
. (5.6.17)

Observe that for a/q ∈ Rd+d′

≤Nδ ∩ [0, 1)d+d′ and |N ◦ ξ| ≲ N δ we have

Ir,N,a/q(ξ) =
∑

m,n∈[N/q]r

∑
u,v∈Zr

q

e
(
D(v, w).(a/q)

)
e
(
D(qn, qm).ξ

)
+O(qN2r−1+δ)

= N2rG(a/q)Φ(N ◦ ξ) +O(qN2r−1+δ),

where G(a/q) is defined in (5.4.16) and Φ is defined in (5.6.7).
Therefore, if δ ≤ (10d)−4 then we have

Sr,N,maj(g) = N2r
( ∏

(l1,l2)∈Yd

N−|l1|−|l2|
)

×
[ ∑
a/q∈Rd+d′

≤Nδ

G(a/q)e(−g.a/q)
ˆ
Rd+d′

η≤Nδ

(
ξ
)
Φ(ξ)e(−g.(N−1 ◦ ξ)) dξ +Or(N

−1/2)
]
.

(5.6.18)
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It follows from Proposition 5.1 (ii) and Proposition 5.2 that

|G(a/q)| ≲r q
−1/δ2 , (a, q) = 1, (5.6.19)

and

|Φ(ζ)| ≲r ⟨ζ⟩−1/δ2 , ζ ∈ Rd+d′ , (5.6.20)

provided that r is sufficiently large. Therefore, recalling the definition (5.6.6),

|S(g)| ≲r 1,

|[|
]
S(g)−

∑
a/q∈Rd+d′

≤Nδ

G(a/q)e(−g.a/q) ≲r

∑
q≥Nδ

qd+d′−1/δ2 ≲r N
−1/(2δ). (5.6.21)

Moreover∣∣∣ ˆ
Rd+d′

η≤Nδ

(
ξ
)
Φ(ξ)e(−g.(N−1 ◦ ξ)) dξ

∣∣∣ ≲r 1,∣∣∣ ˆ
Rd+d′

η≤Nδ

(
ξ
)
Φ(ξ)e(−g.(N−1 ◦ ξ)) dξ −

ˆ
Rd+d′

Φ(ξ)e(−g.(N−1 ◦ ξ)) dξ
∣∣∣ ≲r N

−1/(2δ).

(5.6.22)

It follows from (5.6.18), (5.6.21), and (5.6.22) that

Sr,N,maj(g) = N2r
( ∏

(l1,l2)∈Yd

N−|l1|−|l2|
)[

S(g)

ˆ
Rd+d′

Φ(ξ)e(−g.(N−1 ◦ ξ)) dξ +Or(N
−1/2)

]
.

(5.6.23)

The desired conclusion (5.6.5) follows using also (5.6.15). This completes the proof of part (i) of
the theorem.

Step 3. We analyze now the singular series S defined in (5.6.6). Observe that

S(h) =
∑
q≥1

A(q, h), A(q, h) :=
∑

(a,q)=1

G(a/q)e(−h.a/q), (5.6.24)

for any h ∈ g0. Notice that A(q, h) is multiplicative in the sense that A(q1q2, h) = A(q1, h)A(q2, h)
provided that (q1, q2) = 1 and h ∈ g0. Therefore, letting P denote the set of primes,

S(h) =
∏
p∈P

B(p, h), B(p, h) := 1 +
∑
n≥1

A(pn, h). (5.6.25)

For h ∈ g0 and q ≥ 1 let

M(q, h) :=
∣∣{(m,n) ∈ Z2r

q : D(n,m) = h mod q
}∣∣. (5.6.26)

We prove that for any h ∈ g0, p ∈ P and integer n ≥ 1 we have

1 +

n∑
v=1

A(pv, h) =
M(pn, h)

pn(2r−d−d′)
. (5.6.27)
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Indeed, for any integer q ≥ 1 we have

M(q, h) = q−d−d′
∑

t∈Zd+d′
q

∑
m,n∈Zr

q

e
(
(D(n,m)− h).(t/q)

)
= q−d−d′

∑
q1|q

∑
w∈Zd+d′

q/q1
, (w,q/q1)=1

∑
m,n∈Zr

q

e
(
(D(n,m)− h).(wq1/q)

)
= q−d−d′

∑
q2|q

∑
w∈Zd+d′

q2
, (w,q2)=1

∑
m,n∈Zr

q

e
(
(D(n,m)− h).(w/q2)

)
= q−d−d′

∑
q2|q

∑
w∈Zd+d′

q2
, (w,q2)=1

q2rG(w/q2)e
(
− h.(w/q2)

)
= q2r−d−d′

∑
q2|q

A(q2, h).

The identity (5.6.27) follows by applying this with q = pn, p ∈ P. In particular S(h) and B(p, h)
are real non-negative numbers,

S(h), B(p, h) ∈ [0,∞) for any h ∈ g0, p ∈ P. (5.6.28)

Moreover, using the formulas (5.6.25) and (5.6.27),

B(p, h) =
M(pn, h)

pn(2r−d−d′)
+Or(2

−n/δ)

We would like to show now that S(h) ≳r 1 for all elements h ∈ HQ, in order to be able to exploit
the expansion (5.6.5). We notice first that for any integer r sufficiently large there is p0(r) ∈ P such
that

1/2 ≤
∏

p∈P, p≥p0(r)

B(p, h) ≤ 3/2, (5.6.29)

for any h ∈ g0, due to the rapid decay of the coefficients G(a/q) in (5.6.19).
By Lemma 5.6 there is a point a0 = (z0, w0) such that D(a0) = 0 and there is a (d+ d′)× (d+ d′)
minor JD(a0) ̸= 0. By re-indexing the variables we may assume that this minor is JD(a0) =

det
(
∂iD
∂xj

(a0)
)N
i,j=K+1

, writing N = 2r, K = 2r − d − d′ and x = (m,n) ∈ Z2r. In other words, we

may assume that the minor corresponding to the last d+ d′ columns of the Jacobian matrix of D is
non-singular. For a given prime p ≤ p0(r) let γp ∈ N be such that JD(a0) = pγpu with u ∈ N and
p ∤ u. Define Q = Q(r) :=

∏
p∈P,p≤p0(r)

p2γp+1.

For h ∈ HQ, we have that D(a0) = h mod p2γp+1 , but JD(a0) ̸= 0 mod pγp+1 thus we are in the
position to apply Hensel’s lemma again with N = 2r and K = 2r − d− d′. Then by Corollary 5.1
we have that M(pn, h) ≥ p(n−2γp−1)K and hence by (5.6.28) we have B(pn, h) ≥ p−(2γp+1)K−1 for
all n > 2γp, n > n(r). This proves that

S(h) ≳r 1 uniformly for h ∈ HQ. (5.6.30)

Step 4. Finally we analyze the contribution of the singular integral. Since
ˆ
Rd+d′

Φ(ζ)e(−(N−1 ◦ g).ζ) dζ =

ˆ
Rd+d′

Φ(ζ) dζ +Or,g(N
−1),
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due to (5.6.20), to prove the approximate identity (5.6.9) it suffices to prove that
ˆ
Rd+d′

Φ(ζ) dζ ≳r 1. (5.6.31)

We fix a smooth function χ : Rd+d′ → [0, 1], satisfying χ(x) = 1 if |x| ≤ 1/2, χ(x) = 0 if |x| ≥ 2,
and

´
Rd+d′ χ(x) dx = 1. For ϵ ≤ ϵ(r) sufficiently small we write

ˆ
Rd+d′

Φ(ζ)χ̂(ϵζ) dζ =

ˆ
[−1,1]2r

ϵ−(d+d′)χ(D(z, w)/ϵ) dzdw, (5.6.32)

using the definition (5.6.7). In particular, by letting ϵ → 0,
´
Rd+d′ Φ(ζ) dζ is a real non-negative

number. Moreover, the lower bound (5.6.31) follows from (5.6.32) provided that we can show that
there is a point (z0, w0) ∈ [−1, 1]2r such that

D(z0, w0) = 0 and rank[∇z,wD(z0, w0)] = d+ d′. (5.6.33)

Note (5.6.33), with r replaced by 2r, follows easily from the following

Lemma 5.6. Let r ≥ r0(d). Then there exists (n,m) ∈ Z2r such that

rank[∇x,yD(n,m] = d+ d′. (5.6.34)

Indeed, writingDr(x, y) = D(x, y) : R2r → G#
0 , we have thatDr(x, y)Dr(n,m)−1 = D2r((x,m

′), (y, n′))
with n′ = (nr, . . . , n1), m

′ = (mr, . . . ,m1). Assuming (5.6.34) it is clear that the mapD2r((x,m
′), (y, n′))

has maximal rank at z0 = (n,m′), w0 = (m,n′) and (5.6.33) follows.
The proof of Lemma 5.6 is based on counting points (n,m) ∈ [N ]2r at which the rank of the map
∇x,yD drops. This was also crucial in obtaining the nilpotent Wey estimate (5.4.14).

Proof. Let N be sufficiently large w.r.t. r, d. It is enough to show that

|{n ∈ [N ]r : rank[∇xD(n,m)] < d+ d′}| ≲d,r N
(r+1)/2, (5.6.35)

holds uniformly for m ∈ [N ]r. Fix m ∈ [N ]r. If rank[∇xD(n,m)] < d+ d′ then by Cramer’s rule
there exists bl1l2 ∈ Z, |bl1l2 | ≲ NCd with bl1l2 ̸= 0 for at least one 0 ≤ l2 < l1 ≤ d,
such that ∑

0≤l2<l1≤d

bl1l2 ∂jDl1l2(n,m) = 0, for all 1 ≤ j ≤ r. (5.6.36)

From (5.4.12) we have that ∂jDl10(n,m) = l1n
l1−1
j , and for 1 ≤ l2,

∂jDl1l2(n,m) = l1n
l1−1
j

∑
k>j

(nl2k −ml2
k ) + l2n

l2−1
j

∑
k<j

(nl1k −ml1
k )− l1n

l1−1
j ml2

j . (5.6.37)

We want to only include terms k ≤ j and to achieve that we introduce the parameters

Tl = Tl(n,m) =
r∑

k=1

(nl2k −ml2
k ), for 1 ≤ l < d.

Note that Tl ∈ [−rNd−1, rNd−1]. For fixed T = (Tl)1≤l<d, write∑
k>j

(nl2k −ml2
k ) = Tl2(n,m)−

∑
k≤j

(nl2k −ml2
k ),
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Substituting into (5.6.37), we obtain, up to lower degree terms in the variables n = (n1, . . . , nr),

∂jDl1l2(n,m) = −l1
∑
k≤j

nl1−1
j nl2k + l2

∑
k<j

nl2−1
j nl1k , for 1 ≤ l2 < d. (5.6.38)

Thus the system in (5.6.36) takes the form∑
0≤l2<l1≤d

bl1l2 P
j,T,m
l1l2

(n1, . . . , nj) = 0, (1 ≤ j ≤ r). (5.6.39)

Notice that for fixed n1, . . . , n2j−2 with j ≤ r/2, the left side of (5.6.39) contains the monomials

bl10 n
l1−1
2j and bl1l2 n

l1−1
2j−1n

l2
2j , and hence is nonvanishing in the variables n2j−1, n2j . This implies

that number of solutions to (5.6.39) is at most 2dN in the variables n2j−1, n2j .
As the number of choices for parameters b = (bl1l2)0≤l2<l1≤d and T = (Tl)≤l<d is ≲r,d N

Cd (with,
say Cd = 2d(d+ d′)2), (5.6.34) follows.

We remark that (5.6.34) together with the argument proving (5.6.33) also implies that the map

D2r : R4r → G#
0 is surjective. Indeed, the image of the map Dr must contain an open ball B(g, δ)

thus the image of D2r must contain an open ball B(0, δ′) ⊆ B(g, δ)B(g, δ)−1 centered at the origin,

then by homogeneity the whole space G#
0 .

Lemma 5.6 together with Hensel’s lemma also crucial to show the non-vanishing of the singular
series S(h) for h ∈ HQ. Recall that, given a prime p, the ring of p-adic integers Ẑp is defined as
the completion of Z with respect to the p-adic metric |m|p = e−k, if m = pku with u ∈ Z, p ∤ u.
Then Ẑp is a so-called complete valuation ring with a unique maximal ideal Ip = p Ẑp and will write

x = 0 mod pk if x ∈ pk Ẑp. We have |x− y|p ≤ max{|x− z|p, |y− z|p}, hence a sequence (xj)j∈N is
Cauchy if |xj+1 − xj |p → 0 as j → ∞.

It follows that any formal power series g(x) converges at x whenever x = 0 mod p. For a vector
x = (x1, . . . , xN ) ∈ ẐN

p we say that x = 0 mod pk if xj = 0 mod pk, for all 1 ≤ j ≤ N . Then
any power series g(x) = g(x1, . . . , xN ) in N variables also converges whenever x = 0 mod p.
Moreover, one has the inverse and implicit function theorems for power series maps g(x) =
(g1(x), . . . , gN (x)) : ẐN

p → ẐN
p without constant terms. Namely, if the Jacobian of the system at

origin Jg(0) /∈ IP i.e. is a unit, then g has an inverse power series map h(x) = (h1(x), . . . , hN (x)),
in the sense that h(g(x)) = g(h(x)) = x, see Proposition 5.19 in [51]. One also has a corresponding
version of the implicit function theorem; for a map g(x) = (gK+1(x), . . . , gN (x)) : ẐN

p → ẐN−K
p

such that det( ∂gi∂xj
(0))Ni,j=K+1 /∈ Ip , the inverse image Vg := g−1(0) can be parameterized as

Vg = (t1, . . . , tK , hK+1(t), . . . , hN (t)) with t = (t1, . . . , tK), which can be seen from the inverse
function theorem by extending the map with gi(x) = xi for i = 1, . . . ,K. The following extension of
the implicit function is often used to show the non-vanishing of the singular series associated to
diophantine systems.

Theorem 5.5. [Hensel’s Lemma] Let f = (fK+1, . . . , fN ) : ẐN
p → ẐN−K

p be a family of polynomials.

Assume there exists an a ∈ ẐN
p and an integer γ > 0, such that

f(a) = 0 mod p2γ+1, (5.6.40)

moreover
Jf (a) = pγu, u ̸= 0 mod p, (5.6.41)
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where Jf (a) is the Jacobian,

Jf (a) = det

(
∂gi
∂xj

(a)

)N

i,j=K+1

. (5.6.42)

Then there exist power series h = (hK+1, . . . , hN ) with hj(0) = 0, such that for all t = (t1, . . . , tK) = 0
mod p, one has that

f(a+ (p2dt, pdh(t)) = 0. (5.6.43)

This means that for each j = K + 1, . . . , N , one has

fj(a1 + p2dt1, . . . , aK + p2dtK , aK+1 + pdhK+1(t), . . . , aN + pdhN (t)) = 0.

This is proved in [51], see Lemma 5.21 and Note 5.22 there, in fact it is shown that all b ∈ ẐN
p such

that b = a mod pγ+1 and f(b) = 0 can be parameterized this way. We will use it to obtain the
following lower bound, assuming conditions (5.6.40)-(5.6.41) hold.

Corollary 5.1. Let n > 2γ. Then

|{b ∈ ZN
pn : f(b) = 0 mod pn}| ≥ p(n−2γ−1)K (5.6.44)

Proof. First note that if t1 ≠ t2 mod pn−2γ , then c1 ≠ c2 mod pn, where ci = a+ (p2γti, p
γh(ti))

for i = 1, 2. There are p(n−2γ−1)K values of t ∈ ZK such that t = 0 mod p which fall into different
residue classes mod pn−2γ , thus by (5.6.43) we have at least this many solutions to f(c) = 0 in ẐN

p

which fall into different residue classes mod pn. For each such c let b ∈ ZN such that b = c mod pn,
Then clearly f(b) = 0 mod pn and all such b′s are distinct mod pn.
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[35] P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E. G. Straus.
Euclidean Ramsey theorems. II, North-Holland, Amsterdam, Colloq. Math. Soc. János Bolyai,
Vol. 10. (1975), 529–557.

[36] N. Frantzikinakis. Some open problems on multiple ergodic averages. Bull. Hellenic Math.
Soc. 60 (2016), 41–90.

[37] N. Frantzikinakis, B. Kra. Polynomial averages converge to the product of integrals. Israel
J. Math. 148 (2005), 267–276.

[38] H. Furstenberg, Y. Katznelson, An ergodic Szemerédi theorem for commuting transfor-
mations J. Analyse Math. 31 (1978), 275-291.

[39] A. Frieze, R. Kannan. The regularity lemma and approximation schemes for dense problems.
In Foundations of Computer Science (1996) Proc. 37th Annual Symp. IEEE., 12-20.

[40] H. Furstenberg, Y. Katznelson and B. Weiss, Ergodic theory and configurations in sets
of positive density Mathematics of Ramsey theory, 184–198, Algorithms Combin., 5, Springer,
Berlin, (199).
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[104] E., Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta
Arith. 27 (1975), 199-245.
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