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Introduction

This dissertation is based on five papers which I consider representative of my research over
the past twenty years. Each of these papers is on the interface of analytic number theory and
other fields of mathematics, discrete harmonic analysis, ergodic theory and geometric Ramsey theory.

The topic of the first section is the distribution of solutions of general high rank diophantine
equations, expressed in terms of pointwise ergodic theorems, the crucial ingredient being certain LP
estimates for maximal averages over integer points on hypersurfaces. Such estimates are considered
discrete analogues of certain central results in Euclidean harmonic analysis and has been initiated
by the groundbreaking results of Bourgain, as well as systematic study of Stein and Wainger. 1
have written 8 papers with my co-authors in this area where I think my work has made the most
impact. It has brought young researchers to this area, has initiated many further studies on related
problems and our papers received a substantial number of references.

The topic of the second and third chapter is geometric Ramsey theory where one studies isometric or
similar copies of finite point configurations, the underlying space being the integer lattice or in some
instances the Euclidean space the model case of vectorspaces over finite fields. This section is based
on 2 papers, which have been mainly motivated by Bourgain’s simplex theorem and a conjecture of
Graham in Euclidean Ramsey theory. It outlines a new approach, based on some notions and ideas
in additive combinatorics and graph theory. My work in this area, consisting of 7 papers, has also
raised considerable interest has initiated further research. Although less transparent, methods of
analytic number theory play a crucial role here too, in particular the Hardy-Littlewood method of
exponential sums and the theory of Siegel theta functions.

The fourth chapter is about finding solutions to diophantine systems in the primes. Here we present
one paper which may be viewed as the extension of Hua’s work on representing positive integers as
sums of a fixed power of primes. This was the first paper which have shown that any sufficiently high
rank diophantine system has many solutions in the primes as long as it satisfies certain natural local
conditions. This paper has influenced further studies on prime solutions to diophantine equations.
In another, somewhat related, in joint work I have extended the celebrated theorem of Green and
Tao on the existence of long arithmetic progressions in the primes to the multi-dimensional setting,
however the methods of that paper are mainly combinatorial and will not be discussed here.

The topic of the last chapter is our ongoing work toward the so-called Furstenberg-Bergelson-Leibman
conjecture in ergodic theory. This conjecture states that general polynomial orbits of actions of
nilpotent groups have have almost everywhere as well as norm convergence. This connects back to
the first section as the first fundamental results were due to Bourgain, who proved the conjecture
for commuting transformations by reducing it to bounds for associated maximal operators over
polynomial surfaces and employing methods of analytic number theory. I discuss our most recent
paper in this direction, which establishes the conjecture for step-2 nilpotent groups by extending
Bourgain’s approach to the non-commutative setting. A crucial arithmetic input is to derive Weyl-
type estimates for exponential sums arising from diophantine systems which are natural extensions
of the so-called Waring-Vinogradov system to free nilpotent groups. As a byproduct, we derive
asymptotics for the number of integer solutions to such systems.
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1 Diophantine equations and ergodic theorems

In this chapter we discuss ergodic theorems showing the uniformity of distribution of the solutions
to certain diophantine equations, proved in [81]. In the first section we recall Bourgain’s polynomial
ergodic theorem [15, 13, 14], as well as its relation to the {? boundedness of certain discrete maximal
operators. Next we present our main results and in the remaining sections their proof.

1.1 Polynomial ergodic theorems and discrete harmonic analysis

Let (X, ) be a finite measure space, without loss of generality we will assume p(X) =1, i.e. it is a
probability space. If T': X — X is a measure preserving ergodic transformation, then a fundamental
theorem in ergodic theory, due Birkhoff [12], states that the orbits O, := {T"z : n € N} are
uniformly distributed on X. The precise statement is as follows. Let p > 1, f € LP(X, ). Then
there exists a function f, € LP(X, u) such that

N
1
Anf(z) == NZf(T"x) = folz), (1.1.1)
n=1
for p-a.e. x € X. Moreover if T is ergodic, i.e. E =T~!(E) implies that pu(E) =0 or u(X\FE) = 0,
then f, is constant and equal to [ « f dp. An approach to Birkhoft’s theorem, due to M. Riesz, is
first to reduce proving (1.1.1) to the maximal inequality

1A fllp < Collfllp, where A™f(z )—;ﬁp [Anf(@)l, (p>1) (1.1.2)

then, using a general transfer principle, due to Calderon, reduce inequality (1.1.2) to the shift
X =7, Tx = x — 1. Then one arrives to the so-called Hardy-Littlewood maximal inequality

|A*|l, < Cp ||@llp, where ¢ € IP(Z) and And(m) = % S0, d(m —n).

In a series of fundamental papers [15, 13, 14] Bourgain has extended Birkhoff’s theorem to polynomial
orbits Op(x) = {T*™(z); n € N}, P : Z — Z being an integral polynomial. He proved that for
every exponent p > 1, and for every f € LP(X, u) there exists a function f, € LP(X, ) such that
for p-a.e. x € X,

Apnf(z): NZf (TP™Mg) = fi(z). (1.1.3)

Moreover, if T is fully ergodic, that is if T* ergodic for all k € N, then f, constant, thus the
polynomial orbits Op(x) are uniformly distributed for almost every x € X. Bourgain has also
proved a multi-dimensional extension, namely that above theorem holds for the averages

Apy,..p.Nf(2): NZf Thm P’“(") ), (1.1.4)

whenever 11, ...,T} are commuting, measure preserving transformations on X and Pi,..., P, are
integral polynomials on Z.

As opposed to Birkhoff’s theorem there is not a dense set of functions in LP(X, ) for which (1.1.3)
holds thus the corresponding maximal inequality

145 £llp < Cp Il where Apf(@) = sup | Ap ()] (1.15)
€
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does not imply point-wise convergence in itself. Nevertheless, proving it is crucial to Bourgain’s
approach and it is not hard to show that if the family of functions { Ax f(z)}nen do not converge
almost everywhere on X, then there exists an increasing sequence {Ni}ren C N and a constant
a > 0, such that for all k € N,

|Apeflly > 0 where Apef(@)=  suwp  |Apwf() - Apwf@)|  (116)
Np<N<Npi1

Note that the maximal functions A% Pk f are measuring the oscillation of the sequence of functions
Ap N f. It is then enough to show that |Ap 1 fllp — 0 as k — oo, at least when one is taking Cesaro
averages that is to prove appropriate maximal inequalities.

The Calderon transference principle holds equally well for polynomial averages, effectively transferring
the maximal inequalities to the shift X = Z, Tx = x — 1. The key part of Bourgain’s proof is to
show that for any ¢ € I[P(Z) and for any polynomial P : Z — Z one has that

N
N 1
| sup Ayl < Gy lolly, where Apne(m) = 5> o(m — P(n). (1.1.7)
€ n=1

Note that Apn¢ = f *x Kpn is a convolution with a kernel Kpy = % 27]:[:1 dp(n)s Om being the
Dirac delta measure concentrated at m. The Fourier transform

KPN Z 21 P n)a (118)

Is an exponential sum extensively studied in analytic number theory, in particular via the so-called
Hardy-Littlewood method of exponential sums. A deep study on the structure of Kp ny(c) is crucial
to Bourgain’s proof.

1.2 The distribution of solutions to diophantine equations

A fundamental problem in number theory is to determine asymptotically the number of integer
solutions m = (my,...,m,) of a diophantine equation Q(myq,...,my) = A as A — oo through the
integers, and Q(m) is a positive polynomial with integer coefficients. A general result of this type
follows from a variant of the Hardy-Littlewood method of exponential sums developed by Birch [2]
and Davenport [4], which is as follows.

Let Q(my,...,my,) be a positive homogeneous polynomial of degree d with integral coefficients, and
suppose that it satisfies the non-degeneracy condition

n —dim Vo > (d — 1)2¢ 1.2.1
Q

Here Vo = {2z € C" : 01Q(2) =...0,Q(z) = 0} is the complex singular variety of the polynomial
Q. For simplicity we’ll refer to polynomials satisfying all the above conditions as non-degenerate
forms.

Then the following asymptotic formula holds for the number of integer solutions rg(X) = [{m €
Zn : Q(m) = A},

ro(\) = cQhi ™Y T K(q,0,)) + Os(Ai'70) (1.2.2)
q=1
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for some € > 0. The expression K(\) =>_2; K(q,0, ) is called the singular series, the terms are
special cases of (I = 0) the exponential sums

.a(Q(s)—X)+s-l
K(q,l,\) =q" Z Z e*m a (1.2.3)

(a,q)=1s€Z"/qZ

that is a goes through the reduced residue classes (mod ¢) and s; goes through all residue classes
(mod q) for each j. We remark that K(q,0, ) is a Kloostermann sum if Q)(m) is a quadratic form

The asymptotic formula (1.2.2) can be valid just under a condition of type (1.2.1). Indeed consider
the polynomial Q(m) = (m? + ... + m2)¥? (d > 2 even). Then rg(\) = 0 unless A = u¥?, 1 € N,
and in that case rg(\) = p™/?~ 1 )\”/ 4=2/d Hence formula (0.2) is never valid. The reason is
that the complex singular variety: Vg = {z € C" : 22 4+ ...+ 22 = 0} has dimension n — 1. Tt is
meaningful only if the singular series is nonzero. It can be shown, that if @ is a non-degenerate
form, then there exists an arithmetic progression I' C N and a constant 0 < Ag such that

Ag < K(X), forevery AeT. (1.2.4)

We'll refer to such sets I' as sets of reqular values of the polynomial Q. Inequality (0.4) is true
for all large A, just under additional assumptions modulo primes. Indeed consider the polynomial
Q(m) = m¢ + pQ1(ma,...my). For A = pA\; + s s being a quadratic non-residue, the equation
Q(m) = X has no solution, since d is even. Such conditions will be discussed later.

A crucial observation is that a similar approximation formula to (1.2.2) holds for the Fourier
transform of the solution set:

Goal€):= Y T, gell”,

meZ™,Q(m)=X
were II" = R"/Z" is the flat torus.

Lemma 1.1. Let Q(m) be a non-degenerate form, then there exists § > 0, such that

GoA(€) = coA Y K(q,1,0) Y w(gf — DdagNi (€ —1/q) +EE),  (1.2.5)

g=1 lezZn
where  sup [Ex(E)| < csAd
3

Here (&) is a smooth cut-off, ¥(§) = 1 for sup,|§;| < 1/8 and (&) = 0 for sup;|§;| > 1/4.

Moreover
dog(¢) = / ™78 dog(x). (1.2.6)
{zeR": Q(z)=1}

where dog(x) = %, dSq(z) being the Euclidean surface area measure of the level surface

Q(z) =1, and |Q'(z)| the magnitude of the gradient of the form Q.

The approximation formula (1.2.5) means, that the Fourier transform of the indicator function of
the solution set @Q(m) = A is asymptotically a sum over all rational points, of pieces of the Fourier
transform of a surface measure of Q(z) = A, multiplied by arithmetic factors and shifted by rationals.
This formula in the special case Q(m) = m? +...+m?2 was proved earlier in [82]. Our main purpose
is to study the distribution of the solution sets {m € Z"™ : Q(m) = A}. We have,
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Theorem 1.1. Let Q(m) be a non-degenerate polynomial and A is corresponding set of regular
values. Then for a test function ¢(x) € S(R™) one has

lim

; ~1/d,,
o 2 40 R G (127)

That is when the solution sets QQ(m) = A are projected to the unit surface Q(x) = 1 via the dilations

Vdpm they weakly converge to the surface measure C‘gf‘zg‘) This is well-known in case Q(z)

m— A~
is a quadratic form.

Our main result concerns the uniform distribution of the images of the solution sets, when mapped to
a measure space via an ergodic family of transformations. Let (X, u) be a probability measure space,
and T'= (11, ...,T,) be a family of commuting, measure preserving and invertible transformations.
Suppose for every positive integer ¢ the family 79 = (T}, ..., ) is ergodic. We recall this means,
that for every f € L?(X,u)

Tif=..Tif = f

implies f = constant. We’ll refer to a family of transformations satisfying all the above conditions
as a strongly ergodic family.

Theorem 1.2. Let Q(m) be a non-degenerate form, I' be a corresponding set of reqular values and
T =(T1,...,T,) a strongly ergodic family of transformations of a measure space (X, ).
For f € L?>(X, ) consider the averages

1 m M m.
Ayf(z) = E f(T1 LSRR ")
rQ(N) _
Q(m1,..mp)=X
Then one has
Iim (Af = [ il = o (1.2.8)

This is an L? ergodic theorem, it follows from a non-trivial estimate on the exponential sums Go.A(§)
at irrational points £ ¢ Q™. More precisely one needs the following

Lemma 1.2. Let Q(m) be a non-degenerate form, I' be a corresponding set of reqular values. Then

for & ¢ Q™ one has

1

)\61{./\—>oo rQ()\)| Q&) =0. (1.2.9)

To see the correspondence, suppose that f € L?(x, u), f 75 constant is a joint eigenfunction of the
shifts: T;f = ¥ f (T; f(x) = f(Tx)). Then A\f = )O'Q A(§)f , and the strong ergodicity of
the family 7" implies that & ¢ Q".

The main result is the corresponding pointwise ergodic

Theorem 1.3. Let Q(m) be a non-degenerate form, I' be a corresponding set of reqular values
and T = (T, ...,T,) a strongly ergodic family of transformations of a measure space (X, u). Let
f € L3(X,u), Then for u-almost every x € X one has

li A 1.2.1
im A f(@) /Nu (1.2.10)
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Theorem 1.3 means, that the images of the solution sets

Uy={meZ" : Q(m)= A}, (1.2.11)

under the transformations T'= (71, ...,T,), that is the sets
Qo ={(T7" Ty ---T'x) « me Uy}, (1.2.12)
become uniformly distributed on X w.r.t. p for almost every z € X. Let us mention a special case

Corollary 1.1. Let a,...,a, be a set of irrational numbers (o; ¢ Q Vj). If Q(m) is a non-
degenerate form, and ' is a corresponding set of reqular values, then the sets

Do = {(miaq,...,muay) €I @ Q(ma,...,my) = A}, (1.2.13)
become uniformly distributed on the torus II" w.r.t. the Lebesgue measure.
Indeed, if X =1I" and Tj(x1,...,2j,...2p) = (z1,...,2j + 0y, ... zy) and «; ¢ Q, then the family
T = (T,...,T,) is strongly ergodic.
The proof of the pointwise ergodic theorem is based on the L? boundedness of a corresponding

maximal function

Theorem 1.4. Let Q(m) be a non-degenerate form, I' be a corresponding set of reqular values. For
¢ € 12(Z"™) we define the mazimal function

1
N*¢(m) = sup | > sm =1, (1.2.14)
ser el ol
Then one has
[N*@lli2(zny < CllBli2(zny- (1.2.15)

Theorem 1.4 is a discrete analogue of a maximal theorem on R", corresponding to the level surfaces
of the form Q(x).

Theorem 1.5. Let Q(z) be a non-degenerate form and f € L?>(R™). Then for the mazimal function

_n dSo(y)
M*f(z) =sup A\~ at! / flx—y) —22===], (1.2.16
A>0 | Qy)=x ) Q" ()] | )
one has
IM* fllz2@®ny < CllfllL2@n)- (1.2.17)

For the polynomial Q(z) = >""_; :1;? this is the spherical maximal theorem of E.M.Stein [101]. For
general forms @) Theorem 1.5 does not seem to be in the literature [102]. This is due the lack
of decay estimates for the Fourier transform of surface measure dSg », which we will derive from
appropriate estimates from closely related exponential sums.

For the special case Q(m) = Z;‘:l m?, Theorem 1.4, was proved by Magyar, stein and Wainger in
[82], moreover there the [P — [P boundedness of the discrete maximal operator was shown for the
sharp range of exponents p > 5. The non-degeneracy condition (0.1) is also, sharp in the sense,
that for the form Q(m) = m? + m% + m% + m? (where codim Vg = 4 = (d — 1)2%), Theorem 4. is

not true, taking averages on any arithmetic progression I', see section 1.3 below. Hence the work

10
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presented in this chapter is the continuation of [82] to some extent.

As mentioned above, our work is motivated by Bourgain’s polynomial ergodic theorem [15, 13, 14]
where the Hardy-Littelwood method of exponential sums was used in a crucial way to obtain
[P-bounds for discrete maximal operators from known [ bounds for analogues maximal operators
in Euclidean spaces. However in the present case, the averages are over disjoint sets, the strong
ergodicity condition is also necessary, and is actually a condition on the joint spectrum of the
transformations (71, ...,75,). Thus we will need the Spectral Theorem even in case of the pointwise
convergence, i.e. in the proof of Theorem 1.3.

1.3 Exponential sums and oscillatory integrals

We recall some estimates going back to Birch [11] on exponential sums, and prove the estimates and
properties of oscillatory integrals needed later. In particular we give a proof of Theorem 1.5.

Let Q(m) be a non-degenerate form of degree d, that is a positive homogeneous polynomial with
integer coefficients, satisfying the non-degeneracy condition (1.2.1). Let P > 1, 0 < § < 1 be fixed.

Definition 1.1. For 1 < ¢ < P19 1< q < g, (a,q) =1 we define the magjor arcs

Lag(0) = {a: 2la —a/q| < ¢ ' P4H0% (1.3.1)

L(0) = U Laq(0)

q<P=10 (a,q)=1

If a ¢ L(0) then « belongs to the minor arcs.

The following properties of the major arcs are immediate from the definition, see [2, Sec.4] for the
proof.

Proposition 1.1. If

(’L) 01 < 65 then L(Gl) - L(eg)

(i) 6 < % then the intervals Lq 4(0) are disjoint for different values of a and q.

(i) 6 < ﬁ then |L(0)| < P~d+3(d=1)0,

We’ll use the notation k = COd;dL,lVQ throughout this chapter, and it is understood that ;=5 > 2
which follows from condition (1.2.1).
Let Q1(m) be a polynomial of degree d, such that its d-degree homogeneous part Q(m) is a

non-degenerate form. For a real o and a smooth cut-off function ¢(z), consider the exponential sum

S(a) = Y eXme@m 4(m/P). (1.3.2)

mezZnr

This is a Weyl type sum, the trivial estimate is S(a) < P™. The following estimates due to Birch
[11] are of basic importance

11
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Lemma 1.3. Suppose o ¢ L(0), then for any € > 0, one has
|S(a)| < C Pr—ROFe, (1.3.3)

If 0 < % and % -2<6< (Tld then one has for the average over the minor arcs,

/ SN de < CPr (1.3.4)

The constants C¢, and Cs depend just on the homogeneous part Q(m), on the cut-off ¢, on € and J.

Remark. Estimate (1.3.3) is proved in [11], see Lemma 4.3, when the cut-off ¢ is replaced by
the characteristic function x of a cube of side length ~ 1. Choosing x s.t. x¢ = ¢ and applying
Plancherel’s identity, one has

Z €27rio¢Ql(m) <Z>(m/P)X(m/P) :/ ( Z eQTrioan(m)—me(m/P) (ang(Pf)) d¢

n

meZn mezn

Here I1" is the flat torus and can be identified with [-1/2,1/2]". Estimate (1.3.3) holds for the first
term of the integral uniformly in £ and it is easy to see that ||[P"¢(P§)||1 < cg.
To see (1.3.4) one uses (1.3.3) for « ¢ L(0), with 6 < ', together with the fact that the measure of

L(#") is small by (1.3.1), which gives faeL(e/)\L(e) 1S(a)| da < C5P"4-9 | see [11, Lemma 4.4].

Corollary 1.2. Let Q(m) be a non-degenerate form, and 1 < a < q be natural numbers s.t.
(a,q) = 1. Consider the Weyl sum,

S(a,q) =Y e, (1.3.5)
meZ/qL"
One has )
1S(a,q)] < Cgeq" T (1.3.6)

Proof. Choose a = a/q, P = ¢ and notice a ¢ L() for § < -1;. Indeed for ¢; < g0 < ¢
la/q —a1/q1| > (qq1)~* > ¢y 'q~(@DI The estimate follows from (1.3.3). O

Corollary 1.3. If |a| < P~24/3 then |S(a)| < Cq. PPT(P|al)” a1

Proof. Choose 6 s.t. | = P~4+(@=1D0 that is (Pd|oa|)ﬁ = P? The major arcs L, ,(f) are disjoint
since (d — 1)0 < d/3, moreover « is an endpoint of the interval Lo ;(6) hence o ¢ L, 4(6 — €) for
every € > 0. By (1.3.3)

1S(@)] < Cqe P04 = Cq . PPH(Pal) 71 O

Let Q(z) be a non-degenerate form of degree d, k = COCQHJZVQ, L >0, and n € R".

Lemma 1.4. Consider the oscillatory integral
Io(L,n) = / 2T LQE@+T) gy (1) . (1.3.7)

One has, for every e >0,
Ig(L,n) < Co.(1+ L)"17, (1.3.8)

where the constant C. is independent of L and 7.

12
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Proof. The estimate is clear for L < 1. Let L > 1, the gradient of the phase: |LQ'(z) 4+ n| > L if
|n| > CL on the support of ¢(x) for large enough constant C' > 0, and (1.3.8) follows by partial
integration.

Suppose || < CL and introduce the parameters P,0,a s.t. « = P79L, L = P10 and P > L%.
Changing variables y = Px one has,

To(Lo) = P~ [ rin @ gy ) ay
We compare the integral to a corresponding exponential sum

P_"S(a) - p" Z e2mia (Q(m)+Pd71m‘n)¢(m/P)

meZn

If y = m+ 2z where m € Z" and z € [0,1]", then

|e2mie Q) +PTym) _ 2mia QUm)+PTimn) | < Cla|(|Q(m + 2) — Q(m)| + P n)),

which is bounded by CP~1*(@=D0 gince |a| = P~4+(@=10 and || < P@=D? Thus

lIo(L,n) — P~"S(a)| < CoP~1H2d-1)0 < C’QP_%. Corollary 1.3 implies that
[P7"S(a)] < Ce(Play) a1 C L™ a1

and (1.3.8) follows using P~3 < L™ @1, [J

The level surfaces of a non-degenerate form Sgy = {z € R" : Q(z) = A} are compact smooth
hypersurfaces (for A > 0). Indeed Q(z) = A implies that |z| ~ A%, moreover Q'(z) # 0 for every
x # 0. There is a unique n — 1-form dog(x) on R™ — 0 for which

dQ Ndog = dxi A ... Ndxy, (1.3.9)

called the Gelfand-Leray form, see [1, Sec.7.1]. To see this, suppose that 9;Q(z) # 0 on some open
set U. By a change of coordinates: y1 = 01Q(z),y; = x; for j > 2, equation (1.3.9) takes the form

dy1 Ndog(y) = 01H (y) dyr A ... A dyn, (1.3.10)

where 1 = H(y),x; = y; is the inverse map. Thus the form: dog(y) = 01H(y)dy2 A\ ... N dyn
satisfies equation (1.8).

We define the measure dog ) as the restriction of the n — 1 form dog to the level surface Sg ». This
measure is absolutely continuous w.r.t. the Euclidean surface are measure dSg x, more precisely
one has

Proposition 1.2.

daQ,)\(x) = W (1.3.11)

Proof. Choose local coordinates y as before, in coordinates y level surface and surface area measure
takes the form:

SQ,)\: {xl :H()Uy%"'?yn):'rj :y]}

13



amagyar 2024 220 24

and

dSo(y 1+Z€)2 M yNY2 dyy A A dyy,

Using the identity F'(H(y),y2,...,Yn) = y1 one has

81F($)81H( ) =1, 61F(x)8]H(y) + 8JF(.7}) =0

This implies that 01 H (y) = (1+>_7_, J H(y))"/2-|F'(z)|~'. Then (1.3.11) follows by taking y; = .
U

A key observation is that the measure dog », considered as a distribution on R", has a simple
oscillatory integral representation

Lemma 1.5. Let Q(x) be a non-degenerate form and X > 0. Then in the sense of distributions

doga(z) = / 2R =Nt gy (1.3.12)
R
This means that for any smooth cut-off function x(t) and test function ¢(x) one has
lim / / 2TQ@ =Nty (e1)p(z) ddt = / o(2)dog A (x). (1.3.13)
€E—

Proof. Let U be an open set on which 01Q # 0, and by a partition of unity we can suppose, that
supp ¢ C U. Changing variables y; = Q(z),y; = z; the left side of (1.3.13) becomes

tiy [ [ i) awlont ()| dudt = [ S0/)1onH Oy dy

e—0

where ¢’ = (y2,...yn). The last equality can be seen by integrating in ¢ and in y; first, and using
the Fourier inversion formula:

lim / / 2 W =Ny (et)g(y1) dyrdt = g(N\)

e—0

On the other hand S\ NU = {z1 = H\,y2,...Yyn) : ¢; = y;} and dog r(y) = |01 H(\,y')| dy in
parameters y'. [

Lemma 1.6. Let Q(z) be a non-degenerate form of degree d, k = COC;ZTYQ. Then one has for the
Fourier transform of the measure dog 1 = dog

|5 (&)] < Co.e(1+¢))~ T, (1.3.14)

Proof. Suppose |{| > 1. Using the fact that ¢ dog = dog if ¢ = 1 on a neighborhood of 0 and
formula (1.3.13), we have

da—Q(f):/ —27r2$§¢ x—hm// —2mix-§ 27rz(Q ¢( ) (5t)d$dt

We decompose the range of integration into two parts

Sk L e
[t=Cl¢| /R [t|<Cl¢l JR™

14
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Since for fixed |t| < C[¢| the gradient of the phase: [tQ'(z) — | > [£|/2 if C > 0 is small enough,
integration by parts gives |Io| < Oy (1 + |¢])~V*! for every N > 0. For [t| > C|¢| Lemma 1.3
implies,

| / e2mitQ) =€) (1) d| < O 1| 7ATT,
hence

K K
L <C. t" a1t dE < O ¢TI O
|t1>Cle]

First we prove a dyadic version of Theorem 1.5., together with a refinement which will be needed in
the proof of Theorem 1.3.

Lemma 1.7. Let A > 0 be fized, w(§) be a smooth function with supported on the set {Afﬁ <
€Nl < 3}, where [[€]| = maz;|&l.

Let My and M, » be the multipliers acting on L?(R™) defined by

m(f) = de(\Y4€) and ]\m(g) = w(&)da(A\/7¢).

Then one has for the mazimal operators,

I sup [Mxf]llrz < Cll fllze- (1.3.15)
A<A<2A
_ 1
I sup My flllp2 < CA72a]|f]| 2. (1.3.16)
A<A<2A

Note that Myf = A"d ! (f * do).

Proof. Using the integral representation (1.3.12) one has

de(A\Yde) = A" at [day(€) = A"dt! / / 2mi(Q@)=Nttm € 0/ N T ) d dt.
% n

This means
M}\f — A—%'i‘l /6_2ﬂiAtHA7tf dt,

where H)p ; is the multiplier corresponding to
haale) = [ @O0 /0 ) da.
Then taking the absolute values, and using Minkowski’s integral inequality
| s (Sl < A E4 [ S
A<A<2A
Using estimate (1.3.14) and the fact that —5"7 + € < —2, one has

A (6)] < CAT min{(1 + AJE]) N, (1+ Alt]) 7%},

and (1.3.15) follows as A [(1+ At)~2dt < C.

15
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To prove (1.3.16) we have to replace hy ¢(£) by w(§)ha(§). Then one has better uniform estimates
in & indeed for At < A2d it follows

W(€)hau(€)] < C(1+AJE)™ < (1 +A22)™N,  hence

A/sup\w(g)hA,t(g)ydt < CA/ 1 A—éfzdt+CA/ (M)t < CAa
€ At<A2d At>A2d

This proves (1.3.16). O

Proof of Theorem 1.5. If Q(z) is a positive, non-degenerate form of degree d, then Q(x) ~ |z]9.
Then the maximal function: M f(z) = supyso A~ Ay f(z)|, where

Ay f(x) :/ flx—y)dy
Q(y)<A

is majorized by the standard Hardy-Littlewood maximal function, hence is bounded from L?(R™)

to itself. Note that,
A
/ 9(y) dy = / / 9(y) doqs(y)ds
Qy)<A 0 JQ(y)=s

A
A,\f(a:):)\_l/o Af(z)ds

hence

Then, using estimate (1.3.14), Theorem 1.5 follows by the standard proof of Stein’s spherical
maximal theorem, see [101]. [

1.4 Fourier transform of integer points on hypersurfaces.

First we rewrite formula (1.2.5) in the form

Gan© =cad 3 miE) +EnO) (1.4.1)
7=1 (a,9)=1
where
m?1(e) = > e PG a/q, 1) (g€ — 1)dGoa(E —1/q) (142)
lezn
and  Gla/g,l)=q " > RGO FL e

SEZ™ [qZ™

Here we used the fact, that dog \(1) = N9 ~1déo(A\Y/9n), which follows by scaling, since |Q'(x)| is
homogeneous of degree d — 1.

Note that in the right side of (1.4.1) there is at most one nonzero term, since the cut-off factor
(g€ — 1), and then (3.5.4) implies

[my/(©)] < CXTIgTETE < cNAlgTEe (1.43)

16
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by (1.2.1) if € is small enough, hence the sum in (1.4.1) is absolutely convergent.
Let Ny and M) denote the convolution operators on Z" corresponding to the multipliers ¢ »(§)

and ma(§) = 22, 2 (4,921 mi/ 7(¢) . The main approximation property we need is the following

Lemma 1.8. Let A >0, § > 0 be amall, fized and f € 1*(Z") then

| sup [(Nx = My)f] [l < CsAT 0| £ (1.4.4)
A<A<2A

Lemma 1.8 in the special case Q(m) =}, mJQ. is proved in [82] and note that it immediately implies
Lemma 1.1 as for fixed A (A < A < 2A), one has

[(Nx =M\ f iz < CAaT0Y| fll2 Vf € 12(Z)

is equivalent to
Sup [5g.0(€) —ma(&)] < OXdTH

which is the content of (1.2.5).
Let P = AY? and let ¢(z) be smooth cut-off function on R™ s.t. ¢(x) = 1 for Q(z) < 2. Then

1 1
&Q)\(f) = Z 62ﬂzm~§¢(m/P)/0 627T04’L(Q(m)_>\) da:/o S(Oé,f)e_QM)‘O‘ da,

meZn

where S(a, &) =3, 2m(aQUM+ME) 4 (1 / P).

Let § and 6 be chosen as in Lemma 3. and integrate separately on the major and minor arcs:

700 = / L(6) Sle£)e™ do+ / ¢L(6) Sl €e™ N da (1.4.5)
ac «

(1.4.6)
=ax(§) + &(9).

The following proposition is a prototype of the error estimates in this section

Proposition 1.3. Let £} be the multiplier corresponding to E1(€) that is: gi!\f = 5)1\(5)]?(5) Then
one has
| S Exflllz < Cshd ™' 0| fl (1.4.7)

<A<2

Proof. Let S, be defined by ,@ = S, &) f(€), then

mp|&ﬂs/" Saf| da
ASA<2A a¢L(6)

Taking the [? norm one gets (1.4.7) from the minor arc estimate (1.3.4),
[ Isu@o) < Caamais o
ag¢L(0)

17
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Suppose a € Lq4(6) for some (a,q) = 1, ¢ < P41 and write a = a/q + S, |8| < P~4Hd-10,
m = qgm1 + s. We have

aQ(s) .
S(a, &) = Z il Z 627”(5Q(qm1+8)+(qm1+s)~§)¢((ITRIT;FS)
SEZL™ [qZL™ miEZ"

Let H(x,B) = e*™#R(m) ¢(m/P), applying Poisson summation for the inner sum

. jls ~
ZH(qml + 8)627rz(qm1+s)-§ — qfnZGQﬂ' q H(é— o l/q, ﬁ)

mi1 l

Integrating in 8 and summing in a, ¢, one has

w@= > > a0, (1.4.8)

g< P10 (a,q)=1

where
a5/"(€) = Y Gla,1,9)A(€ ~ U/q), (1.4.9)
leZn
and
ne-1a)= | A€ — 1/q, )¢~ dp. (1.4.10)
|B‘§P_d+(d_1>9

We shall approximate the multipliers ai/ 1(¢) by multipliers b‘;\/ 7(¢) where the cut-off function
(g€ — l)have been inserted in (1.4.9) that is let

by/%€) = Y Gla,l, q)b(gé — )Ja(E —1/q) (1.4.11)

lezZm

Next we extend the integration in 8 in (1.4.10) and define

&€ =Y Gla.l,q)w(ag — DINE — 1/q), (1.4.12)
lezZn
with
INE=1/q) = /%ﬁ(f —1/q,B)e ™ dp. (1.4.13)

Note that the integral in (1.4.13) is absolute convergent. Indeed by (1.3.8) and (1.2.1)

\H(n, B)| < Cq.P"(1+ PYB|)~ 71+, (1.4.14)
A crucial point is to identify the the integrals I)(n):

IA(U) — /n /%(EQM'(Q(I)A)Be2ﬂim-n¢(m/P) dﬂ d77 (1415)

N / doga(@)e*™ N ¢(x/ P) dn = dog (),

18
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by (1.3.12). This means that /(&) = m$/9(¢).

Let Ai/q , Bi/q , Ma/q denote the multipliers, corresponding to a/\/q(f), bi/q(f), and mi/q(f).

Proposition 1.4. We have the following estimates,

ST | sup [(AYT— BN f| | < CsATT £ (1.4.16)
(<P (a1 A<A<2A
2 2 |, s Byt — M) |l < AT £ (1.417)
< P10 (a,q)— A<A<2A
> X sw M L < CoAE T f e (1.4.18)

q>Pd=1)9 (a,q)=1
Proof. Note that each of the operators Ai/q, B‘;\/q, M:\l/q are of the form
TS = [0, 1 a5
I

where Upg is some convolution operator acting on functions on Z": (757 = pug(§) £(€), and T is some
interval. Then one has the point-wise estimate

swp [T < /I U f| dB.

<A<2A

and taking the {2 norm

| sup [Taf[ [l < /Isupl (s (E)N) dB - || fllz=-
ASA<2A I ¢
For the operator Ai/ 7 _ Bi/ ¢ we have

=" Gla, 1)1 — (g — 1) H(E ~1/q,B),

lezn

and I = {|B] < P~4t(d=10} Let n = ¢ —1/q and estimate H(n, 3) by partial integration:

‘ﬁ(ﬂ,ﬁ)‘ = P"| /(62m'PdﬁQ(z)(z)(x))eZm'Px-ﬁ dz| <
CxPal [ Vajan) ¥ @90 g(w) <

< OnP"|Py|~N(1+ P4 BN

Using the facts that |Pn| = P/q|(¢§ — )| > cPlf(dfl)e(l + |(g€ —1)|) on the support of 1 — (g€ —1)
(for small ¢ > 0), (d — 1) < 1/3 and |G(a,1,q)| < 1, one has for || < P~4+(d-1o

| sup p13(8)| < Cy PP NUZ2EDD N (g — 1))V < oy PN/
£ lezn
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Then choosing N large enough, (1.4.16) follows since the total length of integration for different
values of a a and ¢ is at most 1.

For the operator Bi/q — M;/q, we have

ps(&) =" Gla,1,q)v(gs — NH(E ~1/q,B),

lezn

but we are integrating now on |3| > P~4(@=1) Note that ¢(g¢ — 1) # 0 for at most one values of I
By estimates (1.4.16) and (1.3.12): |G(a,l,q)| < Cq~27¢, we have

|sup p1s(€)| < Cng~2P™(1 + PY|B|) a1t
13

hence by changing variables 3; = P?3 one has

| sup (B =5 | < CogoPn 1B112d5 - | £l
A<A<2A |B1]>P(d—1)0
<C qufsPnfdfé
= € .

Summing in a < ¢ and in ¢ = 1 to oo proves (1.4.17).

For Mf\l/ ? the multiplier p(€) is the same, but now the range of integration is the whole real line.
Thus

| sup M e < G [ (14 PU3l) a8 e <
A<A<2A BeER
< Ceq 2P| £l
Summing for a < ¢ and ¢ > PlA=10 5ne gets the estimate pr—d-(d-1)§ < pn—d-56 ]

Lemma 1.8 immediately follows from the above said, indeed for fixed A

(N =M< ST ST Ay My Y Iy .

g<P=1)0 (a.q)=1 gz P(i=1)0

We will need the following ”dyadic” discrete maximal theorem,

Proposition 1.5. Let A > 0 be fized, then for the operator:

Naf(m)= > f(m-1),
Q=X

one has
| sup [Nl lle < CAET £, (1.4.19)
A<A<2A

where the constant C is independent of A.

20
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Proof. Note that ]V;f(&) = Go.(€)f(€) hence
Naf =3 MY+ 374 — My f v E)f
g,a g,a

By Proposition 1.4 it is enough to show that,

Z [ A<s}\1£)2A ‘M;/qf‘ iz < Clfle=-
q,a -

In proving (1.4.18) we showed
| sup M| le < Cq~ TP flle = CqmTTATT e
A<A<2A
The sum in a, ¢ is convergent and the Proposition is proved. [

1.5 The singular series

In this section we analyse the normalising factor rg(A) which is the number of solutions m € Z™ for
which @Q(m) = A. We start by showing the existence of a regular set of values I', defined in Section
1, corresponding to a non-degenerate form ). Taking £ = 0 formula (1.2.5) one has that

ro(A) = cgAi ") T K(q,0,A) + O(Xa~1 7).
q=1

By the well-known multiplicative property K(q1,0,\)K(g2,0,\) = K(q1g2,0,\) for ¢; and g2 being
relative primes, we have

=Y K@on= ][] ZKp o0)= [[ K>
q=1

p prime r=0 p prime

Note that K(1,0,A) = 1, then by estimate (1.5) it follows that K,(\) = 1 + O(p~ a1ty =

1+ O(p~17¢), by our assumption x = % > 2. Thus there exists R = R s.t.

2< I 1KMW <2 (1.5.1)
p>R prime

We recall that K,()) is the density of solutions of the equation Q(m) = A among the p-adic integers,
see [11]. More precisely,

Proposition 1.6. Let ro(p™¥,\) = |{m € Z"/pNZ" : Q(m) = X (mod p™)}|, that is the number
of solutions of the equation Q(m) = X (mod p"). Then one has

N
ZK P",0,0) = p "N Drg (pN ). (1.5.2)
r=0
Proof. First
N .
_ 2w (Q(m)—N) —x
TQ(pN,)\): Z pNze (Q(m) )pN’
m (mod pN) b=1
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since the inner sum is equal to p’v or 0 according to Q(m) = A (mod p¥) or not. Next, one writes
b=ap™~", where (a,p) =1, a < p" and r = 0,..., N, and collects the terms corresponding to a
fixed r which turns out to be K(p",0,A). O

We remark that this implies: limy,—0op™ " Drg(p, \) = K,(\). To count the number of solutions
(mod p™), one uses the p-adic version of Newton’s method, referred to as Hensel’s Lemma, see [51,
Chapter 4].

Lemma 1.9. Let p be a prime, X\ and k,l be natural numbers s.t. | > 2k. Suppose there is an
mg € Z" for which
Q(mo) = X (mod pt), (1.5.3)

moreover suppose that p¥ is the highest power of p which divides all the partial derivatives 0;Q(mo).
Then for N > 1, one has:
p_N(”_l)rQ(pN, A) > p_l(”_l). (1.5.4)

Proof. For N = [ this is obvious. Suppose it is true for N, and consider all the solutions
my (mod pN*t1) of the form m; = m + pV~*s where s (mod p). Then

Q(m +pN7ks) —A=Q(m)— A +p”7kQ/(m) -5 =0 (mod pNH),

that is a + b - s = 0 (mod p) where ap™ = Q(m) — X and bp* = Q'(m). Then b; # 0 (mod p) for
some j hence there are p"~! solutions of this form. All obtained solutions are different mod (p™¥*1),
and m; satisfy the hypothesis of the lemma. O

We remark that in case of m = 1, k = 0 the above argument shows that there are exactly p(N—1(—1)
solutions m for which m = mq (mod p) and ¢(m) = A(mod p").

Lemma 1.10. Let Q(m) be a non-degenerate form, then there exists a set of reqular values in the
sense of (1.2.4).

Proof. Let A\g = Q(myg) # 0 for some fixed mg # 0. Let p1,...,ps be the set of primes less then
R (R is defined in (3.1)). Let k be an integer s.t. p? does not divide d)\g , for all j < J, where
d is degree of Q(m). By the homogeneity relation Q'(mg) - m = d)\g it follows that p;? does not
divide some partial derivative 9;Q(myp). Fix [ s.t. [ > 2k and define the arithmetic progression:
F'={\+k H‘jjzl pé- : k> kq}t. We claim that I' is a set of regular values. Indeed, by Lemma 1.9
one has for A € T’
Kp,(A) = lim p}”(N_l)TQ(pﬁy,/\) > p;l(N_l)

This together with (4.6.1) ensures that the singular series K (\) remains bounded from below, and
the error term becomes negligible by choosing k¢ large enough. [J

Let us remark that along the same lines it can be shown, that all large numbers are regular values of
Q(m), if for each prime p < R and each residue class s (mod p), there is a solution of the equations
Q(m) = s (mod p) s.t. Q'(m) # 0 (mod p). This is the case for example for Q(m) =3, m;l.

Let us fix a set of regular values I', and a rational point k/p # 0 in II" | where k = (k1,...,k,) € Z™.
Define the measure space X to be the set of residue classes (mod p), with each element having
measure 1/p. Let Tj(z) = x + k; (mod p), then the family of transformations T' = (T} ...T},) is
commuting, measure preserving and ergodic. Indeed for some j, k; # 0 (mod p) and then Tj is
ergodic. The function f(z) = e2™*/? is a joint eigenfunction : T;f = e*miks /P f hence

AM:T;M@M@Mﬁ7 (15.5)
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where A, f are the averages defined in (1.2.7). We’ll show below that the mean ergodic theorem
(1.2.7) is not valid in this setting, and hence the condition strong ergodicity is necessary. Note that
T = (Ty,...,T,) is not strongly ergodic as T7 = ... =T} = 1I.

Lemma 1.11. Let I" be a set of reqular values. Let p be a large enough prime: p > d, p > R, p > X\
(where X\g is the smallest element of T'), and k € Z™. Then for A € T, A = Ao (mod p) one has

1 N 1 QTFZM 5
——0o.(k/p) = e P + 0N 1.5.6
G e S VI () (1.5.6)
mezZ"™ [ pL™

Taking Lemma 1.11 granted for a moment, note that the expression:

S = Z ezm'mT"“’
Q(m)=A (mod p),
mez" [pZ™

is the Fourier transform on the group Z"/pZ™ of the indicator function of the set of solutions to
Q(m) = A (mod p), thus >, |Sk|> = p"|rq(p, Ao)| by Plancherel’s formula. This implies that Sy, # 0
for at least one k # 0, since otherwise the equation Q(m) = A = Ao (mod p) would have p™ or no
solution, both cases are impossible for p being large enough.

Thus (1.2.7) is not true, assuming only that the family of transformations is ergodic. We prove now
Lemma (1.11)

Proof. For a regular value rg(\) = coK(M)NY4~1 + O(A/4=179) where |K()\)| > 1, hence by
(1.2.5), it is enough to show

Q' K Z Z (g.1, N (ak/p — e\ (k/p — 1/q)) = (15.7)
q=11eZn
e X on)
rQpA)
Q(m)=X (mod p),
mezL"™ [ pZ™
For ¢ not divisible by p, ,_L > — hence each term in the sum is bounded by ¢ - ao1te\—r/(d=1)+1+e

q! = pq '
by (1.5) and (1.13). There i at most one nonzero term in the ! sum for fixed q, and thus the total

sum for ¢ not divisible by p is of O(A7°).

For ¢ = bp, only those terms for which k/p = [/q are nonzero in (1.5.7), hence the sum becomes

1

(N

We write ¢ = ¢p” where (¢,p) = 1 and use the multiplicative property

NE

K (bp, bk, \).

T

1

K(cp™, ckp”, \) = K(c,0, \) K (p" T, kp", \),
which follows by the Chinese remainder theorem. At this point it is enough to show
> -m-k
(Y K 0,0)Q_ K@ k', N) = Y ST (158)

A (e;p)=1 r=1 rQ(p; A) Q(m)=X (mod p),
mezZ™ [pL™
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Again, by multiplicativity,

(e,p)=1 r=1 q=1
For the other factor in (1.5.8) one has
Z K@ kph A) =p (7D Z 2T (1.5.10)
r=1 Q(m)=X (mod p),
mezZ" [pZ™

Similarly as in (3.2)
pN
S g e

m (mod pMV) b=1

and writes b = ap™ ", where (a,p) =1, a < p" and r = 0,..., N. Each term corresponding to a

fixed r is K (p", kp"~!, \) for r > 1, while the term corresponding to r = 0 is zero.

Next, let mg be a solution of Q(m) = A (mod p). Then by homogeneity Q' (mg)-mg = d\ = d\g # 0
it follows by the remark after Lemma 9. that the number of solutions: m (mod p") for which
m = mg (mod p) and Q(m) = X\ (mod p") is exactly p(*~DWN=1) Thus

p ) - e
Z p,N Z e27rz(Q(m)f/\)pL(BQmp—l\}’C _ p,(nfl) Z 6271'17’“7
m (mod pN) b=1 Q(m)=X (mod p),
mezL™ [pZ™
this proves (3.10). By the same argument,
Kpy(\) =p~ " Drg(p, V), (1.5.11)

and (1.5.8) follows immediately from (1.5.9), (1.5.10) and (1.5.11). O

1.6 Proof of the main results.

In this section, first we prove Theorems 1.1- 1.2 and Lemma 1.2. the

Proof of Theorem 1.1 Let ¢y(z) = ¢(x/A/%), the one has

> orm) = [ saa@)ane) de

Q(m)=x 1

where

oA(©)de =Y or(m)e > mE = N Gy(€+m)

mezn mezn

by Poisson summation (here <Z~>,\(§ ) denotes the Fourier transform on R”. Since the exponential sum
QA (€) is a smooth periodic function on R" it follows

> ¢A(m)=/ GoA(E)or(€) dé. (1.6.1)

Q(m)=x 8

24



amagyar 2024 220 24

Write 6 (&) = ma(§) + Ex(§) and estimate the contribution of the error term
[ 1E@a (1 de < o1y < Conni 1, (1.62)
We used the error estimate in (1.2.5) and the fact that ||¢y][1 = [|¢|1 < C. Recall that

ma(€) =Y K(g,1, (g€ — Ddog (€ —1/q)
g=1 1

Next we estimate the contribution of the terms corresponding to [ # 0. For g > A3d we use

> Y CIK (g, 1, Mw(g€ — Ddoga€ —1/g)] < (1.6.3)
qzkﬁ 70
SONYETE N g < CoA /AT,
qZ/\Tld

K

and after integrating we get the same estimate as in (1.6.2) (%7 > 2). For ¢ < A2 we give the
estimate

> 3 [ 1Kl ~ Ddsgals D drOlde s exx . (16

qs)\l/Qd l;éO

for any N > 0 integer. For fixed [ # 0, on the support of the cut-off factor ¢)(¢¢ — [), one has
l€ —1/q]] < 1/(4q), which implies ||€|| > 1/(2¢), and also [|£]| > ||I||/(2¢). Thus

BA(E)] < CNAA(L + AV ) 2N < (1.6.5)
< OnAM A1+ A4 )2)™N (1 + cfi]/29) 7.

Integrating in § over the region [|§ —1/¢|| < 1/(4q), and then summing in [ and in ¢ < A2d one
obtains (1.6.4).

Estimates (1.6.3) and (1.6.4) imply together that the total contribution of the terms corresponding
tol# 01in (1.6.1), is O(A™4~1=9_ Finally, we note that

3 [ 1 (0.0.00 - )o@ de < Op2i 7, (1.6.6)
q=1
by the same argument as used in proving (1.6.3) and (1.6.4). Indeed, the range of integration is
|€] > ¢/q where both for ¢ > A\/?% and for ¢ < A\/?¢, one has a gain, using the decay of the the

factor K(q,0,A) for small, and the decay of o) for large values of g.
Using (1.6.3), (1.6.4) and (1.6.6), one has

| s0a©ir©de = oK) [ saa©)r(€)ds+ 00 (167)
1o [ 8(u)doglu) + ONE 1Y)
Qy)=1

Indeed, one replaces the singular series cgK(\) by A™/4+1rg(\) | use Plancherel’s formula, and a
change of variables = A!/%y. This proves the Theorem, since ro(A) > CQ)\”/ 4=1 for regular values
A O
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Proof of Lemma 2. One writes

fraclrg(N)|6oa(€)] < CsA™™ 4 my (€)] + O(A79). (1.6.8)

For ¢ fixed and &£ ¢ Q" (i.e. when &; is irrational for some j)

AT  mg A (©)] = e Y 1K (g, (g€ — Ddaga(€ —1/q)] (1.6.9)
l

< Coq~ T1dag (AN ag} /9,

where {£} = min|{ —|. Indeed in the [ sum only term corresponding to the closest lattice point to
g€ is nonzero.

Note that {g¢} # 0 for every g, since otherwise £ € Q™. Then by (1.13) and (4.10) for ¢ < \1/2d
we have the estimate )\*”/d+1|mq7>\(§)] < Cq 1=\, while for ¢ > A\/2? one uses the bound ¢~ 17
The lemma follows by summing in q. [

In both the mean and pointwise ergodic theorem the Spectral Theorem will play an essential role.
Also, strong (or full) ergodidity is a condition on joint spectrum of the shifts T; (7 f(z) = f(Tjx)).
To see that let (X, ) be a probability measure space, T'= (T} ...T,) be a family of commuting,
measure preserving and invertible transformations. By the Spectral theorem there exists a positive
Borel measure vy on the torus II", s.t.

(P T)1.5) = [ 9l (©), (1.6.10)

for every polynomial P(z1,...,z,), where

(5) = p(fl, . ,én) = _P(627r7l517 . 6271'7;5”)’
and (,) denotes the inner product on L?(X, ). We recall two basic facts

i) For r € II", v¢(r) > 0 if and only if r is a joint eigenvalue of the shifts T}, (i.e. there exists
g € L*(X) s.t. Tjg = €?™"ig for each j.

ii) If the family T' = (T1,...,T) is ergodic, then v¢(0) = [(f,1)[> = | [y fdu|*.

Proposition 1.7. Suppose the family T = (11, ...,Ty,) is ergodic. Then it is strongly ergodic if and
only if vg(r) =0 for every r € Q", r # 0.

Proof. Suppose v4(1/q) > 0 for some I # 0, then there exists g € L?(X, ) s.t. Tjg = e2™%i/9g Vj.
But then T]qg = g Vj but g # constant since [ # 0.

On the other hand suppose that Tjgg = g, Vj for some g # constant. Then the functions g, . s, for
s € Z™/qZ™ defined by

—2mi S m
9sy...sp — Z (& q Tl 1"'Tn "g
meZn /qZn

are joint eigenfunctions of with eigenvalues s;/q. They cannot vanish for all s # 0 (mod q), because
then one would have Tjg = g Vj, as can be seen easily by expressing Tjg in terms of the functions
Jsy.sn-
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Proof of Theorem 2. We start by

A 2
45 = 1B = AR - 1P = [ P9 g

1~ /{0} rQ(M)?

The point is that v¢(Q"/{0}) = 0 by the strong ergodicity condition, moreover the integrand
pointwise tends to zero on the irrationals by Lemma 2, and is majorized by 1. It follows from the
Lebesgue dominant convergence theorem, that the integral also tends to 0 as A\ — co. This proves
the theorem. [

We prove Theorem 1.4 i.e. the L? boundedness of the discrete maximal function associated to the
form @Q(m) now, which plays a crucial role in the proof of the pointwise ergodic theorem.

Let ¢ € I?Z™, the averages we are interested in: ﬁ ZQ(Z):/\ ¢(m — 1) will be replaced by

N;gb(m):ﬁ > o(m—1). (1.6.11)
QU=>

Indeed it is enough to prove the maximal theorem for the averages N, since for regular values:
ro(A) > cgAV941. We write

Nap=Mo+Ed=> > Mo+ En0, (1.6.12)

a=1 (a.q)=1

where M, M;/q, &, denote the mulitpliers corresponding to the functions A=™/4+1m, (€), mi/q(g),

Ex(€). We denote by M,, M, / 7 €, the corresponding maximal operators.
By Lemma 8. we have,

€l <D I sup €l e < C5 D> 27F(|gll2 < Csll e (1.6.13)

k=0 2FSA<2tH k=0
The same shows, that
Isup [Ex0] [li2 < C5A™°| - (1.6.14)
A<A

Thus to prove Theorem 1.4 it is enough to show
Lemma 1.12. Let ¢ > 1, and a s.t. (a,q) =1 be given. The one has

|2 < Ceq™ 1) (1.6.15)

1

It is understood that Q(m) is a non-degenerate form, hence x = mcadim Vo > 2 and € > 0 can

be taken arbitrary small. Hence in the right side of (1.6.15) we can take the bound Cq~2~¢, but
we’d like to emphasize the explicit dependence on k.
Assuming Lemmal.12 for a moment, by sub-additivity it follows:

IM.gllie <CY q-q > Il < Cllgllre
q=1

Together with estimate (5.2) this proves Theorem 1.4 [

The proof of the Lemma 1.3.13 is based on a general transfer principle proved in [82].
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Lemma 1.13. Let ¢ > 1 be a fized integer and B be a finite dimensional Banach space. Let m(§)
be a bounded measurable function on R, taking values in B, and supported in the cube [—i —i]”.

Define the periodic extension by

mi, (&)=Y m(¢—1/q)

lezZn

Let T': L2(R") — L% (R™) (where LE(R™) is the space of square integrable functions taking values
in the space B), be the multiplier operator corresponding to the function my(&).

Similarly let T4, L*(Z") — L%(Z™) be the multiplier operator corresponding to the periodic
function mper(§). Then one has

T3l L2 (zry— 22,2y < ClT || L2 )= 12, (307 (1.6.16)

where the constant C' does not depend on the Banach space B, and is also independent of q.

Proof of Lemma 12. Choose a smooth function ¢’ supported in [—1/2,1/2]™ for which ¢ = ¢/¢.
Then mi/ 1(¢) can be written as the product of the functions

ma (¢ Z G(a,l, )" (€ —1/q), (1.6.17)
lezn

and

=Y (& —1/q)dA(E —1/q). (1.6.18)

lezn

For the first multiplier operator M®/4 it is bounded from 2 to itself with norm:

supy |ma/9(€)| < C.q~ 717, The sequence of functions m$ (§) defined by (5.6) can be considered as
a function mapping from §R” to the banach space By which is the [°° space of functions of 1 < XA < A
for some fixed A.

The multiplier corresponding to 1(g€)da,(€) is a bounded operator from L?(R") to L% (R") (B
being the [°° space of functions of A > 0), which is the content of Theorem 5. Then one applies

Lemma 13. to see that the multiplier mi(g) is bounded from [?Z" to Z%A Z" with norm independent
of A. This implies (5.2). O

The proof of our main result, the Theorem 1.3, consists of a number of reductions. The argument is
motivated by that of Bourgain’s polynomial ergodic theorem corresponding to arithmetic subsets of
integers [15, 14]. However in our case the averages are taken over disjoint sets, a condition on the
joint spectrum must be imposed, and the Spectral Theorem will play an essential even in the proof
of the pointwise ergodic theorem.

Let f € L*(X, u), we can suppose [y fdu =0, and then we have to show that |4y f(z)| — 0 for
almost every x, as A — oo and A € I'. Then again we can replace the factor rg(\) by A/d=1in the
averages.

i) We start with a standard reduction to shifts on Z™. Let (X, ) be a probability measure space,
T = (Th,...,Ty). For z € X and L > 0 and define: ¢, ,(m) = f(T™z) if |m|| < L and to be 0
otherwise. Here m = (my,...m,) € Z", |m|| = sup; |m;| and T™x = T}"* - ... . T;""x. Notice that
for fixed A < L
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3 (1) = sup |Arf(T'z)| = sup [NagL (1) = |N5¢r.(1), (1.6.19)
A<A A<A

for ||I|| < ¢(L — A) Thus taking the square, summing in [ (for ||/|| < ¢(L — A)), and integrating over
the space X one obtains

e(L — A ALl 2 < /X N} b0 e dis (1.6.20)

using the fact that the transformations 7" are measure preserving. Also

| 1w

Then letting A — oo, it follows that the L?(X) — L?(X) norm of the maximal operator A, is
majorized by the I2 — I2 norm of the discrete maximal operator N,. Then it is enough to prove the
pointwise ergodic theorem for a dense subset of L?(X), p.e. for L=(X).

Bdu = cal"| f2 (- (16.21)

ii) Following [15], one reduces pointwise convergence to L? bounds for ”truncated” maximal operators.
Suppose indirect, that
p{x : limsup |Axf(z)] >0} >0

then the same is true with a small constant o > 0 inserted:
p{x : limsup |Axrf(z)] > 2a} > 2«

and using the definition of the upper limit it is easy to see, that to each Ay if A;y1 is chosen large
enough then

plz s Apf(x) = supy,<x<na A f(@)] > al > a

which implies ||A¥f||3 > a3, V k& . Lets fix such a sequence )\, which is quickly increasing:
Akl > 4)\k4d. Then it is enough to prove

1
7 O 14LfI3 < o, (1.6.22)
k<K

for K > K(). This means that the Cesaro averages converges in (6.4) tends to 0 (the terms
themselves may not converge to 0).
Now fix K and choose L > Ai 1. The reasoning in i) leads to

1 * 1 *
AL =0 Y142 < [ o S INGowal di (16.23)

k<K k<K

where NF is defined analogously to A*. Thus it is enough to prove

G X N6

k<K

i) di < cnc®L7| f113 (1.6.24)

for K > K(a) and L > L(K,«). By (1.6.21), inequality (6.6) would follow, if the same would be
true pointwise, that is 1/K Y3, < i [Nior|l7» = 0 for every x, however this seems to be true just
in average, and has to do with the fact that nearby averages cannot be compared.
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i3) We use the approximations to NNy introduced in Section 2., and the transfer principle (1.6.16) to
reduce the estimates to that of L? — L? norms of the corresponding maximal operators acting on R”.

We often use the following notations; if v, (§) are continuous functions on IT", then denote by I'y
the corresponding multipliers and by I'; the maximal operator: I';¢= supy, <x<n,,, [T x|
Since

ARG (€)= D AT mg 5 (€) + ATV ITIEN ()
q=1

then by estimates (1.4.7) and (1.6.13)

€5 1212 < CsA° (1.6.25)
and
1> My llese < Cay”. (1.6.26)
4>9a

If we apply (1.6.25) and (1.6.26) to the function ¢y, , integrate the square over X and average for
k < K, the total contribution to the L? norm is less then:

(05 + o) [ onalf due) < 0Ll
by choosing K and ¢, large enough w.r.t. o and e.

Thus enough to deal with the finitely many maximal operators attached to the functions mi/ 1(¢),
for ¢ < ¢, and a < ¢, (a,q) = 1. Then we can fix a and ¢, and write

)\—n/d+1mi/Q(§) _ Z Gla,l,q) (gt — l)d&()\l/d(f —1/q)) (1.6.27)
=
= Y Gla,5,0) (g€ — )5\ (€ — 5/9))per,
SEZL™ [qZ"

where Yper(§) = Y2y ez 7(§ — 11) denotes the periodization of 7. Indeed write [ = ¢l; + s and use
the fact that G(a,l,q) = G(a, s,q). Again we can fix s (there are at most ¢" < g, choice for each q).
We remark that for ¢ € I? and ¢,,(m) = e 2mms/ap(m) e, bs/q(§) = ¢(§ + 5/q), one has

J\J:/q,k;(z5 = M;ckgﬁs/q

where M7, , is the maximal operator corresponding to the function (g€ — $)de(ANY4(E — 5/q))per

, while M} corresponds to (q€)de(AY4(€))pey. Indeed one changes variables (¢ — s/q) — € in
evaluating the multipliers (the factors e?™™%/¢ vanish when taking absolute values).

We are in a position to apply the continuous spherical maximal theorem, and further decompose the
functions 1 (q€)da(A\Y/4(€)) to get decay estimates. Let 1 = Wk,0 + Wk,1 + wg,2 be smooth partition
of unity on [|{]| = sup; |£|; < 1/2 such that

wio(€) = 0 unless [|€] > 1.2,

1
wk1(€) = 0 unless %)\lﬁl”gu <\, % and
Y
wi,2(€) = 0 unless A\, 2@ < ||¢||
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Accordingly we have the decomposition: M} < M, k0T M1+ M, 5 and estimate each term separately.
For fixed ), using the fact that |do(A\/9€) — co| < AV9|¢| (c¢g = d(0)), one has

|wi,0(£)1(q)dG(A) — cquio(§)1(g€)| < CNINZ,. (1.6.28)

Thus by the standard square function estimate the I> — [? norm of the maximal operator (taking
the sup over A\ < A\ < A\gy1) corresponding to the functions in (1.6.27) is bounded by:

1/2
2/d\—4 —
( Z )\/)\k+1> <A
>\<>\k+1

To estimate the maximal operator Mj ; corresponding to the functions Wi 1 (€)1 (g€)da (A A(€)) per
we first use the transfer principle to see that it is bounded by the L?(R") — L?(R™) norm of the
maximal operator corresponding to the functions wy, 1(€)1(g€)da(A/4(€)). Notice that the maximal
operator (the sup taken over all A > 0) corresponding to the functions d&(\/4(¢)) is bounded from
L? — L? by Theorem 1.5.

Thus for ¢,/q = @145/ One has

1My 16s/qll2 < Cq /Hn w1 ()16 + s/a)[ dt. (1.6.29)

The point is that since the sequence )y is quickly increasing Ap; > 4A* each point can belong
to at most 3 intervals Ij, on which wy ;1 supported. Hence averaging over k < K the right side of
(1.6.28), gives a contribution of 3/K||¢|%.
Finally, the family of functions wy, 2 (6)Y(q€)da(N/4(€)) satisfy the conditions of Lemma 7. Then
(1.16) and (5.4) imply the bound
_1

M 20s/qlliz < CoAy ** |92 (1.6.30)

Note that (1 6.27)-(1.6.29) mean, that the maximal function
}jM@@Mm<0/ W(g€)wr1 (PO + 5/)I? d + OK )|yl
k<K

i4) It is enough to prove now for fixed r = s/q, that

L_nf;/gnwhﬂfﬂéﬁ>+sﬂnﬁdgdu@»><\aPnfn& (1.6.31)

if k > k(a) and L > L(k, a), where we wrote wy (&) = |wg.1(€)|? for simplicity of notation.
By applying Plancherel for the inner integral in (1.6.33), one obtains

L /X Z/ ér,2(m)dp 2 (m" ) (m — m!)e2rim=m)s/a ge g1y () (1.6.32)

— " Z <Tm—m’f7 f>(:1k(m N m/)627ri(m—m’)s/q
lm||<L, [m/||<L

= L_”/ Z wk(m _ m/)627ri(m—m/)(0+s/q) dl/f(@)
I \ml|< L, lm/ | <L

/ Z CLL o 27ri(0+s/q) de(e),
I

leZn
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by the spectral theorem, where ar () = [{(m,m); |m| < L, ||m'|| < L, m —m’ =1}|. Finally, one
has

/ (L™"ar * wy) (0 + s/q) dvy, (1.6.33)
where * denotes the convolution on II" with respect to the Lebesgue measure. Note that
L 1
—n A I 1) 2mim0|2n n . 2n
L™ar(0) =L |m;Le " < L™ min(1, m)

This means that L~"ay, is a d-sequence (i.e. weakly converges to a Dirac delta) as L — oco. In-
deed it is easy to see that: L™"ar xwp < cwy +€ for every € > 0 if L is large enough w.r.t. to A\ and e.

Finally, if we substitute this estimate into (1.6.33), then using the fact that wg(6) = 0 unless
0] < )\;1/2‘1, one has

/ (L "y *wi) (0 + s/q) dvy < cdvp{0: [0+ s/ql| < A7Y>H)
Fedug () < 03|12

if k is large enough w.r.t. @ and L is large enough w.r.t. k£ and .

Indeed dvy(II") = || f H%Q( x> and only here we use the condition strong ergodicity, that is the
condition that dvy{s/q} = 0 for every rational point s/q # 0, note that by our assumption

dvg{0} = [ fdp =0 as well. This implies that dvg{6 : [0 + s/q|| < )\;1/%} — 0 as k — oo.

This finishes the proof of our main result, Theorem 1.4. [J.

2 Quadratic systems and simplices in sets positive density of Z¢

In this chapter we present some results on the existence of geometric point configurations in sets of
positive density of the integer lattice Z.

Such patterns are determined by quadratic systems of equations hence number theoretic methods
developed to count integer solutions of such systems will play an important role. In particular, using
the theory if Siegel theta functions referred also to as “Siegel’s generalised circle method”, we prove
a discrete analogue of Bourgain’s simplex theorem, with the underlying Euclidean space replaced by
the integer lattice.

We then extend our results to more complex patterns such as k-dimensional boxes or direct products
of simplices, by utilizing some constructs and techniques from additive combinatorics and hypergraph
theory. In particular we will develop and make use if the so-called Gowers box-norms[48] and a weak
hypergraph regularity lemma [48, 108] in the context both Euclidean spaces and the integer lattice.

2.1 A conjecture of Graham in geometric Ramsey theory

Geometric (or Euclidean) Ramsey theory was pioneered in a series of papers [34, 35, 50] by Erdés
at al. They define a finite point configuration X C RF to be Ramsey if for every number of
colors 7, there is a large enough dimension d = d(r, X) such that every r-coloring of R¢ contains
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a monochromatic, congruent (isometric) copy of X. The fundamental problem in the area is to
classify which point configurations are Ramsey.

While this problem has been studied via combinatorial means [41, 69, 70], a density of analogue
was proved by Bourgain [16] using Fourier analysis. He has shown that if X = {zq,...,2%} is
non-degenerate simplex, then any set A C R¥ of positive upper density contains a congruent copy
of all of its sufficiently large dilates. Again a basic problem is to classify which finite point con-
figurations X, besides simplices, have this property to which we will refer to as being density Ramsey.

For k = 2 Bourgain’s theorem says that the distance set D(A) := {|z1 — x2| : z1,22 € A} of
aset A C R* (k> 2) of positive upper density contains all large numbers A > A(A), which is
already a highly non-trivial result first shown by Katznelson and Weiss [45] via ergodic means. The
threshold A(A) must depend on the set A not just on its density as can be seen by taking the set
A=2\-7F + By 2 i.e. the set of point of distance less than A/2 from the points of the grid 2 - VA
Indeed, such a set has positive density depending only on k but will not contain any two points at
distance A.

It was observed by by Erdés at al. [34] and by independently by Bourgain [16] that Ramsey sets must
be spherical in both context. This has led Graham to conjecture that a finite point configuration X
is Ramsey or density Ramsey if and only if it is spherical, i.e. if it can be inscribed into a sphere
[50].

2.2 Simplices in sets of positive density of the integer lattice

We prove a variant of Bourgain’s result for subsets of the lattice A C Z" of positive density. Let
us recall that a subset A of Z™ has upper density at least €, and write §(A) > ¢, if there exists a
sequence of cubes Bp; of sizes Rj — 00, not necessarily centered at the origin, such that for all
jEN

|ANB R; | > e R;-l
moreover the upper density §(A) is defined to be the supremum of all € > 0 satisfying the above
condition.

In so doing, we must avoid certain natural obstructions, which we describe below. Consider a
simplex A = {vg, ..., v} C R", where k < n. Associated to the simplex is a positive definite matrix
k x k matrix Ta = (t;;), with entries

ti]’ = (UZ' — Uo) . (Uj — 1)0), (221)

where ” -” denotes the dot product. Nota that Ta is independent of the rigid motions of the simplex.

It is clear that the simplex A can be embedded in a set A C Z" only if Ta has all integral entries.
In this case we will call the simplex integral. It follows that we can consider dilates of the simplex of
the form v AA, for positive integers A. Let A = (¢Z)" for some positive integer ¢ then §(A) = ¢~"
and VA C A only if ¢ divides A. We can state now our main result.

Theorem 2.1. Let k > 2, and let the dimension n > 2k + 4. For each A C Z"™ with §(A) =6 > 0,
the following holds for all integral k-dimensional simplices .

There is a positive integer Q = Q(0), and a number A = A(A, A) so that for all integers A > A,
there is a simplex \' C A, which is, up to a rigid motion, VAQ .
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Again, taking A = (¢Z)" for all 1 < ¢ < §~Y/™ (so 6(A) > §), we see that the factor Q(J) must
be divisible by the least common multiple of positive integers at most /", thus it follows from
elementary estimates on primes that Q(8) > exp (¢d~/"). The number Q(§) will be constructed
explicitly and will satisfy the upper bound Q(d) < exp (C §—4(k+1)/n—=2k—4y

For k = 1, Theorem 2.1 translates to the fact that the distance set of A, d(A) = {|m —1|: m €
A, 1 € A} contains all large distances of the form vAQ(d). This was proved earlier in [84] in
dimensions n > 4.

To introduce our terminology, let us call two simplices A, A’ C R™ isometric, and write A’ ~ A\, if
one is obtained from the other via a rigid motion, that is when A’ = 2 + U(A) for some x € R™ and
U € SO(n). Tt is clear that ” ~ 7 is an equivalence relation, we call the equivalence classes k+ 1-point
configurations. Thus a k-point configuration preserves only the geometry, or the ”shape”, of k points.
Theorem 2.1 says, roughly, that a set A C Z" of positive upper density contains all large dilates of any
given configuration of k£ points in general position, satisfying the above mentioned natural conditions.

We emphasize that the above result is proved only under the assumption that the simplex
A = {0,v1,...,v;} is non-degenerate. A counter-example is shown in [16] in the continuous
case, when n = k = 2, A = {0, e1,2e1}. In our settings when A = {0, e1,2ey,..., ke }, the existence
of an embedding of A in A follows from Szemerédi’s theorem on arithmetic progressions [104],
however it is not true that all large dilates of A can be embedded in A in the sense of Theorem 2.1

We will turn now to some quantitative results. These will depend on the eccentricity e(T") (with
T = Tx) of the simplex A, defined by

k
T
T here w(T) = inf Tx -z, |T]:(Z|tij]2)%. (2.2.2)

D)=Ly b

,j=1

Note that |T|'/? is comparable to the diameter of A, and the quantity e(T) may be viewed as a
measure of how close the simplex A is to being degenerate.

Theorem 2.2. Let k > 2, n > 2k+4, € > 0. Let A C Z" N By such that |A| > eR", and let
A CR"™ be a k-dimensional integral simplex and let T = Th. If

R > C1|T|? exp (02 e (D) g (e(T))), (2.2.3)

for some positive constants C1 and Co depending only on the dimensions n and k, then there exists
a simplex N\ C A and a X\ € N such that A\ ~ VA,

In other words, if A C Br NZ™ contains an e-portion of the points in the cube Br and if R is large
enough, then the set A contains a ”copy” of the simplex A\, obtained by a translation, a rotation
and a dilation. Both of the above theorems are consequences of the following.

Theorem 2.3. Let k > 2, n > 2k+4, ¢ > 0. Let A C Z" N By such that |A| > eR"™, and let
AN CR"™ be a k-dimensional integral simplex and let T = Th.

Then there exists a pair of integers Q = Q(e), J = J(€) such that for any sequence of integers
Co <A1 < Xa < ... <Ay, satisfying

1
N1 >2e(T));,  and N3 |TIZ <R
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there exists a simplex A" C A such that A" ~ \/\;Q A for some 1 < j < J(e).
Moreover the numbers Q(g), J(g) satisfy the inequalities

4(k+1)

Qe) < exp (Ce mam=1),  J(e) < Cem3 *+D), (2.2.4)

for some positive constant C' depending only on the dimensions n and k.

It is not hard to see that, for k < n, A" ~ A, if and only if To = Tas. Indeed, if A" = {0,2],...,v,}
and A = {0,v1,...,v;} then there is a rotation Uy which takes v to v}, hence assume that vy = v].
If P stands for the projection to the orthogonal complement of vy, then it is easy to see that
Ta = Tx, where A = P({v,...,v5}) and A = P({v},...,v,}). Thus, by induction, there is a
rotation U € SO(n) such that U(P(v;)) = U(P(v})) for i > 2, and U(v1) = U(v}) = v; = v}, hence
U(A) = /. Thus k+ 1—point configurations are in one to one correspondence with positive definite
k x k matrices.

We emphasize that the above results are proved only under the assumption that the simplex
A ={0,v1,...,v;} is non-degenerate, that is the vectors vy, ..., v, are linearly independent in R".
A counter-example is shown in [16] in the continuous case when n =k =2, A = {0, e1, 2e; }, which
can adapted to our settings as follows. If A’ ~ v/AA, then A’ = {x —y, z,z + y} with |y|> = \. Let
« be an irrational number and let

A={zcZ": ||az’| < ﬁ ,  where ||B| = gé%]ﬁ —m].

It is easy to see that A has positive upper density. However, if A" = {z — y,z,x + y} C A then by
the parallelogram identity 2\ = 2|y|? = [z — y|* + |z + y[> — 2|z[* we have that [[A\*2a|| < {5. For
any @ € N Q\?2q is uniformly distributed (mod 1) as A2 runs through the positive integers thus
[QN22a| < %0 cannot hold for all sufficiently large A > A. The above construction can extended to
any non-degenerate simplex in fact to any non-spherical configuration, see section 2.4.

The problem of embedding vAA into Z" is equivalent of finding integer solutions z1, ...,z € Z"
of the quadratic system of equations x; - ; = M;; for 1 <4 < j <k, which is further equivalent of
representing the quadratic form ATy -y = l1(y)? + ... + l,(y)? i.e. as a sum of squares of n integral
linear forms. This problem has been extensively studied [98, 95, 67] with the strongest results due
to Kitaoka [67] whi obtained an asymptotic formula for the number of representations in dimensions
n>2K + 2.

We remark that the existence of a dilate A\ which can be embedded in A follows from Kitaoka’s
theorem [67] together with the so-called multi-dimensional Szemerédi theorem [39, 48, 108], which
implies that for every finite set S C Z" there is an m € Z"™ and X\ € N such that S’ =m + \S C A.
However at present, the multi-dimensional Szemerédi theorem has no Fourier analytic proof, quanti-
tative versions with reasonable bounds, while Theorem 2.2 provides a single-exponential quantitative
bound. Also, the emphasis in Theorem 2.1 is in the fact that, in a sense, all large dilates of A can
be embedded in A which is not possible to obtain via this route.

2.2.1 Outline of the proofs of the main results.

Let us start by observing that Theorem 2.3 implies both Theorem 2.1 and Theorem 2.2. Indeed
assuming that the conclusion of Theorem 2.1 is not true, it follows that there is a set A C Z"
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with upper density §(A) > ¢, and an infinite lacunary sequence \; such that \/)T]'Q(E)A cannot
be embedded in A for all j € N. Choosing a cube Bg of size R > C(AJ(€)|T\)1/2 such that
|AN Bg| > ¢R™ contradicts Theorem 2.3. Also, choosing Q(¢) and J(¢) is in Theorem 2.3, and a
lacunary sequence A1 < ... < Aj() such that A;,) < exp (J(¢) log (e(T))), it follows from (2.2.4)
that vVAA can be embedded in A for some A = \;Q(¢)? as long as A C Z" N B with |A| > eR"
and R satisfies (2.2.6) thus Theorem 2.2 follows.

Let us outline now, the proof of Theorem 2.3. We’ll use a variant of the density increment approach
of Roth. In our settings this amounts to showing that the set A contains an isometric copy of vV AA
for some A € N, or the density of A increases on a large cubic grid by a fixed amount c¢(g) > 0,
depending only on €. We’ll prove a somewhat stronger statement; namely if for a fized A the simplex
VAA cannot be embedded in A, then either the density of A increases to (1 + ¢)e on a large grid of
common difference ¢ = ¢(g), or the Fourier transform 14, 14 being the indicator function of the set
A, is concentrated on a small set T} ,. Moreover if X > ), then the sets Ty .4 and T) , are disjoint,
thus if \j < Ao < ... < Ay is a lacunary sequence with J > J(¢) is large enough and if A does not
contain an isometric copy of any simplex \/)TjA, then A must have increased density on a large
grid of difference ¢ = ¢(¢). Iterating this, will prove Theorem 2.3.

To formulate the above statements precisely, let us introduce some notations. We’ll denote by ¢ > 0
resp. C' > 0, small resp. large constants depending only on the dimensions n and k, whose value
can change from place to place. If they depend on other parameters like €, and so on, we indicate
those in parenthesis ¢(¢), ¢(g, ). The least common multiple of a set of integers ¢, ..., q will be
denoted by lem {q1,...,q}. To a given 0 < ¢ < 1 we attach the integer
_ 4(kt1

qle) =lem{l < ¢ < Ce n-2=4}, (2.2.5)

The importance of this number is in the fact that the grid (%Z)” = {%; m € Z"} contains all

4kl
rational points a/q € R"™ with denominator ¢ < Ce” »=2+=4. For given s € Z", ¢ € N and L > ¢q we
define the cubic grid of size L and common difference ¢

BL(q, 8) = (s+ (qZ)”) N By, (226)

where By, is a cube of size L. In the Fourier space T" = (R/Z)", a key role will be played by the sets

\" 11" 11"
T(Ll»LQ,q):<qZ> +DL1,L2 where DL1,L2:|:—2Ll,2Ll:| \|:_2I/2’2_L2:| s (2.2.7)

where ¢ € N and ¢ < L1 < Ly. Here by S + T we denote the sumset of the sets S and T'. The key
is to obtain the following

Lemma 2.1. Letn >2k+4,0<e <1, let AC BRNZ" such that |A| > eR", and let A be an

integral k-dimensional simplex.

If for a given X € N the simplex VA cannot be embedded in A, then either there exists a cubic grid
Br(q,s) with ¢ = q(¢) defined in (2.1), and L > C/X|A\|, such that

1
() 1ANBL(g )| = (1+a)e|Bu(g,8)] with o= formy,

(i) /T i A(€)[2 de > ce2+2Rm, (2.2.9)

or (2.2.8)
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where Ty e =T (1,0 e),Lo(Me)g(e)) 15 the set defined in (2.2.7) and
Li(he) = Cle(T) ™4 ?FHDNT)Y2,  Ly(\,e) = Ce=*+D (N T)1/2, (2.2.10)
as long as the parameters X\ and R satisfy q(e) < Li(\e) < La(\,e) < R.

We now describe how repeated applications of Lemma 2.1 implies Theorem 1.3. main result.

Proof of Theorem 2.3 For r =0,1,2, ... define,

1
=(1 - ith = — 2.2.11
er =14 a) wi o 00k £ 1)’ ( )
moreover let ¢. = q(&,) given in (2.2.5) and @, = ¢1q2 - . . ¢r, we set Qo = 1. We define the numbers
Jr inductively with Jg = 1 and J, being the smallest positive integer satisfying

Jp > ydp_1 + Cep 4 * ) Jog (6,71 with v =el/2 (2.2.12)

We will show by induction on r, that Theorem 1.3 holds for &,_1 > & > ¢,. This amounts to showing
that if A C Br NZ" with |A| > ¢, R", and if C < A; < ... < Aj, is a given lacunary sequence
with A\j11 > 2e(T")\;, then A contains an isometric copy of a simplex VAiQy A for some 1 < i < J,.
Forr =0,e =¢9 =1 thus A = BN Z" and Theorem 2.3 follows from Kiatoke’s theorem (with
Qo = Jo = 1), as explained in the introduction.

Now, assume indirectly that there exists an € N, such that the conclusion of Theorem 1.3 holds
for the triple e,_1,Qy_1, Jr—1, but not for e,,Q,,J,. Then none of the simplices V\;Q,/A can
be embedded in A. Since J, > Ce, ** D log (¢;1), one may choose a subsequence {j1,. ..}
of the sequence {\;; J,/v < j < J.} such that ¢t > (ce?**2)~! and for all 1 < i < ¢ one has
Li(wit1,er) > Lo(pi,er), as long as the constant C is chosen large enough with respect to ¢
and C given in (2.2.9) and in (2.2.10). It follows that the sets Ty. for A = p;Q? are disjoint,
and thus inequality (2.2.9) cannot hold simultaneously for all 1 < i < ¢t as it would imply that:
|Al = [ [14(€)?dé > R". By Lemma 2.1 there must exist a positive integer A = 1,Q? = \;Q?
with J,./vy < j < J,, such that

AN BL(g,s)| = (1 + a)er [Br(g, s)| = er—1|BL(q, 8); (2.2.13)

for a grid Br(gy,s) of size L > C(A\T|)%/2. The affine map ®(m) = ¢.m + s identifies the set
Br(qr,s) with Bpr NZ" (R' = L/q,) and also AN Br(qy,s) with a set A" C B NZ".

By (2.2.13) one has that |A’| > ¢,_1(R’)"™ and one may apply the induction hypothesis for the set
A" and the sequence Ay < A2 < ... < Ay _,. Indeed, it is easy to check that the size of the box Bp/
satisfies

R =L/q; > C(NITDY? Qr/ar = C (A, |TN'? Qro,

as j > J./v > J,—1 It follows that A’ contains a simplex A’ isometric to VNQr_1 A for
some 1 < i < J,_1, hence A contains the simplex ®(A’) = s + ¢,/AA’ which is isometric to

\/XiQr—l%‘A = \/XzQTA

To finish the proof one only needs to check that J(g) and Q(e) satisfy the quantitative bounds (2.2.4).
If &, < e <ep_y, then Q(e) = Qr = [[;_; & where ¢ < exp (C 5;4(“1)/("7%74)) by well-known
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estimates on the primes. Thus, also Q(e) < exp (C e=4k+1)/ (n=2k=4)) for a slightly larger constant
C'. To estimate J(g) = J, where ¢, < e < (1 + a)e,, note that dividing (2.8) by 4" one obtains

'yr . L.

f}ﬂ“*l ,77’71
Since

—4(k+1) 1 A 4r/10
— [ < r

it follows that the sum in (2.10) converges in r and hence J, < C'y" = Ce"/2. Also log(1 + ) =
1 1
log (1 + 1541y) 2 1a0R%7y » thus

L (k+1)

I S _
J(g) — Jr S C’YT =&, 2 log (14a) S Cgr S Cl 57% (k+1)

This proves estimate (2.2.4). O

It remains to prove Lemma 2.1. To do that, similarly as in case of arithmetic progressions, one
introduces a multilinear form to count the number of embeddings of a given simplex vV AA into the
set A. For a given k x k integral positive matrix 7' = (t;;), let St : Z™ — {0, 1} denote the function

1 if mi-mj:tij Vlglﬁjﬁk

0 otherwise (2.2.15)

ST(ml,“-»mk):{

where m; € Z™ for 1 < i < k. For functions f; : Z" — C, (0 < i < k) of finite support and for a
given A € N define the corresponding form

Nar(fo, fi,-- -5 fr) = Z folm)fi(m+mq) ... fu(m +mg) Sxp(ma,...,mg). (2.2.16)

The point is that if T = Ta, that is the inner product matrix of the simplex A, and if fo = f1 =
... = fr = 14 the indicator function of the set A, then Nyp(14,...,14) is the number of simplices
/A C A such that A/ ~ VAA.

Going back to Lemma 2.1, we will assume from now on that that for a given A € N the simplex
VAA cannot be embedded in A, that is

Nar(la,...,14) =0 (2.2.17)

and moreover that the set A is uniformly distributed on the grids By (g, s) in the sense that

1

for all such grids By (q,s) C Bg, for some parameters for a given ¢ € N and L > C (\|T|)'/? (later
we will choose ¢ = ¢(¢) given in (2.2.5)). we partition Bg NZ" into grids Br(q, s) and define the
corresponding conditional expectation function hr 4 : Bg N Z"™ — [0, 1] by

hirq(m) = AN Br(q,m)|/|Br(q, m)], (2.2.19)
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where Br,(q,m) is the grid in the partition containing the point m. Note that the function hr, 4 is
constant and is equal to the average of 14 on each grid By (g, s) of the partition. Using assumption
(2.2.18) on the distribution of A, and Kitaoka’s theorem:

n—k—1
ISarlli = > Sap(ma,...,mg) > co det(AT)" 2 (2.2.20)
My, Mg
it will be fairly easy to show that
Nar(La,hig,- - hig) > ¢ det(NT) "2 &L Rn, (2.2.21)

Indeed, from (2.2.18) it is easy to see that hy, 4(m) > ce for all but a small number of m € BrRNZ".

It will be more convenient to work with functions of the form f;, , = 14 * ¥, ; which majorize hp, g
and whose Fourier transform is easier to handle. Indeed, if ¢ > 0 is a strictly positive Schwarz
function, and if

[ "L Y(m/L) ifm e (qZ)"
VLg(m) = { 0 otherwise (2.2.22)

then fr 4 > chp g4, see Proposition 3.2. Thus we get our main estimate from below

n—k—1

Nar(La, fLgs -+ frg) > c1 det(AT) gkl g, (2.2.23)

for some constant c¢; > 0, see Lemma 2.3 for the precise statement.

The advantage of using the functions f7, 4 is in that their Fourier transform can be described fairly
precisely

fr.q(6) = iA(fﬁZL,q =14(¢ Z Y(L(E—1/q)), (2.2.24)

lezn

moreover if ¢ is chosen such that

1=40)>9(E)>0 VE and suppyp C [-1/2,1/2]", (2.2.25)

then fr,,(€) is supported on the set (%Z)" + [—57, 5] and it essentially equals to 14(€) on a
smaller such set.

In Section 2.2.3, we prove our crucial error estimate, namely that if ¢ = ¢(&) and if one chooses
L1 = Lyi(\,¢) given in (2.2.10), with the constant C' large enough with respect to ¢; appearing in
(2.2.11), then

INAr(1a, 14, .., 14) — Nar(Qa, frogs - frag)] <4 det()\T) tehtipn (2.2.26)

see Lemma 2.4. Taking this granted for now, let us sketch the

Proof of Lemma 2.1. Using estimates (2.2.23) for L = C (A|T|)"/? and (2.2.26) for L = Ly (), ¢), it
follows from our assumption (2.2.17) that

n—k—1

c
INxr(Xa; fLigs -+ fLig) = Nxr(Las frg, - frg)l 2 51 det(AT') R (2.2.27)
Now, it is easy to see that the left side of (2.2.27) is bounded by
n—k—1 n
ISxrllsLall2 /2 q = frgllz < C det(AT) R2 | fr1.q = frall2; (2.2.28)
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see Proposition 2.3. It follows,
”fLLq - fL,qH2 = /11' ‘iA(f)F |1ZL1,q - @//)\L,q|2 d§ > ce? 2 gr (2.2.29)

This implies inequality (2.2.9) as the function |@ZL17q — @ZL7q| is uniformly bounded by éef*! with a
small constant, say ¢ < ¢/2, outside the set T . = T (L1 (ne),La(Me),q(c)) Biven in (2.2.10), and Lemma
2.1 follows. O

The detailed proof of Lemma 2.1 will be given in Section 2.2.3. The proof the crucial estimate (2.2.26)
will be based on an estimate of the Fourier transform of the function S at points X = (&1,...,&k)
which are away from rational points with small denominator. Such estimates can be proved by
techniques from analytic number theory, and can be viewed as discrete analogues of stationary
phase estimates on the Fourier transforms of surface carried measures in Euclidean spaces [102]. It
is summarized in the following lemma.

Using the matrix notation, let M = (my,...,mg) € Z"* and X = (&1,...,&) € T  ben x k
matrices with column vectors m; € Z™ and & € T" (T = R/Z), the Fourier transform of the function
St given in (2.2.15) is defined by the exponential sum

Sr(x)= > Sp(M) 72t (2.2.30)
MEZnXk

where tr (M'X) = mq - €+ ...+ my - & stands for the trace of the product matrix M'X. Let
P/q = (pij/q) denote the dilate of a matrix P = (p;;) by the factor of 1/q.

Lemma 2.2. Letn > 2k+2, 7 >0, and qo > 1 be a positive integer. Let T be a positive definite
wntegral k X k matriz. Then one has

Sr(0) < € det(T)" (2.2.31)
If X = (&,...,&) € Tk such that for all P € Z™* and q < qo
|X = P/ql = 7.
Then one has
1Sp(x)| < C [det(T)"’z“ <(T2u(T))nZ4H +q0n22k2> + m‘"”fl)} . (2.2.32)

We remark that if the parameters 7 and g is chosen such that 7 > C(e)A"1/2, go > C(e) and if \ is
large enough with respect to |T'|, then estimate (2.2.32) implies that

1S (X)] < c(e) det(NT) ™2, (2.2.33)
for a given constant c(¢) > 0, as long as C(e) is chosen large enough with respect to c¢(e).
The proof of Lemma 2.2 is purely number theoretic and is independent of the rest of the paper. It

will be given in Section 2.2.4 using the theory of theta functions developed by Siegel [98] and later
by Kitaoka [67], adapted to our settings.
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2.2.2 Lower bounds on the main terms.

From now on we fix k € N,n € N, ¢ >0 and R > 1 and a set A C B NZ" such that |A| > eR".
For given parameters ¢ € N and ¢ < L < R such that R/L € N, we partition the cube Bg into
R™/L™ cubes By, of size L, and them further into congruence classes of the modulus g, i.e. into sets
of the form

Br(g,s) = Bp N (s + (¢Z)™), (2.2.34)

where s € (Z/qZ)™ is running through the congruence classes of ¢. With a slight abuse of notation,
for given m € Bgr we will denote by B (g, m) the unique set Bf(q, s) containing m. For given a > 0,
we say that the set A is a-uniformly distributed w.r.t. ¢ and L if for each element By (g, s) of the

partition

|AmBL(QaS)’
0(A|Br(q,s)) = ———+—
B9 =5 0,

Here we used the notation 6(A|B) = |A N B|/|B| for the relative density of the set A on the
set B. It is immediate from (2.2.35) that 0(A|Br) < (1 4+ «a)e for every cube B and that

d(A) =0(A|BRr) < (1 + a)e. It is also easy to see that 0(A|Br) > (1 — 2a)e holds for many cubes
By, such cubes By, will be called dense. Indeed

<(1+a)e. (2.2.35)

L "
e <o(A) =4 > 6(A|Br) < T Y A+ a)e+(1-2a)e (2.2.36)
By, By, dense
It follows that there are at least (12+°‘a) I dense cubes. We define the function 4 : BRNZ" — [0,1]
by
hr.q(m) := 6(A|Br(q,m)). (2.2.37)

Note that hyr, 4 is constant and is equal to the average of the function 14 on each set Br (g, m), thus
it is the so-called conditional expectation function of 14 with respect to the above partition.

Proposition 2.1. Let g € N, L > 0 be given, and assume that the set A satisfies condition (3.2)
with « = 1/10(k + 1). If ¢ < BL, with = ae/4n, then for any mq,...,my € Z" such that
|m;| < BL for each 1 < i < k, then one has

Z 14(m) hrg(m +my) hpg(m+ma) ... hp g (m+my) > cpe" 1R (2.2.38)

mezm
Proof. Let By, be a dense cube and define the set G = {m € Br, : hr 4(m) > ac}. Arguing similarly
as in (2.2.36),

(1-2a)e <6(AIBL) <L Y (14 a)e + oe. (2.2.39)
meG

hence |G| > (1 —4«a)L". Let By, denote the cube obtained by dilating By, from its center with a
factor of 1 — 8. Then L' = (1 — 8)L and |Br\Br/| < 2nBL"™. For m € G one has

n
1
§(A|Br, N Br(g,m)) > % AN B(g,m)| = —|BL\By/| > ac—2n8 > % (2.2.40)

For m € Br/, m+m; € By, for each 1 <1 < as |m;| < L, and the functions m — hr, 4(m + m;)
are constant on the set By, N Br(q,m). Thus

> 1a(m) hpg(m +ma) hpg(m+ma) .. hyg(m+my) = (2.2.41)
mGBL/

> S(A|Bp N BL(g,m)) hrg(m +ma) hrg(m+ma) ... hyq(m+ my).
meBy,
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IfmeBrNGN(G—mp)N...N (G —my) then m € G and m + m; € G for each i < k hence
by (2.2.40) and the definition of G the expression in (2.2.41) is further estimated from below by:

) B NG (G —mi)N...N (G —my)|. Let G' = By NG, then

|G'| > |G| — |BL\Br/| > (1 —4a —2nB)L" > (1 —5a)L™  and

|IBLNGN(G—m)N...0 (G —my)| > |G N(G —mi)N...N (G —my)| >
> (1—b5a(k+1))L"* > L"/2.

Thus, for a dense cube By, the expression in (2.2.31) is bounded below by ¢ gb+t1 7 and since
there are at least 270‘% dense cubes, (2.2.38) follows. O

(1+a)
Note that the functions fr , = 14 * ¢, defined in (2.2.19) majorize the functions hy, .
Proposition 2.2. There exist a constant ¢, > 0 such that all m € Z™

frq(m) > e hpg(m). (2.2.42)

Proof. By definition,

fra(m) =q"L7" Y 1a(m—ql)d(gl/L) > cag"L™" D> la(m—gl) >

lezn 1€Zn, |ql|<y/nL
> cpq"L7" Z 1a(m') > ep hiq(m).
m’€Br,(g,m)
The second inequality follows as the diameter of the set By (g, m) is at most v/nL. O
Let A € N, A € R" be an integral k-dimensional simplex, and let T" = Ta be its inner product
matrix. We proceed to estimate the expression Nxr(14, fr g, .-, f1,4) defined in (2.2.13) from below
under certain conditions on the parameters ¢, L, R, \. To do so one needs a lower bound for the
number of integral solutions mq,...,my € Z" of the system of equations m; - m; = At;;. This was

done in [67], indeed, for A = I,, (the n x n identity matrix), B = AT, Theorems A-C in [67] implies
for n > 2k + 2 and A > A(n, k), that

S Sarlmu,...,mi) > e det(AT)F (2.2.43)

mi,...,mpEL™

for some positive constant ¢y depending only on n and k. Note that the left side of (3.10) is the
number of solutions my,...,my of (1.2). Now it is easy to show

Lemma 2.3. Let k > 2, n > 2k+2,¢ >0, R>0 and let A C BRNZ" be a set such that
|A| > eR™. Let A € N and let N CR"™ be an integral k—simplex with inner product matriz T = T .
Let g € N, L > 0 be parameters satisfying

€
< < ) = —. 2.
qg<pL, ~ANT|<pL, with S 00+ 1) (2.2.44)

If A is a-uniformly distributed w.r.t ¢ and L with o = m and if fr q(m) is defined as in (2.2.22),
then

n—k—1

Nar(1a, frg, - frg) = det(AT) 2 "1 R™, (2.2.45)
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Proof. If Syp(ma,...,mg) # 0 then |m;|2 = My (V 1 < i < k), hence |m;| < BL. Tt follows from
(2.2.38) and (2.2.42) that

> 1a(m) frglm+ma) frg(m+ma)... frg(m+myg) 2 'R
mezZm™

Summing the above bound for all such my, ..., my, the Lemma follows from inequality (2.2.43). [

Let us point out that the right side of (2.2.45) is the expected value of Nxr(14,...,14) if A C BRNZ"™
in a random set of density &, obtained by choosing each point of Br N Z" independently with
probability €. Indeed, for given m € B NZ" and a solution my, ..., mg, the probability that all
points m,my, ..., my are in the set A is e**+1,

2.2.3 Error estimates

In this section we estimate quantities of the following form

Exr(f; f1, f2) = Nao(f, fr,- o5 f1) = N (f, fas oo fo), (2.2.46)
where the functions f, f1, fo : Z™ — [—1, 1] are of finite support or rapidly decreasing. Note that

k
EAT(f§f17f2):ZEg\T(f;fl,fQ), where

=1

E;T(f;fth) :N)\T(fmflv'”7f17f27“'7f2) _N)\T(faflw"af27f27'"7f2) (2247)

Here, the second term in (2.2.47) is obtained from the first term by replacing the function f; with
the function fy at the i—th place.

For fixed 1 < i < k, let T; denote the (k—1) x (k— 1) matrix obtained from the matrix 7" by deleting
the i—th row and column. Note that T; = Ta,, where /\; is the k — 1-dimensional face of the simplex
A ={0,v1,...,v} which does not contain the i—th vertex v;. For given m = (my, ..., my) € Z"
let us introduce the notation m’ = (my,...,m;_1,Mir1,...,mg) € 7™ =1 and define the function
Sxrmi : Z" — {0,1} by

1 if mi-ij/\tij Vlgjgk
0 otherwise

SAT,mi (m;) = {
Then, clearly 4
Sxr(m) = Sxr, (m*) Syp i (M), (2.2.48)

where the function Syr, is defined in (2.2.15).

Proposition 2.3. Let k> 2, n > 2k + 2 and let f, f1, fo : Z" — [—1,1] be given functions. Then

one has
n—k—1

[Ext(f; f1, f2)] S det(AT) [ l211fr = fall2 (2.2.49)

Proof. For fixed 1 < i <k, using Syr(m) = Syr(—m), one may write

Nar(fos fro- o fu) = DD Sy (m?) f(m) T £50m = my) film — ma)Syg i (mi)

m: m m; j#i
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=3 Sapy(m) £(m) gi(m, m') (fi * Sxpmi) ().

Thus, "
|%ﬂfﬂh|<§:&T VF )| [(fr = f2) * Sigmi) ()] (2.2.50)
sHﬂh}j&T VN1 = f2) * Sxrmill2
suﬂbwa ﬁh}j&T D 1S 3zmilh

where the second line follows from Cauchy-Schwarz and the third line from Minkowski’s integral
inequality. Finally, by inequality (2.2.31)

n—k—
ZSAT D Sxrmills = ZS)\T < det(AT) "2 .

and (2.2.49) follows. O
Next, we give a different estimate on the quantity Exp(f; f1, f2)-

Proposition 2.4. Let k> 2, n > 2k + 2 and let f, f1, fo : Z" — [—1,1] be given functions. Then
for fired 1 < i < k, one has

2

B (f: f1. £2)] S detNT) T || £l (/T |(f ZSAT ) 183 ,mi (€ )!2d£>
(2.2.51)

Proof. Using the matrix formulation, the support of the function Syr, consists of those integral
matrices M € Z"(k=1) which satisfy the equation M*- M = AT}, hence by (2.2.31) the size of its

support is bounded by C det()\ﬂ)%k
Starting with the second line of (2.2.50) and using the Cauchy-Schwarz inequality, one obtains

|Exr(f5 f1, f2)| S IIfll2 det(NT) "5 (Z Sxr, (m") [|(f1 = f2) *SAT,miH%)

Inequality (2.2.51) follows by applying Plancherel’s formula to the above expression in parenthesis,
and by interchanging the summation and integration. O

Expanding the sum in formula (2.2.51), one obtains

> D A (M) Sy i (113) S i (g ) €7ETLD), (2.2.52)

méezn(k=1) m;,my4 1 €L"

If one defines G 1-(m,mp11) = Sz, (M) Sy i (1) S i (Me11) 71— 0,1}, where m =
(m1,...,my) € Z", then the expression in (2.2.52) is equal to Gl)\ 7(0,...,0,£0,...,0,=¢) =
G\ r(X) with X = (0,...,0,£,0,...,0,—¢) € R (k+1) where the entries § and —¢ appear the the

44



amagyar 2024 220 24

i-th and k + 1-th place. Note that G’iA r(mi,...,mpy1) = 1if and only the vectors my, ..., mp41
satisfy the system of equations:

mjg-mp = )\tﬂ, Mp1 =My =My - My = )\til (l 75 i), M1 - M1 = My -y = )\tii7 (2.2.53)

for all 1 <1 < j < k. If one writes \t = myy1 - m;, and defines the symmetric (k+ 1) x (k+ 1)
matrix T%(t) = (7j;) with entries (1 <1< j <k)

Ti1 = tjt, Ter1g = ta (L #1), Thyr k1 = ti, Thy1s = t, (2.2.54)

then it is clear that ‘
GZA,T(mvmkH) = Z S)\Ti(t)(m7mk:+1)- (2.2.55)
t

Note that the summation in (4.10) is finite as the function Sypi( is constant 0 unless there exists

an M € 7™+ such that M*M = MNT*(t), in which case we will call the number ¢ admissible.
Thus if ¢ is admissible then, in particular, 2 < t?i and At € Z. To summarize, we have for 1 <i <k
and £ € R"

Yoo Snm) [Sarmi©F = Y S (), (2.2.56)

miezn(k—1) t admissible

with X = (0,...,0,£,0,...,0,—¢). We need to collect some geometric facts about the matrices
Ti(t), to estimate the right side of (2.2.56)

Proposition 2.5. Let T > 0 be a fixed integral k x k matriz and let 1 < ¢ < k. Then,
(i) The number of admissible values of t is bounded by: 2 det(A\T)/det(A\T;) + 1.

(ii) For each M = (mq,...,mg) such that M*M = XT, there are at most 2 vectors myy, € Z"
such that det(T*(t)) = 0, where the vectors m1, ..., mg1 and the matriz T*(t) satisfy (2.2.53) and
(2.2.54).

13) Let t be admissible, and let M = mi,...,ME, M) be such that MM = \T(t). Let d denote
+

the distance of the vector myy1 to the subspace Span{mi,...,my}, that is to the subspace spanned
by the vectors my,...,my. Then
: d*u(T)
ATH(t)) > ——=. 2.2.57
HOT(0) = S (2257)
Here pu(T') is defined in (2.2.2) and |T| = (3, ; t?j)l/Q.
(i4) Let 0 < § < e(T)~*/64, where e(T) is defined in (1.5). Then
[{t admissible : p(T(t)) < |T|8}Y < 62 det(AT)/det(AT"). (2.2.58)
(i5) Let t be admissible, then one has
det( AT (t)) < det(A\T)?/ det(\T;) (2.2.59)
Proof. Let t be admissible, and let M = (my,...,my, mu41) be such that MM = \T'(t). If P
denotes the orthogonal projection to the subspace spanned by the vectors mq,...,mj—1, mjy1,...,mg
then by (4.8) Pm; = Pmy1. Denote this vector by u, and write m; = u + w, mp11 = u+w'. If
one considers the vectors my, ..., my as elements of the k-dimensional subspace Span{ms,...,my}
then the quantity |det(m1,...,mg)| is well-defined and is equal to the volume of the parallelepiped
spanned by these vectors. Moreover it is easy to see that det(\T) = | det(my,...,ms)|?, and also
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that |w'| = |w| = |det(ma,...,mg)|/| det(my, ..., mi—1,Mix1,...,mg)|. Since A\t = myyq1 - my =
|u|? +w - w' it follows that

M — |u?| < |w* = det(\T)/ det(AT") (2.2.60)

and (i) is proved.
If det(T%(t)) = 0 then my 1 is linearly dependent of the vectors my, ..., my, thus w' is also linearly
dependent of the vectors mq,...,m;_1,mjt1,...,mg and w, hence w’ = +w. It follows myy1 = utw
and (ii) is proved.
Let z = (z1,..., 28, Tpyp1) € R¥H 2| = 1 such that

(

pATH (1)) = MXTH(t)z - = = |mizy + ... + Mpp12Tppr]?
It is clear that u(AT%(t)) > d? |z, 1]?, thus if |zg1]? > w(T)/4|T| then inequality(4.12) holds.
Otherwise |7411]? < u(T)/4|T| and one estimates

pAT (1) = (Jmazy + ... + myag| — [mpga||zee ) > cp(AT),

8

as |mg1|? = |mi? = My < |AT| and 23 + ... + 27 > 3/4. Also d* < |my41/*> < |AT| thus
du(T)/8|T| < u(AT)/8 and (2.2.57) follows.
Writing v = miy1 + ... + Mj—1Yi—1 + Mit1Yir1 + - . . MiYx, it follows

w? = |u—mi[* > (1+yi +... +y)u(AT) > [AT|e(T) ™"
If v denotes the orthogonal projection of the Vector myg+1 to the subspace spanned by the vectors
mi,..., Mk, the it is easy to see that v = u + w ¥ ‘ ‘ Thus
(w - w')? /

+d? =|w/*> substituting M — |u*=w- w
|w|?

wl? > A = [uf?| > [l (1 d?/Jw]?)2
If u(T%(t)) < |T|6 then by (2.2.57) and the assumption on §

2
|d|2 < Pe(T)NT|™' < 85¢(T)? < 8%,
w

Since § < 1, it follows that [w|? > [At — |u|?| > |w|?(1 — 6/?) and this implies (2.2.58).
Finally, arguing as in (4.15) one has

det(NT(t))/ det(\T) = d® < |w|* = det(A\T)/ det(\T}),
and (2.2.59) follows. O

Using Lemma 2.1, in dimensions n and &+ 1 it is now not hard to estimate the right side of (2.2.56).
We remark that it is here where the stronger condition n > 2k + 4 is needed.

Proposition 2.6. Let k > 2, n > 2k +4, and let T € ZF*F be a positive matriz. Let qo € N and
0 <6 <e(T)"*/64 be given parameters. Then for 1 <i <k
2 det(AT)"+—1

S, (0" | Sy mi (6)] =
Z o det(AT))"5"

(1 + A—"T*ke(T)i("_“z“_”) (2.2.61)
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holds uniformly for & € R™.
If |€—1/q| > 6 IN"V2|T|7Y2 for all | € Z™ and q < qo, then one has

det(\T)—k—1 _n=2k—4 1 n—2k—2
ZS,\T |S)\Tm’( O < det AT <q0 2

— 2 41+ e(T)(”kl)k> . (2.2.62)
det(\T;) =
Proof. Let us first estimate the sum in (2.2.52) over those k41 tuples (m1, ..., mg, mg41) for which
my1 is linearly dependent on the vectors my, ..., my. By Proposition 2.5 (i), there are at most 2
possible choices for the vector my,1. Thus one estimates the contribution of such k£ + 1 tuples to
the sum in (2.2.52) by

n—k—1 — -
g O s e
det(AT))"2"

Sir(0) < det(AT)

The first inequality in (2.2.52) follows from (2.2.31), while the second follows from the facts that
det(AT;) < MNP~ < |ATF=Y and |AT|*F = u(A\T)*e(T)* < det(\T)e(T)*.

Summing over the k+1-tuples (myq, ..., mg, miy1) in formula (2.2.52) which are linearly independent,
is equal to the sum on the right side of (2.2.56) over those admissible values of ¢ for which
det(T%(t)) > 0, and one may apply Lemma 1 to the matrix AT%(t), for each such value of t. Thus by
(2.2.31) and (2.2.59), one has uniformly in £ € R”

n—k—2 n—k—2

Syrin (€)] S det(ATH ()" < det(AT)" * 2 det(AT;) " . (2.2.64)

By Proposition 2.5 (i), the number of admissible values ¢ (for which det(7%(t)) # 0) is bounded by
2det(AT")/ det(AT;) and (2.2.61) follows from (2.2.56) and (2.2.63).

Let us assume now that |& —1/q| > 6~ "A"Y2|T|=Y/2, for all I € Z" and 1 < ¢ < qo, and hence
(X — P/q| > 6 ]A\"1/2 for all P e Z"* D and ¢ < qp (where X = (0,...,0,£,0,...,0,—¢) as

before). Then one may use inequality (3.28) in Lemma 1 with 7 = §~'A~Y2|T|~1/2 > 0 to estimate

the left side of (2.2.52):

Bapi (X)) S det(WTH(0)" 52, 2+ det(WTH(1) ™5 (52T (0 (1)) F
(2.2.65)
TN T = Si(0) + Salt) + Salt)

Summing the fist terms over admissible values of ¢ is estimated exactly as in (2.2.61) and one gets

n—2k—4

Zsl < det(AD)" L det(NT)) T2 gy 2

If ¢ is such that p(T%(t)) > & |T| then (67 2|T| ' u(T(t)))~(2k-D/4 < §1/* asn -2k —4 > 1
and summing over such t’s gives the second term of the right side of (2.2.62). By Proposition 4.3,
the number of admissible #’s such that u(7%(t)) < 6 |T| is bounded by 26'/2 det(T)/det(T;) and
one get a gain by a factor of 62/2 over the estimate in (2.2.61), thus

SoSty= Y. S+ Y S(t) S 08 det(ND)" T det(AL)

t: (T (1)) 26 |T)| t: (T (1)) <5 |T|
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Finally, using the facts |AT%(t)] < |AT| < det(AT)Y* e(T) and det(\T}) < det(AT)*—1/k g(T)k~1
a straightforward calculation shows, that summing the third terms on the right side of inequality
(2.2.65), one gets

n— d t AT n—k—1 n—2k—
253 < det(AT) det(AT})~! A7) 5 ¢ QDT ey ke,
det(A\T;) =
This proves the proposition. O

We will apply inequalities (2.2.51), (2.2.61) and (2.2.62) to functions of the form f; = fr, , (i =1,2)
defined in (2.2.22), for specific choice of L; > 0. Recall that we defined fr , = 14 * 91 where,
considering as distribution on R",

Yrg = q”5(qZ)n vr  where ¢p(x) =L "¢Y(x/L),

and §(4z)» denotes the discrete (counting) measure supported on the lattice (¢Z)". By Poisson
summation, if ¢ € C*°(T") then

<A(qZ)"7¢> - < qZ)”7¢ Z¢l/q
lezm
Thus R R R
Vrq§) = ¢" (%m * wL) Z ¥ (L(E—1/q)). (2.2.66)
lezm

We can now state the main result of this section, given a set A C Br N Z" such that |A| > eR", an
integral k-dimensional simplex A C R™ with T'= Tx, and a positive integer .

Lemma 2.4. Let k> 2, n > 2k +4, and let ¢ > 0 be a positive constant. Let C > 0 and define

_ — (k+1)
Ly = Cle(T) M NI T)3,  qle) = Lem. {q < Ce n-gi-1), (2.2.67)
If C = C(n,k,¢) is large enough and if
_ k(n—k—1)
A > Cqle)2e 80D (1) im (2.2.68)
then one has
|Exr(1a;14, fr, )| < " R™ det(AT)" 1. (2.2.69)

Proof. Let 1 <i < k be fixed. Applying inequality (4.6) for f = fi1 = 14, fa = fr, q(), One has

1
2

7 (n—k) ~
B (Las 1a, fr,g0)] < Cl14]3 det(AT;) 5 (;ulp 11— P11 a0) ZSAT \SATmz@)IZ)
E’n

Since ||14]]3 = |A| < R", it is enough to show that

n—k—1

—~ 1
§%>u—whmg Ej&T N Sxrmi (€)[})Z < 1M det(AT)
G n

det(A\T;)~ "7, (2.2.70)
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for some constant ¢; = ci(n, k,¢) > 0 small enough. By our assumptions, L1 > ¢(¢), hence the
supports of the functions (L1 (§ — 1/q(g))) are disjoint for different values of [ € Z™. Thus if there
is an I such that: |¢ —lo/q(e)| < Ct e LT where Oy is large enough w.r.t. 1, then

1= > b€ = 1/q(e)] = 1 = P(L1(€ = lo/q(e)))] < er ¥,

lezn

using the fact that ]1—&(7])] < |nl for n € R™, and (2.2.69) follows from (2.2.61) and the assumption
(2.2.68).
4(k+1)

In the opposite case, for all [ € Z" and 1 < ¢ < Ce” n-2-1_ one has by (2.2.68)
€= 1/al = |§ = V/q(e)] > CTH FHLTY = (C/Cy) e(T)t e 8MHDIA"7 7] 5.

Thus one can apply inequality (2.2.52) with parameters

_ ~ 4(k+1)
6= (C1/C)e(T) e 8D g = Cemnait,
_ 2e(n—k=1) _ 4(k+1)
using the fact that A > Ce(T) n=2%-2 ¢ »=2%-2 inequality (2.2.69) follows, if the constant
C = C(n,k,¢) is chosen large enough. O

Proof of Lemma 2.1.

We will proceed as in Section 2.2.2. Assume that for a given A € N, the simplex v AA cannot be
embedded in A, that is

Nar(1a,14,...,14) = 0. (2.2.71)
Choosing L = C(AT])"/? such that R/L € Z and q = ¢(¢) defined in 2.2.1, Lemma 2.3 implies that

n—k—1

Nar(1a, frg,---» fr,q) = co det(NT) 2 cklpn

Assuming that the parameters R,e and A satisfy R > La(\,e) > L1(\, &) > ¢(g), where
Li(Ae) = Cle(T) T4 PFFVNT)Y2, Ly(\e) = Ce*HD (A1) 1/2
we have that both (2.2.67) and (2.2.68) is satisfied. Thus by Lemma 2.5,
n—k—1

C —_—
Nar(Qa, frig -5 frig) < 50 det(\T) ™ 2 gh+ipn

where we wrote L1 = L1\, e and ¢ = ¢(¢) for simplicity of notations. Using Proposition 2.3 with
f=1a, fi = fr,,q and fo = fr 4 it follows

Hﬁmq—ﬁm@:=ﬂ‘ﬁA@ﬂﬂJMg—Q@d%K>ﬂhg“4Rﬂ (2.2.72)

for some constant 0 < ¢; < 1. Note that {Z)\Ll,q —@EL,q is supported on (éZ)"—{—[ L _L1n Moreover,

T 2Ly 2Ly
if ¢ = é +n with n € [—ﬁ, ﬁ]” for a given Ly > Cy e~ *+1D L then

11.0(6) = DLg()| = |[0(Lm) = H(Ln)| < O L/Ly < T,

as long as C > cl_l. Thus integrating over the complement of the set Ty . = ']I‘(Ll(,\,a)7L2(>\78)7q(8))
/ 14(E) [prq — Dol de < L2 R, (2.2.73)
Tn/TA,E 4

Estimates (2.2.72)-(2.2.73) imply estimate (2.2.9) and Lemma 2.1 is proved.
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2.2.4 Fourier transforms and Siegel theta functions

In this section we prove Lemma 2.2 using the theory of theta functions. All arguments given here
are independent of the rest of the paper, based on the approach in [67, 95] of estimating Fourier
coefficients of Siegel modular forms vanishing at cusps. The basic difference is that the above
mentioned works dealt with the case X = 0 while we need to consider those values of X which are
"away” from rational points P/q (P € Z***) with small denominator q. The related theta functions
are not modular forms, but behave very similarly, at such points X', and hence most arguments
of [67] can be adopted to our situation. We start by recalling some of the basic definitions and notions.

Let Hy ={Z =X +iY : Z! =Z, Y > 0} denote the Siegel upper half-plane of genus k. Following

the definition (1.3.2) in [1], let 6 : Hj x R* x R¥ — C be the theta function defined by
R(Z,&m) = Y et (Zimmny(mmmtame=tn), (2.2.74)
mezZk

Note that the above sum converges uniformly on the domain {Z : Im Z > ¢Ey}, for every ¢ > 0.
Here Ey is the k x k identity matrix, and by the notation A > B we mean that A — B > 0, that
is a positive k x k matrix. Next, we define the theta functions 6, ; : Hj X Rk  RXk 5 C.
Let X = (&1,..-,80), € = (M1, -..,1n) be n x k matrices with the i-th row being & (resp. 7;) for
1 < i < n. Define

On (2, 2,€) =[] 0x(Z, &, mi). (2.2.75)
i=1

Using (2.2.74) , and the fact that tr(AB) = tr(BA) for A, B € R™**, one may also write
O i(Z,X,E) = 2: emitr(M—E)Z(M—€)'+2M' X~ E'X ) (2.2.76)
Meznxk
These theta functions will play a crucial role. Indeed, one has
Proposition 2.7. Let T > 0 be an integral k x k matriz, and let X € R"**. Then
1Sp(X)] < / ssn k(X + T —X,0)|dX (2.2.77)

2
where dX = [];<;<;j<p duij.

k(k+1)

Proof. For simplicity of notation, let I}, = [0, 2] . If M € Z"* then

k(k+1) .
/ it (MM -T)X) gy ) 272 i MM =T
I 0 , otherwise

If MM =T then tr(M'MT~1) = tr(MT~'M?) = n, thus

§T(X) = 2*weﬂ'n Z 677TtT‘(MT_1Mt) / eﬂ.itr( (MtM*T)X72MtX) dX
MeZnXk Ik
= Q_Wewn / e—m’tr(TX) Z em'tr( M(X+iT~ V)Mt —2MtX) AX
T Meznxk

Note that the inner sum is: 6, (X + iT~!,—X,0), which converges uniformly for X € I, and
hence the last equality is justified. Taking absolute values in the integral the proposition follows. [J
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We will use the approach of [67], in estimating the integral in formula (2.2.74), by partitioning the
range of integration [, and estimating the theta function separately on each part by exploiting
its transformation properties. Note that in one dimension, when k = 1, this leads to the so-called
Farey arcs decomposition. Let

Iy = {v = < é g > ; AB' = BA', CD'= DC", AD' — BC" = Ek} (2.2.78)

denote the integral symplectic group. The group I'y, acts on Hy, as a group of analytic automorphisms,
the action being defined by: v(Z) = (AZ + B)(CZ + D)~! for v € T, Z € Hy. Let us recall also
the subgroup of integral modular substitutions:

Thoo = {’y = ( 61 g > . AB' = BA!, AD! = Ek} (2.2.79)
It is immediate that writing U = A and S = AB!, that D = U~ and B = SU™!, moreover S is
symmetric, and U € GL(k,Z), that is: det(U) = £1. The action of such v € 'y o on Z € H, takes
the form:

WZ) =U'AU + 8. (2.2.80)

we will adopt also the notation Z[U] = U'ZU. The general linear group GL(k,Z) acts on the
space Py of positive k x k matrices, via the action: Y — Y[U], Y € Py, and let Ry denote the
corresponding so-called Minkowksi domain, see [KL, Definition 1, p12]. A matrix Y = (y;;) € Ry, is
called reduced. We recall that for a reduced matrix Y

Y~Yp, yn<y2<...< gk (2.2.81)

where Yp = diag(y11, - - -, ykk) denotes the diagonal part of Y, and A ~ B means that A — ¢ B > 0,
B — ¢ A > 0 for some constant ¢, > 0. For a proof of these facts, see [KL,Lemma 2, p.20]. A
fundamental domain D, for the action of I'y, on Hy, called the Siegel domain, consists of all matrices
Z =X +1iY, (X = (x;5)), satisfying

Y € Ry, ‘l'w‘ §1/2, ]det(CZ—FD)\ >1, V~v= < é g ) ely. (2.2.82)
The second rows of the matrices v € 'y, are parameterized by the so-called coprime symmetric
pairs of integral matrices (C, D), which means that CD? is symmetric and the matrices GC and
GD with a matrix G of order k are both integral only if G is integral, see [1], Lemma 2.1.17.1t
is clear from definition (2.2.79) that if y2 = 41 with second rows (C2, D2) and (C1, D;) for some
v € T'k o0, then (Co, D2) = (UC1,UDy) for some U € GL(k,Z). On the other hand, if both v; and
72 have the same second row (C, D) then o7y, le I'k0o- This gives the parameterization of the
group I'y o \I'x; by equivalence classes of coprime symmetric pairs (C, D) via the equivalence relation
(Cq, Dg) ~ (C1, D) if (C2, Dy) = (UCy,UD) for some U € GL(k,Z), see also [1], p.54. We will
use the notation [y] = [C, D] € T'y oo \I'-

It is clear that if one defines the domain: Fj, = Uyery o YDk, then Hj = UMeFk ATy v IF is a
non-overlapping cover of the Siegel upper half-plane. Correspondingly, for a given matrix 7' > 0 of
order k, define the Farey arc dissection of level T, as the cover

L= |J Ihl, IW={Xel: X+iT™" ey 'F;} (2.2.83)
(V€ k00 \T'k:
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We will need the following transformation property of the functions |6, ;(Z, X, )| with respect
to v € I'y, which is immediate from Proposition 1.3.2 and Theorem 1.3.6 in [1], see formulas

(1.3.7)-(1.3.10) there. Let &, € R¥, Z € Hy, and v = ( é, g ) € I'y. Then one has
1
0k(Z, & m)| = [det (CZ + D)|"2 [0k(7(Z), A — By — ky/2, C§ — D — ny/2)], (2.2.84)
for some vectors k-,n, € ZF depending only on the matrix v. If X = (&1,...,&,) is a real n x k

matrix with the i-th row being &;, for 1 < i < n, then by (2.2.75)
0,k(Z,2,0)| = |det (CZ + D)% [0,4(1(7), XA — K, [2, XC' N, /2)),  (2:2.89)

for some matrices K., N, € 7%k depending only on the matrix 7. Let us recall the following

quantity associated to a positive matrix Y € RF**¥,
min(Y)= min Yuz-uz. (2.2.86)
TEZ™ ,x#0

It is clear that u(Y) < min(Y), and it follows from (5.8) that u(Y) ~ min(Y) if Y is reduced.

Proposition 2.8. Let X € R T ¢ ZF<¥ such that T > 0, and T > 0 be given. If (C, D) is a
coprime symmetric pair, then for Z € Ip[C, D] one has

|0n.k(Z,X,0)| < | det (CZ + D)| 5. (2.2.87)
Let q=det(C), [y] =[C,D] and Y = Imvy(Z). If q# 0, and for every P € Z"**
|X — P/2q| > T (2.2.88)
then one has
10,1(Z,%,0)| < | det (CZ + D)| "2 (efcmin<Y> + efcrmctm) 7 (2.2.89)
for some constant ¢ > 0 depending only on the dimension k.
Proof. By formula (2.2.84) it is enough to show that
Onk(v(Z), XA' — K.,/2, XC' — N, /2)| < 1. 2.2.90
; gl gl

Since y(Z) € Fy, there is a U € GL(k,Z) and a symmetric S € Z¥*¥_ such that y(Z) = U'Z,U + S
with Z; € Dy. Taking absolute values in (2.2.76) one obtains, using the notation A[B] = B'AB,

00k (1(Z), XA' — K /2, XC' = Ny j2)| < Y e mir(IOX=MI=NG/2) (2.2.91)
A4€ank
_ Z e—ﬂtT’(Yl[ClXt—M{‘—N{‘/Z]),

Mleznxk

where M; = MU? runs through Z"** C, = UC, N; = NvUt and Y] = Im Z, = U'YU. Since
Z1 € Dy, Y1 > ¢, Ey, for some constant ¢ > 0. Let My € Z"** be such that

|XCF — My — N1/2| = min |XCi— M — Ny/2|,
AlGZ"Xk
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and write My = M} — My . Since Z; € Dy, one has that u(Y7) ~ min(Y7) 2 1 see [1], thus the right
side of (2.2.91) is further estimated by

e—c’|)€C’f—Mo—N1/2|2 + Z e—c’min(Yl)\Mz\Z 5 1. (2292)

Ma#£0

If ¢ = det(C) # 0 and one assumes (2.2.89), then det(Cy) = 4=q # 0 and (Mo + N1/2)(Ct) ™! = P/2q
for some P € Z™*. Thus

tr(Y1[C1 X" — M§ — Ni/2]) = tr((C1Y1Ch) [X' — P'/2q]) > 72 u(CLY1Cy).
Thus the expression in formula (2.2.92) is bounded by

e—cTQu(C{chl) +6—cmin(Y1)’
for some constant ¢ > 0 depending only on k. Since C}Y1Cy = C'Y'C and min(Y1) = min(Y), the
proposition is proved. ]

We will estimate below the sum of the integrals

Jrx|C, D] = / 10,1(Z, X,0)| dX, (2.2.93)
Ir[C,D]

over all coprime symmetric pairs [C, D], using bounds (2.2.87) and (2.2.89). Most of the estimates
needed, were done in [67] in the proofs of Propositions 1.4.10 and 1.4.11, which we recall without
proofs, however we give detailed proofs of similar estimates not discussed in [67].

To be more precise, define the quantities

JO[C. D] = / | det(CZ + D)% dX. (2.2.94)
IT[C,D]
JLC, D] = / | det(CZ + D)% e—emin(¥) gx. (2.2.95)
I7[C,D]
J%.[C,D] = / |det(CZ + D)|7% e~ HCYC) g x| (2.2.96)
Ir[C,D]

where Y = Im~(Z) and v € T'y such that [y] = [C, D] € I'y »o\I'. The following estimates are
proved in [K], (see Proposition 1.4.10 together with Lemma 1.4.4. and estimate (39) there)

Proposition 2.9. Let T be a positive integral matriz, and let [C, D] be a coprime symmetric pair
such that det(C) # 0. Then one has the following estimates

N HIC,D+CS] S det(T)* = | det(C)| 5. (2.2.97)
St=5
3" JHC,D+CS] S det(T)* = |det(C)|7F min(T)~"F, (2.2.98)

St=8

where the summation is taken over all symmetric integral matrices S.

Using the same argument as in the proof of the above statements given in [67], one obtains
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Proposition 2.10. Let T be a positive integral matriz, let T > 0, and let [C, D] be a coprime
symmetric pair such that det(C) # 0. Then
N J3,(C,D+CS] S det(T)" 2 |det(C)7F (r2u(T)) T, (2.2.99)
St=8

where the summation is taken over all symmetric integral matrices S.
Proof. Using the fact that
Im~(Z) = ((CZ +D)(ImZ)"Y(CZ + D)),
it follows for Z = X + 4T~ that
Y[C]=(T[X+C'D4+iT )= (T X +C'D]+ 77171

Thus by (2.2.96)

> JplC,D+CS) S (2.2.100)
St=9

< Y / |det(C)| 72 |det(X + C™ D + S+ 4T )72 e~ WTIX+CTIDHSIFTH gy
st=g7 1k

n

< | det(0)| 3 / weny | det(X T 17§ emer AT gy
R™ 2

Let T2 denote the positive square root of T, and let X; = X [T%] Then by a change of variables
dX = det(T)_%Xm, the expression in (2.2.100) takes the form

n—kK— n n -_ 1
det(T) 5= | det(C)|~3 / e, deb(X2 4 B~ emertnl(XEHE) T, (2.2.101)
R™ 2

Note that the above expression depends just on the conjugacy class of the symmetric matrix X;. Thus
writing X1 = Vldiag(wi, ..., wy)V for some orthogonal matrix V € O(k), with |wy| > ... > |wy]
being the eigenvalues of the matrix Xy, it follows that

W(T2(X3 + Ep)7'T2) > (1+ wd) ™! w(T).

By the Weyl integral formula:

dXi = w; — w;| dwy...dw,dV < 1+w2% dwy . ..dwg dV.
J %

1<i<j<k 1<i<k
Since n > 2k, using the above change of variables, one estimates the integral in (2.2.101) by

n—2k

/ (L4 wd) 555 MO quy < (P2p(T)) "
Rk

This proves the proposition. ]

The map [C, D] — C~'D provides a one-one and onto correspondence between the classes of
coprime symmetric pairs [C, D] € T'y »o\I';, and the space of symmetric rational matrices R of
order k, see Lemma 1.4.6 in [67]. Note that the pairs [C, D + CS] correspond to the matrices
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R + S with symmetric S € Z***¥. Thus using Proposition 2.10 9, one needs to estimate the sum
of Y gi_g Jrx[C,D + CS] = Jr x[R] over the space of modulo 1 incongruent symmetric rational
matrices, which we will denote by Q(1)***, where Q(1) = Q/Z, Q being the set of rational numbers.
Let us introduce the notation: d(R) = | det(C)| for R = C~!'D, and recall the following estimate,
proved in Lemma 1.4.9 in [67]; for u > 0 and s > 1 one has

1
s—1

u* dR)F+ > dR) RS (24 yul~s, (2.2.102)
d(R)>u

1<d(R)<u

where the summation is taken over [R] € Q(1)F*F.

Proposition 2.11. Let T be a positive integral matriz, let 7 > 0 and qo € N. Let X € R™* such
that for all 1 < q < qo and P € Z"*F
|X — P/q| > . (2.2.103)

Then one has

n—k—1 9  n—2k—2 _ n—2k-2
> JralR) < det(T)" = ((P2u(T)"0 +q 2 ). (2.2.104)
ReQ(1)kxk, d(R)7#0

Proof. By Propositions 2.8-2.9 one has

[un

n—k—

Jra[B] S det(T)"2 d(R)”2,

thus by (2.2.102) applied for s=n/2 —k >1and u =1

n—k—1

> JrxlR] S det(T) 2. (2.2.105)
d(R)#0

If X satisfies (2.2.103) then for 1 < d(R) < ¢p/2 one has by (2.2.90) and (2.2.98)-(2.2.99)

n—2k

(d(R)—%(TQH(T))— 1 +d(R)‘kmm(T)_n_42k).

n—k—1
2

Jrx[R] S det(T)

Clearly |7| < 1, thus 72u(T) < min(T) so the right side is bounded by

n—k—1

Jrx[R] < det(T)" 2 d(R) ™ (+2u(T)) "7 (2.2.106)
By inequality (2.2.102) applied for s =n/2 — k, u = qo/2
n—k—1 2 _ n—2k 7n7§w2
Y JrxlR] S det(T) 7 (qo (TPu(T))™"F +qq ),
d(R)#0
which is bounded by the right side of formula (2.2.104). O

Next, we estimate the sum Jp x[C, D] over the classes [C, D] of coprime symmetric pairs for which
det(C) = 0. We will use the estimate

Jrx[C.D] < JRIC, D] = / | det(CZ + D)% dX.
Ir[C,D]

which follows from (2.2.88) and (2.2.94). First we show that one may assume 7" is reduced in our
estimates below.
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Proposition 2.12. Let T € Z*** such that T > 0 and let Ty = T[V] for some V € GL(k,Z). Let
0 <r <k, and let rank(C) stand for the rank of the matriz C'. Then

> J9.[C, D] = > JY[C, D] (2.2.107)
[C,D], rank(C)=r [C,D], rank(C)=r

Proof. Let U € GL(k,Z) such that U~! = V*. Then T~' = T, '[U™!], and writing Z = X +iT~!
for Z € Ip[C, D] a straightforward calculation shows that

|det(CZ + D)| = | det(C1 Z1 + Dy)],
with C; = C(U*)™!, Dy = DU, X; = X[U™!] and Z; = X; + 4T, . Notice that Z; = h(Z) with

* *

ORI (o I
h = ( 0 U ) and if v = c D then v - h = v with v, = c D) It follows
Y(Z) = y(Z1), hence X € Ip|C, D] exactly when X; = I7, [C, D] and one has

[ Jdeczeptax = [ jaecz+ Dyl ax,
I7]C,D] Ir,[C1,D1]

The map [C, D] — [C1,Dq] = [C(U")~!, DU] is one-one and onto from the classes of coprime
symmetric pairs [C, D] with rank(C) = r to itself, and the proposition is proved. O

Let T > 0 be integral, and let 77 = T[U] be reduced, with U € GL(k,Z). We recall that
Ty =~ diag(ti,...,tgk), where t;; (1 <1i < k) denote the diagonal entries of the matrix 71, see
(2.2.81). For reduced matrices the estimate of the sum in (2.2.107) goes back to [98], and is given
in Lemma 1.4.11 in [67], which we recall without proofs, see formulas (39) and (43)-(44) there.

Proposition 2.13. Let T} € ZkxE pe reduced, and let 0 < r < k. Then

n—r—1
Z J,%l [07 D] S (tk,k et tk*’f‘*%l,k*?“i»l) 2 )
[C,D], rank(C)=r

where t;; (1 <i < k) denote the diagonal entries of the matriz T}.

It is easy to see that
e(Th) < e(T). (2.2.108)

Indeed,
tig=Ter-eg =TUey) -Ues > pu(T) and

|T| > sup Tl(Ufla:)-Uflx 2 sup tlpg (Uﬁlm)i > ik,
|z]=1 |z]=1

as U1 is integral, where (U~'x); denotes the k-th entry of the vector U~ 'x.

Finally, one has r(n —r—1) < (k—1)(n—k) for 0 < r < k — 1, thus Proposition 2.13 and inequality
(2.2.108) implies
Corollary 2.1. Let T € Z¥** such that T > 0. Then

S Ren) <t
[C,D], det(C)=0

Note that a proof of this corollary is also given in [95], see formulas (25)-(26) there.
Lemma 2.2 follows immediately from Proposition 2.11 and Corollary 2.1.
This finishes to proof of Theorem 2.3.
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3 A weak hypergraph regularity lemma and products of simplices
in sets of positive density

As described in Section 2 Graham has conjectured that Bourgain’s simplex theorem extends to all
finite spherical configurations S in Euclidean spaces. The first breakthrough in this direction was
obtained in joint work with Lyall [76] where it was shown that configurations of four points forming
a 2-dimensional geometric rectangle, and more generally any configuration that is the direct product
of two non-degenerate simplices in R™ are Ramsey. This section is based on the recent joint work
[79] where the results in [76] were extended to cover configurations with a a higher dimensional
product structure in both the settings of Euclidean spaces and the integer lattice Z¢. Let us state
our main results.

By a d-dimensional rectangle in a space R” (or in Z”) we mean a set of the form R = {11,712} ¥
<o X {xg1,xg2} with side vectors v; = x40 — 41 (i = 1,...,d) being pairwise orthogonal.

Theorem 3.1. Let R be 2¢ points forming the vertices of a fized d-dimensional rectangle in R?¢.

(i) If S C R?? has positive upper Banach density, then there exists a threshold Ao = \o(S, R) such
that S contains an isometric copy of AR for all A > Ag.

(ii) For any 0 < § < 1 there exists a constant ¢ = c(§,R) > 0 such that any S C [0,1]?? with
|S| > § is guaranteed to contain an isometric copy of AR for all X in some interval of length
at least c.

Moreover, if R has sidelengths given by t1,...,tq, then the isometric copies of AR in both (i) and
(ii) above can all be realized in the special form {x11, 212} X --- X {x41, 240} C R? x --- x R? with
each ’JZjQ — .%'jﬂ = )\tj.

More generally, we have the following extension of Bourgain’s simplex theorem.

Theorem 3.2. Let A = Ay x --- x Ag CR", where R" =R" x ... x R" and each Aj CR"™ is a
non-degenerate simplex of n; points.

(i) If S C R™ has positive upper Banach density, then there exists a threshold Ao = \o(S,A) such
that S contains an isometric copy of A for all A > Ag.

(11) For any 0 < 0 < 1 there exists a constant ¢ = ¢(6,A) > 0 such that any S C [0,1]" with
|S| > ¢ is guaranteed to contain an isometric copy of AA for all A in some interval of length
at least c.

Moreover the isometric copies of AA in both (i) and (ii) above can all be realized in the special form
A X - x A with each A CR™ an isometric copy of AA;.

Our main results in this Section are in the context of sets of positive upper density of the integer
lattice.

Theorem 3.3. Let 0 < 6 < 1 and R be 2% points forming the vertices of a d-dimensional rectangle
in Z°%.

(i) If S C Z°% has upper Banach density at least §, then there exist integers qo = qo(d, R) and
Ao = Ao(S,R) such that S contains an isometric copy of goAR for all X\ € VN with A > X.
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(ii) There exists a constant N(6,R) such that if N > N(§,R), then any S C {1,..., N}*? with
cardinality |S| > N°? will necessarily contain an isometric copy of AR for some X € VN with
1<A<N.

If R has side lengths given by t1, ..., tq, then each of the isometric copies in (i) and (ii) above can
be realized in the form {x11,T12} X -+ X {Tq1, 232} C Z° x --- x Z> with each |zjo — xj1] = qoAt;
and Atj, respectively.

The above results extend to more general patterns where d-dimensional rectangles are replaced with
direct products of non-degenerate simplices.

Theorem 3.4. Let 0 < § <1 and A = Ay x --- x Ay C Z", where Z" = 7> 13 x ... x Z?a+3 gnd
each N; C Z2"F3 s a non-degenerate simplex of n; points.

(i) If S C Z™ has upper Banach density at least &, then there exist integers qo = qo(d, A) and
Ao = Ao(S, A) such that S contains an isometric copy of goAA for all A € VN with A > X.

(ii) There exists a constant N (0, A) such that if N > N(5,A), then any S C {1,...,N}" with
cardinality |S| > dN™ will necessarily contain an isometric copy of AA for some A € VN with
1<A<N.

Moreover, each of the isometric copies in (i) and (ii) above can be realized in the special form
Al x - x AL with each A C 723 an isometric copy of goAA; and A, respectively.

The constants N(d,A) and go(d, A) can be taken less than exp(®(Cad~13"17) where exp® (m) is
a k-fold tower of exponentials defined by exp® (m) = exp(m) and exp*+t1) (m) = exp(exp® (m)),
for k > 1.

3.1 Outline and notations.

Our proofs are based on adapting Gowers type box-norms [48] and on developing a weak hyper-
graph regularity lemma [39, 108] and an associated counting lemma, in the context of Euclidean
spaces and the integer lattice. As the notations in the general case are quite cumbersome, in
Section 3.2 we introduce our approach in the model case of finite fields and prove an analogue
of Theorem 3.1 in this setting. In Section 3.3 we review Theorem 3.2 for a single simplex and
ultimately establish the base case of our general inductive approach to Theorem 3.2. The general
case which we present in the Section 3.4. The proof of Theorem 3.4 is outlined in Sections 3.5 and 3.6.

We will consider the parameters d,n1,...,ng fixed and will not indicate the dependence on them.
Thus we will write f = O(g) or alternatively f < g if |f| < C(ny,...,nq)g. If the implicit constants
in our estimates depend on additional parameters ¢, 6, K, ... the we will write f = O. 5k, (g) or

f Se,é,K,‘.. g.

Given an € > 0 and a (finite or infinite) sequence Lo > L1 > --- > 0, we will say that the sequence is
e-admissible if Lj/L;j 11 € Nand Lj < €2Lj for all 7 > 1. Moreover, if ¢ € N is given and L; € N
for all 1 < j < J, then we will call the sequence Lo > L; > --- > Ly (e, q)-admissible if in addition
Lj/q € N. Such sequences of scales will often appear in our statements both in the continuous and
the discrete case.
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3.2 Model case: vector spaces over finite fields.

In this section we will illustrate our general method by giving a complete proof of Theorem 3.1 in
the model setting of Fy' where F; denotes the finite field of ¢ elements. We do this as the notation
and arguments are more transparent in this setting yet many of the main ideas are still present.
We say that two vectors u,v € Fy are orthogonal, if z - y = 0, where “” stands for the usual dot
product. A rectangle in Fy is then a set R = {x1,y1} X - X {2, ys} with side vectors y; — x; being
pairwise orthogonal.

The finite field analogue of Theorem 3.1 is the following

Proposition 3.1. For any 0 < § < 1 there exists an integer qo = qo(0) with the following property:
Ifq>qo and ty,...,tq € Fy, then any S C ng with |S| > 6 ¢** will contain points

L11,X125 X+ X 1Zd1,Xq2 QV1><"'XVd with x'Q—l"lQ:t' 07"1§j§d
J J J

where we have written de Vi x o x Vg with Vj ~ ]F?I pairwise orthogonal coordinate subspaces.

3.2.1 Overview of the proof of Proposition 3.1

Write ng = Vi x...x Vg with V; ~ Fg pairwise orthogonal coordinate subspaces. For any
ti=(t1,...,tq) €Fyand S C ng we define

d
Ni(ls) =By vz gpevz |1 Ls(1eys - @ar,) [ ] oty (2 — 20)
(61, ba)€{1,2}4 =1
where we used the shorthand notation xj = ($j1, .Z‘jg) for each 1 < j < d and the averaging notation:
TEA

for a finite set A # (). We have also used the notation
q if|z]>=t
oi(x) = :
0 otherwise

for each ¢ € Fy. Note that the function oy may be viewed as the discrete analogue of the normalized
surface area measure on the sphere of radius v/¢. It is well-known, see [62], that

Eyem oi(z) = 1+ 0(q™?)
and for all £ # 0 one has
61(6) = Eyem 0n(a) ™5 = 0(g71/?).
Note that if M(1g) > 0, then this implies that S contains a rectangle of the form {x11,z12} X - -+ %
{Za1,xa2} with 21,250 € V; and |z;2 — mj1|2 =tjfor 1 <j<d.
Our approach to Proposition 3.1 in fact establishes the following quantitatively stronger result.

Proposition 3.2. For any 0 < e <1 there exists an integer qo = qo(€) with the following property:
If ¢ > qo, then for any S C ng and ty,...,tq € Fy one has

Mug><§0

where we have written ng =Vi x ... x Vg with V; ~ ]F?I pairwise orthogonal coordinate subspaces.
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A crucial observation in the proof of Proposition 3.2 is that the averages Ny(1g) can be compared to
ones which can be easily estimated from below. We define, for any S C ng, the (unrestricted) count

M(1lg) := E£1€V127~--7£d€Vd2 H Ls(1ey, -5 Tde,)-
(01, L) €{1,2}¢

It is easy to see, by carefully applying Cauchy-Schwarz d times to E;  cvi, .z evils(zi1, ..., Za1),
that .
witg) > (15

s) > 2 . (3.2.1)

Our approach to Proposition 3.2 therefore reduces to establishing that for any € > 0 one has
N:(1s) = M(1s) 4+ O(e) + O-(q~/?). (3.2.2)

The validity of (3.2.2) will follow immediately from the d = k case of Proposition 3.3 below. However,
before we can state this counting lemma we need to introduce some further notation from the theory
of hypergraphs, notation that we shall ultimately make use of throughout the paper.

3.2.2 Hypergraph notation and a counting lemma

In order to streamline our notation we will make use the language of hypergraphs. For J := {1,...,d}
and 1 <k <d, we let Hq = {e C J; |e|] =k} denote the full k-regular hypergraph on the vertex
set J. For K := {jl; j € J, 1 € {1,2}} we define the projection 7w : K — J as w(jl) := j and use
this in turn to define the hypergraph bundle

M3, = {e C K |e| = |n(e)] = k)

using the shorthand notation 2 = (2,2,...,2) to indicate that |7 ~1(j)| = 2 for all j € J.
Notice when k = d then M4 4 consists of one element, the set e = {1,...,d}, and

Mo g = { {1, dig}; (I, 1g) € {1,2}}

Let V := ng and V =V; x ... x Vg with V; ~ Fg pairwise orthogonal coordinate subspaces. For
a given z = (211, %12, . ., Ta1, Ta2) € V2 with 21, ;0 € V; and a given edge e = {1l1,...,dl}, we
write

o = (T1y, -5 Tdly)-

Note that the map x — z, defines a projection 7, : V2 — V. With this notation, we can clearly
now write

d
Ni(1s) =EByere [ 1s(z.) []ov,(@je —20)
j=1

eEH%’d
M(Lg) =Euev ] 1s(z.).
eEH%‘d

Now for any 1 <k < d and any edge ¢’ € Hay, i.e. € C{L,....d}, || =k, welet Vs :=[[;c V.
For every z € V2 and e € H%kv we define z, := m.(x) where 7, : V2 — Vi (e) is the natural projection
map.
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Our key counting lemma, Proposition 3.3 below, which we will establish by induction on 1 <k <d
below, is then the statement that given a family of functions fe : Vi) — [—1,1], e € ’H%k, the
averages (generalizing those discussed above) which are defined by

d

Ni(fe: e € Ha,) i=Epeve [[ felze H (xjo —x41) (3.2.3)
eGH;k Jj=1

M(fe; e € /Hdk Epeve H fe(z (3.2.4)

eGHEY &
are approximately equal. Specifically, one has

Proposition 3.3 (Counting Lemma). Let 1 < k < d and 0 < e < 1. For any collection of functions
fe: Viey = [-1,1] with e € H3 ),

one has

Ni(fe: e € H3)) = M(fes e € H3,) + O(e) + O(q1/?). (3.2.5)

If we apply this Proposition with d = k and f. = 1g for all e € H% 4 then Theorem 3.1 clearly
follows given the lower bound (3.2.1).

3.2.3 Proof of Proposition 3.3
We will establish Proposition 3.3 by inducting on 1 < k < d.

For k = 1 the result follows from the basic observation that if fi, fo : Fy — [~1,1] and let t € F,
then
By woerz f1(21) f2(72) 0 (22 — 1) Z fi(€ a1 (§)
£cF2
= f1(0)f2(0) + O(g~"/?) (3.2.6)

=By aperz f1(21) fo(@2) + O(q~'7%)

by the properties of the function ¢ given above.
To see how this implies Proposition 3.3 for & = 1 we note that since ’H%l ={jl:1<5j<d,1<1<2}
it follows that

Ni(fe; e € Hd 1 51,752 EF2 fin(@in) fi2(xj2) oo — 241)

By wpoerz fin(zin) fia(zi2) + O(g7'?) = M(fe; e € Hil) +0(q7 ).

Qe
IIs

The induction step has two main ingredients, the first is an estimate of the type which is often
referred to as a generalized von-Neumann inequality, namely

Lemma 3.1. Let 1 <k < d. For any collection of functions fe : Vi) = [—1,1] with e € ’H%k one
has

Ni(fe; e € H3) < min ||fellow,,) +Oa?) (3.2.7)

d,k
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where for any e € 'H%k and f: Vi) — [=1,1] we define

k
HfHZD(Vﬂe)) = Egevg(e) H f(z,). (3.2.8)

2
ee’Hg’k

The corresponding inequality for the multilinear expression M(fe; e € ”H% ;), namely the fact that

M(fei e €350 < T felows < min Ifellows)
S

2 d,k
eE’dek

is well-known and is referred to as the Gowers-Cauchy-Schwarz inequality [48].

The second and main ingredient is an approximate decomposition of a graph to simpler ones, and is
essentially the so-called weak (hypergraph) regularity lemma of Frieze and Kannan [39]. We choose
to state this from a somewhat more abstract/probabilistic point of view, a perspective that will be
particularly helpful when we consider our general results in the continuous and discrete settings.
We will first introduce this in the case d = 2. A bipartite graph with (finite) vertex sets Vi, V3
isaset S C Vi x Vs and a function f : Vi x Vo — R may be viewed as weighted bipartite graph
with weights f(z1,22) on the edges (z1,z2). If P; and Py are partitions of V; and Vs respectively
then P = P; x Py is a partition V7 x V5 and we let E(f|P) denote the function that is constant
and equal to Eyc4f(x) on each atom A = A; x Ay of P. The weak regularity lemma states that
for any € > 0 and for any weighted graph f: Vi x Vo — [—1, 1] there exist partitions P; of V; with
|P;| < 20C7) for i = 1,2, so that

[EaieviBasevs (f — E(fP)) (21, 22) 17 (1)1, (22)] <€ (3.2.9)

for all Uy C V5 and Us C V5. Informally this means that the graph f can be approximated with
precision € with the “low complexity” graph E(f,P). If we consider the o-algebras B; generated by
the partitions P; and the o-algebra B = B; V By generated by P x Pa then we have E(f|B), the
so-called conditional expectation function of f. Moreover it is easy to see, using Cauchy-Schwarz,
that estimate (3.2.9) follows from

1f = E(/1B1 V Bo)llogxvs < e (3.2.10)

With this more probabilistic point of view the weak regularity lemma says that the function f can
be approximated with precision € by a low complexity function E(f|B;\/ Bz2), corresponding to
o-algebras B; on V; generated by O(s7?) sets. This formulation is also referred to as a Koopman-
von Neumann type decomposition, see Corollary 6.3 in [109].

We will need a natural extension to k-regular hypergraphs. See [108, 48], and also [26] for extension
to sparse hypergraphs. Given an edge ¢/ € Hgy of k elements we define its boundary de’ :=
{f' € Hap—1; ¥ C €'} For each {/ = €'\{j} € d¢’ let B{ be a g-algebra on Vy = [[;; V; and
By :={U x Vj; U € By} denote its pull-back over the space Ver. The o-algebra B = Vieoe By is
the smallest o-algebra on Je’ containing By for all

f' € de’. Note that the atoms of B are of the form A = (Vg Ay Where Ay is an atom of By .
We say that the complexity of a o-algebra By is at most m, and write complex(By) < m, if it is
generated by m sets.

Lemma 3.2 (Weak hypergraph regularity lemma). Let 1 < k < d and fe : Vy) — [-1,1] be a

given function for each e € H%,k' For any € > 0 there exists o-algebras By on Vy for each f € Hgp—1
such that .
complex(By) = O(e 2 i) (3.2.11)
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and

Ife —E(fl \/ Bilow,,,) <& forall eeHs,. (3.2.12)
feon(e)

The proof of Lemmas 3.1 and 3.2 are presented in Section 3.2.4 below. We close this subsection by
demonstrating how these lemmas can be combined to establish Proposition 3.3.

Proof of Proposition 3.3.
Let € > 0, 2 < k < d and assume that the lemma holds for &k — 1. It follows from Lemma 3.2 that
there exists o- algebras By of complexity 02" on Vi for each f' € Hgp—1 for which (3.2.12)

holds for all e € ,Hdk For each e € 7—[ ar We let fe = E(f.| \/fleaw(e By) and write fe = fe + he. By
Lemma 3.1 and multi- linearity we have that

Ni(fei e € H3,) = Ny(fe: e € H3,) +O(e) + O(q™ /) (3.2.13)

and also by the Gowers-Cauchy-Schwarz inequality
M(fe; e € H3,) = M(fus e € H3,) + O(e). (3.2.14)
The conditional expectation functions f. are linear combinations of the indicator functions 14,

of the atoms A, of the o-algebras B, := \/f,ea7r By Since the number of terms in this linear

ok+1
combination is at most 265 ~, with coeflicients at most 1 in modulus, plugging these into the
multi-linear expressions NV;(fe; e € 7—[% p) and M(fe; e € ’H% ;) one obtains a linear combination of
expressions of the form Ny(14,; e € H%k) and M(1y4,; e € H%k) respectively with each A, being

an atoms of B, for all e € H%k.
The key observation is that these expressions are at level £ — 1 instead of k. Indeed, 14, =
[lycon(e) 14, where Agy = AL, x Vj, with Af, being an atom of By when ' = 7(e)\{;}.

e= (Jilt,-. -, gl, ..., Jkly), let py(e) == (jily, ..., Julk) € /H%k_l, obtained from e by removing the
jl-entry. Then we have 14, (z.) = 1w ; (gp/f(e)) since xj; € Vj, and hence

La.(z,) = H 1Aef/ (e)
f'edn(e)
It therefore follows that

d
Ni(las ee i) =Beere [ ] 1A’ Ly () 110w (22— 20)

eeH* fedn(e Jj=1

2
= Egeve H H pf/ HUt zjo — x51) = Ny(gy; | € /H&k_l)

fEHT oy eeﬁik,f'ean( )
Pf’(e):f

=:9j

and similarly that
2 2
M(la,; e€ ”Hak) = M(gy; € Hﬁ,kq)-

It then follows from the induction hypotheses that

Ni(la,; e € H%k) =M(ly,; ec 7—[%7,{) +0(e1) + O, (¢?)
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k41 k1
for any e; > 0. If we choose &1 1= 2-¢1¢ ? , with C; > 1 sufficiently large, then ¢, 2¢¢ = O(e)
and it follows that

Nz(fe; e € Hik) = /\/l(fe; e € 7—[%7,{) +0(e) + Os(q—l/Z).

This, together with (3.2.13) and (3.2.14), establishes that (3.2.5) hold for d = k as required. O

3.2.4 Proof of Lemmas 3.1 and 3.2

Proof of Lemma 3.1. We start by observing the following consequence of (3.2.6), namely that

By woerz f1(21) f2(22)0t (22 — 21) ’ < By perzf1(21) fi(z2) + O(q~/?) (3.2.15)

for any fi, fo : IFZ — [~1,1] and t € F}.

Now, fix an edge, say ey = (11,21,...,k1). Partition the edges e € ’Hdk into three groups; the
first group consisting of edges e for which 1 ¢ 7(e), the second where 11 € e and write e = (11,¢’)
with €’ € H%_l’k_l and the third when 12 € e, using the notation Hd—l,k:—l = {(joloy ..., Jrlk)}-
Accordingly we can write

d
Ni(fer e € Ha,) =Byeve ] fela) [[ faven@inze) [] fozen (@i z. H (T2 — xj1).
1¢m(e) [3 G’del,k—l 6/67'[%7171671 J=1
(3.2.16)
If for given € V; and 2’ = (721,722, ..., 241, Ta2) € V& X ... X Vd2 we define

gl(xagl) = H f(ll,e’)(xvge’) and g2(£7£,) = H f(127e’)($7£e’)

EIEH%—l,k—l e’e’}-{%_l,k_l
then we can write
d
Nilfe; € € H3 ) = Banamwinas ] Selae) [ oe, (@2 —2i0) (3.2.17)
1¢m(e) Jj=2
X Epyyw0n 91(211,2")g2(212, 2) 0, (212 — 211).

By (3.2.15) we can estimate the inner sum in (3.2.17) by the square root of
Eayy e 91(211,2))g1(212,27) + O(g~1/?).

Thus by Cauchy-Schwarz, and the fact that fe: Vi) — [-1,1] for all e € 7-[% » We can conclude
that

d
M(fe; e € H%,k)2 < Exuﬂﬁlz,---,xdhxdz H f(ll,e’)(xllﬂQe’)f(ll,e’)(ml%le’) H O¢; (ij - ‘T]Q)'
eIEHifl,kfl =2
(3.2.18)
The expression on the right hand side of the inequality above is similar to that in (3.2.16) except
for the following changes. The functions f. for 1 ¢ e are eliminated i.e. replaced by 1, as well
as the factor oy,. The functions f(j5, are replaced by f(11 ¢ for all €’ € ’H%_Lk_l. Repeating
the same procedure for j = 2,...,k one eliminates all the factors oy; for 1 < j < k, moreover all
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the functions f, for edges e such that j ¢ m(e) for some 1 < j < k, which leaves only the edges e
so that w(e) = (1,2,...,k), moreover for such edges the functions f. are eventually replaced by
feo = fi1,21,...k1- The factors ot (xjo — xj1) are not changed for j > k however as the function f,
does not depend on the variables x;; for j > k, averaging over these variables gives rise to a factor
of 14 O(g~'/?). Thus one obtains the following final estimate

Aft(fe? €c ,Hik)Qk < E$117I127---7$k11$k2 H feo(fe) + O( 71/2) - erOHD (Va(eg) + O( 71/2)-
m(e)=(1,....k)
(3.2.19)
This proves the lemma, as it is clear that the above procedure can be applied to any edge in place
of e = (11,21,...,k1). O

Proof of Lemma 3.2. For a function fe : Vi) — [~1,1] and a o-algebra B, () on V(. define the
energy of fe with respect to By () as

g(fevB ) ||E(f6|8 )”2 mEVﬂ(e) |E(fe|6n(e))(x)|2v

and for a family of functions f. and o-algebras By (), e € H% i its total energy as

E(fe, Bx €€Hdk Z E(fe, By

eE’Hgyk

We will show that if (3.2.12) does not hold for a family of o-algebras By \/f'eaw By, then
the o-algebras By can be refined so that the total energy of the System 1ncreases by a quantity
depending only on e. Since the functions f. are bounded the total energy of the system is O(1),
the energy increment process must stop in O.(1) steps, and (3.2.12) must hold. The idea of this
procedure appears already in the proof of Szemerédi’s regularity lemma [104], and have been used
since in various places [39, 108, 48].

Initially set By := {0, Vi'} and hence By () = {0, V() } to be the trivial o-algebras. Assume that in
general (3.2.12) does not hold for a famlly of o-algebras By, with f € Hgx—1. Then there exists
an edge e € ”H%k so that ||gellov, ., = & with ge := fe — E(fe|Br()). Let e = (11,... k1) for

simplicity of notation, hence 7(e) = (1,...,k). Then, with notation 2’ = (212, ..., Zk2), one has
2k 2k
" < ngHD(VW(e)) = Eo1) 010,ap1,200 H ge(T11y, - - 7xklk)
lyole=1,2
k
< Eaps,ovp0 |Earyagr Ge(T11, - - -5 Tk ) H (115 T 1, T 15 - -+, Tl

for some functions h;,s that are bounded by 1 in magnitude. Indeed if and edge e # (11,...,k1)
then z. does not depend at least one of the variables x;;. Thus there must be an 2’ for which the
inner sum in the above expression is at least 2. Fix such an 2’. Decomposing the functions h; z
into their positive and negative parts and then writing them as an average of indicator functions,
one obtains that there sets B; C Vi (¢)\ () such that

—k _2k
E:cn,...,xklge(xllv--wﬂfkl B (T115- - Tjo11, 411, -5 Tp1)| = 277 €

sz
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which can be written more succinctly, using the inner product notation, as

)<f E(felBr(e Hls > 27k 2, (3.2.20)

For f = Om(e)\{j} let B be the o-algebra generated by By and the set B; and let B;r(e) =

Vf'e o (e) B;,. Since the functions 1p; are measurable with respect to the o-algebra B ©) for all
1 < j <k, we have that

k
(fe = E(felBley H (3.2.21)
and hence, by Cauchy-Schwarz, that
k+1
IE(fe|Blre)) = E(fel Br(e)ll3 = IE(fel Bye)l3 = IE(felBrie))ll3 = 2728 > (3.2.22)

Note that the first equality above follows from the fact that conditional expectation function E(f|B)
is the orthogonal projection of f to the subspace of B-measurable functions in L2. This also implies
that energy of a function is always increasing when the underlying o-algebra is refined, and (3.2.22)
tells us that the energy of f. is increased by at least ¢y, g2

For § ¢ Or(e) we set Bg, = Bf/ Then the total energy of the family fe with respect to the system

ﬂ(e Vf/ec%r () f,, e € Hd i 18 also increased by at least ¢ g2

It is clear that the complex1ty of the o-algebras By are increased by at most 1, hence, as explained
above, the lemma follows by applying this energy increment process at most O(E*QHI) times. [

3.3 The base case of an inductive strategy to prove Theorem 3.2

In this section we will ultimately establish the base case of our more general inductive argument. We
however start by giving a quick review of the proof of Theorem 3.2 when d = 1 (which contains both
Theorem B and Corollary B), namely the case of a single simplex. This was originally addressed in
[16] and revisited in [76] and [77].

3.3.1 A single simplex in R"”

Let @ C R" be a fixed cube and let [(Q)) denotes its side length.

Let AY = {v1 = 0,v9,...,v,} € R" be a fixed non-degenerate simplex and define t; := vy, - v; for
2 < k,l < n where “-” is the dot product on R". Given A > 0, a simplex A = {z; =0,z9,...,2,} C
R” is isometric to AA? if and only if z, - ;7 = A%ty for all 2 < k,I < n. Thus the configuration
space Syao of isometric copies of AA is a non-singular real variety given by the above equations.
Let oya0 be natural normalized surface area measure on Syao, described in [16], [76], and [77]. It is
clear that the variable x; can be replaced by any of the variables z; by redefining the constants tg;.
For any family of functions fi,...,f, : Q@ = [—1,1] and 0 < A < [(Q) we define the multi-linear
expression

)\AO Q(fl,...,fn : ][ Q/ fn(aj‘n)dO’/\AO( —xl,...,$n—$1)dl‘1. (3.3.1)
HARS] T2,.

We note that all of our functions are 1-bounded and both integrals, in fact all integrals in this paper,
are normalized. Recall that we are using the normalized integral notation f W= ‘7%' i) 4 J- Since
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the normalized measure oyao is supported on Sya, we will not indicate the support of the variables
(x2,...,zy) explicitly.

Note also that if S C @ is a measurable set and N}AO’Q(lg, ...,1g) > 0 then S must contain
an isometric copy of AAY. The following proposition (with @ = [0, 1]") immediately establishes
Theorem 3.2 for d = 1.

Proposition 3.4. For any 0 < & < 1 there exists an integer J = O(c?loge™') with the following
property:
Given any lacunary sequence [(Q) > A1 > --- > Ay and S C Q, there is some 1 < j < J such that

Napoo(ls,. ., 1g) > <|g||> —¢ (3.3.2)

for all A € [)\j+1, )\]}

Our approach to establishing Proposition 3.4 is to compare the above expressions to simpler ones
for which it is easy to obtain lower bounds. Given a scale 0 < A < [(Q) we define the multi-linear
expression

M o(fi,- s fn) ::][ ][ fi(@1) ... folzn) doy ... do, dt (3.3.3)
’ teQ Jz1,x2,...,.xn€+Q(N)

where Q(\) = [—%, %]” and t + Q(A) is the shift of the cube Q(\) by the vector t. Note that if
S C Q is a set of measure |S| > §|Q| for some 6 > 0, then for a given ¢ > 0, Holder implies

MﬁQ(1S,...,1S)=][ ][ lg(x)dx | dt> ][ ][ lg(x)dedt | > 6" —O(e),
’ teQ \Jzet+Q(N) teQ Jaxet+Q(N\)

(3.3.4)
for all scales 0 < A < €1(Q).
Recall that for any ¢ > 0 we call a sequence L; > --- > Lj e-admissible if L;j/L;j;1 € N and
Ljy1 < 2L for all 1 < j < J. Note that given any lacunary sequence [(Q) > Ay > --- > Ay with
J' > (loge™1) J, one can always finds an e-admissible sequence of scales [(Q) > Ly > --- > L such
that for each 1 < j < J the interval [L; 1, L;] contains at least two consecutive elements from the
original lacunary sequence.
In light of this observation, and the one above regarding a lower bound for M}\’Q(ls, ..., 1g), our
proof of Proposition 3.4 reduces to establishing the following “counting lemma”.

Proposition 3.5. Let 0 < ¢ < 1. There exists an integer J, = O(e72) such that for any e-admissible
sequence of scales 1(QQ) > L1 > -+ > Ly, and S C Q there is some 1 < j < J; such that

Nanog(Ls, - 1s) = M o(1s, .-, 1s) + O(e) (3.3.5)
for all X € [Ljt1, Lj].

There are two main ingredients in the proof of Proposition 3.5, this will be typical to all of
our arguments. The first ingredient is a result which establishes that the our multi-linear forms
N ; A07Q( fi,.-., fn) are controlled by an appropriate norm which measures the uniformity of dis-
tribution of functions f : @ — [—1, 1] with respect to particular scales L. This is analogous to
estimates in additive combinatorics [48], [110] which are often referred to as generalized von-Neumann
inequalities.

The result below was proved in [76] for @ = [0, 1]", however a simple scaling of the variables z;
transfers the result to an arbitrary cube Q.
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Lemma 3.3 (A Generalized von-Neumann inequality [76]). Let ¢ > 0, 0 < A < l(Q), and
0< L < el
For any collections of functions f1,..., fn: @ — [—1,1] we have

NsogUis o fll £ min (1Al o) +O0) (336)
where for any f: Q — [—1,1] we define

M=
0= 1.,

with t + Q(L) denoting the shift of the cube Q(L) = [—%, é]" by the vector t.

][ f(z)dx at (3.3.7)
z€t+Q(L)

The corresponding inequality for the multilinear expression /\/l%\ Q( fi,--., fn), namely the fact that
1 .
Mgt f) < min | fillyy ) +O()

whenever 0 < L < €9 follows easily from Cauchy-Schwarz together with the simple observation
that

Hf”Ui(Q) < HfHUi,(Q) +0(e)

whenever L' < L.
The second key ingredient, proved in [77] and generalized in Lemma 3.5 below, is a Koopman-von

Neumann type decomposition of functions where the underlying o-algebras are generated by cubes of

a fixed length. To recall it, let @ C R™ be a cube, L > 0 be scale that divides [(Q), Q(L) = [—%, %]",
and Gr, ¢ denote the collection of cubes t + Q(L) partitioning the cube @ and I'z, ¢ denote the grids
corresponding to the centers of the cubes. By a slightly abuse of notation we also write Gy, ¢ for
the o-algebra generated by the grid. Recall that the conditional expectation function E(f|Gr, q) is

constant and equal to JCA f on each cube A € Gy, .

Lemma 3.4 (A Koopman-von Neumann type decomposition [77]). Let 0 < e <1 and @ CR"™ be a
cube.

There exists an integer J; = O(e72) such that for any e-admissible sequence 1(Q) > Ly > -+ > Ly,
and function f:Q — [—1,1] there is some 1 < j < Jy such that

If = ]E(ﬂng,Q)HUin(Q) <e (3.3.8)

Proof of Proposition 3.5. Let g1, be the grid obtained from Lemma 3.4 for the functions f = 1g
for some fixed € > 0. Let f := E(f|GL, @), then by (3.3.6) and multi-linearity, we have

N){AO,Q(]C?' . af) :N)%AQQ(]?:"-L]E) +O(€)7
and also B B
Mi,Q(.ﬂ?f) :M%\,Q(famf)—i_o(g)
provided for E_GLj+1 < A. Thus in showing (3.5.4) one can replace the functions f with f. If we

make the additional assumption that A < eL; then it is easy to see, using the fact that the function
[ is constant on the cubes Q¢(L;) € Gr, @, that

Niso o(F- o ) = Myg(F.--. ) + O(e).

Since the condition e %L1 < A < L, can be replaced with L1 < A < L;j if one passes to a
subsequence of scales, for example L;- = Ls;, this completes the proof of Proposition 3.5. O
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3.3.2 The base case of a general inductive strategy

In this section, as preparation to handle the case of products of simplices, we prove a parametric
version of Proposition 3.5, namely Proposition 3.6 below, which will serve as the base case for later
inductive arguments.

Let Q = Q1 x -+ X Qq with Q; C R™ be cubes of equal side length I(Q). Let L be a scale dividing
[(Q) and for each t = (t1,...,tq) € 'p g let Q¢(L) =t + Q(L) and Qy,(L) = t; + Q;(L). Note that
Qi(L) = Q4 (L) x -+ x Qu,(L). Here Q(L) =[5, L™ and Q;(L) = [-5, &]" for each 1 < i < d.

Let A? = {v{,...,v},,} € R™ be a non-degenerate simplex for each 1 < < d.

Proposition 3.6 (Parametric Counting Lemma on R" for Simplices).

Let 0 < e <1 and R > 1. There exists an integer J, = Ji(e, R) = O(Re™*) such that for any
e-admissible sequence of scales Lo > L1 > --- > Ly, with the property that Lo divides [(Q) and
collection of functions

I Qu(Lo) = [-1,1] with 1<i<d, 1<k<n;, 1<r<RandteTly,q

there exists 1 < j < Jy and a set T, C I'r, o of size |Tz| < e|l'r,.0| such that

Nan.gu, 1) f10s -+ Jalt) = MA g (10 (i Fuly) +O(e) (3.3.9)
for all X\ € [Ljt1,Lj] and t ¢ T, uniformly in 1 <i<d and1 <r <R.

The proof of Proposition 3.6 will follow from Lemma 3.3 and the following generalization of Lemma
3.4 in which we simultaneously consider a family of functions supported on the subcubes in a
partition of an original cube Q.

Lemma 3.5 (A simultaneous Koopman-von Neumann type decompositiozl).
Let 0 <e <1, m>1, and Q C R™ be a cube. There exists an integer J; = O(m5_3) such that
for any e-admissible sequence Lo > Ly > --- > Ly with the property that Lo divides I(Q), and
collection of functions
Jitr s fmp s Qe(Lo) — [=1,1]

defined for each t € T, o, there is some 1 < j < Jy and a set T. C T'r, o of size |T:| < €|T'L, 0l
such that

1 fit — E(fi,t|ng7Qt(Lo))”Uij_H(Qt(Lo)) <e (3.3.10)

foralll <i<m andt¢T..

Proof of Proposition 3.6. Fix 1 <i <d. For 1 <k <mnjandt=(ti,...,tq) € I'r,q, we will abuse
notation and write ' '
f]j;:;(xla o 7$d) = f]ilg(xl)

for (:L‘l, e ,$d) S QL(LO)

If we apply Lemma 3.5 to the family of functions f,f:; on Q¢(Lp) for 1 <i<d, 1<k <n,; and
1 <r < R,withm = (n1+...4+n4) R, then this produces a grid G, ¢ for some 1 < j < J1 = 0(¢73R),
and a set T, C I' g of size |T;| < €|I'r, gl, such that

1 — E(flzgng,Q)HUij_H(Qz(Lo)) <¢€
uniformly for 1 <i<d, 1<k <m;and 1 <r < Rfort¢T,.
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Since f,i’;(xl, cey ) = f;;(:c,) for (z1,...,2q) € Q(Lo) it is easy to see that
1 — E(f;i’,ﬂng,Q)HUg (@u(Lo)) = E(f;i’,Z\ng,Qi)Hu;jH(Qti(Lon-
Let f,iz = E(f,i’£|ng,Qi) , then by Lemma 3.3, one has

NAIAOyQt LO (f{l:’ f ) N):\LAO,Qt Lo)(f;f’;;7 7;Lr£) +O( )

and

M3 00 (1) Ths -+ fale) = MA g, (10 (it -+ -+ i) + O(E)

for all t ¢ T. provided e °L; ;1 < A. Finally, if we also have A < eL; then it is easy to see that

Nano. g o) i - Jlt) = Mi g, (o) (it -+ Fuly) +0(e)

as the functions f;; are constant on cubes Qy,(L;) of G1; @,, which are of size L; < eLo.

Passing first to a subsequence of scales, for example L; = Lsj, the condition €_6Lj+1 L AKel;
can be replaced with L; 1 < A < L; so this completes the proof of the Proposition. O

We conclude this section with a sketch of the proof of Lemma 3.5. These arguments are standard,
see for example the proof of Lemma 3.4 given in [76].

Proof of Lemma 3.5. First we make an observation about the U} (Q)-norm. Suppose 0 < L' < 2L
with L' dividing L. If s € 'z o and t € Q4(L’) then [t — s| = O(L') and hence

][ g(x)dx = ][ g(z)dz +O(L'/L)
z€Q:(L) z€Qs(L)

for any function g : @ — [—1, 1]. Moreover, since the cube Q4(L) is partitioned into the smaller
cubes Q;(L’), we have by Cauchy-Schwarz

2
9@)dz| < Eeer,,
]ier(L) L',Qs (L)

From these observations it is easy to see that

2
oy =F | ] de < e,
" Jieqlrequny ne

and we note that the right side of the above expression is [[E(g|Gr/,g)|72 (@) Since the conditional

’ 2

][ g(x) dx
z€Q¢ (L)

2
][ g(x) dw‘ +O(L'/L)
z€Q (L")

expectation function E(g|G/ g) is constant and equal to fmth(L’) g(x) dz on the cubes Q¢(L').
Suppose that (3.3.10) does not hold for some 1 < i < m for every ¢ in some set T, C I'r, o of size
|T:| > €|T'Ly,@l- If we apply the above observation to g := fi+ — E(fit|Gr, g,(Lo)), for every t € T¢,
we obtain by orthogonality that

m
Z NE(fit|GL,12.Qi(L0) ||L2(Qt (Lo)) = Z (fitlGL,;.u (1) I72 (Qi(Lo)) T ce”
i=1 i=1

for some constant ¢ > 0.
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If we now define f; : Q — [—1,1] such that fi|(g,(rLy)) = fit, for 1 <i < m, average over t € 'z, g,
and use the fact ||f1||L2(Q) EtGFLO,Q||fi¢||%2(Qt(Lo))v we obtain

Z IE(filGL, 001 22(q) = E IE(£iIGL;.0) 7 2(q) + ¢ (3.3.11)

=1 =1

It is clear that the sums in the above expressions are bounded by m for all j > 1, thus (3.3.11)
cannot h(_)ld for some 1 < j < Jj for J; := Cme~3. This implies that (3.3.10) must hold for some
1<j<Jj,foralll <i<mandallt¢T, foraset T, CI', g of size |T;| < |0l O

3.4 The general case: products of simplices in R?

After these preparations we will now consider the general case of Theorem 3.2. Let QQ =
Q1 X -+ x Qg € R"™ with Q; C R™ cubes of equal side length [(Q) and A? = AY x ... x A?l
with each A; C R™ a non-degenerate simplex of n; points for 1 < < d.

We will use a generalized version of the hypergraph terminology introduced in Section 3.2. In
particular, for a vertex set I = {1,2,...,d} andset K = {il; 1 <i<d, 1 <[ <mn;} we will let
7 : K — I denote the projection defined by m(il) := 4. As before we will let Hq s, := {e C I; |e| = k}
denote the complete k-regular hypergraph with vertex set I, and for the multi-index n = (n1,...,nq)
define the hypergraph bundle

My, = {e C K; |e| = |m(e)| = k}
noting that |7 1(i)| = n; for all i € I.

In order to parameterize the vertices of direct products of simplices, i.e. sets of the form
A=A x---x Ay with A; C @Q;, we consider points & = (1, ...,24) with z; = (zi1, ..., Zin,) € Q"
for each i € I. Now for any 1 < k < d and any edge €’ € Hq we will write Qe/ := [Lice Qi» and for
everyz € Q7' x---xQ)* and e € ’Hﬁk we define z,, := 7. (z), where e : Q" X - -XQy* = Qr () is the
natural projection map. Writing A; = {z;1, ..., Zin, } we have that Ay x---x Ag={z,: e € Hﬁd}
since every edge z, is of the form (xy;,,...,z4,). We can therefore identify points z with configura-
tions of the form Ay x -+ x Ay.

For any 0 < A < I(Q) the measures doyo, introduced in Section 3.3.1, are supported on points

(Y2, -+, Yn;) for which the simplex A; = {0,92,...,Yn,} is isometric to AAY. For simplicity of
notation we will write

/ f(z da ][ / dO')\Ao (Tiz — ity - - s Tin, — Ti1) dxs1
leeQz Xj2yeeyd

Note that the support of the measure dag\ is the set of points z; so that the simplex A; :=
{®i1, ..., %in, } is isometric to )\A? and z;1 € ();, moreover the measure is normalized. Thus if S C Q
is a set then the density of configurations A in S of the form A = Ay x ... x Ay with each A; C Q;
an isometric copy of AAY is given by the expression

N)\dAo’Q(lg; ee€ Hﬁd) ::/ / H ls(z,) doj(zy) ... do)(zy). (3.4.1)
z

EHdd

The proof of Theorem 3.2 reduces to establishing the following stronger quantitative result.
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Proposition 3.7. For any 0 < ¢ < 1 there exists an integer Jg = Jy(g) with the following property;
Given any lacunary sequence [(Q) > A1 > --- > Ay, and S C Q, there is some 1 < j < Jg such that

n S "

for all X € [Aj1, 7]

Quantitative Remark. A careful analysis of our proof reveals that there is a choice of Jy(e) which is
less than exp(® (log(Cac~?)), where exp®) k(m) is again the tower-exponential function defined by
expM(m) = exp(m) and exp* Y (m) = exp(exp®) (m)) for k > 1.

For any 0 < A < [(Q) and set S C @ we define the expression:
M o(1s: e € HE ) = ]iQ Moo (lss e € HE ) dt (3.4.3)
where Q(\) = [-%, 3] and

M%(ls; ee€ ’Hid) ::][ s ][ . H ls(z,)dz ...dz, (3.4.4)
§1€Q1 deQd n

foranycube@gQoftheform@z@l x---x@dwith@ngi for 1 <7 <d. Note that if S C Q
is a set of measure |S| > 6|Q| for some 0 > 0, then careful applications of Holder’s inequality give

1°Ng
MS (s e € Hy ) > ][ ][ Ls(®1,...,2q)dxy ... dxg dt > """ —0(e)
’ teqQ (z1,e.,2q) ELHQ(N)

for all scales 0 < A < €l(Q).

In light of the discussion above, and that preceding Proposition 3.5, we see that Proposition 3.7,
and hence Theorem 3.2 in general, will follows as a consequence of the following

Proposition 3.8. Let 0 < ¢ < 1. There ezists an integer Jq = Jq(e) such that for any e-admissible
sequence of scales [(QQ) > Ly > ---> Ly, and S C Q there is some 1 < j < Jgq such that

/\/:{le,Q(lS; ee€ Hﬁd) = M‘iQ(ls; e€ Hﬁd) + O(e) (3.4.5)
for all A € [Lj+1, LJ]

The validity of Proposition 3.8 will follow immediately from the d = k case of Proposition 3.9 below.

3.4.1 Reduction of Proposition 3.8 to a more general “local” counting lemma

For any given 1 < k < d and collection of functions fe : Qr() — [~1,1] with e € H;,. we define the
following multi-linear expressions

Nl o(feie € HE) = / / I fz) dod@,) ... dod(zy) (3.4.6)
Zy Zg EHdk
and
M)\Q(fea eEHdk ][ Mt+Q (fe7 €€Hdk) dt (347)
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where Q(\) = [-2, 3] and

M%(fe; e€Hgp) ;:][ - ][ - I f@)dz, ... dz, (3.4.8)
T €Q, T €Q, eE'H%k

foranycube@QQOftheformézél><--'xédwith@ngiforlgigd.

Our strategy to proving Proposition 3.8 is the same as illustrated in the finite field settings, that
is we would like to compare averages Nyao o(feie € Hﬁk) to those of M;{,Q(fe§ e € ’H%’k), at
certain scales \ € [Lj+1, Lj], inductively for 1 < k < d. However in the Euclidean case, an extra
complication emerges due to the fact the (hypergraph) regularity lemma, the analogue of Lemma
3.2, does not produce o-algebras B;, for f € 7—[3 p_1, on the cubes Q5. In a similar manner to the
case for d = 2 discussed in the previous sectioﬂ, we will only obtain o-algebras “local” on cubes
ng(LO) at some scale Ly > 0. This will have the effect that the functions f. will be replaced by a
family of functions f.;, where ¢ runs through a grid I'r, .

To be more precise, let L > 0 be a scale dividing the side-length I(Q). For t € ' o and €' € Hg,
we will use ¢, to denote the projection of t onto Qs and Q; , (L) := t, + Qe (L) to denote the
projection of the cube Q¢(L) centered at t onto Q.s. It is then easy to see that for any € > 0 we have

N)l\iA(LQ(fe; e c H%,k) = EEEFL,Q N)C\IAO7Q£(L)(f8,§ ;€ S H%,k:) + 0(6) (349)

and
M g(fese € Hyy) = Boery g MS o, 1) (ferie € Hgy) + O(e) (3.4.10)

provided 0 < A < eL where f.; denotes the restriction of a function f. to the cube Q¢(L).

At this point the proof of Proposition 3.8 reduces to showing that the expressions in (3.4.9)
and (3.4.10) only differ by O(e) at some scales A € [Lj;1,L;|, given an e-admissible sequence
Loy > Ly >---> Ly, for any collection of bounded functions f.;, e € Hgk, t € I'ry - Indeed, our
crucial result will be the following 7

Proposition 3.9 (Local Counting Lemma). Let 0 < ¢ < 1 and M > 1. There exists an integer
Jr = Ji(e, M) such that for any e-admissible sequence of scales Lo > Ly > --- > Ly, with the
property that Lo divides 1(Q), and collection of functions

fet 1 Quy (Lo) == [—1,1] with e € Hi, 1<m<Mandtelr,q
there exists 1 < j < Ji and a set T, C 't o of size |T:| < e|I'ry,q| such that

for all X € [Lji1,Lj] and t ¢ T, uniformly in e € Hy, and 1 <m < M.

3.4.2 Proof of Proposition 3.9

We will prove Proposition 3.9 by induction on 1 < k < d. For k = 1 this is basically Proposition 3.6.
Indeed, in this case for a given t = (t1,...,tq) € 'z, and edge e € ”Hgl ={il :1<i<d,1<I<
n;} we have that fi(z.) = fij'(za) with x4 € Q,(Lo) and hence both

d
d n
N)\AO:QL(LO)(‘}[?E; ec Hg,l) = H N/\IA?,Qti(Lo)(fiqL,t’ T vfi%-,z)
i=1
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d
MA ,Qt(Lo) (fgi; ec ,Hg,l) = H Mi,Qti(Lo)( gbyt’ AR Zﬁui)'

i=1
By Proposition 3.6 there exists an 1 < j < J; = O(Me~?) and an exceptional set 7. C I'z, ¢ of size
|T.| < e|I'r,,ql, such that uniformly for ¢ ¢ 7. and for 1 <1i < d, one has

NiA?thi(Lo)( infyl"" mw) M)\ ,Qt; Lo)( iﬂﬁi"" mu ) +O( )

hence
Mo qu(a) (Fl55 € € Hiy) = M3 gun) (Jeli © € Hiy) + O(6)
as the all factors are trivially bounded by 1 in magnitude. This implies (3.4.11) for k = 1.

For the induction step we again need two main ingredients. The first establishes that the our
multi-linear forms N )C\IAO,Q( fe; e € Hi ;) are controlled by an appropriate box-type norm attached
to a scale L.

Let Q =Q1 X ---x Qg and 1 < k < d. For any scale 0 < L < [(Q) and function f: Q. — [—1,1]
with €’ € Hg ), we define its local box norm at scale L by

IAIE, o) = f oy e (3.4.12)
where 7
Zg=f o TL ) denden . dv deia (34.13)
T1,012€01 TTRLT2CCQk () g e 1,2}k
for any cube @ of the form @ = @1 X - X ka

Lemma 3.6 (Generalized von-Neumann inequality). Let e >0, 0 < A < I(Q) and let
0< Lk (€2k)6/\. For any 1 < k < d and collection of functions fe : Qn(e) = [—1,1] with e € Hy,
we have both

Niaoqlfei € € M)l < min |[fello @y +O) (3.4.14)
e€Hyy,
MG o (fei e € Hypl < g&g 1 fellog (@uey)- (3.4.15)
€CTla K

The crucial ingredient is the following analogue of the weak hypergraph regularity lemma.

Lemma 3.7 (Parametric weak hypergraph regularity lemma for R™). Let 0 < e < 1, M > 1, and
1<k <d.

There exists Ji, = O(M€_2k+3) such that for any 2" _admissible sequence Lo > L1 > -+ > ij with
the property that Ly divides 1(Q) and collection of functions

et Qzﬂ(e)(LO) = [-1,1] with ec Hg,, 1<m <M, andt €T,

there is some 1 < j < Ji and o-algebras Bery of scale L; on Qt,,(Lo) for each t € T'p,q and
e’ € Hay such that

e = BUELBre) o, ,, @, (o) <€ (3.4.16)

uniformly for allt ¢ T, e € ’H%k, and 1 <m < M, where T, CI'r, o with |T;| <e|l'r, 0l
Moreover, the o-algebras By have the additional local structure that the exist o-algebras Ber y
on Qs (L;) with complex(Ber y s) = O(j) for each s € T, q, ¢ € Hak, and §' € O’ such that if
ERS QE(L()), then
Bedlg, )= V Beys (3.4.17)
i ede’
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Lemma 3.7 is the parametric and simultaneous version of the extension of Lemma 3.7 to the product
of d simplices. The difference is that in the general case one has to deal with a parametric family
of functions f/ as ¢ is running through a grid I'z, . The essential new content of Lemma 3.7 is
that one can develop o-algebras B on the cubes Qy(Lo) with respect to the family of functions

o such that the local structure described above and (3.4.16) hold simultaneously for almost all
telr,o-

Proof of Proposition 3.9. Assume the Proposition holds for k£ — 1.

Let € >0, g1 := exp (—C15_2k+3) for some large constant Cy = Ci(n, k,d) > 1, and {L;};>1 be an
e1-admissible sequence of scales. Set F() := Jy_1(e1, M) with M =ee] .

For L € {L;};>1 we again write index(L) = j if L = L;. We now choose a subsequence {L;} C {L;}
so that Ly = Lo and index(L’ ;) > index(L}) + F'(¢) + 2. Lemma 3.7 then guarantees the existence
of o-algebras B ; of scale L;- on Qr, (Lo) for each t € T'z, ¢ and €’ € Hg, with the local structure

described above, such that
17e% = E(feiBre o, (@, (o) <€ (3.4.18)
31

uniformly for all t ¢ T/, e € H%k, and 1 < m < M, for some 1 < j < Jy(e, M) = O(ME_QkJrS),
where T/ C 'z, o with |T/| < e|Tryql- Let f7% := E(fI4|Bye),) for t € Tr g and e € Hy . If
t ¢ T!, then by (3.4.14), (3.4.15), and (3.4.16) we have both

Niro gy (fli e € Hiy) = Nino g, (1) (fehi € € Hy) + Oe) (3.4.19)
MiQL(LO) (fg%, ec Hg,k) M}\ Qt(LO)(f_gnai; e c Hg,k:) + O(E) (3420)

provided (5*2k)6L;-+1 < A. For given s € FL;-,QL(Lo) one may write fe for the restriction of f ', on

the cube Qs (L;) C Q¢(Lop), as s uniquely determines t. By localization, provided A < eLj, we then
have both

NfAO,QL(LO)(ﬁZ;; ec ’Hﬁk) = Eéel“yf N)\A()’QS L) (fes, e € Hd p) T O(e), (3.4.21)
MS gy (e € Hiy) = EﬁeFLg,Qz(%)M‘iQE(L;)(fg;; e € Hyp) +O0(e). (3.4.22)

For a fixed cube Qs(L}) we have that

Re s
fos =D asrem L (3.4.23)
re=1
where {A;"’(e)  J1<r<R., is the family of atoms of the o-algebra By(,), restricted to the cube Q,(L}).

Note that |ag,. | < 1 and |R. | = O(exp (CE_QHS)). By adding the empty set to the collection
of atoms one may assume |R. | = R := exp (05_2k+3) for all e € H;, and s € Lo Then, by

multi-linearity, using the notations r = (re>ee7{§k and o, s = [[, @ ., one has both

£ d
Nino guiny (Foer € € M) = Y arm Nipo g, 1) (Lare

m(e):s
r

;e € Hyyp) (3.4.24)
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M}\ Qs L/ (fs e; e c Hdk; ZOZQLm Mini(Lg)(lA;&(e),g; ec Hik’) (3425)
T

The key observation is that these expressions in the sum above are all at level k¥ — 1 instead of k.
To see this let e = (i1l1, ..., imlm, - - -, ixli) so € =m(e) = (i1, im, ..., ix). If ff =€ \{is,} then
recall that the edge py(e) = (i1l1,...,ixly) € Hy, , is obtained from e by removing the i,,l,,-entry.
Thus, for any atom A s of B (L) we have by (3.4.17), that

Lag () = [T ta . @) (3.4.26)
' ede’
where A s is an atom of the o-algebra By ;. Thus

11 Larg, (Ze) = 11 11 Lare (&) = | NS (3.4.27)

e€Hy ), fEHg _q e€H, f €T (e) f€Hg k1
py (e)=Ff

It follows that

Nia0.q.( (y(Lare | se€ Hi) = Niao g, o(L)) ) (9560 F € Hapn) (3.4.28)
and hence that
Ninoquun)(Fl e €M) =D asrm Niao gurr) (95 T € Hip) (3.4.29)
r
and similarly
M3 guw) (Fls e € Hgy) = D amsim MS g 1) (95 T € Haps): (3.4.30)
r

Note that number of index vectors r = (7, » is RP with D := |H%,| and hence RP < M if
e€H d,k

Cy > 1. ’

Writing j* := index(L}) and J' := index(L’ ) it then follows from our inductive hypothesis

functions, applied with respect to the £1-admissible sequence of scales

Ljyr > Ljiyg 2> Ly
which is possible as J' — j' > Jy_1(e1, RP), that there is a scale L; with j/ < j < J' so that
N)\AU,QQ(L;) (géf; fe H%,k—l) = M)\,QE(L}) (gif; fe ,Hg,k—l) + 0(81) (3.4.31)

for all A € [Lj41, L;] uniformly in r for s ¢ S.,, where S, C FL;_7Q is a set of size |Sg, | < 51|FL3_7Q|.
Since the cubes Q¢(Lo) form a partition of ) as ¢ runs through the grid I'z, o the relative density
of the set S¢, can substantially increase only of a few cubes Q¢(Lo). Indeed, it is easy to see that

T2 | < 5}/2’FL07Q’ for the set

1/2
T/ = {t € Tpoq: [Se NQuLo)l > &1/ [y g N Qu(Lo) ).

We claim that (3.4.11) holds for A € [Ljt1, L;] uniformly in ¢t ¢ T, := T, UT, e € Hy,, and

[

1 <m < M. Indeed, from (3.6.17), (3.6.18), and (3.4.31) and the fact that |a§7£| <1, it follows

N)\AO,QS L) (fe s; € € Hd k) Mi,Qi(L;) (fe,§§ €€ Hﬁk) +O(¢)
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for s ¢ Se; N Q¢(Lo) since RPey < e. Finally, the fact that ¢ ¢ T/ together with localization,
namely (3.4.21) and (3.4.22), ensures that averaging over FL;,Q;(Lo) gives

N ouing) (Fets € € HE ) = Mo 1) (fess € € Hiy) +0e) + O(y?)

which in light of (3.4.19), (3.4.20), and the fact that 1 < &2 complete the proof. O

3.4.3 Proof of Lemmas 3.6 and 3.7

Proof of Lemma 8.6. The argument is similar to that of Lemma 3.1. Fix an edge, say ey =
(11,12,...,1k), and partition the edges e € Hik in to as follows. Let Hy be the set of those edges
e for which 1 ¢ m(e), and for [ = 1,...,n1 let H; denote the collection of edges of the form e =
(11, jola, . . ., jilk), in other words e € H; if e = (11, €’) for some edge €' = (jala, ..., julk) € Hy |1 -
Accordingly write ’

H f€<£e) = H f€(£e> H H fll,e’(xll7£e/>'

€My e€Ho =leleHy iy
For z € Qq and 2/ = (zy,...,1z,) with z; € Q!", define
a(x.2) = [ fuelwz) (3.4.32)

/ n
eEH, 1 pq

Then one may write

N)\Ao Q(f67 ec Hdk ][ ][ H fe <][ Hgl 56117 dUl ($1)> do'é\(@d)'”dag\(gﬁ'

=d e€Hg 1]=1
(3.4.33)
For the inner integrals we have, using (3.3.6), the estimate
2
(7[ ng T, T d01> < llg1ll7; ) +O(? ][ 1 (11)g1 (112) 0} (12 —yn) dyi dya+O(e2).
Iy =1 y11 Jy12

provided 0 < L < (52k)6)\, where we use the notation
Ul = ) = [ Xbln — O )t
t

with x% = L1 _p /9,9 for 1 <i < k. By Cauchy-Schwarz we then have

N)\Ao (fe,€€Hdk /][ ][ H fll,e’(l'lla&e’)fll,e/(xl%ﬁe’)dU;l\ dUdeL( )‘1‘0( )

=d ol g2
eHy 1,k—1

where dwiL(gi) = |Qi| Y% (yi2 — vi1) dyi1 dyiz with Y, = (i, ¥i2) € Q% for 1 <i<k.

The expression we have obtained above is similar to the one in (3.4.2) except for the following
changes. The variable z; € Q7" is replaced by y, € Q? and the measure do?7 by dw? 1. The functions
fii,e are replaced by fi1 ¢, for 1 <1 < ny, while the functions f. for all e € Hdk such that 1 ¢ m(e)
are eliminated, that is replaced by 1. Repeating the same procedure for i = 2,...,k replaces all
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variables x; with variables Yy, as well as the measures do with dw? 7- The procedure eliminates all
functions fe when e is an edge such that i ¢ 7(e) for some 1 < i < k; for the remaining edges, when
mw(e) = (1,...,k), it replaces the functions f. with fe, = fi1,21,. 1% For k < i the variables z; and
the measures dai)‘ are not changed, however integrating in these variables will have no contribution
as the measures are normalized. Thus one obtains the following final estimate

* 1 L
< / - / | | feo(y,) | | V1 (Yi2 — yir) dyin dyio + 0(5%)
‘Ql’ Y, |Qk| Yy 67'[2 i=1
eCly k

(3.4.34)
noting that these integrals are not normalized. Thus, one may write the expression in (3.4.34),
using a change of variables y;1 1= y;1 — t;, Yi2 := Yi2 — t;, as

feo(y,) dy Y, dt = || fe +0
‘Ql, /t1][ €t1+Q1 |Qk| /tk][ Etp+Qr El;lz 0 s H O”DL Qo)) ( )

&,k

Nyaog(fe; e € H%k

(3.4.35)
where the last equality follows from the facts that the function f, is supported on the cube Qp(c,)
and hence the integration in ¢ is restricted to the cube @ + Q(L), giving rise an error of O(L/1(Q)).
Estimate (3.4.14) follows from (3.4.34) and (3.4.35) noting that the above procedure can be applied
to any e € ’Hﬁ & in place of eg. Estimate (3.4.15) is established similarly. O

Proof of Lemma 3.7. For j = 0 we set Ber¢(Lo) := {Qi(Lo), 0} and Ber y s(Lo) := {Qs, (Lo), 0} for
¢ € Hap, f € 0¢/, and t,s € 'z, . We will develop o-algebras B ;(L;) of scale L; such that
(3.4.17) holds with complex(Be jr s(Lj)) < j.

We define the total energy of a family of functions f} with respect to a family of o-algebras B ;(L;)

as
M
ESIBers(Ly) = Byer, 0 D D

m=1 eEH%k

),E(Lj))“%2(@#(8)@0))- (3.4.36)

Since | fI;| < 1 for all e, m, and ¢ it follows that the total energy is bounded by M - |’H§kl O(M).
Our strategy will be to show that if (3.4.16) does not hold then there exist a family of o- algebras
Be ¢(Lj12) such that the total energy of the family of functions f[} is increased by at least cpe?
with respect to this new family of o-algebras, and at the same time ensuring that (3.4.17) remains
valid with complex(Be v s(L;j12)) < j+2. This iterative process must stop at some j = O(M 5_2k+3)
proving the Lemma.

Assume that we have developed o-algebras Bes ¢(L;) and By s(L;) of scale L; such that (3.4.17)
holds with complex(Be i s(L;)) < j. If (3.4.16) does not hold then [T;| > ¢|I'r, | for the set

T. o= {t € Tuoq ¢ I —EULBro L), @, (Lo 2 € for some e € iy and 1 <m < M},
Fixt €T, and let e € ”Hgk and 1 < m < M be such that
1fer = E(fetBrie) s (Li)llag,,, @, (o)) = €

and write ¢’ := 7(e). Consider the partition of the cube Qy , (Lo) into small cubes Q;_, (Lj12) where
s € T'1;.0.00 NQt, (Lo). By the localization properties of the [y, , (Q)-norm, and the fact that

Lok €2ij+1 we have that
2k:
S
112, 1@ (Lo)) S Bsueri 0, o) 17112, Qs (Lys2)) T 5
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for any function f: @y, (Lo) — [—1,1]. Thus there exists a set Seet C ', 0,  (Lo) Of size

2k
’SEet| > |FL]+2,Qt ,( LO)‘

such that
e2"

H ;n,i - E( :1,2’86/ t( ))HD Qs / ]+2) Z T (3437)
for all s, € Se e
For a given cube @) and functions f, g : @ — R, define the normalized inner product of f and g as

.9 = ]2 f(@)g(z) de

Then by the well-known property of the [J-norm, see for example [109] or the proof of Lemma 3.2,
it follows from (3.4.37) that there exits sets

By st © Q§f/ (Lj+2)
for f € d¢’ such that

ok

<"§ E(f71Bes(L;)), ] Bf/S,t>Qg ( 25— (3.4.38)

Veder Lj2)

If s €T, , then thereis a unique ¢t = t(s) € I'ry.0 such that s € Q(Lo). If t € T, and s, € Sz ey
then we define the o-algebras By e s(Lj+2) on Qs, (Lj+2) as follows. Write By ¢ s = By s, ¢+ Where
t = t(s) and let By o 4(Lj12) be the o-algebra generated by the set By . and the o-algebra
By e s (Lj) restricted to Qs (Lj12) where 8" € I'r; ¢ is the unique element so that s € Qg (L;). Note
that that the complexity of the o-algebra By o (Lji2) is at most one larger then the complexity
of the o-algebra By . »(L;) as restricting a o-algebra to a set does not increase its complexity. If
t=1t(s) ¢ Tz or s, ¢ S: e then let By o (Lj12) be simply the restriction of By . »(L;) to the cube
Q§f, (Lj12), or equivalently define the sets By o s := ng,(Lj_A'_Q). Finally, let

Bes(Ljv2) == \/ Byes(Lis2) (3.4.39)
f'€oe’

be the corresponding o-algebra on the cube Qs (Lji2).

Since the cubes Qs (L;+2) partition the cube @y ,(Lo) as s, runs through the grid I'y,., o, N
Qt,,(Lo), these o-algebras define a o-algebra B ¢(Lji2) on Qy,(Lo), such that its restriction to the
cubes Qs , (Lj12) is equal to the o-algebras Bes s(Lji2).

Since the function Hf, coe 1By s, 1 measurable with respect to the o-algebra B ¢(Lj42) restricted
to the cube Qs , (L;12) one clearly has

< (ZLL - E(fern,j‘Bel,i(Lj-i-Q))u H 1Bf/’€/7§ >Q§e’ (Lj+2) =0. (3440)
f'eoe’
and hence, by (3.4.38), that

2k
m 9
(B(f74|Ber s(Lj12)) — E(f71Bera(L3)), T 18, ). o (Liv2) 2 Srga (3.4.41)

i€ de’
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It then follows from Cauchy-Schwarz and orthogonality, using the fact that the o-algebra Bes (L;jy2))
is a refinement of Bes (Lj42), that

||E(fem,§‘66/7i(Lj+2))_E(feﬁ|86’,§(l;j))H%Q(Qﬁe, (Lj+2)) (3.4.42)
= [[E(fe}
2k 9
€
= <2k+2>
2k
for s, € Seet. Since |Se et > — ]I‘L

Boa(Liso) B tysy — IEGTEBe s T B 1sv

(Lo)| averaging over s, € I'f, (Lo) implies

i+2,Qt i+2,Qt

2k+2

m m €
‘|E(fe,§’Be’,t(Lj+2))||%2(Q;E,(Lo)) > |IE( e,;|Be',§(Lj))H2L2(Q£e,(LO)) + 22k+6 " (3.4.43)

At this point we have shown that if ¢ € T, then there exists an edge e € ”H%k, 1<m < M, and
o-algebras B y(Lji2)) of scale Ljio on Qy,(Lo), with €’ = m(e), such that (3.4.43) holds.

For all € € Mgy with " # € let By o s(Ljy2) be the restriction of the o-algebra By o o (L;) to
the cube Qs (Ljt2), where s’ is such that s € Qy(L;). By (3.4.39) this implies that B ,7(Lj+2)
is also the restriction of Ber o (L;) to the cube Qs (Lj+2), and hence the o-algebra By (Lji2) is
generated by the grid ng+27Qz€// (Lo) and the o-algebra Ber (Lyj).

We have therefore defined a family of the o-algebras Be ((Lj42) for € € Hgy, satisfying

<

2k+2

M
M

M
m 9
S 3 B B2 B, cto B2 Br (L) B, (1o 7575

m=1ecH? m=leety,

Using the fact that |T;| > ¢|I'z, | and averaging over t € I'z, ¢ it follows using the notations of
(3.4.36) that

9k+3

m m E
E(feilBert(Ljv2)) = E(fI|Ber ¢ (Lj)) + 22K76

As the total energy E(f}|Ber (L)) is bounded by O(M), the process must stop at a step j =
oM 5‘2k+3) where (3.4.16) holds for a o-algebra of “local complexity” at most j, completing the

proof of Lemma 3.7. O
3.5 The base case of an inductive strategy to establish Theorem 3.4

In this section we will ultimately establish the base case of our more general inductive argument.
We will however start by giving a (new) proof of Theorem B’, namely the case d = 1 of Theorem 3.4.
3.5.1 A Single Simplex in Z"

Let A° = {v; = 0,v2,...,v,, } be a fixed non-degenerate simplex of n; points in Z" with n = 2n; +3
and define ty; := vg-v; for 2 < k, 1 < nj. Recall, see [85], that a simplex A = {m; =0,...,my, } CZ"
is isometric to AA? if and only if my, - my; = A%ty for all 2 < k,1 < nq.

For any positive integer ¢ and A € ¢v/'N we define Sxn0 g(ma, ... ,mp,) ZMm=1) 5 £0,1} be the
function whose value is 1 if my, - m; = A%t with both my, and m; in (¢Z)" for all 2 < k,1 < n; and is
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equal to 0 otherwise. It is a well-known fact in number theory, see [67] or [85], that for n > 2n; + 1
we have that

Y Saaog(ma,...omn) = p(A%) (A/q) TN+ O(T))

for some absolute constant 7 > 0 and some constant p(A°) > 0, the so-called singular series, which
can be interpreted as the product of the densities of the solutions of the above system of equations
among the p-adics and among the reals. Thus if we define

Tra0 g = p(AY) (M) "M g
then oya0 4, is normalized in so much that
> oanog(ma, .. mp,) =14+ 0A)
m2,...,Mny

for some absolute constant 7 > 0.

Let @Q C Z™ be a fixed cube and let I(Q) denotes its side length. For any family of functions
flv"'7fn1 :Q — [_]‘?1]

and 0 < A < I(Q) we define the following two multi-linear expressions

Nipogofise ) =Emieq D filma)... fay(mn,) oyn0 g(ma—mu, ... my,—m1) (3.5.1)

M2,y Mpy

and
Miq,@(fla o fn) =B By et Qe S1(ma) - fry (M), (3.5.2)

where Q(q,\) := [—3, 3]" N (¢Z)". Note that if S C Q and J\/}Ao,q’Q(ls, ..., 1g) > 0 then S must
contain an isometric copy of AA®, while if |S| > 6|Q| for some § > 0 then as before Holder implies
that

M} g0(ls, ... 1g) > 6" — O(e) (3.5.3)

for all scales A € ¢v/N with 0 < A < £1(Q).

Recall that for any 0 < € < 1 and positive integer g we call a sequence L1 > --- > Ly (g, q)-admissible
if Lj/Ljt1 € Nand Lj1 < 52Lj forall1 <j< Jand Lj/q € N. Note that if \y > --- > Ay > 11is
any lacunary sequence in ¢v/N with J' > (loge™!) J+log q, one can always finds an (g, ¢)-admissible
sequence of scales Ly > --- > L with the property that for each 1 < j < J the interval [L;;1, Lj]
contains at least two consecutive elements from the original lacunary sequence.

In light of these observations we see that the following “counting lemma” ultimately establishes a
quantitatively stronger version of Proposition B’ and hence immediately establishes Theorem 3.4
ford =1.

Proposition 3.10. Let 0 < e < 1 and q; := q1(¢)’ for j > 1 with q1(g) :== lem{l < ¢ < Ce~10}.
There exists J; = O(c~2) such that for any (e, q,, )-admissible sequence of scales [(Q) > Ly > --- >
Ly, and S C Q there is some 1 < j < Jy such that

Njonqj’QaS, ilg) = Mg ollss s 1s) + O(e) (3.5.4)

for all A € qj\/N with Ljy1 < A< Lj.
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As in the continuous setting the proof of Proposition 3.10 has two main ingredients, namely Lemmas
3.8 and 3.9 below. In these lemmas, and for the remainder Sections 3.5 and 3.6, we will continue to
use the notation

qi(e) == lem{l < ¢ < Ce™10}

for any given £ > 0.

Lemma 3.8 (A Generalized von Neumann inequality).
Let 0 < e < 1, q,¢ € N with qq1(¢)|¢, and X € ¢v'N with A < 1(Q) and 1 < L < €N, For any

collection of functions fi,..., fn, : @ — [—1,1] we have
Mo goUtse- fu)l < min N fillys, | @ +OC) (3.5.5)

where for any function f: Q — [—1,1] we define

1 1/2
Ifllor, @ = (7 e Xq,L(t)IQ) (3.5.6)
’ Qi
with xq,1 denoting the normalized characteristic function of the cubes Q(q,L) := [—%, L]" N (qZ)".

For any cube @ C Z" of side length I(Q) and ¢, L € N satisfying ¢ < L with L dividing [(Q), we
shall now partition @ into cubic grids Q¢(q, L) = t+ ((¢Z)" N Q(L)), with Q(L) = [—é, %]” as usual.
These grids form the atoms of a o-algebra G, 1, ¢. Note that if ¢|¢’ and L'|L then G, 1.0 C Gy .1/.0-

Lemma 3.9 (A Koopman-von Neumann type decomposition).

Let 0 < e < 1 and q; := q1(g)’ for all j > 1. There exists an integer J; = O(e~2) such that any
(¢,q7,)-admissible sequence of scales I(Q) > L1 > --- > Ly, and function f: Q — [~1,1] there is
some 1 < j < Jy such that

Hf - E(f‘gqj’Lj7Q>HUq1j+1,Lj+1(Q) S g. (357)
The reduction of Proposition 3.10 to these two lemmas is essentially identical to the analogous
argument in the continuous setting as presented at the end of Section 3.3.1, we choose to omit the
details.

Proof of Lemma 3.8. We will rely on some prior exponential sum estimates, specifically Propositions
4.2 and 4.4 in [85]. First we deal with the case n; > 3. By the change of variables m; := my, m; :=
m; —my for 2 <14 < nq, one may write

N){Ao,q,Q(flv"wfnl)::EmleQN Z fi(ma) falmatma) -« fo, (M1+mn, ) oxp0 g(Ma, .. ;M ).

m2,...,Mnq

‘We now write

oAn0 (M2, ... M) = oapor o(Ma, ... My 1) U:f;""’m"rl(mm)

. ma,...,m -1
where AY = {v1 = 0, vy, ...,v,,_1} and for each ma, ..., my, 1 € (¢Z)™ we are using Tra "7 (m)

denote the (essentially) normalized indicator function of the subset of (¢Z)" that contains m if and
only if m - my = )‘thm for all 2 < k < nj.
Using the fact that |f;| < 1, together with Cauchy-Schwarz and Plancherel, one can then easily see
that

NisogqUisee S <101 [

ée

M (©F Hag(6) d (3.5.8)
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with .
Hyg(€) = Y onavg(ma,...,mn, 1) oy, "7 (©)F.

m2,...,Mny

It then follows by Propositions 4.2 and 4.4 in [85], with 6 = £* and after rescaling by ¢, that in
addition to being non-negative and uniformly bounded in ¢ we in fact have

l

q
|z = (3.5.9)

et

Hy4(&) =O(e) whenever ‘qg _

for all [ € Z".

We note that the expression H) 4(£) may be interpreted as the Fourier transform of the indicator
function of the set of integer points on a certain variety, and estimate (3.5.9) indicates that this
concentrates near rational points of small denominator. It is this crucial fact from number theory
which makes results like Theorem B’ possible.

Since
n

~ q —9mim-
T

me[fgvé)nv qlm

it is easy to see that X, 1,(I/q) = 1 for all | € Z™ and that there exists some absolute constant C' > 0
such that
0<1-Xq(§)* <CLIE~1/q (3.5.10)

for all £ € T and [ € Z". Tt is then easy to see using our assumption that gqi(¢)|¢’ that
0 < Hyg(§)(1 = Xg,2(6)*) < Ce (3.5.11)

for some constant C' > 0 uniformly in ¢ € T" provided L < €’ . Substituting inequality (3.5.7) into
(3.5.8), we obtain

Niao o o(fin e S 2 < Q) ( [ 1w @O a€7 d + [ 1n(@PNO0 - 0 2(6?) dé)
<y, @)+ 06)

provided L < €°)\. This proves Lemma 3.8 for k > 3, as it is clear that by re-indexing the above
estimate holds for any of the functions f; in place of f,,. For n; = 2 an easy modification of
arguments in [78], specifically the proof of Lemma 3 therein, establishes that

Miao gt )P < 1fill, () +0)
for i = 1,2 provided L < €°\. 0

Proof of Lemma 3.9. Let q, L € N such that L|N, ¢|L. The “modulo ¢” grids Q:(q, L) = t+ Q(q, L)
partition the cube @ with ¢ running through the set I'y 1, o = {1,...,¢}" +T'r g, where I'z, ¢ denote
the centers of the “integer” grids ¢t + Q(L) in an initial partition of Q. Let ¢/, L’ be positive integers
so that g|¢/, L'|L and L' < e2L. If s € Ty /g and t € Qs(¢/, L) then |t — s| = O(L) and hence

ECEEQt(q,L)g(x) = EwEQs(q,L)g(x) + O(L//L)

for any function g : Q@ — [—1,1]. Moreover, since the cube Qs(q, L) is partitioned into the smaller
cubes Q:(q’, L"), we have by Cauchy-Schwarz

|E:v€Qs(q,L) g(ZL‘)|2 < EtEFqI,L/,QS(q,L) ’EmEQt(q’,L’)g(x)F'
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From this it is easy to see that
Hgl@;L(Q) = Eic|Bucqu(q.0)9()° <EBier,, o [Bacqu(q.0)9(®)|* + O(L'/L)

and we note that the right side of the above expression is |[E(g|Gy,1/,0) 172 (@) Since the conditional

expectation function E(g|Gy 1/ q) is constant and equal to E,cq,(y7,2/)9(x) on the cubes Q¢(q’, L').
Now suppose (3.5.7) does not hold for some j > 1, that is

If = E(fIGq;.L,,0) 15 @<

aj+1.Lj41

Since Lj 2 < 52Lj+1, Ljio|Lj, and gjy1|gj+2 we can apply the above observations to g := f —
E(f|Gq;,1;,@) and obtain, by orthogonality, that

”E(f|gqj+27Lj+27Q)”%Q(Q) = H]E(f|g(Jj7Lj’Q)H%2(Q) + ce’ (3'5‘12)

for some constant ¢ > 0. Since the above expressions are clearly bounc_ied by 1, tkle above procedure
must stop in O(e~2) steps at which (3.5.7) must hold for some 1 < j < Jj(¢) with Ji(¢) = O(e72). O

3.5.2 The base case of our general inductive strategy

Let Q= Q1 X ... x Qq with Q; C Z*>""3 be cubes of equal side length 1(Q) and A?Y C Z*"i+3 be a
non-degenerate simplex of n; points for 1 < i < d.

We note that for any gy € N and scale Lo dividing I(Q) if t = (t1,...,tq) € T'gy,10,0, then the
corresponding grids Q¢(qo, Lo) in the partition of @) take the form Q¢(qo, Lo) = Q@+, (qo, Lo) x - -+ X

Qtd (q07 LO) .
As in the continuous setting we will ultimately need a parametric version of Proposition 3.10, namely
Proposition 3.11 below.

Proposition 3.11 (Parametric Counting Lemma on Z" for Simplices). Let 0 <e <1 and R > 1.
There exists an integer J; = J1(g, R) = O(Re™*) such that for any (e, qy, )-admissible sequence of
scales Lo > Ly > --- > Ly, with Ly dividing I(Q) and q; := qoqi ()7 for 0 < j < Jp with qo € N,
and collection of functions

fit s Qulgo,Lo) = [~1,1] with 1<i<d, 1<k<n;, 1<r<Randt€Tly 1,0
there exists 1 < j < Ji and a set T, C Ty 1,0 of size |Tc| < e|l'yy 1o,0| such that

7,7

1 iy 1 i A
N380.a5.@us a0ty U1t i) = Mg 00 aozo) i i) + OC) (3.5.13)

for all A € qj\/N with Liz1 < X< Lj and t ¢ T. uniformly in1 <i<dand1 <r <R.

This proposition follows, as the analogous result did in the continuous setting, from Lemma 3.8 and
the follow parametric version of Lemma 3.9.

Lemma 3.10 (A simultaneous Koopman-von Neumann type decomposition).

Let 0 <e <1, m>1, and Q C Z" be a cube. There exists an integer J; = O(me~3) such that for
any (g, qj,)-admissible sequence Lo > Ly > --- > Lj with Ly diiding 1(Q) and q; := qoqi(¢)’ for
0 <j < Jy with go € N, and collection of functions

Jits - fmt 2 Qi(qo, Lo) — [—1,1]
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defined for eacht € Ty, 1.0, there is some 1 < j < Jy and a set T. C Ty 1.0 of size |T:| < €Ty .10.0]
such that

1fie — E(fs,

foralll1 <i<m andt¢T..

Lol (Qi(g0,Lo)) =€ (3.5.14)

+1:Ljq1

Lemma 3.10 above is of course the discrete analogue of Lemma 3.4. Since the proofs of Proposition
3.11 and Lemma 3.10 are almost identical to the arguments presented in Section 3.3.2 we choose to
omit these details.

3.6 Proof of Theorem 3.4: products of simplices in Z¢

After the preparations in Section 3.5 we can proceed very similarly as in Section 3.4 to prove our
main result in the discrete case, namely Theorem 3.4. The main difference will be that given
0<e<land1 <k <d, we construct a positive integer ¢x(¢) and assume that all our sequences of
scales will be (e, gi(g))-admissible. The cubes Q¢(L) will be naturally now be replaced by the grids
Qt(q, L) of the form that already appear in Section 3.5 where we always assume ¢|L.

Let A0 = A(l) X ... X Ag with each Ag C Z2%*3 a non-degenerate simplex of n; points for 1 <14 < d
and Q = Q1 X ... x Qq C Z" with Q; C Z?>"*3 cubes of equal side length 1(Q) (taken much larger
than the diameter of A”). We will use the same parameterizations in terms of hypergraph bundles
7—[& . and corresponding notations as in Section 3.4 to count the configurations A = Ay x...xA; C Q

with each A; C Q; an isometric copy of AAY for some \ € vN.
Given any positive integer ¢ and A € ¢v/N we will make use of the notation

Z f U)\ q = El'zleQz Z f U)\Ao (.2131'2 — Ljly. - 737@'7%' — -Til) dl‘ﬂ (3.6.1)

L2, 7xzn1

with oy INPREL defined in the previous section and z; = (zi1, ..., Tin,) € in
Note that 1f S C @ then the density of conﬁguratlons Ain S, of the form A = Ay x ... x Ay with
each A; C Q; an isometric copy of AAY for some A € ¢VN is given by the expression

N solls;e€ ’Hdd Z Z H ls(z U}\q (zq) .. aiq(gd). (3.6.2)

Zq ee?-td d

More generally, for any given 1 < k < d and a family of functions fe : Qr() — [—1,1] with e € 7—[3 i
we define the multi-linear expression

Nio golfeeeHyy): Z Z H felze) o3 q(@y) ... .08 (zq)- (3.6.3)

Zq ee?-Ld &

as well as
MS golfeie € Hyy) = Ereq Mg 1) (feie L) (3.6.4)

My
where Q(q, L) = Q1(q, L) x --- x Qq(q, L) with each Q;(¢, L) = (¢Z N [— % %])2m+3 and

M (fie € M) =, gm - By e [] felz) (3.6.5)

EEHﬁk

for any cube Q C Q of the form Q = Q1 X - -+ x Qq with Q; C Q; for 1 <i < d.
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We note that it is easy to show, as in the continuous, that if S C @) with |S| > §|Q)| for some § > 0
then
M3 golsie € M) 2 6" = Oe) (3.6.6)

for all scales A € ¢v/N with 0 < A < ¢ [(Q). In light of this observation and the discussion preceding
Proposition 3.10 the proof of Theorem 3.4 reduces, as it did in the continuous setting, to the
following

Proposition 3.12. Let 0 < ¢ < 1. There exist positive integers J; = Jy(e) and q4(e) such that
for any (¢, qa(e)?*)-admissible sequence of scales 1(Q) > Ly > ---> Ly, and S C Q there is some
1 <5< Jg such that

Niro g 0(lss e € Hiy) = MS 4 o(Lsie € Hy,) + O(e), (3.6.7)

for all A € ¢;v'N with Lj 1 < X < Lj with q; := qa(e)’.

Quantitative Remark. A careful analysis of our proof reveals that there exist choices of Jy(¢) and
qa(g) which are less than Wy(log(Cac™2)) and Wy(Cac™1?) respectively where Wy (m) is again the
tower-exponential function defined by Wj(m) = exp(m) and Wy41(m) = exp(Wg(m)) for k > 1.
The proof of Proposition 3.12 follows along the same lines as the analogous result in the continuous
setting. As before we will compare the averages N/‘\iAO’qﬂQ(fe; e € ’Hgk) to those of Mf\lqu(fe; e €
’H%k), at certain scales ¢ and \ € q\/N with with L; 11 < X < Lj, inductively for 1 <k < d. As the
arguments closely follow those given in Section 3.4 we will be brief and emphasize mainly just the
additional features.

3.6.1 Reduction of Proposition 3.12 to a more general “local” counting lemma

For any given 1 < k < d and a family of functions fe : Q) — [~1,1] with e € Hy, it is easy to
see that for any € > 0, scale Ly > 0 dividing the side-length [(Q), and gp|g we have

Nf\iAO,q,Q(fe; e € M) = Ereryy 1.0 NfAO,q,Qz(qo,Lo)(fe,z; e € Hyy) +0(e) (3.6.8)

and
MSgo(fere € Hip) = Erery o M3 0, (q0.L0) (feri€ € Hgy) +0(e) (3.6.9)

provided 0 < A < €Ly where f.; denotes the restriction of a function f. to the cube Q¢(qo, Lo)-
Thus the proof of Proposition 3.12 reduces to showing that the expressions in (3.6.8) and (3.6.9)
only differ by O(e) for all scales A € ¢v/N with Lijt1 < X< Lj, given an (g, ¢)-admissible sequence
Lo > Ly > ---> Ly, for any collection of bounded functions fc;, e € ’Hﬁk, t € T'yy,10,0- Indeed, our
crucial result will be the following

Proposition 3.13 (Local Counting Lemma in Z™). Let 0 < ¢ < 1 and qo, M € N.

There exist positive integers Ji = Ji(e, M) and qi(e) such that for any (e, qz,)-admissible sequence
of scales Lo > Ly > -+ > Ly, with Loy dividing [(Q) and qj == qo qr(¢)? for j > 1, and collection of
functions

foy: Q) (qo, Lo) :— [—1,1] with e € ’H%’k, 1<m<Mandt €ly 1,0

e

there exists 1 < j < Ji, and a set T, C Ty 1,.0 of size |T:| < €|lq,,10,Q| such that
NSAO#MQL(%,LO)(JCQ@ ec Hg,k) = M§7Qj7QL(fI07L0)(fevt; ec H%k) +0(e) (3'6’10)

for all A € qj\/N with Ljp1 < X< Ly and t ¢ T, uniformly in e € Hgk and 1 <m < M.
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Note that if k = d, Lo = 1(Q), go = M =1, then |I'y, 1,,0| = 1, and moreover if f.; = 1g for all
e € H%k for a set S C @, then Proposition 3.13 reduces to precisely Proposition 3.12. In fact,
Proposition 3.13 is a parametric, multi-linear and simultaneous extension of Proposition 3.12 which
we need in the induction step, i.e. when going from level k — 1 to level k.

3.6.2 Proof of Proposition 3.13

We will prove Proposition 3.13 by induction on 1 < k < d.

For k = 1 this is basically Proposition 3.11, exactly as it was in the base case of the proof of
Proposition 3.9.

For the induction step we will again need two main ingredients. The first establishes that the our
multi-linear forms A fAO’ q7Q( fe;e € /Hﬁ ,) are controlled by a box-type norm attached to scales ¢’
and L.

Let Q = Q1 x ... x Qg with Q; C Z?"™*3 be cubes of equal side length [(Q) and 1 < k < d. For any
scale 0 < L < I(Q) and function f: Q. — [—1,1] with ¢’ € H4, we define its local box norm at
scales ¢’ and L by

k k
718, ;. = Eseu IfIBqu(e.z) (3.6.11)

where

2k
”fHD(@ T E9€11,$12€©1 o Emkl’mk2€ék H Fl@ie, - ore) (3.6.12)
(€158 ) €{1,2}F

for any cube Q of the form Q = Q1 x - - - x Q. We note that (3.6.4) and (3.6.5) are special cases of
(3.6.11) and (3.6.12) with k = d, n = (2,...,2), and f. = f for all e € H ;.

Lemma 3.11 (A Generalized von-Neumann inequality on Z"). Let 1 < k < d.
Let 0 < e < 1, q,¢ € N with qq1(¢)|¢’, and X € ¢v/'N with A < 1(Q) and 1 < L < (z-:Qk)m)\. For
any collection of functions fe : Qr) — [—1,1] with e € H%k we have both

N0 go(feie € )l < min | fello, ,(@ney) +O) (3.6.13)
EE'HEk ’
and
M go(feie € Hipl < min |fello, o (@n- (3.6.14)
eEHak ’

The proof of inequalities (3.6.13) and (3.6.14) follow exactly as in the continuous case, see Lemma
3.6, using Lemma 3.8 in place of Lemma 3.3. We omit the details.

The crucial ingredient is again a parametric weak hypergraph regularity lemma, i.e. Lemma 3.7
adapted to the discrete settings. The proof is essentially the same as in the continuous case, with
exception that the [z -norms are replaced by Uy, 1,-norms where ¢; = qo¢’ is a given sequence of
positive integers and Ly > Ly > --- > Ly is an (e, ¢y)-admissible sequence of scales. To state it we
say that a o-algebra B on a cube Q is of scale (g, L) if it is refinement of the grid G, 1, i.e. if its
atoms partition each cube Q;(g, L) of the grid. We will always assume that ¢|L and L[I(Q). Recall
also that we say the complexity of a o-algebra B is at most m, and write complex(B) < m, if it is
generated by m sets.

Lemma 3.12 (Parametric weak hypergraph regularity lemma for Z").
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Let 0 < e < 1,1 <k < d, q,¢Lo,M € N, and let q; := q¢’ for j > 1. There exists
Ji = O(M£_2k+3) such that for any (£2k,QJk)—admissible sequence Lo > Ly > --- > Ly with the
property that Ly divides [(Q) and collection of functions

fer: Qéw(e)(quO) — [-1,1] with ec€ ’Hﬁk, 1<m< M, andt ely 10,0

e

there is some 1 < j < Ji and o-algebras Ber 4 of scale (g5, L;) on Qt,,(qo, Lo) for each t € Ty 140
and €' € Hqp, such that

[l fe7 — E( em,;\Bw(e),;)\|qu+l,Lj+l(Qzﬂe) (Lo)) S € (3.6.15)

uniformly for allt ¢ T., e € Hy,, and 1 <m < M, where T. C Ty 1,0 with |Tz| < e|Tyy.10,0]-
Moreover, the o-algebras Bery have the additional local structure that the exist o-algebras Be s on
Q§f,(qj,Lj) with complex(By y s) = O(j) for each s € Ty, 1. @, ¢ € Har, and f € O¢’ such that if
s € Q¢(qo, Lo), then

Ber s

Qs /(QJ:Lj) - \/ Bel7flv§' (3616)
- f'eoe’

The proof of Lemma 3.12 follows exactly as the corresponding proof of Lemma 3.7 in the continuous
setting, so we will omit the details. We will however provide some details of how one deduces
Proposition 3.13, from Lemmas 3.11 and 3.12. The arguments are again very similar to those in the
continuous setting, however one needs to make a careful choice of the integers g (), appearing in
the statement of the Proposition.

Proof of Proposition 3.13. Let 2 < k < d and assume that the lemma holds for k — 1.

Let 0 <e < 1and e :=exp (—C’ls_QkH) for some large constant C1 = C1(n, k,d) > 1.

We then define g () := qr_1(¢1) recalling that ¢;(¢) := lem{l < ¢ < Ce71%} and note that it is
easy to see by induction that g (¢)|gx(e’) for 0 < &’ < e and gr—1(¢)|gr(e). We further define the
function F(g) := Jp_1(e1, M) with M = ;! and recall that g; := go qx(c)? for j > 1.

We now proceed exactly as in the proof of Proposition 3.9 but with {L;};>; being a (¢1,¢ j)—admissible
sequence of scales, with J 3> F(e) Ji(e, M). We again choose a subsequence {L;} € {L;} so that
Ly = Lo and index(L}, ) > index(L;) + F'(¢) + 2, but also now set ¢; = g;/, where j' := index(L}).
Lemma 3.12 then guarantees the existence of o-algebras B,/ ; of scale (q;-7 L;) on @, (qo, Lo) for
each t € Ty, 1,0 and € € Hgy, with the local structure described above, such that (3.6.15) holds
uniformly for all ¢t ¢ T/, e € ’Hﬁk, and 1 < m < M, for some 1 < j < Jy(e, M) = O(Me=2"""),
where TEI C I'y,10,0 With ’TEI| < E‘qu,Lo,Q"

Arguing as in the proof of Proposition 3.9 we can conclude from this that for each 7' <1 < J' we
have

d . noy d T, n
N)\Ao,ql,Qi(q;.,L;.)(fgl@ e € Hyy) = Z%,z,m N)\Ao,ql,Qi(q;.,L;.) (954 € Hyp 1) +0()  (3.6.17)
r

and

M gy @uta ) (T2 € € M) = D amam M3 0.0 1) (010 T € Hiy ) +0(e)  (3.6.18)
T

provided (5—2’“)10[/; 41 < A with A € gvN, where each |y, | < 1 and number of index vectors
r= (re)eeHgk is RP with D := |H5,| and hence RP < M if C; > 1.
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By induction, we apply Proposition 3.13 to the sequence of scales L; =Ly >Ljyy12>2-->2Lyp=
L}H with €1 > 0 and for ¢; := qz- qu(e)7" = q; @r—1(e1)"™7" where j/ <1 < J' with respect to the
family of functions gg’f t Qs; (¢}, L) — [—1,1]. This is possible as J' — j' > Ji_1(e1, RP) and our
sequence of scales is (e1, ¢j7)-admissible. Thus there exists an index j' <[ < J’ such that for all
A E ql\/N with Ljy1 < A < L; we have

d T, n _ d T n
N30 41,1y s T € Ha 1) = M5 g 001,10y 965 T € Haa) + O(e1) (3.6.19)

uniformly in r for s ¢ S.,, where S;, C Fq;,L;,Q is a set of size |Se,| < 51|Fq9,L9,Ql.
The remainder of the proof follows as just as it did for Proposition 3.9. O

As explained above, this implies Proposition 3.12 and that finishes the proof of our main result,
namely Theorem 3.4.
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4 Diophantine equations in the primes

Let p = (p1,...,pr) be a system of r; polynomials with integer coefficients of degree exactly d in
the n variables x = (z1,...,25). Our primary concern is finding solutions with each coordinate
prime, which we call prime points, to the system of equations p(x) = s. Here s € Z" is a fixed
element. The notation V} s is used to denote the complex affine variety defined by this equation.
Some properties of the system only depend on the highest part of the polynomials.To each system of
polynomials is attached a system of homogenous integral forms f, which is comprised of the largest
degree homogeneous parts of each of the polynomials forming p.

If p is composed entirely of linear forms the known results may be split into a classical regime and a
modern one. With p is a system of r linear forms, define the rank of p to be the minimum number
of nonzero coeflicients in a non-trivial linear combination

/\1]31 + ...+ )\T]JT,

and denote this quantity by Bi(p). The classical results on the large scale distribution of prime
points on V, ¢ are conditional on the rank being sufficiently large in terms of r (for example, 2r + 1
follows from what is shown here). In this realm are many well known results such as the ones
due Vinogradov [111] and more recently Balog [4]. The modern results are mostly summed up
in the work of Green and Tao [52], where the large scale distribution of prime points on V¢ is
determined only on the condition that Bi(p) is at least 3, a quantity independent of r1. These
results cover all scenarios that do not reduce to a binary problem. However, extending the already
stunning results of Goldston, Pintz, and Yildirim [49], it has been shown by Maynard and Tao
[86] that one of the equations 1 —x9 = 27, ¢ = 1, ..., 123 does have infinitely many prime solutions [94].

The scenario for systems involving higher degree forms in certainly less clean cut, and even the study
of integral points on V, s is a non-trivial problem. General results for the large scale distribution of
integral points are provided by Birch [11] and Schmidt [97], which again require the system to be
large with respect to certain notions of rank (which is again with respect to the number of forms,
but also with respect to the degrees of the forms involved). Working within the limitations of these
results, one should expect to be able to understand the large scale distribution of prime points
as well. For systems of forms which are additive, for instance the single form a12¢ + ... + a, 2%,
this is something that has been done and the primary result here is due to Hua [57]. On the
opposite end, if the system of forms is a bilinear system, or even contains a large bilinear piece, one

can also provide similar results, a particular instance of which is given by Liu [74] for a quadratic form.

However, the main results given in this sections constitute the first instance where it was shown
that asymptotic formulas may be obtained for the number of prime solutions to general systems
of diophantine equations, provided the rank of the system is sufficiently large with respect to the
number and degree of the equations. Very recently the quantitative aspects of our results have been
improved bringing the rank condition to among the primes to be similar that those of for the integer
solutions, see [115, 75].

4.1 Main results

For a fixed system of polynomials p, let us define for each prime p the quantity

) tRM t
o= Ji Sy
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provided the limit exists, where M (p') represents the number of solutions to the equation p(x) = s
in the multiplicative group U;‘f,. A general heuristic argument suggests that we should have

Mps(N) = > ALy, (x)
x€[N]"
1T o(8)pee(N,s) NP (4.1.1)
p<oo

for an appropriate singular integral o, (NN,s). More precisely, poo(N,s) should coincide with the
singular series that appears in the study of integral points on V;s. Here we have that A denotes the
von Mangoldt function and A(x) = A(z1)...A(zy).

What is actually shown here is a precise result of this form for systems of polynomials of common
degree provided that the system has large rank in the sense of Birch for the nonlinear forms and in
the sense described above for linear forms. Let us be given a system of forms § = (fV), ..., f#) where
for 1 < i < d we have f!) = (fgi), ceey fgi)) be a system of r; polynomials with integer coefficients of
degree exactly ¢. Define the Birch rank independently on each level of f, i.e., for each system f(i)
Define the singular variety, over C", associated to the forms §*), i > 2, to be the collection of x
such that the Jacobian of f(i) at x, given by the matrix of partial derivatives

8f(l) r,n
Jacf( ) (x) = [(9%] (X)] o
k=1,j=1
has rank strictly less than r;. This collection is labeled as sz;) The Birch rank B;(f) is defined to
be codim(V}z‘i)) provided that r; # 0, in which case we simply assign the value co. This notion is

extended to a general polynomial system p by defining the rank by B;(p) = B;(f), where f is the
system of forms associated to p.

The main result that is shown here is the following.

Theorem 4.1. For a given positive integer d, there exists constants x(r,d) such that the following
holds:

Let p = p@D be a given system of integral polynomials with r polynomials of degree d in n variables,
and set D = dr. If we have By(p) > x(R,d) then for the equation p(x) = s we have an asymptotic
of the form

MPS Hlup ) Hoo(IN,8) N~ b
as N — oo. Moreover, if p(x) = s has a nonsmgular solution in Uy, the p-adic integer units, for all

primes p, then
H fip(s) >0
P

The quantitative aspects of the constants x(r,d) are in general very poor. The terms xi(r, d) may
be taken to be 2r + 1. The case for quadratic forms is still somewhat reasonable, for systems of
quadratics one can achieve something of the shape x(r,2) < 920" (to be compared to r(r + 1) for
the integral analogue). However, the constants x(1, d) already exhibit tower type behaviour in d (to
be compared to d2? for the integral analogue), and the situation quickly worsens from there. For
recent results with exponential type rank conditions see[115, 75].
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4.2 Overview and notations

The primary technique used in the proof of Theorem 4.1 is the circle method, and the argument is
an adaptation of the following mean value approach. If a single integral form § of degree d in n
variables takes the shape

F(x) =27 + F1(y) + F2(2),

where x = (z1,y,2), then we have the representation

1
M3 :/ > Alar)e(axt) > Aly)e(edi(y)) > A@)e(aFa(z)) | da
0 mle[N ye[N ZE[N}"_I_m
1
_ / So(a) 1 (@) Ss(a)dar
0
An application of the Cauchy-Schwarz inequality then gives
M5 o < [ISolIZ 1111131152113 < |ISoll3 (log N)*"~2Y (N)Z(N),

where Y(N) is the number of solutions to the equation §1(y) = §1(y’) with y,y’ € [N]™ and Z(N)
is the number of solutions to the equation Fa(z) = F2(z') with z,2z’ € [N]"~1=™ If §; and F are
assumed to have large rank, then Y/ (N)Z(N) = O(N?"~4)Q(N?(—1=m)=d) — O(N?"—2-2d)) More
generally, for any measurable subset u C [0, 1] we have

[ So(@)S1(a)Sata)da = O(|Solseuy(log N1, (42.1)

where |[So||s(u) denotes the supremum of |So(«r)| for o € u.
This partition mto major and minor arcs becomes useful due to the following.

Lemma 4.1. Given ¢ > 0, there exists a C such that ||So||so(m(cy)y < N(log N)~¢

This, together with equation 4.2.1, in turn gives the bound
/ So(a)S1 () Sa(a)dar = O((log N)IN"~9), (4.2.2)
m(C)

Thus one is left with the task of approximating

/| - o (x))da,

XG[N]"

which is in general susceptible to the usual methods.
Now let us at the case of a general form § of degree 2. If we introduce a splitting of the variables
x = (x1,y,2), we induce a decomposition of the shape

§(x) = az? + gV (y,z)z, +F1(y) + F2(2) + 9P (y, 2)

for a form g(® which is bilinear in y and z, and a linear form g(!). There are two possible approaches
to adapting the above argument to this case.
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The first involves a dichotomized argument based on the rank of g(?). If we have that g(?) has large
rank (at least five is shown in [74], one can obtain good bounds on the exponential sum

> Y ADAReEEY) +52(2) + 1 (y.2),

ye[Nmze[N]n 1-m

by simply removing the contribution of the von Mangoldt function with two applications of the
Cauchy-Schwarz inequality. In this case the methods of Birch are applicable (and the rank bounds
are comparable). If g(2) has small rank, then it must be the case that §; and §2 each have large rank
for appropriately chosen splitting of the variables. Write g(®(y,z) = (y, Bz) for an appropriately
sized matrix B whose rank is small, and split g™")(y, z) = l;(y) + l2(z). The above argument can
then be run on the intersection of the level sets of {1 (y), l2(z), and Bz, as both §; and F2 have large
rank on this small codimension linear space. On such an intersection we get an extra power gain,
which is equivalent to the codimension. This extra compensates for the loss of originally applying
the Cauchy-Schwarz inequality on each linear space. Thus summing over all such level sets gives an
appropriate bound.

The second approach, to be fair, is simply a streamlined version of the first which removes the need
for a dichotomized approach, and this is the one we shall follow. The main requirement here is an
appropriate decomposition of § in the form

F(x) = az} + ¢V (y, 2)z, + F1(y) + F2(2) + 6P (v, 2)

such the rank of §; 4+ g is large with respect to g(*), the number of variables of composing y, m,
is small, and the rank of Fs is large with respect to m. As before, we wish to fix l1(y), l2(z), and
Bz. The difference is that we have no assumption on the rank of B. However, by controlling the
value of m provides, we have a way to control the number of linear equations is z. Running the
argument as before and summing over the linear spaces leads reduces our problem to providing an
appropriate bound for the number of solutions to

510 +e%y.2) = 51Y)+e?(y . 2)
Wy) = L@y
S2(z) = Fa(z) (4.2.3)
lh(z) = ly(2)
Bz = Bz

with y,y’ € [N]™ and z,2z’ € [N]*~!~™. This achieved by the rank assumptions of F; + g® and
in the original decomposition.

The strategy for forms of higher degree by a similar decomposition of the form

§(x) = azf + gV (y,2)28 " + ..+ g Dy, 2)a1 + Fi(y) + Fo(2) + 6V (y, 2),

where the g(*) forms of degree i, and F1(y), F2(z), g'? are forms of degree d. Again we require that
the rank of §; + g(% is large with respect to g(¥ for each ¢ < d, the number of variables composing
y is small, and the rank of §9 is large with respect to m. That such a decomposition is possible
is the subject of section 4. Then we view each form g(¥, 1 < i < d as a sum of forms in y with
coefficients that are forms in z, and the number of these coefficients is bounded in terms of m. On
each of the level sets of this new system of forms in z we have a system of forms in y, the number of
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which is bounded in terms of d. Now passing to the further level of sets of these forms y provides a
place to carry out the simple Cauchy-Schwarz argument at the beginning of this section. Summing
back over the level sets then provides a system analogous to the one above.

The only problem with this so far is that the system we end up contains at least a portion of each
form g®) (y,z) for i = 1,...,d, and we have no control on the rank of these forms at all and therefore
have no way of dealing with the terminal system. The solution to this problem is found in the work
of Schmidt. His results provide a way of partitioning the level sets of a form by the level sets of a
system of forms that does have high rank in each degree. Section 3 is dedicated to this. Working
with this more regular system as opposed the g(*)’s does provide a manageable terminal system,
and allows for a bound on the minor arc integral.

Extending this method to systems of forms is relatively straightforward at this point, and is of
course carried out below. The major annoyance here is the need to isolate larger number of suitable
variables x1, ..., £ i to get a the logarithmic gain on the minor arcs, as opposed to a randomly chosen
single variable x7.

4.2.1 Outline and notation

The outline for the rest of the paper is as follows. Sections 3 and 4 are as described above. The
completion of the bound for the integral on the minor arcs is going to be carried out in Section
5. The major arcs are dealt with in Section 6, where the asymptotic formula is shown. Section 7
is dedicated to the proof of Theorem. The final section concludes the work with a few further remarks.

Remarks on notation The symbols Z, Q, R, and C denote the integers, the rational numbers,
the real numbers, and the complex numbers, respectively. The r-dimensional flat torus R"/Z" is
denoted by T". The p-adic integers are denoted by Z,, and the units of Z, are denoted by U,. The
symbol Zy represents shorthand for the groups Z/NZ. Also, the shorthand for the multiplicative
group Zy is Un.

For a given measurable set X C T" we shall use the notation ||f||,x) to denote the L” norm of
the function 1x f with the normalized Lebesgue measure on the r-dimensional flat torus. If X is
omitted it is assumed that X = T". Here, and in general, 1x denotes a characteristic function for
X in a specified ambient space, and, on occasion, the set X is replaced by a conditional statement
which defines it.The Landau o and O notation is used throughout the work. The notation f < g is
sometimes used to replace f = O(g).

4.3 A Regularity lemma for systems of polynomials

In [97], Schimidt provides an alternative definition of rank for a form. For a single form § of degree
at least 2 defined over a field k, define the Schmidt rank hy(§) to be the minimum value of [ such

that there exist a decomposition
l
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where U; and Vj are forms defined over k of degree at least one. For a system §(%) = ( gd), e f&i)) of
forms of degree d we define hy(f) to be

min{hk()\lfgd) +..+ /\Tdf,(g)) 2 Ai #0 for somei}.
A few basic properties of the Schmidt rank are important.

e If f is defined over a field k, and k" is an extension of k, then hg (f) < hg(f).

e The Schmidt rank is invariant under invertible linear transformations of k, i.e. hi(fo A) = hi(f)
for A € GL,(k).

o If {(x2,...,x,) = §(0, 29, ..., 2,), then hy(F') > hi(F) — .

The first two are clear from the definition, and the third simply follows from the fact that f(x) — §' (x)
is of the form z1g(x) for some d — 1 degree system of forms g. Also, the second and third imply
that the rank cannot drop on a codimension j subspace by more than jr.

As observed by Schmidt, the Birch rank By(§) and the complex Schmidt rank hc(F) are essentially
equivalent for a form of degree d, being bounded in terms of each other. Of course the same is true
for systems as well. The rational Schmidt rank hg on the other hand is not equivalent and we need
the following, which is a weakened version of a main result in [97].

Definition 4.1. Let § = (f(d), ey f(l)) be a graded system of forms with rational coefficients. Assume
that f(i) consists of r; forms for each 1 <i <d, and set R="7,1; and D =) ir;. The system f is
said to be regular if |Vis N [N]"| = O(N""P) as N — oo holds uniformly for s € Z*.

Theorem A (Schmidt ’'86). For a given positive integers R and d, there exists constants p;(R, d)
for 2 <14 < d such that the following holds:

Let | = (f(d), ...,f(Q)) be given system of rational forms with r; forms of degree i composing each
subsystem §9), R = ro + ... + 14 the total number of forms, and D = 2ry + ... + drq. If we have
ho(FP) > pi(R,d) for each i, then the system § is reqular.

One of the key observations of Schmidt is that his definition of rank has a very nice reductive quality
with respect to the degree, in the sense that forms of small rank may be replaced by a small number
of forms of lesser degree. The next result captures this idea.

Proposition 4.1 (Regularity lemma). Let d > 1 be a fized integer, and let F' be any collection of
functions F;(R) for i =2,...,d mapping the nonnegative integers into themselves. For a collection
of non-negative integers r1,...,rq, there exrists constants

Cl(’l”l, s Idy F), ceey Cd(T'l, ...,’l“d,F)

such that the following holds:

Given a system of integral forms § = (F@, =D §1), where each of the ) is a system of r;
forms of degree i, there exists a system of rational forms g = (g(d),g(d_l), ...,g(l)) satisfying:

1. The level sets of g partition those of f.
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2. The number of forms in each subsystem of gV, say i, is at most Ci(r1,...,rq, F') for each
1< <d.

3. Set H to be the linear subspace defined by g") =0, and R’ to be the total number of forms
in g of degree at least 2. The system ((g'?, gD ... g®)) has ho(gW|n) > Fi(R') for each
2<i<d. Here g(i)|H denotes the restriction of g¥) to the subspace H.

Proof. The proof is carried out by a double induction on the parameters. First for a fixed d we
show that the case r4 with any choice of r4_1,...,r1 implies the similar scenario for the case r4 + 1.
Then the induction on d is carried out.

The initial case we need to consider is d = 2 with a given function F»(R). Take a system of forms
f=(F®,§M) with 7o = 1 and any value of r1. If hg(f?)) > Fy(r9) + 71 then we may simply take
f = g, as restricting f(z) to the subspace defined by f(l) = 0 can only drop the rank by at most r;.
Otherwise f(2) = 22:1 U;V; for some rational linear forms U; and V; where [ < Fy(rg) +r;. We may
then adjoin the linear forms Uy, ..., V; to the system f(l) to obtain the system g = g(l). Properties
(1) and (2) are easily verified for this system, and property (3) is vacuous.

Now for a fixed value of d assume that the result holds for all systems with maximal degree d for
any given collection of functions F' when ry = j and the r4_1,...,71 are arbitrary. Consider now
a fixed collection of functions F' and a system f = (f(d), ...,f(l)) with rg = j+ 1 and rq,...,79_1
arbitrary. Let f be the system (f~1), ..., f1)). By the induction hypothesis, there is a system g’ of ra-
tional forms which is a regularization of f' with respect to F!(R) := F;(R+(j+1)) fori =2, ..., (d—1).

Now let g’ = (9, g/). If § fails to be the regularization of f, then it must happen that hg(f¥) <
Fy(Ry) + (j + 1)r1(g'), where Ry is the number of forms of degree at least two in the system g’
and 71(g) is the number of linear forms in g’. As before, in this case there must exist homogeneous
rational polynomials U; and V;, i = 1,...,1 < Fy(Rg) + 71, such that

MY i =S o,
1<l

where without loss of generality we have \j 1 # 0. Now let g” be g’ adjoined with the those forms
U; and V; which are not linear combinations of forms already in g’, and set

i = (17,57, 6").

By the induction hypothesis there is a system g which is the regularization of g” with respect to
initial collection of functions F'. As the number of forms in g” is expressible in terms of rq, ..., 74,
and d, the system g is the regularization of §.

The induction argument to go from d to d + 1 is simply the above argument carried out with
J=0. O

Apply Proposition 4.1 with the functions being given by the values of the Schmidt constants p;(R, d)
then provides the following .

Corollary 4.1. Let f = (f(d), ...,f(2)) be given system of rational forms with r; forms of degree i
composing each subsystem f(i). There exists a regular system of forms g satisfying conclusions 1)
and 2) of Proposition 1.
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4.4 A Decomposition of forms

For I C [n], let y = (y;)i=1,...n be the vector with components y; = x; for i € I and 0 otherwise.
Also let z be the vector defined similarly for the set [n]\I. Note that y + z = x. In this section we
prove the following decomposition result.

Proposition 4.2. Let positive integers C1 and Cy be given. Let | be given system of r rational
forms with By(f) sufficiently large with respect to Cy and Co. There exists an I C [n]| such that
|[I| < Cyr and the associated decomposition

f(x) = f1(y) + f2(z) + 8(y,2)
satisfies By(f1 + g) > C1 and By(f2) > Cs.

The proof of this result is carried by dealing directly with the Jacobian matrices. Some notation
is helpful. Let M = M(x) be a i x j matrix whose entries depend on x. The notation M o« M’
is used to imply that M is a submatrix of M’ obtained by the deletion of columns, so that M is
an ¢ X j/ matrix with j° < j. Let V}; be the collection of x where M has rank strictly less than i.
Clearly one has that if M oc M’, then V), C V.

Lemma 4.2. If f(d) 1 a system of v integral forms of degree d in n variables, then the restriction
of f to the hyperplane defined by x, = 0 has rank at least By(f) —r — 1.

Proof. Denote the restriction of  to the subspace defined by x,, = 0 as F. The matrix Jacg is then
the matrix Jac; with the last column deleted and restricted to the space x,, = 0. It follows that
VENH C VN {z,, = 0}, where H denotes the variety where the last column has all entries equal
to zero. As H is defined by at most r equations, it has co-dimension at most r. In turn it follows
from the definition that B4(§) > Ba(f) —r — 1. O

As the rank of a non-homogeneous quadratic system is defined to be the rank of the homogeneous part,
it follows, simply by noting that the Birch rank is invariant under invertible linear transformations!,
that this result extends to general affine linear spaces, i.e., cosets of linear subspaces.

Corollary 4.2. If H is an affine linear space of co-dimension m, then the restriction of f to H has
rank at least Bq(f) — m(r +1).

Now define Cj(k) to be the minimal value of m such that there exists an M oc Jac; of size r x m
such that V}; has dimension at most n — k. This is defined to be infinite if no such value exists.

Lemma 4.3. For a system § of r forms of degree d, one has that
Ci(k) < kr, if (k—1)((d—1r)" ! < B(Q).

Proof. Write the singular variety Vf* as an intersection of varieties V;, where V; is a the zero
set of the characteristic polynomial for the r x » minor coming from the selecting the columns
I = {i1,...,i;} C [n]. Proceeding inductively, assume we have selected V) = ﬁéleIj such that
dim(V®W) < n — 1. The degree of each V7 is at most 7(d — 1), so that V) has at most ((d — 1)r)*
components. Label the components with degree precisely n — [ as Y1, ..., Y;, where j < ((d — 1)r)k.
For each Y;, set N(i) to be the set of j’s such that Vi, has Y; as a component, where all of

the other elements of (@) have also been enumerated. If there is a j such that j ¢ UN(q),

!This fact is essentially the multivariate chain rule.
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then dim(V7, N V) = n — 1 — 1. Otherwise it follows that UN (i) = [n]. In this case, look at
V= ﬂézl(ﬂjeN(i)ij). In turn it follows that codim(V*) < >~ codim(NjeniyVi;) < Ir!, which
cannot happen if {((d — 1)r)" < By(f). Thus one can choose a V,,, such that V(1) has dimension
[ + 1. From this it is also clear that C;(I + 1) < Cj(I) + r, which gives the result as Cj(1) <r. O

Proof of Proposition 2. We begin by considering the case f = §(d) Start by applying Lemma 4.3
with k = (1, valid by the assumed lower bound on codime*. Then there are at most C'ir columns
of Jacy providing an associated singular set of dimension at most n — €. Call this sub-matrix M,
and let I denote the collection of the indices of these columns, noting that m = |I| < Cyr. The
associated decomposition into f1, f2, and f; follows. It is easily seen that M oc Jacj, 14, and it follows
that V¥, C V3, and hence B(f1 +g) > C1.

Now look at the the matrix W obtained by deleting the columns of M from Jac;. One now has
Jacy(z) = Jacs,1+4(0,2). There are at most C1r? non-zero entries of Jacy which are dependent on z.
Then there is a of co-dimension at most Cyr?, say H, such that Vi, MH CViN{x:y =0} This
gives the inequality

dim(V;;) — Cir? < dim(V{*) <n —Cir(r+1) — Ca.

The dimension of V;7 on the subspace given by y = 0 is then at most n — C1r — C < (n—m) — Cy,
i.e., B(fg) 2 02. ]

4.5 Minor arcs estimates

Assume now throughout this section that we have a fixed system of integral polynomials p =
(p1, ..., pr), where each p; is of degree d. The system f is again the highest degree homogeneous parts
of p.

For a given value of C' and an integer ¢ < (log N)%, define a major arc

My y(€) = {a € [0.1] : max o — az/a] < N~*(log N)°}
for each a = (ay,...,a;) € U;. When g = 1 it is to be understood that Uy = {0}. These arcs are

disjoint, and the union
U U Mae©)
q<(log N)¢ acUy

defines the major arcs 9(C'). The minor arcs are then given by
m(C) = [0, INIM(C).
The main result in this section is to deal with the integral representation on the minor arcs.

Lemma 4.4. There exists constant x(r,d) such that if we have By(p) > x(r,d), then there exists a
C such that

e(—s-a) Z A(x)e(p(x) - a) da = O(N"P(log N)™°). (4.5.1)
m(C)
holds for any prescribed ¢ with an implied constant independent of s.

Another set of minor arcs is also required for an exponential sum estimate. For each 1 <1 < d,
define for () U, the major arc

(@)

M f(C) =160 €T+ €0 = =] < N (log N)°}.

a(® g
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Set

Mag(C) = N0, (C) x .. x N (O,

a(M q
where a = a(® x ... x (). The major arcs are now

N = |J | MglC

q<(log N)¢ acUd

Let n(C) denote a set of minor arcs n(C') = [0, 1]\N(C).

Define the exponential sum

Z A(z)e(Bax® + ... + 1),

Z€E[N]

for (Bd, ...,51) e T,
Lemma 4.5. Given ¢ > 0, there exists a C such that |[So||so(n(cy) = O(N (log N)~=°).
For a proof the reader is referred to [57] (Ch. 10, §5, Lemma 10.8).

Proof of Lemma 4.4. Our first goal is to pick an appropriate splitting of the variables z = (z1, ...,k , ¥y, Z)
which induces a decomposition

p(X) = po($1, o TKH Y Z) + pl(Y) + g(y,z) + pQ(Z)

such that the choice of z1, ..., xx are useful for applying Lemma 5, and y consisting of m variables
is chosen so that p; + g has large rank with respect to K. If we assume that the rank of p is initially
large, then po also has large rank in terms of K and m.

To select the variables x1, ..., xx, we first consider associated system of forms f . We collect the
r coefficients of each term z;,...z;, into a vector b;, . ;, We select r of these which are linearly
independent. The total number of indices involved is our value of K, in this choice is at most dr,
and we assume that the corresponding variables to be the first 1 < i < K. The variables z1, ..., Tx
have now been selected.

For any choice of y and z we have some decomposition of the shape

d—
p(z1,..,2x,y,2) = p(x1,...,2x,0,...,0 Z Z (2361177 Y, Z )xil...xij

1=11<i1<... <Z]<K

d—1
Yy (Zm,, )y "

r=11<p1<....<tx<m

+p1(0, ...,0,y,0) + p2(0, ..., 0,0, z), (4.5.2)

where for each appropriate set of indices the Qﬁgf)_. . and the ng.i)l . are systems of at most r

i

integral forms of degree k in the appropriate variables.
Let & be the collection of all the forms QS( ) iy of which there are crudely at most Rg < d2K% <
d¥2pdtl Set g to be the regularization of ® with respect to the functions F;(R) = p;(R + r,d)

fort=1,...,d — 1, noting that the number of forms of degree i in ge is bounded in terms of r and d

i
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by Proposition 4.1

The variables y are now selected by Proposition 4.2 by the choice of C1 = p;(Ry,, + 1, d) so that the
forms

f(ov ...,O,y,Z) = fl(y) + g(yaz) + fQ(Z)

have B4(f1(y) + 9(y,z)) > C; with the number of y variables, m, being at most Cir. With this
choice we have that system obtained by adjoining the systems g¢ and f; + g is in fact a regular
system by Theorem A.

We breakdown further the forms of gg(y,z) by separating the y and z parts:

(g0); " (y,2 Z > 55z(lill)b (Z) Yoy +-Yu, - (4.5.3)

K=01<y1<....<tx<m

Note that the right hand side introduces at most Im! < dm® forms in z for the ith form of degree [

in gg. We collect the forms 53((]’?21’.“% and .6 into a system $). Then the number of forms Ry

i L1 Tl
of § is at most Ry, dm® 4+ rd®>m?. Now we regularize the system $ with respect to the functions

Fi(R) = pi(R+r,d) for 1 <i <d—1 and call the resultant system gg.

If the system f2(z) has rank at least as large as Cy = pq(Ry, + 7,d), then system fz adjoined
to the system gg is a regular system by Theorem A. This can be guaranteed as long the rank
of §(0,...,0,y,2) is sufficiently large with respect to our choices of C; and Cs by appealing to
Proposition 4.2. As loosing the first K variables can drop the rank by at most K(r+1) < r(r+ 1)d,
and C7 and C9 are dependent only on d and r, this is our choice of x(r,d). We now define the
following sets:
W.(H) = {z € [NJ"5=" : g(2) = H},
Wy(G: H) ={y € [N]": go(y, Wz(H)) = G},

The number of H required is N7 . The image of [N]*~X under ge is O(N"ss), and this is an
upper bound of the number of G’s for any fixed H, where the implied constant does not depend on H.

For any choice of z € W,(H) and y € Wy(G; H), the polynomials p now take the shape

-1
p(x1,..,Tr,y,2) = p(ml,...,mK,O,...,O)—i—Z Z cgi)__”ij(G,H)xil...xij

j=11<i1<...<ij <K

d—1
d
+Z Z c(();i)l,“.,’ij (H)ybl"'yb&

rk=11<11<....<tx<m
+p1(0,...,0,y,0) + p2(0, ...,0,0,2)

= Po(21,....2x, G, H) + PB1(y, H) + p2(2), (4.5.4)
which are diagonal.
Define the exponential sums
So(e, G, H) = Y A(z)..A(wk)e(a- Po(er, .., v, G, H)).

1,2 ) €[N]
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Sl(ava H) = Z A(y)e(a'ml(Y7H))'

yEWY(GH)
> A()e(a-pa(2)).
zeW,(H)

Now we have to bound the expression
22/ (0, G, H)S: (0, G, H)Sa(ar, H)e(—s - a)da.

Proceeding as in Section 4.2, we obtain

(Ec(N))* <0 ((log N)?rNPse s sup [|So(-, &, H ) Eon )ZZHSI G, H)|[3]1S2(-, H)|l3-

(4.5.5)
The summands on the right hand side can be expressed as the number of solutions of P (y, H) =
Pi(y', H) for y,y’ € W,(G; H) times the number of solutions to pa(z) = pa(z’) for z,z’ € W,(H).
The conditions z,z’ € Wi(H) may be replaced by the conditions z,z’ € [N]®~5=™) and gg(z) =
g5 (2z') = H. The conditions y,y’ € Wa(G; H) may be replaced by the conditions y,y’ € [N]™ and
ge(y, H) = gs(y', H) = G.

In short, we are summing over all G and H the number of solutions to the system

PBi(y, H) Pi(y', H)
go(y, H) = 9@(3”, H)=G
Pa(z) = Palz)
gn(z) = go(2)=H

for y,y’ € [N]™ and z,2’ € [N]"~K~")_ With a little rearrangement this becomes

P1(y, 06(2)) Pi(y', 05(2))
96(y,05(2)) = g6(y,05(2) =G
Pa(z) = Pa(2)
gn(z) = gg(2)=H,

and summing over G and H now simply removes the awkward looking equalities here. And after
doing so, by removing the abuse in notation with gg as an argument puts us in the final form

p1(y) +p3(y,2) p1(y') +p3(y',2)
gs(y,2) = ge(y',2)
p2(z) = pa(z) (4.5.6)
gn(z) = g9(2),

for y,y' € [N]™ and z,2’ € [N](»~K-m),
Let us call the number of solutions to the system (4.5.6) W. Then (4.5.5) takes the form

(EbOUVfEO(G%&NV”NND%+%ﬁﬂmﬂ&ﬂ»GJﬂHimm»)- (4.5.7)
H,G
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The result is the lemma is immediate from the following two claims.

Claim 1: Given ¢ > 0, there is a C' such that the bound
150 (-, G, H)oo(m(cy) = O((log N)"°N*) (4.5.8)
holds uniformly in G and H.

Claim 2: With the rank of p1(y) + p3(y,2z) and p2(z) sufficiently large, the bound
W = O(NAn=K)=2Dp=Dag =Dag) (4.5.9)
holds.

Let us start with claim 1. We look at « - Po(z1, ..., zx, G, H), focusing on the coefficients of terms
of the form w;,...x;, for 1 <14; < K. From our choice of 1, ..., 2k, there is a collection of indices,
say (if,...,i%) for each 1 < k < d, such that the collection {bi'f,...,i;} is linearly independent. Let
M denote the d x d matrix of these coefficient vectors as rows. The coefficient of Tip...Tir In
a-PBolz,....,rx,G, H) is (Ma),. Because M is linearly independent, there is some term of the
form z;x...z;x with a coefficient 8 where 3 € m(C"’) for some slightly larger C".

If it happens to be the case that the indices 77, ..., are equal, say all 1, then the bound follows

directly from the bound in Lemma 4.5 for the z; summation, and claim 1 follows by treating the

other sums trivially. Otherwise we assume that z;;...zx = z]'...,x)" where >, =d and | < d.

Now look at the sum Sy in the form

S AMam)Ak) Y M) Ale(Ba] 2] + Q(a, ... 1k, G, H))

(El+1,...,mKE[N} :El,...,LBZG[N]

where Q(z1, ...,xx, G, H) is viewed as a polynomial in x1, ..., x; of degree less than d with coefficients
in the other x; and the G and the H. Apply the Cauchy-Schwarz inequality ; times to the inner
sum for each of the variables x; gives the upper bound

l
d dj_q_
(log N)2'N>=d=t 3™ %~ % (HAwg,...,wgllm[NQ e(Buwt...ut),

b 1 1 1 1 =1
Lyeees l'wl,...,wAY1 wy .- Wy,

where Ay, f(z) = f(x +w)f(x) is the multiplicative differencing operator, and Ay, w, = Ay, (Aw,),
and so on. The logarithmic gain on this latter sum now follows form the Weyl method as 8 € m(C")
for C’ large enough in terms of d2%, and then claim 1 follows by taking the 2¢th root and summing
trivially in 241, ..., Tx.

To get the bound on W, note that the number of solutions to (5.6) is the product of the number of
solutions to

pi(y) +p3(y,z) = m(y)+p3(y',2)
gs(y,2z) = go(y' 2)

with the number to

pa(z) = pa(z)
an(z) = g5(2),
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which follows as the two systems can not possibly have any terms that appear in common. As it
is the case that all polynomials of p have the same degree we see that the p; 4+ p3 and ge can be
treated separately because ranks have been defined independently on each degree. The same goes
for po and gy, and so the result of Schmidt finishes the proof. O

4.6 Major arcs asymptotics

The major arcs are a union of boxes of the form My 4(C), where ¢ < (log N) and C is now a fixed
constant chosen large enough so that lemma 4.4 holds with ¢ = 1. For a fixed a and ¢, the small
size of the associated major arc means that the exponential sum

Y AXelp(x) - a)
XE[N]"

can be replaced by any approximation that has a sufficiently large logarithmic power gain in the
€error.
Upon the actual fixing of a ¢ < (log N)¢ and an a € Uy, one has?

T(e) = Y Alx @)

XE[N]?

= Y D Leg@AXe@ p@)/aelpx)-7) (4.6.1)
gEZD x€e[N]"

= gGZZ:; e(p(g) -a/q) /XGNje(p(X) - T)dig(X),

where the notations introduced here are 7; = o — a;/q, and Vg(X) = 14, (X1)...¢0g, (X;) with
o)=Y A,
t<v,t=l(q)
and J is the unit cube [0, 1]" C R™.
Lemma 4.6. For any given a constant c, the estimate
| ep(X) 1)0g(X) = Laevgéla) ™ [ elp(a) T)da+ O((log )N, (1.62)
XeNT zeNJ

holds on each magjor arc M, 4(C) provided that C is sufficiently large.

Proof. Define for a fixed [ the one dimensional signed measure dy; = di; — dw;, where dw; is the
Lebesgue measure multipled by the reciprocal of the totient of ¢ if [ € U, and is zero otherwise.
For a continuous function f one then has

N . N
/0 FI) = 3 @) = o /0 f(2)dz

Now set d|v| = dw; + di)y, so that

[ epX) ming(x) -
XeNg

s e(p(X) - 7) ];[1 (dvg, (X;) + duwg, (X)) .

2There is some ambiguity in the case where N is a prime power, however, there is no harm in assuming that this is
not so due to the fact that the prime powers are sparse.
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Expanding out the product in the last integral gives the form

2n—1
/X Ly SO () 3 /X . - P)dpig(X),

where dji; g runs over all of the corresponding product measures, barring the dwg(X) term.
Consider

[ o) )X,

XeNT

for some fixed i. Assume without loss of generality that dy;y is of the form
dvg, (X1)dog (X2, ..., Xn),

where dog may be signed in some variables and is independent of g;. The range of integration for
the X variable is a copy of the continuous interval [0, N], and is to be split into smaller disjoint
intervals of size N'(log N)~¢. Here ¢ is chosen to be between (¢ + C) and 2(c 4+ C) such that
(log N)¢ is an integer, say B. The equality [0, N] = Ule I; follows. Also set Jj = I; x [0, Nt
which absorbs the factor of N.

Now, for a fixed interval I, select some ¢ € I;. Then write

/ e(p(X) - T)g — / e(p(ts Xay oy Xn) - T)dvg, (X1)dog(Xa, oy X)
XeJ! XeJ!

—I—/ (e(p(X1,.... Xpn) - 7) —e(p(t, Xo, ..., Xpn) - 7))
XeB,

Xdygl (Xl)dO'g(XQ, vy Xn)
= F1+ Ey

The first error term satisfies

‘El‘ S /X X ON |/ dygl X1)| d‘UgKXZ, 7X ) O(Nne—com)
2, 7L€

J

for some positive constant cy by the Siegel-Walfisz theorem, as ¢ < (log N)¢. To bound Es, note
that on I; the integrand is

O(’p(Xla ;Xn) - P(t, X, ,Xn)) . 7") = O((]og N)C'—c’).

In turn,

|Es| = O((log N)~)) /X |0l (Ko, X2) = O("(log N)°~5))

There are 2" — 1 error terms on each interval, so summing over the (log N )C/ intervals completes
the proof. O

The integral appearing in the last result has a quick reduction, namely
[ ewmax = [ e(ix)mix + o)
NJ NT
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recalling that f is the highest degree part of p. Following along with the work of Birch,

/ e(f(X)7)dX = N" / e((C) - N2r)dc,
NJ ceJg

is denoted by N"Z(J, N?7) in [11]. This function is independent of a and q. Thus the integral over
any major arc yields the common integral

/ I(J,N%*m)e(—s - 7)dr.
|T|<(log N)C¢

With @ = N~2s, set
T ®) = / I(T, r)e(—p - 7)dr,
|T|<®

and
J(w) = Jim J(n).
—00

The following is Lemma 5.3 in [11].

Lemma 4.7. The function J(u) is continuous and uniformly bounded in p. Moreover,

() = T(p, @)| S @2

holds uniformly in p.

By defining

one has

Lemma 4.8. For any given ¢ > 0, the estimate
/m o @5 @) = N 6(0) " Wage(—sa/a) (1) + O(N™"log N))
a,q

where p = N~2s, holds on each major arc Ma 4(C).

The measure of the major arcs is easily at most N~% (log N)X for some constant K. By defining

B(s,q) = > ¢(q) "Wage(—s - a/q)

aEUg
S(s,N)= Y B(s9)
q<(log N)¢
it then follows that
Lemma 4.9. The estimate
My s(N) = & (s, N)J ()N~ + O((log N)"N"~) (4.6.3)

holds for any chosen value of c.
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4.7 The singular series

Following the outline of Hua ([57], chapter VIII, §2, Lemma 8.1), one can show that B(s,q) is
multiplicative as a function of ¢q. This leads to consideration of the formal identity

S(s) := lim &(s,N) H —|—ZB s,p") (4.7.1)

N—o0
p<oo

Lemma 4.10. If ¢ = p! is a prime power, then
B(s, q) = O(g"~B®/((d=1)2%r)+e) (4.7.2)
holds uniformly in s as t — oo. The implied constants can be made independent of p.

Proof. Tt is shown here that
Waq _ O(qn—B(p)/(((1—1)2’17‘)4-6)7

uniformly for a € Ug', which clearly implies the result by the definition of B(s, ¢) and the fact that
q"/d(q)™ < 2™ independent of p.

The inclusion-exclusion principle is used to bound W, , when ¢ = p* when ¢ < d. Let such a t be
fixed, and note that the characteristic function of U,: decomposes as

]‘Ut Z ]-x hp-

hEZ t—1
Applying this in the definition gives
Wa,q = Z e(p(g) ’ a/Q)
gelUy
= Z H(l_ Z Ly,—np)e(p(g) -a/q)
geZr i=1 hi€Z 11
= D> D> N Fi(gsh)elp(g) - a/g), (4.7.3)
Ig[’n] hez‘€L1 geZ”
P

where

h) = H Lgi=ph;

el

forh e ZI‘,”. In other words, Fy is the characteristic function of the set Hyn = {g : g = ph; Vi € I}.
The sets I C [n] divided into two categories according to whether |I| < B(p)/(r+1) or not. If I is a
set fitting into the latter category, then the trivial estimate is

Z Z Fr(g:h)e(p(g) - a/q)| = pt=DMH (phyn=ll = (ptyn=HI/t < gn=B®)/(tr+t) < gn=B(p)/(d=1)2%r)
heZ}‘;‘,l 8z

Now let I be a fixed subset of [n] with |I| < B(p)/(r + 1). For each h the restriction of p to the set
H; 1 has Birch rank at least B(p) — |I|(r + 1) by corollary 4.2. By the work of Birch ([11], Lemma
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5.4) it follows that

Z ZFI(g;h)E(P(g)-a/q) < q(t—l)\Il/tqn—III—(B(p)—III(r+1))/((d—1)2d*1r)+e

heZI()t—l)U\ gEZg
< qn—B(p)/((d—1)2dr)+e.

Summing over all [ yields the bound.
Now let ¢ = p* for t > d. Going back to the definition gives

Wa,q = Z e(p(g) : a/Q)

gEUg

= > Y elp(g+ph)-a/g).

gelp hezr,
The system of forms in the exponent can be expanded for each fixed g as

p(g + ph) = p'p(h) + fg(h)

for some polynomial fg of degree at most d — 1. Then it follows that

[Waq

<SS elfam) +p%p(h) - a/g)|. (4.7.4)

gely heZ;_l

The inner sum is now bounded uniformly in g by an application of the exponential sum estimates
in [11] as follows.
Set P = p'~! and ¢; = p'~?. Then, for each i =1, ..., 7,

2|qlai o a§q1| S P*(d71)+(d71)1”9

and
1 S q/ S P(d—l)’l”@

cannot be satisfied if § < 1/(d — 1)r. Then, by Lemma 4.3 of [11],

ST e((p'p(h) - a/q + f(h)) = O(P"—B®/ (@2t

hez”,

for any polynomial f(h) of degree strictly less than d. In turn,

< n—B(p)/((d=1)2%)+ey _ n—B(p)/((d—1)2%)+e
Wagl < 3 O(P )=0(q )
gely
which is what is needed to complete the proof in this last and final case. ]

Now define the local factor for a finite prime p as

wp =1+ Bs,p")), (4.7.5)
t=1

which is well defined as the series is absolutely convergent provided that B(p) > (d — 1)2%(r 4 1).
The following result is again an straight forward extension of the results for a single form.
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Lemma 4.11. For each finite prime p, the local factor may be represented as

o GG
pp = t1—>oo I (4.7.6)

where M (p') represents the number of solutions to equation 4.2.1 in the multiplicative group Upt -
At our disposal now is the fact that the p, are positive, which then easily gives the following.

Lemma 4.12. If B(p) > (d — 1)2%(r + 1) then the local factor for each finite prime satisfies the
estimate

1y =1+ 0(p~17%)

for some positive §, and therefore the product in equation 4.7.1 is absolutely convergent and thusly
is in fact well defined.

The observation that
|&(s, N) — &(s)| = o(1)

gives the final form of the asymptotic for Mg .

Theorem 4.2. The estimate
My s(N) = &(s)J () N~ + O((log N)~¢N"~r) (4.7.7)

holds for any chosen wvalue of ¢ > 0, with the implicit constant in the error term depending on c.

5 Polynomial ergodic theorems for nilpotent group actions

In this section we discuss some of our recent joint work [58] on averages along polynomial sequences
in discrete nilpotent groups of step 2. Our main results include boundedness of associated maximal
functions and singular integrals operators, an almost everywhere pointwise convergence theorem
for ergodic averages along polynomial sequences, the first instance where Bourgain’s polynomial
ergodic theorem [15, 13, 14] is extended to the non-commutative settings. The last section is about
obtaining an asymptotic formula for the umber of solutions to a diophantine systems which is
a natural extension of the so-called Waring-Vinogradov system of equations to step-2 nilpotent groups.

Our proofs are based on analytical, number theoretic tools such as a nilpotent Weyl inequality that
we obtained earlier in [61], and on complex almost-orthogonality arguments that are designed to
replace Fourier transform tools which are not available in the non-commutative nilpotent setting.
In particular, we present what we call a nilpotent circle method that allows us to adapt some of the
ideas of the classical circle method to the setting of nilpotent groups. For the sake of readability
and limitations of space (the paper [58] is 118 pages) we do not include all the technical details,
however we include the major theorems and lemmas and sketch the crucial ideas of the proof. Our
presentation follows [59].

5.1 The Furstenberg—Bergelson—Leibman conjecture

Discrete averages, both of the maximal and singular type, have been considered motivated mainly
by open problems in ergodic theory. A fundamental problem in ergodic theory is to establish
convergence in norm and pointwise almost everywhere for the polynomial ergodic averages as in
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(5.1.2) as N — oo for functions f € LP(X), 1 < p < co. The problem goes back to at least the early
1930’s with von Neumann’s mean ergodic theorem [112] and Birkhoff’s pointwise ergodic theorem [12]
and led to profound extensions such as Bourgain’s polynomial pointwise ergodic theorem [13, 14, 15]
and Furstenberg’s ergodic proof [42] of Szemerédi’s theorem [105] in particular. Furstenberg’s proof
was also the starting point of ergodic Ramsey theory, which resulted in many natural generalizations
of Szemerédi’s theorem, including a polynomial Szemerédi theorem of Bergelson and Leibman [9].
This motivates the following far reaching conjecture known as the Furstenberg—Bergelson—Leibman
conjecture [10, Section 5.5, p. 468].

Conjeture 5.1. Assume that d,k > 1 are integers, (X, B(X),u) is a probability space, and assume
that Ty, ...,Ty : X — X is a given family of invertible measure-preserving transformations on the
space (X, B(X), ) that generates a nilpotent group of step k. Assume that m > 1 is an integer and
Pii,....,Pj,...,Pym : Z — 7 are polynomial maps with integer coefficients such that P; ;j(0) = 0.

Then for any f1,..., fm € L=(X), the non-conventional multilinear polynomial averages
Piy,P, 1 T pPLs()  Pag()
seeey ,m Gn g(n
AN, S, e ) (@) = 5 S I H@ T e (5.1.1)

n€[—N,N|NZ j=1
converge for p-almost every x € X as N — oo.

Conjecture 5.1 is a major open problem in ergodic theory that was promoted in person by Furstenberg,
see [2, p. 6662], before being published in [10]. Our main result Theorem 5.1 (ii) proves this conjecture
in the linear case m = 1, provided that the family of transformations 77,...,7y; : X — X generates
a nilpotent group of step k = 2. We call a sequence A : Z — G a polynomial sequence if DkA(n) =1
for some k € N, where DA(n) := A(n)~tA(n + 1) is the multiplicative differencing operator. It

can be shown that this is equivalent of writing A(n) = gfl(n) . -ggd(n) for some g1,...,94 € G
and integral polynomials Py, ..., P;. In particular, if G is a discrete nilpotent group generated by
measure preserving transformations 71, ..., Ty then A(n) = le‘D e de(n) is a polynomial sequence.

Theorem 5.1 (Main result). Assume that G is a discrete nilpotent group G of step 2 and A : Z — G
1 a polynomial sequence. Then:
(i) (PP boundedness of mazximal averages) Assume f: G — C is a function and let

Mf(g) = su% !

Voo 2N + 1 S If(AT ) g,  geG.
- |

n|<N
Then, for any p € (1, 00],
M Fllery Sp I ller(c)-

(ii) (LP pointwise ergodic theorems) Assume G acts by measure-preserving transformations on a
o-finite measure space X, f € LP(X), p € (1,00), and let

1
2N +1

Anf(z) := Y fATMn)-m),  zeX. (5.1.2)

In|<N

Then the sequence Anf converges pointwise almost everywhere and in the LP norm as N — oo.
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5.1.1 Earlier pointwise ergodic theorems

The basic linear case m = d = k = 1 with P 1(n) = n follows from Birkhoff’s original ergodic
theorem [12]. On the other hand, the commutative case m = d = k = 1 with an arbitrary polynomial
P = Py, with integer coefficients was a famous open problem of Bellow [5] and Furstenberg [43],
solved by Bourgain in his breakthrough papers [13, 14, 15].

Some particular examples of averages (5.1.1) with m = 1 and polynomial mappings with degree at
most two in the step two nilpotent setting were studied in [60, 83].

The multilinear theory m > 2, in contrast to the linear theory, is widely open even in the commutative
case k = 1. Only a few results in the bilinear m = 2 and commutative d = k = 1 setting are known.
Bourgain [17] proved pointwise convergence when P 1(n) = an and Pj 2(n) = bn, a,b € Z. More
recently, Krause-Mirek—Tao [66] established pointwise convergence for the polynomial Furstenberg—
Weiss averages [44, 45] corresponding to P; 1(n) = n and P 2(n) = P(n), deg P > 2.

5.1.2 Norm convergence

Except for these few cases, there are no other results concerning pointwise convergence for the
averages (5.1.1). The situation is completely different, however, for the question of norm convergence,
which is much better understood.

A breakthrough paper of Walsh [113] (see also [2]) gives a complete picture of L?(X) norm convergence
of the averages (5.1.1) for any T3,...,T; € G where G is a nilpotent group of transformations of a
probability space. Prior to this, there was an extensive body of research towards establishing L?(X)
norm convergence, including groundbreaking works of Host—Kra [53], Ziegler [116], Bergelson [6],
and Leibman [72]. See also [3, 25, 37, 54, 106] and the survey articles [7, 8, 36] for more details and
references, including a comprehensive historical background.

5.1.3 Additional remarks

Bergelson—-Leibman [10] showed that convergence may fail if the transformations 71, ..., T, generate
a solvable group, so the nilpotent setting is probably the appropriate setting for Conjecture 5.1.
The restriction p > 1 is necessary in the case of nonlinear polynomials as was shown in [20, 71].

If (X,B(X),u) is a probability space and the family of measure preserving transformations
(Th,...,Ty,) is totally ergodic, then Theorem 5.1(ii) implies that

Pry,....Pg,

lim AR () (@) = /X £ (w)duly) (5.1.3)

N—oo

p-almost everywhere on X. We recall that a family of measure preserving transformations
(Th,...,Ty,) is called ergodic on X if T;l(B) = B for all j € {1,...,d;} implies u(B) = 0 or
p(B) =1 and is called totally ergodic if the family (77, ..., T} ) is ergodic for all n € Z.

5.2 The universal step-two group G

The proof of Theorem 5.1 will follow from our second main result, Theorem 5.2 below, for averages
on universal nilpotent groups of step two. We start with some definitions. For integers d > 1, we
define

Yd::{(ll,lz)EZXZ:OSZ2<Z1§d}

and the “universal” step-two nilpotent Lie groups GBL*L = G# (d)
GO# = {(:Elllz)(ll,lg)eyd P, € R}’ (5'2'1)
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with the group multiplication law

0 + ifly €e{1,...,d} and I =0,
[yl =4 10T o it ed ; 2 (5.2.2)
Tty + Yiyls T T10Yi50 if I € {1, e d} and [y € {1, N 1}.
Alternatively, we can also define the group G# as the set of elements
9=0¢"9"), ¢ =(gone .t ERY  ¢® = (911) @ 1m)evy € RY, (5.2.3)
where d' :=d(d —1)/2 and Y := {(l1,l2) € Yy : Iy > 1}. Letting
Ry :R?x R* 5 RY  denote the bilinear form  [Ry(z, Wit == T1,0Yi50, (5.2.4)
we notice that the product rule in the group G# is given by
[g-h)M) = g 4 M), [g-h]® = ¢g@ +n® £ Ry(g™, nV) (5.2.5)

if g =(gM,¢®) and h = (LMY, h?). For any g = (¢V), ¢?) e G¥, its inverse is given by
g = (=9, =g + Ro(g',gV)).

The second variable of g = (¢(V), ) ¢ G# is called the central variable. Based on the product
structure (5.2.5) of the group G#, it is not difficult to see that g-h = h-g for any g = (g(l),g@)) € G#
and h = (0,h?) e G¥.

Let Go = Go(d) denote the discrete subgroup

Go := G¥ Nz, (5.2.6)

Let Ap: R — (Gfaéﬁ denote the canonical polynomial map (or the moment curve on G# )

o ifly =0
Ao(z = ’ 5.2.7
[Ao ()11, {0 it 1y 20, (5.2.7)
and notice that Ag(Z) C Go. For x = (1,1,) (1, 1)ey, € G# and A € (0,00), we define
Aox:= (Al1+l2xl112)(l1712)6Yd & Gé# (5.2.8)

Notice that the dilations Ao are group homomorphisms on the group Gg that are compatible with
the map Ay, i.e. Ao Ag(z) = Ap(Ax).

Let x : R — [0, 1] be a smooth function supported on the interval [—2,2]. Given any real number
N > 1 and a function f : Gy — C, we can define a smoothed average along the moment curve A
by the formula

MY(f)(x) =Y N'X(N"'n)f(4o(n)™" - 2), =€ Gy. (5.2.9)
neZ

The main advantage of working on the group G with the polynomial map Ay is the presence of the
compatible dilations Ao defined in (5.2.8), which lead to a natural family of associated balls. This
can be efficiently exploited by noting that My is a convolution operator on Gy.
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The convolution of functions on the group Gq is defined by the formula
(Fro)@):= D fy™ w)gly) = D fl2)gla-27"). (5:2.10)
y€Go z€Go
Then it is not difficult to see that MY (f)(z) = f *x G (x), where
=Y N 'X(N"'n)ligmy(z), € Gy (5.2.11)
nez

We are now ready to state our second main result.

Theorem 5.2 (Boundedness on Gy). Let Go = Go(d), d > 1, be the discrete nilpotent group defined
in (5.2.6) and Ag the polynomial sequence defined in (5.2.7). Then

(i) (Maximal estimates) If 1 < p < oo and f € (P(Gg) then

| R MY (Do) S 1 ler o), (5.2.12)

where MY, is defined as in (5.2.9).
(ii) (Long variational estimates) If 1 < p < oo and p > max {p, 1%}, and T € (1,2] then

HVP(M])\CI(f) :N € D’F) ng((go) gp,p,T HfHEP(GO); (5.2.13)

where D := {7" : n € N}. See (5.3.1) for the definition of the p-variation seminorms V?.

5.3 Remarks and overview of the proof

We discuss now some of the main ideas in the proofs of Theorems 5.1 and 5.2.

5.3.1 The Calderén transference principle

One can show that Theorem 5.1 is a consequence of Theorem 5.2 upon performing lifting arguments
and adapting the Calderén transference principle. Indeed, if G# is a connected and simply connected
nilpotent Lie group of step 2, with Lie algebra G, then one can choose so-called exponential coordinates
of the second kind associated to a Malcev basis of the Lie algebra G (see [31], Sec. 1.2) in such a
way that

G* = {(z,y) e R" xR™ : (z,9) - (', ¢/) = (¢ + 2,y + ¥ + R(z, )},

where by, by € Z, depend on the Lie algebra G and R : R?* x R? — R’ is a bilinear form.

Moreover, if G < G# is a discrete co-compact subgroup, then one can choose the Malcev basis such
that the discrete subgroup G is identified with the integer lattice Z? = Z x Z (see [31], Thm.
5.1.6 and Prop. 5.3.2). Recall that A:Z — G is a polynomial sequence satisfying A(0) = 1. The
main point is that one can choose d sufficiently large and a group morphism T : Gy — G# such that

A(n) =T(Ap(n)) for any n € Z.

Then one can use this group morphism to transfer bounds on operators on the universal group Gg
to bounds on operators on the group G. Theorem 5.1 is thus a consequence of Theorem 5.2 and our
main goal therefore is to prove Theorem 5.2.
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5.3.2 The variation spaces V*

For any family (a; : t € I) of elements of C indexed by a totally ordered set I, and any exponent
1 < p < 00, the p-variation seminorm is defined by

J—1 s
VP(a,:tel):= sup sup <Z|a(tj+1)—a(tj)|p) : (5.3.1)
7=0

JEZy to<-<ty
t;el

where the supremum is taken over all finite increasing sequences in I. It is easy to see that p — V?*
is non-increasing, and for every to € I one has

sup |at| < lag,| + VP(ar - t € I) < supla¢| + VP(as : t €1). (5.3.2)
tel tel
In particular, the maximal estimate (5.2.12) follows from the variational estimate (5.2.13). The main
point of proving stronger variational estimates such as (5.2.13), with general parameters 7 € (1, 2],
is that it gives an elegant path to deriving pointwise ergodic theorems (which would not follow
directly just from maximal estimates such as (5.2.12)). At the same time, the analysis of variational
inequalities has many similarities with the analysis of maximal inequalities, and is not substantially
more difficult. This is due in large part to the Rademacher—-Menshov inequality (see [89, Lemma
2.5]): for any 2 < p < oo and jo,m € N so that jp < 2" and any sequence of complex numbers

(ag : k € N) we have
o 1/2
) . (5.3.3)

VP(a;:50<j<2™) < \/iz < Z ’a(j+l)2i — ajoi)

1=0 *jegfjp2-%,2m—i-1]NZ

5.3.3 /(P theory

The problem of passing from ¢? estimates to /P estimates in the context of discrete polynomial
averages has been investigated extensively in recent years (see, for example, [87] and the references
therein).

The full ##(Gg) bounds in Theorem 5.2 rely on first proving £2(Gg) bounds. In fact, we first establish
(5.2.13) for p = 2 and p > 2. Then we use the positivity of the operators My (i.e. My(f) >0 if
f > 0) to prove the maximal operator bounds (5.2.12) for all p € (1, 00]. Finally, we use vector-
valued interpolation between the bounds (5.2.13) with p =2 and p > 2 and (5.2.12) with p € (1, o]
to complete the proof of Theorem 5.2.

5.3.4 Some technical remarks

Theorem 5.2 (i) and (ii) extends the results of [87, 90] to the non-commutative, nilpotent setting. Its
conclusions remain true for rough averages, i.e. when x = 1;_; 1j in (5.2.9), but it is more convenient
to work with smooth averages.

The restriction p > 1 in Theorem 5.2 (i) and (ii) is sharp due to [20, 71]. However, the range

of p > max {p, 1%} is only sharp when p = 2 due to Lépingle’s inequality [73]. One could hope

to improve this to the full range p > 2, but we do not address this here since the limited range
P

p > max {p, ﬁ} is already sufficient for us to establish Theorem 5.1.
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The restriction p = 2 in the singular integral bounds in part (ii) is probably not necessary. In
the commutative case one can prove boundedness in the full range p € (1,00) (see [63]), but the
proof depends on exploiting certain Fourier multipliers and we do not know at this time if a similar
definitive result holds in the nilpotent case.

5.3.5 The main difficulty and a nilpotent circle method

Bourgain’s seminal papers [13, 14, 15] generated a large amount of research and progress in the
field. Many other discrete operators have been analyzed by many authors motivated by problems in
Analysis and Ergodic Theory. See, for example, [20, 60, 63, 65, 66, 71, 83, 87, 89, 90, 92, 93, 103]
for some results of this type and more references. A common feature of all of these results, which
plays a crucial role in the proofs, is that one can use Fourier analysis techniques, in particular, the
powerful framework of the classical circle method, to perform the analysis.

Our situation in Theorem 5.2 is different. The main conceptual issue is that there is no good
Fourier transform on nilpotent groups, compatible with the structure of the underlying convolution
operators and at the level of analytical precision of the classical circle method. At a more technical
level, there is no good resolution of the delta function compatible with the group multiplication
on the group gg. This prevents us from using a naive implementation of the circle method. The
classical delta function resolution

10y (z71.y) = /Td . e((y™ —zM).0M)e((y® — 22).02)) doM dp2) |
X

does not detect the group multiplication correctly.

These issues lead to very significant difficulties in the proof and require substantial new ideas. Our
main new construction in [58] is what we call a nilpotent circle method, an iterative procedure,
starting from the center of the group and moving down along its central series. At every stage
we identify “minor arcs”, and bound their contributions using Weyl’s inequalities (the classical
Weyl inequality as well as a nilpotent Weyl inequality which was proved in [61]). The final stage
involves “major arcs” analysis, which relies on a combination of continuous harmonic analysis on
groups 90# and arithmetic harmonic analysis over finite integer rings modulo @ € Z,. We outline
this procedure in Section 5.5 below.

At the implementation level, classical Fourier techniques are replaced with almost orthogonality
methods based on exploiting high order T*T arguments for operators defined on the discrete group
go. Investigating high powers of T*T" (i.e. (T*T)" for a large r € Z) is consistent with a general
heuristic lying behind the proof of Waring-type problems, which says that the more variables that
occur in Waring-type equations, the easier it is to find solutions, and we are able to make this
heuristic rigorous in our problem. Manipulating the parameter r, by taking r to be very large, we
can always decide how many variables we have at our disposal, making our operators “smoother
and smoother”.

5.3.6 General discrete nilpotent groups

The primary goal is, of course, to remove the restriction that the discrete nilpotent groups G in
Theorem 5.1 are of step 2, and thus establish the full Conjecture 5.1 in the linear m = 1 case for
arbitrary invertible measure-preserving transformations 77, ..., Ty that generate a nilpotent group
of any step k > 2. The iterative argument we outline in Section 5.5 below could, in principle, be
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extended to higher step groups. First, matters can be reduced to universal (or free) discrete step-k
nilpotent groups G4 with generators g1, ..., g4 and to the moment curve Ag(n) = g1g5 - - ‘ggd, for
higher step groups as well. Using this “universal”-type structure, one could try to go down along
the central series of the group and prove minor arcs and transition estimates at every stage.

Indeed, the [?>-theory seems to carry out for step-3 and step-4 groups, however, continuing this way
is only possible if one can prove suitable analogues of the nilpotent Weyl’s inequalities in Proposition
5.1 on general nilpotent groups of step & > 5. The point is to have a small (not necessarily optimal,
but nontrivial) gain for bounds on oscillatory sums over many variables, corresponding to the kernels
of high power (T*T)" operators, whenever frequencies are restricted to the minor arcs. In our case,
the formulas are explicit, see the identities (5.4.10), and we can use ideas of Davenport [32] and
Birch [11] for Diophantine forms in many variables to control the induced oscillatory sums, but the
analysis seems to be more complicated for the higher step nilpotent groups.

This is an interesting problem in its own right, corresponding to Waring-type problems on nilpotent
groups. A qualitative variant of the Waring problem on nilpotent groups was recently investigated
in [55, 56], see also the references given there. We prove a quantitative version on our nilpotent
group Gg in Theorem 5.4 below.

5.3.7 Organization

The rest of this paper is organized as follows: in section 2 we present several nilpotent Weyl estimates
proved in [61], which play a key role in the analysis of minor arcs. In section 3 we outline our
main new method, the nilpotent circle method, developed in [58] to prove maximal and variational
estimates on nilpotent groups. In section 4 we prove a new Waring-type theorem on the nilpotent
group go, as an application of the nilpotent Weyl estimates discussed earlier.

5.4 A nilpotent Weyl inequality on the group G
In this section we derive explicit formulas used in high order T*T arguments and discuss a key
ingredient in our analysis, namely Weyl inequalities on the group Gyg.

5.4.1 High order T*T arguments and product kernels

Many of our £2(Gg) estimates will be based on high order T*T arguments. Assume that
S1,Th,. ., 8, T : £2(Go) — £(Go)

are convolution operators defined by some ¢!(Gg) kernels Ly, K1, ..., L., K, : Gg — C, i.e. S;f =
f*Ljand Tjf = f+Kj for j € {1,...,r}. Then the adjoint operators ST, ..., S} are also convolution
operators, defined by the kernels L7, ..., L} given by

Li(g) = Li(g D)

Moreover, using (5.2.10), for any f € ¢*(Gg) and = € Gy, we have

ST ST =Y AT E0E @) [t gt bt a) (5.4.)

hi1,91,hr,gr€Go  j=1
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In other words (ST ... ST, f)(x) = (f x A")(x), where the kernel A" is given by

A= Y { }1{0}( e ogr b y). (5.4.2)
h1,91,hr,9r€Go =1
To use these formulas we decompose h; (hgl), h§2)), gj (gj( ),gj( )) as in (5.2.3). Then
bt g bt = ST (R i), (5.4.3)
1<5<r
g N (e )+ Ro(n\D, h{ — ¢tDy}
1<j<r (5 4 4)
+ Z Ro(—hl(l) (1) h(l) + g](l))’
1<l<j<r
as a consequence of applying (5.2.5) inductively.
In many of our applications the operators Sy,71,...,5,, T, are equal and, more importantly, are
defined by a kernel K that has product structure, i.e.
Sif=Tf=...=5f=1Tf=fxK, 545
K(g) = K(g",g®) = KW (gM)EP (¢). (5:4)
In this case we can derive an additional formula for the kernel A”. We use the identity
Ly () :/ () — 20).6W)e((y — 22).0) do ),
Td x Td
where ¢(z) := €2™*. The formula (5.4.2) shows that
A(y) = / e(yM.0W)e(y@.0)zr (6M, 02)) doM do@, (5.4.6)
TdxTd
where
T 2
CONCIFEEY { K(gj)} TTe(—1ht gi-ooo it g,)D.00).
hj,ngGo J=1 =1
Recalling the product formula (5.4.5) we can write
s (6W,0@) =117 (W, 9 Q7 (§), (5.4.7)
for any (1),0) € T¢ x T¢, where
r — (1 (1) (1) (1)
wE0?) = 5 {TROEDROG e, S 0 -5
BV gMeza 3= 1<j<r (5.4.8)
(0L X R 5 R )
1<j<r 1<i<j<r
and
r — - (2 2 2) 2
@ (e?) = 3 {TIKOGED (G }e(0?. 3 (0 -4
h§.2>7g]<.2>€Zd/ J=1 1<5<r (5 4 9)
S KO (g)e( - 0 4@) o
g@ezd
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5.4.2 Weyl estimates

After applying high order T*T" arguments we often need to estimate exponential sums and oscillatory
integrals involving polynomial phases. With the notation in Section 5.2, for > 1 let D, D :
R" x R" — G# be defined by

lB((nl, ey ?’LT), (ml, cee ,mr)) = Ag(nl)_l : Ao(ml) teaet Ao(nr)_l . Ao(mr,‘),

. . (5.4.10)
D((nl,...,nT),(ml,...,mT)) = Ao(nl) 'Ag(ml) .. 'A()(TL,«) 'Ao(mT) .
By definition, we have

nit if Iy =0, —nlt if 1y =0,

A = Ao(n) it =
[ 0(”)]1112 {O if l2 > 1, [ O(n) ]lllz {nl1+l2 if 12 > 1.

Thus, using (5.4.3) and (5.4.4), for z = (z1,...,2,) € R" and y = (y1,...,y,) € R" one has

,
> W) — ) if 1y = 0,
(D@, )], =7 o s (5.4.11)
2 (yj1 — i)y —xp) + Z( a7 —aty?) il > 1,
1<j1<g2<r j=
and
. ol =0
~ Z (:EJ y] ) I g = U,
1D ¥}l = "~ Ih+1 ol . (5.4.12)
1<.Z.< ( J1 y]l)( ]zing)jLZ( e $1y]2) if I5 > 1.
<J1<Jg2<r

For P € Z, assume ¢g), g) ‘R —R,je{l,...,7}, are C*(R) functions with the properties
sup [|of)| +[0F)] <1 pp,  sup / [62) @) + |V (@)]de < 1. (5.4.13)
1<j<r 1<j<r JR

For 0 = (01,1,) (1, 12)ey, € RYal e Z,, and P € Z, let
Spa®) = > e(=D(n,m).0){ [ 6¥ (nj)v (my)
Pyr ) p \"%7)¥p J
n,mez" j=1

and

Sp(0)= Y (=D {Hqﬁ (ni) (ms) },

n,meL"

where D and D are defined as in (5.4.11)—(5.4.12).
The following key estimates are proved in [61, Proposition 5.1 and Lemma 3.1]:

Proposition 5.1. (i) (Nilpotent Weyl estimate) For any € > 0 there is r = r(e,d) € Z4 sufficiently
large such that for all P € Z we have

|Sp(0)] +|Spr(0)] S PP, (5.4.14)
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provided that there is (11,1l2) € Yq and an irreducible fraction a/q € Q, q € Z4, such that
1011, — a/ql <1/¢* and q € [P°, PhF27e], (5.4.15)

(i3) (Nilpotent Gauss sums) For any irreducible fraction a/q € Q, a = (ay1,) @, 1)ey, € zYd qez,,
we define the arithmetic coefficients

Ga/q)=q¢* Y ¢(=D(w,w)(a/g), Gla/g)=q > Y  e(—D(v,w).(a/q)). (5.4.16)

v,WEZLL v WELY
Then for any € > 0 there is r = r(e,d) € Z+ sufficiently large such that
G(a/q)| + |G(a/q)| Se ™" (5.4.17)
We also need a related integral estimate, see Lemma 5.4 in [61]:

Proposition 5.2. Given € > 0 there is v = r(e,d) sufficiently large as in Proposition 5.1 such that

) /RrXRr {jf[l¢j(xj)¢j(yj)}e(—D(x, y)ﬁ) dg;dy‘ < <B>—1/57 .
)/ B { ﬁﬁbj(xj)%(yj)}e(—ﬁ(ﬂc,y)ﬂ) dxdy’ <8V,
X =1

for any B € RY4 and for any CY(R) functions ¢1,11,...,¢r, 0, : R — C satisfying, for any
jeA{l,...,r}, the bounds

|51+ |hj] < 1a (=), /R (10265 (2)| + |0213(2)|] do < 1.

These statements should be compared with classical Weyl-type estimates, which are proved for
example in [103, Proposition 1]:

Proposition 5.3. (i) Assume that P > 1 is an integer and ¢p : R — R is a CY(R) function
satisfying

65l < 1ippp, Ag¢;@ﬂdx§1. (5.4.19)

Assume that € > 0 and 0 = (01, ...,04) € R? has the property that there is | € {1,...,d} and an
irreducible fraction a/q € Q with q € Z+, such that

00 —a/q| <1/¢* and q € [P, P (5.4.20)
Then there is a constant C = Cy > 1 such that

‘ S gp(n)e(— (Bin+ ...+ ) ( <. ple/C (5.4.21)
nez

(i3) For any irreducible fraction 0 = a/q € (Z/q)?, a = (a1,...,aq) € Z%, q € Zy, we have

a7 > (= @t 0nh)| S a7 (5.4.22)

Nn€Elyq
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Notice that formal similarity of Propositions 5.1 and 5.3. They both involve a small but non-trivial
gain of a power of P as soon as one of the coefficients of the relevant polynomials is far from rational
numbers with small denominators. These estimates can therefore be used efficiently to estimate
minor arcs contributions.

We note, however, that the proof of the nilpotent Weyl estimates in Proposition 5.1 is much more
involved than the proof of Proposition 5.3. It relies on some classical ideas of Davenport [32] and
Birch [11] on treating polynomials in many variables, but one has to identify and exploit suitable
non-degeneracy properties of the explicit (but complicated) polynomials D and D in (5.4.11)—(5.4.12)
to make the proof work. All the details of the proof are provided in [61, Section 5]

5.5 A nilpotent circle method

To illustrate our main method, we focus on a particular case of Theorem 5.2, namely on proving
boundedness of the maximal function MY on ¢?(Gy). For simplicity of notation, for k¥ € N and
x € Gg, let

Myf(@) = MY f(z) =Y 27"x(27Fn) f(Ao(n)) ™" - @) = (f * Ki)(2),

nel

Kp(z) := G () = Y 275 %27 n) 1, () (),
ne”L

(5.5.1)

see (5.2.9) and (5.2.11) for the definitions MY, and G respectively. With this new notation, our
main goal is to prove the following:

Theorem 5.3. For any f € (*(Gy) we have

I sp Ml = 1 exco)- (5.5.2)

In the rest of this section we outline the proof of this theorem. Our main new construction is an
iterative procedure, starting from the center of the group and moving down along its central series,
that allows us to use some of the ideas of the classical circle method recursively at every stage.
In our case of nilpotent groups of step two, the procedure consists of two basic stages and one
additional step corresponding to “major arcs”.

Notice that the kernels K} have product structure

Ki(9) = Li(gM)1py(0®),  Lu(e™) = 27" @7 ") 1109V — A (), (5.5.3)
nel

where A(()l)(n) = (n,...,n%) € 2% and g = (¢, g?) € Gy as in (5.2.3).

5.5.1 First stage reduction

We first decompose the singular kernel 1g) (g(Q)) in the central variable ¢(®) into smoother kernels.
For any s € NV and m € Z, we define the set of rational fractions

R™:={a/q: a=(a1,...,am) € Z™, q € [2°,2°T)NZ, ged(ay,...,am,q) = 1}. (5.5.4)

m m 1 2 '
We define also RZ, := Jy<,<, Ry For z(M) = (wgl()))lle{l,...,d} e R4, () = (ml(ll)g)(ll,lz)eYc; € R% and
A € (0,00) we define the partial dilations

Aoa® = (A" s cp gy €RY Aoz = (A1 H22) ) 1)y € RY, (5:55)
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which are induced by the group-dilations defined in (5.2.8).
We fix 1o : R — [0, 1] a smooth even function such that 111 <no < 1[99 Fort € R and integers
j > 1 we define

ni(t) := n0(279t) — no(2771e), 1= an. (5.5.6)

For any A € [0,00) we define

n<a= (5.5.7)

jJ€[0,A|NZ

By a slight abuse of notation we also let n; and n<4 denote the smooth radial functions on R™,
m > 1, defined by n;(z) = n;(|z|) and n<a(z) = n<a(|z]). We fix also two small constants
§ = 6(d) < & = &(d) such that & € (0,(10d)"'°] and § € (0,(8")Y], and a large constant
D = D(d) > 68, which depend on arithmetic properties of the polynomial sequence Ay (more
precisely on the structural constants in Propositions 5.1-5.2) such that

1< 1/ <1/ <r=r(,d) < D. (5.5.8)
For k > D? we fix two cutoff functions (ZSS) ‘R4 — [0, 1], ¢,(€2) :RY — [0,1], such that
o (") =<2 o g"), 07 (9%) = mean(27F 0 o). (5.5.9)

For k € N so that k > D? and for any 1-periodic sets of rationals A C Q%, B C Q% we define the
periodic Fourier multipliers by

WAl (W) = Z nesn(2¥ o ( D —a/q)), ¢M e,
a/qeA

, (5.5.10)
BEP) = > new(@ 0 (€@ —b/q), P eT?.
b/qeB
For k > D? and s € [0, 6k] N Z we define the periodic Fourier multipliers ks RY — [0, 1],
Zs(€®) = Zpma (€P) = D n<an(2h o (€®) = a/q)). (5.5.11)
a/qeRY
For k > D? we write
g (s®) = [, elg® ) g
T
(2) c@h= (2)y ¢ (2) =e(¢(2)) 4e(2) (5:5.12)
= D [ e EPZ (€ de® + | e(g"® £P)Zf(EP) g,
se[0,0k)nz” T T
where g(2).§ (2) denotes the usual scalar product of vectors in RY and
Eii=1- ) G (5.5.13)

s€[0,0k]|NZ

Then we decompose Kj = K|, + Zse[oM]mZ K}, 5, where, with the notation in (5.5.3), we have
Kys(9) == Li(gM)Nes(9?),  Ki(g) = Le(g™)NE(g®), (5.5.14)
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and

Nea(9®) = 62 (g?) / (g £@)Z, (@) de®),

T

(5.5.15)
C 2 —=C

Ni(g®) = 7 () / , elg® ez ag®).

We first show that we can bound the contributions of the minor arcs in the central variables:

Lemma 5.1. For any integer k > D? and f € £?(Gg) we have

¢ _ 2
If * K§lle2o) S 27271 Flleo)- (5.5.16)

Then we prove our first transition estimate, i.e. we show that we can bound the contributions of the
kernels K}, s corresponding to scales k > 0 not very large. More precisely, for any s > 0 we define

kg 1= 22D, (5.5.17)

Lemma 5.2. For any integer s > 0 and f € (?(Gg) we have

Sup f o Ky <270 Fll 2o 5.5.18
\\maxu)asﬂngk<2ﬁsl o) 1f1le2(co) ( )

In the commutative setting, minor arcs estimates such as (5.5.16) follow using Weyl estimates and
the Plancherel theorem. As we do not have a useful Fourier transform on the group Gy, our main
tool to prove the bounds (5.5.16) is a high order T*T argument. More precisely, we analyze the
kernel of the convolution operator {(Cf)*/Ci}", where Kf f := f * K} and r is sufficiently large, and
show that its ¢1(Gg) norm is < 27%. The main ingredient in this proof is the non-commutative Weyl
estimate in Proposition 5.1 (i).

To prove the transition estimates (5.5.18), we use the Rademacher-Menshov inequality and Khint-
chine’s inequality (leading to logarithmic losses) to reduce to proving the bounds

H Z st (f * Hy )

ke[J,2J)]

£2(Go) S gt/ HfHe2(GO) (5.5.19)

for any J > max(D?, s/d) and any coefficients », € [—1,1], where Hy s := Kgi1,5 — K, 5. For this,
we use a high order version of the Cotlar—Stein lemma, which relies again on precise analysis of
the kernel of the convolution operator {(Hy s)*H,s}", where Hy sf := f * Hy , and r is sufficiently
large. The key exponential gain of 2745/P% in (5.5.19) is due to the non-commutative Gauss sums
estimate, see Proposition 5.1 (ii).

5.5.2 Second stage reduction

In view of Lemmas 5.1-5.2 it remains to prove that
_ 2
I sup 1£ % Kol gy < 2721 o) (5.5.20)
k>ks

for any fixed integer s > 0. The kernels K}, ¢ are now reasonably well adapted to a natural family of
non-isotropic balls in the central variables, at least when 2° =~ 1, and we need to start decomposing
in the non-central variables.
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We examine the kernels Li(g(")) defined in (5.5.3), and rewrite them in the form

Li(gM) = Y 27 x (@2 n) 1y (— AT (n) + g V)
nek (5.5.21)
=) [ elg D)) de
Td

where ¢ .£(1) denotes the usual scalar product of vectors in R?, and

M) = 3" 2 k(2 Fn)e(— AL (n).£D). (5.5.22)

ne”L

For any integers ) € Z4 and m € Zy we define the set of fractions
0 =1a/Q: a=(a1,...,am) €Z"}. (5.5.23)
For any integer s > 0 we fix a large denominator
Qs = ([2PC | )r=1-2..... [2P6TD], (5.5.24)

and using (5.5.10) define the periodic multipliers

WEYED) = Uz (€D) = 3 negn(20 (€0 — a/a)),

a/qERdS
\Ifk,s,t(f(l)) = \Dk,Rg\ﬁdQs (f(l)) = Z 7756’k(2k o (5(1) —a/q)),
a/qER‘f\ﬁds
UpeW) =1 -wprEW) - Y0 W €V) =1 Y0 nen(r o (€0 — a/q)).
te[O,é’k]ﬁZ CL/(]GR o'k
(5.5.25)
Since k > /@ = 22D(s+1)? wo see that Qs < 25°k Therefore the supports of the cutoff functions
Nesi(2F 0 (€M) —a/q)) are all disjoint and the multipliers \I’}f‘g’, Uy o+, Y take values in the interval

[0,1]. Notice also that ¥y s, = 0 unless t > D(s + 1), and that the cutoffs used in these definitions
depend on 4’k not on dk as in the case of the central variables.

We examine the formula (5.5.21) and define the kernels L}C";V, Ly s, LS - 7% — C by

Ldﬁ%:¢?@“)ﬁg@”é”ﬁ&&) A(6W) e, (5.5.26)

where (L., U.) € {(LY, URY), (List, Wrosit)s (Lf, U5)}. For any k > kg we obtain Kj s = GPY +
> i<ok Ghost + Gy 5, where the kernels Gk s Ghsits G g ZYal — C are defined by
G (9) = LY (9) Ny, (9®),
Grsit(9) = Lisi(dM)Nis(9?), (5.5.27)
fs(9) = Li(9) Nis(9®).

Our next step is to show that the contributions of the minor arcs corresponding to the kernels G, ,
can be suitably bounded:

122



amagyar 2024 220 24

Lemma 5.3. For any integers s > 0 and k > kg, and for any f € (?(Go) we have

c _ 2
1 % G5 sl S 2771 flle o) (5.5.28)

Then we prove our second transition estimate, bounding the contributions of the operators defined
by the kernels Gy, s; for intermediate values of k.

Lemma 5.4. For any integers s > 0, and t > D(s+ 1), and f € £2(Go) we have

2
sup f* G, < 9~t/D Flle2ccors 5.5.29
Hmax(ns,t/zS’)§k<2m‘ St’HKQ(GO) 1f1le (Go) ( )

where ky = 22PED? 45 in (5.5.17).

The proofs of these estimates are similar to the proofs of the corresponding first stage estimates
(5.5.16)—(5.5.18), using high order 7*T arguments. However, instead of using the nilpotent oscillatory
sums estimates in Proposition 5.1, we use the classical estimates from Proposition 5.3 here. We
emphasize, however, that the underlying nilpotent structure is very important and that these
estimates are only possible after performing the two reductions in the first stage, namely, the
restriction to major arcs corresponding to denominators ~ 2° and the restriction to parameters
k> Ks.

We finally remark that the circle method could not have been applied simultaneously to both central
and non-central variables, as we would not have been able control efficiently the phase functions
arising in the corresponding exponential sums and oscillatory integrals, especially on major arcs.

5.5.3 Final stage: major arcs contributions

After these reductions, it remains to bound the contributions of the “major arcs” in both the central
and the non-central variables. More precisely, we prove the following bounds:

Lemma 5.5. (i) For any integer s > 0 and f € (?(Gy) we have
_ 2
H sup |f * G}gg’H@(GO) g 2 s/D HfHEQ(Go)' (5'5'30)
k>ks
(ii) For any integers s > 0, t > D(s+ 1), and f € £*(Go) we have

— 2
Isup 1£ # Ghoalll ey S 2777 Iflleo: (5.5.31)

The main idea here is different: we write the kernels G}f‘;v and Gp, s as tensor products of two
components up to acceptable errors. One of these compc;nents is essentially a maximal average
operator on a continuous group, which can be analyzed using the classical method of Christ [22].
The other component is an arithmetic operator-valued analogue of the classical Gauss sums, which
leads to the key factors 275/P% and 2-%/P* in (5.5.30) and (5.5.31).

More precisely, for any integer ) > 1 we define the subgroup

HQ = {h = (th1l2)(l1,l2)€Yd € GO : hllal2 € Z} (5532)

Clearly Hg C Gy is a normal subgroup. Let Jg denote the coset
Ig = {b = (bu) trumyevs € Go = by € Z0[0,Q — 11}, (5.5.33)
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with the natural induced group structure. Notice that
the map (b, h) — b - h defines a bijection from Jg x Hg to Go. (5.5.34)

Assume that Q > 1 and 2 > Q. For any a € Z% and ¢ € R? let
Ju(€) =27 / X2 a)e[— A (2).] da = /R x()el= AL (). (2% 0 )] dy,
S(a/Q) = Q" > o[-A (n).a/Q).

nEZQ

(5.5.35)

The point is that the kernels G}f‘;v and Gy s+ can be decomposed as tensor products. Indeed, to

decompose G}, s+ (the harder case) we set Q := Q = (L?D(HUJ)! as in (5.5.24). Then we show that
if k> ry (so 28 > Q}), h € Hg, and by, by € Gy satisfy |by| + |ba| < Q? then

Gk,s,t(bl “h- bg) ~ Wk7Qt(h)Vth\7"é% 7Rg/,Qt (bl . b2), (5536)

up to acceptable summable errors. Here

Wiq,(h) = Qf"" ¢x(h) /R o T2 0 Em<ai (2 0 0)e(h.(8,0)) Ju(€) dEdd,

Vasol) ::Q—d—d’{ Z S(U<1))e[b(1>_(a<1)>]}{ Z e[b@),((,@))]}’

oMeAno,1)? o eBn[o,1)d

and ¢ (h) :== gzb,(j)(h(l))qbg)(h(z)), h= (R h2)) € Hg,, b= (b1, b)) € Gy, and the functions Jj,
and S are defined in (5.5.35).

Finally, we show that the kernels V,; := VR?\ﬁdsyngly o
valued Gauss sums) define bounded operators on £%(Jg,),

1f %30, Vsilleeag,) S 2_t/DHfHe2(JQt)‘

Moreover, the kernels Wy, ¢, are close to classical maximal operators and one can show that

(which can be interpreted as an operator-

<
H :;Et |f *Ha, kaQt‘Hﬁ(HQt) ~ HfHEQ(’HQt)'
The desired bounds (5.5.31) follow using the approximation formula (5.5.36).

5.6 A nilpotent Waring theorem on the group G

The classical Waring problem, solved by Hilbert in 1909, concerns the possibility of writing any
positive integer as a sum of finitely many p powers: for any integer p > 1 there is r = r(p) such that
any integer y € Z4 can be written in the form

y = me, for some non-negative integers mq,...,m,. (5.6.1)

There is a vast amount of literature on this problem and its many possible extensions. In particular,
the symmetric system of equations

> (mi-nf) =0 (1<s<d) (5.6.2)
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first studied by Vinogradov [111] in relation to the Waring problem, have been the focus of intense
recent research, see [114] for some breakthrough results. We are interested here in understanding
the analogous question on our discrete nilpotent Lie group go and for our given polynomial sequence
Ap: can one represent elements g € gg in the form

g = Ag(nl)il . Ao(ml) L. Ao(n,ﬂ)il . Ao(mr), (563)
for some integers ny,my,...,n,, m,, provided that r is large enough? We are, in fact, inter-
ested in proving a quantitative statement on the number of such representations, for integers
ny,Mi,...,Np,my € [N]:=[-N,N]NZ.

We remark that many group elements g cannot be written in the form (5.6.3), due to local
obstructions; for instance, if g can be represented in the form (5.6.3) then necessarily gi10 = g20 =
.. = gqo (mod 2), g10 = g30 = ... (mod 3) etc. For integers r, N > 1 and g € gg let

Srn(g) = |{(m,n) € [N]*": Ag(n1)~" - Ag(mq) - ... Ao(ny) " - Ao(my) = g}|. (5.6.4)
Our main result in this section is the following:

Theorem 5.4. (i) There is an integer ro(d) > 1 such that if r > ro(d) is sufficiently large and
g € go then

Snlg) =N ([T Nl s(g) / B(Qe(—(N"Log))dC+ O (N, (5.65)
(l1,l2)EYd Rd+d
uniformly in N € N. Here the singular series & is defined by
S(g):= Y Gla/q)e(—g.a/q) (5.6.6)
a/qERgSLd/

and the singular integral ® is defined by
B(¢) = / ¢(D(z,w).6) dzdw, ¢ e R (5.6.7)
[ 1 1]27‘

In particular, all elements g € go cannot be represented in the form (5.6.3) more than a constant
times the expected number of representations, i.e.

ST7N( < N2T< H N |ll‘ |12) fOT’ any g c go. (568)
(ll,lg)EYd

(ii) For r > ro(d) as above there is a sufficiently large integer Q = Q(r) such that

SnN(g) _ N?r( H N—\l1|—|12|> [cr(g) +OT79(N_1/2) : (5.6.9)
(ll,lz)GYd

for any g € Hq (see definition (5.5.32)), where c.(g) =~y 1 uniformly in g.

Sketch of the proof: Observe that D(n,m) = Ag(n1)~t - Ag(m1) - ... Ag(n,) "t - Ag(m,). Using the
classical delta function we can write

= > /TM, m).€)e(—g.€) d&. (5.6.10)

m,ne[N]"
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Step 1. We start by decomposing the integration in £ into major and minor arcs. For any integer
m > 1 and any positive number M > 0, we define the set of rational fractions

v i=1a/q: a=(a1,...,an) €Z", g€ [1, M|NZ, gcd(ay,...,am,q) = 1}. (5.6.11)

We fix a small constant § = §(d) < 1 and a smooth radial function 7o: RY4l — [0,1] such that
index |z] <1 < no(z) < index|z| <2, 2 € RYal. For A > 0 let nea(x) := m(A™'z), z € RIYal,
Then we introduce the projections

Ev@©) = > nens(No(€-a/g), (€T NeN, (5.6.12)

d+d’
a/qGRQN(s

and decompose the integration in (5.6.10) into major and minor arcs, i.e. we define

SeNmaj(9) == > / , m).£)e(—g.£)En(E) d§ (5.6.13)
m,ne[N]" Td+d
Sy Nmin(g) = Z / , m).£)e(—g.£) (1 — En()) d¢, (5.6.14)
m,ne[N]" Td+d
Notice that S, n(9) = Sy Nmin(9) + Sr,Nmaj(g). Moreover
|y, N min (9)] S N2’”—1< 1T N—lll\—llz\), NeN, gego (5.6.15)
(ll,lz)EYd

provided that r is sufficiently large, as a consequence of Proposition 5.1 (i) and the Dirichlet principle.
Therefore the contribution of the minor arcs Sy n min(g) can be absorbed by the error term in (5.6.5).

Step 2. Next, we deal with the major arcs contributions. Notice that

Svmi(0) = Y. eogaf) [ news (Vo hnap(@e-9)de,  (5610)
a/qER‘;J;\%ﬂ[O,l)d“'d' R
where
Lina/g©) = Y. ¢(D(n,m).(a/q))e(D(n,m).g). (5.6.17)
m,ne[N]|"

Observe that for a/q € R‘f]r\% N1[0,1)4% and |N o £| < N we have

Linaa© = D D e(D(v,w).(a/q))e(Dlgn, qm).£) + O(@N"*?)

m,n€[N/q]" u,vEZL]
= N*G(a/q)®(N 0 &) + O(qN*~1*7),

where G(a/q) is defined in (5.4.16) and ® is defined in (5.6.7).
Therefore, if § < (10d)~ then we have

Srvmail(9) = N (- J] i)

(li,l2)€Yy
- 5.6.18
x| > Glafae(-galq) /RM, N<ns (§)2(E)e(—g. (N1 0 €)) dE + O (N2 |. 01
a/qERi';’dg
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It follows from Proposition 5.1 (ii) and Proposition 5.2 that
Gla/g) Sr g, (aq) =1, (5.6.19)
and

D] S (7Y, (e RT (5.6.20)

~

provided that r is sufficiently large. Therefore, recalling the definition (5.6.6),

S(9)| = 1,
![[}G(g) — Z G(a/q)e(—g.a/q) <, Z g —1/8 <, N1/, (5.6.21)

d+d’ >N
a/qg€RT s q>

Moreover

‘/ s (€)P(E)e(—g. (N7 Oé))dﬁ) <1,
F (5.6.22)

| /R N () (E)e(—g-(N™" 0 €)) dé - /R 1y 2O—g (N7 og)) de| 5, NTHED,

It follows from (5.6.18), (5.6.21), and (5.6.22) that

Sy, N,maj(9) = NQ’”( 1T N*“l'*“?') [6(9)/ D(&)e(—g(N 1o 8))dg + oT(Nfl/z)]
(l1,l2)EYy Rd+d
(5.6.23)

The desired conclusion (5.6.5) follows using also (5.6.15). This completes the proof of part (i) of
the theorem.

Step 3. We analyze now the singular series & defined in (5.6.6). Observe that

&(h)=> A(g,h),  Alg,h):= Y _ Gla/q)e(~h.a/q), (5.6.24)

q=1 (a,q)=1

for any h € gg. Notice that A(q, h) is multiplicative in the sense that A(qiqg2, h) = A(q1,h)A(q2,h)
provided that (¢1,92) =1 and h € go. Therefore, letting P denote the set of primes,

&) =[] Bp.h),  Blp.h):=1+>_ A@p"h). (5.6.25)
peP n>1

For h e ggand ¢ > 1 let
M(q,h) = |{(m,n) € Zgr : D(n,m)=h mod q}|. (5.6.26)
We prove that for any h € go, p € P and integer n > 1 we have

M(p™, h)

2r—d—d)

o (5.6.27)
p

1+ A@p”,h) =
v=1
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Indeed, for any integer ¢ > 1 we have

M(g.,h)=q " > > ¢((D(n,m) - h).(t/q))

tezd+d mneLy

Y Y S e((Dn,m) — h).(wa1/q))

d d/ T
Wla wezd 4 (w,q/q)=1™"LG

S e((D(nym) — h).(w/2))

@19 wezZF Y, (w,g2)=1""%

=gy > P Gw/g)e( —h(w/g))

219 wezdt | (w,g2)=1

_ q2r—d—d’ ZA(Q27h)-

q2lq

The identity (5.6.27) follows by applying this with ¢ = p™, p € P. In particular &(h) and B(p, h)
are real non-negative numbers,

S(h), B(p,h) € ]0,00) for any h € g, p € P. (5.6.28)
Moreover, using the formulas (5.6.25) and (5.6.27),

M(p™, h)

B(p,h) = — 5 ==y
( ) pn(2r7dfd)

+ 0,(27/9)
We would like to show now that &(h) 2, 1 for all elements h € Hg, in order to be able to exploit

the expansion (5.6.5). We notice first that for any integer r sufficiently large there is po(r) € P such
that

12<  J[ Bw®h<3/2 (5.6.29)
pEP, p>po(r)

for any h € go, due to the rapid decay of the coefficients G(a/q) in (5.6.19).

By Lemma 5.6 there is a point ag = (29, wp) such that D(ag) = 0 and there is a (d + d') x (d + d')
minor Jp(ag) # 0. By re-indexing the variables we may assume that this minor is Jp(ag) =
det(%@? (ao))i/j:KJr17 writing N = 2r, K = 2r —d — d and x = (m,n) € Z?". In other words, we
may assume that the minor corresponding to the last d + d’ columns of the Jacobian matrix of D is
non-singular. For a given prime p < po(r) let v, € N be such that Jp(ag) = p’u with u € N and
pfu. Define Q@ = Q(r) == [Lep p<po(r) p2ptl

For h € Hg, we have that D(ap) = h mod p?*»*1 but Jp(ag) # 0 mod p’»*! thus we are in the
position to apply Hensel’s lemma again with N = 2r and K = 2r —d — d’. Then by Corollary 5.1
we have that M (p", h) > p"=2»=DK and hence by (5.6.28) we have B(p™, h) > p~ (2w +tDE-1 for
all n > 2v,, n > n(r). This proves that

S(h) 2,1 uniformly for k€ Hg. (5.6.30)

Step 4. Finally we analyze the contribution of the singular integral. Since

[ 20t eg0dc = [ 80 dc+ 0,7,

Rd+d’
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due to (5.6.20), to prove the approximate identity (5.6.9) it suffices to prove that

/ () d¢ 2 1. (5.6.31)
Rd+d’

We fix a smooth function x : R — [0,1], satisfying x(z) = 1 if |z| < 1/2, x(z) = 0 if |z| > 2,
and [parar X(2) dz = 1. For € < €(r) sufficiently small we write

/ O(¢)x(e€)d¢ = / e )N (D(z,w)/€) dzdw, (5.6.32)
Rd+d’ [—1,1]2

using the definition (5.6.7). In particular, by letting € — 0, [para ®(¢)d( is a real non-negative
number. Moreover, the lower bound (5.6.31) follows from (5.6.32) provided that we can show that
there is a point (2o, wp) € [—1,1]?" such that

D(zp,wp) =0 and rank[V, ., D (20, wo)] = d + d'. (5.6.33)

O
Note (5.6.33), with r replaced by 2r, follows easily from the following

Lemma 5.6. Let r > ro(d). Then there exists (n,m) € Z*" such that
rank[V, ,D(n,m] =d+ d'. (5.6.34)

Indeed, writing D,(z,y) = D(z,y) : R — G#, we have that D,.(x,y)D,(n,m)~! = Da,((x,m’), (y,n’))
withn' = (n,,...,n1), m" = (m,,...,my). Assuming (5.6.34) it is clear that the map Do, ((x, m’), (y, n'))
has maximal rank at zop = (n,m’), wy = (m,n’) and (5.6.33) follows.

The proof of Lemma 5.6 is based on counting points (n,m) € [N]?" at which the rank of the map
VD drops. This was also crucial in obtaining the nilpotent Wey estimate (5.4.14).

Proof. Let N be sufficiently large w.r.t. r,d. It is enough to show that

[{n € [N]": rank|V,D(n,m)] < d+d'}| Sg, NOTI/2 (5.6.35)

holds uniformly for m € [N]". Fix m € [N]". If rank[V,;D(n,m)] < d+ d' then by Cramer’s rule
there exists b1, € Z, |by,,| < N with by, # 0 for at least one 0 <l < Iy < d,
such that

> by, 0Dy (n,m) =0, forall 1<j<r. (5.6.36)

0<lp<l1<d
From (5.4.12) we have that 0;D;,0(n,m) = lln?*l, and for 1 < o,
0;Dy,1,(n,m) = lln?*l Z(n? )+ 1o nl2 ! Z nk - mk - llnll ! ; . (5.6.37)
k>j k<j

We want to only include terms k < j and to achieve that we introduce the parameters

Tl:Tl(n,m):Z(nf—mf) for 1<l<d.
k=1

Note that T} € [-rN%1 r N1, For fixed T = (T})1<i<q, Write

> (g —m) = Tyy(n,m) = ) (n2 = mid),

k>j k<j
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Substituting into (5.6.37), we obtain, up to lower degree terms in the variables n = (ni,...,n;),
0;Dyy1,(n,m) = =1 anl ! l2 + 1o an lnﬁg, for 1<y <d. (5.6.38)
k<j k<j

Thus the system in (5.6.36) takes the form

> b PP, n) =0, (1<j <) (5.6.39)
0<lo<ii <d

Notice that for fixed nq,...,ngj—o with j < /2, the left side of (5.6.39) contains the monomials
bi,0 n 9 1 and b1, Mg nh= 1nl22 , and hence is nonvanishing in the variables ng;_1,n2;. This implies
that number of solutlons to (5 6.39) is at most 2dN in the variables na;_1, ng;.

As the number of choices for parameters b = (b1, )o<iy<i;<a and T = (1)) <i<q is Sra NC (with,

say Cq = 2d(d + d')?), (5.6.34) follows. O

We remark that (5.6.34) together with the argument proving (5.6.33) also implies that the map
Do, : R¥ — G# is surjective. Indeed, the image of the map D, must contain an open ball B(g, J)
thus the image of Do, must contain an open ball B(0,8") C B(g,5)B(g,8)~! centered at the origin,
then by homogeneity the whole space G# .

Lemma 5.6 together with Hensel’s lemma also crucial to show the non-vanishing of the singular
series G(h) for h € Hg. Recall that, given a prime p, the ring of p-adic integers ip is defined as
the completion of Z with respect to the p-adic metric |m|, = e * if m = pFfu withu € Z, p f u.
Then Zp is a so-called complete valuation ring with a unique maximal ideal I, = pr and will write
r =0 mod p* if z € p* Zp. We have |z — y|, < max{|r — z|p, |y — z|p}, hence a sequence (z;);en is
Cauchy if |xj41 — xj[p = 0 as j — oo.

It follows that any formal power series g(z) converges at © whenever x = 0 mod p. For a vector
x = (21,...,xN) € Z;,V we say that £ = 0 mod p* ifx; =0 mod p¥, for all 1 < j < N. Then
any power series g(z) = g(z1,...,zy) in N variables also converges whenever z = 0 mod p.
Moreover, one has the inverse and implicit function theorems for power series maps g(z) =
(1(x),...,gn(2)) : Zév — Zf,v without constant terms. Namely, if the Jacobian of the system at
origin Jy4(0) ¢ Ip i.e. is a unit, then g has an inverse power series map h(z) = (h1(z),...,hn(x)),
in the sense that h(g(z)) = g(h(z)) = z, see Proposition 5.19 in [51]. One also has a corresponding
version of the implicit function theorem; for a map g(z) = (9rx+1(x),...,9n(2)) : 2;;7 — 211)\7_1{

such that det(gg; (0))%:[(Jrl ¢ I,, the inverse image V, := ¢ 1(0) can be parameterized as
Vg = (t1,.. .t hgy1(t), ..., hn(t)) with ¢t = (t1,...,tk), which can be seen from the inverse
function theorem by extending the map with g;(xz) = x; for i = 1,..., K. The following extension of
the implicit function is often used to show the non-vanishing of the singular series associated to
diophantine systems.

Theorem 5.5. [Hensel’s Lemma] Let f = (fx41,---, [N) : Z]JDV — iéV_K be a family of polynomials.

Assume there exists an a € i]])\f and an integer v > 0, such that
f(a) =0 mod p*" ™, (5.6.40)

moreover
Je(a) =p'u, u#0 mod p, (5.6.41)
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where Jy(a) is the Jacobian,

dy; N
Ji(a) = det( Ji (a)> . (5.6.42)
O ij=K+1

Then there exist power series h = (hg 41, ..., hn) with hj(0) = 0, such that for allt = (t1,...,tx) =0

mod p, one has that
fla+ (P, p*h(t)) = 0. (5.6.43)

This means that for each j = K +1,..., N, one has
filar + 91, . ak + PPk, axer + pthia (), . an + pPh(t) = 0.

This is proved in [51], see Lemma 5.21 and Note 5.22 there, in fact it is shown that all b € if,v such

that b = a mod p’*! and f(b) = 0 can be parameterized this way. We will use it to obtain the
following lower bound, assuming conditions (5.6.40)-(5.6.41) hold.

Corollary 5.1. Let n > 2. Then
{bezl : f(b)=0 mod p"}| > pnH—DK (5.6.44)

Proof. First note that if ¢; # to mod p"~27, then ¢; # c2 mod p", where ¢; = a + (p*'t;,p h(t;))
for i = 1,2. There are p(»=27=DK values of t € ZX such that t =0 mod p which fall into different
residue classes mod p"~27, thus by (5.6.43) we have at least this many solutions to f(c) = 0 in Zév
which fall into different residue classes mod p™. For each such ¢ let b € Z~ such that b = ¢ mod p",
Then clearly f(b) =0 mod p" and all such b's are distinct mod p". O
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