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Koszonetnyilvanitas

Ez a dolgozat a 2008-2024 kozotti tudomdanyos munkamat foglalja 6ssze. Visszaem-
lékezve az elmult masfél évtizedre, szamtalan ember és szervezet segitette a munka-
mat.

2002-t6] az MTA SZTAKT' tudomanyos segédmunkatdrsa, munkatérsa, majd 8-
munkatdrsa lehettem, hdlas vagyok az intézetnek, hogy kutatdsaimhoz a sziikséges
felszereléseket és infrastruktirakat rendelkezésre bocsajtotta. Az Eotvos Lorand Tu-
domanyegyetemen 2017 6ta vagyok alkalmazdasban, ahol kiilonosen az "TEFOP EFOP-
3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control
Technologies’ és a TKP2020-NKA-06: ’Alkalmazésiteriilet-specifikus nagy megbizha-
tésagu informatikai megoldasok’ projektek tamogattdk a munkamat, meglehet6sen
békezlien. A Robert Bosch Kft. tAimogatasat szintén kiemelném 2022-t6l, a vallalat
nemcsak anyagiakban finanszirozta a munkamat, hanem az ipari-egyetemi egytitt-
mikddés soran szamomra 4j tavlatokat nyitott ki.

Munkatdrsaim koziil els6ként azokat a PhD hallgatokat sorolndm fel, akikkel a
tizenot év alatt egyiitt dolgozhattam: Téth Tekla, Barath Ddniel, Fodor Bdlint, Kazé
Csaba, Pernek Akos, Pusztai Zoltdn, Téfalvi Tamds. Noha én a témavezet6jiik voltam,
magam is sokat tanultam T6liik, amit nagyon koszonok Nekik. Nemcsak doktorandu-
szok, hanem MSc, s6t BSc hallgatok munkdjabdl is merithettem, a lista hosszusdga
miatt itt sajnos nem sorolhatom fel Oket.

Feletteseim koziil kiemelném még PhD-s korszakom két témavezet6jét, Csetveri-
kov Dmitrijt (} 2024) és Vajk Istvant, mindketten alapvet6en hatdroztak meg vildgla-
tdsomat. Ugyanigy kollégdim a SZTAKI-ban és az ELTE-n, akikkel egytitt dolgozhat-
tam, koziiliik kiilon megemliteném Molnar Jozsefet, Eichhardt Ivant, Valasek Gabort,
Janko Zsoltot és Loczi Lajost.

Személyes vonalon els6sorban csalddomat, feleségemet és 6t gyermekemet emli-
teném meg, akik az érzelmi hatteret biztos hatteret. Edesapamat és apésomat szak-
mai oldalrdl is ki tudom emelni, 6k mérnokként, de rendkiviil gyakorlatias gondol-
kodasukkal segitettek felismerni, hogy a jézan paraszti ész még a tudomanyos mun-
kaban is az egyik legfontosabb feltétele a mindségi munkanak.

! Jelenleg az intézet neve HUN-REN SZTAKI.
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Jelolések, nyelvhasznalat

A dolgozatban a szamitdgépes latds szakirodalmdban leggyakrabban alkalmazott je-
l161éseket igyekszem haszndlni. A jelolésrendszer egységesitése komoly kihivasok elé
allitott, igyekeztem felnoéni a feladathoz.

A térbeli és sikbeli pontokat altalaban vektorok formajaban taroljuk. Ezeket vastag
bettivel jel6lom a szévegben, szemben a skaldr értékekkel, amelyet normal bet(tipus-
sal igyekeztem mindenhol irni.

A térbeli pontok lefrasdara az X vektort haszndlom a leggyakrabban, amely a tér-
beli elhelyezkedés harom koordinatdjat tartalmazza: X = [X Y Z|”. A vékony
betlis X az elsé koordinatat, a vastag X pedig magat a vektort jeldli. A vetitéseknél
a homogén koordinatas alakokat is haszndlni fogom: X = [X Y Z 1]".

A képen a pontokat ltaldban az u = [u v]’ vagy u = [u v 1]" homogén
koordinatas alakban {rom. El6fordul a kisbetlis x = [z 3] karakter haszndlata is a
sikon torténd jelolésre.

Matrixokkal szintén stirtin taldlkozhat a szévegben a kedves Olvasd, hiszen a
transzformaciok, vetitések paramétereit legtobbszor matrixokkal reprezentaljak a szak-
irodalomban. Vastag bettis jeloléseket alkalmazok a matrixokra, az elemeket vékony
bettivel jel6lom. Dupla indexelést alkalmazok, az els6 index a sornak, a masodik az
oszlopnak a szamat jeloli. Példaul:

A:{an a12:|‘

Q21 Q22

Néha az attekinthet6ség miatt elé6fordul szimpla indexelés is, ebben az esetben
sorfolytonosan irom az elemeket:

A — |: ap das :| ‘
as Qa4

Szdéhasznalat. A téma szakirodalma dont6 tobbségében angol nyelvli, mégis sokan
érezziik kotelességilinknek, hogy a sajat anyanyelviinkon is miiveljiikk a tudomanyt,
és a szakszavakat megprobaljuk magyarositani. A témdban magyar nyelven minden-
képpen érdemes elolvasni Katé Zoltan és Czuni Laszlé konyvét [2]], nemcsak magya-
rositasi szempontbdl, hanem azért is, mert remek 6sszefoglaldsa a haromdimenzids
1atas alapvet6 elméletének és mddszereinek.

Szamomra a magyarositaskor két stratégia 1étezik : vagy fonetikusan atirom a kife-
jezéseket vagy megprobalom ténylegesen leforditani. A valtozatossag kedvéért mind-

két stratégiat kovettem. A lentebbi tdbldzatban a legfontosabb kifejezéseket forditasat
irtam le, a teljesség igénye nélkiil :

| Angol kifejezés | Magyarositott kifejezés | Magyar elnevezés |

Fundamental matrix

Fundamentalis matrix

Alapveté matrix

Essential matrix

Esszencialis matrix

Lényegi matrix

Projection Projekcid Vetités
Triangulation Triangulacio Haromszogelés
Decomposition Dekompozicid Felbontés
Factorisation Faktorizacié Szorzattd bontds
Point registration Pontregisztracio

2
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Tarsszerzok. A tudoméanyos kutatds ma mdr csapatmunka. Az elmult méasfél évtized-
ben, miutdn PhD fokozatomat megszereztem, j6 néhany doktorandusz hallgatéval és
kollégaval dolgozhattam egyiitt. A munkdban, még a tézisek leirdsaban is, igyekez-
tem a médszerek tarsszerzéinek hozzajaruldsat is megemliteni. Ezért fordulhat eld,
hogy egyes és tobbes szamot egyarant haszndltam. Mindenképpen megemliteném,
hogy hdlas vagyok a doktori szabalyzat megalkotdinak, hogy védett doktoranduszok
esetében az egyszerzos folydiratcikkek kotelessége aldl felmentést kaptam, mert tu-
domanyos dolgozataimban mindig arra torekedtem, hogy bekeriiljon minden részt-
vevd, a hozzajarulas nagysagatdl fiiggetleniil. [gy nem kellett senkit sem a szerzéség
helyett a koszonetnyilvanitasok kozé szamizni .
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1. Bevezetés

Immaéron tobb, mint hiisz évvel ezel6tt kezdtem el szamitogépes latassal foglalkozni,
amikor egyetemi diplomam megszerzése utdn megkezdtem doktoranduszi tanulma-
nyaimat a Megyetemen és tudomdnyos segédmunkatdrsként az MTA SZTAKI-ban.
B6 ot évvel késébb, 2008. januarjaban védtem meg PhD fokozatomat, disszertaci-
omat gyengén perspektiv kameramodellekre épiil6 haromdimenzids rekonstrukcids
algoritmusok megalkotasabodl irtam. Doktoranduszi éveim alatt szerettem meg a sza-
mitdgépes latas vilagat, kiilondsen az ragadott meg, hogy az algebra és a geometria
hatarteriiletén megtapasztalhattam, a gyakorlatban hasznalhat6 mddszerek esetében
milyen fontos, hogy elméletileg is meg legyenek alapozva.

Disszertaciomat gyengén perspektiv kamerdkkal kapcsolatos kutatdsokbdl {rtam,
fokozatszerzésem utdn azonban figyelmem egyre inkdbb a valédi perspektiv kame-
rak alkalmazdsa felé fordult, noha par évig még foglalkoztam gyengén perspektiv
kamerdakkal is: a doktoranduszi munkdk soran talalt nyitott kérdések koziil néhanyra
sikeriilt megoldast talalni.

Korabbi témavezetém és felettesem, Csertverikov Dmitrij 2010 utdn ismertetett
meg tanitvanyaval, Molnar Jézseffel, aki egy SZTAKI-SZTE projekt keretében elkez-
dett foglalkozni az affin transzformacidk alkalmazasaval [113]]. Bar 6 hamar felha-
gyott a teriilettel, de szdmomra és sajat doktoranduszaim szdmara ez a teriilet egy
teljesen 1j vilagot nyitott meg, és alapvetéen meghatarozta a kovetkezé évtized ku-
tatasi irdnyait. Az elméleti alapok megismerése utan sajat algoritmusokat kezdtiink
késziteni a tanitvanyaimmal, kés6bb az elméletet is sikeriilt ijabb részekkel kiegészi-
teni, a perspektiv kamerakra djabb torvényeket megfogalmazni. A munkat els6sorban
Barath Daniellel k6zosen végeztem, aki az elért eredmények alapjan 2020-ban sike-
resen megvédte doktori munkajat.

A dolgozatban szintén foglalkoztam a pontalapt, lyukkamerat alkalmazé harom-
dimenzids rekonstrukcios eljarasokra kifejlesztett numerikus algoritmus [167], a "ko-
tegelt behangolas" alkalmazdsdval yjabb problémaosztdlyokra. A kotegelt behango-
las egy olyan eljaras, amelyben sok paramétert — tipikusan ezres nagysagrendben —
kell becsiilni, de a minimalizdlandd koltségfliggvényben a paraméterek csak lazan
kotédnek. Ezt a teriiletet a 2010-es években sikeriilt két tjabb problémaosztalyra
kiterjeszteni két munkatarsaimmal kozosen a SZTAKI-s kutatdcsoportunkban.

Az utolsé teriilet, amelyet ez a dolgozat — kiilon fejezetben — szintén taglal, LIDAR
eszkozok és perspektiv kamerdk kalibracidja. 2015-2016 tdjan kezdtiink el Pusztai
Zoltannal doktorandusszal kozosen dolgozni a teriileten, és miutdn 2018-ban az ELTE
Informatikai Kardn elindult az Autoném Rendszerinformatikus (MSc) képzés, a jar-
mire rogzitett érzékeldk feldolgozasaval még intenzivebben foglalkoztunk egyetemi
kollégaimmal egylitt. A kamerdk mellett 6nvezet6 jarmivek esetén a LiDAR lézeres
letapogatbeszkozok is nagyon hasznosak/népszeriiek. Azt tapasztaltuk, hogy kame-
rak és LiDAR-ok kozos kalibraciéjahoz a jelenlegi megoldasok nem elég pontosak,
ezért tobb 1j eljarast is javasoltunk. A munkdba bekapcsoldodott egy 1ij doktorandusz,
Téth Tekla is, igy ebbdl a teriiletbdl két tanitvanyom is doktori fokozatot szerzett:
Zoltan 2020-ban, Tekla 2024-ben.

A disszertacio felépitése. Ebben a dolgozatban kisérletet teszek arra, hogy az elmult
masfél évtized soran elért tudomdnyos eredményeimet 6sszefoglaljam. A[2] fejezet-
ben révid elméleti attekintést adok a tézisek megértéséhez sziikséges jelolésekrol és
torvényszertiségekrol. Ezen beliil a fejezetben a képalapt rekonstrukcids eljara-
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sok alapvet6 modszereit ismertetem.

Az elméleti attekintés utan kovetkezik az egyes téziscsoportok részletes ismerte-
tése. A 3| fejezet a lokalis affin transzformacidkkal kapcsolatos legfontosabb elmé-
leteket és az azokon beliil megfogalmazott Gjdonsagokat tartalmazza. A |4 fejezet
konkrét algoritmusokat ismertet, amelyek segitségével az affin transzformaciokat a
hiaromdimenzids latdsban alkalmazni lehet. Terjedelmileg és tijdonsag tartalméban is
ez a rész a legstliribb, hiszen a legtobb eredményt ezen a teriileten sikeriilt kozzéten-
nem.

Az 5| fejezet egy teljesen 1j témdval foglalkozik, azt mutatom be, hogyan sikertilt
a kotegelt behangolds algoritmust kiterjeszteni djabb problémaosztdlyokra. A rako-
vetkezd, [6] fejezet pedig azt ismerteti, milyen jszeri médszereket sikeriilt LIDAR-ok
és digitalis kamerak kiils6 paramétereinek meghatarozdsahoz kifejleszteni.

Végezetiil a[7| fejezetben foglalom 6ssze a doktori munkamat.

Kutatasi egyiittmiikodések. A kutatds a mai, modern vilagban a legtobbszor csa-
patmunka. Az egyes tézispontokndl igyekeztem a tdrszerzék szerepvallaldsat ponto-
san rogziteni. Els6sorban sajat doktoranduszaimmal dolgoztam, de helyenként MSc
és BSc hallgatdkkal is sikeriilt tudomanyosan értékesnek tekintheté mddszereket ki-
fejleszteni. Szerencsésnek mondhatom magamat abban az értelemben, hogy 2021-
ben az Eotvos Lorand Tudomdnyegyetemen sajat kutatécsoportot alapithattam, igy
sajat tanitvanyaim mdr egy 6nallé csoportban tevékenykedhetnek. Az egytittmiikodé-
sek elsésorban orszagon beliiliek voltak, bar az utébbi években kutatécsoportommal
igyeksziink kiilfoldi egyiittm(ikodések felé is nyitni, amely a publikdciés listAmban
egy-egy tarsszerzé képében is megmutatkozik. A tézisek megfogalmazasanal igye-
keztem az egytlittmiikodésekben a sajat szerepemet minél pontosabban leirni.
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2. Elméleti alapok

A szamitégépes latds az esetek tobbségében kozéppontos vetitést megvalosité kame-
rakat alkalmaz, ezen a kategdridn beliil is a leggyakrabban lyukkamerat szokas alkal-
mazni [62]. Ilyen leképz6 eszkozok esetén a vetités geometriai modellje egyszer(i:
a térbeli pontot 1até pixel helyét ugy kapjuk meg, hogy a térbeli pontot 0sszekotjiik
a kamera fokuszpontjaval, és igy kapunk egy vetitd egyenest. Ennek az egyenesnek
és a képsiknak a metszéspontja jeloli ki azt a pixelt, amelyen a térbeli pont vetiilete
latszik.

A digitalis kamerak szinte kivétel nélkiil kozéppontos vetitést valdsitanak meg,
de lehet6ség van sik helyett mds feliiletekre is vetiteni. Az érdekl6d6 Olvasék Geyer
és Daniilidis munkajaban [54] talalhatnak kivalé osszefoglalast az alternativ kame-
ramodellekre. Munkam sordn els6sorban lyukkameraval foglalkoztam, bar meroéle-
ges [164] és skaldazottan merdleges [175] vetitési mddszerekkel is értem el eredmé-
nyeket. Ezek a modellek is felfoghatéak a lyukkamera specidlis esetének, amikor a
fékusztavolsdgot végtelen hossztira megnyujtjuk.

Amennyiben a koordinata-rendszeriink a kamerahoz van rogzitve, a tengelyek
parhuzamosak a vizszintes és fliggoleges pixelirannyal, a harmadik tengely (optika
tengelynek nevezik) pedig merdéleges a képsikra. A vetitést az (1, dbra mutatja be,
a bal oldalon térbeli, a jobb oldalon sikbeli dbrazolassal. Ez utébbit ugy kell elkép-
zelni, hogy oldalrdl néziink a kamerdra, tehat az dbrara merdleges irdny megfelel a
vizszintes pixeliranynak.

A perspektiv kamerak paramétereit az alabbi fels6 kalibraciés matrixban szokas
abrazolni:

fu 0 Up
K=|0 f v |, (D
0 0 1

ahol f, és f, az optika fokusztavolsdganak és a szenzoron a (vizszintes és fiiggole-
ges) pixelméretnek a szorzata. Ezt a két paramétert a szakmdban fékusztavolsagnak
szokas nevezni, ebben az alakban a mértékegysége pixelben értendd, azaz a fékusz-
tav hosszat a szenzor pixeleinek méretéhez viszonyitva fejezziik ki. Ha a pixel alakja
négyzet, ami az esetek dont6 tobbségében igaz, akkor f, = f,. Az [ug wv,]" pixel-
pozicié az ugynevezett doféspont, amit geometriai megkozelitésben a képsik és az
optikai tengely metszéspontjaként kaphatunk meg. Ez a pont a perspektiva kozép-
pontja a képen. Specidlis esetek — példdul gumioptika (‘zoom’) alkalmazdsa esetén —

Image plane

1. abra. Perspektiv vetités dltaldnos nézetbdl (bal oldal) és oldalrdl (jobb oldal)
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az f, és f, skalazasi paraméterek ardnyosan valtozhatnak a felvételek kozott.

A hétkoznapokban nemperspektiv kamerdkat is szoktak haszndlni, de ezeket ki-
egyenesitéses [7| algoritmussal perspektivokka lehet alakitani [190, 149].

A képsikra vetités képletekkel igy hatarozhaté meg:

v ~K|Y | =| LY +uz | (2)
1 Z A

Az Osszefiiggésben a ~ (hulldm) operator a skalazas erejéig egyenléséget jelenti.
Ha a ~ b, az azt jelenti, hogy létezik olyan valds o szam, amelyre ca = b. A skdla
eltlintetésére az tigynevezett homogén osztas miiveletet lehet alkalmazni, mely sze-
rint az « értékét az utolsé koordinata reciproka adja. A fenti vetitési egyenletre igy az
alabbi két 6sszefiiggés adddik, ezek a végsb egyenletek, melyek a térbeli [X Y Z]T
pontot és a vetitett [u v’ pixelek kozotti kapesolatot leirjdk:

Ha a koordinata-rendszer "valahol a vildgban" van, egy R elforgatdsmatrix és egy
t eltoldsvektor segitségével el6bb a kamerdba kell transzformalni a pontokat f}|. Ekkor
irhatjuk, hogy

y X
v | ~K[R|t] g (3)
L 1

Jol lathatd, hogy ebben az esetben mar a jobb oldalon elhelyezkedé térbeli pontot
is homogén koordinatdval kell leirni, hogy a koordinata-rendszerek kozotti eltolast
is kompakt, matrixos alakban meg tudjuk adni. Fontos megjegyzés, hogy a "vilag-
ban" lev6 pontokat vildg koordinata-rendszerben adjuk meg, ha rendszeriink mar a
kamerdhoz van rogzitve, akkor kamera koordinata-rendszerrél beszéliink.

2.1. Visszavetités és feliiletmetszés

A[2] 6sszefliggés alapjan a visszavetitést is j6l meg tudjuk hatdrozni:

X U
Y | =aK | v |, 4)
Z 1

ahol « értéke tetszoOleges lehet, és a skdldzds erejéig egyenl6ség operatort valtja ki
a2l osszefiiggésben. Ez az egyenl6ség geometriailag tigy értelmezhetd, hogy az adott
pixelhez vetités el6tt végtelen sok pont tartozik, ezek a pontok alkotjdk a vetitéegye-
nest.

Amennyiben adott egy térbeli test, és arra lennénk kivancsiak, hogy melyik pontja
latszik a pixelen, akkor a feliiletet el kell metszeni a vetitosugarral. Erre a feladatra
egy példat sikmetszésen keresztiil mutatok meg.

2 Angolul : rektifik4cid.
3 Az R forgatds és a t eltolds segitségével az elképzelhetd osszes egybevdgdsagi transzformdciot
le lehet irni a térben, ha R ortonormalt, azaz R’R = L.

10
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Metszés sikkal.

A visszavetités alkalmazasdhoz egy egyszer(i példat tekintiink, ahol a feladat egy
adott pixelhez meghatarozni, hogy a sik melyik pontjat l1atja, ha tudjuk, hogy a sik a
legkozelebbi objektum. Ez a feladat a szamitégépes grafikdban [106,41]] a sugarvetés
(ray-casting), amely a sugdrkévetés (ray-tracing) alapproblémaéja [f|

Ha adott egy sik, amelyet n feliileti normalvektordval és p, pontjaval adunk meg,
egy p pont akkor van a sikon, ha az n” (p — py) = 0 implicit egyenlet teljestil. A
visszavetitett sugarnak €s a siknak a metszéspontjat egyszertien megkaphatjuk, ha a
vetitéegyenes kifejezését behelyettesitjiik a p pont helyére, a sik implicit egyenleté-
ben:

U
n" oK'l v ]| —po] =0 (5)
1

Ebbdl az osszefiiggésbdl a hidnyzdé o paraméter elemi miiveletek segitségével meg-
hatdrozhaté: ,
n
o= Po . (6)

nTK—l[u v l]T

A megkapott o paramétert a sugdr megadasdba (a4 egyenlet) visszahelyettesitve
megkapjuk a metszéspont helyét a térben.

A késébbiekben, a IV. téziscsoportban fog a kedves Olvaso a visszavetitéssel talal-
kozni, amikor azt mutatom meg, hogyan lehet gémbok konturjaibdl a gomb kozép-
pontjat meghatdrozni, ha a kamera paraméterei ismertek, azaz a kamera kalibralt.

2.2. Képalapu haromdimenzids rekonstrukcio

Ebben a fejezetben roviden 6sszefoglalom a két- és sokképes rekonstrukcio 1épéseit,
kiemelve a legfontosabb és leggyakrabban hasznalt fogalmakat és algoritmusokat.

2.2.1. Kétképes (sztered) rekonstrukcio

A sztereo6 rekonstrukcio problémadjat a |2, abran lathatjuk. Egy térbeli feliiletdarabka
X vektorral jellemzett pontjat levetitjiik a két kamerara. Kozéppontos vetitést alkal-
mazunk, a két kamera vetitési kozéppontjait, melyeket fékuszpontnak hivnak, C;-el
és Cy-vel jeloljiik. A vetités legegyszertibb modellje a sikra vetités, egy atlagos kame-
ra igen jo kozelitéssel megfelel ennek a modellnek. Ahogy azt fentebb mar leirtam, a
térbeli X pont képét tigy kapjuk meg, hogy 6sszekotjiik a pontot a fékuszpontokkal,
igy vetitésugarakat kapunk, és a két kamerasikon az elmetszett pixelek adjék a képen
a pont helyét.

A szamitégépes latas feladata algoritmikusan visszaallitani a térbeli X pont he-
lyét, ha a két képen ismerjiik a vetiileti pontokat. A rekonstrukcios folyamatokat az
alabbi 1épésekre szoktdk osztani: kamera kalibracid, epipolaris geometria becslése és
haromszogelés (triangulécio).

4Egy labjegyzetet érdemes annak a meggondoldsnak szdnni, miszerint a hdromdimenzids szdmi-
tégépes grafika és latas egymads inverz feladatai. Grafikdban a térbeli modellekbdl kell életszer(i
képeket elballitani, latasban a képekbdl probaljuk rekonstrudlni a térbeli informacidt, tobbek
kozott a modelleket.

11
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Kamera kalibracié. Amennyiben a kamerdnak a belsé paramétereit, azaz a fokusz-
tav(ok)at és a doféspontot ismerjiik, a rekonstrukcids egyenletek egyszertisodnek, és
az eredmények numerikusan is pontosabbak lesznek. Altaldban sakktabla segitségé-
vel [[190] be lehet az alkalmazott kamerakat el6zetesen kalibralni. Sakktablat azért
hasznalnak széleskoriien, mert szabalyos a mintdzata, és a sakktdblacellak alakjat
(élek, sarokpontok) nagyon pontosan meg lehet hatdrozni. Ha a belsé paraméterek
ismertek, a kamerdkat kalibrdltaknak nevezik.

R

2. abra. Sgztered ldtds alapproblémdja. A térbeli objektum X pontjdt a két képsikra
kozéppontosan vetitjiik. A kamerdkat (vetitést) a képsikok és a C,, Cy fokuszpontok
hatdrozzdk meg.

Epipolaris geometria becslése. Az epipoldris geometria a projektiv geometria kétké-
pes esete. Kalibralt kamerdk esetén egyszer(ibb a feladat, ebben az esetben az tigyne-
vezett 1ényegi (esszencidlis) matrix reprezentdlja az epipoldris geometridt. Ismeretlen
kameraparaméterek esetén csak az alapvetd (fundamentdlis) matrix meghatarozdsa
lehetséges |

Fundamentdlis matrix becslése két képpar kozott: két altalanos perspektiv kamera
kozott megadhatd egy 3 x 3-as matrix, amely a képek kozott levé geometria kapcso-
latot 4ltalanos esetben is képes leirni. Ezt a matrixot hivjak alapvet6é (fundamentalis)
matrixnak, és a szakirodalomban altaldban F-fel jelolik. A matrixnak ugyan kilenc
eleme van, de valdjaban hét paraméter segitségével leirhatd, mert két megkotést is
lehet tenni:

1. A matrix szinguldris, azaz a determindnsa zérus, ebbdl egy egyenletet lehet
felirni, tehat egy szabadsagfokot lehet meghatarozni.

2. Masrészt skdlazdsra invaridns a matrix, azaz ugyanazt a geometriai kapcsolatot
irja le, ha egyazon valds szdmmal szorozzuk meg az alapvet6 matrix minden
elemét. Ez a tény még egy szabadsdgfokon levon a problémdabdl.

Kalibralt kamerak esetén az alapveté matrixban 1évé ismeretlenek szamat tovabb
lehet csokkenteni, mivel csupdn a kamerdk kiils6 paraméterei hatdrozzdk meg azt.
Ebben az esetben mar lényegi matrixnak szokds nevezni. A forgatds — melyet az R
ortonormalt matrixszal szokds reprezentdlni — harom paraméterrel irhaté le, az el-
tolasvektor t = [t, ¢, t,]* tovabbi harommal, de képalapu térbeli latds esetén az
eltolds nagysdga nem rekonstrualhatd, csupan az irdnya, ezért csak két paraméter

> A magyar nyelvii szakirodalomban az idegen elnevezések fonetikus atirasat alkalmazzak (fun-
damentalis és esszencidlis matrixok), itt megkisérlem a magyar forditast is hasznalni (alapvetd
és lényegi matrixok).

12
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hatérozza meg az eltoldst. Igy 6sszesen 3 + 2 = 5 paramétert kell becsiilne, ebbé] a
kett6bol lehet a 1ényegi matrixot eldallitani az aldbbi médon:

E=[t], R, (7)

X

ahol [t], a t eltoldsvektorbdl készitett, bal oldali vektoridlis szorzdst reprezentdld
3 x 3-as matrix. Az F alapveté és E lényegi matrixokat kalibralt kamerdk esetén
konnyen 4t lehet szdmitani az E = KIFK, 6sszefliggéssel, melyben K; és K, az els6
és a masodik kamera bels6 paramétereit leird fels6 haromszog matrix, melyet az
osszefliggésben lathattunk el6szor.

Mind az alapvetd, mind a lényegi mdtrixok meghatdrozdsara a sztereé képparo-
kon pontmegfeleléseket hataroznak meg. Minden pontpar egy egyenletet ad, melyet
az alabbi alakokban lehet leirni:

p;Fp1 = pi K, "EK; 'p] = 0. (8)

A lényegi matrixhoz ot [121], az alapvet6é matrixhoz hét pontpdrra van sziikség, mi-
utan minden pontpar egy egyenletet ad. Praktikus okokbdl az alapveté matrix becslé-
sére a nyolcpontos algoritmus is igen népszert [60], még akkor is, ha eggyel kevesebb
pontbdl is meg lehetne hatdrozni a matrixot.

Haromszogelés (triangulacid)

Ha két képen ismerjiik az egymdasnak megfelel6 pontokat, a pont térbeli helyzete
kiszamithato. A két képen a pontok egy-egy vetitGegyenest hataroznak meg, az ere-
deti térbeli pont helye kozel lesz az egyeneshez. A feladathoz tartozé rajzot a[3] dbra
mutatja meg. Pirossal jeloltem a vetit6egyeneseket, ezekhez legkozelebbi pont adja a

becsiilt térbeli pont helyét.
//,,/,/ \\\\

3. abra. A trianguldcids probléma: a két képen p; és p, egymdsnak megfelelé pontok
meghatdroznak egy-egy vetitdegyenest. Idedlis esetben ezek metszéspontja adja a vizsgdlt
térbeli pont helyét. A zaj miatt a gyakorlatban az egyenesek kitéroek, ezért a térbeli pont
helyét becstilni kell.

Tobbféle eljaras létezik haromszogeléshez, van, amelyik algebrai hibat minima-
lizal [62], masik megoldas a vetitéegyenesekhez legkézelebbi pontot taldlja meg.
Létezik optimalis triangulacio [61] is kétképes esetre, amely attdl optimadlis, hogy a
képtérben minimalizalja a hibat, és a képek kozotti geometriai megkotést is rogziti,
melyet az alapvet6 mdtrix hatdroz meg.

2.2.2. Tobbképes rekonstrukcio

A sztered rekonstrukcié kiterjesztése sokképes rekonstrukciéra tobbféleképpen kép-
zelhet6 el. Lehetséges kétképes rekonstrukcidk osszeflizésével, ekkor az egyes sztered

13
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(rész)eredményeket a megfelel hasonlésagi transzformacié segitségével lehet egy-
masba eltolni és elforgatni. A trianguléciés feladat megolddsa tobbképes esetben is
lehetséges, optimdlis eljards — képtérben nézve a hibat — ismereteim szerint erre a
feladatra még nem késziilt el.

Megjegyezném, hogy haromképes projektiv geometriat a trifokalis tenzor [165]
tudja leirni, azonban ennek jelent6sége a gyakorlatban marginalis.

Akarmilyen modszerrel készitjiik is el a rekonstrukcios feladatot, a megoldds ak-
kor a leghatékonyabb, ha a képtérben minimalizdljuk a hibat. Az eljards sordn az
ismeretlen, behangoland6 paraméterek a hdaromdimenzids koordindtdk és a kame-
raknak a paraméterei. Ez utobbiak lehetnek belsé és kiils6 (igynevezett pdz) para-
méterek.

A hangolas dltaldban numerikus optimalizdlas segitségével torténik, a Levenberg-
Marquardt [96) [108] algoritmust szokas leggyakrabban alkalmazni a feladatra. Miu-
tan a probléma meglehetésen ritka, egy térbeli rekonstrudlt pont csak a hozza tartozé
képpozicidkat befolydsolja, a normalegyenletben — és magaban a Jakobi-matrixban is
—sok nulla érték van. Ezért a feladat kisebb részfeladatokra bonthaté. Ezt a specidlis,
3D rekonstrukciora kifejlesztett eljarast nevezik kotegelt behangoldsnak [[167].

Ezt a problémakort a harmadik tézispontban részletesebben is be fogom mutatni
az[5] fejezetben.

2.3. Affin transzformacidk a kétképes latasban

Molnar Jézsef és Csetverikov Dmitrij 2014-ben jelentette meg véleményem szerint
uttoré munkdjukat [113]], melyben 0sszekotik a lokalis affin transzformdacidkat és a
kétképes projektiv geometriat: megmutatjak, hogy ha egy térbeli sikfeliilet egy adott
pontjat két képre levetitjlik, akkor a vetitett pontok koriili lokdlis affin transzformacio
hogyan fiigg a térbeli pont helyétol, a kameraképtdl és a feliiletre meréleges normal-
vektortdl. Eredményiiket egyetlen altalanos Osszefiiggésbe lehet foglalni:

VI [n], VI, VIT, [n], VI
VIIZ' [n], VII} VIIL [n], VI |

[ @11 A12 1 9)

ag 2 ] N VIIL" [n] VIIL

ahol n az érintéfeliiletre merdleges tigynevezett normalvektor, A a lokalis affin
transzformacié 2 x 2-es linedris része, 11, és I, a vetit6 fiiggvények a képsikon viz-
szintes €s fliggbdleges iranyban. Az Osszefliggésben a fels6 index a képszamot jelenti,
VII pedig a vetitd fiiggvény térbeli koordinatdk szerinti gradiense, azaz egy harom-
dimenzids vektor. A geometria Osszefliggéseket a4l abran mutatom meg.

Magénak az Osszefliggésnek a levezetése az[Al fliggelékben olvashatd. Az eredeti
munka [[113] véleményem szerint Kicsit nehezen értheto, ezért a levezetést tjrairtuk,
és késébb publikaltuk [15] is.
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Surface

e /,haE

e 7.

oo >

4. abra. Az affin transzformdcid a két kép kozotti linedris transzformdcid. A térbeli
pont, a feliileti érintd n normdlvektora és a 11 vetitéfiiggvények hatdrozzdk meg.

A kapott formula nagy értéke, hogy barmilyen vetitéfiiggvény esetén miikodik,
nem korlatozdédik egyetlen kameratipusra sem. A fenti alapegyenlet tehat egy altala-
nos osszefliggést ad, az alkalmazott kameratipusok kozotti kiilonbség a 11 vetitéfiigg-
vényekben jelenik meg.
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3. I. téziscsoport: Uj tudomanyos eredmények affin meg-
feleltetések felhasznalasaval

Ahogyan mdr a bevezet6ben is emlitettem, a 2010-es évek elsé felétdl kezdtiink el
kollégdimmal affin transzformdcidk alkalmazaséaval foglalkozni. Affin transzformdci-
okat két kép kozott lehet értelmezni azdltal, hogy az egymasnak megfelel6 pontok
kornyezetét kiemeljiik, és a kornyezet pixelei kozotti alakvaltozast linearis transzfor-
macio segitségével kozelitjiik. Egy altaldnos linedris transzformaciét két kép kozott
az alabbi 6sszefiiggés segitségével formalizalhatjuk:

aip Q12 Ay Uy U2
P2—{a21 a22:|p1+|:a1,:|’ Pl—[vl}, P2—[U2}- (10)
Az affin transzformacio tehat 6sszekoti a p; és p. képkoordindtdkat. Az eltolas két
paramétere (a, és a,) jol elkiilonithet6 a maradék négy paramétertdl (a1, ai2, as; és
as). Ez utobbi négy paraméter egyiittesét hivjdk linedris paramétereknek, mert ezek-
kel kell szorozni a koordinatdkat, a masik két paramétert egyszertien hozza kell adni
az eredményhez. Az 5. abran lathatjuk, hogyan valtoztatja meg egy altalanos affin
transzformdcio a négyzetet, hogyan kapunk a segitségével paralelogrammadt eredmé-
nyiil.
Ahhoz, hogy jobban el tudjuk emberi fantdzidval képzelni, kategorizdlni érdemes
az affin transzformdcidkat:

eltolas,

kétdimenzioés (sikban) forgatas,

skalazas mindkét féirany mentén és

nyiras.

Ezeket a transzforméciokat figyelembe véve fel lehet bontani részekre az affin transz-
formacidt, ahogyan azt az [F, fiiggelékben részletesen leirom.
A dekompozicié utdn a formula igy alakul:

5. abra. Az affin transzformdcio hatdsa egy négyzetre. Az eredmény az eredeti négyzet
eltolt, forgatott, nagyitott és nyirt mdsa. Paralelogrammadt tudunk elédllitani a négyzet-
bél.
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| cosa —sina Sy 0 1 b n ay
P2= | gina  cosa 0 s, 01 |P a, |’
A forgatast tehat az « szog reprezentédlja, a vizszintes skalat s,, mig a fliggdlegeset
S,. A b valos paraméter a nyirasasért felel6s.
Az[F| fiiggelékben részletesebb leirast taldl a kedves Olvasé a felbontasrdl, illetve

arrdl, hogyan lehet a felbontdshoz a paramétereket meghatdrozni. Ezen kiviil még
egy alternativ, szingularis érték szerinti felbontast is tartalmaz ez a fiiggelék.

3.1. Szakirodalmi attekintés

A szamitogépes képfeldolgozas koriilbeliil 6tvenéves tudomédnyaga az informatika-
nak [57]. A kezdeti modszerek kameraképek feldolgozasdval foglalkoztak, de nagyon
hamar elmozdultak térbeli 1atds irdnyaba is, hiszen két képbdl mar térbeli informacid
is el6dllithato [101]. A 3D latasnak egyébként nem is annyira a képfeldolgozas, mint
inkabb a fotogrammetria [154] tekinthet6 els6 szamu elédjének, hiszen két mérési
pontbdl a foldmérék mar tobb, mint egy évszazada képesek kiszamitani a targyak
térbeli pozicidjat.

A jelenkorban, a korszer(i gépi latdsban alapvetéen kétféle megkozelitéssel dol-
goznak a szakemberek:

1. Jellegzetes pont alapu megolddsok. [62]]. A képeket jellegzetes pontokat [103]
21]] detektdlunk, majd ezeket egymdasnak megfeleltetjiik. Ezekb6l a megfelel-
tetett koordinatdkbol aztan ki lehet szdmitani el6szor a kamerdk egymashoz
képesti relativ elhelyezkedését, majd pedig a térbeli pozicojukat is.

2. Ldtds gépi tanulds segitségével [64), 143]] Betanitott hdlézatok képesek az egyes
részproblémdkat, vagy akdr a teljes rekonstrukcios folyamatot (ligynevezett
end-to-end tanulassal) eléallitani. Az elmult id6szak robbanasszert fejlodésé-
nek egyik oka a gépi tanulas elGretorése volt. A jarmiire szerelheté szenzorok,
azon beliil is a kameraképek hatékony feldolgozdsa manapsdg elképzelhetetlen
a mestersége intelligencia nélkiil. Azonban sokszor mar maga a mesterséges in-
telligencia a fejlédés gatja: ugyan joval 90%-os hatékonysag felett teljesit, de a
100%-o0s hatékonysag még mindig messze van.

A két megkozelitést egyesiteni is lehet, példaul mélyhdlo segitségével lehet jel-
legzetes pontokat detektdlni [39], majd képek kozott parositani [145], végezetiil a
megfeleltetett pontokbdl ki lehet a térbeli informaciét szamitani.

Ebben a doktori disszertacioban én az els6 megkozelitéssel foglalkozom, de 4j
megkozelitésben. A szakirodalomban a pontalapi megkozelitések mind a mai napig
szinte egyeduralkoddak [|62], azaz jellegzetes pontokat keresnek a képeken, és azo-
kat egymdsnak megfeleltetik, majd ezek alapjan elvégezhet6 a térbeli informdcidk
becslése.

Erdekesség, hogy a kiilonb6z6 képeken a jellegzetes pontokat igy keresik meg,
hogy a pontok koriil megvizsgdljdk a pixeleket, és azokbdl leirdkat készitenek. Tehat
nemcsak egy pixelt, hanem annak a kornyezetét is megvizsgaljak. Amennyiben pedig
egy ilyen kornyezetet tekintenek, a kornyezetek kozotti alakvaltozast is meg lehet
hatdrozni. Elsérendli kozelitésben ezt az alakvaltozast egy linearis transzformacioval
irhatjuk le, ezt nevezziik lokalis affin transzformdciénak.
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g X
/-
| ‘
C, G,
(a) Pontalapt rekonstrukcio. Az egy- (b) Affin transzformdciot figyelembe
mdsnak megfelel6 pontok meghatd- vevé rekonstrukcio. A feliileti normdl-
rozzdk a térveli pontot. vektor is kiszdmithato.

6. abra. A pontalapu és az affin transzformdcié alapt rekonstrukciok. (A kép szines
nyomtatdsban konnyebben értelmezhetd.)

A két megkozelités kozotti eltérést a[f] dbra szemlélteti. A bal oldalon abra)
azt lathatjuk, hogy a két képen adottak a p; és p, 0sszetartoz6 képpontok, mig a jobb
oldalon ((6b] abra) az affin transzformacidk is rendelkezésre dllnak. Ekkor lehet6ség
van kinyerni a térbeli X pozicion kiviil a feliiletre meréleges n normalvektort is.

Ahogyan azt kordbban, a |2 fejezetben roviden mdr bemutattam, ismert kamera
paraméterek és pdzok esetén haromszogeléssel a térbeli pont kiszdmithatd. Ezért a
klasszikusnak mondhaté pontalapt rekonstrukcids eljardsok esetén a kimenet térbeli
pontok sorozata, melyet roviden nevezhetiink pontfelh6nek is.

Affin rekonstrukcei6 esetén, ahogyan azt a szakaszban ismertettem Molnar Jo-
zsef és Csetverikov Dmitrij munkdja alapjan [113]], rendelkezésre 4ll egy altaldnos
Osszefliggés, amely 0sszekoti az affin transzformaciét a kamera paramétereivel, a ha-
romszogelt feliileti ponttal és a hozza tartozd feliileti normalvektorral. Rekonstrukcid
esetén ezért nemcsak térbeli pontokat, hanem hozzdjuk tartozé feliileti normdlvek-
torokat is kaphatunk, ezért az eredmény egy iranyitott pontfelhé lesz.

Irdnyitott pontfelhék feldolgozdsa érdekes és még napjainkban is intenziven ku-
tatott teriilet mind a szdmitogépes latdsban, mind a robotikdban, akdr még a geomet-
riai modellezésben is, szamos fontos valds alkalmazas profital az irdnyok nyujtotta
tobbletinformaciobdl.

Ilyen alkalmazasok lehetnek a 3D rekonstrukcio [5, (14, 165,150, (191}, 156, [137],
egyidej(i lokaliz4ci6 és feltérképezés (SLAM) [ [38, 144, [117], ahol a térbeli pontnor-
malisok nagyon hasznos informdcidkat szolgéltatnak a feliiletr6l. A képalapu vizudlis
lokalizacios megkozelitések [[105, [128] 146, [147] szintén profitdlhatnak az ismert fe-
lileti normalisokbdl [[173]. A széles korben hasznalt Poisson-rekonstrukcio [|81) [82]
mind a pontkoordinatdkat, mind azok orientacidjat képes felhaszndlni.

Az autoném jarmiivekhez az egyik fontos algoritmus a jarm{i mozgasanak megha-
tadrozdsa. Ha ez kameraképek segitségével torténik, a feladatot vizualis odometridnak
nevezziik [123] [124]. Ezek a modszerek szintén hasznosithatjak az affin transzfor-
maciokat, ahogy ezt a késObbiekben egy sajat algoritmuson keresztiil be is fogom
mutatni.

Az orientalt pontfelh$ birtokdban a geometriai modellek és az egyidejlileg tobb
modellt becslé6 mdédszerek nagymértékben egyszertisodnek [72] (11} [12]], mivel olyan

6 Angolul: Simultaneous Localization and Mapping (SLAM)
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algoritmusok készithet6ek, amelyek kevesebb adatpontot igényelnek, mint pontalapu
tarsaik [[151]]. Ezen tulmenden a normalisok a rekonstrudlt orientalt haromdimenzids
pontfelh6 numerikus finomitasaban is felhasznalhatok [161].

Magéat a normdlvektor-becslési problémat ismereteim szerint el6szor a sok évti-
zeddel ezel6tt bevezetett fotometrikus sztereé (Photometric Stereo — PS) segitségével
oldottdk meg [179, [180]. E mddszer legnagyobb hatrdnya, hogy csak olyan labora-
tériumokban hasznalhatd, ahol a fényviszonyok teljesen ellen6rzottek. Késébb, az
fejezetben egy konkrét algoritmust is be fogok mutatni. Hétkoznapi koriilmények
kozott is lehetséges egy képbdl a felszin normdlvektorait rekonstrudlni [177], ha tu-
dunk a feliiletre megkotéseket tenni, pl. a homogén szint és a feliiletek viszonylagos
simasdgat. Ezeket az eljardsokat "shape from shading"[| néven hivatkozzék meg. Az
alkalmazasok egy jelentds része a bolygdk felszinének rekonstrukciojaval foglalkozik,
hiszen ezekrodl a feliiletekrdl nem konnyt kiillonb6z6 nézéponti képeket késziteni.

Ismereteim szerint az affin transzformaciék alkalmazdsaval a sztered latasban el6-
szor Megyesi Zoltan és Csetverikov Dmitrij foglalkozott el6szor [[109]. Egy specidlis
esetet, az emberi szem miikodési modelljének is megfelel6 standard sztereé kame-
rabeadllitasra készitettek egy feliileti normalvektorbecsl6t. Ebben az esetben az affin
transzformacio két szabad paraméterrel leirhato, a specialis beallitas két paramétert
a haromdimenzids vilag tartalmatol fiiggetleniil egyértelmtien meghataroz.

Par évvel kés6bb, 2009-ben Kevin Koser doktori munkdjat [84] szintén az affin
transzformacioknak szentelte, a szerz6 tobb oldalrdl vizsgalta meg a kérdés, nemcsak
a normalvektorok becslésével foglalkozott, hanem a kamerdk kiilsé6 paramétereinek
meghatdrozasaval is, bar a munkajaban az altaldnos eseteket nem vizsgalta meg, 6 is
a lehetséges konfiguracioknak csak egy részhalmazaval foglalkozott.

A mi munkéssagunk el6tt még egy jelentésebb publikaciét emelnék ki: Jacob Ben-
tolila és Joseph M. Francos [23]] egy harmadfoku formulat vezetett le, melyek egy
affin transzformaciét és a fundamentalis matrixot k6zotti 0sszefiiggést irjak le.

Az elmult évtized soran az affin transzformaciokkal kapcsolatban kollégaimmal
kozosen hdarom torvényszeriiséget sikeriilt kidolgozni. Biiszkén irhatom, hogy mind-
hdarom magyar kutatékhoz kothetd, akikkel volt szerencsém egyiitt dolgozni.

Ezek a torvényszertiségek a kovetkezok:

1. Altaldnos 6sszefiiggés irhaté fel az affin transzformdacidk, a pontok képbeli és
térbeli elhelyezkedése, a projekcids matrix és a feliileti normdlvektor kozott.

2. Kapcsolat 1étezik az affin transzformacié és a homografia kozott. Az affin transz-
formdcio linedris részét meg lehet kapni egy kivdlasztott pontban, ha a homog-
rafidt meghatdrozoé vetit6 fliggvényt derivaljuk az els6 képen a hely koordina-
tdival.

3. Linearis 0sszefiiggés adhat6 a fundamentalis matrix és az affin transzformaciok
kozott. Bebizonyitottuk, hogy a két matrix kozott fel lehet egy kétdimenzids
egyenletet irni.

7 Magyar forditdsat nem ismerem, a javaslatom: alakzat drnyaldsbdl.
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3.2. Elso torvény: kapcsolat a normalvektor, a kameraparaméte-
rek és az affin transzformacidé kozott

Az els6 torvényszeriiség — melyet Molndr Jézsef és Csetverikov Dmitrij k6zos munka-
jukban publikaltak el6szér 2014-ben [113], — kimondja, hogy az affin paraméterek
meghatarozhatodak a vetitési fliggvények gradienseinek és a feliileti normalvektornak
segitségével. Mindezt az alabbi alakban lehet formadlisan leirni:

viiz' [n], VII, VIIL' [n], VI

11
VIE [ VIl VL [ vie |© 4V

ailz Az _ 1
az az | VL [n], VI

ahol a fels6 index jelzi a képszamot, illetve a II, vetit6fiiggvény a vizszintes, II,
pedig a fliggbleges koordinatdhoz tartozik. Ezeknek a vetitofiiggvénynek a gradien-
seit kell venni a térbeli koordinatak szerint, ezért ezek a gradiensek haromdimenzids
vektorok.

Noha a22] egyenlet elészor [113]]-ben jelent meg, a levezetést taldn kicsit kdzért-
het6bb alakra médositva mi is publikaltuk [15]. A fenti egyenletek altalanos kamera-
modellek esetén igazak, de munkankban [15] azt is megmutattuk, hogy a gyakorlat
szamara legfontosabb lyukkamera esetében hogyan konkretizdlédnak az 6sszefiiggé-
sek. Ilyenkor a vetitést a 3 x 4-es

Pll P12 P13 P14
P=| Pn Pp P3 Pu
P31 P32 P33 P34
projekcids (vetitd) matrixszal irjuk le, a vetit6 fliggvények pedig ekkor a kovetke-
z6képpen adhatdk meg:

1
IL, = B (PuX + PioY + Pi3Z + Pu4), (12)
1

s
ahol s = P31 X + PpY + Py3Z + Psy a projektiv mélység, amellyel a homogén
osztast el kell végezni.
A gradiensek ebben az esetben igy alakulnak:

II, = = (P X + PaoY + PosZ + Psy), (13)

P+ uPsy Py +vP5
VHHI% P12—|—UP32 ) VHU:% P22+UP32
P34+ uPs3 Pys +vPs3

A késébbiekben ezeket az egyenleteket haszndljuk normélvektorok becslésére.

Mivel ez a levezetés alapvetGen tarsszerzonk, Molnar Jozsef érdeme, az elsé tor-
vényt a tézisek kozott nem szerepeltettem, viszont a normalvektorbecslés alapjat ad-
ja, ezért itt mindenképpen szerettem volna megismertetni vele az Olvasét.

3.3. Masodik torvény: kapcsolat a homografia és az affin transz-
formacid kozott

Amennyiben sikfeliileteket vizsgalunk a kamerakkal, a sikfeliilet pontjai kozott az
ugynevezett homografiaval lehet leirni a kapcsolatot [62]]. Ebben az esetben, a ho-
mogén osztast leszamitva, linedris az 0sszefiiggés:
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U2 Hy Hyp His Uy
V2 ~ Hyy Hiyy Hog U1 . (14)
1 Hsy Hszy Hss 1

A kétdimenziés koordinatakat a homogén osztas elvégzésével fejezhetjiik ki:

_ Huywi+Higus+Hig
Uz = H3yui+Hszouz+Hss? (15)
vy = HziuitHoouo+Hog
2 H3zjui+Hszouz+Hss ®

Az affin paraméterek segitségével a transzformdciok elsérendl kozelitését lehet
leirni, magukat az affin paramétereket ezért a homografiabdl szarmaztatott transz-
formdciok parcidlis derivaltjaibdl lehet meghatdrozni. Péld4ul:

Hijui+Hious+H
e — 8}13&1}15&11{23 _ Hnp (H31uy + Hagug + Hsz) — Hsy (Hyyuy + Higus + Hig) .
1= = =
duy (Hs1uy + Hagus + ]‘-’33)2
Hy — Hszjus _ Hyy — Hszjug

(H31u1 + H32U2 + H33) S ’

ha bevezetjﬁk az s = H31u1 + H32U1 + H33 _]elOIéSt.
Hasonléan megkaphatjuk a masok harom linearis affin paramétert is. A négy pa-
raméter kompakt formaban igy irhato:

Oug __ Hi1—Hsjug Oug __ Hias—Hsouo

a11 = 3y, = y Q12 = = )

U1 s v s
__ Ova __ Hz1—H3zivo __ Ova __ Hyx—Hszovo (16)
(21 = Ouy s y 22 = vy s :

A masodik torvény azt mondja ki, hogy négy 1j egyenletet lehet felirni, amelyek
a homografiat és az affin paramétereket kotik 6ssze. A Osszefiiggésbol tovabbi
két egyenletet tudunk felirni a homogén osztds elvégzése utan. Az affin paraméterek
alkalmazdsdnak egyértelmiien nagy elénye, hogy ha magdt a homogrdfidt szeretnénk
kiszdmitani, akkor ujabb négy egyenlettel boviil a becsléshez alkalmazott rendszer a
kordbban alkalmazott ketto egyenlethez [62] képest.

Erdekesség, hogy aes sorszamu egyenletekben a 3 x 3-as homografia matrixnak
az Osszes eleme szerepel az 1j Osszefliggésben, kivéve a homografia matrixban az
utolsé oszlop els6 két elemét. Ezt az elemet kizardlag a osszefliggés figyelembe
vételével lehet megbecsiilni, tehat legaldbb egy Osszefliggést ismerni kell a pontok
helyére is, nem elég kizdrélag affin transzformdcidkat haszndlni.

Bar ezt a torvényt 2016-ban kozosen publikaltuk [16]], a levezetést tarsszerzonk,
Molnar Jozsef készitette, ezért ezt nem tekinthetem sajat eredményemnek. A ké-
s6bbiekben ebbdl a torvénybdl homografia-becslét készitettiink, amiben mar az én
hozzéjaruldsomat is jelentésnek itélem.

3.4. Harmadik torvény: kapcsolat az alapvet6/1ényegi matrixok és
az affin transzformacio kozott

Az affin transzformaciok alkalmazasdra egy harmadik torvényt is ki lehet mondani,
amely ezuttal a fundamentdlis matrixot koti 6ssze az affin transzformdacidkkal. A
dbra mutatja meg a levezetés alapelvét. Adott két kép, két kivalasztott ponttal és a
koriilottiik levé mintdk valtozasat meghatarozd lokalis affin transzformdcidval. A két
képen a kozéppontokat p;-el és p,-vel jeldljiik.
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A fundamentdlis matrix segitségével meghatdrozhatjuk az 1; és 1, epipoldris egye-
neseket. Az ezekre meréleges normalirdnyok skaldzdsanak felhasznnaldsaval fel lehet
irni az alabbi vektoros egyenletet:

ATF{IH:_FT{IH, (17)

ahol F és F a fundamentalis matrix "csonkitott" valtozata: az eredeti matrixbdl
az utolsé sort, illetve oszlopot letoroljiik. Ezaltal djabb egyenleteket kapunk, hiszen
a egyenlet kétdimenzids, tehat két egyenletre bonthat6 a dimenzidk szerint. Ha
csak a p; és p, pozicidkat hasznaljuk, a |8 Osszefiiggés alapjan egy egyenletiink van,
az affin paraméterek figyelembevételével tovabbi két egyenletet tudunk felirni.
Bizonyitas.

Amennyiben adott az F fundamentélis matrix, és a két képen ismerjiik az egymas-
nak megfelel6 p; és p, pontokat (homogén alakban), a megfelel6 epipolaris egyene-
sek implicit paramétereit konnyen ki lehet szdmolni: 1, = Fp; és 1; = FTp,, ahol
1; €s 1, is haromdimenzids vektorok. Az egyenesekre meréleges normdlok irdnyat a
vektorok elsé két koordindtaja adja meg. A két koordindtdra itt a 1; és a 1, jeloléseket
alkalmazzuk.

A merdblegesek iranyvektorait illik egységvektorként kezelni. A két egységhosszii-
sagu normadl az aldbbi alakban kaphaté meg:

i3

;
n = —== , (18)
' VI gr| P2
1
L 4112
pl B
ny= - L1 -1 (19)
" AR
1
2

A hulldmijeles F és kalapos F csonkolt matrixokat a fundamentalis matrix két fels6
soranak (hullam), illetve két bal oldali oszlopanak(kalap) megtartasaval kapjuk meg.

7. abra. Az affin transzgformdcio az epipoldris egyenesekre merdleges irdnyt képes
transzgformdlni. A képen a d/e ardny mutatja meg a skdldzdst a merdleges irdnyok-
ban.
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A p; és a p; pontok az 1; és 1, egyenesekre illeszkednek, ezért igaz, hogy 11 p; = 0
és 17'py = 0.

Hogyha egy masik q; = p;+e¢en; pontot is vesziink az els6 képen, ahol n, a fentebb
kiszamitott normdlvektora az 1; egyenesnek, akkor a megfelel6 epipolaris egyenest
igy kaphatjuk meg, homogén koordindtdkat alkalmazva:

e[ o 5]

1 1 0
A d tavolsagot az eredeti p, pont és a most megkapott I, egyenes kozott ki tudjuk
fejezni:
b T
2
Bk
d=—=—

VL1

ahol 172 vektor az 1, epipoléris egyenes elsé két koordinatdjat tartalmazza. Tehat

(7))

azaz balrdl az F fundamentalis matrix helyett csak annak az els6 két sorat tartalmazd
F matrixszal kell a pontot szorozni.
A normalé osztotényezot az alabbi alakba irhatjuk:

i =[e ([ ][5 ])],

Elemi atalakitdsokat végezve a d tavolsag alakjat médosithatjuk:

JEEE

Az els6 tag a szamlaléban azért esett ki, mivel p, az 1, egyenesen van, tehat

p ‘ P
2 1|
MR
T
|:p12:| Fn1
d=c¢
p
1

(%))
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A merdleges irdnyok megvaltozasat a d és e tdvolsdgok ardnyaval irhatjuk le. Ha a
modositott pontot végteleniil kozel vissziik az egyeneshez, akkor irhatjuk az aranyra,

hogy
T T
|: 1:12 :| Fnl |: 2 :| Fl’ll

SR RN

Az n; normalvektorra a[l18| Osszefiiggést behelyettesitve ezt a formulat kapjuk:

o)

2

ary )
a as e
)L el L
ol 0 R | A

o7 | P2 | P1 | P1
L L I D]
Ha egy affin transzformacié az egyenesek irdnyait jol transzformalja, akkor az egye-
nesekre mer6leges irdnyra igaz [169], hogy A’n, = snj, ahol az s skdla egy pozitiv
valds szam. Ez a skdla kikiiszobolhet6, ha a normalvektorokbdl egységvektort készi-

tlink. Ekkor a [20| egyenletbdl a skdlat behelyettesitve, és egységvektorokat készitve a
normadlvektorokbdl igaz lesz, hogy
nr | P2 T | P2
FLr L ]

i
Lo FLEIL T

A nevezdbben és szamlaloban is jelen levé tagokkal egyszertisitve adddik a végso
formula:

2 2 2

2

2 2 2

ATF{IT}:iFT{pf] @21

Itt az el6jel minddssze azért bizonytalan, mert nem tudjuk, hogy a normalvektor
az egyenes melyik oldaldra mutat. A gyakorlati kamera konfiguraciékban ez az elGjel
negativ.

0

Gyakorlati alkalmazds esetén fontos tény, hogy a fundamentdlis métrixnak az
Osszes eleme szerepel az 4j O0sszefiiggésben, kivéve a jobb alsd, azaz (3,3)-as index(
elemet. Azt az elemet a |8 egyenletbdl lehet megkapni., tehat sziikség van a pontok
helyére is, nem elég csupan a linedris részét hasznalni az affin transzformacionak.
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3.5. Osszefoglalas

Ebben a fejezetben megmutattam azt a harom torvényt, amelyek a lokalis affin transz-
formdcidkat a kétképes (sztereod) latassal osszekotik. A kovetkezé fejezetben ezekre
a torvényszerliségre alapozott algoritmusokat fogok bemutatni.

— Az els6 torvény az affin transzformadcié linearis részére ad egy algebrai ala-
kot, amely a feliileti normalvektorokbdl és a vetitési egyenletek térbeli pozicid
szerinti gradienseibdl szamitja ki a transzformaciot. Az altalanos formula tet-
szOleges vetitési modellre mkodik.

— A masodik torvény feltételezi, hogy egy sikfeliiletrdl két képet készitiink, és
négy egyenletet ad a torvény, amelynek segitségével az affin transzformacié
linedris részét ki lehet szamitani a homografia ismeretében. A homogréfia ele-
meinek segitségével megmutattam azokat a tortkifejezéseket, amelyek a négy
linedris affin paramétert meghatdrozzdk. A homografia kilenc elemébdl hét sze-
repel ezekben a tortekben.

— A harmadik térvény a fundamentdlis matrix és az affin transzforméci6 kozotti
kapcsolatra ad egy kétdimenzids egyenletet. A formulat az epipoldris egyene-
sek kozotti tavolsagok alapjan vezettem le. Az 6sszefiiggésben a fundamentalis
matrix kilenc elemébdl nyolc szerepel.

Ismereteim szerint ezt a harom torvényszer(iséget én foglaltam 6ssze el6szor, errdl
"Tutorial" eléaddst tartottam a CVPR2022 [f] és a 3DV2022 konferencidkon. A torvé-
nyek Osszefoglalasat ezért tudomanyos eredménynek tekintem, ebb6l mondom ki az
els6 tézist. A harom torvény koziil azonban csak az utolsét tekintem sajat eredmé-
nyemnek, ennek alapjan fogalmazom meg a masodik tézisemet.

I.1. tézis. Affin transzformacidk torvényészeriiségei[18, 34, 19].

Kutatomunkdank és a minket megel6z6 szakemberek munkassaga alapjan harom
torvényben fogalmaztam meg az affin transzformdcidkkal kapcsolatos 0sszefiiggése-
ket.

1. Az elsé torvény a feliileti normélvektor, a kameraparaméterek, a vetitési fligg-
vény és a vetiileti kozéppontok kozotti sszefiiggést irja le:

VI [n], VI, VI [n], VI
VI [n], VI, VIIL [n], VI |

(22)

[ air Q12 ] _ 1

a1 A2 VLY [n], VIIL
ahol a gradiens operdtor (V) jeloli a vetitési fliggvény gradiensét a térbeli koor-
din4ta szerin’} n pedig a feliileti norméalvektor. A kapott formula véleményem
szerinti rendkiviil nagy értéke, hogy barmilyen vetit6fiiggvény esetén miikodik,
nem korlatozddik egyetlen kameratipusra sem. A fenti alapegyenlet tehat egy

altalanos osszefiiggést ad, az alkalmazott kameratipusok kozotti kiillonbség a I1
vetitofiiggvényekben jelenik meg.

8 https://cvpr22-affine-tutorial.com/ oldalon elérheté a tutorial, a mdsfél 6ras eléaddsom cime
’Affine Correspondences in Stereo Vision’.
? Az alsé index a vizszintes/fiigg6leges irdnyt, a felsé index a kép szdmat jeléli.
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2. A méasodik térvény megmutatja, hogy milyen 0sszefliggés képezhet6 lyukkame-
ra esetén a H homografia és a két képen egymdsnak megfelel6 [u; vi]7 és
[uy  vo]" pixelkoordindtdk kozott, ha a lokalis feliilet egy sikr6l szdrmazik. A
parcidlis derivaltak alapjan 6sszesen négy osszefliggést lehet felirni:

Ouz __ Hiy1—H3zjuo __ Ouy __ His—H3zouo

a11 = 3.5 — y 12 = = )

U1 S v S
__ Ovy __ Ho1—H3zjvp __ Ova __ Hyx—Hszovo (23)
a1 = Ou; s y Q22 = vy s :

3. A harmadik torvény a kévetkezo, 1.2. altézisben megfogalmazott Osszefiiggés a
fundamentalis (alapvet6) matrix és a lokalis affin transzformacié elemei k6zott.

I.2. tézis. Linearis kapcsolat az epipolaris geometria és az affin transzformaciok
kozott [18, 34, 19].

Amennyiben adott egy szintérrdl két, lyukkameraval felvett kép, és a két kép ko-
zott az F fundamentdlis matrix teremt kapcsolatot, akkor az affin transzformdcié
és a fundamentalis matrix kozott az alabb vektoros (kétdimenzids) egyenletet lehet
megadni:

ATF{IT]::_FT{ﬁ?}, (24)
ahol F és F a fundamentalis matrix "csonkitott" valtozatai, melyeket tigy kapunk,
hogy az eredeti F matrixbdl az utolso sort, illetve az utolsé oszlopot toroljik. p; és
p2 a két képen az egymdsnak megfelel6 pontok homogén koordinatdkkal megadva,
ezen pontok koriil értelmezziik az A affin transzformaciét.

Erdekesség, hogy a harmadik térvényt 2016-ban publikaltuk [34], de a Ossze-
fiiggésben a két oldal kozotti aranyrol még nem tudtuk, hogy minusz egy, ezt a tényt
egy évvel késobb, 2017-ben sikeriilt bebizonyitani [19]. Ezt a bizonyitast teljes egé-
szében magaménak érzem, azzal a megjegyzéssel, hogy az egyszertsitett alak dok-
toranduszom, Barath Daniel sejtése volt, de a bizonyitast nekem sikertiilt megalkotni
elGszor.

26



haj der 274 24

4. II. Téziscsoport: algoritmusok lokalis affin tanszfor-
macio felhasznalasahoz

Az el6z6 fejezetben az affin transzformaciéval kapcsolatosan harom térvényszertisé-
get fogalmaztam meg. Ebben a fejezetben ezekre a torvényekre épitett algoritmuso-
kat mutatok be, melyek a gemetria alapu szamitégépes latas alapproblémadira nyuj-
tanak egy-egy megoldast.

4.1. Optimalis normadlvektorbecslés

Az els6 torvény kimondja, hogy az affin paraméterek meghatdrozhatdak a feliile-
ti normdlvektor és a vetitofiiggvény gradienseinek ismeretében. A gondolatmenetet
meg is lehet forditani: ha ismert a kamera a kiils6 és a belsé paramétereivel egye-
temben, akkor az affin transzformdciék meghatdrozzdk a feliileti normalvektort. A
feladat dbrdzoldsat a (8] 4brdn lehet megtekinteni.

Az elsé torvényszerliség formula) alapjan az affin transzformdcidk értéké-
re négy egyenletiink van. Ezeknek felhasznaldsdval legkisebb négyzetes értelemben
meghatdrozhat6 egy hibafiiggvény, amelynek optimalizalasara javaslatot tettiink. A
feladat matematikai alakja az aldbbi:

2

2. /nTw;; 2
n = arg, min Z Z ( 7 2 (Zij) ) (25)
n’w.

i=1 j=1

ahol

Wi = (VHi X VH%), Wig = (VH% X VH,}I),
Wo1 = (VH%} X VH%), Woo = (VH% X VHi), (26)
w. = (VIIL x VII).

Konnyt beldtni, hogy ennek a négyzetes hibafiiggvénynek a minimuma nem fiigg
a haromdimenzids normalvektor irdnyatdl, csak annak nagysdgatdl. Ezért a normadl-
vektor becslése valéjaban egy kétparaméteres probléma.

8. abra. Az affin transzformdcio esetén a pirossal jelzett feliileti normdlvektor meghatd-
roghatd, amennyiben a kamera kalibrdlt, azaz ismerjiik a vetitofiiggvényt.
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A két paraméter szerinti derivdltak gorbéket hatdroznak meg a sikon, ha a két
paramétert tekintjiik a kétdimenzids tengelyeknek. A megoldds pedig a gorbék met-
széspontjaiban van.

El6szor megmutattuk, hogy sikban kvadratikus gorbék metszéspontjat kell keres-
ni, melyek egy negyedfoku polinom gyokén keresztiil szamithatéak [15] [9]. Kés6bb
azt is bebizonyitottuk, hogy a masodfoku gorbék specidlisak, ezért elég egy harmad-
foka polinom gyokeit szamolni [110], azaz 1ényegesen gyorsabban megkaphaté az
eredmény. 2023-ban Léczi Lajos kollégank kozremtikodésével sikeriilt még egysze-
riibb megoldast adni az optimalis norméalvektorbecslésre, két els6fokt polinom ha-
nyadosaként [56].

4.2. Kamera kalibracio

Az elsé affin transzformacidkra vonatkozé torvény, amelyet a Osszefliggés ir le,
azt is kimondja, hogy a vetit6 fliggvény gradiensei és a normdlvektorok hogyan fligg-
nek 6ssze. Miutdn a gradiens a kameraparaméterektdl fiigg, az affin transzformaci-
ok ismerete esetén egyenleteket tudunk felirni a paraméterekre. 2016-os munkdank-
ban [42] megmutattuk Eichhardt Ivan (akkor még) doktorandusz kolléga kozrem1i-
kodésével '] hogyan lehet ismert normdlvektorok segitségével a kameraparaméterek
becslését finomitani. Ennek az eredménynek inkdbb elméleti jelentésége van, elsé-
sorban a III. tételcsoportban ismertetett kotegelt behangoldst haszndlé numerikus
finomitdsndl haszndltuk a kapott 0sszefiiggéseket.

Azért kevésbé jelent6s gyakorlati szempontbdl ez a tézis, mert a feliileti normal-
vektorok csak jol meghatdrozhatd kalibrdciés objektumok esetén ismertek, szaba-
dabb formaju feliiletek rekonstrukcidjakor ki kell szdmitani, de ehhez a szamitdshoz
mar szilikség van a kamera paraméterekre.

Az els6 torvénybdl ismert Osszefiiggés:

aix a2 | 1 VH% [”]x VHi ‘ VH}J [n]x VH?L
ast as | VIIL[n] VI | VIIZ[n], VII | VII} [n] VIIZ |
A jobb oldalon a kiemelt skalar nevezo6jével beszorozhatjuk az egyenletet, és mivel
a’[n|,b = n” (b x a), irhatjuk, hogy

T 1 2 T 2 1
(mﬁhhvm)ym‘m}_[“<w%XVM)H<meVEJ}

nT (VII! x VII?) ‘ nT (VII2 x VII.)

Q21 Q22

A bal oldalon a métrix elemeire bevezethetjiik a m;; = a;; (VIL} [n], VII}) jelolést.
A jobb oldalon pedig a vektorialis szorzast matrixos alakra mddosithatjuk, igy igaz
lesz, hogy

my1 mip | [ o [VIL], VII2 | —n” [VIL!] VII2
my Mgy | | n' [VIL], VI | —n” [VII}], VIIZ |-

Ez pedig négy egyenletet jelent:

my; =0’ [VIL}], VII2, miy = —n' [VII}], VII2,
Mo = IIT [VHHX VH%, Tos = —HT [VH%L]X VH?}

101v4nnal egy kutatécsoportban dolgoztunk mar akkoriban is, mindketténk doktori munkdjanak
témavezetdje Csetverikov Dmitrij volt.
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A gradiensek:
P11+UP31 P11+UP31
VI, =-| Po+uPs | — sVIL, = | P+ uPs | =p1 + ups,
P13+ uPs3 Pi3 + uPs3

ahol a p; a P madtrix i-dik oszlopdt jeloli. Teljesen hasonldan:

P21+UP31 P21+UP31
VII, == | Pu+vPsy | = sVII,= | Pa+0vPsy | =po+ vPps.
N Pys + v P33 Py3 + v P33

Az 6sszefliggésekben s = p2'X, ahol a hulldm operétor azt jelenti, hogy a P mét-
rixnak a harmadik sorat (vektort) kell venni. Az elsé kamerdra az s' projektiv mélység
ismert, hiszen minden adott, de a masodik kameranal az is ismeretlennek tekintheto.

Tehat behelyettesitve és linearizdlva az alabbi négy egyenletet kapjuk:

m1152f)§TX = nT [VH'zl)]x (IA)% + UQIS%) )

miosBTX = T (VIL], (b} + u'pf). -
m213215§TX = n’ [VH}J]X (13% + UQIA)g) )
maas’p3’ X = —n' [VIL], (p3 +v*P3).

Ez pedig egy homogén linedris egyenletrendszer a mésodik kép P? projekcios

matrixanak az elemeire nézve, ahogyan az el is varhat6. Fontos megjegyzés, hogy a
projekcios matrixnak négy oszlopa van 0sszesen, ezek koziil a negyedik nem szerepel
az affin 6sszefliggésekben, azt az oszlopot a vetiiletek koordindtdinak a segitségével
lehet meghatarozni.
Minimadlis eset. A projektiv matrixnak igy 0sszesen kilenc paraméterét lehet megbe-
cslilni. Két affin transzformdciébdl a formuldk alapjan nyolc egyenletet tudunk
felirni, ha ezekhez még a pontok helyei is hozzajonnek, azok tovabb 2 + 2 egyenletet
adnak, tehat 6sszesen 12 egyenletiink van a projekcids matrix 11 szabad paraméteré-
re.

A korabbi munkankban [42], amelyben az eredeti mdédszert ismertettiik, kétféle
algoritmust javasoltunk:

1. CLOSED. A egyenleteknek megfeleléen a homogén linedris egyenletrend-
szer sajatérték-feladatként megoldhatd, ahogyan azt a Bl fliggelékben megmu-
tatom.

2. ALTER. A projektiv mélység minden egyes térbeli pontra ismeretlenként beve-
zethetjiik: s> = p2/X. Ekkor a egyenlet bal oldalan a projektiv mélység
szerepel ismeretlenként, a jobb oldalon pedig a kamera paraméterei. Kézenfek-
v6é megoldas, hogy vdlasszuk szét a projekcids matrix elemeit és a mélységeket,
és felvaltva optimalizaljuk, mert két linedris problémara esik szét. A B, fiigge-
lékben mutatom meg, hogyan lehet linedris tulhatarozott rendszereket megol-
dani. Az iterdcid elején kezdeti értéket kell bedllitani, amit a DLT algoritmus
szolgaltat kizarélag pontmegfelelések segitségével.

A fenti eljarasoknak hatrdnya, hogy algebrai hibdt minimalizalnak, nem geometri-
ait, annak érdekében, hogy a probléma linedris maradjon. Ezért numerikus eljarasok
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alkalmazasdra van sziikség a geometriai hiba csokkentésére. Ezzel szintén foglalkoz-
tunk kollégammal, de a hely szlikossége miatt a részleteket itt nem tudom kozolni,
2016-os munkankat [42] elolvasva tdjékozdodhat az Olvasd.

Szintetikus tesztek.

A szintetikus tesztek sordn kiilonb6zé normalvektorokat generaltunk, amelyek
egyértelmiien meghatdrozzdk a térbeli elhelyezkedéssel egyiitt az affin paraméterek-
kel. El6szor egy sztered képpdrt generdltunk, a megfelel6 projekciés matrixokat vé-
letlenszer(ien allitottuk el6. Ezutan 3D objektumokat is generaltunk, melynek feliileti
pontjait igyekeztiink nagyjabol egyenletesen mintavételezni. Kétféle tesztobjektum-
mal dolgoztunk:

1. Gomb:A szintetikus gomb az alapértelmezett normalisokkal egyiitt a [9] 4bra
bal oldali dbrdjan lathatd. A vizsgalt mddszerek bemenetéhez 72 kiilonb6zé
felszini pontot mintavételeztiik. A normdlvektor a gomb alakjabdl trividlisan
kiszamithato.

2. Kocka: A szintetikus kocka a [9] dbra jobb oldali képén lathaté. A kocka min-
den oldalat egyenletesen mintavételeztiik: oldalanként 7 x 7 = 49 mintavételt
vettlink figyelembe. Ezért minden egyes futtatdsndl 49 - 6 = 294 virtudlis helyet
vettiink figyelembe.

A sztered képek kozotti affin paramétereket a kovetkez6képpen szamoltuk ki: (1)
A gomb/doboz érint6 sikjat a modell alapjan meghatdroztuk, ezutan (2) a két kép-
re vetitettiik a kamera paramétereinek segitségével. (3) A vetitésbol kiszamoltuk az
érintosikhoz tartozé homografiat. (4) Az affin transzformacio az elsérendti kozelitése
a homografidnak a megadott adott helyeken. (5) Végiil a pontok vetiileteihez és az
affin transzformaciékhoz is zajt adunk.

Harom modszert hasonlitottunk 6ssze: a (normalizalt) DLT algoritmust [62]], a
javasolt iterativ mddszert (ALTER) és a zdrt alaki megoldas alapjan szdmitott elja-
rast (CLOSED). A kalibralas min6sége a becsiilt vetiileti matrix Frobenius-normaja
alapjan szamitjuk ki az alapigazsaghoz viszonyitva. (Megjegyzendd, hogy csak a bal
oldali 3 x 3 almatrixot vessziik figyelembe, és a matrixokat ugyanugy normalizaljuk.)
Minden egyes tesztesetet 20 alkalommal megismételtiink. Az dbrdkon majd a hibak
atlaga és medidnja lathato.

A[10] &bran lathaté teszteredmények egyértelmtien azt mutatjék, hogy a normal-
vektorokat figyelembe vevo kalibraciés algoritmusok (ALTER és CLOSED) jelent6sen
feliilmuljak a klasszikus DLT-mddszert. Ez mind a gombre, mind a kockara érvényes.
A hibdk atlagdnak és medidnjanak a gorbéje nagyon hasonld, ahogyan az varhat? is.
A grafikonok azt is szemléltetik, hogy az ALTER és a CLOSED mddszerek mindsége
megkozelitleg azonos. Ez a varhaté viselkedés, mivel a mddszerek ugyanazokat a
koltségfiiggvényeket prébaljak minimalizalni, csak az eredményvektorok normaliza-
lasa kiilonbozik.

A sziikséges szamitdsi id6t a abran lathatja az Olvasd. Egyértelmd, hogy a
CLOSED algoritmus hasznélata javasolt, mivel az 1ényegesen gyorsabb, mint az itera-
tiv algoritmus. A DLT algoritmus ugyanakkor mindkét sajat modszernél gyorsabb.
Ez nem meglepd, hiszen az egyiitthatomatrix jéval kevesebb elemet tartalmaz, a
sajatérték-felbontds elvégzése pedig gyorsabb kisebb matrixok esetén.

Valds tesztek.
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9. abra. Szintetikus gomb (bal) és kocka (jobb) feliileti normdlvektorokkal.
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error in proj. matrix (Frobenius norm)
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10. abra. A kamera parameéter becslések eredménye szimuldlt tesztadatokon . A javasolt
modszerek lényegesen gyorsabbak az alapnak tekintett DLT mddszerhez képest. Bal ol-
dal: dtlagos hiba. Jobb oldal: a hibdk medidnja. Felsé sor: Eredmények gombfeliileleten.
Alul: Eredmények a kocka oldalain.

Time demand

time (ms)

——ALTER
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11. abra. A mddszerek iddigénye. A javasolt CLOSED algoritmus lényeges gyorsabb az
ALTER médszernél, hiszen nem tartalmaz iterdciot. Viszont a javasolt algoritmusok las-
sabbak a DLT-nél: kompromisszumot kel kétni a szdmitdsi id0 és a mindség kozott.
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A javasolt kalibracids mddszert sikeresen alkalmaztuk egy forgétanyér-alapt projektor-

kamera rendszer kalibrdldsara. A berendezés képe a abra als6 képén lathaté.

A javasolt kalibracidos modszer djdonsaga, hogy a teljes eljdrdshoz csak egy kame-
rdra és egy mdsik vetitett képre van sziikség, és mindkett6hoz a kamera és a kivetito
tetszoleges perspektivikus vetiileteket valdsit meg. A kamera el6tt egy kalibraciés kocka
van, amelyet a projektor megvildgit, ahogy azt a dbra bal felsé képén lathatjuk.
Kamera kalibrdcid. A kocka sarkait manudlisan hataroztuk meg a kameraképeken.
A kocka méretét ismerjiik, ezért a vetitési matrixot a DLT-algoritmus [62] segitségé-
vel meg tudtuk becsiilni. Ezutan a projekcids matrixot felbontottuk bels6 és kiils6
paraméterekre. A kiils6 paraméterek az elforgatdst és eltolast reprezentaljak.
Projektor kalibrdcid. A bevezetett mddszer szempontjabdl a {6 Gjitds a vetité paramé-
tereinek a megbecslése. A projektor vetitési modellje hagyomanyos lyukkameranak
felel meg, az egyetlen kiilonbség, hogy a kamera a hdromdimenzids vildgot vetiti a
képsikra, a projektor pedig a képet vetiti ki a térbeli vildgba. De magat a kivetitést
ugyanugy egy 3 x 4-es vetitd (projektiv) matrix hatdrozza meg.

A javasolt algoritmus képes megbecsiilni a bal oldali 3 x 3-mas részét ennek a
vetité matrixnak. A mddszer végrehajtdsahoz az affin transzformdcidkat kell ismerni
a kivetitett minta egyes pontjai és a kamerakép megfelel6 része kozott. A kamera és
a vetit6 perspektivikus jellege miatt a kivetitett minta és a kép kozott sikhomografia
irja le a pontos kapcsolatot. Az affin paraméterek a homogréfia elsé derivaltjaibdl
szarmaznak, ahogy azt az el6z6 fejezetben, a masodik torvény leirdsanal megmutat-
tam.
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12. abra. A javasolt algoritmusunk pontossdgdt a strukturdlt fényszkennertink kalibrd-
ldsdval ellenorizgtiik. Balra: Specidlis sakktdblamintdval megvildgitott kalibrdcids koc-
ka. Kozépen: A megvildgitdshoz haszndlt minta. Jobbra: A teljes berendezés (kame-
ra-+projektor) a kalibrdciés kockdval.

Ha a kocka hét sarka ismert a kamerakalibraciébol, akkor a harom lathaté sik is
ismert a szabdlyos, egymdasra mer6leges normalvektorokkal. Ekkor a normalvektorok
és a megfelel6 affin transzformdciok a javasolt kalibracios egyenletekbe behelyette-
sithet6ek.

A kivetitett minta kdédokat tartalmaz, amint az a abra jobb felsé abrajan lat-
haté. Ezekre azért volt sziikség, mert a sakktdbla sarkait kézzel detektaltuk, és a
projektor-kamera kozotti megfeleltetést a minta segitségével végeztiik el.

A CLOSED algoritmus megbecsiili a vetitd vetitési matrixdt. A bels6 paraméte-
rek QR-dekompoziciéval [125] nyerhetéek ki. A kapott paraméterek a kovetkezbek:
vizszintes és fliggbleges fokusztavolsag: f, = 1136, és f, = 1068; nyirds: s = 59;
doféspont (egészre kerekitve) : [478,758]7.

Ezek a paraméterek redlisak, mivel a vizszintes és fiiggéleges fékusztavolsagok
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megkozelitéleg azonosak, és a ferdeség lényegesen kisebb, mint a fékusztavolsagok.
A projektor felbontédsa 800 x 600, ezért a doféspont is elfogadhatd, mivel a vizszintes
koordinata a szélesség feléhez kozel, a fiiggbleges pedig az alsé hatar kozelében van.

A projektort szabvanyos sakktdbla-alapu algoritmus [[190] segitségével is kalib-
raltuk, hogy ellendrizziik az eredmény pontossagat. Az eljards egy végs6 numerikus
finomitast is tartalmaz. A kalibrdldshoz tobbszor tiz képet haszndltunk, ezért az ered-
ménynek 1ényegesen pontosabbnak kell lennie, mint az el6z6 esetben, ahol egyetlen
egy kép szolgaltatott adatot. A sakktablas kalibracié eredményként a becsiilt dofés-
pont [467,764] volt, mig a vizszintes és fiigg6leges fékusztavolsagokra 1454, illetve
1461 jott ki. A kapott eredmények nagyon kozel dllnak egymdshoz.

A kalibralt elrendezés a abran lathat6. A két gula a kamerat (balra) és a
projektort (jobbra) szimbolizalja. A gula csicspontja a fékuszpont, a négyoldalu lapja
pedig az érzékel6 (szenzor) feliiletét dbrazolja. A kalibraciés kocka a kép kozepén
talalhato.

13. abra. Rekonstrudlt (kalibrdlt) kamera-projektor elrendezés két nézépontbol. A ka-
merdt és a projektort guldk szemléltetik.

4.3. Homografia becslése affin transzformaciok felhasznalasaval
4.3.1. Irodalmi attekintés

Ahogyan az a sztere6 latdsban jél ismert[62]], két egymasnak megfelel6 képrészlet
kozott a homografia teremt kapcsolatot, ha a megfigyelt térrész pontjai egy sikon
vannak, vagy ha a két nézet fékuszpontja ugyanott van. A homogréfiat a 3 x 3-as H
maétrixszal szokds reprezentdlni. Ha egy p; = [u;v11]7 homogén koordinatds pontot
az els6 képrél egy H homogréfia transzformdlja a mésodik kép py = [uy vy 1]7
pontjara, akkor a kapcsolatot a p, ~ Hp; Osszefiiggés irja le.

A megfeleltetés kétdimenzids vonalakra is megadhat6 a kovetkez6képpen: I H-11,
ahol az egyenesek paramétereit az els6 és a masodik képen az 1 és I’ haromdimen-
zi6s vektorok irjak le. Ha egy p pont a 1 egyenesen fekszik, akkor a p’ transzformalt
helynek a megfelel6 I transzformalt egyenesen kell fekiidnie.

Nagyon izgalmas tény, hogy a homogréfia fogalma mar a mult szdzad kozepén
ismert volt [152].

A szakirodalomban szamos megoldas létezik a két kép kozotti homografia becslé-
sére, ahogyan azt Agarwalnak és munkatarsainak a munkaja [4] 6sszefoglalja. Els6-
ként a legegyszeribb moddszert, a linearis transzformacidra (DLT) visszavezetett [62]
eljarast illik megemliteniink. Ebben az esetben a H homografia nyolc ismeretlen pa-
raméterét pontmegfelelések alapjan kivanjuk megbecsiilni a p’ ~ Hp alaposszefiig-
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gés linearizaldsabdl keletkez6 tulhatdrozott egyenletrendszer megolddsaval, ahol a
~ operator a skalazas erejéig vett egyenlGséget jelenti. Maga a linearizalas torzitja a
zajt, ezért az eredeti nemlinedris vetiileti egyenletekre valé optimalizalds pontosabb
eredményeket ad. Ez utébbit numerikus optimalizaldsi technikdkkal lehet elvégezni,
mint példdul a széles korben hasznélt Levenberg-Marquardt [108]] optimalizdldssal.
Azonban a linedris algoritmusok is javithatok, elsésorban a numerikus problémdak
elkeriilésével, ha el6szor az adatok normalizalasat [|62] alkalmazzuk.

Kenichi Kanatani[78] javasolt egy moddszert a becslési hiba minimalizdldsara a
képtérben, mivel a zaj a képkoordinatdkban jelentkezik, nem pedig az absztrakt, ma-
gasabb dimenzids algebrai terekben.

A homografia becslésére természetesen szamos mas modszer is létezik: vannak
vonal alapu [[118], kip alapu [79, [116], kontur alapa [88] és folt alapt [86] mdd-
szerek. Ezeknek a jellemzoknek a megfeleltetése azonban nem olyan egyszer(, mint
a pontoké. Manapsdg mar léteznek nagyon hatékony jellegzetes pont detektorok és
megfelelteték [[115] 103} 21, [142]. Annak ellenére, hogy nagyon sokféle homografia-
becslési technika all rendelkezésre a teriileten, nem taldltunk olyat, amely a helyi
affin transzformdcién alapulé homografia-becsléssel foglalkozott volna.

Homografiak alkalmazasa. A szamitogépes latasban szamos olyan eset van, ami-
kor a homografia ismeretére van sziikség. Eloszor is a kamera kalibralasardl kell ir-
ni [[190]. Ha a 3D sakktdbla koordinatak és a vetitett koordindtdk kozotti homografi-
akat tobb képre kiszamitjuk, akkor a bels6 kameraparaméterek kiszamithatdk, ahogy
azt Zhang megmutatta [190] széles korben alkalmazott kalibraciés mddszerével.

A kamera kalibraldsa az eszkoz belsé és kiilsé paramétereinek meghatarozasa,
ahol a bels6 paraméterek kamera-specifikusak: ezek a gyudjtétavolsag, a lencse torzi-
tasa és a fopont. A kiils6 paraméterek a kamera tdjolasat és a térben valo elhelyezke-
dését irjak le.

A feliileti normdlisok becslése szintén fontos alkalmazdasa a sikbeli homografidk-
nak. Ha a homografia ismert egy sik két perspektivikus kamerdval készitett képei
kozott, akkor a homografia felbonthat6 a kamera kiils6 paramétereire, a stk normali-
sara és a sik tavolsdgara az elsé kameratol [45], [107]. Molnar és munkatdrsai [114],
illetve jomagam is kollégaimmal [15] megmutattuk, hogy a feliileti normalis kisza-
mitdsdhoz elegendé az affin transzformacio, és az affin transzformdcid kiszamithaté
a homografidbdl annak levezetésével, ahogy azt kordbban ebben a a fejezetben is
megmutattam.

A homografia-becslés egyik nagyon fontos alkalmazasi teriilete olyan jelenetek
3D modelljeinek készitése, ahol viszonylag nagy sikok vannak jelen. Tipikus példa az
ilyen feladatokra a varosi jelenetek rekonstrukcidja, hiszen az ember alkotta vilagban
sok helyen talalhato kiterjedt sikfeliilet. A feladat régdta kutatott [119,[158]. Napja-
inkban a 3D rekonstrukcios cs6vezetékek pontmegfeleléseket hasznalnak a jelenetek
ritka [5] [131]] vagy stirt [51, [174] pontfelhGjének kiszamitasdhoz. A kozelmultban
azonban foltalapu megkozelitéseket is javasoltak [26, [158]].

4.3.2. Megoldok homografia becslésére lokalis affin transzformaciok felhaszna-
lasaval

Ennek a résznek a f6 hozzdjaruldsa az, hogy kiilonb6z6 mddszereket mutatok be
a homografia becslésére, ha lokalis affin transzformaciék egymasnak megfelel6 he-
lyeken ismertek a két kép kozott. Azt is megmutatom, hogy hatékonyabb becslék
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képezhetOk, ha az epipoldris geometria is ismert.
El6szor ismerkedjliink meg a fobb geometriai fogalmakkal és kifejezésekkel!

4.3.3. Elméleti hattér

Ahogyan azt mar a bevezetében is emlitettem, a H homografia kapcsolatot teremt az
els6 kép p(l) [x(l)yl(1 |7 pontja és a masodikon megfeleltetett: p(2) [x@)yZ |7 pont
kozott:

[Py 1"~ Hlzy )",

ahol a ~ operator a skdla erejéig egyenléséget jelenti, melyet a homogén osztdssal
lehet egyenl6séggé alakitani. Itt a fels6 indexek a képszamot, az als6 index pedig a
kivalasztott pontpar szdmat jelolik. Molnar és mtsai. [[113]] megmutattdk, hogy az

A — [ apnl a2 Q13 ] (28)
Q21 Q22 G23

affin traszformacid els6é két oszlopa megkaphaté a Osszefliggés segitségével. Az

A utolso sora adja az eltoldst, melyet a pontok helye alapjan lehet meghatdrozni.

4.3.4. Homografia becslése affin transzformaciékbol (HA algoritmus)

Az A, transzformacio felel6s az i-edik pontparért. A formulak alapjan irhatjuk
fel az alabbi linearis rendszert, amennyiben az s skalazast beszorzas segitségével
eltiintetjiik:

(2) _
hii — hsi (2, + a;, 1137 — hsaa; 11?/Z — hsza; 11 =0

2)

hig — hag <IL’£ + a; 129Z ) h31az 1233 - h33ai,12 =0
<y¢( + a;, 21$ )

hoi — hai — hsaa; 213/1 — hsza; 01 =0

h22 - h32 (y 2) + a; 22 y( )> — h31a1722x51 — h33ai722 =0 (29)

A homografia elemeire nézve ez egy homogén linearis egyenletrendszer. Sajnos a
kilenc elembdl csak hetet tartalmaz, ezért a maradék kett6t — konkrétan a h;3 €s hos
elemeket —, az affin transzformaciok segitségével nem lehet megbecsiilni. Szerencsére
a pontmegfeleltetésekbdl tovabbi két egyenletet fel lehet irni [62], melyeket a DLT
nek hivnak a szakirodalomban:

hnil?gl) + hmyl + hyz — hzlﬂf 37 h32y, E ) — hasw =
hzﬂ'gl) + h22yl- + hoz — h3133 yz — h3 yz Dy~ hggy® = 0. (30)

7

A|29| és a|30| formuldkkal 6sszesen hat homogén linedris egyenletrendszert ka-
punk a H homografia matrixanak kilenc ismeretlen paraméterére. Azaz fel lehet irni
Bh = 0 alakban, ahol a B egytitthatématrix az ismert elemeket tartalmazza, melye-
ket a pontkoordinatdkbdl és az affin transzformadcidk segitségével kaphatunk meg. A
h kilenc dimenzids vektor a homografia elemeit tartalmazza.

LI DLT: Direct Linear Transformation
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A B.2) fiiggelékben mutatjuk meg, hogy a homogén linedris egyenletrendszereket
legkisebb négyzetes értelemben optimédlisan meg lehet hatdrozni, mégpedig a B'B
matrix legkisebb sajatértékéhez tartozd sajatvektorként. Ezt a moddszert nevezziik
HA [ algoritmusnak.

Miutén kilenc elemet kell megbecsiilni, de a sajatvektor szamitdsdban a hossz
nem szamit, nyolc szabad paraméter taldlhaté a h vektorban. Ehhez legaldbb nyolc
egyenletet kell megadni. Ha két pontot tudunk affin transzformécidkkal egyiitt meg-
feleltetni, maris 12 egyenletet kapunk. Tehat a feladat tdlhatarozotta valik. A mini-
malis nyolc egyenlethez elegend6 egy pont affin transzformdcidkkal, és még egy pont
affin transzformdcié nélkiil.

A klasszikus DLT mddszerhez négy pontmegfelelés sziikséges. A HA algoritmus-
nak nagyon nagy elénye a klasszikus DLT mddszerrel szemben, hogy elegendé kettd
megfeleltetés. Mivel valos alkalmazasok esetén a kiugré pontok jelenléte szinte el-
keriilhetetlen, robusztus eljarasokra van sziikség. A legtobb ilyen algoritmus — mint
példaul Az fiiggelékben ismertetett RANSAC mddszer — véletlen mintavéte-
lezésre épiil. A sziikséges mintavételek szamat — és emiatt az eljaras sebességét —,
alapveten hatdrozza meg a minimdlis modellhez sziikséges pontszdm. Ezért a HA
modszer nagyon nagy elénye, hogy sokkal gyorsabban lehet robusztus becslésekben
alkalmazni.

4.3.5. Homografia becslése ismert fundamentalis matrix segitségével (HAF)

Amennyiben az epipoldris geometria ismert a két kép kozott, a homografia szamitasa
sokat egyszer(isodik. A[107} egyenlet irja le a kapcsolatot az epipoldris geometria és
egy tetszoOleges sik-sik homografia kozott. Ebbe behelyettesitve a|16| egyenletekben
leirt, masodik torvényiinknek megfelel6 Osszefiiggésekkel, a homografia becslésére a
kovetkez6 formuldk adédnak:

hs (az‘,nfﬂl(-l) + 961(-2) — 6z> + h32az‘,11yi(1) + hsza; 1 = for,

hs3a (ai,myfl) + $§2) — €x> + h31ai,1296’z(-1) + hsza; 2 = fo2,

hs1 (ai,ml’gl) + yi@) - €y> + h32a¢,2lyi(l) + hssa; 01 = —fi1,

h3o (ai,22y§1) + ?Jl@) - €y> + h31ai,22$§1) + hssai o = — fio.

Most is linearis Osszeftiggéseket kaptunk, de inhomogén rendszer adddott, melyet a
Cy = d alakba irhatunk. d = [fs1, fe2, — f11, — f12] tartalmazza a fundamentdlis matrix
ismert elemeit, y = [h31, hso, hss]” pedig az ismeretleneket tartalmazé négydimenzids
vektor. A C matrix elemei mind ismert adatokat tartalmaznak:

12HA : Homography from Affine

36



haj der 274 24

Ci = (ai,nw?) + 3552) - €z) , Cia= Gi,nyz(l)a

Ciz = ;11 Co = ai,1233§1);
C = a; (1) (2) — C = .
22 i12Y; T T ez, 23 = 44,12, (31)
Cs1 = ai,mxﬁl) + y@-@) —ey), Cs= ai,21yz‘(1)a
Cs3 = ;21 Cy = Gz‘,22$}7

Cyo = <ai,22fyi(1) + 902(-2) — €y> ) Caz = a;22.

A legkisebb négyzetes értelemben vett optimdlis megoldds az y = C'd alakban
kaphat6 meg, ahol C' a Moore-Penrose-féle pszeudonverze a C egyiitthatémaétrixnak.

A médszer tdlhatdrozott és minimdlis esetben egyardnt miikédik [°] A médszer
komoly elénye, hogy egyetlen pontmegfelelés és a hozza tartozé affin transzformaéci-
60bdl meg tudja oldani a feladatot. Mindez 6sszhangban van a fejezetben ismer-
tetett normalvektorbecslével. Hiszen a normalvektort egyetlen affin megfelelésbdl ki
lehetett szamitani, sot, a feladat talhatarozott volt.

Jol ismert [62], hogy a homografia a két kamera belsé paramétereibdl és a ka-
merék egymdshoz viszonyitott elhelyezkedésébs]™| hatdrozhaték meg. Ha a kamera
(bels6) paraméterei ismertek, a homografiat fel lehet bontani [45, [107] a relativ
elhelyezkedésre és a normalvektorra. A normdlvektorbecsléshez képest itt tovabbi
elény, hogy a kamerak elhelyezkedése is megkaphato kalibralt kamerak esetében, ha
a felbontd algoritmust [107] futtatjuk az eredményiil kapott homografiara.

A futasi id6 tekintetében is fontos eredmény, hogy csak pontmegfelelést hasznal-
va hdrom pontpdarra van sziikségiink a homografia megbecsléséhez a fundamentdlis
matrix ismerete esetén, mig az affin transzformacio megléte egyetlen egy megfelelés-
re szoritja le a minimalis modell elkészitéséhez sziikséges bemeneteket.

4.3.6. Javitasi lehetségek

Normalizalas. A fenti egyenletekben az egyiitthatomatrixokat a pontkoordindtak
és az affin transzformdcidk alapjan hatdrozhatjuk meg. A pontkoordindtaknak nagy
problémadja, hogy egy kép feldolgozadsa utan sok szdzas, egy-két ezres értékeket ka-
punk, ellentétben az affin paraméterek, amelyek tipikusan tiznél kisebbek. Amikor
ilyen széls6séges kiillonbségek vannak egy matrixban, a sajatérték szamitds vagy ép-
pen a pszeudo-inverz kiszdmitdsa komoly numerikus kérdéseket vet fel []

A normalizalds esetén a pontkoordinatak nagysagrendjét az egyszamjegyl tarto-
manyba kell levinni. A szakméban szinte egyeduralkodd [62]] megoldas, hogy affin
transzformaciokkal el6szor a sulypontba toljuk az origét, majd a pontok szoérasat
skdlazassal \/2-vé véltoztatjuk (dltaldban zsugoritjuk). A két képre kiilén kell a nor-
malizdlast elvégezni. Az eltoldst és a skdlazast 6sszevonva kapjuk a két normalizald
transzformaciot, melyeket T -el és T,-vel jeloljiik. A normalizalas a pgl)/ Z(.l) és
p§2)l ~ Tgpz@) Osszefliggés adja. A normalizaldst a homografia és az alapvet6é matrix
esetében is ki lehet haszndlni. Az 4tvaltas a H' = T,HT[' ésa F' = T,"FT;..

~ Tp

13 Minimadlis esetben hagyoményos inverz alkalmazhatd.
14 A két kamera elhelyezkedését szokds relativ péznak is nevezni.
15péld4ul : hany biten tdroljuk a lebeg8pontos szdmokat.
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formuldk felhasznalasaval torténik, ahol a vessz6 a normalizalt homografiat és fun-
damentdlis matrixot jeloli.

A fliggelék H. fejezete mutatja meg, hogy az affin transzformacidokat is linedris
transzformdciokkal lehet normalizélni. Az eltolas, ahogyan az el is varhatd, nem be-
folyasolja az affin transzformacid linedris részét. A vizszintes és fligglleges skalazast
azonosnak tekintve az els6 képhez tartoz6 normalizalo skalat s;-el, a masodik képhez
tartozot s,-vel jelolve az affin transzformacié normalizalasat igy irhatjuk le:

A=A (32)
S2

Numerikus, nemlinedris finomitas. A becsléshez kapott egyenleteket a 0ssze-
fiiggések alapoztdk meg. Els6 1épésként az s skdldval (projektiv mélységgel) szoroz-
tuk meg a négy alapegyenletet. Ez a 1épés ugyan linedris formuldkat eredményez,
melyeket algebrai mddszerekkel jél tudunk kezelni, azonban stlyosan beleavatko-
zunk a mért adatok és a zaj viszonyaba. Miutdn s (projektiv mélység) becsiilt és nem
pontos érték, a benne 1év6 hibaval szorozzuk a tagokat, amelyek maguk is zajt tartal-
maznak. [gy a két zaj szerencsétlen esetben felnagyitja egymast, és ettél a becslésiink
pontatlanabb lesz. Ezért az eredeti 6sszefliggéseket numerikusan lehet finomitani. Mi
a Levenberg-Marquardt algoritmust [96, [108]] javasoljuk .

4.3.7. Teszteredmények

A disszertacioban terjedelmi okokbdl csupan néhdny vizsgalati eredményt tudok be-
mutatni, részletesebb teszteléseket a konferencia [16] és folyoirat publikacionkban [[17]]
lehet olvasni.
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14. abra. Az dtlagos visszavetitési hiba pixelben, amennyiben a homogrdfia becsléséhez
haszndlt pontokat nulla vdrhaté értékil normadl eloszldst zajjal terheljiik. A megvizs-
gdlt modszerek: OpenCV: A hagyomdnyos, DLT [62]] alapt négy pontos becslés; 3PT:
fundamentdlis mdtrixot haszndlé hdrom pontos mddszer; Norm HA: normalizdlt affin
transzformdciot alkalmazo HA algoritmus; HAF: affin transzformdciot és a fundamen-
tdlis mdtrixot egyardnt alkalmazd mddszer.

Az |1} tabldzat mutatja meg a négy alapmoddszert, amelyek az 6sszehasonlitas
alapjat adjak. El6szor szintetikus adatokon teszteltiik, az alapigazsag ['°| adatokat
mind pontmegfelelésekre, mind az affin transzformdcidkra ismertek.

16 Az alapigazsag az angol ground-truth (GT) magyarra forditdsa. A szintetikus tesztek esetén a
tokéletes értékeket jelenti, melyekhez minél kozelebbi becslést szeretnénk adni.
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Affin transzformacio
» . Nem Igen
Alapveté matrix
Nem OpenCV (DLT) | HA
Igen 3PT HAF

1. tablazat. A homogrdfia becslésére alkalmazott modszerek. A HA és a HAF algoritmu-
sok sajdt algoritmusok.

El6szor azt nézziik meg, hogy kizdrdlag a pontkoordindtdk zajositdsdval milyen
eredményeket lehet érni. A abran hasonlitjuk 0ssze a kizarolag pontmegfelelé-
seket (OpenCV, 3PT) algoritmusokat a kombindltakkal (HA,HAF). A becslés végén
kapott vetitési hibat abrdzoljuk, azaz azt nézziik meg, hogy a kapott homografia-
val attranszformalva a pontokat mekkora eltérés adddik az alapigazsaghoz képest.
A haszndlt megfelelések minden mddszernél ugyanazok. Jél lathato, hogy az elvart
eredményt kapjuk: az alapveté madtrixokat haszndlé mddszerek (3PT, HAF) alacso-
nyabb hibdt eredményeznek, tehat jobbak, hiszen tobbletinformaciét alkalmaznak.
Ugyanigy az affin médszerek (HA, HAF) megel6zik a simdn pont-koordinatakat al-
kalmazd versenytdrsaikat.

15. abra. Az dtlagos homogrdfia vetitési hiba, amennyiben a homogrdfia becsléséhez
haszndlt affin transzformdcidkat is nulla vdrhatd értékil normdl eloszldstu zajjal ter-
heljiik. A megvizsgdlt modszerek: OpenCV RSC: A hagyomdnyos, DLT [62] alapt négy
pontos becslés RANSAC [46] alkalmazdsdval; 3PT: fundamentdlis mdtrixot haszndlo
hdrom pontos mddszer; Norm HA: normalizdlt affin transzformdciot alkalmazo HA al-
goritmus; HAF: affin transzformdcidt és a fundamentdlis mdtrixot egyardnt alkalmazd
mddszer. HAF RSC: ugyanez a modszer RANSAC alkalmazdsdval.

A abran ugyanennek a tesztnek azt a valtozatat latjuk, ahol az affin transz-
forméciot is zajositjuk, hasonldéan nulla varhaté értéki normalis eloszlasu zajjal. Az
affin transzformaciok és a pontok zaja ugyanakkora szorasu, de azt fontos megje-
gyezni, hogy a két zaj teljesen eltérd hatassal rendelkezik, ezért nem teljesen "tisztes-
séges" az Osszehasonlitds. Az affin zaj 1ényegesen tobbet ront az eredményen, ezért
a RANSAC [46]] eljarast bevetettiik a HAF algoritmus javitdsara. Ez utébbi adja egy-
értelmten a legjobb eredményt. A tobbi teszt is az elvarhaté eredményt adja: a 3PT
algoritmus jobb, mint a sima OpenCV (DLT) megoldas.

Végezetiil a abrdn a normalizalds hatédsat kiilon is megvizsgdltuk. Csoddt nem
szabad varni a normalizalastél, de az eredmények érezhet6 javuldsat igen, kiilonosen
nagy zajszint esetén.

Miutan a harmadik torvény a négy linearis affin paraméterre négy egyenletet ha-
tdroz meg, melyek az osztds elimindldsaval linedris egyenletekké alakithat6ak, min-
den egyes affin transzformacd négy plusz ismeretet ad a homografia becslésére. A
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Effect of normalization (mean)

|| HAF
‘Il —&—norm. HAF

Projection error (px)

3
Nolse

16. abra. A normalizdlds hatdsa névekvé zajszint hazdsdra. Magasabb zajérték mellett
nagyobb a normalizdlds jelentdésége.

pontmegfelelések tovabbi két egyenletet adnak, ezért 0sszesen hat egyenlet adott
affin megfeleltetésként. Ezért mar két affin megfelelés elég ahhoz, hogy a homogra-
fiat megbecsiiljiik. Kizardlag pontmegfeleléseket alkalmazva négy parra lenne sziik-
ségiink, igy a mi a megkozelitésiink jelentds tjitasnak tekintheté a teriileten: fele
annyi affin megfelelés elég a becslés eléréséhez. Ha robusztus becslést akarunk vé-
gezni — példaul a legelterjedtebb, véletlen mintavételezést alkalmazé RANSAC algo-
ritmus [46] alkalmazasaval —, jelentds gyorsitas érhet6 el, hiszen mintavételenként
joval nagyobb az esély, hogy kiugré adat nem szennyezi a mintat.

Specidlis eset, ha a két kép kozott ismert a fundamentalis matrix, ekkor a a
homografia szabad paramétereinek szdma haromra csokken. Ebben az esetben egy
pontmegfelelés csupan egyetlen egyenletet ad, a linearis része az affin transzforma-
ciénak pedig tovabbi kettot. Ezért egyetlen affin par elég a két képen, hogy a homog-
rafiat meghatarozzuk. Ennek a ténynek elméletileg is nagy jelentésége van: lokdlis
informdciobdl megbecsiilhet6 a homografia kalibralt esetben. Rdaddsul egy homogra-
fiabdl az adott ponthoz tartozo feliileti érint6sikot is meg lehet hatarozni [45] [107].

Ez logikus is, hiszen a homografia térbeli sikok projektiv vetiileteinek kapcsola-
tat irja le, és a haromszogelés segitségével (hagyomanyos szered latas esetén) a sik
egy pontja hatarozhatd meg, a kordbbi tézisnek megfelel6en a linearis részbol meg-
becstilhet6 a feliileti normélvektor. Egy pont és a normalvektor pedig egyértelmiien
meghatdrozza a kapcsolédé térbeli sikot.

Az itt ismertetett elvekre alapozva dolgoztunk ki Barath Déniel doktoranduszom-
mal kozosen egy algoritmuscsaladot [17, [16], melyben a homografiat becslé algorit-
musok a fenti eseteket fedik le.

4.4. Sikok szegmentacidja

Miutdn a HAF algoritmus egyetlenegy affin transzforméaciobdl és a hozza tartozé pon-
tok koordinataibol képes a homografiat kiszamitani, ezért ezt batran nevezhetjiik
"egy pontos algoritmusnak". Ezt a homografiat tovabbi affin megfelelésekre illesz-
teni lehet, és meg lehet hatdrozni, vajon azok megfelelnek-e a homografidnak. fgy
pedig, véletlen mintavételezéssel kiegészitve, egy nagyon gyors sikilleszt6t kapunk,
amely elméletileg tetszOleges szamu sik detektdlasara képes. Ezért neveztiik el ezt az
eljarast MultiH-nak.

A[17] abran lathatjuk, hogy az azonos szinnel jelzett pontok illeszkednek az azo-
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nos homografidkra.

17. abra. Sikok szegmentdldsa a MultiH eljdrdssal.

Miutan egy affin megfelelésbdl egy térbeli sik meghatarozhaté (rekonstrualhatd),
minden lehetséges parra egy feliileti érintésik adddik. Sikobjektumok esetén a sik
pontjaibdl ugyanaz az érintésik becsiilhetd, ezért a sikok detekcidja hatékonyan el-
végezhet6. 2016-os munkankban [35] javasoltunk egy sikdetektor eljarast, amellyel
tetszOleges szamu sik meghatdrozhatd a képen, kizardlag az affin megfelelések fel-
hasznalasaval. Ez 1ényegében egy klaszterez6 illeszto eljaras, amelynél a sikok repre-
zentdljdk a modellt, és minden egyes lokdlis affin transzforméacié szavaz egy modell-
re. Azokat a sikokat kell megtaldlni, amelyekre kozeli transzformaciok szavaznak.

A 2016-os publikacidnk [35]] Barath Daniel doktorandusz és egy neves cseh szak-
érto, Jiri Matas kozremtikodésével késziilt. Utdbbi els6sorban az oOtleteivel segitette
a kozos munkat, Jiri egyik szakteriilete a robusztus multi-modell illesztés, akkoriban
nalunk lényegesen szélesebb latokorrel rendelkezett a teriileten.

4.5. Alapvet6 és 1ényegi matrixok becslése

Az affin transzforméciokra vonatkozé III. térvény alapjdn ([24] Gsszefliggés) irtuk,
hogy

ATﬁw|:p1:|:_]§wT|:p2:|’ (33)
1 1
amennyiben a fundamentalis matrix kilenc elemére az
Jiu fiz fi3
F= | fa fo fs (34)
far fa2 a3
jelolést alkalmazzuk, és
S Jfi2
- - Juu Sz Ji3 }
F= F = i 35
fa Ja s { fa o fa 35

f31 f32

Ekkor a[33] dsszefiiggést a fundamentélis és az affin matrix elemivel igy irhatjuk
le:
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u U
a1 a2 fu fiz fis ! _ fu fa fa 2
(%1 = — (%) . (36)
aiz2 Q22 Ja faoo fas 1 Jiz fa2 fa2 1
Egyszer( atalakitasokkal a fundamentalis matrix elemeire a
[ fu ]
fi2
fi3
fa1
a11U1 + U ‘ 1101 ‘ a11 ‘ a21U1 + Uy ‘ 2101 ‘ a1 ‘ 1 ‘ 0 ‘ 0 _
Jo2 | =0
a12U1 ‘ 1201 + Uz ‘ a12 ‘ A22U1 ‘ A2201 + V2 ‘ 22 ‘ 0 ‘ 1 ‘ 0 o
fa1
f32
| fa3

(37)

linearis homogén alakot kaphatjuk meg. Amennyiben a (8| Osszefiiggést is figye-

lembe vessziik, ahol a két képen az egymasnak megfelelé p,; és p, pontokra igaz,
hogy pIFp; = 0, akkor ennek alapjén irhatjuk, hogy

[UQU]_ Ul Ug Vol Vgl Vg U Vg 1]f:0, (38)

amennyiben af = {fn f12 f13 f21 f22 f23 f31 f32 f33]T Vektor tartalmazza
a becsiilendé elemeit az alapveté matrixnak. Ezt hivjuk a pontmegfelelésbol kapott
osszefliggésnek. Ezt kiegészitve a egyenletbdl kapott affin osszefliggésekkel, ir-
hatjuk, hogy Cf = 0, ha

a11U1 + U a11v1 a1y | Ao1Uy + U2 a2101 az | 1 | 0]0
C = a12Uq a12U1 + Ug | Q12 A22U1 2201 + Vo | A2 0 1 0 . (39)
UgU7q UoVq (5) Va2U1 V21 V2 | U1 | U1 1

Azaz a harmadik térvényilinkbdl, és a pontokra mar kordbban meghatdrozott tor-
vény [62] felhasznalasaval hdrom homogén linedris egyenletrendszert lehet felirni a
fundamentdlis mdtrixra, ha egy pontmegfelelést és a hozzd tartozd affin transzformdci-
ot ismerjiik.

Egy megfelelésb6l tehdt harom egyenletet kapunk. A fundamentélis mdtrixnak a
szabadsagfoka hét: ugyan kilenc eleme van, de a determinansa nulla, tehat van egy
megkotésiink; tovdbba a skdldzasra invaridns, ezért a kilencbdl a két szabadséagfo-
kot levonva hetet kapunk. Ezért legalabb hdrom megfelelésre van sziikség. Azonban
ez is jelentds elorelépés, hiszen a hagyomanyos, kizdrolag pontmegfelelésen alapuld
modszer esetében hét megfelelést kell megadni.

Lényegi és alapvet6 matrix. Ugyan a fenti levezetést az alapvet6é (fundamentdlis)
matrixra végeztiik el, kalibrdlt esetben a 1ényegi (eszencialis) matrixokra is alkalmaz-
hatdak. Kalibralt esetben a kamera belsé paramétereit tartalmazé fels6-haromszog
kalibracios matrixokat, K;-et és K,-t ismerjiik. Ha ezekkel elvégezziik a normaliza-
ciét:

p1  Ki'p1, p2 < K;'po, (40)
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akkor a normalizalt koordinatakat behelyettesitve a Osszefliggésbe, a homogén
egyenletrendszert megoldva a lényegi matrixot kapjuk meg.

Erdekesség: Raposo és Barreto [136] 2016-ban ugyanazt az dsszefiiggést megta-
lalta a MATLAB szimbolikus "toolbox" alkalmazdasaval, de a III. torvényt analitikusan
nem tudtdk felirni. Ugyanakkor harom megfeleléses becsl6t publikaltak.

A tovdbbiakban azt mutatom meg, hogyan lehet két pontos megoldét késziteni

Kétpontos megoldd.

Ha két pontpart ismeriink, tovabba a hozza tartozo affin transzformacidkat, akkor
a osszefiiggés alapjan készithetiink egy C! és egy C? 3 x 9 -es méret(i métrixot.
Ertelemszertien a fels6 index a par sorszdmat mutatja.

A két matrixot egymads ald tessziik:

Cl
A megoldas, azaz a fundamentdlis matrix elemeit tartozd vektor meréleges a matrix
minden sordra, hiszen homogén linedris egyenletekrdl van sz6. A C matrix mérete
ebben az esetben 6 x 9, ezért a nulltere haromdimenzids. Igy minden x nullvektort
fel tudunk irni a nulltér bazisainak linearis kombinacidjaként:

x = aa+ b + ~c, (42)

ahol a, b és c a nullvektorok, mig «, § és v az (altaldban ismeretlen) sulyok. Az x
vektor F elemeit tartalmazza, ezért a kett6 egymdsnak egyértelmiien megfeleltethe-
t6.

A modszeriink esetében félig kalibralt kamerakat feltételeziink:

f 00 1 00
K=|0 f0|~Q=|010], 7=1/f% (43)
0 0 1 00 7

A trace (spur) megkoétés alapjan [62] : 2FQFT QF — trace(FQFTQ)F = 0.

Szimbolikus eszkozt hasznalva, x-b6l F matrixot csindlva, majd behelyettesit-
ve harmadfoku, tobbvaltozés polinomidlis egyenletrendszert kapunk a-ra, (S-ra, v-
ra és 7-ra, ahol 7 = f~2 tartalmazza az ismeretlen fokusztavot. A feladat megol-
ddsa soran "szerencsénk volt", hiszem a trace megkotés alkalmatdsa soran 7-t el
tudtuk kiiloniteni, igy erre a rejtett valtozék |'/| technikdjat alkalmazhattuk. Ha 7-t
rejtett valtozénak tekintjiik, meghatdrozhatjuk C(7) madtrixot. A matrix soraira -
tél fliggd egyvaltozds fliggvényeket kapunk. Bar «, § és v skdlazasra érzéketlen,
nem rogzitjiikk a skdlat, hidba tehetnénk meg, hogy ne kelljen inhomogén egyenle-
tekkel foglalkozni. A szimbolikus eszk6z utdn a monomidlisa igy alakulnak: y =
— [0® 28 oy af? afy ar? B By Br? YT

Miutédn a monomidlis x vektor skdldja nincs rogzitve, a nem trividlis megoldast a
determindns kritérium szerint kaphatjuk meg:

det(C(r)) = 0. (44)

A mi esetlinkben a szimbolikus megoldas 7-ra egy 15-6dfoku polinomot ad, ennek
az egyik gyoke adja a j6 megoldas. Nem marad mas feladat, mint a nem valdsagszert
gyokoket ki kell szlirni.

17 Angolul: hidden variable technique
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4.5.1. A jo gyokok megtalalasa

Ebben a szakaszban egy 1j technikdt javasolunk a gyokerek elhagydsara geometriai
megfontolasok alapjan. Ehhez az alkalmazott digitalis fényképezogépek tulajdonsa-
gait vessziik figyelembe, és ennek alapjdn az érvénytelen gyujtotavolsagokat el tudjuk
tavolitani. Végiil bemutatunk egy gyokérkivalaszté algoritmust.

Ervénytelen fékusztavolsagok kisziirése

Itt egy olyan megoldast javasolunk, amely a mogottes geometrian alapul, hogy
kikiiszoboljiik az érvénytelen fékusztdvolsdgokat. Tegyiik fel, hogy adott egy (p1, p2),
pontpdr a hozza tartozé A lokalis affin transzformdcidval egyiitt, tovabba az F alap-
vetd matrix és az f fokusztavolsag. Mivel félig kalibralt kamerakat feltételeziink, F és
f pontosan meghatdrozza mindkét kamera P, és P, vetiileti matrixait [62]. Jeloljiik
a (p1, p2) pontparhoz és A lokalis affin transzformdcidhoz tartozd térbeli 3D poziciot
q=[r y =z|"-val, és a feliileti normalvektort n = [n, n, n,]"-vel! A térbeli q
pontot itt az egyszeriiség kedvéért a linedris haromszogelés [62]] (DLT algoritmus)
segitségével, a normalvektort pedig a 2015-ben publikdlt [15], a szakaszban is-
mertetett, negyedfoku polinomok gyokkeresésére visszavezetett mdédszeriinkkel be-
csiiltiik meg.

Az altalanossag megsértése nélkiil feltételezziik, hogy egy 3D-s feliilet egy pontjat
nem lehet hatulrél megfigyelni. Ennek kovetkeztében a ¢; — q és n vektorok kozotti
szognek mindkét kamera esetében kisebbnek kell lennie, mint 90°, ahol c; az i-edik
kamera pozicidja ( € {1,2}). Ez a kovetkez6képpen értelmezhetd: minden kamera
kivalaszt egy fél egységgombot a q megfigyelt pont koriil. A n feliileti normdlisnak e
félgombok metszetében kell lennie.

A félgombok feliiletén a szogek tartomanyait a gombi koordinata-rendszerben
egy téglalap irja le az aldbbiak szerint: rect; = [6;— % o;— % 7 ], ahol 6, o;
jeloli a gombi koordindtdkat. A két kamera altal meghatarozott teriilet metszete a
kovetkezéképpen alakul:

rect, = ﬂ rect;.
1€[1,2]

Ha egy kapott érték kilog a metszetbdl, akkor érvénytelennek tekintheto.

A q pont mindkét kamerabol megfigyelhet6 akkor és csak akkor, ha az n felszini
normadlis, amelyet a © és > gombi koordinatdk dbrazolnak, a metszéspont teriiletén
fekszik: [© X] € rectn. A f fékusztévolsag &ltal indukalt, e kritériumoknak nem
megfelel6 bedllitds érvénytelen, és ezért elhagyhatd. Megjegyzendd, hogy ez a meg-
kotés egyszertien kiterjeszthetd a tobb nézet(i esetre is, igy a metszési terlilet még
szigorubba valik.

Fokusztavok technikai korlatai

A becsiilt fékusztavolsagokra tovabbi korlatozasokat vezethetiink be, ha figyelem-
be vessziik a kamerdk fizikai korlatait. A K kameramadtrixon beliili fékusztavolsag
nem egyenértékii a lencsék fokusztavolsagaval, mivel az az optikai fokusztavolsag és
a pixelméret [62]] szorzata, mas szoval a fokuztav az érzékeld pixelméretében lett
megadva. A pixelméret a gyakorlatban néhdny mikrométer, mig kereskedelemben
kaphaté optikdk esetében az optikai fékusztavolsagok |1 ...500] mm-es intervallum-
ban vannak. Ezért f-re durva also és fels6 hatdrként vehetjiik a 100 és az 500.000
értékeket. Az ezen intervallumon kiviili fokusztavolsagok automatikusan elvetésre
kerililnek. Megjegyzendd, hogy ezek a hatdrok konnyen modosithatdk, figyelembe
véve a kiilonb6z6 tulajdonsagokkal rendelkez6 kamerakat.
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A végso6 gyok kivalasztasa

A tObbszoros gyokerek feloldasara és a zaj hatasanak minimalizalasara a klasszi-
kus mddszer a mérések ismétlése és az ellentmonddsos mérések kikiiszobolése. Mivel
a egyenlet egy magas foku polinom, meglehetésen érzékeny a zajra — a koordi-
natak és az affin elemek kis valtozasai jelent6sen eltér6 egyiitthatokat okoznak.

A RANSAC [46] sikeres robusztus technika ennek a problémdnak a megolddsa-
ra, példdul az otpontos algoritmushoz [[122] is lehet alkalmazni. A legdjabb mdd-
szerek, pl. a kernel-szavaz4g'®, azt a tulajdonsdgot hasznaljék ki, hogy a gyokok a
valds megoldés koriil csucsot alkotnak [99, (98, [87]. A kernel-szavazds egy kernel-
stiriségfiiggvényt maximalizdl, maximum-likelihood becsléként. Tapasztalataink sze-
rint ez a technika pontosan miikédik, ha a koordindtdk zaja dtlagosan nem haladja
meg az 1 — 2 pixeles értéket. E folott a gyokok tobb erésen tdmogatott csucsot is
képezhetnek, és nem garantdlt a valédi megoldds megtaldlasa.

Mi munkankban a problémat egy egydimenzids keresésként fogalmazzuk meg: a
valds fékusztavolsag a leginkdbb tdmogatott mdédusként jelenik meg. Tobbféle mo-
duszkeresési technika [74] koziil a legrobusztusabb a Median-Shift [[153] a tapaszta-
latok szerint. A méduszként Tukey-medianokat [[168] biztosité Median-Shift nem hoz
létre 1j elemeket a tartomdnyban, amelyre alkalmazzak. Kiilonosen a Tukey- [168]]
és a Weiszfeld-medians [[176] eredményei kozott nincs jelentds kiilonbség, azonban
az el6bbi szamitdsa valamivel gyorsabb. Végiil, a Median-Shift diszkrét jellegének
kikiiszobolése érdekében — mivel nem ad hozza 4j példanyokat, csak az adott pél-
danyokkal dolgozik —, a végeredmény finomitdsdhoz legmeredekebb-lejt6 modszert
alkalmazé numerikus optimalizalast is lefuttatunk. A minimalizalandé fliggvény az
alabbi:

flay =3 A=) (45)
i=1

ahol n a fékusztavolsdgok szdma, x egy kernelfiiggvény — mi a Gauss-kernelt valasz-
tottuk —, z; az i-edik fokusztavolsag, h pedig a Median-Shifthez hasonlé savszélesség.
Tesztelési eredmények. A mddszeriink nagy erénye, hogy a korabbi hét [62] és
ot [121] pontot igényld algoritmusokat at tudjuk alakitani ugy, hogy csupan harom
(fundamentalis matrix), illetve két (esszencidlis matrix) lokalis affin transzformacio
mintavételezése sziikséges. A robusztus becslések [46] futdsi ideje nem polinomiélis
Osszefiiggésben van a pontok szamaval, ezért nagyon hasznos, ha kevesebb mintavé-
telbdl tudjuk a minimalis modelleket elkésziteni.

A modszereinket természetesen 6sszehasonlitottuk mas megoldokkal is, helyhi-
any miatt azonban itt az 6sszehasonlitdsokat nem kozoljiik. Véleményem szerint ez
az elméleti tjdonsdg a mddszerek legnagyobb erénye. Az érdekl6d6 kedves Olvaso-
nak az eredeti nemzetkozi publikdciok elolvasasat ajanlom [18, [19] a futasi eredmé-
nyek kiértékelésének megtekintéséhez.

4.6. Sikbeli mozgas becslése sztere6 képparra

Az elmult években, egészen pontosan 2020-tdl kezd6dben, els6sorban jarmtre rog-
zitett érzékelOk adatainak a feldolgozasaval foglalkoztam.

18 Angolul: kernel voting
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Amennyiben egy kamerat ugy rogzitiink a jdrm(thoz, hogy a kamera képsikja me-
réleges az uttestre, és az Uttest maga is sik, specidlis mozgast kapunk, amely a kamera
mozgasanak meghatdrozasat jelentésen egyszerusiti.

(Egy zardjeles bekezdés erejéig megemliteném, hogy perspektiv kamera esetén
homografidval a nézeti iranyt korrigdlni lehet. Ha ismerjiik a fiiggbleges iranyt, pél-
ddul IMU adatai alapjan, akkor azt a korrekciét el tudjuk végezni, ami a képsikot
merolegessé teszi az uttest sikjahoz képest. Elméletben ez egy jarhaté ut, am a mai
MEMS technolégiaval készitett gyorsulasérzékel6k sokszor nem érik el azt a pontos-
sagot, hogy a gyakorlatban is életképes legyen ez az elképzelés.)

A lényegi matrix specidlis esete ez a sikban mozgds. A mozgas ilyenkor egy kétdi-
menzids irdnnyal (els6 paraméter) és egy fiiggbleges elforduldssal (mdsodik paramé-
ter) irhatd le, igy a szabadsdgfokunk Osszesen kettd, ennyi paraméter kell becstilni.
A forgatasi matrix és az eltolas ebben a specialis esetben igy alakul:

t, COS & cosf 0 sinpg
t=1| 0 | =p 0 , R = 0 1 0
t. sin « —sinf 0 cosp

A 1ényegi matrix ebben az esetben szintén kiilonleges, ahogyan azt a[J] fiiggelék-
ben olvashatjuk, hiszen a fent bevezetett két szognek a szogfiiggvényei segitségével
adhaté meg négy eleme, a tobbi 6t elem pedig zérus:

0 —sina 0
E ~ | sin(a+ 3) 0 —cos(a + )
0 COS & 0

A formula mutatta meg az Osszefiiggést a pontmegfelelések, az affin transz-
formacidk és a fundamentdlis matrix kozott. Amennyiben normalizéljuk a koordina-
tdkat, tehdt a p + K~ !p Osszefiiggéssel éliink minden egyes pontra, akkor irhatjuk,

hogy

111 + Uo a11v1 air o1y + Vg a21V1 a3 1 0 O
ai2U; Q12V1 + U2 Q12 Q22U1 a2V + vy azy 0 I 0]e=0,
Uy Uy Us Volg Vo1 vy up v; 1
ahol

T
e=[e;1 €12 €13 € € €3 €3 €3 €33 |

a lényegi matrix elemeit tartalmazd vektor. A Osszefiiggés elemit beirva és
a lényegi matrix zérussal szorzott elemeit elhagyva, illetve az elemeket sorrendjét
megvaltoztatva az 6sszefiiggés sokat egyszertisodik:

sin «v
—a11v; 0 axqu; +v2 —an oS &
—a12V1 — U2 1 QA922U1 —a92 sin (Oé + ﬁ) = O (46)
— U9V v Vol —v
2V1 1 2W1 2 CoS (Oé+6>

A jobb oldalon levd [sina  cosa  sin(a+ ) cos(a+ ()] T vektor két egység-
vektor egymas alatt. Ennek megoldasara egy érdekes megoldast fejlesztek ki Korea-
ban [31], amely azonban nem optimadlis. A feladatot legkisebb négyzetes értelemben
mi tudtuk optiméalisan megoldani, ahogyan azt a[K| fiiggelékben ismertetem.
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4.6.1. Tesztelési eredmények

A javasolt algoritmust szintetikus és valds teszteknek egyardnt alavetettiik. A Ebben
a munkdban csak réviden ismertetem az eredményeket, az eredeti ICRA2020 cikk-
ben [[159] b6vebb leiras taldlhaté ugyanazokrol a tesztelési eredményekrol.

4.6.2. Szintetikus tesztek

MATLAB-alapt szintetikus tesztelésiinkhoz véletlen kameraparamétereket allitottunk
el6, melyek megfelelnek a sikban mozgasnak. A kamerdk belsé paramétereit valdsag-
szerlinek allitottuk me, szintén véletlenszam-generator segitségével. A haromdimen-
zi6s szintér — szintén véletleniilszanokként generdlt — pontjait a kamera paraméte-
rekkel levetitettiik a sikra, majd nulla varhato értékd, normalis eloszlasu zajt adunk,
melynek a o szdrdsa a szimuldcié allithaté paramétere. Minden egyes értéket ezer
futtatas eredményeképpen kaptunk meg.

Altalanos teszteset. Az 6sszehasonlitdshoz egy ’klasszikus’, 6tpontos algoritmust [157]]
és a nemrégiben kozzétett Choi-mddszert [31] vettiik alapul. A forgatdsi matrixban
levé 3 elforgatds szogének és az eltolds « szogének a zajszinthez vald viszonyat a
abran lathatja a kedves Olvasd, hdrom kiilonb6zé zajszint esetében. Jol lathatd, hogy
a javasolt mdédszer minden tekintetben jobb eredményt ad a konkurens mddszerek-
hez képest. Az « és 3 szogeknél nincsen lényegi eltérés.

Teszt a sikmozgastol eltérés érzékenységére. A[19] dbra tesztelésekor picit elront-
juk a sikbeli mozgést, a kép és az ut sikjara egy, illetve harom fokos eltérést en-
gedtiink meg a merdlegeshez képest. Ezt ugy kell elképzelni, hogy a vizszintes (X)
tengely mentén elforgattuk a hdromdimenziés vildgot. Az eredményeken, mely az
eltolas a sz0gének a hibajat mutatja, jol latszik, hogy a javasolt, optimalis mddszer a
legkevésbé érzékeny a siktol valo eltérésre.

Egy bekezdés erejéig megjegyezném, hogy ilyen eltérés a kamerdk rogzitése ese-
tén gyakran el6fordul. Homografia segitségével lehet korrigdlni az eltérést, ahogyan
arra 2022-es munkankban [80] javaslatot is tettiink.

Futési id6. A[20] 4bran a futdsi id8ket kapjuk meg [’} A Choi-féle médszer (Line)
egyszerlisége egy picit jobb futdsi id6t eredményét. Az 6tpontos algoritmus igényli
a legtobb szamitasi kapacitast, hiszen joval tobb paramétert becsiil. Azonban érde-
mes észrevenni, hogy a szamitasi id6 a masodperc ezredrészéhez van kézel minden
esetben, ezért akar valds idejii alkalmazasokon is alkalmazni lehet az algoritmusokat.

4.6.3. Valds teszteredmények

ValOs teszteléshez a Malaga@ publikus adatbazist valasztottuk [25]. Ezt az adathal-
mazt teljes egészében varosi kornyezetben gylijtotték olyan autdval, amely szamos
érzékelbvel, tobbek kozott egy nagyfelbontasu sztered kameraparral és 6t 1ézerszken-
nerrel volt felszerelve. A nagyfelbontdsu kamera szekvencidibél mi minden tizedik
képkockat hasznaltunk. A javasolt modszert mindig az egymast kéveté képparra al-
kalmaztuk. Az alapigazség (ground truth - GT) utvonalakat az adatkészletben meg-
adott GPS-koordinatdk felhaszndldsaval allitottuk 6ssze. Minden egyes egymdst ko-
vetd képkockapart egymastol fiiggetleniil dolgoztunk fel, ezért nem futtattunk sem-

YA futési id6k értékeléséhez fontos tény, hogy 2018. kériili asztali szdmitégép-konfigurdcién
késziilt a teszt, egy magon futtatva a MATLAB szamitasokat.
2Ohttps://www.mrpt.org/MalagaUrbanDataset
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Proposed Line
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18. abra. Szintetikus teszteredmények kiilsé kamera paraméterek meghatdrozdsdra,
stkmozgds szimuldldsdval. Az dbrdn a becsiilt eltolds (bal dbra) és forgatds (jobb) szog-
hibdit latjuk (fiiggoleges tengely; fokban). A pontkoordindtdkhoz o-szordsu, nulla vdr-
hato értékil, normdlis eloszldsu zajt adunk. Az 6sszehasonlitott modszerek a javasolt, a
Choi és mtsai. [31]] (Line) és Stewenius és mtsai. [[157] (Five-point) algoritmusai.

milyen optimalizdlast, amely a teljes utvonal hibdjanak minimalizdldsat vagy a hu-
rokzaras felismerését célozta volna. Az egymast kovetd képkockak becsiilt mozgésait
egyszerlien Osszefliztliik. A becsiilt szogek (€ (—180,180]) egyetlen korrekcidja az
volt, hogy folyamatos pélyat feltételeztiink, és igy a szogeket 90°-os modulussal hasz-
naltuk. Példaul, ha a becsiilt szog 110° volt, akkor 20°-t hasznaltunk, —110° esetén
—20°-ra cseréltiik. Osszesen 9 064 képpdrt hasznaltunk fel az értékeléshez.

Robusztus becsléként Barath Daniel doktoranduszom Graph-Cut RANSAC [[13]
(GC-RANSAC) moédszerét valasztottuk, ami egyrészt korszertinek tekinthet6, mas-
részrél a forraskddja nyilvanosan elérhetc’iErl, ezért masok is alkalmazni tudjak.

A GC-RANSAC (és mas RANSAC [46]-szeri mddszerek) két kiilonb6zé megoldot
hasznalnak:

(a) Minimalis mintahoz valo illesztésre és

(b) tulhatarozott esetre, amikor a modell finomitasat végzi az 6sszes kiugro érték
kisz{irése utan.

Az a) pont esetében a f6 cél a probléma megoldasa a lehet6 legkevesebb adat-
pont felhasznalasaval, mivel a feldolgozasi id6 a RANSAC ciklusok szamaval meg-
szorzddik. Egy esetet kivéve (amikor az otpontos algoritmust [157]] alkalmaztuk),
a tesztekben mindig a Choi-féle dolgozat [31]] "Line" nevli mddszerét valasztottuk,
amely minimadlisan két pont megfeleltetésébdl oldja meg a problémat, és a abran
mutatott teszteredmény szerint rendkiviil gyors.

A b) pont esetében 6sszehasonlitjuk a javasolt mddszert, a sikbeli mozgdsproblé-
mat linedris rendszerként megoldé technikat (DLT algoritmus [62]), a Choi és mt-
sai. [31] "line" megolddjat és az altaldnos Otpontos algoritmust [157]. Az a) és b)
pontok esetében vizsgalt kombindcidkat a [2| tablazat tartalmazza.

2lhttps://github.com/danini/graph-cut-ransac
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19. abra. Az eltolds hibdja (fiiggdleges tengely; fokban) a pontszdm fiiggvényében, ha
a kameramozgds nem teljesen sikbeli. Ebben az esetben a képzaj szdrdsdt 0.5 pixelre
dllitottuk be.

A legtobb tesztelt algoritmus tobb jeldltet ad vissza a kameramozgdasra. A legjobb
modell kivalasztasahoz nem hasznaltuk fel a pontok legrosszabb 5%-at az illesztés so-
ran. (Felfelé kerekitéssel, tehat legalabb egy pontot kidobtunk.) gy a legjobb 95%-bél
becsiiltiik meg a modellt, és végiil azt a jeloltet valasztottuk ki, amelyik a legkisebb
atlagos hibat adja a kihagyott pontokon. Az a sikbeli linedris mddszer egyetlen meg-
oldast ad vissza, ezért nem igényli ezt az eljarast.

Az 0sszehasonlitott modszerek pontossagat a abra bal oldali és kozéps6 diag-
ramjai mutatjak. A kumulativ stiriségfiiggvényeket 2| (Cumulative Density Function
— CDF) abrazoltuk. Egy mddszer akkor pontossabb, ha a gorbéje az dbra bal oldaldhoz
kozelebb van. A fels6 diagram a becsiilt eltoldsok, a kozéps6 pedig a forgatds pon-
tossdgat mutatja. Példdul a javasolt modszer (piros gorbe) esetében a 20°-nél kisebb
hibaju forditas visszaaddsanak valdszintisége kb. 90%. Az 0sszes tobbi megoldo ese-
tében ez az érték lényegesen alacsonyabb, koriilbeliil 75% koriil van. Lathaté, hogy a
javasolt mddszer lényegesen pontosabb, mint a versenytdrsaké.

A teljes robusztus becslési eljaras feldolgozasi ideje az 0sszehasonlitott megol-
dok hasznalatdaval a|21|abra jobb oldali diagramjan lathaté. Lathatd, hogy a linedris
megoldé (atlagos id6 0,033 mp) és a Choi-féle [31]] modszer (atlagos id6: 0,032 mp)
vezet a leggyorsabb robusztus becsléshez. A GC-RANSAC a javasolt megolddval kom-
binalva kis mértékben lassabb, atlagosan 0,039 mp. Azonban még mindig jelent6sen
gyorsabb, mint az 6tpontos algoritmust hasznalé becsl6 — a "Line + Five-point" és az
"Baseline" atlagos ideje 0.043 és 0.065 mdsodperc.

Osszefoglalva, a modellparaméterek becslése nem minimélis mintabdl a javasolt
modszerrel jobb pontossagot eredményez, a feldolgozasi id6 jelentds tobbletkoltsége
nélkiil.

A kordbban mar bevezett félig kalibralt kamera esetén az egyetlen bels6 paramé-

22https://en.wikipedia.org/wiki/Cumulative_distribution_function
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20. abra. A feldolgozdsi id6 (milliszekundumban; Matlabban implementdlva) a becs-
léshez haszndlt pontok szdmdnak fiiggvényében. Az osszehasonlitdsban a Choi és mt-
sai. [31]] mddszere (Line) és az otpontos | algoritmus [157] (Five-point) szerepel a
javasolt (Proposed) algoritmus mellett.
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21. abra. A szoghiba (bal - eltolds; kozép - forgatds; fokban) és a feldolgozdsi id6 (jobb
oldalt, mdsodpercben) kumulativ striségfiiggvényei a Malaga-adatbdzis 15 jelenetén
(6sszesen 9 064 képpdr). A valdsziniiségek (fiiggdleges tengely) a szoghiba és a feldol-
gozdsi id6 (vizszintes) fiiggvényében vannak dbrdzolva. A GC-RANSAC [[13] robusztus
becslét haszndltuk a modszerek kereteként. Egy mddszer akkor pontosabb, hogyha a
gorbéje a grafikon bal oldaldhoz kiozelebb van. A mddszerek elnevezését a [2] tdbldzat
tartalmazza.

ter a K = diag(f, f,1) alakban irhaté; ilyenkor az alapvet6 matrix alakja a kovetkez6:

0 __sina 0
72
F = K—TEK—l ~ Sin()‘c)‘—jﬁ) 0 _Cos((;-i-ﬁ)
0 co;a 0

Mind a lényegi, mind az alapveté matrix ritka, a kilenc elembdl mindossze négy
nem nulla. Ezért a becsléshez elég egyetlen affin megfelelés, hiszen egy megfelelésb6l
harom egyenlet adddik, amibdél a két mozgasparaméteren kiviil még egy harmadik
érték is megbecsiilhet6. Ez lehet példdul a félig kalibrdlt kamera fokusztdvja. Ha
a fenti Osszefliggésbe a 1ényegi matrix helyett a félig kalibralt kamera esetére
levezetett elemeket rakjuk, a becslési feladat igy modosul:

—ai11v1 0 ag1Uy + Vg —ao co;oz
—apav —uz 1 A22U1 —Q22 sin(a+03) =0
2
U1 U1 VaUy U2 COS<£+5)
f
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Elnevezés Minimalis Tulhatarozott
Line + Optimal planar Choi-médszer [31] Javasolt optimalis megold6
Line + Line Choi-médszer [I31] Choi-médszer [I31]
Line + Linear planar Choi-mddszer [31] Choi-féle linearis modszer [31]
Line + Five-point Choi-médszer [31] Otpontos algoritmus [157]
Baseline Otpontos algoritmus [[157] Otpontos algoritmus [[157]

2. tablazat. A GC-RANSAC [[13] megoldck kombindcidi, amelyeket a valds kisérletek
sordn haszndltunk (ldsd a dbrdt). A 2. oszlopban a poz becsléséhez haszndlt meg-
oldok lathatok minimdlis mintdbol. A 3. oszlop a modell paramétereinek finomitdsdhoz
haszndlt megolddokat tartalmazza nem minimdlis mintdn.

Jeloljiik az ismeretleneket tartalmazdé vektort n-el! Ekkor

sin

ny f?
cos a
_ | M2 | _ ]
n= = sin(a+/)
ng 2
o cos(%—&—ﬁ)

Az n vektor elemeit pdrositva irhatjuk, hogy

ny sin o N9y cos «

ny sin (a + 3) " ny - cos (a+ 3)
A nevezoOkkel atszorozva €s az eredményt négyzetre emelve kapjuk, hogy

nisin® (a + B) = nj sin” a,
njcos® (a + B) = nj cos” a.
Asin? () = 1—cos? (.) trigonometrikus alaposszefiiggést alkalmazva a koszinuszok
négyzeteire linedris egyenletrendszert kapunk:

—n3 n? cos? o [ n—n3
n:  —n3 cos® (a+ ) | 0 '
Ezzel megoldottuk a feladatot, a szinuszok négyzeteire katunk osszefiiggéseket.
Két fontos dolgot azonban meg kell emliteni:

— Miutén az elemeknek a négyzetét kapjuk meg, tobb megoldads is kapunk, hiszen
az elGjelet a gyokvonas utan nem tudjuk egyértelmiien meghatarozni. A hagyo-
manyos sztered problémahoz hasonléan [[62] azokat az eseteket is megkapjuk,
amikor a térbeli pontok haromszogelés [[61] utdn a kamera mogé keriilnek. A
lathatdsdgi feltétel figyelembe vételével a hamis megoldasokat ki lehet sz{irni.

— Néha nincsen valos megoldds. A linedris egyenletrendszer nem tudja garantdlni,
hogy cos? a-ra és cos? (o + 3)-ra mindig egynél nem nagyobb pozitiv érték jojjon
ki, komplex szogekkel pedig a valés feladatok soran nem tudunk mit kezdeni.
Ilyenkor a negativ értéket nulldra cseréljiik, ezzel +7/2 kapunk a szogekre.

Ezt az algoritmust jelentds elméleti eredménynek tekintem, hiszen félig kalibralt
kamerdk esetén nem kell két kiilon megfelelést taldlni a képparokon, hanem egyetlen
lokalis informaciobdl a két kép kozotti elmozdulds (pdz) megbecsiilheto.
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4.7. Tesztelési eredmények

A javasolt modszereket szintetikus kornyezetben és nyilvanosan elérhet6 valés adat-
halmazokon teszteljiik.

i Ground Truth|
| —— 1AC +GC
——— 1AC + Hist
E 5PC
| 3PC

22. abra. Kapott titvonalak a Malaga-adatbdzisbdl. Az alapigazsdg (GPS-alapon) titvo-
nal sdrga, a javasolt egypontos algoritmus GC-RANSAC-kal pirossal, a hisztogramsza-
vazdssal lildval, a hdrom- és az 6tpontos algoritmusok kékkel és zolddel rajzoltak.

I 1 Act [ 2ACf [C]6PC
—————

w 0.025
>
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Sequence ID

f
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23. abra. Az dtlagos relattv fékusztdvolsdg-hiba, azaz |fet — fieatgt!/ for @ javasolt
(1ACY), a 2ACf [18] és a 6PC [59]] modszerek 15 szekvencidin (0sszesen 6111 képpdr) a

Malaga adathalmazon. Az utolsé sdvhdrmas az dsszes szekvencidra vonatkozo dtlagos
hibdt kézli.

4.7.1. Konkurrens mddszerek

A médszerek sordn a minimadlis megoldokat részesitettiik elényben. Ezért az 0ssze-
hasonlitdsban ezek a mddszerek vettek részt:

— 5PC [121]: A klasszikusnak mondhatd, 6t pontot hasznalé médszer, mely egy
altalanos 1ényegi matrixot szamit ki.

— 6PC [59] : Hartley és Li specidlis, hat pontot hasznalé mddszere, mely a k6zos
fékusztavolsagot is ki tudja szamitani.

— 3PC [59]: Sajat, egyszertsitett algoritmus, ami a egyenlet DLT-szer( [|60]
megoldasa.

— 2PC [31] : A Choi-féle algoritmus, amely ketté pontbdl szamitja ki a stkmozgas
két szabad paraméterét.

— 1AC [159]: Az el6z6 fejezetben ismertetett megoldd, amely egy affin megfele-
1ésbél (1AC) a[46] osszefiiggésen keresztiil kiszdmitja a kamera mozgésat.
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(a) Kalibrdlt kamerdk.

Solver Stability [focal length] General Motion [focal length] General Motion [translation]
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(b) Ismeretlen fokusztdv.

1.0° planar noise [rotation] 1.0° planar noise [translation] 1.0° planar noise, forward motion [trans.] 1.0° planar noise [focal length]
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(c) Altaldnos mozgds helytelen stkmozgds feltételezésével

24. abra. Diagramok szimuldlt teszteredményekkel. (a) Kalibrdlt eset. A kapott forga-
tdsok (balra) és eltoldsok (jobbra) dtlagos szoghibdja (°) a o zaj fiiggvényében dbrdzol-
va. A modszereket minden o esetében 1000 alkalommal futtattuk le. Az 6sszehasonlitott
moddszerek : a javasolt algoritmus(1AC), Kétpontos mdodszer stkmozgdst feltételezbe [31]]
(2PC), David Nistér [122]] 5 pontos algoritmusa (5PC) az dltaldnos kameramozgdsra
és a linedris hdrompontos algoritmus (3PC) stkmozgdsra. Az elsé két dbrdhoz dltald-
nos sikbeli mozgdst vettiink figyelembe. Az utolso kettonél a kamerdk forgatds nélkiili
elore irdnyuld mozgdst végeztek. (b) Fokusztdvolsdg becslés. Az dsszehasonlitott modsze-
rek a javasolt (1ACf), a sajdt dltaldnos kamerdra fejlesztett algoritmusunk [[18|] (2ACf)
Hartley-Li hatpontos mddszere [59] (6PC). A becsiilt fokusztdvolsdgok relativ hibdinak
(vizszintes) log,, gyakorisdgdt (1000 futds; fiiggbleges tengely) zajmentes esetben a bal
oldalon mutatjuk. A kovetkezd diagram a relativ fokusztdvolsdg-hiba (%-ban) ldthato a
zaj o fiiggvényében. A kapott forgatdsok (3. diagramm) és eltoldsok (utolsd kép) dtlagos
szoghibdit (°) a o zaj fiiggvényében dbrdzoljuk. (c) Elrontott sikbeli mozgds: a mdsodik
kamera fiiggbleges irdnyu elforgatdsa tortént egy o = 1.0° véletlenszert forgatdssal. Az
elsé két diagram az dltaldnos stkbeli mozgds esetén a forgdsok és az eltoldsok hibdit mu-
tatja. A harmadik oszlopban az eléremendé mozgds hibdit ldthatjuk. Az utolso képen a
becstilt fokusztdvolsdg hibdja taldlhato. Ldthatd, hogy a javasolt 1AC és 1ACf mddszerek
a seriilt sikbeli kényszer ellenére is meglehetdsen jol mitkodnek.
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1ACf

2PC [31] & 1AC

3PC [23]

5PC [122]

steps 4 x 4 EIG 2 x 2INV + 2 x 2 SVD. 3th degree poly. + conic intersect | 5 x 9 SVD + 10 x 10 Gauss-J + 10 x 10 EIG
1 iter 43 =64 23423 =16 3%log(3) + 12 ~ 22 9524+ 10% + 10° = 2,225
m 1 2 3 5
1-p 0.25 050 0.75 0.90 |0.25 0.50 0.75 0.90 |0.25 0.50 0.75 0.90 0.50 0.75 0.90
# iters 4 7 17 44 6 17 72 459 9 35 293 4,603 146 4,714 ~5-10°

# comps

256 448 1,088 2,816

96 272 1,152 7,344

198 770 6,446 101,266

37,825 324,850 ~ 107

~10°

3. tablazat. Négy kiilonboz6 megoldo (négy blokk, mindegyik négy oszlopbdl dll) elmé-
leti szdmitdsi komplexitdsa egy RANSAC [46]]-szerti robusztus keretrendszerben. A sajdt
modszer az elso oszlop, a mddszert 1ACf-el jeldltiik. A felirt jellemzdk a kovetkezdek : az
egyes megolddk miiveleteinek szdma (#steps; elsé sor); egy iterdciora a becslés szdmi-
tdsi bonyolultsdga (#iter; mdsodik sor); a becsléshez sziikséges megfeleltetések szdma
(m; harmadik sor); a lehetséges kiugro pontok szamdnak ardnyok (1 — p; negyedik
sor); a RANSAC-hoz sziikséges iterdcidk szdma, ha a sziikséges megbizhatdsdgot 99-%-
ra dllitjuk (otodik sor); és a teljes eljdrdshoz sziikséges szdmitdsi becsiilt darabszdma
(# comps; hatodik sor).

— 1ACf [160]: A jelenlegi fejezetben ismertetett, egy affin megfelelésb6l (1AC)
mikéd6 megoldd, mely az f fokusztavolsagot is kiszamitja.

— 2ACf [19]: Két affin megfelelésbo6l (2AC) a 1ényegi matrixot és az f fokuszta-
volsagot kiszdmité mddszeriink, melyet a szakaszban ismertettem.

4.7.2. Szamitasi komplexitas

Ebben a szakaszban az algoritmusok szamitdsi bonyolultsagat hasonlitjuk 6ssze. A[3]
tablazatban az egyes oszlopok egy-egy minimadlis megoldd tulajdonsagait mutatjak.
Az elsé sor a fobb lépéseket tartalmazza. Példaul az 5 x 9 SVD + 10 x 10 Gauss-
J 4+ 10 x 10 EIG azt jelenti, hogy a 1épések a kovetkezdk: egy 5 x 9 maétrix SVD-
felbontésa, egy 10x 10 matrix Gauss-Jordan elimindcidja és végiil egy 10 x 10-es matrix
sajatérték felbontdsa. Alatta az elméleti szamitdsi bonyolultsdgokat 6sszegezziik. A
harmadikban az egyes megolddkhoz sziikséges megfeleltetések szama (m) szerepel.
A negyedik sorban a kiugré pontokra (outlier-ekre) bedllitott értékeket adjuk meg.
Utdna a RANSAC [46] algoritmushoz kiszamitott, elméleti iteracidoszama van felirva
minden egyes kiugré aranyra, a sziikséges konfidenciat 0.99-ra allitva. Az utolsé sor
a RANSAC és a minimdlis mddszerek kombindlt szamitdsi bonyolultsdgat mutatja:
ez az érték egy iteracio bonyolultsadga szorozva az iteracids szammal. Lathatd, hogy
a javasolt 1ACf és 1AC mddszerek vezetnek a legkevesebb iterdcidhoz és a legkisebb
szamitasi bonyolultsaghoz.

4.7.3. Szintetikus teszteredmények

A javasolt mddszer teszteléséhez és a legkorszerlibb eljarasokkal valé G6sszehason-
litdsdhoz teljesen ellenérzott kornyezetben két perspektivikus kamerat generaltunk
a stkmozgas feltételezésével. A kamerak kozos bels6 paraméterekkel rendelkeztek:
fe = f, = 600 (fékusztavolsag) és [300 300]" a doféspont. Minden vizsgélatban egy
véletlen sikot generdltunk, és a sikbol 50 véletlen pontot vetitettiink a kamerdkba.
A pontkoordinatakhoz zéré varhaté értékli Gauss-zajt adtunk o szdrassal. Az egyes
pontmegfeleletések affin paramétereinek meghatdarozasahoz a homografiat a zajos
megfeleltetésekbdl becsiiltiik meg. Ezutan a zajos affin paramétereket minden egyes
megfeleltetéshez a megfelel6 homografidbol szamitottuk [9].
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A kapott forgatas hibdja a Rexv és Ry v' vektorok kozotti szog az aldbbiak sze-

rint: eg = cos™!((Restv)T(Rgev)), ahol v = [\/%, \/%, \/ig], Res: a becsiilt és Ry, az
alapigazsag forgatdsi mdtrixa. Az eltolds hibdjat hasonld mdédon szamoljuk ki — ez
a szO0g az alapigazsag és a kapott forgatdsi vektorok kozott. A kozolt értékek 1000
futtatas atlagai minden egyes o zajra.
Osszehasonlitas kalibralt esetben. Kalibralt kamerak esetén a « és 3 szogeket kell
megbecsiilni. Az eredményeket a abra szemlélteti. Az 6sszehasonlitott algorit-
musok a kovetkezbek: (i) a javasolt megkozelités (1AC); (ii) David Nistér [121] ot-
pontos algoritmusa (5PC); (iii) Kétpontos algoritmus [31] (2PC) és a hdrompontos
linedris algoritmus (3PC). Az 5PC esetében a lényegi mdtrixot 6t pont megfelelteté-
sébdl szamitjuk ki, dltaldnos haromdimenziés mozgast feltételezve.

A abran a szoghiba (fokban) a zaj o fliggvényében van dbrazolva. Az els6
két abran az altalanos sikbeli mozgast vettiik figyelembe, amely a kapott elforgata-
sok és eltolasok hibdit mutatja. Lathatd, hogy az 1AC mindkét esetben a mdsodik
legpontosabb. Az els6 azonban kiilonbozik ebben a két esetben. Azt is megvizsgal-
tuk, hogyan viselkednek a moddszerek, ha a kamerak tisztan el6re iranyulé mozgast
végeznek (forward motion), és a Y tengely koriili forgas nulla. Lasd a abra utol-
so két grafikonjat. Ebben az esetben az 1AC kapja a legpontosabb forgatasokat és a
masodik legpontosabb eltoldsokat.

A abra els6 harom grafikonjan a sikbeli kényszert tigy rontottuk el, hogy a

masodik kamera fligg6leges irdnyat egy 1° szérdsu véletlen szoggel elforgattuk. Ezért
a problémanak tobb (harom) szabadsagfoka van, mint amit a sikmozgast feltételezé
modszerek altalaban figyelembe vesznek. Lathatd, hogy a sikbeli mozgast feltételez6
modszerek koziil a javasolt mddszer a legrobusztusabb az ilyen tipusu zajjal szemben.
Ha a koordindtak zaja > 0,2 pixel, akkor az 1AC a legpontosabb eltolast és a masodik
legpontosabb elforgatdst kapja. Ha a zaj kisebb, mint 0,2 pixel, akkor az 4ltaldnos
otpontos maddszer [122] a legpontosabb.
Osszehasonlitas félig kalibralt kamerakkal. Ebben a tesztforgatékényvben a moz-
gas két szogét és a két kamera kozos fokusztavolsagat becsiiljiikk meg. Az eredmények
a[24b| dbra masodik sordban lathaték. Hirom mddszert hasonlitunk dssze: (i) a java-
solt megkozelitést (1ACK), (ii) a két affin megfelelést hasznalé modszert [[18] (2ACf)
altalanos kameramozgasra; (iii) és egy hatpontos technikat [59] (6PT). A bal oldali
abra a megolddk numerikus stabilitasat kozli: a log,, relativ hibak (vizszintes) gyako-
risdgai (fliggéleges tengely; 1000 futtatdsban), azaz fre = (fest — far) / for, Zajmentes
esetben.

Lathatd, hogy a 2ACf és a 6PC mddszerek esetében a 10~2 — 10° koriili hibak gya-
korisdga nem nulla. Ezért vannak olyan esetek, amikor a kivant fékusztdvolsagot ezek
a modszerek még zajmentes esetben sem allitjak vissza, azaz numerikusan nem elég
stabilak. A javasolt 1ACf ezzel ellentétben teljesen stabil, a hibdk legstir(ibb pontja
1079 relativ hiba kornyékén van zajmentes esetekben.

A abra masik harom grafikonja szerint az 1ACf a masodik legpontosabb f6-
kusztdvolsdgot adja, kissé lemaradva a 2ACf mogott. Az 1j modszer a legpontosabb
forgdsbecsléshez vezet, a becsiilt eltoldsok esetén a mdasodik legjobb eredményt érte
el. A abra jobb oldali grafikonja azt mutatja, hogy az 1ACf a mdsodik legjobb
fékusztavolsagokat kapja, még a sériilt sikviszonyok ellenére is.
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1AC + GC 1AC + Hist 3PC SPC
Id6 (ms) 749 £ 672 16 + 10 098 £ 530 588 £ 527
Id6/Minta # 23 +16 - 31 +64 38 £ 32

4. tablazat. A GC-RANSAC és hiszgtogramszavazds feldolgozdsi ideje (milliszekun-
dumban; C++ implementdcid) és a mintdk szdmdnak dtlaga és szordsa a Malaga-
adatkészleten. A megfeleltetések dtlagos szdma 4070. Az elsé sor a teljes id6t, a mdsodik
véletlen mintdnként az idot tartalmazza. A GPU-ASIFT [33] dltal végzett affin jellemzo-
kivonatolds dtlagos feldolgozdsi ideje 24 ms. A teszteléshez egy NVIDIA GeForce GTX 980
GPU-t alkalmagztunk.

4.7.4. Valos teszteredmények

A javasolt mddszer valés adatokon valé teszteléséhez a Malaga@ [25] adathalmazt
valasztottuk. Ezt az adathalmazt teljes egészében varosi kornyezetben gytjtotték
Ossze. Egy kamera felvételeit emeltiik ki, és csak minden tizedik képet hasznaltuk
fel. 15 kiilonbozo6 tutvonalat tartalmaz az adatbazis, igy mindosszesen 6 képparon
teszteltiik 6ket. Végiil az eredményeket egyszerlien Osszefliztiik. Hogy kizarolag a
minimadlis megolddk hatdsat mutassuk be, mindegyikiiket a teljes utvonal optimali-
zalasa nélkiil alkalmaztuk az egymadst kdveté képpdarokra. Az alapigazsdg utvonalat
az adatkészletben megadott GPS-koordindtdk felhaszndldsdval allitottuk Ossze.
Kalibralt kamerak. Ugyanazokat a mdédszereket valasztottuk ki az 6sszehasonlitasra,
mint szimulalt tesztek esetében. Megjegyzendo, hogy Scaramuzza [148]] egypontos
algoritmusa is versenytars lehet, azonban ez specidlis kamerabeallitast igényel, azaz
a kamerdnak a hatso tengely felett kell lennie. Ez a feltétel nem all fenn a Malaga
adatbazisnal [25]. Az affin megfeleléseket az Affine-SIFT [183]] (ASIFT) modszer se-
gitségével detektaljuk. Az egymdst kovetd képkockdk kozotti mozgds abszolut hosszat
a megadott GPS-koordinatakbdl szamoltuk ki, hiszean a kamera alapu latasndl csak
az elmozdulas irdnyat lehet rekonstrualni, a hosszt magat nem. Robusztus becsloként
a hisztogramszavazast és a Graph-Cut RANSAC [[13] algoritmust valasztottuk. Utobbi
doktoranduszom fejlesztése, és nemcsak korszer(i, hanem forraskéddal egyiitt nyilva-
nosan elérhetd®’] A GC-RANSAC esetében a sziikséges konfidenciat 0.99-ra llitottuk
be, és a szerzdk 4ltal javasolt alapértelmezett beallitast hasznaltuk.

A abra a Malaga-adatkészlet egyes szekvenciainak atlagos szoghibajat (fok-
ban; fiiggbleges tengely) mutatja. Osszesen 6,111 képpdron teszteltiik. Lathatd, hogy
a javasolt mddszer atlagosan feliilmulja a versenytarsak algoritmusat a geometriai
pontossag tekintetében.

A 4] tablazat az egyes megoldokkal kombindlt GC-RANSAC altal igényelt feldol-
gozasi id6t és a mintdk szamat mutatja. A GC-RANSAC a javasolt algoritmussal a
legkevesebb mintaszamot eredményezi, azonban a feldolgozasi id6 kissé magasabb,
mint a 3PC és 5PC algoritmusoké. A hisztogramszavazas robusztus becsloként vald
hasznalata nagysagrendi gyorsulast eredményez.

A tulajdonsagok kinyerése a GPU-ASIFT [33] implementacionkkal egy NVIDIA
GeForce GTX 980 processzoron 24,07 ms idot vesz igénybe minden egyes 1024 x 768
méretl képparra. A teljes folyamat képenként hozzavetdlegesen 40 milliszekundumot

zi https://www.mrpt.org/MalagaUrbanDataset

urlhttps://github.com/danini/graph-cut-ransac
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25. abra. Atlagos szoghiba (fokban; fiiggbleges tengely) a Malaga-adatkészlet egyes
szekvencidin (vizszintes tengely). Az 6sszehasonlitott modszerek a javasolt (1AC), a 3
pontos (3PC) és az 5 pontos (5PC) algoritmusok. A ,,GC” utdtag azt jelzi, hogy a GC-
RANSAC [13] robusztus becslot alkalmagztuk, mig a ,,Hist” a stlyozott hisztogramsza-
vazdst [28]] jelenti. Az utolsé oszlop az dsszes jelenet (Osszesen 6111 képpdr) dtlagdt
mutatja.

vesz igénybe, ami valds ideji feldolgozdsként értelmezhetd.
Tesztelés félig kalibralt kamerakkal.

A becstilt fokusztavolsdgok pontossdgat szintén a Malaga adathalmazon tesztel-
tlik. A megadott bels6 kalibraciék miatt a fokusztavolsagokat ismerjiik, tehat az alap-
igazsag rendelkezésre all. A javasolt 1ACf, a 2ACf [18] és a 6PC [59] mddszereket
minden egymast kovet képparra alkalmaztuk. A robusztus fokusztavolsdg-becsléshez
hisztogramszavazast hasznaltunk. A abra a relativ hibdkat (fliggéleges tengely)
az adatkészlet minden egyes szekvencidjara (vizszintes tengely) mutatja. A relativ
hiba |fest — fieatge|/ far» @hol fe @ becsiilt, f pedig az alapigazsdg fokusztavolsag.
Az algoritmusokat 6sszesen 6111 képparon teszteltiik. Lathatd, hogy a javasolt 1ACf
megoldd a 15 képsorozatbol 11 esetében a legpontosabb fokusztavolsaghoz vezet.
Emellett az 1ACf atlagos hibaja az 6sszes szekvencidra vetitve a legalacsonyabb.

4.8. Affin transzformacio becslése egyenesekbdl

A korébbi algoritmusok mind azt feltételezték, hogy a képrészek kozotti affin transz-
formacié rendelkezésre all. Ahogyan az a tesztelésekbol kideriilt, a becslések érzéke-
nyek az affin transzformacié zajara, ezért azok pontos, jé6 mindségii kinyerése a képp-
arokbdl kritikus kérdés. Ez a feladat gyakorlati szempontbol azonban meglehet6sen
nehéz feladat. A jellegzetes pont leirdk [103] [21), [142] a skdlardl és az orientdcid-
6l csak elnagyoltan (kvantaltan) képesek értéket tarolni, ezért ezekbdl nem mindig
lehet a pontos affin paramétereket kinyerni.

Ebben a fejezetben azt mutatom meg, hogy amennyiben egyeneseket meg tudunk
feleltetni egymasnak, ezek irdnyat felhaszndlva hogyan lehet megbecsiilni az affin
transzformdciot.

Ebben a fejezetben két dolgot mutatok meg:

— hogyan lehet felhaszndlni az egyenesiranyokon tulmendéen az alapvet6 matri-
Xot; és

— optikai aramlds miként tud segiteni a becslésben.
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Affin transzformacié meghatarozasa egyenesekbdl és az alapveté matrixbdl.
El6szor azt nézziik meg, hogyan hatarozzak meg az egyenesiranyok az affin para-

métereket. A pont helyét jeloljitk a kétképenp; = [ uy v }T-el éspa=[u v ]T-

vel, az irdnyt pedig dy; = [ Ly L1, ]T-vel ésdy = | oy Loy ]T,i € {1,2}-vel.

Az A affin transzformaciot a megszokott médon egy 2 x 2 matrix irja fel.
Affin transzformacid becslése

A pontok helyei, az affin transzformacié és az alapveté matrix kozotti kapesola-
tot a egyenlet adja meg. A koordinatakat behelyettesitve a kovetkez6 képletet
kapjuk:

W Uz
ATF U1 = —FT (%)
1 1

Mivel az alapvet6 matrix és a pontok helyének szorzata adja az epipoldris vonalat
a masodik képen, és a matrix és a masodik pont helyének transzponaladsa adja a meg-
felel6 epipolaris vonalat az els6 képen, a vektoregyenlet atirhat6 a kovetkezoképpen :

T l2u _ llu
A |:l2’U N llv ’

ahol az epipoldris egyenesek normadlisai az n; = [ly, llU]T és ny = [loy ZQU}T vekto-
rok.
Ha az affin transzformaciok elemeit behelyettesitjiik, a kovetkezé linearis egyen-

letrendszert kapjuk:
a1 a1 Loy i
= — . 47
{Gm a22:||:l2v:| |:l1v:| “47)

Most az ismert iranyok kozotti kapesolatot az affin paraméterekkel egyiitt irjuk
fel. Az irdnyokat az affin matrix helyesen transzformadlja, azonban a vektorok hossza
nem ismert. Ez a tény a kovetkezéképpen fogalmazhatd meg:

Uy U1

A =01 )
V11 V21
U2 U2

A = Q9 ;
V12 V22

ahol «; és oy az ismeretlen hosszok.
Az alak egyszer(ien atirhatd az affin transzformdciok elemeinek behelyettesitésé-

vel:
aix aig Uyr | U1
= 9
ag1 A2 V11 V21
11 Qai12 U12 U22
Q21 Q22 V12 V22

A végsé probléma a és a |48|egyenletek 0sszevonasaval alakithaté ki. A kapott
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alak linedris, ezt irja fel a kovetkezé hatdimenzids egyenlet:

[ low 0y O 0 0 11 —l1y ]
0 oy 0 gy 0 0 12 —l1y
uyp vir 0 0 —uy 0 as | 0
0 0w v —vo 0 as | 0 ‘ (49)
U112 V12 0 0 0 —U22 aq 0
| 0 0 U12 V12 0 —V22 1 L (6] ] L 0 ]

A megoldast trividlisan ugy kapjuk meg, hogy a jobb oldali vektort megszorozzuk
a bal oldali egyiitthatomatrix inverzével.

4.8.1. Affin transzformacidk becslése optikai aramlasbél

Az affin transzformaciok mds technikdkkal is becsiilhetok, példaul affin-invarians
megfeleltetok [184] segitségével. Tapasztalataink szerint azonban ezek mindsége
nem Kkielégitd, mert a becsiilt transzformaciok zajjal er6sen szennyezettek.

Ezért az affin transzformdcidk kinyerésének egy masik médjat javasoljuk: az affin
transzformaciokat akkor becsiiljiik meg, ha a képek kozotti optikai aramlas rendel-
kezésre all. A becslési probléma egy inhomogén linedris probléma, ahogyan azt itt
targyaljuk. Ezért a becslés nagyon gyors, hiszen egy hatdimenziés problémanak meg-
felel6 matrix pszeudo-inverzét kell kiszamitani.

Feladat leirasa.
Az optikai aramlds adott, igy az egyes kamerdk relativ eltoléddsa ismert. Ezért

irhatjuk, hogy
-]
Yi Yi Ay; |

ahol a [x; ;|7 ésa 2} y]]T vektorok az els6 és a mésodik kép pixelkoordinatdit
jelolik. Magat az dramlast az [Az;  Ay;)! eltoldsi vektorok jelolik.

A feladat az affin transzformdcié becslése az adott pont x, = [z yo]T helyének
kornyezetében. A ’kornyezete’ ebben az esetben azt jelenti, hogy a szomszédos kép-
pontokat is figyelembe kell venni. A pontokat mi egy R sugaru korongban valasztjuk
ki, ahol R az algoritmus statikus paramétere.

Javasolt becslés. Az affin transzformdacié a megfelel6 szomszédos pontok kozotti
kapcsolatokat a kovetkezéképpen irja le:

/ Z;
Ty | ] G111 Q12 Gy

/ = Yi

i a21 A22 Gy

1

Irhatjuk, hogy

SU; @11 A12 Z; Ay,
/ = + .
Yi g1 Q22 Yi Ay

Masik alakba is irhatjuk a tomorség kedvéért:
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o ]
a12
x y 1 0 0 0 (U, x
0 0 0 x y 1 as1 Y.
az2
A bal oldali métrixot jeloljiik C;-vel. Ekkor
T /
Ci[all a1z Gy Q21 G22 Gv} = Xj-

Ha N kiilonb6z6 ponton ismerjiik az d&ramldst, a probléma tulhatarozottd valik:

11 ,
/
C2 Qy, _ X9
a1
/
Cn 22 X' N
Ay

A feladat igy linedrissa valik:

T ’
C[an A12 Gy  G21 (22 av] =X,

ahol C = [CT...CE]T ésx = [xT ... x%]|T.
Az affin paraméterek legkisebb értelemben vett optimadlis becslését a kovetkezo-
képpen kapjuk meg:

[(1,11 A12 A A21 A22 Qy }T:(CTC)_ICTX/.

Megjegyzendd, hogy legalabb harom kiilonb6zé pontra ismerni kell az aramlast.
Haromndl tobb pont esetén a probléma tulhatdrozotta valik.

4.8.2. Vizsgalati eredmények

A tesztelés soran els6sorban valds esetekre koncentraltunk, mivel a munkank f6 célja
a feliileti normalis becslés beillesztése egy 3D rekonstrukcios cs6vezetékbe.
Szintetikus tesztelés

A szintetikus tesztet azért készitettiik, hogy igazolni tudjuk, hogy a egyenlet-
ben megadott képlet helyes. Ehhez egy egyszerti szintetikus tesztkornyezetet imple-
mentaltunk az Octave | programcsomag segitségével. A kamera paramétereit, va-
lamint a térbeli jelenet geometridjat, ami tesztiinkben egy szabalyos gomb, véletlen-
szertien generaltuk. A pontok helyét a kameraképen dltaldban perspektiv vetités [62]
segitségével adtuk meg. Az alapigazsag szerinti affin transzforméacidkat a gomb érin-
t6 sikjain keresztiil generdltuk. Az affin paraméterek a megfelel6 ponthelyeken az
érint6 sikokhoz kapcsolodé homografiak levezetésével hatarozhaték meg, ahogyan
azt 2015-6s munkdnkban [15]] részletesen targyaljuk.
A szintetikus tesztek fo tanulsdga. Sikeresen igazoltuk, hogy a egyenlet helyes, az
alapigazsag affin transzformdciéit mindig pontosan megkaptuk.

25 Octave egy nyilt forrdskédti MATLAB-kl6n. Lasd : http://www.octave.org.
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(¢) Erkély (1) (d) Erkély (2)

26. abra. Eredmények valds képpdrokon. A kézzel kivdlasztott irdnyok piros és kék
szinnel vannak jelolve. A becsiilt feliileti normdlisok fehér szinnel rajzoltak.

27. abra. Becsiilt feliileti normdlisok az egyik KITTI [52]] szekvencia képén. A sdrga,
fehér és piros koordindtdk a vizszintes, fiiggoleges és a képsikra merdleges irdnyokat
jelolik. Az dbrdt érdemes szines nyomtatdsban vagy elektronikus formdtumban nézni.

Vizualis "Debugger"

Kifejlesztettiink egy eszkozt a rekonstrukcids csévezeték futtatasara és a kiszami-
tott feliileti normadlisok megjelenitésére. Ezt az eszkozt angolul "Visual Debugger"-nek
neveztiik el. A pontmegfeleléseket, valamint az irdnyokat manudlisan vélasztottuk ki
a detektdlasi hibak elkeriilése érdekében. Az alapmatrixot automatikusan becsiiltiik
a nyolcpontos mddszerrel [[60]. A stabilizalds a szabvanyos RANSAC modszerrel
tortént.

A vizudlis debugger néhany eredménye lathaté az 26| abran. Modszeriinket a KIT-
TI és a Malaga adathalmazokon teszteltiik.

Feliileti normalvektorok

Teljesen automatikus tesztelési eljarast is végeztiink a teljes rekonstrukciés csé-
vezeték felhasznaldsaval. Egy példa a normalvektorokra a abran lathatd. A nor-
malvektorokat kiilonb6zé szinnel rajzoltuk: a normalisok koordinatdinak abszolut
értékeit vettiik figyelembe ; ha egy vektornak a legnagyobb abszolut koordinatdja az
x, y, vagy a z, akkor rendre sdrga, fehér, illetve piros szinnel rajzoltuk ki.
Normalvektor becslése optikai aramlasbdl. Bar e részfejezet kozéppontjaban az all,
hogy megmutassuk, hogyan lehet az affin transzformacidkat két megfelel6 iranybol
és az alapmatrixbol megbecsiilni, itt azt is bemutatjuk, hogy mds modon is haté-
konyan lehet becstilni az affin transzformacidkat. A fejezetben attekintettiik,
hogyan lehet egy transzformdcidét egy adott helyen meghatdrozni, ha adott a képek
kozotti optikai dramlés ismert. A feliileti normadlisok a fejezetben javasolt opti-
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28. abra. Az LG-SVL [3]] szimuldtor dltal generdlt képeken megjelentitett becsiilt feliileti
normdlisok. A sdrga, fehér és piros koordindtdk a vizszintes, fiiggoleges és a képsikra
meroleges irdnyokat jelolik. Az affin transzformdcidkat az optikai dramldsbdl szdmitjuk.
Az dbrdt érdemes szines nyomtatdsban vagy elektronikus formdtumban nézni.

malis modszerrel becsiilhetok.

A képsorozatokat az LG-SVL szimulator [3] segitségével készitettiik. Az optikai
aramlasokat a HD3 el6re betanitott mély haldzat [182] szamitotta ki. Az eredményiil
kapott képek a abran lathatoak, a becstilt feliileti normadlisok kirajzolddnak. Bar
az affin transzformaciok minden egyes pixelhelyzetre becsiilhet6k, a mintavételezés-
hez a konnyebb értelmezhet6ség miatt szabdlyos ritkds racsot alkalmazunk.

4.9. Osszefoglalas

A disszertaciénak ebben a fejezetében — amely egyébként a leghosszabb az 6sszes ko-
zOtt —, megmutattam, hogy az elmult tiz évben milyen geometriai torvényszer(isége-
inkre épiil6 becsl6 algoritmusokat sikeriilt bemutatnunk a tudoményos kozosségnek.
A munkdbdl az alabbi téziseket sikeriilt kimondani:

I1.1. tézis. Normadlvektor optimalis becslése affin transzformaciébdl, kalibralt

kamerapar esetén 9,10, 110, .

Az 1.1 tézis szerinti elsé torvény alapjan Bardth Daniel doktoranduszommal ko-
zOsen az alabbiak szerint definidltuk az optimalis normalvektorbecslés problémajat
legkisebb négyzetes értelemben:

2 2 2
n = arg, mmz Z (nTW” — aij> , (50)
n’w

ahol

Wi = (VH}) X VH,IQJ,
Wy = (VH}} X VH%),
= (VII. x VII}) .

= (VI x VIIL),

A'%
Wag = (VII2 x VIIL) (51)

Megmutattuk, hogy ez a feladat legkisebb négyzetes értelemben optimélisan meg-
oldhaté. Harom eljarast is kidolgoztunk, a masodik és a harmadik eljaras esetén ku-
tatédcsoportunk kollégdinak segitségét is igénybe vettiink:

— Negyedfokt polinom segitségével.
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— Harmadfokt polinom segitségével P
— Linedris 6sszefiiggések hdnyadosaként |

Az Ujabb mddszerek egyre gyorsabbak, a futési id6 csokkentése motivalta az tjabb
eljarasok kifejlesztését.

I1.2. tézis. Lyukkamera vetité matrixanak becslése affin transzformaciébdl.

Eichhardt Ivan kollégammal, kutatécsoportunk oszlopos tagjaval kozosen meg-
mutattuk, hogy az 1.1 tézis szerinti els6 torvénye alapjan — amelyet a[22] 6sszefliggés
ir le —, ha ismerjiik az affin transzformdciét, a feliileti pontokat és normdalvektorokat,
tovabba a vetiileteket a képeken, akkor lyukkamerara a projektiv matrix paramétereit
meg tudjuk hatdrozni az egyik kamerara, ha a mdasik kamerdnak bels6 paramétereit
ismerjiik. Erre alapozva kidolgoztunk egy algoritmust projektiv matrix becslésére.

A kalibracios algoritmus miikod6képességét kamera-projektor paros kalibracidjan
keresztiil mutattuk meg. A projektor maga inverz kameranak foghaté fel, amely nem
képet (leképzést) készit a haromdimenziods vilagrél, hanem a sikbeli mintat vetiti ki
a térbe.

I1.3. tézis. Homografia becslése affin transzformaciokbdl [17, 16].

Az 1.1. altézis masodik torvényszerlisége négy egyenletet ir fel, amely 6sszekoti
a homografiat és a lokalis affin transzformacidkat lyukkamera modell alkalmazasa
esetén. Az Osszefliggésekbdl Barath Daniel doktorandusszal két becsl6 algoritmust
készitettiink:

1. HA algoritmus. Altaldnos esetben, ha a kamerak paraméterei teljesen isme-
retlenek, két affin megfelelésbdl ki tudjuk szdmolni a kapcsolédé homografi-
at; szemben a hagyomanyos, kizarélag pontmegfeleléseket alkalmazé mddszer-
rel [62], amelynek legaldbb négy megfelelésre van sziiksége.

2. HAF algoritmus. Ha a két kép kozott az alapvetd (fundamentdlis) matrix is-
mert, egyetlen affin transzformacio is elég a becsléshez.

A javasolt médszerek univerzalisak abban az értelemben, hogy mind a minimalis,
mind a tulhatarozott esetekben alkalmazhatdak.

I1.4. tézis. Sikok klaszterezése lokalis affin transzformacidk segitségével, kalib-
ralt kamerak esetén [35].

A 11.3. altézisben kimondott HAF algoritmus segitségével kidolgoztunk Barath
Ddniellel és Jiri Matas cseh kollégaval kozosen egy szegmentald eljarast, amely az
azonos sikhoz tartozo affin megfeleltetéseket csoportositja, hiszen egyetlen megfe-
lelésbél a homografiat meg tudja becsiilni a HAF algoritmus, ha a két kép kozott
az epipoldaris geometriat leiré fundamentalis matrix ismert. A kiszadmitott homogra-
fia alapjan a hozza tartozd térbeli sikot meg lehet hatdrozni, és az azonos sikokat
eredményez6 lokdlis affin transzformaciok kivalasztasa alapjan a sikfeliiletet a képen
szegmentalni lehet. Ez a mdédszer a HAF algoritmus kiterjesztésének tekinthetd tobb
(multi) modell illesztésére.

26 A levezetés megalkotdsaban Nghia Le Minh BSc-s hallgaté segitségét kell kiemelni, aki a for-
malis bizonyitast végsé alakjat megalkotta.

271tt Loczi Lajos kollégam segitségét kell kiemelnem, aki a Mathematica alkalmazdsat vetette be,
és a leggyorsabb megoldot igy taldlta meg.
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I1.5. tézis. Lényegi és alapvet6 matrix becslése lokalis affin transzformacié alap-
jan [18,[19].

Az 1.2-es tézis egy vektoros Osszefiiggést ad, amelyik egy lokalis affin transzfor-
maciot és a fundamentdlis matrixot 6sszekoti. Ennek az egyenletnek a felhaszndlédsa-
val doktorandusz halgatémmal kozosen készitettiink egy homogén linedris egyenlet-
rendszert, amelybdl legkisebb négyzetes értelemben optimdlis becslé eljardst alkot-
tunk meg. Az affin 6sszefiiggésbol két homogén egyenletet kapunk, ezt egészitettiik
ki a pontmegfelelésekbdl szarmazd oOsszefliggéssel [62], ezért minden lokalis affin
transzforméacié harom egyenletet ad. Algoritmusunk ezért harom megfelelésbol, ho-
mogén linedris egyenletrendszer megolddsan keresztiil becsli meg a fundamentalis
matrixot, szemben a hagyomdnyos pontalapu algoritmussal [62]], amely legaldbb hét
megfelelés meglétét feltételezi.

A javasolt algoritmusunk minimalis és tulhatdrozott esetben egyarant miikodoké-
pes.

I1.6. tézis. Félig kalibralt kamera kalibracidja két lokalis affin transzformacio-
bél [19].

A 11.5-0s altézis specidlis esete, amikor a kamera félig kalibralt, azaz ismerjiik a
doféspontot, és csak a fékusztdv ismeretlen. Ekkor a kamera belsé paraméterei ko-
zlil csupan egy ismeretlen, igy az alapvet6 matrix 0sszesen hat szabadsagfokkal bir.
Ezért két lokalis affin transzformacio elégséges a megolddshoz, hiszen ezek Gssze-
sen hat egyenletet adnak. Ehhez javasoltunk egy algoritmust, amelyik a homogén
linedris egyenletrendszerbdl szarmazd nulltérben (magtérben) geometriai és optikai
torvényszeriiségeket figyelembe véve megkeresi a feltételeknek legjobban megfelel6
megoldast.

I1.7. tézis. Sikban mozgdas optimalis becslése kalibralt kamerdk esetén egyetlen
lokalis affin transzformaciobol [159].

Javasoltunk Bardth Déniellel doktorandusszal egy becslé algoritmust, amelyik sik-
ban mozgas és teljesen kalibralt kamerdk esetén a sikban mozgéas két szabadsagfokat
képes megbecsiilni. A két szabadsagfok a fiiggbleges elforgatas és a sikban elmozdu-
las irdnya. Az elmozduldsnak a nagysagat a térbeli latas torvényszertiségei miatt nem
lehet meghatarozni, csak az irdnydra lehet becslést adni.

Az algoritmusunk egy algebrai hibat minimalizdl, a pontmegfelelésekbdl egy, a
lokalis affin transzformdcidbdl tovabbi kett6 egyenletet lehet felirni, igy 6sszesen ha-
rom egyenlet all rendelkezésre a két szabadsagfokra, ezért a feladat mar egy affin
megfelelés teljes megléte esetén is tulhatdrozott. A linedris egyenletrendszer megol-
dasara legkisebb négyzetes értelemben optimalis algoritmust javasolunk, amely tet-
szbleges szdmu affin megfelelés esetén miikodni képes. Az eljdrds minimalis %] és a
tulhatarozott eseteket egyarant kezelni képes.

I1.8. tézis. Sikban mozgas becslése félig kalibralt kamerak esetén egyetlen loka-
lis affin transzformaciobdl [160].

A1l. 7. altézishez nagyon hasonld algoritmust dolgoztunk ki Bardth Ddniellel ko-
zOsen arra az esetre, ha a sikban mozgas esetén ugyanazzal a félig kalibralt kameraval
veszilink fel két képet. Ekkor a két képen az egyetlen ismeretlen bels6 paraméter a

28 Minimalis esetet akkor kaphatunk, ha a hdrom egyenletb8l az egyiket elhagyjuk, péld4ul a
pontmegfeleléseket nem vessziik figyelembe, csak a két affin térvényszertiséget.

64



haj der 274 24

fékusztavolsag.

Megmutattuk, hogy az alapvetd matrixnak igy harom szabad paramétere van: a
kozos fokusztavolsag, a két kép kozotti fliggoleges elforgatas és az eltolds iranya. Ja-
vasoltunk egy linedris megoldét, amely egy lokdlis affin transzformacidbdl képes ezt
a harom paramétert megbecsiilni. Az eljaras tilhatdrozott esetre is miikodik, amikor
egynél tobb transzformdaciébol nyeriink informdcidt, de az optimalitdsa a mddszernek
ebben az esetben nem garantalt.

I1.9. tézis. Lokalis affin transzformaciok becslése egyenesekbol [110].

Nghia Le Minh ELTE-s BSc hallgatémmal k6z6s munkdnkban azt mutattuk meg,
hogy a képeken egymdsnak megfeleltetett egyenesek irdnyait felhaszndlva is ki le-
het nyerni az affin transzformdciékat. Munkdnkban megkiilonboztettiink skdlazott
és skalazatlan egyeneseket. Utdbbi esetében az egyenesek iranya adott csupan, ska-
lazott esetben a szakaszok hosszvaltozatdnak lokalis approximacidja is ismert.

Ha az alapvet6 matrix adott, akkor az eipolaris egyenesek normdlvektoraira fel tu-
dunk irni egy skdlazott 0sszefiiggést, ahogyan azt példaul a Osszefliggésben mar
meg is tettiik, ezdltal egy inhomogén linedris 6sszefiiggésiink van az affin transzfor-
maciora.

Ezeknek az affin transzformacioknak a kinyeréséhez tobbféle algoritmust készitet-
tlink. A becslési mddszereink a linearis részét képesek meghatarozni az affin transz-
formdciénak, az eltoldst a poziciék adhatjdk meg. Ha a skdla nem ismert, a négy affin
paraméterhez minden egyes ismeretlen skdla egy becsiilnivalé paramétert ad hozza.
A linedris egyenletek ebben az esetben homogének az affin transzformdcidra nézve.
Fontos feltétel, hogy legalabb egy skalat ismerni kell, tehat egy inhomogén egyenletre
sziikség van a teljes becsléshez.
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5. III. téziscsoport: Kotegelt behangolas ujszerii alkal-
mazasa nem hagyomanyos problémaosztalyokra

Ez a fejezet egy tjabb teriilettel ismerteti meg az Olvasdt, amelynek a célja a harom-
dimenzids rekonstrukcidoban és kamera autokalibraciéban alapvetének szamité kote-
gelt behangolds (angolul: Budle Adjustment, BA) mddszer felhaszndlasa két olyan
célra, amellyel eddig ismereteim szerint nem foglalkozott senki sem.

5.1. Bevezetés

A kotegelt behangolds olyan problémaosztdlyok esetén alkalmazhatd, amikor nagy
mennyiségl adat viszonylag kevés paramétertdl fligg, és az adatok kétdimenzids mat-
rixba szervezhetéek. A[29] dbra mutat egy ilyen példat.

Eredeti verzidjat sokképes rekonstrukciora fejlesztették ki [167]]. Amennyiben van
N darab kamerdnk és K darab pontunk, minden egyes kamerdahoz minimum hat,
maximum tizenegy paramétert kell meghataroznunk. Vegyiik az els6 esetet, ami ka-
libralt kamerdk esetén lehetséges, azaz amikor a belsé paraméterek ismertek, és csak
a kiilsé paramétereket kell becsiilni: harom forgatdsi és harom eltoldsi paraméter
szamitand6 ebben az esetben. Az M darab térbeli pont értelemszertien harom sza-
bad paraméterrel, a harom térbeli koordindtaval (X, Y és Z) rendelkezik. Osszesen
tehat 6N + 3M paraméter becslését jelenti a rekonstrukcids folyamat.

Ha minden pont minden képen latszik — ami csak elméletileg lehetséges, a gya-
korlati esetekben takarasok is el6fordulnak —, Osszesen 2N - M koordinataértéket
tudunk leolvasni. A kettes szorz6 onnan jon, hogy a képeken vizszintes és fliggbleges
koordinatdkat egyarant le tudunk olvasni.

Ha megszamoljuk az ismert koordindtékat és a becsiilt paramétereket, a feladat
megoldasdhoz az sziikséges, hogy ismert adatokbdl legaldbb annyi legyen, mint sza-
mitandé értékekbdl. Nagy kép- és pontszam esetén 2N - M >> (6N + 3M), azaz
ekkor a feladat jelentésen tulhatarozott.

Ha felirunk valamilyen hibafiiggvényt a rekonstrukcidra, az i-edig kép j-edik
pontja csak az i-edik kamera paramétereitél és a j-edik pont térbeli koordinataitdl
fiigg. Az Gsszes tobbi kamera és pont nem befolyasolja a vetitési pont koordinatait.
Ezért, ha a hibafliggvényt az ismeretlen paraméterek szerint derivaltjuk, a laza fiig-
gb6ség miatt sok zérus értéket kapunk. Mds szdval, a Jacobi-matrix elég ritka lesz,
ahogyan azt a abra bal oldali képén latjuk hdrom kamera és hat pont rekonstruk-
cioja esetén. Numerikus algoritmusok alkalmazdasa esetén a linearizalt normdlegyen-
let is ritka lesz, ugyanannak az abrdnak a jobb oldali képe ezt a tényt mutatja meg.
A normélegyenletet invertalni kell a megoldashoz. Altaldnos esetben az invertalandé
matrix mérete a paraméterek szamaval egyenl6. A normalegyenlet specialis formdjan
jol lathato, hogy a f64atlé mentén kisebb blokkok taldlhatdak. A teljes matrix inver-
zidja a kisebb blokkok inverzidjanak segitségével megadhato, ahogyan azt Laurakis
és Argyros [[102]] munkdja nagyon szemléletesem elmagyarazza, a cikk elolvasat jé
szivvel ajanlom az érdekl6ddknek.

66



haj der 274 24

M
DDDDDE " v
Ms
X =

(a) A Jacobi-madtrix felépitése hdrom kamerds és (b) A bal oldali feladathoz tartozé normdlegyen-
hat pontos rekonstrukcio esetében. let.

29. abra. Numerikus optimalizdlds kotegelt behangolds segitségével. A nem nulla ele-
mek vildgoskékek az dbrdn. Eszrevehetd, hogy a normdlegyenletben a f6dtlé mentén
kisebb blokkok taldlhatdak, ezek invertdldsa gyorsan és numerikus szempontbdl ponto-
san elvégezheto.

Ahogyan az ebbdl a dolgozatbdl is kideriil, kameraképek alapjan lehetséges egy
targy haromdimenzids modelljét megalkotni.

A képalapu rekonstrukcidos modszerek kozos jellemzéje az, hogy gyakran nem
képesek rekonstrudlni a felszin nagyon finom részleteit, melyeket nevezhetiink ér-
dességnek. A textura alkalmazdsa a modellre elfedheti az érdesség hidnyat, hogy
bizonyos mértékig elfedheti a durvasagot, de valtozdé megvilagitas esetén a részle-
tek hianya nyilvanvaléva valik. A szamitégépes grafika [130] ezt a problémat tugy
oldja meg, hogy normalvektorokat rendelnek a feliilethez, igy megvaltoztatva a fe-
lillet eredeti irdnyultsagat. Mivel a renderelés soran a normalvektorokat az arnyaldsi
Osszefiiggésekben is haszndljdk, a normdlvektorok alkalmazdasa lehetévé teszi, hogy
a modell részletesebbnek t{injon, mint amilyen valdjaban.

Léteznek azonban maés rekonstrukcids technikdk is:

— Az tgynevezett vizudlis burok algoritmus [92] egy durva modellt hoz létre egy
képsorozatbdl. A képsorozatokon meghatdrozzak a targy konturjait, és ebbdl
készitenek egy térfogati (volumetrikus) modellt az tigynevezett térfaragas (an-
golul: Space Carving) eljarassal [89]. Ezek a rekonstrudlt modellek sajnos elég
durvdk. Pontosabb moddszerek, mint a 1ézeres vagy strukturdlt fényszkenne-
1és [144] is alkalmazhatéak, feltéve, hogy a megvilagité eszk6zok rendelke-
zésre allnak és nagyon pontosan be vannak kalibralva. Megjegyzendo, hogy
a textura rekonstrukcié csak az arnyékokbdl is lehetséges, ahogyan azt Yu és
munkatdrsai [185] bemutatjak.

— Fotometrikus sztered esetén laborkoriilményeket alkalmazunk. Idedlis esetben
a teljesen sotét szobaban semmi sem latszik, ha nem helyeziink el mi magunk
fényforrasokat. Ha bekapcsolunk egy megvildgitast, a Lambert-torvény alapjan
a fényforras és a feliileti (meréleges) irany meghatarozza a targy szinét a meg-
vizsgalt helyeket. Fotometrikus sztered esetén a feladat az intenzitdsokbodl ki-
szamolni a térbeli modellhez tartoz6 meroleges iranyokat (normalvektorokat),
tovabba a fényforrasok poziciéjat és a megvilagitas erejét.
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Ha egy objektumrdl rogzitett nézépontbdl, de kiilonb6z6 fényviszonyok kozott
készitiink képeket, akkor a megfigyelt intenzitdsértékek felhasznalhaték a normadlis
iranyok kiszamitasara. Ezt a technikat fotometrikus szterednak nevezik, és harom év-
tizeddel ezel6tt Woodham [179, [180] publikélta az eljards alapelveit. Az6ta szdmos
tanulmany jelent meg ezen a teriileten, amelyek megolddsokat kindlnak a problé-
mara. A domindns szakirodalmi megoldasok [[179, (73] (75| 40, 120, |67] feltételezik,
hogy parhuzamos fényforrast alkalmaznak a megvildgitdshoz.

A fotometriai sztere6-technika legijabb tanulmanyai altaldban az arnyékok és a
fénypontok észlelésére osszpontositanak [[68, [7]. Egy mdsik nagyon érdekes meg-
kozelités az ugynevezett szines fotometrikus sztered [32, 20, [71), 68]]: ha a jelene-
tet legaldbb harom kiilonboz6 szint fényforrds vildgitja meg, akkor a rekonstrukcidt
egyetlen kép segitségével lehet elvégezni. Ennek eredményeképpen nem-merev (di-
namikus) objektum [66, [76] rekonstrukcidja is lehetséges.

A fotometriai sztered els6dleges alkalmazasi teriilete a 3D rekonstrukcié [180],
olyan latvanyos teriiletekkel, mint péld4ul a ruhamodellezés [66]. Erdekesség, hogy
még orvosi képalkotasra [93] is lehet alkalmazni.

Ebben a tézisben feltételezziik, hogy a térbeli feliilet kezdeti becslése adott, és a
modszeriink célja a kezdeti geometria finomitasa a normalértékek kiszamitasaval. Ez
a megkozelités hasonlé a Nehab és mtsai. [[120] illetve a Jankoé Zsolt-féle mddsze-
rekhez [75], de mi nem feltételeziink parhuzamos fényforrasokat, mig a klasszikus
fotometrikus sztered algoritmusok ezt teszik. A parhuzamos fényforrasokkal torténd
megvildgitds nagyon komoly hatrdnya, hogy a metrikus rekonstrukcié nem érhet6
el tobbértelmiiség [22] miatt. Ez a tObbértelmiiség akkor keriilhet6 el, ha kiilon-
b6z6 megkotéseket és feltételezéseket alkalmazunk, mint pl. integralhaté normali-
sok [186), 168]], vagy kalibralt fényforrdsok [189]].

A munkankban a Bundle Adjustment (BA) algoritmust [167]] alkalmazzuk foto-
metrikus szteredra. A BA algoritmus a jol ismert Levenberg-féle numerikus optima-
lizalas alkalmazasa azokra a problémadkra, ahol a Jakobi-matrix specidlis, meglehe-
tosen ritka. A mddszert altalaban az un. ’Structure from Motion’ problémak meg-
oldasdra [63] haszndljak, erre fejlesztették ki az ezredforduléd kornyékén. Ebben a
disszertdcioban igazolni fogjuk, hogy a kitegelt behangolds képes a fotometrikus sztered
problémdjdt megoldani. Megjegyezziik, hogy ismert egy mdsik technika is, nevezete-
sen a legkisebb négyzetek valtakozasa, amely mind a fotometrikus sztered [77] és
a Structure from Motion [27, 91] esetében alkalmazhatd, mivel mindkét probléma
felirhat6 a kovetkez6 médon faktorizaldssal irhaté at, ha parhuzamos fényforrasokat
alkalmazunk. A mi esetiinkben a f6 Wjdonsag, hogy az algoritmusunk segitségével a
pontszer( fényforrasokat is kezelni tudjuk.

Miutdn a BA numerikus algoritmus, kezdeti értékek sziikségesek a numerikus el-
jaras elinditasdhoz. Ezeket a kezdeti paraméterértékek mi Jacobs modszerével [73]
kapjuk meg. Ezutan egy tetszoleges fényforrasmodell esetén a finomitja a feliileti
normalisokat a fényforrds paramétereivel egyiitt.

Olyan tesztmintdkkal foglalkozunk, amelyekben a felvett képek minden képpont-
ja érvényes, azaz a rekonstrudlandd objektum egyik része sincsen (6n)drnyékolds
alatt. Ez a megdllapitds nem teljesen igaz a valds tesztekre. A javasolt BA algorit-
mus azonban képes kezelni az drnyékokat és a fénypontokat, ha a megfelel6 pixelek
fel vannak cimkézve, igy ezeket a paraméterek inicializdladsa sordn kell felismerni.
A Hernandez és mtsai. altal kidolgozott algoritmust [67]] hasznaltuk az érvénytelen
pixeleket felismerésére. Az altalunk haszndlt BA implementéci6é [102] képes az ér-
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vénytelen értékeket ado pixelek kizdrasdra is.

Nem a mi munkank az els6, amelyben a nem parhuzamos fénysugarakat felté-
telezziik [178]], mi azonban nem kvadratikus optimalizdlast haszndlunk a a tavo-
li fényforrdsok altal megvildgitott objektum rekonstrudldsara. Ismereteim szerint a
BA ilyetén haszndlata djszer otlet. A pontszer( fényforras alkalmazdasa igen komoly
elénnyel jar az irdnyitottal szemben: az utdbbinal 1étezik egy tObbértelmtiség [22].
Ha nincs a-priori informacié a felszinrdl vagy a fényforrasokrél, a normélvektorok
csak egy ismeretlen affin transzformacio erejéik szamithatdak ki. Pont fényforras ese-
tén azonban lehetséges az egyértelmd metrikus rekonstrukci is.

5.2. A kotegelt behangolas alkalmazasa fotometrikus szteredra

Ebben a szakaszban bemutatom a fotometrikus sztered alapelveit, majd a sajat hoz-
zdjaruldsunkat ismertetem, melynek az eredménye egy djszer( algoritmus.

5.2.1. Fotometrikus sztereo.
Megkozelitésiinkhoz a kovetkezoket feltételezziik:

1. Egy kezdeti modellt adunk meg bemenetként. A cél az, hogy ezt a modellt
finomitsuk a normalisok kiszamitasaval.

2. A bemeneti képeket kalibralt kameraval készitjiik ugyanarrdl a helyrél (nézo-
pontbdl).

3. Minden képen a targyat egyetlen fényforras vilagitja meg. A fényforras pozicidja
képenként valtozik.

A fotometrikus sztered alapproblémadjaban két ismeretlen paraméterkészlet van.
Minden egyes kép esetében a fényforrds paramétereit a hdromdimenzios a; vektor
irja le. A vektor hossza adja meg az intenzitds nagysagat, a vektor irdnya a beérkez6
fény irdnyat. A szintén hdromdimenziés b, vektor a visszatiikr6z6dést meghatdrozo
paraméterek tartalmazza, ami alapesetben a normalvektor. Mivel a kameraparaméte-
rek ismertek és minden kép esetében azonosak, a targy vetiilete altal elfoglalt minden
egyes képpont megfelel egy lathaté 3D pontnak a targy felszinén, és ez a pixel-targy
megfeleltetés egy az egyhez relacio. Ezért a "pont" kifejezést haszndljuk mind ezekre
a feliileti pontokra, mind pedig azok vetiileteire. Az algoritmus els6dleges kimenetele
a felszini normalvektorok lesznek.

/////

gyan hozzdk létre a p pont intenzitdsat, amelyet az i képen megfigyelhetiink:

](i,p) = f(ai>bp)- (52)

Az intenzitdsok I(i,p) értékei ismertek — a képek pixeleinek intenzitdsai —, az f
fliggvényt az itt leirtak szerint hatarozzuk meg a fényforrdsmodellel, a feliiletmodel-
lel és a fényforrasmodellel 6sszhangban.

Ennek az egyenletnek a szerkezete lehetévé teszi, hogy a BA algoritmus [167]]
segitségével egyidejlileg finomitsuk a paramétereket oly mdédon, hogy az egyenlet
két oldala kozotti hiba minimalis legyen.
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A kotegelt behangoldsnak sziiksége van a paraméterek kezdeti értékeire; ezeket
tigy kaptuk meg, hogy feltételeztiik, hogy az objektum feliilete lambert{*] a fényfor-
rasok pedig irdnyitottak, mivel ebben az esetben a paraméterek analitikusan kisza-
mithaték Jacobs-moddszerének segitségével[73].

A megvilagitasi egyenletnek megfeleléen egy képpont intenzitdsa csak az adott
i-edik képhez tartozé a; irdnyvektortol, és a p-edik feliilet b, feliileti paramétereitdl
fligg az intenzitds. Ez teljesen hasonlo a ’Structure from Motion’ feladathoz, amikor
az f-edik képkockdn az i-edik jellegzetes pont csak az f-edik kamera kiils6 és bels6
paramétereitdl, és a rekonstrudlt pontfelhd p-edik pontjanak térbeli koordindatditol
fiigg. Igy a BA algoritmus kicsi véltoztatasokkal felhasznalhaté a fotometrikus sztered
paramétereinek egytittes optimalizalasara.

A BA algoritmus a Levenberg-minimalizdldson alapul, amelyet mi az aldbbiakban
roviden ismertetjiik.

A fotometrikus BA célja a teljes intenzitashiba minimalizalasa. Az aktualis inten-
zitast az optimalizdlandé paraméterek tekintetében az egyenlet segitségével sza-
mitjuk ki minden egyes pixelre, a hibaértékek a szamitott és mért intenzitdsai kozotti
kiilonbségbdl szarmazik. Maga a teljes intenzitdshiba minden kép minden egyes pi-
xelének legkisebb négyzetes hibajaval egyezik meg.

Megjegyzendd, hogy a hibafliggvénybe tovabbi hibatételek is beilleszthetok: a
fény és a feliilet paraméterei felhasznalhatdk ezekben a hibatételekben. Fontos, hogy
ezeket a paramétereket egymastol fiiggetleniil kell haszndlni. Példaul a kezdeti és a
kapott normalértékek kozotti kiillonbség biintethetd.

5.2.2. Levenberg-Marquardt-féle hibacsokkentés

Adott egy f(x) vektor-vektor fiiggvény és egy y célvektor, a feladat, hogy megtaldljuk
azt a x vektort, amely minimalizalja az ||y — f(x)|| hibt.

A Levenberg-féle optimalizalas [[96, [108] a Gauss-Newton és a gradiens modsze-
rek keveréke. Egy iterativ algoritmus, amely minden egyes 1épésben frissiti a para-
métereket a kdvetkezo6 képlet szerint:

(J'T + pD)Ax = I (y — £(x)), (53)

ahol J a Jakobi-matrix, i egy skalar, amely a stlyozast végzi a két komponens kozott.

5.2.3. A Levenberg-Marquardt algoritmus alkalmazasa fotometrikus szteredra

Fotometrikus sztered esetén az megvildgitasi egyenletbdl szdrmazé f(a;, b,) for-
mula adja a hiba alapjat. A nemlinedris optimalizacids algoritmusok alkalmazasanak
nehézsége abban rejlik, hogy a J*J + ulI egy olyan invertdlandé matrix, amelynek
dimenzidi linedrisan nének a pixelek szdmdval. A mi esetiinkben, feltételezve 100 000
pontot (3 paraméter minden egyes ponthoz) és 10 képet (4 paraméterek minden
egyes pont fényforrashoz), a paraméterek szama 3 - 100000 + 10 - 4 = 300 040. Ez adja
a matrix méretét, amelyet minden egyes iteracidoban invertdlni kell.

Ezt a problémadt a kotegelt behangoléds hasznélatdval lehet enyhiteni. Azaltal, hogy
szétvalasztjuk a pont és a fényforras paramétereit, az normalegyenlet a kovetke-
zOképpen irhaté le:

29 A lamberti feliilteket a koznyelv mattnak hivja. Azt a feliiletet nevezziik lambertinek, amelyik
a beérkez6 fény energidjat minden irdnyban ugyanolyan valészintiséggel veri vissza.
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U X As _ T €s
e vl ]erls] o
ahol As és Am vektorok tartalmazzak a pontok és a fényforrdsok paramétereit, és
€s €S e, pedig az y — f(x) hiba megfelel6 komponense. Az U matrix a fénypara-
méterek parcidlis derivaltakbdl all, mig V tartalmazza a normélvektorokhoz tartozé

derivaltakat. A X madtrixban ezek a parcidlis derivaltak egymdssal szorozva vannak.
Ha a fenti egyenletet balrdl megszorozzuk a

I - Xv-!
0 I

matrixszal, akkor az els6 blokkbdl a masodik egyiitthatdmatrixot ki tudjuk nulldzni.
Ekkor az egyenletrendszerbdl a paraméterek pontositasat a kovetkezoképpen fejez-
hetjiik ki:

As = (U - XV XD (JTe, = XV 1), (55)
Am =V 1(JTe,, — XTAs). (56)

Az utdébbi formuldk elénye, hogy a V és az (U — XV ~'1X7T) matrixokat kell in-
vertdlni, és ez gyorsabban elvégezhetd az atalakitasok utdn. A U matrix mérete meg-
egyezik a fényforrds paramétereinek teljes szamaval, és a paraméterek kozotti fiig-
getlenség miatt V egy blokk-diagondlis matrix. [gy példankban a minimalizalds min-
den egyes iterdciéban N = 100 000 darabszdmu, egyenként 3 x 3 méretl kis blokkok
invertalasat végzi el a V madtrixot tekintve. Ezen kiviil szlikséges még egyetlen 10-4 =
= 40 méreti matrix invertaldsa, ami a korszeri numerikus algoritmusok segitségével
pontosan és meglehetésen gyorsan elvégezheto.

5.2.4. Alkalmazas pontszerii fényforrasra

A kotegelt behangoldsnak megvan az a hatalmas el6nye, hogy tetszbleges vilagitasi
egyenletekhez, azaz kiilonb6z6 feliilet- és fényforrdsmodellekhez konnyen adaptal-
hat6 a mddszer.

/////

kozéan fényforras esetén:

A lz‘—X
A+ L —x)? |l — x|

ahol a fényforras paraméterei a k fénystir(iség, a fényforras 1, haromdimenziés pozi-
cidja (egyiittesen adjdk a fényparaméter vektorat a; = [I;, l;, l;, l;, k]), és egy A skaldr
, amely a fény csillapitaséval fiigg 6sszef’|

Egy pont leirhat6 a hdromdimenzios pozicidjdval (jele: x vektor) és a b, normdl-
vektordval. A normdlvektor nem egységvektor, mert a diffiz fénytoréssel eléskalaz-
tunk, azaz a skala azt hatdrozza meg, hogy a fény hanyadrészét sugarozza vissza az
adott feliileti pont. Megjegyzend6 azonban, hogy a pozicidk nem hangolhaté paramé-
terek, hanem 4llanddak, el6re adottak, azaz a kezdeti modell altal meghatarozottak.

30Ez a modell 6sszhangban van a pontszer(i fény grafikus rendszerek fényforrasaihoz, mint pél-
daul Blender vagy POV-Ray (www.blender.org, www.povray.org).
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A )\ paraméter értéket rogzitettnek tekintettiik, igy marad fényforrdsonként négy, pi-
xelenként pedig harom bedllitand6 szabad paraméter.

AU,V és X matrixok kiszamitdsa az Osszefiiggés alapjan Osszetett képleteket
eredményez. Az explicit jelolés helyett a matrixok szimbolikus szamitdsdhoz sziiksé-
ges MATLAB kédot a[[] fliggelékben mutatjuk be.

5.2.5. A paraméterek inicializalasa

Mivel a BA algoritmus numerikusan finomit, az inicializaldsdhoz meg kell adnunk
egy durva becslést a fényforrdsok (a;) és a feliileti pontok (b,) kezdeti értékeire.
Lamberti visszaverddést és iranyitott fényforrasokat feltételezve egy egyszerti RAN-
SAC [46] alapt robusztus mddszert alkalmazunk a paraméterek kezdeti értékének
meghatarozasara, hasonléan Hernandezék [67] és Jankd Zsolt modszereihez [75]].
Az i-edik fényforrds iranyat d;-vel jelolom, ez a a; paraméterezés specidlis esete ira-
nyitott fényforrasra.

= d’b,. Harom megfelelé pontot kivalasztva és az egyenletet felhasznalva a
fény iranyat a kovetkezOképpen lehet kiszamitani:

I<Zap1)
d; = [bp1bp2bp3]_T ](’i,pg)

I (Za p?))
Ezzel tehat, irany-fényforrast feltételezve, kezdeti értéket tudunk a fény iranyara ad-
ni.

Itt a hdrom megfelelé pont olyan pozicidkat jelent, ahol a kezdeti b, vektorok
kozel vannak a valds poziciokhoz . A fentiek szerint feltételezziik, hogy van egy dur-
va kezdeti hdromszoghalo [}, és azt is feltételezziik, hogy ennek a hdlonak van egy
olyan részhalmaza, ahol a pont térbeli koordinatai kozel vannak a valés paraméte-
rekhez. Vagyis, ha ebbdl a részhalmazbdl harom tetszéleges b,-t vdlasztunk, az
egyenlet jo kozelitést fog adni a fényforras iranyara. Miutan ez az érték a numerikus
finomitasnak csupan a kezdeti értéke lesz, kisebb hibak nagy valdszintiséggel nem
befolyasoljak az optimalizacio végeredményét.

Adott d; és b, vektorok esetén az a; = [l;, l;, l;, k] vektor becslését ugy kaphatjuk
meg, hogy a 1; fénypozicids vektort a d; irdnydba mozgatjuk, és a fénysugarzas k pa-
raméterét ugy allitjuk be, hogy az a lehet6 legjobban illeszkedjen az (i, p) megfigyelt
pixelintenzitdsokhoz, azaz az Osszefliggés minél kisebb hibat adjon.

Egy RANSAC-alapu [46] modszert haszndlunk arra, hogy ilyen ponthdrmasokat
kapjunk. A moédszer azon az elvardson alapul, hogy rossz valasztas esetén sok kiugrd
érték lesz.

A modszer a kévetkezoképpen miikodik:

(58)

1. Véletlenszertien kivalasztunk a haromszoghalobdl harom pontot.

2. Az egyenlet alapjan kiszdmitjuk az irdnyitott fényforrds modelljét.

31 Angolul a hdromszdghalét mesh-nek hivjdk, ami hdromszogelt pontfelhét jelent, ahogyan azt a
szamitogépes grafikaban [[90] alkalmazzak
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3. Megszdmoljuk, hany pont tdmogatja az el6z6 1épésben kapott fényirdnyt. Azt
mondjuk, hogy egy p pont akkor tdmogatja a modellt, ha

Vi: |I(i,p) —d]by| <e, (59)
ahol € egy kicsi, empirikusan beallitott kiiszobérték.
4. Az 1-3 1épéseket ismételjiik.

5. Azt a fényiranyt valasztjuk, amelyet a legtobb pont tdmogat.

Ez a moddszer alkalmas arra, hogy durva becslést adjon a fényforras iranyara. A
fényforrasok kezdeti pozicioit is meg kell hatdrozni. Erre a kovetkez6k mddszert ja-
vasoljuk: A targy kozéppontjabdl (sulypontjabdl) elindulunk, és egy viszonylag tavoli
pontot vélasztunk kezdeti kozéppontnak, hiszen minél messszebb van egy pontfény-
forras, anndl parhuzamosabbak a fénysugarai. Mi ugy valasztottuk meg ezt a pozici-
ot, hogy a targypontok szérdsat kiszamitottuk a haromszoghalobdl a kézépponthoz
viszonyitva, és a fényforras tavolsaga ennek a szérasnak a kétszerese.

Ha a fényforrasok helyei és a felszini pontok haromdimenziés koordinatai ismer-
tek, a lampak negyedik paramétere, a sugarzasa, trivialisan becsiilhet6 az egyen-
letbdl, hiszen a feladat linedris a b, normdlvektorra nézve.

5.2.6. Teszteredmények

A javasolt mddszert szintetikus (renderelt) és valos képen is teszteltiik. A fényfor-
rasokat mind a szintetikus, mind a valds tesztekben véletlenszer(ien helyeztiik el a
targy kortil. A fények minden egyes poziciébol az egész targyat megvilagitjak.

Szintetikus tesztek.

Szintetikus tesztek alatt itt szamitdgépes grafika altal elkészitett, azaz mestersé-
gesen renderelt képek feldolgozasat értjiik.

’Dragon’ képsorozat. Az elsé (és egyben a harmadik) tesztsorozat a Stanford
3D Scanning Repositoryb6lP? szarmazik. A letsltétt hdromszdgelt 3D hélét importdl-
tuk Blender-be, és tobb képet rendereltiink mozgd pontfényforrassal. A kiszamitott
szintetikus képeket a abra fels6 sordban lathatjuk.

Részletesen megvizsgaltuk a "Dragon" sorozatot. A let6ltott halé nagyon részletes,
ezért a kiszamitott normalvektorok pontosak lesznek, ezeket hasznaljuk alapigazsag-
nak. A normaltérképet a javasolt mddszerrel rekonstrudltuk. A rekonstrudlt normal-
térképet és annak harom komponensét a abran lehet megtekinteni. Osszehason-
litottuk az eredeti (bemeneti) képeket a szimuldlt képekkel. A pixelintenzitdsok RMS
(Root Mean Square) hibdja 0,18 volt. Ezt a tesztet tobbszor megismételtiik, és mindig
ugyanazt az értéket kaptuk. Meg kell jegyezniink, hogy az inicializdldshoz hasznalt
RANSAC [46] robusztus becslés nem determinisztikus, ezért el6fordulhatna, hogy
nem ugyanoda konvergdl a médszer, de ilyet nem tapasztaltunk. A hiba konvergen-
cigjat tiz kiilonboz6 futtatasra a dbra mutatja be.

A rekonstrukcio és az alapigazsag normadlvektorait is 6sszehasonlitottuk, ahogyan
az a jobb oldalon l4thaté a[30] dbra alsé sordban. A hiba a vektorok kozotti euklideszi
kiilénbség a térben. A normalvektorok hibdjanak RMS értéke 0.05 volt. Ez a hiba a
paraméterek inicializdldsa utdan még 0.13 volt. Mindezek azt mutatjak, hogy a javasolt
fotometrikus BA algoritmus jelentdsen javitja a rekonstrukcié mindséget.
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30. abra. ‘Dragon’ képsorozat. Feliil: Hirom példakép a kilenc renderelt képbdl, a
kezdeti normdlkép, utolsoként pedig az alapigazsdg normdlkép. Alul : A rekonstrudlt
normdltérkép, annak voros, zold és kék csatorndja, végiil pedig a normdlhiba.

test #1

RMS error

10 20 30 40 50 60
iterations

31. abra. Az intenzitdshiba csokkenése az iterdcidok szdmdnak fiiggvényében tiz
kiilénboz6 tesztesetre.

’Buddha’ képsorozat. A harmadik szintetizdlt példa a "Buddha" szekvencidval
dolgozik. A bemeneti képek és a rekonstrudlt normaltérkép a abran lathaté. A BA
a normal térkép hibdjat 0.09-rél 0.06-ra javitja az iterdcidk sordn.

Kvantitativ 6sszehasonlitas.

Moddszeriinket Hernandez és mtsai. [|67]] modszerével hasonlitottuk 0ssze szinte-
tikus adatokon. Az Gsszes szintetikus tesztsorozat Blenderrel generdltuk. Ezutan a
képeket mind a javasolt, mind a rivalis mddszerrel feldolgoztuk. (A rivalis mdédszert
mi is implementaltuk, mivel annak nem taldltuk meg a kozzétett valtozatat.)

Az alapigazsdg normdlvektorokat a Blenderbdl kinyertiik, és 6sszehasonlitottuk
a rekonstrualt vektorokkal. A hibavektor az alapigazsdg és a rekonstrudlt vektorok
kozotti kiilonbség. A rekonstrukcié minéségét a hibavektorok norméjanak négyzetes
kozépértéke (RMS) hatdrozza meg.

A kapott RMS hibék az [5| tdbldzatban szerepelnek. Egyértelmiien kijelenthetd,
hogy a javasolt mddszer 1ényegesen pontosabb, mint a a rivalis [67] mindhdrom
szintetikus tesztesetnél.

Ezen tilmenden megvizsgaltuk az iranyitott és a pontszerti fényforrasokkal vég-
zett rekonstrukciok kozotti kiilonbséget is a "Dragon" szekvencia esetében. A teszt-
képeket irdnyitott fényforrassal generaltuk Blenderben. Tébb képet rendereltiink,
a képek kozott a fényforrdsok irdnydt valtoztattuk meg. Ezutdn a normdltérképet
a paraméterek inicializalasara javasolt RANSAC-alapi modszerrel rekonstrualtuk,
amelyet az fejezetben ismertettiink. A kapott normal térképvektorok RMS hi-

32 http://graphics.stanford.edu/data/3Dscanrep/
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32. abra. ‘Buddha’ képsorozat. Feliil: Hdrom példakép a kilenc renderelt képbdl, a
kezdeti normdlkeép, utolscként pedig az alapigazsdg normdlkép. Alul : A rekonstrudlt
normdltérkép, annak vorés, zold és kék csatorndja, végiil pedig a normdlhiba.

baja 0.16 volt, ami jelent6sen nagyobb, mint a pontfényforrassal kapott 0.12 hiba.
Ez az eredmény megerosit benniinket abban a hitben, hogy pontosabb normadltérkép-
helyredllitds lehetséges, ha a rekonstrudlandd objektumot irdnyitott fényforrds helyett
pontszertl fényforrdssal vildgitjiuk meg.

5. tablazat. A rekonstrukcié hibdjdnak RMS értéke szintetikus teszt esetén.

Tesztsorozat neve Hernandez és mtsai. [67] Javasolt eljaras

Logo 0.169 0.043
Dragon 0.129 0.049
Buddha 0.087 0.059

Valos tesztek.

'BME-logo’. Az elsé teszt soran Blender altal generalt képeket hasznaltuk. Az
objektum egy kis dombornyomott fémlap, amely jo kozelitésel siknak tekinthet6. A
normalkép feliiletét szerettiik volna az algoritmusunkkal megkapni.

A rekonstrukcié végrehaijtdsi ideje 1 perc 43 mésodperc volt [°| A bemeneti ké-
peket és a rekonstrudlt normaltérképet a abran lathatjuk. Itt a normaltérképet —
ahogyan az a grafikdban 4ltaldnosan szokdsos — RGB képként dbrazoljuk: a normal-
vektor (255-v1,255-v9,255 - v3) szinkoddal lett rajzolva. Példdul egy tisztan piros pixelt
a[l 0 0]" vektorral kédoljuk.

Helyhidny miatt itt tovabbi valods teszteket nem tudok kozolni, de az |N| fiiggelék-
ben két tovabbi targy rekonstrukci6jat meg lehet tekinteni.

33 Ezek a vizsgdlatok 2010-ben késziiltek, akkori hardvert hasznalva.
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33. abra. Felsé sor: 8-bdl 3 renderelt kép a "BME logo" szekvencidbdl, a kezdeti
normdltérkép és az alapnormdlok. Also sor: Rekonstrudlt normdltérkép, annak R,
G, B komponensei és a normdltérkép hibaképe.

5.3. Iranyitott pontfelhd térbeli rekonstrukcioja

Ebben a szakaszban megmutatom egy mdsik alkalmazasat a kotegelt behangoldsnak:
a modszert az affin transzformacidk feldolgozasara is fel lehet hasznalni.

Ahogy azt mar fentebb taglaltam, az eredeti kotegelt behangolast [167] térbeli
pontfelh6k rekonstrukcidjara fejlesztették ki. A |4, fejezetben megmutattam, hogyan
lehet az affin transzformdcidk segitségével feliileti normalvektorokat rekonstrudlni,
és igy — a haromszogeléssel [61] kiegészitve —, irdnyitott pontfelhdket lehet kapni.

Egy affin transzformaciot két kép megadott kis részlete kozott lehet értelmez-
ni. A kotegelt behangolds sordn egy mért érték egy térbeli ponttdl és egy kamera
paraméterkészletétdl fligg. Esetiinkben a mért affin transzforméacié két kamera pa-
ramétereitdl is fiigg, ahogyan azt a Osszefiiggésben kordbban megismerhettiik.
Ha A;; jeloli egy adott feliiletdarabka i-edik és j-edik képre vetitett mintdi kozott a
transzformaciodt, akkor ezt fel lehet bontani az alabbi mdédon:

Ay =AGATY

ahol A, a térbeli feliiletdarabka €és a k-adik kép kozotti transzformacid. Ekkor az igy
felbontott A, affin transzformacié mar csak a térbeli transzformdciotdl fiigg. Igy a
kotegelt behangolds alapelve alkalmazhatd.

AInput E—— EXt;iari:i:\gS Outliers
images p removal ﬁ
YLTs

¢ Triangulation
Multi-view Has
matching outliers? ~—No—» Output
Normal
¢ Estimation J
Sequential Bundle

pipeline Adjustment

34. abra. Rekonstrukcids csévezeték kotegelt behangolds alkalmazdsdval.

Az altalunk javasolt rekonstrukcids csévezeték a abrdn l4thatd. A csévezeték
bal oldalan lathaté a sokképes alaprekonstrukcio, amely sok sztered rekonstrukciot
tartalmaz. Ezek a kordbban ismertetett modon készitenek iranyitott pontfelhét, ha-
romszogelésen (triangulation) és feliileti normalvektorbecslésen keresztiil.

A madr felbontott affin transzformdaciokkal és a vetiileti pontokkal a javasolt kote-
gelt behangolas (bundle adjustment) algoritmust futtattuk. A kapott eredményekre
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még egy kiugro érték szirést (outlier removal) is alkalmazunk, amelyek a durva becs-
l1éseket — példdaul ha hatulrdl latszédik egy feliilet —, kiszrik.

Helyhidny miatt a részleteket a disszertdcioban nem tudom ko6zolni, az eredeti
munkdaban tovabbi fontos részletekkel ismerkedhet meg az Olvasé.

h N f"'; | Q

35. abra. Rekonstrukcids eredmények a feliileti pontok és normdlisok mennyiségi 0ssze-
hasonlitdsdhoz. Fent: Egy példa a bemeneti képbdl. Kozépen: A javasolt csévezeték dltal
visszaadott rekonstrudlt pontfelhd. Alul: Ugyanezek a modellek kék vonalmetszetekkel
megjelenttett feliileti normdlvektorokkal.

36. abra. Rekonstrudlt gomb (balra) és a henger két nézete (kézépen és jobbra). A he-
lyesnek cimkézett rekonstrudlt pontokat, a kiugro értékeket és a beillesztett modelleket
piros, sziirke, illetve zold szin jeloli. A henger illesztése esetén a kék szin a RANSAC [46]
dltal kiszamitott kezdeti modellt jeloli. A kiugro értékek a RANSAC minimdlis modelljé-
nek felelnek meg.

5.3.1. Tesztelési eredmények

Noha az eredeti munkankban kvantitativ kiértékelések is szerepelnek, terje-
delmi korlatok miatt a disszertacidoban csak a joval latvanyosabb valés eredmények
kozil ismeretetek néhdnyat. A abran azt lathatjuk, hogy egyszerti geometriai
primitivek (sik, gomb, henger) felvételeib6l hogyan lehet a feliileti pontokat és a
normalvektorokat rekonstrudlni. A abran az eredményiil kapott irdnyitott pont-
felhokre feliileteket is illesztettiink, hogy a kapott térbeli feliileti pontok mindségét is
abrazolni tudjuk.

Egy masik alkalmazasi teriilet sikfeliiletek rekonstrukciéja. Az ember alkotta vi-
lagban sok ilyen talalhato, itt épiiletfalak segitségével mutatom be a rekonstrukcids
cs6vezeték eredményét. A abran tekinthetéek meg épiiletek térbeli rekonstruk-
cioi. A feliileteket a jobb kinézet kedvéért texturaval is ellattuk.
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37. abra. Epiiletrekonstrukcids példa. Balra a kivdlasztott feliiletdarabok ldthatdak,
mellettiik a rekonstrudlt pontok és normdlvektorok a képre vetitve. A jobb oldali képeken
keét kiilonboz6 nézetbdl ldathatoak a rekonstrudlt térbeli feliiletek.

5.4. Osszefoglalas

A harmadik téziscsoport a hdromdimenzids latasban jdl ismert kotegelt behangolas
algoritmus alkalmazdsaval foglalkozik. Kollégdimmal k6zosen megmutattuk, hogy
ezt a klasszikusnak nevezhet6 mddszert mas problémaosztalyokra is sikeresen lehet
alkalmazni.

Els6 ujitasként a fotometrikus sztered elnevezésii problémadra ismertettem egy Uj
modszert, ahol a cél — laborkoriilmények kozott késziilt képekbdl — a feliileti normal-
vektorok és a megvilagitds paramétereinek meghatdrozdsa. Az eredeti eljaras faktori-
zacios algoritmus segitségével miikodik, azonban csak irdnyfényforrasok alkalmaza-
sa esetén alkalmazhatdak, hiszen a fényforrds és a kameraparaméterek akkor linedris
Osszefiiggésben — két vektor skaldrszorzata segitségével — hatdrozzdk meg a képeken
az intenzitdsok nagysdagat. A sajat eljardsunk a kotegelt behangoldssal 6sszhangban
numerikus eljardssal mikodnek, ezért nemlinedris 0sszefliggéseket is képes kezelni a
fény- és a feliileti paraméterek kozott.

Tudomdsom szerint szintén szakirodalmi djitdsnak szdmit a fejezet masodik ré-
szében taglalt eljaras, amely az eredeti kotegelt behangoldshoz hasonléan harom-
dimenzids rekonstrukcidkkal foglalkozik, azonban eredményképpen feliileti normal-
vektorokkal kiterjesztett pontfelhét, azaz irdnyitott pontfelh6t eredményez. Az is-
mert (mért) értékekhez a jellegzetes pontok poziciéin tul a képek kozotti lokalis affin
transzformdciokat is felhaszndlja a kifejlesztett j eljaras.

A két ismertetett Gjszeri mddszer alapjan az alabbi két tézist fogalmazom meg:

III.1. tézis. Kotegelt behangolas alkalmazasa fotometrikus szteredra [48].

Fodor Bdlint doktorandusz hallgatémmal és Jankd Zsolt SZTAKI-s kollégammal
kozosen sikeriilt egy Ujszer( eljarast késziteni kotegelt behangolds alkalmazasaval,
amely a fotometrikus sztereé problémadt oldja meg pontszer(i fényforrds esetén. Tet-
sz0leges szamu fényforrast alkalmazni tudunk, a bemenet egy képsorozat, ahol a
kamera helyét a rekonstrudlandé targyhoz képest nem valtoztatjuk meg. Minden
megvilagitas egy képet eredményez a sorozatban. A mddszer laboratériumi koril-
ményeket igényel abbol a szempontbdl, hogy kiils6 megvilagitasbél nem sziir6dhet
be fény. Minden felvételnél egyetlen megvilagitas engedélyezett.

A numerikus optimalizdcidndl a kezdeti paraméterek meghatdrozdsahoz parhuza-
mos fényforras alkalmazasat javasoljuk. A rekonstrukcié felirhaté paraméter-minimalizalasként,
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ahol az optimalizdlandé paraméterek a fények és a feliileti normdlvektorok. A kote-
gelt behangolds alkalmazdsaval tetszOleges fényforras alkalmazhatd, mi pontszer(
fényforras feltételezésével mutattuk meg a modszer létjogosultsagat.

II1.2. tézis.Kotegelt behangolas alkalmazasa iranyitott pontok rekonstrukcidja-
ra, affin transzformacidk alkalmazasaval [161].

Eichhardt Ivadn kollégdmmal, kutatédcsoportunk tagjaval kozosen megmutattuk
2017-ben, hogy a hagyomanyos kotegelt behangolas algoritmus kiegészithet6 az af-
fin transzforméaciokkal, ezért Structure from Motion (SfM) eljarasok esetén pontos
rekonstrukcios eredmény kaphaté numerikus optimalizdldssal annak ellenére, hogy
a finomitandd paraméterek szama igen nagy. A hagyomanyos pontalapt rekonstruk-
ciéhoz képest minden térbeli pont kiegészitheté a feliileti normdlvektorral is. A nor-
malvektornak a nagysdga nem tartalmaz érdemi informdcidt, csak az irdnya, ezért a
térbeli normdlvektor két tovabbi paramétert jelent, azaz az irdnyitott pont 0sszesen
ot paraméterrel irhatd le. [gy a becslés kiegésziil pontonként tovabbi ismeretlenekkel,
ugyanakkor az egyes képmintdkhoz tartozé affin transzformaciokat a képekbdl meg
lehet hatarozni, azaz a képeken a 2D koordinatdkon tul az affin transzformaciok is
megjelennek ismert adatként.
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6. IV. téziscsoport: Uj médszerek LiDAR mérdeszkozok
és perspektiv kamerak kalibraciojara

Az utolsé kutatdsi teriilet, melyet jelenleg is nagy intenzitdssal mivelek/miiveliink,
kiilénb6z6é modalitdsu szenzorok kozos kalibracidja. Az elmult években LiDAR leta-
pogato eszkozok és digitdlis kamerdk osszekalibraldsara koncentraltunk, tudomdanyos
eredményeket is elértiink, sét, a hivatkozdsaim komoly része is errdl a teriiletrol szar-
mazik.

6.1. Szakirodalmi attekintés

Napjainkban egyre fontosabba valik a kornyezetiinkbél minél tobb és pontosabb in-
formacié kinyerése. Ez kiilonosen az autondém autok és robotok esetében jelent6s
feladat, amelyeknek emberi beavatkozas nélkiil kell irdnyitaniuk magukat. A 3D gépi
érzékelés tobbféleképpen is megvalosithatd, példaul kamerak, mikrofonok, radarok,
szkennerek segitségével, hogy csak néhany lehet6séget emlitsek.

Mostandban az egyik igen kedvelt technoldgia a LiDAR, amely a fénysugarak altal
mért tavolsagok alapjan egy ritkds pontfelhé kinyerésével képes felmérni a kornyeze-
tlinket. A 3D LiDAR technolégia f6 elénye az aktiv megvilagitds, amely a kornyezeti
fénytol fliggetleniil mikodik. Tetszéleges fényviszonyok kozott hasznalhato, és az ér-
zékelOk nagy tavolsagbdl is képesek pontosan letapogatni a haromdimenziés vilagot.
Korlatja a technolégidnak a felbontas, még a dolgozat megirdsakor legkorszer(ibb-
nek szdmitd eszkoz is maximum 256 sugdrral rendelkezik, és ez a felbontds mar 100
méteres tavolsag esetén is nagyon kevés pontot eredményez egy ott 1évé objektum
esetében. A LiDAR mérbeszkozok meglehetésen dragak, egyetemiinkon mi 16 suga-
ras Velodyne VLP-16 eszkozoket hasznalunk, mar ezeknek az ara is millié forint felett
van.

Ugyanakkor sok elénye is van ennek a mérési technoldgianak. Az RGB-kamerak
nagy felbontasu, szines képeket készitenek, és a fényviszonyokkal is meg kell birkdz-
niuk. Kiilonosen éjszaka jelentkeznek problémdk, de nappali fényben a takards és az
arnyék is gondot okozhat a képfeldolgozasban. LiDAR alkalmazasa esetén a fényvi-
szonyok nem okoznak akkora gondot, bar az esés id6ben a fény tiikr6z6dése a nedves
feliiletek mérési hatékonysagat jelent6sen befolyasolja.

Szerencsére a LiDAR-érzékeldk legtobb hdtrdnya a kamerdkkal kompenzdlhatd,
és forditva, igy a 3D LiDAR-okat és a kamerdkat gyakran egyiitt haszndaljdk az ob-
jektumok észlelésére [30, [132] [133], a jelenetek haromdimenziés rekonstrukciéja-
ra [111}, 155, [187] vagy éppen navigacios feladatok megoldasara [112].

A 3D-s latds segitségével a pontfelhdket stiribbé lehet tenni, azonban két kiilon-
b6z6 modalitassal nyert kiilonallé pontfelhé nagyon pontos regisztracidja komoly ki-
hivast jelent. A szenzorok egyiittmiikodéséhez sziikség van a kiilsé kalibraciéra, ami
azt jelenti, hogy a relativ helyzetiiket (eltolas és orientacié/forgatds) ismerni kell.
Létezik néhany illeszt6 algoritmus, de ezek pontossaga nem kielégito.

Robotokra és autdkra rogzités esetében az eszk6zok helye és tdjoldsa nem valtozik
az id6 mulasaval. Ezért elég egyszer meghatarozni az elhelyezkedésiiket, azaz elég
egyszer bekalibralni az eszkozoket.

A kamera-LiDAR érzékel6pdr kalibraldsara szamos modszert javasoltak. A korai
munkdk a 2D LiDAR eszkozokre koncentralnak, ahogyan az példaul Zhang és Pless
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dolgozataban [188]] elolvashat6. Azdta a 3D LiDAR-ok kalibralasara is sok energiat
forditottak a kutatok. A modszerek listdja négy csoportra oszthato:

1. Jonéhany modszer [53][126]] sikbeli sakktabldkat hasznal.

2. Mas algoritmusok [129, 172] egyéb sikbeli feliiletek kiilonb6z6 formait alkal-
mazzak.

3. Az ipar gyakran haszndl gomb alaku céltargyakat a kiilonb6zé modalitésa ér-
z€ékel6k kalibralasdhoz [[143, 183]. Ezeket akar optikai kutatasokhoz [[181) [100]
is hasznositani lehet.

4. Létrehoztak olyan eljarasokat [50,[127] is, amelyek egyaltalan nem haszndlnak
kalibracids objektumokat. Azonban ezeknek a pontossdga messze elmarad a
kivant szinttdl, ezért itt nem foglalkozunk veliik.

A siklemez alapu modszerek f6 problémdja, hogy a LiDAR pontfelhében nehéz
az élek pontos detektdlasa. Kiilonosen, ha alacsony felbontdsu eszkozoket hasznadl-
nak, példdul a nagyon népszer(i Velodyne VLP-16-ot %, melyet mi magunk is hasz-
nalunk, 4s amely csak 16-os fiiggbleges 1ézersugarakkal rendelkezik. Tovabbi problé-
mak meriilnek fel, ha hagyomanyos sakktablamintakat hasznalnak sikbeli tablakon.
Ez a minta a fekete és fehér szinei miatt erésen rontja a LiDAR pontfelh6k mindsé-
gét [[138, [129]. A legtobb esetben a digitdlis kamerdkat elézetesen kalibrdlni kell,
vagyis a digitdlis kamerdk belsé paraméterei ismertek.

Rodruguez és mtsai. [138]] tanulmanyukban egy fekete kor alapu sikot (tablat)
haszndlnak a sakktdblamintdk okozta nagy zaj elkertiilése érdekében. Algoritmusuk
a kor kozéppontjdnak haromdimenzids koordinatait és a sik normdlvektorat keresi.
A kalibraciés objektumnak legaldbb hat pozicidjara van sziikség, a LiDAR-kamera
merev transzformacio kezdeti becslését a jol ismert Levenberg-Marquardt [96), [108]]
(LM) algoritmussal finomitjak.

Alismail munkatdrsaival kozzétett [6] egy automatikus kalibraciés modszert, amely
sikbeli kalibraciés objektumot hasznal. Egy fekete kor alaku teriilet taldlhato rajta, és
ennek a kozéppontja meg van jelolve. A kor kozéppontjat és normalisat egyetlen
nézeti képbdl szamitjak ki, és 6k is a Random Sample Consensus [46] (RANSAC)
mddszert alkalmazzak a sikok robusztus kinyerésére. Végiil az ICP [P szerti algorit-
must futtatjadk, de pont-sik tavolsag alkalmazasaval[29]. A kiils6 paraméterekre a
megoldast nemlinedris optimalizaldssal, a Levenberg-Marquardt [96, [108] numeri-
kus minimalizalas segitségével kapjak meg.

A Park és munkatdrsai 4ltal bevezetett [129] mddszer egy fehér, homogén, hdrom-
sz0g vagy rombusz alaku sik tablat hasznal a kalibralashoz. Tébb képet kell késziteni
a tablarol tobb poziciobdl, legalabb harom tablat kell egyszerre haszndlni. Algoritmu-
suk hatranya, hogy a sikbeli tabla térbeli koordinatdit becsléssel, nem pedig méréssel
hatdrozzdk meg. Ez a tény befolydsolja a kalibracié pontossagat.

Gongék [55]] 2013-ban kozzétettek egy mddszert, amelynél a kalibrdldshoz leg-
alabb két szkennelésre van sziiksége ugyanarrol a haromszog targyrdl, amelyet mind-
két miiszerrel mértek. Ez lényegesen tobb feldolgozandd adatot eredményez. Az 6
modszeriiknek 20 mésodpercbe telik a kalibralés kilenc megfigyelés felhasznaldsaval.

34 Manapsdg Velodyne Puch néven hivatkoznak r4.
35]CP: Iterative Closest Point
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Modszeriik komoly hdtranya, hogy ilyen objektum elééllitdsa nem egyszeri. Rdada-
sul a kalibrdlas sok emberi beavatkozdast igényel, a hdromszogpontok szétvalasztdsat
és a kapcsolddé sikok kivalasztasat a képeken kézzel kell elvégezni.

A Velas és mtsai. altal [172] javasolt mddszer egy szokatlan kalibraciés objektu-
mot haszndl. Fehér hatteret és egy sik targyat feltételeznek, amely négy kor alaka
lyukat tartalmaz. Mddszeriik Levison és Thrun [97] munkdjan alapul. A lyukakat
mind a 3D LiDAR pontfelh6ben, mind a felvett képen automatikusan detektdljak. Ezt
a modszert azonban nem sikertilt reprodukdlnunk a Velodyne HDL-16 LiDAR-unkkal,
mivel ehhez a helyes miikodéshez jéval stiribb pontfelhére van sziikség.

Geiger és alkotdi csapata [53]], akik a nagy sikeri KITTI adatbazist [52] készitet-
ték, bemutattak egy mddszert a LiDAR-kamera pdros kalibraldsara, amely csak egy
LiDAR mérést és egyetlen kamera képet veszi igénybe. A mddszer teljesen automati-
kus, azonban a kalibralashoz tobb sakktdblara és legalabb két kamerdra van sziikség.

A disszertacioban megmutatom, hogy az elmult években munkatdrsaimmal mi-
lyen eredményeket értiink el. Hairom eljarast ismertetek:

— Egy altaldanos kalibracids eljarast, amely dobozokat alkalmaz kalibracios targy-
ként.

— Egy masik, szintén dltaldnos eljarast, ahol egy szabdlyos gomb alaku objektum
segiti a kalibraciot.

— Sakktabla segitségével egy specidlis modszert is bemutatok, ahol az egyedi rog-
zités miatt a szabadsagfokok szama alacsonyabb.

6.2. LiDAR és kamera kalibraciéja dobozok segitségével

Mint a bevezetében emlitettem, mddszereink célja a kamera-LiDAR rendszer kiilsé
paramétereinek pontos meghatdrozasa, szaknyelven kalibrdldsa. Ennek a célnak az
eléréséhez kozonséges dobozokat valasztottunk. Ezeknek a dobozoknak a {6 el6nye,
hogy nincsen sziikség rendkiviili nyomtatasra vagy gyartasra. Dobozokat masrészrol
azért hasznalunk, mert oldalaik egymasra merélegesek, igy e sikok metszéspontjai
pontosan kiszamithatdk a kis felbontasu LiDAR-ral is megszerzett pontfelh6baol.

A sikbeli kalibracidés objektumokat hasznalé mas modszereket er6sen befolyasolja
a sikszélek pontatlan mérése. A mi mddszeriink csak a pontok helyét haszndlja, és
nem vesz figyelembe mas informaciét, példaul az intenzitast, igy barmilyen tipusu
hiaromdimenzidés LiDAR letapogatd eszkozzel haszndlhato.
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(a) Kép a hdrom dobozrdl, amelyek a szen- (b) A jelenet hdromdimenzids, szinezett
zor elétt helyezkednek el. pontfelhdje.

38. abra. Mérés hdrom doboz segitségével. A jelenetet egy autdra rogzitett Velodyne
HDL-64-es Lidar vette fel. A pontfelhdt a kamera segitségével szineztiik ki: miutdn a
két eszkozt egymdshoz kalibrdltuk, a LiDAR pontjait a kamerdkra tudtuk vetiteni, és a
szinértéket a pixelekbdl ki tudtuk nyerni.

A kalibracids folyamatot egyetlen kalibraciés objektumra mutatjuk be, azonban a
modszer konnyen kiterjeszthetd tetszéleges szamu doboz haszndlatdra. Ez az auto-
nom vezetésnél gyakori eset, amikor a kamerak és LiDAR-ok korgytris szerkezetben
vannak elhelyezve, igy néhanyuk latétartomdanydanak nincs metszete . Mivel a méd-
szer a belsé paramétereket haszndlja, a kalibracios doboz elhelyezése szinte tetszo-
leges, a kép torzuldsa nincs hatdssal a kalibraciéra. Az egyetlen kévetelmény, hogy
a kalibraciés doboz harom oldaldnak jél lathaténak kell lennie a pontfelhében és a
képen is.

A médszer bemenetei a kdvetkezok:

1. pontfelhé(k), amelye(ke)t a LiDAR eszkoz tapogatott le;
2. kameranként egy kép;

3. a kamerak belsé paraméterei és

4.

a doboz(ok) mérete(i).

6.2.1. Osszefiiggd pontok klaszterezése

A kalibracids algoritmusunk alapotlete az, hogy ha a kalibracids doboz hét lathato
sarka — harom lathaté sik metszéspontja mentén — ismert a térben, és e sarkok vetii-
letei is ismertek a képen, akkor a probléma PnP problémaraP®| egyszertisodik. Az
elsé cél tehat ezeknek a pontoknak a megtaldlasa, pontosabban becslése a pontfelh6-
ben.

A modszeriink elsé6 1épéseként ki kell vagni a kalibracids doboz kornyéki tertiletet.
A vagas kézzel torténik, nem kell nagyon pontosnak lennie. Amint azt kés6bb bemu-
tatjuk, a kézi kijelolés utdn az algoritmus automatikusan el tudja kiiloniteni a doboz
oldalait az erre a teriiletre es6 egyéb objektumoktdl. Ezutdn az algoritmus sikokat
keres a pontfelhében. A teriileten beliil taldlhaté pontok alacsony szama miatt egy
egyszerl szekvencidlis RANSAC alkalmazhat6. A RANSAC minden egyes itera-
ciéban — az euklideszi tdvolsag alapjan — kivalasztja azt a sikot, amelyikhez a legtobb
pont tartozik. Ezutdn a kalibraciés doboz lathaté oldalait detektdlja. Azokat a sikokat

36 pnP: Perspective n-point Problem.
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kell kivélasztani, amelyek a leginkdbb merdlegesek egymadsra. Ehhez bevezetjiik az
alabbi hibat, ennek lehetséges minimumat kell meghatdrozni:

E(Ill, o, Il3) = ’anIl2| + |111T1’13‘ + |n2Tn3|, (60)

ahol ny a k-adik stk normalvektora (k € {1,2,3}). Mivel a pontfelh6ben a sikok
szama alacsony, igy a kimerit6 keresés a sikjeloltek kozott nem igényel sok szdmitasi
id6t. Ennek a 1épésnek az eredménye lathaté a abra bal oldali képén, ahol a
dobozt egy székre helyeztiik, és a sugaron kiviil es6 pontokat kizartuk. A szekvencialis
RANSAC algoritmus [49] o6t kiilonb6z6 sikot taldl, majd a doboz harom oldalaként a
piros, a zold és a sarga sikot valasztotta ki.

39. abra. Bal oldal: Szekvencidlis RANSAC dltal megtaldlt sikok. Jobb oldal: a zold
pontok a dobozmodellhez tartoznak.

6.2.2. Robusztikfikacid: kiugro értékek eltavolitasa

A javasolt algoritmus kovetkez6 1épése a kiugro értékek eltavolitasa. Fontos ez a rész-
feladat, mivel a kovetkez6 1épésben az illesztett sikokat az euklideszi tdvolsagok alap-
jan finomitjuk, és a kiugro értékek rossz illeszkedést eredményezhetnek. A LiDAR
pontfelhét erésen befolyasolhatja a zaj, példaul a textira okozta tadvolsag-tiikroz6dés
torzitasa, ahogyan azt Park és munkatdrsai is megemlitik [129]. A kiugré pontokat —
amelyek a kalibraciés dobozba tartoznak, de erds zajhatas alatt allnak —, kizarjuk a
tovabbi szamitdsokbdl. Az el6z6 1épésben kapott sikok pontjait L1, L2 és L3 néven
jegyezziik meg, a sorrend nem szamit.

Az algoritmus ismét a RANSAC moddszert [46] haszndlja a kiugro értékek megha-
tarozdasara, de ezuttal a modell harom merdéleges sikot tartalmaz. Az el6z6 1épésben
azokat a sikokat valasztottuk ki, amelyek a formula alapjan a legkisebb hibat ad-
jak, ekkor a merdlegesség még nem volt szempont. A modellillesztés a kovetkezokép-
pen torténik: el6szor harom pontot valasztunk ki L1-b6l, ezek a pontok meghataroz-
nak egy sikot, majd tovabbi két pontot valasztunk ki L2-bél, ez a két pont meghatdroz
egy ujabb sikot, amely merdleges az elsére, és végiil még egy pontot valasztunk ki
L3-bdl, ez hatdrozza meg egyértelmlien a harmadik sikot, amely meréleges az elsé
kettére.

Az el6z6 szakasz és ez a rész redunddnsnak tinhet els6 latasra, de ez mégsem
igaz. Az els6 célja a kalibrdcids doboz elkiilonitése a tobbi objektumtdl, mig ez a
masodik 1épés a zajos dobozpontok meghatarozasara szolgal.
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6.2.3. A doboz paramétereinek iterativ finomitasa

Miutdn a kiugré értékek kikeriiltek a ponthalmazokbdl, két 1épésbdl 4ll6 iterativ al-
goritmus finomitja a doboz sikjait a pontokhoz. A finomitas feladata, hogy harom,
egymasra merdbleges sikot pontosan illesszen a ponthalmazokhoz.

Forgatas meghatarozasa. A forgatasi 1épésben két sikot valasztunk ki, és elforgat-
juk 6ket a metszésvonaluk mentén — azaz a doboz éleinek mentén. Az elforgatds
minimalizdlja a pontok és a sikok kozotti négyzetes hibak osszegét.

Legyen p;, p, és p} az L1, L2 és L3 tartoméanyban a pontok jele, ahol j a pontok
indexe. Jelolje q' az i-edik sikban fekvé pontot, amelynek nem kell a p} halmazban
lennie. Legyen n’ az i-dik sik normalvektorai. Az i-edik sikot egyértelmien meghata-
rozza a q' pont és az n’ normaélvektor.

Az illesztési problémat ugy tekintjiikk, hogy a pontok négyzetes tavolsdgainak
Osszegét szeretnénk minimalizalni a megfelel6 sikhoz képest. A legkisebb négyze-
tek koltségfiiggvényhez a pont-sik tdvolsdgokat hasznaltuk. Ezt a kdvetkezéképpen
irhatjuk le:

. . .12
(bl —q) o (61)

i=1 j=1

Az 3altalanossag elvének megsértése nélkiil a vildg koordindta-rendszerét a kockasi-
kok metszéspontjahoz rogzitjiik, a koordinata-rendszer f6 iranyait pedig a kocka élei
adjak. Tekintsiik a harmadik tengely koriili v szogl elforgatast! Ekkor a forgatdsi
matrix a kovetkez6:

(62)

_ o O

c
0
ahol ¢ = cosv és s = sinvy. A hdrom sik normélvektorai a kévetkezéek: [1 0 0]7,
0 1 0]7,és[0 0 1]7. A forgatds az illesztési hibat nem befolyasolja, ezért a mi-
nimalizalasi feladatot gy irhatjuk, hogy

0 T

m; cC —S

C" = ZZ s ¢ O p}—qi n| . (63)
i=1,2 j=1 0 0 1

Elemi 4talakitdsok utdn a koltségfiiggvény |Ax| alakba irhaté x’x = 1 feltétellel,
ahol

[ o1 -y ]
1 1
A=|"m T ,x:{c}. (64)
1 xy S
L y2, Th,

Az m; és my konstansok az els6 és a masodik sikhoz tartozé pontszamokat jelo-
lik. A x értékére legkisebb négyzetes értelemben optimélis megoldast az AT A métrix
legkisebb sajitértéknek megfelels sajétvektorabdl nyerjiik k| A y szoget a kovetke-
z6képpen szdmitjuk ki: v = atan2(s, c).

37 Az AT A matrixnak mindig két nemnegativ valds sajatértéke van.
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A X és Z tengelyek koriili elforgasok hasonlé mdédon szamithatéak Kki.
Eltolas meghatarozasa

A dobozhoz tartozo eltolds a stkok harom normalisa mentén, egyesével torténik.
Az eltolds meghatdrozdsdhoz nagy segitség, hogy eltoldskor csak a kivalasztott sik
pontillesztési hibaja valtozik, ha a doboz eltoldsa parhuzamos a sik normadlisaval.

A[61] 6sszefiiggésben leirt koltségfiiggvény igy médosul:

:§3«¢—¢—amef (65)
j=1

ahol « az eltolds hosszat jelzi. Az i-edig sikhoz m; darab pont tartozik. Erre a matema-
tikai problémadra konnyen lehet legkisebb négyzetes értelemben zart alaki megoldast
adni, hiszen

_ Z;n:ll (p; - qi)Tni

m;nT'nt

A t eltolasvektort a harom meroleges iranyban egyenként kell kiszamitani. A fel-
adat azonban egyetlen 1épésben is megoldhatd. Ebben az esetben tekintsiik az eltolasi
problémat a kovetkez6 koltségfiiggvény minimalizalasanak:

3 my
=2 Z

Mindez a Bt = c homogén linearls egyenletrendszer alakjdba irhatd, amennyiben

2

—q —t)" (66)

[ 0t ] [ n'T(pi—q') ]
nlT nlT ( 11111 . ql)
n*t n*" (pt — q°)
B=| : |, ¢c= : ) (67)
n2T n2T (przn . q2)
n3T n3T (p3 q3)
_n3T_ _n3T(p§n3_q3) |

ahol az n’T sorvektor az nJ oszlopvektor transzponaltjat jeloli. A koltségfliggvény
minden egyes tagja egy egyenletet ad a rendszerhez. A megoldds a jél ismert t =
= (BTB)f1 B¢ formula segitségével szamithat6 ki. Mivel az n', n? és n® vektorok
merdlegesek egymdsra, a B métrix mindig nem-szinguldris, igy a matrix inverze min-
dig kiszamithatd.

6.2.4. Konvergencia

A fenti forgatdsi és eltolasi 1épéseket konvergencidig ismételjiik. Azt tapasztaltuk,
hogy kevesebb mint 30 iterdcié elegendd volt a szigoru ledllési feltétel teljesitéséhez.
A javasolt mddszert ugy futtattuk, hogy a koordindta-rendszer origéja, ahol a sikok a
tengelyhez igazodtak, adta a kezdeti eltolasi/forgatasi paramétereket. Azt tapasztal-
tuk, hogy az iterdcid kivétel nélkiil minden esetben konvergalt.
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6.2.5. Kiils6 paraméterek kalibralasa

Kiils6 paraméterek alatt a kamera és a lidar koordinata-rendszerei kozotti transz-
formacidt értjiik, amely egy egybevagdsagi transzformaciot jelent haromdimenzids
elforgatassal és eltoldssal.

A doboz oldalainak iterativ finomitdsa utan a kalibracids doboz sarokpontjai ki-
szamithatok, hiszen a doboz méretei ismertek. A abra szines pontjai a doboz
sarkait jelolik, a dobozok teljes kornyezete volt az algoritmus bemenete, miutdn ma-
nudlisan kivagtuk az eredeti pontfelh6kbol.

Ha egy LiDAR-LiDAR paros kiils6 paramétereit ismerni kell, az algoritmus kiilon-
kiilon is meg tudja taldlni a LiDAR pontfelh6kben a sarokpontokat. Ezutdn a két
pontfelhd kozotti transzformdcid kiszamithatd a dobozok sarkainak helyeib6l pont-
regisztracioval [8, 169, 70]@

A kalibraciés médszer LiDAR-kamerds rendszerek kalibraldsara is hasznalhatd.
Ebben az esetben a kalibraciés doboz sarkainak vetiileteit kell kivdlasztani a feldolgo-
zott képen. Ezutdn a kivdlasztott pontokat a Harris [[58] sarokdetektorral finomitjuk.
A kiilsé paraméterek megtaldlasanak problémaja ekvivalens egy PnP problémaval,
mivel a 3D-2D pont-pont megfeleltetések ismertek. Mi az Effective-PnP (EPnP) algo-
ritmust [94]] alkalmaztuk. Mivel a kamerak mar kalibralva vannak, a kamera belsé
paramétereit a PnP futtatdsa soran figyelembe vettiik. A radialis és tangencialis tor-
zitdsnak nincs hatdsa a kalibracié pontossagara, hiszen a képeket a kalibracié utan
ezen paraméterek ismeretében ki lehet egyenesiten

6.2.6. Vizsgalati eredmények

A modszert szintetikus és valds tesztadatokon egyarant ellendriztiik. A szintetikus
tesztekhez a Blender Sensor Simulator (Blensor) [1] programot hasznaltuk, amely
egy nyilt forraskddu szimuldciés csomag a széles korben hasznalt 3D modellezé és
rendereld szoftverhez™} A valds eredmények nagy és kis felbontést LiDAR-eszk6z6kbél
szarmazé szines pontfelhékbdl és pontfelhd-fizidkbdl dllnak.

Szintetikus tesztek

A Blender egy ingyenes és nyilt forraskodu szoftver 3D szimuldciéhoz, rendere-
léshez, animdciéhoz és modellezéshez. Tamogatja tobb kamera hasznalatdt, szamos
paramétert allithatunk be, akar fotérealisztikus képek is mentheték. A Blender szin-
tetikus kornyezetén beliil sakktablakat és egy kalibrdacids dobozt modelleziink a va-
16s4ghi tesztforgatékonyvek szimulaldsdhoz. A Blensor [1]*]egy szenzorszimulaciés
csomag, amely a Blender képességeit kiillonb6zo LiDAR és fényid6-alapu eszkozokkel
béviti. A szintetikus tesztekhez a Velodyne-64 LiDAR-t haszndltuk az alapértelmezett
bedllitasokkal, azonban lehet6ség van a pasztazdsi tartomany, a zajszint, a forgasi
sebesség bedllitdsara. A mi tesztiinkben csak a zajszintet valtoztattuk. Az érzékel6tol
mért alapigazsdg (GT) tavolsdghoz Gauss-zajt adtunk hozzd, amelynek varhato érté-
ke zérus, szordsa pedig 0 és 0,14 kozott valtozott. Ez azt jelenti, hogy a zajos pontok
a tavolsagérzékelo altal vetett sugarakon helyezkedtek el.

38 A feladat megolddsa a @ fiiggelékben olvashatd.

39péld4ul az OpenCV fiiggvénykonyvtarban az undistort fiiggvény alkalmas a képek kiegyenesi-
tésére.

www.blender.org

www.blensor.org

40
41
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A virtudlis jelenet egy példdja lathaté a|40| dbrdn, amelyet a Blensor [1] szimula-
ciés csomag hoz létre. A jelenet 1étrehozasa sordn szem el6tt tartottuk, hogy harom
rivalis algoritmusnak ugyanazt a kamera-LiDAR rendszerbedllitast kell hasznalnia, és
mindegyik mas-mds objektum(ok)at hasznalt a kalibralashoz.

40. abra. Példa a Blensor dltal létrehozott tdjképre [[I]]. A bal és jobb oldali piramisok
a kamera, illetve a LiDAR helyét mutatjdk.

Az alabbi mdédszereket hasonlitottuk 0ssze:

— Az els6 algoritmus, amelyet Geiger kutatdcsapata mutatott be [53], sakktabla-
kat hasznal.

— Park és munkatdrsainak médszere [129] poligonadlis tabldkat alkalmaz,

— mig a javasolt algoritmus egy (virtudlis) dobozt alkalmaz a kalibrdlandé beren-
dezések relativ p6zdnak meghatdrozasahoz.

Geigerék algoritmusdnak, amelyet a grafikonokon ’kitti’ néven jeloltem, legaldbb
két kameraképre van sziiksége a kalibraldshoz, minél tobb sakktablardl. A teljesen au-
tomatikus médszer a kameraképeket feldolgozva rekonstrudlja a sakktablakat, majd
megprobalja egyesiteni a pontfelh6t a LiDAR érzékel6 altal felvett pontfelhovel. Az
utolsé 1épés problémas lehet, mert sokszor téved, hiszen nagymértékben fiigg a ka-
libralas kornyezetétdl. A kalibrdcids adatok megszerzéséhez a szerzék weboldaldn
talalhaté online demo*2t hasznaltuk.

A ’polygonal’ néven megjelolt algoritmust Park és munkatarsai fejlesztették [129].
Tesztjeinkben a mddszert a szerzék javaslatanak megfeleléen 6t gyémant alaku sik-
beli tablaval haszndltuk. E tabldk pontjait egyenként, kézzel kell kivalasztani a Li-
DAR pontfelh6ben. Ezutdn a tdblak sikjait a RANSAC segitségével becsiiltiilk meg, és
a LiDAR péasztazasi vonalak segitségével kiszamitottuk a virtudlis pontokat. Ezek a
pontok az egyes tablak éleinek becslésére szolgdlnak, és ezen élek metszéspontjai a
tabla sarkait eredményezik. A metszéspontok vetiileteit a FAST [140] jellemzo-
pontokbdl valasztottuk ki. Végiil a kiilsé paraméterek kinyerésére szinguldris érték
dekompoziciét (SVD) és a Levenberg-Marquardt algoritmust hasznaltunk.

Valos kisérleteink soran azt tapasztaltuk, hogy a LiDAR térbeli pontfelh6 zajszintje
nemcsak a targy texturajatol és anyagatdl, hanem a LiDAR érzékeld tipusatol is fligg.
Még az azonos gyartotdl szarmazd LiDAR-ok is kiilonbozhetnek — a Velodyne-16 rit-
kas pontfelh6je pontosabb, mint a nagy modelljébdl, a Velodyne-64-b6l szarmazd
stir(ibb pontfelhé.

42 www.cvlibs.net/datasets/Kkitti
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Az algoritmusokat a LiDAR pontfelhére haté Gauss-zajjal teszteltiik. A szdras (o)
0 és 0.14 kozott valtozott. A szintetikus tesztekben a LiDAR érzékel6t a (4.72945, —
—5.24017,8.76321), mig a fékamerdt a (—5.5727, —6.98041, 3.55163) ponton helyez-
tiik el, a tdvolsagokat méterben mértiik. Két kamerat és ot sakktablat hasznaltunk a
Geiger-mddszerhez, 6t négyzet alaku tablat a Parkék altal [129] javasolt médszerhez,
és csak egy kalibraciés dobozt helyeztiink el a sajat algoritmusunkhoz. A sakktablak
és a sikbeli tabldk mérete 2 x 2 méter, a kalibraciés dobozé 1 x 2 x 3 méter.

A modszerek értékeléséhez 6sszehasonlitottuk a kiilsé paramétereket (forgatds és
eltolds) és az alapigazsagot (GT). A abra fels6 abrajan lathat6 forditési hiba az
alapigazsag forgatdsi vektor és az algoritmusok altal becsiilt vektor k6zotti euklideszi
tavolsag.

A forgatasi hiba kiszamitasa nem trivialis, mivel egy forgatas tobbféleképpen is
abrdazolhatd: harom szog, vagy ortonormadlis matrix, vagy éppen egy tengely és egy
forgatasi szog segitségével. Tobb hibametrikat is 0sszehasonlitottunk, ezek jellem-
z0i a teszteseteink esetében megegyeztek. Egyszerlisége miatt a hibat reprezentald
RZL,R matrix forgdasi szogét a jol ismert képlettel [36] szdmoltuk ki az alédbbiak sze-
rint:

a=cos ' (tr (RErR) — 1) /2), (68)

ahol Rgr a Blensor adatokbdl kinyert alapigazsag (Ground Truth — GT) forgatési
matrix, R pedig a tesztelt algoritmusok 4altal kapott forgatadsi matrix.

A[47] abra az algoritmusok eltoldsi és forgatdsi hibait mutatja. Egyértelminek ti-
nik, hogy Parkék mddszere, amelyet az dbrdkon ‘polygonal’ jeloli, és a mi mddszeriink,
amelyet ‘proposed’ jelol, nagyon pontosan ki tudja szamitani a forgatdsi matrixokat,
hibajuk még nagy szdérdsu Gauss-zaj jelenlétében sem haladja meg az 1,5 fokot. Ez jo
eredmény, mert még a forgatasi matrixok kis hibaja is er6sen befolyasolhatja a szines
pontfelh eredményét, kiilondsen akkor, ha az objektumok nagy tavolsdgban helyez-
kednek el. Az algoritmusok eltoldsi hibdja 5 centiméter és 0,5 méter kozott valtozik,
lasd a abra fels6 diagramjat. Lathatd, hogy a javasolt mddszer 1ényegesen ponto-
sabb, mint a tobbi. A kiilonbségek 5 és 10 centiméter kozott vannak. Mind a forgatasi,
mind az eltoladsi hibdk megkozelitleg linedrisan novekednek a Gauss-zajjal.

Translation Error Angular Error
0.6 3

0,5 25

04 2

—— kitti = kitti
03 ~ polygonal L5 polygonal
0z —e— proposed L —o— proposed

o 0,02 0.04 0,06 0,08 01 012 0.14 0 0.02 0,04 0,06 0,08 0.1 0.12 0.14

meters
degrees

3D noise level 3D noise level

41. abra. Eltoldsi (balra) és forgatdsi hiba (jobbra) névekvd, Gauss eloszldsu zajjal
szennyezett hdromdimenzids koordindtdk esetén.

Valos Tesztek

A tesztelési helyszinen 3 kalibraciés dobozt helyeztiink el. Az 6sszehasonlitds ked-
véért a LiDAR pontfelhd egyes pontjainak a kameraképre torténé visszavetitését el-
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42. abra. Egy Velodyne-64, ketté Velodyne-16 és szintén ketté kamera van felszerelve a
tesztautora.

43. abra. Hdrom LiDAR-felvétel pontfelhéfiizioja, amelyet az autonom auté bal oldali
kamerdja alapjdn szineziink ki. Az elsé két képen a kamerakép és a pontfelhé ldthato
tdvolabbrol. A két jobb oldali kép a kamera nézdpontjdbdl, illetve a Velodyne-64 LiDAR-
rol késziilt. A pontfelho szinezése sordn nem vettiik figyelembe a LiDAR kiilonb6zé nézetei
dltal okozott takardst, a fehér pontok a kamera nézetén kiviil helyezkednek el.

végeztiik. A tesztelés a kovetkezOképpen zajlik: el6szér harom kartondobozt helyez-
tiink a székek tetejére, hogy a Velodyne-16 LiDAR szdmadra lathaté legyen. Ot sakk-
tablat helyeztiink el a Geiger-csoport mddszerének futtatasahoz. Egy képet a
kamera eredeti helyzetében, egy masikat pedig egy mdsik helyen készitettiink, mivel
a kalibralashoz legaldbb két képre van sziiksége a mdédszernek.

A abran a részleges pontfelhdk djravetitett pontjai lathatoak, a feldolgozott
jelenet pedig a abran lathatd. A bal oldali képen a Geiger-féle modszer segitsé-
gével kapott kiils6 paraméterek, a jobb oldalon a mi algoritmusunkkal kapott kiilsé
paramétereket hasznaltuk a visszavetitéshez. Megjegyezném, hogy a sakktabla sarka-
inak, a kalibracids dobozok tetejének és a zold szék labanak pontjainak vetitett helyei
helytelentil eltolédtak. Az elsodrédas a mddszer pontatlansdgat jelenti. A jobb olda-
lon ezzel szemben a visszavetitett pontok egybevagnak a megfelel6 képi régiokkal,
ami arra utal, hogy a javasolt médszer min6sége jelentésen nagyobb.

A modszert az autonéom autonk adatfelvevi-rendszere altal nyert valés adatokon
is teszteltiik. Az autéra egy nagy felbontasu és két kisebb felbontdsu LiDAR érzéke-
16t, valamint két kamerat szereltiink fel, lasd a abrat. A kalibraciét a SZTAKI
hatsé udvaraban végeztiik el. A dbra a kalibraci6 eredményét mutatja, amely a
nagy és a két alacsony felbontasu LiDAR eszkoz pontfelh6fuzioja, és az RGB kamerak
intenzitasértékeinek felhasznalasaval szinezett: a képtérben 1évo helyeket a térbe-
li pontok kamerdkra valo vetitésével kaptuk meg a javasolt algoritmus dltal kapott
kiils6 kameraparaméterek felhaszndlasaval.

6.3. Kalibracié gombokkel

A gomb feliilete nagyon szerencsés abbdl a szempontbdl, hogy mind a LiDAR pont-
felh6jén [171], mind a kameraképen a gomb vetiiletének konttirja [166), nagy
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44. abra. Az algoritmus még a Velodyne VLP-16 dltal generdlt ritka pontfelh6ben is
megtaldlja a sarkokat.

45. abra. A visszavetitett doboz és sakktdblapontok a dbrdn ldthatd tesztesetrol.
A Geiger és munkatdrsai médszerével [53] becsiilt kamera paramétereket a bal oldali
eredményén haszndltuk, a javasolt mdédszer eredménye a jobb oldalon ldthato.

pontossaggal meghatdarozhatd. A geometridban régéta ismert tény, ahogyan azt ké-
sObb itt is beldtjuk, hogy a gémb képének kontuirja kozéppontos sikra vetités (lyuk-
kamera) alkalmazésa esetén ellipszis, hiszen a gomb 0sszekotve a perspektiv kamera
fékuszpontjaval kupfeliiletet alkot, a kontur pedig ennek a kupfeliiletnek a metszete
a képsikkal.

6.3.1. Gomb helyének meghatarozasa LiDAR pontfelh6bdl

A gomb feliiletének implicit alakja az aldbbi — mdar a kézépiskoldban is megtanult —
modon irhaté le:
(&= 20)" + (y = 90)" + (2 = 20)* =17, (69)

aholxg = [zy o ZO}T a gomb kozéppontja és r jeloli a sugarat. Egy x = [z y z]T €
€ R3 térbeli pont akkor esik a gomb feliiletére, ha az implicit egyenletet kielégiti.
A[69] egyenletbdl, az eredeti alakot megtartva, elemi atalakitdsokkal irhatjuk fel az
alabbi implicit formulét, ha azt akarjuk elonteni, hogy az x; = [mz Yi zl} r pont rajta
van-e a sikon:

o7 — 2wox; + 18 + Y7 — 2yoYs + g + 22 — 2202 + 25 — 12 = 0. (70)

Amennyiben tobb pontunk is van: {x;}, ¢ € {1,2,..., N}, métrixos alakban a
kovetkezd rendszert alkothatjuk meg:

22, —2y -2z 1 2o vi +yi+ 2
—2.172 —2y2 —222 1 (L'2 + y2 + 22
. : A Yo — | T 71)
: : : : 20 :
2 2 2 .2 2 2 2
—2rxny —2yn —2zy 1 Tyt yYgt 2T e N
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Ez az inhomogén rendszer N > 4 esetében tulhatdrozott. Szerencsére ekkor is
meg lehet oldani a bal oldali egyiitthatématrix Moore-Penrose pszeudo-inverzének
felhasznalasaval. Az inverzet balrél meg kell szorozni az inhomogén rendszer jobb ol-
dali vektoraval. Eredményképpen egy négy dimenziés vektort kapunk: v = [v1, vy, v, v4]”,
melynek els6 harom koordindtdja adja a gomb koézéppontjat, a negyedikbdl pedig a
gémb sugardt lehet kiszdmolni: r = /22 + 32 + 22 — va.

Ennek a megolddsnak nagy el6nye, hogy rendkiviil gyors, és mind az egyértelm,
mint a tulhatarozott eseteket képes kezelni. A[69] egyenlet geometriailag is értelmez-
hetd, egy pont tavolsaganak a négyzetét adja meg a koriv legkdzelebbi pontjdhoz ké-
pest. A mddszer hatranya, hogy pszeudo-inverz alkalmazésaval legkisebb négyzetes
értelemben lehet optimumot meghatdrozni, de itt az eredeti hiba mar a geometria
tavolsag négyzete. Ezért legkisebb négyzetes hibaminimalizalds a geometriai hibak
osszegének mar a negyedik hatvanyat fogja figyelembe venni. Igy a médszer kevés-
bé robusztus a sima kettes norma alkalmazasdahoz képest, pedig mar a kettes norma
sem tekinthet6 annak. Ezért a kiugré pontokat mindenképpen ki kell szlirni a pontos
becsléshez. A fiiggelék[E.2.1] fejezetében ismertetett RANSAC [46] algoritmus ehhez
a szliréshez kivaléan alkalmazhaté.

6.3.2. Gomb helyének meghatarozasa kameraképekbol

Ebben a szakaszban megmutatom, hogyan lehet kamera képein a konturpontok se-
gitségével a gomb kozéppontjat meghatarozni. E16szor térbeli metszéseken keresztiil
levezetem, hogyan lehet a gomb konturpontjait meghatarozni a képen. Ehhez kiveti-
tem a képpontokat a térbe, és azokat a pontokat valasztom konttrnak, amely éppen
érinti a gombot. Az igy kapott konturpontok ellipszist irnak le. Utana a kapott para-
méterekbdl azt is leirom, hogy ellipszisillesztés segitségével hogyan lehet az ellipszis
paramétereibdl a gomb koordindtdit meghatdrozni, ha a gomb sugara ismert.

Sugarmetszés gombbel.

A vetit6sik és egy altaldnos gomb metszéspontjdnak meghatdrozdsa kicsit bonyo-
lultabb. A gomb lathaté képének konturja a képen egy ellipszis, ennek meghatdroza-
sat ismertetem ebben a szakaszban.
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46. abra. Gomb perspektiv vetitése képsikra. A bal oldalon a piros pixel meghatdrozza a
szaggatott vonallal rajzolt vetitéegyenest, amely a gombfeliiletet a piros pontban metszi
el. Ajobb oldali dbrdn ldtszik, hogy a gomb perspektiv vetitése a képpsikra egy ellipszissel
hatdrolt teriiletet eredményez.

Vektoros forméban a egyenlet lényegesen tomorebb formaban adhaté meg:

(x—s) (x—s)—1r? =0, (72)

amennyiben s = [z¢ o zO]T vektor jeloli a gomb kozéppontjat, x = [z y z]T
vektor pedig a térbeli pontot.

A gomb maga egy specialis kupszelet. A teljesség kedvéért a metszési feladatot
altaldnos kupszeletekre mutatom meg. Az altaldnos kupszelet implicit egyenlete igy
irhat¢ fel:

(X" 1] M m =0, (73)
ahol M = M7 egy 4 x 4 egy szimmetrikus métrix, amelyet kisebb részekre is lehet
bontani: ~

M b| |x
1] {bT V} [1] 0. 74)

Fontos tény, hogy a kisebb, 3 x 3-as M részmatrix szintén szimmetrikus.
GOmb esetén az M matrix egyszer(ibb alakra hozhatd:

sl's —r?

hd:={ ot }- (75)

Igy ebben a specidlis esetben M = I, b = —s és v = sT's — 72,

A ktipszeletek konturjai a képen.
Lyukkamera esetén, ahogyan azt kordbban lattuk a4l egyenletben, x = oK 'u.
Ha ezt ravetitjiik a képre, a kovetkez6 formulat kapjuk:

[ au"K7T 1] [gﬁ IV’] {O‘Kllu] —0.
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Ez egy o2u’ K- "MK 'u + 20vb”K'u + v = 0 alakban felirhaté masodfoki egyen-
letet ad. Geometriailag mindez azt jelenti, hogy egy sugarnak a feliilettel két met-
széspontja van. A kontturpontok esetén a vetitésugar éppen érinti a gombot, ezért
egy megoldast kapunk. Ez algebrailag akkor lehetséges, ha a mdsodfoku egyenlet

diszkrimin4nsa éppen nulla, azaz (2ubTK‘1u)2 —4 (uTK‘TMK—lu) v=0.
Atirva: )
(b"K 'u)” = vu" K "MK 'u, (76)

Ezzel pedig megkaptuk a kipszelet egyenletét a képen.
Specidlis eset: gomb vetiilete.

Ahogy azt fentebb megmutattam, gomb esetén felirhatd, hogy b = —s, v = sTs —
—r2 és M = 1. Ha a kamerdk kalibraltak, a kép pixeleinek koordindtdit normalizlni
lehet, ami utdn K = I. Ezért a egyenlet a kovetkezé alakra hozhat6:

(sTu)2 = (s"s—r*)u’u (77)
Ha az x vektornak a koordinatait behelyettesitjiik, az
(uzo +vyo + 20)° = (22 + 92 + 22 —r?) (W + 0% + 1) (78)
osszefliggést kapjuk. Ez pedig elemi atalakitdsok utan atirhaté a
(7’2 — yg — zg) u? + (7‘2 — x% — zg) vl
270youv + 23020t + 2oz + 12 — 25 — Y2 = 0 (79)

implicit formdba.
Ez egy masodrendli gorbe, azaz egy kupszelet a képsikon az

AW + Buo+ Co* +Du+FEv+F =0 (80)

alakban, ahol a paraméterek a kovetkezdek:

A=r2—y2 -2 B = 2x4yo,
C=r’— ZL‘(Z) — 28, D = 2xy2, (81)
E = 2yo2, F=r?—af—y.

2023-as folydiratcikkiinkben [166]] megmutattuk, hogy a kupszelet ellipszis lesz,
amennyiben a gomb teljes terjedelmében a kamera el6tt van.

Amennyiben legaldbb 6t konturpont adott, a Fitzgibbon algoritmus [47] segitsé-
gével az ellipszis paramétereit meg tudjuk hatdrozni.

A paraméterekre kapott értékek alapjan irhatjuk, hogy

B yo

2% B —yD =0
D 0 20 Yo 3
B o

2 Ba— 20E =0
E 2 20— %o ’
D

= =5, Dyy— Exg = 0.
E y[)
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Matrixos alakban ugyanez egyszer(ibben is kifejezhet6:

0 -D B Zo
-FE 0 B v | =0. (82)
—F D 0 20

Fontos megjegyezni, hogy ennek a matrixnak az elemei linedrisan 0sszefiiggok,
ezért a matrix szinguldris, tehat a determindnsa nulla. Ebbdl pedig egyenesen az
kovetkezik, hogy a megolddsnak van egy magtere (nullvektora).

A gomb kozéppontja a nullvektor alapjan hatdrozhaté meg. Azonban a nullvektor,
ahogyan a sajatvektorok is, skalazdsra érzéketlenek. Tehat, ha [zy vy 20]" nullvek-
tor, akkor [axy ayo «az|’ is az, ahol « valds szdm az (ismeretlen) skdla.

Ezt a skalat szerencsére meg tudjuk hatdrozni, ha a gomb r sugarat ismerjik.
A[81] egyenlet els6 paraméterébél kifejezhetd, hogy

_ 2 2.2 2.2
A=r"—a7y; —a 2.

Ekkor « az alabbi kifejezés segitségével szamithato:

r2—A
a=3 5
Yo T 2o
A képletben a + el6jelet is meg lehet hatdrozni, azt a megoldast kell kivalasztani,
ahol a kapott gomb a kamera el6tt és nem mogott van.

6.3.3. Kamera-LiDAR kalibracio

Ahhoz, hogy a kamerdkat és a LiDAR mérbeszkozoket egymdshoz tudjuk kalibral-
ni, utolsd 1épésként a gombok helyét a LiDAR pontfelhékon [171] és a kameraké-
peken [166, [162]] meg kell hatdrozni. Azaz, ha egy konkrét gombot a kamerdval
és LiDAR eszkozzel (idében szinkronizdltan) rogzitiink, a kontdrpontokbdl, illetve
a kapott pontfelh6bél meghatdrozhaté a gomb helye mindkét rendszeren. Ezt a két
pontot, melyet p;;par-ral és p.umerq-val jelolliink, egy egybevagdsagi transzformacio
képes egymdsba transzformalni:

PLiDAR = Rpcamera + t7 (83)

ahol R a forgatdsi matrix (ortonormalitds miatt hdrom szabadsagfok), t az elto-
lasvektor (masik harom szabadsagfok). A skalazast abben az esetben nem kell kisza-
mitani, ha a gdmbok sugarat pontosan ismerjiik.

Miutdn minden egyes pontra haromdimenzids egyenletiink van, pontonként ha-
rom egyenletet kapunk. Ezért els6 halldsra azt hihetjiik, hogy kett6 pont elegend6 a
transzformacié meghatarozdsahoz. Azonban geometriai megfontolasok alapjan leg-
alabb négy pontra van sziikség. Erre a problémadra legkisebb négyzetes értelemben
optimdlis megoldast [8] lehet adni, melyet pontregisztdcids eljards néven is szok-
tak hivatkozni. A[D|fiiggelékben ismertetem az algoritmus m(ikodését, bizonnyitassal
egyltt.

Ha tehat vesziink egy kalibracios gombot, és legalabb harom kiilonb6z6 pozicié-
ban elhelyezziik, ahonnan LiDAR méréeszkozokkel és digitdlis kamerdkkal felvétele-
ket készitiink, akkor az eszk6zok kozotti transzformdciét meg lehet hatarozni. Ezzel
a modszerrel tetszoleges szamu digitdlis kamerat és LiDAR eszkozt lehet egymashoz
kalibralni.
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Modszer | Kalibracios ob- popq ek Futasi
jektum id6
Legaldb négy Automatikus, de nem minden képre miko-
KITTI (sik) sakkeabla dik Percek
Leglabb harom Félautomatikus, pontfelh6ben manualis ki-
Polygonal , 14 e -
sik jelolés sziikséges
Box Calib-
ration
Doboz harom _, . . [
(Doboz meréleges Félautomatikus: doboz sarkait a képeken
kalibracio) & kézzel kell kijel6lni
oldallal
Proposed
Legaldabb négy . .
(Javasolt) g6mb Teljesen automatikus Percek

6. tablazat. Az Osszehasonlitott modszerek jellemzoi.

6.3.4. Tesztelési eredmények

Ez a szakasz ismerteti az 6sszehasonlitashoz kivalasztott mddszereket, valamint a
szintetikus és a valds vildgbeli tesztsorozatok eredményeit. A Blensor szenzorszimu-
laciés csomagban létrehozott virtudlis jelenet tartalmaz egy kamerat, egy LiDAR-t
és a tesztelt modszerekhez sziikséges kalibraciés objektumokat. A szintetikus tesztek
elénye, hogy a rivdlis technikdk kvantitativ modon 6sszehasonlithaték. A valds tesz-
tek soran a kapott kiilsé paraméterek minéségét a LiDAR pontfelh6 és a kamerakép
Gjravetitésének vizualis 6sszehasonlitasaval értékeljiik.
Osszehasonlitott médszerek.

A gombos kalibracion til harom masik moédszert valasztottunk ki a javasolt mod-
szerrel valé versengésre, ezek 6sszehasonlitasét a6 tablazat foglalja ssze.

Translation Error w.r.t. mean value Angular Error w.r.t. mean value
07 25

06 2
05
04 15

0 2
L o3 @
£ , g
o /‘__/‘ =
01 R 05 |
0 L = 0 1 >
0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08
3D noise level (Gaussian mean value) 3D noise level (Gaussian mean value)
—4—KITT| —d—Polygonal -#-BoxCalibration =#—Proposed ~4—KITTI - Polygonal -®—BoxCalibration == Proposed

47. abra. A szintetikus tesztek eredményei: Eltoldsi (balra) és forgatdsi (jobbra) dtlag-
hiba novekvé Gauss eloszldsu zaj hozzdaddsdval.

A KITTI kalibracids eszkoztarat (www.cvlibs.net/software/calibration/) And-
reas Geiger és kollégdi [53]] tették kozzé. Tobb sakktablat haszndlnak a kamerdk és a
LiDAR érzékelok kiils6 kalibralasahoz. A sakktablakat egyenként detektaljak a kame-
raképeken, és meghatarozzdk a kamerak kiilsé paramétereit (is). Ezekkel a paramé-
terekkel a sakktdbla sarkai térben is rekonstrudlhaték a megfelel6 sakktdbla sarkok
képeken valo illesztésével. A sakktablak sikjait a LIDAR pontfelh6ben a sikhoz tartozé
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adatpontok normaélvektordnak becslésével hatdrozzdk meg. Végiil a kameraképekbdl
rekonstrudlt sakktdblasikok és a LiDAR-pontfelh6bdl detektdlt sikok kozotti megfele-
lés adja meg a kamera és a LiDAR eszk0zok végsé paramétereit. A sikok kozotti sikil-
lesztési eljaras azonban kétértelmi lehet, és néhany hamis egyezést eredményezhet.

A Park és mtsai. [129] 4ltal bevezetett Polygonal mddszer a fehér hdromszog
vagy rombusz alaku sikbeli célpontok észlelésén alapul. A legtobb kalibraciés mod-
szer a LiDAR pontfelhében 1év6 objektumok széleinek megtaldldsaval kiizd. A szer-
zOk ezt a problémat virtualis pontok bevezetésével oldjak meg, amelyek két egymast
koveté LiDAR pont kozott helyezkednek el. A virtudlis pontokhoz vonalakat illesz-
tenek, és kiszamitjak a kalibraciés objektumok sarkait. Végiil a sarkok vetiileteit a
FAST [139,[140] jellegzetes leirok segitségével valasztjak ki, és PnP problémadt olda-
nak meg 3D-2D megfeleltetések alapjan. A mddszer f6 hatranya, hogy mind a sikok
LiDAR-pontjainak, mind a megfelelé FAST jellegzetes pontoknak a kivalasztdsat kéz-
zel kell elvégezni.

A harmadik 6sszehasonlitott moédszer a fejezetben ismertetett dobozt hasz-
nalé kalibracids eljaras.

Szintetikus teszteredmény.

Valosaghti kalibracids tesztkornyezetet hoztunk 1étre Blenderben, a Blensor [1]] Li-
DAR szimul4cids csomag segitségével. A tesztképek 1920 x 1080 felbontdstiak. Ossze-
hasonlitottuk a javasolt modszert és harom parhuzamos moddszert az alapigazsag
(GT) adatokkal, mikézben a LiDAR pontfelh6khoz zajt adtunk. A jelenet egy digi-
tdlis kamerat és egy Velodyne HDL-64E2 LiDAR késziiléket szimuldlt.

A médszereket additiv Gauss eloszldsu zajjal teszteltiik. El6szor a o atlagértéket
0.00 és 0.08 méter kozott valtoztattuk, o = 0.02 szordsa Gauss-zajt haszndlva. Ez
a forgatokonyv ugy értelmezhet6, hogy a tesztobjektumok eltdvolodnak a LiDAR-
tél. Ezutdn egy nulla atlagu Gauss-zajt haszndltunk valtozé o értékkel 0.00 és 0.10
méter kozott. A tesztjelenetek a KITTI esetében 5 sakktablat, a Polygonal esetében
5 poligondlis tdblat, a Box Calibration esetében egy dobozt, a javasolt mddszerek
esetében pedig 4 gombot tartalmaztak.

(a) Polygonal (b) KITTI (c) Box Calibration (d) Proposed

48. abra. Valos koriilmények kozott végzett tesztek eredményei. A képek a sakktdbldk
néhdny LiDAR-pontjdnak vetitését mutatjdk a képekre a kapott kiilsé paramétereinek
felhaszndldsdval. A vetitett pontok elcsuszdsa mutatja a kalibrdciés hibdt. A vetitésre
haszndlt pontok a sakktdbldkhoz és az asztal széléhez tartoznak.

A kalibraciés médszerek hibajat az dltaluk becsiilt kiils6 paraméterek és az alap-
igazsag kozotti kiilonbségként mértiik. Az eltolds hibajat a vektorok kozotti kiilonb-
ség euklideszi normdja adta, a szoghibat pedig a kovetkezéképpen szdmitottuk ki:

€= cos (0.5 (tmce (RSTR) — 1)) , (84)
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ahol Rg7 és R jeloli az alapigazsdg és a becsiilt forgatasi matrixot.

A[47| dbra mutatja a szintetikus tesztek eredményeit. A bal és jobb oldali oszlopok
az eltolasi és a forgatasi atlaghibat mutatjak. Egyértelmiien megallapithatd, hogy a
javasolt eljaras feliilmulja a konkurens mddszereket a forgatds megbecslése soran, és
eltolas esetében is csak a sajat, dobozt hasznalé mddszer képes hasonld teljesitmény-
re.

Tovabbi szintetikus 6sszehasonlitasokat a 2020-as publikdcionkban [170] olvas-
hatd, helyhidny miatt itt nem tudok tovabbi eredményeket k6zolni.

Valds tesztek

A valés koriilmények kozott végzett teszteket egy Velodyne VLP-16 Lidar és egy
iCube NS4133CU kamera segitségével végeztiik el, 1280 x 1024-os felbontdssal, kis
14t6szogli objektivekkel felszerelve. Négy kiilonbozé jelenetet rogzitettek az eszko-
z6k, amelyek pozicidja fix volt. igy a kiils6 paraméterek a vizsgélat soran allandéak
maradtak. Minden jelenet tartalmazta a rivalis médszerekhez sziikséges kalibracids
objektumokat, hasonléan a szintetikus teszthez.

A kalibrdcids objektum esetiinkben egy 30 cm sugaru gomb. A valds tesztek ered-
ményei megerositik a LIDAR adatokbdl tortén6 gombsugar becslés pontossagat, mivel
az eredmények 30,53 centiméteres sugarat eredményeztek, 1,45 centiméteres szoras-
sal.

A rivdlis modszerek kvantitativ 6sszehasonlitdsa nem lehetséges a valds teszt ese-
tében, mivel az alapigazsag (ground truth) nem 4ll rendelkezésre. Ezért az Gssze-
hasonlitds vizudlisan torténik, a LiDAR pontfelhé egy részének a kameraképre valo
visszavetitésével, amihez a mddszerek becsiilt paramétereit haszndltuk fel. Ha a kiil-
s6 paraméterek pontosak, akkor az ujravetitett LiDAR pontok lefedik a megfeleld
pixelt, ellenkezé esetben az Gjravetitések eltolédnak. Az esetleges nagyobb mértéki
eltolédasa azt jelzi, hogy a becsiilt pozicidk/forgatasok kevésbé pontosak.

A dbra a valds vildgbeli tesztelés eredményeit mutatja be. A piros korok a
sakktdbldkat haszndld KITTI kalibracios jelenet tjravetitései. A Poligondlis és a KITTI
kalibracios modszer eltolédasa jelentésebb, mint a Doboz és a javasolt kalibracids
modszeré. Ez a p6zok rosszabb mindségére utal. A dobozos kalibracié ujravetitései
pontosabbak, azonban a javasolt kalibraci6 még mindig jobban teljesit a tobbinél.
Lényegében a javasolt mddszer a valds tesztekben hasonld eredményeket ad, mint a
legjobb mddszerek, a teljesen automatizalt eljards hatranyai ellenére.

Id6igény.

A javasolt kalibraciés csévezeték sziik keresztmetszete idéigény szempontjabdl a
RANSAC-alapu gomb- és ellipszisillesztés. A sziikséges futdsi id6 els6sorban a RAN-
SAC algoritmus [46] iterdcidinak szamatdl fiigg. Még a legrosszabb esetben sem t6bb
néhdny percnél, ami dsszehasonlithaté a masik teljesen automatizalt mddszerrel a [6]
tablazat mérési eredményei alapjan. A javasolt kalibracios cs6vezeték tobbi része csak
gyors algoritmusokat tartalmaz, ezek id6igénye egy masodperc alatt van.

6.4. Egytengelyes kalibracio

Eddig a fejezetig altaldnos LiDAR-kamera kalibraciés eljarasokat ismertettem, el6-
szor doboz, majd gomb alkalmazdsaval. Amennyiben az eszk6zok rogzitését is rank
bizzak, lehetéségiink van olyan konfiguracié megalkotdsara, amely segitségével a ka-
libraciés probléma lényegesen egyszertisodik. A[49] dbran lathatjuk a javaslatunkat:
egy specidlis, 3D nyomtatott rogzitést készitettiink a kameranak, mellyel a kamerat
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a LIDAR mérbeszkoz tetejére lehet rogziteni. A LiDAR Kkeret teteje vizszintes, és a
rendszer koordindta-rendszere tigy lett bedllitva, hogy a Z tengely felfelé mutat [<|

Ezért, ha a két eszkozt egymas folé helyezziik, egyediil a Z tengely koriili forgatas
az ismeretlen. A Velodyne VLP-16 eszkoz esetén a hdz henger alaky, és az Y és X
tengelyek irdnyat csak sejteni lehet, pontosan meghatarozni nem.

Ha a kamera és a LiDAR koordinata-rendszerében levé két pontot pc-vel és py -
el jeloljiik, akkor a két tengely kozotti (egybevagdsagi) transzformaciét irhatjuk az
alabbi egyenlettel: po = R (P, — t).

Miutédn a forgatds a Z tengely koriil torténik, az eltolds pedig ugyanazon tengely
mentén, irhatjuk, hogy

cosf) —sinf O te
R= | sinf cos0 0|, t=]|1¢t, |. (85)
0 0 1 t,

Az elmult években kidolgoztunk egy specialis kalibraciés algoritmust, amelyet itt
roviden ismertetek. A kalibracié soran visszanyulunk a szokdsokhoz, és egy kozon-
séges sakktabla segitségét vessziik igénybe. Ezt a tablat tarthatjuk kézben, de akar a
falra is feltehetjiik, ahogyan az az abra alsé képén lathato.

Egy—két bekezdés erejéig megemliteném, hogy az érzékel6k bekalibralasa akkor
lesz nagyon pontos, ha kalibraciés objektum haszndlatat és jol kontrollalt kortilmé-
nyeket koveteliink meg. Ekkor lehet a legpontosabban meghatdrozni az eszk6zok
kozti eltolast és elforgatast. Sajnos a haszndlat kozben az eszkdzoket mozgatjuk, ra-
zodnak, ezért a rogzitések el tudnak mozdulni. Az egyetemiink kérnyékén is az utak
allapota boven hagy kivannivalot, ezért a mi esetiinkben az elallitodas valds veszély.
Ilyenkor ujrakalibralds sziiksége, ami elég koltséges. Széria-érett technoldgia esetén
szakszervizben lennének képesek ezt precizen elvégezni. Amennyiben a sakktablat
egy falra feltessziik, ahogyan azt az dbra is mutatja, minden bedlldskor a mi méd-
szeriink automatikusan el tudja végezni ezt az ujrakalibrdldst, szakember segitsége
nem sziikséges.

6.4.1. Forgatas meghatarozasa

A forgatds meghatdrozdsahoz a sikok normalvektorait fogjuk felhaszndlni. Ha a Li-
DAR pontfelh6re RANSAC alapt robusztus sikilleszt6 eljardst futtatunk, akkor a sik-
feliiletet meg tudjuk becsiilni. Ha kikotjiik, hogy a jarm el6tt legyen a sakktabla, az
a keresési teret sztikiteni tudja.

A sakktabla esetében a Zhang-féle klasszikus kalibraldsi mddszert [190] alkal-
mazhatjuk, ekkor a sakktdbla és a kamera sikja kozotti homografiabdl az elforgatas
meghatdrozhat6. A [0 0 1]7 normdlvektort elforgatva megkapjuk a kamera szem-
sz0gébdl a normalvektor koordinatait.

Hanc =[v. y. =z ésnyp=[ry yr 21|’ jeloli a kamera és a LiDAR rendsze-
rében a normalvektorokat, akkor irhatjuk, hogy

T cosf) —sinf O Tr
yo | = | sinf cosf 0 YL (86)
zZC 0 0 1 Zr

43 A digitdlis kamerék esetében hagyoményosan az Y mutat felfelé, és a Z el6re, de az egyszertiség
kedvéért atneveztiik Sket.
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49. abra. A specidlis kamera-LiDAR elrendezés sematikus dbrdja. A koordindta-

rendszereket piros, zold és kék szinnel jeloljiik. A zolddel jelolt tengelyek megegyeznek a
kamerdn és a LiDAR-on.

e &

50. abra. Kamera-LiDAR konfigurdcio. Egy specidlis, 3D nyomtatott rogzitoelem tarja a
méroeszkozoket. Balra: A berendezés 3D CAD modellje. K6zéps6 dbra: A megvaldsitott
kamera-LiDAR pdros. Jobb dbra: Egy auto tetejére szerelve a berendezés. A méréauto
tovdbbi kamerdkat is tartalmaz. A falon jol ldthatoé a kalibrdcidhoz felhasznalt sakktdb-
la, amelybdl egyetlen egy is elég a helyes miikodéshez.

Az utolsé koordindta nem fiigg a 0 sz0gtdl, ezért a normdlvektorok ellendrzésre
ugyan lehet hasznalni, de a szogbecslésre nem.
Az els6 két koordindtdra picit atalakitva irhatjuk, hogy

To | | T —YL cos 6
e ]-l ] )
Ez pedig egy érdekes, Ax = b alaku egyenletrendszer egy megkotéssel: x = 1,
azaz x egységvektor. A megoldas a|C| fliggelékben olvashato.

6.4.2. Eltolas

Az eltolas becslése szintén lehetséges. Mivel azonban mind a LiDAR, mind a kamera
és az optika, tovabba a sajat tervezésli rogzités adatai pontosan ismert, az eltolds
vektora megadhatd. Egy érdekesség, hogy esetiinkben a 3D nyomtatott rogzitést uigy
készitettiik el, hogy t, = t, = 0 legyen.

6.4.3. Kisérleti eredmények

//////

képeken és pontfelh6kon végeztiik el, 0sszehasonlitva a MATLAB-ban végzett par-
huzamos kalibracios folyamattal. Ebben a részben értékeljiik ki az eredményeket és
megvizsgaljuk a tesztelt megkozelitések pontossagat.

Valos tesztek.
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Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

51. abra. Néhdny bemeneti kép az ot kiilonboz6 valds adatkészletbdl. Az elsé és mdsodik
adatkészletben szerepld képek és pontfelhOk egy iroddban késziiltek, egy kis 7 x 9-es, 31
mm-es mezovel rendelkezd sakktdbldval. A harmadik adatkészletet az ELTE ldgymdnyosi
mélygardzsdban gytijtottiik 60 mm-es négyzet méretd 4 x 6-os sakktdbldval. A negyedik
és otodik adatkészlethez nagy, 81 mm-es méretil, 9 x 10-es felbontdstu sakktdbldt hasz-
ndltunk a gardzsban és az ELTE kiils6 parkoldjdban.

A tesztekhez egyrészrél Veldoyne VLP-16 LiDAR-t, masrészrol egy Hikvision MV-
CA020-20GC digitalis kamerat Fujinon SV-0614H lencsékkel alkalmaztunk, igy gyj-
tottiink Ossze a pontfelhé-képparokat. A lencsék kivald mindségliek, nem perspektivi-
kus torzitasuk elhanyagolhaté. A kamerat a LiDAR tetejére szereltiik a specialis, sajat
gyartasu 3D nyomtatott tartok segitségével. Az adatokat kiilonb6zé beallitasok mel-
lett vettiik fel, 6sszesen 6t adatsort gydjtottiink kiilonb6z6 helyszineken: irodaban,
garazsban és egy parkolédban harom kiilonb6z6 sakktdblaval. A sakktdbla méretek
4 x 5-tél 9 x 10-ig terjednek. Néhany bemeneti kép az abran tekinthet6 meg.
Forgatdsi sz6g pontossdga.

Az elso kisérlet a szogbecslés pontossagat vizsgalja. Minden adatsoron a kalibra-
ciot egyenként végeztiik el minden egymasnak megfelel6 kép — pontfelhé paron.

Kvantitativ értékeléseinket a becsiilt szogek szérdsa alapjan végeztiik. Az eredmé-
nyeket a[7] tdbldzat tartalmazza, ahol az eredmények pontossdganak meghatdrozasat
mutatjuk meg. Az alacsonyabb szdrds pontosabb becslést jelent. A legjobb eredmé-
nyeket minden forgatokényvben félkovér szamokkal emeltiik ki. Az adatokbol kisziir-
tiik a kiugro értékeket.

Egyenként | Egyenként — sziirve | 10 kép
Dataset #1 | 12.1753 2.3022 0.9759
Dataset #2 | 27.2212 2.3786 1.0583
Dataset #3 | 38.5715 0.6895 1.0392
Dataset #4 | 0.9453 - 0.4899
Dataset #5 | 28.9916 1.2363 4.0653

7. tablazat. A tdbldzat tartalmazza a kiilonb6z6 adatsorokra szdmitott forgatdsi szo-
geknek a szordsdt. Egyenként: Csak egyetlen képet haszndlunk a kalibrdldshoz. Egyen-
ként - sziirve: Egy képet haszndlunk, de a kiugro értékeket kisztrjiik; 10 kép: Tiz
véletlenszertien kivdlasztott képre végzett tilhatdrozott becslés.
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52. abra. Virtudlis LiDAR és kamera sakktdbldval a Blensorban.

Forgatasi szog
Alapigazsag | Becsiilt érték | Becslési hiba
0° 0.0000° 0.0000°
45° 44.9032° 0.0976°
90° 89.6333° 0.3660°
135° 134.9589° 0.0410°
180° 179.9999° 2.05°

8. tablazat. A javasolt mddszer kalibrdcids hibdja virtudlisan generdlt adatokon.

Tesztek szimulatorral.

A Blensor [ eszkézt haszndltuk a virtudlis tesztek elvégzése. A virtudlis kamera és
a LiDAR beallitasa az abran lathaté. Minden ismert elforgatasi szognél ki tudjuk
értékelni a becsiilt értékeket, mivel a szimulatorbdl ismert az alapigazsag (GT).

Az eredmények a |8 tdblazatban lathatéak. Ot kiilonbozé bedllitds eredményeit
hasonlitjuk 6ssze, az alapigazsdg szogei 0° és 180° kozott vannak. A kozelitett forgds
atlagos hibdja a javasolt kalibraciés modszerrel minddssze 0,1009°. Ez arra utal, hogy
a javasolt kalibraciés médszerrel kivalé minéségii szogbecslés végezhetd.

6.5. Osszefoglalas

Az utolsd, IV. téziscsoportban megmutattam, hogyan lehet digitdlis kamerdkat és Li-
DAR letapogatdkat egymdshoz kalibralni. Kalibracié alatt a kiilsé paramétereknek a
meghatarozasat értem, azaz annak az egybevagdsagi transzformacionak a becslését,
amely a LiDAR koordinata-rendszerébol a méréseket atviszi a kamera rendszerébe.
Ez a gyakorlatban harom elforgatdsi és harom eltoldsi paraméter becslését jelenti.

A dolgozatban egy félautomatikus és két teljesen automatikus modszert mutattam
be, melyeket az elmult években publikaltunk kollégdimmal kozosen :

1. Az elsé eljaras dobozokat alkalmazott. A médszer elénye, hogy ilyen dobozokat
konnyen taldlunk a kérnyezetiinkben. A mdédszer félautomatikus, a pontfelh6-
ben meg kell jelolni azt a térfogatrészt, amire a dobozillesztés —immar auto-
matikusan — az algoritmus elvégezni. A képen a dobozok sarkait szintén ma-
nualisan kell kijelolni. A kalibracids paramétereket PnP algoritmus segitségével
szamithatjuk.

4 A Blensor egy nyilt forrdskédu szimuldciés csomag LIDAR és Kinect szenzorokhoz, amely
egylittmiikddik a Blender szamitégépes latéeszkozzel. Tovabbi részleteket a www.blensor.org
oldalon taldlhatéak.
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2. A masodik eljards gombfeliileteket haszndl a kalibraciéhoz. A gomb kontur-
pontjai a képen ellipszis formdlnak, ezért automatikusan detektdlni lehetséges,
majd az ellipszisbol — kalibralt kamerak esetében — ismert sugar esetén a gomb
kozéppontjat meg lehet hatarozni. A LiDAR pontfelh6n hagyomanyosnak te-
kinthet6 feliiletillesztéssel lehet kiszamitani a gomb kozéppontjat. Ha legalabb
négy gombot ismeriink a kamera és a LiDAR rendszerében is, akkor pontre-
gisztracios eljarassal kiszamithatjuk az egybevagdsagi transzformdcidé hat sza-
bad paraméterét.

3. Ajavasolt harmadik médszer esetén egy specidlis, sajat tervezésii rogzités miatt
a hat szabadsdagfok kettére csokkenthetd, hiszen a fiiggbleges tengelyek egybe-
esnek a kamerdn és a LiDAR letapogatén. Sakktabla alkalmazasaval lehetséges
a kalibracid elvégzése, a sakktabla feliiletének normadlvektora adja a f6 segit-
séget, hiszen azt mind a kameraképbdl, mind a LiDAR pontfelh6bdl automa-
tikusan ki lehet nyerni. Az egyszer(isités miatt a kalibraciés probléma mate-
matikailag konnyen kezelhetd, linedris algoritmus segitségével lehet legkisebb
négyzetes értelemben optimdlis megoldast adni.

A gyakorlati vizsgdltok megmutattdk, hogy a mddszerek valés esetben is jél mi-
kodnek, és alkalmasak arra, hogy LiDAR-kamera felvételeket egyesitsiink.

A fejezetek alapjan az aldbbi téziseket mondom Kki:

IV.1. tézis. Kamera-LiDAR kalibracio téglatest (doboz) segitségével [[135] [134].

Pusztai Zoltan doktoranduszommal kézosen kidolgoztunk egy tjszer( eljarast Li-
DAR letapogatd eszkoz és digitalis kamera kalibracidjara, amely téglatestet (dobozt)
alkalmaz kalibracios objektumként, szemben a meglévé mddszerekkel [53,172], me-
lyek a legtobb esetben sakktdbla segitségét veszik igénybe a kalibracids feladat meg-
oldésra.

A LiDAR pontfelh6 feldolgozasara javasoltunk egy félautomatikus eljarast, amely
a mer6legesség figyelembe vételével meghatdrozza a doboz csucspontjat és az éle-
it. Az eljaras el6szor robusztus illesztéssel merdleges oldalakat keres, majd iterativ
eljarassal beforgatja és betolja a lathat6 oldalakat a megfelelé pozicidba. Ismert do-
bozméret esetében igy a doboz csucsainak pozicidja egyértelmiien megbecsiilheto.

A kamera képén a doboz sarkait manudlisan kell meghatdrozni. A pontfelhén
becsiilt és a képen meghatdrozott pontok kozott egy Perspektiv n-pont [95] (PnP)
algoritmus adja meg a két eszkoz kozotti relativ eltoldst és elfogatast.

Az eljaras konnyen kiterjesztheto tetszéleges szamu kamera és LiDAR letapogato
eszkoz alkalmazdsara.

IV.2. tézis. Kamera-LiDAR kalibracié gomb segitségével [[170, 166].

Téth Tekla doktoranduszom kozremiikodésével kidolgoztunk egy 1j modszert,
amely gomb segitségével hatdrozza meg digitalis kamerdk és LiDAR letapogatd esz-
kozok elhelyezkedését. Az eljarasunk teljesen automatikus.

Egy kamera képén egy gomb konturpontjai specidlis ellipszist alkotnak, az ellip-
szis paramétereit meghataroztuk a gomb pozicidjanak és sugaranak fliggvényében.
Megmutattuk, hogy a detektdlt ellipszisbdél hogyan lehet meghatdrozni a gomb ko-
zéppontjat a képen. Ismert sugar és kamera bels6 paraméterek esetében a gomb tér-
beli pozicidja is meghatdrozhato.
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A LiDAR pontfelhén robusztus illesztés segitségével a kozéppont és a sugdr szin-
tén meghatarozhato, erre a feladatra a teriileten szabvanyosnak mondhato eljarasok
robusztifikalasat javasoljuk.

A kamerdk és LiDAR-ok kozotti elforgatés és eltolds megolddsara pontregisztraci-
0s eljarast alkalmazunk. Mdédszeriink tetszéleges szamu kamerara és LiDAR eszkozre
mukodik, ha legaldbb négy gombre el tudjuk a sziikséges illesztési feladatokat végez-
ni. Tulhatdrozott esetben, azaz négynél tobb felvétel esetén is miikodik az eljarasunk,
a gombok szadmdnak novelésével a kalibrdcié pontossdga novekszik.

IV.3. tézis. Egy forgatasi paraméterre redukalt kamera-LiDAR kalibracio6 [163].

Téfalvi Tamas és Toth Tekla doktorandusz hallgatdkkal kozosen egy harmadik el-
jarast is kidolgoztunk LiDAR-kamera kalibraciora, amely sakktdblat haszndl a kiils6
paraméterek kiszamitasara. A f6 tjdonsag, hogy a kamerat és a LIDAR-t egy specialis,
sajat tervezésli és gyartasu 3D-nyomtatott alkatrész segitségével egymashoz rogzit-
jiuk [} igy a két eszkoz relativ orientacidja egyszerlisodik, mindossze egy forgatasi
szoget kell meghatarozni.

Az altalunk javasolt moédszer sakktablak sikjait vizsgdlja, és ezek normalvektorait
haszndlja a helyes forgatasi szog megbecslésére. A javasolt megoldd linedris problé-
maként irhato fel, a forgatasra igy legkisebb négyzetes értelemben optimalis megol-
dast tudunk adni, amelyik minimalis és tulhatarozott esetekben egyarant miikodik.

A modszer egy képet igényli csak, ezért online kalibrdldsra is haszndlhato, ha a
jarm elhalad egy falra (sikra) rogzitett sakktdblaminta mellett.

4> A rogzités tervezése és 3D nyomtatdsa Kovdcs Bandé mérnokiink munkéja.
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7. Osszegzés

Ez a disszertdcié az elmult tizenot évben elért tudoményos eredményeimet prébalta
nagyon roviden Osszefoglalni, amellyel az MTA doktora cimre palydzom. A masfél
évtizednyi munkamat négy csoportba rendeztem.

Az els6 két téziscsoportban a lokdlis affin transzformdcidk alkalmazasdval fog-
lalkoztam. Az elsé csoport az elméleti eredményekkel foglalkozik, harom torvényt
mondtam ki a transzformacidk és a sztereé 1atas kapcsolatdrol. A masodik téziscso-
port a leggazdagabb: kutatécsoportom doktori hallgatéi és munkatdarsai segitségével
az elméleti eredményekbdl szarmaztatott becslé eljarasokat fejlesztettiink ki, ezeket
ismertettem itt. Taldn egy értekezésben szabad annyi személyes benyomadst k6z6lni,
hogy bar nem ez a legnépszer(ibb kutatasi teriiletem, ahol a legtobb hivatkozast kap-
tdk a munkdink, de hozzdm mégis ezek a problémadk allnak legkozelebb. Egyrészt,
mert ez egy igazi "magyaros" teriilet, a legtobb eredmény hazdnkhoz koéthetd kutatok
érték el, masrészt nagyon sok helyen optimalis megoldast sikeriilt a megcélzott prob-
lémdkra taldlni, ezért a megolddsok pontossagat elméletileg is sikeriilt megalapozni.

A harmadik téziscsoport egy specidlis numerikus algoritmus, a kétegelt behango-
las alkalmazdsat mutatja be két djabb rekonstrukciés problémaosztalyra. A két osz-
tadlyban kozos, hogy feliiletre meréleges irdnyokat allitanak el6. Az egyik esetben a
megvilagitas valtoztatasaval lehetséges 1j feliileti informaciét kinyerni a képekbdl, a
masodik ismertetett mddszer esetében az affin transzformdacidkat hasznaltuk ugyan-
erre a célra.

Az utolsé, negyedik téziscsoport LiDAR érzékelok és digitalis kamerak kiils6 pa-
ramétereinek kalibrdcidjaval foglalkozik. A szakirodalomban szinte egyeduralkodd,
sakktablds kalibracioval szemben két masik geometriai primitivnek, a téglatestnek és
a gobmbnek felhaszndlhatésdgara mutattam be két kalibracids eljardst a disszertaci-
6ban, melyekkel LiDARok és kamerdk kalibralhatéak egymdshoz. Erdekesség, hogy
erre a teriiletre érkezett a legtobb hivatkozds, ami nemcsak azt mutatja, hogy egy
igen népszer( és magas gyakorlati értéki teriiletrél van szé, hanem azt is, hogy joé
id6ben sikeriilt a teriilet kutatdsaiba bekapcsolddni.

A tézisekhez kapcsolédd publikdciok jegyzéke a tézisfiizet végén olvashato. Ki-
lenc folydiratcikk és tovabbi huszonegy nemzetkozi férumokon jegyzett konferencia-
publikacié kapcsolddik a megfogalmazott eredményekhez. Szdmomra mindez azt je-
lenti, hogy az elért eredményeket a szamitogépes latas szakmai kozossége értékesnek
tartja, és ezért befogadja.

Amirél nem szél, nem szolhat ez a tézisfiizet, az a jov6. Munkdm sordn meg-
tapasztalhattam, hogy egy teriilet miivelése szinte minden esetben tjabb iranyokat
nyit meg, ezért biztos vagyok benne, hogy a kovetkez6 id6szakban is érdekes prob-
lémakkal taldlom/taldljuk szembe magunkat, és remélem, hogy sikeriil még értékes
elméleteket és algoritmusokat hozzdadni a hdromdimenzids szamitdgépes latas vila-
gahoz.
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A. Az altalanos sztered Osszefiiggés levezetése az affin
transzformacid, a kamera vetitofiiggvényei és a felii-
leti normalvektor kozott

Adott egy térbeli lapka, amely két képen latszik. Lokalis kozelitésben a lapka tekint-
het6 siknak. A feladat abrazolasa az képen lathaté. A lapkat nem ismerjiik térben,
azonban a két képen a vetiiletekhez tartozo pixeleket kétdimenzids képfeldolgozasi
modszerekkel meg tudjuk becsiilni. A cél a feliileti lapka n normalvektoranak meg-
hatdrozasa.

Surface

53. abra. Térbeli lapka perspektiven vetitve egy képpdrra. A képeken a kivdlasztott
mintadarabkdk kozott a 2 x 2-es affin transzformdcio irja le a kapcsolatot.

Az [X,Y, Z]T hdromdimenziés vektorral megadott feliileti pontok kétdimenzids
koordinatdit a II vetitéfiiggvénnyel szamoljuk a térbeli pontbdl, a feliilet haromdi-
menzids pontjat pedig parametrikus alakban irjuk le:

v =1L(X,Y,Z2) y=I,(X.Y,Z2)
X =X(u,v), Y=Y(uv), Z=Zu,v).

Differencialis geometriabdl [85] jol ismert tény, hogy az érintévektorok felirhatéak a
paraméteres alakban megadott feliilet parcidlis derivaltjaibdl, a normdlvektor pedig
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a két érintévektor vektorialis szorzatabol kaphaté meg:

0X (u,v)
ou

- Y (u,v
Su (éu : ’

07 (u,)
ou

0X (u,v)
v

o Y (u,v
SU o (gv ) ’

07 (u,)
v

n=3S, x8S,.

Az [X,Y, Z]T térbeli pont és az S, és S, érint6vektorok a feliilet adott pontjdban
1évé érintésikjat is meghatarozzak. Lokalisan a feliilet kozelithetd ezzel az érint6sik-
kal. Feltételezziik ugyebar, hogy a feliiletr6l két kép késziilt. A feliiletdarabka vetiilete
a lokdlis kornyezetében az els6rend(i Taylor sor segitségével jol kozelitheto:

r+Ar] [ 1(X,Y,2)
y+Ay || (XY, Z)

O, (X,Y,Z) Ol (X)Y,Z) Au
]

Nézziik meg ezek utan, hogy a parcidlis derivaltak segitségével a térbeli érin-
tésikon és az egyik képen levé minta hogyan feleltetheté meg affin transzformacié
segitségével :

u v
oML, (X,Y,Z) 0N, (X,Y,Z)
ou o

(

u i) )
oML, (X,Y,Z) Ol (X,Y,Z)
ou ov

O, (X,Y,Z) Ol (X)Y,Z)
A —

A parcialis derivaltak a lancszabdly segitségével modosithatéak. Példaul :

IL(X,Y.Z) OL(X.Y.Z)X  OIL(X.Y,2)Y

ou oxX  ou oy ou
MNL(XY.2) 7
S AL _vils,,

ahol VII, a vetit6fiiggvény gradiense X, Y és Z feliileti koordinatdk szerint. Hason-
l6an:

O, __ ol oI,

or=VIS, Sr=VIS, SFxr=VILS,.
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Ebbdl kovetkezik, hogy magét az affin transzformdcidt igy is fel tudjuk irni:

VI’
A;:[VHZ}[&Lsz

Mivel sztered képparunk van, hiszen a térbeli alakzatunkrdél két képet készitettiink,
az affin transzformécio a két képen lathaté ugyanazon minta kozott felirhat6 az A,
transzformacio inverzének és az A,-es transzformacionak a szorzataval. (Az el6bbi
az elsé képen levé minta és a térbeli minta kozotti kapesolatot irja le, az utébbi a
térbeli és a masodik képen levé minta kapcsolatat.) Formalisan felirhatjuk az aldbbi
Osszefliggést:

[ AJ]Q Ayg :|T = A2A1_1 [ AIl Ayl ]T .

A két kép kozotti affin transzformdcidt felirhatjuk tehat A, A alakban. A tovébbi
atalakitashoz nézziik meg, hogy az A matrix inverze hogyan alakul:

L1 VIILS, -VTILS,
T det(A) | -VTILS, VIILS, |’

ahol det(A) = V*11,S,V'11,S, — VI11L,S,V'1L,S,. Ha figyelembe vessziik, hogy

S,SL — S,SI" = [n],, akkor egyszer(i atalakitasokkal a kévetkezé alakra hozhaté az

affin transzformacio:

AT'A, =

1 V'IL [n], VII, VI [n], VII
VI ], VI | VT ) i I o) v |

Fontos megjegyezni, hogy skaldzasra érzéketlen a formula, hiszen mind a determi-
nans, mind a matrix elemei [n] -el meg lettek szorozva. Az a” [n], b kifejezést szokas
skalaris harmas szorzatnak is hivni. Ha figyelembe vessziik, hogy a’ [n], b egyenls
n” (b x a)-vel, az affin transzforméci6 végleges formdjat igy kapjuk meg:

|: a1 Q19 :| _ A1_1A2 _ 1 |: nTW1 nTW2 :| : (88)

T T
21 Q22 n‘w; | n°"wW3 n wy

ahol w; = VII x VII3, wy, = VIIZ x VII}, w3 = VII; x VI, w, = VIIZ x VII] és
w; = VII x VII.

Ez a levezetés egy nagyon fontos 0sszefiiggéshez vezetett, hiszen a egyenlet
minden kameramodell esetén igaz. Mindossze a vetito I1 fiiggvényeket kell megadni
és a gradiensiiket kiszdmolni.
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B. Paraméterekben linearis problémak legkisebb négy-
zetes értelemben vett becslése

Ebben a fejezetben réviden attekintem az alapveto linearis becslési mdédszereket. Té-
ziseimben mind a homogén, mind az inhomogén problémaosztaly megoldasait hasz-
nalom.

B.1. Inhomogén linedris egyenletrendszerek

Els6ként azt mutatom meg, hogy az

Ax=Db (89)

algebrai feladatot hogyan tudjuk legkisebb négyzetes értelemben megoldani. A
feladatban A egy M x N -es matrix, ahol M > N. Ez a matrix, akarcsak az M
dimenzids b vektor, ismert elemeket tartalmaz. A cél az N dimenzids, ismeretleneket
tartalmazé x vektor meghatdrozasa.

Ha az A matrix négyzetes lenne, akkor egyszer(ien az inverzével kellene megszo-
rozni a b vektort, és maris rendelkezésre allna az eredmény. Amennyiben téglalap
alaki a matrix, a bal és a jobb oldal kiilonbségébdl képzett hibavektor normdjat
kell minimalizdlni. Legkisebb négyzetes értelemben a minimumkeresés az L, (ket-
tes) norma négyzetét veszi figyelembe, annak a széls6értékét probdlja megtalalni
Formalisan ezt a feladatot igy irhatjuk fel:

x = arg, min ||Ax — b|[3. (90)

Tétel

Az Ax = b tulhatdrozott inhomogén egyenletrendszer legkisebb négyzetes opti-
malis megoldésa az x = (ATA)~'ATb vektor.
Bizonyitas

Adott egy Ax = b egyenletrendszer, ahol az x vektor N darab ismeretlent tartal-
maz, és 6sszesen M darab egyenletiink van. A feladat négyzetes értelemben minima-

lizalni az ¢ = Ax — b hibavektor kettes normajat. A koltségfiiggvény ezért igy irhatd
fel:

J=¢c'e=(Ax-b)'(Ax —b) = (x"AT — b")(Ax — b),

azaz
J=x"ATAx — 2b"Ax + b"b.

Ennek pedig az x szerinti gradiense adja a megoldast, amikor a gradiens vektor
egyenld zérussal:

V.J =2ATAx — 2ATb = 0.

Ezért a megoldas a kovetkez6 alakban kaphaté meg:

x = (ATA)'A"b.

46 Miutén a hiba kvadratikus, biztos, hogy a széls6érték minimumot jelent.
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Megjegyzés. Az (AT A)~' AT kifejezést az A matrix Moore-Penrose-féle pszeudo-inverzének
is szokds nevezni. A pszeudo-inverzet akkor is ki lehet szdmolni szinguldris értékek
szerinti felbontds (SVD) segitségével, ha (AT A) métrix szinguldris, azaz nem létezik
inverze.

B.2. Homogén linearis egyenletrendszerek

Amennyiben a problémdnk inhomogén, azaz a Osszefiiggésben a b vektor 0sszes
eleme nulla, az x = 0 megoldas trividlisan helyes. Altalaban azonban a nem trivialis
megolddst keressiik, ebben az esetben egy megkotést kell adnunk az x vektor eleme-
ire. Leggyakrabban azt kotik ki, hogy az eredmény legyen egységvektor. Mi is ezt a
megkotést alkalmazzuk.
Tétel

Az Ax = 0 talhatdrozott egyenletrendszer megolddsa || x || » = 1 megkdtéssel az
AT A matrix legkisebb sajatértékéhez tartozd sajatvektor.
Els6 bizonyitas

Vezessiink be egy hibafiiggvényt: J =|| Ax || 3!

Lagrange optimalizaldssal felhasznalhatjuk az || x || 3 = 1 megkotést, és ekkor egy
modositott koltségfiiggvényt kapunk:

J =l Ax || 2 +A(1- [ x[]3) =x" ATAx + M1 - x"x).

A gradiens x vektor szerint:

V,J =2ATAx — 2 x = 0.

A végsé megoldas a kovetkezo6 alakban kaphaté meg:

ATAx = \x.

A hibafiiggvény szélsGértékeit akkor kapjuk meg, amikor x az AT A sajatvektora.
A hibafiiggvény minimuma ezekben az esetekben:

J=xTATAx = \xTx = \.

Ez nyilvdnvaléan akkor lesz a legkisebb, ha a legkisebb A-t valasztjukK"}, azaz x az
AT A matrix legkisebb sajatértékéhez tartozo sajatvektor.
Alternativ bizonyitas

A feladat, hogy a J =|| Ax || 2 hibafiiggvényt minimalizaljuk. Hasznéljuk az A
matrix szinguldris érték szerinti felbontdsat: A = USV?, ahol tudjuk, hogy U és V
egyarant ortonormalt matrix. A hibafiiggvény igy néz ki:

J =|| USV”x || 2.

Mivel U ortonormalt, azaz csak egy elforgatast reprezental, ami a kettes normat
nem befolydsolja, teljestil, hogy || USVTx || 5, =|| SVTx || 5. Ezen ttl vezessiik be az
y = VTx vektort mint 4j jelolést. Az is igaz, hogy || VIx || ; =|| x || 2 = 1, hiszen V
is ortonormalt.

Tehdat a hibafiiggvény igy irhatd fel, || y || 2 = 1 megkotéssel:

47 AT A szimmetrikus, ezért pozitiv szemidefinit matrix, tehdt az dsszes sajatértéke nemnegativ
valds szam [24].
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J =[Sy |-

Mivel S diagonal matrix, azaz csak a féatloban vannak nem zérus elemei, és az
atlé csokken6 sorrendben pozitiv szinguldris értékeket tartalmaz, a hibafiiggvény ak-
kor lesz minimdlis, hay = [0,0, ...,0,1]. Ebben az esetben x = V10,0, ...,0,1]7, azaz x
vektor a V madtrix utolsé sora, ami az SVD miikodésébdl adéddan az AT A legkisebb
sajatértékéhez tartozd sajatvektor.

Kovetkezmények

A bizonyitds sordn azt mutattuk meg, hogy az ||x||, = 1 feltétellel x” AT Ax ki-
fejezés minimadlis, ha x értékének az AT A matrix legkisebb sajatértékéhez tartozé
sajatvektort valasztjuk. Mindez akkor is igaz, ha x” Bx értékét szeretnénk minimali-
zalni. Természetesen ekkor B legkisebb sajatértékéhez tartozé sajatvektort keressiik.
Ha nem minimalis értéket, hanem maximalisat keresiink, a két bizonyitasbol kovet-
kezik, hogy B legnagyobb sajatértékéhez tartozo sajatvektor a megoldas.
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C. Az argminy |[Fg — h||, probléma megoldasa ||g||, = 1
feltétellel

Ennek a fejezetnek a fliggelékben az a célja, hogy megmutassam, hogyan lehet az
Fg = h egyenletet legkisebb négyzetek értelmében optimadlisan megoldani a g’g = 1
feltétel figyelembe vételével. A J koltségfiiggvény a kovetkezoképpen irhaté fel, ha a
feltételt a A\ Lagrange-multiplikatorral bevezetjiik a feladatba:

J=(Fg—h)" (Fg—h)+\g'g.
Az optimalis megoldés a J gradiense a g vektor figyelembe vételével :
VeJ = 2F"(Fg — h) +2\g = 0.

Ezért az optimalis megolddsra irhatjuk, hogy g = (FF + )\I)fl FTh. Ebben az alak-
ban a A multiplikdtor még ismeretlen, azt a megkotés segitségével tudjuk kiszamitani.

Az egyszerliség kedvéért jeloljiik az FTh vektort r-rel, az F'F szimmetrikus mét-
rixot pedig L-lel! Ekkor g = (L + M) ' r. Végezetiil a g"g = 1 megkotésbél a kovet-
kez6 alakot lehet kapni a behelyettesités utan:

rT(L+AD)  (L+ M) 'r=1. (91)
A matrix inverze igy irhatd le:

~adj (L + )

-1
(LA = Ger @)

ahol adj (L + AI) és det (L + AI) jelolik az L + A\I matrix adjungdltjat és determindn-
sat.
Ez a egyenletbe helyettesitve adja, hogy

rTadj’ (L + AI)adj (L + AI)r = det” (L + AI).

Az egyenlet mindkét oldala polinomokat tartalmaz A\ valtozéra nézve. A bal és
a jobb oldal polinom foka 2n — 2, illetve 2n. Ha az oldalakon 1év6 kifejezéseket ki-
vonjuk egymasbdl, akkor egy 2n-edfokt polinomot kapunk. Megjegyezziik, hogy a
disszertacidéban targyalt esetben, amikor egy forgas egyetlen szogét becsiiljiik, n = 2.

Az optimalis megoldast e polinom valds gyokerei alapjan kapjuk meg. A becsiilt
\; értékekbdl (polinom valds gyokei) a vektorokat a kovetkezOképpen szamitjuk ki:
gi=(L+ /\iI)_1 r. Ekkor a minimdlis normaval rendelkez6 Fg; — h (hiba)vektor adja
a feladat optimalis megoldasat.
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D. Pontregisztracids probléma

Ebben a fliggelékben megmutatom hogyan lehet — legkisebb négyzetes értelemben
— optimalis megoldast adni a haromdimenzids latasban és pontfelh6 feldolgozasban
igen gyakran felbukkand pontregiszracids problémara.

D.1. Pontregisztracids feladat definicigja

Adott két ponthalmaz p; és o;, i = 1,2, ..., N, ahol tudjuk, hogy a pontok egy térbeli
euklideszi transzformdacidval (eltolassal és elforgatdssal) egymdsba vihet6ek:

pi; = qRo; + t. (92)

Az 6sszefiiggésben R egy ortonormdlt matrix, t egy eltolasvektor, ¢ pedig a skdldzast
reprezentdld pozitiv valds szam.

Amennyiben a pontjaink zajosak, R , ¢ és t becslését szeretnénk meghatdrozni
ugy, hogy az aldbbi — legkisebb négyzetes — hiba minimadlis legyen:

N
J =Y |Ip; — qRo; — t[|*. (93)

=1

A konkrét feladat a koltségfiiggvényt minimalizdlni a paraméterek szerint: [R, ¢, t]
= argg , MminJ.
A hibafiiggvény kifejtve:

N
J=> {p!'pi+ 0] 0;+t"t+2(qt"Ro; — p/t — qp/ Ro;) } (94)
i=1

D.2. Pontregisztraciés probléma optimalis megoldasa
D.2.1. At eltolasvektor szamitasa
A koltségfiiggvény t szerinti gradiense az aldbbiak szerint alakul:

N
Vel = (2t + 2gRo; — 2p;) = 0. (95)

i=1

Ebbdl t-re az alabbi 6sszefiiggést kaphatjuk:

1« 1w

Tudjuk, hogy 1/N 3 0, és 1/N 3V | p, az elsé, illetve a masodik objektum suly-
pontja. Amennyiben origénak vélasztjuk a sulypontot, a skaldzas és az eltolds nem
valtoztatja meg a stulypontot: tovdbbra is az origéban marad. Eppen ezért a megol-
dés az optimalis eltoldst add Osszefiiggés szerint, hogy a sulypontokat az origéba
vissziik.

127



haj der 274 24

D.2.2. Optimadlis forgatds szamitasa

Tegyiik fel, hogy az eltoldst mar kikiiszoboltiik, és mindkét objektum stlypontja az
origdban van. Az egyszeriibb jelolés kedvéért tovabbra is p; és o; jelolje a pontok
koordinatdit. A koltségfiiggvény igy valtozik:

N
J =Y {p/pi+¢°0/ 0; — 2qp; Ro;} 97)

Elsé latasra ugy tlinik, hogy a forgatasi matrix (R) és a skalazas (¢) 0sszefiiggenek
egymassal, szerencsére azonban az optimadlis forgatdst nem befolydsolja a skalazas,
hiszen csak a szumma harmadik tagjdban szerepel R és ¢ egyiitt, de ¢-t ki lehet
emelni a szumma elé.

A feladat megoldasahoz a kovetkez6 lemmat kell belatnunk:

Lemma: Minden A 4ltaldnos és R ortonormdlt matrixra igaz, hogy tr(AAT) >
> tr(RAAT).
Lemma bizonyitdsa: Jeloljiik a;-vel a A matrix i-edik sorvektordt. Ekkor igaz, hogy

tr(RAAT) = tr(ATRA) = ZaTRaZ (98)

A Cauchy-Bunyakovszkij-Schwarz egyenlétlenség™| alapjan frhatjuk:

N N
Z a’ Ra; < Z al a; (99)
i=1 i=1

Ezzel belattuk a segédtételt, hiszen SV  aTa, = tr(AAT).
Réatérhetiink az optimadlis forgatas kiszamitasat kimondo tételre:

Tétel :A forgatdsi métrixra optimélis megolddst ad az R = VU? osszefliggés, ahol
V és U matrixok a H madtrix szinguldris-érték szerinti felbontdsdbdl jonnek: H =
= UXV7, ahol H =Y, p;o’.
Bizonyitas: A feladat a koltségfliggvény minimumanak meghatarozasa R szerint.

Mivel csak a (9 osszefiiggés harmadik tagjaban szerepel a forgatdsmatrix, a fel-
adat ekvivalens >, gp! Ro; maximalizaldsaval, ami a skdldzas kiemelésével és el-
hagyasava]ﬁ S pIRo; maximalizaldséva alakul 4t.

Konnyu belatni, hogy ZZ . P/Ro; = tr(RH).

frjuk fel H szinguldris érték szerinti felbontasat: H = UXV7, ahol U és V 3 x 3-
as ortonormalt matrixok, ¥ pedig diagondl-matrix (nemnegativ elemekkel). Legyen
X = VUT”. Mivel V két ortonormalt matrix szorzata, maga is ortonormalt. frjuk fel
X és H szorzatat:

XH=VvVU'uzv’ =vzv’, (100)

Eredményiil egy szimmetrikus matrixot kaptunk, melyet AA” alakban irhatunk fel,
ha A = VV/X. Emiatt a lemmankat alkalmazhatjuk:
tr(XH) > tr(R,,: XH). (101)

48 Két tetszGleges a és b vektorra igaz, hogy (a’b)? < (aTa)(b’b) (A tétel tetszéleges szdmu
vektorra is felirhatd, de itt most csak a két vektoros esetet hasznaljuk.)

49 ¢ skélazasi tényezd egy nemnegativ valds szdm. Negativ esetben tiikrozést valésit meg, ami
forgatdssal is helyettesithetd, ezért zarhatjuk ki a negativ értékeket.
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Azaz a kifejezés R,,; = I esetén maximalis, vagyis Zf\i , P/ Ro; maximalis megoldasa

R=X=VU".

D.2.3. Optimalis skalazas szamitasa

Az optimdlis eltolas és elforgatds ismeretében a skdldzas meghatdrozasa egyszert. A
helyes eredményhez a koltségfiiggvény ¢ szerinti derivaltjat kell nullaval egyenl6vé

tenni:
N

/
2L = {20000~ 2/ Ro} 0 (102)

Ennek az egyenletnek a megoldasa adja a végleges alakot a skdlazasra:

N T
¥ P Ro;
q — Z'L:l pz o . (103)

Zij\il o/ o;

D.2.4. Az algoritmus 6sszefoglalasa
Végezetiil 6sszefoglalom az algoritmus 1épéseit:

1. A két ponthalmaz sulypontjat ki kell szamitani, kozottiik levé eltolds adja meg
a ponthalmazok kozotti optimalis eltoldast.

2. A sulypontokat az origéba kell vinni, majd az eltolt koordinatdkb6l H = > p;o7
matrixot SVD-vel fel kell bontani (H = USVT), és R = VU7 adja az optimdlis
elforgatast.

>,

Ro; 14 o .y .
~ hanyados segitségével szdmithatd.

3. A skalazas a q = m

Megjegyzés: a mddszert természetesen robusztussa lehet tenni RANSAC/LMedS/LTS
algoritmusokkal, ezzel kapcsolatos részleteket a kedves Olvasé a fiiggelék kovetkez,
fejezetében taldl.

A pontregisztracids algoritmus legaldabb harom pontot igényel, és segitségével a
transzformdaciét mdr ki lehet szdmolni, tehdt harom ponttal mér lehet minimdlis mo-
dellt épiteni pl. a RANSAC algoritmus részére.
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(a) Kiugro értékekkel terhelt pontfelhé (b) Robusztus illesztés eredménye

54. abra. Adatpontok vonalillesztésre. A pontok egy része egyenest alkot, de sok kiugrd
erték (outlier) is taldlhaté a ponthalmazban. A jobb oldalon a sikeresen illesztett egye-
nest ldthatjuk, a kiugé pontokat pirossal jeloltem meg.

E. Robusztus becslési modszerek

A fliggelék ezen fejezetében attekintem aszamitégépes latasban hasznalt legfonto-
sabb mddszereket, amelyekkel egy becslést robusztussa tudunk tenni, azaz a kiugrd
pontokat meg tudjuk hatarozni, és ki tudjuk az adathalmazbdl sziirni.

E.1. Bevezetés

Becslésekkel mar kordbban is foglalkoztunk, tudjuk, hogy szamtalan matematikailag
megalapozott becslési mddszer 1étezik. Ezek koziil is kiemelkedik a legkisebb négyze-
tes mddszer, mely a legegyszer(ibb becslési eljaras, raadasul linearis esetben optimalis
becslést tudunk produkalni.

Nehézséget okot, ha hibas adatok keriilnek a ponthalmazainkba, hiszen hibds ér-
tékek belekeverésével a hagyomanyos eljarasok csak nagyon rossz becsléseket képe-
sek produkdlni.

A probléma sulyossagat egy konkrét példaval szemléltetjiik: adott n darab kétdi-
menzids pont, amelyre szeretnénk egyeneseket illeszteni. Erre a feladatra egy konkrét
példat az abran lathatunk.

A sok véletlen pont kozott felsejlik kozépen egy egyenes képe, amely domindl, de
rengeteg kiils6 pont is talalhato. A kiils6 pontokat outlier-eknek, a modellhez tartozé
pontokat inliereknek szokas hivni. A cél az abran lathatéhoz hasonl6 egyenes
meghatdrozasa, illesztése.

E.2. Monte-Carlo elvii robusztus modszerek

Ezeket a robusztus moddszereket azért nevezték el a szerencsejatékok févarosarol,
Monte-Carlérodl, mert véletlenszer( kivalasztason alapulnak: néhany véletlenszertien
kivalasztott mintapontbdl készitenek in. minimalis modelleket. Ezt sokszor végzik el,
és végiil az igy kapott minimalis modellek koziil azt valasztjak ki, amelyik a legjobban
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megfelel bizonyos kritériumoknak. A kaszindk rulettjét kell elképzelni, ahol szdmokat
sorsolunk ki, és nem fontos, hogy minden egyes porgetéskor nyerjiink, elég, ha jékor
meglitjiik a fonyereményt.

A robusztus algoritmusokat az aldbbi két 1épésre lehet bontani:

1. Modellek alkotdsa Monte-Carlo elvli mddszerek esetén véletlen pontok ismét-
16d6 kivalasztasaval.

2. Legjobb modell meghatarozasa.
3. Kivalasztott (legjobb) modellnek megfelel6 pontok meghatdrozasa.

4. A végs6 modell meghatarozasa az 0sszes kivalasztott pontok figyelembe vételé-
vel.

Az egyes robusztus moddszerek kiilonféleképpen valdsitjdk meg a két 1épést, de
altaldaban minden egyes modszer ezt a két f6 1épést tartalmazza. Itt két modszert
vizsgdlunk meg: az in. RANSAC és az LMedS/LTS eljarasokat.

A vizsgdlat el6tt azonban még meg kell dllapitanunk, hogy hanyszor kell a vé-
letlen pontkivdlasztdst megismételni. Tegyiik fel, hogy p darab pontbdl szeretnénk
a modellt kiszdmolni, az outlierek ardnya pedig legyen . Az inlierek ardnya ekkor
értelemszerien 1 — . Annak a valdszinlisége, hogy mind a p darab pont inlier legyen
(1 — k)P. A véletlen pontkivalasztdst ismételjiilk meg m-szer! Annak a valdszintisége,
hogy egyik modellalkotds sem jar sikerrel, azaz a p darab pontba minden esetben
legalabb egy outlier keveredik, felirhatd az alabbi 0sszefiiggés segitségével :

1-T=(1-(1-r")"
Ertelemszertien I jeloli annak a valészintiségét, hogy legaldbb egy darab jé min-
tank sziiletik, azaz ' =1 — (1 — (1 — x)")".
A véletlen kivalasztas szamat pedig m kifejtésével kaphatjuk meg:

In(1-T)
m =
In[l —(1— k)P
Ennél a képletnél beszédesebb, ha kiszamoljuk néhdny konkrét értékre a sziik-
séges mintaszdmot. Legyen 95% annak a valdszintisége, hogy j6 modellt kapunk
legaldabb egyszer. Az outlierek aranyat és a sziikséges kivalasztasi szamat az aldbbi
tablazattal szemléltethetjiik:

— Ha egyenest szeretnénk illeszteni, két pont sziikséges. Ekkor p = 2.

k%] | 5]10]20 3040|5060 70|80
m |[2[2]3]5|7[11]18]32]74

— p = 3 (pl. pontregisztracids probléma [8] vagy sikillesztés )

k[%] | 5]10 20|30 |40 |50 |60 | 70 | 80
m 2] 3]5]8][13]23]46]110|373

— Ha p = 4 (pl. gyengén perspektiv rekonstrukcié [164])

k[%] | 5]10[20]30[40|50| 60 | 70 | 80
m 2] 3]6[11]22]47]116 369 | 1871
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— p =7 (pl. 7 pontos fundamentalis matrix becslés [[104])

k%] |5]10]20]30| 40 | 50 | 60 | 70 | 80
m |3] 5 |13]35]106 | 382 1827 | 13692 | 233963

— p = 8 (pl. 8 pontos fundamentdlis matrix becslés [60])

k%] |5]10]20]30] 40 | 50 | 60 | 70 | 80
m 3] 6 [17]51] 177|766 | 4570 | 4,56 - 10* | 1,17 - 10°

Jol 1athatd, hogy az outlierek novekedésével nagyon romlik a sziikséges miivelet-
szam, és ezaltal drasztikusan n6 a futasi id6. Ezért sebesség szempontjabdl két fontos
megallapitast tehetiink:

— A futdsi id6 szempontjabdl kedvezo, ha minél kevesebb outlier keveredik a min-
tainkba.

— A minimdlis modell megalkotdsahoz sziikséges pontok szamatdl szintén radika-
lisan fligg az eredmény. Ha a modelliinket kevesebb pontbdl tudjuk megalkotni,
sokkal alacsonyabb futdsi id6re szamithatunk.

E.2.1. RANSAC (RANdom SAmpling Consensus)

A RANSAC algoritmus taldn a legismertebb robusztus mddszer a szdmitégépes latas-
ban, 1981-es megalkotasa [46] 6ta az alapcikk tobb tizezer hivatkozasa és szamtalan
tovabbfejlesztése mutatja a modszer népszerlségét.

El6szor is sziikséglink van egy modellre, amely a rendelkezésre allé pontokbdl
el6allithato. Példdul egyenes illesztése esetén az egyenest leiré modell két valds para-
méter, a és b, hiszen az egyenes y = ax + b alakban adhaté meg. Két pont meghataroz
egy egyenest.

A RANSAC modszernek is az az alapelve, hogy a lehet6 legkevesebb pontbdl meg-
hatdroz egy minimalis modellt, és utdana megnézi, hogy mely pontok illeszkednek er-
re a modellre. Az egyenes illesztés esetén tehat meghatdrozzuk a és b paramétereket
két pont segitségével, majd az i-edik pont koordinatdit behelyettesitve megkapjuk a
hibat a pontra:

ei:yi—b—axl-

Ezek utdn szdmoljuk 6ssze azokat a pontokat, amelyek megadott kiiszobon beliil
vannak, akkor megkapjuk, hogy hdny pont tdmogatja a modellt (latin szdéval kon-
szenzust alkot a modellel). Ezt a kiiszobot jeloljik e,,-rel, A ’thr’ rovidités utal a
kiiszob angol nevére, a threshold-ra. Ezek utdn tjabb két pontot vdlasztunk, és djra
egy egyenest huzunk, ahol a tavolsagokat és a kiiszobon beliil levé pontokat djfent
meghatdrozhatjuk.

A sok lehetséges modell koziil azt valasztjuk ki, amelyikhez a legtobb konszenzu-
sos pont tartozik. Végiil a a modellt a konszenzusos modellb6l meghatarozott inlier
pontok alapjan ujra kell szamolni.

A RANSAC algoritmus nagy elénye, hogy egyszer(i, gyorsan implementalhatd.
Hatranya, hogy az ¢, kiiszobot el6zetesen meg kell hatarozni, és ez nem is olyan
egyszerl feladat: ha a kiiszob szigor, sok jé pontot kidobunk, ha nagyon laza a kii-
szob, akkor outlierek is bekertilhetnek az adatainkba, és ezek rontjdk a végeredmény
mindségét.
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E.2.2. LMedS (Least MEDian of Squares)

A Least MEDian of Squares segitségével a kiiszob eltiintethetd. Statisztikusok arra a
megallapitdsra jutottak [141], hogy ha az egyes ¢; hibaértékek Gauss-eloszlast kovet-
nek, akkor az inlierek pozicidinak szdérdsara robusztus becslést adhatunk. Ehhez be
kell vezetni egy stulyozé szamot:

5
s = 1,4826———median{e;},
n—p

ahol n az Osszes pont szama, amibdl p darabot kell vdlasztani a modellépités-
hez. Sokszor ismételjiik a modellalkotast, véletlenszertien mindig kivalasztva p darab
pontot. Minden esetben kiszdmoljuk s’-t a teljes adathalmazra. Végiil azt a minima-
lis modellt vélasztjuk ki, amelyikhez kapott s” a legkisebb. Az lesz a helyes modell,
amelyiknél a medidn — azaz a sorba rakott ¢;-k koziil a k6zépsé — a legkisebb.

Ha megvan a minimadlis s°, akkor meg lehet becsiilni a valddi szdrast az alabbi
Osszefliggés segitségével :

Eﬁl(wiﬁg )
Zi]\il w; — 4
ahol N jeloli a mintdk szamat, w; pedig egy bindris véltozd: ha ¢; < 2,55°, akkor
w; = 1, egyébként nulla.
Végezetiil meg kell hatdrozni a becsiilt helyes modellhez tartozé pontokat. Azok

a pontokat jeloljiik inliereknek (modellhez tartozénak), amelyekhez tartozé ¢; hiba-
értékek 2.50-ndl kisebbek.

Y

E.2.3. LTS (Least Trimmed Squares)

Az LMedS moddszernek az a hatranya, hogy nem mikodik helyesen, ha az kiugré
értékek ardnya Otven szazalék folé megy, hiszen a median akkor outlierb6l szarmazdé
hibara fog mutatni helyes modell esetén is. Ezért egy apré valtoztatdst végeztek a
kutatok: a s’-t meghatdroz6 osszefiiggésben lecserélték a medidnt az elsé d darab
legjobb hiba Osszegére. Az a szerencsés valasztas, ha d a varhatd outlier aranynal
nem sokkal kisebb. (De mindenképpen kisebb!)
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F. Affin transzformaciok felbontasa

Ebben a fiiggelékben megmutatom, hogyan lehet az affin transzformdciékat kompo-
nensekre bontani. Az affin transzformdcidk az aldbbi Osszefliggéssel mozgatjak az
els6 képen a p; pontot a masodik képen a p, pontba:

S e L P B P B

A21 Q22 Qy U1 V9

F.1. Kategoridk szerinti felbontas

Az affin (linedris) transzformdcidk alapvetéen négy kategdridba oszthatdak:
1. Eltolas: a fenti 6sszefiiggésben az [a, a,]” vektor hatdrozza meg az eltoldst.
2. Kétdimenzios (sikban) forgatds origo koriil, o szoggel:

cosa —sino
Arot = |: :| .

sina  cos«

3. Skdldzds mindkét (vizszintes és fiiggbleges) f6 irdny mentén:

Se O
Ascales - { 0 :| .

Sy

4. Nyirds:
1 b
Askew = |: O 1 } .

Az abrdn lathatéak az egyes kategdridk. Az affin transzformécid linedris ré-
szét, amelyikkel a p; vektort kozvetleniil megszorozzuk, fel lehet irni a kategdridk
kompizicidjaként:

A= ArotAscalesAskew-

Egy altalanos affin transzformacié hatasa ezért az alabbi formulaval irhaté le:

T
P1 = ArotAscalesAskeWPQ + [au av]

A transzformacios matrixok elemeit behelyettesitve kaphatjuk, hogy

| cosa —sina S, O 10 n ay,
PL= 1 gina  cosa 0 s, 0 1 |P2 a, |-
Az abran azt lathatjuk, hogy az altalanos affin transzformadcié egy négyzetbol
paralelogrammat, korbdl pedig nyirt ellipszist képes késziteni.

A transzformadcié komponenseinek meghatarozasa Mivel az eltolast egyértelmtien
meghatdrozza a hozzdadott vektor, az aldbbi linedris részt kell részekre bontani:

A | Cosa — sin « Sy O 1 b
- | sina  cosa 0 s, 0 1]
Kifejtve irhatjuk, hogy
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(a) Eltolds (b) Forgatds

1

(c) Vizszintes és fiiggoleges skdldzds (d) Nyirds

55. abra. Affin transzformdciok kategoridi. Az dbrdk a négyzet mint példaobjektum
alakjdt mutatjdk meg az egyes transzgformdciok utdn.

(a) Négyzet — parallelogramma (b) Kér — Nyirt ellipszis

56. dbra. Altaldnos affin transzformdcié hatdsa. A négyzet transzformdltja paralelog-
ramma lesz, a korbdl pedig elnyirt ellipszist lehet késziteni.
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{an a1 ] - [sucosa subcosa — s, sina

o1 Q99 sysina  s,bsina + s, cos

Miutdn a;; = s,cosa és ay; = s,sina, az « forgatdsi szog és a vizszintes s,
skalazas polarkoordinataként képzelhet6 el, ahol a skdla a sugar. Ezért igaz, hogy

a = atan2 (as,aq),
_ 2 2
Sy = \ aip + asy.

A masik két paraméterre az a5 = s,bcosa— s, sina €s az as = s bsina+ s, cos «
osszefliggések adottak. a szog és s, skdla ismertek, ezért a masik két paraméterre, az
s, fligglleges skdldra és a b nyirdsi paraméterre fel lehet irni, hogy

a2 | | —sina s, cosa Su
asy | | cosa  sysina b |-
Ez pedig egy inhomogén, linedris egyenletrendszer, aminek egyértelm@i megol-
désa van, tehat s, és b a matrix inverzének felhasznéldsaval konnyen kiszdmithatoé.

Tobbértelmiiség. A dekompoziciéonak van egy tobbértelmiisége, amelyet az okoz,
hogy a 180 fokos forgatds megfelel egy kozéppontos tiikrozésnek, a kozéppontos tiik-
rozés pedig felfoghat6 ugy is, hogy mind a vizszintes, mind a fiigglleges tengelyre
tikroziink.

Ha az eredeti o szoget 7 /2-vel elforgatjuk, majd skaldzzuk, akkor az aldbbi leve-
zetést tehetjiik:

[CQS(aiw/Q) —sin (a £ 7/2) } [ Sy 0]
sin(a £7/2)  cos(a+£7m/2) 0 s, |
_ [ —cos (o)  sin(«) } [su 0 |

—sin (o) —cos () 0 s, |

B [cos<a> —sin (@) } {-su 0

sin () cos () 0 —sy |

Az eredmény alapjan kijelenthetjiik, az s, és s, skdlatényezok egyidejli invertalasa
ekvivalens azzal, ha az eredeti o szoget 180°-kal megndveljiik/lecsokkentjiik.

F.2. Szinguldaris érték szerinti felbontas

Mésik népszer(i felbontds SVD [] segitségével bontja fel az affin transzformécié line-
aris részét:

Q21 A22 0 s

A:{an CL12]:U{31 0:|VT’ (104)

50 Az SVD (Singular Value Decomposition) A szinguldris értékek szerinti felbontds. Minden valés
eleml matrix egyértelmiien felbonthatd két ortonormalt és egy diagonal matrix szorzatava.
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ahol U és V azonos méretli (2 x 2-es) ortonormalt matrix, a k6zéps6 matrix di-
agonal, a féatloban nemnegativ valds szamok szerepelnek. Ez a felbontas tehat két
forgatasra és egy skdlazasra bontja a transzformaciét. A skalazashoz a vizszintes és
fliggbleges méretezés kiilon megadhato.

Az ortonormadlt matrixokra felirhatjuk, hogy

| cosB —sinf

- { sinf3  cosf ]’

Az SVD alapu felbontds tehat két forgatdsi szogre (3 és ) és két valds skalazasi
paraméterre (s; és sy) bontja fel a 2 x 2-es dltalanos affin transzformaciot.

V= |:C?)S’}/ — sin~y } '
siny  cosvy
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G. A lehetséges homografidk terének csokkentése is-
mert fundamentadlis matrix esetén

Amennyiben egy haromdimenzios térben két kamera adott, mellyel egy sikfeliiletet
fényképeziink le, akkor mind a sik-stk homografia, mind a fundamentdlis matrix se-
gitségével Osszefliggéseket fogalmazhatunk meg a sik pontjainak vetiiletei kozott. A
fundamentalis matrixot és a homografiat 6ssze is kothetjiik [62] :

[e?] H=)F, (105)

ahol e® = [e{?, e!? 1T a masodik képen az epipélust jelsli, A pedig az F funda-
mentdlis matrixhoz tartozd ismeretlen skdla. A [v]|. operdtor a v vektorral (balrél)
elvégzendo vektoridlis szorzast reprezentdlja. Meg kell jegyezni, hogy a [v]« kereszt-
szorzat matrix rangja mindig legfeljebb kettd, ezért barmelyik sora a matrixnak meg-
hatarozhaté a masik kett6 linearis kombinaciéjaként.

A dolgozatban a [105] Gsszefiiggés megmutatja, hogy a fundamentélis matrix is-
merete hogyan csokkenti a homografia becslésnek a szabadsagfokat. A matrix utolsé
sorat a linedris 0sszefiiggés miatt nem tudjuk felhaszndlni.

A redundans ismereteket kihagyva irhatjuk, hogy

0 -1 e hir hiz has
{ 1 0 Y } hor hay hos | = (106)
—e,

h31 h32 h33

)\|:f11 f12 f13:|
f21 f22 f23 .

Az elemeket egyesével véve felirhatjuk a végsé Osszefiiggéseket, melyek a funda-
mentdlis métrixot Y| és a homografidt dsszekotik:

hii = ezhar + Afar,  hig = eghay + Afa,
hiz = ezhsg + Afaz,  hot = eyhar — A1, (107)
hog = €yh32 — A2, hes = €yh33 — Az

A kapott alakokbdl trividlisan latszik, hogy a hs;, hso €s hz; elemekbdl a masik hat
eleme a homografidnak egyértelmiien meghatarozhatd, ha F ismert. Tehat a homog-
rafia becslésének szabadsagfoka harommal csokken.

Mind a H homografia, mind az F fundamentdlis matrix skdldzdsra invaridns. Ezért
a skalara el6irhatunk egy djabb megkotést. Esetiinkben valasszuk a A = 1 feltételt.

Miutdn a DLT algoritmust [62] hasznalé homografia-becslés esetében minden
pontmegfelelés két egyenletet ad, logikus lenne, hogy a harom szabadsagfokot két
pontpdr segitségével megkaphatjuk. Sajnos a két egyenlet Osszefliggo, ezért csak ez
egyik ad 4j informdaciét. Igy hdrom pontra van sziikség, hogy ismert fundamentdlis
madtrix esetén a homogrdfidt meg tudjuk becsiilni. Ezért 3PT-nek hivjuk ebben a doku-
mentumban ezt a kizdrdlag pontpozicidkat alkalmazé mddszert.

51 Az epip6lus a fundamentélis méatrix nullterébdl egyértelmtien szdmithatd.
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H. Az affin transzformacio normalizalasa

Ha két egymdsnak megfelel pontot ismeriink a két képen, melyeket x(V)-el és x(?
jeloljiik, a célunk ebben a részben, hogy az x'(V) = T;x) és x'® = Tyx(? formuld-
val leirt normalizdlds hatdsat megvizsgdljuk a 2 x 2-es A affin transzformdcidra. A
normalizalas esetiinkben a hagyomanyos megoldast [62]], azaz a skalazast és eltolast
jelenti. A transzformaciés matrix ekkor igy néz ki:

sg(ﬁl) 0 tg(ﬁl) 3;(,;2) 0 t;(f)
Ti=| 0 sV ¢V [, Ta=| 0 s ¢ (108)
0 0 1 0 0 1

Egy tetszbleges x(V = [ul v(] kétdimenzids pont koordindtdi igy alakulnak 4t a
transzformacié soran:

sg) 0 t(zi) u® sg(pi)u(i)%—tg)

0o 0 1 1 1

Ha a H jeloli az eredeti homografiat a normalizalatlan koordonatakra, akkor x; ~
~ HXl .

Amikor a normalizalt koordinatakat haszndljuk, az 6sszefiiggés atalakul: T 'x'?) ~

~ HT'x'W, Ezért H' = T,HT;'. Ehhez a T, inverzét meg kell hatdroznunk:

s 0 s
T =1 0 1/si) —i{V/sl! (109)
0 0 1
A normalizalt homografidra irhatjuk, hogy
s@ 0 hii hia his | [ 1/8;1) 0 _tgzl)/sc(cl) ]
H =T,HT" = | o0 s ¢! hot has  hos 0 1/35/1) —tV /s
0 0 1 h3i hsa hsz | | 0 0 1
S:(pQ)hn + t:g)h?)l S:(r2)h12 + t;2)h32 8562)h13 + t:(cQ)h33 1T 1/8;(r1) 0 —t:(cl) S;(zl) ]
HI = 3752) h21 + tf) h31 SZ(JQ) h22 + tg(JQ) h32 81(12) h23 -+ ty(JZ) h55 0 1/8?(}) —t'q(Jl)/Sgl)
h31 h32 h33 1 L 0 0 1
(2) (2) (2) (2)
z?—l)hll + z’(—l)hsl zf—l)hlz + z“(”—l)h32 *
e ) e (2)
H = S?(:—l)hm + %h:n Sgl) hag + zz—l)hsz *
j‘mhm ?hgz —hglt(zl)/sc(xl) — h32t::(;1)/5;(/1) + N33

A osszeftiggés (II. torvény) alapjan az affin transzformdciét a két csillaggal je-
161t elem nem befolydsolja, ezért ezeket nem vessziik figyelembe a tovabbiakban, az
értékét az egyszerliség kedvéért jeloltem csillaggal.

A 1I. torvény alapjan irhatjuk, hogy

/ / /(2 / / (2
/ _hll_h31u() _h12_h32u()
an=——5 %= 5
S S
! 1o, 0(2 / 1o, 0(2
/ _h21_h3lv() / _h22_h32v()
oy = ———— > OGyp=— " -
S S
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Ezutan a normalizalt s’ projektiv mélységet fejezem Kki:

/

L, ooy Ly
S = Ehglu + Ehgg’l} —

T Y
1
—hglt — Dot  hgy =
1 32ty
sg; Sy
Tyt () =) + i (4 = ) + s =

)hgl + U(l)hgz + h33 = S.

Azaz pontosan a normalizdlatlan s értéket kaptuk vissza. Tehat megallapithatjuk,
hogy ezt a skalat a normalizalds nem befolydsolja.
A normalizdlt affin transzformdcié bal fels6 elemét nézziik el6szor meg, az s’
skdlaval beszorozva:
s'ay;, = hyy — 2’)1“/@) =
2) @) 1

SZ' T
h11 + — (1) ——hg; —1h31 (S;Q)U(Q) + tf)) =
Sx S

(2) (2) (2) (2)

S S
z z (2) x
(1) h/ll + ( )h (1) h/Sl S_h31
(2) (2)
S S
’r _2x 2
SC(CI) hll 8;‘1) U h31'

A masik harom elemet teljesen hasonléan kapjuk meg:

(2) (2)

s/a/12 = h/12 - thU,(Q) = Sihm SLU 2)h327
<M s
Yy X
, s?(f) Sy2) )
/1 / ey -
Say = hy — h3lv( )= 3:(131) hay 8:(131)1} has,
He) s
slalgz = h/ thU/(Q) Lhzz —= )h32
5(1) (1)
Yy Y

Ezzel megkaptuk a végleges Osszefiiggéseket a normalizadlds hatasanak vizsgdla-
tara.
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I. Kamera el6tti gomb konturjanak meghatarozasa

Ebben a részben azt mutatjuk meg, hogy a IV. téziscsoportban haszndlt kalibracids
gomb konturja mikor ad ellipszist a képen.

A masodfoku gorbe akkor lesz ellipszis, ha a Osszefiiggésben megadott ma-
sodfoku gorbe (kupszelet) paramétereire igaz, hogy B? — 4AC < 0. Esetiinkben:

—4AC = (2x0y0)2 —4(r* = yg 2) ( xo — )

dagys — 4 [rt —r® (a5 + 25) — (yo + Zo) + yos + yozo + %ZO + 2]
4 [—7‘4 +r (mo + yo + 220) — ?JoZo — 95020 — zéﬂ

]

]

4 (=t +r? (af + y5 + 220) — zo o (70 + 95+ 20)
A[—r* + 1228 + 17 (x(z) + 15+ 20) — 2 (20 + %+ 20)] =
A[=rt+ 7%+ (1 = z5) (25 + w0 + 2)] -

Ez a kifejezés akkor negativ, ha

—rt 4 7“223 + (T2 — 2(2)) (:Eg + y(z) + Zg) < 0.

r?-et az elsé két tagbol kiemelve tovabb lehet a bal oldalt egyszer(siteni:
(r* = 28) (z§ +ys + 25 — %) <. (113)

A kifejezés el6jelét a két szorzétényezo elbjele adja meg. Ha a gomb teljes egé-
szében a kamera el6tt van, akkor biztos, hogy 22 > r?, és ekkor az is trividlisan igaz,
hogy (22 + 32 + 22) > r2. Igy azt kapjuk, hogy (r? — 22) < 0 és (22 + 2 + 22 — r?) >
> 0, tehat a[113] Osszefiiggésben a szorzatnak negativ az elGjele, ha a gomb a kamera
el6tt helyezkedik el.

Azaz kijelenthetjiik, hogy a kamera elétt elhelyezkedé gomb konttrpontjai a képen egy
ellipszist alkotnak.
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J. Sikban mozgas

Sikban mozgas esetén feltételezziik, hogy a kamera egy jarm(ih6z van rogzitve, és ez
a jarmu egy sik uttesten kozlekedik. Két kiilonboz6 pillanatban rogzitjiik a kamera-
nak a képét. Feltételezziik tovabbd, hogy a kamera ugy lett rogzitve, hogy az optikai
tengelye parhuzamos az tttal.

Ekkor a két kép kozott az eltoldsvektor a masodik koordinatdjaban valtozatlan
ezért irhatjuk, hogy

tr Ccos (v 0 —sin« 0
t=1| 0 | =p 0 : —[t]x =p | sina 0 —Ccos
t sin « 0 cos (v 0

I3

Igy a kétdimenziés eltolas a sikban a mozgds irdnyaval és nagysagaval adhaté meg.
A forgés — miutdn a mdsodik tengely a fiigg6leges (gravitaciés) irdnynak felel meg
—, egy sz0g segitségével adhaté meg:

cosf 0 sinpf
R = 0 1 0
—sinfB 0 cospf

Lényegi matrix sikban mozgas esetén. A 1ényegi matrix a|7| 0sszefiiggés segitségé-
vel adhaté meg. Trigonometrikus alaposszefiiggések segitségével végezziik az alabbi
levezetést:

0 —sina 0 cosf 0 sinf ]|

E=[t],R=p| sina 0 —cos 0 1 0 =
0 cos o 0 —sinf8 0 cosf |
0 —sina 0 i

sin v cos 3 + cos asin 3 0 sin asin § — cos a cos 3 =
0 Cos 0 ]
0 —sina 0 i

sin (o + ) 0 —cos (a+ ) . (114

0 Cos 0 ]

57. abra. Sikban mozgds esetén két szoggel tudjuk leirni a mozgdst.
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Alapvet6 matrix sikban mozgas esetén. Ha a kamerdink kalibraltak, akkor a K;
és K, bels6 paramétereket tartalmazé kalibraciés matrixokat ismerjiik. A jél ismert
XTEX, = 0 Osszefiiggés a lényegi métrixot és a térbeli X, és X, pontokat koti dssze.
A kalibréciés mdtrixok ismerete esetén irhatjuk, hogy X; ~ K~ 'p; és X, ~ K, 'p,.
A sikban mozgéas esetén egy kamerat hasznalunk, amely jarmf{re van rogzitve. Ezért
a bels6 paramétereket tartalmazé kameramatrixok megegyeznek a két képre, azaz
K; = K,. Az egyszerliség kedvéért a tovabbiakban K-val jeloljiik ezt a matrixot.
Ekkor:

K=|0 f v |—-K!'= 0 1/f —w/f
0 0 1 0 0 1

Félig kalibralt esetben csak a fokusztavot tekintjlik ismeretlennek, a doféspontot
az origdéba helyeztiik. Ebben az esetben pedig azt irhatjuk, hogy

f 00 1/f 0 0
K=|0 f0|—=K'=| 0 1/f 0
0 0 1 0o 0 1

Az alapvet6 maétrixra igaz, hogy F = K-TEK~! . Ekkor a kameraparamétereket
a7l formuldban megadott lényegi mdtrix elemeibe behelyettesitve azt kapjuk, hogy

1/f 0 0 0 —sina 0 1/f 0 —ug/f]
F = 0 1/f 0 sin (a + ) 0 —cos (o + f) 0 1/f —w/f
—ug/f —wo/f 1 0 COS (v 0 0 0 1
O I A A
0 1/f 0 M 0 —Sm(o‘%ﬂ)uo—cos(a—l—ﬁ)
—up/f —vo/f 1 0 cona —cosay,
0 _si}an sin2avo
sm(a;—,@) 0 _sm(oaz—f—ﬁ) Uy — cos(a+p)
_sm(}x;ﬂ) Vo CO;O( + 51]1012au0 _Sl;‘IZQUOUO + Sln(?‘fﬁ) UV + COS(?JF/B) Vo — _%UU

Félig kalibralt kamerdk esetén vy, = vy = 0. Ekkor a tagok 1ényegesen egyszerl-
sodnek, kialakul a 1ényegi matrixnal a "sakktablas" mintazat:

0 - 0
o sin(a+/) i cos(a+p)
F= f? 0 f
0 co;a 0
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K. Legkisebb négyzetes optimadlis megoldé sikban moz-
gashoz

Ebben a szakaszban egy — a legkisebb négyzetek szempontjabol optimalis — algorit-
must javasolok a lényegi matrix becslésére sikban mozgas esetére, ha legalabb harom
egyenlet all rendelkezésre. Ttulhatdrozott esetben, azaz négy vagy még tobb egyenlet
esetén is optimalis a modszer.

A probléma Ax = 0 homogén linedris alakban adott, ahol

x =[cos8 sinfB cos(a+B) sin(a+B)]"

Az x vektor koordinatai 6sszefiiggnek. Az elsé kett6 és az utolsé kett6 érték ugyan-
annak a szognek a szinusz- és koszinuszfiiggvénye. A homogenitasbdl kovetkezik,
hogy a megoldds csak egy skdldig hatarozhaté meg. Ezért, ha az x paramétervektort
két 2D alvektorra osztjuk, akkor e vektorok hosszanak egyenlének kell lennie.

A megkotések Lagrange-szorzok alkalmazdsaval adhatéak hozza. A skalazasi (mé-
retardnyos) toObbértelmiiség és a két részvektor egyenldsége két kiilon multiplikatort
igényel.

A méretardnyos kétértelmiliség azonban az egyik koordinata x vektorban valé rog-
zitésével kezelhet6. Példdul az utolsé koordinatat a kovetkezoképpen rogzithetjiik:
x = [y & e 1]7. Ez a paraméterezés azonban instabil, ha az utolsé koordinata
— ami sin(a 4+ f§)-nak felel meg —, kozel van a nulldhoz. Ebben az esetben egy ma-
sik, nagyon hasonl6 paraméterezést kell alkalmazni, a x harmadik koordinatajat kell
eggyétenni:x = [y § 1 ¢|T.Ittazel6bbiesetet targyaljuk, a mésik paraméterezés
egyszerlien kezelhet6, hiszen a két eset egymdsnak megfeleltethet6 az A egytitthatd-
matrix harmadik és negyedik oszlopanak felcserélésével.

Jeloljik az A matrix i-edik sorat a; vektorral, és fogalmazzuk meg a problémat
az uj paraméterekkel egy J koltségfiiggvény minimalizdldsaként, amely a kovetkez6-
képpen irhato fel:

J = |]7a1+5a2+ea3+a4|]§. (115)

A 2D alvektorok hosszdra vonatkozo kényszer (azaz 72 + 6% = €2 + 1) érvényesi-
tése érdekében csak egyetlen Lagrange-szorzot vezetiink be, és a koltségfiiggvényt a
kovetkez6képpen modositjuk:

J = |lyas + dag + eag + aall; + A (3° +6* — ¢ — 1).

A minimumot az ismeretlen paraméterek (v, J és ¢) derivaltjaival kapjuk a kovetke-
zOképpen:

oJ

o =2(ya] +da) +eal +aj)a; +2\y =0,
2 T T T | T

% 2(ya; +da; +€az +ay)as + 206 =0,
2 T T T | T

5% = 2(ya; +da, +eaz +a,)ag — 2 e =0.

Matrixos alakban mindezt igy irhatjuk:
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A +ala alay alag ¥ al
aja; A+aja, ajag §|=-1]al |as.
T T T T
azap aza azaz — A € az
~—— Y~—
M(N) x b

Ez az alak még kompaktabban a kovetkezé homogén linedris egyenletrendszer
segitségével adhaté meg: M (A\)x = b. Az x vektor elemeit gy kaphatjuk meg,
hogy ezt a rendszert megszorozzuk az M ! ()\) inverz matrixszal*? Az inverzet magét
pedig felirhatjuk az adjungalt matrixnak és a determinansnak a hanyadosaként:

v adj(M())) aj
_ T
‘Z = T det(M(V) a% - (116)

Az adjungalt matrixot a kovetkezéképpen fejthetjiik ki:

2
(/\—i-agag) (agag—)\)—(agag) a£a3a§a1—agal (agag—)\> agalagaz—agal ()\—Q—agag)
: 2
ad_](M) = a{agagazfageu (agagf)\) ()\+a-{a1)(a?;a37)\)f(a-{a3) a-{aga};eu fa?;al ()\Jra-{al)
2
agagagal 7a-£al (agagf)\) a-{agagal fa};al ()\Jra-{al) (/\Jra-{al) (A+a‘£ag)7(a-{az)

adj(M) elemeit a A polinomjai alkotjak, a polinomok fokszdma egy vagy kettd. Az
M matrix determindnsa pedig egy harmadfokt polinom. Igy minden eleme kifejez-
het6 egy kvadratikus és egy kobos polinom hanyadosaként a kovetkez6 formaban:

v=PiN)/Pi(N), 0=P35\)/Pi(}), e=P5\)/Pji).

A P%, P2 és P2 polinomokat az adj(M())) adjungélt métrix els§, masodik és harma-
dik sordnak az [ aja; aja, ajas }T vektorral vald szorzdsdval kapjuk. P pedig az
M()\) matrix determindnsa.

A Lagrange-szorzé meghatdrozdsahoz a 42+ 6% — €2 —1 = 0 feltételt kell figyelembe
venni. Ez egy hatodfoku A polinomot eredményez a kovetkez6képpen :

(PIO)" + (PEV)” = (PEW)" = (PI(V)" = 0.

Ennek a polinomnak legfeljebb hat kiilonb6z6 gyoke van. Csak a valés paramé-

tereket kell megtartani, a komplex gyokoket elvethetjiik. A v, § és ¢ paraméterekre
vonatkozé megoldéasokat gy kapjuk meg, hogy a A becsiilt valés gyokeit behelyet-
tesitjiik a egyenletbe. A polinomok megolddséhoz az Eigen konyvtarat™| alkal-
mazzuk, ez a konyvtar kiforrott, emiatt masnak is jé szivvel ajdnlom a haszndlatat
algebrai alkalmazdsokhoz.
Degenerdlt esetek. A javasolt algoritmus a két szoget egy linedris egyenletrendszer
segitségével becsiili meg, amely legaldbb harom fiiggetlen egyenletbdl all. Az egyiitt-
hatématrix két részre oszthatod, a bal oldali két oszlop a o szoghoz, a harmadik és
negyedik az (« + () szoghoz tartozik. Algebrailag a konfiguracié csak akkor degene-
ralt, ha az egyik rész csak nulla elemekbdl dll. Ha az egyenleteink pontmegfelelésb6l
szarmaznak, akkor ez csak abban az esetben lehetséges, ha az 0sszes pontmegfelelés
masodik koordindtdja nulla, azaz a pontok rajta vannak a horizonton.

52 A matrix invertalhat6, kivéve nagyon specidlis degenerélt eseteket.
>3 Eigen Library: https://eigen.tuxfamily.org/index.php?title=Main_Page
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L. Levenberg-Marquardt algoritmus fotomoterikus szte-
redhoz

A kovetkezd Matlab kéd kiszdmitdsa Symbolic Toolbox haszndlatdval generdlja a a

matrixokat a fotometrikus sztered alapu Levenberg-Marquardt algoritmushoz. Fontos

megjegyzés, hogy a ccode parancs segitségével kozvetleniil is generdlhatunk C/C+ +
forraskédot a U, V vagy X szimbolumokbol.

function [J, JtJ, U, V, X] = get_mats()

bpl = sym(’bpl’);
bp2 = sym(’bp2’);
bp3 = sym(’bp3’);
x1 = sym(°x1?);
x2 = sym(°x2°);
x3 = sym(°x3’);
1i1 = sym(’1i1°);
1i2 = sym(’1i2’);
1i3 = sym(’1i3°’);
k = sym(’k?);

lambda = sym(’lambda’);

[1i1; 1i2; 1i3];

[x1; x2; x3];

[bpl; bp2; bp3l;

=L - 8S;

mag_r2 = R(1)"2 + R(2)"2 + R(3)"2;

mag_r = sqrt(mag_r2);

prodrn = R(1) * N(1) + R(2) * N(2) + R(3) * N(3);

L
S
N
R

f = k * lambda / (lambda + mag_r2) * prodrn / mag_r;
J = jacobian(f, [1il, 1i2, 1i3, k, bpl, bp2, bp3l);
JtJ = J° *x J;

U= JtJ(1:3, 1:3);

V=JtJ(4:7, 4:7);

X =JtJ(1:3, 4:7)

end
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M. Kamera valaszfiiggvényének becslése

Kisérleteink soran megallapitottuk, hogy a pontszerl fényforrasok altal megvilagitott
targyak normalvektorainak becsléséhez alkalmazott szamitas meglehet6sen érzékeny
a kamera vdlaszfiiggvényére. A vélaszfiiggvényt az hatdrozza meg, hogy a megvila-
gitas sugarzasa hogyan képezddik le a pixelekre. Szamos hatékony becslés 1étezik
a szamitogépes grafikai szakirodalomban: mi a Debevec és mtsai. modszerét
valasztottuk egyszerlisége miatt. A mddszert itt roviden ismertetem.

Egy referenciajelenet lefényképezése tobb At;, j = 1... F expozicids id6vel torté-
nik. A pixelek intenzitasértékeit P’ jelsli, ahol az i index a pixel sorszama a képkoc-
kan beliil.

A konkrét intenzitdsérték az expozicios idé és a haromdimenzids jelenetbdl szar-
mazo sugarzasnak a fliggvénye:

P! = arf(R;Aty), (118)

ahol R; a sugdrzds, és crf() a kamera vélaszfliggvénye.
A cél az alabbi kvadratikus célfiiggvény minimalizaldsa:

P F
SN 9P R~ At +a Y g'(2), (119)

i=1 j=1 2=0

O =~ N W d 0 O N

0O 50 100 150 200 255
pixel value

58. abra. Balra: Referenciaképek Nikon™D50 kamerdval, kiilonboz6 expozicids
idével. Jobbra: A kamera becsiilt inverz vdlaszfiiggvényei a hdrom szincsatornd-
ra.

ahol g = In (crf‘l) az inverz kamera valaszfiiggvénynek a logaritmus A g fligg-
vény értelmezési tartomdnya a [0...255] intervallum, tehat 256 (kvantalt) értékkel
dbrazolhatdé. Az o egy simasdgi allandd, igy a mimimalizdlandé fliggvény masodik
tagja el6segiti, hogy a fiiggvény szomszédos értékei kozott ne legyen nagy ugras. A
sugarzdsok In R; logaritmusai szintén ismeretlenek. Ha az inverz kamera masodik va-
laszfiiggvény derivaltjat a diszkrét értékekbdl a kovetkezéképpen kozelitjiik: ¢” (z) =
=g(x—1)—2g(x)+ g(x+1), akkor a probléma linearis lesz az ismeretlen valtozdkra

>4 CRF: Camera Response Function.
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vonatkoztatva, és a megoldds az egylitthatématrix szinguldris érték(i felbontdsaval
adhat6 meg.

Kiszamitottuk a crf értékét a mi Nikon™D50 digitalis fényképez6gépiink voros,
z0ld és kék csatorndira. A kiszamitott valaszfiiggvények és a referenciajelenetiink
képeit az abra szemlélteti. Vizsgalatainkban az « paraméter értékét — tapasztala-
taink alapjan — 100-ra allitottuk be.
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N. Tovabbi rekonstrukcids eredmények fotometrikus szte-
reo segitségével

A fiiggeléknek ebben a fejezetében a fotometrikus sztered algoritmussal kapott ered-
ményeket tettem be, mindkét esetben valds objektumok normaltérképeit rekonst-
rualtuk. A f6 szovegben helyhidny miatt csak néhdany eredmény beillesztésére volt
lehet6ség, reményeim szerint az Olvasé is szivesen bongészi az eredményeket.

59. abra. Feliil: négy példa a hiisz bemeneti képbdl. Alul: a normdltérkép RGB
szginekkel kodolva.

DY DY OF®
.|a : -I.-I

60. abra. Mesterségesen készitett (renderelt) képek az @l dbrdn ldthato tdrgy re-
konstrudlt normdltérképének segitségével.

61. abra. Feliil: négy példa a nyolc bemeneti képbdl. Alul: a normdltérkép RGB
szinekkel kodolva.
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62. abra. Feliil: négy példa a nyolc bemeneti képbdl. Alul: a normadltérkép RGB
szinekkel kodolva.

63. abra. Mesterségesen készitett (renderelt) képek a dbrdn ldthato tdrgy re-
konstrudlt normdltérképének segitségével.

64. abra. Feliil: négy példa a nyolc bemeneti képbdl. Alul: a normdltérkép RGB
szinekkel kodolva.

65. abra. Mesterségesen készitett (renderelt) képek a dbrdn ldthatd tdrgy re-
konstrudlt normdltérképének segitségével.
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