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Köszönetnyilvánítás

Ez a dolgozat a 2008-2024 közötti tudományos munkámat foglalja össze. Visszaem-
lékezve az elmúlt másfél évtizedre, számtalan ember és szervezet segítette a munká-
mat.

2002-tól az MTA SZTAKI1 tudományos segédmunkatársa, munkatársa, majd fő-
munkatársa lehettem, hálás vagyok az intézetnek, hogy kutatásaimhoz a szükséges
felszereléseket és infrastruktúrákat rendelkezésre bocsájtotta. Az Eötvös Loránd Tu-
dományegyetemen 2017 óta vagyok alkalmazásban, ahol különösen az ’EFOP EFOP-
3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control
Technologies’ és a TKP2020-NKA-06: ’Alkalmazásiterület-specifikus nagy megbízha-
tóságú informatikai megoldások’ projektek támogatták a munkámat, meglehetősen
bőkezűen. A Robert Bosch Kft. támogatását szintén kiemelném 2022-től, a vállalat
nemcsak anyagiakban finanszírozta a munkámat, hanem az ipari-egyetemi együtt-
működés során számomra új távlatokat nyitott ki.

Munkatársaim közül elsőként azokat a PhD hallgatókat sorolnám fel, akikkel a
tizenöt év alatt együtt dolgozhattam: Tóth Tekla, Baráth Dániel, Fodor Bálint, Kazó
Csaba, Pernek Ákos, Pusztai Zoltán, Tófalvi Tamás. Noha én a témavezetőjük voltam,
magam is sokat tanultam Tőlük, amit nagyon köszönök Nekik. Nemcsak doktorandu-
szok, hanem MSc, sőt BSc hallgatók munkájából is meríthettem, a lista hosszúsága
miatt itt sajnos nem sorolhatom fel Őket.

Feletteseim közül kiemelném még PhD-s korszakom két témavezetőjét, Csetveri-
kov Dmitrijt († 2024) és Vajk Istvánt, mindketten alapvetően határozták meg világlá-
tásomat. Ugyanígy kollégáim a SZTAKI-ban és az ELTE-n, akikkel együtt dolgozhat-
tam, közülük külön megemlíteném Molnár Józsefet, Eichhardt Ivánt, Valasek Gábort,
Jankó Zsoltot és Lóczi Lajost.

Személyes vonalon elsősorban családomat, feleségemet és öt gyermekemet emlí-
teném meg, akik az érzelmi hátteret biztos hátteret. Édesapámat és apósomat szak-
mai oldalról is ki tudom emelni, ők mérnökként, de rendkívül gyakorlatias gondol-
kodásukkal segítettek felismerni, hogy a józan paraszti ész még a tudományos mun-
kában is az egyik legfontosabb feltétele a minőségi munkának.

1 Jelenleg az intézet neve HUN-REN SZTAKI.
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Jelölések, nyelvhasználat

A dolgozatban a számítógépes látás szakirodalmában leggyakrabban alkalmazott je-
löléseket igyekszem használni. A jelölésrendszer egységesítése komoly kihívások elé
állított, igyekeztem felnőni a feladathoz.

A térbeli és síkbeli pontokat általában vektorok formájában tároljuk. Ezeket vastag
betűvel jelölöm a szövegben, szemben a skalár értékekkel, amelyet normál betűtípus-
sal igyekeztem mindenhol írni.

A térbeli pontok leírására az X vektort használom a leggyakrabban, amely a tér-
beli elhelyezkedés három koordinátáját tartalmazza: X = [X Y Z]T . A vékony
betűs X az első koordinátát, a vastag X pedig magát a vektort jelöli. A vetítéseknél
a homogén koordinátás alakokat is használni fogom: X = [X Y Z 1]T .

A képen a pontokat általában az u = [u v]T vagy u = [u v 1]T homogén
koordinátás alakban írom. Előfordul a kisbetűs x = [x y] karakter használata is a
síkon történő jelölésre.

Mátrixokkal szintén sűrűn találkozhat a szövegben a kedves Olvasó, hiszen a
transzformációk, vetítések paramétereit legtöbbször mátrixokkal reprezentálják a szak-
irodalomban. Vastag betűs jelöléseket alkalmazok a mátrixokra, az elemeket vékony
betűvel jelölöm. Dupla indexelést alkalmazok, az első index a sornak, a második az
oszlopnak a számát jelöli. Például:

A =

[
a11 a12
a21 a22

]
.

Néha az áttekinthetőség miatt előfordul szimpla indexelés is, ebben az esetben
sorfolytonosan írom az elemeket:

A =

[
a1 a2
a3 a4

]
.

Szóhasználat. A téma szakirodalma döntő többségében angol nyelvű, mégis sokan
érezzük kötelességünknek, hogy a saját anyanyelvünkön is műveljük a tudományt,
és a szakszavakat megpróbáljuk magyarosítani. A témában magyar nyelven minden-
képpen érdemes elolvasni Kató Zoltán és Czúni László könyvét [2], nemcsak magya-
rosítási szempontból, hanem azért is, mert remek összefoglalása a háromdimenziós
látás alapvető elméletének és módszereinek.

Számomra a magyarosításkor két stratégia létezik: vagy fonetikusan átírom a kife-
jezéseket vagy megpróbálom ténylegesen lefordítani. A változatosság kedvéért mind-
két stratégiát követtem. A lentebbi táblázatban a legfontosabb kifejezéseket fordítását
írtam le, a teljesség igénye nélkül:

Angol kifejezés Magyarosított kifejezés Magyar elnevezés
Fundamental matrix Fundamentális mátrix Alapvető mátrix

Essential matrix Esszenciális mátrix Lényegi mátrix
Projection Projekció Vetítés

Triangulation Trianguláció Háromszögelés
Decomposition Dekompozíció Felbontás
Factorisation Faktorizáció Szorzattá bontás

Point registration Pontregisztráció
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Társszerzők. A tudományos kutatás ma már csapatmunka. Az elmúlt másfél évtized-
ben, miután PhD fokozatomat megszereztem, jó néhány doktorandusz hallgatóval és
kollégával dolgozhattam együtt. A munkában, még a tézisek leírásában is, igyekez-
tem a módszerek társszerzőinek hozzájárulását is megemlíteni. Ezért fordulhat elő,
hogy egyes és többes számot egyaránt használtam. Mindenképpen megemlíteném,
hogy hálás vagyok a doktori szabályzat megalkotóinak, hogy védett doktoranduszok
esetében az egyszerzős folyóiratcikkek kötelessége alól felmentést kaptam, mert tu-
dományos dolgozataimban mindig arra törekedtem, hogy bekerüljön minden részt-
vevő, a hozzájárulás nagyságától függetlenül. Így nem kellett senkit sem a szerzőség
helyett a köszönetnyilvánítások közé száműzni .
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1. Bevezetés

Immáron több, mint húsz évvel ezelőtt kezdtem el számítógépes látással foglalkozni,
amikor egyetemi diplomám megszerzése után megkezdtem doktoranduszi tanulmá-
nyaimat a Műegyetemen és tudományos segédmunkatársként az MTA SZTAKI-ban.
Bő öt évvel később, 2008. januárjában védtem meg PhD fokozatomat, disszertáci-
ómat gyengén perspektív kameramodellekre épülő háromdimenziós rekonstrukciós
algoritmusok megalkotásából írtam. Doktoranduszi éveim alatt szerettem meg a szá-
mítógépes látás világát, különösen az ragadott meg, hogy az algebra és a geometria
határterületén megtapasztalhattam, a gyakorlatban használható módszerek esetében
milyen fontos, hogy elméletileg is meg legyenek alapozva.

Disszertációmat gyengén perspektív kamerákkal kapcsolatos kutatásokból írtam,
fokozatszerzésem után azonban figyelmem egyre inkább a valódi perspektív kame-
rák alkalmazása felé fordult, noha pár évig még foglalkoztam gyengén perspektív
kamerákkal is: a doktoranduszi munkák során talált nyitott kérdések közül néhányra
sikerült megoldást találni.

Korábbi témavezetőm és felettesem, Csertverikov Dmitrij 2010 után ismertetett
meg tanítványával, Molnár Józseffel, aki egy SZTAKI-SZTE projekt keretében elkez-
dett foglalkozni az affin transzformációk alkalmazásával [113]. Bár ő hamar felha-
gyott a területtel, de számomra és saját doktoranduszaim számára ez a terület egy
teljesen új világot nyitott meg, és alapvetően meghatározta a következő évtized ku-
tatási irányait. Az elméleti alapok megismerése után saját algoritmusokat kezdtünk
készíteni a tanítványaimmal, később az elméletet is sikerült újabb részekkel kiegészí-
teni, a perspektív kamerákra újabb törvényeket megfogalmazni. A munkát elsősorban
Baráth Dániellel közösen végeztem, aki az elért eredmények alapján 2020-ban sike-
resen megvédte doktori munkáját.

A dolgozatban szintén foglalkoztam a pontalapú, lyukkamerát alkalmazó három-
dimenziós rekonstrukciós eljárásokra kifejlesztett numerikus algoritmus [167], a "kö-
tegelt behangolás" alkalmazásával újabb problémaosztályokra. A kötegelt behango-
lás egy olyan eljárás, amelyben sok paramétert – tipikusan ezres nagyságrendben –
kell becsülni, de a minimalizálandó költségfüggvényben a paraméterek csak lazán
kötődnek. Ezt a területet a 2010-es években sikerült két újabb problémaosztályra
kiterjeszteni két munkatársaimmal közösen a SZTAKI-s kutatócsoportunkban.

Az utolsó terület, amelyet ez a dolgozat – külön fejezetben – szintén taglal, LiDAR
eszközök és perspektív kamerák kalibrációja. 2015-2016 táján kezdtünk el Pusztai
Zoltánnal doktorandusszal közösen dolgozni a területen, és miután 2018-ban az ELTE
Informatikai Karán elindult az Autonóm Rendszerinformatikus (MSc) képzés, a jár-
műre rögzített érzékelők feldolgozásával még intenzívebben foglalkoztunk egyetemi
kollégáimmal együtt. A kamerák mellett önvezető járművek esetén a LiDAR lézeres
letapogatóeszközök is nagyon hasznosak/népszerűek. Azt tapasztaltuk, hogy kame-
rák és LiDAR-ok közös kalibrációjához a jelenlegi megoldások nem elég pontosak,
ezért több új eljárást is javasoltunk. A munkába bekapcsolódott egy új doktorandusz,
Tóth Tekla is, így ebből a területből két tanítványom is doktori fokozatot szerzett:
Zoltán 2020-ban, Tekla 2024-ben.

A disszertáció felépítése. Ebben a dolgozatban kísérletet teszek arra, hogy az elmúlt
másfél évtized során elért tudományos eredményeimet összefoglaljam. A 2. fejezet-
ben rövid elméleti áttekintést adok a tézisek megértéséhez szükséges jelölésekről és
törvényszerűségekről. Ezen belül a 2.2. fejezetben a képalapú rekonstrukciós eljárá-
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sok alapvető módszereit ismertetem.
Az elméleti áttekintés után következik az egyes téziscsoportok részletes ismerte-

tése. A 3. fejezet a lokális affin transzformációkkal kapcsolatos legfontosabb elmé-
leteket és az azokon belül megfogalmazott újdonságokat tartalmazza. A 4. fejezet
konkrét algoritmusokat ismertet, amelyek segítségével az affin transzformációkat a
háromdimenziós látásban alkalmazni lehet. Terjedelmileg és újdonság tartalmában is
ez a rész a legsűrűbb, hiszen a legtöbb eredményt ezen a területen sikerült közzéten-
nem.

Az 5. fejezet egy teljesen új témával foglalkozik, azt mutatom be, hogyan sikerült
a kötegelt behangolás algoritmust kiterjeszteni újabb problémaosztályokra. A rákö-
vetkező, 6. fejezet pedig azt ismerteti, milyen újszerű módszereket sikerült LiDAR-ok
és digitális kamerák külső paramétereinek meghatározásához kifejleszteni.

Végezetül a 7. fejezetben foglalom össze a doktori munkámat.

Kutatási együttműködések. A kutatás a mai, modern világban a legtöbbször csa-
patmunka. Az egyes tézispontoknál igyekeztem a társzerzők szerepvállalását ponto-
san rögzíteni. Elsősorban saját doktoranduszaimmal dolgoztam, de helyenként MSc
és BSc hallgatókkal is sikerült tudományosan értékesnek tekinthető módszereket ki-
fejleszteni. Szerencsésnek mondhatom magamat abban az értelemben, hogy 2021-
ben az Eötvös Loránd Tudományegyetemen saját kutatócsoportot alapíthattam, így
saját tanítványaim már egy önálló csoportban tevékenykedhetnek. Az együttműködé-
sek elsősorban országon belüliek voltak, bár az utóbbi években kutatócsoportommal
igyekszünk külföldi együttműködések felé is nyitni, amely a publikációs listámban
egy-egy társszerző képében is megmutatkozik. A tézisek megfogalmazásánál igye-
keztem az együttműködésekben a saját szerepemet minél pontosabban leírni.
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2. Elméleti alapok

A számítógépes látás az esetek többségében középpontos vetítést megvalósító kame-
rákat alkalmaz, ezen a kategórián belül is a leggyakrabban lyukkamerát szokás alkal-
mazni [62]. Ilyen leképző eszközök esetén a vetítés geometriai modellje egyszerű:
a térbeli pontot látó pixel helyét úgy kapjuk meg, hogy a térbeli pontot összekötjük
a kamera fókuszpontjával, és így kapunk egy vetítő egyenest. Ennek az egyenesnek
és a képsíknak a metszéspontja jelöli ki azt a pixelt, amelyen a térbeli pont vetülete
látszik.

A digitális kamerák szinte kivétel nélkül középpontos vetítést valósítanak meg,
de lehetőség van sík helyett más felületekre is vetíteni. Az érdeklődő Olvasók Geyer
és Daniilidis munkájában [54] találhatnak kiváló összefoglalást az alternatív kame-
ramodellekre. Munkám során elsősorban lyukkamerával foglalkoztam, bár merőle-
ges [164] és skálázottan merőleges [175] vetítési módszerekkel is értem el eredmé-
nyeket. Ezek a modellek is felfoghatóak a lyukkamera speciális esetének, amikor a
fókusztávolságot végtelen hosszúra megnyújtjuk.

Amennyiben a koordináta-rendszerünk a kamerához van rögzítve, a tengelyek
párhuzamosak a vízszintes és függőleges pixeliránnyal, a harmadik tengely (optika
tengelynek nevezik) pedig merőleges a képsíkra. A vetítést az 1. ábra mutatja be,
a bal oldalon térbeli, a jobb oldalon síkbeli ábrázolással. Ez utóbbit úgy kell elkép-
zelni, hogy oldalról nézünk a kamerára, tehát az ábrára merőleges irány megfelel a
vízszintes pixeliránynak.

A perspektív kamerák paramétereit az alábbi felső kalibrációs mátrixban szokás
ábrázolni:

K =

 fu 0 u0

0 fv v0
0 0 1

 , (1)

ahol fu és fv az optika fókusztávolságának és a szenzoron a (vízszintes és függőle-
ges) pixelméretnek a szorzata. Ezt a két paramétert a szakmában fókusztávolságnak
szokás nevezni, ebben az alakban a mértékegysége pixelben értendő, azaz a fókusz-
táv hosszát a szenzor pixeleinek méretéhez viszonyítva fejezzük ki. Ha a pixel alakja
négyzet, ami az esetek döntő többségében igaz, akkor fu = fv. Az [u0 v0]

T pixel-
pozíció az úgynevezett döféspont, amit geometriai megközelítésben a képsík és az
optikai tengely metszéspontjaként kaphatunk meg. Ez a pont a perspektíva közép-
pontja a képen. Speciális esetek – például gumioptika (‘zoom’) alkalmazása esetén –

1. ábra. Perspektív vetítés általános nézetből (bal oldal) és oldalról (jobb oldal)
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az fu és fv skálázási paraméterek arányosan változhatnak a felvételek között.
A hétköznapokban nemperspektív kamerákat is szoktak használni, de ezeket ki-

egyenesítéses 2 algoritmussal perspektívokká lehet alakítani [190, 149].
A képsíkra vetítés képletekkel így határozható meg: u

v
1

 ∼ K

 X
Y
Z

 =

 fuX + u0Z
fvY + v0Z

Z

 . (2)

Az összefüggésben a ∼ (hullám) operátor a skálázás erejéig egyenlőséget jelenti.
Ha a ∼ b, az azt jelenti, hogy létezik olyan valós α szám, amelyre αa = b. A skála
eltüntetésére az úgynevezett homogén osztás műveletet lehet alkalmazni, mely sze-
rint az α értékét az utolsó koordináta reciproka adja. A fenti vetítési egyenletre így az
alábbi két összefüggés adódik, ezek a végső egyenletek, melyek a térbeli [X Y Z]T

pontot és a vetített [u v]T pixelek közötti kapcsolatot leírják:

u = fuX+u0Z
Z

= fu
X
Z
+ u0, v =

fvY + v0Z

Z
= fv

Y

Z
+ v0.

Ha a koordináta-rendszer "valahol a világban" van, egy R elforgatásmátrix és egy
t eltolásvektor segítségével előbb a kamerába kell transzformálni a pontokat 3 . Ekkor
írhatjuk, hogy

 u
v
1

 ∼ K [R|t]


X
Y
Z
1

 . (3)

Jól látható, hogy ebben az esetben már a jobb oldalon elhelyezkedő térbeli pontot
is homogén koordinátával kell leírni, hogy a koordináta-rendszerek közötti eltolást
is kompakt, mátrixos alakban meg tudjuk adni. Fontos megjegyzés, hogy a "világ-
ban" levő pontokat világ koordináta-rendszerben adjuk meg, ha rendszerünk már a
kamerához van rögzítve, akkor kamera koordináta-rendszerről beszélünk.

2.1. Visszavetítés és felületmetszés

A 2. összefüggés alapján a visszavetítést is jól meg tudjuk határozni: X
Y
Z

 = αK−1

 u
v
1

 , (4)

ahol α értéke tetszőleges lehet, és a skálázás erejéig egyenlőség operátort váltja ki
a 2. összefüggésben. Ez az egyenlőség geometriailag úgy értelmezhető, hogy az adott
pixelhez vetítés előtt végtelen sok pont tartozik, ezek a pontok alkotják a vetítőegye-
nest.

Amennyiben adott egy térbeli test, és arra lennénk kíváncsiak, hogy melyik pontja
látszik a pixelen, akkor a felületet el kell metszeni a vetítősugárral. Erre a feladatra
egy példát síkmetszésen keresztül mutatok meg.

2 Angolul: rektifikáció.
3 Az R forgatás és a t eltolás segítségével az elképzelhető összes egybevágósági transzformációt

le lehet írni a térben, ha R ortonormált, azaz RTR = I.
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Metszés síkkal.
A visszavetítés alkalmazásához egy egyszerű példát tekintünk, ahol a feladat egy

adott pixelhez meghatározni, hogy a sík melyik pontját látja, ha tudjuk, hogy a sík a
legközelebbi objektum. Ez a feladat a számítógépes grafikában [106, 41] a sugárvetés
(ray-casting), amely a sugárkövetés (ray-tracing) alapproblémája 4.

Ha adott egy sík, amelyet n felületi normálvektorával és p0 pontjával adunk meg,
egy p pont akkor van a síkon, ha az nT (p− p0) = 0 implicit egyenlet teljesül. A
visszavetített sugárnak és a síknak a metszéspontját egyszerűen megkaphatjuk, ha a
vetítőegyenes kifejezését behelyettesítjük a p pont helyére, a sík implicit egyenleté-
ben:

nT

αK−1

 u
v
1

− p0

 = 0. (5)

Ebből az összefüggésből a hiányzó α paraméter elemi műveletek segítségével meg-
határozható:

α =
nTp0

nTK−1
[
u v 1

]T . (6)

A megkapott α paramétert a sugár megadásába (a 4. egyenlet) visszahelyettesítve
megkapjuk a metszéspont helyét a térben.

A későbbiekben, a IV. téziscsoportban fog a kedves Olvasó a visszavetítéssel talál-
kozni, amikor azt mutatom meg, hogyan lehet gömbök kontúrjaiból a gömb közép-
pontját meghatározni, ha a kamera paraméterei ismertek, azaz a kamera kalibrált.

2.2. Képalapú háromdimenziós rekonstrukció

Ebben a fejezetben röviden összefoglalom a két- és sokképes rekonstrukció lépéseit,
kiemelve a legfontosabb és leggyakrabban használt fogalmakat és algoritmusokat.

2.2.1. Kétképes (sztereó) rekonstrukció

A sztereó rekonstrukció problémáját a 2. ábrán láthatjuk. Egy térbeli felületdarabka
X vektorral jellemzett pontját levetítjük a két kamerára. Középpontos vetítést alkal-
mazunk, a két kamera vetítési középpontjait, melyeket fókuszpontnak hívnak, C1-el
és C2-vel jelöljük. A vetítés legegyszerűbb modellje a síkra vetítés, egy átlagos kame-
ra igen jó közelítéssel megfelel ennek a modellnek. Ahogy azt fentebb már leírtam, a
térbeli X pont képét úgy kapjuk meg, hogy összekötjük a pontot a fókuszpontokkal,
így vetítősugarakat kapunk, és a két kamerasíkon az elmetszett pixelek adják a képen
a pont helyét.

A számítógépes látás feladata algoritmikusan visszaállítani a térbeli X pont he-
lyét, ha a két képen ismerjük a vetületi pontokat. A rekonstrukciós folyamatokat az
alábbi lépésekre szokták osztani: kamera kalibráció, epipoláris geometria becslése és
háromszögelés (trianguláció).

4 Egy lábjegyzetet érdemes annak a meggondolásnak szánni, miszerint a háromdimenziós számí-
tógépes grafika és látás egymás inverz feladatai. Grafikában a térbeli modellekből kell életszerű
képeket előállítani, látásban a képekből próbáljuk rekonstruálni a térbeli információt, többek
között a modelleket.
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Kamera kalibráció. Amennyiben a kamerának a belső paramétereit, azaz a fókusz-
táv(ok)at és a döféspontot ismerjük, a rekonstrukciós egyenletek egyszerűsödnek, és
az eredmények numerikusan is pontosabbak lesznek. Általában sakktábla segítségé-
vel [190] be lehet az alkalmazott kamerákat előzetesen kalibrálni. Sakktáblát azért
használnak széleskörűen, mert szabályos a mintázata, és a sakktáblacellák alakját
(élek, sarokpontok) nagyon pontosan meg lehet határozni. Ha a belső paraméterek
ismertek, a kamerákat kalibráltaknak nevezik.

e1 e2

p1 p2

C1 C2

l1 l2

X

2. ábra. Sztereó látás alapproblémája. A térbeli objektum X pontját a két képsíkra
középpontosan vetítjük. A kamerákat (vetítést) a képsíkok és a C1, C2 fókuszpontok
határozzák meg.

Epipoláris geometria becslése. Az epipoláris geometria a projektív geometria kétké-
pes esete. Kalibrált kamerák esetén egyszerűbb a feladat, ebben az esetben az úgyne-
vezett lényegi (esszenciális) mátrix reprezentálja az epipoláris geometriát. Ismeretlen
kameraparaméterek esetén csak az alapvető (fundamentális) mátrix meghatározása
lehetséges 5.

Fundamentális mátrix becslése két képpár között: két általános perspektív kamera
között megadható egy 3× 3-as mátrix, amely a képek között levő geometria kapcso-
latot általános esetben is képes leírni. Ezt a mátrixot hívják alapvető (fundamentális)
mátrixnak, és a szakirodalomban általában F-fel jelölik. A mátrixnak ugyan kilenc
eleme van, de valójában hét paraméter segítségével leírható, mert két megkötést is
lehet tenni:

1. A mátrix szinguláris, azaz a determinánsa zérus, ebből egy egyenletet lehet
felírni, tehát egy szabadságfokot lehet meghatározni.

2. Másrészt skálázásra invariáns a mátrix, azaz ugyanazt a geometriai kapcsolatot
írja le, ha egyazon valós számmal szorozzuk meg az alapvető mátrix minden
elemét. Ez a tény még egy szabadságfokon levon a problémából.

Kalibrált kamerák esetén az alapvető mátrixban lévő ismeretlenek számát tovább
lehet csökkenteni, mivel csupán a kamerák külső paraméterei határozzák meg azt.
Ebben az esetben már lényegi mátrixnak szokás nevezni. A forgatás – melyet az R
ortonormált mátrixszal szokás reprezentálni – három paraméterrel írható le, az el-
tolásvektor t = [tx ty tz]

T további hárommal, de képalapú térbeli látás esetén az
eltolás nagysága nem rekonstruálható, csupán az iránya, ezért csak két paraméter

5 A magyar nyelvű szakirodalomban az idegen elnevezések fonetikus átírását alkalmazzák (fun-
damentális és esszenciális mátrixok), itt megkísérlem a magyar fordítást is használni (alapvető
és lényegi mátrixok).
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határozza meg az eltolást. Így összesen 3 + 2 = 5 paramétert kell becsülne, ebből a
kettőből lehet a lényegi mátrixot előállítani az alábbi módon:

E = [t]×R, (7)

ahol [t]× a t eltolásvektorból készített, bal oldali vektoriális szorzást reprezentáló
3 × 3-as mátrix. Az F alapvető és E lényegi mátrixokat kalibrált kamerák esetén
könnyen át lehet számítani az E = KT

2FK1 összefüggéssel, melyben K1 és K2 az első
és a második kamera belső paramétereit leíró felső háromszög mátrix, melyet az 1.
összefüggésben láthattunk először.

Mind az alapvető, mind a lényegi mátrixok meghatározására a sztereó képpáro-
kon pontmegfeleléseket határoznak meg. Minden pontpár egy egyenletet ad, melyet
az alábbi alakokban lehet leírni:

pT
2Fp1 = pT

2K
−T
2 EK−1

1 pT
1 = 0. (8)

A lényegi mátrixhoz öt [121], az alapvető mátrixhoz hét pontpárra van szükség, mi-
után minden pontpár egy egyenletet ad. Praktikus okokból az alapvető mátrix becslé-
sére a nyolcpontos algoritmus is igen népszerű [60], még akkor is, ha eggyel kevesebb
pontból is meg lehetne határozni a mátrixot.
Háromszögelés (trianguláció)

Ha két képen ismerjük az egymásnak megfelelő pontokat, a pont térbeli helyzete
kiszámítható. A két képen a pontok egy-egy vetítőegyenest határoznak meg, az ere-
deti térbeli pont helye közel lesz az egyeneshez. A feladathoz tartozó rajzot a 3. ábra
mutatja meg. Pirossal jelöltem a vetítőegyeneseket, ezekhez legközelebbi pont adja a
becsült térbeli pont helyét.

e1 e2

p1 p2

C1 C2

l1 l2

X

3. ábra. A triangulációs probléma: a két képen p1 és p2 egymásnak megfelelő pontok
meghatároznak egy-egy vetítőegyenest. Ideális esetben ezek metszéspontja adja a vizsgált
térbeli pont helyét. A zaj miatt a gyakorlatban az egyenesek kitérőek, ezért a térbeli pont
helyét becsülni kell.

Többféle eljárás létezik háromszögeléshez, van, amelyik algebrai hibát minima-
lizál [62], másik megoldás a vetítőegyenesekhez legközelebbi pontot találja meg.
Létezik optimális trianguláció [61] is kétképes esetre, amely attól optimális, hogy a
képtérben minimalizálja a hibát, és a képek közötti geometriai megkötést is rögzíti,
melyet az alapvető mátrix határoz meg.

2.2.2. Többképes rekonstrukció

A sztereó rekonstrukció kiterjesztése sokképes rekonstrukcióra többféleképpen kép-
zelhető el. Lehetséges kétképes rekonstrukciók összefűzésével, ekkor az egyes sztereó
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(rész)eredményeket a megfelelő hasonlósági transzformáció segítségével lehet egy-
másba eltolni és elforgatni. A triangulációs feladat megoldása többképes esetben is
lehetséges, optimális eljárás – képtérben nézve a hibát – ismereteim szerint erre a
feladatra még nem készült el.

Megjegyezném, hogy háromképes projektív geometriát a trifokális tenzor [165]
tudja leírni, azonban ennek jelentősége a gyakorlatban marginális.

Akármilyen módszerrel készítjük is el a rekonstrukciós feladatot, a megoldás ak-
kor a leghatékonyabb, ha a képtérben minimalizáljuk a hibát. Az eljárás során az
ismeretlen, behangolandó paraméterek a háromdimenziós koordináták és a kame-
ráknak a paraméterei. Ez utóbbiak lehetnek belső és külső (úgynevezett póz) para-
méterek.

A hangolás általában numerikus optimalizálás segítségével történik, a Levenberg-
Marquardt [96, 108] algoritmust szokás leggyakrabban alkalmazni a feladatra. Miu-
tán a probléma meglehetősen ritka, egy térbeli rekonstruált pont csak a hozzá tartozó
képpozíciókat befolyásolja, a normálegyenletben – és magában a Jakobi-mátrixban is
– sok nulla érték van. Ezért a feladat kisebb részfeladatokra bontható. Ezt a speciális,
3D rekonstrukcióra kifejlesztett eljárást nevezik kötegelt behangolásnak [167].

Ezt a problémakört a harmadik tézispontban részletesebben is be fogom mutatni
az 5. fejezetben.

2.3. Affin transzformációk a kétképes látásban

Molnár József és Csetverikov Dmitrij 2014-ben jelentette meg véleményem szerint
úttörő munkájukat [113], melyben összekötik a lokális affin transzformációkat és a
kétképes projektív geometriát: megmutatják, hogy ha egy térbeli síkfelület egy adott
pontját két képre levetítjük, akkor a vetített pontok körüli lokális affin transzformáció
hogyan függ a térbeli pont helyétől, a kameraképtől és a felületre merőleges normál-
vektortól. Eredményüket egyetlen általános összefüggésbe lehet foglalni:[

a11 a12
a21 a22

]
=

1

∇Π1
u
T [n]×∇Π1

v

[
∇Π2

u
T
[n]×∇Π1

v ∇Π1
u
T
[n]×∇Π2

u

∇Π2
v
T
[n]×∇Π1

v ∇Π1
u
T
[n]×∇Π2

v

]
, (9)

ahol n az érintőfelületre merőleges úgynevezett normálvektor, A a lokális affin
transzformáció 2 × 2-es lineáris része, Πu és Πv a vetítő függvények a képsíkon víz-
szintes és függőleges irányban. Az összefüggésben a felső index a képszámot jelenti,
∇Π pedig a vetítő függvény térbeli koordináták szerinti gradiense, azaz egy három-
dimenziós vektor. A geometria összefüggéseket a 4. ábrán mutatom meg.

Magának az összefüggésnek a levezetése az A. függelékben olvasható. Az eredeti
munka [113] véleményem szerint kicsit nehezen érthető, ezért a levezetést újraírtuk,
és később publikáltuk [15] is.
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4. ábra. Az affin transzformáció a két kép közötti lineáris transzformáció. A térbeli
pont, a felületi érintő n normálvektora és a Π vetítőfüggvények határozzák meg.

A kapott formula nagy értéke, hogy bármilyen vetítőfüggvény esetén működik,
nem korlátozódik egyetlen kameratípusra sem. A fenti alapegyenlet tehát egy általá-
nos összefüggést ad, az alkalmazott kameratípusok közötti különbség a Π vetítőfügg-
vényekben jelenik meg.
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3. I. téziscsoport: új tudományos eredmények affin meg-
feleltetések felhasználásával

Ahogyan már a bevezetőben is említettem, a 2010-es évek első felétől kezdtünk el
kollégáimmal affin transzformációk alkalmazásával foglalkozni. Affin transzformáci-
ókat két kép között lehet értelmezni azáltal, hogy az egymásnak megfelelő pontok
környezetét kiemeljük, és a környezet pixelei közötti alakváltozást lineáris transzfor-
máció segítségével közelítjük. Egy általános lineáris transzformációt két kép között
az alábbi összefüggés segítségével formalizálhatjuk:

p2 =

[
a11 a12
a21 a22

]
p1 +

[
au
av

]
, p1 =

[
u1

v1

]
, p2 =

[
u2

v2

]
. (10)

Az affin transzformáció tehát összeköti a p1 és p2 képkoordinátákat. Az eltolás két
paramétere (au és av) jól elkülöníthető a maradék négy paramétertől (a11, a12, a21 és
a22). Ez utóbbi négy paraméter együttesét hívják lineáris paramétereknek, mert ezek-
kel kell szorozni a koordinátákat, a másik két paramétert egyszerűen hozzá kell adni
az eredményhez. Az 5. ábrán láthatjuk, hogyan változtatja meg egy általános affin
transzformáció a négyzetet, hogyan kapunk a segítségével paralelogrammát eredmé-
nyül.

Ahhoz, hogy jobban el tudjuk emberi fantáziával képzelni, kategorizálni érdemes
az affin transzformációkat:

– eltolás,

– kétdimenziós (síkban) forgatás,

– skálázás mindkét főirány mentén és

– nyírás.

Ezeket a transzformációkat figyelembe véve fel lehet bontani részekre az affin transz-
formációt, ahogyan azt az F. függelékben részletesen leírom.

A dekompozíció után a formula így alakul:

5. ábra. Az affin transzformáció hatása egy négyzetre. Az eredmény az eredeti négyzet
eltolt, forgatott, nagyított és nyírt mása. Paralelogrammát tudunk előállítani a négyzet-
ből.
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p2 =

[
cosα − sinα
sinα cosα

] [
su 0
0 sv

] [
1 b
0 1

]
p1 +

[
au
av

]
.

A forgatást tehát az α szög reprezentálja, a vízszintes skálát su, míg a függőlegeset
sv. A b valós paraméter a nyírásásért felelős.

Az F. függelékben részletesebb leírást talál a kedves Olvasó a felbontásról, illetve
arról, hogyan lehet a felbontáshoz a paramétereket meghatározni. Ezen kívül még
egy alternatív, szinguláris érték szerinti felbontást is tartalmaz ez a függelék.

3.1. Szakirodalmi áttekintés

A számítógépes képfeldolgozás körülbelül ötvenéves tudományága az informatiká-
nak [57]. A kezdeti módszerek kameraképek feldolgozásával foglalkoztak, de nagyon
hamar elmozdultak térbeli látás irányába is, hiszen két képből már térbeli információ
is előállítható [101]. A 3D látásnak egyébként nem is annyira a képfeldolgozás, mint
inkább a fotogrammetria [154] tekinthető első számú elődjének, hiszen két mérési
pontból a földmérők már több, mint egy évszázada képesek kiszámítani a tárgyak
térbeli pozícióját.

A jelenkorban, a korszerű gépi látásban alapvetően kétféle megközelítéssel dol-
goznak a szakemberek:

1. Jellegzetes pont alapú megoldások. [62]. A képeket jellegzetes pontokat [103,
21] detektálunk, majd ezeket egymásnak megfeleltetjük. Ezekből a megfelel-
tetett koordinátákból aztán ki lehet számítani először a kamerák egymáshoz
képesti relatív elhelyezkedését, majd pedig a térbeli pozícójukat is.

2. Látás gépi tanulás segítségével [64, 43] Betanított hálózatok képesek az egyes
részproblémákat, vagy akár a teljes rekonstrukciós folyamatot (úgynevezett
end-to-end tanulással) előállítani. Az elmúlt időszak robbanásszerű fejlődésé-
nek egyik oka a gépi tanulás előretörése volt. A járműre szerelhető szenzorok,
azon belül is a kameraképek hatékony feldolgozása manapság elképzelhetetlen
a mestersége intelligencia nélkül. Azonban sokszor már maga a mesterséges in-
telligencia a fejlődés gátja: ugyan jóval 90%-os hatékonyság felett teljesít, de a
100%-os hatékonyság még mindig messze van.

A két megközelítést egyesíteni is lehet, például mélyháló segítségével lehet jel-
legzetes pontokat detektálni [39], majd képek között párosítani [145], végezetül a
megfeleltetett pontokból ki lehet a térbeli információt számítani.

Ebben a doktori disszertációban én az első megközelítéssel foglalkozom, de új
megközelítésben. A szakirodalomban a pontalapú megközelítések mind a mai napig
szinte egyeduralkodóak [62], azaz jellegzetes pontokat keresnek a képeken, és azo-
kat egymásnak megfeleltetik, majd ezek alapján elvégezhető a térbeli információk
becslése.

Érdekesség, hogy a különböző képeken a jellegzetes pontokat úgy keresik meg,
hogy a pontok körül megvizsgálják a pixeleket, és azokból leírókat készítenek. Tehát
nemcsak egy pixelt, hanem annak a környezetét is megvizsgálják. Amennyiben pedig
egy ilyen környezetet tekintenek, a környezetek közötti alakváltozást is meg lehet
határozni. Elsőrendű közelítésben ezt az alakváltozást egy lineáris transzformációval
írhatjuk le, ezt nevezzük lokális affin transzformációnak.
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e1 e2

p1 p2

C1 C2

l1 l2

X

(a) Pontalapú rekonstrukció. Az egy-
másnak megfelelő pontok meghatá-
rozzák a térveli pontot.

e1 e2

p1 p2

C1 C2

l1 l2

X

A

n

(b) Affin transzformációt figyelembe
vevő rekonstrukció. A felületi normál-
vektor is kiszámítható.

6. ábra. A pontalapú és az affin transzformáció alapú rekonstrukciók. (A kép színes
nyomtatásban könnyebben értelmezhető.)

A két megközelítés közötti eltérést a 6. ábra szemlélteti. A bal oldalon (6a. ábra)
azt láthatjuk, hogy a két képen adottak a p1 és p2 összetartozó képpontok, míg a jobb
oldalon ((6b. ábra) az affin transzformációk is rendelkezésre állnak. Ekkor lehetőség
van kinyerni a térbeli X pozíción kívül a felületre merőleges n normálvektort is.

Ahogyan azt korábban, a 2. fejezetben röviden már bemutattam, ismert kamera
paraméterek és pózok esetén háromszögeléssel a térbeli pont kiszámítható. Ezért a
klasszikusnak mondható pontalapú rekonstrukciós eljárások esetén a kimenet térbeli
pontok sorozata, melyet röviden nevezhetünk pontfelhőnek is.

Affin rekonstrukció esetén, ahogyan azt a 2.3. szakaszban ismertettem Molnár Jó-
zsef és Csetverikov Dmitrij munkája alapján [113], rendelkezésre áll egy általános
összefüggés, amely összeköti az affin transzformációt a kamera paramétereivel, a há-
romszögelt felületi ponttal és a hozzá tartozó felületi normálvektorral. Rekonstrukció
esetén ezért nemcsak térbeli pontokat, hanem hozzájuk tartozó felületi normálvek-
torokat is kaphatunk, ezért az eredmény egy irányított pontfelhő lesz.

Irányított pontfelhők feldolgozása érdekes és még napjainkban is intenzíven ku-
tatott terület mind a számítógépes látásban, mind a robotikában, akár még a geomet-
riai modellezésben is, számos fontos valós alkalmazás profitál az irányok nyújtotta
többletinformációból.

Ilyen alkalmazások lehetnek a 3D rekonstrukció [5, 14, 65, 150, 191, 156, 137],
egyidejű lokalizáció és feltérképezés (SLAM) 6 [38, 44, 117], ahol a térbeli pontnor-
málisok nagyon hasznos információkat szolgáltatnak a felületről. A képalapú vizuális
lokalizációs megközelítések [105, 128, 146, 147] szintén profitálhatnak az ismert fe-
lületi normálisokból [173]. A széles körben használt Poisson-rekonstrukció [81, 82]
mind a pontkoordinátákat, mind azok orientációját képes felhasználni.

Az autonóm járművekhez az egyik fontos algoritmus a jármű mozgásának megha-
tározása. Ha ez kameraképek segítségével történik, a feladatot vizuális odometriának
nevezzük [123, 124]. Ezek a módszerek szintén hasznosíthatják az affin transzfor-
mációkat, ahogy ezt a későbbiekben egy saját algoritmuson keresztül be is fogom
mutatni.

Az orientált pontfelhő birtokában a geometriai modellek és az egyidejűleg több
modellt becslő módszerek nagymértékben egyszerűsödnek [72, 11, 12], mivel olyan

6 Angolul: Simultaneous Localization and Mapping (SLAM)
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algoritmusok készíthetőek, amelyek kevesebb adatpontot igényelnek, mint pontalapú
társaik [151]. Ezen túlmenően a normálisok a rekonstruált orientált háromdimenziós
pontfelhő numerikus finomításában is felhasználhatók [161].

Magát a normálvektor-becslési problémát ismereteim szerint először a sok évti-
zeddel ezelőtt bevezetett fotometrikus sztereó (Photometric Stereo – PS) segítségével
oldották meg [179, 180]. E módszer legnagyobb hátránya, hogy csak olyan labora-
tóriumokban használható, ahol a fényviszonyok teljesen ellenőrzöttek. Később, az 5.
fejezetben egy konkrét algoritmust is be fogok mutatni. Hétköznapi körülmények
között is lehetséges egy képből a felszín normálvektorait rekonstruálni [177], ha tu-
dunk a felületre megkötéseket tenni, pl. a homogén színt és a felületek viszonylagos
simaságát. Ezeket az eljárásokat "shape from shading" 7 néven hivatkozzák meg. Az
alkalmazások egy jelentős része a bolygók felszínének rekonstrukciójával foglalkozik,
hiszen ezekről a felületekről nem könnyű különböző nézőpontú képeket készíteni.

Ismereteim szerint az affin transzformációk alkalmazásával a sztereó látásban elő-
ször Megyesi Zoltán és Csetverikov Dmitrij foglalkozott először [109]. Egy speciális
esetet, az emberi szem működési modelljének is megfelelő standard sztereó kame-
rabeállításra készítettek egy felületi normálvektorbecslőt. Ebben az esetben az affin
transzformáció két szabad paraméterrel leírható, a speciális beállítás két paramétert
a háromdimenziós világ tartalmától függetlenül egyértelműen meghatároz.

Pár évvel később, 2009-ben Kevin Köser doktori munkáját [84] szintén az affin
transzformációknak szentelte, a szerző több oldalról vizsgálta meg a kérdés, nemcsak
a normálvektorok becslésével foglalkozott, hanem a kamerák külső paramétereinek
meghatározásával is, bár a munkájában az általános eseteket nem vizsgálta meg, ő is
a lehetséges konfigurációknak csak egy részhalmazával foglalkozott.

A mi munkásságunk előtt még egy jelentősebb publikációt emelnék ki: Jacob Ben-
tolila és Joseph M. Francos [23] egy harmadfokú formulát vezetett le, melyek egy
affin transzformációt és a fundamentális mátrixot közötti összefüggést írják le.

Az elmúlt évtized során az affin transzformációkkal kapcsolatban kollégáimmal
közösen három törvényszerűséget sikerült kidolgozni. Büszkén írhatom, hogy mind-
három magyar kutatókhoz köthető, akikkel volt szerencsém együtt dolgozni.

Ezek a törvényszerűségek a következők:

1. Általános összefüggés írható fel az affin transzformációk, a pontok képbeli és
térbeli elhelyezkedése, a projekciós mátrix és a felületi normálvektor között.

2. Kapcsolat létezik az affin transzformáció és a homográfia között. Az affin transz-
formáció lineáris részét meg lehet kapni egy kiválasztott pontban, ha a homog-
ráfiát meghatározó vetítő függvényt deriváljuk az első képen a hely koordiná-
táival.

3. Lineáris összefüggés adható a fundamentális mátrix és az affin transzformációk
között. Bebizonyítottuk, hogy a két mátrix között fel lehet egy kétdimenziós
egyenletet írni.

7 Magyar fordítását nem ismerem, a javaslatom: alakzat árnyalásból.
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3.2. Első törvény: kapcsolat a normálvektor, a kameraparaméte-
rek és az affin transzformáció között

Az első törvényszerűség – melyet Molnár József és Csetverikov Dmitrij közös munká-
jukban publikáltak először 2014-ben [113], – kimondja, hogy az affin paraméterek
meghatározhatóak a vetítési függvények gradienseinek és a felületi normálvektornak
segítségével. Mindezt az alábbi alakban lehet formálisan leírni:

[
a11 a12
a21 a22

]
=

1

∇Π1
u
T [n]×∇Π1

v

[
∇Π2

u
T
[n]×∇Π1

v ∇Π1
u
T
[n]×∇Π2

u

∇Π2
v
T
[n]×∇Π1

v ∇Π1
u
T
[n]×∇Π2

v

]
, (11)

ahol a felső index jelzi a képszámot, illetve a Πu vetítőfüggvény a vízszintes, Πv

pedig a függőleges koordinátához tartozik. Ezeknek a vetítőfüggvénynek a gradien-
seit kell venni a térbeli koordináták szerint, ezért ezek a gradiensek háromdimenziós
vektorok.

Noha a 22. egyenlet először [113]-ben jelent meg, a levezetést talán kicsit közért-
hetőbb alakra módosítva mi is publikáltuk [15]. A fenti egyenletek általános kamera-
modellek esetén igazak, de munkánkban [15] azt is megmutattuk, hogy a gyakorlat
számára legfontosabb lyukkamera esetében hogyan konkretizálódnak az összefüggé-
sek. Ilyenkor a vetítést a 3× 4-es

P =

 P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34


projekciós (vetítő) mátrixszal írjuk le, a vetítő függvények pedig ekkor a követke-

zőképpen adhatók meg:

Πu =
1

s
(P11X + P12Y + P13Z + P14) , (12)

Πv =
1

s
(P21X + P22Y + P23Z + P24) , (13)

ahol s = P31X + P32Y + P33Z + P34 a projektív mélység, amellyel a homogén
osztást el kell végezni.

A gradiensek ebben az esetben így alakulnak:

∇Πu = 1
s

 P11 + uP31

P12 + uP32

P13 + uP33

 , ∇Πv =
1
s

 P21 + vP31

P22 + vP32

P23 + vP33

 .

A későbbiekben ezeket az egyenleteket használjuk normálvektorok becslésére.
Mivel ez a levezetés alapvetően társszerzőnk, Molnár József érdeme, az első tör-

vényt a tézisek között nem szerepeltettem, viszont a normálvektorbecslés alapját ad-
ja, ezért itt mindenképpen szerettem volna megismertetni vele az Olvasót.

3.3. Második törvény: kapcsolat a homográfia és az affin transz-
formáció között

Amennyiben síkfelületeket vizsgálunk a kamerákkal, a síkfelület pontjai között az
úgynevezett homográfiával lehet leírni a kapcsolatot [62]. Ebben az esetben, a ho-
mogén osztást leszámítva, lineáris az összefüggés:
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 u2

v2
1

 ∼
 H11 H12 H13

H21 H22 H23

H31 H32 H33

 u1

v1
1

 . (14)

A kétdimenziós koordinátákat a homogén osztás elvégzésével fejezhetjük ki:

u2 =
H11u1+H12u2+H13

H31u1+H32u2+H33
, (15)

v2 =
H21u1+H22u2+H23

H31u1+H32u2+H33
.

Az affin paraméterek segítségével a transzformációk elsőrendű közelítését lehet
leírni, magukat az affin paramétereket ezért a homográfiából származtatott transz-
formációk parciális deriváltjaiból lehet meghatározni. Például:

a11 =
∂H11u1+H12u2+H13

H31u1+H32u2+H33

∂u1

=
H11 (H31u1 +H32u2 +H33)−H31 (H11u1 +H12u2 +H13)

(H31u1 +H32u2 +H33)
2 =

=
H11 −H31u2

(H31u1 +H32u2 +H33)
=

H11 −H31u2

s
,

ha bevezetjük az s = H31u1 +H32v1 +H33 jelölést.
Hasonlóan megkaphatjuk a mások három lineáris affin paramétert is. A négy pa-

raméter kompakt formában így írható:

a11 =
∂u2

∂u1
= H11−H31u2

s
, a12 =

∂u2

∂v1
= H12−H32u2

s
,

a21 =
∂v2
∂u1

= H21−H31v2
s

, a22 =
∂v2
∂v1

= H22−H32v2
s

.
(16)

A második törvény azt mondja ki, hogy négy új egyenletet lehet felírni, amelyek
a homográfiát és az affin paramétereket kötik össze. A 14. összefüggésből további
két egyenletet tudunk felírni a homogén osztás elvégzése után. Az affin paraméterek
alkalmazásának egyértelműen nagy előnye, hogy ha magát a homográfiát szeretnénk
kiszámítani, akkor újabb négy egyenlettel bővül a becsléshez alkalmazott rendszer a
korábban alkalmazott kettő egyenlethez [62] képest.

Érdekesség, hogy a 16-es sorszámú egyenletekben a 3×3-as homográfia mátrixnak
az összes eleme szerepel az új összefüggésben, kivéve a homográfia mátrixban az
utolsó oszlop első két elemét. Ezt az elemet kizárólag a 14. összefüggés figyelembe
vételével lehet megbecsülni, tehát legalább egy összefüggést ismerni kell a pontok
helyére is, nem elég kizárólag affin transzformációkat használni.

Bár ezt a törvényt 2016-ban közösen publikáltuk [16], a levezetést társszerzőnk,
Molnár József készítette, ezért ezt nem tekinthetem saját eredményemnek. A ké-
sőbbiekben ebből a törvényből homográfia-becslőt készítettünk, amiben már az én
hozzájárulásomat is jelentősnek ítélem.

3.4. Harmadik törvény: kapcsolat az alapvető/lényegi mátrixok és
az affin transzformáció között

Az affin transzformációk alkalmazására egy harmadik törvényt is ki lehet mondani,
amely ezúttal a fundamentális mátrixot köti össze az affin transzformációkkal. A 7.
ábra mutatja meg a levezetés alapelvét. Adott két kép, két kiválasztott ponttal és a
körülöttük levő minták változását meghatározó lokális affin transzformációval. A két
képen a középpontokat p1-el és p2-vel jelöljük.
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A fundamentális mátrix segítségével meghatározhatjuk az l1 és l2 epipoláris egye-
neseket. Az ezekre merőleges normálirányok skálázásának felhasznnálásával fel lehet
írni az alábbi vektoros egyenletet:

ATF̂

[
p1

1

]
= −F̃T

[
p2

1

]
, (17)

ahol F̃ és F̂ a fundamentális mátrix "csonkított" változata: az eredeti mátrixból
az utolsó sort, illetve oszlopot letöröljük. Ezáltal újabb egyenleteket kapunk, hiszen
a 24. egyenlet kétdimenziós, tehát két egyenletre bontható a dimenziók szerint. Ha
csak a p1 és p2 pozíciókat használjuk, a 8. összefüggés alapján egy egyenletünk van,
az affin paraméterek figyelembevételével további két egyenletet tudunk felírni.

Bizonyítás.

Amennyiben adott az F fundamentális mátrix, és a két képen ismerjük az egymás-
nak megfelelő p1 és p2 pontokat (homogén alakban), a megfelelő epipoláris egyene-
sek implicit paramétereit könnyen ki lehet számolni: l2 = Fp1 és l1 = FTp2, ahol
l1 és l2 is háromdimenziós vektorok. Az egyenesekre merőleges normálok irányát a
vektorok első két koordinátája adja meg. A két koordinátára itt a l̂1 és a l̂2 jelöléseket
alkalmazzuk.

A merőlegesek irányvektorait illik egységvektorként kezelni. A két egységhosszú-
ságú normál az alábbi alakban kapható meg:

n1 =
l̂1√
l̂T1 l̂1

=

F̃T

 p2

1


∥∥∥∥∥∥F̃T

 p2

1

∥∥∥∥∥∥
2

, (18)

n2 =
l̂2√
l̂T2 l̂2

=

F̂

 p1

1


∥∥∥∥∥∥F̂

 p1

1

∥∥∥∥∥∥
2

. (19)

A hullámjeles F̃ és kalapos F̂ csonkolt mátrixokat a fundamentális mátrix két felső
sorának (hullám), illetve két bal oldali oszlopának(kalap) megtartásával kapjuk meg.

7. ábra. Az affin transzformáció az epipoláris egyenesekre merőleges irányt képes
transzformálni. A képen a d/ϵ arány mutatja meg a skálázást a merőleges irányok-
ban.
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A p1 és a p2 pontok az l1 és l2 egyenesekre illeszkednek, ezért igaz, hogy lT1 p1 = 0
és lT2 p2 = 0.

Hogyha egy másik q1 = p1+ϵn1 pontot is veszünk az első képen, ahol n1 a fentebb
kiszámított normálvektora az l1 egyenesnek, akkor a megfelelő epipoláris egyenest
így kaphatjuk meg, homogén koordinátákat alkalmazva:

l′2 = F

[
p1 + ϵn1

1

]
= F

[
p1

1

]
+ F

[
ϵn1

0

]
.

A d távolságot az eredeti p2 pont és a most megkapott l′2 egyenes között ki tudjuk
fejezni:

d =

[
p2

1

]T
l′2√

l̂2
′T
l̂2

′
,

ahol l̂′2 vektor az l′2 epipoláris egyenes első két koordinátáját tartalmazza. Tehát

l̂′2 = F̂

([
p1

1

]
+

[
ϵn1

0

])
,

azaz balról az F fundamentális mátrix helyett csak annak az első két sorát tartalmazó
F̂ mátrixszal kell a pontot szorozni.

A normáló osztótényezőt az alábbi alakba írhatjuk:√
l̂2

′T
l̂2

′ =

∥∥∥∥F̂([ p1

1

]
+

[
ϵn1

0

])∥∥∥∥
2

.

Elemi átalakításokat végezve a d távolság alakját módosíthatjuk:

d =

[
p2

1

]T (
F

[
p1

1

]
+ F

[
ϵn1

0

])
∥∥∥∥F̂([ p1

1

]
+

[
ϵn1

0

])∥∥∥∥
2

=

ϵ

[
p2

1

]T
F

[
n1

0

]
∥∥∥∥F̂([ p1

1

]
+

[
ϵn1

0

])∥∥∥∥
2

.

Az első tag a számlálóban azért esett ki, mivel p2 az l2 egyenesen van, tehát[
p2

1

]T
F

[
p1

1

]
= 0.

Ezért írhatjuk, hogy

d = ϵ

[
p2

1

]T
Fn1∥∥∥∥F̂([ p1

1

]
+

[
ϵn1

0

])∥∥∥∥
2

.
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A merőleges irányok megváltozását a d és ϵ távolságok arányával írhatjuk le. Ha a
módosított pontot végtelenül közel visszük az egyeneshez, akkor írhatjuk az arányra,
hogy

s = lim
ϵ→0

d

ϵ
= lim

ϵ→0

[
p2

1

]T
Fn1∥∥∥∥F̂([ p1

1

]
+

[
ϵn1

0

])∥∥∥∥
2

=

[
p2

1

]T
Fn1∥∥∥∥F̂([ p1

1

])∥∥∥∥
2

.

Az n1 normálvektorra a 18. összefüggést behelyettesítve ezt a formulát kapjuk:

[
p2

1

]T
F̃

F̃T
[
p2

]
∥∥∥∥∥∥F̃T

 p2

1

∥∥∥∥∥∥
2∥∥∥∥F̂ [ p1

1

]∥∥∥∥
2

=

[
p2

1

]T
F̃F̃T

[
p2

1

]
∥∥∥∥F̃T

[
p2

1

]∥∥∥∥
2

∥∥∥∥F̂ [ p1

1

]∥∥∥∥
2

=

∥∥∥∥F̃T

[
p2

1

]∥∥∥∥2
2∥∥∥∥F̃T

[
p2

1

]∥∥∥∥
2

∥∥∥∥F̂ [ p1

1

]∥∥∥∥
2

=

∥∥∥∥F̃T

[
p2

1

]∥∥∥∥
2∥∥∥∥F̂ [ p1

1

]∥∥∥∥
2

. (20)

Ha egy affin transzformáció az egyenesek irányait jól transzformálja, akkor az egye-
nesekre merőleges irányra igaz [169], hogy ATn2 = sn1, ahol az s skála egy pozitív
valós szám. Ez a skála kiküszöbölhető, ha a normálvektorokból egységvektort készí-
tünk. Ekkor a 20 egyenletből a skálát behelyettesítve, és egységvektorokat készítve a
normálvektorokból igaz lesz, hogy

AT

F̂

[
p1

1

]
∥∥∥∥F̂ [ p1

1

]∥∥∥∥
2

=

∥∥∥∥F̃T

[
p2

1

]∥∥∥∥
2∥∥∥∥F̂ [ p1

1

]∥∥∥∥
2

F̃T

[
p2

1

]
∥∥∥∥F̃T

[
p2

1

]∥∥∥∥
2

.

A nevezőben és számlálóban is jelen levő tagokkal egyszerűsítve adódik a végső
formula:

ATF̂

[
p1

1

]
= ±F̃T

[
p2

1

]
. (21)

Itt az előjel mindössze azért bizonytalan, mert nem tudjuk, hogy a normálvektor
az egyenes melyik oldalára mutat. A gyakorlati kamera konfigurációkban ez az előjel
negatív.

Gyakorlati alkalmazás esetén fontos tény, hogy a fundamentális mátrixnak az
összes eleme szerepel az új összefüggésben, kivéve a jobb alsó, azaz (3,3)-as indexű
elemet. Azt az elemet a 8. egyenletből lehet megkapni., tehát szükség van a pontok
helyére is, nem elég csupán a lineáris részét használni az affin transzformációnak.
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3.5. Összefoglalás

Ebben a fejezetben megmutattam azt a három törvényt, amelyek a lokális affin transz-
formációkat a kétképes (sztereó) látással összekötik. A következő fejezetben ezekre
a törvényszerűségre alapozott algoritmusokat fogok bemutatni.

– Az első törvény az affin transzformáció lineáris részére ad egy algebrai ala-
kot, amely a felületi normálvektorokból és a vetítési egyenletek térbeli pozíció
szerinti gradienseiből számítja ki a transzformációt. Az általános formula tet-
szőleges vetítési modellre működik.

– A második törvény feltételezi, hogy egy síkfelületről két képet készítünk, és
négy egyenletet ad a törvény, amelynek segítségével az affin transzformáció
lineáris részét ki lehet számítani a homográfia ismeretében. A homográfia ele-
meinek segítségével megmutattam azokat a törtkifejezéseket, amelyek a négy
lineáris affin paramétert meghatározzák. A homográfia kilenc eleméből hét sze-
repel ezekben a törtekben.

– A harmadik törvény a fundamentális mátrix és az affin transzformáció közötti
kapcsolatra ad egy kétdimenziós egyenletet. A formulát az epipoláris egyene-
sek közötti távolságok alapján vezettem le. Az összefüggésben a fundamentális
mátrix kilenc eleméből nyolc szerepel.

Ismereteim szerint ezt a három törvényszerűséget én foglaltam össze először, erről
"Tutorial" előadást tartottam a CVPR2022 8 és a 3DV2022 konferenciákon. A törvé-
nyek összefoglalását ezért tudományos eredménynek tekintem, ebből mondom ki az
első tézist. A három törvény közül azonban csak az utolsót tekintem saját eredmé-
nyemnek, ennek alapján fogalmazom meg a második tézisemet.

I.1. tézis. Affin transzformációk törvényészerűségei[18, 34, 19].
Kutatómunkánk és a minket megelőző szakemberek munkássága alapján három

törvényben fogalmaztam meg az affin transzformációkkal kapcsolatos összefüggése-
ket.

1. Az első törvény a felületi normálvektor, a kameraparaméterek, a vetítési függ-
vény és a vetületi középpontok közötti összefüggést írja le:[

a11 a12
a21 a22

]
=

1

∇Π1
u
T [n]×∇Π1

v

[
∇Π2

u
T
[n]×∇Π1

v ∇Π1
u
T
[n]×∇Π2

u

∇Π2
v
T
[n]×∇Π1

v ∇Π1
u
T
[n]×∇Π2

v

]
, (22)

ahol a gradiens operátor (∇) jelöli a vetítési függvény gradiensét a térbeli koor-
dináta szerint9, n pedig a felületi normálvektor. A kapott formula véleményem
szerinti rendkívül nagy értéke, hogy bármilyen vetítőfüggvény esetén működik,
nem korlátozódik egyetlen kameratípusra sem. A fenti alapegyenlet tehát egy
általános összefüggést ad, az alkalmazott kameratípusok közötti különbség a Π
vetítőfüggvényekben jelenik meg.

8 https://cvpr22-affine-tutorial.com/ oldalon elérhető a tutorial, a másfél órás előadásom címe
’Affine Correspondences in Stereo Vision’.

9 Az alsó index a vízszintes/függőleges irányt, a felső index a kép számát jelöli.
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2. A második törvény megmutatja, hogy milyen összefüggés képezhető lyukkame-
ra esetén a H homográfia és a két képen egymásnak megfelelő [u1 v1]

T és
[u2 v2]

T pixelkoordináták között, ha a lokális felület egy síkról származik. A
parciális deriváltak alapján összesen négy összefüggést lehet felírni:

a11 =
∂u2

∂u1
= H11−H31u2

s
, a12 =

∂u2

∂v1
= H12−H32u2

s
,

a21 =
∂v2
∂u1

= H21−H31v2
s

, a22 =
∂v2
∂v1

= H22−H32v2
s

.
(23)

3. A harmadik törvény a következő, I.2. altézisben megfogalmazott összefüggés a
fundamentális (alapvető) mátrix és a lokális affin transzformáció elemei között.

I.2. tézis. Lineáris kapcsolat az epipoláris geometria és az affin transzformációk
között [18, 34, 19].

Amennyiben adott egy színtérről két, lyukkamerával felvett kép, és a két kép kö-
zött az F fundamentális mátrix teremt kapcsolatot, akkor az affin transzformáció
és a fundamentális mátrix között az alább vektoros (kétdimenziós) egyenletet lehet
megadni:

ATF̂

[
p1

1

]
= −F̃T

[
p2

1

]
, (24)

ahol F̃ és F̂ a fundamentális mátrix "csonkított" változatai, melyeket úgy kapunk,
hogy az eredeti F mátrixból az utolsó sort, illetve az utolsó oszlopot töröljük. p1 és
p2 a két képen az egymásnak megfelelő pontok homogén koordinátákkal megadva,
ezen pontok körül értelmezzük az A affin transzformációt.

Érdekesség, hogy a harmadik törvényt 2016-ban publikáltuk [34], de a 24. össze-
függésben a két oldal közötti arányról még nem tudtuk, hogy mínusz egy, ezt a tényt
egy évvel később, 2017-ben sikerült bebizonyítani [19]. Ezt a bizonyítást teljes egé-
szében magaménak érzem, azzal a megjegyzéssel, hogy az egyszerűsített alak dok-
toranduszom, Baráth Dániel sejtése volt, de a bizonyítást nekem sikerült megalkotni
először.

26

               hajder_274_24



4. II. Téziscsoport: algoritmusok lokális affin tanszfor-
máció felhasználásához

Az előző fejezetben az affin transzformációval kapcsolatosan három törvényszerűsé-
get fogalmaztam meg. Ebben a fejezetben ezekre a törvényekre épített algoritmuso-
kat mutatok be, melyek a gemetria alapú számítógépes látás alapproblémáira nyúj-
tanak egy-egy megoldást.

4.1. Optimális normálvektorbecslés

Az első törvény kimondja, hogy az affin paraméterek meghatározhatóak a felüle-
ti normálvektor és a vetítőfüggvény gradienseinek ismeretében. A gondolatmenetet
meg is lehet fordítani: ha ismert a kamera a külső és a belső paramétereivel egye-
temben, akkor az affin transzformációk meghatározzák a felületi normálvektort. A
feladat ábrázolását a 8. ábrán lehet megtekinteni.

Az első törvényszerűség (22. formula) alapján az affin transzformációk értéké-
re négy egyenletünk van. Ezeknek felhasználásával legkisebb négyzetes értelemben
meghatározható egy hibafüggvény, amelynek optimalizálására javaslatot tettünk. A
feladat matematikai alakja az alábbi:

n = argnmin
2∑

i=1

2∑
j=1

(
nTwij

nTwc

− aij

)2

, (25)

ahol

w11 = (∇Π1
v ×∇Π2

u) , w12 = (∇Π2
u ×∇Π1

u) ,
w21 = (∇Π1

v ×∇Π2
v) , w22 = (∇Π2

v ×∇Π1
u) ,

wc = (∇Π1
u ×∇Π1

v) .
(26)

Könnyű belátni, hogy ennek a négyzetes hibafüggvénynek a minimuma nem függ
a háromdimenziós normálvektor irányától, csak annak nagyságától. Ezért a normál-
vektor becslése valójában egy kétparaméteres probléma.

e1 e2

p1 p2

C1 C2

l1 l2

X

A

n

8. ábra. Az affin transzformáció esetén a pirossal jelzett felületi normálvektor meghatá-
rozható, amennyiben a kamera kalibrált, azaz ismerjük a vetítőfüggvényt.
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A két paraméter szerinti deriváltak görbéket határoznak meg a síkon, ha a két
paramétert tekintjük a kétdimenziós tengelyeknek. A megoldás pedig a görbék met-
széspontjaiban van.

Először megmutattuk, hogy síkban kvadratikus görbék metszéspontját kell keres-
ni, melyek egy negyedfokú polinom gyökén keresztül számíthatóak [15, 9]. Később
azt is bebizonyítottuk, hogy a másodfokú görbék speciálisak, ezért elég egy harmad-
fokú polinom gyökeit számolni [110], azaz lényegesen gyorsabban megkapható az
eredmény. 2023-ban Lóczi Lajos kollégánk közreműködésével sikerült még egysze-
rűbb megoldást adni az optimális normálvektorbecslésre, két elsőfokú polinom há-
nyadosaként [56].

4.2. Kamera kalibráció

Az első affin transzformációkra vonatkozó törvény, amelyet a 22. összefüggés ír le,
azt is kimondja, hogy a vetítő függvény gradiensei és a normálvektorok hogyan függ-
nek össze. Miután a gradiens a kameraparaméterektől függ, az affin transzformáci-
ók ismerete esetén egyenleteket tudunk felírni a paraméterekre. 2016-os munkánk-
ban [42] megmutattuk Eichhardt Iván (akkor még) doktorandusz kolléga közremű-
ködésével 10, hogyan lehet ismert normálvektorok segítségével a kameraparaméterek
becslését finomítani. Ennek az eredménynek inkább elméleti jelentősége van, első-
sorban a III. tételcsoportban ismertetett kötegelt behangolást használó numerikus
finomításnál használtuk a kapott összefüggéseket.

Azért kevésbé jelentős gyakorlati szempontból ez a tézis, mert a felületi normál-
vektorok csak jól meghatározható kalibrációs objektumok esetén ismertek, szaba-
dabb formájú felületek rekonstrukciójakor ki kell számítani, de ehhez a számításhoz
már szükség van a kamera paraméterekre.

Az első törvényből ismert összefüggés:[
a11 a12
a21 a22

]
=

1

∇Π1
u [n]×∇Π1

v

[
∇Π2

u [n]×∇Π1
v ∇Π1

u [n]×∇Π2
u

∇Π2
v [n]×∇Π1

v ∇Π1
u [n]×∇Π2

v

]
.

A jobb oldalon a kiemelt skalár nevezőjével beszorozhatjuk az egyenletet, és mivel
aT [n]xb = nT (b× a), írhatjuk, hogy

(
∇Π1

u [n]×∇Π
1
v

) [ a11 a12
a21 a22

]
=

[
nT (∇Π1

v ×∇Π2
u) nT (∇Π2

u ×∇Π1
u)

nT (∇Π1
v ×∇Π2

v) nT (∇Π2
v ×∇Π1

u)

]
A bal oldalon a mátrix elemeire bevezethetjük a mij = aij

(
∇Π1

u [n]×∇Π1
v

)
jelölést.

A jobb oldalon pedig a vektoriális szorzást mátrixos alakra módosíthatjuk, így igaz
lesz, hogy [

m11 m12

m21 m22

]
=

[
nT [∇Π1

v]×∇Π2
u −nT [∇Π1

u]×∇Π2
u

nT [∇Π1
v]×∇Π2

v −nT [∇Π1
u]×∇Π2

v

]
.

Ez pedig négy egyenletet jelent:

m11 = nT [∇Π1
v]×∇Π2

u, m12 = −nT [∇Π1
u]×∇Π2

u,
m21 = nT [∇Π1

v]×∇Π2
v, m22 = −nT [∇Π1

u]×∇Π2
v.

10 Ivánnal egy kutatócsoportban dolgoztunk már akkoriban is, mindkettőnk doktori munkájának
témavezetője Csetverikov Dmitrij volt.
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A gradiensek:

∇Πu =
1

s

 P11 + uP31

P12 + uP32

P13 + uP33

→ s∇Πu =

 P11 + uP31

P12 + uP32

P13 + uP33

 = p̂1 + up̂3,

ahol a p̂i a P mátrix i-dik oszlopát jelöli. Teljesen hasonlóan:

∇Πv =
1

s

 P21 + vP31

P22 + vP32

P23 + vP33

→ s∇Πv =

 P21 + vP31

P22 + vP32

P23 + vP33

 = p̂2 + vp̂3.

Az összefüggésekben s = p̃T
3X, ahol a hullám operátor azt jelenti, hogy a P mát-

rixnak a harmadik sorát (vektort) kell venni. Az első kamerára az s1 projektív mélység
ismert, hiszen minden adott, de a második kameránál az is ismeretlennek tekinthető.

Tehát behelyettesítve és linearizálva az alábbi négy egyenletet kapjuk:

m11s
2p̃2T

3 X = nT [∇Π1
v]× (p̂2

1 + u2p̂2
3) ,

m12s
2p̃2T

3 X = −nT [∇Π1
u]× (p̂2

1 + u2p̂2
3) ,

m21s
2p̂2T

3 X = nT [∇Π1
v]× (p̂2

2 + v2p̂2
3) ,

m22s
2p̃2T

3 X = −nT [∇Π1
u]× (p̂2

2 + v2p̂2
3) .

(27)

Ez pedig egy homogén lineáris egyenletrendszer a második kép P2 projekciós
mátrixának az elemeire nézve, ahogyan az el is várható. Fontos megjegyzés, hogy a
projekciós mátrixnak négy oszlopa van összesen, ezek közül a negyedik nem szerepel
az affin összefüggésekben, azt az oszlopot a vetületek koordinátáinak a segítségével
lehet meghatározni.
Minimális eset. A projektív mátrixnak így összesen kilenc paraméterét lehet megbe-
csülni. Két affin transzformációból a 27. formulák alapján nyolc egyenletet tudunk
felírni, ha ezekhez még a pontok helyei is hozzájönnek, azok tovább 2 + 2 egyenletet
adnak, tehát összesen 12 egyenletünk van a projekciós mátrix 11 szabad paraméteré-
re.

A korábbi munkánkban [42], amelyben az eredeti módszert ismertettük, kétféle
algoritmust javasoltunk:

1. CLOSED. A 27. egyenleteknek megfelelően a homogén lineáris egyenletrend-
szer sajátérték-feladatként megoldható, ahogyan azt a B. függelékben megmu-
tatom.

2. ALTER. A projektív mélység minden egyes térbeli pontra ismeretlenként beve-
zethetjük: s2 = p̃2T

3 X. Ekkor a 27. egyenlet bal oldalán a projektív mélység
szerepel ismeretlenként, a jobb oldalon pedig a kamera paraméterei. Kézenfek-
vő megoldás, hogy válasszuk szét a projekciós mátrix elemeit és a mélységeket,
és felváltva optimalizáljuk, mert két lineáris problémára esik szét. A B. függe-
lékben mutatom meg, hogyan lehet lineáris túlhatározott rendszereket megol-
dani. Az iteráció elején kezdeti értéket kell beállítani, amit a DLT algoritmus
szolgáltat kizárólag pontmegfelelések segítségével.

A fenti eljárásoknak hátránya, hogy algebrai hibát minimalizálnak, nem geometri-
ait, annak érdekében, hogy a probléma lineáris maradjon. Ezért numerikus eljárások
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alkalmazására van szükség a geometriai hiba csökkentésére. Ezzel szintén foglalkoz-
tunk kollégámmal, de a hely szűkössége miatt a részleteket itt nem tudom közölni,
2016-os munkánkat [42] elolvasva tájékozódhat az Olvasó.
Szintetikus tesztek.

A szintetikus tesztek során különböző normálvektorokat generáltunk, amelyek
egyértelműen meghatározzák a térbeli elhelyezkedéssel együtt az affin paraméterek-
kel. Először egy sztereó képpárt generáltunk, a megfelelő projekciós mátrixokat vé-
letlenszerűen állítottuk elő. Ezután 3D objektumokat is generáltunk, melynek felületi
pontjait igyekeztünk nagyjából egyenletesen mintavételezni. Kétféle tesztobjektum-
mal dolgoztunk:

1. Gömb:A szintetikus gömb az alapértelmezett normálisokkal együtt a 9. ábra
bal oldali ábráján látható. A vizsgált módszerek bemenetéhez 72 különböző
felszíni pontot mintavételeztük. A normálvektor a gömb alakjából triviálisan
kiszámítható.

2. Kocka : A szintetikus kocka a 9. ábra jobb oldali képén látható. A kocka min-
den oldalát egyenletesen mintavételeztük: oldalanként 7 × 7 = 49 mintavételt
vettünk figyelembe. Ezért minden egyes futtatásnál 49 · 6 = 294 virtuális helyet
vettünk figyelembe.

A sztereó képek közötti affin paramétereket a következőképpen számoltuk ki: (1)
A gömb/doboz érintő síkját a modell alapján meghatároztuk, ezután (2) a két kép-
re vetítettük a kamera paramétereinek segítségével. (3) A vetítésből kiszámoltuk az
érintősíkhoz tartozó homográfiát. (4) Az affin transzformáció az elsőrendű közelítése
a homográfiának a megadott adott helyeken. (5) Végül a pontok vetületeihez és az
affin transzformációkhoz is zajt adunk.

Három módszert hasonlítottunk össze: a (normalizált) DLT algoritmust [62], a
javasolt iteratív módszert (ALTER) és a zárt alakú megoldás alapján számított eljá-
rást (CLOSED). A kalibrálás minősége a becsült vetületi mátrix Frobenius-normája
alapján számítjuk ki az alapigazsághoz viszonyítva. (Megjegyzendő, hogy csak a bal
oldali 3×3 almátrixot vesszük figyelembe, és a mátrixokat ugyanúgy normalizáljuk.)
Minden egyes tesztesetet 20 alkalommal megismételtünk. Az ábrákon majd a hibák
átlaga és mediánja látható.

A 10. ábrán látható teszteredmények egyértelműen azt mutatják, hogy a normál-
vektorokat figyelembe vevő kalibrációs algoritmusok (ALTER és CLOSED) jelentősen
felülmúlják a klasszikus DLT-módszert. Ez mind a gömbre, mind a kockára érvényes.
A hibák átlagának és mediánjának a görbéje nagyon hasonló, ahogyan az várható is.
A grafikonok azt is szemléltetik, hogy az ALTER és a CLOSED módszerek minősége
megközelítőleg azonos. Ez a várható viselkedés, mivel a módszerek ugyanazokat a
költségfüggvényeket próbálják minimalizálni, csak az eredményvektorok normalizá-
lása különbözik.

A szükséges számítási időt a 11. ábrán láthatja az Olvasó. Egyértelmű, hogy a
CLOSED algoritmus használata javasolt, mivel az lényegesen gyorsabb, mint az itera-
tív algoritmus. A DLT algoritmus ugyanakkor mindkét saját módszernél gyorsabb.
Ez nem meglepő, hiszen az együtthatómátrix jóval kevesebb elemet tartalmaz, a
sajátérték-felbontás elvégzése pedig gyorsabb kisebb mátrixok esetén.
Valós tesztek.
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9. ábra. Szintetikus gömb (bal) és kocka (jobb) felületi normálvektorokkal.
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4,00E-02

6,00E-02

8,00E-02
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1,20E-01
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ALTER CLOSED DLT

0,00E+00
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2,00E-02

2,50E-02

3,00E-02
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NOISE (PIXELS)

ALTER CLOSED DLT

10. ábra. A kamera paraméter becslések eredménye szimulált tesztadatokon . A javasolt
módszerek lényegesen gyorsabbak az alapnak tekintett DLT módszerhez képest. Bal ol-
dal: átlagos hiba. Jobb oldal: a hibák mediánja. Felső sor: Eredmények gömbfelüleleten.
Alul: Eredmények a kocka oldalain.

11. ábra. A módszerek időigénye. A javasolt CLOSED algoritmus lényeges gyorsabb az
ALTER módszernél, hiszen nem tartalmaz iterációt. Viszont a javasolt algoritmusok las-
sabbak a DLT-nél: kompromisszumot kel kötni a számítási idő és a minőség között.
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A javasolt kalibrációs módszert sikeresen alkalmaztuk egy forgótányér-alapú projektor-
kamera rendszer kalibrálására. A berendezés képe a 12. ábra alsó képén látható.

A javasolt kalibrációs módszer újdonsága, hogy a teljes eljáráshoz csak egy kame-
rára és egy másik vetített képre van szükség, és mindkettőhöz a kamera és a kivetítő
tetszőleges perspektivikus vetületeket valósít meg. A kamera előtt egy kalibrációs kocka
van, amelyet a projektor megvilágít, ahogy azt a 12. ábra bal felső képén láthatjuk.
Kamera kalibráció. A kocka sarkait manuálisan határoztuk meg a kameraképeken.
A kocka méretét ismerjük, ezért a vetítési mátrixot a DLT-algoritmus [62] segítségé-
vel meg tudtuk becsülni. Ezután a projekciós mátrixot felbontottuk belső és külső
paraméterekre. A külső paraméterek az elforgatást és eltolást reprezentálják.
Projektor kalibráció. A bevezetett módszer szempontjából a fő újítás a vetítő paramé-
tereinek a megbecslése. A projektor vetítési modellje hagyományos lyukkamerának
felel meg, az egyetlen különbség, hogy a kamera a háromdimenziós világot vetíti a
képsíkra, a projektor pedig a képet vetíti ki a térbeli világba. De magát a kivetítést
ugyanúgy egy 3× 4-es vetítő (projektív) mátrix határozza meg.

A javasolt algoritmus képes megbecsülni a bal oldali 3 × 3-mas részét ennek a
vetítő mátrixnak. A módszer végrehajtásához az affin transzformációkat kell ismerni
a kivetített minta egyes pontjai és a kamerakép megfelelő része között. A kamera és
a vetítő perspektivikus jellege miatt a kivetített minta és a kép között síkhomográfia
írja le a pontos kapcsolatot. Az affin paraméterek a homográfia első deriváltjaiból
származnak, ahogy azt az előző fejezetben, a második törvény leírásánál megmutat-
tam.

12. ábra. A javasolt algoritmusunk pontosságát a strukturált fényszkennerünk kalibrá-
lásával ellenőriztük. Balra: Speciális sakktáblamintával megvilágított kalibrációs koc-
ka. Középen: A megvilágításhoz használt minta. Jobbra: A teljes berendezés (kame-
ra+projektor) a kalibrációs kockával.

Ha a kocka hét sarka ismert a kamerakalibrációból, akkor a három látható sík is
ismert a szabályos, egymásra merőleges normálvektorokkal. Ekkor a normálvektorok
és a megfelelő affin transzformációk a javasolt kalibrációs egyenletekbe behelyette-
síthetőek.

A kivetített minta kódokat tartalmaz, amint az a 12. ábra jobb felső ábráján lát-
ható. Ezekre azért volt szükség, mert a sakktábla sarkait kézzel detektáltuk, és a
projektor-kamera közötti megfeleltetést a minta segítségével végeztük el.

A CLOSED algoritmus megbecsüli a vetítő vetítési mátrixát. A belső paraméte-
rek QR-dekompozícióval [125] nyerhetőek ki. A kapott paraméterek a következőek:
vízszintes és függőleges fókusztávolság: fu = 1136, és fv = 1068 ; nyírás: s = 59 ;
döféspont (egészre kerekítve): [478,758]T .

Ezek a paraméterek reálisak, mivel a vízszintes és függőleges fókusztávolságok
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megközelítőleg azonosak, és a ferdeség lényegesen kisebb, mint a fókusztávolságok.
A projektor felbontása 800× 600, ezért a döféspont is elfogadható, mivel a vízszintes
koordináta a szélesség feléhez közel, a függőleges pedig az alsó határ közelében van.

A projektort szabványos sakktábla-alapú algoritmus [190] segítségével is kalib-
ráltuk, hogy ellenőrizzük az eredmény pontosságát. Az eljárás egy végső numerikus
finomítást is tartalmaz. A kalibráláshoz többször tíz képet használtunk, ezért az ered-
ménynek lényegesen pontosabbnak kell lennie, mint az előző esetben, ahol egyetlen
egy kép szolgáltatott adatot. A sakktáblás kalibráció eredményként a becsült döfés-
pont [467,764] volt, míg a vízszintes és függőleges fókusztávolságokra 1454, illetve
1461 jött ki. A kapott eredmények nagyon közel állnak egymáshoz.

A kalibrált elrendezés a 13. ábrán látható. A két gúla a kamerát (balra) és a
projektort (jobbra) szimbolizálja. A gúla csúcspontja a fókuszpont, a négyoldalú lapja
pedig az érzékelő (szenzor) felületét ábrázolja. A kalibrációs kocka a kép közepén
található.

13. ábra. Rekonstruált (kalibrált) kamera-projektor elrendezés két nézőpontból. A ka-
merát és a projektort gúlák szemléltetik.

4.3. Homográfia becslése affin transzformációk felhasználásával

4.3.1. Irodalmi áttekintés

Ahogyan az a sztereó látásban jól ismert[62], két egymásnak megfelelő képrészlet
között a homográfia teremt kapcsolatot, ha a megfigyelt térrész pontjai egy síkon
vannak, vagy ha a két nézet fókuszpontja ugyanott van. A homográfiát a 3 × 3-as H
mátrixszal szokás reprezentálni. Ha egy p1 = [u1v11]

T homogén koordinátás pontot
az első képről egy H homográfia transzformálja a második kép p2 = [u2 v2 1]T

pontjára, akkor a kapcsolatot a p2 ∼ Hp1 összefüggés írja le.
A megfeleltetés kétdimenziós vonalakra is megadható a következőképpen: l′ H−T l,

ahol az egyenesek paramétereit az első és a második képen az l és l′ háromdimen-
ziós vektorok írják le. Ha egy p pont a l egyenesen fekszik, akkor a p′ transzformált
helynek a megfelelő l′ transzformált egyenesen kell feküdnie.

Nagyon izgalmas tény, hogy a homográfia fogalma már a múlt század közepén
ismert volt [152].

A szakirodalomban számos megoldás létezik a két kép közötti homográfia becslé-
sére, ahogyan azt Agarwalnak és munkatársainak a munkája [4] összefoglalja. Első-
ként a legegyszerűbb módszert, a lineáris transzformációra (DLT) visszavezetett [62]
eljárást illik megemlítenünk. Ebben az esetben a H homográfia nyolc ismeretlen pa-
raméterét pontmegfelelések alapján kívánjuk megbecsülni a p′ ∼ Hp alapösszefüg-
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gés linearizálásából keletkező túlhatározott egyenletrendszer megoldásával, ahol a
∼ operátor a skálázás erejéig vett egyenlőséget jelenti. Maga a linearizálás torzítja a
zajt, ezért az eredeti nemlineáris vetületi egyenletekre való optimalizálás pontosabb
eredményeket ad. Ez utóbbit numerikus optimalizálási technikákkal lehet elvégezni,
mint például a széles körben használt Levenberg-Marquardt [108] optimalizálással.
Azonban a lineáris algoritmusok is javíthatók, elsősorban a numerikus problémák
elkerülésével, ha először az adatok normalizálását [62] alkalmazzuk.

Kenichi Kanatani[78] javasolt egy módszert a becslési hiba minimalizálására a
képtérben, mivel a zaj a képkoordinátákban jelentkezik, nem pedig az absztrakt, ma-
gasabb dimenziós algebrai terekben.

A homográfia becslésére természetesen számos más módszer is létezik: vannak
vonal alapú [118], kúp alapú [79, 116], kontúr alapú [88] és folt alapú [86] mód-
szerek. Ezeknek a jellemzőknek a megfeleltetése azonban nem olyan egyszerű, mint
a pontoké. Manapság már léteznek nagyon hatékony jellegzetes pont detektorok és
megfeleltetők [115, 103, 21, 142]. Annak ellenére, hogy nagyon sokféle homográfia-
becslési technika áll rendelkezésre a területen, nem találtunk olyat, amely a helyi
affin transzformáción alapuló homográfia-becsléssel foglalkozott volna.

Homográfiák alkalmazása. A számítógépes látásban számos olyan eset van, ami-
kor a homográfia ismeretére van szükség. Először is a kamera kalibrálásáról kell ír-
ni [190]. Ha a 3D sakktábla koordináták és a vetített koordináták közötti homográfi-
ákat több képre kiszámítjuk, akkor a belső kameraparaméterek kiszámíthatók, ahogy
azt Zhang megmutatta [190] széles körben alkalmazott kalibrációs módszerével.

A kamera kalibrálása az eszköz belső és külső paramétereinek meghatározása,
ahol a belső paraméterek kamera-specifikusak: ezek a gyújtótávolság, a lencse torzí-
tása és a főpont. A külső paraméterek a kamera tájolását és a térben való elhelyezke-
dését írják le.

A felületi normálisok becslése szintén fontos alkalmazása a síkbeli homográfiák-
nak. Ha a homográfia ismert egy sík két perspektivikus kamerával készített képei
között, akkor a homográfia felbontható a kamera külső paramétereire, a sík normáli-
sára és a sík távolságára az első kamerától [45, 107]. Molnár és munkatársai [114],
illetve jómagam is kollégáimmal [15] megmutattuk, hogy a felületi normális kiszá-
mításához elegendő az affin transzformáció, és az affin transzformáció kiszámítható
a homográfiából annak levezetésével, ahogy azt korábban ebben a a fejezetben is
megmutattam.

A homográfia-becslés egyik nagyon fontos alkalmazási területe olyan jelenetek
3D modelljeinek készítése, ahol viszonylag nagy síkok vannak jelen. Tipikus példa az
ilyen feladatokra a városi jelenetek rekonstrukciója, hiszen az ember alkotta világban
sok helyen található kiterjedt síkfelület. A feladat régóta kutatott [119, 158]. Napja-
inkban a 3D rekonstrukciós csővezetékek pontmegfeleléseket használnak a jelenetek
ritka [5, 131] vagy sűrű [51, 174] pontfelhőjének kiszámításához. A közelmúltban
azonban foltalapú megközelítéseket is javasoltak [26, 158].

4.3.2. Megoldók homográfia becslésére lokális affin transzformációk felhaszná-
lásával

Ennek a résznek a fő hozzájárulása az, hogy különböző módszereket mutatok be
a homográfia becslésére, ha lokális affin transzformációk egymásnak megfelelő he-
lyeken ismertek a két kép között. Azt is megmutatom, hogy hatékonyabb becslők
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képezhetők, ha az epipoláris geometria is ismert.
Először ismerkedjünk meg a főbb geometriai fogalmakkal és kifejezésekkel!

4.3.3. Elméleti háttér

Ahogyan azt már a bevezetőben is említettem, a H homográfia kapcsolatot teremt az
első kép p

(1)
i = [x

(1)
i y

(1)
i ]T pontja és a másodikon megfeleltetett: p(2)

i = [x
(2)
i y

(2)
i ]T pont

között:
[x

(2)
i y

(2)
i ,1]T ∼ H[x

(1)
i y

(1)
i ,1]T ,

ahol a∼ operátor a skála erejéig egyenlőséget jelenti, melyet a homogén osztással
lehet egyenlőséggé alakítani. Itt a felső indexek a képszámot, az alsó index pedig a
kiválasztott pontpár számát jelölik. Molnár és mtsai. [113] megmutatták, hogy az

A =

[
a11 a12 a13
a21 a22 a23

]
(28)

affin traszformáció első két oszlopa megkapható a 16. összefüggés segítségével. Az
A utolsó sora adja az eltolást, melyet a pontok helye alapján lehet meghatározni.

4.3.4. Homográfia becslése affin transzformációkból (HA algoritmus)

Az Ai transzformáció felelős az i-edik pontpárért. A 16. formulák alapján írhatjuk
fel az alábbi lineáris rendszert, amennyiben az s skálázást beszorzás segítségével
eltüntetjük:

h11 − h31

(
x
(2)
i + ai,11x

(1)
i

)
− h32ai,11y

(1)
i − h33ai,11 = 0

h12 − h32

(
x
(2)
i + ai,12y

(1)
i

)
− h31ai,12x

(1)
i − h33ai,12 = 0

h21 − h31

(
y
(2)
i + ai,21x

(1)
i

)
− h32ai,21y

(1)
i − h33ai,21 = 0

h22 − h32

(
y
(2)
i + ai,22y

(1)
i

)
− h31ai,22x

(1)
i − h33ai,22 = 0 (29)

A homográfia elemeire nézve ez egy homogén lineáris egyenletrendszer. Sajnos a
kilenc elemből csak hetet tartalmaz, ezért a maradék kettőt – konkrétan a h13 és h23

elemeket –, az affin transzformációk segítségével nem lehet megbecsülni. Szerencsére
a pontmegfeleltetésekből további két egyenletet fel lehet írni [62], melyeket a DLT 11-
nek hívnak a szakirodalomban:

h11x
(1)
i + h12y

(1)
i + h13 − h31x

(1)
i x

(2)
i − h32y

(1)
i x

(2)
i − h33x

(2)
i = 0,

h21x
(1)
i + h22y

(1)
i + h23 − h31x

(1)
i y

(2)
i − h32y

(1)
i y

(2)
i − h33y

(2)
i = 0. (30)

A 29. és a 30. formulákkal összesen hat homogén lineáris egyenletrendszert ka-
punk a H homográfia mátrixának kilenc ismeretlen paraméterére. Azaz fel lehet írni
Bh = 0 alakban, ahol a B együtthatómátrix az ismert elemeket tartalmazza, melye-
ket a pontkoordinátákból és az affin transzformációk segítségével kaphatunk meg. A
h kilenc dimenziós vektor a homográfia elemeit tartalmazza.

11 DLT: Direct Linear Transformation
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A B.2 függelékben mutatjuk meg, hogy a homogén lineáris egyenletrendszereket
legkisebb négyzetes értelemben optimálisan meg lehet határozni, mégpedig a BTB
mátrix legkisebb sajátértékéhez tartozó sajátvektorként. Ezt a módszert nevezzük
HA 12 algoritmusnak.

Miután kilenc elemet kell megbecsülni, de a sajátvektor számításában a hossz
nem számít, nyolc szabad paraméter található a h vektorban. Ehhez legalább nyolc
egyenletet kell megadni. Ha két pontot tudunk affin transzformációkkal együtt meg-
feleltetni, máris 12 egyenletet kapunk. Tehát a feladat túlhatározottá válik. A mini-
mális nyolc egyenlethez elegendő egy pont affin transzformációkkal, és még egy pont
affin transzformáció nélkül.

A klasszikus DLT módszerhez négy pontmegfelelés szükséges. A HA algoritmus-
nak nagyon nagy előnye a klasszikus DLT módszerrel szemben, hogy elegendő kettő
megfeleltetés. Mivel valós alkalmazások esetén a kiugró pontok jelenléte szinte el-
kerülhetetlen, robusztus eljárásokra van szükség. A legtöbb ilyen algoritmus – mint
például Az E.2.1. függelékben ismertetett RANSAC módszer – véletlen mintavéte-
lezésre épül. A szükséges mintavételek számát – és emiatt az eljárás sebességét –,
alapvetően határozza meg a minimális modellhez szükséges pontszám. Ezért a HA
módszer nagyon nagy előnye, hogy sokkal gyorsabban lehet robusztus becslésekben
alkalmazni.

4.3.5. Homográfia becslése ismert fundamentális mátrix segítségével (HAF)

Amennyiben az epipoláris geometria ismert a két kép között, a homográfia számítása
sokat egyszerűsödik. A 107. egyenlet írja le a kapcsolatot az epipoláris geometria és
egy tetszőleges sík-sík homográfia között. Ebbe behelyettesítve a 16 egyenletekben
leírt, második törvényünknek megfelelő összefüggésekkel, a homográfia becslésére a
következő formulák adódnak:

h31

(
ai,11x

(1)
i + x

(2)
i − ex

)
+ h32ai,11y

(1)
i + h33ai,11 = f21,

h32

(
ai,12y

(1)
i + x

(2)
i − ex

)
+ h31ai,12x

(1)
i + h33ai,12 = f22,

h31

(
ai,21x

(1)
i + y

(2)
i − ey

)
+ h32ai,21y

(1)
i + h33ai,21 = −f11,

h32

(
ai,22y

(1)
i + y

(2)
i − ey

)
+ h31ai,22x

(1)
i + h33ai,22 = −f12.

Most is lineáris összefüggéseket kaptunk, de inhomogén rendszer adódott, melyet a
Cy = d alakba írhatunk. d = [f21, f22,−f11,−f12] tartalmazza a fundamentális mátrix
ismert elemeit, y = [h31, h32, h33]

T pedig az ismeretleneket tartalmazó négydimenziós
vektor. A C mátrix elemei mind ismert adatokat tartalmaznak:

12 HA: Homography from Affine
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C11 =
(
ai,11x

(1)
i + x

(2)
i − ex

)
, C12 = ai,11y

(1)
i ,

C13 = ai,11 C21 = ai,12x
(1)
i ,

C22 =
(
ai,12y

(1)
i + x

(2)
i − ex

)
, C23 = ai,12,

C31 =
(
ai,21x

(1)
i + y

(2)
i − ey

)
, C32 = ai,21y

(1)
i ,

C33 = ai,21 C41 = ai,22x
1
i ,

C42 =
(
ai,22y

(1)
i + x

(2)
i − ey

)
, C43 = ai,22.

(31)

A legkisebb négyzetes értelemben vett optimális megoldás az y = C†d alakban
kapható meg, ahol C† a Moore-Penrose-féle pszeudonverze a C együtthatómátrixnak.

A módszer túlhatározott és minimális esetben egyaránt működik 13. A módszer
komoly előnye, hogy egyetlen pontmegfelelés és a hozzá tartozó affin transzformáci-
óból meg tudja oldani a feladatot. Mindez összhangban van a 4.1. fejezetben ismer-
tetett normálvektorbecslővel. Hiszen a normálvektort egyetlen affin megfelelésből ki
lehetett számítani, sőt, a feladat túlhatározott volt.

Jól ismert [62], hogy a homográfia a két kamera belső paramétereiből és a ka-
merák egymáshoz viszonyított elhelyezkedéséből14 határozhatók meg. Ha a kamera
(belső) paraméterei ismertek, a homográfiát fel lehet bontani [45, 107] a relatív
elhelyezkedésre és a normálvektorra. A normálvektorbecsléshez képest itt további
előny, hogy a kamerák elhelyezkedése is megkapható kalibrált kamerák esetében, ha
a felbontó algoritmust [107] futtatjuk az eredményül kapott homográfiára.

A futási idő tekintetében is fontos eredmény, hogy csak pontmegfelelést használ-
va három pontpárra van szükségünk a homográfia megbecsléséhez a fundamentális
mátrix ismerete esetén, míg az affin transzformáció megléte egyetlen egy megfelelés-
re szorítja le a minimális modell elkészítéséhez szükséges bemeneteket.

4.3.6. Javítási lehetőségek

Normalizálás. A fenti egyenletekben az együtthatómátrixokat a pontkoordináták
és az affin transzformációk alapján határozhatjuk meg. A pontkoordinátáknak nagy
problémája, hogy egy kép feldolgozása után sok százas, egy-két ezres értékeket ka-
punk, ellentétben az affin paraméterek, amelyek tipikusan tíznél kisebbek. Amikor
ilyen szélsőséges különbségek vannak egy mátrixban, a sajátérték számítás vagy ép-
pen a pszeudo-inverz kiszámítása komoly numerikus kérdéseket vet fel 15

A normalizálás esetén a pontkoordináták nagyságrendjét az egyszámjegyű tarto-
mányba kell levinni. A szakmában szinte egyeduralkodó [62] megoldás, hogy affin
transzformációkkal először a súlypontba toljuk az origót, majd a pontok szórását
skálázással

√
2-vé változtatjuk (általában zsugorítjuk). A két képre külön kell a nor-

malizálást elvégezni. Az eltolást és a skálázást összevonva kapjuk a két normalizáló
transzformációt, melyeket T1-el és T2-vel jelöljük. A normalizálás a p

(1)′

i ∼ T1p
(1)
i és

p
(2)′

i ∼ T2p
(2)
i összefüggés adja. A normalizálást a homográfia és az alapvető mátrix

esetében is ki lehet használni. Az átváltás a H′ = T2HT−1
1 . és a F′ = T−T

2 FT−1
1 .

13 Minimális esetben hagyományos inverz alkalmazható.
14 A két kamera elhelyezkedését szokás relatív póznak is nevezni.
15 Például: hány biten tároljuk a lebegőpontos számokat.
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formulák felhasználásával történik, ahol a vessző a normalizált homográfiát és fun-
damentális mátrixot jelöli.

A függelék H. fejezete mutatja meg, hogy az affin transzformációkat is lineáris
transzformációkkal lehet normalizálni. Az eltolás, ahogyan az el is várható, nem be-
folyásolja az affin transzformáció lineáris részét. A vízszintes és függőleges skálázást
azonosnak tekintve az első képhez tartozó normalizáló skálát s1-el, a második képhez
tartozót s2-vel jelölve az affin transzformáció normalizálását így írhatjuk le:

A′ =
s1
s2
A. (32)

Numerikus, nemlineáris finomítás. A becsléshez kapott egyenleteket a 16. össze-
függések alapozták meg. Első lépésként az s skálával (projektív mélységgel) szoroz-
tuk meg a négy alapegyenletet. Ez a lépés ugyan lineáris formulákat eredményez,
melyeket algebrai módszerekkel jól tudunk kezelni, azonban súlyosan beleavatko-
zunk a mért adatok és a zaj viszonyába. Miután s (projektív mélység) becsült és nem
pontos érték, a benne lévő hibával szorozzuk a tagokat, amelyek maguk is zajt tartal-
maznak. Így a két zaj szerencsétlen esetben felnagyítja egymást, és ettől a becslésünk
pontatlanabb lesz. Ezért az eredeti összefüggéseket numerikusan lehet finomítani. Mi
a Levenberg-Marquardt algoritmust [96, 108] javasoljuk .

4.3.7. Teszteredmények

A disszertációban terjedelmi okokból csupán néhány vizsgálati eredményt tudok be-
mutatni, részletesebb teszteléseket a konferencia [16] és folyóirat publikációnkban [17]
lehet olvasni.

14. ábra. Az átlagos visszavetítési hiba pixelben, amennyiben a homográfia becsléséhez
használt pontokat nulla várható értékű normál eloszlású zajjal terheljük. A megvizs-
gált módszerek: OpenCV: A hagyományos, DLT [62] alapú négy pontos becslés; 3PT:
fundamentális mátrixot használó három pontos módszer; Norm HA: normalizált affin
transzformációt alkalmazó HA algoritmus; HAF: affin transzformációt és a fundamen-
tális mátrixot egyaránt alkalmazó módszer.

Az 1. táblázat mutatja meg a négy alapmódszert, amelyek az összehasonlítás
alapját adják. Először szintetikus adatokon teszteltük, az alapigazság 16 adatokat
mind pontmegfelelésekre, mind az affin transzformációkra ismertek.

16 Az alapigazság az angol ground-truth (GT) magyarra fordítása. A szintetikus tesztek esetén a
tökéletes értékeket jelenti, melyekhez minél közelebbi becslést szeretnénk adni.
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hhhhhhhhhhhhhhhhhhhhhhAlapvető mátrix

Affin transzformáció
Nem Igen

Nem OpenCV (DLT) HA
Igen 3PT HAF

1. táblázat. A homográfia becslésére alkalmazott módszerek. A HA és a HAF algoritmu-
sok saját algoritmusok.

Először azt nézzük meg, hogy kizárólag a pontkoordináták zajosításával milyen
eredményeket lehet érni. A 14. ábrán hasonlítjuk össze a kizárólag pontmegfelelé-
seket (OpenCV, 3PT) algoritmusokat a kombináltakkal (HA,HAF). A becslés végén
kapott vetítési hibát ábrázoljuk, azaz azt nézzük meg, hogy a kapott homográfiá-
val áttranszformálva a pontokat mekkora eltérés adódik az alapigazsághoz képest.
A használt megfelelések minden módszernél ugyanazok. Jól látható, hogy az elvárt
eredményt kapjuk: az alapvető mátrixokat használó módszerek (3PT, HAF) alacso-
nyabb hibát eredményeznek, tehát jobbak, hiszen többletinformációt alkalmaznak.
Ugyanígy az affin módszerek (HA, HAF) megelőzik a simán pont-koordinátákat al-
kalmazó versenytársaikat.

15. ábra. Az átlagos homográfia vetítési hiba, amennyiben a homográfia becsléséhez
használt affin transzformációkat is nulla várható értékű normál eloszlású zajjal ter-
heljük. A megvizsgált módszerek: OpenCV RSC: A hagyományos, DLT [62] alapú négy
pontos becslés RANSAC [46] alkalmazásával; 3PT: fundamentális mátrixot használó
három pontos módszer; Norm HA: normalizált affin transzformációt alkalmazó HA al-
goritmus; HAF: affin transzformációt és a fundamentális mátrixot egyaránt alkalmazó
módszer. HAF RSC: ugyanez a módszer RANSAC alkalmazásával.

A 15. ábrán ugyanennek a tesztnek azt a változatát látjuk, ahol az affin transz-
formációt is zajosítjuk, hasonlóan nulla várható értékű normális eloszlású zajjal. Az
affin transzformációk és a pontok zaja ugyanakkora szórású, de azt fontos megje-
gyezni, hogy a két zaj teljesen eltérő hatással rendelkezik, ezért nem teljesen "tisztes-
séges" az összehasonlítás. Az affin zaj lényegesen többet ront az eredményen, ezért
a RANSAC [46] eljárást bevetettük a HAF algoritmus javítására. Ez utóbbi adja egy-
értelműen a legjobb eredményt. A többi teszt is az elvárható eredményt adja: a 3PT
algoritmus jobb, mint a sima OpenCV (DLT) megoldás.

Végezetül a 16. ábrán a normalizálás hatását külön is megvizsgáltuk. Csodát nem
szabad várni a normalizálástól, de az eredmények érezhető javulását igen, különösen
nagy zajszint esetén.

Miután a harmadik törvény a négy lineáris affin paraméterre négy egyenletet ha-
tároz meg, melyek az osztás eliminálásával lineáris egyenletekké alakíthatóak, min-
den egyes affin transzformácó négy plusz ismeretet ad a homográfia becslésére. A
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16. ábra. A normalizálás hatása növekvő zajszint hazására. Magasabb zajérték mellett
nagyobb a normalizálás jelentősége.

pontmegfelelések további két egyenletet adnak, ezért összesen hat egyenlet adott
affin megfeleltetésként. Ezért már két affin megfelelés elég ahhoz, hogy a homográ-
fiát megbecsüljük. Kizárólag pontmegfeleléseket alkalmazva négy párra lenne szük-
ségünk, így a mi a megközelítésünk jelentős újításnak tekinthető a területen: fele
annyi affin megfelelés elég a becslés eléréséhez. Ha robusztus becslést akarunk vé-
gezni – például a legelterjedtebb, véletlen mintavételezést alkalmazó RANSAC algo-
ritmus [46] alkalmazásával –, jelentős gyorsítás érhető el, hiszen mintavételenként
jóval nagyobb az esély, hogy kiugró adat nem szennyezi a mintát.

Speciális eset, ha a két kép között ismert a fundamentális mátrix, ekkor a a
homográfia szabad paramétereinek száma háromra csökken. Ebben az esetben egy
pontmegfelelés csupán egyetlen egyenletet ad, a lineáris része az affin transzformá-
ciónak pedig további kettőt. Ezért egyetlen affin pár elég a két képen, hogy a homog-
ráfiát meghatározzuk. Ennek a ténynek elméletileg is nagy jelentősége van: lokális
információból megbecsülhető a homográfia kalibrált esetben. Ráadásul egy homográ-
fiából az adott ponthoz tartozó felületi érintősíkot is meg lehet határozni [45, 107].

Ez logikus is, hiszen a homográfia térbeli síkok projektív vetületeinek kapcsola-
tát írja le, és a háromszögelés segítségével (hagyományos szereó látás esetén) a sík
egy pontja határozható meg, a korábbi tézisnek megfelelően a lineáris részből meg-
becsülhető a felületi normálvektor. Egy pont és a normálvektor pedig egyértelműen
meghatározza a kapcsolódó térbeli síkot.

Az itt ismertetett elvekre alapozva dolgoztunk ki Baráth Dániel doktoranduszom-
mal közösen egy algoritmuscsaládot [17, 16], melyben a homográfiát becslő algorit-
musok a fenti eseteket fedik le.

4.4. Síkok szegmentációja

Miután a HAF algoritmus egyetlenegy affin transzformációból és a hozzá tartozó pon-
tok koordinátáiból képes a homográfiát kiszámítani, ezért ezt bátran nevezhetjük
"egy pontos algoritmusnak". Ezt a homográfiát további affin megfelelésekre illesz-
teni lehet, és meg lehet határozni, vajon azok megfelelnek-e a homográfiának. Így
pedig, véletlen mintavételezéssel kiegészítve, egy nagyon gyors síkillesztőt kapunk,
amely elméletileg tetszőleges számú sík detektálására képes. Ezért neveztük el ezt az
eljárást MultiH-nak.

A 17. ábrán láthatjuk, hogy az azonos színnel jelzett pontok illeszkednek az azo-
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nos homográfiákra.

17. ábra. Síkok szegmentálása a MultiH eljárással.

Miután egy affin megfelelésből egy térbeli sík meghatározható (rekonstruálható),
minden lehetséges párra egy felületi érintősík adódik. Síkobjektumok esetén a sík
pontjaiból ugyanaz az érintősík becsülhető, ezért a síkok detekciója hatékonyan el-
végezhető. 2016-os munkánkban [35] javasoltunk egy síkdetektor eljárást, amellyel
tetszőleges számú sík meghatározható a képen, kizárólag az affin megfelelések fel-
használásával. Ez lényegében egy klaszterező illesztő eljárás, amelynél a síkok repre-
zentálják a modellt, és minden egyes lokális affin transzformáció szavaz egy modell-
re. Azokat a síkokat kell megtalálni, amelyekre közeli transzformációk szavaznak.

A 2016-os publikációnk [35] Baráth Dániel doktorandusz és egy neves cseh szak-
értő, Jiri Matas közreműködésével készült. Utóbbi elsősorban az ötleteivel segítette
a közös munkát, Jiri egyik szakterülete a robusztus multi-modell illesztés, akkoriban
nálunk lényegesen szélesebb látókörrel rendelkezett a területen.

4.5. Alapvető és lényegi mátrixok becslése

Az affin transzformációkra vonatkozó III. törvény alapján ( 24. összefüggés) írtuk,
hogy

ATF̂

[
p1

1

]
= −F̃T

[
p2

1

]
, (33)

amennyiben a fundamentális mátrix kilenc elemére az

F =

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 (34)

jelölést alkalmazzuk, és

F̃ =

 f11 f12
f21 f22
f31 f32

 , F̂ =

[
f11 f12 f13
f21 f22 f23

]
. (35)

Ekkor a 33. összefüggést a fundamentális és az affin mátrix elemivel így írhatjuk
le:
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[
a11 a21
a12 a22

] [
f11 f12 f13
f21 f22 f23

] u1

v1
1

 = −
[
f11 f21 f31
f12 f22 f32

] u2

v2
1

 . (36)

Egyszerű átalakításokkal a fundamentális mátrix elemeire a

[
a11u1 + u2 a11v1 a11 a21u1 + v2 a21v1 a21 1 0 0

a12u1 a12v1 + u2 a12 a22u1 a22v1 + v2 a22 0 1 0

]


f11
f12
f13
f21
f22
f23
f31
f32
f33


= 0

(37)
lineáris homogén alakot kaphatjuk meg. Amennyiben a 8. összefüggést is figye-

lembe vesszük, ahol a két képen az egymásnak megfelelő p1 és p2 pontokra igaz,
hogy pT

2Fp1 = 0, akkor ennek alapján írhatjuk, hogy[
u2u1 u2v1 u2 v2u1 v2v1 v2 u1 v1 1

]
f = 0, (38)

amennyiben a f = [f11 f12 f13 f21 f22 f23 f31 f32 f33]
T vektor tartalmazza

a becsülendő elemeit az alapvető mátrixnak. Ezt hívjuk a pontmegfelelésből kapott
összefüggésnek. Ezt kiegészítve a 37. egyenletből kapott affin összefüggésekkel, ír-
hatjuk, hogy Cf = 0, ha

C =

 a11u1 + u2 a11v1 a11 a21u1 + v2 a21v1 a21 1 0 0
a12u1 a12v1 + u2 a12 a22u1 a22v1 + v2 a22 0 1 0
u2u1 u2v1 u2 v2u1 v2v1 v2 u1 v1 1

 . (39)

Azaz a harmadik törvényünkből, és a pontokra már korábban meghatározott tör-
vény [62] felhasználásával három homogén lineáris egyenletrendszert lehet felírni a
fundamentális mátrixra, ha egy pontmegfelelést és a hozzá tartozó affin transzformáci-
ót ismerjük.

Egy megfelelésből tehát három egyenletet kapunk. A fundamentális mátrixnak a
szabadságfoka hét: ugyan kilenc eleme van, de a determinánsa nulla, tehát van egy
megkötésünk; továbbá a skálázásra invariáns, ezért a kilencből a két szabadságfo-
kot levonva hetet kapunk. Ezért legalább három megfelelésre van szükség. Azonban
ez is jelentős előrelépés, hiszen a hagyományos, kizárólag pontmegfelelésen alapuló
módszer esetében hét megfelelést kell megadni.
Lényegi és alapvető mátrix. Ugyan a fenti levezetést az alapvető (fundamentális)
mátrixra végeztük el, kalibrált esetben a lényegi (eszenciális) mátrixokra is alkalmaz-
hatóak. Kalibrált esetben a kamera belső paramétereit tartalmazó felső-háromszög
kalibrációs mátrixokat, K1-et és K2-t ismerjük. Ha ezekkel elvégezzük a normalizá-
ciót:

p1 ← K−1
1 p1, p2 ← K−1

2 p2, (40)
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akkor a normalizált koordinátákat behelyettesítve a 39. összefüggésbe, a homogén
egyenletrendszert megoldva a lényegi mátrixot kapjuk meg.

Érdekesség: Raposo és Barreto [136] 2016-ban ugyanazt az összefüggést megta-
lálta a MATLAB szimbolikus "toolbox" alkalmazásával, de a III. törvényt analitikusan
nem tudták felírni. Ugyanakkor három megfeleléses becslőt publikáltak.

A továbbiakban azt mutatom meg, hogyan lehet két pontos megoldót készíteni

Kétpontos megoldó.
Ha két pontpárt ismerünk, továbbá a hozzá tartozó affin transzformációkat, akkor

a 39. összefüggés alapján készíthetünk egy C1 és egy C2 3 × 9 -es méretű mátrixot.
Értelemszerűen a felső index a pár sorszámát mutatja.

A két mátrixot egymás alá tesszük:

C =

[
C1

C2

]
. (41)

A megoldás, azaz a fundamentális mátrix elemeit tartozó vektor merőleges a mátrix
minden sorára, hiszen homogén lineáris egyenletekről van szó. A C mátrix mérete
ebben az esetben 6 × 9, ezért a nulltere háromdimenziós. Így minden x nullvektort
fel tudunk írni a nulltér bázisainak lineáris kombinációjaként:

x = αa+ βb+ γc, (42)

ahol a, b és c a nullvektorok, míg α, β és γ az (általában ismeretlen) súlyok. Az x
vektor F elemeit tartalmazza, ezért a kettő egymásnak egyértelműen megfeleltethe-
tő.

A módszerünk esetében félig kalibrált kamerákat feltételezünk:

K =

 f 0 0
0 f 0
0 0 1

 ∼ Q =

 1 0 0
0 1 0
0 0 τ

 , τ = 1/f 2. (43)

A trace (spur) megkötés alapján [62]: 2FQFTQF− trace(FQFTQ)F = 0.
Szimbolikus eszközt használva, x-ből F mátrixot csinálva, majd behelyettesít-

ve harmadfokú, többváltozós polinomiális egyenletrendszert kapunk α-ra, β-ra, γ-
ra és τ -ra, ahol τ = f−2 tartalmazza az ismeretlen fókusztávot. A feladat megol-
dása során "szerencsénk volt", hiszem a trace megkötés alkalmatása során τ -t el
tudtuk különíteni, így erre a rejtett változók 17 technikáját alkalmazhattuk. Ha τ -t
rejtett változónak tekintjük, meghatározhatjuk C(τ) mátrixot. A mátrix soraira τ -
tól függő egyváltozós függvényeket kapunk. Bár α, β és γ skálázásra érzéketlen,
nem rögzítjük a skálát, hiába tehetnénk meg, hogy ne kelljen inhomogén egyenle-
tekkel foglalkozni. A szimbolikus eszköz után a monomiálisa így alakulnak: y =
= [α3 α2β α2γ αβ2 αβγ αγ2 β3 β2γ βγ2 γ3]T .

Miután a monomiális x vektor skálája nincs rögzítve, a nem triviális megoldást a
determináns kritérium szerint kaphatjuk meg:

det(C(τ)) = 0. (44)

A mi esetünkben a szimbolikus megoldás τ -ra egy 15-ödfokú polinomot ad, ennek
az egyik gyöke adja a jó megoldás. Nem marad más feladat, mint a nem valóságszerű
gyököket ki kell szűrni.

17 Angolul: hidden variable technique
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4.5.1. A jó gyökök megtalálása

Ebben a szakaszban egy új technikát javasolunk a gyökerek elhagyására geometriai
megfontolások alapján. Ehhez az alkalmazott digitális fényképezőgépek tulajdonsá-
gait vesszük figyelembe, és ennek alapján az érvénytelen gyújtótávolságokat el tudjuk
távolítani. Végül bemutatunk egy gyökérkiválasztó algoritmust.

Érvénytelen fókusztávolságok kiszűrése
Itt egy olyan megoldást javasolunk, amely a mögöttes geometrián alapul, hogy

kiküszöböljük az érvénytelen fókusztávolságokat. Tegyük fel, hogy adott egy (p1,p2),
pontpár a hozzá tartozó A lokális affin transzformációval együtt, továbbá az F alap-
vető mátrix és az f fókusztávolság. Mivel félig kalibrált kamerákat feltételezünk, F és
f pontosan meghatározza mindkét kamera P1 és P2 vetületi mátrixait [62]. Jelöljük
a (p1,p2) pontpárhoz és A lokális affin transzformációhoz tartozó térbeli 3D pozíciót
q = [x y z]T -val, és a felületi normálvektort n = [nx ny nz]

T -vel! A térbeli q
pontot itt az egyszerűség kedvéért a lineáris háromszögelés [62] (DLT algoritmus)
segítségével, a normálvektort pedig a 2015-ben publikált [15], a 4.1. szakaszban is-
mertetett, negyedfokú polinomok gyökkeresésére visszavezetett módszerünkkel be-
csültük meg.

Az általánosság megsértése nélkül feltételezzük, hogy egy 3D-s felület egy pontját
nem lehet hátulról megfigyelni. Ennek következtében a ci − q és n vektorok közötti
szögnek mindkét kamera esetében kisebbnek kell lennie, mint 90◦, ahol ci az i-edik
kamera pozíciója (i ∈ {1,2}). Ez a következőképpen értelmezhető : minden kamera
kiválaszt egy fél egységgömböt a q megfigyelt pont körül. A n felületi normálisnak e
félgömbök metszetében kell lennie.

A félgömbök felületén a szögek tartományait a gömbi koordináta-rendszerben
egy téglalap írja le az alábbiak szerint: recti =

[
θi − π

2
σi − π

4
π π

2

]
, ahol θi, σi

jelöli a gömbi koordinátákat. A két kamera által meghatározott terület metszete a
következőképpen alakul:

rect∩ =
⋂

i∈[1,2]

recti.

Ha egy kapott érték kilóg a metszetből, akkor érvénytelennek tekinthető.
A q pont mindkét kamerából megfigyelhető akkor és csak akkor, ha az n felszíni

normális, amelyet a Θ és Σ gömbi koordináták ábrázolnak, a metszéspont területén
fekszik:

[
Θ Σ

]
∈ rect∩. A f fókusztávolság által indukált, e kritériumoknak nem

megfelelő beállítás érvénytelen, és ezért elhagyható. Megjegyzendő, hogy ez a meg-
kötés egyszerűen kiterjeszthető a több nézetű esetre is, így a metszési terület még
szigorúbbá válik.

Fókusztávok technikai korlátai
A becsült fókusztávolságokra további korlátozásokat vezethetünk be, ha figyelem-

be vesszük a kamerák fizikai korlátait. A K kameramátrixon belüli fókusztávolság
nem egyenértékű a lencsék fókusztávolságával, mivel az az optikai fókusztávolság és
a pixelméret [62] szorzata, más szóval a fókuztáv az érzékelő pixelméretében lett
megadva. A pixelméret a gyakorlatban néhány mikrométer, míg kereskedelemben
kapható optikák esetében az optikai fókusztávolságok [1 . . . 500] mm-es intervallum-
ban vannak. Ezért f -re durva alsó és felső határként vehetjük a 100 és az 500.000
értékeket. Az ezen intervallumon kívüli fókusztávolságok automatikusan elvetésre
kerülnek. Megjegyzendő, hogy ezek a határok könnyen módosíthatók, figyelembe
véve a különböző tulajdonságokkal rendelkező kamerákat.
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A végső gyök kiválasztása
A többszörös gyökerek feloldására és a zaj hatásának minimalizálására a klasszi-

kus módszer a mérések ismétlése és az ellentmondásos mérések kiküszöbölése. Mivel
a 44. egyenlet egy magas fokú polinom, meglehetősen érzékeny a zajra – a koordi-
náták és az affin elemek kis változásai jelentősen eltérő együtthatókat okoznak.

A RANSAC [46] sikeres robusztus technika ennek a problémának a megoldásá-
ra, például az ötpontos algoritmushoz [122] is lehet alkalmazni. A legújabb mód-
szerek, pl. a kernel-szavazás18, azt a tulajdonságot használják ki, hogy a gyökök a
valós megoldás körül csúcsot alkotnak [99, 98, 87]. A kernel-szavazás egy kernel-
sűrűségfüggvényt maximalizál, maximum-likelihood becsléként. Tapasztalataink sze-
rint ez a technika pontosan működik, ha a koordináták zaja átlagosan nem haladja
meg az 1 − 2 pixeles értéket. E fölött a gyökök több erősen támogatott csúcsot is
képezhetnek, és nem garantált a valódi megoldás megtalálása.

Mi munkánkban a problémát egy egydimenziós keresésként fogalmazzuk meg: a
valós fókusztávolság a leginkább támogatott módusként jelenik meg. Többféle mó-
duszkeresési technika [74] közül a legrobusztusabb a Median-Shift [153] a tapaszta-
latok szerint. A móduszként Tukey-mediánokat [168] biztosító Median-Shift nem hoz
létre új elemeket a tartományban, amelyre alkalmazzák. Különösen a Tukey- [168]
és a Weiszfeld-medians [176] eredményei között nincs jelentős különbség, azonban
az előbbi számítása valamivel gyorsabb. Végül, a Median-Shift diszkrét jellegének
kiküszöbölése érdekében – mivel nem ad hozzá új példányokat, csak az adott pél-
dányokkal dolgozik –, a végeredmény finomításához legmeredekebb-lejtő módszert
alkalmazó numerikus optimalizálást is lefuttatunk. A minimalizálandó függvény az
alábbi:

f(x) =
n∑

i=1

κ(xi − x)

h
, (45)

ahol n a fókusztávolságok száma, κ egy kernelfüggvény – mi a Gauss-kernelt válasz-
tottuk –, xi az i-edik fókusztávolság, h pedig a Median-Shifthez hasonló sávszélesség.
Tesztelési eredmények. A módszerünk nagy erénye, hogy a korábbi hét [62] és
öt [121] pontot igénylő algoritmusokat át tudjuk alakítani úgy, hogy csupán három
(fundamentális mátrix), illetve két (esszenciális mátrix) lokális affin transzformáció
mintavételezése szükséges. A robusztus becslések [46] futási ideje nem polinomiális
összefüggésben van a pontok számával, ezért nagyon hasznos, ha kevesebb mintavé-
telből tudjuk a minimális modelleket elkészíteni.

A módszereinket természetesen összehasonlítottuk más megoldókkal is, helyhi-
ány miatt azonban itt az összehasonlításokat nem közöljük. Véleményem szerint ez
az elméleti újdonság a módszerek legnagyobb erénye. Az érdeklődő kedves Olvasó-
nak az eredeti nemzetközi publikációk elolvasását ajánlom [18, 19] a futási eredmé-
nyek kiértékelésének megtekintéséhez.

4.6. Síkbeli mozgás becslése sztereó képpárra

Az elmúlt években, egészen pontosan 2020-tól kezdődően, elsősorban járműre rög-
zített érzékelők adatainak a feldolgozásával foglalkoztam.

18 Angolul: kernel voting

45

               hajder_274_24



Amennyiben egy kamerát úgy rögzítünk a járműhöz, hogy a kamera képsíkja me-
rőleges az úttestre, és az úttest maga is sík, speciális mozgást kapunk, amely a kamera
mozgásának meghatározását jelentősen egyszerűsíti.

(Egy zárójeles bekezdés erejéig megemlíteném, hogy perspektív kamera esetén
homográfiával a nézeti irányt korrigálni lehet. Ha ismerjük a függőleges irányt, pél-
dául IMU adatai alapján, akkor azt a korrekciót el tudjuk végezni, ami a képsíkot
merőlegessé teszi az úttest síkjához képest. Elméletben ez egy járható út, ám a mai
MEMS technológiával készített gyorsulásérzékelők sokszor nem érik el azt a pontos-
ságot, hogy a gyakorlatban is életképes legyen ez az elképzelés.)

A lényegi mátrix speciális esete ez a síkban mozgás. A mozgás ilyenkor egy kétdi-
menziós iránnyal (első paraméter) és egy függőleges elfordulással (második paramé-
ter) írható le, így a szabadságfokunk összesen kettő, ennyi paraméter kell becsülni.
A forgatási mátrix és az eltolás ebben a speciális esetben így alakul:

t =

 tx
0
tz

 = ρ

 cosα
0

sinα

 , R =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 .

A lényegi mátrix ebben az esetben szintén különleges, ahogyan azt a J. függelék-
ben olvashatjuk, hiszen a fent bevezetett két szögnek a szögfüggvényei segítségével
adható meg négy eleme, a többi öt elem pedig zérus:

E ∼

 0 − sinα 0
sin(α + β) 0 − cos(α + β)

0 cosα 0

 .

A 39. formula mutatta meg az összefüggést a pontmegfelelések, az affin transz-
formációk és a fundamentális mátrix között. Amennyiben normalizáljuk a koordiná-
tákat, tehát a p ← K−1p összefüggéssel élünk minden egyes pontra, akkor írhatjuk,
hogy

 a11u1 + u2 a11v1 a11 a21u1 + v2 a21v1 a21 1 0 0
a12u1 a12v1 + u2 a12 a22u1 a22v1 + v2 a22 0 1 0
u2u1 u2v1 u2 v2u1 v2v1 v2 u1 v1 1

 e = 0,

ahol
e = [e11 e12 e13 e21 e22 e23 e31 e32 e33 ]T

a lényegi mátrix elemeit tartalmazó vektor. A 114. összefüggés elemit beírva és
a lényegi mátrix zérussal szorzott elemeit elhagyva, illetve az elemeket sorrendjét
megváltoztatva az összefüggés sokat egyszerűsödik:

 −a11v1 0 a21u1 + v2 −a21
−a12v1 − u2 1 a22u1 −a22
−u2v1 v1 v2u1 −v2




sinα
cosα

sin (α + β)
cos (α + β)

 = 0. (46)

A jobb oldalon levő [sinα cosα sin (α + β) cos (α + β)]T vektor két egység-
vektor egymás alatt. Ennek megoldására egy érdekes megoldást fejlesztek ki Koreá-
ban [31], amely azonban nem optimális. A feladatot legkisebb négyzetes értelemben
mi tudtuk optimálisan megoldani, ahogyan azt a K. függelékben ismertetem.
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4.6.1. Tesztelési eredmények

A javasolt algoritmust szintetikus és valós teszteknek egyaránt alávetettük. A Ebben
a munkában csak röviden ismertetem az eredményeket, az eredeti ICRA2020 cikk-
ben [159] bővebb leírás található ugyanazokról a tesztelési eredményekről.

4.6.2. Szintetikus tesztek

MATLAB-alapú szintetikus tesztelésünkhöz véletlen kameraparamétereket állítottunk
elő, melyek megfelelnek a síkban mozgásnak. A kamerák belső paramétereit valóság-
szerűnek állítottuk me, szintén véletlenszám-generátor segítségével. A háromdimen-
ziós színtér – szintén véletlenülszánokként generált – pontjait a kamera paraméte-
rekkel levetítettük a síkra, majd nulla várható értékű, normális eloszlású zajt adunk,
melynek a σ szórása a szimuláció állítható paramétere. Minden egyes értéket ezer
futtatás eredményeképpen kaptunk meg.
Általános teszteset. Az összehasonlításhoz egy ’klasszikus’, ötpontos algoritmust [157]
és a nemrégiben közzétett Choi-módszert [31] vettük alapul. A forgatási mátrixban
levő β elforgatás szögének és az eltolás α szögének a zajszinthez való viszonyát a 18.
ábrán láthatja a kedves Olvasó, három különböző zajszint esetében. Jól látható, hogy
a javasolt módszer minden tekintetben jobb eredményt ad a konkurens módszerek-
hez képest. Az α és β szögeknél nincsen lényegi eltérés.
Teszt a síkmozgástól eltérés érzékenységére. A 19. ábra tesztelésekor picit elront-
juk a síkbeli mozgást, a kép és az út síkjára egy, illetve három fokos eltérést en-
gedtünk meg a merőlegeshez képest. Ezt úgy kell elképzelni, hogy a vízszintes (X)
tengely mentén elforgattuk a háromdimenziós világot. Az eredményeken, mely az
eltolás α szögének a hibáját mutatja, jól látszik, hogy a javasolt, optimális módszer a
legkevésbé érzékeny a síktól való eltérésre.

Egy bekezdés erejéig megjegyezném, hogy ilyen eltérés a kamerák rögzítése ese-
tén gyakran előfordul. Homográfia segítségével lehet korrigálni az eltérést, ahogyan
arra 2022-es munkánkban [80] javaslatot is tettünk.
Futási idő. A 20. ábrán a futási időket kapjuk meg 19. A Choi-féle módszer (Line)
egyszerűsége egy picit jobb futási időt eredményét. Az ötpontos algoritmus igényli
a legtöbb számítási kapacitást, hiszen jóval több paramétert becsül. Azonban érde-
mes észrevenni, hogy a számítási idő a másodperc ezredrészéhez van közel minden
esetben, ezért akár valós idejű alkalmazásokon is alkalmazni lehet az algoritmusokat.

4.6.3. Valós teszteredmények

Valós teszteléshez a Malaga20 publikus adatbázist választottuk [25]. Ezt az adathal-
mazt teljes egészében városi környezetben gyűjtötték olyan autóval, amely számos
érzékelővel, többek között egy nagyfelbontású sztereó kamerapárral és öt lézerszken-
nerrel volt felszerelve. A nagyfelbontású kamera szekvenciáiból mi minden tizedik
képkockát használtunk. A javasolt módszert mindig az egymást követő képpárra al-
kalmaztuk. Az alapigazség (ground truth - GT) útvonalakat az adatkészletben meg-
adott GPS-koordináták felhasználásával állítottuk össze. Minden egyes egymást kö-
vető képkockapárt egymástól függetlenül dolgoztunk fel, ezért nem futtattunk sem-

19 A futási idők értékeléséhez fontos tény, hogy 2018. körüli asztali számítógép-konfiguráción
készült a teszt, egy magon futtatva a MATLAB számításokat.

20 https://www.mrpt.org/MalagaUrbanDataset
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18. ábra. Szintetikus teszteredmények külső kamera paraméterek meghatározására,
síkmozgás szimulálásával. Az ábrán a becsült eltolás (bal ábra) és forgatás (jobb) szög-
hibáit látjuk (függőleges tengely; fokban). A pontkoordinátákhoz σ-szórású, nulla vár-
ható értékű, normális eloszlású zajt adunk. Az összehasonlított módszerek a javasolt, a
Choi és mtsai. [31] (Line) és Stewenius és mtsai. [157] (Five-point) algoritmusai.

milyen optimalizálást, amely a teljes útvonal hibájának minimalizálását vagy a hu-
rokzárás felismerését célozta volna. Az egymást követő képkockák becsült mozgásait
egyszerűen összefűztük. A becsült szögek (∈ (−180, 180]) egyetlen korrekciója az
volt, hogy folyamatos pályát feltételeztünk, és így a szögeket 90◦-os modulussal hasz-
náltuk. Például, ha a becsült szög 110◦ volt, akkor 20◦-t használtunk, −110◦ esetén
−20◦-ra cseréltük. Összesen 9 064 képpárt használtunk fel az értékeléshez.

Robusztus becslőként Baráth Dániel doktoranduszom Graph-Cut RANSAC [13]
(GC-RANSAC) módszerét választottuk, ami egyrészt korszerűnek tekinthető, más-
részről a forráskódja nyilvánosan elérhető21, ezért mások is alkalmazni tudják.

A GC-RANSAC (és más RANSAC [46]-szerű módszerek) két különböző megoldót
használnak:

(a) Minimális mintához való illesztésre és

(b) túlhatározott esetre, amikor a modell finomítását végzi az összes kiugró érték
kiszűrése után.

Az a) pont esetében a fő cél a probléma megoldása a lehető legkevesebb adat-
pont felhasználásával, mivel a feldolgozási idő a RANSAC ciklusok számával meg-
szorzódik. Egy esetet kivéve (amikor az ötpontos algoritmust [157] alkalmaztuk),
a tesztekben mindig a Choi-féle dolgozat [31] "Line" nevű módszerét választottuk,
amely minimálisan két pont megfeleltetéséből oldja meg a problémát, és a 20. ábrán
mutatott teszteredmény szerint rendkívül gyors.

A b) pont esetében összehasonlítjuk a javasolt módszert, a síkbeli mozgásproblé-
mát lineáris rendszerként megoldó technikát (DLT algoritmus [62]), a Choi és mt-
sai. [31] "line" megoldóját és az általános ötpontos algoritmust [157]. Az a) és b)
pontok esetében vizsgált kombinációkat a 2. táblázat tartalmazza.

21 https://github.com/danini/graph-cut-ransac
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19. ábra. Az eltolás hibája (függőleges tengely; fokban) a pontszám függvényében, ha
a kameramozgás nem teljesen síkbeli. Ebben az esetben a képzaj szórását 0.5 pixelre
állítottuk be.

A legtöbb tesztelt algoritmus több jelöltet ad vissza a kameramozgásra. A legjobb
modell kiválasztásához nem használtuk fel a pontok legrosszabb 5%-át az illesztés so-
rán. (Felfelé kerekítéssel, tehát legalább egy pontot kidobtunk.) Így a legjobb 95%-ból
becsültük meg a modellt, és végül azt a jelöltet választottuk ki, amelyik a legkisebb
átlagos hibát adja a kihagyott pontokon. Az a síkbeli lineáris módszer egyetlen meg-
oldást ad vissza, ezért nem igényli ezt az eljárást.

Az összehasonlított módszerek pontosságát a 21. ábra bal oldali és középső diag-
ramjai mutatják. A kumulatív sűrűségfüggvényeket 22 (Cumulative Density Function
– CDF) ábrázoltuk. Egy módszer akkor pontossabb, ha a görbéje az ábra bal oldalához
közelebb van. A felső diagram a becsült eltolások, a középső pedig a forgatás pon-
tosságát mutatja. Például a javasolt módszer (piros görbe) esetében a 20◦-nél kisebb
hibájú fordítás visszaadásának valószínűsége kb. 90%. Az összes többi megoldó ese-
tében ez az érték lényegesen alacsonyabb, körülbelül 75% körül van. Látható, hogy a
javasolt módszer lényegesen pontosabb, mint a versenytársaké.

A teljes robusztus becslési eljárás feldolgozási ideje az összehasonlított megol-
dók használatával a 21 ábra jobb oldali diagramján látható. Látható, hogy a lineáris
megoldó (átlagos idő 0,033 mp) és a Choi-féle [31] módszer (átlagos idő: 0,032 mp)
vezet a leggyorsabb robusztus becsléshez. A GC-RANSAC a javasolt megoldóval kom-
binálva kis mértékben lassabb, átlagosan 0,039 mp. Azonban még mindig jelentősen
gyorsabb, mint az ötpontos algoritmust használó becslő – a "Line + Five-point" és az
"Baseline" átlagos ideje 0.043 és 0.065 másodperc.

Összefoglalva, a modellparaméterek becslése nem minimális mintából a javasolt
módszerrel jobb pontosságot eredményez, a feldolgozási idő jelentős többletköltsége
nélkül.

A korábban már bevezett félig kalibrált kamera esetén az egyetlen belső paramé-

22 https://en.wikipedia.org/wiki/Cumulative_distribution_function
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20. ábra. A feldolgozási idő (milliszekundumban; Matlabban implementálva) a becs-
léshez használt pontok számának függvényében. Az összehasonlításban a Choi és mt-
sai. [31] módszere (Line) és az ötpontos l algoritmus [157] (Five-point) szerepel a
javasolt (Proposed) algoritmus mellett.
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21. ábra. A szöghiba (bal - eltolás; közép - forgatás; fokban) és a feldolgozási idő (jobb
oldalt, másodpercben) kumulatív sűrűségfüggvényei a Malaga-adatbázis 15 jelenetén
(összesen 9 064 képpár). A valószínűségek (függőleges tengely) a szöghiba és a feldol-
gozási idő (vízszintes) függvényében vannak ábrázolva. A GC-RANSAC [13] robusztus
becslőt használtuk a módszerek kereteként. Egy módszer akkor pontosabb, hogyha a
görbéje a grafikon bal oldalához közelebb van. A módszerek elnevezését a 2. táblázat
tartalmazza.

ter a K = diag(f, f,1) alakban írható; ilyenkor az alapvető mátrix alakja a következő:

F = K−TEK−1 ∼

 0 − sinα
f2 0

sin(α+β)
f2 0 − cos(α+β)

f

0 cosα
f

0

 .

Mind a lényegi, mind az alapvető mátrix ritka, a kilenc elemből mindössze négy
nem nulla. Ezért a becsléshez elég egyetlen affin megfelelés, hiszen egy megfelelésből
három egyenlet adódik, amiből a két mozgásparaméteren kívül még egy harmadik
érték is megbecsülhető. Ez lehet például a félig kalibrált kamera fókusztávja. Ha
a fenti 46. összefüggésbe a lényegi mátrix helyett a félig kalibrált kamera esetére
levezetett elemeket rakjuk, a becslési feladat így módosul:

 −a11v1 0 a21u1 + v2 −a21
−a12v1 − u2 1 a22u1 −a22
−u2v1 v1 v2u1 −v2




sinα
f2

cosα
f

sin(α+β)
f2

cos(α+β)
f

 = 0.
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Elnevezés Minimális Túlhatározott
Line + Optimal planar Choi-módszer [31] Javasolt optimális megoldó

Line + Line Choi-módszer [31] Choi-módszer [31]
Line + Linear planar Choi-módszer [31] Choi-féle lineáris módszer [31]

Line + Five-point Choi-módszer [31] Ötpontos algoritmus [157]
Baseline Ötpontos algoritmus [157] Ötpontos algoritmus [157]

2. táblázat. A GC-RANSAC [13] megoldók kombinációi, amelyeket a valós kísérletek
során használtunk (lásd a 21. ábrát). A 2. oszlopban a póz becsléséhez használt meg-
oldók láthatók minimális mintából. A 3. oszlop a modell paramétereinek finomításához
használt megoldókat tartalmazza nem minimális mintán.

Jelöljük az ismeretleneket tartalmazó vektort n-el! Ekkor

n =


n1

n2

n3

n4

 =


sinα
f2

cosα
f

sin(α+β)
f2

cos(α+β)
f

 .

Az n vektor elemeit párosítva írhatjuk, hogy

n1

n3

=
sinα

sin (α + β)
,
n2

n4

=
cosα

cos (α + β)
.

A nevezőkkel átszorozva és az eredményt négyzetre emelve kapjuk, hogy

n2
1 sin

2 (α + β) = n2
3 sin

2 α,

n2
2 cos

2 (α + β) = n2
4 cos

2 α.

A sin2 (.) = 1−cos2 (.) trigonometrikus alapösszefüggést alkalmazva a koszinuszok
négyzeteire lineáris egyenletrendszert kapunk:[

−n2
3 n2

1

n2
4 −n2

2

] [
cos2 α

cos2 (α + β)

]
=

[
n2
1 − n2

3

0

]
.

Ezzel megoldottuk a feladatot, a szinuszok négyzeteire katunk összefüggéseket.
Két fontos dolgot azonban meg kell említeni:

– Miután az elemeknek a négyzetét kapjuk meg, több megoldás is kapunk, hiszen
az előjelet a gyökvonás után nem tudjuk egyértelműen meghatározni. A hagyo-
mányos sztereó problémához hasonlóan [62] azokat az eseteket is megkapjuk,
amikor a térbeli pontok háromszögelés [61] után a kamera mögé kerülnek. A
láthatósági feltétel figyelembe vételével a hamis megoldásokat ki lehet szűrni.

– Néha nincsen valós megoldás. A lineáris egyenletrendszer nem tudja garantálni,
hogy cos2 α-ra és cos2 (α + β)-ra mindig egynél nem nagyobb pozitív érték jöjjön
ki, komplex szögekkel pedig a valós feladatok során nem tudunk mit kezdeni.
Ilyenkor a negatív értéket nullára cseréljük, ezzel ±π/2 kapunk a szögekre.

Ezt az algoritmust jelentős elméleti eredménynek tekintem, hiszen félig kalibrált
kamerák esetén nem kell két külön megfelelést találni a képpárokon, hanem egyetlen
lokális információból a két kép közötti elmozdulás (póz) megbecsülhető.
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4.7. Tesztelési eredmények

A javasolt módszereket szintetikus környezetben és nyilvánosan elérhető valós adat-
halmazokon teszteljük.

22. ábra. Kapott útvonalak a Malaga-adatbázisból. Az alapigazság (GPS-alapon) útvo-
nal sárga, a javasolt egypontos algoritmus GC-RANSAC-kal pirossal, a hisztogramsza-
vazással lilával, a három- és az ötpontos algoritmusok kékkel és zölddel rajzoltak.
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23. ábra. Az átlagos relatív fókusztávolság-hiba, azaz |fest − ftextgt|/fgt, a javasolt
(1ACf), a 2ACf [18] és a 6PC [59] módszerek 15 szekvenciáin (összesen 6111 képpár) a
Malaga adathalmazon. Az utolsó sávhármas az összes szekvenciára vonatkozó átlagos
hibát közli.

4.7.1. Konkurrens módszerek

A módszerek során a minimális megoldókat részesítettük előnyben. Ezért az össze-
hasonlításban ezek a módszerek vettek részt:

– 5PC [121]: A klasszikusnak mondható, öt pontot használó módszer, mely egy
általános lényegi mátrixot számít ki.

– 6PC [59]: Hartley és Li speciális, hat pontot használó módszere, mely a közös
fókusztávolságot is ki tudja számítani.

– 3PC [59]: Saját, egyszerűsített algoritmus, ami a 46. egyenlet DLT-szerű [60]
megoldása.

– 2PC [31]: A Choi-féle algoritmus, amely kettő pontból számítja ki a síkmozgás
két szabad paraméterét.

– 1AC [159]: Az előző fejezetben ismertetett megoldó, amely egy affin megfele-
lésből (1AC) a 46. összefüggésen keresztül kiszámítja a kamera mozgását.
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(a) Kalibrált kamerák.
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(b) Ismeretlen fókusztáv.
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(c) Általános mozgás helytelen síkmozgás feltételezésével

24. ábra. Diagramok szimulált teszteredményekkel. (a) Kalibrált eset. A kapott forga-
tások (balra) és eltolások (jobbra) átlagos szöghibája (◦) a σ zaj függvényében ábrázol-
va. A módszereket minden σ esetében 1000 alkalommal futtattuk le. Az összehasonlított
módszerek: a javasolt algoritmus(1AC), Kétpontos módszer síkmozgást feltételezbe [31]
(2PC), David Nistér [122] 5 pontos algoritmusa (5PC) az általános kameramozgásra
és a lineáris hárompontos algoritmus (3PC) síkmozgásra. Az első két ábrához általá-
nos síkbeli mozgást vettünk figyelembe. Az utolsó kettőnél a kamerák forgatás nélküli
előre irányuló mozgást végeztek. (b) Fókusztávolság becslés. Az összehasonlított módsze-
rek a javasolt (1ACf), a saját általános kamerára fejlesztett algoritmusunk [18] (2ACf)
Hartley-Li hatpontos módszere [59] (6PC). A becsült fókusztávolságok relatív hibáinak
(vízszintes) log10 gyakoriságát (1000 futás; függőleges tengely) zajmentes esetben a bal
oldalon mutatjuk. A következő diagram a relatív fókusztávolság-hiba (%-ban) látható a
zaj σ függvényében. A kapott forgatások (3. diagramm) és eltolások (utolsó kép) átlagos
szöghibáit (◦) a σ zaj függvényében ábrázoljuk. (c) Elrontott síkbeli mozgás: a második
kamera függőleges irányú elforgatása történt egy σ = 1.0◦ véletlenszerű forgatással. Az
első két diagram az általános síkbeli mozgás esetén a forgások és az eltolások hibáit mu-
tatja. A harmadik oszlopban az előremenő mozgás hibáit láthatjuk. Az utolsó képen a
becsült fókusztávolság hibája található. Látható, hogy a javasolt 1AC és 1ACf módszerek
a sérült síkbeli kényszer ellenére is meglehetősen jól működnek.
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1ACf 2PC [31] & 1AC 3PC [23] 5PC [122]
steps 4× 4 EIG 2× 2 INV + 2× 2 SVD. 3th degree poly. + conic intersect 5× 9 SVD + 10× 10 Gauss-J + 10× 10 EIG
1 iter 43 = 64 23 + 23 = 16 32 log(3) + 12 ≈ 22 9 · 52 + 103 + 103 = 2,225
m 1 2 3 5

1 - µ 0.25 0.50 0.75 0.90 0.25 0.50 0.75 0.90 0.25 0.50 0.75 0.90 0.25 0.50 0.75 0.90
# iters 4 7 17 44 6 17 72 459 9 35 293 4,603 17 146 4,714 ∼ 5 · 105

# comps 256 448 1,088 2,816 96 272 1,152 7,344 198 770 6,446 101,266 37,825 324,850 ∼ 107 ∼ 109

3. táblázat. Négy különböző megoldó (négy blokk, mindegyik négy oszlopból áll) elmé-
leti számítási komplexitása egy RANSAC [46]-szerű robusztus keretrendszerben. A saját
módszer az első oszlop, a módszert 1ACf-el jelöltük. A felírt jellemzők a következőek: az
egyes megoldók műveleteinek száma (#steps; első sor); egy iterációra a becslés számí-
tási bonyolultsága (#iter; második sor); a becsléshez szükséges megfeleltetések száma
(m ; harmadik sor); a lehetséges kiugró pontok számának arányok (1 − µ ; negyedik
sor); a RANSAC-hoz szükséges iterációk száma, ha a szükséges megbízhatóságot 99-%-
ra állítjuk (ötödik sor); és a teljes eljáráshoz szükséges számítási becsült darabszáma
(# comps; hatodik sor).

– 1ACf [160]: A jelenlegi fejezetben ismertetett, egy affin megfelelésből (1AC)
működő megoldó, mely az f fókusztávolságot is kiszámítja.

– 2ACf [19]: Két affin megfelelésből (2AC) a lényegi mátrixot és az f fókusztá-
volságot kiszámító módszerünk, melyet a 4.5. szakaszban ismertettem.

4.7.2. Számítási komplexitás

Ebben a szakaszban az algoritmusok számítási bonyolultságát hasonlítjuk össze. A 3.
táblázatban az egyes oszlopok egy-egy minimális megoldó tulajdonságait mutatják.
Az első sor a főbb lépéseket tartalmazza. Például az 5 × 9 SVD + 10 × 10 Gauss-
J + 10 × 10 EIG azt jelenti, hogy a lépések a következők: egy 5 × 9 mátrix SVD-
felbontása, egy 10×10 mátrix Gauss-Jordan eliminációja és végül egy 10×10-es mátrix
sajátérték felbontása. Alatta az elméleti számítási bonyolultságokat összegezzük. A
harmadikban az egyes megoldókhoz szükséges megfeleltetések száma (m) szerepel.
A negyedik sorban a kiugró pontokra (outlier-ekre) beállított értékeket adjuk meg.
Utána a RANSAC [46] algoritmushoz kiszámított, elméleti iterációszáma van felírva
minden egyes kiugró arányra, a szükséges konfidenciát 0.99-ra állítva. Az utolsó sor
a RANSAC és a minimális módszerek kombinált számítási bonyolultságát mutatja:
ez az érték egy iteráció bonyolultsága szorozva az iterációs számmal. Látható, hogy
a javasolt 1ACf és 1AC módszerek vezetnek a legkevesebb iterációhoz és a legkisebb
számítási bonyolultsághoz.

4.7.3. Szintetikus teszteredmények

A javasolt módszer teszteléséhez és a legkorszerűbb eljárásokkal való összehason-
lításához teljesen ellenőrzött környezetben két perspektivikus kamerát generáltunk
a síkmozgás feltételezésével. A kamerák közös belső paraméterekkel rendelkeztek:
fx = fy = 600 (fókusztávolság) és [300 300]T a döféspont. Minden vizsgálatban egy
véletlen síkot generáltunk, és a síkból 50 véletlen pontot vetítettünk a kamerákba.
A pontkoordinátákhoz zéró várható értékű Gauss-zajt adtunk σ szórással. Az egyes
pontmegfeleletések affin paramétereinek meghatározásához a homográfiát a zajos
megfeleltetésekből becsültük meg. Ezután a zajos affin paramétereket minden egyes
megfeleltetéshez a megfelelő homográfiából számítottuk [9].
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A kapott forgatás hibája a Restv és Rgtv
T vektorok közötti szög az alábbiak sze-

rint: ϵR = cos−1((Restv)
T(Rgtv)), ahol v = [ 1√

3
, 1√

3
, 1√

3
], Rest a becsült és Rgt az

alapigazság forgatási mátrixa. Az eltolás hibáját hasonló módon számoljuk ki – ez
a szög az alapigazság és a kapott forgatási vektorok között. A közölt értékek 1000
futtatás átlagai minden egyes σ zajra.
Összehasonlítás kalibrált esetben. Kalibrált kamerák esetén a α és β szögeket kell
megbecsülni. Az eredményeket a 24a. ábra szemlélteti. Az összehasonlított algorit-
musok a következőek: (i) a javasolt megközelítés (1AC); (ii) David Nistér [121] öt-
pontos algoritmusa (5PC); (iii) Kétpontos algoritmus [31] (2PC) és a hárompontos
lineáris algoritmus (3PC). Az 5PC esetében a lényegi mátrixot öt pont megfelelteté-
séből számítjuk ki, általános háromdimenziós mozgást feltételezve.

A 24a. ábrán a szöghiba (fokban) a zaj σ függvényében van ábrázolva. Az első
két ábrán az általános síkbeli mozgást vettük figyelembe, amely a kapott elforgatá-
sok és eltolások hibáit mutatja. Látható, hogy az 1AC mindkét esetben a második
legpontosabb. Az első azonban különbözik ebben a két esetben. Azt is megvizsgál-
tuk, hogyan viselkednek a módszerek, ha a kamerák tisztán előre irányuló mozgást
végeznek (forward motion), és a Y tengely körüli forgás nulla. Lásd a 24a. ábra utol-
só két grafikonját. Ebben az esetben az 1AC kapja a legpontosabb forgatásokat és a
második legpontosabb eltolásokat.

A 24c. ábra első három grafikonján a síkbeli kényszert úgy rontottuk el, hogy a
második kamera függőleges irányát egy 1◦ szórású véletlen szöggel elforgattuk. Ezért
a problémának több (három) szabadságfoka van, mint amit a síkmozgást feltételező
módszerek általában figyelembe vesznek. Látható, hogy a síkbeli mozgást feltételező
módszerek közül a javasolt módszer a legrobusztusabb az ilyen típusú zajjal szemben.
Ha a koordináták zaja > 0,2 pixel, akkor az 1AC a legpontosabb eltolást és a második
legpontosabb elforgatást kapja. Ha a zaj kisebb, mint 0,2 pixel, akkor az általános
ötpontos módszer [122] a legpontosabb.
Összehasonlítás félig kalibrált kamerákkal. Ebben a tesztforgatókönyvben a moz-
gás két szögét és a két kamera közös fókusztávolságát becsüljük meg. Az eredmények
a 24b. ábra második sorában láthatók. Három módszert hasonlítunk össze: (i) a java-
solt megközelítést (1ACf), (ii) a két affin megfelelést használó módszert [18] (2ACf)
általános kameramozgásra; (iii) és egy hatpontos technikát [59] (6PT). A bal oldali
ábra a megoldók numerikus stabilitását közli : a log10 relatív hibák (vízszintes) gyako-
riságai (függőleges tengely; 1000 futtatásban), azaz frel = (fest − fgt) /fgt, zajmentes
esetben.

Látható, hogy a 2ACf és a 6PC módszerek esetében a 10−2 – 100 körüli hibák gya-
korisága nem nulla. Ezért vannak olyan esetek, amikor a kívánt fókusztávolságot ezek
a módszerek még zajmentes esetben sem állítják vissza, azaz numerikusan nem elég
stabilak. A javasolt 1ACf ezzel ellentétben teljesen stabil, a hibák legsűrűbb pontja
10−9 relatív hiba környékén van zajmentes esetekben.

A 24b. ábra másik három grafikonja szerint az 1ACf a második legpontosabb fó-
kusztávolságot adja, kissé lemaradva a 2ACf mögött. Az új módszer a legpontosabb
forgásbecsléshez vezet, a becsült eltolások esetén a második legjobb eredményt érte
el. A 24c. ábra jobb oldali grafikonja azt mutatja, hogy az 1ACf a második legjobb
fókusztávolságokat kapja, még a sérült síkviszonyok ellenére is.
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1AC + GC 1AC + Hist 3PC 5PC
Idő (ms) 749± 672 16± 10 598± 530 588± 527
Idő/Minta # 23± 16 – 31± 64 38± 32

4. táblázat. A GC-RANSAC és hisztogramszavazás feldolgozási ideje (milliszekun-
dumban; C++ implementáció) és a minták számának átlaga és szórása a Malaga-
adatkészleten. A megfeleltetések átlagos száma 4070. Az első sor a teljes időt, a második
véletlen mintánként az időt tartalmazza. A GPU-ASIFT [33] által végzett affin jellemző-
kivonatolás átlagos feldolgozási ideje 24 ms. A teszteléshez egy NVIDIA GeForce GTX 980
GPU-t alkalmaztunk.

4.7.4. Valós teszteredmények

A javasolt módszer valós adatokon való teszteléséhez a Malaga23 [25] adathalmazt
választottuk. Ezt az adathalmazt teljes egészében városi környezetben gyűjtötték
össze. Egy kamera felvételeit emeltük ki, és csak minden tizedik képet használtuk
fel. 15 különböző útvonalat tartalmaz az adatbázis, így mindösszesen 6 képpáron
teszteltük őket. Végül az eredményeket egyszerűen összefűztük. Hogy kizárólag a
minimális megoldók hatását mutassuk be, mindegyiküket a teljes útvonal optimali-
zálása nélkül alkalmaztuk az egymást követő képpárokra. Az alapigazság útvonalát
az adatkészletben megadott GPS-koordináták felhasználásával állítottuk össze.
Kalibrált kamerák. Ugyanazokat a módszereket választottuk ki az összehasonlításra,
mint szimulált tesztek esetében. Megjegyzendő, hogy Scaramuzza [148] egypontos
algoritmusa is versenytárs lehet, azonban ez speciális kamerabeállítást igényel, azaz
a kamerának a hátsó tengely felett kell lennie. Ez a feltétel nem áll fenn a Malaga
adatbázisnál [25]. Az affin megfeleléseket az Affine-SIFT [183] (ASIFT) módszer se-
gítségével detektáljuk. Az egymást követő képkockák közötti mozgás abszolút hosszát
a megadott GPS-koordinátákból számoltuk ki, hiszean a kamera alapú látásnál csak
az elmozdulás irányát lehet rekonstruálni, a hosszt magát nem. Robusztus becslőként
a hisztogramszavazást és a Graph-Cut RANSAC [13] algoritmust választottuk. Utóbbi
doktoranduszom fejlesztése, és nemcsak korszerű, hanem forráskóddal együtt nyilvá-
nosan elérhető24. A GC-RANSAC esetében a szükséges konfidenciát 0.99-ra állítottuk
be, és a szerzők által javasolt alapértelmezett beállítást használtuk.

A 25. ábra a Malaga-adatkészlet egyes szekvenciáinak átlagos szöghibáját (fok-
ban; függőleges tengely) mutatja. Összesen 6,111 képpáron teszteltük. Látható, hogy
a javasolt módszer átlagosan felülmúlja a versenytársak algoritmusát a geometriai
pontosság tekintetében.

A 4. táblázat az egyes megoldókkal kombinált GC-RANSAC által igényelt feldol-
gozási időt és a minták számát mutatja. A GC-RANSAC a javasolt algoritmussal a
legkevesebb mintaszámot eredményezi, azonban a feldolgozási idő kissé magasabb,
mint a 3PC és 5PC algoritmusoké. A hisztogramszavazás robusztus becslőként való
használata nagyságrendi gyorsulást eredményez.

A tulajdonságok kinyerése a GPU-ASIFT [33] implementációnkkal egy NVIDIA
GeForce GTX 980 processzoron 24,07 ms időt vesz igénybe minden egyes 1024× 768
méretű képpárra. A teljes folyamat képenként hozzávetőlegesen 40 milliszekundumot

23 https://www.mrpt.org/MalagaUrbanDataset
24

urlhttps://github.com/danini/graph-cut-ransac
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1AC + GC
1AC + Hist
3PC + GC
5PC + GC

25. ábra. Átlagos szöghiba (fokban; függőleges tengely) a Malaga-adatkészlet egyes
szekvenciáin (vízszintes tengely). Az összehasonlított módszerek a javasolt (1AC), a 3
pontos (3PC) és az 5 pontos (5PC) algoritmusok. A „GC” utótag azt jelzi, hogy a GC-
RANSAC [13] robusztus becslőt alkalmaztuk, míg a „Hist” a súlyozott hisztogramsza-
vazást [28] jelenti. Az utolsó oszlop az összes jelenet (összesen 6111 képpár) átlagát
mutatja.

vesz igénybe, ami valós idejű feldolgozásként értelmezhető.
Tesztelés félig kalibrált kamerákkal.

A becsült fókusztávolságok pontosságát szintén a Malaga adathalmazon tesztel-
tük. A megadott belső kalibrációk miatt a fókusztávolságokat ismerjük, tehát az alap-
igazság rendelkezésre áll. A javasolt 1ACf, a 2ACf [18] és a 6PC [59] módszereket
minden egymást követő képpárra alkalmaztuk. A robusztus fókusztávolság-becsléshez
hisztogramszavazást használtunk. A 23. ábra a relatív hibákat (függőleges tengely)
az adatkészlet minden egyes szekvenciájára (vízszintes tengely) mutatja. A relatív
hiba |fest − ftextgt|/fgt, ahol fest a becsült, fgt pedig az alapigazság fókusztávolság.
Az algoritmusokat összesen 6111 képpáron teszteltük. Látható, hogy a javasolt 1ACf
megoldó a 15 képsorozatból 11 esetében a legpontosabb fókusztávolsághoz vezet.
Emellett az 1ACf átlagos hibája az összes szekvenciára vetítve a legalacsonyabb.

4.8. Affin transzformáció becslése egyenesekből

A korábbi algoritmusok mind azt feltételezték, hogy a képrészek közötti affin transz-
formáció rendelkezésre áll. Ahogyan az a tesztelésekből kiderült, a becslések érzéke-
nyek az affin transzformáció zajára, ezért azok pontos, jó minőségű kinyerése a képp-
árokból kritikus kérdés. Ez a feladat gyakorlati szempontból azonban meglehetősen
nehéz feladat. A jellegzetes pont leírók [103, 21, 142] a skáláról és az orientáció-
ról csak elnagyoltan (kvantáltan) képesek értéket tárolni, ezért ezekből nem mindig
lehet a pontos affin paramétereket kinyerni.

Ebben a fejezetben azt mutatom meg, hogy amennyiben egyeneseket meg tudunk
feleltetni egymásnak, ezek irányát felhasználva hogyan lehet megbecsülni az affin
transzformációt.

Ebben a fejezetben két dolgot mutatok meg:

– hogyan lehet felhasználni az egyenesirányokon túlmenően az alapvető mátri-
xot; és

– optikai áramlás miként tud segíteni a becslésben.
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Affin transzformáció meghatározása egyenesekből és az alapvető mátrixból.
Először azt nézzük meg, hogyan határozzák meg az egyenesirányok az affin para-

métereket. A pont helyét jelöljük a két képen p1 =
[
u1 v1

]T -el és p2 =
[
u2 v2

]T -
vel, az irányt pedig d1i =

[
l1u l1v

]T -vel és d2i =
[
l2u l2v

]T
, i ∈ {1,2}-vel.

Az A affin transzformációt a megszokott módon egy 2× 2 mátrix írja fel.
Affin transzformáció becslése

A pontok helyei, az affin transzformáció és az alapvető mátrix közötti kapcsola-
tot a 24. egyenlet adja meg. A koordinátákat behelyettesítve a következő képletet
kapjuk:

AT F̃

 u1

v1
1

 = −F̂T

 u2

v2
1

 .

Mivel az alapvető mátrix és a pontok helyének szorzata adja az epipoláris vonalat
a második képen, és a mátrix és a második pont helyének transzponálása adja a meg-
felelő epipoláris vonalat az első képen, a vektoregyenlet átírható a következőképpen:

AT

[
l2u
l2v

]
= −

[
l1u
l1v

]
,

ahol az epipoláris egyenesek normálisai az n1 = [l1u l1v]
T és n2 = [l2u l2v]

T vekto-
rok.

Ha az affin transzformációk elemeit behelyettesítjük, a következő lineáris egyen-
letrendszert kapjuk: [

a11 a21
a12 a22

] [
l2u
l2v

]
= −

[
l1u
l1v

]
. (47)

Most az ismert irányok közötti kapcsolatot az affin paraméterekkel együtt írjuk
fel. Az irányokat az affin mátrix helyesen transzformálja, azonban a vektorok hossza
nem ismert. Ez a tény a következőképpen fogalmazható meg:

A

[
u11

v11

]
= α1

[
u21

v21

]
,

A

[
u12

v12

]
= α2

[
u22

v22

]
,

ahol α1 és α2 az ismeretlen hosszok.
Az alak egyszerűen átírható az affin transzformációk elemeinek behelyettesítésé-

vel: [
a11 a12
a21 a22

] [
u11

v11

]
= α1

[
u21

v21

]
,[

a11 a12
a21 a22

] [
u12

v12

]
= α2

[
u22

v22

]
. (48)

A végső probléma a 47. és a 48 egyenletek összevonásával alakítható ki. A kapott
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alak lineáris, ezt írja fel a következő hatdimenziós egyenlet:
l2u 0 l2v 0 0 0
0 l2u 0 l2v 0 0
u11 v11 0 0 −u21 0
0 0 u11 v11 −v21 0
u12 v12 0 0 0 −u22

0 0 u12 v12 0 −v22




a11
a12
a21
a22
α1

α2

 =


−l1u
−l1v
0
0
0
0

 . (49)

A megoldást triviálisan úgy kapjuk meg, hogy a jobb oldali vektort megszorozzuk
a bal oldali együtthatómátrix inverzével.

4.8.1. Affin transzformációk becslése optikai áramlásból

Az affin transzformációk más technikákkal is becsülhetők, például affin-invariáns
megfeleltetők [184] segítségével. Tapasztalataink szerint azonban ezek minősége
nem kielégítő, mert a becsült transzformációk zajjal erősen szennyezettek.

Ezért az affin transzformációk kinyerésének egy másik módját javasoljuk: az affin
transzformációkat akkor becsüljük meg, ha a képek közötti optikai áramlás rendel-
kezésre áll. A becslési probléma egy inhomogén lineáris probléma, ahogyan azt itt
tárgyaljuk. Ezért a becslés nagyon gyors, hiszen egy hatdimenziós problémának meg-
felelő mátrix pszeudo-inverzét kell kiszámítani.
Feladat leírása.

Az optikai áramlás adott, így az egyes kamerák relatív eltolódása ismert. Ezért
írhatjuk, hogy [

x′
i

y′i

]
=

[
xi

yi

]
+

[
∆xi

∆yi

]
,

ahol a [xi yi]
T és a [x′

i y′i]
T vektorok az első és a második kép pixelkoordinátáit

jelölik. Magát az áramlást az [∆xi ∆yi]
T eltolási vektorok jelölik.

A feladat az affin transzformáció becslése az adott pont x0 = [x0 y0]
T helyének

környezetében. A ’környezete’ ebben az esetben azt jelenti, hogy a szomszédos kép-
pontokat is figyelembe kell venni. A pontokat mi egy R sugarú korongban választjuk
ki, ahol R az algoritmus statikus paramétere.
Javasolt becslés. Az affin transzformáció a megfelelő szomszédos pontok közötti
kapcsolatokat a következőképpen írja le:

[
x′
i

y′i

]
=

[
a11 a12 au
a21 a22 av

] xi

yi
1

 .

Írhatjuk, hogy [
x′
i

y′i

]
=

[
a11 a12
a21 a22

] [
xi

yi

]
+

[
au
av

]
.

Másik alakba is írhatjuk a tömörség kedvéért:
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[
xi yi 1 0 0 0
0 0 0 xi yi 1

]


a11
a12
au
a21
a22
av

 =

[
x′
i

y′i

]
.

A bal oldali mátrixot jelöljük Ci-vel. Ekkor

Ci

[
a11 a12 au a21 a22 av

]T
= x′

i.

Ha N különböző ponton ismerjük az áramlást, a probléma túlhatározottá válik:


C1

C2
...

CN




a11
a12
au
a21
a22
av

 =


x′

1

x′
2

...
x′

N

 .

A feladat így lineárissá válik:

C
[
a11 a12 au a21 a22 av

]T
= x′,

ahol C = [CT
1 . . .CT

N]
T és x = [xT

1 . . .xT
N]

T .
Az affin paraméterek legkisebb értelemben vett optimális becslését a következő-

képpen kapjuk meg:[
a11 a12 au a21 a22 av

]T
=
(
CTC

)−1
CTx′.

Megjegyzendő, hogy legalább három különböző pontra ismerni kell az áramlást.
Háromnál több pont esetén a probléma túlhatározottá válik.

4.8.2. Vizsgálati eredmények

A tesztelés során elsősorban valós esetekre koncentráltunk, mivel a munkánk fő célja
a felületi normális becslés beillesztése egy 3D rekonstrukciós csővezetékbe.
Szintetikus tesztelés

A szintetikus tesztet azért készítettük, hogy igazolni tudjuk, hogy a 49. egyenlet-
ben megadott képlet helyes. Ehhez egy egyszerű szintetikus tesztkörnyezetet imple-
mentáltunk az Octave 25 programcsomag segítségével. A kamera paramétereit, va-
lamint a térbeli jelenet geometriáját, ami tesztünkben egy szabályos gömb, véletlen-
szerűen generáltuk. A pontok helyét a kameraképen általában perspektív vetítés [62]
segítségével adtuk meg. Az alapigazság szerinti affin transzformációkat a gömb érin-
tő síkjain keresztül generáltuk. Az affin paraméterek a megfelelő ponthelyeken az
érintő síkokhoz kapcsolódó homográfiák levezetésével határozhatók meg, ahogyan
azt 2015-ös munkánkban [15] részletesen tárgyaljuk.
A szintetikus tesztek fő tanulsága. Sikeresen igazoltuk, hogy a 49. egyenlet helyes, az
alapigazság affin transzformációit mindig pontosan megkaptuk.

25 Octave egy nyílt forráskódú MATLAB-klón. Lásd: http://www.octave.org.
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(a) KRESZ-tábla (b) Úttest

(c) Erkély (1) (d) Erkély (2)

26. ábra. Eredmények valós képpárokon. A kézzel kiválasztott irányok piros és kék
színnel vannak jelölve. A becsült felületi normálisok fehér színnel rajzoltak.

27. ábra. Becsült felületi normálisok az egyik KITTI [52] szekvencia képén. A sárga,
fehér és piros koordináták a vízszintes, függőleges és a képsíkra merőleges irányokat
jelölik. Az ábrát érdemes színes nyomtatásban vagy elektronikus formátumban nézni.

Vizuális "Debugger"
Kifejlesztettünk egy eszközt a rekonstrukciós csővezeték futtatására és a kiszámí-

tott felületi normálisok megjelenítésére. Ezt az eszközt angolul "Visual Debugger"-nek
neveztük el. A pontmegfeleléseket, valamint az irányokat manuálisan választottuk ki
a detektálási hibák elkerülése érdekében. Az alapmátrixot automatikusan becsültük
a nyolcpontos módszerrel [60]. A stabilizálás a szabványos RANSAC [46] módszerrel
történt.

A vizuális debugger néhány eredménye látható az 26 ábrán. Módszerünket a KIT-
TI [52] és a Malaga [25] adathalmazokon teszteltük.
Felületi normálvektorok

Teljesen automatikus tesztelési eljárást is végeztünk a teljes rekonstrukciós cső-
vezeték felhasználásával. Egy példa a normálvektorokra a 27. ábrán látható. A nor-
málvektorokat különböző színnel rajzoltuk: a normálisok koordinátáinak abszolút
értékeit vettük figyelembe; ha egy vektornak a legnagyobb abszolút koordinátája az
x, y, vagy a z, akkor rendre sárga, fehér, illetve piros színnel rajzoltuk ki.
Normálvektor becslése optikai áramlásból. Bár e részfejezet középpontjában az áll,
hogy megmutassuk, hogyan lehet az affin transzformációkat két megfelelő irányból
és az alapmátrixból megbecsülni, itt azt is bemutatjuk, hogy más módon is haté-
konyan lehet becsülni az affin transzformációkat. A 4.8.1. fejezetben áttekintettük,
hogyan lehet egy transzformációt egy adott helyen meghatározni, ha adott a képek
közötti optikai áramlás ismert. A felületi normálisok a 4.1. fejezetben javasolt opti-
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28. ábra. Az LG-SVL [3] szimulátor által generált képeken megjelenített becsült felületi
normálisok. A sárga, fehér és piros koordináták a vízszintes, függőleges és a képsíkra
merőleges irányokat jelölik. Az affin transzformációkat az optikai áramlásból számítjuk.
Az ábrát érdemes színes nyomtatásban vagy elektronikus formátumban nézni.

mális módszerrel becsülhetők.
A képsorozatokat az LG-SVL szimulátor [3] segítségével készítettük. Az optikai

áramlásokat a HD3 előre betanított mély hálózat [182] számította ki. Az eredményül
kapott képek a 28. ábrán láthatóak, a becsült felületi normálisok kirajzolódnak. Bár
az affin transzformációk minden egyes pixelhelyzetre becsülhetők, a mintavételezés-
hez a könnyebb értelmezhetőség miatt szabályos ritkás rácsot alkalmazunk.

4.9. Összefoglalás

A disszertációnak ebben a fejezetében – amely egyébként a leghosszabb az összes kö-
zött –, megmutattam, hogy az elmúlt tíz évben milyen geometriai törvényszerűsége-
inkre épülő becslő algoritmusokat sikerült bemutatnunk a tudományos közösségnek.
A munkából az alábbi téziseket sikerült kimondani:

II.1. tézis. Normálvektor optimális becslése affin transzformációból, kalibrált
kamerapár esetén [15, 9, 10, 110, 56].

Az I.1 tézis szerinti első törvény alapján Baráth Dániel doktoranduszommal kö-
zösen az alábbiak szerint definiáltuk az optimális normálvektorbecslés problémáját
legkisebb négyzetes értelemben:

n = argnmin
2∑

i=1

2∑
j=1

(
nTwij

nTwc

− aij

)2

, (50)

ahol

w11 = (∇Π1
v ×∇Π2

u) , w12 = (∇Π2
u ×∇Π1

u) ,
w21 = (∇Π1

v ×∇Π2
v) , w22 = (∇Π2

v ×∇Π1
u) ,

wc = (∇Π1
u ×∇Π1

v) .
(51)

Megmutattuk, hogy ez a feladat legkisebb négyzetes értelemben optimálisan meg-
oldható. Három eljárást is kidolgoztunk, a második és a harmadik eljárás esetén ku-
tatócsoportunk kollégáinak segítségét is igénybe vettünk:

– Negyedfokú polinom segítségével.
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– Harmadfokú polinom segítségével.26

– Lineáris összefüggések hányadosaként.27

Az újabb módszerek egyre gyorsabbak, a futási idő csökkentése motiválta az újabb
eljárások kifejlesztését.

II.2. tézis. Lyukkamera vetítő mátrixának becslése affin transzformációból.
Eichhardt Iván kollégámmal, kutatócsoportunk oszlopos tagjával közösen meg-

mutattuk, hogy az I.1 tézis szerinti első törvénye alapján – amelyet a 22. összefüggés
ír le –, ha ismerjük az affin transzformációt, a felületi pontokat és normálvektorokat,
továbbá a vetületeket a képeken, akkor lyukkamerára a projektív mátrix paramétereit
meg tudjuk határozni az egyik kamerára, ha a másik kamerának belső paramétereit
ismerjük. Erre alapozva kidolgoztunk egy algoritmust projektív mátrix becslésére.

A kalibrációs algoritmus működőképességét kamera-projektor páros kalibrációján
keresztül mutattuk meg. A projektor maga inverz kamerának fogható fel, amely nem
képet (leképzést) készít a háromdimenziós világról, hanem a síkbeli mintát vetíti ki
a térbe.

II.3. tézis. Homográfia becslése affin transzformációkból [17, 16].
Az I.1. altézis második törvényszerűsége négy egyenletet ír fel, amely összeköti

a homográfiát és a lokális affin transzformációkat lyukkamera modell alkalmazása
esetén. Az összefüggésekből Baráth Dániel doktorandusszal két becslő algoritmust
készítettünk:

1. HA algoritmus. Általános esetben, ha a kamerák paraméterei teljesen isme-
retlenek, két affin megfelelésből ki tudjuk számolni a kapcsolódó homográfi-
át; szemben a hagyományos, kizárólag pontmegfeleléseket alkalmazó módszer-
rel [62], amelynek legalább négy megfelelésre van szüksége.

2. HAF algoritmus. Ha a két kép között az alapvető (fundamentális) mátrix is-
mert, egyetlen affin transzformáció is elég a becsléshez.

A javasolt módszerek univerzálisak abban az értelemben, hogy mind a minimális,
mind a túlhatározott esetekben alkalmazhatóak.

II.4. tézis. Síkok klaszterezése lokális affin transzformációk segítségével, kalib-
rált kamerák esetén [35].

A II.3. altézisben kimondott HAF algoritmus segítségével kidolgoztunk Baráth
Dániellel és Jiri Matas cseh kollégával közösen egy szegmentáló eljárást, amely az
azonos síkhoz tartozó affin megfeleltetéseket csoportosítja, hiszen egyetlen megfe-
lelésből a homográfiát meg tudja becsülni a HAF algoritmus, ha a két kép között
az epipoláris geometriát leíró fundamentális mátrix ismert. A kiszámított homográ-
fia alapján a hozzá tartozó térbeli síkot meg lehet határozni, és az azonos síkokat
eredményező lokális affin transzformációk kiválasztása alapján a síkfelületet a képen
szegmentálni lehet. Ez a módszer a HAF algoritmus kiterjesztésének tekinthető több
(multi) modell illesztésére.

26 A levezetés megalkotásában Nghia Le Minh BSc-s hallgató segítségét kell kiemelni, aki a for-
mális bizonyítást végső alakját megalkotta.

27 Itt Lóczi Lajos kollégám segítségét kell kiemelnem, aki a Mathematica alkalmazását vetette be,
és a leggyorsabb megoldót így találta meg.
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II.5. tézis. Lényegi és alapvető mátrix becslése lokális affin transzformáció alap-
ján [18, 19].

Az I.2-es tézis egy vektoros összefüggést ad, amelyik egy lokális affin transzfor-
mációt és a fundamentális mátrixot összeköti. Ennek az egyenletnek a felhasználásá-
val doktorandusz halgatómmal közösen készítettünk egy homogén lineáris egyenlet-
rendszert, amelyből legkisebb négyzetes értelemben optimális becslő eljárást alkot-
tunk meg. Az affin összefüggésből két homogén egyenletet kapunk, ezt egészítettük
ki a pontmegfelelésekből származó összefüggéssel [62], ezért minden lokális affin
transzformáció három egyenletet ad. Algoritmusunk ezért három megfelelésből, ho-
mogén lineáris egyenletrendszer megoldásán keresztül becsli meg a fundamentális
mátrixot, szemben a hagyományos pontalapú algoritmussal [62], amely legalább hét
megfelelés meglétét feltételezi.

A javasolt algoritmusunk minimális és túlhatározott esetben egyaránt működőké-
pes.

II.6. tézis. Félig kalibrált kamera kalibrációja két lokális affin transzformáció-
ból [19].

A II.5-ös altézis speciális esete, amikor a kamera félig kalibrált, azaz ismerjük a
döféspontot, és csak a fókusztáv ismeretlen. Ekkor a kamera belső paraméterei kö-
zül csupán egy ismeretlen, így az alapvető mátrix összesen hat szabadságfokkal bír.
Ezért két lokális affin transzformáció elégséges a megoldáshoz, hiszen ezek össze-
sen hat egyenletet adnak. Ehhez javasoltunk egy algoritmust, amelyik a homogén
lineáris egyenletrendszerből származó nulltérben (magtérben) geometriai és optikai
törvényszerűségeket figyelembe véve megkeresi a feltételeknek legjobban megfelelő
megoldást.

II.7. tézis. Síkban mozgás optimális becslése kalibrált kamerák esetén egyetlen
lokális affin transzformációból [159].

Javasoltunk Baráth Dániellel doktorandusszal egy becslő algoritmust, amelyik sík-
ban mozgás és teljesen kalibrált kamerák esetén a síkban mozgás két szabadságfokát
képes megbecsülni. A két szabadságfok a függőleges elforgatás és a síkban elmozdu-
lás iránya. Az elmozdulásnak a nagyságát a térbeli látás törvényszerűségei miatt nem
lehet meghatározni, csak az irányára lehet becslést adni.

Az algoritmusunk egy algebrai hibát minimalizál, a pontmegfelelésekből egy, a
lokális affin transzformációból további kettő egyenletet lehet felírni, így összesen há-
rom egyenlet áll rendelkezésre a két szabadságfokra, ezért a feladat már egy affin
megfelelés teljes megléte esetén is túlhatározott. A lineáris egyenletrendszer megol-
dására legkisebb négyzetes értelemben optimális algoritmust javasolunk, amely tet-
szőleges számú affin megfelelés esetén működni képes. Az eljárás minimális 28 és a
túlhatározott eseteket egyaránt kezelni képes.

II.8. tézis. Síkban mozgás becslése félig kalibrált kamerák esetén egyetlen loká-
lis affin transzformációból [160].

A II. 7. altézishez nagyon hasonló algoritmust dolgoztunk ki Baráth Dániellel kö-
zösen arra az esetre, ha a síkban mozgás esetén ugyanazzal a félig kalibrált kamerával
veszünk fel két képet. Ekkor a két képen az egyetlen ismeretlen belső paraméter a

28 Minimális esetet akkor kaphatunk, ha a három egyenletből az egyiket elhagyjuk, például a
pontmegfeleléseket nem vesszük figyelembe, csak a két affin törvényszerűséget.
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fókusztávolság.
Megmutattuk, hogy az alapvető mátrixnak így három szabad paramétere van: a

közös fókusztávolság, a két kép közötti függőleges elforgatás és az eltolás iránya. Ja-
vasoltunk egy lineáris megoldót, amely egy lokális affin transzformációból képes ezt
a három paramétert megbecsülni. Az eljárás túlhatározott esetre is működik, amikor
egynél több transzformációból nyerünk információt, de az optimalitása a módszernek
ebben az esetben nem garantált.

II.9. tézis. Lokális affin transzformációk becslése egyenesekből [110].
Nghia Le Minh ELTE-s BSc hallgatómmal közös munkánkban azt mutattuk meg,

hogy a képeken egymásnak megfeleltetett egyenesek irányait felhasználva is ki le-
het nyerni az affin transzformációkat. Munkánkban megkülönböztettünk skálázott
és skálázatlan egyeneseket. Utóbbi esetében az egyenesek iránya adott csupán, ská-
lázott esetben a szakaszok hosszváltozatának lokális approximációja is ismert.

Ha az alapvető mátrix adott, akkor az eipoláris egyenesek normálvektoraira fel tu-
dunk írni egy skálázott összefüggést, ahogyan azt például a 24. összefüggésben már
meg is tettük, ezáltal egy inhomogén lineáris összefüggésünk van az affin transzfor-
mációra.

Ezeknek az affin transzformációknak a kinyeréséhez többféle algoritmust készítet-
tünk. A becslési módszereink a lineáris részét képesek meghatározni az affin transz-
formációnak, az eltolást a pozíciók adhatják meg. Ha a skála nem ismert, a négy affin
paraméterhez minden egyes ismeretlen skála egy becsülnivaló paramétert ad hozzá.
A lineáris egyenletek ebben az esetben homogének az affin transzformációra nézve.
Fontos feltétel, hogy legalább egy skálát ismerni kell, tehát egy inhomogén egyenletre
szükség van a teljes becsléshez.
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5. III. téziscsoport: Kötegelt behangolás újszerű alkal-
mazása nem hagyományos problémaosztályokra

Ez a fejezet egy újabb területtel ismerteti meg az Olvasót, amelynek a célja a három-
dimenziós rekonstrukcióban és kamera autókalibrációban alapvetőnek számító köte-
gelt behangolás (angolul: Budle Adjustment, BA) módszer felhasználása két olyan
célra, amellyel eddig ismereteim szerint nem foglalkozott senki sem.

5.1. Bevezetés

A kötegelt behangolás olyan problémaosztályok esetén alkalmazható, amikor nagy
mennyiségű adat viszonylag kevés paramétertől függ, és az adatok kétdimenziós mát-
rixba szervezhetőek. A 29. ábra mutat egy ilyen példát.

Eredeti verzióját sokképes rekonstrukcióra fejlesztették ki [167]. Amennyiben van
N darab kameránk és K darab pontunk, minden egyes kamerához minimum hat,
maximum tizenegy paramétert kell meghatároznunk. Vegyük az első esetet, ami ka-
librált kamerák esetén lehetséges, azaz amikor a belső paraméterek ismertek, és csak
a külső paramétereket kell becsülni: három forgatási és három eltolási paraméter
számítandó ebben az esetben. Az M darab térbeli pont értelemszerűen három sza-
bad paraméterrel, a három térbeli koordinátával (X, Y és Z) rendelkezik. Összesen
tehát 6N + 3M paraméter becslését jelenti a rekonstrukciós folyamat.

Ha minden pont minden képen látszik – ami csak elméletileg lehetséges, a gya-
korlati esetekben takarások is előfordulnak –, összesen 2N · M koordinátaértéket
tudunk leolvasni. A kettes szorzó onnan jön, hogy a képeken vízszintes és függőleges
koordinátákat egyaránt le tudunk olvasni.

Ha megszámoljuk az ismert koordinátákat és a becsült paramétereket, a feladat
megoldásához az szükséges, hogy ismert adatokból legalább annyi legyen, mint szá-
mítandó értékekből. Nagy kép- és pontszám esetén 2N · M >> (6N + 3M), azaz
ekkor a feladat jelentősen túlhatározott.

Ha felírunk valamilyen hibafüggvényt a rekonstrukcióra, az i-edig kép j-edik
pontja csak az i-edik kamera paramétereitől és a j-edik pont térbeli koordinátáitól
függ. Az összes többi kamera és pont nem befolyásolja a vetítési pont koordinátáit.
Ezért, ha a hibafüggvényt az ismeretlen paraméterek szerint deriváltjuk, a laza füg-
gőség miatt sok zérus értéket kapunk. Más szóval, a Jacobi-mátrix elég ritka lesz,
ahogyan azt a 29. ábra bal oldali képén látjuk három kamera és hat pont rekonstruk-
ciója esetén. Numerikus algoritmusok alkalmazása esetén a linearizált normálegyen-
let is ritka lesz, ugyanannak az ábrának a jobb oldali képe ezt a tényt mutatja meg.
A normálegyenletet invertálni kell a megoldáshoz. Általános esetben az invertálandó
mátrix mérete a paraméterek számával egyenlő. A normálegyenlet speciális formáján
jól látható, hogy a főátló mentén kisebb blokkok találhatóak. A teljes mátrix inver-
ziója a kisebb blokkok inverziójának segítségével megadható, ahogyan azt Laurakis
és Argyros [102] munkája nagyon szemléletesem elmagyarázza, a cikk elolvasát jó
szívvel ajánlom az érdeklődőknek.
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(a) A Jacobi-mátrix felépítése három kamerás és
hat pontos rekonstrukció esetében.
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(b) A bal oldali feladathoz tartozó normálegyen-
let.

29. ábra. Numerikus optimalizálás kötegelt behangolás segítségével. A nem nulla ele-
mek világoskékek az ábrán. Észrevehető, hogy a normálegyenletben a főátló mentén
kisebb blokkok találhatóak, ezek invertálása gyorsan és numerikus szempontból ponto-
san elvégezhető.

Ahogyan az ebből a dolgozatból is kiderül, kameraképek alapján lehetséges egy
tárgy háromdimenziós modelljét megalkotni.

A képalapú rekonstrukciós módszerek közös jellemzője az, hogy gyakran nem
képesek rekonstruálni a felszín nagyon finom részleteit, melyeket nevezhetünk ér-
dességnek. A textúra alkalmazása a modellre elfedheti az érdesség hiányát, hogy
bizonyos mértékig elfedheti a durvaságot, de változó megvilágítás esetén a részle-
tek hiánya nyilvánvalóvá válik. A számítógépes grafika [130] ezt a problémát úgy
oldja meg, hogy normálvektorokat rendelnek a felülethez, így megváltoztatva a fe-
lület eredeti irányultságát. Mivel a renderelés során a normálvektorokat az árnyalási
összefüggésekben is használják, a normálvektorok alkalmazása lehetővé teszi, hogy
a modell részletesebbnek tűnjön, mint amilyen valójában.

Léteznek azonban más rekonstrukciós technikák is:

– Az úgynevezett vizuális burok algoritmus [92] egy durva modellt hoz létre egy
képsorozatból. A képsorozatokon meghatározzák a tárgy kontúrjait, és ebből
készítenek egy térfogati (volumetrikus) modellt az úgynevezett térfaragás (an-
golul: Space Carving) eljárással [89]. Ezek a rekonstruált modellek sajnos elég
durvák. Pontosabb módszerek, mint a lézeres vagy strukturált fényszkenne-
lés [144] is alkalmazhatóak, feltéve, hogy a megvilágító eszközök rendelke-
zésre állnak és nagyon pontosan be vannak kalibrálva. Megjegyzendő, hogy
a textúra rekonstrukció csak az árnyékokból is lehetséges, ahogyan azt Yu és
munkatársai [185] bemutatják.

– Fotometrikus sztereó esetén laborkörülményeket alkalmazunk. Ideális esetben
a teljesen sötét szobában semmi sem látszik, ha nem helyezünk el mi magunk
fényforrásokat. Ha bekapcsolunk egy megvilágítást, a Lambert-törvény alapján
a fényforrás és a felületi (merőleges) irány meghatározza a tárgy színét a meg-
vizsgált helyeket. Fotometrikus sztereó esetén a feladat az intenzitásokból ki-
számolni a térbeli modellhez tartozó merőleges irányokat (normálvektorokat),
továbbá a fényforrások pozícióját és a megvilágítás erejét.
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Ha egy objektumról rögzített nézőpontból, de különböző fényviszonyok között
készítünk képeket, akkor a megfigyelt intenzitásértékek felhasználhatók a normális
irányok kiszámítására. Ezt a technikát fotometrikus sztereónak nevezik, és három év-
tizeddel ezelőtt Woodham [179, 180] publikálta az eljárás alapelveit. Azóta számos
tanulmány jelent meg ezen a területen, amelyek megoldásokat kínálnak a problé-
mára. A domináns szakirodalmi megoldások [179, 73, 75, 40, 120, 67] feltételezik,
hogy párhuzamos fényforrást alkalmaznak a megvilágításhoz.

A fotometriai sztereó-technika legújabb tanulmányai általában az árnyékok és a
fénypontok észlelésére összpontosítanak [68, 7]. Egy másik nagyon érdekes meg-
közelítés az úgynevezett színes fotometrikus sztereó [32, 20, 71, 68]: ha a jelene-
tet legalább három különböző színű fényforrás világítja meg, akkor a rekonstrukciót
egyetlen kép segítségével lehet elvégezni. Ennek eredményeképpen nem-merev (di-
namikus) objektum [66, 76] rekonstrukciója is lehetséges.

A fotometriai sztereó elsődleges alkalmazási területe a 3D rekonstrukció [180],
olyan látványos területekkel, mint például a ruhamodellezés [66]. Érdekesség, hogy
még orvosi képalkotásra [93] is lehet alkalmazni.

Ebben a tézisben feltételezzük, hogy a térbeli felület kezdeti becslése adott, és a
módszerünk célja a kezdeti geometria finomítása a normálértékek kiszámításával. Ez
a megközelítés hasonló a Nehab és mtsai. [120] illetve a Jankó Zsolt-féle módsze-
rekhez [75], de mi nem feltételezünk párhuzamos fényforrásokat, míg a klasszikus
fotometrikus sztereó algoritmusok ezt teszik. A párhuzamos fényforrásokkal történő
megvilágítás nagyon komoly hátránya, hogy a metrikus rekonstrukció nem érhető
el többértelműség [22] miatt. Ez a többértelműség akkor kerülhető el, ha külön-
böző megkötéseket és feltételezéseket alkalmazunk, mint pl. integrálható normáli-
sok [186, 68], vagy kalibrált fényforrások [189].

A munkánkban a Bundle Adjustment (BA) algoritmust [167] alkalmazzuk foto-
metrikus sztereóra. A BA algoritmus a jól ismert Levenberg-féle numerikus optima-
lizálás alkalmazása azokra a problémákra, ahol a Jakobi-mátrix speciális, meglehe-
tősen ritka. A módszert általában az ún. ’Structure from Motion’ problémák meg-
oldására [63] használják, erre fejlesztették ki az ezredforduló környékén. Ebben a
disszertációban igazolni fogjuk, hogy a kötegelt behangolás képes a fotometrikus sztereó
problémáját megoldani. Megjegyezzük, hogy ismert egy másik technika is, nevezete-
sen a legkisebb négyzetek váltakozása, amely mind a fotometrikus sztereó [77] és
a Structure from Motion [27, 91] esetében alkalmazható, mivel mindkét probléma
felírható a következő módon faktorizálással írható át, ha párhuzamos fényforrásokat
alkalmazunk. A mi esetünkben a fő újdonság, hogy az algoritmusunk segítségével a
pontszerű fényforrásokat is kezelni tudjuk.

Miután a BA numerikus algoritmus, kezdeti értékek szükségesek a numerikus el-
járás elindításához. Ezeket a kezdeti paraméterértékek mi Jacobs módszerével [73]
kapjuk meg. Ezután egy tetszőleges fényforrásmodell esetén a finomítja a felületi
normálisokat a fényforrás paramétereivel együtt.

Olyan tesztmintákkal foglalkozunk, amelyekben a felvett képek minden képpont-
ja érvényes, azaz a rekonstruálandó objektum egyik része sincsen (ön)árnyékolás
alatt. Ez a megállapítás nem teljesen igaz a valós tesztekre. A javasolt BA algorit-
mus azonban képes kezelni az árnyékokat és a fénypontokat, ha a megfelelő pixelek
fel vannak címkézve, így ezeket a paraméterek inicializálása során kell felismerni.
A Hernandez és mtsai. által kidolgozott algoritmust [67] használtuk az érvénytelen
pixeleket felismerésére. Az általunk használt BA implementáció [102] képes az ér-
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vénytelen értékeket adó pixelek kizárására is.
Nem a mi munkánk az első, amelyben a nem párhuzamos fénysugarakat felté-

telezzük [178], mi azonban nem kvadratikus optimalizálást használunk a a távo-
li fényforrások által megvilágított objektum rekonstruálására. Ismereteim szerint a
BA ilyetén használata újszerű ötlet. A pontszerű fényforrás alkalmazása igen komoly
előnnyel jár az irányítottal szemben: az utóbbinál létezik egy többértelműség [22].
Ha nincs a-priori információ a felszínről vagy a fényforrásokról, a normálvektorok
csak egy ismeretlen affin transzformáció erejéik számíthatóak ki. Pont fényforrás ese-
tén azonban lehetséges az egyértelmű metrikus rekonstrukció is.

5.2. A kötegelt behangolás alkalmazása fotometrikus sztereóra

Ebben a szakaszban bemutatom a fotometrikus sztereó alapelveit, majd a saját hoz-
zájárulásunkat ismertetem, melynek az eredménye egy újszerű algoritmus.

5.2.1. Fotometrikus sztereó.

Megközelítésünkhöz a következőket feltételezzük:

1. Egy kezdeti modellt adunk meg bemenetként. A cél az, hogy ezt a modellt
finomítsuk a normálisok kiszámításával.

2. A bemeneti képeket kalibrált kamerával készítjük ugyanarról a helyről (néző-
pontból).

3. Minden képen a tárgyat egyetlen fényforrás világítja meg. A fényforrás pozíciója
képenként változik.

A fotometrikus sztereó alapproblémájában két ismeretlen paraméterkészlet van.
Minden egyes kép esetében a fényforrás paramétereit a háromdimenziós ai vektor
írja le. A vektor hossza adja meg az intenzitás nagyságát, a vektor iránya a beérkező
fény irányát. A szintén háromdimenziós bp vektor a visszatükröződést meghatározó
paraméterek tartalmazza, ami alapesetben a normálvektor. Mivel a kameraparaméte-
rek ismertek és minden kép esetében azonosak, a tárgy vetülete által elfoglalt minden
egyes képpont megfelel egy látható 3D pontnak a tárgy felszínén, és ez a pixel-tárgy
megfeleltetés egy az egyhez reláció. Ezért a "pont" kifejezést használjuk mind ezekre
a felületi pontokra, mind pedig azok vetületeire. Az algoritmus elsődleges kimenetele
a felszíni normálvektorok lesznek.

A megvilágítási egyenlet az, amely meghatározza, hogy ezek a paraméterek ho-
gyan hozzák létre a p pont intenzitását, amelyet az i képen megfigyelhetünk:

I(i, p) = f(ai,bp). (52)

Az intenzitások I(i, p) értékei ismertek – a képek pixeleinek intenzitásai –, az f
függvényt az itt leírtak szerint határozzuk meg a fényforrásmodellel, a felületmodel-
lel és a fényforrásmodellel összhangban.

Ennek az egyenletnek a szerkezete lehetővé teszi, hogy a BA algoritmus [167]
segítségével egyidejűleg finomítsuk a paramétereket oly módon, hogy az egyenlet
két oldala közötti hiba minimális legyen.
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A kötegelt behangolásnak szüksége van a paraméterek kezdeti értékeire; ezeket
úgy kaptuk meg, hogy feltételeztük, hogy az objektum felülete lamberti29, a fényfor-
rások pedig irányítottak, mivel ebben az esetben a paraméterek analitikusan kiszá-
míthatók Jacobs-módszerének segítségével[73].

A megvilágítási egyenletnek megfelelően egy képpont intenzitása csak az adott
i-edik képhez tartozó ai irányvektortól, és a p-edik felület bp felületi paramétereitől
függ az intenzitás. Ez teljesen hasonló a ’Structure from Motion’ feladathoz, amikor
az f -edik képkockán az i-edik jellegzetes pont csak az f -edik kamera külső és belső
paramétereitől, és a rekonstruált pontfelhő p-edik pontjának térbeli koordinátáitól
függ. Így a BA algoritmus kicsi változtatásokkal felhasználható a fotometrikus sztereó
paramétereinek együttes optimalizálására.

A BA algoritmus a Levenberg-minimalizáláson alapul, amelyet mi az alábbiakban
röviden ismertetjük.

A fotometrikus BA célja a teljes intenzitáshiba minimalizálása. Az aktuális inten-
zitást az optimalizálandó paraméterek tekintetében az 52. egyenlet segítségével szá-
mítjuk ki minden egyes pixelre, a hibaértékek a számított és mért intenzitásai közötti
különbségből származik. Maga a teljes intenzitáshiba minden kép minden egyes pi-
xelének legkisebb négyzetes hibájával egyezik meg.

Megjegyzendő, hogy a hibafüggvénybe további hibatételek is beilleszthetők: a
fény és a felület paraméterei felhasználhatók ezekben a hibatételekben. Fontos, hogy
ezeket a paramétereket egymástól függetlenül kell használni. Például a kezdeti és a
kapott normálértékek közötti különbség büntethető.

5.2.2. Levenberg-Marquardt-féle hibacsökkentés

Adott egy f(x) vektor-vektor függvény és egy y célvektor, a feladat, hogy megtaláljuk
azt a x vektort, amely minimalizálja az ||y − f(x)|| hibát.

A Levenberg-féle optimalizálás [96, 108] a Gauss-Newton és a gradiens módsze-
rek keveréke. Egy iteratív algoritmus, amely minden egyes lépésben frissíti a para-
métereket a következő képlet szerint:

(JTJ+ µI)∆x = JT (y − f(x)), (53)

ahol J a Jakobi-mátrix, µ egy skalár, amely a súlyozást végzi a két komponens között.

5.2.3. A Levenberg-Marquardt algoritmus alkalmazása fotometrikus sztereóra

Fotometrikus sztereó esetén az 52. megvilágítási egyenletből származó f(ai,bp) for-
mula adja a hiba alapját. A nemlineáris optimalizációs algoritmusok alkalmazásának
nehézsége abban rejlik, hogy a JTJ+ µI egy olyan invertálandó mátrix, amelynek
dimenziói lineárisan nőnek a pixelek számával. A mi esetünkben, feltételezve 100 000
pontot (3 paraméter minden egyes ponthoz) és 10 képet (4 paraméterek minden
egyes pont fényforráshoz), a paraméterek száma 3 · 100 000+10 · 4 = 300 040. Ez adja
a mátrix méretét, amelyet minden egyes iterációban invertálni kell.

Ezt a problémát a kötegelt behangolás használatával lehet enyhíteni. Azáltal, hogy
szétválasztjuk a pont és a fényforrás paramétereit, az 53. normálegyenlet a követke-
zőképpen írható le:

29 A lamberti felülteket a köznyelv mattnak hívja. Azt a felületet nevezzük lambertinek, amelyik
a beérkező fény energiáját minden irányban ugyanolyan valószínűséggel veri vissza.
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[
U X
XT V

] [
∆s
∆m

]
= JT

[
ϵs
ϵm

]
, (54)

ahol ∆s és ∆m vektorok tartalmazzák a pontok és a fényforrások paramétereit, és
ϵs és ϵm pedig az y − f(x) hiba megfelelő komponense. Az U mátrix a fénypara-
méterek parciális deriváltakból áll, míg V tartalmazza a normálvektorokhoz tartozó
deriváltakat. A X mátrixban ezek a parciális deriváltak egymással szorozva vannak.

Ha a fenti egyenletet balról megszorozzuk a[
I −XV−1

0 I

]
mátrixszal, akkor az első blokkból a második együtthatómátrixot ki tudjuk nullázni.
Ekkor az egyenletrendszerből a paraméterek pontosítását a következőképpen fejez-
hetjük ki:

∆s = (U−XV−1XT )−1(JT ϵs −XV−1JT ϵm), (55)
∆m = V−1(JT ϵm −XT∆s). (56)

Az utóbbi formulák előnye, hogy a V és az (U − XV−1XT ) mátrixokat kell in-
vertálni, és ez gyorsabban elvégezhető az átalakítások után. A U mátrix mérete meg-
egyezik a fényforrás paramétereinek teljes számával, és a paraméterek közötti füg-
getlenség miatt V egy blokk-diagonális mátrix. Így példánkban a minimalizálás min-
den egyes iterációban N = 100 000 darabszámú, egyenként 3× 3 méretű kis blokkok
invertálását végzi el a V mátrixot tekintve. Ezen kívül szükséges még egyetlen 10·4 =
= 40 méretű mátrix invertálása, ami a korszerű numerikus algoritmusok segítségével
pontosan és meglehetősen gyorsan elvégezhető.

5.2.4. Alkalmazás pontszerű fényforrásra

A kötegelt behangolásnak megvan az a hatalmas előnye, hogy tetszőleges világítási
egyenletekhez, azaz különböző felület- és fényforrásmodellekhez könnyen adaptál-
ható a módszer.

Példaként itt van a megvilágítási egyenlet Lambert-féle felületre és pontra vonat-
kozóan fényforrás esetén:

I(i, p) = k
λ

λ+ |li − x|2
li − x

|li − x|
· bp, (57)

ahol a fényforrás paraméterei a k fénysűrűség, a fényforrás li háromdimenziós pozí-
ciója (együttesen adják a fényparaméter vektorát ai = [li1 li2 li2 li3 k]), és egy λ skalár
, amely a fény csillapításával függ össze30.

Egy pont leírható a háromdimenziós pozíciójával (jele: x vektor) és a bp normál-
vektorával. A normálvektor nem egységvektor, mert a diffúz fénytöréssel előskáláz-
tunk, azaz a skála azt határozza meg, hogy a fény hányadrészét sugározza vissza az
adott felületi pont. Megjegyzendő azonban, hogy a pozíciók nem hangolható paramé-
terek, hanem állandóak, előre adottak, azaz a kezdeti modell által meghatározottak.

30 Ez a modell összhangban van a pontszerű fény grafikus rendszerek fényforrásaihoz, mint pél-
dául Blender vagy POV-Ray (www.blender.org, www.povray.org).
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A λ paraméter értéket rögzítettnek tekintettük, így marad fényforrásonként négy, pi-
xelenként pedig három beállítandó szabad paraméter.

A U, V és X mátrixok kiszámítása az 57. összefüggés alapján összetett képleteket
eredményez. Az explicit jelölés helyett a mátrixok szimbolikus számításához szüksé-
ges MATLAB kódot a L függelékben mutatjuk be.

5.2.5. A paraméterek inicializálása

Mivel a BA algoritmus numerikusan finomít, az inicializálásához meg kell adnunk
egy durva becslést a fényforrások (ai) és a felületi pontok (bp) kezdeti értékeire.
Lamberti visszaverődést és irányított fényforrásokat feltételezve egy egyszerű RAN-
SAC [46] alapú robusztus módszert alkalmazunk a paraméterek kezdeti értékének
meghatározására, hasonlóan Hernandezék [67] és Jankó Zsolt módszereihez [75].
Az i-edik fényforrás irányát di-vel jelölöm, ez a ai paraméterezés speciális esete irá-
nyított fényforrásra.

Lambert koszinusztörvénye miatt felírhatjuk a világítási egyenletet: g(di,bp) =
= dT

i bp. Három megfelelő pontot kiválasztva és az 52. egyenletet felhasználva a
fény irányát a következőképpen lehet kiszámítani:

di = [bp1bp2bp3 ]
−T

 I(i, p1)
I(i, p2)
I(i, p3)

 . (58)

Ezzel tehát, irány-fényforrást feltételezve, kezdeti értéket tudunk a fény irányára ad-
ni.

Itt a három megfelelő pont olyan pozíciókat jelent, ahol a kezdeti bp vektorok
közel vannak a valós pozíciókhoz . A fentiek szerint feltételezzük, hogy van egy dur-
va kezdeti háromszögháló 31, és azt is feltételezzük, hogy ennek a hálónak van egy
olyan részhalmaza, ahol a pont térbeli koordinátái közel vannak a valós paraméte-
rekhez. Vagyis, ha ebből a részhalmazból három tetszőleges bp-t választunk, az 58.
egyenlet jó közelítést fog adni a fényforrás irányára. Miután ez az érték a numerikus
finomításnak csupán a kezdeti értéke lesz, kisebb hibák nagy valószínűséggel nem
befolyásolják az optimalizáció végeredményét.

Adott di és bp vektorok esetén az ai = [li1 li2 li3 k] vektor becslését úgy kaphatjuk
meg, hogy a li fénypozíciós vektort a di irányába mozgatjuk, és a fénysugárzás k pa-
raméterét úgy állítjuk be, hogy az a lehető legjobban illeszkedjen az I(i, p) megfigyelt
pixelintenzitásokhoz, azaz az 57. összefüggés minél kisebb hibát adjon.

Egy RANSAC-alapú [46] módszert használunk arra, hogy ilyen ponthármasokat
kapjunk. A módszer azon az elváráson alapul, hogy rossz választás esetén sok kiugró
érték lesz.

A módszer a következőképpen működik:

1. Véletlenszerűen kiválasztunk a háromszöghálóból három pontot.

2. Az 58. egyenlet alapján kiszámítjuk az irányított fényforrás modelljét.

31 Angolul a háromszöghálót mesh-nek hívják, ami háromszögelt pontfelhőt jelent, ahogyan azt a
számítógépes grafikában [90] alkalmazzák
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3. Megszámoljuk, hány pont támogatja az előző lépésben kapott fényirányt. Azt
mondjuk, hogy egy p pont akkor támogatja a modellt, ha

∀i :
∣∣I(i, p)− dT

i bp

∣∣ < ϵ, (59)

ahol ϵ egy kicsi, empirikusan beállított küszöbérték.

4. Az 1–3 lépéseket ismételjük.

5. Azt a fényirányt választjuk, amelyet a legtöbb pont támogat.

Ez a módszer alkalmas arra, hogy durva becslést adjon a fényforrás irányára. A
fényforrások kezdeti pozícióit is meg kell határozni. Erre a következők módszert ja-
vasoljuk: A tárgy középpontjából (súlypontjából) elindulunk, és egy viszonylag távoli
pontot választunk kezdeti középpontnak, hiszen minél messszebb van egy pontfény-
forrás, annál párhuzamosabbak a fénysugarai. Mi úgy választottuk meg ezt a pozíci-
ót, hogy a tárgypontok szórását kiszámítottuk a háromszöghálóból a középponthoz
viszonyítva, és a fényforrás távolsága ennek a szórásnak a kétszerese.

Ha a fényforrások helyei és a felszíni pontok háromdimenziós koordinátái ismer-
tek, a lámpák negyedik paramétere, a sugárzása, triviálisan becsülhető az 57. egyen-
letből, hiszen a feladat lineáris a bp normálvektorra nézve.

5.2.6. Teszteredmények

A javasolt módszert szintetikus (renderelt) és valós képen is teszteltük. A fényfor-
rásokat mind a szintetikus, mind a valós tesztekben véletlenszerűen helyeztük el a
tárgy körül. A fények minden egyes pozícióból az egész tárgyat megvilágítják.

Szintetikus tesztek.

Szintetikus tesztek alatt itt számítógépes grafika által elkészített, azaz mestersé-
gesen renderelt képek feldolgozását értjük.

’Dragon’ képsorozat. Az első (és egyben a harmadik) tesztsorozat a Stanford
3D Scanning Repositoryból32 származik. A letöltött háromszögelt 3D hálót importál-
tuk Blender-be, és több képet rendereltünk mozgó pontfényforrással. A kiszámított
szintetikus képeket a 30. ábra felső sorában láthatjuk.

Részletesen megvizsgáltuk a "Dragon" sorozatot. A letöltött háló nagyon részletes,
ezért a kiszámított normálvektorok pontosak lesznek, ezeket használjuk alapigazság-
nak. A normáltérképet a javasolt módszerrel rekonstruáltuk. A rekonstruált normál-
térképet és annak három komponensét a 30. ábrán lehet megtekinteni. Összehason-
lítottuk az eredeti (bemeneti) képeket a szimulált képekkel. A pixelintenzitások RMS
(Root Mean Square) hibája 0,18 volt. Ezt a tesztet többször megismételtük, és mindig
ugyanazt az értéket kaptuk. Meg kell jegyeznünk, hogy az inicializáláshoz használt
RANSAC [46] robusztus becslés nem determinisztikus, ezért előfordulhatna, hogy
nem ugyanoda konvergál a módszer, de ilyet nem tapasztaltunk. A hiba konvergen-
ciáját tíz különböző futtatásra a 31. ábra mutatja be.

A rekonstrukció és az alapigazság normálvektorait is összehasonlítottuk, ahogyan
az a jobb oldalon látható a 30. ábra alsó sorában. A hiba a vektorok közötti euklideszi
különbség a térben. A normálvektorok hibájának RMS értéke 0.05 volt. Ez a hiba a
paraméterek inicializálása után még 0.13 volt. Mindezek azt mutatják, hogy a javasolt
fotometrikus BA algoritmus jelentősen javítja a rekonstrukció minőségét.
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30. ábra. ’Dragon’ képsorozat. Felül: Három példakép a kilenc renderelt képből, a
kezdeti normálkép, utolsóként pedig az alapigazság normálkép. Alul: A rekonstruált
normáltérkép, annak vörös, zöld és kék csatornája, végül pedig a normálhiba.
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31. ábra. Az intenzitáshiba csökkenése az iterációk számának függvényében tíz
különböző tesztesetre.

’Buddha’ képsorozat. A harmadik szintetizált példa a "Buddha" szekvenciával
dolgozik. A bemeneti képek és a rekonstruált normáltérkép a 32. ábrán látható. A BA
a normál térkép hibáját 0.09-ről 0.06-ra javítja az iterációk során.

Kvantitatív összehasonlítás.

Módszerünket Hernandez és mtsai. [67] módszerével hasonlítottuk össze szinte-
tikus adatokon. Az összes szintetikus tesztsorozat Blenderrel generáltuk. Ezután a
képeket mind a javasolt, mind a rivális módszerrel feldolgoztuk. (A rivális módszert
mi is implementáltuk, mivel annak nem találtuk meg a közzétett változatát.)

Az alapigazság normálvektorokat a Blenderből kinyertük, és összehasonlítottuk
a rekonstruált vektorokkal. A hibavektor az alapigazság és a rekonstruált vektorok
közötti különbség. A rekonstrukció minőségét a hibavektorok normájának négyzetes
középértéke (RMS) határozza meg.

A kapott RMS hibák az 5. táblázatban szerepelnek. Egyértelműen kijelenthető,
hogy a javasolt módszer lényegesen pontosabb, mint a a rivális [67] mindhárom
szintetikus tesztesetnél.

Ezen túlmenően megvizsgáltuk az irányított és a pontszerű fényforrásokkal vég-
zett rekonstrukciók közötti különbséget is a "Dragon" szekvencia esetében. A teszt-
képeket irányított fényforrással generáltuk Blenderben. Több képet rendereltünk,
a képek között a fényforrások irányát változtattuk meg. Ezután a normáltérképet
a paraméterek inicializálására javasolt RANSAC-alapú módszerrel rekonstruáltuk,
amelyet az 5.2.5. fejezetben ismertettünk. A kapott normál térképvektorok RMS hi-

32 http://graphics.stanford.edu/data/3Dscanrep/
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32. ábra. ’Buddha’ képsorozat. Felül: Három példakép a kilenc renderelt képből, a
kezdeti normálkép, utolsóként pedig az alapigazság normálkép. Alul: A rekonstruált
normáltérkép, annak vörös, zöld és kék csatornája, végül pedig a normálhiba.

bája 0.16 volt, ami jelentősen nagyobb, mint a pontfényforrással kapott 0.12 hiba.
Ez az eredmény megerősít bennünket abban a hitben, hogy pontosabb normáltérkép-
helyreállítás lehetséges, ha a rekonstruálandó objektumot irányított fényforrás helyett
pontszerű fényforrással világítjuk meg.

5. táblázat. A rekonstrukció hibájának RMS értéke szintetikus teszt esetén.

Tesztsorozat neve Hernandez és mtsai. [67] Javasolt eljárás
Logo 0.169 0.043

Dragon 0.129 0.049
Buddha 0.087 0.059

Valós tesztek.

’BME-logo’. Az első teszt során Blender által generált képeket használtuk. Az
objektum egy kis dombornyomott fémlap, amely jó közelítésel síknak tekinthető. A
normálkép felületét szerettük volna az algoritmusunkkal megkapni.

A rekonstrukció végrehajtási ideje 1 perc 43 másodperc volt 33. A bemeneti ké-
peket és a rekonstruált normáltérképet a 33. ábrán láthatjuk. Itt a normáltérképet –
ahogyan az a grafikában általánosan szokásos – RGB képként ábrázoljuk: a normál-
vektor (255 ·v1,255 ·v2,255 ·v3) színkóddal lett rajzolva. Például egy tisztán piros pixelt
a [1 0 0]T vektorral kódoljuk.

Helyhiány miatt itt további valós teszteket nem tudok közölni, de az N függelék-
ben két további tárgy rekonstrukcióját meg lehet tekinteni.

33 Ezek a vizsgálatok 2010-ben készültek, akkori hardvert használva.
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33. ábra. Felső sor: 8-ból 3 renderelt kép a "BME logo" szekvenciából, a kezdeti
normáltérkép és az alapnormálok. Alsó sor: Rekonstruált normáltérkép, annak R,
G, B komponensei és a normáltérkép hibaképe.

5.3. Irányított pontfelhő térbeli rekonstrukciója

Ebben a szakaszban megmutatom egy másik alkalmazását a kötegelt behangolásnak:
a módszert az affin transzformációk feldolgozására is fel lehet használni.

Ahogy azt már fentebb taglaltam, az eredeti kötegelt behangolást [167] térbeli
pontfelhők rekonstrukciójára fejlesztették ki. A 4. fejezetben megmutattam, hogyan
lehet az affin transzformációk segítségével felületi normálvektorokat rekonstruálni,
és így – a háromszögeléssel [61] kiegészítve –, irányított pontfelhőket lehet kapni.

Egy affin transzformációt két kép megadott kis részlete között lehet értelmez-
ni. A kötegelt behangolás során egy mért érték egy térbeli ponttól és egy kamera
paraméterkészletétől függ. Esetünkben a mért affin transzformáció két kamera pa-
ramétereitől is függ, ahogyan azt a 22. összefüggésben korábban megismerhettük.
Ha Aij jelöli egy adott felületdarabka i-edik és j-edik képre vetített mintái között a
transzformációt, akkor ezt fel lehet bontani az alábbi módon:

Aij = AjA
−1
i ,

ahol Ak a térbeli felületdarabka és a k-adik kép közötti transzformáció. Ekkor az így
felbontott Ak affin transzformáció már csak a térbeli transzformációtól függ. Így a
kötegelt behangolás alapelve alkalmazható.

Input
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Bundle
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Yes
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34. ábra. Rekonstrukciós csővezeték kötegelt behangolás alkalmazásával.

Az általunk javasolt rekonstrukciós csővezeték a 34. ábrán látható. A csővezeték
bal oldalán látható a sokképes alaprekonstrukció, amely sok sztereó rekonstrukciót
tartalmaz. Ezek a korábban ismertetett módon készítenek irányított pontfelhőt, há-
romszögelésen (triangulation) és felületi normálvektorbecslésen keresztül.

A már felbontott affin transzformációkkal és a vetületi pontokkal a javasolt köte-
gelt behangolás (bundle adjustment) algoritmust futtattuk. A kapott eredményekre

76

               hajder_274_24



még egy kiugró érték szűrést (outlier removal) is alkalmazunk, amelyek a durva becs-
léseket – például ha hátulról látszódik egy felület –, kiszűrik.

Helyhiány miatt a részleteket a disszertációban nem tudom közölni, az eredeti
munkában [161] további fontos részletekkel ismerkedhet meg az Olvasó.

35. ábra. Rekonstrukciós eredmények a felületi pontok és normálisok mennyiségi össze-
hasonlításához. Fent: Egy példa a bemeneti képből. Középen: A javasolt csővezeték által
visszaadott rekonstruált pontfelhő. Alul: Ugyanezek a modellek kék vonalmetszetekkel
megjelenített felületi normálvektorokkal.

36. ábra. Rekonstruált gömb (balra) és a henger két nézete (középen és jobbra). A he-
lyesnek címkézett rekonstruált pontokat, a kiugró értékeket és a beillesztett modelleket
piros, szürke, illetve zöld szín jelöli. A henger illesztése esetén a kék szín a RANSAC [46]
által kiszámított kezdeti modellt jelöli. A kiugró értékek a RANSAC minimális modelljé-
nek felelnek meg.

5.3.1. Tesztelési eredmények

Noha az eredeti munkánkban [161] kvantitatív kiértékelések is szerepelnek, terje-
delmi korlátok miatt a disszertációban csak a jóval látványosabb valós eredmények
közül ismeretetek néhányat. A 35. ábrán azt láthatjuk, hogy egyszerű geometriai
primitívek (sík, gömb, henger) felvételeiből hogyan lehet a felületi pontokat és a
normálvektorokat rekonstruálni. A 36. ábrán az eredményül kapott irányított pont-
felhőkre felületeket is illesztettünk, hogy a kapott térbeli felületi pontok minőségét is
ábrázolni tudjuk.

Egy másik alkalmazási terület síkfelületek rekonstrukciója. Az ember alkotta vi-
lágban sok ilyen található, itt épületfalak segítségével mutatom be a rekonstrukciós
csővezeték eredményét. A 37. ábrán tekinthetőek meg épületek térbeli rekonstruk-
ciói. A felületeket a jobb kinézet kedvéért textúrával is elláttuk.
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37. ábra. Épületrekonstrukciós példa. Balra a kiválasztott felületdarabok láthatóak,
mellettük a rekonstruált pontok és normálvektorok a képre vetítve. A jobb oldali képeken
két különböző nézetből láthatóak a rekonstruált térbeli felületek.

5.4. Összefoglalás

A harmadik téziscsoport a háromdimenziós látásban jól ismert kötegelt behangolás
algoritmus alkalmazásával foglalkozik. Kollégáimmal közösen megmutattuk, hogy
ezt a klasszikusnak nevezhető módszert más problémaosztályokra is sikeresen lehet
alkalmazni.

Első újításként a fotometrikus sztereó elnevezésű problémára ismertettem egy új
módszert, ahol a cél – laborkörülmények között készült képekből – a felületi normál-
vektorok és a megvilágítás paramétereinek meghatározása. Az eredeti eljárás faktori-
zációs algoritmus segítségével működik, azonban csak irányfényforrások alkalmazá-
sa esetén alkalmazhatóak, hiszen a fényforrás és a kameraparaméterek akkor lineáris
összefüggésben – két vektor skalárszorzata segítségével – határozzák meg a képeken
az intenzitások nagyságát. A saját eljárásunk a kötegelt behangolással összhangban
numerikus eljárással működnek, ezért nemlineáris összefüggéseket is képes kezelni a
fény- és a felületi paraméterek között.

Tudomásom szerint szintén szakirodalmi újításnak számít a fejezet második ré-
szében taglalt eljárás, amely az eredeti kötegelt behangoláshoz hasonlóan három-
dimenziós rekonstrukciókkal foglalkozik, azonban eredményképpen felületi normál-
vektorokkal kiterjesztett pontfelhőt, azaz irányított pontfelhőt eredményez. Az is-
mert (mért) értékekhez a jellegzetes pontok pozícióin túl a képek közötti lokális affin
transzformációkat is felhasználja a kifejlesztett új eljárás.

A két ismertetett újszerű módszer alapján az alábbi két tézist fogalmazom meg:

III.1. tézis. Kötegelt behangolás alkalmazása fotometrikus sztereóra [48].
Fodor Bálint doktorandusz hallgatómmal és Jankó Zsolt SZTAKI-s kollégámmal

közösen sikerült egy újszerű eljárást készíteni kötegelt behangolás alkalmazásával,
amely a fotometrikus sztereó problémát oldja meg pontszerű fényforrás esetén. Tet-
szőleges számú fényforrást alkalmazni tudunk, a bemenet egy képsorozat, ahol a
kamera helyét a rekonstruálandó tárgyhoz képest nem változtatjuk meg. Minden
megvilágítás egy képet eredményez a sorozatban. A módszer laboratóriumi körül-
ményeket igényel abból a szempontból, hogy külső megvilágításból nem szűrődhet
be fény. Minden felvételnél egyetlen megvilágítás engedélyezett.

A numerikus optimalizációnál a kezdeti paraméterek meghatározásához párhuza-
mos fényforrás alkalmazását javasoljuk. A rekonstrukció felírható paraméter-minimalizálásként,
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ahol az optimalizálandó paraméterek a fények és a felületi normálvektorok. A köte-
gelt behangolás alkalmazásával tetszőleges fényforrás alkalmazható, mi pontszerű
fényforrás feltételezésével mutattuk meg a módszer létjogosultságát.

III.2. tézis.Kötegelt behangolás alkalmazása irányított pontok rekonstrukciójá-
ra, affin transzformációk alkalmazásával [161].

Eichhardt Iván kollégámmal, kutatócsoportunk tagjával közösen megmutattuk
2017-ben, hogy a hagyományos kötegelt behangolás algoritmus kiegészíthető az af-
fin transzformációkkal, ezért Structure from Motion (SfM) eljárások esetén pontos
rekonstrukciós eredmény kapható numerikus optimalizálással annak ellenére, hogy
a finomítandó paraméterek száma igen nagy. A hagyományos pontalapú rekonstruk-
cióhoz képest minden térbeli pont kiegészíthető a felületi normálvektorral is. A nor-
málvektornak a nagysága nem tartalmaz érdemi információt, csak az iránya, ezért a
térbeli normálvektor két további paramétert jelent, azaz az irányított pont összesen
öt paraméterrel írható le. Így a becslés kiegészül pontonként további ismeretlenekkel,
ugyanakkor az egyes képmintákhoz tartozó affin transzformációkat a képekből meg
lehet határozni, azaz a képeken a 2D koordinátákon túl az affin transzformációk is
megjelennek ismert adatként.
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6. IV. téziscsoport: Új módszerek LiDAR mérőeszközök
és perspektív kamerák kalibrációjára

Az utolsó kutatási terület, melyet jelenleg is nagy intenzitással művelek/művelünk,
különböző modalitású szenzorok közös kalibrációja. Az elmúlt években LiDAR leta-
pogató eszközök és digitális kamerák összekalibrálására koncentráltunk, tudományos
eredményeket is elértünk, sőt, a hivatkozásaim komoly része is erről a területről szár-
mazik.

6.1. Szakirodalmi áttekintés

Napjainkban egyre fontosabbá válik a környezetünkből minél több és pontosabb in-
formáció kinyerése. Ez különösen az autonóm autók és robotok esetében jelentős
feladat, amelyeknek emberi beavatkozás nélkül kell irányítaniuk magukat. A 3D gépi
érzékelés többféleképpen is megvalósítható, például kamerák, mikrofonok, radarok,
szkennerek segítségével, hogy csak néhány lehetőséget említsek.

Mostanában az egyik igen kedvelt technológia a LiDAR, amely a fénysugarak által
mért távolságok alapján egy ritkás pontfelhő kinyerésével képes felmérni a környeze-
tünket. A 3D LiDAR technológia fő előnye az aktív megvilágítás, amely a környezeti
fénytől függetlenül működik. Tetszőleges fényviszonyok között használható, és az ér-
zékelők nagy távolságból is képesek pontosan letapogatni a háromdimenziós világot.
Korlátja a technológiának a felbontás, még a dolgozat megírásakor legkorszerűbb-
nek számító eszköz is maximum 256 sugárral rendelkezik, és ez a felbontás már 100
méteres távolság esetén is nagyon kevés pontot eredményez egy ott lévő objektum
esetében. A LiDAR mérőeszközök meglehetősen drágák, egyetemünkön mi 16 suga-
ras Velodyne VLP-16 eszközöket használunk, már ezeknek az ára is millió forint felett
van.

Ugyanakkor sok előnye is van ennek a mérési technológiának. Az RGB-kamerák
nagy felbontású, színes képeket készítenek, és a fényviszonyokkal is meg kell birkóz-
niuk. Különösen éjszaka jelentkeznek problémák, de nappali fényben a takarás és az
árnyék is gondot okozhat a képfeldolgozásban. LiDAR alkalmazása esetén a fényvi-
szonyok nem okoznak akkora gondot, bár az esős időben a fény tükröződése a nedves
felületek mérési hatékonyságát jelentősen befolyásolja.

Szerencsére a LiDAR-érzékelők legtöbb hátránya a kamerákkal kompenzálható,
és fordítva, így a 3D LiDAR-okat és a kamerákat gyakran együtt használják az ob-
jektumok észlelésére [30, 132, 133], a jelenetek háromdimenziós rekonstrukciójá-
ra [111, 155, 187] vagy éppen navigációs feladatok megoldására [112].

A 3D-s látás segítségével a pontfelhőket sűrűbbé lehet tenni, azonban két külön-
böző modalitással nyert különálló pontfelhő nagyon pontos regisztrációja komoly ki-
hívást jelent. A szenzorok együttműködéséhez szükség van a külső kalibrációra, ami
azt jelenti, hogy a relatív helyzetüket (eltolás és orientáció/forgatás) ismerni kell.
Létezik néhány illesztő algoritmus, de ezek pontossága nem kielégítő.

Robotokra és autókra rögzítés esetében az eszközök helye és tájolása nem változik
az idő múlásával. Ezért elég egyszer meghatározni az elhelyezkedésüket, azaz elég
egyszer bekalibrálni az eszközöket.

A kamera-LiDAR érzékelőpár kalibrálására számos módszert javasoltak. A korai
munkák a 2D LiDAR eszközökre koncentrálnak, ahogyan az például Zhang és Pless
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dolgozatában [188] elolvasható. Azóta a 3D LiDAR-ok kalibrálására is sok energiát
fordítottak a kutatók. A módszerek listája négy csoportra osztható:

1. Jónéhány módszer [53, 126] síkbeli sakktáblákat használ.

2. Más algoritmusok [129, 172] egyéb síkbeli felületek különböző formáit alkal-
mazzák.

3. Az ipar gyakran használ gömb alakú céltárgyakat a különböző modalitású ér-
zékelők kalibrálásához [143, 83]. Ezeket akár optikai kutatásokhoz [181, 100]
is hasznosítani lehet.

4. Létrehoztak olyan eljárásokat [50, 127] is, amelyek egyáltalán nem használnak
kalibrációs objektumokat. Azonban ezeknek a pontossága messze elmarad a
kívánt szinttől, ezért itt nem foglalkozunk velük.

A síklemez alapú módszerek fő problémája, hogy a LiDAR pontfelhőben nehéz
az élek pontos detektálása. Különösen, ha alacsony felbontású eszközöket használ-
nak, például a nagyon népszerű Velodyne VLP-16-ot 34, melyet mi magunk is hasz-
nálunk, ás amely csak 16-os függőleges lézersugarakkal rendelkezik. További problé-
mák merülnek fel, ha hagyományos sakktáblamintákat használnak síkbeli táblákon.
Ez a minta a fekete és fehér színei miatt erősen rontja a LiDAR pontfelhők minősé-
gét [138, 129]. A legtöbb esetben a digitális kamerákat előzetesen kalibrálni kell,
vagyis a digitális kamerák belső paraméterei ismertek.

Rodruguez és mtsai. [138] tanulmányukban egy fekete kör alapú síkot (táblát)
használnak a sakktáblaminták okozta nagy zaj elkerülése érdekében. Algoritmusuk
a kör középpontjának háromdimenziós koordinátáit és a sík normálvektorát keresi.
A kalibrációs objektumnak legalább hat pozíciójára van szükség, a LiDAR-kamera
merev transzformáció kezdeti becslését a jól ismert Levenberg-Marquardt [96, 108]
(LM) algoritmussal finomítják.

Alismail munkatársaival közzétett [6] egy automatikus kalibrációs módszert, amely
síkbeli kalibrációs objektumot használ. Egy fekete kör alakú terület található rajta, és
ennek a középpontja meg van jelölve. A kör középpontját és normálisát egyetlen
nézeti képből számítják ki, és ők is a Random Sample Consensus [46] (RANSAC)
módszert alkalmazzák a síkok robusztus kinyerésére. Végül az ICP 35-szerű algorit-
must futtatják, de pont-sík távolság alkalmazásával[29]. A külső paraméterekre a
megoldást nemlineáris optimalizálással, a Levenberg-Marquardt [96, 108] numeri-
kus minimalizálás segítségével kapják meg.

A Park és munkatársai által bevezetett [129] módszer egy fehér, homogén, három-
szög vagy rombusz alakú sík táblát használ a kalibráláshoz. Több képet kell készíteni
a tábláról több pozícióból, legalább három táblát kell egyszerre használni. Algoritmu-
suk hátránya, hogy a síkbeli tábla térbeli koordinátáit becsléssel, nem pedig méréssel
határozzák meg. Ez a tény befolyásolja a kalibráció pontosságát.

Gongék [55] 2013-ban közzétettek egy módszert, amelynél a kalibráláshoz leg-
alább két szkennelésre van szüksége ugyanarról a háromszög tárgyról, amelyet mind-
két műszerrel mértek. Ez lényegesen több feldolgozandó adatot eredményez. Az ő
módszerüknek 20 másodpercbe telik a kalibrálás kilenc megfigyelés felhasználásával.

34 Manapság Velodyne Puch néven hivatkoznak rá.
35 ICP: Iterative Closest Point
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Módszerük komoly hátránya, hogy ilyen objektum előállítása nem egyszerű. Ráadá-
sul a kalibrálás sok emberi beavatkozást igényel, a háromszögpontok szétválasztását
és a kapcsolódó síkok kiválasztását a képeken kézzel kell elvégezni.

A Velas és mtsai. által [172] javasolt módszer egy szokatlan kalibrációs objektu-
mot használ. Fehér hátteret és egy sík tárgyat feltételeznek, amely négy kör alakú
lyukat tartalmaz. Módszerük Levison és Thrun [97] munkáján alapul. A lyukakat
mind a 3D LiDAR pontfelhőben, mind a felvett képen automatikusan detektálják. Ezt
a módszert azonban nem sikerült reprodukálnunk a Velodyne HDL-16 LiDAR-unkkal,
mivel ehhez a helyes működéshez jóval sűrűbb pontfelhőre van szükség.

Geiger és alkotói csapata [53], akik a nagy sikerű KITTI adatbázist [52] készítet-
ték, bemutattak egy módszert a LiDAR-kamera páros kalibrálására, amely csak egy
LiDAR mérést és egyetlen kamera képet veszi igénybe. A módszer teljesen automati-
kus, azonban a kalibráláshoz több sakktáblára és legalább két kamerára van szükség.

A disszertációban megmutatom, hogy az elmúlt években munkatársaimmal mi-
lyen eredményeket értünk el. Három eljárást ismertetek:

– Egy általános kalibrációs eljárást, amely dobozokat alkalmaz kalibrációs tárgy-
ként.

– Egy másik, szintén általános eljárást, ahol egy szabályos gömb alakú objektum
segíti a kalibrációt.

– Sakktábla segítségével egy speciális módszert is bemutatok, ahol az egyedi rög-
zítés miatt a szabadságfokok száma alacsonyabb.

6.2. LiDAR és kamera kalibrációja dobozok segítségével

Mint a bevezetőben említettem, módszereink célja a kamera-LiDAR rendszer külső
paramétereinek pontos meghatározása, szaknyelven kalibrálása. Ennek a célnak az
eléréséhez közönséges dobozokat választottunk. Ezeknek a dobozoknak a fő előnye,
hogy nincsen szükség rendkívüli nyomtatásra vagy gyártásra. Dobozokat másrészről
azért használunk, mert oldalaik egymásra merőlegesek, így e síkok metszéspontjai
pontosan kiszámíthatók a kis felbontású LiDAR-ral is megszerzett pontfelhőből.

A síkbeli kalibrációs objektumokat használó más módszereket erősen befolyásolja
a síkszélek pontatlan mérése. A mi módszerünk csak a pontok helyét használja, és
nem vesz figyelembe más információt, például az intenzitást, így bármilyen típusú
háromdimenziós LiDAR letapogató eszközzel használható.

82

               hajder_274_24



(a) Kép a három dobozról, amelyek a szen-
zor előtt helyezkednek el.

(b) A jelenet háromdimenziós, színezett
pontfelhője.

38. ábra. Mérés három doboz segítségével. A jelenetet egy autóra rögzített Velodyne
HDL-64-es Lidar vette fel. A pontfelhőt a kamera segítségével színeztük ki: miután a
két eszközt egymáshoz kalibráltuk, a LiDAR pontjait a kamerákra tudtuk vetíteni, és a
színértéket a pixelekből ki tudtuk nyerni.

A kalibrációs folyamatot egyetlen kalibrációs objektumra mutatjuk be, azonban a
módszer könnyen kiterjeszthető tetszőleges számú doboz használatára. Ez az auto-
nóm vezetésnél gyakori eset, amikor a kamerák és LiDAR-ok körgyűrűs szerkezetben
vannak elhelyezve, így néhányuk látótartományának nincs metszete . Mivel a mód-
szer a belső paramétereket használja, a kalibrációs doboz elhelyezése szinte tetsző-
leges, a kép torzulása nincs hatással a kalibrációra. Az egyetlen követelmény, hogy
a kalibrációs doboz három oldalának jól láthatónak kell lennie a pontfelhőben és a
képen is.
A módszer bemenetei a következők:

1. pontfelhő(k), amelye(ke)t a LiDAR eszköz tapogatott le;

2. kameránként egy kép;

3. a kamerák belső paraméterei és

4. a doboz(ok) mérete(i).

6.2.1. Összefüggő pontok klaszterezése

A kalibrációs algoritmusunk alapötlete az, hogy ha a kalibrációs doboz hét látható
sarka – három látható sík metszéspontja mentén – ismert a térben, és e sarkok vetü-
letei is ismertek a képen, akkor a probléma PnP [95] problémára36 egyszerűsödik. Az
első cél tehát ezeknek a pontoknak a megtalálása, pontosabban becslése a pontfelhő-
ben.

A módszerünk első lépéseként ki kell vágni a kalibrációs doboz környéki területet.
A vágás kézzel történik, nem kell nagyon pontosnak lennie. Amint azt később bemu-
tatjuk, a kézi kijelölés után az algoritmus automatikusan el tudja különíteni a doboz
oldalait az erre a területre eső egyéb objektumoktól. Ezután az algoritmus síkokat
keres a pontfelhőben. A területen belül található pontok alacsony száma miatt egy
egyszerű szekvenciális RANSAC [49] alkalmazható. A RANSAC minden egyes iterá-
cióban – az euklideszi távolság alapján – kiválasztja azt a síkot, amelyikhez a legtöbb
pont tartozik. Ezután a kalibrációs doboz látható oldalait detektálja. Azokat a síkokat

36 PnP: Perspective n-point Problem.
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kell kiválasztani, amelyek a leginkább merőlegesek egymásra. Ehhez bevezetjük az
alábbi hibát, ennek lehetséges minimumát kell meghatározni:

E(n1,n2,n3) = |n1
Tn2|+ |n1

Tn3|+ |n2
Tn3|, (60)

ahol nk a k-adik sík normálvektora (k ∈ {1,2,3}). Mivel a pontfelhőben a síkok
száma alacsony, így a kimerítő keresés a síkjelöltek között nem igényel sok számítási
időt. Ennek a lépésnek az eredménye látható a 39. ábra bal oldali képén, ahol a
dobozt egy székre helyeztük, és a sugáron kívül eső pontokat kizártuk. A szekvenciális
RANSAC algoritmus [49] öt különböző síkot talál, majd a doboz három oldalaként a
piros, a zöld és a sárga síkot választotta ki.

39. ábra. Bal oldal: Szekvenciális RANSAC által megtalált síkok. Jobb oldal: a zöld
pontok a dobozmodellhez tartoznak.

6.2.2. Robusztikfikáció: kiugró értékek eltávolítása

A javasolt algoritmus következő lépése a kiugró értékek eltávolítása. Fontos ez a rész-
feladat, mivel a következő lépésben az illesztett síkokat az euklideszi távolságok alap-
ján finomítjuk, és a kiugró értékek rossz illeszkedést eredményezhetnek. A LiDAR
pontfelhőt erősen befolyásolhatja a zaj, például a textúra okozta távolság-tükröződés
torzítása, ahogyan azt Park és munkatársai is megemlítik [129]. A kiugró pontokat –
amelyek a kalibrációs dobozba tartoznak, de erős zajhatás alatt állnak –, kizárjuk a
további számításokból. Az előző lépésben kapott síkok pontjait L1, L2 és L3 néven
jegyezzük meg, a sorrend nem számít.

Az algoritmus ismét a RANSAC módszert [46] használja a kiugró értékek megha-
tározására, de ezúttal a modell három merőleges síkot tartalmaz. Az előző lépésben
azokat a síkokat választottuk ki, amelyek a 60. formula alapján a legkisebb hibát ad-
ják, ekkor a merőlegesség még nem volt szempont. A modellillesztés a következőkép-
pen történik: először három pontot választunk ki L1-ből, ezek a pontok meghatároz-
nak egy síkot, majd további két pontot választunk ki L2-ből, ez a két pont meghatároz
egy újabb síkot, amely merőleges az elsőre, és végül még egy pontot választunk ki
L3-ból, ez határozza meg egyértelműen a harmadik síkot, amely merőleges az első
kettőre.

Az előző szakasz és ez a rész redundánsnak tűnhet első látásra, de ez mégsem
igaz. Az első célja a kalibrációs doboz elkülönítése a többi objektumtól, míg ez a
második lépés a zajos dobozpontok meghatározására szolgál.
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6.2.3. A doboz paramétereinek iteratív finomítása

Miután a kiugró értékek kikerültek a ponthalmazokból, két lépésből álló iteratív al-
goritmus finomítja a doboz síkjait a pontokhoz. A finomítás feladata, hogy három,
egymásra merőleges síkot pontosan illesszen a ponthalmazokhoz.
Forgatás meghatározása. A forgatási lépésben két síkot választunk ki, és elforgat-
juk őket a metszésvonaluk mentén – azaz a doboz éleinek mentén. Az elforgatás
minimalizálja a pontok és a síkok közötti négyzetes hibák összegét.

Legyen p1
j , p2

j , és p3
j az L1, L2 és L3 tartományban a pontok jele, ahol j a pontok

indexe. Jelölje qi az i-edik síkban fekvő pontot, amelynek nem kell a pi
j halmazban

lennie. Legyen ni az i-dik sík normálvektorai. Az i-edik síkot egyértelműen meghatá-
rozza a qi pont és az ni normálvektor.

Az illesztési problémát úgy tekintjük, hogy a pontok négyzetes távolságainak
összegét szeretnénk minimalizálni a megfelelő síkhoz képest. A legkisebb négyze-
tek költségfüggvényhez a pont-sík távolságokat használtuk. Ezt a következőképpen
írhatjuk le:

C =
3∑

i=1

mi∑
j=1

∣∣∣(pi
j − qi

)T
ni
∣∣∣2 . (61)

Az általánosság elvének megsértése nélkül a világ koordináta-rendszerét a kockasí-
kok metszéspontjához rögzítjük, a koordináta-rendszer fő irányait pedig a kocka élei
adják. Tekintsük a harmadik tengely körüli γ szögű elforgatást! Ekkor a forgatási
mátrix a következő:

RT
Z =

 c −s 0
s c 0
0 0 1

 , (62)

ahol c = cos γ és s = sin γ. A három sík normálvektorai a következőek: [1 0 0]T ,
[0 1 0]T , és [0 0 1]T . A forgatás az illesztési hibát nem befolyásolja, ezért a mi-
nimalizálási feladatot úgy írhatjuk, hogy

C
′′
=
∑
i=1,2

mi∑
j=1

∣∣∣∣∣∣∣
 c −s 0

s c 0
0 0 1

pi
j − qi

T

ni

∣∣∣∣∣∣∣
2

. (63)

Elemi átalakítások után a költségfüggvény |Ax| alakba írható xTx = 1 feltétellel,
ahol

A =



x1
1 −y11
...

...
x1
m1
−y1m1

y21 x2
1

...
...

y2m2
x2
m2


,x =

[
c
s

]
. (64)

Az m1 és m2 konstansok az első és a második síkhoz tartozó pontszámokat jelö-
lik. A x értékére legkisebb négyzetes értelemben optimális megoldást az ATA mátrix
legkisebb sajátértéknek megfelelő sajátvektorából nyerjük ki37. A γ szöget a követke-
zőképpen számítjuk ki: γ = atan2(s, c).

37 Az ATA mátrixnak mindig két nemnegatív valós sajátértéke van.

85

               hajder_274_24



A X és Z tengelyek körüli elforgások hasonló módon számíthatóak ki.
Eltolás meghatározása

A dobozhoz tartozó eltolás a síkok három normálisa mentén, egyesével történik.
Az eltolás meghatározásához nagy segítség, hogy eltoláskor csak a kiválasztott sík
pontillesztési hibája változik, ha a doboz eltolása párhuzamos a sík normálisával.

A 61. összefüggésben leírt költségfüggvény így módosul:

C
′′′
=

mi∑
j=1

((
pi
j − qi − αn

)T
ni
)2

(65)

ahol α az eltolás hosszát jelzi. Az i-edig síkhoz mi darab pont tartozik. Erre a matema-
tikai problémára könnyen lehet legkisebb négyzetes értelemben zárt alakú megoldást
adni, hiszen

α =

∑mi

j=1

(
pi
j − qi

)T
ni

minTni
.

A t eltolásvektort a három merőleges irányban egyenként kell kiszámítani. A fel-
adat azonban egyetlen lépésben is megoldható. Ebben az esetben tekintsük az eltolási
problémát a következő költségfüggvény minimalizálásának:

C
′′′′

=
3∑

i=1

mi∑
j=1

∣∣∣(pi
j − qi − t

)T
ni
∣∣∣2 . (66)

Mindez a Bt = c homogén lineáris egyenletrendszer alakjába írható, amennyiben

B =



n1T

...
n1T

n2T

...
n2T

n3T

...
n3T


, c =



n1T (p1
1 − q1)
...

n1T
(
p1
m1
− q1

)
n2T (p2

1 − q2)
...

n2T
(
p2
m2
− q2

)
n3T (p3

1 − q3)
...

n3T
(
p3
m3
− q3

)


, (67)

ahol az njT sorvektor az nj oszlopvektor transzponáltját jelöli. A költségfüggvény
minden egyes tagja egy egyenletet ad a rendszerhez. A megoldás a jól ismert t =

=
(
BTB

)−1
BTc formula segítségével számítható ki. Mivel az n1, n2 és n3 vektorok

merőlegesek egymásra, a B mátrix mindig nem-szinguláris, így a mátrix inverze min-
dig kiszámítható.

6.2.4. Konvergencia

A fenti forgatási és eltolási lépéseket konvergenciáig ismételjük. Azt tapasztaltuk,
hogy kevesebb mint 30 iteráció elegendő volt a szigorú leállási feltétel teljesítéséhez.
A javasolt módszert úgy futtattuk, hogy a koordináta-rendszer origója, ahol a síkok a
tengelyhez igazodtak, adta a kezdeti eltolási/forgatási paramétereket. Azt tapasztal-
tuk, hogy az iteráció kivétel nélkül minden esetben konvergált.
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6.2.5. Külső paraméterek kalibrálása

Külső paraméterek alatt a kamera és a lidar koordináta-rendszerei közötti transz-
formációt értjük, amely egy egybevágósági transzformációt jelent háromdimenziós
elforgatással és eltolással.

A doboz oldalainak iteratív finomítása után a kalibrációs doboz sarokpontjai ki-
számíthatók, hiszen a doboz méretei ismertek. A 44. ábra színes pontjai a doboz
sarkait jelölik, a dobozok teljes környezete volt az algoritmus bemenete, miután ma-
nuálisan kivágtuk az eredeti pontfelhőkből.

Ha egy LiDAR-LiDAR páros külső paramétereit ismerni kell, az algoritmus külön-
külön is meg tudja találni a LiDAR pontfelhőkben a sarokpontokat. Ezután a két
pontfelhő közötti transzformáció kiszámítható a dobozok sarkainak helyeiből pont-
regisztrációval [8, 69, 70]38.

A kalibrációs módszer LiDAR-kamerás rendszerek kalibrálására is használható.
Ebben az esetben a kalibrációs doboz sarkainak vetületeit kell kiválasztani a feldolgo-
zott képen. Ezután a kiválasztott pontokat a Harris [58] sarokdetektorral finomítjuk.
A külső paraméterek megtalálásának problémája ekvivalens egy PnP problémával,
mivel a 3D-2D pont-pont megfeleltetések ismertek. Mi az Effective-PnP (EPnP) algo-
ritmust [94] alkalmaztuk. Mivel a kamerák már kalibrálva vannak, a kamera belső
paramétereit a PnP futtatása során figyelembe vettük. A radiális és tangenciális tor-
zításnak nincs hatása a kalibráció pontosságára, hiszen a képeket a kalibráció után
ezen paraméterek ismeretében ki lehet egyenesíteni39.

6.2.6. Vizsgálati eredmények

A módszert szintetikus és valós tesztadatokon egyaránt ellenőriztük. A szintetikus
tesztekhez a Blender Sensor Simulator (Blensor) [1] programot használtuk, amely
egy nyílt forráskódú szimulációs csomag a széles körben használt 3D modellező és
renderelő szoftverhez40. A valós eredmények nagy és kis felbontású LiDAR-eszközökből
származó színes pontfelhőkből és pontfelhő-fúziókból állnak.

Szintetikus tesztek

A Blender egy ingyenes és nyílt forráskódú szoftver 3D szimulációhoz, rendere-
léshez, animációhoz és modellezéshez. Támogatja több kamera használatát, számos
paramétert állíthatunk be, akár fotórealisztikus képek is menthetők. A Blender szin-
tetikus környezetén belül sakktáblákat és egy kalibrációs dobozt modellezünk a va-
lósághű tesztforgatókönyvek szimulálásához. A Blensor [1]41 egy szenzorszimulációs
csomag, amely a Blender képességeit különböző LiDAR és fényidő-alapú eszközökkel
bővíti. A szintetikus tesztekhez a Velodyne-64 LiDAR-t használtuk az alapértelmezett
beállításokkal, azonban lehetőség van a pásztázási tartomány, a zajszint, a forgási
sebesség beállítására. A mi tesztünkben csak a zajszintet változtattuk. Az érzékelőtől
mért alapigazság (GT) távolsághoz Gauss-zajt adtunk hozzá, amelynek várható érté-
ke zérus, szórása pedig 0 és 0,14 között változott. Ez azt jelenti, hogy a zajos pontok
a távolságérzékelő által vetett sugarakon helyezkedtek el.

38 A feladat megoldása a D függelékben olvasható.
39 Például az OpenCV függvénykönyvtárban az undistort függvény alkalmas a képek kiegyenesí-

tésére.
40 www.blender.org
41 www.blensor.org
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A virtuális jelenet egy példája látható a 40 ábrán, amelyet a Blensor [1] szimulá-
ciós csomag hoz létre. A jelenet létrehozása során szem előtt tartottuk, hogy három
rivális algoritmusnak ugyanazt a kamera-LiDAR rendszerbeállítást kell használnia, és
mindegyik más-más objektum(ok)at használt a kalibráláshoz.

40. ábra. Példa a Blensor által létrehozott tájképre [1]. A bal és jobb oldali piramisok
a kamera, illetve a LiDAR helyét mutatják.

Az alábbi módszereket hasonlítottuk össze:

– Az első algoritmus, amelyet Geiger kutatócsapata mutatott be [53], sakktáblá-
kat használ.

– Park és munkatársainak módszere [129] poligonális táblákat alkalmaz,

– míg a javasolt algoritmus egy (virtuális) dobozt alkalmaz a kalibrálandó beren-
dezések relatív pózának meghatározásához.

Geigerék algoritmusának, amelyet a grafikonokon ’kitti’ néven jelöltem, legalább
két kameraképre van szüksége a kalibráláshoz, minél több sakktábláról. A teljesen au-
tomatikus módszer a kameraképeket feldolgozva rekonstruálja a sakktáblákat, majd
megpróbálja egyesíteni a pontfelhőt a LiDAR érzékelő által felvett pontfelhővel. Az
utolsó lépés problémás lehet, mert sokszor téved, hiszen nagymértékben függ a ka-
librálás környezetétől. A kalibrációs adatok megszerzéséhez a szerzők weboldalán
található online demo42-t használtuk.

A ’polygonal’ néven megjelölt algoritmust Park és munkatársai fejlesztették [129].
Tesztjeinkben a módszert a szerzők javaslatának megfelelően öt gyémánt alakú sík-
beli táblával használtuk. E táblák pontjait egyenként, kézzel kell kiválasztani a Li-
DAR pontfelhőben. Ezután a táblák síkjait a RANSAC segítségével becsültük meg, és
a LiDAR pásztázási vonalak segítségével kiszámítottuk a virtuális pontokat. Ezek a
pontok az egyes táblák éleinek becslésére szolgálnak, és ezen élek metszéspontjai a
tábla sarkait eredményezik. A metszéspontok vetületeit a FAST [139, 140] jellemző-
pontokból választottuk ki. Végül a külső paraméterek kinyerésére szinguláris érték
dekompozíciót (SVD) és a Levenberg-Marquardt algoritmust [96, 108] használtunk.

Valós kísérleteink során azt tapasztaltuk, hogy a LiDAR térbeli pontfelhő zajszintje
nemcsak a tárgy textúrájától és anyagától, hanem a LiDAR érzékelő típusától is függ.
Még az azonos gyártótól származó LiDAR-ok is különbözhetnek – a Velodyne-16 rit-
kás pontfelhője pontosabb, mint a nagy modelljéből, a Velodyne-64-ből származó
sűrűbb pontfelhő.

42 www.cvlibs.net/datasets/kitti
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Az algoritmusokat a LiDAR pontfelhőre ható Gauss-zajjal teszteltük. A szórás (σ)
0 és 0.14 között változott. A szintetikus tesztekben a LiDAR érzékelőt a (4.72945,−
−5.24017, 8.76321), míg a főkamerát a (−5.5727,−6.98041, 3.55163) ponton helyez-
tük el, a távolságokat méterben mértük. Két kamerát és öt sakktáblát használtunk a
Geiger-módszerhez, öt négyzet alakú táblát a Parkék által [129] javasolt módszerhez,
és csak egy kalibrációs dobozt helyeztünk el a saját algoritmusunkhoz. A sakktáblák
és a síkbeli táblák mérete 2× 2 méter, a kalibrációs dobozé 1× 2× 3 méter.

A módszerek értékeléséhez összehasonlítottuk a külső paramétereket (forgatás és
eltolás) és az alapigazságot (GT). A 47. ábra felső ábráján látható fordítási hiba az
alapigazság forgatási vektor és az algoritmusok által becsült vektor közötti euklideszi
távolság.

A forgatási hiba kiszámítása nem triviális, mivel egy forgatás többféleképpen is
ábrázolható: három szög, vagy ortonormális mátrix, vagy éppen egy tengely és egy
forgatási szög segítségével. Több hibametrikát is összehasonlítottunk, ezek jellem-
zői a teszteseteink esetében megegyeztek. Egyszerűsége miatt a hibát reprezentáló
RT

GTR mátrix forgási szögét a jól ismert képlettel [36] számoltuk ki az alábbiak sze-
rint:

α = cos−1
(
tr
(
RT

GTR
)
− 1
)
/2), (68)

ahol RGT a Blensor adatokból kinyert alapigazság (Ground Truth – GT) forgatási
mátrix, R pedig a tesztelt algoritmusok által kapott forgatási mátrix.

A 47. ábra az algoritmusok eltolási és forgatási hibáit mutatja. Egyértelműnek tű-
nik, hogy Parkék módszere, amelyet az ábrákon ’polygonal’ jelöli, és a mi módszerünk,
amelyet ’proposed’ jelöl, nagyon pontosan ki tudja számítani a forgatási mátrixokat,
hibájuk még nagy szórású Gauss-zaj jelenlétében sem haladja meg az 1,5 fokot. Ez jó
eredmény, mert még a forgatási mátrixok kis hibája is erősen befolyásolhatja a színes
pontfelhő eredményét, különösen akkor, ha az objektumok nagy távolságban helyez-
kednek el. Az algoritmusok eltolási hibája 5 centiméter és 0,5 méter között változik,
lásd a 47. ábra felső diagramját. Látható, hogy a javasolt módszer lényegesen ponto-
sabb, mint a többi. A különbségek 5 és 10 centiméter között vannak. Mind a forgatási,
mind az eltolási hibák megközelítőleg lineárisan növekednek a Gauss-zajjal.

41. ábra. Eltolási (balra) és forgatási hiba (jobbra) növekvő, Gauss eloszlású zajjal
szennyezett háromdimenziós koordináták esetén.

Valós Tesztek

A tesztelési helyszínen 3 kalibrációs dobozt helyeztünk el. Az összehasonlítás ked-
véért a LiDAR pontfelhő egyes pontjainak a kameraképre történő visszavetítését el-
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42. ábra. Egy Velodyne-64, kettő Velodyne-16 és szintén kettő kamera van felszerelve a
tesztautóra.

43. ábra. Három LiDAR-felvétel pontfelhőfúziója, amelyet az autonom autó bal oldali
kamerája alapján színezünk ki. Az első két képen a kamerakép és a pontfelhő látható
távolabbról. A két jobb oldali kép a kamera nézőpontjából, illetve a Velodyne-64 LiDAR-
ról készült. A pontfelhő színezése során nem vettük figyelembe a LiDAR különböző nézetei
által okozott takarást, a fehér pontok a kamera nézetén kívül helyezkednek el.

végeztük. A tesztelés a következőképpen zajlik: először három kartondobozt helyez-
tünk a székek tetejére, hogy a Velodyne-16 LiDAR számára látható legyen. Öt sakk-
táblát helyeztünk el a Geiger-csoport módszerének [53] futtatásához. Egy képet a
kamera eredeti helyzetében, egy másikat pedig egy másik helyen készítettünk, mivel
a kalibráláshoz legalább két képre van szüksége a módszernek.

A 45. ábrán a részleges pontfelhők újravetített pontjai láthatóak, a feldolgozott
jelenet pedig a 44. ábrán látható. A bal oldali képen a Geiger-féle módszer segítsé-
gével kapott külső paraméterek, a jobb oldalon a mi algoritmusunkkal kapott külső
paramétereket használtuk a visszavetítéshez. Megjegyezném, hogy a sakktábla sarka-
inak, a kalibrációs dobozok tetejének és a zöld szék lábának pontjainak vetített helyei
helytelenül eltolódtak. Az elsodródás a módszer pontatlanságát jelenti. A jobb olda-
lon ezzel szemben a visszavetített pontok egybevágnak a megfelelő képi régiókkal,
ami arra utal, hogy a javasolt módszer minősége jelentősen nagyobb.

A módszert az autonóm autónk adatfelvevő-rendszere által nyert valós adatokon
is teszteltük. Az autóra egy nagy felbontású és két kisebb felbontású LiDAR érzéke-
lőt, valamint két kamerát szereltünk fel, lásd a 42. ábrát. A kalibrációt a SZTAKI
hátsó udvarában végeztük el. A 43. ábra a kalibráció eredményét mutatja, amely a
nagy és a két alacsony felbontású LiDAR eszköz pontfelhőfúziója, és az RGB kamerák
intenzitásértékeinek felhasználásával színezett: a képtérben lévő helyeket a térbe-
li pontok kamerákra való vetítésével kaptuk meg a javasolt algoritmus által kapott
külső kameraparaméterek felhasználásával.

6.3. Kalibráció gömbökkel

A gömb felülete nagyon szerencsés abból a szempontból, hogy mind a LiDAR pont-
felhőjén [171], mind a kameraképen a gömb vetületének kontúrja [166, 162] nagy
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44. ábra. Az algoritmus még a Velodyne VLP-16 által generált ritka pontfelhőben is
megtalálja a sarkokat.

45. ábra. A visszavetített doboz és sakktáblapontok a 44. ábrán látható tesztesetről.
A Geiger és munkatársai módszerével [53] becsült kamera paramétereket a bal oldali
eredményén használtuk, a javasolt módszer eredménye a jobb oldalon látható.

pontossággal meghatározható. A geometriában régóta ismert tény, ahogyan azt ké-
sőbb itt is belátjuk, hogy a gömb képének kontúrja középpontos síkra vetítés (lyuk-
kamera) alkalmazása esetén ellipszis, hiszen a gömb összekötve a perspektív kamera
fókuszpontjával kúpfelületet alkot, a kontúr pedig ennek a kúpfelületnek a metszete
a képsíkkal.

6.3.1. Gömb helyének meghatározása LiDAR pontfelhőből

A gömb felületének implicit alakja az alábbi – már a középiskolában is megtanult –
módon írható le:

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = r2, (69)

ahol x0 =
[
x0 y0 z0

]T a gömb középpontja és r jelöli a sugarat. Egy x =
[
x y z

]T ∈
∈ R3 térbeli pont akkor esik a gömb felületére, ha az implicit egyenletet kielégíti.
A 69. egyenletből, az eredeti alakot megtartva, elemi átalakításokkal írhatjuk fel az
alábbi implicit formulát, ha azt akarjuk elönteni, hogy az xi =

[
xi yi zi

]T pont rajta
van-e a síkon:

x2
i − 2x0xi + x2

0 + y2i − 2y0yi + y20 + z2i − 2z0zi + z20 − r2 = 0. (70)

Amennyiben több pontunk is van: {xi}, i ∈ {1,2, . . . , N}, mátrixos alakban a
következő rendszert alkothatjuk meg:

−2x1 −2y1 −2z1 1
−2x2 −2y2 −2z2 1

...
...

...
...

−2xN −2yN −2zN 1




x0

y0
z0

x2
0 + y20 + z20 − r2

 = −


x2
1 + y21 + z21

x2
2 + y22 + z22

...
x2
N + y2N + z2N

 . (71)
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Ez az inhomogén rendszer N > 4 esetében túlhatározott. Szerencsére ekkor is
meg lehet oldani a bal oldali együtthatómátrix Moore-Penrose pszeudo-inverzének
felhasználásával. Az inverzet balról meg kell szorozni az inhomogén rendszer jobb ol-
dali vektorával. Eredményképpen egy négy dimenziós vektort kapunk: v = [v1, v2, v3, v4]

T ,
melynek első három koordinátája adja a gömb középpontját, a negyedikből pedig a
gömb sugarát lehet kiszámolni: r =

√
x2
0 + y20 + z20 − v4.

Ennek a megoldásnak nagy előnye, hogy rendkívül gyors, és mind az egyértelmű,
mint a túlhatározott eseteket képes kezelni. A 69. egyenlet geometriailag is értelmez-
hető, egy pont távolságának a négyzetét adja meg a körív legközelebbi pontjához ké-
pest. A módszer hátránya, hogy pszeudo-inverz alkalmazásával legkisebb négyzetes
értelemben lehet optimumot meghatározni, de itt az eredeti hiba már a geometria
távolság négyzete. Ezért legkisebb négyzetes hibaminimalizálás a geometriai hibák
összegének már a negyedik hatványát fogja figyelembe venni. Így a módszer kevés-
bé robusztus a sima kettes norma alkalmazásához képest, pedig már a kettes norma
sem tekinthető annak. Ezért a kiugró pontokat mindenképpen ki kell szűrni a pontos
becsléshez. A függelék E.2.1. fejezetében ismertetett RANSAC [46] algoritmus ehhez
a szűréshez kiválóan alkalmazható.

6.3.2. Gömb helyének meghatározása kameraképekből

Ebben a szakaszban megmutatom, hogyan lehet kamera képein a kontúrpontok se-
gítségével a gömb középpontját meghatározni. Először térbeli metszéseken keresztül
levezetem, hogyan lehet a gömb kontúrpontjait meghatározni a képen. Ehhez kivetí-
tem a képpontokat a térbe, és azokat a pontokat választom kontúrnak, amely éppen
érinti a gömböt. Az így kapott kontúrpontok ellipszist írnak le. Utána a kapott para-
méterekből azt is leírom, hogy ellipszisillesztés segítségével hogyan lehet az ellipszis
paramétereiből a gömb koordinátáit meghatározni, ha a gömb sugara ismert.

Sugármetszés gömbbel.

A vetítősík és egy általános gömb metszéspontjának meghatározása kicsit bonyo-
lultabb. A gömb látható képének kontúrja a képen egy ellipszis, ennek meghatározá-
sát ismertetem ebben a szakaszban.
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46. ábra. Gömb perspektív vetítése képsíkra. A bal oldalon a piros pixel meghatározza a
szaggatott vonallal rajzolt vetítőegyenest, amely a gömbfelületet a piros pontban metszi
el. A jobb oldali ábrán látszik, hogy a gömb perspektív vetítése a képpsíkra egy ellipszissel
határolt területet eredményez.

Vektoros formában a 69. egyenlet lényegesen tömörebb formában adható meg:

(x− s)T (x− s)− r2 = 0, (72)

amennyiben s =
[
x0 y0 z0

]T vektor jelöli a gömb középpontját, x =
[
x y z

]T
vektor pedig a térbeli pontot.

A gömb maga egy speciális kúpszelet. A teljesség kedvéért a metszési feladatot
általános kúpszeletekre mutatom meg. Az általános kúpszelet implicit egyenlete így
írható fel: [

xT 1
]
M

[
x
1

]
= 0, (73)

ahol M = MT egy 4 × 4 egy szimmetrikus mátrix, amelyet kisebb részekre is lehet
bontani: [

xT 1
] [M̃ b

bT ν

] [
x
1

]
= 0. (74)

Fontos tény, hogy a kisebb, 3× 3-as M̃ részmátrix szintén szimmetrikus.
Gömb esetén az M mátrix egyszerűbb alakra hozható:

M =

[
I −s
−sT sT s− r2

]
. (75)

Így ebben a speciális esetben M̃ = I,b = −s és ν = sT s− r2.
A kúpszeletek kontúrjai a képen.

Lyukkamera esetén, ahogyan azt korábban láttuk a 4. egyenletben, x = αK−1u.
Ha ezt rávetítjük a képre, a következő formulát kapjuk:

[
αuTK−T 1

] [ M̃ b
bT ν

] [
αK−1u

1

]
= 0.
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Ez egy α2uTK−TM̃K−1u+ 2ανbTK−1u+ ν = 0 alakban felírható másodfokú egyen-
letet ad. Geometriailag mindez azt jelenti, hogy egy sugárnak a felülettel két met-
széspontja van. A kontúrpontok esetén a vetítősugár éppen érinti a gömböt, ezért
egy megoldást kapunk. Ez algebrailag akkor lehetséges, ha a másodfokú egyenlet
diszkriminánsa éppen nulla, azaz

(
2νbTK−1u

)2 − 4
(
uTK−TM̃K−1u

)
ν = 0.

Átírva: (
bTK−1u

)2
= vuTK−TM̃K−1u. (76)

Ezzel pedig megkaptuk a kúpszelet egyenletét a képen.

Speciális eset: gömb vetülete.

Ahogy azt fentebb megmutattam, gömb esetén felírható, hogy b = −s, ν = sT s−
− r2 és M̃ = I. Ha a kamerák kalibráltak, a kép pixeleinek koordinátáit normalizálni
lehet, ami után K = I. Ezért a 76. egyenlet a következő alakra hozható:(

sTu
)2

=
(
sT s− r2

)
uTu. (77)

Ha az x vektornak a koordinátáit behelyettesítjük, az

(ux0 + vy0 + z0)
2 =

(
x2
0 + y20 + z20 − r2

) (
u2 + v2 + 1

)
(78)

összefüggést kapjuk. Ez pedig elemi átalakítások után átírható a(
r2 − y20 − z20

)
u2 +

(
r2 − x2

0 − z20
)
v2+

2x0y0uv + 2x0z0u+ 2y0z0v + r2 − x2
0 − y20 = 0 (79)

implicit formába.
Ez egy másodrendű görbe, azaz egy kúpszelet a képsíkon az

Aû2 +Bûv̂ + Cv̂2 +Dû+ Ev̂ + F = 0 (80)

alakban, ahol a paraméterek a következőek:

A = r2 − y20 − z20 , B = 2x0y0,
C = r2 − x2

0 − z20 , D = 2x0z0,
E = 2y0z0, F = r2 − x2

0 − y20.
(81)

2023-as folyóiratcikkünkben [166] megmutattuk, hogy a kúpszelet ellipszis lesz,
amennyiben a gömb teljes terjedelmében a kamera előtt van.

Amennyiben legalább öt kontúrpont adott, a Fitzgibbon algoritmus [47] segítsé-
gével az ellipszis paramétereit meg tudjuk határozni.

A paraméterekre kapott értékek alapján írhatjuk, hogy

B

D
=

y0
z0
→ Bz0 − y0D = 0,

B

E
=

x0

z0
→ Bz0 − x0E = 0,

D

E
=

x0

y0
→ Dy0 − Ex0 = 0.
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Mátrixos alakban ugyanez egyszerűbben is kifejezhető : 0 −D B
−E 0 B
−E D 0

 x0

y0
z0

 = 0. (82)

Fontos megjegyezni, hogy ennek a mátrixnak az elemei lineárisan összefüggők,
ezért a mátrix szinguláris, tehát a determinánsa nulla. Ebből pedig egyenesen az
következik, hogy a megoldásnak van egy magtere (nullvektora).

A gömb középpontja a nullvektor alapján határozható meg. Azonban a nullvektor,
ahogyan a sajátvektorok is, skálázásra érzéketlenek. Tehát, ha [x0 y0 z0]

T nullvek-
tor, akkor [αx0 αy0 αz0]

T is az, ahol α valós szám az (ismeretlen) skála.
Ezt a skálát szerencsére meg tudjuk határozni, ha a gömb r sugarát ismerjük.

A 81. egyenlet első paraméteréből kifejezhető, hogy

A = r2 − α2y20 − α2z20 .

Ekkor α az alábbi kifejezés segítségével számítható:

α = ±

√
r2 − A

y20 + z20
.

A képletben a ± előjelet is meg lehet határozni, azt a megoldást kell kiválasztani,
ahol a kapott gömb a kamera előtt és nem mögött van.

6.3.3. Kamera-LiDAR kalibráció

Ahhoz, hogy a kamerákat és a LiDAR mérőeszközöket egymáshoz tudjuk kalibrál-
ni, utolsó lépésként a gömbök helyét a LiDAR pontfelhőkön [171] és a kameraké-
peken [166, 162] meg kell határozni. Azaz, ha egy konkrét gömböt a kamerával
és LiDAR eszközzel (időben szinkronizáltan) rögzítünk, a kontúrpontokból, illetve
a kapott pontfelhőből meghatározható a gömb helye mindkét rendszeren. Ezt a két
pontot, melyet pLiDAR-ral és pcamera-val jelölünk, egy egybevágósági transzformáció
képes egymásba transzformálni:

pLiDAR = Rpcamera + t, (83)

ahol R a forgatási mátrix (ortonormalitás miatt három szabadságfok), t az elto-
lásvektor (másik három szabadságfok). A skálázást abben az esetben nem kell kiszá-
mítani, ha a gömbök sugarát pontosan ismerjük.

Miután minden egyes pontra háromdimenziós egyenletünk van, pontonként há-
rom egyenletet kapunk. Ezért első hallásra azt hihetjük, hogy kettő pont elegendő a
transzformáció meghatározásához. Azonban geometriai megfontolások alapján leg-
alább négy pontra van szükség. Erre a problémára legkisebb négyzetes értelemben
optimális megoldást [8] lehet adni, melyet pontregisztációs eljárás néven is szok-
tak hivatkozni. A D függelékben ismertetem az algoritmus működését, bizonnyítással
együtt.

Ha tehát veszünk egy kalibrációs gömböt, és legalább három különböző pozíció-
ban elhelyezzük, ahonnan LiDAR mérőeszközökkel és digitális kamerákkal felvétele-
ket készítünk, akkor az eszközök közötti transzformációt meg lehet határozni. Ezzel
a módszerrel tetszőleges számú digitális kamerát és LiDAR eszközt lehet egymáshoz
kalibrálni.
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Módszer
Kalibrációs ob-
jektum

Feltételek
Futási
idő

KITTI
Legaláb négy
(sík) sakktábla

Automatikus, de nem minden képre műkö-
dik

Percek

Polygonal
Leglább három
sík

Félautomatikus, pontfelhőben manuális ki-
jelölés szükséges

–

Box Calib-
ration

(Doboz
kalibráció)

Doboz három
merőleges
oldallal

Félautomatikus: doboz sarkait a képeken
kézzel kell kijelölni

–

Proposed

(Javasolt)
Legalább négy
gömb

Teljesen automatikus Percek

6. táblázat. Az összehasonlított módszerek jellemzői.

6.3.4. Tesztelési eredmények

Ez a szakasz ismerteti az összehasonlításhoz kiválasztott módszereket, valamint a
szintetikus és a valós világbeli tesztsorozatok eredményeit. A Blensor szenzorszimu-
lációs csomagban létrehozott virtuális jelenet tartalmaz egy kamerát, egy LiDAR-t
és a tesztelt módszerekhez szükséges kalibrációs objektumokat. A szintetikus tesztek
előnye, hogy a rivális technikák kvantitatív módon összehasonlíthatók. A valós tesz-
tek során a kapott külső paraméterek minőségét a LiDAR pontfelhő és a kamerakép
újravetítésének vizuális összehasonlításával értékeljük.
Összehasonlított módszerek.

A gömbös kalibráción túl három másik módszert választottunk ki a javasolt mód-
szerrel való versengésre, ezek összehasonlítását a 6. táblázat foglalja össze.

47. ábra. A szintetikus tesztek eredményei: Eltolási (balra) és forgatási (jobbra) átlag-
hiba növekvő Gauss eloszlású zaj hozzáadásával.

A KITTI kalibrációs eszköztárat (www.cvlibs.net/software/calibration/) And-
reas Geiger és kollégái [53] tették közzé. Több sakktáblát használnak a kamerák és a
LiDAR érzékelők külső kalibrálásához. A sakktáblákat egyenként detektálják a kame-
raképeken, és meghatározzák a kamerák külső paramétereit (is). Ezekkel a paramé-
terekkel a sakktábla sarkai térben is rekonstruálhatók a megfelelő sakktábla sarkok
képeken való illesztésével. A sakktáblák síkjait a LiDAR pontfelhőben a síkhoz tartozó
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adatpontok normálvektorának becslésével határozzák meg. Végül a kameraképekből
rekonstruált sakktáblasíkok és a LiDAR-pontfelhőből detektált síkok közötti megfele-
lés adja meg a kamera és a LiDAR eszközök végső paramétereit. A síkok közötti síkil-
lesztési eljárás azonban kétértelmű lehet, és néhány hamis egyezést eredményezhet.

A Park és mtsai. [129] által bevezetett Polygonal módszer a fehér háromszög
vagy rombusz alakú síkbeli célpontok észlelésén alapul. A legtöbb kalibrációs mód-
szer a LiDAR pontfelhőben lévő objektumok széleinek megtalálásával küzd. A szer-
zők ezt a problémát virtuális pontok bevezetésével oldják meg, amelyek két egymást
követő LiDAR pont között helyezkednek el. A virtuális pontokhoz vonalakat illesz-
tenek, és kiszámítják a kalibrációs objektumok sarkait. Végül a sarkok vetületeit a
FAST [139, 140] jellegzetes leírók segítségével választják ki, és PnP problémát olda-
nak meg 3D-2D megfeleltetések alapján. A módszer fő hátránya, hogy mind a síkok
LiDAR-pontjainak, mind a megfelelő FAST jellegzetes pontoknak a kiválasztását kéz-
zel kell elvégezni.

A harmadik összehasonlított módszer a 6.2. fejezetben ismertetett dobozt hasz-
náló kalibrációs eljárás.
Szintetikus teszteredmény.

Valósághű kalibrációs tesztkörnyezetet hoztunk létre Blenderben, a Blensor [1] Li-
DAR szimulációs csomag segítségével. A tesztképek 1920× 1080 felbontásúak. Össze-
hasonlítottuk a javasolt módszert és három párhuzamos módszert az alapigazság
(GT) adatokkal, miközben a LiDAR pontfelhőkhöz zajt adtunk. A jelenet egy digi-
tális kamerát és egy Velodyne HDL-64E2 LiDAR készüléket szimulált.

A módszereket additív Gauss eloszlású zajjal teszteltük. Először a µ átlagértéket
0.00 és 0.08 méter között változtattuk, σ = 0.02 szórású Gauss-zajt használva. Ez
a forgatókönyv úgy értelmezhető, hogy a tesztobjektumok eltávolodnak a LiDAR-
tól. Ezután egy nulla átlagú Gauss-zajt használtunk változó σ értékkel 0.00 és 0.10
méter között. A tesztjelenetek a KITTI esetében 5 sakktáblát, a Polygonal esetében
5 poligonális táblát, a Box Calibration esetében egy dobozt, a javasolt módszerek
esetében pedig 4 gömböt tartalmaztak.

(a) Polygonal (b) KITTI (c) Box Calibration (d) Proposed

48. ábra. Valós körülmények között végzett tesztek eredményei. A képek a sakktáblák
néhány LiDAR-pontjának vetítését mutatják a képekre a kapott külső paramétereinek
felhasználásával. A vetített pontok elcsúszása mutatja a kalibrációs hibát. A vetítésre
használt pontok a sakktáblákhoz és az asztal széléhez tartoznak.

A kalibrációs módszerek hibáját az általuk becsült külső paraméterek és az alap-
igazság közötti különbségként mértük. Az eltolás hibáját a vektorok közötti különb-
ség euklideszi normája adta, a szöghibát pedig a következőképpen számítottuk ki:

ϵ = cos−1
(
0.5
(
trace

(
RT

GT R
)
− 1
))

, (84)
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ahol RGT és R jelöli az alapigazság és a becsült forgatási mátrixot.
A 47. ábra mutatja a szintetikus tesztek eredményeit. A bal és jobb oldali oszlopok

az eltolási és a forgatási átlaghibát mutatják. Egyértelműen megállapítható, hogy a
javasolt eljárás felülmúlja a konkurens módszereket a forgatás megbecslése során, és
eltolás esetében is csak a saját, dobozt használó módszer képes hasonló teljesítmény-
re.

További szintetikus összehasonlításokat a 2020-as publikációnkban [170] olvas-
ható, helyhiány miatt itt nem tudok további eredményeket közölni.
Valós tesztek

A valós körülmények között végzett teszteket egy Velodyne VLP-16 Lidar és egy
iCube NS4133CU kamera segítségével végeztük el, 1280 × 1024-os felbontással, kis
látószögű objektívekkel felszerelve. Négy különböző jelenetet rögzítettek az eszkö-
zök, amelyek pozíciója fix volt. Így a külső paraméterek a vizsgálat során állandóak
maradtak. Minden jelenet tartalmazta a rivális módszerekhez szükséges kalibrációs
objektumokat, hasonlóan a szintetikus teszthez.

A kalibrációs objektum esetünkben egy 30 cm sugarú gömb. A valós tesztek ered-
ményei megerősítik a LiDAR adatokból történő gömbsugár becslés pontosságát, mivel
az eredmények 30,53 centiméteres sugarat eredményeztek, 1,45 centiméteres szórás-
sal.

A rivális módszerek kvantitatív összehasonlítása nem lehetséges a valós teszt ese-
tében, mivel az alapigazság (ground truth) nem áll rendelkezésre. Ezért az össze-
hasonlítás vizuálisan történik, a LiDAR pontfelhő egy részének a kameraképre való
visszavetítésével, amihez a módszerek becsült paramétereit használtuk fel. Ha a kül-
ső paraméterek pontosak, akkor az újravetített LiDAR pontok lefedik a megfelelő
pixelt, ellenkező esetben az újravetítések eltolódnak. Az esetleges nagyobb mértékű
eltolódása azt jelzi, hogy a becsült pozíciók/forgatások kevésbé pontosak.

A 48. ábra a valós világbeli tesztelés eredményeit mutatja be. A piros körök a
sakktáblákat használó KITTI kalibrációs jelenet újravetítései. A Poligonális és a KITTI
kalibrációs módszer eltolódása jelentősebb, mint a Doboz és a javasolt kalibrációs
módszeré. Ez a pózok rosszabb minőségére utal. A dobozos kalibráció újravetítései
pontosabbak, azonban a javasolt kalibráció még mindig jobban teljesít a többinél.
Lényegében a javasolt módszer a valós tesztekben hasonló eredményeket ad, mint a
legjobb módszerek, a teljesen automatizált eljárás hátrányai ellenére.
Időigény.

A javasolt kalibrációs csővezeték szűk keresztmetszete időigény szempontjából a
RANSAC-alapú gömb- és ellipszisillesztés. A szükséges futási idő elsősorban a RAN-
SAC algoritmus [46] iterációinak számától függ. Még a legrosszabb esetben sem több
néhány percnél, ami összehasonlítható a másik teljesen automatizált módszerrel a 6.
táblázat mérési eredményei alapján. A javasolt kalibrációs csővezeték többi része csak
gyors algoritmusokat tartalmaz, ezek időigénye egy másodperc alatt van.

6.4. Egytengelyes kalibráció

Eddig a fejezetig általános LiDAR-kamera kalibrációs eljárásokat ismertettem, elő-
ször doboz, majd gömb alkalmazásával. Amennyiben az eszközök rögzítését is ránk
bízzák, lehetőségünk van olyan konfiguráció megalkotására, amely segítségével a ka-
librációs probléma lényegesen egyszerűsödik. A 49. ábrán láthatjuk a javaslatunkat:
egy speciális, 3D nyomtatott rögzítést készítettünk a kamerának, mellyel a kamerát
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a LiDAR mérőeszköz tetejére lehet rögzíteni. A LiDAR keret teteje vízszintes, és a
rendszer koordináta-rendszere úgy lett beállítva, hogy a Z tengely felfelé mutat 43

Ezért, ha a két eszközt egymás fölé helyezzük, egyedül a Z tengely körüli forgatás
az ismeretlen. A Velodyne VLP-16 eszköz esetén a ház henger alakú, és az Y és X
tengelyek irányát csak sejteni lehet, pontosan meghatározni nem.

Ha a kamera és a LiDAR koordináta-rendszerében levő két pontot pC-vel és pL-
el jelöljük, akkor a két tengely közötti (egybevágósági) transzformációt írhatjuk az
alábbi egyenlettel: pC = R (PL − t).

Miután a forgatás a Z tengely körül történik, az eltolás pedig ugyanazon tengely
mentén, írhatjuk, hogy

R =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 , t =

 tx
ty
tz

 . (85)

Az elmúlt években kidolgoztunk egy speciális kalibrációs algoritmust, amelyet itt
röviden ismertetek. A kalibráció során visszanyúlunk a szokásokhoz, és egy közön-
séges sakktábla segítségét vesszük igénybe. Ezt a táblát tarthatjuk kézben, de akár a
falra is feltehetjük, ahogyan az az 50. ábra alsó képén látható.

Egy–két bekezdés erejéig megemlíteném, hogy az érzékelők bekalibrálása akkor
lesz nagyon pontos, ha kalibrációs objektum használatát és jól kontrollált körülmé-
nyeket követelünk meg. Ekkor lehet a legpontosabban meghatározni az eszközök
közti eltolást és elforgatást. Sajnos a használat közben az eszközöket mozgatjuk, rá-
zódnak, ezért a rögzítések el tudnak mozdulni. Az egyetemünk környékén is az utak
állapota bőven hagy kivánnivalót, ezért a mi esetünkben az elállítódás valós veszély.
Ilyenkor újrakalibrálás szüksége, ami elég költséges. Széria-érett technológia esetén
szakszervizben lennének képesek ezt precízen elvégezni. Amennyiben a sakktáblát
egy falra feltesszük, ahogyan azt az 50. ábra is mutatja, minden beálláskor a mi mód-
szerünk automatikusan el tudja végezni ezt az újrakalibrálást, szakember segítsége
nem szükséges.

6.4.1. Forgatás meghatározása

A forgatás meghatározásához a síkok normálvektorait fogjuk felhasználni. Ha a Li-
DAR pontfelhőre RANSAC alapú robusztus síkillesztő eljárást futtatunk, akkor a sík-
felületet meg tudjuk becsülni. Ha kikötjük, hogy a jármű előtt legyen a sakktábla, az
a keresési teret szűkíteni tudja.

A sakktábla esetében a Zhang-féle klasszikus kalibrálási módszert [190] alkal-
mazhatjuk, ekkor a sakktábla és a kamera síkja közötti homográfiából az elforgatás
meghatározható. A [0 0 1]T normálvektort elforgatva megkapjuk a kamera szem-
szögéből a normálvektor koordinátáit.

Ha nC = [xc yc zc]
T és nL = [xL yL zL]

T jelöli a kamera és a LiDAR rendsze-
rében a normálvektorokat, akkor írhatjuk, hogy xC

yC
zC

 =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 xL

yL
zL

 (86)

43 A digitális kamerák esetében hagyományosan az Y mutat felfelé, és a Z előre, de az egyszerűség
kedvéért átneveztük őket.
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49. ábra. A speciális kamera-LiDAR elrendezés sematikus ábrája. A koordináta-
rendszereket piros, zöld és kék színnel jelöljük. A zölddel jelölt tengelyek megegyeznek a
kamerán és a LiDAR-on.

50. ábra. Kamera-LiDAR konfiguráció. Egy speciális, 3D nyomtatott rögzítőelem tarja a
mérőeszközöket. Balra: A berendezés 3D CAD modellje. Középső ábra: A megvalósított
kamera-LiDAR páros. Jobb ábra: Egy autó tetejére szerelve a berendezés. A mérőautó
további kamerákat is tartalmaz. A falon jól látható a kalibrációhoz felhasznált sakktáb-
la, amelyből egyetlen egy is elég a helyes működéshez.

Az utolsó koordináta nem függ a θ szögtől, ezért a normálvektorok ellenőrzésre
ugyan lehet használni, de a szögbecslésre nem.

Az első két koordinátára picit átalakítva írhatjuk, hogy[
xC

yC

]
=

[
xL −yL
yL xL

] [
cos θ
sin θ

]
. (87)

Ez pedig egy érdekes, Ax = b alakú egyenletrendszer egy megkötéssel: x = 1,
azaz x egységvektor. A megoldás a C függelékben olvasható.

6.4.2. Eltolás

Az eltolás becslése szintén lehetséges. Mivel azonban mind a LiDAR, mind a kamera
és az optika, továbbá a saját tervezésű rögzítés adatai pontosan ismert, az eltolás
vektora megadható. Egy érdekesség, hogy esetünkben a 3D nyomtatott rögzítést úgy
készítettük el, hogy tx = ty = 0 legyen.

6.4.3. Kísérleti eredmények

A javasolt módszer minőségi és mennyiségi tesztelését valós és virtuálisan generált
képeken és pontfelhőkön végeztük el, összehasonlítva a MATLAB-ban végzett pár-
huzamos kalibrációs folyamattal. Ebben a részben értékeljük ki az eredményeket és
megvizsgáljuk a tesztelt megközelítések pontosságát.
Valós tesztek.
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Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

51. ábra. Néhány bemeneti kép az öt különböző valós adatkészletből. Az első és második
adatkészletben szereplő képek és pontfelhők egy irodában készültek, egy kis 7× 9-es, 31
mm-es mezővel rendelkező sakktáblával. A harmadik adatkészletet az ELTE lágymányosi
mélygarázsában gyűjtöttük 60 mm-es négyzet méretű 4× 6-os sakktáblával. A negyedik
és ötödik adatkészlethez nagy, 81 mm-es méretű, 9 × 10-es felbontású sakktáblát hasz-
náltunk a garázsban és az ELTE külső parkolójában.

A tesztekhez egyrészről Veldoyne VLP-16 LiDAR-t, másrészről egy Hikvision MV-
CA020-20GC digitális kamerát Fujinon SV-0614H lencsékkel alkalmaztunk, így gyűj-
töttünk össze a pontfelhő-képpárokat. A lencsék kiváló minőségűek, nem perspektivi-
kus torzításuk elhanyagolható. A kamerát a LiDAR tetejére szereltük a speciális, saját
gyártású 3D nyomtatott tartók segítségével. Az adatokat különböző beállítások mel-
lett vettük fel, összesen öt adatsort gyűjtöttünk különböző helyszíneken: irodában,
garázsban és egy parkolóban három különböző sakktáblával. A sakktábla méretek
4× 5-tól 9× 10-ig terjednek. Néhány bemeneti kép az 51. ábrán tekinthető meg.
Forgatási szög pontossága.

Az első kísérlet a szögbecslés pontosságát vizsgálja. Minden adatsoron a kalibrá-
ciót egyenként végeztük el minden egymásnak megfelelő kép – pontfelhő páron.

Kvantitatív értékeléseinket a becsült szögek szórása alapján végeztük. Az eredmé-
nyeket a 7. táblázat tartalmazza, ahol az eredmények pontosságának meghatározását
mutatjuk meg. Az alacsonyabb szórás pontosabb becslést jelent. A legjobb eredmé-
nyeket minden forgatókönyvben félkövér számokkal emeltük ki. Az adatokból kiszűr-
tük a kiugró értékeket.

Egyenként Egyenként – szűrve 10 kép
Dataset #1 12.1753 2.3022 0.9759
Dataset #2 27.2212 2.3786 1.0583
Dataset #3 38.5715 0.6895 1.0392
Dataset #4 0.9453 - 0.4899
Dataset #5 28.9916 1.2363 4.0653

7. táblázat. A táblázat tartalmazza a különböző adatsorokra számított forgatási szö-
geknek a szórását. Egyenként : Csak egyetlen képet használunk a kalibráláshoz. Egyen-
ként – szűrve : Egy képet használunk, de a kiugró értékeket kiszűrjük; 10 kép : Tíz
véletlenszerűen kiválasztott képre végzett túlhatározott becslés.
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52. ábra. Virtuális LiDAR és kamera sakktáblával a Blensorban.

Forgatási szög
Alapigazság Becsült érték Becslési hiba

0° 0.0000° 0.0000°
45° 44.9032° 0.0976°
90° 89.6333° 0.3660°

135° 134.9589° 0.0410°
180° 179.9999° 2.05°

8. táblázat. A javasolt módszer kalibrációs hibája virtuálisan generált adatokon.

Tesztek szimulátorral.
A Blensor 44 eszközt használtuk a virtuális tesztek elvégzése. A virtuális kamera és

a LiDAR beállítása az 52. ábrán látható. Minden ismert elforgatási szögnél ki tudjuk
értékelni a becsült értékeket, mivel a szimulátorból ismert az alapigazság (GT).

Az eredmények a 8. táblázatban láthatóak. Öt különböző beállítás eredményeit
hasonlítjuk össze, az alapigazság szögei 0◦ és 180◦ között vannak. A közelített forgás
átlagos hibája a javasolt kalibrációs módszerrel mindössze 0,1009°. Ez arra utal, hogy
a javasolt kalibrációs módszerrel kiváló minőségű szögbecslés végezhető.

6.5. Összefoglalás

Az utolsó, IV. téziscsoportban megmutattam, hogyan lehet digitális kamerákat és Li-
DAR letapogatókat egymáshoz kalibrálni. Kalibráció alatt a külső paramétereknek a
meghatározását értem, azaz annak az egybevágósági transzformációnak a becslését,
amely a LiDAR koordináta-rendszeréből a méréseket átviszi a kamera rendszerébe.
Ez a gyakorlatban három elforgatási és három eltolási paraméter becslését jelenti.

A dolgozatban egy félautomatikus és két teljesen automatikus módszert mutattam
be, melyeket az elmúlt években publikáltunk kollégáimmal közösen:

1. Az első eljárás dobozokat alkalmazott. A módszer előnye, hogy ilyen dobozokat
könnyen találunk a környezetünkben. A módszer félautomatikus, a pontfelhő-
ben meg kell jelölni azt a térfogatrészt, amire a dobozillesztés –immár auto-
matikusan – az algoritmus elvégezni. A képen a dobozok sarkait szintén ma-
nuálisan kell kijelölni. A kalibrációs paramétereket PnP algoritmus segítségével
számíthatjuk.

44 A Blensor egy nyílt forráskódú szimulációs csomag LIDAR és Kinect szenzorokhoz, amely
együttműködik a Blender számítógépes látóeszközzel. További részleteket a www.blensor.org
oldalon találhatóak.
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2. A második eljárás gömbfelületeket használ a kalibrációhoz. A gömb kontúr-
pontjai a képen ellipszis formálnak, ezért automatikusan detektálni lehetséges,
majd az ellipszisből – kalibrált kamerák esetében – ismert sugár esetén a gömb
középpontját meg lehet határozni. A LiDAR pontfelhőn hagyományosnak te-
kinthető felületillesztéssel lehet kiszámítani a gömb középpontját. Ha legalább
négy gömböt ismerünk a kamera és a LiDAR rendszerében is, akkor pontre-
gisztrációs eljárással kiszámíthatjuk az egybevágósági transzformáció hat sza-
bad paraméterét.

3. A javasolt harmadik módszer esetén egy speciális, saját tervezésű rögzítés miatt
a hat szabadságfok kettőre csökkenthető, hiszen a függőleges tengelyek egybe-
esnek a kamerán és a LiDAR letapogatón. Sakktábla alkalmazásával lehetséges
a kalibráció elvégzése, a sakktábla felületének normálvektora adja a fő segít-
séget, hiszen azt mind a kameraképből, mind a LiDAR pontfelhőből automa-
tikusan ki lehet nyerni. Az egyszerűsítés miatt a kalibrációs probléma mate-
matikailag könnyen kezelhető, lineáris algoritmus segítségével lehet legkisebb
négyzetes értelemben optimális megoldást adni.

A gyakorlati vizsgáltok megmutatták, hogy a módszerek valós esetben is jól mű-
ködnek, és alkalmasak arra, hogy LiDAR-kamera felvételeket egyesítsünk.

A fejezetek alapján az alábbi téziseket mondom ki:

IV.1. tézis. Kamera-LiDAR kalibráció téglatest (doboz) segítségével [135, 134].
Pusztai Zoltán doktoranduszommal közösen kidolgoztunk egy újszerű eljárást Li-

DAR letapogató eszköz és digitális kamera kalibrációjára, amely téglatestet (dobozt)
alkalmaz kalibrációs objektumként, szemben a meglévő módszerekkel [53, 172], me-
lyek a legtöbb esetben sakktábla segítségét veszik igénybe a kalibrációs feladat meg-
oldásra.

A LiDAR pontfelhő feldolgozására javasoltunk egy félautomatikus eljárást, amely
a merőlegesség figyelembe vételével meghatározza a doboz csúcspontját és az éle-
it. Az eljárás először robusztus illesztéssel merőleges oldalakat keres, majd iteratív
eljárással beforgatja és betolja a látható oldalakat a megfelelő pozícióba. Ismert do-
bozméret esetében így a doboz csúcsainak pozíciója egyértelműen megbecsülhető.

A kamera képén a doboz sarkait manuálisan kell meghatározni. A pontfelhőn
becsült és a képen meghatározott pontok között egy Perspektív n-pont [95] (PnP)
algoritmus adja meg a két eszköz közötti relatív eltolást és elfogatást.

Az eljárás könnyen kiterjeszthető tetszőleges számú kamera és LiDAR letapogató
eszköz alkalmazására.

IV.2. tézis. Kamera-LiDAR kalibráció gömb segítségével [170, 166].
Tóth Tekla doktoranduszom közreműködésével kidolgoztunk egy új módszert,

amely gömb segítségével határozza meg digitális kamerák és LiDAR letapogató esz-
közök elhelyezkedését. Az eljárásunk teljesen automatikus.

Egy kamera képén egy gömb kontúrpontjai speciális ellipszist alkotnak, az ellip-
szis paramétereit meghatároztuk a gömb pozíciójának és sugarának függvényében.
Megmutattuk, hogy a detektált ellipszisből hogyan lehet meghatározni a gömb kö-
zéppontját a képen. Ismert sugár és kamera belső paraméterek esetében a gömb tér-
beli pozíciója is meghatározható.
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A LiDAR pontfelhőn robusztus illesztés segítségével a középpont és a sugár szin-
tén meghatározható, erre a feladatra a területen szabványosnak mondható eljárások
robusztifikálását javasoljuk.

A kamerák és LiDAR-ok közötti elforgatás és eltolás megoldására pontregisztráci-
ós eljárást alkalmazunk. Módszerünk tetszőleges számú kamerára és LiDAR eszközre
működik, ha legalább négy gömbre el tudjuk a szükséges illesztési feladatokat végez-
ni. Túlhatározott esetben, azaz négynél több felvétel esetén is működik az eljárásunk,
a gömbök számának növelésével a kalibráció pontossága növekszik.

IV.3. tézis. Egy forgatási paraméterre redukált kamera-LiDAR kalibráció [163].
Tófalvi Tamás és Tóth Tekla doktorandusz hallgatókkal közösen egy harmadik el-

járást is kidolgoztunk LiDAR-kamera kalibrációra, amely sakktáblát használ a külső
paraméterek kiszámítására. A fő újdonság, hogy a kamerát és a LiDAR-t egy speciális,
saját tervezésű és gyártású 3D-nyomtatott alkatrész segítségével egymáshoz rögzít-
jük 45, így a két eszköz relatív orientációja egyszerűsödik, mindössze egy forgatási
szöget kell meghatározni.

Az általunk javasolt módszer sakktáblák síkjait vizsgálja, és ezek normálvektorait
használja a helyes forgatási szög megbecslésére. A javasolt megoldó lineáris problé-
maként írható fel, a forgatásra így legkisebb négyzetes értelemben optimális megol-
dást tudunk adni, amelyik minimális és túlhatározott esetekben egyaránt működik.

A módszer egy képet igényli csak, ezért online kalibrálásra is használható, ha a
jármű elhalad egy falra (síkra) rögzített sakktáblaminta mellett.

45 A rögzítés tervezése és 3D nyomtatása Kovács Bandó mérnökünk munkája.
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7. Összegzés

Ez a disszertáció az elmúlt tizenöt évben elért tudományos eredményeimet próbálta
nagyon röviden összefoglalni, amellyel az MTA doktora címre pályázom. A másfél
évtizednyi munkámat négy csoportba rendeztem.

Az első két téziscsoportban a lokális affin transzformációk alkalmazásával fog-
lalkoztam. Az első csoport az elméleti eredményekkel foglalkozik, három törvényt
mondtam ki a transzformációk és a sztereó látás kapcsolatáról. A második téziscso-
port a leggazdagabb: kutatócsoportom doktori hallgatói és munkatársai segítségével
az elméleti eredményekből származtatott becslő eljárásokat fejlesztettünk ki, ezeket
ismertettem itt. Talán egy értekezésben szabad annyi személyes benyomást közölni,
hogy bár nem ez a legnépszerűbb kutatási területem, ahol a legtöbb hivatkozást kap-
ták a munkáink, de hozzám mégis ezek a problémák állnak legközelebb. Egyrészt,
mert ez egy igazi "magyaros" terület, a legtöbb eredmény hazánkhoz köthető kutatók
érték el, másrészt nagyon sok helyen optimális megoldást sikerült a megcélzott prob-
lémákra találni, ezért a megoldások pontosságát elméletileg is sikerült megalapozni.

A harmadik téziscsoport egy speciális numerikus algoritmus, a kötegelt behango-
lás alkalmazását mutatja be két újabb rekonstrukciós problémaosztályra. A két osz-
tályban közös, hogy felületre merőleges irányokat állítanak elő. Az egyik esetben a
megvilágítás változtatásával lehetséges új felületi információt kinyerni a képekből, a
második ismertetett módszer esetében az affin transzformációkat használtuk ugyan-
erre a célra.

Az utolsó, negyedik téziscsoport LiDAR érzékelők és digitális kamerák külső pa-
ramétereinek kalibrációjával foglalkozik. A szakirodalomban szinte egyeduralkodó,
sakktáblás kalibrációval szemben két másik geometriai primitívnek, a téglatestnek és
a gömbnek felhasználhatóságára mutattam be két kalibrációs eljárást a disszertáci-
óban, melyekkel LiDARok és kamerák kalibrálhatóak egymáshoz. Érdekesség, hogy
erre a területre érkezett a legtöbb hivatkozás, ami nemcsak azt mutatja, hogy egy
igen népszerű és magas gyakorlati értékű területről van szó, hanem azt is, hogy jó
időben sikerült a terület kutatásaiba bekapcsolódni.

A tézisekhez kapcsolódó publikációk jegyzéke a tézisfüzet végén olvasható. Ki-
lenc folyóiratcikk és további huszonegy nemzetközi fórumokon jegyzett konferencia-
publikáció kapcsolódik a megfogalmazott eredményekhez. Számomra mindez azt je-
lenti, hogy az elért eredményeket a számítógépes látás szakmai közössége értékesnek
tartja, és ezért befogadja.

Amiről nem szól, nem szólhat ez a tézisfüzet, az a jövő. Munkám során meg-
tapasztalhattam, hogy egy terület művelése szinte minden esetben újabb irányokat
nyit meg, ezért biztos vagyok benne, hogy a következő időszakban is érdekes prob-
lémákkal találom/találjuk szembe magunkat, és remélem, hogy sikerül még értékes
elméleteket és algoritmusokat hozzáadni a háromdimenziós számítógépes látás vilá-
gához.
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A. Az általános sztereó összefüggés levezetése az affin
transzformáció, a kamera vetítőfüggvényei és a felü-
leti normálvektor között

Adott egy térbeli lapka, amely két képen látszik. Lokális közelítésben a lapka tekint-
hető síknak. A feladat ábrázolása az 53. képen látható. A lapkát nem ismerjük térben,
azonban a két képen a vetületekhez tartozó pixeleket kétdimenziós képfeldolgozási
módszerekkel meg tudjuk becsülni. A cél a felületi lapka n normálvektorának meg-
határozása.

53. ábra. Térbeli lapka perspektíven vetítve egy képpárra. A képeken a kiválasztott
mintadarabkák között a 2× 2-es affin transzformáció írja le a kapcsolatot.

Az [X, Y, Z]T háromdimenziós vektorral megadott felületi pontok kétdimenziós
koordinátáit a Π vetítőfüggvénnyel számoljuk a térbeli pontból, a felület háromdi-
menziós pontját pedig parametrikus alakban írjuk le:

x = Πx(X, Y, Z) y = Πy(X, Y, Z)

X = X(u, v), Y = Y (u, v), Z = Z(u, v).

Differenciális geometriából [85] jól ismert tény, hogy az érintővektorok felírhatóak a
paraméteres alakban megadott felület parciális deriváltjaiból, a normálvektor pedig
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a két érintővektor vektoriális szorzatából kapható meg:

Su =


∂X(u,v)

∂u

∂Y (u,v)
∂u

∂Z(u,v)
∂u

 ,

Sv =


∂X(u,v)

∂v

∂Y (u,v)
∂v

∂Z(u,v)
∂v

 ,

n = Su × Sv.

Az [X, Y, Z]T térbeli pont és az Su és Sv érintővektorok a felület adott pontjában
lévő érintősíkját is meghatározzák. Lokálisan a felület közelíthető ezzel az érintősík-
kal. Feltételezzük ugyebár, hogy a felületről két kép készült. A felületdarabka vetülete
a lokális környezetében az elsőrendű Taylor sor segítségével jól közelíthető :

[
x+∆x
y +∆y

]
≈
[
Πx(X, Y, Z)
Πy(X, Y, Z)

]
+[

∂Πx(X,Y,Z)
∂u

∂Πx(X,Y,Z)
∂v

∂Πy(X,Y,Z)

∂u

∂Πy(X,Y,Z)

∂v

][
∆u
∆v

]
.

Nézzük meg ezek után, hogy a parciális deriváltak segítségével a térbeli érin-
tősíkon és az egyik képen levő minta hogyan feleltethető meg affin transzformáció
segítségével: [

∆x
∆y

]
≈ A

[
∆u
∆v

]

A =

[
∂Πx(X,Y,Z)

∂u
∂Πx(X,Y,Z)

∂v
,

∂Πy(X,Y,Z)

∂u

∂Πy(X,Y,Z)

∂v

]
.

A parciális deriváltak a láncszabály segítségével módosíthatóak. Például:

∂Πx(X, Y, Z)

∂u
=

∂Πx(X, Y, Z)

∂X

X

∂u
+

∂Πx(X, Y, Z)

∂Y

Y

∂u

+
∂Πx(X, Y, Z)

∂Z

Z

∂u
= ∇ΠT

xSu,

ahol ∇Πx a vetítőfüggvény gradiense X, Y és Z felületi koordináták szerint. Hason-
lóan:

∂Πx

∂v
= ∇ΠT

xSv
∂Πy

∂u
= ∇ΠT

y Su
∂Πy

∂v
= ∇ΠT

y Sv.
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Ebből következik, hogy magát az affin transzformációt így is fel tudjuk írni:

A =

[
∇ΠT

x

∇ΠT
y

] [
Su Sv

]
.

Mivel sztereó képpárunk van, hiszen a térbeli alakzatunkról két képet készítettünk,
az affin transzformáció a két képen látható ugyanazon minta között felírható az A1

transzformáció inverzének és az A2-es transzformációnak a szorzatával. (Az előbbi
az első képen levő minta és a térbeli minta közötti kapcsolatot írja le, az utóbbi a
térbeli és a második képen levő minta kapcsolatát.) Formálisan felírhatjuk az alábbi
összefüggést: [

∆x2 ∆y2
]T

= A2A
−1
1

[
∆x1 ∆y1

]T
.

A két kép közötti affin transzformációt felírhatjuk tehát A2A
−1
1 alakban. A további

átalakításhoz nézzük meg, hogy az A mátrix inverze hogyan alakul:

A−1 =
1

det (A)

[
∇TΠxSu −∇TΠySu

−∇TΠxSv ∇TΠySv

]
,

ahol det(A) = ∇TΠxSu∇TΠySv − ∇TΠxSv∇TΠySu. Ha figyelembe vesszük, hogy
SvS

T
u − SuS

T
v = [n]×, akkor egyszerű átalakításokkal a következő alakra hozható az

affin transzformáció:

A−1
1 A2 =

1

∇TΠ1
x [n]×∇Π1

y

[
∇TΠ2

x [n]×∇Π1
y ∇TΠ1

x [n]×∇Π2
x

∇TΠ2
y [n]×∇Π1

y ∇TΠ1
x [n]×∇Π2

y

]
.

Fontos megjegyezni, hogy skálázásra érzéketlen a formula, hiszen mind a determi-
náns, mind a mátrix elemei [n]×-el meg lettek szorozva. Az aT [n]× b kifejezést szokás
skaláris hármas szorzatnak is hívni. Ha figyelembe vesszük, hogy aT [n]× b egyenlő
nT (b× a)-vel, az affin transzformáció végleges formáját így kapjuk meg:[

a11 a12
a21 a22

]
= A−1

1 A2 =
1

nTw5

[
nTw1 nTw2

nTw3 nTw4

]
, (88)

ahol w1 = ∇Π1
y × ∇Π2

x, w2 = ∇Π2
x × ∇Π1

x, w3 = ∇Π1
y × ∇Π2

y, w4 = ∇Π2
y × ∇Π1

x és
w5 = ∇Π1

y ×∇Π1
x.

Ez a levezetés egy nagyon fontos összefüggéshez vezetett, hiszen a 88. egyenlet
minden kameramodell esetén igaz. Mindössze a vetítő Π függvényeket kell megadni
és a gradiensüket kiszámolni.
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B. Paraméterekben lineáris problémák legkisebb négy-
zetes értelemben vett becslése

Ebben a fejezetben röviden áttekintem az alapvető lineáris becslési módszereket. Té-
ziseimben mind a homogén, mind az inhomogén problémaosztály megoldásait hasz-
nálom.

B.1. Inhomogén lineáris egyenletrendszerek

Elsőként azt mutatom meg, hogy az

Ax = b (89)

algebrai feladatot hogyan tudjuk legkisebb négyzetes értelemben megoldani. A
feladatban A egy M × N -es mátrix, ahol M ≥ N . Ez a mátrix, akárcsak az M
dimenziós b vektor, ismert elemeket tartalmaz. A cél az N dimenziós, ismeretleneket
tartalmazó x vektor meghatározása.

Ha az A mátrix négyzetes lenne, akkor egyszerűen az inverzével kellene megszo-
rozni a b vektort, és máris rendelkezésre állna az eredmény. Amennyiben téglalap
alakú a mátrix, a bal és a jobb oldal különbségéből képzett hibavektor normáját
kell minimalizálni. Legkisebb négyzetes értelemben a minimumkeresés az L2 (ket-
tes) norma négyzetét veszi figyelembe, annak a szélsőértékét próbálja megtalálni 46.
Formálisan ezt a feladatot így írhatjuk fel:

x = argx min ||Ax− b||22 . (90)

Tétel
Az Ax = b túlhatározott inhomogén egyenletrendszer legkisebb négyzetes opti-

mális megoldása az x = (ATA)−1ATb vektor.
Bizonyítás

Adott egy Ax = b egyenletrendszer, ahol az x vektor N darab ismeretlent tartal-
maz, és összesen M darab egyenletünk van. A feladat négyzetes értelemben minima-
lizálni az ϵ = Ax− b hibavektor kettes normáját. A költségfüggvény ezért így írható
fel:

J = ϵT ϵ = (Ax− b)T (Ax− b) = (xTAT − bT )(Ax− b),

azaz
J = xTATAx− 2bTAx+ bTb.

Ennek pedig az x szerinti gradiense adja a megoldást, amikor a gradiens vektor
egyenlő zérussal:

∇xJ = 2ATAx− 2ATb = 0.

Ezért a megoldás a következő alakban kapható meg:

x = (ATA)−1ATb.

46 Miután a hiba kvadratikus, biztos, hogy a szélsőérték minimumot jelent.
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Megjegyzés. Az (ATA)−1AT kifejezést az A mátrix Moore-Penrose-féle pszeudo-inverzének
is szokás nevezni. A pszeudo-inverzet akkor is ki lehet számolni szinguláris értékek
szerinti felbontás (SVD) segítségével, ha (ATA) mátrix szinguláris, azaz nem létezik
inverze.

B.2. Homogén lineáris egyenletrendszerek

Amennyiben a problémánk inhomogén, azaz a 89. összefüggésben a b vektor összes
eleme nulla, az x = 0 megoldás triviálisan helyes. Általában azonban a nem triviális
megoldást keressük, ebben az esetben egy megkötést kell adnunk az x vektor eleme-
ire. Leggyakrabban azt kötik ki, hogy az eredmény legyen egységvektor. Mi is ezt a
megkötést alkalmazzuk.
Tétel

Az Ax = 0 túlhatározott egyenletrendszer megoldása ∥ x ∥ 2 = 1 megkötéssel az
ATA mátrix legkisebb sajátértékéhez tartozó sajátvektor.
Első bizonyítás

Vezessünk be egy hibafüggvényt: J =∥ Ax ∥ 2
2 !

Lagrange optimalizálással felhasználhatjuk az ∥ x ∥ 2
2 = 1 megkötést, és ekkor egy

módosított költségfüggvényt kapunk:

J ′ =∥ Ax ∥ 2
2 + λ(1− ∥ x ∥ 2

2) = xTATAx+ λ(1− xTx).

A gradiens x vektor szerint:

∇xJ
′ = 2ATAx− 2λx = 0.

A végső megoldás a következő alakban kapható meg:

ATAx = λx.

A hibafüggvény szélsőértékeit akkor kapjuk meg, amikor x az ATA sajátvektora.
A hibafüggvény minimuma ezekben az esetekben:

J = xTATAx = λxTx = λ.

Ez nyilvánvalóan akkor lesz a legkisebb, ha a legkisebb λ-t választjuk47, azaz x az
ATA mátrix legkisebb sajátértékéhez tartozó sajátvektor.
Alternatív bizonyítás

A feladat, hogy a J =∥ Ax ∥ 2
2 hibafüggvényt minimalizáljuk. Használjuk az A

mátrix szinguláris érték szerinti felbontását: A = USVT , ahol tudjuk, hogy U és V
egyaránt ortonormált mátrix. A hibafüggvény így néz ki:

J =∥ USVTx ∥ 2
2.

Mivel U ortonormált, azaz csak egy elforgatást reprezentál, ami a kettes normát
nem befolyásolja, teljesül, hogy ∥ USVTx ∥ 2 =∥ SVTx ∥ 2. Ezen túl vezessük be az
y = VTx vektort mint új jelölést. Az is igaz, hogy ∥ VTx ∥ 2 =∥ x ∥ 2 = 1, hiszen V
is ortonormált.

Tehát a hibafüggvény így írható fel, ∥ y ∥ 2 = 1 megkötéssel:

47ATA szimmetrikus, ezért pozitív szemidefinit mátrix, tehát az összes sajátértéke nemnegatív
valós szám [24].
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J =∥ Sy ∥ .

Mivel S diagonál mátrix, azaz csak a főátlóban vannak nem zérus elemei, és az
átló csökkenő sorrendben pozitív szinguláris értékeket tartalmaz, a hibafüggvény ak-
kor lesz minimális, ha y = [0,0, ...,0,1]T . Ebben az esetben x = VT [0,0, ...,0,1]T , azaz x
vektor a V mátrix utolsó sora, ami az SVD működéséből adódóan az ATA legkisebb
sajátértékéhez tartozó sajátvektor.
Következmények

A bizonyítás során azt mutattuk meg, hogy az ||x||2 = 1 feltétellel xTATAx ki-
fejezés minimális, ha x értékének az ATA mátrix legkisebb sajátértékéhez tartozó
sajátvektort választjuk. Mindez akkor is igaz, ha xTBx értékét szeretnénk minimali-
zálni. Természetesen ekkor B legkisebb sajátértékéhez tartozó sajátvektort keressük.
Ha nem minimális értéket, hanem maximálisat keresünk, a két bizonyításból követ-
kezik, hogy B legnagyobb sajátértékéhez tartozó sajátvektor a megoldás.
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C. Az argminy ∥Fg − h∥2 probléma megoldása ∥g∥2 = 1

feltétellel

Ennek a fejezetnek a függelékben az a célja, hogy megmutassam, hogyan lehet az
Fg = h egyenletet legkisebb négyzetek értelmében optimálisan megoldani a gTg = 1
feltétel figyelembe vételével. A J költségfüggvény a következőképpen írható fel, ha a
feltételt a λ Lagrange-multiplikátorral bevezetjük a feladatba:

J = (Fg − h)T (Fg − h) + λgTg.

Az optimális megoldás a J gradiense a g vektor figyelembe vételével:

∇gJ = 2FT (Fg − h) + 2λg = 0.

Ezért az optimális megoldásra írhatjuk, hogy g =
(
FTF+ λI

)−1
FTh. Ebben az alak-

ban a λ multiplikátor még ismeretlen, azt a megkötés segítségével tudjuk kiszámítani.
Az egyszerűség kedvéért jelöljük az FTh vektort r-rel, az FTF szimmetrikus mát-

rixot pedig L-lel! Ekkor g = (L+ λI)−1 r. Végezetül a gTg = 1 megkötésből a követ-
kező alakot lehet kapni a behelyettesítés után:

rT (L+ λI)−T (L+ λI)−1 r = 1. (91)

A mátrix inverze így írható le:

(L+ λI)−1 =
adj (L+ λI)

det (L+ λI)
,

ahol adj (L+ λI) és det (L+ λI) jelölik az L+ λI mátrix adjungáltját és determinán-
sát.

Ez a 91. egyenletbe helyettesítve adja, hogy

rTadjT (L+ λI) adj (L+ λI) r = det2 (L+ λI) .

Az egyenlet mindkét oldala polinomokat tartalmaz λ változóra nézve. A bal és
a jobb oldal polinom foka 2n − 2, illetve 2n. Ha az oldalakon lévő kifejezéseket ki-
vonjuk egymásból, akkor egy 2n-edfokú polinomot kapunk. Megjegyezzük, hogy a
disszertációban tárgyalt esetben, amikor egy forgás egyetlen szögét becsüljük, n = 2.

Az optimális megoldást e polinom valós gyökerei alapján kapjuk meg. A becsült
λi értékekből (polinom valós gyökei) a vektorokat a következőképpen számítjuk ki:
gi = (L+ λiI)

−1 r. Ekkor a minimális normával rendelkező Fgi−h (hiba)vektor adja
a feladat optimális megoldását.
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D. Pontregisztrációs probléma

Ebben a függelékben megmutatom hogyan lehet – legkisebb négyzetes értelemben
– optimális megoldást adni a háromdimenziós látásban és pontfelhő feldolgozásban
igen gyakran felbukkanó pontregiszrációs problémára.

D.1. Pontregisztrációs feladat definíciója

Adott két ponthalmaz pi és oi, i = 1,2, . . . , N , ahol tudjuk, hogy a pontok egy térbeli
euklideszi transzformációval (eltolással és elforgatással) egymásba vihetőek:

pi = qRoi + t. (92)

Az összefüggésben R egy ortonormált mátrix, t egy eltolásvektor, q pedig a skálázást
reprezentáló pozitív valós szám.

Amennyiben a pontjaink zajosak, R , q és t becslését szeretnénk meghatározni
úgy, hogy az alábbi – legkisebb négyzetes – hiba minimális legyen:

J =
N∑
i=1

||pi − qRoi − t||2 . (93)

A konkrét feladat a költségfüggvényt minimalizálni a paraméterek szerint: [R, q, t] =
= argR,q,tminJ .

A hibafüggvény kifejtve:

J =
N∑
i=1

{
pT
i pi + q2oT

i oi + tT t+ 2
(
qtTRoi − pT

i t− qpT
i Roi

)}
. (94)

D.2. Pontregisztrációs probléma optimális megoldása

D.2.1. A t eltolásvektor számítása

A költségfüggvény t szerinti gradiense az alábbiak szerint alakul:

∇tJ =
N∑
i=1

(2t+ 2qRoi − 2pi) = 0. (95)

Ebből t-re az alábbi összefüggést kaphatjuk:

t =

(
qR

1

N

N∑
i=1

oi −
1

N

N∑
i=1

pi

)
= 0. (96)

Tudjuk, hogy 1/N
∑N

i=1 oi és 1/N
∑N

i=1 pi az első, illetve a második objektum súly-
pontja. Amennyiben origónak választjuk a súlypontot, a skálázás és az eltolás nem
változtatja meg a súlypontot: továbbra is az origóban marad. Éppen ezért a megol-
dás az optimális eltolást adó 96. összefüggés szerint, hogy a súlypontokat az origóba
visszük.
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D.2.2. Optimális forgatás számítása

Tegyük fel, hogy az eltolást már kiküszöböltük, és mindkét objektum súlypontja az
origóban van. Az egyszerűbb jelölés kedvéért továbbra is pi és oi jelölje a pontok
koordinátáit. A költségfüggvény így változik:

J ′ =
N∑
i=1

{
pT
i pi + q2oT

i oi − 2qpT
i Roi

}
(97)

Első látásra úgy tűnik, hogy a forgatási mátrix (R) és a skálázás (q) összefüggenek
egymással, szerencsére azonban az optimális forgatást nem befolyásolja a skálázás,
hiszen csak a szumma harmadik tagjában szerepel R és q együtt, de q-t ki lehet
emelni a szumma elé.

A feladat megoldásához a következő lemmát kell belátnunk:

Lemma: Minden A általános és R ortonormált mátrixra igaz, hogy tr(AAT ) ≥
≥ tr(RAAT ).
Lemma bizonyítása: Jelöljük ai-vel a A mátrix i-edik sorvektorát. Ekkor igaz, hogy

tr(RAAT ) = tr(ATRA) =
N∑
i=1

aT
i Rai (98)

A Cauchy-Bunyakovszkij-Schwarz egyenlőtlenség48 alapján írhatjuk:
N∑
i=1

aT
i Rai ≤

N∑
i=1

aT
i ai (99)

Ezzel beláttuk a segédtételt, hiszen
∑N

i=1 a
T
i ai = tr(AAT ).

Rátérhetünk az optimális forgatás kiszámítását kimondó tételre:

Tétel:A forgatási mátrixra optimális megoldást ad az R = VUT összefüggés, ahol
V és U mátrixok a H mátrix szinguláris-érték szerinti felbontásából jönnek: H =
= UΣVT , ahol H =

∑N
i=1 pio

T
i .

Bizonyítás: A feladat a költségfüggvény minimumának meghatározása R szerint.
Mivel csak a 97. összefüggés harmadik tagjában szerepel a forgatásmátrix, a fel-

adat ekvivalens
∑N

i=1 qp
T
i Roi maximalizálásával, ami a skálázás kiemelésével és el-

hagyásával49 ∑N
i=1 p

T
i Roi maximalizálásává alakul át.

Könnyű belátni, hogy
∑N

i=1 p
T
i Roi = tr(RH).

Írjuk fel H szinguláris érték szerinti felbontását: H = UΣVT , ahol U és V 3× 3-
as ortonormált mátrixok, Σ pedig diagonál-mátrix (nemnegatív elemekkel). Legyen
X = VUT . Mivel V két ortonormált mátrix szorzata, maga is ortonormált. Írjuk fel
X és H szorzatát:

XH = VUTUΣVT = VΣVT . (100)

Eredményül egy szimmetrikus mátrixot kaptunk, melyet AAT alakban írhatunk fel,
ha A = V

√
Σ. Emiatt a lemmánkat alkalmazhatjuk:

tr(XH) ≥ tr(RoptXH). (101)
48 Két tetszőleges a és b vektorra igaz, hogy (aTb)2 ≤ (aTa)(bTb) (A tétel tetszőleges számú

vektorra is felírható, de itt most csak a két vektoros esetet használjuk.)
49 q skálázási tényező egy nemnegatív valós szám. Negatív esetben tükrözést valósít meg, ami

forgatással is helyettesíthető, ezért zárhatjuk ki a negatív értékeket.
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Azaz a kifejezés Ropt = I esetén maximális, vagyis
∑N

i=1 p
T
i Roi maximális megoldása

R = X = VUT .

D.2.3. Optimális skálázás számítása

Az optimális eltolás és elforgatás ismeretében a skálázás meghatározása egyszerű. A
helyes eredményhez a költségfüggvény q szerinti deriváltját kell nullával egyenlővé
tenni:

∂J ′

∂q
=

N∑
i=1

{
2qoT

i oi − 2pT
i Roi

}
= 0. (102)

Ennek az egyenletnek a megoldása adja a végleges alakot a skálázásra:

q =

∑N
i=1 p

T
i Roi∑N

i=1 o
T
i oi

. (103)

D.2.4. Az algoritmus összefoglalása

Végezetül összefoglalom az algoritmus lépéseit:

1. A két ponthalmaz súlypontját ki kell számítani, közöttük levő eltolás adja meg
a ponthalmazok közötti optimális eltolást.

2. A súlypontokat az origóba kell vinni, majd az eltolt koordinátákból H =
∑

pio
T
i

mátrixot SVD-vel fel kell bontani (H = USVT ), és R = VUT adja az optimális
elforgatást.

3. A skálázás a q =
∑N

i=1 p
T
i Roi∑N

i=1 o
T
i oi

hányados segítségével számítható.

Megjegyzés: a módszert természetesen robusztussá lehet tenni RANSAC/LMedS/LTS
algoritmusokkal, ezzel kapcsolatos részleteket a kedves Olvasó a függelék következő,
E fejezetében talál.

A pontregisztrációs algoritmus legalább három pontot igényel, és segítségével a
transzformációt már ki lehet számolni, tehát három ponttal már lehet minimális mo-
dellt építeni pl. a RANSAC algoritmus részére.
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(a) Kiugró értékekkel terhelt pontfelhő (b) Robusztus illesztés eredménye

54. ábra. Adatpontok vonalillesztésre. A pontok egy része egyenest alkot, de sok kiugró
érték (outlier) is található a ponthalmazban. A jobb oldalon a sikeresen illesztett egye-
nest láthatjuk, a kiugó pontokat pirossal jelöltem meg.

E. Robusztus becslési módszerek

A függelék ezen fejezetében áttekintem aszámítógépes látásban használt legfonto-
sabb módszereket, amelyekkel egy becslést robusztussá tudunk tenni, azaz a kiugró
pontokat meg tudjuk határozni, és ki tudjuk az adathalmazból szűrni.

E.1. Bevezetés

Becslésekkel már korábban is foglalkoztunk, tudjuk, hogy számtalan matematikailag
megalapozott becslési módszer létezik. Ezek közül is kiemelkedik a legkisebb négyze-
tes módszer, mely a legegyszerűbb becslési eljárás, ráadásul lineáris esetben optimális
becslést tudunk produkálni.

Nehézséget okot, ha hibás adatok kerülnek a ponthalmazainkba, hiszen hibás ér-
tékek belekeverésével a hagyományos eljárások csak nagyon rossz becsléseket képe-
sek produkálni.

A probléma súlyosságát egy konkrét példával szemléltetjük: adott n darab kétdi-
menziós pont, amelyre szeretnénk egyeneseket illeszteni. Erre a feladatra egy konkrét
példát az 54a. ábrán láthatunk.

A sok véletlen pont között felsejlik középen egy egyenes képe, amely dominál, de
rengeteg külső pont is található. A külső pontokat outlier-eknek, a modellhez tartozó
pontokat inliereknek szokás hívni. A cél az 54b. ábrán láthatóhoz hasonló egyenes
meghatározása, illesztése.

E.2. Monte-Carlo elvű robusztus módszerek

Ezeket a robusztus módszereket azért nevezték el a szerencsejátékok fővárosáról,
Monte-Carlóról, mert véletlenszerű kiválasztáson alapulnak: néhány véletlenszerűen
kiválasztott mintapontból készítenek ún. minimális modelleket. Ezt sokszor végzik el,
és végül az így kapott minimális modellek közül azt választják ki, amelyik a legjobban

130

               hajder_274_24



megfelel bizonyos kritériumoknak. A kaszinók rulettjét kell elképzelni, ahol számokat
sorsolunk ki, és nem fontos, hogy minden egyes pörgetéskor nyerjünk, elég, ha jókor
megütjük a főnyereményt.

A robusztus algoritmusokat az alábbi két lépésre lehet bontani:

1. Modellek alkotása Monte-Carlo elvű módszerek esetén véletlen pontok ismét-
lődő kiválasztásával.

2. Legjobb modell meghatározása.

3. Kiválasztott (legjobb) modellnek megfelelő pontok meghatározása.

4. A végső modell meghatározása az összes kiválasztott pontok figyelembe vételé-
vel.

Az egyes robusztus módszerek különféleképpen valósítják meg a két lépést, de
általában minden egyes módszer ezt a két fő lépést tartalmazza. Itt két módszert
vizsgálunk meg: az ún. RANSAC és az LMedS/LTS eljárásokat.

A vizsgálat előtt azonban még meg kell állapítanunk, hogy hányszor kell a vé-
letlen pontkiválasztást megismételni. Tegyük fel, hogy p darab pontból szeretnénk
a modellt kiszámolni, az outlierek aránya pedig legyen κ. Az inlierek aránya ekkor
értelemszerűen 1−κ. Annak a valószínűsége, hogy mind a p darab pont inlier legyen
(1− κ)p. A véletlen pontkiválasztást ismételjük meg m-szer! Annak a valószínűsége,
hogy egyik modellalkotás sem jár sikerrel, azaz a p darab pontba minden esetben
legalább egy outlier keveredik, felírható az alábbi összefüggés segítségével:

1− Γ = (1− (1− κ)p)
m

Értelemszerűen Γ jelöli annak a valószínűségét, hogy legalább egy darab jó min-
tánk születik, azaz Γ = 1− (1− (1− κ)p)

m.
A véletlen kiválasztás számát pedig m kifejtésével kaphatjuk meg:

m =
ln(1− Γ)

ln[1− (1− κ)p]

Ennél a képletnél beszédesebb, ha kiszámoljuk néhány konkrét értékre a szük-
séges mintaszámot. Legyen 95% annak a valószínűsége, hogy jó modellt kapunk
legalább egyszer. Az outlierek arányát és a szükséges kiválasztási számat az alábbi
táblázattal szemléltethetjük:

– Ha egyenest szeretnénk illeszteni, két pont szükséges. Ekkor p = 2.

κ[%] 5 10 20 30 40 50 60 70 80
m 2 2 3 5 7 11 18 32 74

– p = 3 (pl. pontregisztrációs probléma [8] vagy síkillesztés )

κ[%] 5 10 20 30 40 50 60 70 80
m 2 3 5 8 13 23 46 110 373

– Ha p = 4 (pl. gyengén perspektív rekonstrukció [164])

κ[%] 5 10 20 30 40 50 60 70 80
m 2 3 6 11 22 47 116 369 1871
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– p = 7 (pl. 7 pontos fundamentális mátrix becslés [104])

κ[%] 5 10 20 30 40 50 60 70 80
m 3 5 13 35 106 382 1827 13692 233963

– p = 8 (pl. 8 pontos fundamentális mátrix becslés [60])

κ[%] 5 10 20 30 40 50 60 70 80
m 3 6 17 51 177 766 4570 4,56 · 104 1,17 · 106

Jól látható, hogy az outlierek növekedésével nagyon romlik a szükséges művelet-
szám, és ezáltal drasztikusan nő a futási idő. Ezért sebesség szempontjából két fontos
megállapítást tehetünk:

– A futási idő szempontjából kedvező, ha minél kevesebb outlier keveredik a min-
táinkba.

– A minimális modell megalkotásához szükséges pontok számától szintén radiká-
lisan függ az eredmény. Ha a modellünket kevesebb pontból tudjuk megalkotni,
sokkal alacsonyabb futási időre számíthatunk.

E.2.1. RANSAC (RANdom SAmpling Consensus)

A RANSAC algoritmus talán a legismertebb robusztus módszer a számítógépes látás-
ban, 1981-es megalkotása [46] óta az alapcikk több tízezer hivatkozása és számtalan
továbbfejlesztése mutatja a módszer népszerűségét.

Először is szükségünk van egy modellre, amely a rendelkezésre álló pontokból
előállítható. Például egyenes illesztése esetén az egyenest leíró modell két valós para-
méter, a és b, hiszen az egyenes y = ax+ b alakban adható meg. Két pont meghatároz
egy egyenest.

A RANSAC módszernek is az az alapelve, hogy a lehető legkevesebb pontból meg-
határoz egy minimális modellt, és utána megnézi, hogy mely pontok illeszkednek er-
re a modellre. Az egyenes illesztés esetén tehát meghatározzuk a és b paramétereket
két pont segítségével, majd az i-edik pont koordinátáit behelyettesítve megkapjuk a
hibát a pontra:

ϵi = yi − b− axi

Ezek után számoljuk össze azokat a pontokat, amelyek megadott küszöbön belül
vannak, akkor megkapjuk, hogy hány pont támogatja a modellt (latin szóval kon-
szenzust alkot a modellel). Ezt a küszöböt jelöljük ϵthr-rel, A ’thr’ rövidítés utal a
küszöb angol nevére, a threshold-ra. Ezek után újabb két pontot választunk, és újra
egy egyenest húzunk, ahol a távolságokat és a küszöbön belül levő pontokat újfent
meghatározhatjuk.

A sok lehetséges modell közül azt választjuk ki, amelyikhez a legtöbb konszenzu-
sos pont tartozik. Végül a a modellt a konszenzusos modellből meghatározott inlier
pontok alapján újra kell számolni.

A RANSAC algoritmus nagy előnye, hogy egyszerű, gyorsan implementálható.
Hátránya, hogy az ϵthr küszöböt előzetesen meg kell határozni, és ez nem is olyan
egyszerű feladat: ha a küszöb szigorú, sok jó pontot kidobunk, ha nagyon laza a kü-
szöb, akkor outlierek is bekerülhetnek az adatainkba, és ezek rontják a végeredmény
minőségét.
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E.2.2. LMedS (Least MEDian of Squares)

A Least MEDian of Squares segítségével a küszöb eltüntethető. Statisztikusok arra a
megállapításra jutottak [141], hogy ha az egyes ϵi hibaértékek Gauss-eloszlást követ-
nek, akkor az inlierek pozícióinak szórására robusztus becslést adhatunk. Ehhez be
kell vezetni egy súlyozó számot:

s0 = 1,4826
5

n− p
median{ϵi},

ahol n az összes pont száma, amiből p darabot kell választani a modellépítés-
hez. Sokszor ismételjük a modellalkotást, véletlenszerűen mindig kiválasztva p darab
pontot. Minden esetben kiszámoljuk s0-t a teljes adathalmazra. Végül azt a minimá-
lis modellt választjuk ki, amelyikhez kapott s0 a legkisebb. Az lesz a helyes modell,
amelyiknél a medián – azaz a sorba rakott ϵi-k közül a középső – a legkisebb.

Ha megvan a minimális s0, akkor meg lehet becsülni a valódi szórást az alábbi
összefüggés segítségével:

σ =

√∑N
i=1(wiϵ2i )∑N
i=1wi − 4

,

ahol N jelöli a minták számát, wi pedig egy bináris változó: ha ϵi < 2,5s0, akkor
wi = 1, egyébként nulla.

Végezetül meg kell határozni a becsült helyes modellhez tartozó pontokat. Azok
a pontokat jelöljük inliereknek (modellhez tartozónak), amelyekhez tartozó ϵi hiba-
értékek 2.5σ-nál kisebbek.

E.2.3. LTS (Least Trimmed Squares)

Az LMedS módszernek az a hátránya, hogy nem működik helyesen, ha az kiugró
értékek aránya ötven százalék fölé megy, hiszen a medián akkor outlierből származó
hibára fog mutatni helyes modell esetén is. Ezért egy apró változtatást végeztek a
kutatók: a s0-t meghatározó összefüggésben lecserélték a mediánt az első d darab
legjobb hiba összegére. Az a szerencsés választás, ha d a várható outlier aránynál
nem sokkal kisebb. (De mindenképpen kisebb!)
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F. Affin transzformációk felbontása

Ebben a függelékben megmutatom, hogyan lehet az affin transzformációkat kompo-
nensekre bontani. Az affin transzformációk az alábbi összefüggéssel mozgatják az
első képen a p1 pontot a második képen a p2 pontba:

p2 =

[
a11 a12
a21 a22

]
p1 +

[
au
av

]
, p1 =

[
u1

v1

]
, p2 =

[
u2

v2

]
.

F.1. Kategóriák szerinti felbontás

Az affin (lineáris) transzformációk alapvetően négy kategóriába oszthatóak:

1. Eltolás: a fenti összefüggésben az [au av]
T vektor határozza meg az eltolást.

2. Kétdimenziós (síkban) forgatás origó körül, α szöggel:

Arot =

[
cosα − sinα
sinα cosα

]
.

3. Skálázás mindkét (vízszintes és függőleges) fő irány mentén:

Ascales =

[
su 0
0 sv

]
.

4. Nyírás :

Askew =

[
1 b
0 1

]
.

Az 55. ábrán láthatóak az egyes kategóriák. Az affin transzformáció lineáris ré-
szét, amelyikkel a p1 vektort közvetlenül megszorozzuk, fel lehet írni a kategóriák
kompizíciójaként:

A = ArotAscalesAskew.

Egy általános affin transzformáció hatása ezért az alábbi formulával írható le:

p1 = ArotAscalesAskewp2 + [au av]
T .

A transzformációs mátrixok elemeit behelyettesítve kaphatjuk, hogy

p1 =

[
cosα − sinα
sinα cosα

] [
su 0
0 sv

] [
1 b
0 1

]
p2 +

[
au
av

]
.

Az 56. ábrán azt láthatjuk, hogy az általános affin transzformáció egy négyzetből
paralelogrammát, körből pedig nyírt ellipszist képes készíteni.

A transzformáció komponenseinek meghatározása Mivel az eltolást egyértelműen
meghatározza a hozzáadott vektor, az alábbi lineáris részt kell részekre bontani:

A =

[
cosα − sinα
sinα cosα

] [
su 0
0 sv

] [
1 b
0 1

]
.

Kifejtve írhatjuk, hogy
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(a) Eltolás (b) Forgatás

(c) Vízszintes és függőleges skálázás (d) Nyírás

55. ábra. Affin transzformációk kategóriái. Az ábrák a négyzet mint példaobjektum
alakját mutatják meg az egyes transzformációk után.

(a) Négyzet→ parallelogramma (b) Kör→ Nyírt ellipszis

56. ábra. Általános affin transzformáció hatása. A négyzet transzformáltja paralelog-
ramma lesz, a körből pedig elnyírt ellipszist lehet készíteni.
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[
a11 a12
a21 a22

]
=

[
su cosα sub cosα− sv sinα
su sinα sub sinα + sv cosα

]
.

Miután a11 = su cosα és a21 = su sinα, az α forgatási szög és a vízszintes su
skálázás polárkoordinátaként képzelhető el, ahol a skála a sugár. Ezért igaz, hogy

α = atan2 (a21, a11) ,

su =
√
a211 + a221.

A másik két paraméterre az a12 = sub cosα−sv sinα és az a22 = sub sinα+sv cosα
összefüggések adottak. α szög és su skála ismertek, ezért a másik két paraméterre, az
sv függőleges skálára és a b nyírási paraméterre fel lehet írni, hogy[

a12
a22

]
=

[
− sinα su cosα
cosα su sinα

] [
sv
b

]
.

Ez pedig egy inhomogén, lineáris egyenletrendszer, aminek egyértelmű megol-
dása van, tehát sv és b a mátrix inverzének felhasználásával könnyen kiszámítható.

Többértelműség. A dekompozíciónak van egy többértelműsége, amelyet az okoz,
hogy a 180 fokos forgatás megfelel egy középpontos tükrözésnek, a középpontos tük-
rözés pedig felfogható úgy is, hogy mind a vízszintes, mind a függőleges tengelyre
tükrözünk.

Ha az eredeti α szöget π/2-vel elforgatjuk, majd skálázzuk, akkor az alábbi leve-
zetést tehetjük:

[
cos (α± π/2) − sin (α± π/2)
sin (α± π/2) cos (α± π/2)

] [
su 0
0 sv

]
=

=

[
− cos (α) sin (α)
− sin (α) − cos (α)

] [
su 0
0 sv

]
=

=

[
cos (α) − sin (α)
sin (α) cos (α)

] [
−su 0
0 −sv

]
.

Az eredmény alapján kijelenthetjük, az su és sv skálatényezők egyidejű invertálása
ekvivalens azzal, ha az eredeti α szöget 180◦-kal megnöveljük/lecsökkentjük.

F.2. Szinguláris érték szerinti felbontás

Másik népszerű felbontás SVD 50 segítségével bontja fel az affin transzformáció line-
áris részét:

A =

[
a11 a12
a21 a22

]
= U

[
s1 0
0 s2

]
VT , (104)

50 Az SVD (Singular Value Decomposition) A szinguláris értékek szerinti felbontás. Minden valós
elemű mátrix egyértelműen felbontható két ortonormált és egy diagonál mátrix szorzatává.
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ahol U és V azonos méretű (2 × 2-es) ortonormált mátrix, a középső mátrix di-
agonál, a főátlóban nemnegatív valós számok szerepelnek. Ez a felbontás tehát két
forgatásra és egy skálázásra bontja a transzformációt. A skálázáshoz a vízszintes és
függőleges méretezés külön megadható.

Az ortonormált mátrixokra felírhatjuk, hogy

U =

[
cos β − sin β
sin β cos β

]
, V =

[
cos γ − sin γ
sin γ cos γ

]
.

Az SVD alapú felbontás tehát két forgatási szögre (β és γ) és két valós skálázási
paraméterre (s1 és s2) bontja fel a 2× 2-es általános affin transzformációt.
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G. A lehetséges homográfiák terének csökkentése is-
mert fundamentális mátrix esetén

Amennyiben egy háromdimenziós térben két kamera adott, mellyel egy síkfelületet
fényképezünk le, akkor mind a sík-sík homográfia, mind a fundamentális mátrix se-
gítségével összefüggéseket fogalmazhatunk meg a sík pontjainak vetületei között. A
fundamentális mátrixot és a homográfiát össze is köthetjük [62]:[

e(2)
]
×H = λF, (105)

ahol e(2) = [e
(2)
x , e

(2)
y ,1]T a második képen az epipólust jelöli, λ pedig az F funda-

mentális mátrixhoz tartozó ismeretlen skála. A [v]× operátor a v vektorral (balról)
elvégzendő vektoriális szorzást reprezentálja. Meg kell jegyezni, hogy a [v]× kereszt-
szorzat mátrix rangja mindig legfeljebb kettő, ezért bármelyik sora a mátrixnak meg-
határozható a másik kettő lineáris kombinációjaként.

A dolgozatban a 105. összefüggés megmutatja, hogy a fundamentális mátrix is-
merete hogyan csökkenti a homográfia becslésnek a szabadságfokát. A mátrix utolsó
sorát a lineáris összefüggés miatt nem tudjuk felhasználni.

A redundáns ismereteket kihagyva írhatjuk, hogy

[
0 −1 ey
1 0 −ex

] h11 h12 h13

h21 h22 h23

h31 h32 h33

 = (106)

λ

[
f11 f12 f13
f21 f22 f23

]
.

Az elemeket egyesével véve felírhatjuk a végső összefüggéseket, melyek a funda-
mentális mátrixot 51 és a homográfiát összekötik:

h11 = exh31 + λf21, h12 = exh32 + λf22,

h13 = exh33 + λf23, h21 = eyh31 − λf11, (107)
h22 = eyh32 − λf12, h23 = eyh33 − λf13.

A kapott alakokból triviálisan látszik, hogy a h31, h32 és h33 elemekből a másik hat
eleme a homográfiának egyértelműen meghatározható, ha F ismert. Tehát a homog-
ráfia becslésének szabadságfoka hárommal csökken.

Mind a H homográfia, mind az F fundamentális mátrix skálázásra invariáns. Ezért
a skálára előírhatunk egy újabb megkötést. Esetünkben válasszuk a λ = 1 feltételt.

Miután a DLT algoritmust [62] használó homográfia-becslés esetében minden
pontmegfelelés két egyenletet ad, logikus lenne, hogy a három szabadságfokot két
pontpár segítségével megkaphatjuk. Sajnos a két egyenlet összefüggő, ezért csak ez
egyik ad új információt. Így három pontra van szükség, hogy ismert fundamentális
mátrix esetén a homográfiát meg tudjuk becsülni. Ezért 3PT-nek hívjuk ebben a doku-
mentumban ezt a kizárólag pontpozíciókat alkalmazó módszert.

51 Az epipólus a fundamentális mátrix nullteréből egyértelműen számítható.
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H. Az affin transzformáció normalizálása

Ha két egymásnak megfelelő pontot ismerünk a két képen, melyeket x(1)-el és x(2)

jelöljük, a célunk ebben a részben, hogy az x′(1) = T1x
(1) és x′(2) = T2x

(2) formulá-
val leírt normalizálás hatását megvizsgáljuk a 2 × 2-es A affin transzformációra. A
normalizálás esetünkben a hagyományos megoldást [62], azaz a skálázást és eltolást
jelenti. A transzformációs mátrix ekkor így néz ki:

T1 =

 s
(1)
x 0 t

(1)
x

0 s
(1)
y t

(1)
y

0 0 1

 ,T2 =

 s
(2)
x 0 t

(2)
x

0 s
(2)
y t

(2)
y

0 0 1

 . (108)

Egy tetszőleges x(i) = [u(i), v(i)] kétdimenziós pont koordinátái így alakulnak át a
transzformáció során:

x′(i) =

 s
(i)
x 0 t

(i)
x

0 s
(i)
y t

(i)
y

0 0 1

 u(i)

v(i)

1

 =

 s
(i)
x u(i) + t

(i)
x

s
(i)
y v(i) + t

(i)
y

1

 .

Ha a H jelöli az eredeti homográfiát a normalizálatlan koordonátákra, akkor x2 ∼
∼ Hx1.

Amikor a normalizált koordinátákat használjuk, az összefüggés átalakul: T−1
2 x′(2) ∼

∼ HT−1
1 x′(1). Ezért H′ = T2HT−1

1 . Ehhez a T1 inverzét meg kell határoznunk:

T−1
1 =

 1/s
(1)
x 0 −t(1)x /s

(1)
x

0 1/s
(1)
y −t(1)y /s

(1)
y

0 0 1

 . (109)

A normalizált homográfiára írhatjuk, hogy

H′ = T2HT−1
1 =

 s
(2)
x 0 t

(2)
x

0 s
(2)
y t

(2)
y

0 0 1

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 1/s
(1)
x 0 −t(1)x /s

(1)
x

0 1/s
(1)
y −t(1)y /s

(1)
y

0 0 1

 ,(110)

H′ =

 s
(2)
x h11 + t

(2)
x h31 s

(2)
x h12 + t

(2)
x h32 s

(2)
x h13 + t

(2)
x h33

s
(2)
y h21 + t

(2)
y h31 s

(2)
y h22 + t

(2)
y h32 s

(2)
y h23 + t

(2)
y h33

h31 h32 h33

 1/s
(1)
x 0 −t(1)x /s

(1)
x

0 1/s
(1)
y −t(1)y /s

(1)
y

0 0 1

 ,(111)

H′ =


s
(2)
x

s
(1)
x

h11 +
t
(2)
x

s
(1)
x

h31
s
(2)
x

s
(1)
y

h12 +
t
(2)
x

s
(1)
y

h32 ∗
s
(2)
y

s
(1)
x

h21 +
t
(2)
y

s
(1)
x

h31
s
(2)
y

s
(1)
y

h22 +
t
(2)
y

s
(1)
y

h32 ∗
1

s
(1)
x

h31
1

s
(1)
y

h32 −h31t
(1)
x /s

(1)
x − h32t

(1)
y /s

(1)
y + h33

 .(112)

A 16. összefüggés (II. törvény) alapján az affin transzformációt a két csillaggal je-
lölt elem nem befolyásolja, ezért ezeket nem vesszük figyelembe a továbbiakban, az
értékét az egyszerűség kedvéért jelöltem csillaggal.

A II. törvény alapján írhatjuk, hogy

a′11 =
h′
11 − h′

31u
′(2)

s′
, a′12 =

h′
12 − h′

32u
′(2)

s′
,

a′21 =
h′
21 − h′

31v
′(2)

s′
, a′22 =

h′
22 − h′

32v
′(2)

s′
.

139

               hajder_274_24



Ezután a normalizált s′ projektív mélységet fejezem ki:

s′ =
1

s
(1)
x

h31u
′(1) +

1

s
(1)
y

h32v
′(1) −

1

s
(1)
x

h31t
(1)
x −

1

s
(1)
y

h32t
(1)
y + h33 =

1

s
(1)
x

h31

(
u′(1) − t(1)x

)
+

1

s
(1)
y

h32

(
v′(1) − t(1)y

)
+ h33 =

u(1)h31 + v(1)h32 + h33 = s.

Azaz pontosan a normalizálatlan s értéket kaptuk vissza. Tehát megállapíthatjuk,
hogy ezt a skálát a normalizálás nem befolyásolja.

A normalizált affin transzformáció bal felső elemét nézzük először meg, az s′

skálával beszorozva:

s′a′11 = h′
11 − h′

31u
′(2) =

s
(2)
x

s
(1)
x

h11 +
t
(2)
x

s
(1)
x

h31 −
1

s
(1)
x

h31

(
s(2)x u(2) + t(2)x

)
=

s
(2)
x

s
(1)
x

h11 +
t
(2)
x

s
(1)
x

h31 −
s
(2)
x

s
(1)
x

u(2)h31 −
t
(2)
x

s
(1)
x

h31 =

s
(2)
x

s
(1)
x

h11 −
s
(2)
x

s
(1)
x

u(2)h31.

A másik három elemet teljesen hasonlóan kapjuk meg:

s′a′12 = h′
12 − h′

32u
′(2) =

s
(2)
x

s
(1)
y

h12 −
s
(2)
x

s
(1)
x

u(2)h32,

s′a′21 = h′
21 − h′

31v
′(2) =

s
(2)
y

s
(1)
x

h21 −
s
(2)
y

s
(1)
x

v(2)h31,

s′a′22 = h′
22 − h′

32v
′(2) =

s
(2)
y

s
(1)
y

h22 −
s
(2)
y

s
(1)
y

v(2)h32.

Ezzel megkaptuk a végleges összefüggéseket a normalizálás hatásának vizsgála-
tára.
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I. Kamera előtti gömb kontúrjának meghatározása

Ebben a részben azt mutatjuk meg, hogy a IV. téziscsoportban használt kalibrációs
gömb kontúrja mikor ad ellipszist a képen.

A másodfokú görbe akkor lesz ellipszis, ha a 81. összefüggésben megadott má-
sodfokú görbe (kúpszelet) paramétereire igaz, hogy B2 − 4AC < 0. Esetünkben:

B2 − 4AC = (2x0y0)
2 − 4

(
r2 − y20 − z20

) (
r2 − x2

0 − z20
)
=

4x2
0y

2
0 − 4

[
r4 − r2

(
x2
0 + z20

)
− r2

(
y20 + z20

)
+ y20x

2
0 + y20z

2
0 + x2

0z
2
0 + z40

]
=

4
[
−r4 + r2

(
x2
0 + y20 + 2z20

)
− y20z

2
0 − x2

0z
2
0 − z40

]
=

4
[
−r4 + r2

(
x2
0 + y20 + 2z20

)
− z20

(
x2
0 + y20 + z20

)]
=

4
[
−r4 + r2z20 + r2

(
x2
0 + y20 + z20

)
− z20

(
x2
0 + y20 + z20

)]
=

4
[
−r4 + r2z20 +

(
r2 − z20

) (
x2
0 + y20 + z20

)]
.

Ez a kifejezés akkor negatív, ha

−r4 + r2z20 +
(
r2 − z20

) (
x2
0 + y20 + z20

)
< 0.

r2-et az első két tagból kiemelve tovább lehet a bal oldalt egyszerűsíteni:(
r2 − z20

) (
x2
0 + y20 + z20 − r2

)
< 0. (113)

A kifejezés előjelét a két szorzótényező előjele adja meg. Ha a gömb teljes egé-
szében a kamera előtt van, akkor biztos, hogy z20 > r2, és ekkor az is triviálisan igaz,
hogy (x2

0 + y20 + z20) > r2. Így azt kapjuk, hogy (r2 − z20) < 0 és (x2
0 + y20 + z20 − r2) >

> 0, tehát a 113. összefüggésben a szorzatnak negatív az előjele, ha a gömb a kamera
előtt helyezkedik el.
Azaz kijelenthetjük, hogy a kamera előtt elhelyezkedő gömb kontúrpontjai a képen egy
ellipszist alkotnak.
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J. Síkban mozgás

Síkban mozgás esetén feltételezzük, hogy a kamera egy járműhöz van rögzítve, és ez
a jármű egy sík úttesten közlekedik. Két különböző pillanatban rögzítjük a kamerá-
nak a képét. Feltételezzük továbbá, hogy a kamera úgy lett rögzítve, hogy az optikai
tengelye párhuzamos az úttal.

Ekkor a két kép között az eltolásvektor a második koordinátájában változatlan
ezért írhatjuk, hogy

t =

 tx
0
tz

 = ρ

 cosα
0

sinα

 , →[t]× = ρ

 0 − sinα 0
sinα 0 − cosα
0 cosα 0

 .

Így a kétdimenziós eltolás a síkban a mozgás irányával és nagyságával adható meg.
A forgás – miután a második tengely a függőleges (gravitációs) iránynak felel meg

–, egy szög segítségével adható meg:

R =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 .

Lényegi mátrix síkban mozgás esetén. A lényegi mátrix a 7. összefüggés segítségé-
vel adható meg. Trigonometrikus alapösszefüggések segítségével végezzük az alábbi
levezetést:

E = [t]×R = ρ

 0 − sinα 0
sinα 0 − cosα
0 cosα 0

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 =

 0 − sinα 0
sinα cos β + cosα sin β 0 sinα sin β − cosα cos β

0 cosα 0

 =

 0 − sinα 0
sin (α + β) 0 − cos (α + β)

0 cosα 0

 . (114)

x

z

x

z

ß

α

Location 1

Location 2

57. ábra. Síkban mozgás esetén két szöggel tudjuk leírni a mozgást.
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Alapvető mátrix síkban mozgás esetén. Ha a kameráink kalibráltak, akkor a K1

és K2 belső paramétereket tartalmazó kalibrációs mátrixokat ismerjük. A jól ismert
XTEX1 = 0 összefüggés a lényegi mátrixot és a térbeli X1 és X2 pontokat köti össze.
A kalibrációs mátrixok ismerete esetén írhatjuk, hogy X1 ∼ K−1p1 és X2 ∼ K−1

2 p2.
A síkban mozgás esetén egy kamerát használunk, amely járműre van rögzítve. Ezért
a belső paramétereket tartalmazó kameramátrixok megegyeznek a két képre, azaz
K1 = K2. Az egyszerűség kedvéért a továbbiakban K-val jelöljük ezt a mátrixot.
Ekkor:

K =

 f 0 u0

0 f v0
0 0 1

→ K−1 =

 1/f 0 −u0/f
0 1/f −v0/f
0 0 1

 .

Félig kalibrált esetben csak a fókusztávot tekintjük ismeretlennek, a döféspontot
az origóba helyeztük. Ebben az esetben pedig azt írhatjuk, hogy

K =

 f 0 0
0 f 0
0 0 1

→ K−1 =

 1/f 0 0
0 1/f 0
0 0 1

 .

Az alapvető mátrixra igaz, hogy F = K−TEK−1 . Ekkor a kameraparamétereket
a 7. formulában megadott lényegi mátrix elemeibe behelyettesítve azt kapjuk, hogy

F =

 1/f 0 0
0 1/f 0

−u0/f −v0/f 1

 0 − sinα 0
sin (α + β) 0 − cos (α + β)

0 cosα 0

 1/f 0 −u0/f
0 1/f −v0/f
0 0 1

 =

 1/f 0 0
0 1/f 0

−u0/f −v0/f 1


 0 − sinα

f
sinα
f

v0
sin(α+β)

f
0 − sin(α+β)

f
u0 − cos (α + β)

0 cosα
f

− cosα
f

v0

 =

 0 − sinα
f2

sinα
f2 v0

sin(α+β)
f2 0 − sin(α+β)

f2 u0 − cos(α+β)
f

− sin(α+β)
f2 v0

cosα
f

+ sinα
f2 u0 − sinα

f2 u0v0 +
sin(α+β)

f
u0v0 +

cos(α+β)
f

v0 −− cosα
f

v0

 .

Félig kalibrált kamerák esetén u0 = v0 = 0. Ekkor a tagok lényegesen egyszerű-
södnek, kialakul a lényegi mátrixnál a "sakktáblás" mintázat:

F =

 0 − sinα
f2 0

sin(α+β)
f2 0 − cos(α+β)

f

0 cosα
f

0

 .
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K. Legkisebb négyzetes optimális megoldó síkban moz-
gáshoz

Ebben a szakaszban egy – a legkisebb négyzetek szempontjából optimális – algorit-
must javasolok a lényegi mátrix becslésére síkban mozgás esetére, ha legalább három
egyenlet áll rendelkezésre. Túlhatározott esetben, azaz négy vagy még több egyenlet
esetén is optimális a módszer.

A probléma Ax = 0 homogén lineáris alakban adott, ahol

x = [cos β sin β cos (α + β) sin (α + β)]T.

Az x vektor koordinátái összefüggnek. Az első kettő és az utolsó kettő érték ugyan-
annak a szögnek a szinusz- és koszinuszfüggvénye. A homogenitásból következik,
hogy a megoldás csak egy skáláig határozható meg. Ezért, ha az x paramétervektort
két 2D alvektorra osztjuk, akkor e vektorok hosszának egyenlőnek kell lennie.

A megkötések Lagrange-szorzók alkalmazásával adhatóak hozzá. A skálázási (mé-
retarányos) többértelműség és a két részvektor egyenlősége két külön multiplikátort
igényel.

A méretarányos kétértelműség azonban az egyik koordináta x vektorban való rög-
zítésével kezelhető. Például az utolsó koordinátát a következőképpen rögzíthetjük:
x = [γ δ ϵ 1]T . Ez a paraméterezés azonban instabil, ha az utolsó koordináta
– ami sin(α + β)-nak felel meg –, közel van a nullához. Ebben az esetben egy má-
sik, nagyon hasonló paraméterezést kell alkalmazni, a x harmadik koordinátáját kell
eggyé tenni: x = [γ δ 1 ϵ]T . Itt az előbbi esetet tárgyaljuk, a másik paraméterezés
egyszerűen kezelhető, hiszen a két eset egymásnak megfeleltethető az A együttható-
mátrix harmadik és negyedik oszlopának felcserélésével.

Jelöljük az A mátrix i-edik sorát ai vektorral, és fogalmazzuk meg a problémát
az új paraméterekkel egy J költségfüggvény minimalizálásaként, amely a következő-
képpen írható fel:

J = ∥γa1 + δa2 + ϵa3 + a4∥22 . (115)

A 2D alvektorok hosszára vonatkozó kényszer (azaz γ2 + δ2 = ϵ2 + 1) érvényesí-
tése érdekében csak egyetlen Lagrange-szorzót vezetünk be, és a költségfüggvényt a
következőképpen módosítjuk:

Ĵ = ∥γa1 + δa2 + ϵa3 + a4∥22 + λ
(
γ2 + δ2 − ϵ2 − 1

)
.

A minimumot az ismeretlen paraméterek (γ, δ és ϵ) deriváltjaival kapjuk a követke-
zőképpen:

∂Ĵ

∂γ
= 2(γaT

1 + δaT
2 + ϵaT

3 + aT
4)a1 + 2λγ = 0,

∂Ĵ

∂δ
= 2(γaT

1 + δaT
2 + ϵaT

3 + aT
4)a2 + 2λδ = 0,

∂Ĵ

∂ϵ
= 2(γaT

1 + δaT
2 + ϵaT

3 + aT
4)a3 − 2λϵ = 0.

Mátrixos alakban mindezt így írhatjuk:
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 λ+ aT
1a1 aT

1a2 aT
1a3

aT
2a1 λ+ aT

2a2 aT
2a3

aT
3a1 aT

3a2 aT
3a3 − λ


︸ ︷︷ ︸

M(λ)

 γ
δ
ϵ


︸ ︷︷ ︸

x

= −

 aT
1

aT
2

aT
3

a4︸ ︷︷ ︸
b

.

Ez az alak még kompaktabban a következő homogén lineáris egyenletrendszer
segítségével adható meg: M (λ)x = b. Az x vektor elemeit úgy kaphatjuk meg,
hogy ezt a rendszert megszorozzuk az M−1 (λ) inverz mátrixszal52. Az inverzet magát
pedig felírhatjuk az adjungált mátrixnak és a determinánsnak a hányadosaként: γ

δ
ϵ

 = −adj(M(λ))

det(M(λ))

 aT
1

aT
2

aT
3

 a4. (116)

Az adjungált mátrixot a következőképpen fejthetjük ki:

adj(M) =

 (λ+aT
2a2)(aT

3a3−λ)−(aT
2a3)

2
aT
2a3aT

3a1−aT
2a1(aT

3a3−λ) aT
2a1aT

3a2−aT
3a1(λ+aT

2a2)
aT
1a3aT

3a2−aT
2a1(aT

3a3−λ) (λ+aT
1a1)(aT

3a3−λ)−(aT
1a3)

2
aT
1a2aT

3a1−aT
3a1(λ+aT

1a1)
aT
2a3aT

3a1−aT
2a1(aT

3a3−λ) aT
1a2aT

3a1−aT
3a1(λ+aT

1a1) (λ+aT
1a1)(λ+aT

2a2)−(aT
1a2)

2

 .

(117)
adj(M) elemeit a λ polinomjai alkotják, a polinomok fokszáma egy vagy kettő. Az

M mátrix determinánsa pedig egy harmadfokú polinom. Így minden eleme kifejez-
hető egy kvadratikus és egy köbös polinom hányadosaként a következő formában:

γ = P2
1(λ)/P

3
4(λ), δ = P2

2(λ)/P
3
4(λ), ϵ = P2

3(λ)/P
3
4(λ).

A P2
1, P

2
2 és P2

3 polinomokat az adj(M(λ)) adjungált mátrix első, második és harma-
dik sorának az

[
aT
4a1 aT

4a2 aT
4a3

]T vektorral való szorzásával kapjuk. P3
4 pedig az

M(λ) mátrix determinánsa.
A Lagrange-szorzó meghatározásához a γ2+δ2−ϵ2−1 = 0 feltételt kell figyelembe

venni. Ez egy hatodfokú λ polinomot eredményez a következőképpen:(
P2

1(λ)
)2

+
(
P2

2(λ)
)2 − (P2

3(λ)
)2 − (P3

4(λ)
)2

= 0.

Ennek a polinomnak legfeljebb hat különböző gyöke van. Csak a valós paramé-
tereket kell megtartani, a komplex gyököket elvethetjük. A γ, δ és ϵ paraméterekre
vonatkozó megoldásokat úgy kapjuk meg, hogy a λ becsült valós gyökeit behelyet-
tesítjük a 116. egyenletbe. A polinomok megoldásához az Eigen könyvtárat53 alkal-
mazzuk, ez a könyvtár kiforrott, emiatt másnak is jó szívvel ajánlom a használatát
algebrai alkalmazásokhoz.
Degenerált esetek. A javasolt algoritmus a két szöget egy lineáris egyenletrendszer
segítségével becsüli meg, amely legalább három független egyenletből áll. Az együtt-
hatómátrix két részre osztható, a bal oldali két oszlop a α szöghöz, a harmadik és
negyedik az (α + β) szöghöz tartozik. Algebrailag a konfiguráció csak akkor degene-
rált, ha az egyik rész csak nulla elemekből áll. Ha az egyenleteink pontmegfelelésből
származnak, akkor ez csak abban az esetben lehetséges, ha az összes pontmegfelelés
második koordinátája nulla, azaz a pontok rajta vannak a horizonton.

52 A mátrix invertálható, kivéve nagyon speciális degenerált eseteket.
53 Eigen Library: https://eigen.tuxfamily.org/index.php?title=Main_Page

145

               hajder_274_24

https://eigen.tuxfamily.org/index.php?title=Main_Page


L. Levenberg-Marquardt algoritmus fotomoterikus szte-
reóhoz

A következő Matlab kód kiszámítása Symbolic Toolbox használatával generálja a a
mátrixokat a fotometrikus sztereó alapú Levenberg-Marquardt algoritmushoz. Fontos
megjegyzés, hogy a ccode parancs segítségével közvetlenül is generálhatunk C/C++
forráskódot a U, V vagy X szimbólumokból.

function [J, JtJ, U, V, X] = get_mats()

bp1 = sym(’bp1’);
bp2 = sym(’bp2’);
bp3 = sym(’bp3’);
x1 = sym(’x1’);
x2 = sym(’x2’);
x3 = sym(’x3’);
li1 = sym(’li1’);
li2 = sym(’li2’);
li3 = sym(’li3’);
k = sym(’k’);
lambda = sym(’lambda’);

L = [li1; li2; li3];
S = [x1; x2; x3];
N = [bp1; bp2; bp3];
R = L - S;
mag_r2 = R(1)^2 + R(2)^2 + R(3)^2;
mag_r = sqrt(mag_r2);
prodrn = R(1) * N(1) + R(2) * N(2) + R(3) * N(3);

f = k * lambda / (lambda + mag_r2) * prodrn / mag_r;

J = jacobian(f, [li1, li2, li3, k, bp1, bp2, bp3]);
JtJ = J’ * J;

U = JtJ(1:3, 1:3);
V = JtJ(4:7, 4:7);
X = JtJ(1:3, 4:7)

end
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M. Kamera válaszfüggvényének becslése

Kísérleteink során megállapítottuk, hogy a pontszerű fényforrások által megvilágított
tárgyak normálvektorainak becsléséhez alkalmazott számítás meglehetősen érzékeny
a kamera válaszfüggvényére. A válaszfüggvényt az határozza meg, hogy a megvilá-
gítás sugárzása hogyan képeződik le a pixelekre. Számos hatékony becslés létezik
a számítógépes grafikai szakirodalomban: mi a Debevec és mtsai. módszerét [37]
választottuk egyszerűsége miatt. A módszert itt röviden ismertetem.

Egy referenciajelenet lefényképezése több ∆tj, j = 1 . . . F expozíciós idővel törté-
nik. A pixelek intenzitásértékeit P j

i jelöli, ahol az i index a pixel sorszáma a képkoc-
kán belül.

A konkrét intenzitásérték az expozíciós idő és a háromdimenziós jelenetből szár-
mazó sugárzásnak a függvénye:

P j
i = crf(Ri∆tj), (118)

ahol Ri a sugárzás, és crf() a kamera válaszfüggvénye.
A cél az alábbi kvadratikus célfüggvény minimalizálása:

P∑
i=1

F∑
j=1

[
g(P j

i )− lnRi − ln∆tj
]2

+ α
255∑
z=0

g
′′
(z), (119)

58. ábra. Balra: Referenciaképek Nikon™D50 kamerával, különböző expozíciós
idővel. Jobbra: A kamera becsült inverz válaszfüggvényei a három színcsatorná-
ra.

ahol g = ln
(
crf−1

)
az inverz kamera válaszfüggvénynek a logaritmusa54. A g függ-

vény értelmezési tartománya a [0 . . . 255] intervallum, tehát 256 (kvantált) értékkel
ábrázolható. Az α egy simasági állandó, így a mimimalizálandó függvény második
tagja elősegíti, hogy a függvény szomszédos értékei között ne legyen nagy ugrás. A
sugárzások lnRi logaritmusai szintén ismeretlenek. Ha az inverz kamera második vá-
laszfüggvény deriváltját a diszkrét értékekből a következőképpen közelítjük: g′′

(x) =
= g(x− 1)− 2g(x)+ g(x+1), akkor a probléma lineáris lesz az ismeretlen változókra

54 CRF: Camera Response Function.
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vonatkoztatva, és a megoldás az együtthatómátrix szinguláris értékű felbontásával
adható meg.

Kiszámítottuk a crf értékét a mi Nikon™D50 digitális fényképezőgépünk vörös,
zöld és kék csatornáira. A kiszámított válaszfüggvények és a referenciajelenetünk
képeit az 58. ábra szemlélteti. Vizsgálatainkban az α paraméter értékét – tapasztala-
taink alapján – 100-ra állítottuk be.
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N. További rekonstrukciós eredmények fotometrikus szte-
reó segítségével

A függeléknek ebben a fejezetében a fotometrikus sztereó algoritmussal kapott ered-
ményeket tettem be, mindkét esetben valós objektumok normáltérképeit rekonst-
ruáltuk. A fő szövegben helyhiány miatt csak néhány eredmény beillesztésére volt
lehetőség, reményeim szerint az Olvasó is szívesen böngészi az eredményeket.

59. ábra. Felül: négy példa a húsz bemeneti képből. Alul: a normáltérkép RGB
színekkel kódolva.

60. ábra. Mesterségesen készített (renderelt) képek az 59. ábrán látható tárgy re-
konstruált normáltérképének segítségével.

61. ábra. Felül: négy példa a nyolc bemeneti képből. Alul: a normáltérkép RGB
színekkel kódolva.
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62. ábra. Felül: négy példa a nyolc bemeneti képből. Alul: a normáltérkép RGB
színekkel kódolva.

63. ábra. Mesterségesen készített (renderelt) képek a 62. ábrán látható tárgy re-
konstruált normáltérképének segítségével.

64. ábra. Felül: négy példa a nyolc bemeneti képből. Alul: a normáltérkép RGB
színekkel kódolva.

65. ábra. Mesterségesen készített (renderelt) képek a 64. ábrán látható tárgy re-
konstruált normáltérképének segítségével.
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