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Előszó
A termodinamika mindig is egy meglehetősen egyedi területet képviselt mind a mér-
nöki, mind a fizikai tudományokon belül. Mérnöki szemmel nézve sokszor a vegyi
folyamatok leírása vagy az energetikai körfolyamatok modellezése jut eszünkbe róla,
de a háttérben az irreverzibilis termodinamika, mint a folytonos közegekben leját-
szódó disszipatív folyamatok leírása húzódik meg. Ennek segítségével a mérnöki
tudományokban használt alapvető modellek következetesen származtathatók, a fo-
lyadékok Newton-féle viszkozitási törvényétől kezdve a viszkoelasztikus modelleken
át a Fourier-törvényig, valamint számos további kapcsolt feladat is megoldható a
termodinamika segítségével. Ilyen például a termodiffúzió, amely már a legegysze-
rűbb szárítási folyamat során is nagy jelentőséggel bír – gondoljunk csak a papír-
gyártásra és a húsipari termékek érlelésére [1, 2]. Szintén a termodinamikai elvek
felhasználásával tudunk folyamatokról, valamint azok stabilitásáról gondolkodni [3],
ezeket a folyamatokat állapotjelzőkkel kell ellátni, és döntést kell hozni ezek térbeli
és időbeli függéséről. A legegyszerűbb folyamatszemléletű leírásmód a koncentrált
paraméterű modellezés, ekkor közönséges differenciálegyenletekből épülő modelleket
használunk. Ezt számtalan területen alkalmazzuk, a végeselemes modellektől kezdve
a kísérletek kiértékeléséig. Mérnöki szempontból a termodinamika egy igen hasznos
és sokrétű eszköztár. Fizikusi szemmel a termodinamikai összefüggések sokszor a
statisztikus fizikának egy alterületeként jelennek meg, amelyet egyfajta kényszer-
ként használ a kinetikus elmélet (például a h-tételen keresztül), valamint minden
erre épülő megközelítés (például a racionális kiterjesztett termodinamika), de a fo-
lyamatok stabilitásának figyelembevétele – a második főtétel kihasználásával – ott
is elengedhetetlen.

A dolgozatom bizonyos szempontból átmenetet képez a mérnöki és a fizikusi terü-
letek között, de sokkal inkább a mérnöki szemléletet tükrözi és azt tartja előtérben.
Mérnöki szemmel végig az alkalmazásokat emelem ki, ehhez jó néhány példát be is
mutatok majd. Ugyanakkor nem lehet figyelmen kívül hagyni a kinetikus elméleti
kapcsolatokat sem, főleg az egyes modellek értelmezésében és a megfelelő leíró egyen-
letek kiválasztása során. A statisztikus fizikában a transzportjelenségek leírásához
használt modellekben mindig meg kell határozni a terjedési mechanizmust, és annak
leírását is meg kell adni, amiből a transzportegyütthatók jelentős része mérés nél-
kül is meghatározható, ami több gyakorlati helyzetben kétségtelenül hasznos eszköz,
főképp olyan esetekben, amikor részletes mérések szóba sem jöhetnek. Gondoljunk
csak az űreszközök légkörbe való belépésére, ahol az ionizált gázok szuperszonikus
áramlását erős elektromágneses térben kellene vizsgálni. Ilyen esetben hogyan ír-
hatnánk fel a kapcsolt modellt, és hogyan határozhatnánk meg például a kérdéses
gáz viszkozitását? Bár ez igen összetett példa, mégsem szabad erre szélsőségként
tekinteni. Az űrtechnológia, az orvostechnológia, a különféle gyártástechnológiák,
valamint a szuperérzékeny mérések és műszerek működtetése, fejlesztése mind olyan
területek, amelyek manapság a mérnöki modellezés fő kihívásait hordozzák, de a
hagyományos, klasszikus eszközökkel nem megoldhatók. Ilyen tekintetben kiváló
példák az új generációs detektorok a CERN-ben [4], vagy a gravitációs hullám-
detektorok, főképp azok európai képviselője, az Einstein Teleszkóp [5]. Az efféle,
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illetve az ehhez hasonló műszerek fejlesztése és gyártása jelentős részben mérnö-
ki feladat, és a meglévő pontossági és érzékenységi mutatók nagyságrendekkel való
megjavítása modern modellezési eszköztár nélkül nem lehetséges. Az irreverzibilis
termodinamika része ennek az eszköztárnak, és a szemlélet kiterjesztése – hosszútá-
von – elengedhetetlen. A dolgozatom ezt a hosszútávú gondolkodást alapozza meg
a heterogén anyagok hővezetési tulajdonságainak leírására fókuszálva.

A kinetikus elméleti megközelítés a mérnöki tudományokban ritkán alkalmazott,
de bizonyos esetekben határozottan konstruktív és iránymutató eszköz. Egy konti-
nuumalapú megközelítésben azonban sokkal több a modellezési szabadságfok, így az
egyes nemlinearitások lényegesen könnyebben figyelembe vehetők. Egy modell akkor
válik igazán erőssé, ha lehetőségünk van más megközelítésű modellek tanulságait is
beépíteni, amennyiben azt az adott feladat megköveteli vagy előnyben részesíti és
ennek a feltételnek a kontinuum-megközelítésű modellek eleget is tesznek. Koráb-
bi kutatásaim során ehhez a kinetikus elmélettel való kompatibilitást is figyelembe
kellett vennem.

Habár a dolgozatom főként a hővezetési jelenségek leírására helyezi a hangsúlyt,
bizonyos esetekben nem tekinthetek el a kapcsolt áramlástani-hővezetési modellek
tárgyalásától sem, különösen anyagi nemlinearitások esetén. A termodinamikai hát-
teret végig a kontinuumközegek szempontjából vizsgálom, mérnöki szemlélettel. Bár
a kinetikus elméleti vonatkozásokat csak érintőlegesen tárgyalom, ahol szükséges, a
bemutatott eredmények eléréséhez és kutatásaimhoz végig elengedhetetlen volt az
irodalomban fellelhető egyéb termodinamikai megközelítések ismerete. Ezt az isme-
retanyagot foglalja össze a [6] publikációm, így a dolgozatomban csak a legszüksége-
sebb mértékig tárgyalom a vonatkozó szakirodalmi hátteret, szem előtt tartva, hogy
a tisztelt Olvasó nem feltétlenül jártas a Fourier-egyenleten túli jelenségek és mo-
dellek használatában, értelmezésében, különösen mivel ez még kevesek által művelt
mérnöki terület.

Végül fontosnak tartom kiemelni, hogy a dolgozatom eszköztárat nyújt a Fourier-
egyenleten túli kontinuum-megközelítésű1 hővezetési modellek kezeléséhez. A ku-
tatási eredményeim főként a Guyer–Krumhansl-, valamint a Jeffreys-egyenletekre
vonatkoznak gyakorlati hasznosságuk miatt, de több megállapításom további ter-
modinamikailag kompatibilis modellekre is érvényes marad. A bemutatott eszköz-
tár, és így a dolgozatom célja, hogy a mérnöki közösség számára olyan útmuta-
tót adjon, amely egyértelműsíti, mik azok a szempontok és eszközök, amelyeket a
Fourier-egyenlethez képest ugyanúgy, vagy éppen ellenkezőleg, teljesen másképp kell
értelmezni és felhasználni. Az utóbbi tulajdonságokból jelentősen több van. Össze-
foglalva, a dolgozatom

• egységes termodinamikai keretben tárgyalja a Fourier- és a Fourier-egyenleten
túli hővezetési modelleket;

• az egységes termodinamikai keretrendszert kihasználva vizsgálja az anyagi
nemlinearitások figyelembevételét és azok következményeit;

• röviden bemutatja a modellek analitikus és numerikus megoldási módszereit;

1Az egyértelműség kedvéért a "kontinuum" jelzőt, ahol csak indokoltnak érzem, használni fogom.
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• tárgyalja a Fourier-egyenleten túli modellek mérnöki szempontú gyakorlati fel-
használási lehetőségeit.

Mindez analóg azokkal a törekvésekkel, amelyek a Fourier-féle hővezetési egyenle-
tet a mérnöki közösség számára széles körben használhatóvá tették, és amelyekből
kifolyólag egy megbízható, standard modellezési eljárássá válhatott. Természetesen
ez a cél ezzel a munkával nem ér és nem is érhet véget, de meglátásom szerint a
dolgozatom ezt hosszútávon alapozza meg.

Kiegészítő megjegyzések
A dolgozatomban a Nemzetközi Súly- és Mértékügyi Hivatal SI mértékegységekkel
kapcsolatos ajánlásait követem, azaz a dimenziótlan egységet nem írom ki "[-]" vagy
"[1]" módon, valamint a mértékegységeket "p / Pa" módon fogom jelölni. A leg-
gyakrabban használt jelöléseket és rövidítéseket az alábbi táblázat foglalja össze;
minden más jelölést, ahol szükséges, külön elmagyarázok az egyértelműséget szem
előtt tartva.

Legfontosabb jelölések és rövidítések jegyzéke
Latin betűk
a Hőfokvezetési tényező
cv Izochor fajhő
e Fajlagos belső energia
qV Térfogati hőforrássűrűség
r Helykoordináta henger koordináta-rendszerben
s Fajlagos entrópia
t Idő
x Helykoordináta Descartes-féle koordináta-rendszerben
L Jellemző méret
T Hőmérséklet
V Térfogat
q, q Hőáramsűrűség vektora vagy annak komponense
a Félkövér kisbetűk vektorokat jelölnek
A Félkövér nagybetűk tenzorokat (esetleg mátrixokat) jelölnek

Görög betűk
α Hőátadási tényező
κ Hosszdimenziójú transzportparaméter
λ Hővezetési tényező
ρ Tömegsűrűség
τ Idődimenziójú transzportparaméter, relaxációs idő
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Matematikai jelölések
∂t, ∂x, ∂r Idő- (t) vagy helykoordináta (x vagy r) szerinti parciális deriválás
∇ Nabla operátor
∆ Laplace-operátor

Rövidítések
GK Guyer–Krumhansl-egyenlet
JE Jeffreys-egyenlet
MCV Maxwell–Cattaneo–Vernotte-egyenlet
NSF Navier–Stokes–Fourier-egyenlet
LFA Light/Laser Flash Analyzer – Hőimpulzuselvű mérési módszer
DMA Dynamic Mechanical Analyzer – Dinamikus mechanikai vizsgálatok
PLA Politejsav
RGO Redukált grafén-oxid

Dimenziótlan mennyiségek
Bi Biot-szám
Fo Fourier-szám
�̂ Minden más esetben a kalappal jelölt mennyiségek dimenziótlanok

Indexek
i, j, m, n Tenzorok vagy sorozatok komponenseit jelölik
0 Referencia értéket vagy egy sorozat nulladik tagját jelöli
1, 2 Anyagi komponenseket vagy eltérő időskálákat jelölnek
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1. fejezet

Bevezetés

Az utóbbi évtizedekben igen sokféle termodinamikai megközelítés jelent meg, és
mindegyik sajátos módszertannal rendelkezik a klasszikus transzportegyenletek ki-
terjesztésére. Habár a dolgozatban a hangsúlyt a hővezetési jelenségekre helyezem,
tehát a Fourier-törvényt, valamint annak általánosításait tárgyalom, de elkerülhetet-
len lesz, hogy helyenként kitekintést nyújtsak a kapcsolt jelenségek felé, mint például
a termomechanika és a kapcsolt folyadék–hővezetési egyenletek. A szakirodalomban
megtalálható számtalan megközelítés elterjedése meglehetősen nehézzé teszi a teljes
szakterület áttekintését, így arra törekszem, hogy a bemutatott tudományos eredmé-
nyek enélkül is érthetőek maradjanak. Az egyetlen megkötés az, hogy a hővezetési
jelenségeket kontinuum-termodinamikai szemszögből kívánom tárgyalni.

Amikor egy transzportegyenlet általánosításáról beszélek, akkor azalatt az anya-
got leíró, úgynevezett konstitúciós összefüggések kiterjesztését értem. Ezek a kiter-
jesztések a klasszikus összefüggésekhez képest, az adott modelltől függően, továb-
bi idő- és térderiváltat tartalmazhatnak. A szakirodalom ezt a típusú kiterjesztést
gyengén nemlokális általánosításnak nevezi [7–10]. Az erős nemlokális kiterjesztések
integrálegyenletek formájában jelennek meg, azonban azok gyakran vitatható tulaj-
donságokkal rendelkeznek (például az anyagok végtelen memóriájának feltétele [6]),
emiatt a dolgozatomban nem tárgyalom ezt a módszertant. Továbbá, a kapcsolt fel-
adatok esetében gyakran előfordul a különböző tenzori rendű mennyiségek csatolása
is. Erre jó példa a folyadékok esetén felmerülő nyomástenzor és a hőáramsűrűség
vektorának csatolása, azaz a klasszikus esettől eltérően a csatolást nemcsak a mér-
legegyenletek szintjén különféle forrástagokon keresztül [11], hanem a konstitutív
egyenletek szintjén is be lehet vezetni, amihez a termodinamika nélkülözhetetlen
segítséget nyújt [12–14]. A termodinamikai háttér egyaránt előnyös a második főté-
tellel való kompatibilitás biztosításában (így a megoldások stabilitásában), az arra
épülő analitikus és numerikus megoldások megtalálásában, anyagi nemlinearitások
kezelésében, és azoknak a mérnöki gyakorlatban való felhasználásában.

A hővezetési egyenletek fejlesztésére tett erőfeszítéseket elsőként Tisza és Lan-
dau elméleti irányú jóslatai [15–17], később pedig a nagy figyelmet kapott alacsony
hőmérsékletű (< 20 K) kísérletek lendítették fel, elsősorban a XX. század második
felében [18, 19]. Ezek a kísérletek bizonyítékot szolgáltattak arra, hogy a Fourier-
törvény nem ad elégséges leírást, és bizonyosan szükség van annak kiterjesztésére.
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1.1. ábra. A) Példa szuperfolyadékok hőimpulzuselvű kísérleti elrendezésére [20], jobb
oldalon pedig a mért jelalak látható (részlet A. Leitner előadásából [21]). A folyadékba
merített egyik lemezen termikusan gerjesztik, míg a másikon rögzítik a beérkező jeleket. A
szenzor fel-le mozgatásával megfigyelhetőek lesznek a többször visszaverődési jelenségek is.
B) Kizárólag a Fourier-egyenlet ismeretében egy hőimpulzuselvű mérésnél ezt a jelalakot
várhatnánk el, azonban a korai, alacsony hőmérsékletű kísérletek ettől lényegesen eltérnek.
C) Fontos szempont a test kiindulási hőmérséklete, mivel annak hővezetési tényezője akár
nagyságrendeket is változhat [18,22]. D) A ballisztikus és a második hang hullámterjedési
jelalakjai eltérő NaF makroszkopikus méretű kristályokra vonatkozóan, a megfigyeléseket
µs időskálán kellett elvégezni, különben a gyors hullámjelenségek láthatatlanok maradnak
[18].

Akkoriban kétféle, a Fourier-egyenleten túlmutató jelenséget figyeltek meg. Az
első az úgynevezett második hang volt, ami egy csillapított, tisztán termikus hullám-
terjedési jelenség. A második hullámjelenséget a szakirodalom ballisztikus terjedés-
nek nevezi, és jellemzője, hogy a termikus jel mindig a közegre jellemző hangsebesség-
gel terjed, így kontinuum szemléletben ez egy termomechanikai hullámjelenségként
értelmezhető. A második hang mindig lassabban terjed, mint a ballisztikus jel, így a
kísérletekben az észlelt jelterjedési sebesség egyértelmű módot ad arra, hogyan azo-
nosíthatják be az egyes terjedési módokat. Az 1.1. ábra több példát is bemutat arra,
hogy ugyanazzal a hőimpulzuskísérleti elrendezéssel hányféle eredményt kaphatunk,
attól függően, hogy milyen anyagot, mekkora időskálán, milyen körülmények között
vizsgálunk. Például egy NaF kristály hővezetési tényezője nagyságrendekkel eltér-
het attól függően, hogy mekkora referencia-hőmérsékleten, vagy milyen tisztaságban
vizsgáljuk [18,22]. Szintén lényeges, hogy a megfigyeléseinket mekkora időskálán vé-
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gezzük, például a felsorolt hullámjelenségeket csak µs időskálán tudták megfigyelni,
igen alacsony hőmérsékleten.

Éppen a jelterjedési sebesség vizsgálata miatt preferálja a szakirodalom a hi-
perbolikus típusú egyenleteket, mivel ez a tulajdonság lineáris egyenletek esetén
viszonylag könnyen vizsgálható1, és egyben összhangban van a világképünkkel, mi-
szerint minden jelnek véges a jelterjedési sebessége, szemben a parabolikus típu-
sú egyenletekkel. A hiperbolikus típusú egyenletek további matematikai előnye a
Cauchy-probléma korrekt kitűzöttségének biztosítása. Ennél a pontnál szeretném
megjegyezni, hogy a mérnöki gyakorlat szempontjából viszont nincs probléma a pa-
rabolikus egyenletekkel sem, hiszen a Fourier- és a Navier–Stokes-egyenletek is para-
bolikusak, és mégis az általánosításaik szükségességét elsődlegesen nem ez indokolja,
hanem a leírni kívánt jelenségek szélesebb köre. A valódi jelterjedési sebességeket
és a hozzájuk tartozó időskálákat a vonatkozó anyagi jellemzők határozzák meg, a
megoldások szempontjából nem jelent döntő különbséget a modellek ezen tulajdon-
sága. Továbbá, a gyengén nemlokális modellekben megfigyelhető egyfajta "hierar-
chia", amelyben a parabolikus és hiperbolikus modellek felváltva követik egymást,
így minden kiterjesztett parabolikus egyenlethez létezik egy hiperbolikus kiterjesz-
tés, és bármelyik típus a másik határeseteként képezhető [23, 24]. Emiatt ezzel a
parabolikus-hiperbolikus kérdéskörrel a dolgozat nem kíván többet foglalkozni.

Sokáig a statisztikus fizikai leírások és a kétfolyadék modellek dominálták a meg-
figyelések értelmezését. Például a második hang esetében a kísérletekben egyszerre
voltak jelen a hullámterjedési és a diffúziós hatások, vagyis a hővezetési folyamat két
időskálán zajlott. Ebben a tekintetben a Fourier-törvény csak a diffúziós időskálát
tartalmazza, így nem tekinthető megfelelő modellnek. Ezért olyan modelleket cél-
szerű bevezetni, amelyekben a megfigyelt két időskála szintén megjelenik. Ezt két
módon képzelték el. Az egyik az úgynevezett kétfolyadék modellekre vonatkozik,
amelyekben az adott hővezető közeget szuperfolyadék és normál fázisok keveréke-
ként tekintették [17, 25]. Ez abból a szempontból helytálló, hogy az első sikeres
kísérleteket szuperfolyékony héliumon végezték el [26], azonban ezek a modellek
igen bonyolultak, és nem általánosak.

A másik megközelítés a szintén statisztikusalapú fononhidrodinamika volt,
amelyben a terjedést úgynevezett fononok – mint kvázirészecskék – és azok ütközése
írja le, vagyis egy fononokból álló gáz állapotleírása a cél [12, 27]. Kétféle ütközési
mechanizmus bevezetésével két időskálás modellt kapunk eredményül. Ez a két me-
chanizmus speciálisan a rezisztív és normál ütközéseknek felel meg, és ezek aránya
határozza meg, hogy a diffúziós vagy a hullámterjedési mechanizmusok közül me-
lyik fog dominálni. Az elnevezések arra utalnak, hogy a fononok, mint részecskék,
ütközése közben az impulzusaik állandóak maradnak-e (normál ütközés) vagy sem
(rezisztív ütközés), így a rezisztív ütközés felel meg a diffúziós terjedésnek. Ebben
a keretrendszerben maradva a ballisztikus terjedés modellezése már csak egy lépés,

1A hiperbolicitás legkönnyebben a ∂ty+A∂xy+By = f alakban vizsgálható, ahol y tartalmazza
az egyes mezőket, például a T hőmérsékletet és a q hőáramsűrűséget, A és B együtthatómátrixok,
f a forrástagokat tartalmazó vektor. Ekkor az A sajátértékei megadják a karakterisztikus terjedési
sebességeket. Ha azok végesek, akkor hiperbolikus rendszerről beszélünk. Ha egy egyenletrendszer
nem "teljes", tehát például nem tartalmaz minden mezőre időderiváltat, mint ahogyan a Fourier-
törvény sem, akkor az feltételesen kiegészíthető egy ε együtthatóval, majd a sajátértékekben az
ε→ 0 határértéket kell képezni. Ez a lineáris egyenletek esetén egyszerűen vizsgálható tulajdonság.
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1.2. ábra. A második hang terjedési sebességének hőmérsékletfüggése, érdemes megfi-
gyelni a 0 K közelében lévő meredek változást [28,29].

ugyanis ekkor a fononok egymással nem ütköznek, hanem a test egyik peremétől
a másikig zavartalanul terjednek, és csak a peremen való szóródás eredményezi a
járulékot, tehát a harmadik időskála bevezetését. Ezeket a tulajdonságokat később
matematikai formába öntöm, és konkrét hővezetési modellekhez kapcsolom. Az
1970-es évek közepére a szakirodalom már számos sikeres alacsony hőmérsékletű kí-
sérletet dokumentált, amelyek jelentősen megelőzték az elméleti eredményeket. Ez
a ballisztikus terjedés modellezésére különösen érvényes volt.

Ebből az időszakból három lényeges elméleti eredményt emelek ki, amelyek a
dolgozatomhoz közvetlenül kapcsolódnak. Az első fontos mérföldkő a második hang
terjedési sebességének hőmérsékletfüggésének sikeres modellezése, amelyhez a sta-
tisztikai háttér nélkülözhetetlen volt. Az 1.2. ábra szemlélteti, hogy milyen mérték-
ben nemlineáris a terjedési sebesség hőmérséklettel való változása. Mivel a terje-
dési sebesség az anyagi tulajdonságok összességéből fakad, az anyagi nemlinearitá-
sok vizsgálata elengedhetetlen, ezért a dolgozatban kitérek a hőmérséklettől függő
transzportegyütthatók kérdésére is.

A második eredmény Gyarmati Istvánhoz köthető, akinek sikerült a klasszikus
kontinuum-termodinamikát olyan módon kiterjesztenie, amely keretek között a má-
sodik hang jelensége is modellezhetővé vált [30]. Később erre alapozva alakult ki és
terjedt el a nemzetközileg is elismert kiterjesztett irreverzibilis termodinamika el-
mélete. A dolgozatom részben ennek a megközelítésnek az örökségére épít, részben
annak továbbfejlesztését mutatja be.

A harmadik, szintén nagy jelentőségű eredmény Guyer és Krumhansl nevéhez
köthető, akik statisztikai alapokból kiindulva meg tudták jósolni, hogy egy adott
szilárd közegben milyen módon, milyen frekvenciával kell a gerjesztést létrehozni
ahhoz, hogy a második hang jelensége megfigyelhetővé váljon [27,31], nem elhanya-
golható módon, egy parabolikus modellt felhasználva. Ilyen becslés a ballisztikus
terjedésre azóta sem létezik, de a technológiai viszonyoknak köszönhetően már nem
szükséges. Ezt a becslést ablakfeltételnek nevezik, és a dolgozat szempontjából szin-
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tén egy lényeges elemet, az időskálák szerepét hangsúlyozza. Annak ellenére, hogy
a dolgozatban szoba-hőmérsékletű, makroszkopikus skálákra tervezett hőimpulzus-
kísérletekről lesz szó, a különféle megfigyelések között analógiák figyelhetőek meg,
amelyeket ilyen szempontból ki is használok a későbbiekben.

Habár a dolgozatban a második hang és a ballisztikus jelenségek modellezése
a mérnöki alkalmazások szempontjából nem kap nagy hangsúlyt, de ezek ismerete
fontos ahhoz, hogy különbséget tudjunk tenni a dolgozatban tárgyalt egyes hőveze-
tési modellek és azok értelmezése között. Az utóbbi évtizedekben sok technológiai
tényező megváltozott, amelynek következményeként a Fourier-egyenleten túlmutató
modellek alkalmazási lehetőségei lényegesen kiszélesedtek, a szakirodalom számos
modellt ajánl és így annak leszűkítése elengedhetetlen számunkra. Egy modern,
a technológiai igényeket kellőképpen kiszolgáló hővezetési elmélet és keretrendszer
felállítása megköveteli a mérnöki és fizikusi szempontok, ismeretek egyesítését. Emi-
att bár lehetne külön-külön tárgyalni az elméleti és a gyakorlati eseteket, valójában
nem érdemes. A hővezetési modellek kiterjesztése határozottan megköveteli több
szempontrendszer átgondolását. Az imént említett keretrendszer nem más, mint az
elméleti szempontok alapján kiválasztott hővezetési modell működtetéséhez és alkal-
mazásához szükséges eszközök megteremtése. Ez magában foglalja az analitikus és
numerikus megoldási módszerek kidolgozását, fejlesztését, valamint az adott modell
matematikai tulajdonságainak elemzését.

Ezek a szempontrendszerek elsősorban a technológiai fejlődés miatt kerülnek elő-
térbe. A Fourier-tól eltérő jelenségek nem csupán alacsony hőmérsékletű rendszerek
esetén merülnek fel, hanem szoba-hőmérsékletű rendszerekben is. A megértést se-
gíti a kinetikus gázelméletből ismert Knudsen-szám használata, amely egy adott
összetételű gáz adott állapotára vonatkozó közepes szabad úthosszt arányosítja a
rendszer karakterisztikus méretéhez (például a tartályhoz, amiben a gáz van). A
fononhidrodinamikai elméletek akkor működnek megfelelően, ha a Knudsen szám
eléri a 10−3-os nagyságrendet, illetve annál nagyobb2. Statisztikus szemmel nézve,
alacsony hőmérsékletű rendszerek esetén a közepes szabad úthossz jelentősen megnő,
emiatt makroszkopikus méretű testekben is meg tudták figyelni a Fourier-egyenlettel
nem modellezhető jelenségeket. A technológiai fejlődés, különösen a nanotechnológia
egyre szélesebb elterjedésével válik fontossá, ugyanis szobahőmérsékleten, de mikro-
méteres, vagy annál még sokkal kisebb hosszskálákon is megfigyelhetők a korábban
említett hullámjelenségek [6, 32–35]. Emiatt ezek a hullámterjedési hatások a vé-
konyrétegeknél, szuperrácsoknál ("superlattices"), és mikrotechnológiai eszközöknél
egyaránt jelen vannak. Az 1.3. ábra szemlélteti a szuperrácsok szerkezetét, ame-
lyeknél a hővezetési képesség a rétegszám és rétegvastagság helyes megválasztásával
kontrollálható [36–38].

Ezeknél a karakterisztikus hosszskálájú testeknél jelentős méretfüggés figyelhető
meg, tehát fontos, hogy az adott hővezetési modell megfelelő skálázási tulajdon-
ságokkal is rendelkezzen. Lényeges megemlíteni, hogy a kontinuum hipotézis még
nanoszerkezetű anyagok vizsgálata esetén sem feltétlenül sérül olyan értelemben,
hogy amennyire a kinetikus elmélet a momentumsorfejtésen keresztül "átlagmező-
ket" használ, ugyanígy a kontinuumelméletet is fel lehet fogni átlagmezők leírásaként.
Ennek következtében a dolgozatban tárgyalt termodinamikai megközelítés nem ve-

2Egzakt határérték nem definiálható erre, de a kísérleti tapasztalat ezt mutatja.
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1.3. ábra. Az A) és B) ábrák Ti0.7W0.3N és Al0.72Sc0.28N rétegekkel rendelkező szuper-
rácsokra mutatnak példákat, [36,39] alapján. C) A [32] irodalom alapján azt látjuk, hogy
mikroszkopikus skálán a rendszer effektív hővezetési tulajdonságai attól is függhetnek,
hogy mekkora nanorészecskékkel dolgozunk és azok mérete hogyan aránylik a közepes sza-
bad úthosszhoz. A hővezetési tényező a ballisztikus terjedés megjelenésével nem feltétlenül
javul, mivel a hővezetési csatornák, mechanizmusok száma csökken.

szíti érvényét, de a tézisek ezt a témakört nem érintik. Természetesen ettől még az is
lehetséges, hogy a kiterjesztett egyenletek bizonyos kvantummechanikai hatásokat
effektív módon vesznek figyelembe [40], de a hővezetési egyenletek kvantálása esetén
még rengeteg a nyitott kérdés3, és a dolgozat nem is kívánja ennél részletesebben
tárgyalni ezt a témakört.

A technológiai fejlődés nem csupán a mikroszkopikus méretek elérésében nyilvá-
nul meg, hanem a technológiailag megvalósítható időskálák is jelentősen, több nagy-
ságrenddel lerövidültek. Erre kiváló példa Krausz Ferenc 2023-ban elnyert Nobel-
díja, amely az attoszekundumos lézerek megalapozását is elismerte. Az időskálák
szerepe további magyarázatra szorul. Az előbbiekben emlegetett, egyes hőterjedé-
si mechanizmusokhoz külön-külön időskálák tartoznak, amik akár több nagyság-
rendben is eltérhetnek egymástól. Ha egy adott testet ilyen időskálán termikusan
gerjesztünk, akkor a hullámszerű hatások – természetesen csak adott térskálán –
megjelenhetnek. Ennek következtében közönséges anyagokban (például acélban) is
megfigyelhetőek lennének a Fourier-egyenleten túlmutató jelenségek, de ezek méré-
se méréstechnikailag nem lehetséges, és a gyakorlat számára sem igazán releváns.
Például a hőmérsékletet nem lehet mérni 10−10 s skálán, vagy még annál is gyorsab-
ban, és az acélt a gyakorlatban nem is kívánják használni nanométeres méretskálán.
Nanoszerkezetes anyagok esetén sem a hőmérsékletet mérik, hanem sokkal inkább a
sugárzási vagy az elektromos vezetési tulajdonságok változását, amiből a lejátszódó

3Kvantummechanikai szinten nem a hővezetési egyenletet kvantálták, hanem a hővezetési ténye-
zőnek vették észre a kvantálási tulajdonságait [41–43], tehát a hő csak bizonyos energiaegységekben
adódik át, hasonlóan a fotonokhoz. Kvantummechanikai szinten a Fourier-törvény modellezésére
több kísérletet is tettek, de ezek mind önkényesen felvett potenciálokon múlnak, nem levezetés
eredményeképpen kapják, éppen emiatt nem is egyértelműek [6].
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tranziens folyamatokra lehet következtetni [44,45].
Szintén az időskálák fontosságát, valamint a kapcsolt folyadék–hővezetési mo-

dellek relevanciáját hangsúlyozza a lökéshullámok modellezése [46, 47], illetve ennél
általánosabban fogalmazva a nagy gradiensekkel járó folyamatok leírása, például
hegesztési eljárásokhoz kapcsolódóan. Az ilyen jelenségek modellezése szintén ma-
gával vonja az anyagi nemlinearitások vizsgálatát is, legegyszerűbb esetben például
a hővezetési tényező hőmérséklettől való függését. Felmerül azonban a kérdés, hogy
vajon a hőmérséklet gradiensétől való függés is lehetséges-e? Bonyolultabb, kap-
csolt esetekben a nyomás, valamint a gradiensektől való függés is megjelenhet. A
dolgozatban bemutatott eredményeknek ez egy lényeges eleme lesz az előbb említett
matematikai keretrendszer vizsgálatával együtt.

A dolgozat központi eleme a heterogén anyagok termikus viselkedésének model-
lezése és annak tanulságai. A mérnöki gyakorlat számos ilyen anyagot használ, a
különféle kompozitoktól kezdve a makro- és mikropórusos anyagokon át egészen a
kőzetekig és biológiai rendszerekig. A 2000-es évek elejéig a szakirodalom egyértel-
műen és kizárólagosan a hullámjelenségeket tartotta az egyedüli, Fourier-egyenleten
túlmutató jelenségnek. Ennek egyik hírhedt példája az úgynevezett "fagyott hús
kísérlet" [48], amely során egy lefagyasztott hússzeletet hirtelen elkezdtek egyik ol-
dalán melegíteni. A testben több ponton is mérve a hőmérsékletet azt figyelték meg,
hogy egy hőmérsékleti front alakult ki, amelyet így a második hang jelenségének tu-
lajdonítottak, mivel sikerült a mért hőmérséklet időbeli lefutását egy Fourier-tól
eltérő csillapított hullámegyenlettel illeszteni. A kísérletet végül senkinek nem si-
került megismételni [49, 50], bár a megfigyelések magyarázata látszólag nem lenne
bonyolult. A fázisátalakulás (olvadás) okozta késleltetés eredményezte az élesen ki-
rajzolódó hőmérsékleti frontot. Ennek sikeres illesztése azonban rávilágít egy igen
fontos értelmezésre, amit a dolgozatban is még többször hangsúlyozni fogok, ezt
effektív modellezésnek nevezik. Egy másik érdekes példa, amikor fázisátalakulás
nélkül, de egy mesterségesen létrehozott heterogén közeget kívántak egy hullámter-
jedést leíró hiperbolikus hővezetési egyenlettel modellezni [51], ami mögött a moti-
váció csupán annyi, hogy ha a Fourier-egyenletet nem lehet megfelelően illeszteni,
akkor válasszunk egy olyan modellt, amiben eggyel több a paraméterek száma. Az
1.4. ábra tanulságai fontosak: egyrészt attól, hogy egy többparaméteres modellel
dolgozunk, a fizikai interpretáció megőrzi fontosságát; másrészt a Fourier-egyenlet
illesztésében kritikus szerepet kapnak a peremfeltételek, valamint a hőimpulzus ál-
tal, térfogati elnyelődésen keresztül létrehozott hely- és időfüggő hőforrások [52].

Az effektív modellezés csak egy kontinuum-megközelítésben lehet értelmes fel-
tételezés. Egy kinetikus elméleti megközelítésben elengedhetetlen a hővezetési me-
chanizmus leírása, és egyben meg is köti, hogy egy modell milyen célra, milyen
tartományban és hogyan használható. Ennek az az előnye, hogy bizonyos transz-
portegyütthatók kiszámolhatóak mérések nélkül is. Ezzel szemben egy kontinu-
ummodell nem igényel semmilyen konkrét feltételezést a jelenség mechanizmusára
vonatkozóan. Az állapottér megfelelő megválasztása és a második főtétel célsze-
rű alkalmazása lehetővé teszi a formailag azonos alakú, de akár eltérő értelmezést
is megengedő modellek levezetését. Ez a fajta modell-flexibilitás, illetve univer-
zalitás lehetővé teszi, hogy egy kontinuummodellben a transzportegyütthatókat a
feladatnak megfelelően értelmezzük. Ez az elv nem új, a Fourier-törvény esetén a
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1.4. ábra. Az A) és B) ábrák a hengeres heterogén próbatest adott időpontbeli
hőmérséklet-eloszlását ábrázolják a hossz- és sugárirányú dimenziók mentén [51]. Lát-
ható, hogy a mért adatok a jósolt hullámterjedést nem támasztják alá, és az illesztés
jósága sem javult jelentősen a hiperbolikus modell alkalmazásával.

hővezetési (és a hőfokvezetési) tényező pontosan ugyanezt a szerepet tölti be, ezért
a Fourier-törvény érvényessége alapvetően azon múlik, hogy a hővezetési jelenség
egy időskálával leírható legyen, függetlenül attól, hogy az adott test homogén vagy
sem. A Fourier-egyenlettől általánosabb kontinuummodellek esetén akkor lehet a
kinetikus elméleti eredményeket is figyelembe venni, ha azok az egyenletek megőrzik
a kinetikus elméleti modell szerkezetét, azaz ugyanolyan tagokat és operátorokat
tartalmaznak, emiatt kompatibilisek. Ekkor választhatunk, hogy az együtthatókat
mérések által, egy kontinuummodellezési szemmel határozzuk meg, vagy a hővezetési
mechanizmus ismeretében kiszámoljuk a kinetikus elméleti eszközök segítségével.

Már többször is felmerült, és később még részleteiben is fogok beszélni a hőim-
pulzuselvű mérésekről. Egy tipikus, heterogén anyagok esetén gyakran megfigyelt
példát mutat az 1.5. ábra, amely jól demonstrálja a megoldandó problémát. Ez a
mérési eredmény egy zárt cellás alumíniumhab próbatestre vonatkozik, amelynek a
cellái milliméteres nagyságrendbe esnek [53]. A hőimpulzuselvű mérési eljárás egy
standard módszer az anyagok hőfokvezetési tényezőjének meghatározására a Fourier-
egyenlet illesztésén keresztül. Habár az R2 érték nem kiemelkedően jó, de a mérést
a Fourier-egyenlet megoldásával összevetve sokkal komolyabb eltéréseket látunk. Az
1.5. ábrán az időskálák szétválása is jól kivehető, eleinte lassabb, majd később je-
lentősen gyorsabb a Fourier-egyenlet által jósolt hőmérséklet-változás, amely így a
mért hőfokvezetési tényező értékét megbízhatatlanná teszi.

Ha egy heterogén test a modellezés során helyettesíthető egy vele egyenértékűen
viselkedő homogén testtel, akkor ezt effektív modellezésnek nevezzük. A kérdés az,
hogy ehhez milyen modellt kell választani, és az alumíniumhabos példából az olvas-
ható ki, hogy egy kettő időskálás hővezetési modellre van szükség, de nem akármi-
lyen modellre. Ahogy az előbbi gondolatokból kiolvasható, ennek a megközelítésnek
természetesen további feltételei vannak.

A feltételek kapcsán az első amit ki kell emelni, a méréstechnikára vonatkozik.
Ha a hőmérsékletmérés során elég nagy időlépéseket (mintavételezést) alkalmazunk,
akkor a nem megfelelő mintavételezés elrejtheti az adatokban a lényeges elemeket.
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1.5. ábra. Egy zárt cellás alumíniumhab tranziens viselkedése, és a Fourier-egyenlettel
való legjobb illesztés összevetése [53]. A vizsgált heterogén test vastagsága 5, 2 mm volt,
és az időbeli viselkedése egyetlen időskálával nem jellemezhető.

Ezért már a modellezés legelején döntést kell hozni, hogy milyen időskála részle-
tességéig akarjuk a test termikus viselkedését leírni. Mindezek mellett meg kell
vizsgálni az adott anyag karakterisztikus jellemzőit (méreteit, jellemző összetevőit),
valamint a felhasználás szempontjából lehetséges peremfeltételek időskáláit, ezalatt
elsődlegesen a hőátadást értve, de a hőmérsékleti sugárzás is releváns lehet. Ezen
tulajdonságok – az anyag, a mérés, a peremfeltételek – összessége dönti el, hogy egy
effektív leírás mennyire és milyen mértékig alkalmazható.

A megfigyeléseim szerint a Fourier-egyenlet nem minden feltétel nélkül használható
heterogén testek leírására, összhangban az [54] irodalommal. A kutatási munkám
legfontosabb eredménye, hogy mérnöki szempontból releváns alternatívát találtam a
probléma megoldására, és a dolgozatomban az ide vezető utat, valamint a gyakorlati
alkalmazásokba való átültetés szempontrendszerét mutatom be.

A Fourier-egyenlettől eltérő modellek mérnöki felhasználására effektív értelme-
zésen keresztül a dolgozatom mutat először példát, és ilyen értelemben a mérnöki
gyakorlatban egyedülálló megközelítést. Továbbá, a bemutatott eredmények nem
csupán az alkalmazás lehetőségeit vetik fel, hanem konkrét példákat, eseteket is
tárgyalok, ipari és méréstechnikai alkalmazásokkal kiegészítve.

A dolgozatom második fejezetében részletesen tárgyalom az egyes hővezetési mo-
dellek kontinuum-termodinamikai hátterét. Ez alapozza meg a harmadik fejezetben
kifejtett problémaköröket, a hővezetési tényező hőmérsékletfüggését helyezve a kö-
zéppontba. A gyakorlati feladatok megoldásához elengedhetetlen volt egy megbíz-
ható megoldási módszertan kidolgozása, így a negyedik fejezetben az itt elért ered-
ményeim és tapasztalataim foglalom össze. Végezetül, az ötödik fejezetben olyan
összetett szerkezetű anyagokra mutatok példákat, amelyeken a kidolgozott elméleti
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módszertan helyességét többször is tesztelhettem.
Ezeken a fejezeteken keresztül kívánom a Fourier-egyenlet esetén megszokott esz-

közöket új megvilágításba helyezni és rámutatok, hogy a több időskálás hővezetési
modellek esetén ezeknek milyen korlátai vannak, és ezekre milyen alternatívákat ja-
vaslok. Természetesen egy ilyen munka nem lehet teljes, a Fourier-egyenlet esetén
is rengeteg kutató több évtizedes munkájára volt szükség a manapság már hétköz-
napinak tekinthető eszközök kidolgozásához, akár a megoldási módszereket, akár
a mérési-kísérleti technikákat tekintjük. A dolgozatom igyekszik minden alapot
megadni ahhoz, hogy a Fourier-tól eltérő egyenleteket hogyan, milyen értelmezés és
feltételek mellett lehet használni, ezzel támogatva minden jövőbeli kutatást.
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2. fejezet

A Fourier-egyenleten túli modellek
termodinamikai hátteréről

A szakirodalom legalább tíz különböző módszertant tart számon arra vonatkozó-
an, hogy a Fourier-törvényt miként lehet általánosítani. Ahhoz, hogy a tárgyalást
tisztán és érthetően tartsam, ezek közül csak a kontinuumalapú, irreverzibilis termo-
dinamikai módszertant és annak a releváns kiterjesztéseit tekintem. Ahol fontos, ott
utalni fogok a kiterjesztett irreverzibilis termodinamika, vagy a racionális kiterjesz-
tett termodinamika vonatkozó eredményeire, de azok módszertanát nem fejtem ki.
A következőkben először a Fourier-törvényt mutatom be részleteiben, utána sorra
veszem a releváns, komplexebb modelleket, egységes keretben tárgyalva. A legel-
terjedtebb módszertanok megismerésére a [6, 13, 33, 55–61] szakirodalmi forrásokat
ajánlom, ezek tárgyalása sajnos lényegesen túlmutatna a dolgozat keretein.

2.1. Fourier-törvény

A klasszikus és a kiterjesztett irreverzibilis termodinamikai módszertan közös eleme
a második főtétel megfogalmazása és annak kihasználása1. A következőkben kizá-
rólag merev, izotrop közeget tekintek. Tegyük fel, hogy létezik a fajlagos entrópia
(s) nevű potenciálfüggvény [64], amely csak az e fajlagos belső energia függvénye,
azaz s = s(e), és eleget tesz a de = Tds kényszerfeltételnek, amit Gibbs-relációnak
neveznek, valamint ezen keresztül definiálható az abszolút hőmérsékletet (T ), azaz
ds/de = 1/T . Mivel a Gibbs-relációt a teljes folyamat mentén érvényesnek tekin-
tem, ebből az következik, hogy egyensúlyban, valamint azon kívül is ugyanazt a
hőmérséklet-fogalmat használom2. A második főtétel matematikai alakját a (2.1)
mérlegegyenlet fejezi ki,

ρ∂ts+∇ · Js = σs ≥ 0, (2.1)

1A második főtételben szereplő entrópiát az A. függelék részletesen definiálja a [62,63] munkák
alapján.

2Itt megjegyzem, hogy ezt a tulajdonságot a kiterjesztett hővezetési modelleknél is kihasználom.
Ez nem minden megközelítésben van így, és különféle nemegyensúlyi hőmérsékletet vezetnek be
[65,66], amik kísérleti ellenőrzése a jelenlegi ismereteinek szerint nem lehetséges.
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ahol ρ az állandó tömegsűrűség, ∂t az idő szerinti parciális derivált, ∇ jelöli a nabla
operátort, Js az entrópia áramsűrűsége, valamint σs fejezi ki az entrópiaprodukciót.
Emiatt σs, zárt rendszerben a folyamat mentén folyamatosan növekszik, egyensúly-
ban zérus. Az entrópiaáram, Js, teljes divergencialeválasztás útján meghatározha-
tó [11,67,68], amiből az következik, hogy Js = q/T , ahol q a hőáramsűrűség3.

A Fourier-törvény levezetéséhez a σs meghatározására, valamint a (2.1) egyen-
lőtlenség megoldására van szükség. Ehhez fel kell használni a fajlagos belső energia
mérlegegyenletét is,

ρ∂te+∇ · q = 0, (2.2)

amelyben a forrástagot most elhanyagolom. Behelyettesítések után a

σs = q · ∇ 1
T
≥ 0, (2.3)

egyenlőtlenség adódik, amelynek a legegyszerűbb megoldása az, ha a q hőáramsű-
rűség és a hőmérséklet gradiense egymással arányosak, ahol az arányossági tényezőt
izotrop anyagról lévén szó egy pozitív l konstans jelöli:

q = − l

T 2∇T = −λ∇T, λ = l

T 2 , l ∈ R+
0 . (2.4)

Ezt a fajta megoldást Onsager [69, 70] és Eckart is részletesen tárgyalják [71, 72],
amit általánosan termodinamikai erők és áramok közötti arányosságként lehet értel-
mezni. Az l transzportegyüttható segítségével lehet a λ hővezetési tényező szükséges
hőmérsékletfüggését megadni, valamint az l = 0 határeset jelenti a tökéletes hőszi-
getelőt. A Fourier-egyenlet esetén a szakirodalom gyakran használja a modell T -
reprezentációját, mint transzportegyenletet, azaz a modell hőmérsékletre rendezett
alakját, a térfogati hőforrást is figyelembe véve:

ρcv∂tT = ∇ · (λ∇T ) + qV =

 λ∆T + qV ha λ = konst.
λ(T )∆T + dλ

dT (∇T )2 + qV ha λ = λ(T ),
(2.5)

amelyben qV jelöli a térfogati hőforrást, és az a = λ/(ρcv) fogja jelenteni a hőfokve-
zetési tényezőt.

A kiterjesztett, kontinuum-megközelítésű hővezetési modellek leginkább abban
térnek el egymástól, hogy milyen állapotteret és entrópiaáramot választanak meg,
de a második főtétel (2.1) alakja, valamint annak a fenti módon történő kihasználá-
sa változatlan marad. Fontos különbséget jelent, hogy amíg a qV hőforrás időtől és
helytől való függése a (2.5) Fourier-féle hővezetési egyenletnél nem ad extra járulé-
kokat, addig a Fourier-tól eltérő modellek esetén annak további idő és hely szerinti
deriváltjai jelenhetnek meg. Szintén lényeges lesz az a megállapításom, hogy addig,
amíg a (2.5)-féle T -reprezentáció a Fourier-egyenletnél megbízhatóan használható,
addig a nem-Fourier egyenletek esetén ez az alak már erősen félrevezető, és elrejti a

3Egy jelölésbeli konvencióra hívom fel a figyelmet: a q helyesebben q̇ lenne, mivel időegységre
vetített energiaáramról van szó, de a pontot elhagyom, hogy ne keveredjen össze a szakirodalomban
szintén elterjedten használt időderivált jelöléssel.
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modell további lényeges tulajdonságait, főleg állapotfüggő együtthatók esetén. Amíg
a Fourier-egyenlet esetén a T -reprezentációban való gondolkodás csak könnyebbsé-
get jelent, de megszorítást nem, addig a nem-Fourier egyenletek esetén lényeges
megszorításokat von maga után, és sokszor nem is használható.

Továbbá, a (2.5) egyenlet megoldásához szükség van kezdeti és peremfeltételek
megadására. A Fourier-egyenlet esetén kezdeti feltételként elegendő csak a kezdeti
hőmérséklet-eloszlást megadni, akár rendszerként, akár T -reprezentációként tekin-
tünk a modellre. A (2.4) Fourier-törvény felhasználásával a kezdeti q hőárammező
egyértelműen származtatható. Ez a Fourier-tól eltérő hővezetési modellek esetén
szintén nem magától értetődő.

A peremfeltételek alatt a hagyományosan is használt első-, másod-, valamint
harmadfajú összefüggéseket értem, azzal a kiegészítéssel, hogy ezek az elnevezések a
klasszikus irodalomból ismert T -reprezentációt követik. Azaz, ha csak a hőmérséklet
szerepel, mint egyetlen mező, úgy értelmes arról beszélni, hogy magát a hőmérsékle-
tet, annak a gradiensét, vagy a kettő közötti arányosságot (leggyakrabban hőátadást)
írják elő a test határain. Ha a modellre nem annak T -reprezentációjaként, hanem
rendszerként nézünk – amit mindenképpen ki kell használnunk a Fourier-tól eltérő
modellek esetén – akkor ezek az elnevezések nem egyértelműek. Így a következőkben
összefoglalom, hogy milyen peremfeltétel alatt mit is értek.

• Elsőfajú: a peremen adott a hőmérséklet, T (r, t), r ∈ ∂Ω, azaz a test határán
értelmezett, de hely- és időfüggés egyaránt megengedett.

• Másodfajú: ezalatt előírt hőáram feltételt értek, azaz q(r, t), r ∈ ∂Ω, amely
csak a Fourier-törvény miatt esik egybe az előírt hőmérséklet-gradienssel.
Fourier-egyenleten túl a kettő nem egyenértékű feltétel.

• Harmadfajú: ezalatt a hőátadás peremfeltételt fogom érteni, a klasszikus ana-
lógiát követve, amiben az első- és a másodfajú peremek egymással arányosak,
azaz

q · n = α(T − T∞), (2.6)

ahol n a kifelé mutató felületi normális, T∞ a környezeti fluidum hőmérséklete,
α ≥ 0 a hőátadási tényező. Megjegyzem, hogy direkt nem arányosítom a
hőmérsékletek különbségét a hőmérséklet gradienséhez, mivel az speciálisan
csak a Fourier-törvényre igaz, annál általánosabb esetekben nem feltétlenül.

Ebből az osztályozásból látszik, hogy a Fourier-törvényen túli hővezetési egyenletek
esetén nem lehet csak a hőmérséklettel, mint egyetlen mezővel dolgozni, az csak a
Fourier-egyenletnek egy sajátossága, de nem általánosan érvényes tulajdonság. Ezt
a kiterjesztett modellek esetén kiemelten fontos szem előtt tartani. A fenti összefüg-
gések akkor kifejezetten hasznosak, ha a modellt egyenletek rendszereként tekintjük,
változók kiküszöbölése nélkül, ami nemlineáris, állapotfüggő transzportegyütthatók
esetében gyakran nem is lehetséges.

Ritkán alkalmazott, de igen hasznos a q-reprezentáció tárgyalása is. A T -
reprezentációhoz hasonlóan az egyenletrendszert a q hőáramsűrűségre rendezve,
konstans együtthatók esetén a Fourier-egyenlet a

ρcv∂tq = λ∇∇ · q = λ∆q (2.7)
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alakot ölti, amely összefüggés a (2.5) Fourier-féle hővezetési egyenlettel fizikailag
egyenértékű, és ebben az esetben a kezdeti feltételnek a hőáramra kell vonatkoz-
nia, de ez a feltétel nem független a hőmérséklet kezdeti feltételtől. Továbbá, mivel
a Fourier-törvény esetében a hőáramsűrűség egy skalármező gradiensével arányos,
ezért a hőáramsűrűség rotációmentes, így a ∇∇ · q = ∆q + ∇ × ∇ × q kifejezés
egyszerűsíthető, ezt fejezi a (2.7) utolsó egyenlősége; Fourier-egyenleten túli model-
lek esetén ez nem mindig érvényes. A (2.7) egyenlet természetesen a peremfeltételek
kezelését is módosítja, és a q-reprezentáció olyan analitikus megoldások keresésé-
nél célszerű választás, ahol a peremfeltételek közvetlenül a hőáramot írják elő [73].
Egy ilyen, hőáramsűrűségre felírt egyenlet esetében a hőmérséklet-peremfeltétel nem
értelmes, de helyette a hőáram gradiensének előírása viszont megtehető. Az időská-
lák tekintetében ki kell emelni, hogy a Fourier-féle hővezetési egyenlet egy időská-
lás folyamatot ír le, amit a hőfokvezetési tényező és a test jellemző mérete adnak
meg. Az ettől általánosabb modellek kettő, vagy akár annál is több hővezetési idő-
skálát tartalmaznak. Emiatt egy érdekes következmény, hogy a hagyományosan a
Fourier-egyenletre érvényes Fourier- és Biot-számok nem feltétlenül értelmezhetőek
ugyanúgy. A Fourier-szám, egy alkalmasan választott L karakterisztikus mérettel,

Fo = at

L2 (2.8)

a hőfokvezetési tényezőt kihasználva definiálja a vonatkozó időskálát4. Ha egy hő-
vezetési modell kettő időskálát ír le, akkor választás kérdése lesz, hogy melyiket
jelöljük ki erre a célra, és mivel numerikus szempontból sokszor a gyorsabb idő-
skálát célszerű választani5, ezért a Fourier-szám már nem a hagyományosan ismert
hőfokvezetési tényezőt fogja használni, így további egyértelműsítést tesz szükségessé.
A Biot-szám,

Bi = αL

λ
, (2.9)

felfogható úgy, mint a hőátadási és hővezetési időskálák hányadosa. Emiatt lehetsé-
ges az, hogy bizonyos Biot-szám alatt a koncentrált paraméterű modellezés kellően
jól közelíti a hővezetési folyamatokat, vagyis a hővezetési időskála lényegesen gyor-
sabb, mint a test határán létrejövő hőátadási folyamat. Ha a hővezetési folyamat
több időskálára bontható, akkor megvizsgálandó, hogy a Biot-szám milyen értéke
mellett alkalmazható a koncentrált paraméterű közelítés, ekkor viszont a lassabb
időskálák jelenthetik a referenciát.

2.2. Két időskálás hővezetési modellek
Az előzőekben szándékosan nem kívántam a Fourier-egyenleten túli modelleket pon-
tosan megnevezni, mivel a szakirodalom rengeteg különféle modellt tart számon.

4Meg kell jegyeznem, hogy a Fourier-szám az összes többi "számmal" ellentétben (például
Reynolds-szám, Prandtl-szám, Nusselt-szám) nem egy paraméter, hanem egy független változó
szerepét tölti be, emiatt a "Fourier-szám" elnevezés félrevezető, helyesebb lenne a "diffúziós időská-
la" vagy "Fourier-időskála" elnevezés.

5Ez egyben azt is jelenti, hogy a Fourier-tól eltérő hatások gyorsabbak, és azok numerikus
lekövetése szükségszerű, de a peremfeltételeket is figyelembe véve célszerű a referencia időskálát
megválasztani.
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Az előzőekben említett Fourier-egyenleten túli sajátosságok mindegyikre egyaránt
érvényesek maradnak. A következő termodinamikai levezetésekben csak a kontinu-
um hátteret használom ki, nem építek sem a fononhidrodinamikára, sem bármely
egyéb kinetikus elméleti megközelítésre. Ez az egyenletek érvényessége szempontjá-
ból egy kulcsfontosságú tényező, mivel nem a mikroszerkezeti sajátosságokat, hanem
a testek makroszkopikus eredő viselkedését kívánom leírni. A legfontosabb mo-
dellek: Maxwell–Cattaneo–Vernotte (MCV, amit gyakran Cattaneo–Vernotte vagy
csak Cattaneo-egyenletnek neveznek), Guyer–Krumhansl (GK), valamint a Jeffreys-
egyenlet. Ezek közül a GK és az MCVmodellek nem függetlenek egymástól, az MCV
a GK határeseteként értelmezhető. Termodinamikai szempontból a GK-egyenletnek
van nagyobb jelentősége, de bizonyos speciális tulajdonságokat az MCV-egyenleten
egyszerűbb és így célszerűbb bemutatni. E két hővezetési modell levezetése így
összefoglalható, és nem is tárgyalom őket külön. Ezzel szemben a Jeffreys-egyenlet
már ezektől különböző feltevésekből indul ki, és nem lehet a GK-egyenlet speciális
eseteként értelmezni.

2.2.1. Guyer–Krumhansl-egyenlet
Az előzőekben használt, az e fajlagos belső energia által kifeszített s = s0(e) álla-
potteret ki kell bővíteni a q hőáramsűrűséggel, azaz s = s(e,q), és

s = s0(e)− k

2ρq · q, k ∈ R+
0 (2.10)

ahol az s0(e) jelöli a Fourier-egyenlet esetében is használt tagot, valamint továbbra
is igaz az, hogy

∂s

∂e

∣∣∣∣
q

= ds0

de = 1
T
. (2.11)

Ezen a ponton meg kell jegyeznem, hogy a (2.10) egyenletben a ρ tömegsűrűséggel
való osztás nem kötelező, és ennek nemlinearitások esetén komoly jelentősége is van.
A levezetés végén erre vissza fogok térni. További eltérés, hogy a korábbiakban
használt Js = q/T entrópiaáram helyett egy általánosabb [74],

Js =
( 1
T

1 + B
)
· q (2.12)

formát használok, ahol 1 jelöli az egységtenzort, és B egy úgynevezett áramszorzó
(Nyíri-szorzó [75]), egy másodrendű tenzor, amire a második főtétel további megkö-
téseket fog adni. A szakirodalomban megtalálható a

Js = B̃ · q (2.13)

alak is [14,76]. Habár ez ekvivalens eredményre vezet a (2.12) kifejezéssel, annyiban
előnytelen, hogy a B̃ áramszorzó fizikai jelentése elmosódik. Ezt az entrópiaproduk-
ció egyenlőtlenségének a megoldása után világosabban lehet látni.

Felteszem, hogy a fenti általánosítások nem érintik a (2.2) energiamérleget. Ezek-
ből a feltevésekből kiindulva a (2.1) egyenlőtlenség meghatározható, azaz

σs = ρ

T
∂te− kq∂tq +

(
∇ 1
T

+∇ ·B
)
· q +

( 1
T

1 + B
)

: (∇q), (2.14)
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amelyben az első tagnál figyelembe kell venni a (2.2) energiamérleget, az utolsó
tagnál pedig kihasználom, hogy

1
T

1 : (∇q) = 1
T

(∇ · q), (2.15)

így ezekből a

σs =
(
−k∂tq +∇ 1

T
+∇ ·B

)
· q + B : (∇q) ≥ 0 (2.16)

egyenlőtlenség adódik. Ahogy a Fourier-törvény levezetésénél is, úgy itt is felteszem,
hogy az entrópiaprodukció termodinamikai erőkből és áramokból épül fel, amelyek
egymással arányosak. Mivel merev és izotrop közeget tekintek, ezért a Curie-elv
szerint csakis azonos tenzori rendű mennyiségek között jöhetnek létre csatolások.
Ez azt jelenti, hogy

q = l
(
−k∂tq +∇ 1

T
+∇ ·B

)
, l ∈ R+

0 (2.17)

B = L(4) : ∇q, (2.18)

amelyben így egyértelműen kirajzolódik, hogy a B áramszorzó közvetlenül arányos
a hőáram gradiensével, általános esetben egy L(4) negyedrendű tenzoron keresztül.
Más szóval, B egy úgynevezett relaxált változónak tekinthető [74], aminek az időbeli
változása nem jelenik meg, de az alacsonyabb rendű (T , q)-folyamatokhoz csatoló-
dik. Ez teljes mértékig kompatibilis a kiterjesztett irreverzibilis termodinamika által
használt formával. A (2.13) kifejezéssel az áramszorzó szerepe nem lenne ennyire
világos, és a (2.17) egyenletben lévő 1/T -s tag a (2.18)-ban jelenne meg, amit azon-
ban a (2.12) alakban leválasztottunk. Lineáris esetben a végeredmény matematikai
szempontból ugyanaz, de termodinamikai oldalról a bemutatott választás célsze-
rűbb, így világosabb értelmezésre vezet.

Az L(4) negyedrendű tenzor felbontható szimmetrikus (Ld,S) és antiszimmetrikus
deviatorikus (Ld,A), valamint gömbi (Ls) részekre, és a (2.16) egyenlőtlenség miatt
elvárható, hogy

Ld,S ≥ 0, Ld,A ≥ 0, Ls ≥ 0, (2.19)

teljesüljenek. Ezen megkötések felhasználásával a (2.18) jobb oldala átírható,

L(4) : ∇q = Ld,S

2 (∇q + (∇q)T) + Ls − Ld,S

3 (∇ · q)1 + Ld,A

2 ε : (∇× q), (2.20)

bevezetve az ε Levi-Civita szimbólumot. Ezzel a Guyer–Krumhansl-egyenlet onsa-
geri alakja:

q = l
(
−k∂tq +∇ 1

T
+∇ ·B

)
, (2.21)

B = Ld,S

2 (∇q + (∇q)T) + Ls − Ld,S

3 (∇ · q)1 + Ld,A

2 ε : (∇× q), (2.22)

amellyel kapcsolatban további megállapításokat tehetünk. A (2.21) egyenletben
k helyett ρk jelenik meg, ha (2.10)-ben nem vesszük figyelembe a sűrűséggel való
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osztást. A modell az MCV-egyenletre redukálódik, amennyiben L(4) = 0, azaz (2.22)
eltűnik, és a Fourier-törvény csupán egy időbeli ∂tq taggal egészül ki. A Fourier-
törvénnyel ellentétben a q ebben az esetben nem örvénymentes, a (2.22) kifejezésben
a ∇× q nem automatikusan nulla.

Továbbá, a GK-egyenletnek a (2.21)-(2.22) alakjából az olvasható ki, hogy bár B
kiküszöbölhető, mégsem tehető meg minden további feltétel nélkül. A kiküszöbölés
akkor célszerű, ha az összes L együttható konstans, máskülönben további deriváltak
jelennek meg, és a modell jelentősen bonyolultabbá válik. Éppen emiatt azt a meg-
állapítást teszem, hogy a hővezetési modellt annak (2.21)-(2.22) alakjával, vagyis
onsageri szinten kell definiálni, ami egyértelműsíti a ρ és a B szerepét, valamint a
konkrétan megválasztott termodinamikai erő-áram arányosságot is. Ez nemcsak a
GK-egyenletre igaz, hanem bármilyen más, Fourier-egyenlettől különböző modellre
is, és így egy teljesen új szemléletet jelent a Fourier-féle hővezetési egyenlethez ké-
pest. Amíg a Fourier-egyenletet annak (2.5) alakjával egyértelműen definiálni lehet,
addig a GK-egyenlet esetén több más elengedhetetlen szempontot figyelembe kell
venni, amelyek a mérnöki gyakorlat számára szintén kritikusak.

Feltéve, hogy a (2.21)-(2.22) egyenletekben az összes együttható skalár konstans-
ként kezelhető, akkor a B kiküszöbölésével

τ∂tq + q = −λ∇T + η1∆q + η2∇∇ · q, (2.23)

egyenlet adódik, amelyben

τ = lk, λ = l

T 2 , η1 = l
Ld,S + Ld,A

2 , η2 = l
2Ls + Ld,S − 3Ld,A

6 (2.24)

transzportegyütthatókat kapjuk, ahol a tömegsűrűség a τ = ρlk relaxációs időben
is megjelenhet, választástól függően. A (2.24) összefüggésekből már a legegyszerűbb
kiterjesztés szintjén is az látszik, hogy a makroszkopikus transzportegyütthatók, bár
lineárisan függetlenek egymástól, nemlineáris esetben mégis az onsageri szintből kell
kiindulni. A GK-egyenlet (2.23) alakja nem ad elégséges támpontot az együtthatók
közötti összefüggések figyelembevételére. Mivel a mérnöki gyakorlatban jól ismert,
hogy a λ hővezetési tényező T -függő, amiből l = l(T ) összefüggés következik, vagyis
az összes együttható egyből T -függővé válik, már csak az l(T ) miatt is. Ennek rész-
leteit a következő fejezetben fogom bővebben tárgyalni. Meg kell jegyeznem, hogy
valójában nem a T , hanem az e fajlagos belső energia az állapottér eleme, tehát pon-
tosabban a fajlagos belső energiától való függést kellene figyelembe venni. Viszont a
fajhőt minden esetben konstansként kezelem, így számomra nem okoz különbséget,
hogy e- vagy T -függést tekintek, de hangsúlyozom, hogy ennek a fajhő konstansként
való kezelése a feltétele. Ezt a későbbiekben végig kihasználom. Termomechanikai
esetben ez sem elegendő, és így a hővezetési tényező a mechanikai jellemzőktől is
függhet. További részletekért Gróf [77] munkáját javaslom.

A szakirodalom a τ együtthatót relaxációs időnek nevezi, és a kinetikus elmélet-
ben a fononok ütközési frekvenciájához kapcsolódó fogalom. Ebben a kontinuum-
elméleti megközelítésben explicit jelentést nem tulajdonítok ennek a paraméternek,
de egy további időskálát meghatároz. A Cattaneo-egyenlet szintjén ez az időskála a
T -reprezentációban jobban látszik:

τ∂ttT + ∂tT = a∆T, (2.25)
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vagyis ebben a szemléletben a Cattaneo-egyenlet csillapított hullámegyenletként ér-
telmezhető. Alacsony hőmérsékletű (< 20 K) kísérletekben ez helytálló, és a

√
a/τ

hullámterjedési sebesség a mérvadó időskála. Effektív modellezési keretekben, főleg
heterogén anyagok hővezetési tulajdonságait vizsgálva a Cattaneo-egyenletnek nincs
valódi gyakorlati jelentősége [78].

Az η1,2 paraméterek szerepe a kinetikus elméletben egyértelmű: η1 a közepes
szabad úthossznak feleltethető meg, míg egy speciális fononhidrodinamikai közelítés
miatt η2 = 2η1, vagyis az η1,2 paraméterek nem lineárisan függetlenek, ellentétben
a kontinuumelméleti megközelítéssel. Az η2 = 2η1 összefüggésből az is kiolvasható,
hogy bármely η1 = η1(T ) esetén az η2 ugyanezt a függést örökli (amennyiben ez
a kinetikus elméleti számolásokban megvalósítható). Fontos hangsúlyozni, hogy a
kinetikus elméletben a GK-egyenlet egy hidrodinamikai közelítés, tehát megengedi
a hőáram örvényességét is, ami például szuperfolyékony közegek modellezése esetén
fontos. Az itt tárgyalt kontinuum-megközelítésben ez a kényszer nem áll fenn. A
(2.21)-(2.22) GK-egyenlet fenntartja a lehetőségét, hogy figyelembe vegye az összes,
kinetikus elmélet által adott kényszert, de hangsúlyozom, hogy ez csak lehetőség,
ettől a kontinuummodell sokkal több mindent is megenged. Ez a szabadság az
effektív modellezés és a nemlinearitások szintjén mutatkozik meg.

Az η1,2 paraméterek kontinuum keretbeli jelentését újfent a T -reprezentáció teszi
átláthatóvá, azaz

τ∂ttT + ∂tT = a∆T + (η1 + η2)∂t∆T + 1
ρcv

(
qV + τ∂tqV − (η1 + η2)∆qV

)
, (2.26)

ahol a teljesség kedvéért a qV = qV (r, t) térfogati hőforrást is figyelembe veszem.
Egyrészt, effektív szempontból az (η1 + η2)/τ paraméterek egy újabb diffúziós idő-
skálát szabnak meg, ami a klasszikus a hőfokvezetési tényezővel összemérhető, ezek
egyfajta statikus és dinamikus hőfokvezetési tényezők, amelyek megjelenése a hőve-
zetési folyamatok sebességétől függ. Ez azt jelenti, hogy a lassú folyamatok esetén
a dinamikus (η1 + η2)/τ skála elhanyagolható, ellenben gyors folyamatoknál a di-
namikus skála fog dominálni, analóg módon a mechanikában is ismert statikus és
dinamikus Young-modulussal [79]. További újdonság, hogy kiterjesztett hővezetési
egyenletek esetén a qV hőforrásnak egyéb járulékai is megjelennek, ami tovább erősí-
ti a T -reprezentáció elkerülését és az egyenletek rendszerében való gondolkodást. A
(2.26) egyenlet η1,2 = 0 együtthatók esetén közvetlenül az MCV-egyenletre egyszerű-
södik. Kontinuum szempontból az η1,2 együtthatók további méretskála bevezetését
jelentik, de ennek a jelentősége a heterogén anyagok modellezésében csekély, így
ezzel az interpretációval nem kívánok hosszabban foglalkozni.

A kontinuum-megközelítés-alapú GK-egyenlet jelentőségét az adja, hogy egy-
részt effektív interpretációjában jól használható heterogén anyagok modellezésére a
második diffúziós időskála miatt, a kinetikus elméleti háttér hiánya az együtthatók
sokkal rugalmasabban kezelését is megengedi. Másrészt kompatibilis a kinetikus
elméleti párjával, amit így az adott modellezési feladatnak megfelelően figyelembe
lehet venni, és ezáltal az alacsony hőmérsékletű rendszerekre, szilárd közegekre és
folyadékokra egyaránt alkalmazható. Újra felhívom a figyelmet a korábban említett
ablakfeltételre, amely segítségével meg lehetett becsülni, hogy milyen frekvenciatar-
tományban figyelhető meg hullámterjedés. Ez a tulajdonság egyben azt is jelenti,
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hogy a Fourier-tól eltérő viselkedés megjelenése függ a peremfeltételekben megjelenő
időskáláktól is, például egy hőimpulzus hosszától. Ez összhangban van az előbb em-
lített statikus és dinamikus jellemzők interpretációjával, valamint az ismert alacsony
hőmérsékletű kísérleti eredményekkel is [18, 31,80,81].

2.2.2. Jeffreys-egyenlet
Az alternatív hővezetési modellek sorában az úgynevezett Jeffreys-egyenlet követ-
kezik, ami az előzőekben bemutatott módszertanon keresztül szintén levezethető.
Ehhez újfent szükség van az állapottér kiterjesztésére, az e fajlagos belső energián
kívül még egy ξ vektoriális belső változót is figyelembe kell venni,

s = s0(e)− k

2ρξ · ξ, k ∈ R+
0 (2.27)

ahol a ξ-hez most nem rendelek olyan pontos fizikai jelentést, mint a hőáramhoz.
Ez egy általános eljárás az úgynevezett belső változós módszertan keretein belül.
A második főtétel ennek ellenére megszorítást ad ξ időfejlődésére, valamint lineáris
esetben ξ könnyen kiküszöbölhetővé válik [74]. Ahogy a GK-egyenlet esetén is, úgy
most is fennáll az, hogy (2.27)-ben nem kötelező a ρ-val való osztást bevezetni.
Ellenben, az entrópia áramsűrűsége marad a klasszikus q/T formában. Így a σs
entrópiaprodukcióra az adódik, hogy

σs = −kξ∂tξ + q · ∇ 1
T
≥ 0, (2.28)

ahol a Curie-elvet újra alkalmazva egy q és a ξ között egy csatolt egyenletrendszert
kapunk:

q = l11∇
1
T

+ l12(−kξ), (2.29)

∂tξ = l21∇
1
T

+ l22(−kξ). (2.30)

Ezt nevezem a Jeffreys-egyenlet onsageri alakjának, ami egy igen érdekes egyen-
letrendszer. Egyfelől, a ξ-t a (2.29) úgy definiálja, mint a q hőáramsűrűség és a
hőmérséklet gradiensének a különbségét, más szóval a Fourier-féle és a Jeffreys-féle
hőáramsűrűség nem ugyanaz. A (2.30) egyenlet megadja ξ időfejlődését, valamint
az együtthatókra a második főtétel a

l11 ≥ 0, l22 ≥ 0, l11l22 − l12l21 ≥ 0 (2.31)

megkötéseket teszi a pozitív szemidefinitás kielégítése miatt. Összességében véve
a (2.29)-(2.30) egyenleteket tekintem a Jeffreys-egyenlet alapvető formájának. Ha
a (2.27)-ben nem veszem figyelembe a ρ-val való osztást, akkor viszont a (2.30)
egyenlet bal oldalán jelenik meg ρ∂tξ-ként, ez szintén modellezési választás kérdése.

Lineáris esetben, ahol az lij (i, j = {1, 2}) együtthatók mind konstansok, a ξ
kiküszöbölése után a Fourier-törvény átláthatóbb általánosítására jutunk. Elsőként
az 1/T deriválásának elvégzése nélkül kapjuk, hogy

τ∂tq + q = λ̃1∇
1
T

+ λ̃2∂t∇
1
T
, (2.32)
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amiben az együtthatók

τ = 1
l22k

, λ̃1 = detlij
l22

, λ̃2 = l11τ (2.33)

módon alakulnak. Az 1/T deriváltjai után megjelenő 1/T 2 tagot – főleg az utol-
só vegyes deriváltak esetén – már konstansként is kezelhető egy T0 referencia-
hőmérsékletet véve. Ezzel a feltétellel, a GK-egyenlettel ellentétben, már konstitutív
szinten is jól láthatóvá válik a statikus és dinamikus időskála,

τ∂tq + q = −λ1∇T − λ2∂t∇T, (2.34)

amiben

λ1 = λ̃1

T 2
0
, λ2 = λ̃2

T 2
0
. (2.35)

Így (2.34) formailag tartalmazza a Fourier-törvényt, és annak idő szerinti derivált-
ját is. Egy igen fontos megállapítás az, hogy lineáris esetben a GK- és a Jeffreys-
egyenletek kiegészítik egymást. A GK-egyenlet egy statikus és dinamikus hőfok-
vezetési tényezőt, a Jeffreys-egyenlet azonban egy statikus és dinamikus hővezetési
tényezőt tartalmaz. Nemlineáris esetben a két modell lényegesen eltérő tulajdonsá-
gokkal rendelkezik.

Érdemes még a Jeffreys-egyenlet T -reprezentációját is megvizsgálni, amely

τ∂ttT + ∂tT = a1∆T + a2τ∂t∆T, a1 = λ1

ρcv
, a2 = λ2

τρcv
(2.36)

alakot ölti a (2.7) mérlegegyenletet felhasználva. Az utolsó tagban szándékos a τ
relaxációs idő beemelése, ugyanis ezzel a kombinációval az a2 mértékegysége egyezni
fog az a1 hőfokvezetési tényezővel, és így értelmezhetővé válik a statikus és dinamikus
hőfokvezetési tényezők megjelenése is. A (2.36) azt mutatja, hogy a Jeffreys-egyenlet
effektív modellezési szempontból, térfogati hőforrások nélkül, lineáris esetben analóg
lehet a GK-egyenlettel. Más szóval, eltérő hőárammezővel ugyanarra a hőmérséklet-
eloszlásra vezethet, de ennek feltétele, hogy a GK-egyenlet esetén a hőáramsűrűség
örvénymentes maradjon. Mivel a gyakorlat számára a hőárammező lényegesen ki-
sebb jelentőséggel bír, ezért ez a különbség nem lesz döntő fontosságú. Szintén
lényeges tulajdonság, hogy bár a λ2 együttható lehet nulla, vagyis vissza lehet kapni
a Cattaneo-egyenletet, de ha a τ = 0, akkor egyből a Fourier-törvényre redukálódik
a modell. Ez csak az onsageri egyenletek szintjén látszik, a (2.36) T -reprezentáció
ezt teljesen elfedi.

2.2.3. A 2-hőmérsékletű modell
Megkerülhetetlen alternatívát jelent a 2-hőmérsékletű modell, amellyel a GK-, va-
lamint a Jeffreys-egyenlettel olyan módon analóg, hogy szintén két időskálát vezet
be, de nem a Fourier-törvény általánosításán keresztül. A modellezési elképzelés
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szerint a vizsgált rendszer két eltérő komponensre bontható, eltérő hőkapacitás-
sűrűségekkel, hővezetési tényezőkkel, melyekre külön-külön igaz marad a Fourier-
törvény. A két komponens a mérlegegyenleten keresztül egy hőátadási tagon keresz-
tül csatolódik, azaz a (2.7) és a (2.4) egyenleteket felhasználva,

ρici∂tTi +∇ · qi = −h(Ti − Tj), qi = −λi∇Ti, i, j = {1, 2}, i 6= j, (2.37)
ahol h fejezi ki a két komponens közötti "térfogati" hőátadási tényezőt (ami nem egye-
zik a korábbiakban bevezetett α hőátadási tényezővel). A (2.37) T -reprezentációja,
például az első komponensre további hőforrások bevezetése nélkül,

τ∂ttT1 + ∂tT1 = Λ∆T1 + l2∂t∆T1 − γ∆∆T1, (2.38)
a

τ = ρ1c1ρ2c2

h(ρ1c1 + ρ2c2) , Λ = λ1 + λ2

ρ1c1 + ρ2c2
, l2 = τ(a1 + a2), γ = τa1a2, (2.39)

valamint az a1 = λ1/(ρ1c1) és a2 = λ2/(ρ2c2) együtthatókkal azt sugallja, hogy
a (2.38) egyenlet lefedi a GK- és Jeffreys-egyenleteket, az utolsó tagban való el-
téréssel. Ez egy igen félrevezető elképzelés, és az analógia csupán formális. Ér-
demes megfigyelni, hogy az együtthatók egyáltalán nem függetlenek egymástól,
a hőkapacitás-sűrűségek és a hővezetési tényezők alkotják, ellentétben a GK- és
Jeffreys-egyenletekkel, ahol az együtthatók lineárisan függetlenek egymástól. A 2-
hőmérsékletű modell esetén értelmes még az átlaghőmérséklet bevezetése is,

T̄ = ρ1c1T1 + ρ2c2T2

ρ1c1 + ρ2c2
(2.40)

módon, az egyes komponensek hőkapacitásaival súlyozva. Az átlaghőmérséklet emi-
att akkor is értelmes marad, ha a h csatoló hőátadási tényező zérus, a komponensek
egymástól szigeteltnek tekinthetőek.

A (2.37) hallgatólagosan magába foglalja azt is, hogy az egyes komponensek
térben összefüggőek, ugyanis az egyes komponenseken belül hővezetést ír le. Ez a
tulajdonság egy rétegelt kompozit esetén teljesülhet, de egy fémhab esetén már csak
akkor, ha nyílt cellás szerkezetről beszélünk. Zárt cellás habok esetén az üregek csak
a mátrixanyagon keresztül vannak kapcsolatban egymással, így ez a feltétel sérül.

A két hővezető komponens felírása nem jelenti azt, hogy a rendszer kizárólag
két komponensből állhat, például egy kőzet esetén elképzelhető, hogy a vizsgált
test számos további komponenst is tartalmaz. Ilyenkor a két hővezetési komponens
külön-külön is lehet effektív, vagyis magukba foglalhatnak eredő, többkomponensű
rendszereket is, ilyen lehet például egy szemcsékkel erősített fémhab, amelyben a
mátrixanyagnak az effektív tulajdonságait tekinthetjük [82,83]. Az elvárás az, hogy
végül kettő hővezetési skálára redukálható legyen a vizsgált többkomponensű test
(ez igaz a GK- és a Jeffreys-egyenletekre is).
A modell kritikus eleme a vizsgált test ismert szerkezetére, összetevőire vonatkozik.
Tisztán kétkomponensű esetben az egyes komponensek pontos ismeretére elenged-
hetetlenül szükség van [83]. Ha ez a szituáció nem áll fenn, akkor mérések útján
az ismeretlen paraméterek egyértelműen nem meghatározhatóak. Ez könnyen belát-
ható a (2.40) átlaghőmérséklet definíciójából. Egy mért átlaghőmérséklet bármilyen
hőkapacitás-sűrűség kombinációval leírható, függetlenül a részrendszerek hőmérsék-
letétől.
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Továbbá, kettőnél több komponensű rendszer modellezése esetén az egyes rész-
rendszerekre vonatkozó effektív paraméterek meghatározása szintén nehézségekbe
ütközhet. Visszatérve a szemcsékkel erősített kompozitra, a szemcsék térfogatará-
nya nem elegendő, mivel apróbb szemcsék alkalmazása esetén több kontaktfelület
alakul ki, amelyek további kontaktellenállásokat hoznak létre [82].

A kezdeti és a peremfeltételek esetén további kérdések merülnek fel. Kétkom-
ponensű rendszer esetén a feltételeket komponensenként kell megadni. Mivel az
egyes komponensek például eltérő sugárzáselnyelő és kibocsátó tulajdonságokkal ren-
delkeznek, ezért a hőmérsékleti sugárzás kezelése a feladatot jelentősen bonyolítja.
Térfogati hőforrások esetén szintén problémába ütközünk, például egy helyfüggő hő-
forrás leírása a komponensek határfelületein a folytonossági határok megszakadása
miatt igen nehéz lehet. Egy habos szerkezetű anyagnál, még ha csak az egyik kom-
ponensben is írjuk elő a hőforrást, akkor is a teljes test egészére értendő (azaz a
teljes mátrixanyagra), emiatt a hőforrások kezelése igen körülményessé válik. Ket-
tőnél több komponensű rendszerben tovább nehezedik a feladat, akár a hőforrások,
akár a mellékfeltételek helyes megadása esetén. Ugyancsak érdekes, de kihívást je-
lent a mérlegegyenletben lévő h hőátadási tényező kérdése is, amely nagyságrendjére
egyáltalán nincsenek megkötések, így akár 10−2 – 106 W/(m3 K) között változhat,
akár helyfüggő módon is.

Ezen tulajdonságok miatt a 2-hőmérsékletű modell alkalmazási lehetőségei rend-
kívül leszűkülnek, és a hagyományos hővezetési-hőfokvezetési tényező mérések kiér-
tékelésére nem használható. Emiatt a továbbiakban nem kívánok erre a modellre
nagyobb hangsúlyt fektetni, és nem is kívánom a Fourier-törvény alternatívájaként
feltüntetni, az ismert matematikai és fizikai tulajdonságai ellenére.

Végül megjegyezem, hogy a szakirodalomban nem szokás a bemutatott 2-
hőmérsékletű modell konzisztens irreverzibilis termodinamikai levezetését tárgyalni,
amelyben a Curie-elv miatt a q1,2 hőáramsűrűségek csatolódnának. Az ok a mo-
dellbe impliciten beleértett tulajdonságban rejlik: a két komponens térben szeparált
egymástól, ilyen módon nem keverékként tekintünk a vizsgált testre, ellentétben
például a gázkeverékekkel, ahol a q1 + q2 összeg értelmes és használatos.

A szakirodalomban további 2-hőmérsékletű modellek is ismertek [32, 59, 84], de
azok már az MCV-, valamint a GK-egyenletek csatolását tartalmazzák, amelyekben
kettőnél már lényegesen több a megjelenő hővezetési időskála, emiatt az ismeretlen
paraméterek száma is, és így azok gyakorlati felhasználása további problémákba
ütközik. Ezekről röviden, a teljesség kedvéért, a következő alfejezetben ejtek szót.

2.2.4. Duális fáziskésésű modell
A két időskálás modellek áttekintésekor az úgynevezett duális fáziskésésű modell
(DPL - az angol "dual phase lag" rövidítéseként, a szakirodalomban ez a rövidítés
terjedt el) [85, 86] szintén valódi alternatívának tűnhet, de a kapcsolódó hővezetési
egyenletek nem egy konzisztens irreverzibilis termodinamikai levezetés eredménye-
ként adódnak. Habár ez a tulajdonság a 2-hőmérsékletű modellre is igaz, de a
Fourier-törvény jól ismert, és a modell viselkedése nem ütközik olyan módon a ter-
modinamika főtételeibe, mint a DPL-egyenlet esetén. Ugyanis a DPL-egyenletnél a
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kiindulási pont egy olyan konstitutív összefüggés, amely önmagában nem megold-
ható. Ezt a

q(r, t+ τq) = −λ∇T (r, t+ τT ) (2.41)

formában szokás megadni, ahol a τq és τT ismeretlen relaxációs idő paraméterek,
az indexek tükrözik, hogy melyik mezőhöz tartoznak. Az alapötlet szerint a (2.41)
egyenlet bal és jobb oldala az idő szerint egyaránt tetszőleges rendig Taylor-sorba
fejthető. Ez az eljárás alapvetően nem kompatibilis a termodinamikai elvekkel,
emiatt két eset lehetséges. Az első esetben minden feltétel nélkül instabil modellre
jutunk, azaz bármely relaxációs idő párnál az egyenlet még közelítően sem lesz
megoldható. A második esetben tisztán matematikai eredetű stabilitási feltételeket
kapunk, amelyeknek nincs igazi fizikai tartalmuk, de a modell megoldhatóvá válik.
Ezeket a feltételeket a [6, 87] szakirodalmak foglalják össze. Példaként tekintsük a
{2, 1}-típusú DPL modellt, amely azt jelenti, hogy a bal oldalon másodrendig, a
jobb oldalon első rendig történik a sorfejtés, azaz

τ 2
q

2 ∂ttq + τq∂tq + q = −λ∇T − λτT∂t∇T, (2.42)

amelyhez a

τT
τq
≥ 1

2 (2.43)

stabilitási feltétel kötődik, de a {2, 2}-típusú esetén ez a

2 +
√

3 > τT
τq
> 2−

√
3 (2.44)

alakra módosul. Magasabb rendű sorfejtések esetén a feltételek rendkívüli módon
elbonyolódnak, és nem átláthatóak. Érdemes megjegyezni, hogy a DPL modell első
bevezetésekor Tzou [85, 86] bármely τq > τT és τq < τT esetet megengedve interp-
retálta a modell jelentését, félrevezetően. A vonatkozó szakirodalom azóta olyan
méretűre duzzadt, hogy a modellek egységesítése és letisztázása, valamint a DPL-
hez hasonló termodinamikailag inkompatibilis megközelítések kivezetése valószínűleg
csak az igen távoli jövőben történhet meg.

Az előzőekben bemutatott GK- és Jeffreys-egyenletekkel összevetve be kell látni –
túl a stabilitási feltételeken – hogy az együtthatók közötti összefüggések a termodina-
mikai háttér hiánya miatt nem látszanak. A stabilitási feltételek megkeresése igen
fáradságos, és nem univerzálisak. Anizotrop vagy nemlineáris esetek tárgyalása
a modellben ezen tényezők miatt kizárható, konzisztens termomechanikai csatolás
nem valósítható meg. Mindemellett további, fizikai (téridőbeli) problémák is van-
nak [88], és tulajdonképpen a DPL-egyenlet nem lehet a Fourier-törvény érvényes
és általánosan használható alternatívája, annak ellenére sem, hogy az {1, 1}-típusú
DPL modell a lineáris Jeffreys-egyenletre vezet. Emiatt a továbbiakban a DPL
modellel nem foglalkozom tovább.
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2.3. Kettőnél több időskálás hővezetési modellek
Mivel a dolgozat nem használja ki a kettőnél több időskálát tartalmazó hővezetési
modellek ismeretét, ezért itt csak a teljesség kedvéért, a jobb átláthatóságért és
összevethetőségért, röviden összefoglalva mutatom be a lényegesebb modelleket. Ezt
azért is tartom fontosnak, mivel a hazai szakirodalmi források ilyen tekintetben igen
szerények. Részletesebb áttekintésekért a [6, 19,89–91] szakirodalmakat ajánlom.

A két időskálás modellek esetén vagy két effektív diffúziós jelenség skáláit, vagy
egy diffúziós és egy hullámterjedési jelenség skáláit tekintettem át, amik közül mér-
nöki szempontból az előbbi bír nagyobb jelentőséggel. A kettőnél több időskálás
modellek esetén a második hang mellett a ballisztikus vagy egyéb termomechanikai
jelenség jellemző időskálája jelenik meg. Ez kontinuum-termomechanikai oldalról
magával hozza a másodrendű tenzoriális mennyiségek (mezők) bevezetését, de ennél
tovább nem lép, ellentétben a kinetikus elméleti alapokon nyugvó fononhidrodina-
mikai megközelítéssel [12, 27]. Ugyanis, habár a jelenségek szintjén nem ad bővebb
leírást, mégis alapvetően a Boltzmann-egyenlet momentumsorfejtésén keresztül egy
olyan modellt vezet be, amely tetszőleges, megszámlálhatóan végtelen sok időderi-
váltat tartalmaz egyre növekvő tenzori rendű mennyiségekkel. Ez matematikailag,
egy térdimenzióban a

∂u〈m〉
∂t

+ m2

4m2 − 1v
∂u〈m−1〉

∂x
+ v

∂u〈m+1〉

∂x
=


0 m = 0
− 1
τR
u〈1〉 m = 1

−
(

1
τR

+ 1
τN

)
u〈m〉 2 ≤ m ≤M

,

(2.45)
alakot ölti, ahol v a fononok Debye-sebessége6, valamint u az egyes momentumokat
jelöli (például energia, impulzus, nyomás), de nem minden momentumhoz lehet exp-
licit fizikai jelentést társítani, analóg módon a belső változós módszertannal. Továb-
bá 〈 〉 jelöli az egyes tenzorok szimmetrikus nyomtalan részét, és M egy tetszőleges
természetes szám lehet, M = 30 esetén kapható meg a hangsebesség elfogadha-
tó szintű közelítése. Ez a valóságban egészen harmincadrendű tenzori rendig tartó
mezők kezelését követeli meg, a kezdeti és peremfeltételekkel együtt.

A korábbiakban emlegetett normál és rezisztív ütközések a τR és τN relaxációs
időkben, valamint azok kombinációjában nyilvánulnak meg. A (2.45) egyenletrend-
szert az elmélet úgy építi meg, hogy bármely csonkolásos lezárás eredményeként
(tetszőleges M esetén a legmagasabb tenzori rendű mennyiséget nullának választ-
va) hiperbolikus rendszert kapjunk eredményül, emiatt a parabolikus modellek csak
azok hiperbolikus kiterjesztésével férnek a (2.45) egyenletrendszerbe. Szintén a meg-
közelítés érdekessége, hogy habár végtelen sok időderiváltat tartalmazhat, jelenségek
szintjén mégis csak a három alapvető hővezetési mechanizmust írja le, a diffúziós,
a második hang, valamint a ballisztikus terjedést, de minden momentumnak saját
időskálája van. Ilyen a kontinuumelméletekben nem fordul elő, és ez élesen kihat
a modellek interpretációjára, valamint gyakorlati alkalmazására is, hiszen (2.45)-
höz igen nehéz (már ha lehetséges) a megfelelő fizikai tartalommal bíró kezdeti és
peremfeltételek kijelölése, valamint azok megoldása, főleg M > 2 esetén.

6A transzverzális és a longitudinális terjedési sebességek kombinációjából adódik ki.
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A (2.45) rendszer M = 2 esetére vonatkozó kontinuum megfelelője [14,92]:

ρ∂te+ ∂xq = 0, (2.46)
τq∂tq + q = −λ∂xT + l∂xQ, (2.47)

τQ∂tQ+Q = l∂xq, (2.48)

ahol a Q három térdimenzióban egy másodrendű tenzor, és a q gradiensével arányos;
valamint l egy térskálát jelöl, a fononhidrodinamikai megközelítésben ez megegye-
zik a közepes szabad úthosszal. Amennyiben τQ relaxációs időt nullának választjuk,
az azt jelenti, hogy a Q mezőhöz tartozó folyamatok végtelen gyorsan játszódnak
le, azaz a Q azonnal relaxált állapotba kerül, és így a Q értelmezése egybecseng
a GK-egyenlet kapcsán a B áramszorzóról tett megállapításokkal. A (2.47)-(2.48)
egyenletek közvetlenül visszaadják a GK-egyenletet (helyesebben szólva annak egy
térdimenziós változatát). Speciális esetekben a τq és τQ relaxációs idők megfeleltet-
hetőek a τR és τN rezisztív és normál ütközések karakterisztikus idejének a (2.45)
egyenletrendszerrel való összevetés alapján, de a kontinuum-megközelítés ezeket sza-
bad (de pozitív szemidefinit) paraméterként kezeli. Az l térskála egy kontinuummo-
dellben a mérési eredményekhez illeszthető paraméter, például ennek segítségével,
adott τq és τQ esetén, a terjedési sebesség pontosan beállítható, mint kísérletileg
megfigyelt tény (amelyhez a korábban bemutatott hiperbolicitási tulajdonságokat
kiválóan fel lehet használni). Ezzel szemben a fononhidrodinamikai megközelítés-
ben ez egy fix paraméter, és emiatt lényegesen több egyenletre van szükség a terjedési
sebességek pontos megadásához. A két megközelítés tehát itt élesen elválik egymás-
tól, és ez nagyban elősegítette az úgynevezett NaF kísérletek kontinuummodellel
történő kiértékelését [93]. Ezek a kiértékelések rávilágítanak a τq és τQ relaxációs
idők hőmérséklettől való függésére is. Az ilyen típusú nemlinearitásokról bővebben
a következő fejezetben lesz szó.

Az időskálák száma a 2-hőmérsékletű modellek kiterjesztéseiben tovább növek-
szik. Hasonlóan a (2.37) modellhez, dupla Fourier-egyenlet helyett dupla MCV-,
vagy akár GK-egyenleteket is tekinthetünk, ami főleg elektron-fonon rendszerek vi-
selkedését hivatott jellemezni [84], erre utalnak az "e" és "f" indexek is:

cvT = cv,eTe + cv,fTf , cv = cv,e + cv,f , q = qe + qf , (2.49)

valamint a kapcsolódó fejlődési egyenletek,

ρe∂tee +∇ · qe = h̄(Te − Tf ), (2.50)
ρf∂tef +∇ · qf = h̄(Tf − Te), (2.51)

τi∂tqi + qi = −λi∇Ti, (i = e, f), (2.52)

amelyben a csatolást szintén egy hőátadás jellegű tagon keresztül valósítják meg.
Következésképpen, a modellben két diffúziós és két hullámterjedési (második hang)
időskála jelenik meg, valamint a hőátadáshoz, mint csatoláshoz is tartozik egy ka-
rakterisztikus időállandó. A (2.37) 2-hőmérsékletű rendszer esetén megfogalmazott
kritikák most is érvényesek, és a kapcsolódó problémák csak bonyolultabbá válnak
minden egyes kiterjesztési lehetőség hozzáadásával.
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Egy harmadik, természetes alternatíva is van a ballisztikus terjedés figyelembevéte-
lére vonatkozóan [94–96]. Ez nem más, mint az MCV-egyenlet hőtágulással kiegészített
modellje, vagyis ebben a fajlagos belső energia

e = cT + E

2ρε
2 + Eβ

ρ
T0ε, (2.53)

már tartalmazza az ε-nal jelölt fajlagos alakváltozást (egy térdimenziós esetben), az E
Young-modulust, a β hőtágulási együtthatót, valamint egy T0 referencia-hőmérsékletet
[97,98]. Itt újra hangsúlyozom, hogy egy ilyen termomechanikai esetben a transzport-
együtthatók fajlagos belső energiától való függése magával hozza például a fajlagos
alakváltozástól való függést is, és ez már a Fourier-egyenlet szintjén is megjelenhet, de
ezt mélyebben a dolgozat nem tárgyalja. Ez az előbbiekben említett NaF kísérletek
modellezésére szintén alkalmas megközelítés [94], és egyben világosabb fizikai tarta-
lommal is rendelkezik, szemben a fononhidrodinamikai megközelítéssel vagy az azzal
analóg, Q, mint a hőáram áramát tartalmazó (2.46)-(2.48) egyenletekkel.

2.4. Összefoglalás
A dolgozatom a GK- és Jeffreys-egyenletekre építve fog tovább haladni, mivel úgy
tekintek ezekre a modellekre, mint a Fourier-egyenlet valós, mérnöki szempontból is
jól használható alternatíváira a két diffúziós időskála jelenléte miatt; emiatt ezek mé-
lyebb termodinamikai bemutatása elengedhetetlen volt. A 2-hőmérséklet és a DPL
modelleket a lehetséges alternatívák közül biztonsággal ki tudom zárni. A kutatási
eredményeim nem a modellek levezését tekintve újak – azok már tőlem sokkal hama-
rabb a szakirodalom részét képezték – hanem a megközelítés miatt, ahogy a modelleket
kezelem, és így a következő szakterületi ajánlásokat, mint a saját tudományos eredmé-
nyeimet tudom megfogalmazni.

1. Tézis – A Fourier-egyenleten túli modellek definiálása

Kimutattam, hogy a Fourier-egyenleten túli modelleket azok onsageri alakjá-
val kell definiálni, ami egyértelműsíti a termodinamikai erők és áramok közötti
összefüggéseket, a makroszkopikus transzportegyütthatók közötti kapcsolatokat,
valamint a kezdeti és peremfeltételek fizikai tartalmát. Az onsageri alak mellé
meg kell adni a modellhez tartozó állapotteret. A transzportegyütthatók álla-
potfüggését onsageri szinten kell definiálni.

Az 1. tézishez kapcsolódó publikációk: [6, 14,63,74,99–103].

2. Tézis – A két diffúziós időskálával rendelkező modellek értelmezése

Megállapítottam, hogy a Guyer–Krumhansl- és Jeffreys-egyenletek, mint két idő-
skálás modellek megkülönböztetnek statikus és dinamikus hővezetési és hőfok-
vezetési tényezőket. Mivel meglátásom szerint a Guyer–Krumhansl- és Jeffreys-
egyenletek esetében a Fourier-szám nem pontos és félreértésre ad okot, ezért a
Fourier-szám elnevezést statikus és dinamikus időskálára javaslom módosítani.

A 2. tézishez kapcsolódó publikációk: [6, 103,104].
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3. fejezet

Az anyagi nemlinearitások szerepe

A Fourier-törvény és az azon túli modellek között több lényeges különbség is van,
amelyeket a gyakorlati alkalmazásokban figyelembe kell venni. Korábban már em-
lítettem a kezdeti és peremfeltételeket, illetve azok definiálását, ezekkel részleteseb-
ben konkrét megoldásokon keresztül a következő fejezetben fogok foglalkozni. Eb-
ben a fejezetben most az anyagi nemlinearitások kezelésére fókuszálok, mint például
a transzportegyütthatók hőmérséklettől való függésére. Ez azért is új és érdekes
szempont, mert a Fourier-törvényben csupán egy transzportegyüttható található,
a hővezetési tényező. Ez bizonyos speciális esetekben a hővezetési mechanizmus
pontos ismeretének birtokában kiszámolható [12, 105], de általánosságban nem, és
leginkább méréseken keresztül határozható meg.

Heterogén anyagok (például a különféle porózus szigetelések) esetén egy effek-
tív hővezetési tényezőt mérhetünk ki, még akár az összenyomó erő függvényében is,
megfigyelve, hogy a pórusok záródása milyen hatást gyakorol a hővezetési tényező-
re [106]. A Fourier-féle hővezetési egyenletben (lineáris esetben) elég csak a hőfok-
vezetési tényezőt ismerni egy test tranziens viselkedésének a leírásához. Ezt szin-
tén csak méréseken keresztül lehet megbízhatóan meghatározni, heterogén anyagok
esetén ez is effektív jellemzővé válik. Ezt az effektív hővezetési tényezőt anyagszer-
kezettől függően igen sokféle mennyiség határozza meg (például habosított anyagok
esetén az üregek helyzete, eloszlása, mérete, az azokat kitöltő anyagok), emiatt an-
nak tisztán elméleti irányú meghatározása általános esetekre nem lehetséges, csakis
az anyagszerkezet pontos ismeretében becsülhető speciális esetekben [105]. A hely-
zetet tovább nehezíti, hogy a hővezetési tényező függ az anyag állapotától is, például
annak hőmérsékleti és nyomás viszonyaitól [77]. A Fourier-egyenlet esetén leggyak-
rabban a hővezetési tényező hőmérsékletfüggését szokás vizsgálni, ez mérések útján
meghatározott anyagszerkezeti tulajdonság.

Fourier-egyenleten túli modellek esetén az állapottérnek nemcsak a fajlagos belső
energia és azon keresztül a hőmérséklet, hanem a hőáramsűrűség is részét képezi,
így a λ = λ(T,q) összefüggés értelmes1. A q-tól való függést például félvezetők vagy
speciális nanoszerkezetű anyagok esetén értelmes figyelembe venni, ahol úgynevezett
termikus diódákat, egyenirányítókat alakítanak ki erre a célra tervezett anizotrop

1Habár a dolgozatnak nem tárgya, de felvetődhet a kérdés, hogy ha egy anyag transzportjel-
lemzője függ a benne kialakuló hőáramtól és annak irányától, akkor az objektivitási szempontokat
(röviden csak megfigyelőtől való függetlenséget) milyen konstitutív összefüggés elégíti ki, főleg a
Fourier-egyenleten túli esetekben [107–109].
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vagy egyéb heterogén anyagi szerkezet segítségével [110–115]. Ekkor a hőtranszport
mértéke függ a hőáram irányától is.

3.1. ábra. Felül látható a rendszer elrendezése és az alkalmazott hőmérséklet-
peremfeltételek. Ha a két anyag jelentősen eltérő hővezetési képességgel rendelkezik, akkor
a hővezetési tényező hőmérsékletfüggéséből adódóan a Q1 és Q2 hőáramok jelentősen eltér-
nek egymástól [116]. Az egyenlő területek azt mutatják, hogy mindkét anyagon ugyanaz
a hőáram halad át.

Ennek létrehozásához elegendő egy egyszerűbb, speciális, de makroszkopikus ese-
tet tekinteni, ami már elvben a Fourier-törvény esetén is meg tudja valósítani a
termikus egyenirányítást, azaz elegendő hozzá a λ = λ(T ) összefüggésre és ennek
következményeire koncentrálni. Ennek szemléltetéséhez egy olyan heterogén szerke-
zetet mutatok, amely két különböző anyagból áll és mindkét anyagnak figyelembe
vesszük a λ = λ(T ) tulajdonságait. Részletes leírásért és további irodalomért a [116]-
re hivatkozok, a következő példa és a 3.1. ábra is innen származik. Ezt a jelenséget
az idézi elő, hogy a két anyag merőben eltérő λ(T ) függéssel rendelkezik, tehát a
nemlinearitás kulcsfontosságú ahhoz, hogy egyfajta egyenirányítást lehet létrehozni.
Mivel a szakirodalom ezt főként mikroszkopikus szinten vizsgálja, ezért egyrészt a
Fourier-egyenleten túli modellek relevánsak, másrészt általában véve is a mérnöki
gyakorlat számára fontos lehet az, hogy egy heterogén anyag effektív leírására hasz-
nált Fourier-n túli modell hogyan viselkedik ilyen nemlineáris esetben. Emiatt ennek
a fejezetnek a célja azt bemutatni, hogy a λ(T ) függés milyen következményekkel
jár a GK- és Jeffreys-egyenletek szintjén.
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3.1. MCV-egyenlet
A helyzet lényegesen bonyolultabbá válik már a legegyszerűbb kiterjesztett hőveze-
tési modell esetén is. A GK-egyenlet onsageri alakját felidézve a modellt a

q = l
(
−k∂tq +∇ 1

T
+∇ ·B

)
, (3.1)

B = Ld,S

2 (∇q + (∇q)T) + Ls − Ld,S

3 (∇ · q)1 + Ld,A

2 ε : (∇× q), (3.2)

egyenletek alapján definiáltam. Az alapvető nehézséget akkor lehet jobban átlátni,
ha a B áramszorzót nullának tekintem (pontosabban szólva, ha egyáltalán nem is
veszem figyelembe), akkor a modell az MCV-egyenletre egyszerűsödik,

q = −lk∂tq + l∇ 1
T
, (3.3)

amelyben a τ = lk, λ = l/T 2 transzportegyütthatók jelentkeznek, valamint lehetőség
van a ρ figyelembevételére is, ekkor τ = ρlk adódik a korábbi, (2.10) egyenletnél
részletezett gondolatmenetnek megfelelően.

A Fourier-törvényhez képest nem csak, hogy több a transzportegyütthatók száma
(λ és τ), de ráadásul azok összefüggőek is, legalábbis annyira mindenképpen, hogy ha
a λ hővezetési tényező hőmérsékletfüggővé válik, akkor a τ relaxációs idő is, viszont
itt több választási lehetőség is van. Ismert λ(T ) esetén l(T ) = λ(T )T 2 adódik, ami
az l(T ) miatt öröklődik a τ relaxációs időre is, de ennek módja nem egyértelmű,
és egy modellezési döntés köti meg. Ennek megfelelően döntés kérdése, hogy a
τ(T ) függvényt elfogadjuk-e olyannak, amilyennek l(T )-ből származna konstans k
és ρ együtthatók mellett, vagy egy előírt vagy megmért függésre kell beállítani az
utóbbi együtthatók felhasználásával. Ezen a ponton további döntéseket kell hozni.
Egyrészt, ha a k = k(T ), akkor a konstitutív egyenlet levezetését újra kell kezdeni,
mivel egy dk/dT -vel arányos járulék fog benne megjelenni [100],

τ(T )∂tq + q
(

1 + l(T )
2

dk(T )
dT ∇ · q

)
= −λ(T )∇T, (3.4)

valamint megfontolandó, hogy az entrópiasűrűség (2.10)-szerinti konkáv eltolása mi-
lyen módon köti meg a k(T ) függvényt annak pozitív szemidefinitásán túl. A szakiro-
dalom egyáltalán nem tekinti a ∇·q járulékot, és ez egy konzisztens termodinamikai
háttér nélkül nem is látható meg. A k(T ) függvény helyett így lényegesen célsze-
rűbb választásnak tűnik az, hogy ha k konstans, ezzel elkerülve a ∇ · q járulékot és
a kapcsolódó problémákat, de a (2.10)-ben nem osztunk le ρ-val. Emiatt τ = ρlk
adódik és a k(T ) helyett egy ρ(T ) függés látszik célszerűnek. Ez magával vonja azt,
hogy a hőtágulást, mint alapvető termomechanikai jelenséget figyelembe kell venni.
A [94] irodalomban ez motiválta a hőtágulással csatolt MCV-egyenlet kísérleti ada-
tokon való tesztelését, ámbár lineáris keretek között. A ρ(T ) megléte nem feltétlenül
igényli a teljes mechanikai háttér figyelembe vételét, de ekkor tisztában kell lenni
azzal, hogy milyen módon csonkoljuk a rendszert. Ebből arra is lehet következtetni,
hogy a megfelelő λ(T ) és ρ(T ) függésekkel rendelkező anyag megválasztása elen-
gedhetetlen a ballisztikus hővezetés makroszkopikus megfigyeléséhez. Vélhetően az
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alacsony hőmérsékleti viszonyok (< 20 K) mindenképpen szükségesek maradnak ah-
hoz, hogy a termomechanikai csatolás annyira erős legyen, hogy az már a kísérletileg
is megfigyelhető tartományba esik.

Természetesen az is egy modellezési döntés, hogy az l(T ) függését nem szár-
maztatjuk át közvetlenül a τ -ra, de ekkor szintén egy csonkolt modell az eredmény,
amely csonkolás a megfelelő termodinamikai háttér hiányában rejtve marad, vagy
egy függetlennek gondolt τ(T ) előírásával inkonzisztencia kerül be a modellbe. Vé-
gül megjegyzem, hogy az l(T ) függését egy inverznek látszó k(T ) függéssel nem lehet
következmények nélkül "semmissé tenni". Azaz, ha l(T ) = aT és k(T ) = b/T alakú
(ahol a, b ∈ R+), akkor az l(T )k(T ) = ab szorzatuk valóban független a hőmér-
séklettől, de a k(T ) függvény deriváltja és a kapcsolódó járuléka akkor is meg fog
jelenni a modellben, tehát a τ hiába marad konstans, a modellt mégsem egyszerűsíti
érdemben. Mindezek a tulajdonságok igazak maradnak a GK-egyenletre is, mivel
az MCV-egyenlet annak egy B = 0 határesete.

3.2. Guyer–Krumhansl-egyenlet
A követhetőség miatt megismétlem a GK-egyenlet onsageri egyenleteit,

q = l
(
−k∂tq +∇ 1

T
+∇ ·B

)
, (3.5)

B = Ld,S

2 (∇q + (∇q)T) + Ls − Ld,S

3 (∇ · q)1 + Ld,A

2 ε : (∇× q), (3.6)

ahol az alábbiakban a B Nyíri-szorzóban az L tenzoriális együtthatókat az egysze-
rűség kedvéért skalárnak tekintem. Az MCV-egyenletre tett állítások kivétel nélkül
most is igazak maradnak, ezeket most nem ismételem meg, ezen túlmenően azonban
a GK-egyenletben lévő áramszorzó miatt további szempontokat is figyelembe kell
venni.

Egyrészt, a (3.5)-(3.6) alakot tekintve az l(T ) függvény az L együtthatókat köz-
vetlenül nem érinti, de a (2.24) formában (a B kiküszöbölése után) az η1 és η2
együtthatókban szerepet játszik a (3.5) következményeként. Ekkor egy lehetőség
adódik arra, hogy a kívánt η1(T ) és η2(T ) függvényeket be lehessen építeni. Ez teljes
egészében a kontinuum-megközelítés sajátja, a fononhidrodinamikai modellezésben
sem a B áramszorzó (3.6) által adott alakja, sem az itt leírt szabadság nincs meg a
kívánt nemlinearitások figyelembevételére. Mivel az η1 és η2 együtthatók a közepes
szabad úthosszal közvetlenül arányosak, a fononok közötti elképzelt kölcsönhatások
és azok állapotegyenlete teljes egészében megköti annak hőmérsékletfüggését2.

További általános észrevétel, hogy habár a (3.6)-ban lévő minden L együttható
ugyanannak a tenzornak a lineárisan független komponenseit reprezentálja, ezért fi-
zikai szempontból válószerűbbnek tűnik, hogy ha az egyik hőmérsékletfüggő, akkor a
többi is az. Viszont ez a keretrendszer megenged olyan speciális eseteket is, hogy bi-
zonyos komponenseket konstansként kezeljünk. A kontinuum-termodinamikai szak-

2A félreértések elkerülése végett fontos tisztázni, hogy a fononok közepes szabad úthossza nem
a rezisztív, hanem a normál ütközések relaxációs idejével arányos, így részben az ahhoz kapcso-
lódó hőmérsékletfüggés lesz releváns. Mindez csak relaxációs idő közelítésben érvényes, amikor a
Boltzmann-egyenletben lévő ütközési integrál egyszerűsíthető [6, 12,80].
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irodalom nem jutott még el arra a szintre, hogy a (3.6) együtthatóinak hőmérséklet-
függését akár kísérletileg, akár elvi oldalról mélyebben elemezze. Ennek egyik oka
az, hogy a GK-egyenlet kontinuumalapú tárgyalása még igen fiatal3, első levezetése
Ván Péterhez [8] köthető. A termodinamikai elmélet fejlesztésén túl a GK-egyenlet
heterogén anyagokra vonatkozó effektív értelmezése még fiatalabb, összesen egy 10
éves múltra tekint vissza a [14,117–119] irodalmakkal kezdődően, amelyekből később
több más elméleti és gyakorlati szempont fejlődött ki.

A fenti okok ellenére az alapvető szempontokat így is láthatóvá lehet és kell is
tenni. A következőkben az egy térdimenziós esetet vizsgálom [63,103], azaz

q = l
(
−k∂tq + ∂x

1
T

+ ∂xB
)
, (3.7)

B = L̃∂xq, (3.8)

ami a (3.5)-(3.6) rendszernek az egyszerűsített változata, valamint az L̃ feletti hullám
egyrészt jelölésileg megkülönbözteti ezt az együtthatót a jellemző mérettől, másrészt
arra utal, hogy az L lineárisan független részeinek összegeként kell erre tekinteni
(vagyis az összes tenzoriális tag egybeesik). Ha L̃ = L̃(T ), akkor (3.7) alapján

lk∂tq + q = − l

T 2∂xT + l∂x

(
L̃(T )∂xq

)
= − l

T 2∂xT + lL̃(T )∂xxq + l
dL̃(T )
dT ∂xT∂xq

(3.9)

alakul ki, azaz nem csupán egy együttható válik hőmérsékletfüggővé, hanem megje-
lenik benne a hőmérséklet gradiense is. Emiatt (3.9) átcsoportosítható úgy, hogy

lk∂tq + q = −l
(

1
T 2 −

dL̃(T )
dT ∂xq

)
∂xT + lL̃(T )∂xxq, (3.10)

ezáltal

τ∂tq + q = −λ̃(T, q)∂xT + η(T )∂xxq (3.11)

formában is felírható a GK-egyenlet, amiben a

τ = lk, λ̃(T, q) = l

(
1
T 2 −

dL̃(T )
dT ∂xq

)
, η(T ) = lL̃(T ) (3.12)

azonosításokat tehetjük meg. Itt λ̃-ot látszólagos hővezetési tényezőnek hívom, szán-
dékosan megkülönböztetve az effektív hővezetési tényezőtől, mivel ezeket az együtt-
hatókat két igen eltérő jelenségre leírására lehet használni. Heterogén anyagok esetén
is lehetne az effektív hővezetési tényezőt látszólagosnak nevezni, mivel azt lehet mér-
ni, de ebben a nemlineáris esetben a látszólagos hővezetési tényező jelentősen eltérő
tulajdonságokkal rendelkezik. Ezeknek a tulajdonságoknak több, igen komoly követ-
kezménye is van. A látszólagos hővezetési tényező nem csupán l/T 2 lesz, hanem azt
az L̃(T ) függés módosítja, így még konstans l esetén is λ̃ = λ̃(T, q) függés figyelhető

3A kinetikus gázelmélethez, vagy az irreverzibilis termodinamika megszületéséhez képest viszo-
nyítva.
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meg, méghozzá egy igen speciális módon. A ∂xq háromdimenziós esetben a hőáram-
sűrűség gradiense, így akár előfordulhat olyan eset is, hogy a látszólagos hővezetési
tényező nem kizárólag pozitív, és emiatt úgy tűnhet, mintha sértené a termodina-
mika második főtételét. Továbbá, a hőáramsűrűség gradiensétől való függés akár
szélsőségesen meg is változtathatja a lokálisan megfigyelhető látszólagos hővezetési
tényezőt, amelyre a hőimpulzuselvű kísérletek szintén egy jó példát szolgáltatnak.
Habár a fenti megállapítások szélsőségesnek tűnhetnek, mégis tisztában kell lenni a
modellek tulajdonságaival, hiszen a kísérletek kiértékeléséhez pontosan erre a mate-
matikai és fizikai (termodinamikai) háttérre van szükség. Hangsúlyozom, hogy ezek
a megállapítások a látszólagos hővezetési tényezőre érvényesek, a vizsgált testet fel-
építő anyag tulajdonságai ettől még nem válnak időfüggővé, és nem léteznek olyan
esetek, hogy egy homogén test valódi hővezetési tényezője helyfüggő lenne. Viszont
ezzel együtt is nehézségekbe fog ütközni a λ̃ és L̃(T ) együtthatók kísérleti meghatá-
rozása, de várhatóan a bemutatott termodinamikai háttér kellő iránymutatást tud
adni a kísérleti elrendezésre és a kiértékelési módszertanra is. Ebből a szempontból
azt látom célszerűnek, amit a gyakorlat a hővezetési tényező esetén is használ: a
referencia-hőmérsékletet kis léptékben változtatva rajzolódik ki a transzportegyütt-
hatók hőmérsékletfüggése. Látszólag ugyanez a módszertan a GK-egyenlet esetén
is járható, de mivel ilyen irányban még nincsenek elérhető kísérleti adatok, ezért
ez még csak feltételezés. Az onsageri alak nélkül az ilyen tulajdonságok, függvény-
kapcsolatok felismerése nem lenne lehetséges, és részben pont ez zárja ki a duális
fáziskésésű modellt abból, hogy a Fourier-törvény egy valós alternatívájaként tekint-
sek rá; valamint éppen emiatt javaslom az onsageri alak figyelembe vételét, mint a
modellt definiáló összefüggésrendszert. Az onsageri reprezentációból az is kiolvas-
ható, hogy a ρ sűrűség végül milyen módon került a modellbe, és emiatt az is, hogy
a hőtágulási hatásokat hogyan lehet a modellhez csatolni.

3.3. Jeffreys-egyenlet
A Jeffreys-egyenlet onsageri alakja

q = l11∇
1
T

+ l12(−kξ), (3.13)

∂tξ = l21∇
1
T

+ l22(−kξ), (3.14)

ahol az együtthatókat a

l11 ≥ 0, l22 ≥ 0, l11l22 − l12l21 ≥ 0 (3.15)

kényszerek kötik a pozitív szemidefinit entrópiaprodukció miatt. A ξ kiküszöbölése
után kapott alakot

τ∂tq + q = λ̃1∇
1
T

+ λ̃2∂t∇
1
T
, (3.16)

τ = 1
l22k

, λ̃1 = detlij
l22

, λ̃2 = l11τ, (3.17)
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újfent bonyolultabb használni akkor, ha állapotfüggő együtthatókkal kell dolgozni és
további járulékokat eredményez, amelyek csak akkor vehetőek figyelembe korrektül,
ha azok még onsageri szinten épülnek a modellbe. Ellenben, az onsageri egyenletek
alkalmazása numerikus megoldások terén problémába ütközhet a peremfeltételek
szempontjából. Az MCV- és GK-egyenletekkel szemben itt nem q, hanem ξ függés
is elképzelhető, elviekben, mivel a ξ az állapottér részét képezi, a q nem, emiatt
a következőkben az lij együtthatóknak csak a hőmérsékletfüggését vizsgáljuk. A
GK-egyenlethez képest a Jeffreys-egyenlet esetén lényegesen eltérő szempontok és
együttható kapcsolatok játszanak szerepet, annak ellenére, hogy mindkét modell
T -reprezentációja azonos is lehet.

Először tekintsük a λ = λ̃1/T
2 hővezetési tényező hőmérsékletfüggését. Ebben

az esetben nem csupán egyetlen l együtthatón keresztül van lehetőség a kívánt λ(T )
függvényt beépíteni, hanem erre sokkal komplexebb megoldások is mutatkoznak.
Az első lehetőség az, hogy az lij keresztkomponenseit (l12 és l21) használjuk fel, de
ekkor ügyelni kell arra, hogy ha az l11 = 0 (MCV-egyenlet), akkor a (3.16) miatt
−l12l21 ≥ 0-nak is teljesülnie kell, és ez megköti az egyes hőmérsékletfüggések deri-
váltjának előjelét is. Természetes elvárás az, hogy ha az egyik, csatolást biztosító
keresztegyüttható függvény, akkor a másik csatoló együttható is az legyen (analóg
módon a termoelektromosságból ismert Seebeck- és Peltier-hatásokkal), habár az
l21(T ) nem játszik különösebb szerepet4. Így, ha valamilyen fizikai elv nem köti a
modellezést, akkor ezt nem kötelező figyelembe venni. Ebből az is kiolvasható, hogy
önmagában az l21(T )-vel is beállítható a hővezetési tényezőnek egy adott hőmérsék-
letfüggése. Kevésbé triviális eset az l12(T ) járuléka. Ez a járulék a ξ kiküszöbölése
után található meg a

τ∂tq + q = λ̃1(T )∇ 1
T

+ λ̃2∂t∇
1
T

+ τ
1

l12(T )
dl12(T )
dT ∂tT

(
q − λ̃2

τ
∇ 1
T

)
(3.18)

kifejezés utolsó tagjaként. Ebből szándékosan kiemeltem a τ relaxációs időt, mivel
így a λ̃2/τ dinamikus hővezetési tényező expliciten is láthatóvá tehető, és egy igen
érdekes elvi lehetőséget nyit meg. Eszerint, igen gyors folyamatokra inkább a dina-
mikus (időderiváltak által kijelölt) időskála fog dominálni, nem a statikus, vagyis
a

τ∂tq = λ̃2∂t∇
1
T

(3.19)

közelítés értelmes, analóg módon a viszkoelasztikus mechanikai viselkedés leírásá-
val [79,98]. A Jeffreys-egyenlet megoldásai nem vezetnek ki abból az L2 függvénytér-
ből, amelyet a Fourier-egyenlet sajátfüggvényei és sajátértékei feszítenek ki, termé-
szetesen ugyanolyan peremfeltételekre vonatkozóan. Ezért jogos az a feltevés, hogy
merev és izotrop közegekre a parciális időderiváltak mindkét oldalon elhagyhatók,
ezáltal egy dinamikus Fourier-törvényt kapva eredményül. Amennyiben ez fennáll,
hangsúlyozva, hogy ehhez igen gyors hővezetési folyamatokra van szükség, a beveze-
tett nemlinearitások kiegyszerűsödnek, és az eredeti nemlineáris Jeffreys-egyenletet

4Ez az onsageri egyenletekből, a ξ kiküszöbölése során válik jól láthatóvá, mivel az l21(T )
együtthatót nem kell deriválni, emiatt további járulékai sem jelentkeznek.
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vissza lehetett vezetni egy lineáris Fourier-törvényre, dinamikus hővezetési tényező-
vel. Ennek numerikus demonstrációja a B. függelékben tekinthető meg.

A következő lehetőség az, hogy ha l11 6= 0, és ebben az együtthatóban való-
sítjuk meg a kívánt hőmérsékletfüggést, akkor azt λ̃2 is örökölni fogja. Ennek a
megközelítésnek is van egy triviálistól különböző járuléka a ξ kiküszöbölése után,

τ∂tq + q = λ̃1(T )∇ 1
T

+ λ̃2∂t∇
1
T

+ τ
dl11(T )
dT ∂tT∇

1
T
. (3.20)

Az utolsó lehetőség az, hogy az l22(T ) együtthatót használjuk, ami magával hoz-
za az MCV-egyenlet esetén tett összes megállapítást, valamint a többi dinamikus
transzportegyüttható egyaránt hőmérsékletfüggővé válik. További érdekesség, hogy
a felhasznált τ(T ) függvény közvetlenül öröklődik a λ̃2 együtthatóra. Az egyenlet
alakját nem bonyolítja el úgy, mint az előző (3.18) és (3.20) esetekben, mivel a ξ
kiküszöbölését nem érinti, így a

τ(T )∂tq + q = λ̃1(T )∇ 1
T

+ λ̃2(T )∂t∇
1
T

(3.21)

konstitutív egyenletre vezet. Fel kell hívnom a figyelmet, hogy habár ez a megkö-
zelítés célszerűnek tűnik a bonyolult nemlineáris járulékok elkerülése miatt, a szük-
séges τ(T ) függvény előállításához vagy a szintén problémás k együttható, vagy a
ρ tömegsűrűség használható fel az MCV-egyenletnél megfogalmazott módon. Mivel
ez utóbbi megközelítés tűnik járhatónak és fizikailag is elfogadhatóbb, interpretál-
hatóbb modellnek, ezért úgy tekintem, hogy l22(T ) magával hozza a mechanikai
csatolást is. A mérnöki gyakorlat szempontjából ez szolgáltatja a legjárhatóbb utat.
Újfent megjegyzem, hogy a λ̃2(T )-ra ugyanúgy nem állnak rendelkezésre mérési ada-
tok, mint a GK-egyenlet esetén az L̃(T ) függvényre. Az időskálákra visszatérve ter-
mészetes elvárásnak látszik az, hogy igen lassú folyamatokra a dinamikus időskála
esik ki, tehát a (3.21) összefüggés egy nemlineáris Fourier-törvényre redukálódik, ha
az időderiváltakat tartalmazó tagokat elhagyjuk, ez viszont már egy, a szakiroda-
lomban jól ismert problémakörre vezet.

3.4. Navier–Stokes–Fourier-egyenletek
Az előző, Fourier-egyenleten túlmutató esetekben már említésre került, hogy a faj-
lagos belső energián kívül akár más változók is okozhatnak nemlinearitásokat a
transzportegyütthatókban. Ezek azok a változók, amelyek a konstitúciós állapotte-
ret alkotják, és az eddig bemutatott termodinamikai háttérben a fajlagos entrópia
változójaként tekintettem rájuk. Van azonban egy másik, matematikai szempont-
ból a feltételes egyenlőtlenségek megoldásán alapuló levezetési lehetőség is, a Liu-
eljárás [62,120], ami már a klasszikus egyenletek esetén is új szempontokat vezet be.
A Fourier-tól eltérő modellek konzisztens, Liu-eljárással való levezetése a mai napig
nyitott kérdés, főként a Nyíri-szorzóval való kompatibilitási kérdések miatt [121,122].
A módszertan és az itt bemutatott számolások részletes hátterét a [62,101,120] szak-
irodalmak tárgyalják.

A lényeges eltérés abban rejlik, hogy a Liu-eljárás alkalmazásához az eddig bemu-
tatott termodinamikai alapváltozók terén kívül szükség van egy úgynevezett kons-
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titutív állapottér bevezetésére is, ami az alapváltozókon túl tartalmazza azok gra-
dienseit is. Továbbá, ki kell jelölni egy folyamatirány teret, amiben a konstitutív
állapottér időderiváltjai és gradiensei szerepelnek. A főbb különbségeket és azok
következményeit a klasszikus Navier–Stokes–Fourier-egyenletek [11] példáján át de-
monstrálom a [101] alapján.

Ehhez először szükség van a tömeg, az impulzus és az összenergia (etot = e+
v · v/2) mérlegegyenleteire,

ρ̇+ ρ∇ · v = 0, (3.22)
ρv̇ + P · ∇ = 0, (3.23)

ρ ˙etot +∇ · Je,tot = 0, (3.24)

ahol v a sebességvektor, a felül pont jelöli az anyagi vagy együtt mozgó időderiváltat
a

•̇ := ∂t •+ (• ⊗ ∇) · v (3.25)

módon, a Je,tot az összenergia áramsűrűségét jelöli, és P = PT a szimmetrikus nyo-
mástenzor (azaz nem-poláros folyadékokról van szó). A Liu-eljárás során a következő
tereket kell felhasználni:

• termodinamikai állapottér: x := (ρ,v, etot);

• a termodinamikai állapottér gradienseit is tartalmazó konstitúciós állapottér:
x̃ := (ρ,v, etot,∇ρ,v⊗∇,∇etot);

• folyamatiránytér:
ỹ :=

(
ρ̇, v̇, ˙etot, (∇ρ)̇, (v⊗∇)̇, (∇etot)̇, (∇ρ)⊗∇, (v⊗∇)⊗∇, (∇etot)⊗∇

)
.

A {s,Js,P,Je,tot} a konstitutív függvények halmaza. A (3.22)-(3.24) mérlegegyen-
leteket a disszipációs egyenlőtlenségben kényszerként kell alkalmazni a Liu-eljárás
során, a kényszereket Lagrange–Farkas szorzók segítségével lehet figyelembe venni.
A számítások részleteit a C. függelék tartalmazza. A Liu-eljárás szintén egy olyan
egyenlőtlenségre vezet, amely a 2. fejezetben tárgyalt módon oldható meg, és az
onsageri egyenleteket kapjuk eredményül.

Ebben a konkrét esetben az onsageri egyenletek

q (x̃) = l (x̂) · ∇
( 1
T

(x)
)

= −λ (x̂)∇
(
T (x)

)
, (3.26)

Π (x̃) = −µ
Vol (x̃)− µSh (x̃)

3 (∇ · v) 1− µSh (x̃)
2 (v⊗∇+∇⊗ v) , (3.27)

alakot öltik, ahol Π fejezi ki a viszkózus nyomástenzort, valamint µVol ≥ 0 és µSh ≥ 0
jelöli a térfogati és nyíró viszkozitásokat. A (3.26) és (3.27) egyenletekből kiolvasha-
tó, hogy a transzportegyütthatók az x̃ konstitúciós állapottér változóitól függenek,
nem az x termodinamikai állapottér változóitól, ami így klasszikus esetben is meg-
engedi a hővezetési tényező hőmérséklet-gradienstől való függését. További, például
objektivitási és téridőbeli [108, 123, 124] elvek az x̃ állapotteret megköthetik, így
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célszerűnek látszik, hogy a v sebességmezőtől az anyagi tulajdonságnak tekintett
transzportegyütthatók ne függjenek. Az előbbieket összefoglalva az állítás az, hogy

λ = λ (T,∇T, p,∇p,v⊗∇) , (3.28)
µVol = µVol (T,∇T, p,∇p,v⊗∇) , (3.29)
µSh = µSh (T,∇T, p,∇p,v⊗∇) (3.30)

együtthatók nemcsak a hőmérséklettől és a nyomástól, hanem azok gradienseitől is
függhetnek, amik a klasszikus irreverzibilis termodinamika keretein belül is meg-
engedhetőek, de Liu-eljárás nélkül nem válnak láthatóvá. Kísérleti szempontból
a ∇T -től való függés a Fourier-egyenleten túli modellek esetén a hőáramsűrűség-
től való függésként mutatkozhat meg, a Fourier-egyenlet esetén a kettő egybeesik,
tehát ez a fajta függés már klasszikus szinten is értelmes, de nyilvánvaló mérés-
technikai nehézségekbe ütközik, hasonlóan a ∇p nyomásgradienshez. Például hiába
eredményeznek a Fourier-egyenleten túli modellek eltérő hőárammezőt, ha egyrészt
a hőáramsűrűség méréstechnikája hőmérsékletmérésen, illetve annak gradiensének
kimérésén alapszik; másrészt szenzortól függően egy néhány milliméter sugarú te-
rületen lehetséges átlagos hőáramsűrűséget mérni. Ez a gyakorlat számára nem
feltétlenül probléma, hisz a modelleket kihasználva lehet közvetlenül nem mérhető
információkat kinyerni [125], analóg módon ahhoz, ahogy az áramlástani szimulációk
is mélyebb betekintést engednek a hőátadási tényezőt kialakító mechanizmusokba.
Amíg az utóbbi már standard eljárásként működik a mérnöki gyakorlatban, addig
az előbbi problémakör még csak ennek lehetőségét és megfontolását javasolja.

A méréstechnikai problémáktól eltekintve a gradiensektől való függéseknek komoly
elméleti következményei várhatóak, hiszen lökéshullámoknál, szuperkritikus köze-
geknél, fázisváltó anyagokat felhasználó hőtárolásnál, vagy akár bizonyos gyártás-
technológiai folyamatoknál (hegesztés, 3D nyomtatás) kiemelkedő szerepük lehet
mindamellett, hogy ezeknek a folyamatoknak a nemlinearitásokat is figyelembe vevő
modellezésére is szükség van.

A Navier–Stokes–Fourier-egyenletek kiterjesztése is része a termodinamikai szak-
irodalomnak, azonban ezek az eredmények már lényegesen bonyolultabb és techni-
kásabb eljárásokon, főként kinetikus elméleti eredményeken nyugszanak. Ezekben a
kiterjesztett modellekben a közös pont az, hogy a csatolások a konstitutív egyenletek
szintjén valósítják meg, például a nyomástenzor a hőáramsűrűség gradiensével kerül
kapcsolatba. Mérnöki szempontból ez magaslégköri, igen alacsony nyomású gázok
(úgynevezett ritka gázok) modellezésénél hasznos5. Ez azt jelenti, hogy a nyomás
csökkentésével válnak egyre hangsúlyosabbá a csatoló együtthatók és az extra idő-
deriváltak, valamint a kísérleti adatok [126–129] szerint szintén a nyomás változása
okozza a hangsebességben jelentkező változást. További részletekért a [99, 130–132]
szakirodalmi forrásokat javaslom.

5Ez termodinamikai szempontból teljes egészében analóg a fononhidrodinamika során részlete-
zett (2.46)-(2.48) egyenletrendszerrel.
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3.5. Összefoglalás
Ebben a fejezetben azokra az új tudományos eredményeimre világítottam rá, ame-
lyek az anyagi nemlinearitás következményeiként adódnak. A Fourier-egyenleten
túlmutató modellek esetén az onsageri definíciók termodinamikailag konzisztens ki-
indulási alapot nyújtanak az állapotfüggő transzportegyütthatók figyelembevételére.
A fejezetben főként a hőmérsékletfüggő hővezetési tényező szerepére fókuszáltam,
speciálisan a Guyer–Krumhansl- és Jeffreys-egyenletek esetén. Mindkét modellben
olyan, a triviálistól eltérő járulékok megjelenését figyeltem meg, amelyek méréstech-
nikailag, kísérlettervezésileg, vagy a modellegyenletek értelmezésében jelentenek új-
donságot. Továbbá, részletesen bemutattam, hogyan befolyásolja a hővezetési ténye-
ző hőmérsékletfüggése a többi transzportegyütthatót. Ezeket a megállapításaimat
foglalják össze az alábbi tézisek.

3. Tézis – A Guyer–Krumhansl-egyenlet nemlineáris tulajdonságai

A Guyer–Krumhansl-egyenlet esetén megállapítottam, hogy a hővezetési té-
nyező hőmérséklettől való függése a transzportegyütthatók mindegyikére örök-
lődik. Ennek következménye, hogy a tömegsűrűség hőmérsékletfüggését figye-
lembe kellhet venni, így a hőtáguláson keresztüli termomechanikai csatolás
a modellezési feladat függvényében jelentkezhet. A relaxációs idő hőmérsék-
letfüggését további nemlineáris járulék jelentkezése nélkül nem lehet figye-
lembe venni. A térben nemlokális taghoz tartozó transzportegyütthatók hő-
mérsékletfüggése nem várt módon módosítja a látszólagos hővezetési tényezőt,
amely ilyen módon hőmérséklet- és hőáramsűrűség-függővé is válhat. Az egyes
transzportegyütthatókban jelentkező anyagi nemlinearitások gyors folyamatok
esetén nem küszöbölhetőek ki, mivel bármely együttható hőmérsékletfüggése
mindkét időskála transzportegyütthatóit érinti.

A 3. tézishez kapcsolódó publikációk: [100,102,103,133,134].

4. Tézis – A Jeffreys-egyenlet nemlineáris tulajdonságai

A Jeffreys-egyenlet esetén megállapítottam, hogy a statikus hővezetési tényező
hőmérséklettől való függése anélkül is figyelembe vehető, hogy az állapotfüggés
a többi transzportegyütthatóban jelentkezne. Mivel a Jeffreys-egyenletben a
statikus és dinamikus skálák már konstitúciós szinten is elkülöníthetőek, emi-
att lehetséges a statikus hővezetési tényező hőmérsékletfüggésének dinamikus
időskálán való kiküszöbölése. A relaxációs idő hőmérsékletfüggése vagy a tö-
megsűrűség hőmérsékletfüggését és így a hőtágulási hatások figyelembevételét,
vagy pedig további nemlineáris járulékokon keresztül mindkét időskála módo-
sítását vonja maga után.

A 4. tézishez kapcsolódó publikációk: részben a [6,100] irodalmak tartalmazzák
ezeket a megállapításokat, a teljes eredmény publikálás alatt áll.
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4. fejezet

Megoldási módszerek

Az előző két fejezet során a Fourier-törvény mérnöki szempontból vett lehetséges
alternatíváit mutattam be, ahol a hangsúlyt a modellek onsageri alakjának fon-
tosságára, valamint az egyes nemlineáris tulajdonságok elemzésére helyeztem. A
modellezés következő lépését az egyenletek megoldása jelenti, ami a Fourier-féle hő-
vezetési egyenlethez képest szintén több újdonságot hordoz. Ebben a témakörben
a kutatásom alatt elért eredmények nem új matematikai módszerek megalkotására,
hanem az ismert módszerek Fourier-egyenleten túli alkalmazásaira irányulnak. Ez
közel sem egyértelmű feladat, a hagyományos végeselemes szoftverek alkalmazása
sem mindig jelent megoldást [135,136].

Ebben a fejezetben az analitikus megoldások tekintetében arra fogok fókuszálni,
hogy a Fourier-egyenlet esetén ismert szorzatszeparációs (vagy változók szeparálá-
sa [137]) módszerrel kapott sajátfüggvény-sajátérték egyenletek a Fourier-egyenleten
túl is használhatóak-e a GK- és Jeffreys-egyenletek esetén [73,125]. Ez az utóbbi mo-
dell esetén nem meglepő állítás, mivel a konstitutív egyenletben a Fourier-törvény,
valamint annak időderiváltja is megtalálható, tehát térbeli szempontból nincs válto-
zás. Ezzel szemben a Guyer–Krumhansl-egyenlet már más, hiszen abban a hőáram-
sűrűség további térderiváltjai is megjelennek.

Ebben a fejezetben további megerősítést nyer az a korábbi állításom, hogy a hővezeté-
si modelleket parciális differenciálegyenletek rendszereként kell kezelni, még lineáris
esetben is. Ezzel arra kívánok rávilágítani, hogy a kezdeti és peremfeltételek kezelése
kritikus, könnyen lehet olyan megoldásokat kapni, amelyek nem valósak és negatív
abszolút hőmérsékletre vezetnek a [138] irodalomban látható módon. A [103, 139]
irodalmak azonban egyértelműen bizonyítják, hogy a GK-egyenlet matematikailag
korrekt kitűzésű feladat, a megoldása létezik és egyértelmű, nem sérti a matemati-
kai maximum elvet, de ehhez termodinamikailag kompatibilis modellre és fizikailag
is helyes eljárásokra van szükség.

A peremfeltételek helyes realizálása éppen amiatt válik nehezebbé, hogy a
Fourier-törvény által definiált arányosság helyett egy parciális differenciálegyenle-
tet kell megoldani, amit hely- és időfüggő peremfeltételek esetén általánosan csak
egyenletrendszerek formájában lehet kezelni. A kezdeti feltételek megfelelő kitűzé-
se szintén további kérdéseket vet fel. A Fourier-egyenlet esetén elegendő a kezdeti
hőmérséklet-eloszlást megadni, ebből a hőárammező a Fourier-törvény miatt egy-
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értelműen következik. A Fourier-törvény kiegészítései esetén (akár már a legegy-
szerűbb MCV-egyenletet tekintve) a helyzet megváltozik, a modellek kezelése és a
korrekt kitűzöttség kérdése további meggondolásokat igényelnek [103, 139, 140], el-
kerülve olyan félrevezető feltevéseket, amelyek nem veszik figyelembe az egyenletek
szerkezetét, ilyeneket például a [141, 142] irodalmakban is lehet találni. Ebben a
fejezetben ezeket a kérdéseket válaszolom meg.

4.1. ábra. A hőimpulzusmérés elvi vázlata a NETZSCH leírása alapján [143], magyar
nyelvű feliratokkal ellátva. A BME Gépészmérnöki Kar Energetikai Gépek és Rendszerek
Tanszéken lévő berendezés tanszéki fejlesztésű, amely Gróf Gyula és Gyenis Ákos mun-
káját dicséri. Felépítése a kemencétől eltekintve ezzel egyező, abban a hőmérsékletmérés
K-típusú termoelemmel megoldott, a hőimpulzust egy vaku idézi elő. A tanszéken törté-
nő mérések során az adatgyűjtést PicoScope-pal végeztük, az adatokat Matlab és Excel
segítségével értékeltük ki.

4.1. Analitikus megoldások

4.1.1. A hőimpulzus-kísérlet egy térdimenziós megoldásai és
a kezdeti feltételek szerepe

Több szempontból is érdekes és szemléltető ez a problémakör. A hőimpulzus-kísérlet
egy standard mérési eljárás a különféle anyagok hőfokvezetési tényezőjének meghatá-
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rozására. Ez egy tranziens elvű eljárás, amelynek sematikus összeállítását a 4.1. ábra
szemlélteti. Mivel a kutatásaim alatt végzett kísérletekben központi szerepet tölt
be a hőimpulzuselvű kísérlet, ezért ennek az analitikus és numerikus modellezése
igen fontos feladatot jelentett. A mérés során a próbatestet egy rövid hőimpulzus-
gerjesztés éri, ez egy időfüggő hőáram peremfeltétel segítségével modellezhető. A
kísérlet tervezésénél arra törekednek, hogy egy térben egydimenziós modellel a mé-
rések kiértékelhetőek legyenek, ennek feltételeit, valamint a mérési sajátosságokat
a [144–147] irodalmak részletesen tárgyalják. Ezeket az ajánlásokat követem én is.

I. Dimenziótlanítás. A mérnöki alkalmazások során az egyenletek dimenziótla-
nítása kétségtelenül hasznos és fontos, a [53, 73, 104, 125, 148] publikációk is ennek
a szellemében készültek. Azonban a dolgozatomban bemutatott módszertani kérdé-
sek a dimenziótlanítástól függetlenül is érvényesek. Továbbá, a dimenziótlanításokat
adott alkalmazáshoz kell választani, és még akkor sem egyértelműek, a vonatkozó
publikációkban sem ugyanazt a dimenziótlanítást használtam minden esetben. Emi-
att a megoldásokat kizárólag a modellek dimenziós alakjára véve közlöm, elkerülve
azt a nehézséget is, hogy több különböző dimenziótlanítást definiáljak.

II. Megoldás a változók szétválasztásával. A hőimpulzust a

q(x = 0, t) = q0(t) =

 qmax
(
1− cos

(
2π · t

tp

))
ha 0 ≤ t ≤ tp,

0 ha t > tp,
(4.1)

peremfeltétellel definiálom, ahol tp a hőimpulzus hossza, qmax annak amplitúdója.
A választott függvény numerikus szempontból igen előnyös annak simasági tulaj-
donságai miatt. Analitikus megoldások szempontjából a [73] publikációm volt az
első olyan, amely a GK-egyenletre, véges tértartományra, időfüggő peremfeltétel
esetére zárt alakú megoldást adott, így egyaránt alkalmas volt a numerikus megol-
dások validálására, valamint az akkori kísérleti eredmények részleges kiértékelésére1.
A modell további feltevése, hogy a hőimpulzus után a testet szigeteltnek tekinti
egyaránt annak elő és hátlapján, azaz q(x = L, t) = qL(t) = 0. További feltétel,
hogy a hőimpulzus teljes egészében a próbatest felületén nyelődjön el, ami megfelelő
minta-előkészítéssel megvalósítható [53,117].

A feladat szobahőmérsékleten lineárisnak tekinthető. A Fourier-egyenletre a
módszertant nem részletezem, ehelyett a [137, 149, 150] irodalmakra hivatkozok.
Követve a [73] publikációm, a feladat megoldását az egydimenziós GK-egyenletre
vonatkozóan mutatom be. A fajlagos belső energia mérlegegyenlete, valamint a
konstitutív egyenlet:

ρcv∂tT + ∂xq = 0, τ∂tq + q = −λ∂xT + κ2∂xxq (4.2)

vagyis a test hőforrásmentes és a κ2 = η1 + η2, és a konstitutív összefüggésben a
hőáramsűrűségnek csupán a másodrendű térderiváltja jelenik meg a jobb oldalon.

1A "részleges" kifejezés úgy értendő, hogy akkor még nem volt annyira fejlett a kiértékelési
eljárásunk, mint a [82,104] irodalmakban, és egy analitikus-numerikus hibrid iterációs kiértékelést
alkalmaztunk Fehér Anna doktorandusz hallgatómmal közösen kidolgozva.

40

               kovacsr_325_25



Érdemes megvizsgálni a GK-egyenlet T -reprezentációs alakját,
τ∂ttT + ∂tT = a∂xxT + κ2∂txxT, (4.3)

ahol egyrészt megfigyelhető, hogy a (2.26) egyenlettel összhangban csak a Laplace-
operátor (annak is az egydimenziós alakja) jelenik meg, ellentétben a (2.38)
2-hőmérséklet modellel. Az operátorok linearitása miatt ez igaz marad a q-
reprezentációra is,

τ∂ttq + ∂tq = a∂xxq + κ2∂txxq, (4.4)
amiből az következik, hogy akár T -re, akár q-ra feltételezve, hogy a megoldásokat
ϕ(t)X(x) alakban elő lehet állítani, úgy mindkét esetben az egyenlet szeparálha-
tó, és mindkét esetben a d2/dx2 operátor sajátfüggvényeit és sajátértékeit fogják
a peremfeltételek meghatározni. Továbbá, első- és másodfajú peremfeltételeket te-
kintve ezek a sajátfüggvények és sajátértékek meg kell egyezzenek a Fourier-egyenlet
esetében találtakkal, ugyanis mindkét esetben ugyanaz a Laplace-operátor játszik
szerepet. Ebből az is következik, hogy a GK-egyenlet esetén nincsen szükség további
peremfeltételekre. A kezdeti feltételeknek a q(x, t = 0) és ∂tq(x, t)|t=0 értékeket kell
előírniuk. Mivel a test kezdetben homogén egyensúlyban van, ezért mindkét kezdeti
feltétel zérus, ez inhomogén hőmérséklet-eloszlásnál nincs így (lásd később).

4.2. ábra. A kereskedelmi COMSOL végeselemes szoftverrel kapott megoldás (alul) és
a saját megoldások (felül) összevetése [135] alapján, hőimpulzus-kísérlet típusú kezdeti és
peremfeltételek esetére. Ha csupán két eltérő módszerrel előállított numerikus megoldá-
sunk van, akkor az önmagában kevés, egyik sem diszkvalifikálja a másikat. Az analitikus
megoldás szabad minden numerikus eredetű hibától, és kellően sok tagot figyelembe véve
lényegében egzakt megoldást kapunk eredményül. Tehát az analitikus megoldás megléte
döntő fontosságú az ilyen kérdéses esetekben.
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Ebben az esetben a változók szétválasztását csak úgy lehet elvégezni, ha a GK-
egyenlet q-reprezentációját használjuk, majd a már ismert q(x, t) mező ismeretében
T (x, t) előállítható. Ezt az eljárást a D. függelék írja le részleteiben.

A GK-egyenletre vonatkozóan az analitikus és a COMSOL kereskedelmi véges-
elemes szoftver által adott megoldásokat a 4.2. ábra hasonlítja össze, markáns kü-
lönbségeket mutatva [135]. A COMSOL végeselemes megoldója reprodukálni tudja
a Fourier-, MCV-, sőt, még a ballisztikus egyenletek megoldásait (4.3. ábra), de a
GK-egyenlet esetén a κ2/τ > a esetben az eltéréseket már nem numerikus hibák
okozzák. A 4.2. ábrán látható hamis megoldás független a hálózástól és az időlépte-
tésektől. Ebből azt a következtetést lehet levonni, hogy egyrészt újfajta hővezetési
modellek esetén nagyobb óvatossággal kell eljárni, másrészt az analitikus megoldá-
sok szerepe hangsúlyosabbá válik a numerikus megoldások validálása érdekében. A
numerikus megoldásokban előfordulnak olyan "mesterséges", a választott közelítés
által létrehozott hibák – még stabil és konvergens módszerek esetén is – amelyek a
megoldást lényegesen torzítják. Ilyen numerikus hibára látunk példát a 4.3. ábrán is.
Hiperbolikus egyenletek esetén a COMSOL képes helyes megoldásra vezetni, ame-
lyek még mesterséges oszcillációktól is függetlenek (MCV-egyenlet esete), de ezeket
a megoldásokat jelentős erőforrásigény jellemzi2.

4.3. ábra. Az MCV-egyenlet és a ballisztikus egyenlet COMSOL-lal történő megoldá-
sai. Hiperbolikus modellek esetén a megoldások tükrözik a fizikai tartalmat, de könnyen
mesterséges, megtévesztő numerikus hibákkal terhelté válhatnak.

2Az összehasonlítás végett: a térben egydimenziós MCV-egyenlet COMSOL-al való megoldásá-
hoz 16 GB RAM-ra és egy nyolcmagos i7-es processzorra szükség (2018-as számolások) [135], de a
ballisztikus egyenlet megoldásának mesterséges oszcillációktól mentes előállításához kevés volt ez
a memória; mindehhez igen sok processzoridőre volt szükség. Ezzel szemben egy véges differenciák
elvén megírt Matlab kód, vagy egy analitikus megoldás egy másodpercen belül ad jól követhető
eredményt.

42

               kovacsr_325_25



Ha a ballisztikus egyenletről csupán a 4.3. ábrán látott megoldás lenne az egyetlen
rendelkezésre álló információ, akkor a mesterséges oszcillációk igen könnyen össze-
téveszthetőek a valós, fizikai megoldásból eredő hullámfronttal [76]. Éppen emiatt
szükséges a termodinamikai és a matematikai szempontok, valamint a numerikus
sémák tulajdonságainak az ismerete, amik a "fekete doboz"-jellegű kereskedelmi
programokat ellenőrizhetővé teszik. Ezzel analóg problémákat és kihívásokat rejt
a mechanikai modellek megfelelő numerikus kezelése is, főként a hullámterjedési
feladatok tekintetében [151–153]. A [151, 152] irodalmak több olyan COMSOL-os
példát is bemutatnak, ahol ugyanarra a feladatra, külön-külön időléptetési algorit-
musok felhasználásával – hálózástól függetlenül – mindig eltérő megoldásokra vezet
a szoftver. Tehát az sem járható út, hogy egyszerűen több beépített algoritmust
használunk, mert nem biztos, hogy bármelyik helyes eredményt képes adni. Ráadá-
sul ha az összes különböző, akkor hogyan választjuk ki a helyes megoldást? Ezeket
a kérdéseket a modellek alapos ismeretében lehet jól megválaszolni.

III. További észrevételek a kezdeti feltételekre vonatkozóan. Természete-
sen adódik a kérdés, hogy mit lehet tenni egy olyan általános esetben, amikor csupán
a kezdeti T0(x) hőmérséklet-eloszlás ismert. A válasz egyértelmű: bármely Fourier-
egyenleten túli esetben a T0(x) ismerete kevés. A GK- és a Jeffreys-egyenletek esetén
szükség van még egy további kezdeti feltételre, amely teljes egészében és egyértel-
műen meghatározza a hőáramsűrűséget és a hőmérsékletmezőt az energiamérleg és
a konstitutív egyenletekkel kompatibilis módon. Az egyszerűség kedvéért először az
MCV-egyenletet érdemes tekinteni egy kezdeti t = 0 időpillanatra vonatkoztatva,

τ∂tq + q = −λ∂xT0(x). (4.5)

Ez az összefüggés felfogható úgy is, mint egy minden egyes térpontra vonatkozó
időbeli közönséges differenciálegyenlet, ami felintegrálható és vehető annak a t = 0
helyettesítéssel kapott megoldása. Ekkor

q(x, t = 0) = −λ∂xT0(x) + C(x) (4.6)

adódik, ahol a C(x) integrálási együtthatónak megengedhetjük a helyfüggését. Ezt a
C(x) együtthatót kell megkötni, valamint nem szabad megfeledkezni arról sem, hogy
a peremfeltételek is befolyásolják a helyfüggését. Mivel a q(x, t) hőáramsűrűségnek
differenciálhatónak kell lennie, ezért a C(x)-nek is. Ha például az x = 0 helyen
adiabatikus a peremfeltétel (q(x = 0, t) = 0), akkor a C(x = 0) = λ∂xT0(x = 0)
egyenlőség elvárható a peremen. Hasonló gondolatmenettel lehet dolgozni akkor
is, ha nullától eltérő peremfeltételt kell kielégítenie. Mindezek mellett még mindig
szükség van egy további feltételre, ami teljesen lerögzíti a C(x) függvényt. Ez a
kiegészítő feltétel, habár tisztán matematikai oldalról könnyen megadható, annak
fizikai tartalma azon túl ismeretlen, hogy egy adott kezdeti feltételt kell definiálni
vele.

A fentiek tükrében, ha a C(x) függvényt azonosan nullának választjuk, akkor
a feltételezés az, hogy a Fourier-törvényt használjuk ki a kezdeti hőárammező ki-
számítására. Ez az MCV-egyenlet esetén azt jelenti, hogy a hőárammező kezdeti
időderiváltja nulla, melyet implicit módon írtunk elő. A második alternatíva az,
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hogy a T0(x) eloszlást előidéző folyamatot is modellezzük, azaz a közeg "előéletét"
állítjuk elő, amennyire a rendelkezésre álló információk ezt megengedik. Mivel mind-
két megközelítés egyaránt hordoz bizonytalanságokat és közelítéseket, ezért nincs
értelme arról beszélni, hogy melyik a pontosabb vagy jobb eljárás. Amennyire le-
het, a Fourier-tól eltérő modellek esetén a vizsgált folyamatot homogén nyugalmi
helyzetből kell elindítani, amivel a kezdeti feltételek közelítés nélkül előírhatók.

A feladat azonban lényegesen egyszerűbbé tehető a Galjorkin-módszer felhasz-
nálásával, ez a súlyozott reziduumok módszerének egy speciális alesetét jelenti most
számunkra. Ennek alapgondolata az, hogy a q és T mezőket egy N -tagú véges összeg
formájában keressük, azaz

q =
N∑
n=0

An(t)ϕn(x), T = T0 +
N∑
n=0

Bn(t)φn(x), (4.7)

ahol az An(t) és Bn(t) együtthatók időfüggőek, és azok egy közönséges
differenciálegyenlet-rendszer megoldásaként számolhatóak ki. A ϕn és φn függvé-
nyek a q és T mezők térbeli részét reprezentálják, bázisfüggvényeknek is nevezik
ezeket. Végeselemes alkalmazások során – mivel a végeselem csak egy kisebb térbeli
intervallumot fed le – a ϕn és φn függvények nem kell, hogy globálisan (a teljes
térbeli tartományon) reprezentálják az adott mező viselkedését, elég, ha lokálisan
közelítik azt3. Ebben az esetben viszont speciális, a térbeli függvények lokális rep-
rezentációja helyett a globális reprezentációra törekszek, ahol a ϕn és φn kielégítik a
homogén peremfeltételeket. Emiatt célszerű választás a szorzatszeparációs megoldás
során kapott sajátfüggvények használata.

Az An(t) és Bn(t) együtthatók meghatározásához a (4.7) egyenletet vissza kell
helyettesíteni a fejlődési egyenletekbe, valamint alkalmazva rájuk a megfelelő deri-
váltakat,

ρcv
N∑
n=0

d
dtBnφn +

N∑
n=0

An
d
dxϕn = R1, (4.8)

τ
N∑
n=0

d
dtAnϕn +

N∑
n=0

Anϕn + λ
N∑
n=0

Bn
d
dxφn − κ

2
N∑
n=0

An
d2

dx2ϕn = R2 (4.9)

az úgynevezett spektrális alakot kapjuk, amiben az R1(N) és R2(N) tagok a közelí-
tésből adódó, N -től függő maradéktagok, amelyekre igaz, hogy R1,2(N →∞)→ 0.
A módszer másik alapfeltevése az, hogy ha az egyenletek mindkét oldalát a megfelelő
sajátfüggvénnyel megszorozzuk és a teljes tértartományra integráljuk, akkor

L∫
0

R1φndx = 0,
L∫

0

R2ϕndx = 0, (4.10)

más szóval feltesszük, hogy a közelítésből származó hiba ortogonális a bázisfüggvé-
nyekre [154]. A következő megfigyelés – amit a szorzatszeparációs megoldás eleve
magában foglal – az, hogy a bázisfüggvényeknek egy parciális differenciálegyenlet-
rendszer esetén tisztelniük kell az egyenletek struktúráját is. Ezalatt azt értem, hogy

3Emiatt is kényelmes a tisztán hővezetési végeselemes módszerekben lineáris függvényeket hasz-
nálni, azok lokálisan éppen a hőellenállásokkal analóg módon viselkedő elemtípust eredményeznek.
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a (4.8) energiamérleg spektrális alakjában a ϕn deriváltja arányos kell legyen φn-vel,
más szóval az egyenletekben lévő térbeli differenciáloperátorok a bázisfüggvényeket
egymásba kell képezniük. A (4.9)-ben található másodrendű deriválás emiatt ugyan-
abba a függvénytérbe képez vissza. Ez a módszer így a konstitutív egyenletekből
kizár bizonyos tagokat, például a ∂xq, vagy akár a ∂txq tagok így értelmetlenek, tehát
például a [155] irodalomban közölt modellek ezzel a módszerrel nem megoldhatóak4.

A (4.8)-(4.9) egyenletekben a térbeli deriválásokat elvégezzük, majd az egyen-
letek mindkét oldalát megszorozzuk a nekik megfelelő bázisfüggvénnyel, ezután a
teljes tértartományra vonatkozóan integráljuk. Ekkor a közelítésből származó hibák
kiesnek, és az An, Bn együtthatókra kapott csatolt közönséges differenciálegyenlet-
rendszer minden n módusra megoldható. A (4.8)-(4.9) egyenletek általánosságban
is igazak a GK-egyenletre, a bázisfüggvények a peremfeltételekkel rögzíthetőek.

Visszatérve a kezdeti feltételekhez: például, legyenek ϕn(x) = sin(βnx), φn(x) =
cos(βnx), βn = nπ/L bázisfüggvények, amely az adiabatikus peremfeltételeknek
(q(x = 0, t) = q(x = L, t) = 0) megfelelő sajátfüggvény-sajátérték rendszer. Az
előbbiekben megfogalmazott lépéseket követve a

ρcv
d
dtBn + βnAn = 0, (4.11)

τ
d
dtAn +

(
1 + κ2β2

n

)
An − λβnBn = 0 (4.12)

rendszer adja meg az An és Bn együtthatók időbeli változását. Érdekessége, hogy a
GK-egyenlet megoldása az MCV-egyenlethez képest egyáltalán nem hordoz további
újdonságot, egyetlen együttható különbség van a két modell között; a κ2 = 0 felté-
tellel a modell, valamint annak megoldása az MCV-egyenletre és annak megoldására
egyszerűsödik. Ez a parciális differenciálegyenletek szintjén egyáltalán nem nyilván-
való, de a Galjorkin-módszerrel a modell megoldása lényegesen egyszerűsödik. Ezzel
kikerülhető a C(x) függvény megválasztása, tisztábban látszanak a függvénykapcso-
latok, és a GK-egyenlet esetén a ∂xxq tag miatti nehézségek is megkerülhetőek.

A Jeffreys-egyenlet esetén a ϕn(x) = sin(βnx), φn(x) = cos(βnx), βn = nπ/L bá-
zisfüggvények nem változnak (változatlanul adiabatikus peremfeltételekre), ebben
az esetben is öröklődnek a Fourier-egyenletnél használt sajátfüggvények és sajátér-
tékek, így a modell spektrális alakja

ρcv
d
dtBn + βnAn = 0, (4.13)

τ
d
dtAn + An −

(
λ1 + λ2

d
dt

)
βnBn = 0. (4.14)

Adott T0(x) esetén, szintén feltételezve, hogy a kezdeti feltétel az adott bázison rep-
rezentálható, a kezdeti Bn(t = 0) együtthatók előállíthatóak. Itt is látszik, hogy egy

4Megjegyzem, hogy a [155] állítása ellenére várhatóan nem termodinamikailag konzisztens mo-
delleket közöl. Amely modell kilóg az itt közölt Galjorkin-módszer hatásköréből, abban a differen-
ciáloperátorok eleve is kivezetnek a megfelelő függvénytérből, így azok megoldása más módszerek
esetén is problémákba ütközhet. A vezető modern termodinamikai megközelítések nem tudnak
ilyen tagokat a konstitutív egyenletekben létrehozni. Habár ezt az állítást részletesen nem bi-
zonyítom, a Galjorkin-módszer alkalmazásának kizárása önmagában is elég kérdést vet fel a [155]
irodalomban közölt modellek terén, ami a GK- és Jeffreys-egyenletekkel összevetve komoly hátrány.
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további feltételre szükség van, amely egyértelműen megköti az An(t = 0) együtt-
hatót. A GK- és a Jeffreys-egyenletek is megengedik azt a választást, hogy a hő-
mérsékletmező időderiváltja kezdetben nulla legyen adott inhomogén T0(x) mellett,
azaz

d
dtBn = 0 ⇒ An = 0 ⇒ τ

d
dtAn = λ1βnBn (4.15)

összefüggés feltételt ad a hőárammező kezdeti időderiváltjára, ami nem nulla. Ez
visszafelé is igaz, azaz

d
dtAn = 0 ⇒ An 6= 0 ((4.12) vagy (4.14)) ⇒ ρcv

d
dtBn = −βnAn, (4.16)

vagyis a GK- és a Jeffreys-egyenletek a kezdeti feltételek rögzítéséhez megengedik a
Fourier-törvénytől való eltérést. Hangsúlyozom, hogy adott inhomogén T0(x) esetén
nem lehet mindkét mező kezdeti időderiváltja zérus, az inkonzisztens eredményre
vezetne. Végül visszautalva a q-, vagy T -reprezentációkra, azok az An-re vagy a
Bn-re való átrendezéssel analóg módon értendőek, a spektrális formában bármelyik
kiküszöbölése nehézségektől mentes.

A teljesség kedvéért az E. függelék közli a [53] publikációra építve a hőimpulzus-
kísérlet Galjorkin-módszerrel történő modellezését is. A fő különbség az, hogy ebben
a megoldásban sikerült úgy figyelembe venni a test hűlését, hogy az előző esethez
képest nem kellett a sajátértékeken és a sajátfüggvényeken módosítani, ez kicsi (0,1
alatti) Biot-számokra érvényes.

4.1.2. Nagy kiterjedésű testek hengerszimmetrikus leírása
A térben kétdimenziós analitikus megoldások tekintetében mutatkozik meg igazán a
Galjorkin-módszer hatékonysága. Egy lehetséges termikus mérési elrendezést vizsgál
a következő problémafelvetés.

Mivel a mérnöki gyakorlatban sokszor nehéz kisméretű próbatesteket készíteni,
kiváltképp a habosított heterogén anyagszerkezetek kapcsán, vagy akár már megle-
vő szerkezeteket kellhet utólag termikus szempontból roncsolásmentesen jellemezni,
ezért ésszerű lehet a következő elrendezés [125]. A 4.4. ábrán egy olyan esetet látha-
tunk, ahol egy adott L vastagságú falat annak egy r sugarú felületén egyenletesen
fűtünk. Meg kell jegyeznem, hogy egy ilyen helyfüggő peremfeltétel kezelése még a
Fourier-egyenlet esetén is komoly kihívásokba ütközik, így a helyfüggő peremfeltételt
egy helyfüggő hőforrással célszerű kiváltani, amely a fűtött felületre koncentrálódik,
egészen pontosan a

qv(r, z) = qv,maxqvr(r)qvz(z), qvr(r) = 1
2

(
1− tanh(C1r − C2)

)
, qvz(z) = e−C3z

(4.17)

függvényalak szerint, ahol a C1,2,3 konstansok tetszőlegesen állíthatóak annak tük-
rében, hogy mekkora tértartományra kívánjuk a hőforrást koncentrálni qv,max amp-
litúdóval.

A további peremfeltételek a 4.4. ábra szerint értendőek, azaz a testet hengeresnek
tekintem, amiben kihasználom a hengerszimmetriát. Így az elülső (fűtött) felületen
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4.4. ábra. A bal oldali elrendezés mutatja az eredeti elrendezést, a felületen helyfüggő
hőáram peremfeltétellel. A jobb oldali elrendezés ezt a peremfeltételt váltja ki helyfüg-
gő hőforrás alkalmazásával, amelynek karakterisztikáját a (4.17) összefüggés mellett a
sötétkék vonalak is szemléltetik [125] alapján. Az elülső (z = 0) felületen elhelyezkedő
kék pontok a lehetséges hőmérsékletmérési pontokat jelölik, tehát a modellek megoldásait
ezeken a pontokon érdemes összevetni, mivel ezek könnyen mérhetőek.

és a forgástengelyen a hőáramsűrűség nulla, az egyszerűség kedvéért a hűlést elha-
nyagolom. A mérés ideje alatt a fűtött tartománytól a hátsó felületet elegendően
távolinak tekintem, így az ottani hőmérsékletet adott peremfeltételnek írom elő.
Ugyanígy járok el a forgástengelytől R távolságra lévő felületen is. A feladatot a
lineáris Fourier-, GK- és Jeffreys-egyenletekre oldom meg a Galjorkin-módszer ki-
használásával, hengerkoordinátákban, a [125] publikációm követve. Összefoglalva, a
következő leíró egyenleteket használom a fajlagos belső energia mérlegére, valamint
a konstitutív összefüggésekre,

Mérleg: ρcv∂tT + ∂rqr + 1
r
qr + ∂zqz = qv(r, z), (4.18)

Fourier: qr = −λ∂rT, (4.19)
qz = −λ∂zT, (4.20)

GK: τ∂tqr + qr = −λ∂rT + (η1 + η2)
[
∂rr −

1
r2 + 1

r
∂r

]
qr + η1∂zzqr + η2∂rzqz,

(4.21)
τ∂tqz + qz = −λ∂zT + (η1 + η2)∂zzqz

+ η1

[
∂rr + 1

r
∂r

]
qz + η2

[1
r
∂z + ∂rz

]
qr, (4.22)

Jeffreys: τ∂tqr + qr = −λ1∂rT − λ2∂trT, (4.23)
τ∂tqz + qz = −λ1∂zT − λ2∂tzT. (4.24)

A Galjorkin-módszer alkalmazásához szükség van a Fourier-egyenlet által kijelölt
sajátfüggvényekre és sajátértékekre, ami a hagyományos szorzatszeparációs megol-
dás során határozható meg. A térfogati hőforrás megléte miatt azonban a változókat
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nem lehet azonnal szétválasztani. Emiatt célszerű két állapot szuperpozícióját tekin-
teni: egy inhomogén, de állandósult állapotot (Tst(r, z)), valamint egy homogén, de
időfüggő állapotot (Th(r, z, t)), azaz a T (r, z, t) = Tst(r, z) + Th(r, z, t) felbontásban
a feladat megoldható. A megoldás részleteit az F. függelék tartalmazza.

Mindhárom modell megoldása ugyanabban az alakban, az egyes mezők együtt-
hatóira vonatkozó közönséges differenciálegyenlet-rendszer formájában írható fel,

d
dt


Cnm(t)
Dnm(t)
Enm(t)

 = Mnm


Cnm(t)
Dnm(t)
Enm(t)

 , (4.25)

ahol az Mnm együtthatómátrix elemei az egyes modellek esetén eltérőek, valamint a
Cnm, Dnm és Enm együtthatók – az F. függelék jelöléseivel összhangban – rendre a T
hőmérséklet, valamint a qr és qz hőáramkomponenseket kifejtő véges sor együtthatói.
A megoldás tetszőleges, időben változó, de folytonos térfogati hőforrás-eloszlásra is
igaz marad.

4.5. ábra. Az állandósult állapotú hőmérséklet-eloszlás jellegének demonstrálása, a bal
oldali ábrán felületként, a jobb oldali ábrán az izoterm szintvonalak segítségével szemlél-
tetve [125].

A megoldások jellegét a 4.5-4.7. ábrák demonstrálják, de a hangsúlyt a modellek
megoldásának módszertanára kívánom helyezni. A Galjorkin-módszer ilyen irányú
alkalmazása nem csak új ezen a szakterületen, de rendkívül hasznos és lényegesen le-
egyszerűsíti a megoldások menetét. Ehhez arra van szükség, hogy a GK- és Jeffreys-
egyenletek ugyanazokat a térbeli bázisfüggvényeket (sajátfüggvény-sajátérték pá-
rokat) használják, mint a Fourier-egyenlet. Ez a modellek T -reprezentációjából,
valamint az egyenletek szerkezetéből első- és másodfajú peremfeltételekre vonatko-
zóan belátható. A harmadfajú peremfeltétel miatt a sajátfüggvények és sajátértékek
már függenek a konstitutív kifejezéstől is, így az nem feltétlenül származtatható a
Fourier-egyenleten túli esetekre. Ez a módszertan ettől általánosabb, termodinami-
kailag kompatibilis modellekre is használható, a kezdeti és a peremfeltételek keze-
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lése is lényegesen egyszerűbb, mint ahogy a szorzatszeparációs módszertan esetén
kiadódna.

4.6. ábra. A GK-egyenlet esetén a felületi hőáramsűrűség sugárirányú eloszlása az η1
paraméter függvényében [125]. Itt érdemes újra reflektálni a hőárammérésre vonatkozó
korábbi megjegyzésünkre: a hőáramsűrűség értéke, eloszlásának karakterisztikája nagy-
ságrendileg nem tér el attól, amit a Fourier-törvény jósol (itt az η1 = 0 határeset), emiatt
ilyen módon nem is lehet a Fourier-tól való eltérést megfigyelni a jelenleg rendelkezésünkre
álló eszközökkel.

4.7. ábra. A GK-egyenlet által jósolt időbeli hőmérséklet-változás a 4.4. ábrán szem-
léltetett kék pontokon a z = 0 helyen [125]. Érdekesség, hogy a Fourier-egyenlettől való
eltérés inkább a fűtéstől távolabbi pontokon jelentkezik, nem pedig közvetlenül a hőforrás
közelében. Ez újra kiemeli a jelenség megfigyelhetőségének méretfüggését, és egyben ezek
a számolások további támpontot adnak újabb méréstechnikai eljárások kidolgozásához,
illetve azok kiértékeléséhez.
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4.2. Numerikus megoldások

A mérnöki gyakorlatban számtalan esetben, akár a geometria, akár a modellegyen-
letek miatt (a peremfeltételeket is ideértve), szükség van a numerikus módszerek
használatára. Ezek a módszerek a diszkretizáció folyamatán keresztül alakítják át az
eredeti parciális differenciálegyenleteket algebrai egyenletekké. Fontos hangsúlyozni,
hogy önmagában a diszkretizációs eljárás, mint módszer, hatékonyságáról értelmet-
len beszélni, ez csak az adott parciális differenciálegyenlet-rendszerrel együtt értve
értelmes. Erre egy igen bevilágító és a szakirodalomban alapvető példaként emle-
getett modell az advekciós egyenlet5 megoldása, amely a hővezetési modell esetén
kiválóan működő FTCS6 véges differenciás sémával mindig instabil megoldásra ve-
zet [156]. Ezzel szemben a Lax-módszert kihasználva a nevezetes Courant-szám7

stabilitási kritérium levezethető, és ehhez tulajdonképpen az FTCS sémának egyet-
len elemén kell egy kisebb módosítást végezni, amitől a séma még mindig megőrzi az
időben előrelépő, térben centrális jellegét, de a numerikus stabilitási tulajdonságok
lényegesen megváltoznak.

A numerikus módszereknek ez a tulajdonsága általában véve is igaz, és így
a következő alfejezetekben megfogalmazott állítások kizárólag a GK- és Jeffreys-
egyenletekre (illetve azok aleseteként tekinthető MCV-egyenletre) érvényesek. A
numerikus módszerek tárgyalása esetén a hangsúlyt a peremfeltételek kezelésére,
valamint a stabilitási tulajdonságok vizsgálatára helyezem. A kezdeti feltételekre
vonatkozó korábbi megállapítások most is érvényesek maradnak. A kutatásaim so-
rán a véges differenciás módszerek használatakor a séma pontosságának növelése
nem volt célom, aminek az az oka, hogy ettől lényegesen kritikusabb a peremfelté-
telek helyes kezelése és a valódi megoldás megtalálása.

4.2.1. A peremfeltételek kezelése 1D-ben
Szemléltetésképpen érdemes a GK-egyenlet egy térdimenziós alakjából kiindulni,

ρcv∂tT + ∂xq = 0, (4.26)
τ∂tq + q = −λ∂xT + κ2∂xxq. (4.27)

Amíg közönséges differenciálegyenleteknél jól mutatja a deriváltak rendje a szükséges
peremfeltételek számát, addig a parciális differenciálegyenletek rendszerénél ez nem
ennyire kézenfekvő. Kontinuum szemmel nézve minden térpontban mindkét mező
(T és q egyaránt) létezik, így a peremen is. Ez azt jelenti, hogy akármelyik mezőre
is vonatkozik peremfeltétel, azzal kompatibilisen kell a másik mezőre vonatkozó
peremet is előírni. Ez a Fourier-egyenletnél nem ütközik nehézségekbe. A problémák
a GK-egyenlet esetén jelentkeznek a másodrendű térderivált miatt, azaz ismerni

5Az advekciós egyenlet egy elsőrendű hullámegyenlet: ∂tu = v∂xu, ami egy u mennyiség v
sebességgel való transzportfolyamatát adja meg.

6A rövidítés az angol "Forward Time Centered Space" szavakból adódik, a szakirodalom is így
használja, és az időben előrelépő, térben centrális véges differenciás közelítést jelenti.

7Hívják még Courant–Friedrichs–Lewy-számnak is, rövidítve CFL kritériumként található meg
a szakirodalomban [156].
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kellene a ∂xxq tagot minden időpillanatban a peremen. Ez a jelenlegi tudásunk
szerint nem lehetséges, így a problémát meg kell kerülni.

4.8. ábra. Az eltolt mezős diszkretizálás sematikus ábrája és a peremfeltételek realizálá-
sa. A felső ábra a q − q-peremek esetét, az alsó ábra a q − T -peremek esetét mutatja be.
A hőmérsékletek mindkét esetben egy ∆x széles cella átlagát, a hőáramok a cellába be-,
illetve kilépő áramokat reprezentálják, teljesen analóg módon a végestérfogatú megköze-
lítéssel. Az alsó ábrán feltüntettük, hogy az egyes differenciál-operátorok honnan hová
képeznek a diszkrét rácson.

Az egyik megoldás az úgynevezett eltolt mezős módszertanon alapul, aminek
az alkalmazása a Fourier-egyenleten túli hővezetési feladatok esetén először a [135]
publikációban jelent meg. Ez a véges differenciák módszerén alapszik, és a kívánt pe-
remfeltételnek megfelelően kell az egyes mezőkhöz tartozó rácspontokat lehelyezni.
Erre példát a 4.8. ábra mutat, azaz előírt q-perem esetén a q-hoz tartozó rácspont
kerül a tartomány szélére, T -perem esetén a T -hez tartozó. Ez speciális esetek-
ben egybeesik a véges térfogatok módszerével. Érdekesség, hogy ez a diszkretizáció
csak a termodinamikailag kompatibilis egyenletrendszerek esetén működik jól. Ez
impliciten magában hordozza a Galjorkin-módszer során is tett megállapításomat,
miszerint az egyes differenciáloperátorok ugyanabba a függvénytérbe kell képezze-
nek. Ez az eltolás időben is lehetséges, ezáltal növelve az időbeli közelítés rendjét,
valamint ez a módszertan egyesíthető a szimplektikus módszerekkel, amelyek igen
előnyös numerikus tulajdonságokkal rendelkeznek, például eltünthetőek a numerikus
disszipációs és diszperziós hibák [151,152].

Mérnöki szempontból szintén hangsúlyos a végeselemes szempontok tárgyalása,
így a következőkben a [136] közleményre építve bemutatom, hogy miért is adhat
a COMSOL hamis megoldást a GK-egyenlet esetén. A hőimpulzus-kísérletnek is
megfelelő q-peremeket használom. A megközelítés a (4.26)-(4.27) egyenletek gyenge
alakjára épít, azaz ∫

V

(ρcv∂tT + ∂xq)w1 dV = 0, (4.28)
∫
V

(
τ∂tq + q + λ∂xT − κ2∂xxq

)
w2 dV = 0, (4.29)

51

               kovacsr_325_25



a leíró egyenletek integrális alakjára, ahol az úgynevezett w1(x) és w2(x) tesztfügg-
vényekkel kell megszorozni az egyenleteket, amelyek segítenek abban, hogy mate-
matikailag kedvezőbb folytonossági tulajdonságokkal rendelkező megoldásokat ke-
ressünk. Habár a mérlegegyenletek esetén azok integrálalakja a természetes, és csak
annak határértéke vezet a lokális, térpontra felírt differenciális alakra, a konstitu-
tív egyenletek esetén ez már egy mesterséges lépés, mivel eredendően differenciál-
egyenletként, erős alakban származtathatóak. Ettől ez még egy lehetséges lépés, sőt,
szükséges: a végeselem-módszer alapja ugyanis éppen az, hogy a vizsgált tartományt
résztartományokra, úgynevezett végeselemekre bontjuk és a felhasznált bázisfügg-
vényeket lokálisan, egy elemre vonatkozóan definiáljuk úgy, hogy azzal biztosítani
tudjuk a gyenge alak által a próbafüggvényekre, valamint a tesztfüggvényekre vo-
natkozó folytonossági feltételeket az elemhatáron. Ennek a speciális határesete az
analitikus megoldásoknál használt Galjorkin-módszer, ahol ez globálisan, az egész
testre vonatkozott. A mérlegegyenlet esetén a hőáramsűrűségen lévő deriváltat par-
ciális integráláson keresztül át lehet hárítani a tesztfüggvényre,∫

V

(
ρcv∂tTw1 − q

dw1

dx

)
dV = −[qL(t)w1(L)− q0(t)w1(0)], (4.30)

amiből adódóan a q-ra előírt peremfeltételek az integrálási peremen megjelenő tagok-
ba beépíthetőek lesznek, azaz a mérlegegyenletben forrástagként jelennek meg, az
analitikus megoldásoknál peremleválasztással kapott megközelítéssel teljesen analóg
módon. Ekkor w1 esetén w1(0) 6= 0 és w1(L) 6= 0, máskülönben kiesnek a peremta-
gok. A módszertan ugyanígy jár el a konstitutív egyenlet esetén is, ott a másodrendű
térderiváltból lehet egyet áthárítani a w2 tesztfüggvényre,∫
V

(
τ∂tqw2 + qw2 + λ∂xTw2 + κ2∂xq

dw2

dx

)
dV = κ2[∂xq(L)w2(L)− ∂xq(0)w2(0)],

(4.31)

ahol azonban a ∂xq a peremen nem ismert és nem előírt függvény, ezért a peremen
megjelenő tagokat szabadon hagyjuk. Ez arra is felhívja a figyelmet, hogy a GK-
egyenlet ennek előírására is lehetőséget ad, ez választás és modellezés kérdése, és
inkább a fononhidrodinamikai modellek esetében értelmes [157]. A teszt- és próba-
függvények felvétele után az integrálások elvégezhetőek és az integrálegyenletekből
egy csatolt, időben közönséges differenciálegyenlet-rendszert kapunk, amiben külön-
külön szerepel a hőmérséklet és a hőáramsűrűség, emiatt ezt kétmezős módszer-
nek nevezik, és megőrzi az egyenletek rendszerében való gondolkodást. Speciálisan,
a [136] irodalomban az egyes mezőket és függvényeket polinomiális alakban keres-
tük, ahol a polinom fokszámának növelésével a hagyományos elemsűrítési eljárásnál
sokkal gyorsabb konvergenciát lehet elérni.

A (4.30)-(4.31) összefüggésekből az olvasható ki, hogy a T , q és w1,2 függvények
nemcsak, hogy integrálhatóak kell legyenek, hanem a GK-egyenlet esetén azok deri-
váltja is. Ez azt jelenti, hogy ezek a függvények a H1 Szoboljev-tér elemei, valamint
azok végessége miatt a H1 egy alterén alkotnak bázist és reprezentálják a megol-
dást. Ez egyrészt eltér az analitikus megoldásban látottaktól, ott ugyanis elegendő
volt az, hogy az egyes függvények négyzetesen integrálhatóak, vagyis az L2 elemei
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legyenek. Ugyanez az eltérés adódik a COMSOL-lal való összevetés esetén is. A
COMSOL szintén csak L2-beli függvényeket használ [158], és a többmezős megfo-
galmazhatóság ellenére inkonzisztens megoldásokra vezet. Megjegyezem, hogy ez
a GK-egyenlet sajátja, az MCV-egyenlet esetén az egyes függvényekre elegendő az
L2-beli integrálhatóság, és így a COMSOL is helyes megoldásra vezet.

A Jeffreys-egyenlet szempontjából nincsenek ilyen függvénytérbeli inkompatibi-
litási problémák, mivel a modell csak időbeli kiterjesztéseket vezet be, így a további
térderiváltak jelentette folytonossági és integrálhatósági nehézségek nem jelentkez-
nek. Ez megint csak rávilágít arra, hogy a Jeffreys-egyenlet matematikailag a GK-
egyenlethez képest sokkal egyszerűbben, kényelmesebben kezelhető, és a Fourier-
egyenlettel egyező függvényrendszerek numerikusan is működnek.

4.9. ábra. A kétdimenziós GK-egyenlet megoldására használt eltolt mezős diszkretizáció
[159] alapján. A bal felső ábra mutatja az egyes mennyiségeknek a diszkrét rácson elfoglalt
helyét, a jobb oldali a q-peremek és a Q keresztkomponensei közötti összefüggést. A bal
alsó ábra egy Lagrange-polinomokra épülő extrapolációs eljárást szemléltet a Q peremen
hiányzó keresztkomponenseire vonatkozóan.

4.2.2. A peremfeltételek kezelése 2D-ben

Ebben az alfejezetben újra csak a GK-egyenletre fókuszálok, ugyanis a Jeffreys-
egyenlet esetén több térdimenzióban sem jelentkeznek a gradiensen felüli további
térderiváltak. Az egyszerűség kedvéért a feladatot Descartes-koordinátákban tár-
gyalom, és az eltolt mezős módszertant alkalmazom a

ρcv∂tT +∇ · q = 0, (4.32)
τ∂tq + q = −λ∇T + η1∆q + η2∇∇ · q, (4.33)
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egyenletek diszkretizációjára, követve a [159] irodalmat. Érdekes és fontos, hogy a

Q := q ⊗∇ (4.34)

bevezetésével

τ∂tq + q = −λ∇T + η1Q · ∇+ η2∇trQ (4.35)

alakra lehet a konstitutív részt átírni, azaz a Q, mint a hőáramsűrűség gradiensének
segédmennyiségként való bevezetése segíti a térderiváltak megfelelő diszkretizáció-
ját. Ebben jelen van a termodinamikai háttér is, mivel a Q az igen hasonló ahhoz
a relaxált mezőhöz, amiről a Nyíri-szorzók kapcsán a 2. fejezetben szó volt. Az el-
tolt mezős módszerrel való rácspont kiosztást derékszögű koordináta-rendszerben a
4.9. ábra szemlélteti [159], ahol azt is jelöltem, hogyan viszonyul a Q a q-ban adott
peremfeltételekhez. Két fontos megállapítást kell tennem.

Az első állításom azt mondja, hogy a Q és a q nem függetlenek egymástól, és ha
a Q szimmetrikus, akkor minden perempontja teljes egészében kiadódik a 4.9. áb-
rának megfelelően. Ezt a szimmetrikussági tulajdonságot mindig lehet előre ismer-
ni, emiatt a második állításom azt mondja, hogy a Q-beli peremfeltételek igen jó
közelítését adja a belső térpontokból Lagrange-polinomok segítségével történő ext-
rapoláció, amelyet szintén a 4.9. ábra szemléltet. Az extrapolációs megoldást úgy
teszteltük, hogy a Fourier-egyenlet megoldását külön diszkretizációval, valamint a
GK-egyenlet itt bemutatott megoldásával is előállítottuk, és 10−14 rendű hibán be-
lül ugyanazt a megoldást kaptuk vissza térben és időben, valamint instabilitásokra
nem vezetett [159]. Az extrapolációhoz mindenképpen csak egy másodrendű poli-
nomot használtunk amiatt, hogy a tendenciát előjelőrző módon lehessen elvégezni.
Ilyen tekintetben a fő kérdés, hogy a modellezésben figyelembe kívánjuk-e venni a
hőáramsűrűség rotációját, ami a GK-egyenletnek szerves részét képezi, és ez pél-
dául szuperfolyadékok termikus modellezésénél igen fontos járulékokat adhat [160].
Éppen emiatt a GK-egyenlet sokkal jobban tudja egyesíteni az alacsony hőmérsék-
letű jelenségeket a heterogén anyagok effektív leírásával, erre az egységes leírásra a
Jeffreys-egyenlet csak igen korlátozottan képes. Ezzel szemben a Jeffreys-egyenlet
megoldásait sokkal könnyebb előállítani, nincsenek kiemelkedő nehézségek sem az
analitikus, sem a numerikus módszerek terén, amelyek instabilitásokra vagy hamis
megoldásokra vezetnének. A további részleteket a G. függelék tartalmazza.

4.2.3. Nemlineáris feladatok
A megoldási módszerek lezárásaként három, térben egydimenziós nemlineáris mo-
dellt mutatok be, a Fourier-, az MCV- és a Jeffreys-egyenleteket, amelyekben a hő-
vezetési tényező és a relaxációsidő-együtthatók hőmérsékletfüggőek, és azok numeri-
kus, véges differenciák módszerére vonatkozó szempontjait vizsgálom a [100,133,134]
irodalmak mentén, azon belül is főleg a numerikus stabilitási határok becslésére vo-
natkozóan. A következőkben kizárólag az előbb tárgyalt eltolt mezős módszertant
fogom használni a diszkretizációhoz. Az állításom lényege az, hogy a lineáris egyen-
letekre használatos Neumann-módszer [156] ezekben a speciális – ámbár mérnöki
szempontból igen lényeges – esetekben továbbra is használható, és annak egyfajta
általánosítását adom meg anyagi nemlinearitásokra vonatkozóan.
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I. Fourier-egyenlet. Ehhez először a Fourier-egyenlet példáját érdemes megvizs-
gálni, amiben a

ρcv∂tT + ∂xq = 0, (4.36)
q = −λ(T )∂xT (4.37)

egyenleteket a véges differenciák módszerével diszkretizálom , valamint legyen
λ(T ) = λ0 +h(T −T0), de a következőkben a T0 referencia-hőmérsékletet elhagyom,
mivel az egy eltolással nullába transzformálható. A

ρcv
∆t (Tn+1,j − Tn,j) + 1

∆x(qn,j+1 − qn,j) = 0, (4.38)

qn,j = −λ0 + hTn,j
∆x (Tn,j − Tn,j−1) (4.39)

differenciaegyenletek stabilitási tulajdonságait kívánom meghatározni. A legegysze-
rűbb út az, ha a [161] alapján a Tn → Tn+1 időpontok közötti leképezés tulajdon-
ságait tekintjük, amellyel a stabilitási feltételt egzaktul meg lehet kapni. Ennek a
leképezésnek a következő feltételeket kell kielégítenie:

1. a leképezés T -ben folytonos legyen;

2. a leképezés legyen szimmetrikus;

3. a leképezés mátrixának sorösszege legyen 1;

4. a leképezés mátrixának elemei legyenek nemnegatívak;

5. a leképezés mátrixának főátlójában lévő elemek legyenek pozitívak;

6. irreducibilis legyen, vagyis bármely T -hez egyértelműen tartozik egy λ(T ) > 0
elem.

Ez a leképezés felírható egy tridiagonális mátrixként, amiben minden sorban a [γ; 1−
2γ; γ] elemek találhatóak, és

γ =
{
a0

∆t
∆x2

λ0 + hTn,j
λ0

}
. (4.40)

Egy kivételével minden feltétel triviálisan teljesül, a negyedik feltétel megadja a
stabilitási kritériumot, amely szerint 1− 2γ > 0, azaz a

1 > 2maxn,j
{
a0

∆t
∆x2

λ0 + hTn,j
λ0

}
(4.41)

feltételre vezet, vagyis γ akkor a legnagyobb, ha a Tn,j maximumot vesz fel, és
aminek a teljesülése szükséges és elégséges a nemlineáris Fourier-egyenlet megoldá-
sához [100], és lineáris esetben (h = 0) a klasszikus FTCS séma által adott stabili-
tási feltételre redukálódik. Azonban ez a módszer nem látszott általánosíthatónak a
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Fourier-egyenleten túlmutató esetekre vonatkozóan, de ez a felismerés motivált arra,
hogy a Neumann-módszert a következők szerint módosítsam.

A Neumann-módszer lényege az, hogy a diszkretizáció eredményeként kapott
differenciaegyenletek megoldását síkhullám formájában keressük, egyfajta diszkrét
diszperziós relációként, például a hőmérsékletre felírva

Tn,j = T̃ψneikj∆x, (4.42)

ahol i a képzetes egység, k a hullámszám, j∆x fejezi ki a j-edik térlépést, valamint
ψ a hullám amplitúdója, amely minden n időlépésben hatványozódik. Ebből az kö-
vetkezik, hogy akkor lesz stabil a hullám, ha annak ψ amplitúdója bármely n esetén
felülről korlátos, tehát |ψ| ≤ 1, ψ ∈ C. A T̃ hőmérséklet-amplitúdó dimenzioná-
lis okokból szükséges, a módszer szempontjából nincs kiemelt jelentősége. Ha több
mezővel kell dolgozni, akkor minden mezőre érvényes lesz a (4.42) alak, de eltérő
amplitúdóval (például q mező esetén q̃-al). A (4.42) hullámmegoldást visszahelyet-
tesítve a (4.38)-(4.39) egyenletekbe ψ-re egy p(ψ) = p2ψ

2 +p1ψ+p0 karakterisztikus
polinomot kapunk (lineáris esetben), amely polinom p0,1,2 együtthatóira a

• p(ψ = 1) ≥ 0⇒ p2 + p1 + p0 ≥ 0,

• p(ψ = −1) ≥ 0⇒ p2 − p1 + p0 ≥ 0,

• |p0| ≤ p2,

Jury-kritériumok [162] teljesülését írjuk elő. A kritériumok ellenőrzéséből kapjuk
meg a numerikus stabilitási feltételeket. Ez azt jelenti, hogy a polinom gyökeit a
komplex egységkörön vagy azon belül tartjuk, mindezt úgy, hogy csak a polinom
együtthatóit használjuk fel. A polinom fokszámához képest mindig eggyel több
feltételre van szükség, és ez a módszertan általánosan működik bármely lineáris
egyenletrendszerre. Meg kell jegyezni, hogy a kiadódó stabilitási feltételek nem
mindenképpen egzaktak, mivel a peremfeltételek hiányoznak belőlük, de a stabilitá-
si kritériumokat igen jól közelítik, és a mérnöki gyakorlat számára ez is nagyon jó
eredménynek mondható. Nemlineáris esetben a p(ψ) polinom együtthatói hőmér-
sékletfüggőek lesznek, tehát a stabilitás is állapotfüggővé válik. Az ötletem az, hogy
a λ(T ) függvényben a T helyére egy Tmax maximális hőmérséklet értéket lehet be-
helyettesíteni, amely hőmérséklet a teljes folyamat alatt, térben és időben kialakuló
maximális érték [100]. Mivel ez a hőmérséklet függ a kezdeti és peremfeltételektől,
valamint a modelltől, emiatt erre egzakt értéket nem lehet mondani, még akkor sem,
ha hőmérséklet-peremfeltételeket írunk elő. Ugyanis, általános esetben a Fourier-
egyenleten túli modellek része a hullámterjedés (második hang) leírása, így ilyen
modellek esetén a hőmérséklet lokálisan akár jóval meghaladhatja a peremfeltétel-
ként előírt hőmérsékletet is. Azt a meggondolást viszont kihasználom, hogy ezt a
maximális hőmérsékletet a lineáris egyenlet megoldásából becsülhetem, mivel adott
kezdeti és peremfeltételekre ezt gond nélkül elő lehet állítani. Ezt a Fourier-egyenlet
példáján demonstrálva azt kapom, hogy a polinom együtthatói:

p1 = 1, p0 = 4a0
∆t

∆x2
λ0 + hTmax

λ0
− 1, (4.43)
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ahol a0 = λ0/(ρcv) egy T0 referencia-hőmérsékletre vett hőfokvezetési tényező. Ekkor
a

ψ = 1− 4a0
∆t

∆x2
λ0 + hTmax

λ0
(4.44)

megoldást kapom, amire a |ψ| ≤ 1 feltételt előírva azonnal meg is találom a (4.41)
stabilitási kritériumot. Itt a Jury-kritériumokra azért nem volt szükség, mert az
időben elsőrendű modell miatt egy igen egyszerű polinomot kaptam eredményül, de
az MCV- vagy a Jeffreys-egyenletek kapcsán már összetettebb a helyzet.

II. MCV-egyenlet. Ezt az eljárást megismételem az MCV-egyenlet példáján,
azaz a

ρcv∂tT + ∂xq = 0, (4.45)
τ(T )∂tq + q = −λ(T )∂xT (4.46)

egyenletrendszeren, amelyben feltételezem, hogy λ(T ) = λ0 + h1(T − T0) és τ(T ) =
τ0 + h2(T − T0) alakban írhatóak, ahol h1 és h2 paraméterek lehetnek negatívak is,
de természetesen a termodinamika λ, τ ≥ 0 követelményeivel összhangban, valamint
λ(T0) = λ0, τ(T0) = τ0, és itt is elhagyom a T0 referencia-hőmérséklet kiírását.

Alkalmazva az előzőekben is leírt véges differenciák módszerén alapuló eltolt
mezős módszertant, a [100] irodalommal összhangban, a

ρcv
∆t (Tn+1,j − Tn,j) + 1

∆x(qn,j+1 − qn,j) = 0, (4.47)

τ0 + h2Tn,j
∆t (qn+1,j − qn,j) + qn,j = −λ0 + h1Tn,j

∆x (Tn,j − Tn,j−1) (4.48)

differenciaegyenleteket kapom, amibe a (4.42) egyenlet behelyettesítésével lineáris
esetben (h1 = 0, h2 = 0) ψ-re egy p(ψ) = p2ψ

2 + p1ψ + p0 karakterisztikus polino-
mot kapok, amely polinom p0,1,2 együtthatóira a Jury-kritériumok teljesülését írom
elő. A nemlineáris MCV-egyenlet példáján a harmadik Jury-kritérium adja meg a
stabilitási feltételt, miszerint a ∆t időlépésre

∆t < ∆x2

4a0

τ0 + h2Tmax

τ0

λ0

λ0 + h1Tmax
, a0 = λ0

ρcv
(4.49)

feltételnek kell teljesülnie. A Fourier-egyenlet esetén a Tn → Tn+1 közötti leképe-
zésre ismert ez a stabilitási feltétel, de a Fourier-egyenleten túlra azonban az előbb
bemutatott közelítés általánosítja a Neumann-módszert, amely speciálisan a Fourier-
egyenletre ugyanazt a feltételt szolgáltatja. Ez nem ekvivalens egy linearizálással, de
a nemlinearitást megszünteti, és a stabilitási feltételre egy jól használható becslést
szolgáltat [100,133]. Ez kétdimenziós esetekre is származtatható [134].
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III. Jeffreys-egyenlet. Az anyagi nemlinearitások lehetséges figyelembevétele so-
rán mélyebben is elemeztem az időskálák szerepét és azt a megállapítást tettem, hogy
a

q = − l11

T 2
0
∂xT + l12(T )(−kξ), (4.50)

∂tξ = − l21(T )
T 2

0
∂xT + l22(−kξ), (4.51)

onsageri rendszerből a ξ belső változó kiküszöbölése után megjelenik egy nemlineáris
kiegészítés, azaz

ρcv∂tT + ∂xq = 0, (4.52)

τ∂tq + q = λ̃1(T )∂xT + λ̃2∂txT + τ
1

l12(T )
dl12(T )
dT ∂tT

(
q − λ̃2

τ
∂xT

)
, (4.53)

konstitúciós összefüggés jobb oldalán kapok egy igen bonyolultnak látszó nemlineáris
tagot. A korábbi megállapításom szerint az egydimenziós modellben figyelembe
vett λ(T ) függés gyors folyamatokra nagy részben kiküszöbölhető akkor, ha ezt a
transzportegyütthatók is lehetővé teszik.

Az eltolt mezős diszkretizációs módszertan szerint a ξ és a q a diszkrét rácson
ugyanott kell helyet foglaljon, mivel azok közvetlenül arányosak egymással. Ez azt
jelenti, hogy egy q-perem esetén a ξ is a peremre kerül, így mellé a hőmérséklet
gradiensét vagy a ξ belső változót is meg kell adni. Mivel a belső változó pontos
fizikai jelentését nem ismerjük, a q és a ∂xT egymástól különbözik, és csak a q is-
mert, emiatt egyikre sem szeretnénk a peremen mesterséges feltételeket szabni, így
a ξ kiküszöbölése szinte szükségszerű. Ráadásul, ha a ξ-t előírjuk a peremen, akkor
abból a (4.51) miatt a ∂xT is következik, amiből q (4.50) miatt szintén kiadódik. Ez
a probléma akkor okoz kevesebb kellemetlenséget, ha az l11 = 0 helyettesítéssel meg-
feleltetjük egymásnak a hőáramsűrűséget és a belső változót, így az MCV-egyenletre
redukáljuk a modellt, tehát a fennálló arányosság miatt már a kétféle peremfeltétel
meg fog egyezni. Tehát választhatunk: q-perem esetén kiküszöbölünk, vagy közvet-
lenül a ξ-re írunk elő peremfeltételt. De ez a választási lehetőség csupán elvi, hiszen
egyrészt csak a hőáramsűrűséget ismerjük, mint fizikai mennyiséget, másrészt csak
a kiküszöbölés során azonosított transzportegyütthatókat lehet a mérésekből egyér-
telműen meghatározni. Emiatt a (4.52)-(4.53) rendszer megoldása szükségszerű, és
a kiadódó nemlinearitásokat az onsageri szinttől kezdődően követni kell, így ezért
még hangsúlyosabb az időskálák és bizonyos nemlinearitások kiküszöbölhetőségének
a szerepe. A λ(T ) függést l21-en keresztül célszerű figyelembe venni, mivel az a ki-
küszöbölés után nem vezet be bonyolult nemlineáris járulékot, valamint szintén nem
érinti a többi transzportegyütthatót.

A dolgozatomban közölt eredmények és állítások teljes követhetősége érdekében
a (4.53) diszkretizációját is bemutatom. Legyen most l12(T ) = l12,0 + h1T , de l21
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maradjon konstans, ugyanis ez nem befolyásolja a nemlineáris járulékot, így

ρcv
∆t (Tn+1,j − Tn,j) + qn,j+1 − qn,j

∆x = 0, (4.54)

τ

∆t(qn+1,j − qn,j) + qn,j = − λ̃0 + h1Tn,j
∆x (Tn,j − Tn,j−1)

+ λ̃2

∆t∆x
(
Tn+1,j − Tn+1,j−1 − Tn,j + Tn,j−1

)

+ τC(Tn,j)
Tn+1,j − Tn,j

∆t

(
qn,j −

λ̃2

τ

Tn,j − Tn,j−1

∆x

)
,

(4.55)

ahol a C(Tn,j) = h1/(1+h1Tn,j) módon reprezentálható, mivel l12,0-át az egyszerűség
kedvéért egységnek is választhatjuk, a transzportegyütthatókat nem befolyásolja, de
nulla nem lehet, valamint a h1 = 0 határesetben kiejti a teljes nemlineáris kiegészí-
tést. Az eddigiek alapján természetesnek tűnik, hogy a λ(T ) és C(T ) függvényekben
vegyük figyelembe a Tmax értéket, amit az adott hőmérséklet-peremfeltétel (legalább
részben) meg tud kötni. Ezt a gondolatot ki kell terjeszteni a ∂tT tagra is, más-
különben nem lehet a Neumann-módszert használni. Ehhez szintén felhasználom a
lineáris megoldást, illetve a peremfeltételt, és abból is elegendő a maximális értéket
behelyettesíteni, mivel a stabilitási határt a leggyorsabb folyamatok adják meg, és
ezt a két tagot egységesen C̃(Tmax) = C(Tmax)(∂tT )max módon fogom jelölni. Ekkor
a polinom együtthatói a következők:

p2 = 1,

p1 = ∆t
τ
− C̃(Tmax)∆t−

4∆tλ̃2

ρcvτ∆x2 − 2,

p0 = 1− ∆t
τ

+ C̃(Tmax)∆t+ 4∆t2
τρcv∆x2

(
λ̃0 + h1Tmax + λ̃2

∆t + C̃(Tmax)λ̃2

)
, (4.56)

amelyekre adott paraméterek, peremfeltételek esetén a Jury-kritériumok ellenőrzését
numerikusan azonnal el lehet végezni a beállított idő- és térlépések függvényében. Az
együtthatóknál minden egyes tag dimenziótlan kell legyen, ami egy visszacsatolás
a számolásunk ellenőrzéséhez. Az l21(T ) = l21,0 + h2T , és konstans l12 esetet az
előzőekből azonnal megkapom a C̃(Tmax) = 0 és h1 → h2 helyettesítésekkel, amiből
a stabilitási feltétel

4∆t(λ̃0 + h2Tmax) + λ̃2

ρcv
≤ ∆x2. (4.57)

IV. Kiegészítés a Neumann-módszerhez: a disszipációs és diszperzív hi-
bák. Újra visszatérve a lineáris (T -független) esetekre, a disszipációs hiba azt
mondja meg, hogy az időben való léptetés során hogyan torzul a síkhullám amp-
litúdója, azaz a |ψ| viselkedése a kérdés. Amíg a Jury-kritériumok úgy kényszerezik
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a p(ψ) polinom gyökeit, hogy azok a komplex egységkörön vagy azon belül legyenek
(teljesítve a stabilitási feltételeket), addig a p(ψ) gyökeit vizsgálhatjuk úgy, mint a
diszkretizációs paraméterek, ∆t és ∆x függvényeként. Természetesen itt adottnak
tekintjük az eredeti parciális differenciálegyenlet együtthatóit és a diszkretizációt,
de ezenfelül az idő- és térlépések, valamint a transzportegyütthatók függvényeként
is változik a |ψ| viselkedése. Egy sémát konzervatívnak neveznek, ha |ψ| = 1, ettől
eltérő esetekben a séma disszipatív.

4.10. ábra. Egy rugalmas hullámterjedési feladat numerikus megoldása. Balra: kon-
zervatív (|ψ| = 1) tulajdonságú, szimplektikus módszer eredménye. Jobbra: a COMSOL
Runge-Kutta-alapú megoldása. A hullámalaknak pontosan ugyanolyannak kell maradnia.
A disszipációs hibát az amplitúdó csökkenése, a diszperziós hibát a visszaverődéseknél
megjelenő mesterséges oszcilláció mutatja, [151] alapján.

4.11. ábra. A |ψ| viselkedése egy akusztikus hullámterjedési feladatra alkalmazott szimp-
lektikus Euler séma esetére, [58] alapján. A séma konzervatív (|ψ| = 1), azaz mindig az
egységkörön mozgunk, így disszipációs hibát várhatóan nem fogunk tapasztalni, de ettől
még a teljes egységkört nem fedi le a ψ amplitúdó, tehát diszperziós, oszcillációs hibákra
számíthatunk.

Ennek igazán konzervatív hullámterjedési esetekben van relevanciája (például
rugalmas, akusztikus hullámterjedési szimulációk esetében [151,153], lásd a 4.10. áb-
rát), de akár disszipatív modellek, vagy csatolt termomechanikai jelenségek esetén
is érdekes információ lehet, főleg a hiperbolikus hővezetési egyenletek megoldásá-
ban (4.3. ábra). Erre mutat rá a [135] publikációm is, ahol a tisztán implicit és a
Crank–Nicolson sémák összehasonlításából is látszik ez a különbség, de leginkább
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csak a hullámfront környezetében. Nemlineáris (T -függő) esetekben mindez úgy-
is vizsgálható, hogy a T -függő transzportegyütthatókban lévő hőmérsékletet szintén
paraméterként kezeljük a T0-tól kezdve Tmax-ig bezárólag [133,134]. Továbbá, a h1 és
h2 együtthatókat is tekinthetjük paramétereknek, amelyek a nemlinearitás erősségét
(meredekségét) szabják meg.

A Neumann-módszer további előnye, hogy a diszperziós hibák meglétére is becs-
lést adhatunk. Lineáris esetben – figyelembe véve, hogy ψ ∈ C, egy Im(ψ)-Re(ψ)
koordináta-rendszerben vizsgálhatjuk, hogy ψ mennyire fedi le a komplex egységkört
(amennyiben |ψ| = 1), demonstrációs jelleggel ez látható a 4.11. ábrán. Ha teljes egé-
szében bármely hullámszámra lefedi, az azt jelenti, hogy a választott diszkretizáció
és a modell paraméterei (szintén ideértve a h1, h2, T -függéseket) a valós megoldást
teljes egészében reprezentálni tudják, nincs olyan része a hullámcsomagnak, ahol
levágás történne. Ezt szokták úgyis interpretálni, hogy a numerikus séma közelítése
a pontos megoldáshoz képest fázishibát hoz létre. De ez annak köszönhető, hogy a
közelítő megoldás nem tudja a valós megoldás minden részét előállítani, amit aztán
mesterséges, fizikai tartalommal nem rendelkező oszcillációkként vehetünk észre.

4.12. ábra. COMSOL beépített akusztikus hullámterjedési moduljának demonstrációs
jellegű megoldásai, amelyben a kezdeti és peremfeltételek, a hálózás és a terjedési sebes-
ség azonos, az eltérés az egyes időintegrálási módszerekben van, [152] alapján. Az A)-tól
D)-ig tartó ábrák a visszalépő Euler-módszert mutatják különféle rendig tartó közelíté-
sekkel, főleg disszipatív hibával terhelve. E) Ötödrendű Dormand-Prince-módszer, főleg
instabil megoldásokat eredményezve. F) Negyedrendű Runge-Kutta-módszer, stabil, de
főleg disszipatív és diszperzív hibákkal terhelve.

A 4.10. ábra szintén mesterséges hibákkal terhelt hullámmegoldást szemléltet,
minden visszaverődés esetén oszcilláció figyelhető meg, ami nem része a valós meg-
oldásnak. Ez egyaránt jellemző a véges differenciák és végeselemes módszerekre, de a
Neumann-módszer segítségével a véges differenciák esetén erre konkrét becsléseket is
lehet adni. A COMSOL esetén ezt a viselkedést különféle hálózással, hálótípusokkal,
időintegrálási sémák tesztelésével lehet vizsgálni. Ebből a szempontból különösen
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érdekes a 4.12 ábrán látott viselkedés, amely a COMSOL beépített, skalármezős
hullámterjedést szimuláló moduljával készült [152]. Azonos hálózásra a különféle
időintegrálási módszerek eltérő megoldásokat adnak, és ez a hálózás finomításával
sem változik.

4.3. Összefoglalás
Ebben a fejezetben olyan módszereket mutattam be, amelyek az MCV-, a GK- és
a Jeffreys-egyenletekre analitikus és numerikus úton adnak megbízható megoldá-
sokat. A tesztfeladatok arra világítanak rá, hogy az egyenletek rendszerében való
gondolkodás elkerülhetetlen. Ezt lineáris esetben a peremfeltételek helyes kezelése
követeli meg, de nemlineáris esetben nincs is más lehetőség. Az analitikus megoldá-
sok tekintetében a legfontosabb megfigyelésem az, hogy a Fourier-egyenlethez képest
nincsen szükség további peremfeltételekre, valamint az első- és másodfajú peremfel-
tételek esetén a sajátfüggvény-sajátérték rendszerek a GK- és Jeffreys-egyenletekre
átszármaztathatóak. Numerikus szempontból a peremfeltételek kezelése, valamint
a nemlineáris hővezetési egyenletek numerikus stabilitásának becslése a legfőbb ku-
tatási eredményem, a következő tézisek ezeket az eredményeket foglalják össze.

5. Tézis – Az analitikus megoldások sajátosságai

A Guyer–Krumhansl- és a Jeffreys-egyenlet hőmérséklet-reprezentációja alap-
ján megállapítottam, hogy első- és másodfajú peremfeltételek esetén ugyanaz
a sajátfüggvény-sajátérték rendszer használható. Erre építve kidolgoztam egy
speciális, Galjorkin-módszerre épülő analitikus megoldási technikát. Megad-
tam az inhomogén kezdeti feltételek következményeit, és egy termodinamika-
ilag konzisztens módszert ajánlottam a kezdeti időderiváltak figyelembevéte-
lére.

Az 5. tézishez kapcsolódó publikációk: [6, 73,103,125,133,139,140].

6. Tézis – A nemlineáris hővezetési egyenletek numerikus stabilitása

A nemlineáris, hőmérsékletfüggő transzportegyütthatókkal rendelkező
Fourier-, Guyer–Krumhansl- és a Jeffreys-féle hővezetési egyenletek nu-
merikus stabilitásának vizsgálatához kiterjesztettem a Neumann-módszer
érvényességét és egy módszert adtam a stabilitási határok becslésére. Meg-
állapítottam, hogy a transzportegyütthatókat az anyag olyan állapotán kell
figyelembe venni, ahol a leggyorsabb a karakterisztikus terjedési sebesség, és
ennek becslésére a lineáris megoldásból kapott hőmérsékletbeli szélsőérték
használható.

A 6. tézishez kapcsolódó publikációk: [58,100,102,133,134].
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5. fejezet

Heterogén anyagok termikus
jellemzése

Ebben a fejezetben a gyakorlati felhasználásokra, valamint a kísérleti tapasztalatok
összegzésére helyezem a hangsúlyt. Ezek a kísérletek a 4.1. ábrán már korábban bemu-
tatott hőimpulzuselvű mérések. A fejezetben bemutatott kísérleti eredményeket Fehér
Anna doktoranduszhallgatómmal közösen értük el, ezek részletes dokumentációját az
ő Ph.D. dolgozata tartalmazza. Az effektusok reprodukálhatóságát hosszútávú, 100
mérésből álló sorozatokkal ellenőriztük, a közölt adatokat ±5%-os pontosság jellemzi.

5.1. Az effektív leírás jellemzői
A gyakorlati alkalmazások során válik igazán hangsúlyossá a vizsgált kontinuummo-
dellek univerzalitása, vagyis az, hogy a javasolt hővezetési egyenletek alkalmazása nem
szerkezetspecifikus. Ez alatt azt értem, hogy a hővezetési modell független a konkrét
anyagi szerkezettől, a Fourier-törvényhez hasonlóan ezt a GK- és a Jeffreys-egyenletek
is teljesítik. A szakirodalomban gyakran használnak olyan közelítő összefüggéseket –
főleg a hővezetési tényezőre – amely teljes mértékig kihasználja az adott heterogén
szerkezet tulajdonságait. Ez azt jelenti, hogy ezeknek az összefüggéseknek a használa-
tához ismerni kell nemcsak az anyagszerkezetet, hanem azok gyártásának technológiai
paramétereit is. Ennek az az oka, hogy a határfelületeken létrejövő kontaktellenállás
függ a mechanikai jellemzőktől, így a nyomástól is. Ha egy adott heterogén anyagot
nagy nyomáson állítanak elő, akkor ott várhatóan a határfelületeken is kisebb ellen-
állás jön létre. Mivel akár igen nagy is lehet a határfelületek mértéke, ezért az eredő
hővezetési tulajdonságok is jelentősen függenek ettől. A teljesség igénye nélkül néhány
példa [163–166] irodalmakban található effektív hővezetési tényező becslésekre:

Voigt-típusú : λeff = V̂1λ1 + V̂2λ2, (5.1)

Reuss-típusú : λeff = 1
V̂1
λ1

+ V̂2
λ2

, (5.2)

Markworth és mtsi : λeff = V̂1λ1 + V̂2λ2 + V̂1V̂2
λ1 − λ2
3

λ1
λ1
−1

+ V̂1
, (5.3)
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5.1. ábra. Az anyag szerkezetétől függő effektív hővezetési tényező változása a sűrű-
ség függvényében, [167] alapján. A relatív jelzők a mátrixanyaghoz képesti jellemzőkre
értendőek.

amelyekben az "1" és "2" indexek a két komponensre vonatkoznak, és a λ, V̂
mennyiségek a komponensekhez tartozó hővezetési tényezőt és azok térfogatarányát
jellemzik. Az ilyen képletek mögött igen sokféle elgondolás húzódik, például az,
hogy a komponensek egymáshoz képest hogyan helyezkednek el (soros, párhuzamos
kapcsolások vagy ezeknek valamilyen keveréke), azok térfogati arányai, a heteroge-
nitások geometriai jellemzői (gömb, hasáb, rétegelt, stb.), de igen nehéz figyelembe
venni az érintkező felületeken jelentkező hőellenállásokat. Erre egy igen kiváló példát
a szemcseerősített mátrixú kompozit fémhabok esetén látunk [82], ahol egyértelműen
az mutatkozik meg, hogy a szemcseerősítő anyag azonos térfogatarányban, de eltérő
méretekben való alkalmazása jelentősen befolyásolja a kialakuló hővezetési képessé-
get, tehát a heterogenitások számossága, mennyiségi jellemzése is fontos, nem csak
azok minőségi jellemzői. Ez azt jelenti, hogy minél több a szemcse, annál nagyobb
az érintkező felület mértéke, tehát annál több hőellenállás jelentkezik a rendszerben.

Ezeknek a vizsgálatoknak egy igen fontos és mérnökileg releváns tanulsága az,
hogy habár a részletes modellezési megközelítés, az anyagi szerkezet pontos figye-
lembevétele is egy lehetőség, de ezt a gyakorlatba igen nehéz átültetni, rendkívül
specifikus és korlátozott érvényességi tartománnyal bír. Erre szintén egy jó szemlél-
tetés található a [167] irodalomban, ahol különféle belső szerkezet esetén vizsgálják
az effektív jellemzők változása okozta hőmérséklet-változást. A belső szerkezet ha-
tása a nagyobb porozitások (kisebb relatív sűrűségek) felé haladva egyre erősödik
(lásd az 5.1. ábrát). Bármely változtatás esetén a teljes kísérlet- vagy szimuláció-
sorozatot újra kell kezdeni és új korrelációkat kell keresni. A heterogén anyagok
lehetséges típusainak igen nagy száma miatt ez a fajta modellezési megközelítés
egyelőre általánosan nem járható.

A fémhabok részletes modellezési megközelítésére egy érdekes és fontos példát
A. Lunev és munkatársai mutattak [54]. Fontos kiemelni, hogy ezek független méré-
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sek voltak szabványos hőimpulzuselvű berendezésen. Az 5.2. ábra szerint a Fourier-
egyenlettől való eltérést ugyanolyan alakban figyelték meg, a [117,119,148] publiká-
cióimhoz teljesen hasonló módon. A méréseik valódiságát úgy ellenőrizték, hogy az
adott próbatestről pontos háromdimenziós modellt készítettek egy szkennelési eljá-
rás segítségével. Azon belül minden határfelületre megadták a megfelelő hőátadási
és sugárzási peremfeltételeket és a kísérletet végeselemes módszerrel modellezték.
A mátrixanyag hővezetésére a Fourier-törvényt használták. A kisméretű üregek
miatt igen finom hálózásra van szükség, valamint több időlépésekénti iterációra a
sugárzási peremfeltételek nemlinearitása miatt. Ez már egy szuperszámítógép szá-
mítási teljesítményét igényli, mindezt azért, hogy a valóságban egy nagyságrendileg
5 másodperc alatt lejátszódó folyamatot modellezni lehessen egy adott próbatestre
vonatkozóan. Lunev és munkatársai konklúziója szerint a szimulációk a méréseket
pontosan reprodukálták, de a mérést a Fourier-egyenlettel effektíven nem lehet leír-
ni, két időskálára van szükség [54]. Ez is tovább motiválja a két időskálás hővezetési
modellek létjogosultságát.

5.2. ábra. Lunev és mtsi. munkája alapján [54]. A) Háromféle fémhab próbatestet készí-
tettek elő, nagyságrendileg 60%-os porozitással rendelkeztek. A) Pórusméretek eloszlása a
három esetben. A legkisebb pórusok mérete 0,2 mm körüli, a legnagyobb 1 mm feletti. B)
Egy részletes CT felvétel és az azon végzett hőimpulzus-kísérlet szimulációját szemlélteti
a közepes pórusmérettel rendelkező mintán. C) Egy LFA hőimpulzus-berendezéssel mért
hátfali hőmérséklet és az ahhoz illesztett Fourier-egyenlet megoldása.

5.2. Az effektív leírás következményei

5.2.1. Statikus és dinamikus termikus paraméterek
A második szempont az, hogy a szabványos hőimpulzuselvű mérőberendezések csak
igen korlátozott próbatest vastagságig használhatóak. Ez a gyakorlatban azt jelenti,
hogy 5, esetenként 6 mm lehet a legnagyobb próbatest vastagsága. Ez a méret-
tartomány összemérhető lehet a heterogenitások (például az üregek) méretével, de
egyben várhatóan messze el is marad attól a mérettől, ahonnan már kiátlagolható-
nak lehetne tekinteni a heterogenitások hatásait. Egy általános ökölszabály szerint a
heterogenitások jellemző méretétől legalább hat, de inkább azok nyolcszorosa felett
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tekinthető a próbatest reprezentatívnak. Ezt ilyen esetekben nem lehet teljesíteni,
és ez nem csak a hőimpulzuselvű mérések sajátossága. Például egy dinamikus ter-
momechanikai teszthez egy DMA1 berendezésbe nem lehet 15-20 mm vastagságú
fém próbatestet behelyezni, mivel általában véve sem maga a mérőcella mérete, sem
a berendezés által kifejtett erőhatások nem elegendőek ehhez. Ebből az követke-
zik, hogy egy ilyen LFA rendszerű hőimpulzuselvű mérés során, amely kifejezetten a
hőfokvezetési tényező tranziens elvű meghatározására szolgál, a mérésekben nem fel-
tétlenül csak egy hővezetési időskála válik megfigyelhetővé. Felidézve, a Fourier-féle
hővezetési egyenletben csak egy hőfokvezetési tényező szerepel, így csak egy idő-
skála jellemzésére használható. Ha ez megfelelően illeszti a heterogén test termikus
viselkedését, akkor azt mondhatjuk, hogy a többkomponensű szerkezet hővezetési
tulajdonságai kiátlagolódnak.

Ez azonban függ a folyamatok sebességétől is, vagyis az alkalmazott peremfel-
tételektől. Ezt a szakirodalom általában csak úgy hivatkozza, hogy "gyors folyama-
tok esetén a Fourier-törvény érvényét veszítheti". Ehelyett helyesebb azt mondani,
hogy a peremfeltételként jelentkező időskálák (melegítés, hűtés) és a komponensek
hővezetési tulajdonságaiból jelentkező időskálák hogyan viszonyulnak egymáshoz.
Egykomponensű anyag esetén a mikroszkopikus folyamatok "tehetetlensége" eredmé-
nyezheti a Fourier-törvénytől való eltérést2, kétkomponensű anyag esetén pedig az,
hogy a peremfeltételen alkalmazott gerjesztés a két komponens időskálájával össze-
mérhető. Ilyen értelemben érdemes visszagondolni akár a Jeffreys-egyenlet vagy a
GK-egyenlet T -reprezentációjára (egy térdimenzióban, hőforrások nélkül),

τ∂ttT + ∂tT = a∂xxT + κ2∂txxT ⇒
(
∂tT − a∂xxT

)
+ τ∂t

(
∂tT −

κ2

τ
∂xxT

)
= 0,
(5.4)

amelyben a a Fourier-egyenlet (GK-értelemben statikus) hőfokvezetési tényezője,
valamint a Fourier-egyenlet időderiváltja κ2/τ dinamikus hőfokvezetési tényezővel
jelentkezik.

Ez az alak teljesen megegyezik a Jeffreys-egyenletével, annak ellenére, hogy kons-
titutív szinten eltérő modellekről van szó3. A kísérletek során mindig azt vettük
észre, hogy a κ2/τ dinamikus skála mindig gyorsabb, mint az a által adott statikus
skála, teljesen analóg módon a kőzetek reológiai viselkedésével [79], ezt szemlélteti
az 5.3. ábra is. Erre látunk példát az 5.1 táblázatban is hét különböző kőzettípusra
vonatkozóan, ahol a dinamikus és statikus paraméterek aránya kivétel nélkül egynél
nagyobb ott, ahol a GK-egyenlet használatára is szükség volt [148]. Ez nemcsak
kőzetekre érvényes, hanem például szén- és fémhabokra is [82, 168]. Az 5.4. áb-
rán éppen ennek a két időskálának a megjelenését figyelhetjük meg egy szársomlyói
kőzetmintán, ahol a Fourier-egyenlet illesztése a gyorsabb időskálához konvergált,

1A "Dynamic Mechanical Analyzer" szavakból adódik, dinamikus termomechanikai mérőgépet
jelent, ahol a dinamikusságot az adja, hogy egy beállított előterhelés környezetében adott frekven-
ciájú terhelést lehet megvalósítani.

2Ezt kísérletileg leginkább alacsony hőmérsékletű (20 K alatti) állapoton figyelték meg, és első-
sorban az MCV-egyenletet használták ennek modellezésére.

3A GK- és Jeffreys-egyenletek háromdimenziós esetben is vezethetnek azonos T -reprezentációra,
de annak az a feltétele, hogy a GK-egyenletben a ∇∇ · q tagot elhagyjuk, ehhez η2 = 0 szükséges,
a részletekért lásd a (2.23) egyenletet.
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Fourier Guyer–Krumhansl
Minta

vastagsága
(mm)

Hőfokvezetési
tényező

(10−6 m2/s)

Hőfokvezetési
tényező

(10−6 m2/s)

Relaxációs idő
τ (s)

Hosszskála
négyzete

κ2 (10−6 m2)

1/a 2 0,678 0,581 0,588 0,481
1/b 2,15 1,259 1,025 0,547 0,726
1/c 2,85 0,919 0,766 0,503 0,643
1/d 3,85 1,074 1,018 0,612 0,735

2/a 3,05 1,544 1,434 0,370 0,643
2/b 3,8 0,978 0,922 0,648 0,715
2/c 3,9 1,115 1,057 0,597 0,685

3/a 1,9 0,956 - - -
3/b 2,7 1,441 1,317 0,351 0,551
3/c 3,7 1,422 - - -

4/a 1,9 0,798 0,762 0,331 0,257
4/b 2,7 1,023 - - -
4/c 3,8 0,558 - - -

5/a 1,9 0,708 0,680 0,400 0,301
5/b 2,3 0,895 - - -
5/c 3,7 0,862 - - -

6/a 1,86 0,632 0,598 0,352 0,239
6/b 2,75 0,687 - - -
6/c 3,84 0,778 - - -

7/a 1,9 0,504 - - -
7/b 2,74 0,553 - - -
7/c 3,82 0,570 - - -

5.1. táblázat. Az egyes kőzetmintákon végzett mérések eredményei [148] alapján. A
próbatestek azonosítói: 1) szársomlyói mészkő formáció, 2) és 3) szászvári formációk eltérő
lelőhelyről, 3) tiszai metamorf képződmény, 4) bodai agyagkő formáció, 5) sötétszürke
bazalt, 6) mátrai andezit formáció. A vonalak azt jelzik, hogy nem volt szükség a GK-
egyenlettel való illesztésre.
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emiatt a felfutó kezdeti szakaszban jól illeszkedik a méréshez, majd a lassabb mele-
gedési szakaszon lényegesen elválnak.

5.3. ábra. Az 5.1. táblázat alapján a statikus és dinamikus hőfokvezetési tényezők ará-
nyának összevetése. A vonal feletti értékek azt mutatják, hogy a dinamikus tényező értéke
nagyobb, mint a statikus tényezőé.

5.4. ábra. Egy 2,15 mm vastagságú szársomlyói mészkő mintán végzett hőimpulzuselvű
mérés jellemző eredménye, [148] alapján. Érdemes megfigyelni, hogy a Fourier- és GK-
egyenletekhez tartozó R2 értékek között nincs lényeges eltérés, legalábbis annyira biztos
nem látványos, mint amennyire a Fourier-egyenlet megoldása a mért adatok fölé tud lőni.
Ebben az esetben a Fourier-egyenlet illesztése a gyorsabb időskálára konvergált, a felfutó
szakaszt jól írja le, de emiatt a lassú, kiegyenlítődési szakaszon már nem megfelelő az
illesztés.

Matematikai szempontból is az olvasható ki ebből, hogy ha a peremfeltételek
ezekhez az időskálákhoz képest lényegesen gyorsabb folyamatokat írnak elő (például
egy hőkezelési eljárást), akkor az időderivált tagban jelentkező dinamikus skála fog
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számítani, és a Fourier-egyenlet a dinamikus hőfokvezetési tényezővel használható.
Ez igaz fordítva is, ha a lassú folyamatokat tekintjük. Ha a peremfeltétel időskálája
(egy hőimpulzus hossza) egy nagyságrendbe esik az a és a κ2/τ hőfokvezetési ténye-
zők által kijelölt időskálákkal, akkor a mérésekben mindkettő hatása észlelhetővé
válik, tehát a GK-egyenlet – és így a Jeffreys-egyenlet is – valós alternatívaként lép
fel.

Ezenfelül, amikor a = κ2/τ fennáll, akkor a két hővezetési időskála egybeesik,
tehát a Fourier-törvény megoldását kapjuk vissza, ezt Fourier-rezonanciának nevez-
zük [117]. Hogy teljessé tegyem az időskálákról alkotott képet, vissza kell térni a
Fourier-számhoz, amiben a referencia időskála a hőfokvezetési tényező mellett a vizs-
gált test L karakterisztikus méretétől is függ, tehát L2/a vagy L2τ/κ2 arányok adják
meg a karakterisztikus időskálákat. Ennek közvetlen következménye, hogy akár ho-
mogén anyagok esetén is számíthat a mérés gyorsasága, és ez a próbatest méretétől,
valamint az alkalmazott peremfeltételektől függ, ezt az 5.1 táblázat is jól tükrözi.
A kőzetmintákon folytatott mérések alkalmával figyeltük meg, hogy az illesztések
igen sokszor a statikus és a dinamikus időskála számtani átlagára konvergálnak, ezt
szemlélteti az 5.5. ábra az 5.1 táblázat adatai alapján.

5.5. ábra. Az 5.1 táblázatban közölt, többféle típusú és méretű kőzetmintán végzett
mérések alapján a statikus és dinamikus paraméterek viszonya a Fourier-egyenlet által
adott hőfokvezetési tényezőhöz képest, [148] alapján.

Összevetve a Fourier-féle hővezetési egyenlettel, nemcsak mélyebb betekintést
kapunk a heterogén anyagok tranziens viselkedésébe, hanem akár egyetlen mérés
segítségével is meg lehet határozni a statikus és dinamikus időskálákat, nincsen
szükség rendkívül idő- és gépigényes pásztázó mérésekre. Mindezen felül fontos
belátni, hogy a Fourier-egyenlet nem biztos, hogy használható egy mérés kiértékelé-
sére, a mérés és az illesztés közötti eltéréseket nem lehet feltétel nélkül magyarázni
a Fourier-egyenlet segítségével, és ilyenkor az illesztés nem vezet megbízható hő-
fokvezetési tényezőre. Fizikai, termodinamikai szempontból az a természetes, hogy
egy idő után a Fourier-egyenlettől való eltérések kiátlagolódnak, így ha a modellezés
során úgy döntünk, hogy nem kell a sokkal részletesebb és bonyolultabb GK-, vagy
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Jeffreys-egyenletet implementálni (például egy végeselemes környezetbe), akkor a
mérésből kapott statikus és dinamikus skálák

aFourier = 1
2

(
aGK + κ2

τGK

)
= 1

2

(
aJE + λ2

τJEρcv

)
(5.5)

átlagaként lehet egy Fourier-közelítést adni az összetett tranziens viselkedésre, ahogy
azt többféle kőzetminta esetén is kísérletileg megfigyeltük [148] (lásd az 5.5. ábrát).
Itt a követhetőség miatt megkülönböztettem a GK- és Jeffreys-paramétereket egy-
mástól, de azok megegyezhetnek, és speciális esetekben meg is feleltethetőek egy-
másnak [104]. Egy ilyen közelítés használatakor tisztában kell lenni azzal, hogy a
statikus és a dinamikus időskálák közé eső időfüggő folyamat során ez hibákat okoz,
mely hibák nem feltétlenül monoton módon változnak, a valós hőmérsékletet néhol
alá, máshol fölé tudja becsülni, pont ahogyan a mérések kiértékelésén is látható. Az
5.1 táblázathoz visszatérve, a mért adatokból az olvasható ki, hogy bizonyos kőze-
teknél egy adott vastagságon megfigyelhető, majd később, egy nagyobb vagy kisebb
vastagságon már eltűnik a Fourier-egyenlettől való eltérés. Ez éppen a fent részlete-
zett okokra vezethető vissza, azaz állandó időtartamú hőimpulzussal nem feltétlenül
lehet minden időskálát gerjeszteni a test méretétől függően.

Ezenfelül, a peremfeltételek ismeretében abban is döntést kell hozni, hogy csak a
statikus vagy csak a dinamikus skálát használjuk-e fel a Fourier-egyenletben, a vizs-
gált folyamat gyorsaságának (vagy éppen lassúságának) megfelelően. Tehát a GK-
és Jeffreys-egyenletek nemcsak olyan módon használhatóak, hogy mindenképpen
minden számolást és szimulációt azokkal kell elvégezni, hanem a termikus jellem-
zők bővebb ismerete a Fourier-egyenletben is felhasználható, amelyhez a vizsgált
folyamat peremfeltételeiről, időskáláiról részletes ismeretekkel kell rendelkezni.

5.2.2. Méretfüggő tulajdonságok
Heterogén anyagok effektív leírása emiatt szintén méretfüggővé válik, és ez a füg-
gés egyáltalán nem a GK-, vagy a Jeffreys-egyenlet sajátossága, hanem a Fourier-
egyenletnél is jelentkezik, valamint a statikus és a dinamikus skálák megjelenése
csak megfelelő próbatestméret esetén figyelhető meg. Ebből az következik, hogy
ennek nem csupán olyan kisméretű próbatestek esetén lehet jelentősége, amelye-
ket a hőimpulzus-kísérletek során lehet felhasználni, hanem akár nagyságrendekkel
nagyobb méretű testek esetén is, anyagösszetételtől és peremfeltételektől függően.
Ehhez elegendő akár az évszakok változását tekinteni, aminek a hatása még rela-
tíve mélyebben is érződik, jó példa erre a [169] irodalomban is tárgyalt Bátaapáti
atomhulladék-lerakó környezetében végzett extenzométeres mérések. A méretfüggés
másik forrása éppen a heterogenitásokban rejlik. Figyelni kell arra, hogy a heteroge-
nitások méretei akár összemérhető nagyságrendbe is eshetnek a próbatest méreteivel
(amit a mérőberendezés korlátoz), emiatt az effektív modellezés a termikus paramé-
terek méretfüggését vonhatja maga után, ahogy azt a kőzetek esetén többször is
megfigyeltük, és az 5.1 táblázatból jól is látható [148]. Fontosnak tartom kihang-
súlyozni, hogy itt a próbatestek befoglaló méretéről van szó, nem a heterogenitások
(például üregek) méretétől való függésről. Mindkettő befolyásolja egy test mérhető
tulajdonságait, az utóbbira példát a [170] irodalom mutat.
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A méretfüggések megjelenésére tekinthetünk előnyként és hátrányként is. Hát-
rányként úgy, hogy ez egy olyan további szempont, aminek a kísérleti vizsgálata
nehézségekbe ütközik és egy konkrét gyakorlati eset modellezése esetén figyelembe
veendő. De egyben előnyként is tekinthetünk rá, mert a méretfüggések ismerete to-
vábbi betekintést enged az adott heterogén anyag termikus viselkedésébe. A gyakor-
latban felhasznált heterogén testeket mindig a kívánt felhasználáshoz kell tervezni.
Például, a CERN ALICE csoportja által fejlesztett harmadik generációs detektor [4]
szerkezeti anyagául használt nagy porozitású szénhab rétegeket minél vékonyabbra
kívánják tervezni, néhány milliméteres méretben. Tehát hiába állítjuk azt, hogy egy
90%-os porozitású szénhab méretfüggése csak 15 mm felett szűnik meg és ott lenne
javasolt méréseket végezni, ha a végfelhasználás tekintetében ettől akár lényegesen
kisebb, például fele vagy harmad ekkora vastagságú testre van szükség [168]. Erre
érdemes inkább előnyként tekinteni.

A fenti okokból kifolyólag a GK- és Jeffreys-egyenletek két kiemelkedő gyakor-
lati felhasználását látom. Egyrészt, a heterogén anyagokon történő mérések kiérté-
kelésére jól használhatóak, ehhez a megfelelő analitikus és numerikus módszereket
is kidolgoztam, és amely mérésekből a statikus és dinamikus hőfokvezetési és hő-
vezetési tényezők az alapját jelentik bármely későbbi termikus tervezési eljárásnak.
Mindezt természetesen – pontosan, ahogy a Fourier-egyenlet esetén is történt – több
méretben, több referencia-hőmérsékleten kell a jövőben végrehajtani. Ez a modern
berendezések automatizálhatósága miatt nem jelent szűk keresztmetszetet. A sta-
tikus és dinamikus termikus tulajdonságok ismerete a szakirodalom és a mérnöki
gyakorlat számára is teljesen új szempontokat nyit meg a termikus tervezési eljá-
rások során, és ez a második fontos gyakorlati szempont. Nem csupán a mérések
kiértékelésében, de akár az anyagszerkezet tervezéséhez is támpontokat ad, ha a
konkrét felhasználási feltételek ismertek, és így az időskálák tervezhetővé válnak.
Ebben a tekintetben azok a szakirodalmi eredmények sem mutatnak lényegesen elő-
rébb, aminek a segítségével valamilyen összetett szerkezetű anyagokra jól lehet a
hővezetési tényezőt becsülni. Az csak az egy időskálás, Fourier-egyenlethez kapcso-
lódó hővezetési tényező, a statikus és dinamikus paraméterekben jelen ismereteim
szerint csak a Fourier-egyenleten túli két időskálás modellek segítségével lehet kü-
lönbséget tenni. Az így tervezett anyagokat termikus metaanyagoknak nevezik, és
főként termikus álcázásra, egyenirányítása, és különféle nanoszerkezeti tervezésekre
használják [6,110,111,167,171], de a dolgozatomban részletezett eredmények a mak-
roszkopikus testekre vonatkozóan a metaanyagok egy teljesen új osztályát jelenti.

5.3. Példák heterogén anyagokra
A következőkben négy olyan példát emelek ki, amelyeknek közvetlen ipari haszno-
sulása van, és ennél fogva a mérnöki gyakorlat számára hasznos ezeket az eseteket
tömören bemutatni. Az előzőleg bemutatott kőzeteket Kovács Lászlónak (Kőmérő
Kft.) köszönhetjük, a kompozit fémhabokat Orbulov Imrének (BME GPK), a fém-
organikus térhálós anyagok vizsgálatát László Krisztina (BME VBK) motiválta, a
biológiailag lebontható NYÁK-ok vizsgálatát Géczy Attilával (BME VIK) közösen
végeztük. A nagy porozitású szénhabok vizsgálata Barnaföldi Gergellyel (HUN-
REN Wigner FK RMI) közösen történt, aki a magyarországi CERN ALICE csoport
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5.6. ábra. A bal oldali ábra a fázisváltó anyaggal (például paraffinnal) töltött mikrokap-
szulákat mutatja [172]. A jobb oldali ábra egy kókuszolajjal töltött kapszula keresztmet-
szetét szemlélteti [173]. Egy érdekes energetikai alkalmazását mutatja be a [174] irodalom,
ahol a mikrokapszulákat épületburkolatokba keverve jelentősen befolyásolható időben és
hőmérsékletben is az épület hőháztartása.

vezetője, és ez amiatt is különleges, mivel a megvalósult mérések hozzájárultak a
CERN ALICE ITS3 következő generációs detektorának tervezéséhez is.

Az itt részletezetteken kívül kaptunk még 3D nyomtatott beton próbatesteket Só-
lyom Sándortól (BME ÉMK), zárt cellás fémhabokat az Admatis Kft.-től, acélból 3D
nyomtatott üreges mintákat Fodor Tamástól (Siemens), az 5.6. ábrán is szemléltetett
fázisváltó anyaggal töltött mikrokapszulás gyantákat Feczkó Tivadartól (HUN-REN
TTK), valamint összetett szerkezetű szigetelőanyagokat Pirityi Lászlótól (Thermo-
foam Kft.). Azonban az ezeken végzett vizsgálatok vagy nem adnak mélyebb bete-
kintést az előzőekhez képest, vagy az adatok nem nyilvánosak. Ez a felsorolás igen
jól szemlélteti azokat a sokszínű alkalmazási lehetőségeket, ahol valamilyen összetett
szerkezetű heterogén anyag előfordul, és amelynek termikus jellemzése a felhaszná-
lások szempontjából elengedhetetlen. Ezekben az alkalmazásokban több olyan eset
is előfordul, amikor a próbatestet annak reprezentatív mérete alatt kellett vizsgálni,
mivel a végfelhasználás szempontjából az volt a mérvadó.

5.3.1. Kompozit fémhabok
Ezekben a kísérletekben részecskeerősítésű, alumíniumötvözet mátrixú szintaktikus
fémhabokat használtunk, [82, 175] alapján. Az 5.7. ábra átfogóan mutatja be a
vizsgált fémhab szerkezetét. A kompozit fémhaboknak az a különlegessége, hogy a
cellákban kerámiagömbhéjak, az alumíniummátrixban pedig különféle erősítőanyag
szemcsék találhatóak, és ezek termikus vizsgálatát végeztük el [82]. További anyag-
szerkezeti részletekért a [175–177] irodalmakat ajánlom.

Érdemes megemlíteni a [170] szakirodalmi forrást, ahol igen hasonló szerkezetű
anyag hővezetési tényezőjét becsülték meg elvi úton. A különbség az, hogy [170]
forrásban nem habot, hanem csak az alumíniumötvözetet vizsgálták, kerámiagömb-
héjak nélkül és csak SiC részecskékre vonatkozóan. Kiemelendő, hogy igen nagy,
107 W/(m2 K) nagyságrendű kontakt hőátadási tényezőt vettek figyelembe az alu-
míniummátrix és a szemcsék között, tehát a kontakt hőellenállás körülbelül három
nagyságrenddel volt kisebb, mint a hővezetési hőellenállás, ez már igen közel van a
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tökéletes hőátadáshoz. Fontos megjegyezni, hogy ennek értéke erősen függ a gyártás-
technológiától, valamint a testet terhelő erőktől is. Tömör anyagokra vonatkozóan
ez a becslés igen jó pontossággal elvégezhető. Ebben az esetben a nehézséget az
jelenti, hogy az üregekben egyszerre történik hővezetés, hőátadás és hőmérsékleti
sugárzás is, még akkor is, ha kicsi a hőmérséklet-különbség az üreg két szemben lévő
pontja között.

5.7. ábra. A vizsgált kompozit fémhabokban üreges 2 mm átmérőjű kerámiagömbök
(A) találhatóak, az alumíniummátrixban különféle erősítőanyag szemcséket vizsgáltunk.
A B) és C) esetekben 1, 2 és 0, 6 mm befoglaló méretű Al2O3 szemcséket, a D) esetben
0, 4 mm befoglaló méretű SiC szemcsék találhatóak [82]. Az E), F) és G) ábrák a vizsgált
mikroszerkezetet mutatják a B-D) sorrendnek megfelelő erősítőanyagokkal (ezeket E jelöli,
a KG a kerámiagömbhéjakat [175]. A pirossal jelölt méretskála a 0,5 mm-hez tartozó
hosszúságot jelzi.

5.8. ábra. A bal oldali ábrán a 24-es jelű próbatest megfigyelt tranziens viselkedése [82]
összevetve a Fourier- és GK-egyenletekkel. A jobb oldali ábrán a mért és az illesztett
hőmérsékletek különbségét látjuk.

Ebben az esetben az tűnik a leginkább járható útnak, ha adott próbatestre meg-
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határozzuk a hőfokvezetési tényezőt, majd az ismert komponensek függvényében ki-
számítjuk a kompozit effektív sűrűségét és fajhőjét, ebből pedig a test effektív hőve-
zetési tényezője is számítható [82]. Egységnyi térfogatú kompozit fémhab összetéte-
lét vizsgálva azok 64 térfogatszázalékát a kerámiagömbök teszik ki, amelyeknek 71,7
térfogatszázaléka a levegő aránya. Minden próbatest esetén azonos térfogatarányú
erősítőanyaggal rendelkező mintákat vizsgáltunk, azok aránya 7,2 térfogatszázalék.

Az 5.8. ábra egy jellemző tranziens viselkedést szemléltet, ehhez igen hasonlóan
viselkedik a többi próbatest is. A Fourier-egyenlet illesztése itt is a gyors, felfutó
időskálára konvergált, és jelentősen túllövi a lassabb, kiegyenlítődési részt. Ehhez
képest a GK-egyenlet egy jóval pontosabb képet tud adni. Érdekes megfigyelni, hogy
az eltérés a GK-egyenlet esetében sem monoton, vagyis akár egy harmadik időskála
is szerepet játszhat. Ez nem is olyan meglepő, hiszen a többkomponensű közegben,
egy időben, több különböző hőközlési mechanizmus is jelen van. Ilyen szempontból
figyelemre méltó, hogy csupán ennyi az eltérés, és a GK-egyenlet (és ezzel együtt a
Jeffreys-egyenlet) képes ezeket a folyamatokat két effektív időskálára lebontani.

Fourier Guyer–Krumhansl
Minta

vastagsága
(mm)

Hőfokvezetési
tényező

(10−6 m2/s)

Hőfokvezetési
tényező

(10−6 m2/s)

Relaxációs idő
τ (s)

Hosszskála
négyzete

κ2 (10−6 m2)

22 2,9 2,59 1,92 0,21 1.28
23 2 1,19 0,88 0,23 0,62
24 2,9 5,5 2,87 0,29 2,64

32 2,1 2,85 1,56 0,28 1,31
33 2,1 1,73 1.07 0.3 1,01
34 2 3,47 2,04 0,26 1,52

42 2,8 5,41 4,25 0,22 1,62
43 2 2,23 1,26 0,18 0,91
44 3,5 4,57 2,65 0,37 3,07

5.2. táblázat. A vizsgált próbatestek jellemző Fourier- és GK-féle transzportegyüttha-
tóinak összegzése, ahol a 2x, 3x és 4x számok a próbatestek azonosítóit jelentik [82]. A
legtöbb próbatest esetén (a 42 és 43 jelűt kivéve) a statikus és dinamikus hőfokvezetési
tényezők aránya 3-3,2 között mozog, a 42 és 44 jelűek esetén azok értéke 1,73 és 4,01.
A 22-24 jelű próbatestek SiC szemcsékkel, a 32-44 jelűek Al2O3 szemcsékkel erősítettek,
a 32-34 jelűekben vannak a 0,6 mm átmérőjű, a 42-44 jelűekben az 1,2 mm átmérőjű
szemcsék.

A statikus és dinamikus tényezőket az 5.2 táblázat foglalja össze. A kőzetekhez
képest itt a statikus és dinamikus tényezők aránya jóval nagyobb, ami abból a szem-
pontból reális és az elvárásoknak megfelelő, hogy az alumíniumötvözet-mátrix egy
igen jó hővezető képességű anyag, de az üreges kerámiagömbhéjak már lényegesen
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rosszabb hővezető anyagok. A kőzetek esetén az egyes komponensek termikus szem-
pontból sokkal inkább hasonlítanak egymásra, mint ebben az esetben. Továbbá, a
fémhabokban egyszerre játszódik le hővezetési, hőátadási és hősugárzási hőtransz-
port is, ráadásul a hővezetés esetén a mátrixanyagban lévő hővezetési úthosszak a
próbatesthez vagy a kerámiagömbökhöz képest akár jóval hosszabbak is lehet, és ezen
a szemcseerősítő anyag alkalmazása szintén nem javít. Ez négyzetes arányosságon
keresztül tovább növeli az alumíniummátrix hővezetési időskáláját. Az 5.2 táblázat
adatain azt is érdemes megfigyelni, hogy a 32-34 jelű próbatestekben kisebb méretű
szemcsék találhatóak, így azoknak jellemzően 30-40%-al kisebb az effektív hővezeté-
si képessége, ugyanakkora térfogatarány mellett, és az általánosságban elmondható,
hogy a Fourier- és a GK-egyenletek által jósolt hőfokvezetési tényezők jelentősen
eltérnek egymástól.

5.9. ábra. Az R2 értékek a GK-egyenlet illesztési jóságát mutatják az egyes próbatestekre
vonatkozóan, az elnevezések az 5.2 táblázatot követik. Érdekes azt is megfigyelni, hogy
amíg a kőzetek esetén a Fourier-egyenlet illesztése a statikus és a dinamikus időskálák
átlagára konvergált, itt ez csak az esetek felében igaz és sokkal nagyobb szórással. Ez
annyit jelent, hogy a Fourier-egyenlet illesztését nem lehet megbízhatónak tekinteni olyan
értelemben sem, hogy a két időskála átlagát adja vissza. A kőzetekhez képest itt a két
időskála aránya legalább kétszer akkora.

A próbatestek effektív sűrűsége és fajhője igen közel esik egymáshoz, mivel az
egyes komponensek térfogatarányban kevéssé térnek el egymástól. A

ρeff =
∑
i

V̂iρi, cv,eff =
∑
i

V̂icv,i,
∑
i

V̂i = 1, (5.6)

V̂i térfogatarányokkal történő összegzéseket kihasználva a 22-24 jelű próbatestekre
ρeff = 1650 kg/m3 és cv,eff =767,5 J/(kg K) effektív sűrűséget és fajhőt kapunk. A 32-
34 és 42-44 jelű próbatestekre ezek az értékek azonosak, értékük ρeff = 1738 kg/m3,
cv,eff = 768,2 J/(kg K). Ebből következően az effektív hővezetési tényező értékei
3,21 és 7,82 W/(m K) közé esnek [82], összhangban a [178] irodalommal is. Ezzel
szemben az (5.1)-(5.3) képletek egy nagyságrenddel nagyobb értékeket becsülnek,
de azok a hővezetési tényező becslések nem is veszik figyelembe a mikroszerkezet
többszörösen összetett tulajdonságait.
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5.3.2. Nagyporozitású szénhabok
A habos anyagoknál maradva ez a példa azért is érdekes, mivel a végfelhasználás
szempontjából a tervezett szénhabok vastagságát minimalizálni próbálják. A CERN
ALICE kísérletén belül a harmadik generációs részecskefizikai detektor vázát az itt
bemutatott szénhabokból tervezik megépíteni [168]. Egy ilyen detektorban igen
kritikus a felhasznált anyagmennyiség, mivel minden, a detektorok és a részecskék
közötti anyag torzítja a mérést, megváltoztatja a részecskék irányát, energiáját, és a
mérés kiértékelhetőségét. A detektor vázlatát az 5.10. ábra mutatja, amelyen három
réteg látható, minden egyes rétegen olyan ALPIDE chipek találhatóak, amelyek a
részecskék becsapódását vagy áthaladását regisztrálják [179].

5.10. ábra. A CERN ALICE kísérlet ITS detektorának vázlatos felépítése [179] alapján.

Minden réteget egy nagy porozitású szénhabból építenek fel. Az ALPIDE chi-
pek termikusan igen érzékenyek, a legnagyobb megengedhető hőmérséklet 40 ◦C,
valamint a pontos mérések és kalibrációs szempontok alapján a chipek között ma-
ximum 5 ◦C hőmérséklet-különbség megengedett, emiatt egy aktív hűtési rendszer
alkalmazása elkerülhetetlen. Ugyanezt tapasztaltuk egy hadron kaloriméter kon-
cepcionalizálása közben is: Sudár Ákos hallgatóval közösen részt vettünk a Bergen
pCT Együttműködésben4, aminek keretében több hűtési koncepciót is meg kellett
vizsgálnunk [180,181]. A nagy porozitású szénhabok ilyen szempontból azért ideális
választás, mert mindamellett, hogy kis anyagfelhasználású szerkezet, de a grafitmát-
rixú habok jó hővezető képességgel is rendelkeznek, ami nagy mértékben elősegítik a
chipek termikus stabilitását. Mindezen felül egy aktív hűtéssel ellátott rendszerben a
levegő át is tudja áramolni a habszerkezetet, emiatt "térfogati" hűtést megvalósítva,
azaz lényegesen kisebb hűtendő tömeg mellett hozunk létre nagy hőátadási felületet.
A kérdés az, hogy milyen effektív jellemzőkkel rendelkeznek a vizsgált habszerkeze-
tek és a tranziens folyamatok során megfigyelhetőek-e a Fourier-egyenlettől eltérő
jelenségek vagy sem.

4A pCT kifejezés a proton komputertomográfiára utal, ami a hagyományos, röntgenalapú besu-
gárzási eljárásokhoz képest lényegesen jobb karakterisztikával rendelkezik és az egészséges sejteket
sokkal kevésbé roncsolja.

76

               kovacsr_325_25



A kompozit fémhabokhoz képest a nyílt cellás habok esetén könnyebb a dolgunk,
ugyanis a típustól függően 85 és 95% közötti porozitású habok anyageloszlása még
kis méretben is jó közelítéssel egyenletes. Emiatt a fejezet elején bemutatott (5.1)-
(5.3) becslések mellett szintén jól használható a

λeff = 1
3

 ρhab
ρtömör

+ 2
(
ρhab
ρtömör

)3/2
λtömör +

(
1− ρhab

ρtömör

)
λgáz, (5.7)

összefüggés, ahol a "tömör" indexelés a 0% porozitású tömör mátrixanyagot jellemzi,
a "hab" az adott porozitású hab tulajdonságaira utal [182]. Hasonló módon lehet a
hab hőfokvezetési tényezőjét is becsülni,

aeff ≈
1
3

1 + 2
(
ρhab
ρtömör

)1/2
 atömör, (5.8)

de ebben az esetben a habot kitöltő gázban lévő hővezetést elhanyagoljuk (λgáz = 0)
és az (5.8) egyenletet úgy kapjuk, hogy a ρhab/ρtömör sűrűségaránnyal elosztjuk az
(5.7) összefüggést, valamint a porozitás változtatásával a fajhő nem változik [182].
Az 5.11. ábra azt mutatja, hogy a porozitással hogyan változik az effektív hővezetési
és a hőfokvezetési tényező. Mivel ebben az esetben a mátrixanyag sűrűsége három
nagyságrenddel nagyobb, mint a levegőé, ezért a porozitás megegyezik a ρhab/ρtömör
sűrűségaránnyal. Érdemes megfigyelni, hogy a habot kitöltő gáz hővezetését nyugod-
tan elhanyagolhatjuk, mivel csak nagyon nagy porozitások mellett van észrevehető
járuléka. Az effektív fajhő azonban fontosabb, ugyanis a tömör anyaghoz képest
több, mint 20%-os eltérést okoz az, ha azt konstansnak tekintjük, tehát az (5.8)
közelítésnek a szénhabok esetén ilyen hibája lehet.

5.11. ábra. Az effektív hővezetési és hőfokvezetési tényező változása a porozitás függvé-
nyében. A relatív értékeket a tömör anyaghoz képest vonatkoztatjuk, feltételezve, hogy
normál állapotú levegő található a pórusokban. A gáz hővezetése tényleg elhanyagolható,
de a fajhő változását nem lehet elhanyagolni.
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5.12. ábra. Ezekben a vizsgálatokban kétféle típusú szénhabot használtunk fel [168],
ezeket az ERG Aerospace Corporation és az Allcomp Inc. gyártotta, mindkét típusból
közel azonos keresztmetszetű és vastagságú (5 mm) próbatesteket vizsgáltunk.

5.13. ábra. Az ERG és az Allcomp típusú szénhab próbatesteken végzett mérések jellem-
ző eredményei [168]. Amíg az ERG próbatesteket a Fourier-egyenlettel megfelelően le lehet
írni, addig az Allcomp típusúak esetében ez nem mondható el, amely a két komponens
lényegesen eltérő hővezetési tulajdonságainak köszönhető.

Az ERG jelű próbatestek mátrixanyaga amorf szén, ennek hővezetési tényezője
1 W/(m K). Az Allcomp jelű próbatestek azonban polikristályos grafitból készültek,
amely lényegesen nagyobb, 80 W/(m K) hővezetési tényezővel bír. Az ERG pró-
batestek 90%-os, az Allcomp típusúak 85-90% közötti porozitással rendelkeztek. A
mátrixanyagban való eltérés a fajhőméréseken is látszódott [168]. Ilyen nagy poro-
zitású habok hőimpulzuselvű mérései csak úgy voltak lehetségesek, hogy ha a minta
elejére és hátlapjára is grafittal átitatott vékony lapokat helyeztünk, amely el tudja
nyelni a hőimpulzust, így a minta átlátszósága nem lesz probléma. Ehhez megbe-
csültük a grafittal átitatott papírlap hőellenállását is, és megállapítottuk, hogy az 5
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mm vastagságú próbatesthez képest elhanyagolható.
Az ERG próbatestek esetében végig azt találtuk, hogy a Fourier-törvény megfele-

lő leírást ad, és a mérések során visszakaptuk az adatlapi hővezetési tényező értéket
is [168]. Az, hogy a Fourier-törvény alkalmas erre a célra, az leginkább annak köszön-
hető, hogy a 97%-os porozitás miatt a hab sokkal inkább a levegő tulajdonságaihoz
állt közelebb, és így egykomponensű közegként viselkedik, ha vannak is a Fourier-
törvénytől eltérő effektusok, azok ilyen méretben kiátlagolódnak. Az (5.1), valamint
az (5.7) becslések az ERG szénhabra 0,055-0,08 W/(m K)-es becslést adnak, a mért
értékek 0,043-0.052 W/(m K) közé esnek, és ez a gyártói adatlappal egyezik.

Az Allcomp típusú próbatestek esetén nem csupán a porozitásuk kisebb (97% he-
lyett 85%), hanem háromszor nagyobb a sűrűségük is (70 kg/m3 helyett 220 kg/m3),
és a mátrixanyag hővezetési képessége is egy nagyságrenddel nagyobb. Tehát eb-
ben az esetben a próbatest termikusan is úgy viselkedik, mintha kétkomponensű
közeg lenne, és megfigyelhetőek a Fourier-egyenlettől eltérő hatások is. Az Allcomp
szénhab gyártói adatlapján 20-40 W/(m K) hővezetési tényező intervallum van meg-
adva, ami a 85%-os porozitáshoz és a mátrixanyag tömör tulajdonságaihoz képest
igen magasnak mondható. Az (5.1), valamint az (5.7) becslések 7-12 W/(m K) közé
esnek, de a mérések szerint a statikus 0,9-1,38 W/(m K), a dinamikus hővezeté-
si tényező 2,39-3,04 W/(m K) közé esik. Az eltéréseknek igen sokféle oka lehet.
Egyrészt, a rendelkezésre álló próbatestek számától várhatóan lényegesen több min-
tára lenne szükség, ha csupán egy néhány milliméteres szeletet tekintünk. Fontos
szempont lehet a próbatestek méretfüggése is, a gyártói adatlapon nem szerepelnek
próbatestméretek. Ráadásul a [183] alapján a próbatestekben anizotrop viselkedés
is megfigyelhető. Mivel a gyártói adatlap hőfokvezetési tényezőt nem tartalmaz, így
más referencia nem elérhető. Ennek ellenére egy újabb példát láthattunk arra vonat-
kozólag, hogy a heterogén anyagok tranziens viselkedése nem feltétlenül jellemezhető
egy időskálával.

5.3.3. Fémorganikus térhálók

Az eddigi makropórusos anyagokról a mikropórusos anyagokra térek át, azokon belül
is külön figyelemreméltó tulajdonságokkal bírnak a fémorganikus térhálós szerkeze-
tek. Ezeknek igen sokféle típusa létezik, így ennek a részleteiben mélyebben nem
is kívánok elmélyedni, így a [184–188] szakirodalmi forrásokat ajánlom ilyen tekin-
tetben. Általában véve a fémorganikus térhálós anyagok rendkívül nagy látszólagos
felülettel, 600 − 7000 m2/g rendelkeznek [184, 188], ami ideális jelöltté teszi ezeket
az anyagokat adszorpciós gáztárolásra. Ezt a kimagasló gázmegkötési tulajdonságot
az is segíti, hogy a rácsszerkezetük rendezett, egy nyitott, mikropórusos térhálóról
van szó [189].

A vizsgálatokat László Krisztina motiválta, a próbatesteket ő bocsátotta a ren-
delkezésünkre. A fémorganikus térhálós szerkezetek hővezetési képessége igen kor-
látozott, és ez behatárolja a gyakorlati felhasználási lehetőségeket is, de ez megfe-
lelő adalékokkal és a gyártástechnológia megválasztásával javítható. A vizsgálatok
fókuszában az úgynevezett réz benzol-1,3,5-trikarboxilát (Cu3btc2) áll, ezt a szak-
irodalom HKUST-1-nek rövidíti és a szerkezeti felépítését az 5.14. ábra mutatja.
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5.14. ábra. A HKUST-1 szerkezeti felépítését látjuk, ahol a szürke a szénatomokat, a
piros az oxigént, a fehér a hidrogént, a kékek a rézatomokat szemléltetik. A pórusok
méreteit a lila, sárga és zöld gömbök mutatják, amelyek méretei 0,5; 1,1 és 1,35 nm. Az
ábra forrása a [189] irodalom.

Három jellegzetes pórusméret figyelhető meg 0,5-1,35 nm-es tartományban, me-
lyek aránya és a makroszkopikus méretű minták pórusméret eloszlása függ a gyártás-
technológiától és a kristályok utókezelésétől is. A vizsgálat tárgyát az képezte, hogy
redukált grafén-oxiddal kevert térhálós szerkezetnek hogyan változnak a hővezetési
képességei, természetesen a cél annak javítása [190]. Ez határozottan az adszorpciós
képesség rovására megy, az eredeti, redukált grafén-oxid mentes esethez képest akár
annak negyedére is lecsökkenhet a gázt megkötő felület [190]. Ez a gyakorlatban azt
jelenti, hogy a kívánt felhasználáshoz mérten kell megválasztani a gyártástechnoló-
giát és a redukált grafén-oxid (RGO) mértékét, amely egy optimalizációs feladathoz
vezet. A következőkben bemutatott kísérleti eredmények ezt a feladatot hivatottak
megkönnyíteni.

Az előállítási folyamat végén por formában kapjuk meg a térhálós szerkezetet,
amely sem a felhasználások, sem a kísérletek szempontjából nem előnyös, emiatt
pelletálásra van szükség, amely tovább csökkenti a porozitást és így az adszorpciós
képességet. Ez az 5.15. ábra felső soráról is leolvasható (az A), B) és C) ábrák), ahol
a térhálós anyag szerkezetét por formában, majd 25 és 50 bar-os tömörítés után vizs-
gálták pásztázó elektron mikroszkóp alatt [191]. Az 5.15. ábra alsó sora egyformán
25 bar-os pelletálás mellett került előállításra [190], de a redukált grafén-oxid tarta-
lom változtatásával egyre kevésbé látható a poliéderes kristályos térhálós szerkezet,
ezzel együtt a pórus mérete, eloszlása, és így a próbatest adszorpciós képessége is
jelentősen változik [190]. A pelletálás lehetővé teszi a hőimpulzuselvű mérések el-
végzését is. A próbatestekkel kapcsolatos további részleteket a [190] tartalmazza.

Az 5.3 táblázat foglalja össze a vizsgált próbatestek RGO tartalmát, azok vas-
tagságát, és a mérések során kapott átlagos termikus paramétereket. Ezeken az
adatokon elsősorban azt fontos észrevenni, hogy a tiszta, RGO nélküli esetekben
elegendő a Fourier-egyenlet. Minden más esetben, függetlenül attól, hogy a HL
vagy a GM jelzésű gyártástechnológiával készültek a próbatestek, az RGO hozzá-
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keverés jelentette második hővezetési időskála hatása egyértelműen kimutatható, és
a próbatestek termikus jellemzéséhez elengedhetetlen volt a két időskálás modellek
alkalmazása. A másik megfigyelés az, hogy a HL-0 és a GM-0 jelzésű próbatestek
vastagsága jelentősen nagyobb, mint az RGO tartalmú mintáké, és a megfigyelt ef-
fektív hőfokvezetési tényezőjük is jelentősen nagyobb, ami egyértelmű méretfüggésre
utal. Az RGO tartalmú próbatestek vastagságai csak kis mértékben térnek el egy-
mástól, és azokon belül jól megfigyelhető az RGO hővezetésre gyakorolt hatása is,
egyaránt a statikus és a dinamikus skálákon. Jelenleg még nyitott az a kérdés, hogy
az RGO tartalmú próbatestek milyen méretfüggéssel rendelkeznek, tehát egyrészt
mennyire és milyen irányban változnak a termikus jellemzők, illetve mikor válik
szükségtelenné a két időskálás modellek alkalmazása.

5.15. ábra. A HKUST-1 térhálós anyag redukált grafén-oxiddal (RGO) kevert szerkezete
pelletálás nélkül (bal szélső ábra), majd 25 és 50 bar-os pelletálás után [191]. A térhálós
anyagot a relatíve nagyméretű poliéderes kristályok mutatják (az A) és D) ábrák), az RGO
jelenlétét az apróbb, lemezes-tüskés szerkezet szemlélteti, ami az alsó D)-E)-F) ábrákon is
egyre jobban megfigyelhető az RGO tartalom növelésével [190]. Az ábrákon lévő pirossal
jelzett skála a 10 µm-es hosszt mutatja.

Ezenfelül még azt is érdemes kiemelni, hogy a Fourier-egyenlet illesztése igen
jól konvergált a statikus és dinamikus skálák átlagához, hasonlóan az 5.5. ábrához,
amit a kőzetek kapcsán figyeltünk meg. Ebben az esetben ezt az összehasonlítást az
5.16. ábra szemlélteti, ahol azt látjuk, hogy a két skála igen közel esik egymáshoz,
de ezt csak akkor vehetjük észre, hogy ha az illesztést egy megbízható két időskálás
modellel is elvégezzük. A Fourier-egyenlet illesztése ilyen formában megbízhatat-
lan. A jövőben még igazolásra vár az a hipotézis is, hogy az 5.16. ábrán is közölt
arányszám megjósolja-e azt, hogy mikortól használható a Fourier-egyenlet, ugyanis
főleg a GM jelű esetekben jól látszik egy tendencia, és az RGO dominanciája éppen
az egy időskálás Fourier-egyenlet felé való elmozdulást jelenti. Újfent megjegyzem,
hogy a GK-egyenlet paraméterei egymásnak egyértelműen megfeleltethetőek az (5.5)
összefüggésen keresztül, így azokat nem látom célszerűnek külön közölni.
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Fourier Guyer–Krumhansl
Minta

vastagsága
(mm)

Hőfokvezetési
tényező

(10−7 m2/s)

Hőfokvezetési
tényező

(10−7 m2/s)

Relaxációs
idő
τ (s)

Hosszskála
négyzete

κ2 (10−7 m2)

HL-0 1,15 1,62 - - -
HL-10 0,68 1,03 0,78 0,41 0,62
HL-20 0,72 1,29 1,03 0,34 0,66
HL-30 0,71 1,2 0,89 0,49 0,83
HL-50 0,77 1,61 1,29 0,44 0,99

GM-0 1,09 1,86 - - -
GM-10 0,71 1,15 0,86 0,44 0,74
GM-20 0,68 1,23 0,93 0,42 0,73
GM-30 0,71 1,33 0,94 0,48 0,89
GM-50 0,74 1,67 1,22 0,45 1,05

5.3. táblázat. A HKUST-1 fémorganikus térhálós anyagból, 25 bar-os pelletálás után ké-
szített próbatestek termikus adatai, ahol a hiányzó számadatok azt jelentik, hogy nem volt
szükség a GK-egyenlet használatára, [190] alapján. A HL és GM jelzések két különböző
gyártási technológiára utalnak, amelyek részletei végett szintén a [190] szakirodalmi forrást
ajánlom. A HL és GM jelzések után lévő szám az RGO m/m%-os tartalmát jelzi, tehát
0%-tól 50%-os RGO tartalomig vizsgáltuk annak hatását.

5.16. ábra. A GK-egyenlet által adott statikus és dinamikus hőfokvezetési tényezők átla-
gának viszonyítása a Fourier-egyenlet illesztéséből kapott értékhez. A kettő igen közel esik
egymáshoz, de a Fourier-egyenlet illesztése ilyen szempontból megbízhatatlan.

82

               kovacsr_325_25



Végül egy-egy példát mutatok a Fourier, valamint a Fourier-tól eltérő esetekből,
a HL-0 és a HL-30 jelű mintákra vonatkozóan. Kísérletileg ugyanaz történik, mint a
kőzetek és a különféle habok esetén is, a Fourier-egyenlettől való eltérést ugyanolyan
formában figyeltük meg. A GK- és Jeffreys-egyenletek által adott statikus és dinami-
kus skálák ugyanolyan tulajdonságokkal bírnak, anyagminőségtől függetlenül, ami a
termodinamikai modellek univerzalitását jól szemlélteti.

5.17. ábra. A HL-0 és a HL-30 jelű próbatestek tranziens viselkedése, ahol jól látszik,
hogy a HL-0 egykomponensű, a HL-30 viszont kétkomponensű rendszerként viselkedik
[190].

5.3.4. Biológiailag lebontható NYÁK-ok
Környezetvédelmi szempontból az elektronikai moduláramkörök (hordozók és alkat-
részek) igen jelentős részét teszik ki a nehezen feldolgozható hulladékoknak, amelyek
főleg kisebb méretű eszközökből, például laptopokból, telefonokból és más háztartási
termékekből kerülnek ki. Éppen emiatt igen aktuális kérdés az, hogy ha az áram-
köri szerelvény térfogat- és tömegarányában is jelentős részét, magát a nyomtatott
áramköri hordozót olyan anyagból gyártják, amely lebontható, és nem beláthatat-
lan ideig, évtizedekig, vagy akár évszázadokig szennyezi tovább a környezetet. Egy
ilyen motiváció mentén indult el a [192] irodalomban közölt kutatás is, amely igen
alaposan körbejárja a vizsgált NYÁK-lemezek tulajdonságait gyártástechnológiai és
életciklus szempontok szerint is.

Az 5.18. ábra a hagyományos, FR4-alapú NYÁK-ok szerkezetét veti össze a po-
litejsav (PLA) alapú, biológiailag lebontható szerkezettel. A kutatásunk tárgya az,
hogy milyen feltételek, összetétel és technológiai paraméterek mellett tudja kiváltani
a hagyományos NYÁK-lemezeket. Például az egyes elektronikai alkatrészek forrasz-
tása során igen lényeges, hogy milyen termikus tulajdonságokkal lehet a folyama-
tot megtervezni. A kutatásaimat PLA-alapú lemezeknek a tranziens vizsgálatára
koncentráltam [192, 193]. További részletekért a [194–196] szakirodalmi forrásokat
ajánlom, ahol a szerzők ismertetik az elektronikai technológiai részleteket is. Az
5.19. ábra azt szemlélteti, hogy a Fourier-egyenlet teljes egészében jól jellemzi a
vizsgált próbatesteket, tehát az alkalmazás szempontjából is fontos 1-1,5 mm-es
vastagságon a heterogenitások jelentette hatások kiátlagolódnak. Ez annak tük-
rében nem meglepő, hogy az összetevők hővezetési képességben nem különböznek
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egymástól jelentősen. De még az FR4-alapú lapok esetén sincs effektus, mivel ott a
rézlemezek az üvegszálas gyantás szerkezetet hőellenállások szempontjából sorosan
fogják közre, nem pedig párhuzamosan, így azok sem mutatnak Fourier-tól eltérő
hatásokat.

5.18. ábra. A NYÁK-lemezek szerkezetének összehasonlítása. A) FR4 - (Flame Re-
tardant, class 4) - teljesen üvegszálakból és epoxigyantából áll, rézlemez-rétegekkel pré-
selve. [197]. B) Lenszövettel erősített politejsavalapú szerkezet, amely újrahasznosított
anyagokból előállítható. Az ábrát Géczy Attila szolgáltatta [194]. C) A NYÁK-lemez
mezoszkopikus képe, 500-szoros nagyításban, digitális mikroszkóppal készítve, így jól lát-
hatóak a szerkezet heterogenitásai. D) Pásztázó elektronmikroszkóppal készített felvétel,
amelyen jól látszik a lenszálakkal történő erősítés, közöttük a PLA műanyag kitöltés.

5.19. ábra. Az első és második generációs PLA-alapú NYÁK-lemezek termikus viselkedé-
se, a heterogenitások ellenére a Fourier-egyenlet jól használható és a vizsgált próbatestek
termikusan egy időskálával leírhatóak [192].
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5.4. Összefoglalás
A bemutatott példák, a különféle haboktól kezdve egészen az elektronikai alkatré-
szekig, azt mutatják, hogy a termikus viselkedés modellezése számtalan területen
elengedhetetlen és szükséges. Az anyagjellemzők meghatározása alapvető mérnöki
feladat. A bemutatott heterogén anyagok elég jól összefoglalják azokat a tapasz-
talatokat, amelyek a két időskálás modellek használatához kellenek. Habár nem
minden esetben szükséges a GK-, vagy a Jeffreys-egyenlet használata, mégis vannak
olyan esetek, amikor ezek nélkül nem lehetett volna a megfelelő termikus jellemző-
ket megbízható módon azonosítani. A heterogenitások jelenléte nem jelenti feltétel
nélkül azt, hogy mindenképp igen bonyolult modellek használatába kell kezdeni. A
GK- és Jeffreys-egyenletek univerzalitása, anyagszerkezettől való függetlensége nagy
könnyebbség a részletes modellezéssel szemben. A környezettudatosságnak nemcsak
az a része fontos, hogy milyen anyagokat használunk fel, hanem az is, hogy az erő-
forrásainkkal hogyan bánunk. A termikus tervezésnek egy lényegesen hatékonyabb
és részletesebb módját szolgáltathatják a bemutatott két időskálás modellek.

Itt fontosnak tartom, hogy Fehér Anna, mint a Ph.D. hallgatóm munkásságát
külön tételesen is kiemeljem, és a dolgozatomban bemutatott tézisektől elkülönítsem.
Fehér Anna érdemei a következőek:

• a kísérletileg releváns két időskálás modellek kiválasztása és a kéthőmérsékletű
modell kizárása;

• a Guyer–Krumhansl- és a Jeffreys-egyenletek egyenértékűségére tett javaslatai;

• a kísérletek tervezése, mintaelőkészítés, és az adatok kiértékeléséhez egy kon-
zisztens módszertan kidolgozása mindkét releváns két időskálás modellre vo-
natkozóan, és ide tartozik az analitikus megoldások kísérletekre való átültetése
is;

• valamint a statikus és dinamikus skálák átlagolása a Fourier-féle hőfokvezetési
tényező meghatározásához.

A saját tudományos hozzájárulásom pedig a 7. tézis foglalja össze.
7. Tézis – Heterogén anyagok termikus jellemzése

Rámutattam, hogy a kísérletileg megfigyelt dinamikus hőfokvezetési tényező
mindig nagyobb, mint a statikus hőfokvezetési tényező. Ez az állítás igaz a
statikus és dinamikus hővezetési tényezők viszonyára is. Heterogén anyagok
hőimpulzuselvű termikus jellemzésére javaslatot tettem a próbatestek mére-
tének, valamint a hőimpulzus idejének változtatására.

A 7. tézishez kapcsolódó publikációk: [53,82,104,148,168,192,193,198].
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6. fejezet

Összefoglalás és tézisek

A dolgozatomban áttekintettem azokat a jelenségeket, amelyek túlmutatnak a
Fourier-egyenlet modellezési keretein, rámutattam a diffúziós és hullámterjedési je-
lenségek közötti különbségekre és hasonlóságokra. A Fourier-egyenleten túli mo-
dellek rendre több időskálával rendelkeznek. Erre alapozva tárgyaltam a két idő-
skálás hővezetési egyenletek termodinamikai jelentését. A Guyer–Krumhansl- és a
Jeffreys-egyenletek úgy is értelmezhetőek, mint két párhuzamos diffúziós jelenséget
leíró modellek. Mindkét egyenlet a Fourier-törvény egy reális, heterogén anyagok
leírására alkalmas alternatívájaként tekinthető. Ezek levezetéséhez nem használtam
fel konkrét anyagszerkezeti tulajdonságokat, így a modellek nem anyagspecifikusak.
Elméleti, matematikai és kísérleti irányból egyaránt megvizsgáltam a modellek tu-
lajdonságait. Ennek ellenére azt sem szabad elfelejteni, hogy a Fourier-egyenlethez
képest ez az eszköztár még közel sem teljes, és több olyan terület is van, ahol még
további kutatásokra van szükség. A nyitott kérdések egyaránt érintik a hővezeté-
si elméletek termodinamikai hátterét, a modellek Liu-eljárással való levezethetősé-
gét, az egyes nemlinearitások figyelembevételének módját és gyakorlati relevanciáját,
valamint a megoldási módszerek komplex geometriákra való átültetését. A dolgo-
zatomban minden olyan területet érintettem, ami ahhoz szükséges, hogy az ipar
számára fontos heterogén anyagok termikus tulajdonságait meg lehessen határozni,
értelmezni és azt a szimulációkhoz felhasználni.

A termodinamikai háttér kapcsán be kell látni, hogy a második főtétel önmagá-
ban véve nem ad elég megkötést a modellekre vonatkozóan. Ez úgy értelmezhető,
hogy ugyanaz a modell akár több módon is levezethető (eltérő állapottérrel, konstitu-
tív összefüggésekkel, eltérő termodinamikai módszertannal). Az elmélet finomítását
várhatóan majd a további gyakorlati alkalmazások és a problémamegoldások hozzák
el. A Fourier-egyenlet esetén a termodinamikai hátteret lényegesen kevesebb kérdés
és bizonytalanság övezte. A gyakorlati felhasználást az sem hátráltatta, hogy a róla
elnevezett összefüggést először egy véges térfogatú testre vetítve írta fel először [199].
Ez a több, mint 200 éves összefüggés azóta is a mérnöki gyakorlat szerves részét ké-
pezi. Ez a Guyer–Krumhansl-, vagy a Jeffreys-egyenletről teljes egészében még nem
mondható el. Az első tézisem a Fourier-egyenleten túlmutató modellek megadására
vonatkozik, függetlenül attól, hogy a gyakorlat majd milyen konkrét termodinamikai
erő-áram rendszert fog alkalmazni.
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1. Tézis – A Fourier-egyenleten túli modellek definiálása

Kimutattam, hogy a Fourier-egyenleten túli modelleket azok onsageri alakjá-
val kell definiálni, ami egyértelműsíti a termodinamikai erők és áramok közötti
összefüggéseket, a makroszkopikus transzportegyütthatók közötti kapcsolato-
kat, valamint a kezdeti és peremfeltételek fizikai tartalmát. Az onsageri alak
mellé meg kell adni a modellhez tartozó állapotteret. A transzportegyütthatók
állapotfüggését onsageri szinten kell definiálni.

Az 1. tézishez kapcsolódó publikációk: [6, 14,63,74,99–103].

A második tézisem már csak a Guyer–Krumhansl- és Jeffreys-egyenletekre vonat-
kozik, mivel a szakirodalom jelenlegi állása szerint csak ez a két modell rendelkezik
a szükséges termodinamikai kompatibilitással és a két diffúziós időskálával kontinu-
umértelmezésben. Ennek hőfizikai jelentőségét a második tézis foglalja össze.

2. Tézis – A két diffúziós időskálával rendelkező modellek értelmezése

Megállapítottam, hogy a Guyer–Krumhansl- és Jeffreys-egyenletek, mint két
időskálás modellek megkülönböztetnek statikus és dinamikus hővezetési és
hőfokvezetési tényezőket. Mivel meglátásom szerint a Guyer–Krumhansl- és
Jeffreys-egyenletek esetében a Fourier-szám nem pontos és félreértésre ad okot,
ezért a Fourier-szám elnevezést statikus és dinamikus időskálára javaslom mó-
dosítani.

A 2. tézishez kapcsolódó publikációk: [6, 103,104].

A két időskálás modellek onsageri alakjának figyelembevétele az anyagi nemline-
aritások esetén egyenesen kötelező és elengedhetetlen, de már a modellekhez kapcso-
lódó kezdeti és peremfeltételek esetén is kritikus lehet. Az együtthatók hőmérsék-
lettől (esetleg a fajlagos belső energiától, vagy az állapottér gradienseitől [101]) való
függése olyan nemlineáris járulékokat adnak, amelynek igen komoly következménye-
ik vannak a modellek megoldhatóságára és értelmezésére nézve is, ezeket összegzik
a harmadik és negyedik téziseim. Habár a dolgozatom a makroszkopikus alkalma-
zásokra fókuszált, nem szabad megfeledkezni a lehetséges modern nanotechnológiai
felhasználási lehetőségekről sem, amikor a transzportegyütthatók még a hőáramsű-
rűségtől és annak irányától is függhetnek. Ez elméleti és kísérleti oldalról egyaránt
sokrétű nehézségbe ütközik. Éppen emiatt a vizsgálataim csak a hőmérséklettől való
függésre fókuszáltam, ugyanis az kísérletileg könnyebben ellenőrizhető, és a model-
lek részletes ismeretével a kísérletek is célzottan tervezhetőek. A hővezetési szak-
irodalomban szilárd közegek termikus transzportegyütthatóit nem szokás (és nem is
ismert) a fajlagos alakváltozás függvényében megadni, de ez már a Fourier-egyenlet
szintjén is igen érdekes járulékokat adna, és például a korábbi [93, 94] szakirodal-
makban bemutatott kísérleti elemzéseket is módosíthatja. Ez analóg lenne a gázok
esetén ismert nyomásfüggéssel, szilárd közegek esetén azonban a teljes feszültség-
állapotot meg kellene adni ehhez. Ezt nehezíti, hogy még a hővezetési tényezőre
sem ismert ilyen összefüggés, így azt kísérleti adatokból kellene illeszteni. Emiatt
újfajta, célzott kísérletek tervezését javaslom.
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3. Tézis – A Guyer–Krumhansl-egyenlet nemlineáris tulajdonságai

A Guyer–Krumhansl-egyenlet esetén megállapítottam, hogy a hővezetési té-
nyező hőmérséklettől való függése a transzportegyütthatók mindegyikére örök-
lődik. Ennek következménye, hogy a tömegsűrűség hőmérsékletfüggését figye-
lembe kellhet venni, így a hőtáguláson keresztüli termomechanikai csatolás
a modellezési feladat függvényében jelentkezhet. A relaxációs idő hőmérsék-
letfüggését további nemlineáris járulék jelentkezése nélkül nem lehet figye-
lembe venni. A térben nemlokális taghoz tartozó transzportegyütthatók hő-
mérsékletfüggése nem várt módon módosítja a látszólagos hővezetési tényezőt,
amely ilyen módon hőmérséklet- és hőáramsűrűség-függővé is válhat. Az egyes
transzportegyütthatókban jelentkező anyagi nemlinearitások gyors folyamatok
esetén nem küszöbölhetőek ki, mivel bármely együttható hőmérsékletfüggése
mindkét időskála transzportegyütthatóit érinti.

A 3. tézishez kapcsolódó publikációk: [100,102,103,133,134].

4. Tézis – A Jeffreys-egyenlet nemlineáris tulajdonságai

A Jeffreys-egyenlet esetén megállapítottam, hogy a statikus hővezetési tényező
hőmérséklettől való függése anélkül is figyelembe vehető, hogy az állapotfüggés
a többi transzportegyütthatóban jelentkezne. Mivel a Jeffreys-egyenletben a
statikus és dinamikus skálák már konstitúciós szinten is elkülöníthetőek, emi-
att lehetséges a statikus hővezetési tényező hőmérsékletfüggésének dinamikus
időskálán való kiküszöbölése. A relaxációs idő hőmérsékletfüggése vagy a tö-
megsűrűség hőmérsékletfüggését és így a hőtágulási hatások figyelembevételét,
vagy pedig további nemlineáris járulékokon keresztül mindkét időskála módo-
sítását vonja maga után.

A 4. tézishez kapcsolódó publikációk: részben a [6,100] publikációim tartalmaz-
zák ezeket a megállapításokat, a teljes eredmény publikálás alatt áll.

A megoldási módszerek tekintetében az egyszerű geometriák kezelése (síkfal, hen-
ger, gömb) sem mindig könnyű feladat, főképp a peremfeltételek helyes leírása miatt.
Először a kapcsolódó megoldási módszertant kellett kidolgoznom, amivel már nem
csak lineáris egydimenziós feladatok kezelhetőek, valamint az analitikus megoldá-
sokkal a numerikus megoldások validálhatóvá váltak. Ez elengedhetetlen lépés volt
ahhoz, hogy a hagyományos, főleg T -reprezentációra épülő megközelítések ne vigyék
a kutatást tévútra, és megbízható megoldásokon tudtam a modellek tulajdonságait
vizsgálni. Ezenfelül természetesen a hővezetési kísérletek kiértékeléséhez is elenged-
hetetlen volt a modellek megbízható kezelése. A megoldási módszerek kidolgozása
során tett megállapításaimat az ötödik és hatodik téziseim foglalják össze.

A kísérletek és a konkrét összetett szerkezetű anyagok leírása tekintetében sze-
rencsésnek mondhattuk magunkat. A hőimpulzuselvű mérőberendezés, amelyet még
Gróf Gyula és munkatársai fejlesztettek az Energetikai Gépek és Rendszerek tan-
széken, olyan fix, nem állítható villanásidővel dolgozik, amely megfelelő volt ahhoz,
hogy a statikus és dinamikus hőfokvezetési tényezők közötti különbség észlelhető
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legyen. Ez kétségkívül hatalmas segítség volt a jelenség vizsgálatához, még azelőtt,
hogy a dolgozatomban összefoglalt elméleti és gyakorlati szempontok ilyen mélysé-
gig összekapcsolódtak volna. A saját tudományos hozzájárulásom a hetedik tézis
foglalja össze.

5. Tézis – Az analitikus megoldások sajátosságai

A Guyer–Krumhansl- és a Jeffreys-egyenlet hőmérséklet-reprezentációja alap-
ján megállapítottam, hogy első- és másodfajú peremfeltételek esetén ugyanaz
a sajátfüggvény-sajátérték rendszer használható. Erre építve kidolgoztam egy
speciális, Galjorkin-módszerre épülő analitikus megoldási technikát. Megad-
tam az inhomogén kezdeti feltételek következményeit, és termodinamikailag
konzisztens módszert ajánlottam a kezdeti időderiváltak figyelembevételére.

Az 5. tézishez kapcsolódó publikációk: [6, 73,103,125,133,139,140].

6. Tézis – A nemlineáris hővezetési egyenletek numerikus stabilitása

A nemlineáris, hőmérsékletfüggő transzportegyütthatókkal rendelkező
Fourier-, Guyer–Krumhansl- és a Jeffreys-féle hővezetési egyenletek nu-
merikus stabilitásának vizsgálatához kiterjesztettem a Neumann-módszer
érvényességét és egy módszert adtam a stabilitási határok becslésére. Meg-
állapítottam, hogy a transzportegyütthatókat az anyag olyan állapotán kell
figyelembe venni, ahol a leggyorsabb a karakterisztikus terjedési sebesség, és
ennek becslésére a lineáris megoldásból kapott hőmérsékletbeli szélsőérték
használható.

A 6. tézishez kapcsolódó publikációk: [58,100,102,133,134].

7. Tézis – Heterogén anyagok termikus jellemzése

Rámutattam, hogy a kísérletileg megfigyelt dinamikus hőfokvezetési tényező
mindig nagyobb, mint a statikus hőfokvezetési tényező. Ez az állítás igaz a
statikus és dinamikus hővezetési tényezők viszonyára is. Heterogén anyagok
hőimpulzuselvű termikus jellemzésére javaslatot tettem a próbatestek mére-
tének, valamint a hőimpulzus idejének változtatására.

A 7. tézishez kapcsolódó publikációk: [53,82,104,148,168,192,193,198].

A vizsgált próbatestek változatossága – több, mint tízféle kőzettípus, ugyanennyi
fémhab, szénhab, hagyományos és biológiailag lebontható NYÁK-ok, kondenzátor
alkatrészek, különféle fémorganikus térhálós anyagok, 3D nyomtatott beton, polimer
és acél – jól mutatja, hogy az effektusok felfedezése, megfelelő kiértékelése és megér-
tése nem magától értetődő folyamat. Természetesen az összes lehetséges heterogén
anyag vizsgálata nem lehetséges, és reményeim szerint a jövőben nem is feltétlenül
lesz rá szükség. Ugyanis a kutatás hosszútávú célja az, hogy a konkrét anyagi szer-
kezet ismeretében a statikus és dinamikus skálákra pontosabb becslést adjak annál,
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mint amit a legrosszabb és legjobb hővezető komponensek kijelölnek. Ez egyrészt
vagy azt fogja jelenteni, hogy a mérés során illesztett paraméterek számát tovább
redukálhatjuk, vagy még kedvezőbb esetben a transzportegyütthatókat előre meg-
jósolhatjuk, akár szimulációkon keresztül, akár empirikus formulák felhasználásával.
Ilyen módszertan a makroszkopikus transzportparaméterek esetére egyáltalán nem
létezik, csupán speciális, molekuladinamikai szimulációkkal lehet bizonyos nanoszer-
kezetek hővezetési tulajdonságaira mérés nélkül becslést adni. Mindez tervezhetővé
tenné a heterogén anyagok szerkezetét, ami kikövezné az utat a termikus metaanya-
gok új generációja felé.

A dolgozatom által érintett összes területen több olyan kérdés is van, amelyek
megválaszolása még jó eséllyel akár évtizedekig is eltarthat, de ezek szükségességé-
hez nem férhet kétség, a szakma még csak most kezdi igazán felismerni a Fourier-
egyenleten túli modellekben rejtőző potenciált. Sajnos a szakirodalomban több fél-
reértés és félreértelmezés is megtalálható, a dolgozatom ezek egyértelműsítésében is
segítséget nyújt, főként a hazai kutatói közösség számára.
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Függelék
A. Az entrópia részletes definíciója
A [62,63] munkák alapján.

1. Léteznek olyan egymástól független termodinamikai testek, amelyeket exten-
zív állapotjelzők és intenzív állapotfüggvények jellemeznek. Egy ilyen testet
N darab extenzív állapotjelző ír le (Xa, a ∈ 1, 2, . . . , N), a termodinamikai
állapotteret ezen állapotjelzők Descartes-szorzata feszíti ki. Az intenzív álla-
potfüggvényeket Ya, a ∈ 1, 2, . . . , N módon jelöljük, és az Xa extenzív álla-
potjelzők függvényei. Egykomponensű folyadékok és gázok esetén az extenzív
állapotjelzők a tömeg (m), a térfogat (V ) és a belső energia (E).

2. Az entrópia az intenzív állapotjelzők vektorteréhez tartozó potenciál. Ezt
fejezi ki a Gibbs-reláció:

dS (X1, X2, . . . , XN) =
N∑
a=1

YadXa. (7.1)

Ez azt jelenti, hogy az intenzív állapotfüggvények az entrópia parciális deri-
váltjaiból képezhetőek:

Ya (X1, X2, . . . , XN) = ∂S

∂Xa

∣∣∣∣∣
Xb, a6=b

, a, b = 1, 2, . . . , N. (7.2)

Folyadékokra és gázokra a Gibbs-reláció a

dS(E, V,m) = 1
T

dE + p

T
dV − µ

T
dm (7.3)

alakot ölti, ahol az intenzív állapotfüggvényeket a

1
T

(E, V,m) = ∂S

∂E

∣∣∣∣∣
V,m

,
p

T
(E, V,m) = ∂S

∂V

∣∣∣∣∣
E,m

, −µ
T

(E, V,m) = ∂S

∂m

∣∣∣∣∣
E,V

,

(7.4)

parciális deriváltak definiálják. Itt T jelöli a hőmérsékletet, p a statikus nyo-
mást és µ a kémiai potenciált.

3. Az entrópia extenzív, ezt lokalizálhatósági feltételnek nevezik.

(a) Az entrópia elsőrendű Euler-homogén függvénye a változóinak:

S (λX1, X2, . . . , XN) = λS (X1, X2, . . . , XN) , λ ∈ R+. (7.5)

(b) Bármely skalár Xa esetén bevezethetjük az Xa-ra vett fajlagos entrópiát
(s), amely a megfelelő fajlagos extenzív állapotjelzők függvénye, például
az X1-re nézve

S (X1, X2, . . . , XN) = X1s
(
X2

X1
, . . . ,

XN

X1

)
. (7.6)
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Általában véve az s(e, v) fajlagos entrópia és a ρS (ρE, ρ) entrópiasűrűség
használatos, ahol e a tömegre fajlagosított belső energia, v a fajtérfogat,
valamint ρE = E

V
a belső energiasűrűség.

(c) Érvényes az extenzivitási reláció:

S (X1, X2, . . . , XN) =
N∑
a=1

Ya (X1, X2, . . . , XN)Xa, (7.7)

amely folyadékokra és gázokra vonatkozóan a

S(E, V,m) = 1
T
E + p

T
V − µ

T
m (7.8)

alakot ölti. A (7.7) következménye, hogy az entrópia

S(E, V,M) = ms(e, v) = m
( 1
T
e+ p

T
v − µ

T

)
, (7.9)

alakban felírható.

Ezen állítások fontos következménye a Gibbs-reláció, s(e, v) esetén:

ds = 1
T

de+ p

T
dv. (7.10)

4. A fajlagos entrópia konkáv. Az X1-re vett fajlagos entrópia példáján a

det ∂xa,xbs(x2, . . . , xN) ≤ 0, a, b = 2, . . . , N (7.11)

reláció teljesül. Ebből az állításból következnek a belső és az anyagi stabilitási
feltételek, azaz a termodinamikai stabilitási feltételek. Ugyancsak a folyadékok
és gázok példájára visszatérve, ezek a feltételek a

cv := ∂e(T, v)
∂T

∣∣∣∣∣
v

> 0, χT := −1
v

∂p(T, v)
∂v

∣∣∣∣∣
T

> 0, (7.12)

relációkhoz vezetnek, ahol cv az izochor fajhő és χT az izoterm kompresszibi-
litás.
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B. A Jeffreys-egyenlet nemlineáris viselkedésének
numerikus demonstrációja

Az időskálák viselkedésének demonstrálására most olyan numerikus szimulációkat
végzek, amelyekben a statikus és dinamikus hővezetési tényezők egymástól lénye-
gesen eltérnek. A megoldás módszertanát a negyedik fejezet tárgyalja részleteiben.
Ahhoz, hogy gyors folyamatokat lehessen szimulálni, időben periodikus hőmérséklet-
peremfeltételt célszerű definiálni, például T (x = 0, t) = T0(1 − cos(πt/tp))/2 alak-
ban1, amelyben a tp paraméterrel lehet beállítani, hogy mennyire gyors legyen az
ismétlésszám, azaz milyen gyorsaságú folyamatokat tekintünk. A hátlap (x = L)
legyen adiabatikus, a rendszer induljon homogén egyensúlyi helyzetből. Demonst-
rációs jelleggel legyen a statikus időskála egységnyi, a dinamikus legyen tíz egység,
azaz λ2/τ = 10λ1.

7.1. ábra. A Fourier- és a Jeffreys-egyenletek numerikus összevetése tp = 0.1 s esetén
az x = L helyen. A Fourier-egyenletben a dinamikus λ2/τ hővezetési tényezőt használva
annak tranziens viselkedése jól közelíti a lineáris Jeffreys-egyenlet megoldását, mivel a
dinamikus skála dominál.

A 7.1. ábra az időskálák szétválasztását szemlélteti, és a peremfeltételektől füg-
gően a Fourier-törvény elég jó közelítést adhat a Jeffreys-egyenlet megoldására. A
7.2. ábra már a nemlineáris Jeffreys-egyenlet megoldását mutatja be, ahol szintén
látni a dinamikus skála dominanciáját, de mivel a statikus skála ettől még jelen van,
a nemlineáris járulék időderiváltak nélkül közelíti a dinamikus tagokat, emiatt csak
a folyamat elejére lehet érvényes ez a lineáris közelítés. Ráadásul az l12(T ) és l21(T )
függések csak a statikus skálát módosítják és teszik hőmérsékletfüggővé. Ebből az
következik, hogy a stacioner állapot is eltolódik, attól függően, hogy mennyire erős
függés van jelen a modellben (lásd a 7.3. ábrát).

1Azért választottam az 1 − cos() alakot, mert numerikus szempontból előnyös, ha nulla deri-
válttal indítjuk a folyamatot, és a függvény végig sima is marad, így elkerülhetőek a mesterséges,
numerikus eredetű oszcillációk.
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7.2. ábra. A Fourier-, a lineáris Jeffreys-, valamint a nemlineáris Jeffreys-egyenletek
összevetése. A 7.1. ábrához hasonló dinamikus skálán a megoldás változása szinte elha-
nyagolható, mivel a nemlinearitásokat a statikus skála okozza. Emiatt ez a közelítés csak
a folyamat elejére lehet érvényes. A nemlinearitást az l12 = l12,0 +h1T és l21 = l21,0 +h2T
módon vettem figyelembe, ahol legyen h1 = 0,5 〈〈l12〉〉/K és h2 = 0,5 〈〈l21〉〉/K, azaz a
statikus skálával összemérhető hőmérsékletfüggő skálát vezettem be.

7.3. ábra. A Fourier, és két nemlineáris Jeffreys-egyenlet megoldása, szemléltetve, hogy
a h1 és h2 paraméterek (lásd a 7.2. ábrát) hogyan hangolják el a nagyobb időskálájú
megoldást. Ennek ellenére a Fourier-egyenlet a dinamikus hővezetési tényezővel elég jó
közelítést tud adni és őrzi a megoldás fázisát is, ugyanis a nemlinearitások a statikus
skálát, és így a hosszabb távú viselkedést hangolják el.
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C. A Navier–Stokes–Fourier-egyenletek Liu-
eljárással való levezetése

A (3.22)-(3.24) mérlegegyenleteket kényszerként felhasználva kapjuk a

0 ≤ ρṡ+∇ · Js − b1 (ρ̇+ ρ∇ · v)− b2 · (ρv̇ + P · ∇)− b3 (ρ ˙etot +∇ · Je,tot)

=
(
ρ
∂s

∂ρ
− b1

)
ρ̇+ ρ

(
∂s

∂v
− b2

)
· v̇ + ρ

(
∂s

∂etot
− b3

)
˙etot + ρ

∂s

∂ (∇ρ) · (∇ρ)̇

+ ρ
∂s

∂ (v⊗∇) : (v⊗∇)̇ + ρ
∂s

∂ (∇etot)
· (∇etot)̇ +

(
∂Js
∂ρ
− b2 ·

∂P
∂ρ
− b3

∂Je,tot

∂ρ

)
· ∇ρ

+
(
∂Js
∂v
− b1ρ1− b2 ·

∂P
∂v
− b3

∂Je,tot

∂v

)
: (v⊗∇)

+
(
∂Js
∂etot

− b2 ·
∂P
∂etot

− b3
∂Je,tot

∂etot

)
· ∇etot (7.13)

+
(

∂Js
∂ (∇ρ) − b2 ·

∂P
∂ (∇ρ) − b3

∂Je,tot

∂ (∇ρ)

)
: [(∇ρ)⊗∇]

+
(

∂Js
∂ (v⊗∇) − b2 ·

∂P
∂ (v⊗∇) − b3

∂Je,tot

∂ (v⊗∇)

)
:· [(v⊗∇)⊗∇]

+
(

∂Js
∂ (∇etot)

− b2 ·
∂P

∂ (∇etot)
− b3

∂Je,tot

∂ (∇etot)

)
: [(∇etot)⊗∇] .

egyenlőtlenséget, ahol a b1, b2 és b3 a Lagrange–Farkas szorzók. Az úgynevezett Liu-
egyenletek a következő alakot öltik:

ρ̇ : ρ
∂s

∂ρ
− b1 = 0, (7.14)

v̇ : ∂s

∂v
− b2 = 0, (7.15)

˙etot : ∂s

∂etot
− b3 = 0, (7.16)

(∇ρ)̇ : ρ
∂s

∂ (∇ρ) = 0, (7.17)

(v⊗∇)̇ : ρ
∂s

∂ (v⊗∇) = 0, (7.18)

(∇etot)̇ : ρ
∂s

∂ (∇etot)
= 0, (7.19)

(∇ρ)⊗∇ : ∂Js
∂ (∇ρ) − b2 ·

∂P
∂ (∇ρ) − b3

∂Je,tot

∂ (∇ρ) = 0, (7.20)

(v⊗∇)⊗∇ : ∂Js
∂ (v⊗∇) − b2 ·

∂P
∂ (v⊗∇) − b3

∂Je,tot

∂ (v⊗∇) = 0, (7.21)

(∇etot)⊗∇ : ∂Js
∂ (∇etot)

− b2 ·
∂P

∂ (∇etot)
− b3

∂Je,tot

∂ (∇etot)
= 0. (7.22)
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Ezek következménye, hogy a fajlagos entrópia csak a termodinamikai állapottér x
elemeitől függ, annak gradienseitől nem, összhangban a 2. fejezetben bemutatott
termodinamikai levezetéssel, tehát a Gibbs-reláció a

ds = ∂s

∂ρ
dρ+ ∂s

∂v
· dv + ∂s

∂etot
detot = b1

ρ
dρ+ b2 · dv + b3detot (7.23)

alakot ölti. Az utolsó három (7.20)-(7.22) Liu-egyenletből a gradiensek szerinti in-
tegrálás után megkapjuk az entrópia áramsűrűségére vonatkozó kifejezést, azaz

Js (x̃) = ∂s

∂v
(x) ·P (x̃) + ∂s

∂etot
(x) Je,tot (x̃) + Js,0 (x) , (7.24)

ahol az utolsó tagban kifejezett Js,0 az integrálás miatti eltolási szabadságfoknak felel
meg, emiatt függ csak x-től és nem x̃-tól, következésképpen nullának is választható.
Mindezek figyelembevétele után sokkal átláthatóbb alakra hozhatjuk a disszipációs
egyenlőtlenséget,

0 ≤
(
∂

∂ρ

∂s

∂v
·P + ∂

∂ρ

∂s

∂etot
Je,tot

)
· ∇ρ

+
(
∂

∂v
⊗ ∂s

∂v
·P− ρ2 ∂s

∂ρ
1− ∂

∂v
∂s

∂etot
⊗ Je,tot

)
: (v⊗∇)

+
(

∂

∂etot

∂s

∂v
·P + ∂

∂etot

∂s

∂etot
Je,tot

)
· ∇etot

=
(
∂s

∂v

)
⊗∇ : P +∇

(
∂s

∂etot

)
· Je,tot − ρ2 ∂s

∂ρ
1 : (v⊗∇) . (7.25)

Az etot = e+v ·v/2 összefüggést a Gibbs-relációban kihasználva az etot összenergiát
az e fajlagos belső energiára írhatjuk át,

ds = 1
T
detot −

v
T
· dv− p

ρ2T
dρ = 1

T
de− p

ρ2T
dρ, (7.26)

így az entrópia deriváltjaira
∂s

∂etot
= ∂s

∂e
= 1
T
,

∂s

∂v
= −v

T
,

∂s

∂ρ
= − p

ρ2T
. (7.27)

kifejezések adódnak, amiből kiolvasható, hogy a reciprok hőmérséklet független at-
tól, hogy belső vagy összenergiával dolgozunk. A lényeges különbség abban rejlik,
hogy a v sebességet az állapottér részének tekintjük-e vagy sem, az összenergiával
történő reprezentációban annak kell tekinteni. Így a (7.25) disszipációs egyenlőtlen-
séget tovább egyszerűsíthetjük,

0 ≤ −
(v
T

)
⊗∇ : P +∇

( 1
T

)
· Je,tot + p

T
1 : (v⊗∇) (7.28)

= − 1
T

(P− p1) : (v⊗∇) + (Je,tot − v ·P) · ∇
( 1
T

)
, (7.29)

amiben felismerhető a viszkózus nyomástenzor (Π) és a hőáramsűrűség:

Π (x̃) := P (x̃)− p (x) 1, (7.30)
q (x̃) := Je,tot (x̃)− v ·P (x̃) . (7.31)
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D. Az egy térdimenziós GK-egyenlet megoldása a
hőimpulzuselvű kísérleti elrendezésre változók
szétválasztásának segítségével

Ez a levezetés a [73] publikációmon alapul.
Az időfüggő peremfeltétel miatt szükség van a peremfeltételek leválasztására, azaz
a hőáramsűrűséget q(x, t) = qh(x, t) + q̂p(x, t) részekre bonthatjuk, ahol a "h" index
a homogén peremfeltételű mezőt jelöli, a "p" index a peremfeltételt reprezentálja a

q̂p(x, t) = q0(t) + x

L

(
qL(t)− q0(t)

)
=
(

1− x

L

)
q0(t) ⇒ ∂xxq̂p(x, t) = 0, (7.32)

alakban, ahol kihasználtam a q(x = L, t) = qL(t) = 0 feltételt. Ebből fakadóan a
q-reprezentáció ki fog egészülni a q̂p időderiváltjaiból álló inhomogenitásokkal,

τ∂tt(qh + q̂p) + ∂t(qh + q̂p) = a∂xxqh + κ2∂txxqh, (7.33)

ami azt is feltételezi, hogy a qh(x, t)-ra kapott sajátfüggvények és sajátértékek által
kifeszített térben q̂p reprezentálható.

A szorzatszeparációt a qh(x, t) = ϕ(t)X(x) módon végzem el, és a

d2X

dx2 + β2X = 0, X(x = 0) = 0, X(x = L) = 0 (7.34)

sajátfüggvény-sajátérték feladatra jutok. A differenciálegyenlet megoldása és a pe-
remfeltételek figyelembevétele után a

X(x) = sin (βnx) , βn = nπ

L
, n ∈ N (7.35)

megoldást kapom, βn sajátértékekkel. Itt meg kell jegyeznem, hogy a peremfeltételek
végtelen sok n-re teljesülnek, így minden n-re vonatkozó tag megoldás. Lineáris
egyenletek lévén a megoldások összege is megoldás, így végül a qh(x, t) megoldását

qh(x, t) =
∞∑
n=0

ϕn(t) sin (βnx) (7.36)

alakban írhatom. Ebből következik, hogy a q̂p(x, t) térbeli részét az így kijelölt saját-
függvények terében Fourier-sorfejtés után írhatjuk fel, amit a qh(x, t) időbeli részére
vonatkozó differenciálegyenlet jobb oldalán minden n módusra fel is használok:

τ
d2

dt2ϕn + (1 + β2κ2) ddtϕn + aβ2ϕn = −fn(t), fn = 2
nπ

(
τ
d2

dt2 + d
dt

)
q0(t),

(7.37)

ami tetszőleges, de időben folytonos q0(t) peremfeltételre megadja a qh(x, t) időbeli
változását. Ezzel a q(x, t) = qh(x, t)+ q̂p(x, t) minden része ismert, és ebből a T (x, t)
hőmérsékletmező a fajlagos belső energia mérlegegyenletéből előállítható, azaz

T (x, t) = − 1
ρcv

t∫
0

∞∑
n=0

ϕn(t̃)βn cos(βnx)dt̃+ T0(x), (7.38)
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amelyben a ∂xq(x, t) deriválás a már ismert q(x, t) miatt elvégezhető. Az integrálás
nem köti meg teljesen a hőmérsékletmezőt, egy eltolási szabadságfok még rendelke-
zésre áll, ezt mutatja a jobb oldalon álló T0(x) hőmérséklet.

A Fourier-sor konvergencia-tulajdonságaitól és az összegzendő függvények foly-
tonosságától függően az integrálás és a deriválás a végtelen összegzéssel felcserél-
hető [200]. Mivel ebben az esetben a hővezetési kísérlet elrendezése és a mérnöki
szempontból releváns megoldásai nem igénylik szakadásos hőáramsűrűség és hőmér-
sékletmezők kezelését, valamint az időbeli és térbeli részekben sem lépnek fel nagy
gradiensek, ezért a végtelen összeg helyett – paraméter beállításoktól függően – ele-
gendő lehet 10, vagy annál kevesebb tag is. Emiatt az integrálás és a deriválás
tagonként könnyen elvégezhető.

Amennyiben a q0(t) peremfeltételt időben szakaszokra bontom a (4.1)-nek megfe-
lelően, akkor a szakaszok között illesztési feltételeket kell megadni, vagyis a második,
t > tp szakasz kezdeti feltételeit a t = tp állapot egyértelműen meghatározza. Ez azt
jelenti, hogy

qI(x, t = tp) = qII(x, t̂ = 0), dqI
dt

∣∣∣∣
t=tp

= dqII
dt

∣∣∣∣
t̂=0
, t̂ = t− tp, (7.39)

kezdeti feltételeknek teljesülniük kell, valamint a hőmérsékletek folytonosságát a
TI(x, t = tp) = TII(x, t̂ = 0) feltétel fogja meghatározni, vagyis a fenti T0(x) eltolási
szabadságfok ezzel a t > tp időpontokra vonatkozóan megköthető. A teljes megoldás
az előző gondolatmenet ismétlésével előállítható, de ott elegendő az időbeli változást
meghatározni, mivel a homogén rész peremfeltételei változatlanok, tehát a térbeli
részt leíró sajátfüggvények is változatlanok. Mivel az első szakaszból (t ≤ tp) a
Fourier-együttható minden n tagra ismert, ezért a második szakasz kezdeti feltéte-
leihez nem kell a t = tp állapotot Fourier-sorba fejteni.
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E. Az egy térdimenziós GK-egyenlet megoldá-
sa a hőimpulzuselvű kísérleti elrendezésre a
Galjorkin-módszer segítségével

Az [53] publikációra építve.
A hőimpulzus-kísérlet modellezésében módosítok a (4.1) peremfeltételen,

q0(t) = −qmax

(
e−C1t − e−C2t

)
, qL(t) = α(T (x = L, t)− T∞), (7.40)

amiben most a hőimpulzust nem egy szakaszosan definiált függvénnyel modellezem,
hanem egy folytonos függvénnyel váltom ki, amelynek a karakterisztikáját a C1 és C2
konstansokkal állíthatjuk be. A hátfalon konvektív hőátadással hűlést írok elő, T∞
környezeti hőmérséklettel és α hőátadási tényezővel. A kezdeti feltételek homogén
nyugalmi helyzetet írnak elő (T0(x) = T∞, q(x, t = 0) = 0).

A D. függelékben részletezett, a Fourier-egyenlet esetére meghatározott bázis-
függvényeket használom, ϕn(x) = sin(βnx), φn(x) = cos(βnx), βn = nπ/L. Ugyan-
csak elvégzem a peremleválasztást, amihez a q(x, t) = qh(x, t) + q̂p(x, t) felbontást
használom. A szorzatszeparációs módszerhez képest igen komoly előny az, hogy a
Galjorkin-módszerrel, kis Biot-számokra (0,1-nél kisebb esetekben) a hátfali hűlési
peremfeltétel egy időfüggő peremfeltétellé redukálható, azaz

qL = α
N∑
n=0

Bn(t) cos(βnL) = α
N∑
n=0

Bn(t) cos(nπ) = α
N∑
n=0

Bn(t)(−1)n, (7.41)

valamint az αT∞ egy könnyen kitranszformálható eltolási szabadságfok, például a
bordák termikus modellezése során is használt T (x, t)−T∞ túl-hőmérséklet beveze-
tésével, emiatt nem foglalkozok ezzel a taggal. A (7.32) összefüggést felidézve,

q̂p(x, t) = q0(t) + x

L

(
qL(t)− q0(t)

)
⇒ ∂xxq̂p(x, t) = 0, (7.42)

perembeli leválasztást alkalmazom. A q̂p függvényt a ϕn(x) és φn(x) bázisokban
szükséges reprezentálni, attól függően, hogy melyik mezőre vonatkozó egyenletben
jelenik meg, mint inhomogenitás. Ennek megfelelően az An(t) és Bn(t) együttható-
kat a következő differenciálegyenlet-rendszer határozza meg [53],

ρcv
d
dtB0 = −αB0 + q0, A0 = 0, n = 0, (7.43)

valamint az n > 0 esetekre:

ρcv
d
dtBn + βnAn = 0, (7.44)

τ
d
dtAn +

(
1 + κ2β2

n

)
An − λβnBn = 2

nπ

(
1 + τ

d
dt

)
(αBn − q0). (7.45)

A peremleválasztás miatti inhomogenitások (q0(t) és qL(t)) egyaránt megjelennek
az együtthatókat meghatározó egyenletekben. Ebből azt olvashatjuk ki, hogy a
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7.4. ábra. A GK-egyenlet analitikus megoldásainak és azok konvergenciájának demonst-
rációja az [53] alapján. Jól megfigyelhető, hogy N növelésével a megoldásban eltűnik az
N = 1 tagra jellemző nem-fizikai szakasz, ez a Fourier-egyenlet esetén is így működik.

hőmérséklet-eloszlást leíró sor nulladik tagja kizárólag a peremfeltételek függvénye,
és a hátfali hűlés időskálája dominálja hosszabb időintervallumon (lásd a 7.4. ábrát).
Ezáltal egy megoldáscsaládot adtam meg, mivel ez tetszőleges, de folytonos q0(t)
esetére működik, de akár a qL(t) is lehet a meglevőtől eltérő függvény.

A Jeffreys-egyenlet esetén az eljárás ugyanez, így a megoldások és azok elemzése
kapcsán a [104] irodalomra hivatkozok, jelen esetben a módszertan bemutatásához ez
nem nyújt mélyebb betekintést. Végül meg kell említenem, hogy bonyolult peremfel-
tételi függvények esetén a közönséges differenciálegyenletek numerikusan is könnyen
integrálhatóak, így egy félig analitikus-numerikus módszert kapunk eredményül, ha
azok zárt formája nem állítható elő. A megoldások létezésének az a feltétele, hogy
az An(t), Bn(t), valamint a peremfeltételi függvények időben folytonosak legyenek.
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F. Kétdimenziós, hengerszimmetrikus hővezetési
feladatok megoldása

A [125] munkámra építve.
Ebben az esetben a homogén részre a változók szétválasztása egy kétlépcsős eljárás,
azaz először szét kell választani az idő- és térváltozókat a Th(r, z, t) = Γ(t)ξ(r, z)
alakban, majd a második lépésben a térváltozókat kell szeparálni, ξ(r, z) = χ(r)ζ(z)
módon. Jelen esetben az időbeli résszel nem foglalkozom, mivel most csak a
bázisfüggvény-rendszert kívánom meghatározni. Ezt a

1
r

d
drχ+ d2

dr2χ+ µ2χ = 0, d2

dz2 ζ + γ2ζ = 0 (7.46)

differenciálegyenletek kötik meg, amelyekben µ és γ az egyes bázisfüggvények saját-
értékei. A peremfeltételeket felhasználva a

χ(r) = J0(µnr), µn : J0(µn) = 0, ζ(z) = cos(γmz), γm = π

2 +mπ, (7.47)

sajátfüggvényeket és a hozzájuk tartozó sajátértékeket (n,m ∈ N) kapom eredmé-
nyül, ahol J0(r) az elsőfajú, nulladrendű Bessel-függvény. A µn meghatározását
numerikus úton elvégezhetjük, de ezt nem kell több, mint 50 sajátértékre elvégezni,
ugyanis a Bessel-függvény a

J0(r) =
√

2
πr

cos
(
r − π

4

)
(7.48)

módon közelíthető, és így a µn sajátértékek zárt alakban előállíthatóak. A homogén
részt a

Th(r, z, t) =
∞∑
n=0

∞∑
m=0

Knme
−β2

nmtJ0(µnr) cos(γmz), β2
nm = µ2

n + γ2
m (7.49)

alakban kapom meg a szorzatszeparációs megoldás során, ahol a Knm konstans a
kezdeti feltételt veszi figyelembe, ez a homogén részre éppen az inhomogén rész −1-
szerese lesz a T (r, z, t) = Tst(r, z)+Th(r, z, t) felbontás miatt2. Emiatt az inhomogén
állandósult hőmérséklet-eloszlást a

Tst(r, z) =
∞∑
n=0

∞∑
m=0

CnmJ0(µnr) cos(γmz), (7.50)

formában kapom meg, valamint a térfogati hőforrást is ugyanebben a bázisfüggvény-
rendszerben kell felírni,

qv,max(r, z) =
∞∑
n=0

∞∑
m=0

BnmJ0(µnr) cos(γmz), (7.51)

2Hasonlóan az egydimenziós esethez, a T (r, z, t = 0) = T0 homogén egyensúlyi kezdeti feltétel
egy eltolással nullába transzformálható a könnyebbség kedvéért.
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ahol a Bnm a (4.17) egyenlet által leírt függvények Bessel–Fourier-sorfejtéséből adó-
dik ki,

Bnm = 4
L[J1(µn)]2

L∫
0

L∫
0

rqvr(r)qvz(z)J0(µnr) cos(γmz)drdz, (7.52)

amelyben J1(r) az elsőfajú, elsőrendű Bessel-függvény. Az integrálást nagyban meg-
könnyíti, ha a hőforrást szorzatalakban definiáljuk, azaz szét lehet választani az
axiális és radiális irányú komponenseket, így az integrálás komponensenként elvé-
gezhető. A Cnm a fenti összefüggések energiamérlegbe való visszahelyettesítéséből
kiadódik, azaz összekapcsolom a térfogati hőforrásból származó Bnm együtthatókat
és az állandósult hőmérséklet-eloszlást meghatározó Cnm együtthatókat a

Cnm = Bnm
1
β2
nm

(7.53)

összefüggésen keresztül. Kihasználtam, hogy a Bessel-függvények ortogonalitása az
r-rel való szorzás után értelmezett, ezért is szerepel a Bnm kifejezésében is a sorfejtés
esetén. Ezenfelül még azt is fontos megemlíteni, hogy a Th(r, z, t) homogén időfüggő
rész kezdeti feltételét a Tst(r, z) leválasztása módosítja a Th(r, z, t = 0) = T (r, z, t =
0)− Tst(r, z) összefüggés szerint. A bemutatott módszertan további előnye, hogy az
egyes tagokat is eleve a megfelelő függvényrendszerben állítottam elő, így a kezdeti
feltétel figyelembevétele szinte trivialitássá fajul, és a

Knm = −Cnm (7.54)

összefüggés elégíti ki. Ezzel formálisan bármilyen olyan térfogati hőforrásra megad-
tam a Fourier-egyenlet megoldását, amely Bessel–Fourier-sorba fejthető. A GK- és
a Jeffreys-egyenletek esetére a lépéseket nem kívánom újra megismételni, a módszer-
tan semmilyen szempontból nem változik, egy lényeges szempont figyelembevétele
mellett. A GK-egyenletben a helyfüggő hőforrások helykoordináta szerinti deriváltja
is megjelenik, így az állandósult állapot megváltozik. Azonban a helyfüggő hőforrást
szándékosan egy igen kicsi tértartományra koncentráltam, azon kívül a hőforrás igen
jó közelítéssel konstans, a deriváltja pedig közel nulla. A GK-egyenlet megoldását a

d
dt


C̃nm(t)
D̃nm(t)
Ẽnm(t)

 =


0 −µn −γm
µn
τ
− c1

τ
− c2

τ
γm
τ
− c4

τ
− c3

τ



C̃nm(t)
D̃nm(t)
Ẽnm(t)

 , (7.55)

alakban adom meg, ahol a c1,2,3,4 együtthatók:

c1 = 1 + (η1 + η2)(2 + µ2
n) + η1γ

2
m, c2 = η2µnγm, c3 = 1 + γ2

m(η1 + η2) + µ2
nη1,

c4 = 2γmη2

(
1

µn[J1(µn)]2 + µn

)
. (7.56)

A C̃nm, D̃nm, Ẽnm együtthatók a hőmérséklet, valamint az r- és z-irányú hőáram-
komponensek együtthatóit reprezentálják, felettük hullámmal jelölve, hogy ezek a
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Fourier-tól eltérő együtthatókat jelentik [125]. A Jeffreys-egyenlet esetén a megoldás
alakja azonos, az együtthatómátrix alakja egyszerűsödik,

d
dt


C̃nm(t)
D̃nm(t)
Ẽnm(t)

 =


0 −µn −γm
µn
τ
−1+λ2µ2

n

τ
−λ2µnγm

τ
γm
τ
−λ2µnγm

τ
−1+λ2γ2

m

τ



C̃nm(t)
D̃nm(t)
Ẽnm(t)

 , (7.57)

de a C̃nm, D̃nm, Ẽnm együtthatók jelentése nem változik. Mivel mindkét esetben
egy lineáris közönséges differenciálegyenlet-rendszert kaptam eredményül, ezért ezek
megoldása egy egyszerű exp(Mnmt) alakban az N -M -tagú sor minden elemére elő-
állítható, ahol Mnm a modellnek megfelelő együtthatómátrixot jelenti.
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G. A két térdimenziós GK-egyenlet numerikus
megoldása eltolt mezőkön alapuló véges diffe-
renciás módszerrel

A [159] alapján.
A 4.9. ábrának megfelelő differenciaegyenletek a

T̂ j+1
m+1/2,n+1/2 = T jm+1/2,n+1/2 (7.58)

+ ∆t̂
(q̂x)jm,n+1/2 − (q̂x)jm+1,n+1/2

∆x̂ +
(q̂y)jm+1/2,n − (q̂y)jm+1/2,n+1

∆ŷ

 ,
(q̂x)j+1

m,n+1/2 =
(

1− ∆t̂
τ̂

)
(q̂x)jm,n+1/2 + ∆t̂

τ̂

 T̂ jm−1/2,n+1/2 − T̂
j
m+1/2,n+1/2

∆x̂ +

+ (η̂1 + η̂2)

(
Q̂xx

)j
m+1/2,n+1/2

−
(
Q̂xx

)j
m−1/2,n+1/2

∆x̂

+ η̂1

(
Q̂xy

)j
m,n+1

−
(
Q̂xy

)j
m,n

∆ŷ +

+ η̂2

(
Q̂yy

)j
m+1/2,n+1/2

−
(
Q̂yy

)j
m−1/2,n+1/2

∆x̂

, (7.59)

(q̂y)j+1
m+1/2,n =

(
1− ∆t̂

τ̂

)
(q̂y)jm+1/2,n + ∆t̂

τ̂

 T̂ jm+1/2,n−1/2 − T̂
j
m+1/2,n+1/2

∆x̂ +

+ (η̂1 + η̂2)

(
Q̂yy

)j
m+1/2,n+1/2

−
(
Q̂yy

)j
m+1/2,n−1/2

∆ŷ

+ η̂1

(
Q̂yx

)j
m+1,n

−
(
Q̂xy

)j
m,n

∆x̂ +

+ η̂2

(
Q̂xx

)j
m+1/2,n+1/2

−
(
Q̂xx

)j
m+1/2,n−1/2

∆ŷ

, (7.60)

(
Q̂xx

)j
m+1/2,n+1/2

=
(q̂x)jm+1,n+1/2 − (q̂x)jm,n+1/2

∆x̂ , (7.61)

(
Q̂xy

)j
m,n

=
(q̂x)jm,n+1/2 − (q̂x)jm,n−1/2

∆ŷ , (7.62)

(
Q̂yx

)j
m,n

=
(q̂y)jm+1/2,n − (q̂y)jm−1/2,n

∆x̂ , (7.63)

(
Q̂yy

)j
m+1/2,n+1/2

=
(q̂y)jm+1/2,n+1 − (q̂y)jm+1/2,n

∆ŷ . (7.64)

alakot öltik egy alkalmasan választott dimenziótlan skálázással, a felül lévő j index
az időbeli, az alul lévő m és n indexek a térbeli léptetést reprezentálják [159], így ez
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7.5. ábra. Egy olyan kétdimenziós megoldása a GK-egyenletnek, ahol megfigyelhető
az időskálák elválásának méretfüggő jellege [159]. Az ábrán szövegesen jelöltük az egyes
peremfeltételeket.

teljes egészében leírja mind az egydimenziós, mind a kétdimenziós feladatokat, és
ehhez képest egy háromdimenziós eset tárgyalása már nem ad módszertani többle-
tet. Demonstratív jelleggel, [159] alapján közlök egy olyan kétdimenziós megoldást
a GK-egyenletről, amelyben az időskálák szétválásának méretfüggése is megfigyel-
hető. Ez azt jelenti, hogy ha a hőmérséklet időbeli változását csak fele akkora (x
irányú) vastagságnál mérjük, akkor a heterogén anyagokon végzett kísérletekhez ha-
sonlóan megfigyelhetőek a gyors melegedési és a lassú kiegyenlítődési szakaszok, ez
az időskálák szétválása. A hátlapon nézve az időskálák már kiátlagolódnak, és ez a
fajta szétválás így kísérletileg nem figyelhető meg.
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