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Koszonetnyilvanitas

Az utébbi évek soran igen sok olyan kollégaval talalkoztam és dolgoztam egytitt, akik
valamilyen médon hozzajarultak a jelenlegi szemléletemhez, nincs is lehetoségem
mindenkit felsorolni.

Szeretném megkoszonni Grof Gyulanak és Imre Attilanak, volt és jelenkori tan-
székvezetoknek, hogy részt vallaltak a kutatdécsoportunk létrehozasaban és tamoga-
tasaban. Szintén koszonet illeti a HUN-REN Wigner FK féigazgatojat, Lévai Pétert,
amiért a Ph.D. tanulmanyaim kezdetétol fogva tamogatta intézetbeli tevékenysége-
met, jelentésen szélesitve ezzel a latokoromet.

Kutatésaim szempontjabdl kiemelked6 koszonet illeti Van Pétert, Sziics Matyast,
Fiilop Tamast és Fehér Annat. A veliik valo, éveken at tarté kozos munka nemcsak
1j otleteket adott, hanem a beszélgetések és az épito jellegli vitdk a tudoményos
(6n)kritikus gondolkodasomat is fejlesztették, és mindegyikiiktél sok mindent tanul-
tam.

Szintén koszonet illeti Kovacs Laszlot, Orbulov Imrét, Feczké Tivadart, Fodor
Tamést, Rieth Agnest, Maréti Janost, Géczy Attilat, Laszlé Krisztindt, Gal Mér-
tont, Sudar Akost és Barnafoldi Gergelyt, amiért a velik valé egyiittmiikodések
soran szamtalan probatestet készitettek és a hévezetési kutatasaink gyakorlati, ipari
felhasznélasat is jelentosen elosegité problémaéakat tudtunk kézosen megoldani. Ko-
szonoém Téth Balazsnak a végeselemes modszer kidolgozasaban nytjtott segitségét.

Hatalmas koszonet illeti Toth Brigittat és Fehér Annat, akik a dolgozat részletes
atolvasasaval szamtalan tipografiai és nyelvi korrekciot javasoltak. Koszonom Imre
Attildnak és Bereczky Akosnak a dolgozat elkészitéséhez kapesolédd tandcsaikat.

Szeretném megkoszonni Czigany Tibornak és Orbulov Imrének az utébbi évek
soran nyujtott tdmogatasukat, amit a palyazati tevékenységemhez és a dolgozat
megirasdhoz nyuijtottak.

Koszonom Kiss Léaszlonak és Grof Gyulanak a hékozlés témakorének rendkiviil
magas szintl atadasat és szakmai tamogatasukat.

Koszonet illeti Patrizia Rogolino, Martina Nunziata, Vincenzo Tibullo, Srboljub
Simic és Damir Madjarevic kulfoldi kollégdimat, amiért a vendégkutatoként naluk
toltott honapok alatt a kutatasi feladataimra tudtam fékuszalni, és ez id6 alatt télitk
is sokat tanulhattam.

Nem utols6 sorban pedig szeretnék koszonetet mondani édesanyam és édesapam
szamara is, amiért a tanulmanyaimat barmilyen peremfeltételek mellett tamogattak.

A kutatasaimat az NKFIH OTKA 116197, 124366, 130378, 134277 és az NKKP
STARTING 149487 palyazatai tamogattak.
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"A gyorsasdg kevésbé fontos a wvalodi szellemi eredmény eléréséhez, mint a mély,
alapos és alkoto gondolkodas képessége."

Karman Tédor

ii
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Eloszo

A termodinamika mindig is egy meglehetdsen egyedi teriiletet képviselt mind a mér-
noki, mind a fizikai tudomanyokon beliill. Mérnoki szemmel nézve sokszor a vegyi
folyamatok leirasa vagy az energetikai korfolyamatok modellezése jut esziinkbe réla,
de a hattérben az irreverzibilis termodinamika, mint a folytonos kozegekben lejat-
sz6d6 disszipativ folyamatok leirasa huzédik meg. Ennek segitségével a mérnoki
tudomanyokban hasznalt alapveté modellek kovetkezetesen szarmaztathatok, a fo-
lyadékok Newton-féle viszkozitasi torvényétol kezdve a viszkoelasztikus modelleken
at a Fourier-torvényig, valamint szdamos tovabbi kapcsolt feladat is megoldhat6 a
termodinamika segitségével. Ilyen példaul a termodiffiizié, amely mér a legegysze-
riibb szaritasi folyamat soran is nagy jelentoséggel bir — gondoljunk csak a papir-
gyartasra és a husipari termékek érlelésére [1,2]. Szintén a termodinamikai elvek
felhasznalasaval tudunk folyamatokrdl, valamint azok stabilitasarél gondolkodni [3],
ezeket a folyamatokat allapotjelzokkel kell ellatni, és dontést kell hozni ezek térbeli
és idébeli fiiggésérdl. A legegyszeriibb folyamatszemléletii lefrasmod a koncentralt
paraméteri modellezés, ekkor kozonséges differencialegyenletekbdl éptilé modelleket
hasznalunk. Ezt szamtalan teriileten alkalmazzuk, a végeselemes modellektdl kezdve
a kisérletek kiértékeléséig. Mérnoki szempontbol a termodinamika egy igen hasznos
és sokrétii eszkoztar. Fizikusi szemmel a termodinamikai Osszefiiggések sokszor a
statisztikus fizikdnak egy alteriileteként jelennek meg, amelyet egyfajta kényszer-
ként haszndl a kinetikus elmélet (példdaul a h-tételen keresztiil), valamint minden
erre épiilé megkozelités (példaul a racionalis kiterjesztett termodinamika), de a fo-
lyamatok stabilitasanak figyelembevétele — a masodik f6tétel kihasznélasaval — ott
is elengedhetetlen.

A dolgozatom bizonyos szempontbdl atmenetet képez a mérnoki és a fizikusi teri-
letek kozott, de sokkal inkabb a mérnoki szemléletet titkrozi és azt tartja elétérben.
Mérnoki szemmel végig az alkalmazasokat emelem ki, ehhez jo6 néhany példat be is
mutatok majd. Ugyanakkor nem lehet figyelmen kiviil hagyni a kinetikus elméleti
kapcsolatokat sem, foleg az egyes modellek értelmezésében és a megfelelo leird egyen-
letek kivalasztasa soran. A statisztikus fizikaban a transzportjelenségek leirdsahoz
hasznalt modellekben mindig meg kell hatarozni a terjedési mechanizmust, és annak
leirasat is meg kell adni, amibdl a transzportegyiitthatok jelentés része mérés nél-
kiil is meghatarozhato, ami tobb gyakorlati helyzetben kétségteleniil hasznos eszkoz,
foképp olyan esetekben, amikor részletes mérések szoba sem johetnek. Gondoljunk
csak az tireszkozok légkorbe vald belépésére, ahol az ionizalt gazok szuperszonikus
aramlasat erés elektromégneses térben kellene vizsgalni. Ilyen esetben hogyan ir-
hatnank fel a kapcsolt modellt, és hogyan hatarozhatnank meg példaul a kérdéses
géz viszkozitasat? Bar ez igen Osszetett példa, mégsem szabad erre szélsOségként
tekinteni. Az trtechnoldgia, az orvostechnolégia, a kiilonféle gyartastechnolégiak,
valamint a szuperérzékeny mérések és miiszerek miikodtetése, fejlesztése mind olyan
teriiletek, amelyek manapsag a mérnoki modellezés {6 kihivasait hordozzak, de a
hagyomanyos, klasszikus eszkozokkel nem megoldhaték. Ilyen tekintetben kivalo
példdk az 10j generdciés detektorok a CERN-ben [4], vagy a gravitaciés hullam-
detektorok, f6képp azok eurdpai képvisel§je, az Einstein Teleszkép [5]. Az efféle,
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illetve az ehhez hasonlé miiszerek fejlesztése és gyartdsa jelentOs részben mérno-
ki feladat, és a meglévé pontossagi és érzékenységi mutatok nagysagrendekkel vald
megjavitasa modern modellezési eszkoztar nélkiill nem lehetséges. Az irreverzibilis
termodinamika része ennek az eszkoztarnak, és a szemlélet kiterjesztése — hosszuta-
von — elengedhetetlen. A dolgozatom ezt a hosszutavi gondolkodést alapozza meg
a heterogén anyagok hévezetési tulajdonsagainak leirasara fokuszalva.

A kinetikus elméleti megkozelités a mérnoki tudomanyokban ritkdn alkalmazott,
de bizonyos esetekben hatarozottan konstruktiv és irdnymutato eszkoz. Egy konti-
nuumalapt megkozelitésben azonban sokkal tobb a modellezési szabadsagfok, igy az
egyes nemlinearitasok lényegesen konnyebben figyelembe veheték. Egy modell akkor
valik igazan erdssé, ha lehet6ségiink van mas megkozelitésii modellek tanulsagait is
beépiteni, amennyiben azt az adott feladat megkoveteli vagy elonyben részesiti és
ennek a feltételnek a kontinuum-megkozelitésit modellek eleget is tesznek. Korab-
bi kutatasaim soran ehhez a kinetikus elmélettel valé kompatibilitast is figyelembe
kellett vennem.

Habar a dolgozatom foként a hévezetési jelenségek leirasara helyezi a hangsilyt,
bizonyos esetekben nem tekinthetek el a kapcsolt aramlastani-hévezetési modellek
targyaldsatol sem, kiilondsen anyagi nemlinearitasok esetén. A termodinamikai hat-
teret végig a kontinuumkozegek szempontjabol vizsgalom, mérnoki szemlélettel. Bar
a kinetikus elméleti vonatkozasokat csak érintélegesen targyalom, ahol sziikséges, a
bemutatott eredmények eléréséhez és kutatasaimhoz végig elengedhetetlen volt az
irodalomban fellelhet6 egyéb termodinamikai megkozelitések ismerete. Ezt az isme-
retanyagot foglalja ssze a [6] publikdciém, igy a dolgozatomban csak a legszitksége-
sebb mértékig targyalom a vonatkozo szakirodalmi hatteret, szem el6tt tartva, hogy
a tisztelt Olvas6 nem feltétlentil jartas a Fourier-egyenleten tuli jelenségek és mo-
dellek hasznalataban, értelmezésében, kiilonosen mivel ez még kevesek altal miivelt
mérnoki teriilet.

Végiil fontosnak tartom kiemelni, hogy a dolgozatom eszkoztarat nyujt a Fourier-
egyenleten tuli kontinuum-megkozelitésii! hévezetési modellek kezeléséhez. A ku-
tatasi eredményeim foként a Guyer—Krumhansl-, valamint a Jeffreys-egyenletekre
vonatkoznak gyakorlati hasznossdguk miatt, de tobb megallapitdsom tovabbi ter-
modinamikailag kompatibilis modellekre is érvényes marad. A bemutatott eszkoz-
tar, és igy a dolgozatom célja, hogy a mérnoki kozosség szamdara olyan ttmuta-
tot adjon, amely egyértelmiisiti, mik azok a szempontok és eszkozok, amelyeket a
Fourier-egyenlethez képest ugyanugy, vagy éppen ellenkezoleg, teljesen masképp kell
értelmezni és felhasznalni. Az utébbi tulajdonsdgokbdl jelentSsen tobb van. Ossze-
foglalva, a dolgozatom

o egységes termodinamikai keretben targyalja a Fourier- és a Fourier-egyenleten
tuli hovezetési modelleket;

e az egységes termodinamikai keretrendszert kihasznalva vizsgalja az anyagi
nemlinearitasok figyelembevételét és azok kovetkezményeit;

« roviden bemutatja a modellek analitikus és numerikus megoldasi modszereit;

1Az egyértelmiiség kedvéért a "kontinuum" jelzét, ahol csak indokoltnak érzem, hasznélni fogom.
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» targyalja a Fourier-egyenleten tuli modellek mérnoki szempontt gyakorlati fel-
hasznalasi lehetoségeit.

Mindez analdg azokkal a torekvésekkel, amelyek a Fourier-féle hovezetési egyenle-
tet a mérnoki kozosség szamara széles korben hasznalhatéva tették, és amelyekbol
kifoly6lag egy meghizhato, standard modellezési eljarassa valhatott. Természetesen
ez a cél ezzel a munkaval nem ér és nem is érhet véget, de meglatasom szerint a
dolgozatom ezt hosszutavon alapozza meg.

Kiegészito megjegyzések

A dolgozatomban a Nemzetkozi Stly- és Mértékiigyi Hivatal SI mértékegységekkel
kapcsolatos ajanlasait kovetem, azaz a dimenzidtlan egységet nem irom ki "[-]" vagy
"[1]" médon, valamint a mértékegységeket "p / Pa" médon fogom jeldlni. A leg-
gyakrabban hasznalt jeloléseket és roviditéseket az alabbi tablazat foglalja 6ssze;
minden mas jelolést, ahol sziikséges, kiillon elmagyarazok az egyértelmiiséget szem
el6tt tartva.

Legfontosabb jelolések és roviditések jegyzéke

Latin bettiik

a Hofokvezetési tényezo
Cy [zochor fajh6
e Fajlagos bels6 energia
qv Térfogati hoforrassiiriiség
r Helykoordinata henger koordinata-rendszerben
5 Fajlagos entropia
Id6
x Helykoordinata Descartes-féle koordinata-rendszerben
L Jellemz6 méret
T Homérséklet
V Térfogat
q, q Hoéaramstriiség vektora vagy annak komponense
a Félkovér kisbetiik vektorokat jelolnek
A Félkovér nagybetiik tenzorokat (esetleg métrixokat) jelolnek
Gorog bettik
« Hoatadasi tényezo

Hosszdimenziéju transzportparaméter
Hovezetési tényezo

Tomegstirtiség

i T T =

[d6édimenzioju transzportparaméter, relaxacios ido
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Matematikai jelolések

0y, Oy, Oy Id6- (t) vagy helykoordindta (x vagy r) szerinti parcidlis derivalas
\Y Nabla operator

A Laplace-operator

Roviditések

GK Guyer-Krumhansl-egyenlet

JE Jeffreys-egyenlet

MCV Maxwell-Cattaneo—Vernotte-egyenlet

NSF Navier—Stokes—Fourier-egyenlet

LFA Light/Laser Flash Analyzer — Héimpulzuselvii mérési modszer
DMA Dynamic Mechanical Analyzer — Dinamikus mechanikai vizsgalatok
PLA Politejsav

RGO Redukalt grafén-oxid

Dimenziétlan mennyiségek

Bi Biot-szam

Fo Fourier-szam

O Minden mas esetben a kalappal jelolt mennyiségek dimenziotlanok
Indexek

1, 7, M, n Tenzorok vagy sorozatok komponenseit jelolik

0 Referencia értéket vagy egy sorozat nulladik tagjat jeloli

1,2 Anyagi komponenseket vagy eltérd idéskalakat jelolnek

vi
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1. fejezet

Bevezetés

Az utobbi évtizedekben igen sokféle termodinamikai megkozelités jelent meg, és
mindegyik sajatos modszertannal rendelkezik a klasszikus transzportegyenletek ki-
terjesztésére. Habar a dolgozatban a hangsilyt a hévezetési jelenségekre helyezem,
tehat a Fourier-torvényt, valamint annak altalanositasait targyalom, de elkeriilhetet-
len lesz, hogy helyenként kitekintést nytjtsak a kapcsolt jelenségek felé, mint példaul
a termomechanika és a kapcsolt folyadék—hovezetési egyenletek. A szakirodalomban
megtalalhato szamtalan megkozelités elterjedése meglehetésen nehézzé teszi a teljes
szakteriilet attekintését, igy arra torekszem, hogy a bemutatott tudomanyos eredmé-
nyek enélkiil is érthetoek maradjanak. Az egyetlen megkotés az, hogy a hévezetési
jelenségeket kontinuum-termodinamikai szemszogbdl kivanom targyalni.

Amikor egy transzportegyenlet altalanositasarol beszélek, akkor azalatt az anya-
got leird, igynevezett konstitiicios osszefiiggések kiterjesztését értem. Ezek a kiter-
jesztések a klasszikus Osszefliggésekhez képest, az adott modelltdl fiiggden, tovab-
bi id6- és térderivaltat tartalmazhatnak. A szakirodalom ezt a tipusu kiterjesztést
gyengén nemlokélis altalanositasnak nevezi [7-10]. Az erés nemlokélis kiterjesztések
integralegyenletek forméajaban jelennek meg, azonban azok gyakran vitathaté tulaj-
donsagokkal rendelkeznek (példaul az anyagok végtelen memoériajanak feltétele [6]),
emiatt a dolgozatomban nem targyalom ezt a mdédszertant. Tovabbé, a kapcsolt fel-
adatok esetében gyakran el6fordul a kiillonb6z6 tenzori rendii mennyiségek csatolasa
is. Erre j6 példa a folyadékok esetén felmeriild nyomastenzor és a hoaramstiriiség
vektoranak csatolasa, azaz a klasszikus esettdl eltéréen a csatolast nemcsak a mér-
legegyenletek szintjén kiilonféle forrastagokon keresztiil [11], hanem a konstitutiv
egyenletek szintjén is be lehet vezetni, amihez a termodinamika nélkiilozhetetlen
segitséget nytjt [12-14]. A termodinamikai hattér egyardnt el6nyos a méasodik f&té-
tellel valé kompatibilitds biztositdsdaban (igy a megolddsok stabilitdsaban), az arra
épiilé analitikus és numerikus megoldasok megtalalasdban, anyagi nemlinearitasok
kezelésében, és azoknak a mérnoki gyakorlatban valé felhasznalasaban.

A hovezetési egyenletek fejlesztésére tett erdfeszitéseket elséként Tisza és Lan-
dau elméleti irdany1 joslatai [15-17], kés6bb pedig a nagy figyelmet kapott alacsony
hémérsékletii (< 20 K) kisérletek lenditették fel, elsésorban a XX. szdzad masodik
felében [18,19]. Ezek a kisérletek bizonyitékot szolgaltattak arra, hogy a Fourier-
torvény nem ad elégséges leirast, és bizonyosan sziikség van annak kiterjesztésére.
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1.1. dbra. A) Példa szuperfolyadékok héimpulzuselvii kisérleti elrendezésére [20], jobb
oldalon pedig a mért jelalak lathat6 (részlet A. Leitner el6addsabdl [21]). A folyadékba
meritett egyik lemezen termikusan gerjesztik, mig a masikon rogzitik a beérkezo jeleket. A
szenzor fel-le mozgatasaval megfigyelhetoek lesznek a tobbszor visszaverddési jelenségek is.
B) Kizardlag a Fourier-egyenlet ismeretében egy héimpulzuselvii mérésnél ezt a jelalakot
varhatnank el, azonban a korai, alacsony homérsékletii kisérletek ettol lényegesen eltérnek.
C) Fontos szempont a test kiinduldsi hémérséklete, mivel annak hévezetési tényezéje akar
nagysagrendeket is valtozhat [18,22]. D) A ballisztikus és a masodik hang hulldmterjedési
jelalakjai eltér6 NaF makroszkopikus méretii kristalyokra vonatkozoan, a megfigyeléseket
us idéskalan kellett elvégezni, kiilonben a gyors hullamjelenségek lathatatlanok maradnak
[18].

Akkoriban kétféle, a Fourier-egyenleten tulmutaté jelenséget figyeltek meg. Az
els6 az ugynevezett masodik hang volt, ami egy csillapitott, tisztan termikus hullam-
terjedési jelenség. A masodik hullamjelenséget a szakirodalom ballisztikus terjedés-
nek nevezi, és jellemzdéje, hogy a termikus jel mindig a kozegre jellemz6 hangsebesség-
gel terjed, igy kontinuum szemléletben ez egy termomechanikai hulldmjelenségként
értelmezhet6. A masodik hang mindig lassabban terjed, mint a ballisztikus jel, igy a
kisérletekben az észlelt jelterjedési sebesség egyértelmii modot ad arra, hogyan azo-
nosithatjak be az egyes terjedési modokat. Az 1.1. dbra tobb példat is bemutat arra,
hogy ugyanazzal a héimpulzuskisérleti elrendezéssel hanyféle eredményt kaphatunk,
attol fliggden, hogy milyen anyagot, mekkora idoskalan, milyen koriilmények kézott
vizsgalunk. Példaul egy NaF kristaly hévezetési tényezoje nagysagrendekkel eltér-
het attdl fiiggden, hogy mekkora referencia-homérsékleten, vagy milyen tisztasdgban
vizsgaljuk [18,22]. Szintén lényeges, hogy a megfigyeléseinket mekkora idéskéalan vé-
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gezzik, példaul a felsorolt hullamjelenségeket csak us idoskalan tudtak megfigyelni,
igen alacsony homérsékleten.

Eppen a jelterjedési sebesség vizsgdlata miatt preferdlja a szakirodalom a hi-
perbolikus tipusu egyenleteket, mivel ez a tulajdonsig linearis egyenletek esetén
viszonylag konnyen vizsgalhatd!, és egyben dsszhangban van a vildgképiinkkel, mi-
szerint minden jelnek véges a jelterjedési sebessége, szemben a parabolikus tipu-
st egyenletekkel. A hiperbolikus tipust egyenletek tovabbi matematikai elonye a
Cauchy-probléma korrekt kitlizottségének biztositasa. Ennél a pontndl szeretném
megjegyezni, hogy a mérnoki gyakorlat szempontjabdl viszont nincs probléma a pa-
rabolikus egyenletekkel sem, hiszen a Fourier- és a Navier—Stokes-egyenletek is para-
bolikusak, és mégis az altalanositasaik sziikségességét elsédlegesen nem ez indokolja,
hanem a leirni kivant jelenségek szélesebb kore. A valodi jelterjedési sebességeket
¢és a hozzajuk tartozo idoskaldkat a vonatkozd anyagi jellemzok hatarozzdk meg, a
megoldasok szempontjabol nem jelent donté kiillonbséget a modellek ezen tulajdon-
saga. Tovabba, a gyengén nemlokalis modellekben megfigyelheto egyfajta "hierar-
chia", amelyben a parabolikus és hiperbolikus modellek felvaltva kovetik egymast,
igy minden kiterjesztett parabolikus egyenlethez létezik egy hiperbolikus kiterjesz-
tés, és barmelyik tipus a méasik hatdreseteként képezhetd [23,24]. Emiatt ezzel a
parabolikus-hiperbolikus kérdéskorrel a dolgozat nem kivan tobbet foglalkozni.

Sokaig a statisztikus fizikai leirasok és a kétfolyadék modellek domindltak a meg-
figyelések értelmezését. Példaul a masodik hang esetében a kisérletekben egyszerre
voltak jelen a hullamterjedési és a diffiizios hatasok, vagyis a hovezetési folyamat két
idoskéalan zajlott. Ebben a tekintetben a Fourier-torvény csak a difftzios idoskalat
tartalmazza, igy nem tekintheté megfelel6 modellnek. Ezért olyan modelleket cél-
szeril bevezetni, amelyekben a megfigyelt két idéskala szintén megjelenik. Ezt két
moédon képzelték el. Az egyik az ugynevezett kétfolyadék modellekre vonatkozik,
amelyekben az adott hovezeto kozeget szuperfolyadék és normal fazisok keveréke-
ként tekintették [17,25]. Ez abbdl a szempontbdl helytalls, hogy az elsé sikeres
kisérleteket szuperfolyékony héliumon végezték el [26], azonban ezek a modellek
igen bonyolultak, és nem altaldnosak.

A masik megkozelités a szintén statisztikusalapti fononhidrodinamika volt,
amelyben a terjedést igynevezett fononok — mint kvazirészecskék — és azok titkozése
irja le, vagyis egy fononokbdl 4ll6 gaz allapotleirdsa a cél [12,27]. Kétféle titkozési
mechanizmus bevezetésével két idoskalas modellt kapunk eredménytil. Ez a két me-
chanizmus specialisan a rezisztiv és normal tutkozéseknek felel meg, és ezek aranya
hatarozza meg, hogy a difftiziés vagy a hullamterjedési mechanizmusok koziil me-
lyik fog dominalni. Az elnevezések arra utalnak, hogy a fononok, mint részecskék,
titkozése kozben az impulzusaik allandéak maradnak-e (normél iitkozés) vagy sem
(rezisztiv tkozés), igy a rezisztiv iitkozés felel meg a difftizids terjedésnek. Ebben
a keretrendszerben maradva a ballisztikus terjedés modellezése mar csak egy 1épés,

! A hiperbolicitas legkénnyebben a 9;y+Ad,y+By = f alakban vizsgalhat6, ahol y tartalmazza
az egyes mezdket, példaul a T hOmérsékletet és a q héaramsiirtiséget, A és B egyiitthatématrixok,
f a forrastagokat tartalmazé vektor. Ekkor az A sajatértékei megadjak a karakterisztikus terjedési
sebességeket. Ha azok végesek, akkor hiperbolikus rendszerrdl beszéliink. Ha egy egyenletrendszer
nem "teljes", tehat példaul nem tartalmaz minden mezére idéderivaltat, mint ahogyan a Fourier-
torvény sem, akkor az feltételesen kiegészithets egy e egyiitthatoval, majd a sajatértékekben az
e — 0 hatarértéket kell képezni. Ez a linearis egyenletek esetén egyszertien vizsgalhato tulajdonsag.
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1.2. abra. A maésodik hang terjedési sebességének hémérsékletfiiggése, érdemes megfi-
gyelni a 0 K kézelében 16v6 meredek véltozéast [28,29].

ugyanis ekkor a fononok egymassal nem iitkdznek, hanem a test egyik peremétol
a masikig zavartalanul terjednek, és csak a peremen valé szérédas eredményezi a
jarulékot, tehat a harmadik idoskala bevezetését. Ezeket a tulajdonsagokat késébb
matematikai formaba 6ntom, és konkrét hévezetési modellekhez kapcsolom. Az
1970-es évek kozepére a szakirodalom mar szamos sikeres alacsony hémérsékletii ki-
sérletet dokumentalt, amelyek jelentosen megel6zték az elméleti eredményeket. Ez
a ballisztikus terjedés modellezésére kiilonosen érvényes volt.

Ebbol az idészakbdl harom lényeges elméleti eredményt emelek ki, amelyek a
dolgozatomhoz kozvetleniil kapcsolédnak. Az els6 fontos mérfoldko a masodik hang
terjedési sebességének homérsékletfiiggésének sikeres modellezése, amelyhez a sta-
tisztikai hattér nélkiilozhetetlen volt. Az 1.2. dbra szemlélteti, hogy milyen mérték-
ben nemlinedris a terjedési sebesség homérséklettel vald valtozasa. Mivel a terje-
dési sebesség az anyagi tulajdonsagok Osszességébdl fakad, az anyagi nemlinearita-
sok vizsgalata elengedhetetlen, ezért a dolgozatban kitérek a hémérséklettol fiiggod
transzportegytitthatok kérdésére is.

A mésodik eredmény Gyarmati Istvanhoz kothetod, akinek sikertilt a klasszikus
kontinuum-termodinamikat olyan modon kiterjesztenie, amely keretek kozott a méa-
sodik hang jelensége is modellezhetévé valt [30]. Kés6bb erre alapozva alakult ki és
terjedt el a nemzetkozileg is elismert kiterjesztett irreverzibilis termodinamika el-
mélete. A dolgozatom részben ennek a megkozelitésnek az orokségére épit, részben
annak tovabbfejlesztését mutatja be.

A harmadik, szintén nagy jelentoségli eredmény Guyer és Krumhansl nevéhez
kothetd, akik statisztikai alapokbdl kiindulva meg tudtak josolni, hogy egy adott
szilard kozegben milyen modon, milyen frekvenciaval kell a gerjesztést 1étrehozni
ahhoz, hogy a mésodik hang jelensége megfigyelhet6vé valjon [27,31], nem elhanya-
golhaté modon, egy parabolikus modellt felhasznalva. Ilyen becslés a ballisztikus
terjedésre azdta sem létezik, de a technoldgiai viszonyoknak koszonhetéen mar nem
szitkséges. Ezt a becslést ablakfeltételnek nevezik, és a dolgozat szempontjabol szin-
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tén egy lényeges elemet, az idéskalak szerepét hangsilyozza. Annak ellenére, hogy
a dolgozatban szoba-homérsékletii, makroszkopikus skaldkra tervezett héimpulzus-
kisérletekrdl lesz szd, a kiilonféle megfigyelések kozott analdgiak figyelhetéek meg,
amelyeket ilyen szempontbdl ki is hasznalok a késébbiekben.

Habar a dolgozatban a masodik hang és a ballisztikus jelenségek modellezése
a mérnoki alkalmazasok szempontjabol nem kap nagy hangsulyt, de ezek ismerete
fontos ahhoz, hogy kiilonbséget tudjunk tenni a dolgozatban targyalt egyes hoveze-
tési modellek és azok értelmezése kozott. Az utdbbi évtizedekben sok technolégiai
tényezd megvaltozott, amelynek kévetkezményeként a Fourier-egyenleten tulmutato
modellek alkalmazési lehetoségei 1ényegesen kiszélesedtek, a szakirodalom szamos
modellt ajanl és igy annak lesziikitése elengedhetetlen szamunkra. Egy modern,
a technoldgiai igényeket kelloképpen kiszolgald hovezetési elmélet és keretrendszer
felallitasa megkoveteli a mérnoki és fizikusi szempontok, ismeretek egyesitését. Emi-
att bar lehetne kiilon-kiilon targyalni az elméleti és a gyakorlati eseteket, val6jaban
nem érdemes. A hovezetési modellek kiterjesztése hatarozottan megkoveteli tobb
szempontrendszer atgondolasat. Az imént emlitett keretrendszer nem mas, mint az
elméleti szempontok alapjan kivalasztott hovezetési modell miikodtetéséhez és alkal-
mazasahoz sziikséges eszkozok megteremtése. Ez magaban foglalja az analitikus és
numerikus megoldéasi médszerek kidolgozasat, fejlesztését, valamint az adott modell
matematikai tulajdonsagainak elemzését.

Ezek a szempontrendszerek elsdsorban a technolégiai fejlodés miatt keriilnek el6-
térbe. A Fourier-tol eltéré jelenségek nem csupan alacsony hémérsékletli rendszerek
esetén meriilnek fel, hanem szoba-homérsékletli rendszerekben is. A megértést se-
giti a kinetikus gazelméletbol ismert Knudsen-szam hasznalata, amely egy adott
Osszetételll gaz adott allapotara vonatkozo kozepes szabad tthosszt aranyositja a
rendszer karakterisztikus méretéhez (példaul a tartdlyhoz, amiben a gz van). A
fononhidrodinamikai elméletek akkor miikddnek megfeleléen, ha a Knudsen szam
eléri a 1073-0s nagysdgrendet, illetve anndl nagyobb?. Statisztikus szemmel nézve,
alacsony homérsékletli rendszerek esetén a kozepes szabad tthossz jelentosen megnd,
emiatt makroszkopikus méretii testekben is meg tudtak figyelni a Fourier-egyenlettel
nem modellezheto jelenségeket. A technologiai fejlodés, killondsen a nanotechnoldgia
egyre szélesebb elterjedésével valik fontossa, ugyanis szobahémérsékleten, de mikro-
méteres, vagy annal még sokkal kisebb hosszskaldkon is megfigyelhetok a korabban
emlitett hulldmjelenségek [6,32-35]. Emiatt ezek a hullamterjedési hatdsok a vé-
konyrétegeknél, szuperracsoknal ("superlattices"), és mikrotechnologiai eszk6zoknél
egyarant jelen vannak. Az 1.3. dbra szemlélteti a szuperracsok szerkezetét, ame-
lyeknél a hévezetési képesség a rétegszam és rétegvastagsag helyes megvalasztasaval
kontrollalhat6 [36-38].

Ezeknél a karakterisztikus hosszskalaju testeknél jelentés méretfiiggés figyelheto
meg, tehat fontos, hogy az adott hdévezetési modell megfelel¢ skaldzasi tulajdon-
sagokkal is rendelkezzen. Lényeges megemliteni, hogy a kontinuum hipotézis még
nanoszerkezetii anyagok vizsgalata esetén sem feltétleniil sériil olyan értelemben,
hogy amennyire a kinetikus elmélet a momentumsorfejtésen keresztiil "atlagmezo-
ket" haszndl, ugyanigy a kontinuumelméletet is fel lehet fogni atlagmezdk leirdsaként.
Ennek kovetkeztében a dolgozatban targyalt termodinamikai megkozelités nem ve-

2Egzakt hatarérték nem definidlhaté erre, de a kisérleti tapasztalat ezt mutatja.
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1.3. dbra. Az A) és B) abrdk Tig; Wy 3N és Alg72Sco.osN rétegekkel rendelkezé szuper-
racsokra mutatnak példdkat, [36,39] alapjan. C) A [32] irodalom alapjén azt latjuk, hogy
mikroszkopikus skalan a rendszer effektiv hévezetési tulajdonsagai attdl is fiigghetnek,
hogy mekkora nanorészecskékkel dolgozunk és azok mérete hogyan aranylik a kozepes sza-
bad uthosszhoz. A hévezetési tényezo a ballisztikus terjedés megjelenésével nem feltétleniil
javul, mivel a hévezetési csatorndk, mechanizmusok szama csokken.

sziti érvényét, de a tézisek ezt a témakort nem érintik. Természetesen ettol még az is
lehetséges, hogy a kiterjesztett egyenletek bizonyos kvantummechanikai hatasokat
effektiv médon vesznek figyelembe [40], de a hovezetési egyenletek kvantaldsa esetén
még rengeteg a nyitott kérdés®, és a dolgozat nem is kivdnja ennél részletesebben
targyalni ezt a témakort.

A technolodgiai fejlédés nem csupan a mikroszkopikus méretek elérésében nyilva-
nul meg, hanem a technolégiailag megvalésithato idéskalak is jelentésen, tobb nagy-
sagrenddel lerovidiiltek. Erre kivalo példa Krausz Ferenc 2023-ban elnyert Nobel-
dija, amely az attoszekundumos lézerek megalapozasat is elismerte. Az idéskalak
szerepe tovabbi magyarazatra szorul. Az elobbiekben emlegetett, egyes hoterjedé-
si mechanizmusokhoz kiilon-kiilon idoskaldk tartoznak, amik akar tobb nagysag-
rendben is eltérhetnek egymastél. Ha egy adott testet ilyen idoskalan termikusan
gerjesztliink, akkor a hulldmszeri hatasok — természetesen csak adott térskalan —
megjelenhetnek. Ennek kovetkeztében kozonséges anyagokban (példaul acélban) is
megfigyelhet6ek lennének a Fourier-egyenleten tilmutato jelenségek, de ezek méré-
se méréstechnikailag nem lehetséges, és a gyakorlat szaméra sem igazan relevans.
Péld4ul a hémérsékletet nem lehet mérni 10719 s skdlan, vagy még annél is gyorsab-
ban, és az acélt a gyakorlatban nem is kivanjak hasznalni nanométeres méretskalan.
Nanoszerkezetes anyagok esetén sem a homérsékletet mérik, hanem sokkal inkabb a
sugarzasi vagy az elektromos vezetési tulajdonsagok valtozasat, amibol a lejatszodo

3Kvantummechanikai szinten nem a hévezetési egyenletet kvantdltak, hanem a hévezetési ténye-
z6nek vették észre a kvantalasi tulajdonsdgait [41-43], tehdt a hé csak bizonyos energiaegységekben
adédik at, hasonléan a fotonokhoz. Kvantummechanikai szinten a Fourier-torvény modellezésére
tobb kisérletet is tettek, de ezek mind onkényesen felvett potencidlokon mulnak, nem levezetés
eredményeképpen kapjak, éppen emiatt nem is egyértelmiiek [6].
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tranziens folyamatokra lehet kovetkeztetni [44,45].

Szintén az idoskalak fontossagat, valamint a kapcsolt folyadék-hovezetési mo-
dellek relevanciajat hangsilyozza a 16késhullamok modellezése [46,47], illetve ennél
altalanosabban fogalmazva a nagy gradiensekkel jaré folyamatok leirasa, példaul
hegesztési eljarasokhoz kapcsoloddéan. Az ilyen jelenségek modellezése szintén ma-
gaval vonja az anyagi nemlinearitdsok vizsgalatat is, legegyszeriibb esetben példaul
a hovezetési tényezo homérséklettol valod fiiggését. Felmeriil azonban a kérdés, hogy
vajon a hémérséklet gradiensétol valo fiiggés is lehetséges-e? Bonyolultabb, kap-
csolt esetekben a nyomas, valamint a gradiensektdl vald fiiggés is megjelenhet. A
dolgozatban bemutatott eredményeknek ez egy lényeges eleme lesz az elobb emlitett
matematikai keretrendszer vizsgdlataval egytitt.

A dolgozat kozponti eleme a heterogén anyagok termikus viselkedésének model-
lezése és annak tanulsigai. A mérnoki gyakorlat szamos ilyen anyagot hasznal, a
kiilonféle kompozitoktol kezdve a makro- és mikroporusos anyagokon at egészen a
kozetekig és biologiai rendszerekig. A 2000-es évek elejéig a szakirodalom egyértel-
miten és kizarélagosan a hullamjelenségeket tartotta az egyediili, Fourier-egyenleten
tialmutatd jelenségnek. Ennek egyik hirhedt példdja az tgynevezett 'fagyott hus
kisérlet" [48], amely sordn egy lefagyasztott hisszeletet hirtelen elkezdtek egyik ol-
daldn melegiteni. A testben tobb ponton is mérve a hémérsékletet azt figyelték meg,
hogy egy homérsékleti front alakult ki, amelyet igy a méasodik hang jelenségének tu-
lajdonitottak, mivel sikeriilt a mért hémérséklet idobeli lefutasat egy Fourier-tol
eltéro csillapitott hullamegyenlettel illeszteni. A kisérletet végiil senkinek nem si-
keriilt megismételni [49,50], bar a megfigyelések magyardzata latszélag nem lenne
bonyolult. A fazisatalakulds (olvadas) okozta késleltetés eredményezte az élesen ki-
rajzolodd homérsékleti frontot. Ennek sikeres illesztése azonban ravilagit egy igen
fontos értelmezésre, amit a dolgozatban is még tobbszor hangstlyozni fogok, ezt
effektiv modellezésnek nevezik. Egy masik érdekes példa, amikor fazisatalakulas
nélkiil, de egy mesterségesen létrehozott heterogén kozeget kivantak egy hullamter-
jedést leiré hiperbolikus hévezetési egyenlettel modellezni [51], ami mogott a moti-
vacié csupan annyi, hogy ha a Fourier-egyenletet nem lehet megfelelGen illeszteni,
akkor valasszunk egy olyan modellt, amiben eggyel tobb a paraméterek szama. Az
1.4. dbra tanulsagai fontosak: egyrészt attol, hogy egy tobbparaméteres modellel
dolgozunk, a fizikai interpretacié megorzi fontossagat; masrészt a Fourier-egyenlet
illesztésében kritikus szerepet kapnak a peremfeltételek, valamint a hoimpulzus al-
tal, térfogati elnyel6désen keresztiil 1étrehozott hely- és idéfiiggd hoforrdsok [52].

Az effektiv modellezés csak egy kontinuum-megkozelitésben lehet értelmes fel-
tételezés. Egy kinetikus elméleti megkozelitésben elengedhetetlen a hovezetési me-
chanizmus leirdsa, és egyben meg is koti, hogy egy modell milyen célra, milyen
tartomanyban és hogyan hasznalhaté. Ennek az az elénye, hogy bizonyos transz-
portegyiitthatok kiszdmolhatéak mérések nélkiil is. Ezzel szemben egy kontinu-
ummodell nem igényel semmilyen konkrét feltételezést a jelenség mechanizmusara
vonatkozoan. Az allapottér megfelel6 megvalasztasa és a masodik fotétel célsze-
rii alkalmazéasa lehetové teszi a formailag azonos alakt, de akar eltér6 értelmezést
is megengedd modellek levezetését. Ez a fajta modell-flexibilitas, illetve univer-
zalitas lehetévé teszi, hogy egy kontinuummodellben a transzportegyiitthatokat a
feladatnak megfelel6en értelmezziik. Ez az elv nem 1j, a Fourier-torvény esetén a
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hémérséklet-eloszlasat abrazoljak a hossz- és sugdrirdnyu dimenzidk mentén [51]. Lat-
hatd, hogy a mért adatok a jésolt hullimterjedést nem tamasztjak ala, és az illesztés
josdga sem javult jelentGsen a hiperbolikus modell alkalmazasaval.

hévezetési (és a hofokvezetési) tényez6é pontosan ugyanezt a szerepet tolti be, ezért
a Fourier-torvény érvényessége alapvetoen azon mulik, hogy a hdévezetési jelenség
egy iddéskalaval leirhaté legyen, fiiggetleniil attol, hogy az adott test homogén vagy
sem. A Fourier-egyenlettdl altalanosabb kontinuummodellek esetén akkor lehet a
kinetikus elméleti eredményeket is figyelembe venni, ha azok az egyenletek megorzik
a kinetikus elméleti modell szerkezetét, azaz ugyanolyan tagokat és operatorokat
tartalmaznak, emiatt kompatibilisek. Ekkor valaszthatunk, hogy az egyiitthatékat
mérések altal, egy kontinuummodellezési szemmel hatarozzuk meg, vagy a hévezetési
mechanizmus ismeretében kiszamoljuk a kinetikus elméleti eszkozok segitségével.

Mar tobbszor is felmeriilt, és késébb még részleteiben is fogok beszélni a héim-
pulzuselvii mérésekrol. Egy tipikus, heterogén anyagok esetén gyakran megfigyelt
példat mutat az 1.5. abra, amely jol demonstralja a megoldandé problémat. Ez a
mérési eredmény egy zart cellas aluminiumhab prébatestre vonatkozik, amelynek a
celldi milliméteres nagysagrendbe esnek [53]. A héimpulzuselvii mérési eljaras egy
standard modszer az anyagok héfokvezetési tényezdjének meghatarozasara a Fourier-
egyenlet illesztésén keresztiil. Habar az R? érték nem kiemelkedéen jé, de a mérést
a Fourier-egyenlet megoldasaval dsszevetve sokkal komolyabb eltéréseket latunk. Az
1.5. abran az idéskalak szétvalasa is jol kivehetd, eleinte lassabb, majd késobb je-
lentosen gyorsabb a Fourier-egyenlet altal josolt hémérséklet-valtozas, amely igy a
mért héfokvezetési tényezo értékét megbizhatatlanna teszi.

Ha egy heterogén test a modellezés soran helyettesithetd egy vele egyenértékiien
viselked6 homogén testtel, akkor ezt effektiv modellezésnek nevezziik. A kérdés az,
hogy ehhez milyen modellt kell valasztani, és az aluminiumhabos példabdl az olvas-
hato ki, hogy egy ketto idéskalas hovezetési modellre van sziikség, de nem akarmi-
lyen modellre. Ahogy az el6bbi gondolatokbdl kiolvashatd, ennek a megkozelitésnek
természetesen tovabbi feltételei vannak.

A feltételek kapcesan az els6 amit ki kell emelni, a méréstechnikara vonatkozik.
Ha a hémérsékletmérés soran elég nagy id6lépéseket (mintavételezést) alkalmazunk,
akkor a nem megfelel6 mintavételezés elrejtheti az adatokban a lényeges elemeket.
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1.5. abra. Egy zart cellas aluminiumhab tranziens viselkedése, és a Fourier-egyenlettel
valé legjobb illesztés Osszevetése [53]. A vizsgalt heterogén test vastagsdga 5,2 mm volt,
és az id6beli viselkedése egyetlen idéskalaval nem jellemezhetd.

Ezért mar a modellezés legelején dontést kell hozni, hogy milyen idéskala részle-
tességéig akarjuk a test termikus viselkedését leirni. Mindezek mellett meg kell
vizsgalni az adott anyag karakterisztikus jellemzéit (méreteit, jellemz6 dsszetevoit),
valamint a felhasznalas szempontjabdl lehetséges peremfeltételek idoskalait, ezalatt
elsodlegesen a hoatadast értve, de a hémérsékleti sugarzas is relevans lehet. Ezen
tulajdonsagok — az anyag, a mérés, a peremfeltételek — Gsszessége donti el, hogy egy
effektiv leirdas mennyire és milyen mértékig alkalmazhato.

A megfigyeléseim szerint a Fourier-egyenlet nem minden feltétel nélkil haszndlhato
heterogén testek leirdsdra, dsszhangban az [54] irodalommal. A kutatdsi munkdm
legfontosabb eredménye, hogy mérnoki szempontbol relevans alternativat talaltam a
probléma megolddsdara, és a dolgozatomban az ide vezetd utat, valamint a gyakorlati
alkalmazasokba valo atiltetés szempontrendszerét mutatom be.

A Fourier-egyenlettdl eltér6 modellek mérnoki felhasznalasara effektiv értelme-
zésen keresztiil a dolgozatom mutat el6szor példat, és ilyen értelemben a mérnoki
gyakorlatban egyediilallo megkozelitést. Tovabbd, a bemutatott eredmények nem
csupan az alkalmazas lehetdségeit vetik fel, hanem konkrét példakat, eseteket is
targyalok, ipari és méréstechnikai alkalmazasokkal kiegészitve.

A dolgozatom masodik fejezetében részletesen targyalom az egyes hovezetési mo-
dellek kontinuum-termodinamikai hatterét. Ez alapozza meg a harmadik fejezetben
kifejtett problémakoroket, a hévezetési tényezé homérsékletfiiggését helyezve a ko-
zéppontba. A gyakorlati feladatok megolddasahoz elengedhetetlen volt egy megbiz-
haté megoldasi modszertan kidolgozasa, igy a negyedik fejezetben az itt elért ered-
ményeim és tapasztalataim foglalom 0Ossze. Végezetiil, az 6todik fejezetben olyan
Osszetett szerkezetli anyagokra mutatok példakat, amelyeken a kidolgozott elméleti
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modszertan helyességét tobbszor is tesztelhettem.

Ezeken a fejezeteken keresztiil kivanom a Fourier-egyenlet esetén megszokott esz-
kozoket 1j megvildgitasba helyezni és ramutatok, hogy a tobb idéskalas hovezetési
modellek esetén ezeknek milyen korlatai vannak, és ezekre milyen alternativakat ja-
vaslok. Természetesen egy ilyen munka nem lehet teljes, a Fourier-egyenlet esetén
is rengeteg kutato tobb évtizedes munkajara volt sziikség a manapsag mar hétkoz-
napinak tekintheté eszkozok kidolgozasahoz, akar a megoldasi modszereket, akar
a mérési-kisérleti technikakat tekintjitk. A dolgozatom igyekszik minden alapot
megadni ahhoz, hogy a Fourier-t6l eltéré egyenleteket hogyan, milyen értelmezés és
feltételek mellett lehet hasznalni, ezzel tdmogatva minden jovobeli kutatast.

10
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2. fejezet

A Fourier-egyenleten tuli modellek
termodinamikai hatterérol

A szakirodalom legaldbb tiz kiillonb6z6 médszertant tart szdmon arra vonatkozo-
an, hogy a Fourier-torvényt miként lehet altalanositani. Ahhoz, hogy a targyalast
tisztan és érthetoen tartsam, ezek koziil csak a kontinuumalapt, irreverzibilis termo-
dinamikai médszertant és annak a relevans kiterjesztéseit tekintem. Ahol fontos, ott
utalni fogok a kiterjesztett irreverzibilis termodinamika, vagy a racionalis kiterjesz-
tett termodinamika vonatkozé eredményeire, de azok modszertanat nem fejtem Kki.
A kovetkezékben el6szor a Fourier-torvényt mutatom be részleteiben, utana sorra
veszem a relevans, komplexebb modelleket, egységes keretben targyalva. A legel-
terjedtebb mddszertanok megismerésére a [6, 13,33, 55-61] szakirodalmi forrasokat
ajanlom, ezek targyaldsa sajnos lényegesen tulmutatna a dolgozat keretein.

2.1. Fourier-torvény

A klasszikus és a kiterjesztett irreverzibilis termodinamikai médszertan kozos eleme
a masodik fététel megfogalmazéasa és annak kihasznélasal. A kévetkezdkben kiza-
rolag merev, izotrop kozeget tekintek. Tegyiik fel, hogy létezik a fajlagos entrépia
(s) nevil potencidlfiiggvény [64], amely csak az e fajlagos bels6 energia fliggvénye,
azaz s = s(e), és eleget tesz a de = T'ds kényszerfeltételnek, amit Gibbs-relaciéonak
neveznek, valamint ezen keresztiil definidlhaté az abszolut hémérsékletet (77), azaz
ds/de = 1/T. Mivel a Gibbs-relaciét a teljes folyamat mentén érvényesnek tekin-
tem, ebbdl az kovetkezik, hogy egyensilyban, valamint azon kiviil is ugyanazt a
hémérséklet-fogalmat haszndlom?. A masodik fététel matematikai alakjat a (2.1)
mérlegegyenlet fejezi ki,

pOis +V-Jys=0, >0, (2.1)

LA mésodik f6tételben szerepld entrépiat az A. fiiggelék részletesen definidlja a [62,63] munkak
alapjan.

2Ttt megjegyzem, hogy ezt a tulajdonsagot a kiterjesztett hévezetési modelleknél is kihasznalom.
Ez nem minden megkozelitésben van igy, és kiilonféle nemegyensilyi homérsékletet vezetnek be
[65,66], amik kisérleti ellenérzése a jelenlegi ismereteinek szerint nem lehetséges.

11
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ahol p az alland6 tomegstirtiség, 0; az id6 szerinti parcialis derivalt, V jeloli a nabla
operatort, Js az entrépia aramstirtisége, valamint o, fejezi ki az entrépiaprodukciot.
Emiatt o, zart rendszerben a folyamat mentén folyamatosan névekszik, egyenstly-
ban zérus. Az entrépiadaram, J,, teljes divergencialevalasztas utjan meghatarozha-
t6 [11,67,68], amibdl az kovetkezik, hogy J, = q/T, ahol q a héaramstiriiség?.

A Fourier-torvény levezetéséhez a oy meghatarozdsara, valamint a (2.1) egyen-
16tlenség megoldasara van sziikség. Ehhez fel kell hasznélni a fajlagos belsé energia
mérlegegyenletét is,

poe+V-q=0, (2.2)

amelyben a forrastagot most elhanyagolom. Behelyettesitések utan a
\Y ! >0 (2.3)
os=q-V= >0, )
V7

egyenlotlenség adodik, amelynek a legegyszeriibb megoldasa az, ha a q hoéaramsii-
riiség és a homérséklet gradiense egymassal ardanyosak, ahol az ardnyossagi tényezot
izotrop anyagroél 1évén szo egy pozitiv [ konstans jeloli:

l

l
a=-7VT=-A\VI, A=_5 [€R]. (2.4)

2 )
Ezt a fajta megoldast Onsager [69,70] és Eckart is részletesen térgyaljdk [71,72],
amit altaldnosan termodinamikai erdk és aramok kozotti aranyossagként lehet értel-
mezni. Az [ transzportegyiitthato segitségével lehet a A h6vezetési tényezo sziikséges
hémérsékletfiiggését megadni, valamint az [ = 0 hatareset jelenti a tokéletes hoszi-
getelét. A Fourier-egyenlet esetén a szakirodalom gyakran hasznalja a modell T-
reprezentaciojat, mint transzportegyenletet, azaz a modell homérsékletre rendezett
alakjat, a térfogati héforrast is figyelembe véve:

AT + qy ha X\ = konst.

(2.5)
MT)AT + B(VT)? +qy ha A= \T),

pcO T =V - (AVT) + gy = {

amelyben gy jeloli a térfogati héforrast, és az a = \/(pc,) fogja jelenteni a héfokve-
zetési tényezot.

A Kkiterjesztett, kontinuum-megkozelitési hovezetési modellek leginkabb abban
térnek el egymastol, hogy milyen allapotteret és entrépiadramot valasztanak meg,
de a mésodik fététel (2.1) alakja, valamint annak a fenti médon torténd kihasznala-
sa valtozatlan marad. Fontos kiilonbséget jelent, hogy amig a ¢, héforrds idétol és
helytél valé figgése a (2.5) Fourier-féle hévezetési egyenletnél nem ad extra jarulé-
kokat, addig a Fourier-tol eltéré modellek esetén annak tovabbi id6 és hely szerinti
derivaltjai jelenhetnek meg. Szintén lényeges lesz az a megallapitasom, hogy addig,
amig a (2.5)-féle T-reprezentacié a Fourier-egyenletnél megbizhatéan hasznalhato,
addig a nem-Fourier egyenletek esetén ez az alak mar erésen félrevezeto, és elrejti a

3Egy jelolésbeli konvenciéra hivom fel a figyelmet: a q helyesebben ¢ lenne, mivel idéegységre
vetitett energiadramrol van szé, de a pontot elhagyom, hogy ne keveredjen 6ssze a szakirodalomban
szintén elterjedten hasznalt idoderivalt jel6léssel.

12
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modell tovabbi lényeges tulajdonsagait, foleg allapotfliggd egyiitthatok esetén. Amig
a Fourier-egyenlet esetén a T-reprezentacioban valé gondolkodas csak konnyebbsé-
get jelent, de megszoritast nem, addig a nem-Fourier egyenletek esetén lényeges
megszoritasokat von maga utan, és sokszor nem is hasznalhato.

Tovabba, a (2.5) egyenlet megoldasidhoz szitkség van kezdeti és peremfeltételek
megadasara. A Fourier-egyenlet esetén kezdeti feltételként elegendd csak a kezdeti
homérséklet-eloszlast megadni, akar rendszerként, akar T-reprezentaciéként tekin-
tiink a modellre. A (2.4) Fourier-torvény felhasznélasival a kezdeti q héarammez6
egyértelmiien szarmaztathatd. Ez a Fourier-tol eltéré hévezetési modellek esetén
szintén nem magatol értetodo.

A peremfeltételek alatt a hagyoményosan is hasznalt els6-, masod-, valamint
harmadfaju osszefiiggéseket értem, azzal a kiegészitéssel, hogy ezek az elnevezések a
klasszikus irodalombol ismert T-reprezentaciot kovetik. Azaz, ha csak a homérséklet
szerepel, mint egyetlen mezo, igy értelmes arrél beszélni, hogy magat a hémérsékle-
tet, annak a gradiensét, vagy a kett& kozotti ardnyossagot (leggyakrabban héatadast)
irjak el6 a test hatarain. Ha a modellre nem annak T-reprezentacidjaként, hanem
rendszerként néziink — amit mindenképpen ki kell hasznalnunk a Fourier-tél eltéro
modellek esetén — akkor ezek az elnevezések nem egyértelmiiek. Igy a kovetkezékben
osszefoglalom, hogy milyen peremfeltétel alatt mit is értek.

o Elséfaji: a peremen adott a hémérséklet, T'(r,t), r € 0f), azaz a test hataran
értelmezett, de hely- és ido6fiiggés egyarant megengedett.

o Masodfaju: ezalatt el6irt héaram feltételt értek, azaz q(r,t), r € 0f2, amely
csak a Fourier-torvény miatt esik egybe az el6irt homérséklet-gradienssel.
Fourier-egyenleten tul a ketté nem egyenértéki feltétel.

o Harmadfaji: ezalatt a hoatadas peremfeltételt fogom érteni, a klasszikus ana-
logiat kovetve, amiben az els6- és a méasodfaju peremek egymassal aranyosak,
azaz

q-n=al—-Ty), (2.6)

ahol n a kifelé mutatoé feliileti normalis, T, a kornyezeti fluidum homérséklete,
a > 0 a hoatadasi tényez6. Megjegyzem, hogy direkt nem aranyositom a
hémérsékletek kiilonbségét a homérséklet gradienséhez, mivel az specidlisan
csak a Fourier-torvényre igaz, annal altalanosabb esetekben nem feltétleniil.

Ebbol az osztalyozasbodl latszik, hogy a Fourier-torvényen tuli hévezetési egyenletek
esetén nem lehet csak a hémérséklettel, mint egyetlen mezével dolgozni, az csak a
Fourier-egyenletnek egy sajatossaga, de nem altalanosan érvényes tulajdonsig. Ezt
a kiterjesztett modellek esetén kiemelten fontos szem elott tartani. A fenti Osszeflig-
gések akkor kifejezetten hasznosak, ha a modellt egyenletek rendszereként tekintjiik,
valtozok kikiiszobolése nélkiil, ami nemlinedris, allapotfiiggd transzportegyiitthatok
esetében gyakran nem is lehetséges.

Ritkan alkalmazott, de igen hasznos a g¢-reprezentacié targyalasa is. A T-
reprezentacidhoz hasonldéan az egyenletrendszert a q héaramstiriiségre rendezve,
konstans egytitthatok esetén a Fourier-egyenlet a

pc,0:,q = AVV - q = A\Aq (2.7)

13
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alakot olti, amely Osszefiiggés a (2.5) Fourier-féle hévezetési egyenlettel fizikailag
egyenértékii, és ebben az esetben a kezdeti feltételnek a héaramra kell vonatkoz-
nia, de ez a feltétel nem fiiggetlen a homérséklet kezdeti feltételtél. Tovabba, mivel
a Fourier-torvény esetében a hoaramstriiség egy skalarmezé gradiensével aranyos,
ezért a hoaramstrtiség rotaciomentes, igy a VV - q = Aq + V x V x q kifejezés
egyszeriisithetd, ezt fejezi a (2.7) utolsé egyenldsége; Fourier-egyenleten tili model-
lek esetén ez nem mindig érvényes. A (2.7) egyenlet természetesen a peremfeltételek
kezelését is modositja, és a g-reprezentacié olyan analitikus megoldésok keresésé-
nél célszerii valasztas, ahol a peremfeltételek kozvetlenil a hédramot irjék el6 [73].
Egy ilyen, héaramstirtiségre felirt egyenlet esetében a hémérséklet-peremfeltétel nem
értelmes, de helyette a h6aram gradiensének el6irdsa viszont megtehetd. Az idoska-
lak tekintetében ki kell emelni, hogy a Fourier-féle hévezetési egyenlet egy idoska-
las folyamatot ir le, amit a hofokvezetési tényezo és a test jellemzo mérete adnak
meg. Az ettdl altalanosabb modellek kettd, vagy akar annal is tobb hévezetési id6-
skalat tartalmaznak. Emiatt egy érdekes kovetkezmény, hogy a hagyomanyosan a
Fourier-egyenletre érvényes Fourier- és Biot-szdmok nem feltétleniil értelmezhetéek
ugyanugy. A Fourier-szam, egy alkalmasan valasztott L karakterisztikus mérettel,

at

Fo = Iz (2.8)
a héfokvezetési tényezét kihasznalva definidlja a vonatkozoé idéskalat*. Ha egy ho-
vezetési modell kettd idoskalat ir le, akkor valasztas kérdése lesz, hogy melyiket
jeloljiik ki erre a célra, és mivel numerikus szempontbol sokszor a gyorsabb ido-
skalat célszerfi valasztani®, ezért a Fourier-szam mér nem a hagyomanyosan ismert
hoéfokvezetési tényezot fogja hasznélni, igy tovabbi egyértelmiisitést tesz sziikségessé.
A Biot-szam,

Bi = -~ (2.9)

felfoghatd gy, mint a hoatadasi és hévezetési idoskalak hanyadosa. Emiatt lehetsé-
ges az, hogy bizonyos Biot-szam alatt a koncentralt paraméteri modellezés kell6en
jol kozeliti a hdvezetési folyamatokat, vagyis a hovezetési idoskala lényegesen gyor-
sabb, mint a test hataran létrejovo hoatadasi folyamat. Ha a hdvezetési folyamat
tobb iddskalara bonthato, akkor megvizsgalando, hogy a Biot-szdm milyen értéke
mellett alkalmazhato a koncentralt paraméterti kozelités, ekkor viszont a lassabb
idoskalak jelenthetik a referenciat.

2.2. Két idoskalas hovezetési modellek

Az el6z6ekben szandékosan nem kivantam a Fourier-egyenleten tuli modelleket pon-
tosan megnevezni, mivel a szakirodalom rengeteg kiilonféle modellt tart szamon.

‘Meg kell jegyeznem, hogy a Fourier-szam az Osszes tobbi "szdmmal" ellentétben (péld4ul
Reynolds-szdm, Prandtl-szdm, Nusselt-szdm) nem egy paraméter, hanem egy fluggetlen véaltozd
szerepét tolti be, emiatt a "Fourier-szam" elnevezés félrevezetd, helyesebb lenne a "diffuziés idéska-
la" vagy "Fourier-idoskala" elnevezés.

5Ez egyben azt is jelenti, hogy a Fourier-tél eltéré hatdsok gyorsabbak, és azok numerikus
lekOvetése sziikségszerli, de a peremfeltételeket is figyelembe véve célszerli a referencia idéskalat
megvalasztani.
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Az el6z6ekben emlitett Fourier-egyenleten tuli sajatossagok mindegyikre egyarant
érvényesek maradnak. A kovetkez6 termodinamikai levezetésekben csak a kontinu-
um hétteret hasznalom ki, nem épitek sem a fononhidrodinamikara, sem barmely
egyéb kinetikus elméleti megkozelitésre. Ez az egyenletek érvényessége szempontja-
bol egy kulcsfontossagu tényezd, mivel nem a mikroszerkezeti sajatossagokat, hanem
a testek makroszkopikus eredd viselkedését kivanom lefrni. A legfontosabb mo-
dellek: Maxwell-Cattaneo—Vernotte (MCV, amit gyakran Cattaneo—Vernotte vagy
csak Cattaneo-egyenletnek neveznek), Guyer-Krumhansl (GK), valamint a Jeffreys-
egyenlet. Ezek koziil a GK és az MCV modellek nem fiiggetlenek egymastol, az MCV
a GK hatareseteként értelmezheto. Termodinamikai szempontbdl a GK-egyenletnek
van nagyobb jelentOsége, de bizonyos specidlis tulajdonsagokat az MCV-egyenleten
egyszeriibb és igy célszeriibb bemutatni. E két hdévezetési modell levezetése igy
osszefoglalhatd, és nem is targyalom ket kiilon. Ezzel szemben a Jeffreys-egyenlet
mar ezektdl kiillonbozé feltevésekbdl indul ki, és nem lehet a GK-egyenlet specialis
eseteként értelmezni.

2.2.1. Guyer—Krumhansl-egyenlet

Az el6z6ekben hasznélt, az e fajlagos belsd energia dltal kifeszitett s = so(e) élla-
potteret ki kell béviteni a q héaramstirtiséggel, azaz s = s(e, q), és

k
s=sp(e)— —q-q, keR] (2.10)
2p
ahol az sg(e) jeloli a Fourier-egyenlet esetében is hasznalt tagot, valamint tovabbra
is igaz az, hogy
0s dsg 1
=2 =2 =_. 2.11
delq de T (2.11)
Ezen a ponton meg kell jegyeznem, hogy a (2.10) egyenletben a p tomegsiiriiséggel
val6 osztas nem kotelezo, és ennek nemlinearitdsok esetén komoly jelentésége is van.
A levezetés végén erre vissza fogok térni. Tovabbi eltérés, hogy a korabbiakban
haszndlt J; = q/T entrépiadram helyett egy altaldnosabb [74],

3, = (;,1+B) q (2.12)

formét hasznalok, ahol 1 jeloli az egységtenzort, és B egy tigynevezett aramszorzo
(Nyiri-szorzé [75]), egy masodrendii tenzor, amire a masodik f6tétel tovabbi megko-
téseket fog adni. A szakirodalomban megtalalhaté a

J,=B-q (2.13)

alak is [14,76]. Habér ez ekvivalens eredményre vezet a (2.12) kifejezéssel, annyiban
elénytelen, hogy a B dramszorzé fizikai jelentése elmosédik. Ezt az entrépiaproduk-
ci6 egyenlotlenségének a megoldasa utan vilagosabban lehet latni.

Felteszem, hogy a fenti dltaldnositdsok nem érintik a (2.2) energiamérleget. Ezek-
bél a feltevésekbél kiindulva a (2.1) egyenlétlenség meghatarozhaté, azaz

1 1
oy = %@e — kadyq + (vT +V- B) g+ <T1 + B) :(Va), (2.14)
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amelyben az els6 tagndl figyelembe kell venni a (2.2) energiamérleget, az utolsd
tagnal pedig kihasznalom, hogy

1 1
—1- - — (V- 2.1
igy ezekbdl a
1
05:<—k8tq+VT+V-B>-q—I—B:(VQ)ZO (2.16)

egyenl6tlenség adddik. Ahogy a Fourier-torvény levezetésénél is, ugy itt is felteszem,
hogy az entrépiaprodukcié termodinamikai er6kbol és aramokbol épil fel, amelyek
egymassal ardanyosak. Mivel merev és izotrop kozeget tekintek, ezért a Curie-elv
szerint csakis azonos tenzori rendii mennyiségek kozott johetnek létre csatolasok.
Ez azt jelenti, hogy

1
q:l<—k8tq+VT+V-B>, | eRY (2.17)
B=LWY:Vq, (2.18)

amelyben igy egyértelmiien kirajzolddik, hogy a B aramszorzo kozvetleniil ardnyos
a héaram gradiensével, altaldnos esetben egy L®* negyedrendii tenzoron keresztiil.
Mas szdval, B egy ugynevezett relaxalt valtozonak tekinthetd [74], aminek az id6beli
valtozasa nem jelenik meg, de az alacsonyabb rendii (7', q)-folyamatokhoz csatolé-
dik. Ez teljes mértékig kompatibilis a kiterjesztett irreverzibilis termodinamika altal
hasznalt formaval. A (2.13) kifejezéssel az dramszorz6 szerepe nem lenne ennyire
vildgos, és a (2.17) egyenletben 16v6 1/T-s tag a (2.18)-ban jelenne meg, amit azon-
ban a (2.12) alakban levdlasztottunk. Linearis esetben a végeredmény matematikai
szempontbdl ugyanaz, de termodinamikai oldalrél a bemutatott valasztas célsze-
riibb, igy vilagosabb értelmezésre vezet.

Az L™ negyedrendii tenzor felbonthaté szimmetrikus (L%%) és antiszimmetrikus
deviatorikus (L%*), valamint gémbi (L®) részekre, és a (2.16) egyenlétlenség miatt
elvarhato, hogy

L4 >0, L4 >0, L8>0, (2.19)

teljestiljenek. Ezen megkotések felhasznalasaval a (2.18) jobb oldala atirhatd,

s Ls — &S d,A
LW :vq= —(Va+ (Va)") + (V- a)l+

bevezetve az e Levi-Civita szimb6lumot. Ezzel a Guyer-Krumhansl-egyenlet onsa-
geri alakja:

e:(Vxq), (2.20)

1

q=1 (—k:c‘?thrVT +V-B), (2.21)
Ld’S Ls — Ld,S d,A

BZT(Vqu(Vq)T)nL#(V-q)lJr 5 e: (V xq), (2.22)

amellyel kapcsolatban tovabbi megallapitasokat tehetink. A (2.21) egyenletben
k helyett pk jelenik meg, ha (2.10)-ben nem vessziik figyelembe a siirtiséggel vald
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osztast. A modell az MCV-egyenletre redukalédik, amennyiben L™ = 0, azaz (2.22)
eltiinik, és a Fourier-torvény csupan egy idobeli 0,q taggal egésziil ki. A Fourier-
torvénnyel ellentétben a q ebben az esetben nem 6rvénymentes, a (2.22) kifejezésben
a V X q nem automatikusan nulla.

Tovabba, a GK-egyenletnek a (2.21)-(2.22) alakjabdl az olvashato ki, hogy bar B
kikiiszobolhet, mégsem teheté meg minden tovabbi feltétel nélkil. A kikiiszobolés
akkor célszerii, ha az 0sszes L egytitthato konstans, maskiilonben tovabbi derivaltak
jelennek meg, és a modell jelentésen bonyolultabbéd vélik. Eppen emiatt azt a meg-
allapitast teszem, hogy a hévezetési modellt annak (2.21)-(2.22) alakjdval, vagyis
onsageri szinten kell definidlni, ami egyértelmiisiti a p és a B szerepét, valamint a
konkrétan megvalasztott termodinamikai eré-aram aranyossagot is. Ez nemcsak a
GK-egyenletre igaz, hanem barmilyen mas, Fourier-egyenlettol kiillonb6z6 modellre
is, és igy egy teljesen 1j szemléletet jelent a Fourier-féle hovezetési egyenlethez ké-
pest. Amig a Fourier-egyenletet annak (2.5) alakjéval egyértelmiien definidlni lehet,
addig a GK-egyenlet esetén tobb mas elengedhetetlen szempontot figyelembe kell
venni, amelyek a mérnoki gyakorlat szamara szintén kritikusak.

Feltéve, hogy a (2.21)-(2.22) egyenletekben az Osszes egyiitthat6 skalar konstans-
ként kezelheto, akkor a B kikiiszobolésével

TOq+q=-AVT+mAq+7VV-q, (2.23)
egyenlet addédik, amelyben
l Ld’S + Ld’A 2[5 + Ld,S o 3Ld’A
T =1k, )\:ﬁ’ m:lf, N =1 5 (2.24)

transzportegyiitthatokat kapjuk, ahol a tomegstiriség a 7 = plk relaxacios idoben
is megjelenhet, valasztastol figgden. A (2.24) osszefiiggésekbdl mar a legegyszertibb
kiterjesztés szintjén is az latszik, hogy a makroszkopikus transzportegyiitthatok, bar
linearisan fliggetlenek egymastél, nemlinearis esetben mégis az onsageri szintbol kell
kiindulni. A GK-egyenlet (2.23) alakja nem ad elégséges tampontot az egytitthatok
kozotti Osszefliggések figyelembevételére. Mivel a mérnoki gyakorlatban jol ismert,
hogy a A hovezetési tényez6 T-fiiggd, amibél [ = [(T') osszefliggés kovetkezik, vagyis
az Osszes egyiitthato egybol T-fiiggévé valik, mar csak az [(T') miatt is. Ennek rész-
leteit a kovetkezo fejezetben fogom bovebben targyalni. Meg kell jegyeznem, hogy
valojaban nem a 71", hanem az e fajlagos belsé energia az allapottér eleme, tehat pon-
tosabban a fajlagos belso energiatél valé fliggést kellene figyelembe venni. Viszont a
fajh6t minden esetben konstansként kezelem, igy szamomra nem okoz kiilénbséget,
hogy e- vagy T-fiiggést tekintek, de hangstlyozom, hogy ennek a fajhé konstansként
valé kezelése a feltétele. Ezt a késObbiekben végig kihasznalom. Termomechanikai
esetben ez sem elegendo, és igy a hévezetési tényezd a mechanikai jellemzoktol is
fiigghet. Tovabbi részletekért Grof [77) munkajat javaslom.

A szakirodalom a 7 egytitthatot relaxaciés idonek nevezi, és a kinetikus elmélet-
ben a fononok titkozési frekvenciajahoz kapcsolodo fogalom. Ebben a kontinuum-
elméleti megkozelitésben explicit jelentést nem tulajdonitok ennek a paraméternek,
de egy tovabbi idoskélat meghataroz. A Cattaneo-egyenlet szintjén ez az idoskala a
T-reprezentaciéban jobban latszik:

TattT + 8tT = CI,AT, (225)
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vagyis ebben a szemléletben a Cattaneo-egyenlet csillapitott hullamegyenletként ér-
telmezhetd. Alacsony hémérsékletii (< 20 K) kisérletekben ez helytdlls, és a W
hullamterjedési sebesség a mérvado idéskala. Effektiv modellezési keretekben, foleg
heterogén anyagok hovezetési tulajdonsigait vizsgalva a Cattaneo-egyenletnek nincs
valédi gyakorlati jelentésége [78].

Az 1,2 paraméterek szerepe a kinetikus elméletben egyértelmi: 7, a kozepes
szabad uthossznak feleltethet6 meg, mig egy specialis fononhidrodinamikai kozelités
miatt 7, = 2y, vagyis az 1,2 paraméterek nem linedrisan fiiggetlenek, ellentétben
a kontinuumelméleti megkozelitéssel. Az 1, = 21, Osszefiiggésbdl az is kiolvashato,
hogy barmely 1, = n(T') esetén az 7y ugyanezt a fliggést orokli (amennyiben ez
a kinetikus elméleti szamolasokban megvalésithat6). Fontos hangsiilyozni, hogy a
kinetikus elméletben a GK-egyenlet egy hidrodinamikai kozelités, tehat megengedi
a héaram orvényességét is, ami példaul szuperfolyékony kozegek modellezése esetén
fontos. Az itt targyalt kontinuum-megkozelitésben ez a kényszer nem all fenn. A
(2.21)-(2.22) GK-egyenlet fenntartja a lehet&ségét, hogy figyelembe vegye az 6sszes,
kinetikus elmélet altal adott kényszert, de hangstlyozom, hogy ez csak lehetdség,
ettél a kontinuummodell sokkal tobb mindent is megenged. Ez a szabadsag az
effektiv modellezés és a nemlinearitasok szintjén mutatkozik meg.

Az 1, » paraméterek kontinuum keretbeli jelentését tjfent a T-reprezentacio teszi
atlathatova, azaz

1
70T + 0T = aAT + (1 + n2) O, AT + (QV + 70iqv — (1 + 772)AQV>7 (2.26)

(

ahol a teljesség kedvéért a qy = qy(r,t) térfogati héforrast is figyelembe veszem.
Egyrészt, effektiv szempontbdl az (n; + n) /7 paraméterek egy tGjabb difftziés id6-
skalat szabnak meg, ami a klasszikus a héfokvezetési tényezovel dsszemérhetd, ezek
egyfajta statikus és dinamikus hofokvezetési tényezok, amelyek megjelenése a héve-
zetési folyamatok sebességétol fligg. Ez azt jelenti, hogy a lassi folyamatok esetén
a dinamikus (1, + 1) /7 skala elhanyagolhat6, ellenben gyors folyamatoknél a di-
namikus skala fog dominalni, analég médon a mechanikaban is ismert statikus és
dinamikus Young-modulussal [79]. Tovabbi tjdonsédg, hogy kiterjesztett hévezetési
egyenletek esetén a gy hoforrasnak egyéb jarulékai is megjelennek, ami tovabb erési-
ti a T-reprezentacio elkeriilését és az egyenletek rendszerében valé gondolkodast. A
(2.26) egyenlet 7 » = 0 egyttthatok esetén kozvetleniil az MCV-egyenletre egyszert-
sodik. Kontinuum szempontboél az 7, o egyiitthatok tovabbi méretskala bevezetését
jelentik, de ennek a jelentdsége a heterogén anyagok modellezésében csekély, igy
ezzel az interpretacioval nem kivanok hosszabban foglalkozni.

A kontinuum-megkozelités-alapi GK-egyenlet jelent6ségét az adja, hogy egy-
masodik diffuziés idoskala miatt, a kinetikus elméleti hattér hianya az egytitthatok
sokkal rugalmasabban kezelését is megengedi. Masrészt kompatibilis a kinetikus
elméleti parjaval, amit igy az adott modellezési feladatnak megfeleléen figyelembe
lehet venni, és ezaltal az alacsony homérsékletii rendszerekre, szilard kozegekre és
folyadékokra egyarant alkalmazhat6. Ujra felhivom a figyelmet a kordbban emlitett
ablakfeltételre, amely segitségével meg lehetett becsiilni, hogy milyen frekvenciatar-
tomanyban figyelheté meg hullamterjedés. Ez a tulajdonsag egyben azt is jelenti,
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hogy a Fourier-tél eltérd viselkedés megjelenése fiigg a peremfeltételekben megjelen6
idoskalaktol is, példaul egy héimpulzus hosszatél. Ez 6sszhangban van az elébb em-

s sz

hémérsékletii kisérleti eredményekkel is [18,31,80,81].

2.2.2. Jeffreys-egyenlet

Az alternativ hovezetési modellek soraban az tgynevezett Jeffreys-egyenlet kovet-
kezik, ami az el6zoekben bemutatott modszertanon keresztiil szintén levezetheto.
Ehhez ujfent sziikség van az allapottér kiterjesztésére, az e fajlagos bels6 energian
kiviil még egy & vektorialis belsé valtozot is figyelembe kell venni,

s = sple) — 2125 & keRS (2.27)

ahol a &-hez most nem rendelek olyan pontos fizikai jelentést, mint a héaramhoz.
Ez egy altalanos eljaras az ugynevezett belsd valtozdés modszertan keretein beliil.
A masodik fététel ennek ellenére megszoritast ad € idofejlodésére, valamint linearis
esetben & konnyen kikiiszobolhet6vé valik [74]. Ahogy a GK-egyenlet esetén is, Ggy
most is fenndll az, hogy (2.27)-ben nem kotelez§ a p-val val osztést bevezetni.
Ellenben, az entrépia aramstiriisége marad a klasszikus q/7T" forméban. gy a o,
entropiaprodukciéra az adodik, hogy

1
0y = —k€DE+q- Vo 20, (2.28)

ahol a Curie-elvet Gjra alkalmazva egy q és a € kozott egy csatolt egyenletrendszert
kapunk:

Q= 10V + a(-E), (2.20)
0§ = l21V; + lyg (—KE). (2.30)

Ezt nevezem a Jeffreys-egyenlet onsageri alakjanak, ami egy igen érdekes egyen-
letrendszer. Egyfeldl, a &-t a (2.29) dgy definidlja, mint a q hédramstiriiség és a
hémérséklet gradiensének a kiilonbségét, mas szoval a Fourier-féle és a Jeffreys-féle
hédramsiirtiség nem ugyanaz. A (2.30) egyenlet megadja & id6fejlédését, valamint
az egyiitthatokra a méasodik fotétel a

li1 >0, log >0, lilaa —liglyy >0 (2.31)

megkotéseket teszi a pozitiv szemidefinitas kielégitése miatt. Osszességében véve
a (2.29)-(2.30) egyenleteket tekintem a Jeffreys-egyenlet alapveté forméjanak. Ha
a (2.27)-ben nem veszem figyelembe a p-val valé osztast, akkor viszont a (2.30)
egyenlet bal oldalan jelenik meg pd;&-ként, ez szintén modellezési valasztas kérdése.

Linedris esetben, ahol az [;; (i,j = {1,2}) egyttthaték mind konstansok, a &
kikiiszobolése utan a Fourier-torvény atlathatobb altalanositasara jutunk. Elsoként
az 1/T derivalasanak elvégzése nélkiil kapjuk, hogy

1

~ 1 ~
T@tq +q= Alv? + )\QatVT, (232)
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amiben az egyiitthatok

1 ~ detlij N

laok l2o (2.33)
moédon alakulnak. Az 1/T derivdltjai utdn megjelend 1/7? tagot — féleg az utol-
sO vegyes derivaltak esetén — mar konstansként is kezelheto egy Ty referencia-
homérsékletet véve. Ezzel a feltétellel, a GK-egyenlettel ellentétben, mar konstitutiv
szinten is jol lathatéva valik a statikus és dinamikus idoskala,

7O q+q=—-MVT — X0, VT, (2.34)
amiben
M A2
M= ——=, A= —. 2.
1 T027 2 T02 ( 35)

Igy (2.34) formailag tartalmazza a Fourier-torvényt, és annak idé szerinti derivlt-
jat is. Egy igen fontos megéllapitds az, hogy linedris esetben a GK- és a Jeffreys-
egyenletek kiegészitik egymast. A GK-egyenlet egy statikus és dinamikus hofok-
vezetési tényezot, a Jeffreys-egyenlet azonban egy statikus és dinamikus hévezetési
tényezGt tartalmaz. Nemlinedaris esetben a két modell 1ényegesen eltérd tulajdonsa-
gokkal rendelkezik.

c sz

A A
TattT + atT = alAT + agTatAT, a); — ! s a9 = 2 (236)
PCy T PCy

alakot Olti a (2.7) mérlegegyenletet felhasznalva. Az utolsé tagban széndékos a 7
relaxacios id6 beemelése, ugyanis ezzel a kombinacioval az a; mértékegysége egyezni
fog az a1 héfokvezetési tényezovel, és igy értelmezhetové valik a statikus és dinamikus
héfokvezetési tényezék megjelenése is. A (2.36) azt mutatja, hogy a Jeffreys-egyenlet
effektiv modellezési szempontbol, térfogati héforrasok nélkiil, linearis esetben analog
lehet a GK-egyenlettel. Més szdval, eltéré hoarammezovel ugyanarra a homérséklet-
eloszlasra vezethet, de ennek feltétele, hogy a GK-egyenlet esetén a héaramstiriiség
orvénymentes maradjon. Mivel a gyakorlat szamara a hoarammezo lényegesen ki-
sebb jelentOséggel bir, ezért ez a kilonbség nem lesz donté fontossagi. Szintén
lényeges tulajdonsag, hogy bar a \; egytitthato lehet nulla, vagyis vissza lehet kapni
a Cattaneo-egyenletet, de ha a 7 = 0, akkor egybdl a Fourier-torvényre redukalodik
a modell. Ez csak az onsageri egyenletek szintjén latszik, a (2.36) T-reprezentaci6
ezt teljesen elfedi.

2.2.3. A 2-homérsékletit1 modell

Megkeriilhetetlen alternativat jelent a 2-hémérsékletii modell, amellyel a GK-, va-
lamint a Jeffreys-egyenlettel olyan médon analdég, hogy szintén két idoskalat vezet
be, de nem a Fourier-torvény altalanositdsan keresztill. A modellezési elképzelés

20



kovacsr 325 25

szerint a vizsgalt rendszer két eltéré komponensre bonthatd, eltéré hoékapacitas-
stiriségekkel, hovezetési tényezokkel, melyekre kiilon-kiilon igaz marad a Fourier-
torvény. A két komponens a mérlegegyenleten keresztiil egy héatadési tagon keresz-
til csatolodik, azaz a (2.7) és a (2.4) egyenleteket felhaszndlva,

ahol h fejezi ki a két komponens kozotti "térfogati' héatadasi tényezbt (ami nem egye-
zik a korabbiakban bevezetett o héatadési tényezével). A (2.37) T-reprezentacidja,
példaul az els6 komponensre tovabbi héforrasok bevezetése nélkiil,

10Ty + 0,y = AAT, + 1?0,ATy, — YAATY, (2.38)
a
P1C1P2C2 A+ A 9
= , A = — " =71(ay +a , = Ta10a2, 2.39
h(pic1 + pacs) P1C1 + P2Ca (@ 2 7 e ( )

valamint az a3 = A;/(pic1) és as = Ao/(paca) egyiitthatokkal azt sugallja, hogy
a (2.38) egyenlet lefedi a GK- és Jeffreys-egyenleteket, az utolsé tagban val6 el-
téréssel. Ez egy igen félrevezetd elképzelés, és az analégia csupan formélis. Er-
demes megfigyelni, hogy az egyiitthatok egyaltalan nem fiiggetlenek egyméstol,
a hokapacitas-siirtiségek és a hdvezetési tényezok alkotjék, ellentétben a GK- és
Jeffreys-egyenletekkel, ahol az egyiitthatok linearisan fiiggetlenek egymastél. A 2-
homérséklett modell esetén értelmes még az atlaghémérséklet bevezetése is,
T — prciTy + pacaly
p1C1 + P2co

moédon, az egyes komponensek hokapacitasaival silyozva. Az atlaghémérséklet emi-
att akkor is értelmes marad, ha a h csatolé hoatadasi tényezo zérus, a komponensek
egymastol szigeteltnek tekinthetoek.

A (2.37) hallgatblagosan magéba foglalja azt is, hogy az egyes komponensek
térben Osszefliggdek, ugyanis az egyes komponenseken beliil hévezetést ir le. Ez a
tulajdonsag egy rétegelt kompozit esetén teljesiilhet, de egy fémhab esetén mar csak
akkor, ha nyilt cellas szerkezetrdl beszéliink. Zart cellas habok esetén az tiregek csak
a matrixanyagon keresztiil vannak kapcsolatban egymassal, igy ez a feltétel séril.

A két hovezeté komponens felirdasa nem jelenti azt, hogy a rendszer kizardlag
két komponensbdl allhat, példaul egy kozet esetén elképzelhetd, hogy a vizsgélt
test szdmos tovabbi komponenst is tartalmaz. Ilyenkor a két hévezetési komponens
kiilon-kiilon is lehet effektiv, vagyis magukba foglalhatnak eredd, tobbkomponensii
rendszereket is, ilyen lehet példaul egy szemcsékkel erositett fémhab, amelyben a
matrixanyagnak az effektiv tulajdonsagait tekinthetjik [82,83]. Az elvaras az, hogy
végiil kettd hévezetési skalara redukalhatéd legyen a vizsgalt tobbkomponensii test
(ez igaz a GK- és a Jeffreys-egyenletekre is).

(2.40)

A modell kritikus eleme a vizsgdlt test ismert szerkezetére, dsszetevdire vonatkozik.
Tisztan kétkomponensi esetben az egyes komponensek pontos ismeretére elenged-
hetetlendl szikség van [83]. Ha ez a szitudcid nem all fenn, akkor mérések ditjan
az ismeretlen paraméterek egyértelmien nem meghatdarozhatoak. Ez konnyen beldt-
haté a (2.40) dtlaghémérséklet definicicjabol. Eqy mért dtlaghémérséklet barmilyen
hékapacitas-striség kombindcioval leirhato, fiiggetleniil a részrendszerek homérsék-
letétol.
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Tovabba, ketténél tobb komponensii rendszer modellezése esetén az egyes rész-
rendszerekre vonatkozé effektiv paraméterek meghatarozasa szintén nehézségekbe
iitkozhet. Visszatérve a szemcsékkel erdsitett kompozitra, a szemcsék térfogatara-
nya nem elegendd, mivel aprobb szemcsék alkalmazasa esetén tobb kontaktfeliilet
alakul ki, amelyek tovabbi kontaktellenallasokat hoznak létre [82].

A kezdeti és a peremfeltételek esetén tovabbi kérdések meriilnek fel. Kétkom-
ponensii rendszer esetén a feltételeket komponensenként kell megadni. Mivel az
egyes komponensek példaul eltéro sugarzaselnyelo és kibocsato tulajdonsagokkal ren-
delkeznek, ezért a homérsékleti sugarzas kezelése a feladatot jelentésen bonyolitja.
Térfogati hoforrasok esetén szintén problémaba titkoziink, példaul egy helyfiigg6 ho-
forras leirasa a komponensek hatarfeliiletein a folytonossagi hatarok megszakadasa
miatt igen nehéz lehet. Egy habos szerkezetli anyagnal, még ha csak az egyik kom-
ponensben is irjuk el6 a héforrast, akkor is a teljes test egészére értendé (azaz a
teljes matrixanyagra), emiatt a héforrdsok kezelése igen koriilményessé vélik. Ket-
ténél tobb komponensi rendszerben tovabb nehezedik a feladat, akar a hoéforrasok,
akar a mellékfeltételek helyes megadasa esetén. Ugyancsak érdekes, de kihivast je-
lent a mérlegegyenletben 1évé h héatadasi tényezo kérdése is, amely nagysagrendjére
egyaltalan nincsenek megkotések, {gy akar 1072 — 10° W/(m? K) kozott véaltozhat,
akar helyfiiggé modon is.

Ezen tulajdonsagok miatt a 2-homérsékleti modell alkalmazasi lehetoségei rend-
kiviil leszlikiilnek, és a hagyoméanyos hévezetési-héfokvezetési tényezo mérések kiér-
tékelésére nem hasznalhatd. Emiatt a tovabbiakban nem kivanok erre a modellre
nagyobb hangstlyt fektetni, és nem is kivinom a Fourier-torvény alternativajaként
feltiintetni, az ismert matematikai és fizikai tulajdonsdgai ellenére.

Végiill megjegyezem, hogy a szakirodalomban nem szokas a bemutatott 2-
hémérsékletit modell konzisztens irreverzibilis termodinamikai levezetését targyalni,
amelyben a Curie-elv miatt a q; o héaramstriiségek csatolédnanak. Az ok a mo-
dellbe impliciten beleértett tulajdonsagban rejlik: a két komponens térben szepardlt
egymastol, ilyen médon nem keverékként tekintiink a vizsgalt testre, ellentétben
példaul a gazkeverékekkel, ahol a q; + q2 Osszeg értelmes és hasznélatos.

A szakirodalomban tovabbi 2-hémérsékleti modellek is ismertek [32,59, 84], de
azok mar az MCV-, valamint a GK-egyenletek csatolasat tartalmazzak, amelyekben
kettonél mar lényegesen tobb a megjelend hovezetési idoskala, emiatt az ismeretlen
paraméterek szama is, és igy azok gyakorlati felhasznaldsa tovabbi problémakba
iutkozik. Ezekrdl roviden, a teljesség kedvéért, a kovetkezo alfejezetben ejtek szot.

2.2.4. Dualis faziskésésu modell

A két idoskalas modellek attekintésekor az tgynevezett dudlis faziskésésit modell
(DPL - az angol "dual phase lag" roviditéseként, a szakirodalomban ez a révidités
terjedt el) [85,86] szintén valddi alternativanak tiinhet, de a kapcsolédd hévezetési
egyenletek nem egy konzisztens irreverzibilis termodinamikai levezetés eredménye-
ként addédnak. Habar ez a tulajdonsiag a 2-hémérsékletii modellre is igaz, de a
Fourier-torvény jol ismert, és a modell viselkedése nem titkozik olyan modon a ter-
modinamika f6tételeibe, mint a DPL-egyenlet esetén. Ugyanis a DPL-egyenletnél a
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kiindulasi pont egy olyan konstitutiv osszefiiggés, amely énmagaban nem megold-
hato. Ezt a

q(r,t +7,) = —-AVT(r,t + 1r) (2.41)

formaban szokds megadni, ahol a 7, és 7p ismeretlen relaxaciés idé paraméterek,
az indexek tikrozik, hogy melyik mez6hoz tartoznak. Az alapotlet szerint a (2.41)
egyenlet bal és jobb oldala az id0 szerint egyarant tetszoleges rendig Taylor-sorba
fejtheto. FEz az eljaras alapvetdoen nem kompatibilis a termodinamikai elvekkel,
emiatt két eset lehetséges. Az els6é esetben minden feltétel nélkiil instabil modellre
jutunk, azaz barmely relaxaciés id6 parndl az egyenlet még kozelitéen sem lesz
megoldhato. A masodik esetben tisztan matematikai eredetii stabilitasi feltételeket
kapunk, amelyeknek nincs igazi fizikai tartalmuk, de a modell megoldhatéva valik.
Ezeket a feltételeket a [6,87] szakirodalmak foglaljak 6ssze. Példaként tekintsik a
{2, 1}-tipust DPL modellt, amely azt jelenti, hogy a bal oldalon masodrendig, a
jobb oldalon els6 rendig torténik a sorfejtés, azaz

2

-
Eq@ttq + 7,009 +q = —AVT — A0, VT, (2.42)
amelyhez a
TT 1
- > = 2.43
Ty~ 2 ( )

stabilitasi feltétel kotodik, de a {2, 2}-tipusi esetén ez a

2+v3>2L>2-3 (2.44)

Tq

alakra modosul. Magasabb rendii sorfejtések esetén a feltételek rendkiviili moédon
elbonyolédnak, és nem 4tldthatéak. Erdemes megjegyezni, hogy a DPL modell elsé
bevezetésekor Tzou [85,86] barmely 7, > 7p és 7, < Tr esetet megengedve interp-
retalta a modell jelentését, félrevezetéen. A vonatkozé szakirodalom azdta olyan
méretiire duzzadt, hogy a modellek egységesitése és letisztazéasa, valamint a DPL-
hez hasonl6 termodinamikailag inkompatibilis megkozelitések kivezetése valoszintileg
csak az igen tavoli jovOben torténhet meg.

Az eldzéekben bemutatott GK- és Jeffreys-egyenletekkel dsszevetve be kell ldtni —
tul a stabilitdsi feltételeken — hogy az eqyiitthatok kozotti dsszefiiggések a termodina-
mikai hdttér hidnya miatt nem ldtszanak. A stabilitdsi feltételek megkeresése igen
fdradsdgos, és mem univerzilisak. Anizotrop vagy nemlinedris esetek tdrgyaldsa
a modellben ezen tényezok miatt kizarhato, konzisztens termomechanikai csatolds
nem valdsithaté meg. Mindemellett tovabbi, fizikai (téridébeli) problémdk is van-
nak [88], és tulajdonképpen a DPL-egyenlet nem lehet a Fourier-térvény érvényes
és dltaldnosan haszndlhatd alternativdja, annak ellenére sem, hogy az {1, 1}-tipusi
DPL modell a linedris Jeffreys-egyenletre vezet. Emiatt a tovabbiakban a DPL
modellel nem foglalkozom tovdbb.
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2.3. Kettonél tobb idoskalas hovezetési modellek

Mivel a dolgozat nem hasznélja ki a kettonél tobb idoskalat tartalmazo hévezetési
modellek ismeretét, ezért itt csak a teljesség kedvéért, a jobb atlathatosagért és
OsszevethetOségért, roviden Osszefoglalva mutatom be a lényegesebb modelleket. Ezt
azért is tartom fontosnak, mivel a hazai szakirodalmi forrdsok ilyen tekintetben igen
szerények. Részletesebb attekintésekért a [6,19,89-91] szakirodalmakat ajanlom.

A két idéskalas modellek esetén vagy két effektiv diffizids jelenség skalait, vagy
egy diffuzids és egy hullamterjedési jelenség skalait tekintettem at, amik koziil mér-
noki szempontbdl az elébbi bir nagyobb jelentéséggel. A ketténél tobb idoskalas
modellek esetén a masodik hang mellett a ballisztikus vagy egyéb termomechanikai
jelenség jellemzo iddskalaja jelenik meg. Fz kontinuum-termomechanikai oldalrol
magéval hozza a mésodrendii tenzoridlis mennyiségek (mezék) bevezetését, de ennél
tovabb nem lép, ellentétben a kinetikus elméleti alapokon nyugvé fononhidrodina-
mikai megkozelitéssel [12,27]. Ugyanis, habar a jelenségek szintjén nem ad b&vebb
leirast, mégis alapvetden a Boltzmann-egyenlet momentumsorfejtésén keresztiil egy
olyan modellt vezet be, amely tetszoleges, megszamlalhatéan végtelen sok idoderi-
valtat tartalmaz egyre novekvo tenzori rendii mennyiségekkel. Ez matematikailag,
egy térdimenzidéban a

5 ) 5 5 0 m=20
U(m) m U{m—1) U(m+1) 1
- _1 -1 7
ot + 4m? — 11} ox v 0z g 1D m
(2 4+ L) up 2<m<M
TR ™

(2.45)
alakot 6lti, ahol v a fononok Debye-sebessége®, valamint u az egyes momentumokat
jeloli (példaul energia, impulzus, nyomads), de nem minden momentumhoz lehet exp-
licit fizikai jelentést tarsitani, analdog modon a belso valtozos modszertannal. Tovab-
béa () jeloli az egyes tenzorok szimmetrikus nyomtalan részét, és M egy tetszdleges
természetes szam lehet, M = 30 esetén kaphatéo meg a hangsebesség elfogadha-
t6 szintl kozelitése. Ez a valosagban egészen harmincadrendil tenzori rendig tartd
mezok kezelését koveteli meg, a kezdeti és peremfeltételekkel egytitt.

A kordabbiakban emlegetett normal és rezisztiv titkozések a Tr és Ty relaxédcids
szert az elmélet tgy épiti meg, hogy barmely csonkolasos lezaras eredményeként
(tetszOleges M esetén a legmagasabb tenzori rendii mennyiséget nulldnak valaszt-
va) hiperbolikus rendszert kapjunk eredményiil, emiatt a parabolikus modellek csak
azok hiperbolikus kiterjesztésével férnek a (2.45) egyenletrendszerbe. Szintén a meg-
kozelités érdekessége, hogy habar végtelen sok idéderivaltat tartalmazhat, jelenségek
szintjén mégis csak a harom alapvetd hévezetési mechanizmust irja le, a diffizios,
a masodik hang, valamint a ballisztikus terjedést, de minden momentumnak sajat
idéskéalaja van. Ilyen a kontinuumelméletekben nem fordul eld, és ez élesen kihat
hoz igen nehéz (mér ha lehetséges) a megfelel$ fizikai tartalommal bird kezdeti és
peremfeltételek kijelolése, valamint azok megoldasa, féleg M > 2 esetén.

6 A transzverzalis és a longitudinalis terjedési sebességek kombindciéjabél adédik ki.
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A (2.45) rendszer M = 2 esetére vonatkozé kontinuum megfelel6je [14,92]:

poe + 0,q = 0, (2.46)
7,004 + ¢ = =20, T + 10,Q, (2.47)
700 Q + Q = 10,4, (2.48)

ahol a () harom térdimenziéban egy masodrendii tenzor, és a q gradiensével aranyos;
valamint [ egy térskalat jelol, a fononhidrodinamikai megkozelitésben ez megegye-
zik a kozepes szabad tthosszal. Amennyiben 7 relaxécios idét nulldnak valasztjuk,
az azt jelenti, hogy a ) mezohoz tartozd folyamatok végtelen gyorsan jatszédnak
le, azaz a () azonnal relaxalt allapotba keriil, és igy a () értelmezése egybecseng
a GK-egyenlet kapcsan a B dramszorzordl tett megallapitdsokkal. A (2.47)-(2.48)
egyenletek kozvetlentil visszaadjék a GK-egyenletet (helyesebben szélva annak egy
térdimenziés véltozatat). Specialis esetekben a 7, és 7¢ relaxaciés idok megfeleltet-
hetéek a Tp és Ty rezisztiv és normdl itkozések karakterisztikus idejének a (2.45)
egyenletrendszerrel valo 6sszevetés alapjan, de a kontinuum-megkozelités ezeket sza-
bad (de pozitiv szemidefinit) paraméterként kezeli. Az [ térskala egy kontinuummo-
dellben a mérési eredményekhez illesztheté paraméter, példaul ennek segitségével,
adott 7, és 7@ esetén, a terjedési sebesség pontosan beallithatd, mint kisérletileg
megfigyelt tény (amelyhez a korabban bemutatott hiperbolicitasi tulajdonsagokat
kivaléan fel lehet hasznalni). Ezzel szemben a fononhidrodinamikai megkézelités-
ben ez egy fix paraméter, és emiatt lényegesen tobb egyenletre van sziikség a terjedési
sebességek pontos megadasahoz. A két megkozelités tehat itt élesen elvalik egyméas-
tol, és ez nagyban elOsegitette az tgynevezett NaF kisérletek kontinuummodellel
torténé kiértékelését [93]. Ezek a kiértékelések ravilagitanak a 7, és 7 relaxdcios
idok hémérséklettdl valo fiiggésére is. Az ilyen tipusi nemlinearitasokrél bovebben
a kovetkezo fejezetben lesz szo.

Az idoskéalak szama a 2-hémérsékletit modellek kiterjesztéseiben tovabb névek-
szik. Hasonléan a (2.37) modellhez, dupla Fourier-egyenlet helyett dupla MCV-,
vagy akar GK-egyenleteket is tekinthetiink, ami foleg elektron-fonon rendszerek vi-

nn

selkedését hivatott jellemezni [84], erre utalnak az "e" és "f" indexek is:
CvT = Cv,eTe + Cv,foa Co = Cype + Co,fs 9 =0 + qs, (249)

valamint a kapcsol6dé fejlodési egyenletek,

peOree +V - qe = h(T, — Ty), (2.50)
pfat€f+v-Qf = ?L(Tf —Te), (2.51)
0 +q; = =NV, (i=e, f), (2.52)

amelyben a csatolast szintén egy hoatadas jellegli tagon keresztiil valésitjak meg.
Kovetkezésképpen, a modellben két difftzids és két hullamterjedési (méasodik hang)
idoskala jelenik meg, valamint a hoatadashoz, mint csatolashoz is tartozik egy ka-
rakterisztikus idéalland6. A (2.37) 2-hémérsékletii rendszer esetén megfogalmazott
kritikdk most is érvényesek, és a kapcsolédd problémék csak bonyolultabbéd valnak
minden egyes kiterjesztési lehetéség hozzaadasaval.
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Egy harmadik, természetes alternativa is van a ballisztikus terjedés figyelembevéte-
lére vonatkozoan [94-96]. Ez nem mas, mint az MCV-egyenlet hétagulassal kiegészitett
modellje, vagyis ebben a fajlagos bels¢ energia

e—cT+ 2y E—ﬂToe, (2.53)
2p p
mar tartalmazza az e-nal jelolt fajlagos alakvéltozast (egy térdimenziés esetben), az F
Young-modulust, a 8 hétagulasi egyiitthatét, valamint egy Tj referencia-homérsékletet
[97,98]. Itt Gjra hangsulyozom, hogy egy ilyen termomechanikai esetben a transzport-
egyiitthatok fajlagos belsé energiatol valo fiiggése magaval hozza példaul a fajlagos
alakvaltozastol valé fiiggést is, és ez mar a Fourier-egyenlet szintjén is megjelenhet, de
ezt mélyebben a dolgozat nem targyalja. Ez az elobbiekben emlitett NakF kisérletek
modellezésére szintén alkalmas megkozelités [94], és egyben vildgosabb fizikai tarta-
lommal is rendelkezik, szemben a fononhidrodinamikai megkozelitéssel vagy az azzal
analog, (), mint a h6aram aramat tartalmazé (2.46)-(2.48) egyenletekkel.

2.4. Osszefoglalas

A dolgozatom a GK- és Jeffreys-egyenletekre épitve fog tovabb haladni, mivel tgy
tekintek ezekre a modellekre, mint a Fourier-egyenlet valés, mérnoki szempontbol is
jol hasznalhato alternativaira a két diffizios idoskala jelenléte miatt; emiatt ezek mé-
lyebb termodinamikai bemutatasa elengedhetetlen volt. A 2-hémérséklet és a DPL
modelleket a lehetséges alternativak koziil biztonsaggal ki tudom zarni. A kutatasi
eredményeim nem a modellek levezését tekintve ijak — azok mar télem sokkal hama-
rabb a szakirodalom részét képezték — hanem a megkozelités miatt, ahogy a modelleket
kezelem, és igy a kovetkez6 szakteriileti ajanlasokat, mint a sajat tudoméanyos eredmé-
nyeimet tudom megfogalmazni.

1. Tézis — A Fourier-egyenleten tili modellek definialasa

Kimutattam, hogy a Fourier-egyenleten tuli modelleket azok onsageri alakja-
val kell definialni, ami egyértelmiisiti a termodinamikai erék és aramok ko6zotti
osszefiiggéseket, a makroszkopikus transzportegyiitthatok kézotti kapesolatokat,
valamint a kezdeti és peremfeltételek fizikai tartalmat. Az onsageri alak mellé
meg kell adni a modellhez tartozé allapotteret. A transzportegyutthatok alla-
potfiiggését onsageri szinten kell definidlni.

Az 1. tézishez kapcsolodd publikéciok: [6,14,63,74,99-103].

2. Tézis — A két difftzids idéskalaval rendelkezd modellek értelmezése

Megallapitottam, hogy a Guyer-Krumhansl- és Jeffreys-egyenletek, mint két id6-
skalas modellek megkiilonboztetnek statikus és dinamikus hévezetési és hoéfok-
vezetési tényezoket. Mivel meglatasom szerint a Guyer—Krumhansl- és Jeffreys-
egyenletek esetében a Fourier-szdm nem pontos és félreértésre ad okot, ezért a
Fourier-szam elnevezést statikus és dinamikus idéskalara javaslom mddositani.

A 2. tézishez kapcsol6dé publikécidk: [6,103,104].
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3. fejezet

Az anyagi nemlinearitasok szerepe

A Fourier-torvény és az azon tuli modellek kozott tobb lényeges kiilonbség is van,
amelyeket a gyakorlati alkalmazasokban figyelembe kell venni. Korabban mar em-
litettem a kezdeti és peremfeltételeket, illetve azok definialasat, ezekkel részleteseb-
ben konkrét megoldasokon keresztil a kovetkezo fejezetben fogok foglalkozni. Eb-
ben a fejezetben most az anyagi nemlinearitasok kezelésére fokuszalok, mint példaul
a transzportegylitthatok hémérséklettol vald fliggésére. Ez azért is 1j és érdekes
szempont, mert a Fourier-torvényben csupan egy transzportegyiitthatd talalhato,
a hovezetési tényez6. Ez bizonyos specialis esetekben a hdvezetési mechanizmus
pontos ismeretének birtokdban kiszdmolhat6 [12,105], de altaldnossdgban nem, és
leginkabb méréseken keresztiil hatarozhatoé meg.

Heterogén anyagok (példaul a kiilonféle pordzus szigetelések) esetén egy effek-
tiv hovezetési tényezot mérhetiink ki, még akar az dsszenyomo eré fiiggvényében is,
megfigyelve, hogy a pérusok zarédasa milyen hatdst gyakorol a hévezetési tényezo-
re [106]. A Fourier-féle hévezetési egyenletben (linedris esetben) elég csak a héfok-
vezetési tényezot ismerni egy test tranziens viselkedésének a leirdsdahoz. Ezt szin-
tén csak méréseken keresztil lehet megbizhatéoan meghatarozni, heterogén anyagok
esetén ez is effektiv jellemzové véalik. Ezt az effektiv hovezetési tényezot anyagszer-
kezettdl fiiggéen igen sokféle mennyiség hatarozza meg (példaul habositott anyagok
esetén az iiregek helyzete, eloszlasa, mérete, az azokat kitolté anyagok), emiatt an-
nak tisztan elméleti irdny meghatarozasa altaldanos esetekre nem lehetséges, csakis
az anyagszerkezet pontos ismeretében becstilhet specidlis esetekben [105]. A hely-
zetet tovabb neheziti, hogy a hévezetési tényezo fiigg az anyag allapotatdl is, példaul
annak homérsékleti és nyomdas viszonyaitol [77]. A Fourier-egyenlet esetén leggyak-
rabban a hdévezetési tényezo homérsékletfiiggését szokas vizsgdalni, ez mérések utjan
meghatarozott anyagszerkezeti tulajdonsag.

Fourier-egyenleten tuli modellek esetén az allapottérnek nemcsak a fajlagos belso
energia és azon keresztiil a homérséklet, hanem a héaramstiriiség is részét képezi,
igy a A = \(T, q) dsszefiiggés értelmes’. A g-tdl vald fiiggést példaul félvezetSk vagy
specialis nanoszerkezetli anyagok esetén értelmes figyelembe venni, ahol tgynevezett
termikus diodakat, egyeniranyitokat alakitanak ki erre a célra tervezett anizotrop

'Habar a dolgozatnak nem targya, de felvetédhet a kérdés, hogy ha egy anyag transzportjel-
lemzdje fiigg a benne kialakulé héaramtol és annak iranyatol, akkor az objektivitasi szempontokat
(réviden csak megfigyel6tél valo fuggetlenséget) milyen konstitutiv osszefiiggés elégiti ki, féleg a
Fourier-egyenleten tili esetekben [107-109).
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vagy egyéb heterogén anyagi szerkezet segitségével [110-115]. Ekkor a hétranszport
mértéke fiigg a héaram iranyatol is.

Q1 > Q1> Q2 < Q2
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3.1. Abra. Feliil lathaté a rendszer elrendezése és az alkalmazott homérséklet-
peremfeltételek. Ha a két anyag jelentésen eltérd hovezetési képességgel rendelkezik, akkor
a hovezetési tényezd hémérsékletfiiggésébol adoddan a Q1 és Q2 héaramok jelentésen eltér-
nek egymastol [116]. Az egyenld tertiletek azt mutatjik, hogy mindkét anyagon ugyanaz
a hoaram halad at.

Ennek létrehozasahoz elegendd egy egyszertiibb, specialis, de makroszkopikus ese-
tet tekinteni, ami mar elvben a Fourier-torvény esetén is meg tudja valésitani a
termikus egyeniranyitdst, azaz elegendd hozza a A = A\(T') Osszefiiggésre és ennek
kovetkezményeire koncentralni. Ennek szemléltetéséhez egy olyan heterogén szerke-
zetet mutatok, amely két kiillonbozé anyaghdl all és mindkét anyagnak figyelembe
vessziik a A = A\(T') tulajdonsdgait. Részletes lefrdsért és tovabbi irodalomért a [116]-
re hivatkozok, a kovetkez6 példa és a 3.1. dbra is innen szarmazik. Ezt a jelenséget
az idézi el6, hogy a két anyag merében eltéré A(T) fiiggéssel rendelkezik, tehat a
nemlinearitas kulcsfontossag ahhoz, hogy egyfajta egyeniranyitast lehet létrehozni.
Mivel a szakirodalom ezt f6ként mikroszkopikus szinten vizsgélja, ezért egyrészt a
Fourier-egyenleten tili modellek relevansak, méasrészt altalaban véve is a mérnoki
gyakorlat szamara fontos lehet az, hogy egy heterogén anyag effektiv leirasara hasz-
nalt Fourier-n tili modell hogyan viselkedik ilyen nemlinearis esetben. Emiatt ennek
a fejezetnek a célja azt bemutatni, hogy a A(T) fiiggés milyen kovetkezményekkel
jar a GK- és Jeffreys-egyenletek szintjén.
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3.1. MCV-egyenlet

A helyzet 1ényegesen bonyolultabba véalik mar a legegyszeriibb kiterjesztett hoveze-
tési modell esetén is. A GK-egyenlet onsageri alakjat felidézve a modellt a

1

L,ds LS — L,dS d,A
B=—-(Va+ (Va)") + (V)i + =

egyenletek alapjan definidltam. Az alapvetd nehézséget akkor lehet jobban atlatni,
ha a B aramszorzot nullanak tekintem (pontosabban szélva, ha egyéltaldan nem is
veszem figyelembe), akkor a modell az MCV-egyenletre egyszeriisodik,

e:(Vxq), (3.2)

1

amelyben a 7 = [k, A = [ /T? transzportegyiitthatok jelentkeznek, valamint lehetéség
van a p figyelembevételére is, ekkor 7 = plk adédik a korabbi, (2.10) egyenletnél
részletezett gondolatmenetnek megfelelGen.
A Fourier-torvényhez képest nem csak, hogy tobb a transzportegytitthatok szama
(X és 1), de rdadasul azok 6sszefiiggéek is, legalabbis annyira mindenképpen, hogy ha
a A hovezetési tényez6 homérsékletfiggové valik, akkor a 7 relaxacios ido is, viszont
itt tobb valasztasi lehetdség is van. Ismert A(T') esetén [(T) = \(T)T? adédik, ami
az [(T) miatt 6roklédik a 7 relaxacids idére is, de ennek moédja nem egyértelmi,
és egy modellezési dontés koti meg. Ennek megfeleléen dontés kérdése, hogy a
7(T) fuggvényt elfogadjuk-e olyannak, amilyennek [(7T")-bdl szarmazna konstans k
és p egyiitthatok mellett, vagy egy el6irt vagy megmért fiiggésre kell beallitani az
utobbi egyttthatok felhasznalasaval. Ezen a ponton tovabbi dontéseket kell hozni.
Egyrészt, ha a k = k(T'), akkor a konstitutiv egyenlet levezetését djra kell kezdeni,
mivel egy dk/dT-vel ardnyos jarulék fog benne megjelenni [100],
T(T)0q +q (1 + @MV . q) = —-\T)VT, (3.4)
2 dT
valamint megfontoland6, hogy az entrépiastiriiség (2.10)-szerinti konkav eltoldsa mi-
lyen médon koti meg a k(7') fiiggvényt annak pozitiv szemidefinitdsan til. A szakiro-
dalom egyéltalan nem tekinti a V -q jarulékot, és ez egy konzisztens termodinamikai
héttér nélkil nem is lathaté meg. A k(T) fiiggvény helyett igy 1ényegesen célsze-
riibb valasztasnak tlinik az, hogy ha k konstans, ezzel elkeriilve a V - q jarulékot és
a kapcsolodé problémakat, de a (2.10)-ben nem osztunk le p-val. Emiatt 7 = plk
adodik és a k(T) helyett egy p(T) fiiggés latszik célszertinek. Ez magaval vonja azt,
hogy a hotagulast, mint alapvetd termomechanikai jelenséget figyelembe kell venni.
A [94] irodalomban ez motivalta a hétaguldssal csatolt MCV-egyenlet kisérleti ada-
tokon valé tesztelését, &ambar linedris keretek kozott. A p(T) megléte nem feltétleniil
igényli a teljes mechanikai hattér figyelembe vételét, de ekkor tisztaban kell lenni
azzal, hogy milyen mdédon csonkoljuk a rendszert. Ebbdl arra is lehet kévetkeztetni,
hogy a megfelels \(T') és p(T') fiiggésekkel rendelkez6 anyag megvalasztasa elen-
gedhetetlen a ballisztikus hévezetés makroszkopikus megfigyeléséhez. Vélhetéen az
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alacsony homérsékleti viszonyok (< 20 K) mindenképpen sziikségesek maradnak ah-
hoz, hogy a termomechanikai csatolas annyira erds legyen, hogy az mar a kisérletileg
is megfigyelheté tartoméanyba esik.

Természetesen az is egy modellezési dontés, hogy az [(T) fliggését nem szar-
maztatjuk at kozvetlentl a 7-ra, de ekkor szintén egy csonkolt modell az eredmény;,
amely csonkolas a megfeleld termodinamikai hattér hianydban rejtve marad, vagy
egy fiiggetlennek gondolt 7(7") el6irdsaval inkonzisztencia keriil be a modellbe. Vé-
gil megjegyzem, hogy az [(T) fiiggését egy inverznek latszé k(T') fiiggéssel nem lehet
kovetkezmények nélkiil "semmissé tenni'. Azaz, ha [(T) = aT és k(T) = b/T alaku
(ahol a,b € RT), akkor az [(T)k(T) = ab szorzatuk valoban figgetlen a hémér-
séklettdl, de a k(T') figgvény derivaltja és a kapcsolodod jaruléka akkor is meg fog
jelenni a modellben, tehat a 7 hidba marad konstans, a modellt mégsem egyszertisiti
érdemben. Mindezek a tulajdonsagok igazak maradnak a GK-egyenletre is, mivel
az MCV-egyenlet annak egy B = 0 hataresete.

3.2. Guyer—Krumhansl-egyenlet

A kovethet6ség miatt megismétlem a GK-egyenlet onsageri egyenleteit,

1
q=1 <—kr6‘tq+VT +V-B>, (3.5)

d,S Ls — Ld,S Ld’A
(Va+ (Va)') + (V- a)l+

ahol az alabbiakban a B Nyiri-szorzoban az L tenzorialis egyiitthatokat az egysze-
riség kedvéért skalarnak tekintem. Az MCV-egyenletre tett allitasok kivétel nélkiil
most is igazak maradnak, ezeket most nem ismételem meg, ezen tilmenden azonban
a GK-egyenletben 1év6 aramszorzé miatt tovabbi szempontokat is figyelembe kell
venni.

Egyrészt, a (3.5)-(3.6) alakot tekintve az [(T') fiiggvény az L egyttthatdkat koz-
vetleniil nem érinti, de a (2.24) formaban (a B kikiiszobolése utdn) az n; és 19
egyltthatékban szerepet jatszik a (3.5) kovetkezményeként. Ekkor egy lehetéség
adddik arra, hogy a kivant n; (1) és 1y (1) fuggvényeket be lehessen épiteni. Ez teljes
egészében a kontinuum-megkozelités sajatja, a fononhidrodinamikai modellezésben
sem a B dramszorzo6 (3.6) altal adott alakja, sem az itt leirt szabadsag nincs meg a
kivant nemlinearitdsok figyelembevételére. Mivel az 1, és 1y egytlitthatok a kozepes
szabad tthosszal kozvetleniil ardanyosak, a fononok kozotti elképzelt kolesonhatasok
és azok allapotegyenlete teljes egészében megkoti annak hémérsékletfiiggését?.

Tovabbi altalanos észrevétel, hogy habar a (3.6)-ban 1évé minden L egytitthato
ugyanannak a tenzornak a linedrisan fiiggetlen komponenseit reprezentalja, ezért fi-
zikai szempontbdl valoszeriibbnek tiinik, hogy ha az egyik hémérsékletfiiggd, akkor a
tobbi is az. Viszont ez a keretrendszer megenged olyan specialis eseteket is, hogy bi-
zonyos komponenseket konstansként kezeljink. A kontinuum-termodinamikai szak-

B:

e:(Vxq), (3.6)

2A félreértések elkeriilése végett fontos tisztdzni, hogy a fononok kdzepes szabad tthossza nem
a rezisztiv, hanem a normal iitkozések relaxacios idejével aranyos, igy részben az ahhoz kapcso-
16d6 homérsékletfiiggés lesz relevans. Mindez csak relaxdciés id6 kozelitésben érvényes, amikor a
Boltzmann-egyenletben 1év6 litkozési integral egyszertisithet6 [6,12,80].
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irodalom nem jutott még el arra a szintre, hogy a (3.6) egyiitthatéinak hémérséklet-
fiiggését akar kisérletileg, akar elvi oldalrol mélyebben elemezze. Ennek egyik oka
az, hogy a GK-egyenlet kontinuumalapt tdrgyaldsa még igen fiatal®, elsd levezetése
Van Péterhez [8] kothetd. A termodinamikai elmélet fejlesztésén til a GK-egyenlet
heterogén anyagokra vonatkozé effektiv értelmezése még fiatalabb, 6sszesen egy 10
éves multra tekint vissza a [14,117-119] irodalmakkal kezd6d6en, amelyekbél kés6bb
tobb mas elméleti és gyakorlati szempont fejlodott ki.

A fenti okok ellenére az alapveté szempontokat igy is lathatova lehet és kell is
tenni. A kovetkezékben az egy térdimenzids esetet vizsgalom [63,103], azaz

q:l< kOyq + Dy +8B> (3.7)
B = Lo, (3.8)

ami a (3.5)-(3.6) rendszernek az egyszertisitett valtozata, valamint az L feletti hulldm
egyrészt jelolésileg megkiilonbozteti ezt az egytitthatot a jellemz6 mérettdl, masrészt
arra utal, hogy az L linearisan fiiggetlen részeinek Osszegeként kell erre tekinteni
(vagyis az Osszes tenzoridlis tag egybeesik). Ha L = L(T'), akkor (3.7) alapjan

dL(T)

z i z )
lﬁm+q:—W®T+m4Mﬂ@@:>7¥MWJMHQM+Z 0,T0,q

(3.9)

alakul ki, azaz nem csupan egy egyiitthato valik homérsékletfiiggévé, hanem megje-
lenik benne a hémérséklet gradiense is. Emiatt (3.9) atcsoportosithaté gy, hogy

lkOyq + q = —1 (7{2 — dﬁé@@q) 0, T + li(T)ﬁmq, (3.10)
ezaltal
70+ q = —NT,q)0,T + 1(T)ssq (3.11)

forméaban is felirhaté a GK-egyenlet, amiben a

T=1k, MT,q) =1 <7}2 - dzgﬂ)@xq> . n(T) = I1L(T) (3.12)

azonositasokat tehetjitk meg. Itt A-ot latszélagos hévezetési tényezének hivom, szdn-
dékosan megkilonboztetve az effektiv hovezetési tényez6tol, mivel ezeket az egytitt-
hatokat két igen eltéro jelenségre leirasara lehet hasznalni. Heterogén anyagok esetén
is lehetne az effektiv h6vezetési tényezot latszolagosnak nevezni, mivel azt lehet mér-
ni, de ebben a nemlinedris esetben a latszolagos hévezetési tényezo jelentésen eltéro
tulajdonsagokkal rendelkezik. Ezeknek a tulajdonsagoknak tobb, igen komoly kdvet-
kezménye is van. A latszolagos hévezetési tényezé nem csupén [ / T? lesz, hanem azt
az L(T) fiiggés médositja, gy még konstans [ esetén is A = A\(T, ) fiiggés figyelhetd

3 A kinetikus gizelmélethez, vagy az irreverzibilis termodinamika megsziiletéséhez képest viszo-
nyitva.

31



kovacsr 325 25

meg, méghozza egy igen specialis médon. A 0,q haromdimenzids esetben a héaram-
stirtiség gradiense, igy akar elofordulhat olyan eset is, hogy a latszdélagos hovezetési
tényezé nem kizarolag pozitiv, és emiatt ugy tiinhet, mintha sértené a termodina-
mika masodik fotételét. Tovabba, a héaramsiiriség gradiensétol valo figgés akér
szélsGségesen meg is valtoztathatja a lokalisan megfigyelhetd latszolagos hévezetési
tényezo6t, amelyre a héimpulzuselvii kisérletek szintén egy jé példat szolgédltatnak.
Habar a fenti megallapitasok szélsoségesnek tlinhetnek, mégis tisztaban kell lenni a
modellek tulajdonsigaival, hiszen a kisérletek kiértékeléséhez pontosan erre a mate-
matikai és fizikai (termodinamikai) hattérre van szitkség. Hangsilyozom, hogy ezek
a megallapitasok a latszolagos hovezetési tényezore érvényesek, a vizsgalt testet fel-
épité anyag tulajdonsagai ettél még nem valnak idofiiggové, és nem léteznek olyan
esetek, hogy egy homogén test valédi hévezetési tényezbje helyfiiggd lenne. Viszont
ezzel egyiitt is nehézségekbe fog titkozni a A és Z~}(T) egyutthatok kisérleti meghaté-
rozasa, de varhatéan a bemutatott termodinamikai hattér kell6 iranymutatast tud
adni a kisérleti elrendezésre és a kiértékelési modszertanra is. Ebbdl a szempontbol
azt latom célszertinek, amit a gyakorlat a hdévezetési tényezo esetén is hasznal: a
referencia-homérsékletet kis 1éptékben valtoztatva rajzoldédik ki a transzportegytitt-
hatok homérsékletfiiggése. Latszolag ugyanez a mddszertan a GK-egyenlet esetén
is jarhato, de mivel ilyen irdanyban még nincsenek elérhetd kisérleti adatok, ezért
ez még csak feltételezés. Az onsageri alak nélkiil az ilyen tulajdonsagok, fliggvény-
kapcsolatok felismerése nem lenne lehetséges, és részben pont ez zarja ki a dualis
faziskésésii modellt abbol, hogy a Fourier-torvény egy valés alternativajaként tekint-
sek ra; valamint éppen emiatt javaslom az onsageri alak figyelembe vételét, mint a
modellt definialé Osszefiiggésrendszert. Az onsageri reprezentaciobdl az is kiolvas-
hato, hogy a p stirtiség végiil milyen médon keriilt a modellbe, és emiatt az is, hogy
a hotagulasi hatasokat hogyan lehet a modellhez csatolni.

3.3. Jeffreys-egyenlet

A Jeffreys-egyenlet onsageri alakja

q= an;, + Lo (—KE), (3.13)
D& = 1V + o —hE), (3.14)

ahol az egyiitthatokat a
l17 >0, log >0, li1lag —ligley >0 (3.15)

kényszerek kotik a pozitiv szemidefinit entrépiaprodukcié miatt. A & kikiiszobolése
utan kapott alakot

1

S
T@tq +q= AlvT + )\QatVf, (316)
1 - .. ~
T= 7, /\1 = %, /\2 = l117', (317)
l22k7 l22
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ujfent bonyolultabb hasznalni akkor, ha allapotfliggd egyiitthatokkal kell dolgozni és
tovabbi jarulékokat eredményez, amelyek csak akkor vehet6ek figyelembe korrektiil,
ha azok még onsageri szinten épiilnek a modellbe. Ellenben, az onsageri egyenletek
alkalmazasa numerikus megoldasok terén problémaba iitkozhet a peremfeltételek
szempontjabol. Az MCV- és GK-egyenletekkel szemben itt nem q, hanem & fiiggés
is elképzelheto, elviekben, mivel a & az allapottér részét képezi, a q nem, emiatt
a kovetkezékben az [;; egyiitthatoknak csak a hémérsékletfiiggését vizsgaljuk. A
GK-egyenlethez képest a Jeffreys-egyenlet esetén lényegesen eltéré szempontok és
egyiitthaté kapcsolatok jatszanak szerepet, annak ellenére, hogy mindkét modell
T-reprezentacidja azonos is lehet.

El6szor tekintsitk a A = A\ /T? hévezetési tényezd hémérsékletfiiggését. Ebben
az esetben nem csupan egyetlen [ egyttthaton keresztiil van lehet&ség a kivant A(7T))
fiiggvényt beépiteni, hanem erre sokkal komplexebb megoldasok is mutatkoznak.
Az elsé lehetéség az, hogy az l;; keresztkomponenseit (l15 és ly1) hasznaljuk fel, de
ekkor tgyelni kell arra, hogy ha az l;; = 0 (MCV-egyenlet), akkor a (3.16) miatt
—l12ls1 > 0-nak is teljestilnie kell, és ez megkoti az egyes homérsékletfiiggések deri-
valtjanak elojelét is. Természetes elvaras az, hogy ha az egyik, csatolast biztositod
keresztegytutthato fliggvény, akkor a masik csatold egyiitthaté is az legyen (analdg
médon a termoelektromossagbdl ismert Seebeck- és Peltier-hatdsokkal), habar az
Io1(T) nem jatszik kilénGsebb szerepet®. Igy, ha valamilyen fizikai elv nem koti a
modellezést, akkor ezt nem kotelezd figyelembe venni. Ebbdl az is kiolvashatd, hogy
onmagaban az ly; (T')-vel is beallithaté a hévezetési tényezonek egy adott hémérsék-
letfiiggése. Kevéshé trivialis eset az [12(T") jaruléka. Ez a jarulék a & kikiiszobolése
utan talalhato meg a

RO E 430k e L e le)
T@tq+Q—>\1(T)VT+)\28tVT+Tl12(T) T 0T (q TVT (3.18)

kifejezés utolséd tagjaként. Ebbdl szandékosan kiemeltem a 7 relaxécios idét, mivel
gy a Ao /7 dinamikus hévezetési tényez6 expliciten is lathatéva tehetd, és egy igen
érdekes elvi lehet6séget nyit meg. Eszerint, igen gyors folyamatokra inkdbb a dina-
mikus (idéderivaltak altal kijelolt) id6skédla fog dominélni, nem a statikus, vagyis
a

T0;q = Xgatv; (3.19)
kozelités értelmes, analég modon a viszkoelasztikus mechanikai viselkedés leirasa-
val [79,98]. A Jeffreys-egyenlet megoldésai nem vezetnek ki abbél az £? fiiggvénytér-
bol, amelyet a Fourier-egyenlet sajatfliggvényei és sajatértékei feszitenek ki, termé-
szetesen ugyanolyan peremfeltételekre vonatkozdan. Ezért jogos az a feltevés, hogy
merev és izotrop kozegekre a parcidlis idoderivaltak mindkét oldalon elhagyhaték,
ezaltal egy dinamikus Fourier-torvényt kapva eredményiil. Amennyiben ez fennall,
hangstlyozva, hogy ehhez igen gyors hévezetési folyamatokra van sziikség, a beveze-
tett nemlinearitasok kiegyszertisodnek, és az eredeti nemlinearis Jeffreys-egyenletet

“Ez az onsageri egyenletekbdl, a & kikiiszobolése soran valik jol lathatéva, mivel az lop (7))
egyltthatot nem kell derivalni, emiatt tovabbi jarulékai sem jelentkeznek.
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vissza lehetett vezetni egy linearis Fourier-torvényre, dinamikus hovezetési tényezo-
vel. Ennek numerikus demonstracidja a B. fiiggelékben tekintheté meg.

A kovetkezo lehetéség az, hogy ha [;; # 0, és ebben az egyiitthatéban vald-
sitjuk meg a kivant hémérsékletfiiggést, akkor azt A is 6rokolni fogja. Ennek a
megkozelitésnek is van egy trivialistol kiillonbozo jaruléka a & kikiiszobolése utéan,

dly (T)
dT

70,q+q = Xl(T)v;, + XQatv; +7 atTv;. (3.20)
Az utols6 lehetlség az, hogy az lso(T) egyiitthatét haszndljuk, ami magaval hoz-
za az MCV-egyenlet esetén tett Osszes megallapitast, valamint a tobbi dinamikus
transzportegyiitthato egyarant hémérsékletfiiggévé valik. Tovabbi érdekesség, hogy
a felhasznalt 7(T) figgvény kozvetleniil 6roklodik a Ao egyiitthatéra. Az egyenlet
alakjat nem bonyolitja el ugy, mint az el6z6 (3.18) és (3.20) esetekben, mivel a &
kikiiszobolését nem érinti, igy a

~ 1 - 1

konstitutiv egyenletre vezet. Fel kell hivnom a figyelmet, hogy habar ez a megko-
zelités célszertinek tiinik a bonyolult nemlinearis jarulékok elkeriilése miatt, a sziik-
séges 7(T) fuggvény eldéllitasdhoz vagy a szintén problémés k egyiitthatd, vagy a
p tomegsiirtiség hasznalhat6 fel az MCV-egyenletnél megfogalmazott médon. Mivel
ez utébbi megkozelités tlinik jarhatonak és fizikailag is elfogadhatébb, interpretdl-
hatobb modellnek, ezért gy tekintem, hogy lso(7') magaval hozza a mechanikai
csatolast is. A mérnoki gyakorlat szempontjabdl ez szolgaltatja a legjarhatobb utat.
Ujfent megjegyzem, hogy a S\Q(T)—ra ugyanugy nem allnak rendelkezésre mérési ada-
tok, mint a GK-egyenlet esetén az E(T) fiiggvényre. Az idoskalakra visszatérve ter-
mészetes elvarasnak latszik az, hogy igen lasst folyamatokra a dinamikus idoskala
esik ki, tehét a (3.21) 6sszefiiggés egy nemlinearis Fourier-torvényre redukalédik, ha
az idoderivaltakat tartalmazé tagokat elhagyjuk, ez viszont mar egy, a szakiroda-
lomban jol ismert problémakorre vezet.

3.4. Navier—Stokes—Fourier-egyenletek

Az eloz6, Fourier-egyenleten tulmutato esetekben mar emlitésre keriilt, hogy a faj-
lagos bels6é energidn kivil akar més valtozok is okozhatnak nemlinearitdsokat a
transzportegyiitthatokban. Ezek azok a valtozok, amelyek a konstiticios allapotte-
ret alkotjak, és az eddig bemutatott termodinamikai hattérben a fajlagos entrépia
valtozojaként tekintettem rdjuk. Van azonban egy masik, matematikai szempont-
bol a feltételes egyenlétlenségek megoldasan alapuld levezetési lehetdség is, a Liu-
eljaras [62,120], ami mar a klasszikus egyenletek esetén is j szempontokat vezet be.
A Fourier-tol eltéré modellek konzisztens, Liu-eljarassal val6 levezetése a mai napig
nyitott kérdés, f6ként a Nyiri-szorzdval valé kompatibilitasi kérdések miatt [121,122].
A médszertan és az itt bemutatott szamolasok részletes hatterét a [62,101,120] szak-
irodalmak targyaljak.

A lényeges eltérés abban rejlik, hogy a Liu-eljaras alkalmazasahoz az eddig bemu-
tatott termodinamikai alapvaltozok terén kiviil sziikség van egy tgynevezett kons-
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titutiv allapottér bevezetésére is, ami az alapvaltozokon tul tartalmazza azok gra-
dienseit is. Tovabba, ki kell jelolni egy folyamatirany teret, amiben a konstitutiv
allapottér idéderivaltjai és gradiensei szerepelnek. A fébb kiilonbségeket és azok
kovetkezményeit a klasszikus Navier—Stokes—Fourier-egyenletek [11] példdjan at de-
monstralom a [101] alapjan.

Ehhez el6szor szitkség van a tomeg, az impulzus és az Osszenergia (e = € +
v - v/2) mérlegegyenleteire,

p+pV v =0, (3.22)
pv+P-V =0, (3.23)
pet‘ot + V. Je,tot - 07 (324)

ahol v a sebességvektor, a feliil pont jeloli az anyagi vagy egytitt mozgd idoderivaltat
a

6= 0e+(e@V) v (3.25)

médon, a J. 0 az Osszenergia dramstirtiségét jeloli, és P = PT a szimmetrikus nyo-
mastenzor (azaz nem-polaros folyadékokrol van szd). A Liu-eljaras soran a kovetkez6
tereket kell felhasznalni:

 termodinamikai allapottér: x := (p, v, €t );

« a termodinamikai allapottér gradienseit is tartalmazd konstitticids allapottér:
5( = (pa V, €tot) va v ® Va vetot);

o folyamatirdnytér: . )
Sf = (pa Va et'otv (VP)v (V X V)? (vetot)v (vp) ® V’ (V ® V) ® V’ (VetOt) ® v>

A {5,J5, P, Jcior} & konstitutiv figgvények halmaza. A (3.22)-(3.24) mérlegegyen-
leteket a disszipaciés egyenlotlenségben kényszerként kell alkalmazni a Liu-eljaras
soran, a kényszereket Lagrange-Farkas szorzok segitségével lehet figyelembe venni.
A szamitasok részleteit a C. fiiggelék tartalmazza. A Liu-eljards szintén egy olyan
egyenlOtlenségre vezet, amely a 2. fejezetben targyalt médon oldhaté meg, és az
onsageri egyenleteket kapjuk eredménytil.

Ebben a konkrét esetben az onsageri egyenletek

0®) =18) Y (300) =A@ V(T (), (3.26)
(%) — _MVol(f();,uSh(fi) (V~V)1—M8h2(i>(V®V+V®V), (3.27)

alakot 6ltik, ahol IT fejezi ki a viszkézus nyoméstenzort, valamint V! > 0 és pS" > 0
jeloli a térfogati és nyird viszkozitasokat. A (3.26) és (3.27) egyenletekbél kiolvasha-
to, hogy a transzportegytitthatok az x konstiticiés allapottér valtozoéitdl fiiggenek,
nem az X termodinamikai allapottér valtozéitél, ami igy klasszikus esetben is meg-
engedi a hovezetési tényezd homérséklet-gradienstol valo fiiggését. Tovabbi, példaul
objektivitdsi és téridébeli [108, 123, 124] elvek az x &llapotteret megkothetik, igy
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célszertinek latszik, hogy a v sebességmezotol az anyagi tulajdonsagnak tekintett
transzportegyiitthatok ne fiiggjenek. Az el6bbieket Osszefoglalva az éallitas az, hogy

A= \T,VT,p,Vp,va V), (3.28)
pVo = VN (T, VT, p, Vp,va V), (3.29)
pt = S (T,VT,p,Vp,v @ V) (3.30)

egyiitthatok nemcsak a homérséklettdl és a nyoméstol, hanem azok gradienseitol is
fiigghetnek, amik a klasszikus irreverzibilis termodinamika keretein beliil is meg-
engedhetoek, de Liu-eljaras nélkil nem valnak lathatova. Kisérleti szempontbol
a VT-tol vald figgés a Fourier-egyenleten tili modellek esetén a héaramsiiriiség-
tol vald fliggésként mutatkozhat meg, a Fourier-egyenlet esetén a kettd egybeesik,
tehat ez a fajta fiiggés mar klasszikus szinten is értelmes, de nyilvanvalé mérés-
technikai nehézségekbe titkozik, hasonléan a Vp nyomasgradienshez. Példaul hiaba
eredményeznek a Fourier-egyenleten tili modellek eltéré hoarammezot, ha egyrészt
a héaramstliriiség méréstechnikdja homérsékletmérésen, illetve annak gradiensének
kimérésén alapszik; masrészt szenzortdl fliggben egy néhany milliméter sugara te-
rilleten lehetséges atlagos hoaramstiriiséget mérni. Ez a gyakorlat szaméara nem
feltétlentil probléma, hisz a modelleket kihasznalva lehet kozvetleniill nem mérhet6
informécidkat kinyerni [125], anal6g médon ahhoz, ahogy az dramlastani szimuldcidk
is mélyebb betekintést engednek a hoatadasi tényezot kialakité mechanizmusokba.
Amig az utobbi mar standard eljarasként miikodik a mérnoki gyakorlatban, addig
az elébbi problémakor még csak ennek lehetoségét és megfontolasat javasolja.

A méréstechnikai problémadktol eltekintve a gradiensektdl valo fiiggéseknek komoly
elméleti kovetkezményei vdrhatoak, hiszen lokéshullamokndl, szuperkritikus koze-
geknél, fazisvdlto anyagokat felhaszndlé hétdaroldsndl, vagy akdr bizonyos gydrtds-
technoldgiai folyamatokndl (hegesztés, 3D nyomtatds) kiemelkedd szerepiik lehet
mindamellett, hogy ezeknek a folyamatoknak a nemlinearitdsokat is figyelembe vevd
modellezésére is sziikség van.

A Navier—Stokes—Fourier-egyenletek kiterjesztése is része a termodinamikai szak-
irodalomnak, azonban ezek az eredmények mar 1ényegesen bonyolultabb és techni-
kasabb eljarasokon, féként kinetikus elméleti eredményeken nyugszanak. Fzekben a
kiterjesztett modellekben a kozos pont az, hogy a csatolasok a konstitutiv egyenletek
szintjén valositjak meg, példaul a nyomastenzor a héaramstirtiség gradiensével kertil
kapcsolatba. Mérnoki szempontbdl ez magaslégkori, igen alacsony nyomasu gézok
(Ggynevezett ritka gdzok) modellezésénél hasznos®. Ez azt jelenti, hogy a nyom4s
csokkentésével valnak egyre hangsilyosabba a csatold egytitthatok és az extra ido-
derivéaltak, valamint a kisérleti adatok [126-129] szerint szintén a nyomads valtozésa
okozza a hangsebességben jelentkezd valtozast. Tovabbi részletekért a [99,130-132]
szakirodalmi forrasokat javaslom.

5Ez termodinamikai szempontbdl teljes egészében analég a fononhidrodinamika soran részlete-
zett (2.46)-(2.48) egyenletrendszerrel.
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3.5. Osszefoglalas

Ebben a fejezetben azokra az j tudomanyos eredményeimre vilagitottam ré, ame-
lyek az anyagi nemlinearitds kovetkezményeiként addédnak. A Fourier-egyenleten
tulmutaté modellek esetén az onsageri definiciok termodinamikailag konzisztens ki-
indulasi alapot nytjtanak az allapotfiiggo transzportegyiitthatok figyelembevételére.
A fejezetben foként a homérsékletfiiggd hovezetési tényezé szerepére fokuszaltam,
specidlisan a Guyer—-Krumhansl- és Jeffreys-egyenletek esetén. Mindkét modellben
olyan, a trivialistol eltérd jarulékok megjelenését figyeltem meg, amelyek méréstech-
nikailag, kisérlettervezésileg, vagy a modellegyenletek értelmezésében jelentenek 1j-
donsagot. Tovabba, részletesen bemutattam, hogyan befolyasolja a hovezetési ténye-
z6 homérsékletfliiggése a tobbi transzportegyiitthatot. Ezeket a megallapitasaimat
foglaljak Ossze az alabbi tézisek.

3. Tézis — A Guyer-Krumhansl-egyenlet nemlinearis tulajdonsagai

A Guyer-Krumhansl-egyenlet esetén megéllapitottam, hogy a hévezetési té-
nyez6 hémérséklettol valé fiiggése a transzportegyttthatok mindegyikére 6rok-
16dik. Ennek kovetkezménye, hogy a tomegstiriiség homérsékletfiiggését figye-
lembe kellhet venni, igy a hotagulason keresztiili termomechanikai csatolas
a modellezési feladat fliggvényében jelentkezhet. A relaxaciés id6 hémérsék-
letfiiggését tovabbi nemlinedris jarulék jelentkezése nélkiil nem lehet figye-
lembe venni. A térben nemlokalis taghoz tartozé transzportegyiitthatok ho-
mérsékletfiiggése nem vart moédon modositja a latszolagos hévezetési tényezot,
amely ilyen médon hémérséklet- és hoaramstiriség-fliggové is valhat. Az egyes
transzportegytitthatokban jelentkez6 anyagi nemlinearitasok gyors folyamatok
esetén nem kiiszobolhetéek ki, mivel barmely egytitthatéo hémérsékletfiiggése
mindkét idoskala transzportegyiitthatéit érinti.

A 3. tézishez kapcsol6dd publikéciok: [100, 102,103,133, 134).

4. Tézis — A Jeffreys-egyenlet nemlinedris tulajdonsagai

A Jeffreys-egyenlet esetén megallapitottam, hogy a statikus hovezetési tényezd
homérséklettol valo fiiggése anélkiil is figyelembe veheto, hogy az allapotfiiggés
a tobbi transzportegyiitthatéban jelentkezne. Mivel a Jeffreys-egyenletben a
statikus és dinamikus skaldk mar konstitticids szinten is elkiilonithetéek, emi-
att lehetséges a statikus hovezetési tényez6 hémérsékletfiiggésének dinamikus
idéskalan valo kikiiszobolése. A relaxacios id6 hémérsékletfiiggése vagy a to-
megstiiriség homérsékletfiiggését és igy a hétagulasi hatasok figyelembevételét,
vagy pedig tovabbi nemlinedris jarulékokon keresztiil mindkét idoskala modo-
sitdsat vonja maga utan.

\. .

A 4. tézishez kapcsolédéd publikaciok: részben a [6,100] irodalmak tartalmazzak
ezeket a megallapitasokat, a teljes eredmény publikédlas alatt all.
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4. fejezet

Megoldasi moédszerek

Az el6z6 két fejezet sordn a Fourier-torvény mérnoki szempontbdl vett lehetséges
alternativait mutattam be, ahol a hangsilyt a modellek onsageri alakjanak fon-
tossdgara, valamint az egyes nemlinearis tulajdonsagok elemzésére helyeztem. A
modellezés kovetkez6 1épését az egyenletek megoldasa jelenti, ami a Fourier-féle ho-
vezetési egyenlethez képest szintén tobb 1jdonsagot hordoz. Ebben a témakorben
a kutatasom alatt elért eredmények nem 1j matematikai médszerek megalkotasara,
hanem az ismert modszerek Fourier-egyenleten tili alkalmazasaira iranyulnak. Ez
kozel sem egyértelmii feladat, a hagyomanyos végeselemes szoftverek alkalmazasa
sem mindig jelent megoldédst [135,136].

Ebben a fejezetben az analitikus megoldasok tekintetében arra fogok fékuszalni,
hogy a Fourier-egyenlet esetén ismert szorzatszeparacios (vagy valtozok szeparala-
sa [137]) médszerrel kapott sajatfiggvény-sajatérték egyenletek a Fourier-egyenleten
tul is hasznalhatoak-e a GK- és Jeffreys-egyenletek esetén [73,125]. Ez az utébbi mo-
dell esetén nem meglepd allitas, mivel a konstitutiv egyenletben a Fourier-torvény,
valamint annak idéderivaltja is megtalalhato, tehat térbeli szempontbdl nincs valto-
zas. Ezzel szemben a Guyer—-Krumhansl-egyenlet mar mas, hiszen abban a héaram-
stirliség tovabbi térderivaltjai is megjelennek.

Ebben a fejezetben tovdbbi megerdsitést nyer az a korabbi dllitdsom, hogy a hévezeté-
st modelleket parcialis differencidlegyenletek rendszereként kell kezelni, még linedris
esetben is. Fzzel arra kivanok ravilagitani, hogy a kezdeti és peremfeltételek kezelése
kritikus, kénnyen lehet olyan megolddsokat kapni, amelyek nem valdsak és negativ
abszolit hémérsékletre vezetnek a [138] irodalomban ldthaté modon. A [103, 139]
irodalmak azonban egyértelmien bizonyitjak, hogy a GK-egyenlet matematikailag
korrekt kitiizést feladat, a megolddsa létezik és egyértelmii, nem sérti a matemati-
kai mazimum elvet, de ehhez termodinamikailag kompatibilis modellre és fizikailag
is helyes eljdrdisokra van sziikség.

A peremfeltételek helyes realizalasa éppen amiatt valik nehezebbé, hogy a
Fourier-torvény altal definialt ardnyossag helyett egy parcidlis differencialegyenle-
tet kell megoldani, amit hely- és id6fliggd peremfeltételek esetén altalanosan csak
egyenletrendszerek forméajaban lehet kezelni. A kezdeti feltételek megfeleld kitizé-
se szintén tovabbi kérdéseket vet fel. A Fourier-egyenlet esetén elegendo a kezdeti
homérséklet-eloszlast megadni, ebbdl a héarammezé a Fourier-torvény miatt egy-
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értelmilen kovetkezik. A Fourier-torvény kiegészitései esetén (akdr mér a legegy-
szerlibb MCV-egyenletet tekintve) a helyzet megvaltozik, a modellek kezelése és a
korrekt kitilizottség kérdése tovabbi meggondoldsokat igényelnek [103, 139, 140], el-
kertilve olyan félrevezetd feltevéseket, amelyek nem veszik figyelembe az egyenletek
szerkezetét, ilyeneket példaul a [141,142] irodalmakban is lehet taldlni. Ebben a
fejezetben ezeket a kérdéseket valaszolom meg.

NETZSCH LFA 427

IR berendezés felépitése
—— Jelerosito

SZenzor

IIE
K’ Szoftverek
Kemence |
‘ L PC&
: Tépegység Adatgytijtés
e _
Prébatest l
Optikai 574l Lézer /Xenon ldmpa Mért jelalak

—

4.1. dbra. A héimpulzusmérés elvi vazlata a NETZSCH leirdsa alapjan [143], magyar
nyelvi feliratokkal ellatva. A BME Gépészmérnoki Kar Energetikai Gépek és Rendszerek
Tanszéken 16v8 berendezés tanszéki fejlesztésti, amely Gréf Gyula és Gyenis Akos mun-
kajat dicséri. Felépitése a kemencétol eltekintve ezzel egyezd, abban a hémérsékletmérés
K-tipusu termoelemmel megoldott, a héimpulzust egy vaku idézi el§. A tanszéken torté-
no mérések soran az adatgyijtést PicoScope-pal végeztiik, az adatokat Matlab és Excel
segitségével értékeltiik ki.

4.1. Analitikus megoldasok

4.1.1. A héimpulzus-kisérlet egy térdimenziés megoldasai és
a kezdeti feltételek szerepe

Tobb szempontbdl is érdekes és szemléltetod ez a problémakor. A héimpulzus-kisérlet
egy standard mérési eljaras a kiilonféle anyagok hofokvezetési tényezdjének meghata-
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rozasara. Ez egy tranziens elvii eljaras, amelynek sematikus osszeallitasat a 4.1. abra
szemlélteti. Mivel a kutatasaim alatt végzett kisérletekben kozponti szerepet tolt
be a hoimpulzuselvi kisérlet, ezért ennek az analitikus és numerikus modellezése
igen fontos feladatot jelentett. A mérés soran a probatestet egy rovid héimpulzus-
gerjesztés éri, ez egy ido6fliggd héaram peremfeltétel segitségével modellezhets. A
kisérlet tervezésénél arra torekednek, hogy egy térben egydimenziés modellel a mé-
rések kiértékelhetéek legyenek, ennek feltételeit, valamint a mérési sajatossagokat
a [144-147] irodalmak részletesen targyaljak. Ezeket az ajanlasokat kovetem én is.

I. Dimenziétlanitas. A mérnoki alkalmazasok soran az egyenletek dimenziétla-
nitdsa kétségteleniil hasznos és fontos, a [53, 73,104,125, 148] publikdcidk is ennek
a szellemében késziiltek. Azonban a dolgozatomban bemutatott médszertani kérdé-
sek a dimenzidtlanitastol fliggetlentil is érvényesek. Tovabba, a dimenzidtlanitasokat
adott alkalmazashoz kell valasztani, és még akkor sem egyértelmiiek, a vonatkozo
publikdciokban sem ugyanazt a dimenziotlanitast hasznaltam minden esetben. Emi-
att a megoldasokat kizarolag a modellek dimenzios alakjara véve kozlom, elkertilve
azt a nehézséget is, hogy tobb kiilonb6z6 dimenzidtlanitast definialjak.

II. Megoldas a valtozok szétvalasztasaval. A héimpulzust a

Jmax (1 — cos (27r : i)) ha 0<t<t,

(4.1)
0 ha t>t,,

q(x =0,t) = q(t) = {

peremfeltétellel definidlom, ahol ¢, a héimpulzus hossza, g¢max annak amplitidoja.
A vélasztott fiiggvény numerikus szempontbdl igen elényts annak simasagi tulaj-
donsagai miatt. Analitikus megolddsok szempontjabdl a [73] publikaciém volt az
els6 olyan, amely a GK-egyenletre, véges tértartomanyra, idéfliggd peremfeltétel
esetére zart alaka megoldast adott, igy egyarant alkalmas volt a numerikus megol-
désok validaldséara, valamint az akkori kisérleti eredmények részleges kiértékelésére!.
A modell tovabbi feltevése, hogy a héimpulzus utdn a testet szigeteltnek tekinti
egyarant annak el6 és hatlapjan, azaz q(z = L,t) = qp(t) = 0. Tovabbi feltétel,
hogy a héimpulzus teljes egészében a prébatest feliiletén nyelodjon el, ami megfeleld
minta-el6készitéssel megvaldsithatéd [53,117].

A feladat szobahOmérsékleten linearisnak tekinthet6. A Fourier-egyenletre a
modszertant nem részletezem, ehelyett a [137, 149, 150] irodalmakra hivatkozok.
Kovetve a [73] publikdciém, a feladat megolddsat az egydimenziés GK-egyenletre
vonatkozoan mutatom be. A fajlagos bels6 energia mérlegegyenlete, valamint a
konstitutiv egyenlet:

pc, 0T + 0, =0, TOq+q=—X0,T + K*0rzq (4.2)

vagyis a test héforrdsmentes és a k% = 1 + 1, és a konstitutiv dsszefiiggésben a
héaramstiriiségnek csupan a masodrendii térderivaltja jelenik meg a jobb oldalon.

LA "részleges" kifejezés tgy értends, hogy akkor még nem volt annyira fejlett a kiértékelési
eljarasunk, mint a [82,104] irodalmakban, és egy analitikus-numerikus hibrid iterdciés kiértékelést
alkalmaztunk Fehér Anna doktorandusz hallgatémmal kézosen kidolgozva.
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Erdemes megvizsgalni a GK-egyenlet T-reprezentdciés alakjat,
TattT + 8tT = aamT + HQ@tmT, (43)

ahol egyrészt megfigyelhetd, hogy a (2.26) egyenlettel 6sszhangban csak a Laplace-
operator (annak is az egydimenzids alakja) jelenik meg, ellentétben a (2.38)
2-hémérséklet modellel. Az operatorok linearitdsa miatt ez igaz marad a g¢-
reprezentaciora is,

T01q + 01q = a0ppq + K*Oread, (4.4)

amibdl az kovetkezik, hogy akar T-re, akar ¢-ra feltételezve, hogy a megoldasokat
©(t)X (z) alakban el§ lehet allitani, gy mindkét esetben az egyenlet szepardlha-
t6, és mindkét esetben a d*/dz? operdtor sajatfiiggvényeit és sajatértékeit fogjak
a peremfeltételek meghatarozni. Tovabba, els6- és masodfaju peremfeltételeket te-
kintve ezek a sajatfliggvények és sajatértékek meg kell egyezzenek a Fourier-egyenlet
esetében taldltakkal, ugyanis mindkét esetben ugyanaz a Laplace-operator jatszik
szerepet. Ebbdl az is kovetkezik, hogy a GK-egyenlet esetén nincsen sziikség tovabbi
peremfeltételekre. A kezdeti feltételeknek a g(x,t = 0) és Oyq(x,t)|i=o értékeket kell
el6irniuk. Mivel a test kezdetben homogén egyensulyban van, ezért mindkét kezdeti
feltétel zérus, ez inhomogén hémérséklet-eloszlasnél nincs igy (lasd késobb).
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4.2. dbra. A kereskedelmi COMSOL végeselemes szoftverrel kapott megoldas (alul) és
a sajat megoldéasok (feliil) Gsszevetése [135] alapjan, héimpulzus-kisérlet tipusu kezdeti és
peremfeltételek esetére. Ha csupan két eltérd moddszerrel el6allitott numerikus megolda-
sunk van, akkor az énmagaban kevés, egyik sem diszkvalifikdlja a masikat. Az analitikus
megoldas szabad minden numerikus eredeti hibatoél, és kelléen sok tagot figyelembe véve
lényegében egzakt megoldast kapunk eredménytil. Tehat az analitikus megoldas megléte
donté fontossagu az ilyen kérdéses esetekben.
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Ebben az esetben a valtozok szétvalasztasat csak ugy lehet elvégezni, ha a GK-
T(x,t) el6allithatd. Ezt az eljarast a D. fliggelék irja le részleteiben.

A GK-egyenletre vonatkozéan az analitikus és a COMSOL kereskedelmi véges-
elemes szoftver altal adott megoldasokat a 4.2. abra hasonlitja 0ssze, markans kii-
lonbségeket mutatva [135]. A COMSOL végeselemes megolddja reprodukélni tudja
a Fourier-, MCV-, s6t, még a ballisztikus egyenletek megoldasait (4.3. dbra), de a
GK-egyenlet esetén a k*/7 > a esetben az eltéréseket mar nem numerikus hibak
okozzak. A 4.2. abran lathaté hamis megoldés fliggetlen a hélézastél és az idSlépte-
tésektol. Ebbdl azt a kovetkeztetést lehet levonni, hogy egyrészt ujfajta hovezetési
modellek esetén nagyobb évatossdggal kell eljarni, masrészt az analitikus megolda-
sok szerepe hangsilyosabba valik a numerikus megoldasok validalasa érdekében. A
numerikus megoldasokban el6fordulnak olyan "mesterséges', a valasztott kozelités
altal létrehozott hibak — még stabil és konvergens moédszerek esetén is — amelyek a
megoldast lényegesen torzitjak. Ilyen numerikus hibara latunk példat a 4.3. abrén is.
Hiperbolikus egyenletek esetén a COMSOL képes helyes megoldasra vezetni, ame-
lyek még mesterséges oszcillacioktol is fiiggetlenek (MCV-egyenlet esete), de ezeket

a megolddsokat jelentds eréforrasigény jellemzi?.

Homérséklet

0.051

Homérséklet

-0.051

-0.1
0 0.1 0.2 0.3 0.4 0.5
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4.3. dbra. Az MCV-egyenlet és a ballisztikus egyenlet COMSOL-lal térténé megoldéa-
sai. Hiperbolikus modellek esetén a megoldasok tiikrozik a fizikai tartalmat, de kénnyen
mesterséges, megtéveszté numerikus hibakkal terhelté valhatnak.

2 Az 6sszehasonlitas végett: a térben egydimenziés MCV-egyenlet COMSOL-al valé megoldésé-
hoz 16 GB RAM-ra és egy nyolcmagos i7-es processzorra sziikség (2018-as szdmoldsok) [135], de a
ballisztikus egyenlet megoldasanak mesterséges oszcillacioktol mentes eldallitasdhoz kevés volt ez
a memoria; mindehhez igen sok processzoridére volt sziikség. Ezzel szemben egy véges differencidk
elvén megirt Matlab kéd, vagy egy analitikus megoldas egy masodpercen beliil ad jol kévethetd
eredményt.
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Ha a ballisztikus egyenletrol csupan a 4.3. abran latott megoldés lenne az egyetlen
rendelkezésre all6 informacid, akkor a mesterséges oszcillacidk igen kénnyen Ossze-
téveszthetek a valds, fizikai megoldasbdl ered6 hulldmfronttal [76]. Eppen emiatt
sziikséges a termodinamikai és a matematikai szempontok, valamint a numerikus
sémak tulajdonsdgainak az ismerete, amik a 'fekete doboz'-jellegii kereskedelmi
programokat ellenérizhetévé teszik. KEzzel analdg problémakat és kihivasokat rejt
a mechanikai modellek megfelel6 numerikus kezelése is, foként a hullamterjedési
feladatok tekintetében [151-153]. A [151, 152] irodalmak tébb olyan COMSOL-os
példat is bemutatnak, ahol ugyanarra a feladatra, kiilon-kiilon idéléptetési algorit-
musok felhasznalasaval — hal6zastol fiiggetleniil — mindig eltéré megoldasokra vezet
a szoftver. Tehat az sem jarhato ut, hogy egyszertien tobb beépitett algoritmust
hasznalunk, mert nem biztos, hogy barmelyik helyes eredményt képes adni. Raada-
sul ha az 6sszes kiilonb6zo, akkor hogyan valasztjuk ki a helyes megoldast? Ezeket
a kérdéseket a modellek alapos ismeretében lehet jol megvalaszolni.

ITI. Tovabbi észrevételek a kezdeti feltételekre vonatkozéan. Természete-
sen adodik a kérdés, hogy mit lehet tenni egy olyan altalanos esetben, amikor csupan
a kezdeti Ty(z) homérséklet-eloszlas ismert. A valasz egyértelmii: barmely Fourier-
egyenleten tuli esetben a Ty(x) ismerete kevés. A GK- és a Jeffreys-egyenletek esetén
szitkség van még egy tovabbi kezdeti feltételre, amely teljes egészében és egyértel-
miien meghatarozza a héaramsiirtiséget és a homérsékletmezdt az energiamérleg és
a konstitutiv egyenletekkel kompatibilis médon. Az egyszeriiség kedvéért el6szor az
MCV-egyenletet érdemes tekinteni egy kezdeti ¢t = 0 idopillanatra vonatkoztatva,

T70yq + q = — A0, Tp(x). (4.5)

Ez az osszefiiggés felfoghatd tgy is, mint egy minden egyes térpontra vonatkozo
idobeli kozonséges differencidlegyenlet, ami felintegralhaté és veheto annak a ¢t = 0
helyettesitéssel kapott megoldasa. Ekkor

q(z,t =0) = =0, Tp(x) + C(x) (4.6)

adddik, ahol a C'(z) integralasi egyiitthaténak megengedhetjik a helyfiiggését. Ezt a
C(z) egyttthatdt kell megkotni, valamint nem szabad megfeledkezni arrél sem, hogy
a peremfeltételek is befolydsoljak a helyfiiggését. Mivel a ¢(x,t) héaramsiiriségnek
differencialhatonak kell lennie, ezért a C'(x)-nek is. Ha példaul az x = 0 helyen
adiabatikus a peremfeltétel (¢(z = 0,t) = 0), akkor a C'(z = 0) = X0, Tp(z = 0)
egyenloség elvarhaté a peremen. Hasonldé gondolatmenettel lehet dolgozni akkor
is, ha nullatol eltéré peremfeltételt kell kielégitenie. Mindezek mellett még mindig
szitkség van egy tovabbi feltételre, ami teljesen lerogziti a C(x) fiiggvényt. Ez a
kiegészito feltétel, habar tisztan matematikai oldalrél konnyen megadhatd, annak
fizikai tartalma azon tul ismeretlen, hogy egy adott kezdeti feltételt kell definidlni
vele.

A fentiek titkkrében, ha a C(z) fiiggvényt azonosan nullanak valasztjuk, akkor
a feltételezés az, hogy a Fourier-torvényt hasznaljuk ki a kezdeti héarammez6 ki-
szamitasara. Ez az MCV-egyenlet esetén azt jelenti, hogy a hoarammez6 kezdeti
id6derivaltja nulla, melyet implicit médon irtunk eld. A masodik alternativa az,
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hogy a Ty(z) eloszlast eléidézo folyamatot is modellezzik, azaz a kozeg "el6életét’
allitjuk elo, amennyire a rendelkezésre all6 informaciok ezt megengedik. Mivel mind-
két megkozelités egyarant hordoz bizonytalansagokat és kozelitéseket, ezért nincs
értelme arrél beszélni, hogy melyik a pontosabb vagy jobb eljaras. Amennyire le-
het, a Fourier-tél eltér6 modellek esetén a vizsgalt folyamatot homogén nyugalmi
helyzetbdl kell elinditani, amivel a kezdeti feltételek kozelités nélkiil eloirhatok.

A feladat azonban lényegesen egyszeriibbé teheté a Galjorkin-moédszer felhasz-
nalasaval, ez a silyozott reziduumok moédszerének egy specidlis alesetét jelenti most
szamunkra. Ennek alapgondolata az, hogy a ¢ és T' mezoket egy N-tagu véges Osszeg
forméajaban keressiik, azaz

q= z_: A,(Opn(z), T =T+ Z Bn(t)o,(z), (4.7)

n=0

ahol az A,(t) és B,(t) egyltthatok idéfiiggéek, és azok egy kozonséges
differencidlegyenlet-rendszer megoldasaként szamolhatéak ki. A ¢, és ¢, figgvé-
nyek a g és T mezok térbeli részét reprezentaljak, bazisfiggvényeknek is nevezik
ezeket. Végeselemes alkalmazasok soran — mivel a végeselem csak egy kisebb térbeli
intervallumot fed le — a ¢, és ¢, figgvények nem kell, hogy globdlisan (a teljes
térbeli tartomanyon) reprezentdljdk az adott mezé viselkedését, elég, ha lokélisan
kozelitik azt®. Ebben az esetben viszont specialis, a térbeli fiiggvények lokalis rep-
rezentacidja helyett a globalis reprezentaciora torekszek, ahol a ¢, és ¢, kielégitik a
homogén peremfeltételeket. Emiatt célszerti valasztas a szorzatszeparacios megoldas
soran kapott sajatfiiggvények hasznélata.

Az A,(t) és B,(t) egyltthatok meghatarozasahoz a (4.7) egyenletet vissza kell
helyettesiteni a fejlodési egyenletekbe, valamint alkalmazva rajuk a megfelel¢ deri-
valtakat,

Nod Nood
v 7BTL n Ani n — R 9 4.8
pc nZ::odt ¢ +nz::0 dx‘ﬂ 1 (4.8)
N d N N d ) N d2
n=0 n=0 n=0 n=0

az ugynevezett spektrélis alakot kapjuk, amiben az Ry(N) és Ro(N) tagok a kozeli-
tésbél adodos, N-t6l fuggd maradéktagok, amelyekre igaz, hogy Ry o(N — oo0) — 0.
A médszer masik alapfeltevése az, hogy ha az egyenletek mindkét oldalat a megfelel6
sajatfiggvénnyel megszorozzuk és a teljes tértartomanyra integraljuk, akkor

L L
/&%mzm /m%mza (4.10)
0 0

mas szoval feltessziik, hogy a kozelitésbdl szarmazd hiba ortogondlis a bazistiiggveé-
nyekre [154]. A kovetkez6 megfigyelés — amit a szorzatszeparacios megoldas eleve
magaban foglal — az, hogy a bazisfiiggvényeknek egy parcidlis differencidlegyenlet-
rendszer esetén tisztelniiik kell az egyenletek struktirajat is. Ezalatt azt értem, hogy

3Emiatt is kényelmes a tisztan hévezetési végeselemes mddszerekben lineéris fiiggvényeket hasz-
nélni, azok lokalisan éppen a héellenalldsokkal analég médon viselkedd elemtipust eredményeznek.
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a (4.8) energiamérleg spektralis alakjaban a ¢,, derivéltja aranyos kell legyen ¢,,-vel,
mas szoval az egyenletekben 1évé térbeli differencidloperatorok a bazisfiiggvényeket
egymasba kell képeznitik. A (4.9)-ben taldlhaté masodrendii derivalas emiatt ugyan-
abba a fiiggvénytérbe képez vissza. Ez a modszer igy a konstitutiv egyenletekbdl
kizar bizonyos tagokat, példaul a 0,.q, vagy akar a 0,,.q tagok igy értelmetlenek, tehat
példdul a [155] irodalomban kozolt modellek ezzel a mbdszerrel nem megoldhatéak?.

A (4.8)-(4.9) egyenletekben a térbeli derivalasokat elvégezziik, majd az egyen-
letek mindkét oldaldt megszorozzuk a nekik megfelel6 bazisfiiggvénnyel, ezutan a
teljes tértartomanyra vonatkozoan integraljuk. Ekkor a kozelitésbdl szarmazo hibak
kiesnek, és az A,, B, egyutthatokra kapott csatolt kozonséges differencialegyenlet-
rendszer minden n médusra megoldhaté. A (4.8)-(4.9) egyenletek altalanossagban
is igazak a GK-egyenletre, a bazisfiiggvények a peremfeltételekkel rogzithetoek.

Visszatérve a kezdeti feltételekhez: példaul, legyenek o, (z) = sin(B,z), ¢,(x) =
cos(B,x), Bn = nmw/L bazisfiiggvények, amely az adiabatikus peremfeltételeknek
(q(x = 0,t) = q(xr = L,t) = 0) megfelel6 sajatfiiggvény-sajatérték rendszer. Az
el6bbiekben megfogalmazott lépéseket kovetve a

pcvthn + B,A, =0, (4.11)
d
T A+ (1 + rfﬁg) A, — A\3.B, =0 (4.12)

rendszer adja meg az A, és B, egyiitthaték idébeli valtozasat. Erdekessége, hogy a
GK-egyenlet megoldasa az MCV-egyenlethez képest egyaltalan nem hordoz tovabbi
tjdonsagot, egyetlen egyiitthaté kiilonbség van a két modell kozott; a k2 = 0 felté-
tellel a modell, valamint annak megoldasa az MCV-egyenletre és annak megoldasara
egyszerisodik. Ez a parcialis differencidlegyenletek szintjén egyaltalan nem nyilvan-
valé, de a Galjorkin-mddszerrel a modell megoldésa lényegesen egyszertisodik. Ezzel
kikertilhet6 a C'(z) figgvény megvalasztasa, tisztdbban latszanak a fliggvénykapcso-
latok, és a GK-egyenlet esetén a 0,,q tag miatti nehézségek is megkeriilhetoek.

A Jeffreys-egyenlet esetén a ¢, (x) = sin(5,x), ¢n(r) = cos(B,z), B, = nmw/L ba-
zisfiiggvények nem véltoznak (valtozatlanul adiabatikus peremfeltételekre), ebben
az esetben is 6roklédnek a Fourier-egyenletnél hasznalt sajatfiiggvények és sajatér-
tékek, igy a modell spektralis alakja

d
d

d
T A+ Ay = ()\1 + )\2dt>ﬁn3n 0. (4.14)

Adott Ty(z) esetén, szintén feltételezve, hogy a kezdeti feltétel az adott bazison rep-
rezentdlhatd, a kezdeti B, (t = 0) egytitthatok elallithatéak. Ttt is latszik, hogy egy

4Megjegyzem, hogy a [155] allitasa ellenére varhatéan nem termodinamikailag konzisztens mo-
delleket k6z6l. Amely modell kilég az itt kozolt Galjorkin-mdédszer hataskorébél, abban a differen-
cidloperatorok eleve is kivezetnek a megfelel6 figgvénytérbdl, igy azok megoldasa mas mddszerek
esetén is problémdakba iitkozhet. A vezeté modern termodinamikai megkozelitések nem tudnak
ilyen tagokat a konstitutiv egyenletekben létrehozni. Habar ezt az allitast részletesen nem bi-
zonyitom, a Galjorkin-médszer alkalmazdsédnak kizdrdsa 6nmagdban is elég kérdést vet fel a [155]
irodalomban k6zolt modellek terén, ami a GK- és Jeffreys-egyenletekkel 6sszevetve komoly hétrany.
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tovabbi feltételre sziikség van, amely egyértelmiien megkéti az A, (t = 0) egyutt-
hatot. A GK- és a Jeffreys-egyenletek is megengedik azt a valasztast, hogy a ho-
mérsékletmezd idéderivéaltja kezdetben nulla legyen adott inhomogén Tp(x) mellett,
azaz,

d d

—B, = A, = — A, = Mb.By 4.1
gy 0 = 0 = 7 g” 18 (4.15)
Osszefiiggés feltételt ad a hoarammezo kezdeti idéderivaltjara, ami nem nulla. Ez
visszafelé is igaz, azaz

d d
&An =0 = A,#0((4.12) vagy (4.14)) = ooy

vagyis a GK- és a Jeffreys-egyenletek a kezdeti feltételek rogzitéséhez megengedik a
Fourier-torvénytél valé eltérést. Hangstlyozom, hogy adott inhomogén Ty (z) esetén
nem lehet mindkét mezo kezdeti idoderivaltja zérus, az inkonzisztens eredményre
vezetne. Végill visszautalva a ¢-, vagy T-reprezentaciokra, azok az A,-re vagy a
B,,-re val6 atrendezéssel analég modon értendoek, a spektralis formaban barmelyik
kikiiszobolése nehézségektol mentes.

A teljesség kedvéért az E. fliggelék kozli a [53] publikaciéra épitve a hdimpulzus-
kisérlet Galjorkin-moédszerrel torténd modellezését is. A 6 kiilonbség az, hogy ebben
a megoldasban sikertilt gy figyelembe venni a test hiilését, hogy az el6z0 esethez
képest nem kellett a sajatértékeken és a sajatfiiggvényeken médositani, ez kicsi (0,1
alatti) Biot-szdamokra érvényes.

B, = —fuA,, (4.16)

4.1.2. Nagy kiterjedésii testek hengerszimmetrikus leirasa

A térben kétdimenziés analitikus megoldéasok tekintetében mutatkozik meg igazan a
Galjorkin-mdédszer hatékonysaga. Egy lehetséges termikus mérési elrendezést vizsgal
a kovetkezo problémafelvetés.

Mivel a mérnoki gyakorlatban sokszor nehéz kisméretli probatesteket késziteni,
kivaltképp a habositott heterogén anyagszerkezetek kapcsan, vagy akar mar megle-
v6 szerkezeteket kellhet utélag termikus szempontbol roncsolasmentesen jellemezni,
ezért ésszeri lehet a kovetkez6 elrendezés [125]. A 4.4. dbrén egy olyan esetet ldtha-
tunk, ahol egy adott L vastagsagu falat annak egy r sugaru feliiletén egyenletesen
fatiink. Meg kell jegyeznem, hogy egy ilyen helyfiiggé peremfeltétel kezelése még a
Fourier-egyenlet esetén is komoly kihivasokba titkozik, igy a helyfiiggd peremfeltételt
egy helyfiiggd hoforrassal célszerti kivaltani, amely a flitott feliiletre koncentralodik,
egészen pontosan a

1
QU(T7 Z) = (:ZV,InaXQ’UT(T)qu(z)7 QW‘(T) - 5 (1 - tanh(olr - 02)>a QUZ(Z) - 6_032
(4.17)

fiiggvényalak szerint, ahol a ' 53 konstansok tetszélegesen allithatéak annak tiik-
rében, hogy mekkora tértartomanyra kivanjuk a héforrast koncentralni gy max amp-
litudoval.

A tovabbi peremfeltételek a 4.4. dbra szerint értendéek, azaz a testet hengeresnek
tekintem, amiben kihaszndlom a hengerszimmetridt. Igy az eliilsd (flitott) felileten
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4.4. Abra. A bal oldali elrendezés mutatja az eredeti elrendezést, a feliileten helyfiiggd
héaram peremfeltétellel. A jobb oldali elrendezés ezt a peremfeltételt valtja ki helyfiig-
g6 héforrds alkalmazédsdval, amelynek karakterisztikdjat a (4.17) Osszefiiggés mellett a
sotétkék vonalak is szemléltetik [125] alapjan. Az eliilsé (z = 0) feliileten elhelyezkedd
kék pontok a lehetséges homérsékletmérési pontokat jelolik, tehat a modellek megoldasait
ezeken a pontokon érdemes Osszevetni, mivel ezek kénnyen mérhetoek.

és a forgastengelyen a héaramstirtiség nulla, az egyszeriiség kedvéért a hiilést elha-
nyagolom. A mérés ideje alatt a flitott tartomanytol a hatséd feliletet elegenden
tavolinak tekintem, igy az ottani homérsékletet adott peremfeltételnek irom eld.
Ugyanigy jarok el a forgastengelytol R tavolsagra 1évo feliileten is. A feladatot a
linearis Fourier-, GK- és Jeffreys-egyenletekre oldom meg a Galjorkin-médszer ki-
hasznaldsaval, hengerkoordindtédkban, a [125] publikdciém kovetve. Osszefoglalva, a
kovetkezo leird egyenleteket hasznalom a fajlagos belsé energia mérlegére, valamint
a konstitutiv osszefiiggésekre,

Mérleg:  pc, 0T + 0,q, + iqr + 0.q. = qu(r, 2), (4.18)
Fourier: ¢, = —\0,T, (4.19)
g = —A0.T, (4.20)
GK: 704ty + e = ~AOT + (1) [Ohr = =5+ 20, e+ mOeste + 1Dyt
(4.21)

701q. + ¢z = =X T + (1 + 12)0-..q-
tfon+ 0] e tmro+0u]a  @22)
Jeffreys:  70:q, + ¢, = —\0,T — X0, T, (4.23)
TOq, + q. = — N0, T — X0, T. (4.24)

A Galjorkin-moédszer alkalmazasahoz sziikség van a Fourier-egyenlet altal kijelolt
sajatfiiggvényekre és sajatértékekre, ami a hagyomanyos szorzatszeparacios megol-
das soran hatarozhaté meg. A térfogati hoforras megléte miatt azonban a valtozdkat
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nem lehet azonnal szétvalasztani. Emiatt célszerti két allapot szuperpoziciéjat tekin-
teni: egy inhomogén, de dllandosult allapotot (Ty(r, 2)), valamint egy homogén, de
id6fiiggd allapotot (Ty(r, 2, 1)), azaz a T(r, z,t) = Ty (r, z) + Tu(r, 2,t) felbontdsban
a feladat megoldhat6. A megoldas részleteit az F. fiiggelék tartalmazza.
Mindharom modell megoldasa ugyanabban az alakban, az egyes mezok egytitt-
hatoira vonatkozo kozonséges differencidlegyenlet-rendszer formajaban irhato fel,

Crum(1) Coum(t)
57 | D) | =Mum | Dam (1) (4.25)
Ern(t) Enn(t)

ahol az M,,,,, egytitthatomatrix elemei az egyes modellek esetén eltéréek, valamint a
Crm, Dum és E,p, egylitthatok — az F. fiiggelék jeloléseivel 6sszhangban — rendre a T’
hémérséklet, valamint a ¢, és ¢, héaramkomponenseket kifejto véges sor egyiitthatoi.
A megoldas tetszoleges, idében valtozo, de folytonos térfogati hoforras-eloszldsra is
igaz marad.

x10"4
1

] x10°
08
0.6
&~ 04

0.2
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4.5. dbra. Az allandésult allapotti hémérséklet-eloszlas jellegének demonstraldsa, a bal
oldali abran feliiletként, a jobb oldali 4bran az izoterm szintvonalak segitségével szemlél-
tetve [125].

A megoldasok jellegét a 4.5-4.7. abrak demonstraljak, de a hangsilyt a modellek
megoldasanak modszertanara kivinom helyezni. A Galjorkin-médszer ilyen irdnyt
alkalmazasa nem csak 1j ezen a szaktertileten, de rendkiviil hasznos és 1ényegesen le-
egyszerlsiti a megoldasok menetét. Ehhez arra van sziikség, hogy a GK- és Jeffreys-
egyenletek ugyanazokat a térbeli bazisfiiggvényeket (sajatfiiggvény-sajatérték pa-
valamint az egyenletek szerkezetébdl elso- és masodfaji peremfeltételekre vonatko-
zban belathaté. A harmadfaju peremfeltétel miatt a sajatfiiggvények és sajatértékek
mar fiiggenek a konstitutiv kifejezéstdl is, igy az nem feltétleniil szarmaztathaté a
Fourier-egyenleten tuli esetekre. Ez a médszertan ettol dltalanosabb, termodinami-
kailag kompatibilis modellekre is hasznalhato, a kezdeti és a peremfeltételek keze-
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lése is lényegesen egyszeriibb, mint ahogy a szorzatszeparaciés médszertan esetén
kiadodna.

n =0

L
0.15 0.2 0.25

4.6. abra. A GK-egyenlet esetén a feliileti héaramsiirtiség sugariranyt eloszlasa az 7
paraméter fiiggvényében [125]. Itt érdemes ujra reflektélni a héarammérésre vonatkozd
korabbi megjegyzésiinkre: a hoaramstirliség értéke, eloszldsinak karakterisztikaja nagy-
sdgrendileg nem tér el attdl, amit a Fourier-torvény joésol (itt az n; = 0 hatdreset), emiatt
ilyen modon nem is lehet a Fourier-t6l valé eltérést megfigyelni a jelenleg rendelkezésiinkre
allo eszkozokkel.

5 6 6
2><10 ‘ ‘ 7><10 12 x10
- 6
=15
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T o5 = 2 g ,
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4.7. abra. A GK-egyenlet altal jésolt idobeli homérséklet-valtozas a 4.4. dbran szem-
Jéltetett kék pontokon a z = 0 helyen [125]. Erdekesség, hogy a Fourier-egyenlettsl valé
eltérés inkabb a flitéstol tavolabbi pontokon jelentkezik, nem pedig kozvetleniil a héforréas
kozelében. Ez djra kiemeli a jelenség megfigyelhet6ségének méretfiiggését, és egyben ezek
a szamolasok tovabbi tdampontot adnak tjabb méréstechnikai eljarasok kidolgozasidhoz,
illetve azok kiértékeléséhez.
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4.2. Numerikus megoldasok

A mérnoki gyakorlatban szamtalan esetben, akar a geometria, akar a modellegyen-
letek miatt (a peremfeltételeket is ideértve), szitkség van a numerikus moédszerek
hasznalatara. Ezek a mdédszerek a diszkretizacio folyamatan keresztiil alakitjak at az
eredeti parcidlis differencidlegyenleteket algebrai egyenletekké. Fontos hangsilyozni,
hogy énmagaban a diszkretizacids eljaras, mint médszer, hatékonysagardl értelmet-
len beszélni, ez csak az adott parcidlis differencidlegyenlet-rendszerrel egyiitt értve
értelmes. Erre egy igen bevilagité és a szakirodalomban alapveté példaként emle-
getett modell az advekciés egyenlet® megolddsa, amely a hévezetési modell esetén
kivaléan miikodé FTCS® véges differencids sémdval mindig instabil megoldésra ve-
zet [156]. Ezzel szemben a Lax-moédszert kihasznélva a nevezetes Courant-szam”
stabilitasi kritérium levezethetd, és ehhez tulajdonképpen az FTCS sémanak egyet-
len elemén kell egy kisebb médositast végezni, amitol a séma még mindig megorzi az
idoben elorelépo, térben centralis jellegét, de a numerikus stabilitasi tulajdonsagok
lényegesen megvaltoznak.

A numerikus modszereknek ez a tulajdonsaga altalaban véve is igaz, és igy
a kovetkezo alfejezetekben megfogalmazott allitasok kizardlag a GK- és Jeffreys-
egyenletekre (illetve azok aleseteként tekinthet6 MCV-egyenletre) érvényesek. A
numerikus modszerek targyaldsa esetén a hangsulyt a peremfeltételek kezelésére,
valamint a stabilitasi tulajdonsagok vizsgalatara helyezem. A kezdeti feltételekre
vonatkozo korabbi megallapitasok most is érvényesek maradnak. A kutatasaim so-
ran a véges differencias mddszerek hasznalatakor a séma pontossiaganak novelése
nem volt célom, aminek az az oka, hogy ettdl lényegesen kritikusabb a peremfelté-
telek helyes kezelése és a valédi megoldas megtalalasa.

4.2.1. A peremfeltételek kezelése 1D-ben

Szemléltetésképpen érdemes a GK-egyenlet egy térdimenzids alakjabdl kiindulni,

pC, 0T + 0,q = 0, (4.26)
70,0 + ¢ = =0T + K20,,q. (4.27)

Amig kozonséges differencialegyenleteknél jol mutatja a derivaltak rendje a sziikséges
peremfeltételek szamat, addig a parcialis differencidlegyenletek rendszerénél ez nem
ennyire kézenfekvo. Kontinuum szemmel nézve minden térpontban mindkét mezo
(T és q egyarant) létezik, igy a peremen is. Ez azt jelenti, hogy akdrmelyik mez6re
is vonatkozik peremfeltétel, azzal kompatibilisen kell a masik mezore vonatkozo
peremet is el6irni. Ez a Fourier-egyenletnél nem titkozik nehézségekbe. A problémak
a GK-egyenlet esetén jelentkeznek a masodrendli térderivalt miatt, azaz ismerni

5Az advekciés egyenlet egy elsérenddi hullimegyenlet: O,u = vO,u, ami egy v mennyiség v
sebességgel valé transzportfolyamatat adja meg.

6A r6vidités az angol "Forward Time Centered Space' szavakbél adédik, a szakirodalom is igy
hasznélja, és az id6ben el6érelépd, térben centralis véges differencias kozelitést jelenti.

"Hivjak még Courant-Friedrichs-Lewy-szamnak is, réviditve CFL kritériumként taldlhaté meg
a szakirodalomban [156].

20



kovacsr 325 25

kellene a 0,.q tagot minden idépillanatban a peremen. Ez a jelenlegi tudasunk
szerint nem lehetséges, igy a problémat meg kell kertilni.

T T @ n ... qj T o gy Ty g
EE] ) . ® ce . ° cen . ) m
1 . Ll 1 1 1
Az T
Peremfeltétel Peremfeltétel
¢ Ty q2 ... q; I ... q T
Di [ . [ R . ® . . Y
0:q 0,T
X irdny R

4.8. Abra. Az eltolt mez6s diszkretizalas sematikus abrdja és a peremfeltételek realizala-
sa. A fels6 dbra a q — g-peremek esetét, az alsé dbra a ¢ — T-peremek esetét mutatja be.
A hémérsékletek mindkét esetben egy Ax széles cella dtlagat, a héaramok a celldba be-,
illetve kilép6 aramokat reprezentaljik, teljesen analdég modon a végestérfogati megkoze-
litéssel. Az als6é dbran feltiintettiik, hogy az egyes differencidl-operatorok honnan hova
képeznek a diszkrét racson.

Az egyik megoldéds az ugynevezett eltolt mezés modszertanon alapul, aminek
az alkalmazasa a Fourier-egyenleten tuli h6vezetési feladatok esetén elészor a [135]
publikaciéban jelent meg. Ez a véges differencidk modszerén alapszik, és a kivant pe-
remfeltételnek megfelel6en kell az egyes mezokhoz tartozd racspontokat lehelyezni.
Erre példat a 4.8. dbra mutat, azaz el6irt g-perem esetén a g-hoz tartozé racspont
keriil a tartomany szélére, T-perem esetén a T-hez tartozo. Ez specidlis esetek-
ben egybeesik a véges térfogatok médszerével. Erdekesség, hogy ez a diszkretizécié
csak a termodinamikailag kompatibilis egyenletrendszerek esetén miikodik jol. Ez
impliciten magaban hordozza a Galjorkin-mdodszer soran is tett megallapitasomat,
miszerint az egyes differencidloperatorok ugyanabba a fliggvénytérbe kell képezze-
nek. Ez az eltolas idében is lehetséges, ezaltal novelve az idobeli kozelités rendjét,
valamint ez a médszertan egyesithetd a szimplektikus modszerekkel, amelyek igen
elényos numerikus tulajdonsagokkal rendelkeznek, példaul eltiinthetéek a numerikus
disszipédcids és diszperzi6s hibak [151,152].

Mérnoki szempontbdl szintén hangsilyos a végeselemes szempontok targyalasa,
igy a kovetkezOkben a [136] kozleményre épitve bemutatom, hogy miért is adhat
a COMSOL hamis megoldast a GK-egyenlet esetén. A héimpulzus-kisérletnek is
megfelel6 g-peremeket haszndlom. A megkozelités a (4.26)-(4.27) egyenletek gyenge
alakjara épit, azaz

/(pcvﬁtT + 0,q) wy dV =0, (4.28)
1%
/ (701q + g + A0,T — K2y0q) ws AV =0, (4.29)
14
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a leir6 egyenletek integralis alakjdra, ahol az tgynevezett wy(z) és wo(z) tesztfiigg-
vényekkel kell megszorozni az egyenleteket, amelyek segitenek abban, hogy mate-
matikailag kedvezobb folytonossdgi tulajdonsagokkal rendelkez6 megoldasokat ke-
ressiink. Habar a mérlegegyenletek esetén azok integralalakja a természetes, és csak
annak hatarértéke vezet a lokalis, térpontra felirt differencialis alakra, a konstitu-
tiv egyenletek esetén ez mar egy mesterséges 1épés, mivel eredendéen differencial-
egyenletként, eros alakban szarmaztathatoak. Ettol ez még egy lehetséges 1épés, sot,
sziikséges: a végeselem-modszer alapja ugyanis éppen az, hogy a vizsgalt tartomanyt
résztartomanyokra, ugynevezett végeselemekre bontjuk és a felhasznalt bazisfiigg-
vényeket lokdlisan, egy elemre vonatkozdan definialjuk ugy, hogy azzal biztositani
tudjuk a gyenge alak altal a prébafiiggvényekre, valamint a tesztfiiggvényekre vo-
natkozo folytonossagi feltételeket az elemhataron. Ennek a specidlis hataresete az
analitikus megoldasoknal hasznalt Galjorkin-moddszer, ahol ez globalisan, az egész
testre vonatkozott. A mérlegegyenlet esetén a héaramstiriiségen 1évé derivaltat par-
cialis integralason keresztil at lehet haritani a tesztfiiggvényre,

/<m%&Tw1—qﬁ$>dV::—MMﬂwﬂL)—qdﬂwﬂmL (4.30)

amibol adododan a g-ra eloirt peremfeltételek az integralasi peremen megjelend tagok-
ba beépithetoek lesznek, azaz a mérlegegyenletben forrastagként jelennek meg, az
analitikus megoldasoknal peremlevalasztassal kapott megkozelitéssel teljesen analog
moédon. Ekkor wy esetén wy(0) # 0 és wy(L) # 0, méaskulénben kiesnek a peremta-
gok. A moédszertan ugyanigy jar el a konstitutiv egyenlet esetén is, ott a masodrendii
térderivaltbdl lehet egyet atharitani a ws tesztfiiggvényre,

/ (Tatqw2 + qwa + A@xng + H2archux2> dv = ’Q2 [833(]([/)11}2([/) - axQ(O)w2(0>]a
\%

(4.31)

ahol azonban a 0,q a peremen nem ismert és nem eléirt fiiggvény, ezért a peremen
megjelend tagokat szabadon hagyjuk. Ez arra is felhivja a figyelmet, hogy a GK-
egyenlet ennek el6irasara is lehetdséget ad, ez valasztas és modellezés kérdése, és
inkdbb a fononhidrodinamikai modellek esetében értelmes [157]. A teszt- és proba-
fiiggvények felvétele utan az integralasok elvégezhetoek és az integralegyenletekbdl
egy csatolt, idében kozonséges differencidlegyenlet-rendszert kapunk, amiben kiilon-
kiilon szerepel a homérséklet és a hoaramstriiség, emiatt ezt kétmezds modszer-
nek nevezik, és megorzi az egyenletek rendszerében valé gondolkodast. Specidlisan,
a [136] irodalomban az egyes mezéket és fliggvényeket polinomialis alakban keres-
tiik, ahol a polinom fokszamanak novelésével a hagyoméanyos elemstiritési eljarasnél
sokkal gyorsabb konvergenciat lehet elérni.

A (4.30)-(4.31) osszefiiggésekbdl az olvashaté ki, hogy a T, ¢ és wy o fuggvények
nemcsak, hogy integralhatéak kell legyenek, hanem a GK-egyenlet esetén azok deri-
valtja is. Ez azt jelenti, hogy ezek a fiiggvények a H' Szoboljev-tér elemei, valamint
azok végessége miatt a H! egy alterén alkotnak bdzist és reprezentdljdk a megol-
dast. Ez egyrészt eltér az analitikus megoldasban latottaktol, ott ugyanis elegendd
volt az, hogy az egyes fiiggvények négyzetesen integrdlhatbak, vagyis az L2 elemei
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legyenek. Ugyanez az eltérés adodik a COMSOL-lal valb 6sszevetés esetén is. A
COMSOL szintén csak L%-beli fliiggvényeket haszndl [158], és a tobbmezds megfo-
galmazhatésag ellenére inkonzisztens megoldasokra vezet. Megjegyezem, hogy ez
a GK-egyenlet sajatja, az MCV-egyenlet esetén az egyes fiiggvényekre elegendé az
L%-beli integralhatosag, és igy a COMSOL is helyes megolddsra vezet.

A Jeffreys-egyenlet szempontjabol nincsenek ilyen fliggvénytérbeli inkompatibi-
litasi problémak, mivel a modell csak idobeli kiterjesztéseket vezet be, igy a tovabbi
térderivaltak jelentette folytonossagi és integralhatésagi nehézségek nem jelentkez-
nek. Ez megint csak ravilagit arra, hogy a Jeffreys-egyenlet matematikailag a GK-
egyenlethez képest sokkal egyszeriibben, kényelmesebben kezelheto, és a Fourier-
egyenlettel egyezo fliggvényrendszerek numerikusan is mitkodnek.
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4.9. dbra. A kétdimenzids GK-egyenlet megolddsara hasznalt eltolt mezds diszkretizécid
[159] alapjén. A bal felsé dbra mutatja az egyes mennyiségeknek a diszkrét racson elfoglalt
helyét, a jobb oldali a ¢-peremek és a Q keresztkomponensei kozotti Osszefiiggést. A bal
alsé abra egy Lagrange-polinomokra épiilé extrapolacios eljarast szemléltet a Q peremen
hidnyzé keresztkomponenseire vonatkozdan.

4.2.2. A peremfeltételek kezelése 2D-ben

Ebben az alfejezetben tjra csak a GK-egyenletre fokuszalok, ugyanis a Jeffreys-
egyenlet esetén tobb térdimenzioban sem jelentkeznek a gradiensen feliili tovabbi
térderivaltak. Az egyszeriiség kedvéért a feladatot Descartes-koordinatakban tar-
gyalom, és az eltolt mezos mddszertant alkalmazom a

pc, 0T +V -q =0, (4.32)
7O q+q=—-AVT +mAq+n.VV-q, (4.33)
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egyenletek diszkretizacidjara, kovetve a [159] irodalmat. Erdekes és fontos, hogy a
Q=q®V (4.34)

bevezetésével
TOq+q=-AVT+mQ -V +nVtrQ (4.35)

alakra lehet a konstitutiv részt atirni, azaz a Q, mint a héaramstirtiség gradiensének
segédmennyiségként vald bevezetése segiti a térderivaltak megfeleld diszkretizacio-
jat. Ebben jelen van a termodinamikai hattér is, mivel a Q az igen hasonlé ahhoz
a relaxalt mez6hoz, amirdl a Nyiri-szorzok kapesan a 2. fejezetben sz6 volt. Az el-
tolt mezos moddszerrel valé racspont kiosztast derékszogii koordinata-rendszerben a
4.9. dbra szemlélteti [159], ahol azt is jeloltem, hogyan viszonyul a Q a g-ban adott
peremfeltételekhez. Két fontos megallapitast kell tennem.

Az elso allitasom azt mondja, hogy a Q és a q nem fliggetlenek egymastél, és ha
a Q szimmetrikus, akkor minden perempontja teljes egészében kiadodik a 4.9. ab-
ranak megfeleléen. Ezt a szimmetrikussagi tulajdonsdgot mindig lehet elore ismer-
ni, emiatt a masodik allitisom azt mondja, hogy a Q-beli peremfeltételek igen jo
kozelitését adja a belsé térpontokbdl Lagrange-polinomok segitségével torténd ext-
rapolacié, amelyet szintén a 4.9. dbra szemléltet. Az extrapolaciés megoldast tgy
teszteltiik, hogy a Fourier-egyenlet megoldasat kiilon diszkretizacioval, valamint a
GK-egyenlet itt bemutatott megoldasaval is eléallitottuk, és 10714 rendd hib4n be-
lill ugyanazt a megoldast kaptuk vissza térben és idében, valamint instabilitdsokra
nem vezetett [159]. Az extrapoldciéhoz mindenképpen csak egy mésodrendii poli-
nomot hasznaltunk amiatt, hogy a tendenciat elojelérz6 médon lehessen elvégezni.
Ilyen tekintetben a f6 kérdés, hogy a modellezésben figyelembe kivanjuk-e venni a
déul szuperfolyadékok termikus modellezésénél igen fontos jarulékokat adhat [160].
Eppen emiatt a GK-egyenlet sokkal jobban tudja egyesiteni az alacsony hémérsék-
letli jelenségeket a heterogén anyagok effektiv leirasaval, erre az egységes leirasra a
Jeffreys-egyenlet csak igen korlatozottan képes. Ezzel szemben a Jeffreys-egyenlet
megoldésait sokkal konnyebb eléallitani, nincsenek kiemelked6 nehézségek sem az
analitikus, sem a numerikus modszerek terén, amelyek instabilitasokra vagy hamis
megoldasokra vezetnének. A tovabbi részleteket a G. fiiggelék tartalmazza.

4.2.3. Nemlinearis feladatok

A megoldasi modszerek lezarasaként harom, térben egydimenzids nemlinedris mo-
dellt mutatok be, a Fourier-, az MCV- és a Jeffreys-egyenleteket, amelyekben a ho-
vezetési tényezo és a relaxaciosidé-egyiitthatok homérséklettiiggdek, és azok numeri-
kus, véges differencidk médszerére vonatkozo szempontjait vizsgdlom a [100,133,134]
irodalmak mentén, azon beliil is f6leg a numerikus stabilitasi hatarok becslésére vo-
natkozoan. A kovetkezékben kizarolag az el6bb targyalt eltolt mezos modszertant
fogom hasznélni a diszkretizacidhoz. Az allitdsom lényege az, hogy a linearis egyen-
letekre hasznédlatos Neumann-moédszer [156] ezekben a specidlis — d&mbéar mérnoki
szempontbdl igen lényeges — esetekben tovabbra is hasznalhaté, és annak egyfajta
altalanositasat adom meg anyagi nemlinearitdsokra vonatkozoan.
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I. Fourier-egyenlet. Ehhez el0szor a Fourier-egyenlet példajat érdemes megvizs-
galni, amiben a

pC, 0T + 0,q = 0, (4.36)
q=—-X\T)0,T (4.37)
egyenleteket a véges differencidk modszerével diszkretizalom , valamint legyen

MT) = X+ h(T —Ty), de a kovetkezékben a Tj referencia-hémérsékletet elhagyom,
mivel az egy eltolassal nullaba transzformalhatd. A

pCy

1
E(Tnﬂ,y‘ —Tnj) + 7(qn,j+1 — Gn,j) =0, (4.38)

A

Ao + T,

(L = Tager)  (439)

Qn,j = —

differenciaegyenletek stabilitasi tulajdonsagait kivinom meghatarozni. A legegysze-
riibb 1t az, ha a [161] alapjan a T,, — 7,41 id6pontok kézotti leképezés tulajdon-
sagait tekintjiik, amellyel a stabilitasi feltételt egzaktul meg lehet kapni. Ennek a
leképezésnek a kovetkezo feltételeket kell kielégitenie:

1. a leképezés T-ben folytonos legyen;

2. a leképezés legyen szimmetrikus;

3. a leképezés matrixanak sorosszege legyen 1;

4. a leképezés matrixdnak elemei legyenek nemnegativak;

5. a leképezés matrixanak féatlojaban 1évo elemek legyenek pozitivak;

6. irreducibilis legyen, vagyis barmely T-hez egyértelmiien tartozik egy A\(T") > 0
elem.

Ez a leképezés felirhaté egy tridiagonalis matrixként, amiben minden sorban a [y; 1—
27; 7| elemek taldlhatéak, és

y = { At do + A,y } (4.40)

o Ax? )\0

Egy kivételével minden feltétel trividlisan teljesiil, a negyedik feltétel megadja a
stabilitasi kritériumot, amely szerint 1 — 2v > 0, azaz a

(4.41)

At Ao+ b1,
1 > 2max, ; { 0t n’]}

o Ax? )\0

feltételre vezet, vagyis v akkor a legnagyobb, ha a T, ; maximumot vesz fel, és
aminek a teljestilése sziikséges és elégséges a nemlinedris Fourier-egyenlet megolda-
sdhoz [100], és lineéris esetben (h = 0) a klasszikus FTCS séma altal adott stabili-
tasi feltételre redukéalédik. Azonban ez a médszer nem latszott altalanosithaténak a
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Fourier-egyenleten tilmutaté esetekre vonatkozoéan, de ez a felismerés motivalt arra,
hogy a Neumann-modszert a kovetkezok szerint mddositsam.

A Neumann-modszer lényege az, hogy a diszkretizacié eredményeként kapott
differenciaegyenletek megoldasat sikhullam formajaban keressiik, egyfajta diszkrét
diszperzios relacioként, példaul a homérsékletre felirva

T, = Ty"e™ae, (4.42)

ahol 7 a képzetes egység, k a hullamszam, jAx fejezi ki a j-edik térlépést, valamint
¥ a hullAm amplitidodja, amely minden n idélépésben hatvanyozodik. Ebbol az ko-
vetkezik, hogy akkor lesz stabil a hullam, ha annak ¢ amplitidéja barmely n esetén
felillré] korlatos, tehét || < 1, ¢ € C. A T hdmérséklet-amplitidé dimenziona-
lis okokbol sziikséges, a modszer szempontjabdl nincs kiemelt jelentésége. Ha tobb
mezo6vel kell dolgozni, akkor minden mezére érvényes lesz a (4.42) alak, de eltérd
amplitidéval (példaul ¢ mez6 esetén G-al). A (4.42) hullammegoldast visszahelyet-
tesitve a (4.38)-(4.39) egyenletekbe v-re egy p(v)) = path® +p1) + po karakterisztikus
polinomot kapunk (linedris esetben), amely polinom pg ;2 egytitthatéira a

e p(p=1)>0=py+p1 +po >0,
e p(p ==1)>0=ps—p1+po >0,

° ‘pO‘ S D2,

Jury-kritériumok [162] teljestilését irjuk eld. A kritériumok ellendrzésébél kapjuk
meg a numerikus stabilitasi feltételeket. Ez azt jelenti, hogy a polinom gyokeit a
komplex egységkoron vagy azon beliil tartjuk, mindezt gy, hogy csak a polinom
egyiitthatéit hasznaljuk fel. A polinom fokszamahoz képest mindig eggyel tobb
feltételre van sziikség, és ez a moédszertan altaldnosan miikodik barmely linearis
egyenletrendszerre. Meg kell jegyezni, hogy a kiad6dd stabilitasi feltételek nem
mindenképpen egzaktak, mivel a peremfeltételek hianyoznak beldliik, de a stabilita-
si kritériumokat igen jol kozelitik, és a mérnoki gyakorlat szamara ez is nagyon jo
eredménynek mondhaté. Nemlinedris esetben a p(1) polinom egyttthatéi hémér-
sékletfiiggiek lesznek, tehat a stabilitas is allapotfiggévé valik. Az otletem az, hogy
a AT fuggvényben a T helyére egy Ty, maximdlis hémérséklet értéket lehet be-
helyettesiteni, amely homérséklet a teljes folyamat alatt, térben és idoben kialakuld
maximdlis érték [100]. Mivel ez a hémérséklet fiigg a kezdeti és peremfeltételektél,
valamint a modelltél, emiatt erre egzakt értéket nem lehet mondani, még akkor sem,
ha hémérséklet-peremfeltételeket irunk el6. Ugyanis, altalanos esetben a Fourier-
egyenleten tili modellek része a hulldmterjedés (masodik hang) leirdsa, igy ilyen
modellek esetén a hémérséklet lokalisan akar joval meghaladhatja a peremfeltétel-
ként eloirt homérsékletet is. Azt a meggondolast viszont kihasznalom, hogy ezt a
maximalis homérsékletet a linearis egyenlet megoldasabol becsiilhetem, mivel adott
kezdeti és peremfeltételekre ezt gond nélkil el6 lehet allitani. Ezt a Fourier-egyenlet
példajan demonstralva azt kapom, hogy a polinom egyiitthatoi:

At N + R ax

=1 =4 -1 4.43
P1 » Do aop N N ) ( )
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ahol ag = Ao/ (pcy) egy Ty referencia-hémérsékletre vett héfokvezetési tényez6. Ekkor
a

At Ao + W ax

—1-4
¢ o Ax? )\0

(4.44)

megoldast kapom, amire a || < 1 feltételt el6irva azonnal meg is taldlom a (4.41)
stabilitasi kritériumot. Itt a Jury-kritériumokra azért nem volt sziikség, mert az
idoben elsérendii modell miatt egy igen egyszerii polinomot kaptam eredményiil, de
az MCV- vagy a Jeffreys-egyenletek kapcsan mar osszetettebb a helyzet.

II. MCV-egyenlet. Ezt az eljarast megismételem az MCV-egyenlet példajan,
azaz a

pc, 0T + 0,q = 0, (4.45)
T7(T)0q + q = —N(T)0,T (4.46)

egyenletrendszeren, amelyben feltételezem, hogy A(T') = Ao + hy (T — Tp) és 7(T) =
7o + ho(T — Tp) alakban frhatéak, ahol hy és hy paraméterek lehetnek negativak is,
de természetesen a termodinamika A\, 7 > 0 kovetelményeivel 6sszhangban, valamint
MTy) = Ao, T(To) = 70, és itt is elhagyom a Ty referencia-hémérséklet kifrdsat.

Alkalmazva az el6zéekben is leirt véges differenciak modszerén alapul6 eltolt
mez0s moédszertant, a [100] irodalommal 6sszhangban, a

PCy 1

E(Tnﬂ,j —Thj) + E(qmﬁl — Gnj) =0, (4.47)
70 + hoTh, Ao+ T,
—ar (a1 = Gng) + Gng = B we— H(Thy — Toj—1)  (4.48)

differenciaegyenleteket kapom, amibe a (4.42) egyenlet behelyettesitésével linedris
esetben (hy = 0, hy = 0) p-re egy p(y) = patp? + p1p + po karakterisztikus polino-
mot kapok, amely polinom py ;2 egylitthatéira a Jury-kritériumok teljesiilését irom
el6. A nemlinearis MCV-egyenlet példdjan a harmadik Jury-kritérium adja meg a
stabilitasi feltételt, miszerint a At idélépésre

ALL’Q T0 + hQTmax )\0 )\0
< apg =

At
4a/O To >\0 + hljjmax7 PCy

(4.49)

feltételnek kell teljesiilnie. A Fourier-egyenlet esetén a T, — T,,.1 kozotti leképe-
zésre ismert ez a stabilitasi feltétel, de a Fourier-egyenleten tulra azonban az elobb
bemutatott kozelités dltalanositja a Neumann-modszert, amely specialisan a Fourier-
egyenletre ugyanazt a feltételt szolgdltatja. Ez nem ekvivalens egy linearizalassal, de
a nemlinearitast megsziinteti, és a stabilitasi feltételre egy jol hasznalhaté becslést
szolgaltat [100,133]. Ez kétdimenziés esetekre is szarmaztathaté [134].
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ITI. Jeffreys-egyenlet. Az anyagi nemlinearitasok lehetséges figyelembevétele so-
ran mélyebben is elemeztem az idoskalak szerepét és azt a megallapitast tettem, hogy
a

g= —%@T 4 Lo (T)(—ke), (4.50)
&fz—bgpaf+bﬂ—%% (4.51)

onsageri rendszerbdl a £ belsd valtozo kikiiszobolése utan megjelenik egy nemlinearis
kiegészités, azaz

0, 0T + 0,q = 0, (4.52)

L dha(T) T <q - );_28xT> . (4.53)

= M(T)0,T + X0, T
TOq +q 1(T)0,T 4 0, +Tl12(T) 1T

konstiticios osszefiiggés jobb oldalan kapok egy igen bonyolultnak latszé nemlinearis
tagot. A korabbi megallapitasom szerint az egydimenziés modellben figyelembe
vett A(T') fuggés gyors folyamatokra nagy részben kikiiszobolhetd akkor, ha ezt a
transzportegytitthatok is lehetévé teszik.

Az eltolt mezds diszkretizacidos mddszertan szerint a & és a ¢ a diszkrét racson
ugyanott kell helyet foglaljon, mivel azok kozvetleniil aranyosak egymassal. Ez azt
jelenti, hogy egy ¢-perem esetén a £ is a peremre keriil, igy mellé a hémérséklet
gradiensét vagy a & belso valtozot is meg kell adni. Mivel a belsé valtozé pontos
fizikai jelentését nem ismerjik, a ¢ és a 0,1 egymastol kilonbozik, és csak a ¢ is-
mert, emiatt egyikre sem szeretnénk a peremen mesterséges feltételeket szabni, igy
a & kikiliszobolése szinte sziikségszerli. Rdadasul, ha a &-t eloirjuk a peremen, akkor
abbdl a (4.51) miatt a 0,7 is kovetkezik, amibél ¢ (4.50) miatt szintén kiadodik. Ez
a probléma akkor okoz kevesebb kellemetlenséget, ha az l; = 0 helyettesitéssel meg-
feleltetjiik egymasnak a hoaramstiriiséget és a bels6 valtozot, igy az MCV-egyenletre
redukéljuk a modellt, tehat a fennallo6 ardnyossag miatt mar a kétféle peremfeltétel
meg fog egyezni. Tehat valaszthatunk: ¢-perem esetén kikiiszoboliink, vagy kozvet-
lentil a &-re frunk elé peremfeltételt. De ez a valasztasi lehet6ség csupan elvi, hiszen
egyrészt csak a hoaramsiriséget ismerjik, mint fizikai mennyiséget, masrészt csak
a kikiliszobolés soran azonositott transzportegytitthatokat lehet a mérésekbol egyér-
telmlien meghatérozni. Emiatt a (4.52)-(4.53) rendszer megoldasa sziikségszerii, és
a kiad6dé nemlinearitasokat az onsageri szinttol kezdodoen kovetni kell, igy ezért
még hangsulyosabb az iddskaldk és bizonyos nemlinearitasok kikiiszobolhetdségének
a szerepe. A \(T') fiiggést lo1-en keresztiil célszerti figyelembe venni, mivel az a ki-
kiiszobolés utan nem vezet be bonyolult nemlineéris jarulékot, valamint szintén nem
érinti a tobbi transzportegyttthatot.

A dolgozatomban kozolt eredmények és allitasok teljes kovethetdsége érdekében
a (4.53) diszkretizdciojat is bemutatom. Legyen most l12(T") = liog + T, de ly
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maradjon konstans, ugyanis ez nem befolyasolja a nemlinearis jarulékot, igy

PCy Qn,jJrl - Qn,j
Ty —T )4 a2 And 4.54

At< n+1,j Th]) + Ax O’ ( 5 )

T ;\0 + thm'

Al — Anj) + Gng = S e— Ty — Tj—1)

+ 5\2<Tn+1 = o1 — Ty +1n '—1)
AtAx 5J 5J 5J 5J
Tn+1'_Tn' :\2Tn'_Tn j—1
C Tn . 5] 5] i — — 5] 5]

(4.55)

ahola C(T), ;) = hy/(14+hy T, ;) médon reprezentalhatd, mivel l;5 o-at az egyszertiség
kedvéért egységnek is valaszthatjuk, a transzportegyiitthatokat nem befolyasolja, de
nulla nem lehet, valamint a h; = 0 hatéresetben kiejti a teljes nemlinedris kiegészi-
tést. Az eddigiek alapjan természetesnek tiinik, hogy a A(T') és C(T') fuggvényekben
vegytik figyelembe a T,.y értéket, amit az adott hémérséklet-peremfeltétel (legaldbb
részben) meg tud kotni. Ezt a gondolatot ki kell terjeszteni a 0,7 tagra is, més-
kiilonben nem lehet a Neumann-modszert hasznalni. Ehhez szintén felhasznalom a
linearis megoldést, illetve a peremfeltételt, és abbdl is elegendd a maximalis értéket
behelyettesiteni, mivel a stabilitasi hatart a leggyorsabb folyamatok adjak meg, és
ezt a két tagot egységesen C (Tnax) = C(Tmax) (0T ) max m6don fogom jeldlni. Ekkor
a polinom egyiitthatéi a kovetkezok:

P2 = 17
At - 4At N

= — — C(Tpax) At — ——= — 2,
b T ( ) pC, TAT?

At~ ANE ([ Ay - <
_ At _Aar T + 22 4
Po - + C(Tmax)At —+ TpCUAJ,‘Q <)\0 + hl max T At + C(Tmax))‘2> 9 ( 56)

amelyekre adott paraméterek, peremfeltételek esetén a Jury-kritériumok ellenérzését
numerikusan azonnal el lehet végezni a beéllitott id6- és térlépések fiiggvényében. Az
egyitthatoknal minden egyes tag dimenzidtlan kell legyen, ami egy visszacsatolas
a szamoldsunk ellenérzéséhez. Az Iy (T) = la1o + hoT, és konstans 1o esetet az
el6z6ekbol azonnal megkapom a C (Tmax) = 0 és hy — hy helyettesitésekkel, amib6l
a stabilitasi feltétel

4At(5\0 + hoTmax) + Ao

< Az? (4.57)
Py

IV. Kiegészités a Neumann-modszerhez: a disszipacios és diszperziv hi-
bak. Ujra visszatérve a linedris (T-fuggetlen) esetekre, a disszipaciés hiba azt
mondja meg, hogy az idoben valé léptetés soran hogyan torzul a sikhulldim amp-
litiddja, azaz a || viselkedése a kérdés. Amig a Jury-kritériumok ugy kényszerezik

29



kovacsr 325 25

a p(¢) polinom gyodkeit, hogy azok a komplex egységkoron vagy azon belil legyenek
(teljesitve a stabilitasi feltételeket), addig a p(1)) gyokeit vizsgalhatjuk gy, mint a
diszkretizacios paraméterek, At és Az fiiggvényeként. Természetesen itt adottnak
tekintjiik az eredeti parcidlis differencidlegyenlet egyiitthatoit és a diszkretizaciot,
de ezenfeliil az ido- és térlépések, valamint a transzportegyiitthatok fiiggvényeként
is valtozik a |¢| viselkedése. Egy sémét konzervativnak neveznek, ha || = 1, ettél
eltéro esetekben a séma disszipativ.

2

[REFERENCIA]| : ' 'COMSOL - RK34
(szimplektikus)

1.8

161

1.4

Sebesség
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4.10. abra. Egy rugalmas hulldmterjedési feladat numerikus megolddsa. Balra: kon-
zervativ (|¢o| = 1) tulajdonsidgn, szimplektikus mddszer eredménye. Jobbra: a COMSOL
Runge-Kutta-alapi megoldasa. A hullaimalaknak pontosan ugyanolyannak kell maradnia.
A disszipacios hibat az amplitid6 csokkenése, a diszperziés hibat a visszaver&déseknél
megjelend mesterséges oszcillicié mutatja, [151] alapjan.
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4.11. dbra. A |¢] viselkedése egy akusztikus hullimterjedési feladatra alkalmazott szimp-
lektikus Euler séma esetére, [58] alapjan. A séma konzervativ (|¢)| = 1), azaz mindig az
egységkoron mozgunk, igy disszipacids hibat varhatéan nem fogunk tapasztalni, de ettél
még a teljes egységkort nem fedi le a ¢ amplitadod, tehat diszperzids, oszcillacids hibakra
szamithatunk.

Ennek igazdn konzervativ hullamterjedési esetekben van relevancidja (példaul
rugalmas, akusztikus hulldmterjedési szimulaciok esetében [151,153], lasd a 4.10. &b-
rat), de akar disszipativ modellek, vagy csatolt termomechanikai jelenségek esetén
is érdekes informacié lehet, foleg a hiperbolikus hovezetési egyenletek megoldasa-
ban (4.3. dbra). Erre mutat ra a [135] publikdciém is, ahol a tisztan implicit és a
Crank—Nicolson sémak Osszehasonlitasabdl is latszik ez a kiilonbség, de leginkabb
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csak a hullamfront kornyezetében. Nemlinedris (7-fiiggé) esetekben mindez ugy-
is vizsgalhatd, hogy a T-fiiggod transzportegytitthatékban 1évé homérsékletet szintén
paraméterként kezeljiik a Ty-t6l kezdve T),.c-ig bezéardlag [133,134]. Tovabba, a hy és
hy egytitthatokat is tekinthetjiikk paramétereknek, amelyek a nemlinearitas erosségét
(meredekségét) szabjik meg.

A Neumann-moédszer tovabbi elénye, hogy a diszperzios hibdk meglétére is becs-
lést adhatunk. Linedris esetben — figyelembe véve, hogy ¢ € C, egy Im(¢)-Re(4))
koordinata-rendszerben vizsgalhatjuk, hogy v mennyire fedi le a komplex egységkort
(amennyiben |¢)| = 1), demonstracios jelleggel ez lathat6 a 4.11. dbran. Ha teljes egé-
szében barmely hullamszamra lefedi, az azt jelenti, hogy a valasztott diszkretizaci
és a modell paraméterei (szintén ideértve a hy, ho, T-fiiggéseket) a valés megoldést
teljes egészében reprezentalni tudjak, nincs olyan része a hullamcsomagnak, ahol
levagas torténne. Ezt szoktdk tgyis interpretalni, hogy a numerikus séma kozelitése
a pontos megoldashoz képest fazishibat hoz létre. De ez annak koszonhetd, hogy a
kozelito megoldas nem tudja a valés megoldas minden részét eldallitani, amit aztan
mesterséges, fizikai tartalommal nem rendelkez6 oszcillaciokként vehetiink észre.
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4.12. Abra. COMSOL beépitett akusztikus hullamterjedési moduljanak demonstracios
jellegli megoldasai, amelyben a kezdeti és peremfeltételek, a halézas és a terjedési sebes-
ség azonos, az eltérés az egyes idSintegraldsi mdodszerekben van, [152] alapjan. Az A)-t6l
D)-ig tarté abrak a visszalép6é Euler-moédszert mutatjak kiilonféle rendig tarté kozelité-
sekkel, féleg disszipativ hibaval terhelve. E) Otédrendi Dormand-Prince-mddszer, f6leg
instabil megolddsokat eredményezve. F) Negyedrendii Runge-Kutta-médszer, stabil, de
féleg disszipativ és diszperziv hibakkal terhelve.

A 4.10. abra szintén mesterséges hibakkal terhelt hullammegoldast szemléltet,
minden visszaverddés esetén oszcillacié figyelheté meg, ami nem része a valés meg-
oldasnak. Ez egyarant jellemzo a véges differenciak és végeselemes modszerekre, de a
Neumann-modszer segitségével a véges differencidk esetén erre konkrét becsléseket is
lehet adni. A COMSOL esetén ezt a viselkedést kiilonféle halozassal, halotipusokkal,
idointegralasi sémak tesztelésével lehet vizsgalni. Ebbdl a szempontbdl kiilonosen
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érdekes a 4.12 abran latott viselkedés, amely a COMSOL beépitett, skalarmezos
hulldmterjedést szimuldlé moduljaval készilt [152]. Azonos halézasra a kiilonféle
idéintegralasi modszerek eltéré megoldasokat adnak, és ez a halozas finomitasaval
sem valtozik.

4.3. Osszefoglalas

Ebben a fejezetben olyan moédszereket mutattam be, amelyek az MCV-, a GK- és
a Jeffreys-egyenletekre analitikus és numerikus tton adnak megbizhaté megolda-
sokat. A tesztfeladatok arra vilagitanak ra, hogy az egyenletek rendszerében vald
gondolkodas elkeriilhetetlen. Ezt linearis esetben a peremfeltételek helyes kezelése
koveteli meg, de nemlinedaris esetben nincs is mas lehet6ség. Az analitikus megolda-
sok tekintetében a legfontosabb megfigyelésem az, hogy a Fourier-egyenlethez képest
nincsen sziikség tovabbi peremfeltételekre, valamint az els6- és méasodfaji peremfel-
tételek esetén a sajatfiiggvény-sajatérték rendszerek a GK- és Jeffreys-egyenletekre
atszarmaztathatoak. Numerikus szempontbol a peremfeltételek kezelése, valamint
a nemlinearis hévezetési egyenletek numerikus stabilitasanak becslése a legfobb ku-
tatasi eredményem, a kovetkezd tézisek ezeket az eredményeket foglaljak 6ssze.

5. Tézis — Az analitikus megoldasok sajatossagai

A Guyer-Krumhansl- és a Jeffreys-egyenlet hémérséklet-reprezentaciéja alap-
jan megallapitottam, hogy elso- és masodfaji peremfeltételek esetén ugyanaz
a sajatfliiggvény-sajatérték rendszer hasznalhato. Erre épitve kidolgoztam egy
specialis, Galjorkin-modszerre épiil6 analitikus megoldasi technikat. Megad-
tam az inhomogén kezdeti feltételek kévetkezményeit, és egy termodinamika-
ilag konzisztens médszert ajanlottam a kezdeti idéderivaltak figyelembevéte-
lére.

Az 5. tézishez kapcsolédd publikaciok: [6,73,103,125,133,139,140].

6. Tézis — A nemlinedris hovezetési egyenletek numerikus stabilitdsa

A nemlinedris, hoémérsékletfiigg6 transzportegytitthatokkal rendelkezé
Fourier-, Guyer-Krumhansl- és a Jeffreys-féle hovezetési egyenletek nu-
merikus stabilitasanak vizsgalatahoz Kkiterjesztettem a Neumann-modszer
érvényességét és egy modszert adtam a stabilitasi hatarok becslésére. Meg-
allapitottam, hogy a transzportegyiitthatokat az anyag olyan allapotan kell
figyelembe venni, ahol a leggyorsabb a karakterisztikus terjedési sebesség, és
ennek becslésére a linearis megoldasbdl kapott hémérsékletbeli szélséérték
hasznalhato.

A 6. tézishez kapcsol6dé publikéciok: [58,100,102,133,134].
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5. fejezet

Heterogén anyagok termikus
jellemzése

Ebben a fejezetben a gyakorlati felhasznaldsokra, valamint a kisérleti tapasztalatok
Osszegzésére helyezem a hangsilyt. Ezek a kisérletek a 4.1. Abran mar korabban bemu-
tatott héimpulzuselvii mérések. A fejezetben bemutatott kisérleti eredményeket Fehér
Anna doktoranduszhallgatommal kézosen értiik el, ezek részletes dokumentaciéjat az
6 Ph.D. dolgozata tartalmazza. Az effektusok reprodukalhatésdgat hosszatava, 100
méréshol allé sorozatokkal ellendriztiik, a kozolt adatokat +5%-0s pontossag jellemzi.

5.1. Az effektiv leiras jellemzo6i

A gyakorlati alkalmazasok sordn valik igazan hangstlyossa a vizsgalt kontinuummo-
dellek univerzalitasa, vagyis az, hogy a javasolt hovezetési egyenletek alkalmazasa nem
szerkezetspecifikus. Ez alatt azt értem, hogy a hdévezetési modell fiiggetlen a konkrét
anyagi szerkezettdl, a Fourier-torvényhez hasonléan ezt a GK- és a Jeffreys-egyenletek
is teljesitik. A szakirodalomban gyakran hasznalnak olyan kozelité Osszefiiggéseket —
foleg a hovezetési tényezére — amely teljes mértékig kihasznalja az adott heterogén
szerkezet tulajdonsagait. Ez azt jelenti, hogy ezeknek az Osszefiiggéseknek a hasznala-
tahoz ismerni kell nemcsak az anyagszerkezetet, hanem azok gyartasanak technologiai
paramétereit is. Ennek az az oka, hogy a hatarfelilleteken létrejovo kontaktellenallas
fiige a mechanikai jellemzoktol, igy a nyomastol is. Ha egy adott heterogén anyagot
nagy nyomason allitanak el6, akkor ott varhatéan a hatarfeliileteken is kisebb ellen-
allas jon létre. Mivel akéar igen nagy is lehet a hatérfelilletek mértéke, ezért az eredo
hévezetési tulajdonsagok is jelentdsen fliggenek ettdl. A teljesség igénye nélkil néhany
példa [163-166] irodalmakban talalhato effektiv hévezetési tényezd becslésekre:

Voigt-tipust : At = Vidi + Vodo,  (5.1)
1
Reuss-tipust : At = w7 (5.2)
-
1 2
o R
Markworth és mtsi : Aeg = VIAL + Vo + ‘/1\/'237‘7, (5.3)
A + Wi

bey 1
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5.1. Abra. Az anyag szerkezetétdl fiiggd effektiv hévezetési tényez6 valtozasa a stri-
ség fliggvényében, [167] alapjan. A relativ jelz6k a métrixanyaghoz képesti jellemz&kre
értendoek.

amelyekben az "1" és "2" indexek a két komponensre vonatkoznak, és a A, 1%
mennyiségek a komponensekhez tartozé hovezetési tényezot és azok térfogatardnyat
jellemzik. Az ilyen képletek mogott igen sokféle elgondolas huzédik, példaul az,
hogy a komponensek egymashoz képest hogyan helyezkednek el (soros, parhuzamos
kapcsoldsok vagy ezeknek valamilyen keveréke), azok térfogati ardnyai, a heteroge-
nitdsok geometriai jellemzdi (gomb, hasab, rétegelt, stb.), de igen nehéz figyelembe
venni az érintkezo feliileteken jelentkezd hoellenallasokat. Erre egy igen kivald példat
a szemcseerssitett matrixi kompozit fémhabok esetén latunk [82], ahol egyértelmiien
az mutatkozik meg, hogy a szemcseerosito anyag azonos térfogataranyban, de eltéro
méretekben valé alkalmazésa jelentésen befolyasolja a kialakuld hovezetési képessé-
get, tehat a heterogenitasok szamossaga, mennyiségi jellemzése is fontos, nem csak
azok minoségi jellemz6i. Ez azt jelenti, hogy minél tébb a szemcse, annal nagyobb
az érintkezo feliilet mértéke, tehat annal tobb héellenallas jelentkezik a rendszerben.

Ezeknek a vizsgalatoknak egy igen fontos és mérnokileg relevans tanulsaga az,
hogy habar a részletes modellezési megkozelités, az anyagi szerkezet pontos figye-
lembevétele is egy lehetéség, de ezt a gyakorlatba igen nehéz atiiltetni, rendkiviil
specifikus és korlatozott érvényességi tartomannyal bir. Erre szintén egy jo szemlél-
tetés taldlhat6 a [167] irodalomban, ahol kiilonféle belsé szerkezet esetén vizsgéljak
az effektiv jellemzok valtozasa okozta homérséklet-valtozast. A belso szerkezet ha-
tasa a nagyobb porozitdsok (kisebb relativ stirtiségek) felé haladva egyre er6sodik
(lasd az 5.1. abrat). Barmely véaltoztatds esetén a teljes kisérlet- vagy szimuldcio-
sorozatot djra kell kezdeni és 1j korreldciokat kell keresni. A heterogén anyagok
lehetséges tipusainak igen nagy szdma miatt ez a fajta modellezési megkozelités
egyelore altalanosan nem jarhato.

A fémhabok részletes modellezési megkozelitésére egy érdekes és fontos példat
A. Lunev és munkatérsai mutattak [54]. Fontos kiemelni, hogy ezek fiiggetlen méré-
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sek voltak szabvanyos héimpulzuselvii berendezésen. Az 5.2. dbra szerint a Fourier-
egyenlettdl valo eltérést ugyanolyan alakban figyelték meg, a [117,119,148] publika-
ci6imhoz teljesen hasonlé moédon. A méréseik valédisagat gy ellenorizték, hogy az
adott probatestrol pontos haromdimenzids modellt készitettek egy szkennelési elja-
ras segitségével. Azon beliill minden hatarfeliilletre megadtak a megfelel6 héatadasi
és sugarzasi peremfeltételeket és a kisérletet végeselemes modszerrel modellezték.
A métrixanyag hévezetésére a Fourier-torvényt hasznaltak. A kisméreti tiregek
miatt igen finom halézasra van sziikség, valamint tobb idolépésekénti iteraciéra a
sugarzasi peremfeltételek nemlinearitdsa miatt. Ez mar egy szuperszamitégép sza-
mitasi teljesitményét igényli, mindezt azért, hogy a valésagban egy nagysagrendileg
5 masodperc alatt lejatszodo folyamatot modellezni lehessen egy adott probatestre
vonatkozoan. Lunev és munkatarsai konkluzidja szerint a szimuldcidk a méréseket
pontosan reprodukaltdk, de a mérést a Fourier-egyenlettel effektiven nem lehet leir-
ni, két idéskalara van sziikség [54]. Ez is tovabb motivélja a két idskélas hovezetési
modellek 1étjogosultsagat.

A) B) Q) 1
X Kis pérusok — Meért adatok
™ o Kozepes © --- Standard fit
e 2
\g 101 0 Nagy pérusok e
- 1]
8 505 ’
< g !
4 0 |
2 e ;
\q) .
= o , \
0.50 1.00 , !
o010 3D-s CT felvétel ViR
Cella dtméré / mm és szimulacio —yTT

Fourier-szam

5.2. dbra. Lunev és mtsi. munkéja alapjan [54]. A) Haromféle fémhab prébatestet készi-
tettek el6, nagysagrendileg 60%-o0s porozitdssal rendelkeztek. A) Pérusméretek eloszlasa a
hérom esetben. A legkisebb pérusok mérete 0,2 mm koriili, a legnagyobb 1 mm feletti. B)

c sz

a kozepes porusmeérettel rendelkezé mintan. C) Egy LFA héimpulzus-berendezéssel mért
héatfali homérséklet és az ahhoz illesztett Fourier-egyenlet megoldasa.

5.2. Az effektiv leiras kovetkezményei

5.2.1. Statikus és dinamikus termikus paraméterek

A masodik szempont az, hogy a szabvanyos héimpulzuselvii méroberendezések csak
igen korlatozott probatest vastagsagig hasznalhatoak. Ez a gyakorlatban azt jelenti,
hogy 5, esetenként 6 mm lehet a legnagyobb probatest vastagsaga. Ez a méret-
tartomany Osszemérhet6 lehet a heterogenitasok (példaul az tiregek) méretével, de
egyben varhatdéan messze el is marad attél a mérettol, ahonnan mar kiatlagolhato-
nak lehetne tekinteni a heterogenitasok hatasait. Egy altalanos okolszabaly szerint a
heterogenitasok jellemzo méretétol legalabb hat, de inkdbb azok nyolcszorosa felett
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tekintheté a probatest reprezentativnak. Ezt ilyen esetekben nem lehet teljesiteni,
és ez nem csak a héimpulzuselvii mérések sajatossaga. Példaul egy dinamikus ter-
momechanikai teszthez egy DMA! berendezésbe nem lehet 15-20 mm vastagsdgut
fém probatestet behelyezni, mivel altaldban véve sem maga a mérocella mérete, sem
a berendezés altal kifejtett erchatasok nem elegendéek ehhez. Ebbol az kovetke-
zik, hogy egy ilyen LFA rendszerti h6impulzuselvii mérés soran, amely kifejezetten a
héfokvezetési tényezo tranziens elvii meghatarozasara szolgal, a mérésekben nem fel-
tétleniil csak egy hovezetési idoskéla valik megfigyelhetové. Felidézve, a Fourier-féle
hovezetési egyenletben csak egy héfokvezetési tényezo szerepel, igy csak egy ido-
skala jellemzésére hasznalhat6. Ha ez megfelelden illeszti a heterogén test termikus
viselkedését, akkor azt mondhatjuk, hogy a tobbkomponensii szerkezet hovezetési
tulajdonsagai kiatlagolédnak.

Ez azonban fligg a folyamatok sebességétdl is, vagyis az alkalmazott peremfel-
tételektdl. Ezt a szakirodalom altalaban csak tgy hivatkozza, hogy "gyors folyama-
tok esetén a Fourier-torvény érvényét veszitheti'. Ehelyett helyesebb azt mondani,
hogy a peremfeltételként jelentkezé idoskalak (melegités, hiités) és a komponensek
hévezetési tulajdonsagaibdl jelentkezo iddskaldk hogyan viszonyulnak egymashoz.
Egykomponensti anyag esetén a mikroszkopikus folyamatok "tehetetlensége" eredmé-
nyezheti a Fourier-torvénytdl vald eltérést?, kétkomponensti anyag esetén pedig az,
hogy a peremfeltételen alkalmazott gerjesztés a két komponens idoskalajaval 6ssze-
mérhetd. Ilyen értelemben érdemes visszagondolni akar a Jeffreys-egyenlet vagy a

« /ey

2
70T + 0T = adpeT + K20,sT = (atT - aamT> + 70, (atT - “amT> —0,
T
(5.4)

amelyben a a Fourier-egyenlet (GK-értelemben statikus) héfokvezetési tényezdje,
valamint a Fourier-egyenlet idéderivdltja x*/7 dinamikus héfokvezetési tényezével
jelentkezik.

Ez az alak teljesen megegyezik a Jeffreys-egyenletével, annak ellenére, hogy kons-
titutiv szinten eltéré modellekrdl van sz6®. A kisérletek sordn mindig azt vettiik
észre, hogy a k?/7 dinamikus skdla mindig gyorsabb, mint az a 4ltal adott statikus
skala, teljesen analég médon a kézetek reoldgiai viselkedésével [79], ezt szemlélteti
az 5.3. abra is. Erre latunk példat az 5.1 tablazatban is hét kiillonb6zo kézettipusra
vonatkozoan, ahol a dinamikus és statikus paraméterek aranya kivétel nélkil egynél
nagyobb ott, ahol a GK-egyenlet haszndlatéra is sziikség volt [148]. Ez nemcsak
kézetekre érvényes, hanem példdul szén- és fémhabokra is [82,168]. Az 5.4. &b-
ran éppen ennek a két idoskalanak a megjelenését figyelhetjiitk meg egy szarsomlyoi
kézetmintan, ahol a Fourier-egyenlet illesztése a gyorsabb idoskalahoz konvergalt,

'A "Dynamic Mechanical Analyzer" szavakbél adédik, dinamikus termomechanikai mérégépet
jelent, ahol a dinamikussagot az adja, hogy egy bedllitott el6terhelés kornyezetében adott frekven-
cidju terhelést lehet megvaldsitani.

2Ezt kisérletileg leginkdbb alacsony hémérsékleti (20 K alatti) dllapoton figyelték meg, és elss-
sorban az MCV-egyenletet hasznaltak ennek modellezésére.

3A GK- és Jeffreys-egyenletek haromdimenziés esetben is vezethetnek azonos T-reprezentaciora,
de annak az a feltétele, hogy a GK-egyenletben a VV - q tagot elhagyjuk, ehhez 1, = 0 sziikséges,
a részletekért 1lasd a (2.23) egyenletet.
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Fourier Guyer—Krumhansl
Minta Héfokvezetési | Hofokvezetési .. .. | Hosszskala
vastagsaga tényezo tényezo Relaxdcios id6 négyzete
(mm) | (106 m?/s) | (106 m?/s) ) K2 (1076 m2)
1/a 2 0,678 0,581 0,588 0,481
1/b 2,15 1,259 1,025 0,547 0,726
1/c 2,85 0,919 0,766 0,503 0,643
1/d 3,85 1,074 1,018 0,612 0,735
2/a 3,05 1,544 1,434 0,370 0,643
2/b 3,8 0,978 0,922 0,648 0,715
2/c 3,9 1,115 1,057 0,597 0,685
3/a 1,9 0,956 - - -
3/b 2,7 1,441 1,317 0,351 0,551
3/c 3,7 1,422 - - -
4/a 1,9 0,798 0,762 0,331 0,257
4/b 2,7 1,023 - - -
4/c 3,8 0,558 - - -
5/a 1,9 0,708 0,680 0,400 0,301
5/b 2,3 0,895 - - -
5/c 3,7 0,862 - - -
6/a 1,86 0,632 0,598 0,352 0,239
6/b 2,75 0,687 - - -
6/c 3,84 0,778 - - -
7/a 1,9 0,504 - - -
7/b 2,74 0,553 - - -
7/c 3,82 0,570 - - -

5.1. tablazat. Az egyes kézetmintdkon végzett mérések eredményei [148] alapjan. A
probatestek azonositéi: 1) szarsomly6i mészko formécio, 2) és 3) szaszvari formacidk eltérd
lel6helyrél, 3) tiszai metamorf képzédmény, 4) bodai agyagkd formécio, 5) sotétsziirke
bazalt, 6) matrai andezit formécié. A vonalak azt jelzik, hogy nem volt sziikség a GK-
egyenlettel valé illesztésre.
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emiatt a felfutod kezdeti szakaszban jol illeszkedik a méréshez, majd a lassabb mele-
gedési szakaszon lényegesen elvalnak.
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5.3. dbra. Az 5.1. tdblazat alapjin a statikus és dinamikus héfokvezetési tényezOk ara-
nyanak Osszevetése. A vonal feletti értékek azt mutatjak, hogy a dinamikus tényezo értéke
nagyobb, mint a statikus tényezdé.
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5.4. abra. Egy 2,15 mm vastagsiagu szarsomlyéi mészké mintan végzett héimpulzuselvii
mérés jellemzé eredménye, [148] alapjan. Erdemes megfigyelni, hogy a Fourier- és GK-
egyenletekhez tartozé R? értékek kozott nincs lényeges eltérés, legaldbbis annyira biztos
nem latvinyos, mint amennyire a Fourier-egyenlet megolddsa a mért adatok f6lé tud 16ni.
Ebben az esetben a Fourier-egyenlet illesztése a gyorsabb idéskalara konvergalt, a felfutd
szakaszt jol irja le, de emiatt a lasst, kiegyenlitodési szakaszon méar nem megfelelé az

illesztés.

Matematikai szempontbdl is az olvashatd ki ebbdl, hogy ha a peremfeltételek
ezekhez az idéskaldkhoz képest lényegesen gyorsabb folyamatokat irnak el6 (példaul
egy hékezelési eljarast), akkor az idéderivéalt tagban jelentkez6 dinamikus skala fog
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szamitani, és a Fourier-egyenlet a dinamikus héfokvezetési tényezovel hasznalhato.
Ez igaz forditva is, ha a lassu folyamatokat tekintjiikk. Ha a peremfeltétel idoskaldja
(egy héimpulzus hossza) egy nagysagrendbe esik az a és a x%/7 héfokvezetési ténye-
z0k altal kijelolt idoskalakkal, akkor a mérésekben mindketté hatasa észlelhetévé
valik, tehat a GK-egyenlet — és igy a Jeffreys-egyenlet is — valos alternativaként lép
fel.

Ezenfeliil, amikor a = x%/7 fennall, akkor a két hévezetési id6skala egybeesik,
tehat a Fourier-torvény megoldasat kapjuk vissza, ezt Fourier-rezonancianak nevez-
zitkk [117]. Hogy teljessé tegyem az iddskalakrol alkotott képet, vissza kell térni a
Fourier-szamhoz, amiben a referencia idéskala a héfokvezetési tényezo mellett a vizs-
gélt test L karakterisztikus méretétdl is fiigg, tehat L? /a vagy L*7/k? aranyok adjik
meg a karakterisztikus idoskalakat. Ennek kozvetlen kovetkezménye, hogy akar ho-
mogén anyagok esetén is szamithat a mérés gyorsasiga, és ez a probatest méretétol,
valamint az alkalmazott peremfeltételektdl fiigg, ezt az 5.1 tablazat is jol tikrozi.
A kézetmintdkon folytatott mérések alkalmaval figyeltiikk meg, hogy az illesztések
igen sokszor a statikus és a dinamikus idoskala szamtani atlagara konvergalnak, ezt
szemlélteti az 5.5. dbra az 5.1 tablazat adatai alapjan.
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5.5. Abra. Az 5.1 tablazatban kozolt, tobbféle tipusi és méretli kOzetmintan végzett
mérések alapjan a statikus és dinamikus paraméterek viszonya a Fourier-egyenlet altal
adott hofokvezetési tényezéhoz képest, [148] alapjan.

Osszevetve a Fourier-féle hvezetési egyenlettel, nemcsak mélyebb betekintést
kapunk a heterogén anyagok tranziens viselkedésébe, hanem akar egyetlen mérés
segitségével is meg lehet hatdarozni a statikus és dinamikus idoskaldkat, nincsen
sziikség rendkivill id6- és gépigényes pasztazo mérésekre. Mindezen feliil fontos
belatni, hogy a Fourier-egyenlet nem biztos, hogy hasznalhato egy mérés kiértékelé-
sére, a mérés és az illesztés kozotti eltéréseket nem lehet feltétel nélkiill magyarazni
a Fourier-egyenlet segitségével, és ilyenkor az illesztés nem vezet megbizhaté ho-
fokvezetési tényezore. Fizikai, termodinamikai szempontbdl az a természetes, hogy
egy id6 utan a Fourier-egyenlettol valo eltérések kidtlagolodnak, igy ha a modellezés
soran ugy dontiink, hogy nem kell a sokkal részletesebb és bonyolultabb GK-, vagy
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Jeffreys-egyenletet implementalni (példaul egy végeselemes kornyezetbe), akkor a
mérésbol kapott statikus és dinamikus skalak

1 2 1 A
QFourier — = <aGK + H) = 3 (aJE + 2 ) (55)

2 TGK

atlagaként lehet egy Fourier-kozelitést adni az 6sszetett tranziens viselkedésre, ahogy
azt tobbféle kézetminta esetén is kisérletileg megfigyeltitk [148] (14sd az 5.5. abrét).
Itt a kovethetdség miatt megkiilonboztettem a GK- és Jeffreys-paramétereket egy-
mastol, de azok megegyezhetnek, és specidlis esetekben meg is feleltethetoek egy-
masnak [104]. Egy ilyen kozelités hasznalatakor tisztaban kell lenni azzal, hogy a
statikus és a dinamikus id6skéalak kozé esé idofiiggo folyamat soran ez hibakat okoz,
mely hibdk nem feltétlentil monoton médon valtoznak, a valés homérsékletet néhol
ald, mashol f6lé tudja becstilni, pont ahogyan a mérések kiértékelésén is lathatd. Az
5.1 tablazathoz visszatérve, a mért adatokbdl az olvashaté ki, hogy bizonyos kéze-
teknél egy adott vastagsagon megfigyelhetd, majd késébb, egy nagyobb vagy kisebb
vastagsdgon mar eltlinik a Fourier-egyenlettdl valo eltérés. Ez éppen a fent részlete-
zett okokra vezetheto vissza, azaz allandé idotartami héimpulzussal nem feltétlentil
lehet minden id6skalat gerjeszteni a test méretétol fliggden.

Ezenfeliil, a peremfeltételek ismeretében abban is dontést kell hozni, hogy csak a
statikus vagy csak a dinamikus skalat hasznéljuk-e fel a Fourier-egyenletben, a vizs-
galt folyamat gyorsasiaganak (vagy éppen lasstsdganak) megfeleléen. Tehat a GK-
és Jeffreys-egyenletek nemcsak olyan mdédon hasznalhatéak, hogy mindenképpen
minden szamolast és szimulaciot azokkal kell elvégezni, hanem a termikus jellem-
z6k bovebb ismerete a Fourier-egyenletben is felhasznalhatd, amelyhez a vizsgalt
folyamat peremfeltételeirdl, idoskalairdl részletes ismeretekkel kell rendelkezni.

5.2.2. Méretfiiggd tulajdonsagok

Heterogén anyagok effektiv leirasa emiatt szintén méretfiiggové valik, és ez a flig-
gés egyaltalan nem a GK-, vagy a Jeffreys-egyenlet sajatossidga, hanem a Fourier-
egyenletnél is jelentkezik, valamint a statikus és a dinamikus skaldk megjelenése
csak megfelelé prébatestméret esetén figyelheté meg. Ebbdl az kovetkezik, hogy
ennek nem csupan olyan kisméreti probatestek esetén lehet jelentésége, amelye-
ket a hoimpulzus-kisérletek soran lehet felhasznalni, hanem akar nagysagrendekkel
nagyobb méretii testek esetén is, anyagosszetételtdl és peremfeltételektol fiiggden.
Ehhez elegend6 akar az évszakok valtozasat tekinteni, aminek a hatasa még rela-
tive mélyebben is érzédik, j6 példa erre a [169] irodalomban is targyalt Bataapati
atomhulladék-lerakéd kornyezetében végzett extenzométeres mérések. A méretfiiggés
masik forrasa éppen a heterogenitasokban rejlik. Figyelni kell arra, hogy a heteroge-
nitasok méretei akar 6sszemérheto nagysagrendbe is eshetnek a probatest méreteivel
(amit a méréberendezés korlatoz), emiatt az effektiv modellezés a termikus paramé-
terek méretfiiggését vonhatja maga utan, ahogy azt a kozetek esetén tobbszor is
megfigyeltik, és az 5.1 tdblazatbol jol is lathat6 [148]. Fontosnak tartom kihang-
sulyozni, hogy itt a probatestek befoglaldé méretérol van szd, nem a heterogenitasok
(példaul tregek) méretétél vald fiiggésrol. Mindkettd befolydsolja egy test mérhetd
tulajdonsdagait, az utébbira példat a [170] irodalom mutat.
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A méretfiiggések megjelenésére tekinthetiink elényként és hatranyként is. Hat-
ranyként Ugy, hogy ez egy olyan tovabbi szempont, aminek a kisérleti vizsgalata
nehézségekbe titkozik és egy konkrét gyakorlati eset modellezése esetén figyelembe
veendd. De egyben elonyként is tekinthetiink ra, mert a méretfiiggések ismerete to-
vabbi betekintést enged az adott heterogén anyag termikus viselkedésébe. A gyakor-
latban felhasznalt heterogén testeket mindig a kivant felhasznaldshoz kell tervezni.
Példéul, a CERN ALICE csoportja altal fejlesztett harmadik generacios detektor [4]
szerkezeti anyagdul hasznalt nagy porozitasi szénhab rétegeket minél vékonyabbra
kivanjak tervezni, néhany milliméteres méretben. Tehat hiaba allitjuk azt, hogy egy
90%-os porozitasu szénhab méretfiiggése csak 15 mm felett sziinik meg és ott lenne
javasolt méréseket végezni, ha a végfelhasznalas tekintetében ettol akar 1ényegesen
kisebb, példaul fele vagy harmad ekkora vastagsdgi testre van sziikség [168]. Erre
érdemes inkdbb eldnyként tekinteni.

A fenti okokbdl kifolyolag a GK- és Jeffreys-egyenletek két kiemelkedd gyakor-
lati felhasznalasat latom. Egyrészt, a heterogén anyagokon torténd mérések kiérté-
kelésére jol hasznalhatoak, ehhez a megfelel6 analitikus és numerikus modszereket
is kidolgoztam, és amely mérésekbdl a statikus és dinamikus hofokvezetési és ho-
vezetési tényezok az alapjat jelentik barmely késobbi termikus tervezési eljarasnak.
Mindezt természetesen — pontosan, ahogy a Fourier-egyenlet esetén is tortént — tobb
méretben, tobb referencia-homérsékleten kell a jovoben végrehajtani. Ez a modern
berendezések automatizalhatosdga miatt nem jelent szlik keresztmetszetet. A sta-
tikus és dinamikus termikus tulajdonsdgok ismerete a szakirodalom és a mérnoki
gyakorlat szaméra is teljesen 1j szempontokat nyit meg a termikus tervezési elja-
rasok sordn, és ez a masodik fontos gyakorlati szempont. Nem csupan a mérések
kiértékelésében, de akar az anyagszerkezet tervezéséhez is tampontokat ad, ha a
konkrét felhasznalasi feltételek ismertek, és igy az idéskalak tervezhetové valnak.
Ebben a tekintetben azok a szakirodalmi eredmények sem mutatnak lényegesen el6-
rébb, aminek a segitségével valamilyen Osszetett szerkezetli anyagokra jol lehet a
hévezetési tényezot becsiilni. Az csak az egy iddskalas, Fourier-egyenlethez kapcso-
16d6 hovezetési tényezo, a statikus és dinamikus paraméterekben jelen ismereteim
szerint csak a Fourier-egyenleten tuli két idéskalas modellek segitségével lehet kii-
lonbséget tenni. Az igy tervezett anyagokat termikus metaanyagoknak nevezik, és
foként termikus dlcazasra, egyeniranyitasa, és kiilonféle nanoszerkezeti tervezésekre
hasznéljék [6,110,111,167,171], de a dolgozatomban részletezett eredmények a mak-
roszkopikus testekre vonatkozéan a metaanyagok egy teljesen 14j osztalyat jelenti.

5.3. Példak heterogén anyagokra

A kovetkezokben négy olyan példat emelek ki, amelyeknek kozvetlen ipari haszno-
suldsa van, és ennél fogva a mérnoki gyakorlat szamara hasznos ezeket az eseteket
tomoren bemutatni. Az el6z6leg bemutatott kozeteket Kovacs Laszlénak (K6méro
Kft.) koszonhetjiik, a kompozit fémhabokat Orbulov Imrének (BME GPK), a fém-
organikus térhalés anyagok vizsgalatat Laszlé Krisztina (BME VBK) motivéalta, a
biolégiailag lebonthaté NYAK-ok vizsgalatdt Géczy Attildval (BME VIK) kozosen
végeztikk. A nagy porozitdsu szénhabok vizsgdlata Barnafoldi Gergellyel (HUN-
REN Wigner FK RMI) kozosen tortént, aki a magyarorszdgi CERN ALICE csoport
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5.6. dbra. A bal oldali dbra a fazisvalté anyaggal (példaul paraffinnal) toltott mikrokap-
szuldkat mutatja [172]. A jobb oldali 4bra egy kokuszolajjal t6ltott kapszula keresztmet-
szetét szemlélteti [173]. Egy érdekes energetikai alkalmazasat mutatja be a [174] irodalom,
ahol a mikrokapszuldkat épiiletburkolatokba keverve jelentosen befolyasolhaté idében és
homérsékletben is az épiilet hohaztartisa.

vezetdje, és ez amiatt is kiilonleges, mivel a megvaldsult mérések hozzajarultak a
CERN ALICE ITS3 kovetkezo generacids detektoranak tervezéséhez is.

Az itt részletezetteken kiviil kaptunk még 3D nyomtatott beton probatesteket So-
lyom Sandortél (BME EMK), zart cellds fémhabokat az Admatis Kft.-t61, acélbél 3D
nyomtatott tireges mintakat Fodor Taméstol (Siemens), az 5.6. 4bran is szemléltetett
fazisvalto anyaggal toltott mikrokapszulds gyantakat Feczké Tivadartol (HUN-REN
TTK), valamint 6sszetett szerkezetii szigeteldanyagokat Pirityi Laszl6t6l (Thermo-
foam Kft.). Azonban az ezeken végzett vizsgalatok vagy nem adnak mélyebb bete-
kintést az elézéekhez képest, vagy az adatok nem nyilvanosak. Ez a felsorolas igen
jol szemlélteti azokat a sokszinii alkalmazasi lehetéségeket, ahol valamilyen osszetett
szerkezetli heterogén anyag eléfordul, és amelynek termikus jellemzése a felhaszna-
lasok szempontjabol elengedhetetlen. Ezekben az alkalmazasokban tobb olyan eset
is elofordul, amikor a prébatestet annak reprezentativ mérete alatt kellett vizsgélni,
mivel a végfelhasznédlas szempontjabdl az volt a mérvadé.

5.3.1. Kompozit fémhabok

Ezekben a kisérletekben részecskeerdsitésti, aluminiumotvozet matrixa szintaktikus
fémhabokat hasznaltunk, [82,175] alapjan. Az 5.7. dbra atfogéan mutatja be a
vizsgéalt fémhab szerkezetét. A kompozit fémhaboknak az a kiilonlegessége, hogy a
cellakban keramiagémbhéjak, az aluminiummatrixban pedig kiilonféle erdsitéanyag
szemcesék taldlhatéak, és ezek termikus vizsgalatat végeztik el [82]. Tovabbi anyag-
szerkezeti részletekért a [175-177] irodalmakat ajanlom.

Erdemes megemliteni a [170] szakirodalmi forrdst, ahol igen hasonl6 szerkezetii
anyag hévezetési tényezdjét becstilték meg elvi uton. A kiilénbség az, hogy [170]
forrasban nem habot, hanem csak az aluminiumotvozetet vizsgaltak, keramiagomb-
héjak nélkiil és csak SiC részecskékre vonatkozdéan. Kiemelendd, hogy igen nagy,
10" W/(m? K) nagysagrendii kontakt héataddsi tényez6t vettek figyelembe az alu-
miniummatrix és a szemcsék kozott, tehat a kontakt hoellenallas koriilbeliil harom
nagysagrenddel volt kisebb, mint a hévezetési hoellenallas, ez mar igen kozel van a
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tokéletes hoatadashoz. Fontos megjegyezni, hogy ennek értéke erdsen fligg a gyartas-
technologiatol, valamint a testet terhel6 eroktol is. Tomor anyagokra vonatkozoan
ez a becslés igen jo pontossaggal elvégezheté. Ebben az esetben a nehézséget az
jelenti, hogy az iiregekben egyszerre torténik hovezetés, héatadas és homérsékleti
sugarzas is, még akkor is, ha kicsi a hémérséklet-kiilonbség az tireg két szemben 1év6
pontja kozott.

5.7. dbra. A vizsgalt kompozit fémhabokban ireges 2 mm &tmérdji keramiagémbok
(A) taldlhatéak, az aluminiummétrixban kiillonféle erdsitéanyag szemcséket vizsgaltunk.
A B) és C) esetekben 1,2 és 0,6 mm befoglalé méreti AloOg szemcséket, a D) esetben
0,4 mm befoglalé méretii SiC szemcsék taldlhatéak [82]. Az E), F) és G) abrék a vizsgalt
mikroszerkezetet mutatjak a B-D) sorrendnek megfelel§ erésitéanyagokkal (ezeket E jeloli,
a KG a keramiagombhéjakat [175]. A pirossal jelolt méretskdla a 0,5 mm-hez tartozd
hosszisagot jelzi.
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5.8. dbra. A bal oldali dbran a 24-es jelii probatest megfigyelt tranziens viselkedése [82]

Osszevetve a Fourier- és GK-egyenletekkel. A jobb oldali 4brdn a mért és az illesztett
homérsékletek kiilonbségét 1atjuk.

Ebben az esetben az tiinik a leginkabb jarhaté utnak, ha adott probatestre meg-
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hatarozzuk a héfokvezetési tényezot, majd az ismert komponensek fiiggvényében ki-
szamitjuk a kompozit effektiv stirtiségét és fajhéjét, ebbol pedig a test effektiv héve-
zetési tényezdje is szamithaté [82]. Egységnyi térfogatt kompozit fémhab Gsszetéte-
1ét vizsgalva azok 64 térfogatszazalékat a kerdmiagombok teszik ki, amelyeknek 71,7
térfogatszazaléka a levego aranya. Minden prébatest esetén azonos térfogataranyu
erositéanyaggal rendelkez6 mintakat vizsgaltunk, azok aranya 7,2 térfogatszazalék.
Az 5.8. abra egy jellemzo tranziens viselkedést szemléltet, ehhez igen hasonléan
viselkedik a tobbi probatest is. A Fourier-egyenlet illesztése itt is a gyors, felfutd
idoskalara konvergdlt, és jelentosen tullovi a lassabb, kiegyenlitodési részt. Ehhez
képest a GK-egyenlet egy jéval pontosabb képet tud adni. Erdekes megfigyelni, hogy
az eltérés a GK-egyenlet esetében sem monoton, vagyis akar egy harmadik idéskala
is szerepet jatszhat. Ez nem is olyan meglepd, hiszen a tobbkomponensii kozegben,
egy idében, t6bb kiillonb6z6 hékozlési mechanizmus is jelen van. Ilyen szempontbol
figyelemre mélt6, hogy csupdn ennyi az eltérés, és a GK-egyenlet (és ezzel egyiitt a
Jeffreys-egyenlet) képes ezeket a folyamatokat két effektiv idskdlara lebontani.

Fourier Guyer—Krumhansl
Minta Hoéfokvezetési | Hofokvezetési Hosszskala
, , , , , Relaxécios id6 )
vastagsaga tényezo tényezo neégyzete
7 (s)

(mm) (107® m?/s) | (107% m?/s) k? (107% m?)
22 2.9 2,59 1,92 0,21 1.28
23 2 1,19 0,88 0,23 0,62
24 2,9 5,5 2,87 0,29 2,64
32 2,1 2,85 1,56 0,28 1,31
33 2,1 1,73 1.07 0.3 1,01
34 2 3,47 2,04 0,26 1,52
42 2.8 5,41 4,25 0,22 1,62
43 2 2,23 1,26 0,18 0,91
44 3,5 4,57 2,65 0,37 3,07

5.2. tablazat. A vizsgilt prébatestek jellemzé Fourier- és GK-féle transzportegytittha-
téinak Osszegzése, ahol a 2x, 3x és 4x szdmok a prébatestek azonositéit jelentik [82]. A
legtobb prébatest esetén (a 42 és 43 jellit kivéve) a statikus és dinamikus héfokvezetési
tényezok ardnya 3-3,2 kozott mozog, a 42 és 44 jeliiek esetén azok értéke 1,73 és 4,01.
A 22-24 jelii préobatestek SiC szemcsékkel, a 32-44 jeltiek AlyO3 szemcsékkel erdsitettek,
a 32-34 jeliiekben vannak a 0,6 mm atméréji, a 42-44 jeltiekben az 1,2 mm atméréji
szemcsék.

A statikus és dinamikus tényezdket az 5.2 tablazat foglalja 6ssze. A kézetekhez
képest itt a statikus és dinamikus tényezok aranya joval nagyobb, ami abbdl a szem-
pontbdl redlis és az elvarasoknak megfeleld, hogy az aluminiumotvozet-matrix egy
igen jo hovezetd képességli anyag, de az iireges kerdmiagombhéjak mar lényegesen
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rosszabb hévezeté anyagok. A kézetek esetén az egyes komponensek termikus szem-
pontbdl sokkal inkdbb hasonlitanak egymasra, mint ebben az esetben. Tovabba, a
fémhabokban egyszerre jatszodik le hévezetési, hoatadasi és hosugarzasi hétransz-
port is, rdadasul a hovezetés esetén a matrixanyagban 1évo hovezetési uthosszak a
probatesthez vagy a keramiagombokhoz képest akar joval hosszabbak is lehet, és ezen
a szemcseerosito anyag alkalmazasa szintén nem javit. Ez négyzetes ardanyossagon
keresztiil tovabb noveli az aluminiummatrix hévezetési idéskalajat. Az 5.2 tablazat
adatain azt is érdemes megfigyelni, hogy a 32-34 jelti probatestekben kisebb méretii
szemcesék talalhatéak, {gy azoknak jellemzden 30-40%-al kisebb az effektiv hévezeté-
si képessége, ugyanakkora térfogatarany mellett, és az altalanossagban elmondhato,
hogy a Fourier- és a GK-egyenletek altal josolt héfokvezetési tényezok jelentosen
eltérnek egymastol.

1.6 T . T T T T T T
R?=0.9878
7~ + R*=0.9870
el R2=0.9924 +
_I_ 14 B
9 R*=0.9891
éb + R?*=0.9903
~ 121 N - +
R?=0.9907 R'=0:9567
Fy
v—(‘ 3
N -
n R?=0.9858 R*=0.9536 |
22 23 24 32 33 34 42 43 44
Proébatestek

5.9. dbra. Az R? értékek a GK-egyenlet illesztési josagat mutatjak az egyes prébatestekre
vonatkozéan, az elnevezések az 5.2 téblazatot kovetik. Erdekes azt is megfigyelni, hogy
amig a kézetek esetén a Fourier-egyenlet illesztése a statikus és a dinamikus idoskalak
atlagara konvergdlt, itt ez csak az esetek felében igaz és sokkal nagyobb szérdssal. Ez
annyit jelent, hogy a Fourier-egyenlet illesztését nem lehet megbizhaténak tekinteni olyan
értelemben sem, hogy a két idéskdla atlagat adja vissza. A kozetekhez képest itt a két
idoskala aranya legalabb kétszer akkora.

A probatestek effektiv stirtisége és fajhdje igen kozel esik egymashoz, mivel az
egyes komponensek térfogataranyban kevéssé térnek el egymastol. A

Peft = Z ‘Zpu Cueff = Z ‘A/icv,ia Z ‘A/z =1, (56)
V; térfogataranyokkal torténd dsszegzéseket kihasznalva a 22-24 jelli prébatestekre
et = 1650 kg/m3 és ¢, g =767,5 J/ (kg K) effektiv stirliséget és fajhét kapunk. A 32-
34 és 42-44 jelli probatestekre ezek az értékek azonosak, értékiik pog = 1738 kg/m?,
Coet = 768,2 J/(kg K). Ebbél kévetkezéen az effektiv hévezetési tényezd értékei
3,21 és 7,82 W/(m K) kozé esnek [82], dsszhangban a [178] irodalommal is. Ezzel
szemben az (5.1)-(5.3) képletek egy nagysiagrenddel nagyobb értékeket becstilnek,
de azok a hovezetési tényezd becslések nem is veszik figyelembe a mikroszerkezet
tobbszorosen Osszetett tulajdonsagait.
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5.3.2. Nagyporozitasu szénhabok

A habos anyagoknél maradva ez a példa azért is érdekes, mivel a végfelhaszndalas
szempontjabdl a tervezett szénhabok vastagsdgat minimalizalni probaljak. A CERN
ALICE kisérletén beliil a harmadik generacios részecskefizikai detektor vazat az itt
bemutatott szénhabokbdl tervezik megépiteni [168]. Egy ilyen detektorban igen
kritikus a felhasznalt anyagmennyiség, mivel minden, a detektorok és a részecskék
kozotti anyag torzitja a mérést, megvaltoztatja a részecskék iranyat, energiajat, és a
mérés kiértékelhetoségét. A detektor vazlatat az 5.10. abra mutatja, amelyen harom
réteg lathat6, minden egyes rétegen olyan ALPIDE chipek talalhatbak, amelyek a
részecskék becsapdddsat vagy dthaladdsat regisztraljak [179).

Kiils6 réteg

Sugarnyalab #55
bevezetése -

5.10. 4bra. A CERN ALICE kisérlet ITS detektoranak vazlatos felépitése [179] alapjan.

Minden réteget egy nagy porozitasu szénhabbdl épitenek fel. Az ALPIDE chi-
pek termikusan igen érzékenyek, a legnagyobb megengedheté hémérséklet 40 °C,
valamint a pontos mérések és kalibracios szempontok alapjan a chipek kozott ma-
ximum 5 °C hémérséklet-kiilonbség megengedett, emiatt egy aktiv hiitési rendszer
alkalmazdsa elkeriilhetetlen. Ugyanezt tapasztaltuk egy hadron kaloriméter kon-
cepcionalizaldsa kozben is: Sudar Akos hallgatéval kozosen részt vettiink a Bergen
pCT Egyiittmiikodésben?, aminek keretében tobb hfitési koncepcidt is meg kellett
vizsgalnunk [180,181]. A nagy porozitdsu szénhabok ilyen szempontbél azért idealis
valasztas, mert mindamellett, hogy kis anyagfelhasznalasu szerkezet, de a grafitmat-
rixd habok jo hévezetd képességgel is rendelkeznek, ami nagy mértékben eldsegitik a
chipek termikus stabilitasat. Mindezen feliil egy aktiv hiitéssel ellatott rendszerben a
leveg6 at is tudja aramolni a habszerkezetet, emiatt "térfogati' hiitést megvalositva,
azaz lényegesen kisebb hiitendé tomeg mellett hozunk létre nagy hoatadasi feliiletet.
A kérdés az, hogy milyen effektiv jellemzokkel rendelkeznek a vizsgalt habszerkeze-
tek és a tranziens folyamatok soran megfigyelhetoek-e a Fourier-egyenlettol eltéro
jelenségek vagy sem.

4A pCT kifejezés a proton komputertomografidra utal, ami a hagyoméanyos, réntgenalapt besu-
garzasi eljardsokhoz képest 1ényegesen jobb karakterisztikaval rendelkezik és az egészséges sejteket
sokkal kevésbé roncsolja.
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A kompozit fémhabokhoz képest a nyilt cellas habok esetén konnyebb a dolgunk,
ugyanis a tipustél figgden 85 és 95% kozotti porozitast habok anyageloszldsa még
kis méretben is jo kozelitéssel egyenletes. Emiatt a fejezet elején bemutatott (5.1)-
(5.3) becslések mellett szintén jol hasznalhat6 a

3/2
1 a a a
)\eH:[phb _|_2<phb> ])‘tbmér+<1— Phb)/\géz7 (5.7)

3 Ptémér Ptémér Ptéomér

Osszefliggés, ahol a "tomor" indexelés a 0% porozitdsi tomor matrixanyagot jellemzi,
a "hab" az adott porozitdsi hab tulajdonsigaira utal [182]. Hasonlé médon lehet a
hab héfokvezetési tényezbjét is becstilni,

1/2
142 ( Phab ) ] Atdmor s (5.8)

Qeff = =
3 Ptémor

de ebben az esetben a habot kitolt6 gazban 1év6 hévezetést elhanyagoljuk (Ags, = 0)
és az (5.8) egyenletet ugy kapjuk, hogy a phap/prsmesr stirliségarannyal elosztjuk az
(5.7) osszefliggést, valamint a porozitds valtoztatdsaval a fajhé nem valtozik [182].
Az 5.11. dbra azt mutatja, hogy a porozitassal hogyan valtozik az effektiv hévezetési
és a hofokvezetési tényezo. Mivel ebben az esetben a matrixanyag stirisége harom
nagysagrenddel nagyobb, mint a levegéé, ezért a porozitas megegyezik a puab/ Promer
sirfiségardnnyal. Erdemes megfigyelni, hogy a habot kitoltd géz hvezetését nyugod-
tan elhanyagolhatjuk, mivel csak nagyon nagy porozitasok mellett van észreveheto
jaruléka. Az effektiv fajh6é azonban fontosabb, ugyanis a tomor anyaghoz képest
tobb, mint 20%-o0s eltérést okoz az, ha azt konstansnak tekintjik, tehdt az (5.8)
kozelitésnek a szénhabok esetén ilyen hibaja lehet.

1
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=4 —Hofokvezetési tényez8 O‘géz #0; ¢, =4ll.) |
o -Héfokvezetési tényezd ()‘géz #0; ¢, #4ll.) | J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Porozitas

5.11. Abra. Az effektiv hOvezetési és hofokvezetési tényez6 valtozasa a porozitds fiiggvé-
nyében. A relativ értékeket a tOomor anyaghoz képest vonatkoztatjuk, feltételezve, hogy
normal allapoti levego talalhatd a porusokban. A gaz hévezetése tényleg elhanyagolhatd,
de a fajhé valtozasiat nem lehet elhanyagolni.
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| 10 mm | AllcompLD Standard

5.12. dbra. Ezekben a vizsgilatokban kétféle tipusi szénhabot hasznéltunk fel [168],
ezeket az ERG Aerospace Corporation és az Allcomp Inc. gyartotta, mindkét tipusbdl
kozel azonos keresztmetszetii és vastagsagi (5 mm) prébatesteket vizsgaltunk.
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5.13. Abra. Az ERG és az Allcomp tipust szénhab prébatesteken végzett mérések jellem-
z6 eredményei [168]. Amig az ERG prébatesteket a Fourier-egyenlettel megfeleléen le lehet
irni, addig az Allcomp tipustiak esetében ez nem mondhaté el, amely a két komponens
lényegesen eltér6é hévezetési tulajdonsagainak kdszonheto.

Az ERG jelti prébatestek matrixanyaga amorf szén, ennek hévezetési tényezéje
1 W/(m K). Az Allcomp jelli prébatestek azonban polikristalyos grafitbél késziiltek,
amely lényegesen nagyobb, 80 W/(m K) hévezetési tényezével bir. Az ERG pré-
batestek 90%-os, az Allcomp tipustiak 85-90% kozotti porozitassal rendelkeztek. A
méatrixanyagban val6 eltérés a fajhdméréseken is latszodott [168]. Ilyen nagy poro-
zitasi habok héimpulzuselvii mérései csak tigy voltak lehetségesek, hogy ha a minta
elejére és hatlapjara is grafittal atitatott vékony lapokat helyeztiink, amely el tudja
nyelni a héimpulzust, igy a minta atlatszésdga nem lesz probléma. Ehhez megbe-
csiiltiik a grafittal atitatott papirlap héellenallasat is, és megallapitottuk, hogy az 5
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mm vastagsagu probatesthez képest elhanyagolhato.

Az ERG prébatestek esetében végig azt talaltuk, hogy a Fourier-torvény megfele-
16 leirdst ad, és a mérések soran visszakaptuk az adatlapi hovezetési tényezo értéket
is [168]. Az, hogy a Fourier-torvény alkalmas erre a célra, az leginkdbb annak készon-
hetd, hogy a 97%-os porozitds miatt a hab sokkal inkdbb a levegd tulajdonsidgaihoz
allt kozelebb, és igy egykomponensii kozegként viselkedik, ha vannak is a Fourier-
torvénytdl eltérd effektusok, azok ilyen méretben kidtlagolédnak. Az (5.1), valamint
az (5.7) becslések az ERG szénhabra 0,055-0,08 W/(m K)-es becslést adnak, a mért
értékek 0,043-0.052 W/(m K) kozé esnek, és ez a gyartéi adatlappal egyezik.

Az Allcomp tipusi prébatestek esetén nem csupédn a porozitdsuk kisebb (97% he-
lyett 85%), hanem haromszor nagyobb a siirtiségiik is (70 kg/m? helyett 220 kg/m?),
és a matrixanyag hdévezetési képessége is egy nagysagrenddel nagyobb. Tehat eb-
ben az esetben a probatest termikusan is ugy viselkedik, mintha kétkomponensii
kozeg lenne, és megfigyelhetoek a Fourier-egyenlettdl eltéré hatéasok is. Az Allcomp
szénhab gyart6i adatlapjan 20-40 W/(m K) hévezetési tényez6 intervallum van meg-
adva, ami a 85%-0s porozitashoz és a matrixanyag tomor tulajdonsagaihoz képest
igen magasnak mondhaté. Az (5.1), valamint az (5.7) becslések 7-12 W /(m K) kozé
esnek, de a mérések szerint a statikus 0,9-1,38 W/(m K), a dinamikus hévezeté-
si tényezd 2,39-3,04 W/(m K) kozé esik. Az eltéréseknek igen sokféle oka lehet.
Egyrészt, a rendelkezésre 4ll6 probatestek szaméatol varhatéan 1ényegesen tobb min-
tara lenne sziikség, ha csupan egy néhany milliméteres szeletet tekintiink. Fontos
szempont lehet a probatestek méretfiiggése is, a gyartéi adatlapon nem szerepelnek
probatestméretek. Raadasul a [183] alapjan a probatestekben anizotrop viselkedés
is megfigyelhet6. Mivel a gyartoi adatlap hofokvezetési tényezét nem tartalmaz, igy
mas referencia nem elérhet6. Ennek ellenére egy tijabb példat lathattunk arra vonat-
kozolag, hogy a heterogén anyagok tranziens viselkedése nem feltétleniil jellemezhet6
egy idoskalaval.

5.3.3. Fémorganikus térhalok

Az eddigi makropdérusos anyagokrél a mikroporusos anyagokra térek at, azokon beliil
is kiilon figyelemremélto tulajdonsdgokkal birnak a fémorganikus térhalds szerkeze-
tek. Ezeknek igen sokféle tipusa létezik, igy ennek a részleteiben mélyebben nem
is kivanok elmélyedni, igy a [184-188| szakirodalmi forrasokat ajanlom ilyen tekin-
tetben. Altaldban véve a fémorganikus térhalés anyagok rendkivil nagy latszélagos
feliilettel, 600 — 7000 m?/g rendelkeznek [184,188], ami ideélis jeloltté teszi ezeket
az anyagokat adszorpciés gaztarolasra. Ezt a kimagaslé gazmegkotési tulajdonsagot
az is segiti, hogy a racsszerkezetiik rendezett, egy nyitott, mikroporusos térhalérol
van sz6 [189)].

A vizsgalatokat Laszlé Krisztina motivalta, a probatesteket ¢ bocsatotta a ren-
delkezésiinkre. A fémorganikus térhalds szerkezetek hovezetési képessége igen kor-
latozott, és ez behatarolja a gyakorlati felhasznalasi lehetoségeket is, de ez megfe-
lel6 adalékokkal és a gyartastechnoldgia megvalasztasaval javithatd. A vizsgalatok
fékuszéban az tgynevezett réz benzol-1,3,5-trikarboxilat (Cusbtcy) all, ezt a szak-
irodalom HKUST-1-nek roviditi és a szerkezeti felépitését az 5.14. abra mutatja.
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HKUST-1

5.14. abra. A HKUST-1 szerkezeti felépitését latjuk, ahol a sziirke a szénatomokat, a
piros az oxigént, a fehér a hidrogént, a kékek a rézatomokat szemléltetik. A poérusok
méreteit a lila, sdrga és z0ld gémbok mutatjik, amelyek méretei 0,5; 1,1 és 1,35 nm. Az
abra forrasa a [189] irodalom.

Harom jellegzetes pérusméret figyelheté meg 0,5-1,35 nm-es tartomanyban, me-
lyek ardnya és a makroszkopikus méreti mintdk porusméret eloszlasa fiigg a gyartas-
technologiatol és a kristalyok utdkezelésétol is. A vizsgalat targyat az képezte, hogy
redukalt grafén-oxiddal kevert térhalés szerkezetnek hogyan valtoznak a hévezetési
képességei, természetesen a cél annak javitdsa [190]. Ez hatarozottan az adszorpcios
képesség rovasara megy, az eredeti, redukalt grafén-oxid mentes esethez képest akar
annak negyedére is lecsokkenhet a gézt megkoté felilet [190]. Ez a gyakorlatban azt
jelenti, hogy a kivant felhasznalashoz mérten kell megvélasztani a gyartastechnolé-
giat és a redukalt grafén-oxid (RGO) mértékét, amely egy optimalizaciés feladathoz
vezet. A kovetkez6kben bemutatott kisérleti eredmények ezt a feladatot hivatottak
megkonnyiteni.

Az elééllitasi folyamat végén por formaban kapjuk meg a térhalds szerkezetet,
amely sem a felhasznalasok, sem a kisérletek szempontjabol nem elényos, emiatt
pelletalasra van sziikség, amely tovabb csokkenti a porozitast és igy az adszorpcios
képességet. Ez az 5.15. dbra fels6 sorardl is leolvashaté (az A), B) és C) dbrak), ahol
a térhdalés anyag szerkezetét por formaban, majd 25 és 50 bar-os tomorités utan vizs-
galtdk pasztdzé elektron mikroszkop alatt [191]. Az 5.15. dbra alsé sora egyforméan
25 bar-os pelletalas mellett keriilt eléallitasra [190], de a redukalt grafén-oxid tarta-
lom valtoztatasaval egyre kevésbé lathatod a poliéderes kristalyos térhalds szerkezet,
ezzel egyiitt a pérus mérete, eloszlasa, és igy a prébatest adszorpcios képessége is
jelent6sen véltozik [190]. A pelletdlas lehet6vé teszi a héimpulzuselvii mérések el-
végzését is. A probatestekkel kapcsolatos tovabbi részleteket a [190] tartalmazza.

Az 5.3 tédblazat foglalja 6ssze a vizsgalt probatestek RGO tartalmat, azok vas-
tagsagat, és a mérések soran kapott atlagos termikus paramétereket. Ezeken az
adatokon els6sorban azt fontos észrevenni, hogy a tiszta, RGO nélkiili esetekben
elegendé a Fourier-egyenlet. Minden mas esetben, fiiggetlentl attol, hogy a HL
vagy a GM jelzésti gyartastechnolégiaval késziiltek a probatestek, az RGO hozza-
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keverés jelentette masodik hévezetési idoskala hatasa egyértelmiien kimutathaté, és
a probatestek termikus jellemzéséhez elengedhetetlen volt a két idoskalas modellek
alkalmazasa. A masik megfigyelés az, hogy a HL-0 és a GM-0 jelzésii probatestek
vastagsaga jelentésen nagyobb, mint az RGO tartalmi mintaké, és a megfigyelt ef-
fektiv héfokvezetési tényezdjiik is jelentosen nagyobb, ami egyértelmt méretfiiggésre
utal. Az RGO tartalmu prébatestek vastagsagai csak kis mértékben térnek el egy-
mastol, és azokon beliil jol megfigyelheté az RGO hévezetésre gyakorolt hatésa is,
egyarant a statikus és a dinamikus skalakon. Jelenleg még nyitott az a kérdés, hogy
az RGO tartalmt prébatestek milyen méretfiiggéssel rendelkeznek, tehat egyrészt
mennyire és milyen irdnyban valtoznak a termikus jellemzok, illetve mikor valik
sziikségtelenné a két idéskalas modellek alkalmazasa.

0 % RGO 20 % RGO 50 % RGO
5.15. Abra. A HKUST-1 térhélds anyag redukalt grafén-oxiddal (RGO) kevert szerkezete
pelletélas nélkiil (bal szélsé dbra), majd 25 és 50 bar-os pelletalas utan [191]. A térhalds
anyagot a relative nagyméretii poliéderes kristalyok mutatjak (az A) és D) abrak), az RGO
jelenlétét az aprébb, lemezes-tiiskés szerkezet szemlélteti, ami az alsé D)-E)-F) abrékon is

egyre jobban megfigyelheté az RGO tartalom novelésével [190]. Az dbrékon 1év$ pirossal
jelzett skala a 10 pm-es hosszt mutatja.

Ezenfelill még azt is érdemes kiemelni, hogy a Fourier-egyenlet illesztése igen
jol konvergdlt a statikus és dinamikus skaldk atlagadhoz, hasonléan az 5.5. &brahoz,
amit a kozetek kapcsan figyeltiink meg. Ebben az esetben ezt az 6sszehasonlitast az
5.16. abra szemlélteti, ahol azt latjuk, hogy a két skala igen kozel esik egyméshoz,
de ezt csak akkor vehetjiik észre, hogy ha az illesztést egy megbizhato két idoskalas
modellel is elvégezziik. A Fourier-egyenlet illesztése ilyen formaban megbizhatat-
lan. A jovoben még igazolasra var az a hipotézis is, hogy az 5.16. abran is k6zolt
aranyszam megjosolja-e azt, hogy mikortél hasznalhaté a Fourier-egyenlet, ugyanis
foleg a GM jelii esetekben jol latszik egy tendencia, és az RGO dominancidja éppen
az egy idéskalds Fourier-egyenlet felé valé elmozdulast jelenti. Ujfent megjegyzem,
hogy a GK-egyenlet paraméterei egymasnak egyértelmiien megfeleltethetéek az (5.5)
Osszefiiggésen keresztiil, igy azokat nem latom célszertinek kiilon kozolni.
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Fourier Guyer-Krumhansl
Minta Hoéfokvezetési | Hofokvezetési | Relaxacios | Hosszskala
vastagsaga tényez6 tényezd ido négyzete

(mm) (1077 m?/s) (1077 m?/s) 7 (s) k2 (1077 m?)
HL-0 1,15 1,62 - - -
HL-10 0,68 1,03 0,78 0,41 0,62
HL-20 0,72 1,29 1,03 0,34 0,66
HL-30 0,71 1,2 0,89 0,49 0,83
HL-50 0,77 1,61 1,29 0,44 0,99
GM-0 1,09 1,86 - - -
GM-10 0,71 1,15 0,86 0,44 0,74
GM-20 0,68 1,23 0,93 0,42 0,73
GM-30 0,71 1,33 0,94 0,48 0,89
GM-50 0,74 1,67 1,22 0,45 1,05

5.3. tablazat. A HKUST-1 fémorganikus térhalés anyagbol, 25 bar-os pelletalds utan ké-
szitett probatestek termikus adatai, ahol a hidnyz6 szamadatok azt jelentik, hogy nem volt
szitkség a GK-egyenlet hasznalatara, [190] alapjan. A HL és GM jelzések két kiilonbo6zé
gyartasi technoldgiara utalnak, amelyek részletei végett szintén a [190] szakirodalmi forrast
ajanlom. A HL és GM jelzések utan 1év6 szdm az RGO m/m%-os tartalmét jelzi, tehat

0%-t61 50%-0s RGO tartalomig vizsgaltuk annak hatédsat.

114

1.04
HL-10

5.16. abra. A GK-egyenlet altal adott statikus és dinamikus hofokvezetési tényezok atla-
gdnak viszonyitdsa a Fourier-egyenlet illesztésébdl kapott értékhez. A kettd igen kozel esik

HL-20
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X
X

HL-50 GM-10
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egymashoz, de a Fourier-egyenlet illesztése ilyen szempontbél megbizhatatlan.
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Végiil egy-egy példat mutatok a Fourier, valamint a Fourier-to6l eltéré esetekbol,
a HL-0 és a HL-30 jelli mintakra vonatkozoan. Kisérletileg ugyanaz torténik, mint a
kozetek és a kiilonféle habok esetén is, a Fourier-egyenlettdl valo eltérést ugyanolyan
formaban figyeltitk meg. A GK- és Jeffreys-egyenletek altal adott statikus és dinami-
kus skaldk ugyanolyan tulajdonsagokkal birnak, anyagmindségtdl fiiggetleniil, ami a
termodinamikai modellek univerzalitasat jol szemlélteti.
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5.17. dbra. A HL-0 és a HL-30 jelii probatestek tranziens viselkedése, ahol jol latszik,
hogy a HL-0 egykomponensti, a HLL-30 viszont kétkomponensii rendszerként viselkedik
[190].

5.3.4. Bioldgiailag lebonthaté NYAK-ok

Kornyezetvédelmi szempontbdl az elektronikai modularamkorok (hordozok és alkat-
részek) igen jelentds részét teszik ki a nehezen feldolgozhat6 hulladékoknak, amelyek
foleg kisebb méretii eszkozokbol, példaul laptopokbél, telefonokbol és mas haztartasi
termékekbdl keriilnek ki. Eppen emiatt igen aktudlis kérdés az, hogy ha az dram-
kori szerelvény térfogat- és tomegaranyaban is jelentés részét, magat a nyomtatott
aramkori hordozét olyan anyaghol gyartjak, amely lebonthaté, és nem belathatat-
lan ideig, évtizedekig, vagy akar évszazadokig szennyezi tovabb a kornyezetet. Egy
ilyen motivacié mentén indult el a [192] irodalomban kézolt kutatds is, amely igen
alaposan korbejérja a vizsgalt NYAK-lemezek tulajdonsdgait gyartdstechnolégiai és
életciklus szempontok szerint is.

Az 5.18. abra a hagyoményos, FR4-alapi NYAK-ok szerkezetét veti 6ssze a po-
litejsav (PLA) alapu, biolégiailag lebonthat6 szerkezettel. A kutatdsunk térgya az,
hogy milyen feltételek, osszetétel és technoldgiai paraméterek mellett tudja kivaltani
a hagyomanyos NYAK-lemezeket. Péld4ul az egyes elektronikai alkatrészek forrasz-
tasa soran igen lényeges, hogy milyen termikus tulajdonsagokkal lehet a folyama-
tot megtervezni. A kutatasaimat PLA-alapi lemezeknek a tranziens vizsgalatara
koncentraltam [192,193]. Tovabbi részletekért a [194-196] szakirodalmi forrasokat
ajanlom, ahol a szerzék ismertetik az elektronikai technolégiai részleteket is. Az
5.19. abra azt szemlélteti, hogy a Fourier-egyenlet teljes egészében jol jellemzi a
vizsgalt probatesteket, tehat az alkalmazas szempontjabdl is fontos 1-1,5 mme-es
vastagsagon a heterogenitasok jelentette hatasok kiatlagolédnak. Ez annak tiik-
rében nem meglepd, hogy az 6sszetevok hdévezetési képességben nem kiilonboznek
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egymastol jelentosen. De még az FR4-alapu lapok esetén sincs effektus, mivel ott a
rézlemezek az livegszalas gyantas szerkezetet héellenallasok szempontjabél sorosan
fogjak kozre, nem pedig parhuzamosan, igy azok sem mutatnak Fourier-tol eltér6
hatasokat.

5.18. dbra. A NYAK-lemezek szerkezetének osszehasonlitisa. A) FR4 - (Flame Re-
tardant, class 4) - teljesen tivegszdlakbdl és epoxigyantdbdl all, rézlemez-rétegekkel pré-
selve. [197]. B) Lenszovettel erdsitett politejsavalapi szerkezet, amely tdjrahasznositott
anyagokbdl eléallithaté. Az &brat Géczy Attila szolgaltatta [194]. C) A NYAK-lemez
mezoszkopikus képe, 500-szoros nagyitasban, digitalis mikroszképpal készitve, igy jol lat-
hatéak a szerkezet heterogenitasai. D) Pésztazé elektronmikroszképpal készitett felvétel,
amelyen jol latszik a lenszdlakkal torténé erdsités, kozottikk a PLA miianyag kitoltés.
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5.19. dbra. Az elsé és masodik generdciés PLA-alaptt NYAK-lemezek termikus viselkedé-
se, a heterogenitasok ellenére a Fourier-egyenlet jol haszndlhaté és a vizsgalt probatestek
termikusan egy idéskaldval leirhatéak [192].
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5.4. Osszefoglalas

A bemutatott példak, a kiilonféle haboktdl kezdve egészen az elektronikai alkatré-
szekig, azt mutatjak, hogy a termikus viselkedés modellezése szamtalan tertileten
elengedhetetlen és sziikséges. Az anyagjellemzok meghatarozasa alapveté mérnoki
feladat. A bemutatott heterogén anyagok elég jol Osszefoglaljak azokat a tapasz-
talatokat, amelyek a két idoskalas modellek haszndlatdhoz kellenek. Habar nem
minden esetben sziikséges a GK-, vagy a Jeffreys-egyenlet hasznalata, mégis vannak
olyan esetek, amikor ezek nélkiil nem lehetett volna a megfelel6 termikus jellemzo-
ket megbizhaté médon azonositani. A heterogenitasok jelenléte nem jelenti feltétel
nélkil azt, hogy mindenképp igen bonyolult modellek hasznalataba kell kezdeni. A
GK- és Jeffreys-egyenletek univerzalitasa, anyagszerkezettol valo fliggetlensége nagy
konnyebbség a részletes modellezéssel szemben. A kornyezettudatossagnak nemcsak
az a része fontos, hogy milyen anyagokat hasznalunk fel, hanem az is, hogy az er6-
forrasainkkal hogyan banunk. A termikus tervezésnek egy lényegesen hatékonyabb
és részletesebb modjat szolgaltathatjak a bemutatott két idoskalas modellek.

Itt fontosnak tartom, hogy Fehér Anna, mint a Ph.D. hallgatém munkéassagat
kiilon tételesen is kiemeljem, és a dolgozatomban bemutatott tézisektol elkiilonitsem.
Fehér Anna érdemei a kovetkezoek:

o a kisérletileg relevans két idoskalas modellek kivalasztasa és a kéthémérsékletii
modell kizarasa;

o a Guyer—-Krumbhansl- és a Jeffreys-egyenletek egyenértékiiségére tett javaslatai;

o a kisérletek tervezése, mintaelokészités, és az adatok kiértékeléséhez egy kon-
zisztens modszertan kidolgozasa mindkét relevans két idéskalas modellre vo-
natkozoan, és ide tartozik az analitikus megoldasok kisérletekre valo atiiltetése
is;

o valamint a statikus és dinamikus skalak atlagolasa a Fourier-féle hofokvezetési
tényezé meghatarozasahoz.

A sajat tudomanyos hozzajaruldsom pedig a 7. tézis foglalja 6ssze.

7. Tézis — Heterogén anyagok termikus jellemzése

Ramutattam, hogy a kisérletileg megfigyelt dinamikus hofokvezetési tényezo
mindig nagyobb, mint a statikus hofokvezetési tényez6. Ez az allitds igaz a
statikus és dinamikus hévezetési tényezok viszonyara is. Heterogén anyagok
héimpulzuselvii termikus jellemzésére javaslatot tettem a probatestek mére-
tének, valamint a héimpulzus idejének valtoztatasara.

A 7. tézishez kapcsol6dé publikécidk: [53,82,104,148,168,192,193,198].
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6. fejezet

Osszefoglalas és tézisek

A dolgozatomban attekintettem azokat a jelenségeket, amelyek tialmutatnak a
Fourier-egyenlet modellezési keretein, ramutattam a difftzios és hullamterjedési je-
lenségek kozotti kiillonbségekre és hasonlosagokra. A Fourier-egyenleten tuli mo-
dellek rendre tobb iddéskalaval rendelkeznek. Erre alapozva targyaltam a két ido-
skalas hovezetési egyenletek termodinamikai jelentését. A Guyer—Krumhansl- és a
Jeffreys-egyenletek gy is értelmezhetéek, mint két parhuzamos difftizids jelenséget
leir6 modellek. Mindkét egyenlet a Fourier-torvény egy realis, heterogén anyagok
leirdsara alkalmas alternativajaként tekinthet6. Ezek levezetéséhez nem hasznaltam
fel konkrét anyagszerkezeti tulajdonsagokat, igy a modellek nem anyagspecifikusak.
Elméleti, matematikai és kisérleti iranybdl egyarant megvizsgaltam a modellek tu-
lajdonsagait. Ennek ellenére azt sem szabad elfelejteni, hogy a Fourier-egyenlethez
képest ez az eszkoztar még kozel sem teljes, és tobb olyan tertilet is van, ahol még
tovabbi kutatasokra van sziikség. A nyitott kérdések egyarant érintik a hovezeté-
si elméletek termodinamikai hatterét, a modellek Liu-eljarassal valo levezethetdsé-
gét, az egyes nemlinearitasok figyelembevételének méodjat és gyakorlati relevanciajat,
valamint a megoldasi mdédszerek komplex geometridkra vald atiiltetését. A dolgo-
zatomban minden olyan tertiletet érintettem, ami ahhoz sziikséges, hogy az ipar
szamara fontos heterogén anyagok termikus tulajdonsagait meg lehessen hatarozni,
értelmezni és azt a szimulacidkhoz felhasznalni.

A termodinamikai hattér kapcsan be kell latni, hogy a masodik fététel Gnmaga-
ban véve nem ad elég megkotést a modellekre vonatkozéan. Ez lgy értelmezhetd,
hogy ugyanaz a modell akar tobb médon is levezethet6 (eltérd allapottérrel, konstitu-
tiv Osszefiiggésekkel, eltéré termodinamikai mddszertannal). Az elmélet finomitasat
varhatéan majd a tovabbi gyakorlati alkalmazasok és a problémamegoldasok hozzak
el. A Fourier-egyenlet esetén a termodinamikai hatteret 1ényegesen kevesebb kérdés
és bizonytalansag ovezte. A gyakorlati felhasznalast az sem hatraltatta, hogy a réla
elnevezett Gsszefiiggést el6szor egy véges térfogati testre vetitve irta fel elészor [199].
Ez a tobb, mint 200 éves Osszefiiggés azdta is a mérnoki gyakorlat szerves részét ké-
pezi. Ez a Guyer-Krumhansl-, vagy a Jeffreys-egyenletrdl teljes egészében még nem
mondhaté el. Az elsé tézisem a Fourier-egyenleten tulmutaté modellek megadasara
vonatkozik, fiiggetlentil attol, hogy a gyakorlat majd milyen konkrét termodinamikai
er6-aram rendszert fog alkalmazni.
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1. Tézis — A Fourier-egyenleten tuli modellek definidlasa

Kimutattam, hogy a Fourier-egyenleten tili modelleket azok onsageri alakja-
val kell definidlni, ami egyértelmisiti a termodinamikai erék és aramok kozotti
osszefiiggéseket, a makroszkopikus transzportegytitthatok kozotti kapcesolato-
kat, valamint a kezdeti és peremfeltételek fizikai tartalmat. Az onsageri alak
mellé meg kell adni a modellhez tartozo allapotteret. A transzportegytitthatok
allapotfiiggését onsageri szinten kell definialni.

Az 1. tézishez kapcsolédd publikaciok: [6,14,63,74,99-103].

A mésodik tézisem mér csak a Guyer-Krumhansl- és Jeffreys-egyenletekre vonat-
kozik, mivel a szakirodalom jelenlegi allasa szerint csak ez a két modell rendelkezik
a sziikkséges termodinamikai kompatibilitassal és a két diffizios idéskalaval kontinu-
umértelmezésben. Ennek hoéfizikai jelent6ségét a masodik tézis foglalja Gssze.

2. Tézis — A két difftzids idbéskalaval rendelkezd modellek értelmezése

Megallapitottam, hogy a Guyer-Krumhansl- és Jeffreys-egyenletek, mint két
idoskalas modellek megkiilonboztetnek statikus és dinamikus hévezetési és
héfokvezetési tényezoket. Mivel meglatasom szerint a Guyer-Krumhansl- és
Jeffreys-egyenletek esetében a Fourier-szam nem pontos és félreértésre ad okot,
ezért a Fourier-szam elnevezést statikus és dinamikus idéskalara javaslom mo-
dositani.

A 2. tézishez kapcsol6dé publikécidk: [6,103,104].

A két idéskéalas modellek onsageri alakjanak figyelembevétele az anyagi nemline-
aritasok esetén egyenesen kotelezo és elengedhetetlen, de mar a modellekhez kapcso-
16d6 kezdeti és peremfeltételek esetén is kritikus lehet. Az egyiitthatok homérsék-
lettél (esetleg a fajlagos belsé energiatél, vagy az dllapottér gradienseitdl [101]) valo
fiiggése olyan nemlinedris jarulékokat adnak, amelynek igen komoly kdvetkezménye-
ik vannak a modellek megoldhatdsagara és értelmezésére nézve is, ezeket Gsszegzik
a harmadik és negyedik téziseim. Habar a dolgozatom a makroszkopikus alkalma-
zasokra fokuszalt, nem szabad megfeledkezni a lehetséges modern nanotechnologiai
felhasznélasi lehet6ségekrol sem, amikor a transzportegytitthatok még a hoéaramsii-
riségtol és annak iranyatol is fligghetnek. Ez elméleti és kisérleti oldalrdl egyarant
sokrét{i nehézségbe titkozik. Eppen emiatt a vizsgdlataim csak a hémérsékletté] valo
fiiggésre fokuszaltam, ugyanis az kisérletileg konnyebben ellenorizheto, és a model-
lek részletes ismeretével a kisérletek is célzottan tervezhetoek. A hévezetési szak-
irodalomban szilard kozegek termikus transzportegyiitthatéit nem szokas (és nem is
ismert) a fajlagos alakvéltozas fiiggvényében megadni, de ez mar a Fourier-egyenlet
szintjén is igen érdekes jarulékokat adna, és példaul a korabbi [93,94] szakirodal-
makban bemutatott kisérleti elemzéseket is modosithatja. Ez analég lenne a gézok
esetén ismert nyomasfiiggéssel, szilard kozegek esetén azonban a teljes fesziiltség-
allapotot meg kellene adni ehhez. FEzt neheziti, hogy még a hévezetési tényezore
sem ismert ilyen Osszefiiggés, igy azt kisérleti adatokbdl kellene illeszteni. Emiatt
ujfajta, célzott kisérletek tervezését javaslom.
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3. Tézis — A Guyer-Krumhansl-egyenlet nemlinearis tulajdonsagai

A Guyer—Krumhansl-egyenlet esetén megallapitottam, hogy a hévezetési té-
nyezo homérséklettol valo fliggése a transzportegyiitthaték mindegyikére 6rok-
16dik. Ennek kovetkezménye, hogy a tomegstiriség homérsékletfiiggését figye-
lembe kellhet venni, igy a hotagulason keresztiili termomechanikai csatolas
a modellezési feladat fliggvényében jelentkezhet. A relaxéaciés ido hémérsék-
letfiiggését tovabbi nemlinedris jarulék jelentkezése nélkiil nem lehet figye-
lembe venni. A térben nemlokalis taghoz tartozé transzportegytitthatok ho-
mérsékletfiiggése nem vart moédon modositja a latszolagos hévezetési tényezot,
amely ilyen médon hémérséklet- és hoaramstiriség-fliggové is valhat. Az egyes
transzportegytitthatokban jelentkez6 anyagi nemlinearitasok gyors folyamatok
esetén nem kiiszobolhetoek ki, mivel barmely egyiitthatéo homérsékletfiiggése
mindkét idoskala transzportegyiitthatéit érinti.

A 3. tézishez kapcsol6dé publikéciok: [100, 102,103,133, 134).

4. Tézis — A Jeffreys-egyenlet nemlinearis tulajdonsagai

A Jeffreys-egyenlet esetén megallapitottam, hogy a statikus hévezetési tényezo
hémérséklettol valo fiiggése anélkiil is figyelembe vehet6, hogy az allapotfiiggés
a tobbi transzportegyiitthatoban jelentkezne. Mivel a Jeffreys-egyenletben a
statikus és dinamikus skalak mar konstittciés szinten is elkiilonithetoek, emi-
att lehetséges a statikus hovezetési tényez6 hémérsékletfiiggésének dinamikus
idoskéalan valo kikiiszobolése. A relaxacios id6 hémérsékletfiiggése vagy a t6-
megstriség homérsékletfliiggését és igy a hotagulasi hatasok figyelembevételét,
vagy pedig tovabbi nemlinedris jarulékokon keresztiil mindkét idoskala modo-
sitasat vonja maga utan.

A 4. tézishez kapcsolédd publikdcidk: részben a [6,100] publikdcidéim tartalmaz-
zak ezeket a megallapitasokat, a teljes eredmény publikdlas alatt all.

A megoldasi médszerek tekintetében az egyszerii geometriak kezelése (sikfal, hen-
ger, gomb) sem mindig konnyti feladat, {6képp a peremfeltételek helyes leirdsa miatt.
Eloszor a kapcsolédd megoldasi modszertant kellett kidolgoznom, amivel mar nem
csak linearis egydimenziés feladatok kezelhetéek, valamint az analitikus megolda-
sokkal a numerikus megoldasok validalhatéva valtak. Ez elengedhetetlen 1épés volt
ahhoz, hogy a hagyomanyos, foleg T-reprezentaciora épiilé megkozelitések ne vigyék
a kutatast tévitra, és megbhizhatd megoldasokon tudtam a modellek tulajdonsigait
vizsgalni. Ezenfeliil természetesen a hévezetési kisérletek kiértékeléséhez is elenged-
hetetlen volt a modellek megbizhato kezelése. A megoldasi modszerek kidolgozasa
soran tett megallapitdsaimat az 6todik és hatodik téziseim foglaljdk Ossze.

A kisérletek és a konkrét Osszetett szerkezetli anyagok leirasa tekintetében sze-
rencsésnek mondhattuk magunkat. A héimpulzuselvii méréberendezés, amelyet még
Grof Gyula és munkatarsai fejlesztettek az Energetikai Gépek és Rendszerek tan-
széken, olyan fix, nem allithaté villanasidovel dolgozik, amely megfelel6 volt ahhoz,
hogy a statikus és dinamikus hofokvezetési tényezdk kozotti kiillonbség észlelheto
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legyen. Ez kétségkiviil hatalmas segitség volt a jelenség vizsgalatdhoz, még azelott,
hogy a dolgozatomban 6sszefoglalt elméleti és gyakorlati szempontok ilyen mélysé-
gig Osszekapcsolédtak volna. A sajat tudomanyos hozzajarulasom a hetedik tézis
foglalja Ossze.

5. Tézis — Az analitikus megoldasok sajatossagai

A Guyer—Krumhansl- és a Jeffreys-egyenlet hémérséklet-reprezentacidja alap-
jan megallapitottam, hogy els6- és masodfaji peremfeltételek esetén ugyanaz
a sajatfliiggvény-sajatérték rendszer hasznalhato. Erre épitve kidolgoztam egy
specialis, Galjorkin-moddszerre épiilé analitikus megoldasi technikat. Megad-
tam az inhomogén kezdeti feltételek kovetkezményeit, és termodinamikailag
konzisztens mddszert ajanlottam a kezdeti idéderivaltak figyelembevételére.

Az 5. tézishez kapcsolédd publikaciok: [6,73,103,125,133,139,140].

6. Tézis — A nemlinedris hovezetési egyenletek numerikus stabilitdsa

A nemlinedris, hoémérsékletfligg6 transzportegyiitthatokkal rendelkezo
Fourier-, Guyer-Krumhansl- és a Jeffreys-féle hovezetési egyenletek nu-
merikus stabilitasanak vizsgalatahoz Kkiterjesztettem a Neumann-modszer
érvényességét és egy modszert adtam a stabilitasi hatarok becslésére. Meg-
allapitottam, hogy a transzportegyiitthatokat az anyag olyan allapotan kell
figyelembe venni, ahol a leggyorsabb a karakterisztikus terjedési sebesség, és
ennek becslésére a linearis megoldasbol kapott hémérsékletbeli szélséérték
hasznalhato.

A 6. tézishez kapcsolédd publikaciok: 58,100, 102,133, 134].

7. Tézis — Heterogén anyagok termikus jellemzése

Ramutattam, hogy a kisérletileg megfigyelt dinamikus hofokvezetési tényezo
mindig nagyobb, mint a statikus hofokvezetési tényez6. Ez az allitas igaz a
statikus és dinamikus hévezetési tényezok viszonyara is. Heterogén anyagok
hoéimpulzuselvii termikus jellemzésére javaslatot tettem a probatestek mére-
tének, valamint a héimpulzus idejének valtoztatasara.

A 7. tézishez kapcsol6do publikicidk: [53,82,104,148,168,192,193,198].

A vizsgalt probatestek valtozatossaga — tobb, mint tizféle kozettipus, ugyanennyi
fémhab, szénhab, hagyoményos és bioldgiailag lebonthaté NYAK-ok, kondenzétor
alkatrészek, kiilonféle fémorganikus térhélds anyagok, 3D nyomtatott beton, polimer
és acél — jol mutatja, hogy az effektusok felfedezése, megfelel6 kiértékelése és megér-
tése nem magatol értet6do folyamat. Természetesen az Osszes lehetséges heterogén
anyag vizsgalata nem lehetséges, és reményeim szerint a jovében nem is feltétleniil
lesz ra sziikség. Ugyanis a kutatas hosszutavu célja az, hogy a konkrét anyagi szer-
kezet ismeretében a statikus és dinamikus skaldkra pontosabb becslést adjak anndl,
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mint amit a legrosszabb és legjobb hovezeté komponensek kijelolnek. Ez egyrészt
vagy azt fogja jelenteni, hogy a mérés soran illesztett paraméterek szamat tovabb
redukélhatjuk, vagy még kedvezébb esetben a transzportegytitthatokat elére meg-
josolhatjuk, akar szimulaciokon keresztiil, akar empirikus formuldk felhasznéalasaval.
[lyen médszertan a makroszkopikus transzportparaméterek esetére egyaltalan nem
létezik, csupan specialis, molekuladinamikai szimulaciékkal lehet bizonyos nanoszer-
kezetek hovezetési tulajdonsagaira mérés nélkiil becslést adni. Mindez tervezhetové
tenné a heterogén anyagok szerkezetét, ami kikovezné az utat a termikus metaanya-
gok 1j generacioja felé.

A dolgozatom altal érintett Gsszes teriileten tobb olyan kérdés is van, amelyek
megvalaszolasa még jo eséllyel akar évtizedekig is eltarthat, de ezek sziikségességé-
hez nem férhet kétség, a szakma még csak most kezdi igazén felismerni a Fourier-
egyenleten tuli modellekben rejt6zé potencidlt. Sajnos a szakirodalomban tobb fél-
reértés és félreértelmezés is megtalalhatd, a dolgozatom ezek egyértelmiisitésében is
segitséget nyujt, foként a hazai kutatoi kozosség szamara.
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Figgelék

A. Az entrépia részletes definicidja

A [62,63] munkak alapjan.

1. Léteznek olyan egymastoél fliggetlen termodinamikai testek, amelyeket exten-
ziv allapotjelzok és intenziv allapotfiiggvények jellemeznek. Egy ilyen testet
N darab extenziv allapotjelz6 ir le (X,, a € 1,2,...,N), a termodinamikai
allapotteret ezen allapotjelzok Descartes-szorzata fesziti ki. Az intenziv alla-
potfiiggvényeket Y,, a € 1,2,..., N mddon jeldljik, és az X, extenziv alla-
potjelzok figgvényei. Egykomponensii folyadékok és gazok esetén az extenziv
allapotjelzok a tomeg (m), a térfogat (V') és a bels6 energia (F).

2. Az entrépia az intenziv allapotjelzok vektorteréhez tartozd potencidl. Ezt
fejezi ki a Gibbs-relacié:

N
dS (X1, Xo, ..., Xn) = 3 Y,dX,. (7.1)

a=1

Ez azt jelenti, hogy az intenziv allapotfiiggvények az entropia parcialis deri-
valtjaibol képezhetoek:

oS
Yo (X1, Xo, ..., Xy) = , a,b=1,2,...,N. (7.2)
aXa’ va a;éb
Folyadékokra és gazokra a Gibbs-relacié a
1
dS(E,V,m) = —dE + Lav - Lam (7.3)

T T T

alakot 0lti, ahol az intenziv allapotfiiggvényeket a

1 oS P oS
T(E,V,m)— 7vm, T(E,‘/;m)— W

) _E(anm 05
E.m T

)= 50
(7.4)

parcialis derivaltak definialjak. Itt T jeloli a hémérsékletet, p a statikus nyo-
mast és p a kémiai potencialt.

3. Az entropia extenziv, ezt lokalizdlhatosagi feltételnek nevezik.
(a) Az entrépia elsérendli Euler-homogén fliggvénye a valtozdinak:

S()\Xl,X27...,XN):/\S(Xl,Xg,...,XN), /\€R+. (75)

(b) Barmely skalar X, esetén bevezethetjiik az X,-ra vett fajlagos entrépiat
(s), amely a megfelel6 fajlagos extenziv allapotjelzék fiiggvénye, példaul
az X;i-re nézve

X Xy

S(Xl,XQ,‘..,XN):X18<AXV17...,)(1). (76)
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Altalaban véve az s(e,v) fajlagos entropia és a pg (pg, p) entrépiastirtiség
hasznalatos, ahol e a tomegre fajlagositott belsd energia, v a fajtérfogat,
valamint pgp = % a belsO energiastiriiség.

(¢) Ervényes az extenzivitasi relacié:
N
S(X1, X, Xy) = Ya (X1, Xo, ., Xn) Xo, (7.7)

a=1

amely folyadékokra és gazokra vonatkozdan a

1
ﬂﬂvmwsz+%V—%m (7.8)

alakot olti. A (7.7) kovetkezménye, hogy az entrépia

_ (L. P _,u)
S(E,V,M)—ms(e,v)—m<Te+Tv 7 (7.9)

alakban felirhaté.

Ezen &llitasok fontos kovetkezménye a Gibbs-relacid, s(e,v) esetén:

1 p

. A fajlagos entrépia konkav. Az Xi-re vett fajlagos entropia példdjan a
det 0y, 4, (T2, ..., 2N) <0, a,b=2,....N (7.11)

relacié teljesiil. Ebbdl az allitasbol kdvetkeznek a belsé és az anyagi stabilitasi
feltételek, azaz a termodinamikai stabilitasi feltételek. Ugyancsak a folyadékok
és gazok példajara visszatérve, ezek a feltételek a

_ 0e(T,v)

Cy i =

L op(T,v)
oT >0, XT = v Ov

v T

> 0, (7.12)

relaci6khoz vezetnek, ahol ¢, az izochor fajh6 és yr az izoterm kompresszibi-
lités.
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B. A Jeffreys-egyenlet nemlinearis viselkedésének
numerikus demonstracidja

Az idoskalak viselkedésének demonstralasara most olyan numerikus szimulaciékat
végzek, amelyekben a statikus és dinamikus hovezetési tényezok egymastol lénye-
gesen eltérnek. A megoldas modszertanat a negyedik fejezet targyalja részleteiben.
Ahhoz, hogy gyors folyamatokat lehessen szimulalni, idében periodikus hémérséklet-
peremfeltételt célszerti definidlni, példaul T'(x = 0,t) = Ty(1 — cos(wt/t,))/2 alak-
ban'!, amelyben a ¢, paraméterrel lehet beallitani, hogy mennyire gyors legyen az
ismétlésszam, azaz milyen gyorsasigi folyamatokat tekintiink. A hatlap (z = L)
legyen adiabatikus, a rendszer induljon homogén egyensulyi helyzetb6l. Demonst-
racioés jelleggel legyen a statikus idéskala egységnyi, a dinamikus legyen tiz egység,
azaz \o/T = 10A;.

1 —Peremfeltétel

—Dinamikus Fourier
---Linedris Jeffreys

0.8 -

Homérséklet

0
0 0.01 002 003 004 005 0.06 0.07 0.08 0.09 0.1
Id6 / s

7.1. dbra. A Fourier- és a Jeffreys-egyenletek numerikus osszevetése ¢, = 0.1 s esetén
az x = L helyen. A Fourier-egyenletben a dinamikus Ao /7 hévezetési tényezSt hasznalva
annak tranziens viselkedése jol kozeliti a linearis Jeffreys-egyenlet megolddsat, mivel a
dinamikus skala dominal.

A 7.1. dbra az idoskalak szétvalasztasat szemlélteti, és a peremfeltételektol flig-
goen a Fourier-torvény elég jo kozelitést adhat a Jeffreys-egyenlet megoldasara. A
7.2. abra mar a nemlinedris Jeffreys-egyenlet megoldasat mutatja be, ahol szintén
latni a dinamikus skédla dominanciajat, de mivel a statikus skala ettél még jelen van,
a nemlinedris jarulék idéderivaltak nélkil kozeliti a dinamikus tagokat, emiatt csak
a folyamat elejére lehet érvényes ez a linedris kozelités. Raadasul az l15(T") és loy (T)
fiiggések csak a statikus skalat modositjak és teszik homérsékletfiiggové. Ebbol az
kovetkezik, hogy a stacioner allapot is eltolddik, attol fiiggden, hogy mennyire erds
fiiggés van jelen a modellben (ldsd a 7.3. dbrét).

LAzért vélasztottam az 1 — cos() alakot, mert numerikus szempontbdl elényds, ha nulla deri-
valttal inditjuk a folyamatot, és a fliggvény végig sima is marad, igy elkeriilhet6ek a mesterséges,
numerikus eredetii oszcillacidk.
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1 —Dinamikus Fourier
- - Linedris Jeffreys

0.8 - —Nemlineéris Jeffreys
R o I' \\
=
5 06
2]
o
E
8 04~
s

0.2~ \/ .

1 1 L | 1 1 l L 1

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Ido / s

7.2. dbra. A Fourier-, a linearis Jeffreys-, valamint a nemlinearis Jeffreys-egyenletek
Osszevetése. A 7.1. dbrdhoz hasonlé dinamikus skalan a megoldéds valtozasa szinte elha-
nyagolhatd, mivel a nemlinearitdsokat a statikus skdla okozza. Emiatt ez a kozelités csak
a folyamat elejére lehet érvényes. A nemlinearitast az lio = li2,0+hiT és log = la1 0+ hoT
médon vettem figyelembe, ahol legyen hy = 0,5 (l12)/K és he = 0,5 (l21)/K, azaz a
statikus skalaval 6sszemérheté homérsékletfiiggs skdlat vezettem be.

1 T
0.9 -
0.8 ‘ : ‘ | ‘ ﬂ
| | | IR, ININIBI
0.7 | I
\
15 I
~ 0.6 1 i
R i
& 05 (1] :
E sl | i
e 0.4 | I
0.3 | ’ ik | J “\ JJ ‘\*
ERRR i 0| 14y i | il I ‘
Wi
—Fourier
0.1 Nemlinedris Jeffreys (hy = 0, hy # 0)
o | ‘ ‘ , —Nemlinedris Jeffreys (h1 # 0, ha # 0)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1d6 / s

7.3. Abra. A Fourier, és két nemlinearis Jeffreys-egyenlet megoldasa, szemléltetve, hogy
a hi és hg paraméterek (lasd a 7.2. dbrat) hogyan hangoljdk el a nagyobb idéskalaji
megoldast. Ennek ellenére a Fourier-egyenlet a dinamikus hovezetési tényezével elég jo
kozelitést tud adni és Orzi a megoldas fazisat is, ugyanis a nemlinearitdsok a statikus
skalat, és igy a hosszabb tavi viselkedést hangoljak el.
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C. A Navier—Stokes—Fourier-egyenletek Liu-

eljarassal val6 levezetése
A (3.22)-(3.24) mérlegegyenleteket kényszerként felhaszndlva kapjuk a
0<ps+V-Js=bi(p+pV-v)=by-(pv+P V) —=bs(peiot + V - Jetot)
0s s 0s s -
(25 ), 95 L)« ) e _Os
(pap 1) p+p (av 2) V+p <8emt 3) ot P50 (Vp)

a 85 8Js aP aJe’tot> ) Vp

o)+ | == —by-=——b
(va V)’ (V®V)+p8(V6mt) (Ve t)+<8p 2 op 3 op

aP aJe tot

_blpl—bg aT_bS a"’ )(V@V)

e o
(%
( b, - w _ bs a‘]&“’t) v (7.13)
o
(e

aetot aetot Oesot
8P 8Jetot)
’ (Vp) @V
ba- 5o~ Pares ) (90 @ V]
0P e
v®v bz dvav) ‘a(veV)

>4W®W®V]

aP —b aJe,tot
8 (Vetot) 3 8 (Vetot)

— b, - )  [(Vegor) ® V.

(0 (Vetot)

egyenlGtlenséget, ahol a by, by és by a Lagrange—Farkas szorzok. Az tugynevezett Liu-
egyenletek a kovetkezé alakot oltik:

P pgz — by =0, (7.14)

v gj —by =0, (7.15)

o 8(2; — by =0, (7.16)

(Vp) = (avsm =0,  (7.17)

(ve V) 3 (Va(; ) = 0, (7.18)
(Veor) 05 (gzmt) =0,  (7.19)
S @~ oy o =0 )
VveV)®V: a(fg;V) — b, - 5 (Vag 7 bga?jgotw =0, (7.21)
(Vegor) @ V a(%]ém) —bs- (@im) — by 8%2:;) = 0. (7.22)
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Ezek kovetkezménye, hogy a fajlagos entropia csak a termodinamikai allapottér x
elemeitol fiigg, annak gradienseitél nem, Osszhangban a 2. fejezetben bemutatott
termodinamikai levezetéssel, tehat a Gibbs-relacié a

b
ds = @dp -+ % -dv -+ ﬁdetot = *ldp + b2 ~dv + b3d€t0t (723)
8V aetot P
alakot 6lti. Az utols6 harom (7.20)-(7.22) Liu-egyenletbdl a gradiensek szerinti in-

tegralas utan megkapjuk az entropia aramstiriiségére vonatkozo kifejezést, azaz

0s N Js
= 20 P(R) +

ahol az utolsé tagban kifejezett J o az integralas miatti eltoldsi szabadsagfoknak felel
meg, emiatt fiigg csak x-t6l és nem xX-t6l, kdvetkezésképpen nullanak is valaszthato.

Mindezek figyelembevétele utan sokkal atlathatobb alakra hozhatjuk a disszipaciés
egyenlotlenséget,

0 0s 0 0s
<|——— P I — .
O (ap 8V + ap a@tot Je,tot> vp

Js (%) (%) Jetot (X) + Js0 (%), (7.24)

Oétot

0 ds 0s d O0s

ZeZ.p-py o L2 :
+ <8V ® ov P p OV Oeor © Je’t0t> (vev)

0 O0s 0 Os
Z.p ° .

* (aetot ov Oetor Dot Je;m) Ve
[ 0s ' Os 2 0s
= (av> ®@V:P+V (aem> Jetot — p c‘)pl (ve V). (7.25)

Az ey = e+ v-v/2 Osszefiiggést a Gibbs-relaciéban kihasznalva az e, Osszenergiat
az e fajlagos belso energiara irhatjuk at,

v b

1
ds = —=de — = - dv P

1
— ——dp==de— d 7.26
igy az entropia derivaltjaira
Os _0s _ 1 9s _ v 9s _ _p (7.27)
Oeyor Oe T ov T ap p*T

kifejezések adddnak, amibdl kiolvashatd, hogy a reciprok homérséklet fiiggetlen at-
t0l, hogy belso vagy Osszenergiaval dolgozunk. A lényeges kiilonbség abban rejlik,
hogy a v sebességet az allapottér részének tekintjiik-e vagy sem, az Osszenergiaval
torténd reprezentacioban annak kell tekinteni. Igy a (7.25) disszipéciés egyenlStlen-
séget tovabb egyszertisithetjiik,

0§—<;>®V:P+V<;>Jﬁm+;1%v®V) (7.28)
:—;JP—MJﬂv@V%HLmvﬂwP%V(;) (7.29)

amiben felismerhet$ a viszkézus nyomastenzor (IT) és a héaramstiriiség:
I (%) = P (%) — p(x) 1. (7.30)
q(X) :=Jetot (X) —v-P(x). (7.31)
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D. Az egy térdimenziés GK-egyenlet megoldasa a
hoéimpulzuselvii kisérleti elrendezésre valtozok
szétvalasztasanak segitségével

Ez a levezetés a [73] publikdciémon alapul.

Az idofiiggo peremfeltétel miatt szitkség van a peremfeltételek levélasztasara, azaz
a héaramstirtiséget q(z,t) = qu(x,t) + §y(z, t) részekre bonthatjuk, ahol a "h" index
a homogén peremfeltételt mezot jeloli, a "p" index a peremfeltételt reprezentdalja a

(2, 1) = qo(t) + i(qL(t) - qo(t)> = (1 - z> q(t) = Owip(z,t) =0, (7.32)

alakban, ahol kihasznaltam a ¢(z = L,t) = q.(t) = 0 feltételt. Ebb6l fakaddan a
g-reprezentacio ki fog egésziilni a ¢, idéderivaltjaibdl all6 inhomogenitasokkal,
70 (qn + Gp) + Oi(an + Gp) = a0rp + K*Oprnhny (7.33)

ami azt is feltételezi, hogy a qu(z,t)-ra kapott sajatfiiggvények és sajatértékek altal
kifeszitett térben ¢, reprezentdlhato.
A szorzatszeparaciot a gn(x,t) = (1) X () médon végzem el, és a

ED'¢
da?

sajatfiggvény-sajatérték feladatra jutok. A differencialegyenlet megoldasa és a pe-
remfeltételek figyelembevétele utan a

+B2X X(z=0)=0, X(z=0L)=0 (7.34)

X(z) =sin(Buz), Bn= %, neN (7.35)
megoldast kapom, 3, sajatértékekkel. Itt meg kell jegyeznem, hogy a peremfeltételek
végtelen sok n-re teljestilnek, igy minden n-re vonatkozo tag megoldds. Linearis

egyenletek 1évén a megoldasok Osszege is megoldds, igy végil a gp(x, t) megoldasat
Z ©n(t) sin (5,x) (7.36)

alakban irhatom. Ebb6l kovetkezik, hogy a 4, (z, t) térbeli részét az igy kijelolt sajat-
fiiggvények terében Fourier-sorfejtés utan irhatjuk fel, amit a g, (x,t) idébeli részére
vonatkozo differencidlegyenlet jobb oldalan minden n moédusra fel is hasznalok:

d? d 2 2 d
- 1 2,2 _ ¢ _ =2 =
(7.37)

ami tetszoleges, de id6ben folytonos qo(t) peremfeltételre megadja a q,(z,t) id6beli
valtozasat. Ezzel a ¢(x,t) = qun(z,t) + (2, t) minden része ismert, és ebbdl a T'(z, t)
homérsékletmezo6 a fajlagos belsé energia mérlegegyenletébdl elballithato, azaz

T(x,t) =

: ] iwn ()8 co8(Ba)F + To(), (7.38)
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amelyben a 0,q(z,t) derivalas a mar ismert ¢(x,t) miatt elvégezhetd. Az integralds
nem koti meg teljesen a hémérsékletmezot, egy eltolasi szabadsagfok még rendelke-
zésre 4ll, ezt mutatja a jobb oldalon all6 Ty(x) hémérséklet.

A Fourier-sor konvergencia-tulajdonsagaitol és az Osszegzendd fliggvények foly-
tonossagatol fiiggden az integralas és a derivalas a végtelen Osszegzéssel felcserél-
heté [200]. Mivel ebben az esetben a hévezetési kisérlet elrendezése és a mérnoki
szempontbdl relevans megoldasai nem igénylik szakadasos hoaramstiriség és hémér-
sékletmezok kezelését, valamint az idobeli és térbeli részekben sem lépnek fel nagy
gradiensek, ezért a végtelen Gsszeg helyett — paraméter bedllitasoktol fiiggden — ele-
gendo lehet 10, vagy annal kevesebb tag is. Emiatt az integralas és a derivalas
tagonként konnyen elvégezheto.

Amennyiben a g (t) peremfeltételt iddben szakaszokra bontom a (4.1)-nek megfe-
lel6en, akkor a szakaszok kozott illesztési feltételeket kell megadni, vagyis a masodik,
t > t, szakasz kezdeti feltételeit a ¢t = ¢, dllapot egyértelmiien meghatérozza. Ez azt
jelenti, hogy

~

dg
ar(z,t =t,) = qui(x, L = —

dt

_ dgrs

0),
) t=t, dt

, t=t—t, (7.39)

i=0

kezdeti feltételeknek teljestilniiik kell, valamint a homérsékletek folytonossagat a
Tr(w,t =t,) = Ty(w,t = 0) feltétel fogja meghatarozni, vagyis a fenti Ty(z) eltolsi
szabadsagfok ezzel a t > ¢, id6pontokra vonatkozéan megkothets. A teljes megoldas
az eloz6 gondolatmenet ismétlésével eloallithatd, de ott elegendo az idébeli valtozast
meghatarozni, mivel a homogén rész peremfeltételei valtozatlanok, tehat a térbeli
részt leird sajatfiiggvények is valtozatlanok. Mivel az elsé szakaszbdl (t < t,) a
Fourier-egytitthaté minden n tagra ismert, ezért a masodik szakasz kezdeti feltéte-
leihez nem kell a ¢ = ¢, allapotot Fourier-sorba fejteni.
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E. Az egy térdimenziés GK-egyenlet megolda-
sa a hoimpulzuselvili kisérleti elrendezésre a
Galjorkin-madédszer segitségével

Az [53] publikaciéra épitve.
A héimpulzus-kisérlet modellezésében médositok a (4.1) peremfeltételen,

qou)::-—qnmx(eCﬂ-eCﬁ), () = a(T(x = L,t) — Too), (7.40)

amiben most a héimpulzust nem egy szakaszosan definialt fliggvénnyel modellezem,
hanem egy folytonos fiiggvénnyel valtom ki, amelynek a karakterisztikajat a C és Cs
konstansokkal allithatjuk be. A hatfalon konvektiv hoatadassal hiilést irok eld, T,
kornyezeti hémérséklettel és o héatadasi tényezovel. A kezdeti feltételek homogén
nyugalmi helyzetet irnak elé (Ty(z) = T, q(z,t = 0) = 0).

A D. fiiggelékben részletezett, a Fourier-egyenlet esetére meghatarozott béazis-
fiiggvényeket hasznalom, ¢, (x) = sin(5,x), ¢n(z) = cos(B,x), B, = nn/L. Ugyan-
csak elvégzem a peremlevalasztést, amihez a q(x,t) = gn(z,t) + §p(x,t) felbontdst
hasznalom. A szorzatszeparaciés moédszerhez képest igen komoly elony az, hogy a
Galjorkin-médszerrel, kis Biot-szamokra (0,1-nél kisebb esetekben) a hétfali hiilési
peremfeltétel egy idofiiggd peremfeltétellé redukalhato, azaz

N
g =a Y _ By(t)cos(B,L) =« Z B, (t) cos(nm) = « Z B,(t)(=1)", (7.41)
n=0 n=0

valamint az a7, egy konnyen kitranszformalhaté eltolasi szabadsagfok, példaul a
bordak termikus modellezése soran is hasznélt T'(x,t) — T, ttl-homérséklet beveze-
tésével, emiatt nem foglalkozok ezzel a taggal. A (7.32) Osszefiiggést felidézve,

T

Gp(,t) = qo(t) + L(QL<t) - %(ﬂ) = Owelp(r,t) =0, (7.42)

perembeli levalasztast alkalmazom. A §, figgvényt a ¢, (x) és ¢,(z) bazisokban
sziikséges reprezentalni, attol fiiggéen, hogy melyik mezére vonatkozéd egyenletben
jelenik meg, mint inhomogenitas. Ennek megfeleléen az A, (t) és B, (t) egyutthato-
kat a kovetkezo differencidlegyenlet-rendszer hatarozza meg [53],

d
pchBo =—aBy+qy, Ay=0, n=0, (7.43)

valamint az n > 0 esetekre:

d
dt

d 9 9 2 d
TaAn + (1 + K Bn> A, — \6.B, = — (1 + Tdt) (aB,, — qo)- (7.45)

pco—Bn + BLA, =0, (7.44)

A peremlevalasztdas miatti inhomogenitésok (qo(t) és qr(t)) egyarant megjelennek
az egyutthatokat meghatarozé egyenletekben. Ebbdl azt olvashatjuk ki, hogy a
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7.4. Abra. A GK-egyenlet analitikus megoldasainak és azok konvergencidjanak demonst-
racidja az [53] alapjan. JOl megfigyelhetd, hogy N novelésével a megolddsban eltlinik az
N =1 tagra jellemz6 nem-fizikai szakasz, ez a Fourier-egyenlet esetén is igy miikodik.

homérséklet-eloszlast leird sor nulladik tagja kizarolag a peremfeltételek fiiggvénye,
és a hatfali hiilés iddskédldja dominalja hosszabb idéintervallumon (ldsd a 7.4. abrat).
Ezaltal egy megoldascsaladot adtam meg, mivel ez tetszéleges, de folytonos go(t)
esetére mitkodik, de akar a ¢ (t) is lehet a meglevétél eltérd fiiggvény.

A Jeffreys-egyenlet esetén az eljaras ugyanez, igy a megoldasok és azok elemzése
kapcséan a [104] irodalomra hivatkozok, jelen esetben a médszertan bemutatasahoz ez
nem nyujt mélyebb betekintést. Végiil meg kell emlitenem, hogy bonyolult peremfel-
tételi fliggvények esetén a kozonséges differencidlegyenletek numerikusan is konnyen
integralhatoak, igy egy félig analitikus-numerikus médszert kapunk eredménytil, ha
azok zart formaja nem allithato el6. A megoldasok létezésének az a feltétele, hogy
az A, (t), Bp(t), valamint a peremfeltételi fliggvények idében folytonosak legyenek.
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F. Kétdimenziés, hengerszimmetrikus hdvezetési
feladatok megoldasa

A [125] munkdmra épitve.

Ebben az esetben a homogén részre a valtozok szétvalasztasa egy kétlépcesos eljaras,
azaz el6szor szét kell vélasztani az id6é- és térvaltozdkat a Ty (r, z,t) = T(t)E(r, 2)
alakban, majd a méasodik 1épésben a térvaltozokat kell szeparalni, £(r, z) = x(r)((z)
moédon.  Jelen esetben az idébeli résszel nem foglalkozom, mivel most csak a
bazisfiiggvény-rendszert kivinom meghatarozni. Ezt a

1d d? ) d?

S X T X T =00 50 (7.46)
differencidlegyenletek kotik meg, amelyekben p és v az egyes bazisfiiggvények sajat-
értékei. A peremfeltételeket felhasznalva a

T fmm,  (7.47)

X<T) = ‘]O(Hnr>7 M - JO(Hn) =0, C(Z) = COS(PYmZ)ﬂ Ym = 9

sajatfuggvényeket és a hozzdjuk tartozd sajatértékeket (n,m € N) kapom eredmé-
nytl, ahol Jy(r) az els6faji, nulladrendi Bessel-fiiggvény. A p, meghatarozasat
numerikus tton elvégezhetjiik, de ezt nem kell tobb, mint 50 sajatértékre elvégezni,
ugyanis a Bessel-fiiggvény a

Jo(r) = \/Zcos (7" — Z) (7.48)

modon kozelitheto, és igy a u, sajatértékek zart alakban eléallithatéak. A homogén
részt a

To(r,z,t) =Y > KpmePimt Jo (1) cos(ymz), 2 =uA 4+ (7.49)

n=0 m=0

alakban kapom meg a szorzatszeparacios megoldas soran, ahol a K, konstans a
kezdeti feltételt veszi figyelembe, ez a homogén részre éppen az inhomogén rész —1-
szerese lesz a T(r, z,t) = Ty (r, 2) +Th(r, 2, t) felbontés miatt?. Emiatt az inhomogén
allandosult hémérséklet-eloszlast a

oo o0

Ty(r,z) = Z Z CrmJo(in1) cos(Ymz), (7.50)

n=0m=0

formaban kapom meg, valamint a térfogati hoforrast is ugyanebben a bazisfiiggvény-
rendszerben kell felirni,

Gy max (T, 2) = i i B Jo(pnr) cos(ymz), (7.51)

n=0 m=0

2Hasonléan az egydimenziés esethez, a T(r, z,t = 0) = Ty homogén egyenstlyi kezdeti feltétel
egy eltoldssal nulliba transzformalhaté a konnyebbség kedvéért.
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ahol a By, a (4.17) egyenlet altal leirt figgvények Bessel-Fourier-sorfejtésébdl adé-
dik ki,

4 L L
B = £y / / Por (M2 (2) Jo(ptar) cos(mz)drdz, — (7.52)

amelyben J; (r) az els6faju, elsérendii Bessel-fiiggvény. Az integréldst nagyban meg-
konnyiti, ha a hoforrast szorzatalakban definidljuk, azaz szét lehet valasztani az
axialis és radialis iranyu komponenseket, igy az integralas komponensenként elvé-
gezhet6. A C,, a fenti Osszefiiggések energiamérleghe vald visszahelyettesitésébdl
kiadodik, azaz 6sszekapesolom a térfogati héforrasbol szarmazéd B, egyltthatdkat
és az allandosult hémérséklet-eloszlast meghatarozé C,,,, egyiitthatokat a

1

nm

Osszefiiggésen keresztiil. Kihasznaltam, hogy a Bessel-fiiggvények ortogonalitasa az
r-rel valo szorzas utan értelmezett, ezért is szerepel a B, kifejezésében is a sorfejtés
esetén. Ezenfelil még azt is fontos megemliteni, hogy a Ty, (r, z, t) homogén id6figed
rész kezdeti feltételét a Ty (r, z) levalasztasa modositja a Ty (r, z,t = 0) = T'(r, z,t =
0) — Ty (r, z) Osszefuiggés szerint. A bemutatott médszertan tovabbi elénye, hogy az
egyes tagokat is eleve a megfelel6 fiiggvényrendszerben éllitottam eld, igy a kezdeti
feltétel figyelembevétele szinte trivialitassa fajul, és a

Ky = —Clom (7.54)

Osszefiiggés elégiti ki. Ezzel formalisan barmilyen olyan térfogati hoforrasra megad-
tam a Fourier-egyenlet megolddsat, amely Bessel-Fourier-sorba fejthet6. A GK- és
a Jeffreys-egyenletek esetére a 1épéseket nem kivanom tjra megismételni, a modszer-
tan semmilyen szempontbdl nem valtozik, egy lényeges szempont figyelembevétele
mellett. A GK-egyenletben a helyfligg6 hoforrdasok helykoordinata szerinti derivéltja
is megjelenik, igy az allandodsult allapot megvaltozik. Azonban a helyfiiggd hoforrast
szandékosan egy igen kicsi tértartomanyra koncentraltam, azon kiviil a héforras igen
jo kozelitéssel konstans, a derivaltja pedig kozel nulla. A GK-egyenlet megoldasat a

d énm(t) 0 —Hn T Tm énm(t)
3 [P = |52 =2 =2 | | Dun(t)] (7.55)
Ewm()] [ =% 2] [Euwm()

alakban adom meg, ahol a ¢ 234 egyiitthatok:

a=1+40m+m)2+ ) +myn, €= Ym, €=1+v(m+n)+ i,

1

A énm, Dnm, Enm egyitthatok a homérséklet, valamint az r- és z-irdnya héaram-
komponensek egytitthatéit reprezentaljak, felettitk hullammal jelolve, hogy ezek a
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Fourier-tdl eltéré egyiitthatokat jelentik [125]. A Jeffreys-egyenlet esetén a megoldas
alakja azonos, az egyttthatomatrix alakja egyszertisodik,

; Crm(t) 0 —p —m | [Coam(t)
a Dnm (t) — ;an o 1+),\7-2#% . )\Q,U:’Ym Dnm (t) 7 (757)
Bt m )\QM:’Ym _ 1+>\T2%2n Epm(t)

de a C’nm, f)nm, Eom egyiitthatok jelentése nem valtozik. Mivel mindkét esetben
egy linedris kozonséges differencialegyenlet-rendszert kaptam eredményiil, ezért ezek
megoldasa egy egyszerli exp(M,,,,t) alakban az N-M-tagi sor minden elemére el6-
allithato, ahol M,,,,, a modellnek megfelel6 egytitthatématrixot jelenti.
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G. A két térdimenziés GK-egyenlet numerikus
megoldasa eltolt mezokon alapulé véges diffe-
rencias modszerrel

A [159] alapjan.
A 4.9. dbranak megfeleld differenciaegyenletek a

A :
ng—_&-l/z,n—s-l/z = ng—&-l/z,n—s-l/z (758)

+ Al? (ij)fnerVQ - (Ax)fn+1,n+1/2 + (q?)fnJrl/zn - (Ay)ZnJrl/Q,nJrl
A7 AJ ’

| AN AF[T . ~ 1
A \j+1 o ~ m—1/2,n+1/2 m+1/2,n+1/2
@it = (1 5) @+ 5 - +
A \J A \J
A ~ m+1/2,n+1/2 m—1/2,n+1/2
+ (1 +12) NG
A J A J
A~ (me)m,n+1 B (me)m,n
+ M1 Aj +
A J A J
ny - ny
+ 7,72( )m+1/2,’n+1/2A§:( )m71/27n+1/2 : (759)
A \j+1 — (1 AtA ~ NG AtA Tvgm+1/2,n71/2 o Trjn+1/2,n+1/2
(qy)m+1/27n - - ? (qy>m+1/2,n + ? Ai. +
A N A N\J
(Qw) ~ (@w)
A ~ m+1/2,n+1/2 m+1/2,n—1/2
+ (1 + 1) A
A J A J
~ (Qyw)m-‘rl,n o (me)m,n
+ M A +
A J A J
sz - Qxa:
+ﬁ2( )MWMWAQ( )mh/wfw : (7.60)
(@ )j . (qu“)in+1,n+1/2 - (qu)an,nJrlh (7 61)
H mtifantafe A% ’ '
A J (qAJU)fn n - ((jﬂﬁ)in,nf
(@), = =5 - (702
A~ j (Qy)gn_p n ((./Z\y)zn_l n
(Qy$)m,n - S Aﬁi' £ ) (763)
(Q )j . (Qy)i1+1/g7n+1 - (q\y)in+1/2,n (7 64)
) sty Ag ' '

alakot Oltik egy alkalmasan valasztott dimenzidtlan skalazassal, a felil 1év6 j index
az idébeli, az alul 16v6 m és n indexek a térbeli 1éptetést reprezentaljak [159], igy ez
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7.5. dbra. Egy olyan kétdimenziés megoldasa a GK-egyenletnek, ahol megfigyelhetd
az id6skalak elvdldsanak méretfiiggd jellege [159]. Az dbrén szdvegesen jeloltiik az egyes
peremfeltételeket.

teljes egészében leirja mind az egydimenziés, mind a kétdimenzios feladatokat, és
ehhez képest egy haromdimenzios eset targyalasa mar nem ad modszertani tobble-
tet. Demonstrativ jelleggel, [159] alapjan kozlok egy olyan kétdimenzids megoldést
a GK-egyenletrdl, amelyben az idéskalak szétvalasanak méretfiiggése is megfigyel-
het6. Ez azt jelenti, hogy ha a hémérséklet id6beli valtozasat csak fele akkora (x
iranyt) vastagsagnal mérjik, akkor a heterogén anyagokon végzett kisérletekhez ha-
sonléan megfigyelhetoek a gyors melegedési és a lassi kiegyenlitodési szakaszok, ez
az idoskalak szétvalasa. A hatlapon nézve az idoskaldk mar kiatlagolédnak, és ez a
fajta szétvalas igy kisérletileg nem figyelheté meg.
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