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Abstract

Numerical simulations show that a massive real scalar field in a nonlinear
theory can form long-lived oscillating localized states. For a self-interacting
scalar on a fixed background these objects are named oscillons, while for the
self-gravitating case they are called oscillatons. This review discusses the history
and various general properties of these solutions. However, the main empha-
sis is on the calculation of the small but nonzero classical scalar field radiation
emitted by them. The radiation for higher amplitude states can be calculated
by a spectral numerical method. For small and moderately large amplitudes an
analytical approach based on complex extension, matching of asymptotic series,
and Laplace transform can be used.

For ease of understanding, the complicated analytical methods are presented
first for a linear inhomogeneous model problem. Then the analytic and numerical
techniques are applied for the fifth-order generalization of the Korteweg-de Vries
(KdV) equation. This hydrodynamically motivated problem also has weakly ra-
diating localized solutions, but since there are time-independent configurations,
the formalism is still considerably simpler than the procedure for the oscillat-
ing scalar field problem. This allows us to obtain higher order corrections to
the leading order result in the KdV case. We continue with the simplest one-
dimensional scalar oscillons, then generalize to 3 + 1 dimensional oscillons, and
finally to self-gravitating oscillatons based on that experience.
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1 Introduction

A fundamental question of physics is how the available matter can form spatially localized
lumps, and what prevents the formed objects from falling apart, evaporating or radiated
out, such that the matter and energy occupy uniformly all the available space. In this
review we approach this problem from a theoretical perspective where we study the simplest
classical field theoretical and hydrodynamical models where long-lived localized states may
appear. In this way we can get insight on what properties a theory must have so that
these type of structures would be allowed to exist at all. The objects corresponding to the
states appearing in the simplest models can also be expected to develop in more general,
complicated, physically more relevant theories. The typical size of the formed structures
may range from the size of particles to galaxy clusters, depending on the parameters in the
theory, such as the mass of the scalar field, for example.

Some special models allow soliton solutions which are exponentially localized and do not
lose energy by radiation. The discovery of solitons is associated to the name of John Scott
Russell, a Scottish civil engineer, who in 1834 observed a stable wave packet propagating
along a canal, and followed it on horseback for a few kilometers. Solitons are nonlinear wave
packets that propagate with constant speed, keep their shape during the propagation, and
they show considerable stability even when colliding with each other. The observed surface
water waves can be well described by the stationarily propagating solutions of Korteweg-de
Vries (KdV) equation.

For a certain range of the surface tension of the fluid it is necessary to extend the KdV
equation by adding a fifth spatial derivative term, multiplied by ε2, where ε is a small
parameter [1]. For positive but not too large ε there are still solutions quite similar to
solitons, but they are losing energy by weak scalar field radiation in the direction of the
propagation [2]. There exist also solutions with essentially the same core region which
are time-independent in a comoving system. These solutions are symmetric and have very
small constant-amplitude spatially oscillating tails in both directions far from the center.
The amplitude of this tail tends to zero exponentially when ε → 0, hence it cannot be
calculated by elementary perturbational methods. The main objective of this review is to
pedagogically present the methods that can be used for the calculation of such exponentially
small tail-amplitudes. Since these methods are quite complicated and technical, we start
with introducing them in Section 2 for the simplest system for which they can be applied,
a linear inhhomogeneous differential equation suggested by J. P. Boyd [3, 4, 5]. Then in
Section 3 we continue with the calculation of the tail-amplitude for the fifth-order KdV
problem. That procedure have been carried out to quite high orders in our papers [6, 7].
The application of the method for oscillating scalar field systems is described in Sections 4
and 5 of this review.
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The procedure for the computation of the exponentially small tail-amplitude is based on
the extension of the solutions to complex values of the spatial coordinate. This method was
applied first by Pokrovskii and Khalatnikov in 1961 for the calculation of the amplitude of
backscattering from a low potential barrier [8]. The ordinary WKB (Wentzel–Kramers–Brill-
ouin) method cannot be applied for above-the-barrier scattering because of the lack of turning
points. The key idea has been the use of turning points which exist for complex values of
the spatial coordinate. Close to these points on the complex plane the reflected wave is not
small anymore. However, it decays exponentially when going back to the real axis, so one
can obtain the intended extremely small amplitude. For nonlinear problems Kruskal and
Segur [9] was the first to apply the complex extension method for a model describing the
growth of needle crystals, in a preprint in 1985. Soon after this, they have generalized the
procedure for the calculation of the radiating tail of φ4 oscillons [10]. Pomeau, Ramani and
Grammaticos have applied the procedure for the fifth-order KdV equation, and they have
realized that the inner equations can be solved by Borel summation instead of the earlier
numerical method [11].

Presumably, the simplest classical relativistic field theoretical model is the theory in
which there is only a single real (not complex) scalar field φ on a fixed 1 + 1 dimensional
Minkowski spacetime background. The scalar field φ depends on the time coordinate t and
spatial coordinate x, and satisfies the differential equation

− ∂2φ

∂t2
+
∂2φ

∂x2
= U ′(φ) , (1)

where U ′(φ) denotes the derivative of the scalar potential U(φ) with respect to φ. For
a large class of U(φ) potentials various localized but weakly radiating states can already
appear in this simple model. The most widely investigated cases are the φ4 potential with
two symmetrically placed minimums, U(φ) = (φ2 − 1)2/4, and the sine-Gordon potential
U(φ) = 1 − cosφ, which has infinitely many identical minimums. In both models there are
kink solutions, which appear at the boundary of two different vacuum domains. The kink
solution belongs to the class of solitons.

If we observe the solution from a system moving along with the kink, then we obtain
the simplest static kink solution. The shape of this solution for the case of the sine-Gordon
theory is φ = 4 arctan(± expx). Although the energy density of the one-dimensional kink
is essentially restricted to a bounded region, it is not a localized solution in the sense that
it tends to different vacuum states in the negative and positive x directions. The three-
dimensional generalization of this solution is not a particle-like state localized around a
point, but rather a domain wall. From Derrick’s theorem we know that there are no stable
static localized solutions for three or more spatial dimensions [12].

The other particle-like solution in the sine-Gordon theory is known as the sine-Gordon
breather, the form of which will be written out later in equation (141). There is a one-
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parameter family of sine-Gordon breather solutions, which can be parametrized by the fre-
quency of the oscillation of the field. The breather is a time-periodically oscillating exponen-
tially localized exact solution, which is stable and do not radiate energy out to infinity. For
the sine-Gordon breather the scalar field tends to the same vacuum value at both the negative
and positive directions, hence there is a possibility for the existence of a three-dimensional
spherically symmetric generalization.

The spatially reflected version of the kink solution is named antikink. Surprisingly, a sine-
Gordon breather cannot be formed by the collision of a kink and an antikink. According to
the exact solution describing the collision, the two objects go through each other without
any change in their velocity or shape. This is an exceptional property of the integrable
sine-Gordon theory.

The one-dimensional sine-Gordon theory is also very special in the sense that it is the
only theory involving a real scalar field where an exactly time-periodic localized breather can
exist. In other models with analytic potential, including the higher dimensional sine-Gordon
theory, not only an exact solution is not known, but even with numerical methods it is not
possible to find a finite energy localized time-periodic solution. There are mathematical
results showing that for the one-dimensional case families of breathers can only exist for the
sine-Gordon potential [13, 14, 15]. In this way, from the intended properly localized solutions
not only the static but the time-periodic solutions are also excluded.

Surprisingly, in spite of all this, as numerical experience shows, a self-interacting real
scalar field can still form long-lived localized oscillating states. However, these solutions
always lose energy slowly by the radiation of scalar field, and hence their frequency is also
changing gradually. These objects were called pulsons originally [16, 17], but later the name
oscillon became widespread in the literature [18, 19]. For example, in the one-dimensional
φ4 theory oscillons can easily form by the collision of a kink and an antikink, after radiating
out the unnecessary energy [20].

The importance of oscillons is greatly increased by the observation that they are not
exceptional states, they evolve from quite general initial data in several cases. For more than
one spatial dimensions oscillons become spherically symmetric quickly by radiating out scalar
field [21]. Oscillons can be produced rather easily by numerically following the spherically
symmetric time-evolution of a general bell-shaped initial data. According to more general
numerical simulations, oscillons can form from randomly chosen not spherically symmetric
initial data as well [22, 23]. This makes it likely that they may have played a role in the
early universe, evolving from the inflaton field or from some of the other scalars coupled
to it [24, 25, 26, 27, 28, 29, 30]. At the forming and decaying of oscillons the emission of
gravitational waves may be increased, which might be observed as peaks on the spectrum of
gravitational waves [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].
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The nonlinearity of the theory is an essential feature for the existence of oscillons. The
structure of oscillons cannot be described by first-order linear perturbations. There are small-
amplitude oscillons, but the smaller the amplitude is the larger their spatial size becomes.
This is necessary in order to allow the influence of the nonlinearity become effective even
for small amplitude states. The shape of the oscillon is getting determined from conditions
arising at higher orders in the perturbational analysis.

Oscillons have been observed to form in theories containing several kind of interacting
fields, such as for example in the bosonic sector of the standard model, when the Higgs
mass is twice as large as the mass of the W± boson [44, 45, 46]. Oscillons can also form
in Abelian Higgs models at the decay of sphalerons [47, 48, 49, 50, 51], at the collision of
vortex antivortex pairs [52], or as a result of symmetry breaking [53, 54].

Although the scalar field oscillons are classical field theoretical solutions, they can also be
considered as collective quantum states formed by large number of identical particles. Before
the numerical discovery of oscillons, in their paper appeared in 1975, Dashen, Hasslacher
and Neveu have already arrived at the study of the one-dimensional sine-Gordon breathers
and φ4 oscillons, while applying the semiclassical WKB method [55]. Considering the small-
amplitude oscillons as stable time-periodic solutions and quantizing the perturbations around
them they have calculated the energy levels at weak coupling. The semiclassical method for
the calculation of the radiation of oscillons has been applied by Hertzberg [56, 57]. Con-
sidering the oscillons as quantum systems and using inhomogeneous Hartree approximation
and numerical methods, the time evolution and radiation of oscillons have been investi-
gated in paper [58]. The radiation of the sine-Gordon breather have been calculated by the
classical-quantum correspondence method in [59].

In Section 4 of this review, after presenting the most important earlier articles about
oscillons, the results that we have obtained in our papers [60, 61, 62, 63] concerning their
structure and radiation are discussed in detail. Apart from the exceptional sine-Gordon
breather, all oscillon solutions emit energy slowly by the radiation of scalar field. In certain
cases this radiation can be so weak that one may have chance to detect it only by extremely
precise numerical methods. For a long time it was unclear whether or not there may exist
exactly periodic nonradiating solutions. By varying the parameters of a Gaussian-type initial
data, in 2002 Honda and Choptuik found 125 resonance peaks, which appeared to correspond
to periodic oscillons [64]. In our first paper about oscillons, we have shown that the states
belonging to these peaks are actually oscillons belonging to the low amplitude unstable
domain, which, even if very slightly, but necessarily radiate in a detectable way [60].

If we compensate the energy loss of an oscillon by a same amplitude and frequency in-
coming wave, then we obtain an exactly time-periodic state with a small amplitude standing
wave tail outside the core region. The spherically symmetric standing wave tail goes out to
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arbitrarily large distances, and the decrease of its amplitude is so slow that the whole energy
of the system turns out to be infinite. Although the obtained solution is not localized, it
still has a core region where the energy density is many orders of magnitude larger than in
the tail zone. At some given frequency, for the solution with the minimal amplitude tail
we have introduced the naming quasibreather [60]. The concept has been adopted in the
literature [65, 56, 66, 67, 68, 69, 70, 71, 72, 73, 74]. The amplitude of the standing wave tail
of the quasibreather agrees with the tail-amplitude of the radiating oscillon. A big advantage
of the introduction of the quasibreather is that numerically it can be much more precisely
calculated than the corresponding oscillon state.

The core region of oscillons can be described quite precisely by an asymptotic power
series expansion in terms of an amplitude parameter [75, 55, 10, 76, 77, 14]. This parameter
is usually denoted by ε. The relation between the oscillon’s frequency ω and the amplitude
parameter can always be chosen in the form ω2 = 1 − ε2. The expansion worked out to
higher orders has been presented in our paper [61]. The formalism also gives a result for
the ε dependence of the oscillon’s energy, which is valid for low and moderate amplitudes.
For higher amplitude states we can obtain the precise value of the energy by a spectral
numerical code. The dependence of the energy on the central amplitude is important because
it determines the stability of the system. If increasing the central amplitude the total energy
of the system also increases, then the system is stable, otherwise it is unstable. From the
analysis it follows that three-dimensional oscillons are stable only if their amplitude is above
a certain limit. If their amplitude decreases below that value because of the radiation loss,
then they suddenly decay. In case of one and two spatial dimensions all oscillons are stable
below a certain amplitude. Since the energy loss rate decreases exponentially when the
amplitude decreases, these lower dimensional oscillons never decay.

Although the small-amplitude expansion gives a very good representation of the core
region, it is unable to describe the radiating tail, which is exponentially small in ε. This is
closely related to the fact that this expansion is not convergent, it is an asymptotic series
representation. Extending the formalism to complex values of the radial coordinate r, it is
possible to determine the amplitude of the tail by investigating the behavior of the quantities
near a singularity on the complex r plane. This method was used by Segur and Kruskal in
1987, for the case of one-dimensional oscillons [10]. In our paper [62] we have extended
the procedure by a Borel summation method, and for symmetric U(φ) potentials we have
determined the radiation amplitude by a purely analytic way. For two and three spatial
dimensions we have generalized the procedure in our paper [63]. In Subsection 4.4 of this
review we explain in a more comprehensible way this rather complicated procedure, which
has been presented in a rather concise way in our papers.

In Section 5 of this review we investigate localized states formed by a real scalar field
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interacting with gravity in the framework of general relativity. In this case, the potential
U(φ) determining the self-interaction of the scalar field may have the form U(φ) = 1

2
mφ2

corresponding to the Klein-Gordon case, since gravity already provides the necessary non-
linearity. On a fixed flat background the equations describing the Klein-Gordon scalar are
linear, hence they cannot form oscillons. In the gravitational case the most studied case is
just the Klein-Gordon scalar. Possibly this is the reason why the theory of localized states
formed by self-gravitating scalars was born and developed in a completely separated way
from that of the flat background oscillons. These configurations were discovered in 1991
by Seidel and Suen, who found apparently time-periodic localized states formed by a self-
gravitating scalar field using numerical methods [78]. They gave the name oscillaton to these
objects [79]. In spite of the markedly similar naming, generally there is no reference to the
other topic in most publications.

Majority of the published studies on oscillatons are restricted to the physically important
three-dimensional case. As we have mentioned earlier, oscillons defined on a 3+1 dimensional
background suddenly decay after a few thousand oscillations, at most. In contrast to this,
the lifetime of 3+1 dimensional self gravitating oscillatons is infinite, their behavior is similar
to the 1 + 1 and 2 + 1 dimensional oscillons.

Oscillatons can easily develop from Gaussian shaped initial data, and non-symmetric
initial data also develops into spherically symmetric oscillatons by quick radiation of the
surplus mass. The radiation is so small that for a long time it was tacitly assumed that
oscillatons are time-periodic and nonradiating. This is understandable if we know that even
in the most favorable case, at the maximal mass oscillaton, when the ratio of the amplitude
of the radiating tail to the central amplitude is maximal, the tail-amplitude is of the order
10−8, while the central amplitude is about 0.5.

It was first pointed out by Don Page in 2003 that oscillatons must necessarily radiate,
hence they cannot be exactly time periodic and localized [80]. Because of the mass loss, their
amplitude and frequency slowly change as time passes. In our paper [81] the method applied
for oscillons earlier has been generalized for the case of oscillatons. In a subsequent paper
we have also calculated the strength of the radiation by a spectral numerical method, and
we have obtained results consistent with our analytical calculations [82]. Small but positive
cosmological constant further increases the amplitude of the radiation, but it still remains
exponentially small in terms of the cosmological constant [83]. In Section 5 of this review
the results published in our papers [81, 82] are presented in detail.

Several physical applications of oscillatons have been proposed in the literature up to now.
Oscillatons formed by scalar fields in cosmological models may be suitable for describing dark
matter in galaxies [84, 85, 86, 87, 88, 89, 90]. The real scalar field necessary for the formation
of oscillons or oscillatons may be most naturally provided by axions [91, 92, 93, 22] or similar
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weakly interacting hypothetical bosonic particles [94, 95, 96, 97, 98, 99, 100, 101]. If the self-
interaction of the scalar field is determined by a potential U(φ) typical for axions, then in
several papers the forming oscillatons are called axion stars, see e.g. [102, 103, 104, 105, 106,
107]. Cosmological simulations describing the evolution of axion-like fields show that in the
central parts of the forming diffuse matter structures solitonic cores are developing, which
also correspond to oscillatons [108, 109, 110, 111, 112]. Fuzzy dark matter constituting
of very low mass axion-like particles may provide a solution for the core-cusp problem,
explaining why in galaxies we cannot observe dark matter lumps which are below a certain
size [113, 114, 115, 116, 117, 118, 119]. Scalar dark matter may also be accumulated inside
stars, and may form oscillaton-like cores there [120, 121]. Massive real vector fields under
the influence of gravitation can also form localized states, the so called Proca stars, with a
time-periodically oscillating metric similar to that of oscillatons [122, 121, 123, 124, 125]. For
complex massive vector fields there are Proca star solutions where the spacetime is stationary
[126, 127, 128], similarly to boson stars.
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2 Slowly driven fast oscillator – a model problem

In this section we consider a simple linear model problem, for which we can pedagogically
present essentially all of the rather technical mathematical and perturbational methods that
has to be applied to solve the physically more relevant nonlinear problems in the following
sections. We focus our attention on the second-order linear ordinary differential equation for
a function u that depends on x,

ε2 d2u

dx2
+ u = sech2 x , (2)

where ε is a small positive constant. The source function sech2 x = cosh−2 x is symmetric
and tends to zero when |x| → ∞. Equation (2) has been studied first by J. P. Boyd,
who interpreted it as a reduced wave equation obtained by factoring out harmonic time
dependence [3, 4, 5]. Regarding x as time, one can consider (2) as an equation describing
a fast oscillator driven by a relatively slowly varying force [129, 130]. Taking ε as a small
parameter, we obviously have a singular perturbation problem, since the high frequency
oscillations completely disappear when ε = 0.

The general solution can be obtained from any particular solution by adding α sin(x
ε

+ δ)

with arbitrary amplitude α and phase δ. We are interested in solutions that are as localized as
possible. The most important solution for our analysis is the even solution um(x) = um(−x)

that has a large core region, similarly shaped to the function sech2 x, and which for large
|x| tends to an oscillating tail α sin |x|

ε
, with as small amplitude α as possible. We show this

unique minimal tail solution for ε = 1
4
in Fig. 1.

u-

um

-6 -4 -2 2 4 6

x

-0.2
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1.0

1.2

u

ε=
1

4

Figure 1: The right decaying u− and the minimal tail symmetric um solutions for the specific
choice of ε = 1

4
. For ε > 0 there is no localized configuration without tail.

For ε > 0 no symmetric solution without tail is possible, i.e. α > 0. The second important
solution, u−, has a similar core, but it decays to zero exponentially for x → +∞. This can
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be obtained from um by subtracting the homogeneous solution α sin x
ε
, canceling the tail on

the right hand side, but doubling the tail-amplitude on the left hand side. Logarithmic plots
of the solutions for smaller values of ε are shown in Fig. 2.

|u-| , ε= 1

8

|um| , ε= 1

8

|u-| , ε= 1

16

|um| , ε= 1
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Figure 2: Absolute values of u− and um for ε = 1
8
and ε = 1

16
. The downward spikes, corre-

sponding to zero crossings, should go all the way down for high enough plotting resolution.
The core region of the solutions are quite similar, hence the other curves run below the red
one. The blue curve is below the green one on the right side.

Since Eq. (2) is linear, it can be solved by the method of Green’s functions. The solution
of ε2 d2u

dx2
+ u = δ(x − s) also depends on the boundary conditions. Assuming u → 0 as

x→ +∞, the Green’s function is G(x, s) = 1
ε
H(s−x) sin s−x

ε
, where H is the Heaviside step

function. The asymmetric right decaying solution can be calculated as

u− =
1

ε

∫ ∞
x

sin
s− x
ε

sech2 s ds

=
1

ε
cos

x

ε

∫ ∞
x

sin
s

ε
sech2 s ds− 1

ε
sin

x

ε

∫ ∞
x

cos
s

ε
sech2 s ds . (3)

Since sech2 s is an even function, the first integral tends to zero for x → −∞, and the
tail-amplitude on the left hand side can be calculated as

α− =

∣∣∣∣1ε
∫ ∞
−∞

cos
s

ε
sech2 s ds

∣∣∣∣ =

∣∣∣∣∫ ∞
−∞

cos s sech2(εs)ds

∣∣∣∣ . (4)

The symmetric minimal tail solution can be obtained as um = u− + 1
2
α− sin x

ε
, making the

tail-amplitude αm = 1
2
α− on both sides. There is no cos x

ε
part in the tails of u− and um.

Adding the homogeneous solution cos x
ε
with any nonzero factor to um would further increase

the tail of the symmetric solution with respect to the minimal amplitude αm = 1
2
α−. The

difference between the two solutions is

um − u− = αm sin
x

ε
, (5)
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and the phase of the tail is that corresponding to the sin x
ε
function.

The integral in (4) can be calculated, and the minimal tail-amplitude of symmetric solu-
tions is given as

αm =
π

2ε2
csch

( π
2ε

)
. (6)

The integrals in (3) can be expressed in terms of Hypergeometric functions 2F1, and the
right decaying solution can be written in the explicit form

u− =
2e−2x

1 + 4ε2

[
(1 + 2iε) 2F1

(
2, 1 +

i

2ε
; 2 +

i

2ε
;−e−2x

)
+(1− 2iε) 2F1

(
2, 1− i

2ε
; 2− i

2ε
;−e−2x

)]
. (7)

This can be used for fast and very precise numerical calculation of the solutions u− and um

for given values of ε, and also for plots, even on the complex x plane.
Equation (2) can be solved by the method of Green’s functions because it is linear. For

more complicated nonlinear problems spectral methods can be used to obtain very precise
numerical solutions. The matched asymptotic expansions methods described in the next
subsections can provide valuable information even for very complicated nonlinear systems,
such as time-periodic scalar fields coupled to Einstein’s gravity.

2.1 Outer expansion

We search the solution in the series expansion form:

u =
∞∑
n=0

unε
2n . (8)

Although we do not assume convergence for the sum, we substitute into Eq. (2) and assume
that the coefficients of the various ε powers are zero. We obtain u0 = sech2 x and un =

− d2

dx2
un−2, which yields

un = (−1)n
d2n

dx2n
sech2 x . (9)

The first few functions are

u1 =2 sech2 x
(
3 sech2 x− 2

)
, (10)

u2 =8 sech2 x
(
15 sech4 x− 15 sech2 x+ 2

)
, (11)

u3 =16 sech2 x
(
315 sech6 x− 420 sech4 x+ 126 sech2 x− 4

)
. (12)

We call (8) as outer expansion because, as we will see, it fails close to singularities on the
complex x plane, and in those “smaller” regions, after a rescaling of x, a different, so-called
inner expansion will be applied.
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Since the perturbation problem is singular, the expansion (8) is not convergent for any
fixed ε > 0, but it is asymptotic to some (non-unique) function u(x, ε). For more information
on asymptotic expansions and perturbation methods the reader may consult the popular
textbooks [131, 132, 133]. Defining the partial sum

u(N) =
N∑
n=0

unε
2n , (13)

asymptotic behavior means that the difference
∣∣u(x, ε)− u(N)

∣∣ tends to zero faster than ε2N

as ε→ 0 for all N ≥ 0 fixed integers. Taking various ε values, the solution families u− and
um both can be considered as appropriate u(x, ε), since their difference and their tails are
exponentially small in terms of ε. In Figure 3 the difference

∣∣um − u(N)
∣∣ is plotted for ε = 1

8
.

0 1 2 3 4 5

x

10-1

10-2

10-3

10-4

|um-uN |

ε= 1

8
N = 0

N = 1

N = 2

N = 3

N = 4

N = 5

Figure 3: Difference of the minimal tail solution um from various N -th order expansion
approximations u(N) for ε = 1

8
. All these functions are symmetric, so only x ≥ 0 is shown.

For this ε value the optimal truncation order is Nopt = 5, for larger N the difference becomes
larger and larger in the central region. For large x the difference tends to the oscillating tail,
with amplitude αm ≈ 7.0117 · 10−4.

The optimal order of the truncation may depend on the choice of the position x. This is
especially apparent when we compare the functions u(N) to the right decaying solution u−.
In Fig. 4 the difference |u− − u(N)| is plotted for the same ε as in Fig. 3. For large positive
x extremely small relative error with respect to the already small u− can be obtained by
taking N very large, even if ε is not small. At the central region the best approximation still
has an error of the order of αm, and much less terms in the sum has to be used. In a certain
sense, expansion (8) can be considered as a boundary condition for u− at x→ +∞.

The error of the partial sum u(N) can be estimated by the absolute value of the first
neglected term, |uN+1|ε2N+2. The optimal truncation orderN ≡ Nopt of the asymptotic series
can be generally well estimated by stopping the summation when the first neglected term,
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-4 -2 0 2 4 6 8

x

1

10-4

10-8

10-12

10-16

|u--uN |

ε= 1

8

N = 0

N = 1

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

N = 9

Figure 4: Difference of the right decaying solution u− from various N -th order expansion
approximations u(N) for ε = 1

8
. Although it cannot be seen well from the figure, the optimal

truncation order in the central region is Nopt = 5, just as for um in Fig. 3. However, for large
enough positive x the optimal order Nopt can become arbitrarily large and the relative error
with respect to u− arbitrarily small.

|uN+1|ε2N+2, is minimal. When ε decreases, the optimal order increases approximately as
1/ε, and the error decreases exponentially, ∼ exp(−a/ε), where a is some positive constant.
For general asymptotic series these type of “beyond all order small” corrections [9, 134] has
been called exponential asymptotics [135, 136]. The optimally truncated expansion has been
named superasymptotics [137], while even more precise approximations can be obtained by
methods called hyperasymptotics [138, 139]. In Table 1 we show the how the function um

and its approximations depend on ε at the center x = 0.

All functions un in the ε expansion tend to zero exponentially when |x| → ∞. Hence this
procedure cannot describe the tail region of the solutions u− and um. However, it provides a
very good approximation for the core region of both functions, with error that tends to zero
exponentially when ε → 0. When we set the coefficients of the various powers of ε to zero
after substituting the formal expansion (8) into (2), we implicitly assume that the second
derivative of un has the same order in ε as un itself. This assumption is clearly false for
the homogeneous solution sin x

ε
, which has very high frequency oscillations when ε is small.

Similarly, taking repeated derivatives of sech2 x, higher and higher frequency oscillations
appear in un close to x = 0, and the expansion loses its validity when the wavelength of
these oscillations become as small as ε. This happens when N is near the optimal truncation
order, as illustrated by Fig. 5.

The procedure we apply in (2) and (8) is essentially multiple scale analysis [131, 132, 133],
where only the slow scale x dependence is used. The fast scale x contributions cannot be
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ε N uN+1ε
2N+2 u(N) − um u(N+1) − um αm

2−2 1 6.25 · 10−2 −4.63 · 10−2 1.62 · 10−2 9.39 · 10−2

2−3 5 3.26 · 10−4 4.23 · 10−5 3.68 · 10−4 7.01 · 10−4

2−4 11 3.12 · 10−9 −4.61 · 10−10 2.66 · 10−9 9.78 · 10−9

2−5 23 1.08 · 10−19 −7.73 · 10−20 3.04 · 10−20 4.76 · 10−19

2−6 49 4.50 · 10−41 6.77 · 10−42 5.18 · 10−41 2.81 · 10−40

2−7 99 2.77 · 10−84 −3.16 · 10−85 2.46 · 10−84 2.46 · 10−83

2−8 199 3.75 · 10−171 −2.42 · 10−171 1.33 · 10−171 4.71 · 10−170

2−9 400 2.43 · 10−345 −1.72 · 10−345 7.11 · 10−346 4.32 · 10−344

2−10 802 3.61 · 10−694 −3.00 · 10−694 6.09 · 10−695 9.06 · 10−693

Table 1: We consider quantities at x = 0, where um = u−. For decreasing values of ε, in
the second column we give the value of N for which the (positive) term uN+1ε

2N+2 is the
smallest, and give its value in the third column. In the fourth and fifth column we give the
difference of the partial sums u(N) and u(N+1) from the precise value of um, setting the better
approximation bold faced. The error of these approximations at the center are similar order
but somewhat smaller than the minimal tail-amplitude αm listed in the last column. The
central value of um remains close to 1 for all these ε values.

0.2 0.4 0.6 0.8 1.0 1.2
x

-1.0

-0.5

0.5

1.0

un
u0

u1

2

u2

16

u3

272

u4

7936

u5

353792

u6

22368256

cos x

ε
, ε=

1

8

Figure 5: The functions un are shown up to n = 6, rescaled to make the central values
1. The wavelength of the oscillation at the center decreases as n grows. For n = 5 the
wavelength becomes approximately equal to that of the function cos(8x), which is a solution
of the homogeneous problem for ε = 1

8
, consistently with the value Nopt = 5 in that case.

determined by this method, since they are exponentially small in terms of ε. The most well-
known and widely applicable method for obtaining these exponentially small corrections is
the extension of the solutions to the complex x plane and studying the behavior near the
singularity closest to the real axis.

2.2 Complex extension

Since sech2 x is a meromorphic function, we can consider (2) as a differential equation for
functions u on the complex x plane. We are looking for complex analytic solutions u taking
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real values on the real x axis, especially the complex extensions of the solutions u− and um.
Since u is real for Imx = 0, it follows from the Schwarz reflection principle that u(x) = u(x),
where the overline denotes complex conjugate. Hence we will consider only the behavior of
the functions on the upper half of the complex plane. Since the original real function um

is symmetric at x = 0, the extension will naturally satisfy um(x) = um(−x) for complex x
values as well. Combining these two symmetries it follows that the mirror image with respect
to the imaginary axis is just the complex conjugate of the original function, um(−x) = u(x).
Consequently, the function um must take real values on the imaginary axis. The slightly
asymmetric u− function will have a small imaginary part along the line Rex = 0.

The source function sech2 x ≡ cos−2(ix) has second-order poles at x = iπ
2

(1 + 2j) for all
integer j. To study the behavior close to x = iπ

2
, which is the nearest pole above the real

axis, we define y by x = iπ
2

+ y. The function sechn x has the Laurent series expansion

sechn x =
1

(iy)n

[
1− ny2

6
+
n(5n+ 2)y4

360
− n(35n2 + 42n+ 16)y6

45360
+ . . .

]
, (14)

which is convergent for |y| < π, since π is the distance to the neighboring singularity. All
solutions u of (2) will have singularities also at the points x = iπ

2
(1 + 2j), and since the

equation is linear, there will be no spontaneous (movable) singularities at other places. In
Fig. 6 we show the behavior of the function u− on the complex plane for ε = 1

8
. There is

arg u-

-π

-π/2

0

π/2

π

Figure 6: Three-dimensional complex plot of the solution u− for ε = 1
8
, vertically showing

the absolute value colored by the complex argument. The function is periodic along the
imaginary direction, u−(x+ iπ) = u−(x).

a branch cut for Rex < 0 along the line Imx = π
2
and the singularity is logarithmic at the

point x = iπ
2
.
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The coefficient functions un, which can be calculated by (9), also can be uniquely extended
to the complex x plane, and one can form the asymptotic series expansion in terms of ε on
the complex plane by (8). All un are built up from powers of sechx, which has the Laurent
series expansion presented in (14). The ε expansion will not only fail in the tail region of
the real axis, but also close to the singularities on the complex plane. If |y| . ε then the
second derivative d2u

dx2
will become so large that we cannot assume that it remains the same

order in ε as u.

2.3 Inner expansion

The behavior of the solutions u in a region close the singularity at x = iπ
2
can be described

by a different ε expansion, focusing on that region by introducing a rescaled independent
variable q by y = εq. Since the relation to the original variable is

x =
iπ

2
+ εq , (15)

the factor ε2 in Eq. (2) will be canceled in front of the second derivative. It is useful to scale
down u by introducing the function

v = ε2u . (16)

Equation (2) on the complex plane can be written into the equivalent form

d2v

dq2
+ v = −ε2 csch2(εq) , (17)

which is usually named inner equation, using the nomenclature from boundary layer theory
[131, 132, 133]. We note that usually the inner and outer equations are obtained by making
approximations that make them valid only in their respective regions. In our case both
equations (2) and (17) remain exact everywhere, but the validity of the inner and outer ε
expansions will determine the size of the inner and outer regions.

The solution of the inner equation (17) will be uniquely determined only after specify-
ing appropriate boundary conditions. The simplest and most obvious solution will be the
function v(−), which tends to zero to the right side, i.e. for |q| → ∞ when Re q > 0. We are
interested in the downwards directions, when Im q ≤ 0. Up to a factor ε2, this v(−) should
correspond to the complex extension of the original right decaying solution u−, which was
defined on the real x line. Adding the homogeneous solutions cos q and sin q with appropriate
complex valued factors, one may obtain the solution v(m), which corresponds to the exten-
sion of the minimal tail solution um that is symmetric on the real x axis. On the complex
q plane this symmetry means that v(m)(−q) = v(m)(q), at least for Im q < 0. In particular,
Im v(m) = 0 along the lower half of the imaginary axis.
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The ε → 0 limit is not singular when we use the variables q and v. Using the Laurent
expansion (14) we can write the right hand side of (17) into a form expanded in powers of ε,

d2v

dq2
+ v = − 1

q2

[
1− q2

3
ε2 +

q4

15
ε4 − 2q6

189
ε6 +

q8

675
ε8 − 2q10

10395
ε10 + . . .

]
. (18)

The ε series expansion on the right hand side is convergent at those points q for which
|q| < π

ε
. This is quite a large region, considering that the real x axis is only at a distance π

2ε

from the singularity. Assuming that ε is small enough we can solve order by order, seeking
the solution in the inner expansion form

v =
∞∑
n=0

vnε
2n , (19)

where vn are ε independent functions. The differential equations for vn are called the 2n-th
order inner equations. They have the form

d2vn
dq2

+ vn = Cnq
2n−2 , (20)

where Cn are constants, the first few of them can be read off from (18). It is important
to notice, that the ε expansions of the solutions v(−) and v(m) are different, specifically the
coefficient functions v(−)

n and v
(m)
n are generally not equal, as is will be illustrated in the

next subsection. This is in contrast with Eq. (8), which is a valid expansion, with identical
coefficient functions un, for both u− and um, since their difference is exponentially small in ε.
Inner equations and expansions can be similarly constructed for more complicated nonlinear
problems as well.

2.4 Leading order inner equation

We discuss in more detail the leading order inner equation, which has the form

d2v0

dq2
+ v0 = − 1

q2
. (21)

The unique solution which tends to zero as |q| → ∞ in the half plane Re q > 0 is

v
(−)
0 = sin q si(q) + cos qCi(q) , (22)

where Ci(q) is the cosine integral function and si(q) is the sine integral function. In Fig. 7 we
show a plot of this solution. Since the leading order behavior for small |q| is log q, there is a
branch cut along the negative part of the real q axis. The function v(−)

0 is real for real q > 0,
hence v(−)

0 (q) = v
(−)
0 (q) for all q apart from the branch cut. However, the function is not

symmetric with respect to the point q = 0. We define the function v(+)
0 (q) = v

(−)
0 (−q), which
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arg v0
(-)

-π

-π/2

0

π/2

π

Figure 7: Three-dimensional complex plot of v(−)
0 . The local behavior is very similar to

that of u− in Fig. 6, but this function is not periodic along the imaginary direction.

is the unique solution that decays to zero asymptotically on the left side of the imaginary
axis. It can be checked that

v
(+)
0 (q)− v(−)

0 (q) =

{
iπ exp(−iq) if Im q < 0 ,
−iπ exp(iq) if Im q > 0 .

(23)

It follows that the failure of symmetry for the reflection to the imaginary axis can be written
as

v
(−)
0 (−q)− v(−)

0 (q) =

{
iπ exp(−iq) if Im q < 0 ,
−iπ exp(iq) if Im q > 0 .

(24)

This shows that going downwards along the lower half of the imaginary axis the imaginary
part of v(−)

0 decays exponentially,

Im v
(−)
0 (q) = −π

2
exp(−iq) for Re q = 0 and Im q < 0 . (25)

For our purposes it is important to study the asymptotic behavior of the solution v
(−)
0

along constant Im q = qi lines in the lower half plane Im q < 0. If Re q = qr tends to infinity
in the qr > 0 direction, then v

(−)
0 → 0 as q−2

r . However, the function v
(−)
0 asymptotically

oscillates as −iπ exp qi exp(−iqr) when qr → −∞ for fixed qi.
Canceling out the asymmetry, we define the other important solution as

v
(m)
0 = v

(−)
0 + i

π

2
exp(−iq) , (26)

which has the property v(m)
0 (−q) = v

(m)
0 (q) for Im q < 0. This solution tends to zero when

|q| → ∞ in the lower half plane along constant arg q lines, i.e. for −π < arg q < 0. If we add
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the homogeneous solution cr exp(−iq) to the function v(m)
0 with any real constant factor cr,

the reflection symmetry to the imaginary axis and the decay properties remain unchanged,
however, the amplitude of the tail oscillations along the constant qi < 0 lines necessarily
increase from the minimal value π

2
exp qi. For constant qi < 0, when considering qr � 0,

the asymptotic behavior of the solution necessarily has a fixed amplitude iπ
2

exp qi exp(−iqr)
part, which has a real part proportional to sin qr. However, adding cr exp(−iq) can always be
used to completely cancel the part of the solution that has real part proportional to cos qr.

The inner solutions v(−)
0 and v

(m)
0 , respectively, describe the leading order behavior for

small ε of the exact solutions u− and um, respectively, near the singularity. The main
advantage of going out to the complex plane is that close to the singularity, in the inner
region, the difference of these two solutions is not exponentially small in ε anymore, as it
was on the real x line. In fact, the difference is not even vanishing in the ε→ 0 limit, as we
have just seen.

There are two places where the difference of the symmetric and asymmetric solutions
is particularly apparent. On the real x line for x � 0 the difference um − u− is just the
oscillating tail. The calculation of the amplitude of these type of tails is the main aim of this
review paper. The other important place is the lower half of the imaginary q axis. There
the extension of solutions that are even on the real x axis, in particular v(m), and hence v(m)

n ,
cannot have any imaginary part. At this place the difference of the imaginary parts of v(−)

and v(m) is determined just by Im v(−).
In our linear problem the difference um − u− is necessarily given by (5), which is exactly

valid everywhere, including the tail region and the close neighborhood of the singularity.
Then from (15) and (16) follows that v(m) − v(−) = ε2αm sin

(
iπ
2ε

+ q
)
. Neglecting terms

which are exponentially small in ε, we get

v(m) − v(−) =
i

2
ε2αm exp

( π
2ε

)
exp(−iq) . (27)

To leading order in ε we can approximate the left hand side by v(m)
0 − v(−)

0 . Comparing with
(26), we can solve for the tail-amplitude:

αm =
π

ε2
exp

(
− π

2ε

)
. (28)

Note that to obtain αm it is enough to know that (26) and (27) hold on the lower part of
the imaginary axis. Actually, even less information is needed, only the knowledge of the
imaginary part of v(−)

0 is enough for the calculation of the tail-amplitude. The quantity
corresponding to Im v

(−)
0 can be obtained relatively easily even for nonlinear problems when

exact solutions are not known.
The tail-amplitude (28) agrees with the leading order behavior of the exact result in (6),
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which can be expanded as

αm =
π

ε2
exp

(
− π

2ε

)[
1 + exp

(
−π
ε

)
+ exp

(
−2π

ε

)
+ exp

(
−3π

ε

)
+ . . .

]
. (29)

The exponentially suppressed higher order terms in (29) can be interpreted as contributions
from the singularities at x = 3iπ

2
, 5iπ

2
, 7iπ

2
. . ., which are 3π

2ε
, 5π

2ε
, 7π

2ε
. . . distances from the

real line in terms of the variable q. Since the solution u− is periodic, u−(x+ iπ) = u−(x), it
seems natural that the other singularities give similar contributions, only their amplitudes
decay according to the corresponding larger distances. It might seem surprising that there
are no εn exp

(
− π

2ε

)
contributions in (29) with n > −2 integers. In order to understand why

the higher order inner equations do not give contributions, we study them in more detail.

2.5 Higher order inner equations

The inner equations we have to solve are given by (20), with C0 = −1, C1 = 1
3
, C2 = − 1

15
,

C3 = 2
189

, C4 = − 1
675

. . . . The right decaying solution for v0 has been given in (22). All the
other inner equations have polynomial particular solutions, the first few are

v1 =
1

3
, v2 = − 1

15

(
q2 − 2

)
, v3 =

2

189

(
q4 − 12q2 + 24

)
,

v4 =− 1

675

(
q6 − 30q4 + 360q2 − 720

)
. (30)

These solutions are unique in the sense that they are not showing any oscillations or expo-
nential blowup when |q| is large, which necessarily appear in the general solution when we
add exp(±iq) terms. However, these vn functions have a rather puzzling feature, they are
not tending to zero when |q| → ∞, in fact they are growing polynomially. This might seem
to be inconsistent with the decaying boundary conditions of the full inner equation (17).
However, the inner ε expansion (19) can be convergent only if the right hand side of (18) is
convergent, i.e. if |q| < π

ε
. The analytic extension of the solution v beyond the convergence

radius can be asymptotically decaying even if the coefficient functions vn are divergent but
have alternating signs.

We discuss the appropriate and consistent boundary conditions for the inner solutions
vn in the next subsection. However, it is apparent that the polynomial solutions (30) are
the ones which do not contain any oscillations asymptotically. Additionally, they are purely
real on the imaginary q axis, hence correspond to symmetric solutions. This means that for
n ≥ 1 the solutions v(−)

n and v(m)
n completely agree. Consequently, at these orders we do not

obtain any contributions to the tail oscillations at large x, as it has been already noted after
Eq. (29). For our simple linear problem only the inner solution v0 gives contribution to the
tail. If instead of (2) we would solve the equation ε2 d2u

dx2
+ u = sech4 x then v0 and v1 would

give contributions.
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2.6 Boundary conditions for the inner equations

Although in our linear problem the exact solution u− can be written as in (7), it in not easy
to deduce from this the ε dependence of its behavior near the singularity on the complex
plane. However, there is a general method to obtain the behavior of the inner solutions vn
in an intermediate region, close to the singularity, but not very close to it. In an overlapping
region where both the outer and inner ε expansions are valid we can use the outer expansion
(8) of u with the known coefficient functions un, starting with (10)-(12), to provide boundary
conditions to the various order inner equations. This procedure is known as the method of
matched asymptotic expansions in the literature [131, 132, 133].

Since all x dependence is through powers of sechx we can use the Laurent series expansion
presented in (14) with y = εq. Multiplying with ε2 to obtain v = ε2u and collecting εn terms
we obtain approximations to the inner solutions vn. For the leading order inner solution we
get

v0 = − 1

q2
+

6

q4
− 120

q6
+

5040

q8
− 362880

q10
+

39916800

q12
− . . . , (31)

while for all other vn with n ≥ 1 we obtain exactly the polynomial solutions of the inner
equations, the first few of which are listed in (30). The coefficients in (31) increase so fast
that the series in 1/q is not convergent for any q, but it is a series asymptotic to the function
v

(−)
0 given in (22). On the other hand, considering the functions vn as coefficients in the ε
power series, the decrease of the highest coefficients of the polynomials in (30) suggest that
the ε expansion (19) is likely to have a finite convergence radius for any fixed q, just as the
source term expansion on the right hand side is convergent in (18) for ε|q| < π.

Although (31) is not convergent, its optimal truncation can give better and better ap-
proximation to a certain solution as |q| is increasing, for example along a constant arg q or
constant Im q line in the half plane Re q > 0. In this case (31) can be considered as a valid
boundary condition that selects the right decaying v(−)

0 solution. The polynomials vn for
n > 1 obtained from the outer ε expansion also can be considered as boundary conditions
for the n-th order inner equations, determining the unique solutions v(−)

n which are not os-
cillating on the right hand side. For this simple linear problem they happen to agree with
the actual polynomial solutions everywhere, not just for large |q| and Re q > 0.

2.7 Borel summation

The leading order inner equation is generally nonlinear, and usually no exact solutions are
known. We present a general method for studying its solution, which can be applied for more
complicated systems as well. The Borel summation approach we discuss in this subsection has
been applied first by Pomeau, Ramani and Grammaticos [11] for the fifth-order Korteweg-de
Vries equation.
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The complex extension of the outer expansion has provided the 1/q series approximation
(31) to the solution of the inner equation (21). The coefficients in the series (31) increase
very fast, actually, they are factorials in this case. To construct this expansion to arbitrary
order, we can directly search the solution in the form

v0 =
∞∑
n=1

bn
q2n

, (32)

where bn are constants. Substituting into equation (21) and setting the coefficients of the
various powers of q to zero we obtain that b1 = −1 and bn = −(2n − 1)(2n − 2)bn−1. This
yields bn = (−1)n(2n− 1)!,

v0 =
∞∑
n=1

(−1)n(2n− 1)!

q2n
. (33)

The factorial divergence shows that the series cannot have any finite convergence radius.
Dividing each coefficient bn = (−1)n(2n − 1)! in the divergent sum (33) by (2n)! we

obtain a series with a finite radius of convergence. This Borel transformed series in our case
is defined as

B(s) =
∞∑
n=1

(−1)n

2n
s2n , (34)

which is convergent for |s| < 1. It can be summed as

B(s) = −1

2
log(1 + s2) = −1

2
[log(1 + is) + log(1− is)] . (35)

The Borel sum of the series (33) is defined as the integral

v
[B]
0 (q) =

∫
Γ

exp(−t)B
(
t

q

)
dt , (36)

where the contour Γ runs from t = 0 to infinity in the half plane t > 0, along a path for
which Re t → ∞. The path can be specified as a complex function of a real variable τ as
Γ ≡ {t(τ) : 0 ≤ τ <∞}. Choosing two paths going to infinity in different directions, the
result of the integrals will be the same, provided the two contours are not separated by a
branch cut or pole.

Substituting (34) and exchanging the order of the integral and summation (see e.g. [132]),
we obtain

v
[B]
0 (q) ∼

∞∑
n=1

(−1)n

2n

1

q2n

∫ ∞
0

exp(−τ)τ 2ndτ =
∞∑
n=1

(−1)n(2n− 1)!

q2n
, (37)

where ∼ indicates that the divergent series is asymptotic to the function v
[B]
0 (q). It also

follows that if the integral in (36) exists, the function v[B]
0 (q) will be a solution of the inner

differential equation (21).
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The contour of the integral in

v
[B]
0 (q) = −1

2

∫
Γ

exp(−t) log

(
1 +

t2

q2

)
dt (38)

can be taken simply the positive half of the real t line when Re q > 0, but it should move
out to complex t plane when Re q ≤ 0, as we will see shorty. Taking the real path for t, it
can be shown that as |q| → ∞ along fixed −π

2
< arg q < π

2
lines, the integral tends to zero

as −1/q2 (see e.g. Sec. 6.4 of [132]), hence the function has no asymptotic oscillations. Not
surprisingly, for positive real q the integral (38) can be evaluated exactly, obtaining the right
decaying solution v(−)

0 (q) already given in (22). Instead of using that expression, we proceed
by a method that can be applied even when no result for the integral is known.

Fixing q, the integrand in (38) has logarithmic branch points at t = ±iq. The usual
branch cuts associated to the principal branch are along the lines t = ±iqa, for 1 < a <∞.
In Fig. 8 we show how the branch cuts are located on the complex t plane as q is rotated

Re t

Re t Re t

Im tIm t
Im t

q

q q

iq iq

iq

-iq

-iq

-iq

(i) (ii) (iii)

Γ-

Γ-

Γ-

Γ-

Γ+

Γ+

ΓΔ

Figure 8: The red dashed lines show the branch cuts of the integrand for various values
of q. In the left drawing q is positive real, in the middle Re q > 0, Im q < 0, and on the
right q is purely imaginary. The integral along any of blue curves denoted by Γ− gives the
right decaying solution v(−)

0 (q), while integrating along Γ+ yields the left decaying v(+)
0 (q).

The difference can be obtained by integrating around the branch cut from infinity and back
along Γ∆. For purely imaginary q one has to integrate below the cut to obtain a smooth
extension of v(−)

0 (q).

around in a circle. For positive real q the branch cuts are on the imaginary t axis, and because
of the exponential decay of the integrand, any contour for which Re t → ∞ gives the same
integral, v[B]

0 (q) = v
(−)
0 (q). In particular, one can choose any straight line starting from the

center with −π
2
< arg t < π

2
constant. As q moves down into the quadrant Re q > 0, Im q < 0,

the branch cut is also rotated, and then only contours in the region−π
2
< arg t < arg q+π

2
give

the solution v(−)
0 (q). Integrating at the other side of the branch cut, for arg q+ π

2
< arg t < π

2

24

               fodor.gyula_298_24



one would obtain the left decaying solution, v[B]
0 (q) = v

(+)
0 (q) = v

(−)
0 (−q). The difference of

the two solutions can be obtained by integrating along the left hand side of the branch cut
from infinity to the branch point t = iq and back to infinity on the other side. Since the
difference of the values of the logarithm at the two sides of the branch cut is exactly 2iπ,
taking into account the factor −1/2 in (38), we have to integrate −iπ exp(−t) from iq to
infinity, yielding v(+)

0 (q)− v(−)
0 (q) = iπ exp(−iq), in agreement with (23) for Im q < 0.

When q is exactly on the lower half of the imaginary axis, the branch cut has moved to
the real axis for t > iq. For continuity, to obtain v(−)

0 (q), the contour has to go around the
branch point from below, and go to infinity along the rotated branch cut, approaching it
from below. Since the singularity is only logarithmic, shrinking the half circle to the branch
point gives no contribution to the integral. For t > iq the imaginary part of the integrand is
exactly π exp(−t). Integrating one gets

Im v
[B]
0 (q) = −1

2

∫ ∞
iq

exp(−τ)πdτ = −π
2

exp(−iq) for Re q = 0 and Im q < 0 , (39)

in agreement with (25). Note that this imaginary part is the only information we need for
the calculation of the tail-amplitude on the real x axis. Now we have obtained it as a very
simple integral, without actually calculating the full complex valued solution v(−)

0 (q) of the
inner equation on the complex q plane.

Rotating q further, into the quadrant Re q < 0, Im q < 0, if we use the principal branch
cut of the logarithm, the contour of the integration has to remain in the region −π

2
< arg t <

arg q + π
2
in order to give the analytic extension of the right decaying solution, v[B]

0 (q) =

v
(−)
0 (q), as we show it in Fig. 9. Any contour in the larger region arg q + π

2
< arg t < π

2
, in

Re t

Re t Re t

Im tIm t
Im t

q q q

iq
iq

iq

-iq -iq
-iq

(iv) (v) (vi)

Γ-

Γ-

Γ-

Γ+
Γ+

ΓΔ

Γ+

Figure 9: Different ways of choosing the branch cuts when q is in the quadrant Re q < 0,
Im q < 0.

particular along the real t line, would yield the left decaying solution v[B]
0 (q) = v

(+)
0 (q), which
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cannot be matched smoothly with v(−)
0 (q) at the imaginary q axis. Even for this choice of q

it is possible to obtain v(−)
0 (q) by integrating along a path which goes out to infinity along

the real t line, but the contour must go down to the singularity at t = iq and come back to
the real axis on the other side of a rotated version of the branch cut, as it is shown in the
middle drawing of Fig. 9 (see also Fig. 4.6 of [5]). Choosing the branch cut of the logarithm
in a nonstandard direction, or even making it not a straight line, the integral along a contour
Γ∆ coming from infinity and going back on the other side remains invariant. In the right
drawing the integral path is chosen parallelly to the real t axis, similarly to Fig. 2 of [11]. In
case of the figure in [11] the singularity is above the real axis because left decaying solutions
are considered.

2.8 Laplace transform

The integration by parts and Laplace transform method presented in this subsection has
been applied first by Grimshaw and Joshi in [140] for the inner equation of the fifth-order
Korteweg-de Vries problem. Since B(0) = 0, one can apply integration by parts in (36) to
obtain

v
[B]
0 (q) =

1

q

∫
Γ

exp(−t)B′
(
t

q

)
dt =

∫
Γ

exp(−t) −t
q2 + t2

dt . (40)

The integrand has now simple poles at t = ±iq and no branch cuts, allowing the use of
the residue theorem, hence leading to a somewhat simpler analysis than in the previous
subsection. Changing variables by introducing s = t/q, one can see that this integral is just
the Laplace transform of B′(s),

v
[B]
0 (q) =

∫
γ

exp(−qs)B′(s)ds , (41)

where
B′(s) =

−s
1 + s2

, (42)

and the parametrization of the contour γ is related to that of Γ as s(τ) = t(τ)/q. The
expression (42) for B′(s) can be obtained directly, by substituting the Laplace transform
integral (41) into the inner equation (21), without using the Borel summation procedure
from the previous subsection.

The contour γ in (41) can be any path going from the center s = 0 to infinity, along
which Re(qs) → ∞. The result of the integral will depend on how the contour is situated
with respect to the poles at s = ±i. If q is real and positive, the contour naturally runs in the
Re s > 0 half plane (at least asymptotically), and the Laplace transform of the function B′(s)
is given by the right decaying solution v(−)

0 presented in equation (22). If q is moved down
to the quadrant Re q > 0, Im q < 0, the contour should run in the half-plane Re(qs) > 0, as
shown in Fig. 10. If γ is on the right side of the pole at s = i then the integral gives v(−)

0 ,
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Re s
Re s Re s

Im sIm sIm s

q q q

i i i

-i -i

(i) (ii) (iii)

γ-
γ+

Re(qs)>0
Re(qs)>0

γ-
γ+

Re(qs)
>0

-i

γ+

γ-

Figure 10: Rotation of the half plane in which the contour γ should tend to infinity, as q
is moved. The integral along the contours denoted by γ− gives the right decaying solution
v

(−)
0 (q), while integrating along the curves γ+ yields the left decaying v(+)

0 (q).

at the other side one gets v(+)
0 (see also Fig. 1 of [140]). When q is rotated to the quadrant

Re q < 0, Im q < 0, it is not possible anymore to use the trivial straight contour Im s = 0,
Re s ≤ 0 to obtain a finite value for the Laplace transform.

For the calculation of the tail-amplitude of the original function u on the real x axis we
only need to know the imaginary part of v(−)

0 along the lower half of the imaginary q axis.
In this case the most natural contour to obtain v(−)

0 is to use the upper half of the imaginary
s axis. However, the contour should avoid the pole at s = i, going around it from the
right side, as shown in the middle drawing of Fig. 10. Parametrizing the straight sections
as s = iτ , the integrand is purely real along the imaginary s axis, hence only the small
half-circle can give contribution to the imaginary part of the result. Since reflection with
respect to the imaginary s axis corresponds to −1 times complex conjugation, the integral
along the half-circle is exactly the half of the full circle integral, which can be obtained easily
by the residue theorem. The residue at s = i is − exp(−iq)/2, hence the imaginary part of
the integral gives

Im v
[B]
0 (q) = −π

2
exp(−iq) for Re q = 0 and Im q < 0 , (43)

in agreement with (25) and (39). Now we can use the earlier presented reasoning about the
difference of the symmetric minimal tail and asymmetric right decaying solutions to obtain
the leading order expression (28) for the minimal tail αm.

Considering more complicated problems, where the leading order inner equation is non-
linear, one obtains integral equations for B′(s) when looking for the solution in terms of
the Laplace transform (41). However, the coefficients bn of the asymptotic series expansion
solution (32) for v0 can be obtained even in those cases. The calculation of this expansion
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is necessary anyway, since it provides the boundary condition for the inner equation. Since
the Laplace transform of sn is n!q−n−1, it follows that the expansion of the function B′(s) is

B′(s) =
∞∑
n=0

bn+1

(2n+ 1)!
s2n+1 . (44)

This sum is generally convergent, in the same way as the Borel transformed series (34)
defined earlier. For our linear problem, according to (33) we have bn = (−1)n(2n−1)!, hence

B′(s) =
∞∑
n=0

(−1)n+1s2n+1 =
−s

1 + s2
(45)

in agreement with (42). Even in those cases when there is no simple general expression
for bn, it turns out that only the large n behavior of the coefficients is important for the
calculation of the imaginary part of the inner solution along the imaginary q axis, which is
directly related to the minimal tail-amplitude of the original problem.
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3 Stationary solutions of the fifth-order KdV equation

The Korteweg-de Vries (KdV) equation modified by a fifth derivative term (fKdV equation)
can be written as

ε2∂
5u

∂y5
+
∂3u

∂y3
+ 6u

∂u

∂y
+
∂u

∂t
= 0 , (46)

where u is a function of the time t and spatial coordinate y, and ε is a small non-negative
parameter. It has been also named as Kawahara equation [141, 142], originally obtained
by studying magnetohydrodynamical waves in plasma physics. The fKdV equation in a
hydrodynamical context has been derived by Hunter and Scheurle [1], considering small
amplitude, long waves in shallow water. Adding the fifth derivative term, the well known
solitary wave solutions of the KdV equation are deformed into almost localized objects that
are losing continuously some of their energy by radiating small amplitude waves in the
direction of propagation [2]. It has been proven that the spatially localized solitary traveling
wave solutions of the KdV equation cease to exist when a fifth-order dispersion term is added
[143, 144].

We consider stationary solutions traveling to the right with speed c > 0, so that u is
time independent when x = y − ct is used as a comoving spatial coordinate. The obtained
ordinary differential equation can be integrated once, yielding the stationary fKdV equation

ε2 d4u

dx4
+

d2u

dx2
+ 3u2 − cu = 0 . (47)

For ε = 0 this reduces to the familiar stationary KdV equation, which for c > 0 has the

solitary wave (or soliton) solutions u =
c

2
sech2

(√
c

2
x

)
. Since the amplitude is always

positive, there are only elevation waves in the ε = 0 case. The KdV equation can be
obtained from the fluid dynamical equations when considering surface water waves for shallow
depth and long wavelength. Long wavelength sinusoidal waves move to the right with speed
cs =

√
hg, where h is the average water depth and g is the gravity of Earth. The coordinate

system used in (46) is already moving to the right with this speed. Solitary waves move with
even higher physical speed, cph ∼ cs + c, hence they are supercritical.

The KdV equation can also describe shallow water waves when there is a nonzero surface
tension σ. In that case the equation can be written as

(
1
3
−B

)
d2u
dx2

+ 3u2 − cu = 0 where
B =

σ

ρgh2
is the Bond number and ρ is the fluid density. The signature of the second

derivative term changes when B = 1
3
. For B > 1

3
there are depression solitary waves with

subcritical speed and no oscillating tail. For B ≈ 1
3
the influence of the second derivative term

becomes small, hence a previously neglected fourth derivative term appears in the equation.
Assuming that B is close to but below 1

3
one obtains the stationary fKdV equation (47). The

main problem we would like to address in this section is how the soliton solutions change
when there is a fourth derivative term with a small factor ε > 0.

29

               fodor.gyula_298_24



Equation (47) remains invariant under the rescalings

u = ξ2ū , x =
1

ξ
x̄ , c = ξ2c̄ , ε =

1

ξ
ε̄ , (48)

for any ξ > 0 constant. Note that ε2c remains invariant. It is possible to use this freedom to
scale either of the constants ε or c to some given positive value. For example, it is sufficient
to perform numerical simulations only for c = 1.

Outside the core in the tail region u is small, so the quadratic term can be neglected in
(47). Since we expect asymptotic oscillations with spatial frequency increasing when ε→ 0,
we search for the tail in the form

u = α sin

(
kx

ε
− δ
)
, (49)

where k
ε
is the wave number, and the amplitude α and phase δ may be different on the two

sides of the core. From the linearized equation follows that k4− k2− cε2 = 0. This equation
has two real and two imaginary roots. In the following we take k as the positive real root,

k =

√
1

2

(
1 +
√

1 + 4cε2
)

= 1 +
c

2
ε2 − 5c2

8
ε4 + . . . . (50)

It can be seen that for small ε the wavelength is proportional to ε.
Instead of calculating the imaginary roots, in order to agree with the notations in

[140], we directly search for the exponentially decaying or blowup solutions in the form
u = β exp(±2γx) with γ > 0. From the linearized equation we get

c = 4γ2(1 + 4γ2ε2) . (51)

The constant γ expressed in terms of ε and c can be written as

γ =

√
1

8ε2

(
−1 +

√
1 + 4cε2

)
=

√
c

2

(
1− c

2
ε2 +

7c2

8
ε8 − . . .

)
. (52)

The relation between k and γ is
k2 = 1 + 4γ2ε2 . (53)

Comparing with (51) also follows that c = 4γ2k2.
A conserved quantity can be defined as

F = −1

2
cu2 + 2u3 + u

d2u

dx2
− 1

2

(
du

dx

)2

+ ε2

[
u

d4u

dx4
− du

dx

d3u

dx3
+

1

2

(
d2u

dx2

)2
]
, (54)

which can be interpreted as an energy flux [2, 140]. Using (47) it is easy to check that
dF
dx

= 0, so F is constant. Substituting the form (49) of the tail, to leading order the energy
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flux turns out to be F = α2/(2ε2). It follows that the amplitude of the tail at the two sides
of the core must necessarily agree, at least for small amplitudes. Numerical simulations also
support the conjecture that solutions which have a single large core and small tails in both
the positive and the negative directions are necessarily reflection symmetric, u(−x) = u(x).
An important consequence is that there is no solution for which there is a small tail in one
direction and exponential decay without any tail in the other direction. We have seen such
solutions in Figs. 1 and 2 in case of the linear model problem in Section 2. Our numerical
simulations for the fKdV problem show that for sufficiently small ε there is a solution u−

which decays exponentially to zero for x > 0, has a core region similar to the KdV solitary
wave, but continuing further to the negative direction the solution blows up at some finite
x < 0, before a standing wave tail could appear. This solution is unique up to translations
in x. We show a few such solutions in Fig. 11.

um , ε = 2-1.5

u- , ε = 2-1.5

u- , ε = 2-2

u- , ε = 2-2.5

-20 -10 10 20
x

-0.4

-0.2

0.2

0.4

0.6

u

c = 1

Figure 11: For c = 1, the yellow, green and red curves show the asymmetric right decaying
solutions u− for three different values of ε. These solutions run into a singularity at some
value of x < 0, which moves farther from the center as ε decreases. The blue curve shows
the minimal tail symmetric solution um for the largest ε value. Since the tail-amplitude
decreases exponentially with decreasing ε, the symmetric solutions are not plotted for the
smaller ε values. The green and yellow curves are below the red one for x > 2.

It appears to be a plausible that all solutions that can be defined for all −∞ < x < ∞
are symmetric, u(−x) = u(x). It has been shown[145, 146] that for sufficiently small fixed
ε there exists a one-parameter family of symmetric solutions, parametrized by the phase
δ of the small-amplitude tail. Physically the most important is the solution um that has
the minimal tail-amplitude α ≡ αm, belonging to the phase δ = δm. This αm agrees with
the amplitude of the minimal outgoing radiating tail in the dynamical time dependent case,
hence αm is a crucial quantity that can be used to determine the energy loss rate of the
system. The amplitude αm always larger than zero when ε > 0.

Our numerical solutions have been obtained by a high precision numerical code that is
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based on spectral methods [147, 148] and uses arbitrary digits precision arithmetics [149,
150, 151]. The details of the method can be found in our papers [6, 7]. The present review is
focused on the analytic and perturbational methods that can be used to describe solutions
with small amplitude tails. The main difficulty of the problem is the exponentially fast
decrease of the tail-amplitude when ε becomes smaller. In Fig. 12 we show logarithmic plots
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Figure 12: Logarithmic plot of the absolute value of the minimal tail symmetric solution um

for decreasing values of ε. The downward spikes correspond to zero crossings. They would
go all the way down for higher plotting resolution.

of |um| for various values of ε. The core region, with an exponential decay, remains similar
for all cases, but the tail oscillations start at larger x values for smaller ε. In Table 2 we list

ε αm δm
d3

dx3
u−(0)

2−1 4.8 · 10−2 1.2 7.10760589389 · 10−1

2−2 1.53 · 10−3 0.749 8.11499816225 · 10−2

2−3 3.2525301 · 10−8 0.37253582 1.62487857959 · 10−5

2−4 1.94383743304 · 10−18 0.187147747984 7.92099610003 · 10−15

2−5 1.27243717968 · 10−39 0.0937046561766 4.16436578363 · 10−35

2−6 1.17039547447 · 10−82 0.0468692914439 3.06718215011 · 10−77

2−7 2.29646599329 · 10−169 0.0234367851656 4.81567051778 · 10−163

2−8 2.12961253593 · 10−343 0.0117186606062 3.57282878973 · 10−336

2−9 4.49453680829 · 10−692 0.00585936382454 6.03243642172 · 10−684

Table 2: Numerically calculated values of the minimal tail-amplitude αm and the correspond-
ing phase δm for the case c = 1. The last column gives the central third derivative of the
asymmetric solution u−.

high precision numerical results for the minimal tail-amplitude and phase. The asymmetry
of the solution u− can be most naturally described by the third derivative of the function at
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the point where it is maximal, i.e. where its first derivative vanishes. This third derivative
is listed in the last column of Table 2. The extremely small numbers show the necessity
of exceptionally high precision spectral numerical methods. From the exponential decrease
also follows that standard perturbational methods cannot be used for the determination of
the tail-amplitude.

3.1 Outer expansion

Assuming that ε is small, we search for solutions of the stationary fKdV equation (47) in a
power series expansion form

u =
∞∑
n=0

unε
2n , (55)

where un are ε independent functions of x. Since the fKdV equation also contains a second
parameter, c, the most obvious assumption would be to assume that c is independent of
ε. However, it turns out that the expansion procedure becomes technically significantly
simpler if one uses a certain ε dependence in c, namely the form given by (51), with the
assumption that γ is ε independent. With this choice all coefficient functions un turn out to
be polynomials in sech2(γx). Otherwise, there would also appear terms containing x sinh(γx)

type factors. This would not only mean much longer expressions for un, but also slower decay
for large |x|. The assumption that γ is constant actually means that the decay rate of the
core is ε independent. We are not losing any solutions of (47) by this choice, since we have
still two parameters (ε, γ) instead of (ε, c).

Substituting the expansion (55) into the stationary fKdV equation, the vanishing of the
ε independent part gives the KdV equation

d2u0

dx2
+ 3u2

0 − 4γ2u0 = 0 , (56)

which has the well-known solitary wave solution u0 = 2γ2 sech2(γx). For a given γ this is
the unique localized solution when symmetry with respect to x = 0 is assumed. For n > 0,
the vanishing of the coefficient of ε2n yields

d4un−1

dx4
+

d2un
dx2

+ 3
n∑
j=0

ujun−j − 4γ2un − 16γ4un−1 = 0 . (57)

Assuming that the functions are known up to order n − 1, this equation can be considered
as a linear inhomogeneous differential equation for determining un,

d2un
dx2

+ 6u0un − 4γ2un = Rn , (58)

where

Rn = −d4un−1

dx4
− 3

n−1∑
j=1

ujun−j + 16γ4un−1 . (59)
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The homogeneous problem with Rn = 0 has two independent solutions. The first solution
is du0

dx
, which is antisymmetric. The other solution blows up exponentially at infinity. This

shows that the inhomogeneous equation has a unique symmetric and localized solution.
Proceeding order by order in n, it turns out that both Rn and un can be written as finite

sums of powers of sech2(γx),

Rn = γ2n+4

n+2∑
j=1

Rn,j sech2j(γx) , (60)

un = γ2n+2

n+1∑
j=1

un,j sech2j(γx) . (61)

The powers of γ are included in order to make Rn,j and un,j rational numbers without
γ factors. At leading order we have already seen that u0,1 = 2. Using identities for the
derivatives of sechjx, from (59) follows that

Rn,j =− 16j4un−1,j + 8(j − 1)(2j − 1)(2j2 − 2j + 1)un−1,j−1

− (2j − 4)(2j − 3)(2j − 2)(2j − 1)un−1,j−2 (62)

− 3
n−1∑
l=1

l+1∑
m=1

ul,mun−l,j−m + 16un−1,j .

Here we substitute zero for every un,j when j < 1 or j > n + 1. If the coefficients un,j are
known up to order n − 1 in the first index, then (62) can be used to calculate the source
term Rn in (58). It turns out that Rn,1 = 0 for all n, which is necessary for the consistency
of the method.

Substituting the expansions of Rn and un into (58), it follows that for 2 ≤ j ≤ n+ 1

4(j2 − 1)un,j + [12− (2j − 1)(2j − 2)]un,j−1 = Rn,j . (63)

The equation for j = n+ 2 is

[12− (2n+ 3)(2n+ 2)]un,n+1 = Rn,n+2 , (64)

while for j = 1 we get Rn,1 = 0. If all Rn,j coefficients are already known at order n, then
un,n+1 can be calculated from (64). After this, all un,j−1 can be obtained one by one in
decreasing order in j using (63). This algorithm can be implemented using any algebraic
manipulation software. A Mathematica notebook (wkb.nb) is attached as a Supplemental
Material to our paper [7], which contains an implementation that can be used to calculate
un up to order n = 50 in a few minutes. Results up to n = 4 are listed in Table 3.

All coefficient functions un in the expansion (55) are decaying exponentially when x →
±∞, hence this approximation cannot describe any oscillating tails. This is consistent
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n ↓ j → 1 2 3 4 5
0 2 - - - -
1 −20 30 - - -
2 60 −930 930 - -
3 −2472 21036 −66216 49662 -

4 −240780

7
−3177030

7

23319570

7
−48197250

7

28918350

7

Table 3: Values of un,j up to order n = 4.

with the observation that the tail-amplitude decreases faster than any power of ε, so the
appearance of the tail is a beyond all orders small effect. Since the expansion cannot converge
to the true solution with a tail, it is not surprising that the sum in (55) is not convergent.
However, it is a series which is asymptotic to some solution u. This solution can be either
u− or um, since their difference is exponentially small, assuming that we are not considering
the blow-up region of u− on the left side of the core.

The error of the Nth order ε expansion approximation with respect to the precise nu-
merically calculated minimal tail solution can be defined as

∆uN = um −
N∑
n=0

unε
2n . (65)

In Fig. 13 the functions ∆uN are plotted for three values of N for which the error is the

-4x10
-8

-3x10
-8

-2x10
-8

-1x10
-8

 0

 1x10
-8

 2x10
-8

 3x10
-8

 4x10
-8

 0  0.5  1  1.5  2  2.5  3  3.5  4

∆
u

N

x

∆u10 ∆u11 ∆u12

Figure 13: Difference of the Nth order approximation of the outer expansion (55) from the
minimal tail symmetric solution um for ε = 2−3 and c = 1. The black horizontal lines show
the tail-amplitude αm ≈ 3.25 · 10−8.

smallest for the case ε = 2−3 and c = 1. For this ε value the optimal truncation is at Nopt =

11, corresponding to the red curve. Since all coefficient functions un decay exponentially,
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outside the core region the difference should agree with the oscillating tail. The values of
Nopt for various ε parameters are listed in Table 4. For small ε values the optimal truncation

ε 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9

Nopt 1 4 11 23 49 99 199 400 802

Table 4: Order of optimal truncation for decreasing ε values when c = 1.

behaves as Nopt ∼ 1.56/(ε
√
c).

The spectral numerical calculation of the solutions u− or um can be made significantly
more efficient by calculating first analytically the optimal approximation uNopt

, then numer-
ically solving the nonlinear differential equation for the difference ∆uNopt

= u − uNopt
(see

[7]). Then functions remain as small as the tail even in the central region. However, high
frequency oscillations remain, so it is still necessary to use more than 16 digits arithmetics.

3.2 Linearized solution

For given ε and c the minimal tail symmetric solution um is unique, and the right decaying
asymmetric solution u− is also unique if we assume that the maximum is at x = 0. In Fig. 14
we plot the difference of these two solutions, ∆u = um−u−, for a certain choice of parameters.

no shift

shifted

2 4 6 8 10

x

-0.006

-0.004

-0.002

0.002

Δu

ε = 2
-2

Figure 14: Plot of the difference ∆u = um − u− for ε = 2−2 and c = 1.

The difference is already much smaller than the core amplitude, but if u− is shifted in x to
the left by 0.022, the difference becomes quite similar to the sine function, with amplitude
agreeing with the tail-amplitude of um. In the following we show that ∆u can be calculated
very precisely using the WKB (Wentzel–Kramers–Brillouin) method. This step was trivial
for the model problem in Sec. 2, since the system was linear, and the homogeneous solutions
have been simply the sine and cosine functions.
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We linearize the stationary fKdV equation (47) around some solution u by substituting
u→ u+ w and dropping the quadratic term,

ε2 d4w

dx4
+

d2w

dx2
+ 6uw − cw = 0 . (66)

The only property of u we use is that it can be approximated well by the asymptotic expan-
sion (55). For example, it may be the solution um or u−. We assume that w is exponentially
small in terms of ε, hence the linear approximation is well justified, and exponentially small
contributions can be neglected in the background solution u. Here we also substitute c from
(51), and assume that γ is independent of ε. One of the solutions of equation (66) is w = du

dx
,

which corresponds to a small shift of the original solution.

Since in the asymptotic region there are high frequency oscillations, we use the WKB
method to search for other bounded solutions of (66). We first substitute w = βc expA,
where A is a function of x, and βc is a complex constant. Then we expand A in powers of ε,
starting with an ε−1 term,

A =
∞∑

n=−1

Anε
n , (67)

and solve order by order in ε. Since An appear in the equations only in differentiated form,
there is additive complex scalar freedom in all An, which can be absorbed into βc. Proceeding
order by order in ε one can solve the resulting equations for An. Each odd indexed function
contains a term proportional to x, which can be absorbed into the ε−1 term by defining the
odd indexed Ãn functions as

A2n−1 = iÃ2n−1 − ixγ2n (−1)n+1(2n)!

(2n− 1)(n!)2
. (68)

The general solution of the linearized problem that takes real values for real x can be written
as

w = β exp

 ∞∑
n=2
even

Anε
n

 sin

kx
ε
− δw −

∞∑
n=1
odd

Ãnε
n

 . (69)

Here β and δw are real constants with arbitrary ε dependence, and k is given by (53). Note
that the leading order behavior for very small ε is simply w = β sin

(
x
ε
− δw

)
, just as if we

would linearize around the trivial u = 0 solution.

All coefficient functions in (69) are real. At leading orders we obtain A−1 = −ix and
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A0 = 0, which shows that Ã−1 = 0. The next few functions are

Ã1 = 6γ tanh(γx) , (70)

A2 = 15γ2sech2(γx) , (71)

Ã3 = 111γ3sech2(γx) tanh(γx) , (72)

A4 =
525

2
γ4sech2(γx)

[
3sech2(γx)− 2

]
, (73)

Ã5 =
3

5
γ5
[
12267sech4(γx)− 4089sech2(γx) + 632

]
tanh(γx) , (74)

A6 =
3

2
γ6sech2(γx)

[
49317sech4(γx)− 49317sech2(γx) + 8050

]
. (75)

A Mathematica notebook (wkb.nb) is attached as a Supplemental Material to our paper [7],
which can be used to calculate An and Ãn up to order n ≈ 100. The even indexed functions
A2n are symmetric and tend to zero as x → ±∞. The odd indexed functions Ã2n−1 are
antisymmetric with respect to x = 0, and at infinity they tend to constants,

lim
x→+∞

Ã2n−1 = γ2n−1δ2n−1 . (76)

The first few values of δ2n−1 are:

n 1 3 5 7 9 11 13 15

δn 6 0 1896
5

67140
7

2662320
7

1301363652
77

864462595116
1001

49936729868796
1001

The constants δ2n−1 are important, since they determine the asymptotic phase shift of the
minimal tail configuration,

δm =
∞∑
n=1
odd

δnγ
nεn . (77)

The sums in (69) and (77) are not convergent, they are asymptotic series, with the same
order of optimal truncation Nopt as in the original core expansion (55).

When δw = π
2
the linearized solution (69) is symmetric, w(−x) = w(x), hence the tail

part corresponding to the phase δm + π
2
can be canceled, decreasing its overall amplitude. It

follows that the minimal tail-amplitude symmetric solution um necessarily has the tail form
αm sin

(
kx
ε
− δm

)
at large distances. The amplitude αm cannot be determined by the WKB

method, it will be considered in the next subsections. However, the phase δm can be very
precisely calculated from (77), and the result agrees extremely well with the high precision
numerical calculations (see Fig. 3 of [6]). Symmetric solutions with arbitrary phase δ have
generally higher tail-amplitude, given by the simple relation α = αm/ cos(δ − δm).

If we take the minimal tail symmetric solution um and subtract the linearized solution w
in (69) with δm = 0 and β = αm, then the tail on the right hand side disappears. Hence we
obtain a very good approximation for a slightly shifted version of the asymmetric solution,
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um(x) − w(x) = u−(x − x0). Defining the shifted version of the asymmetric solution by
û−(x) = u−(x− x0), dropping the argument we can write

um − w = û− . (78)

Since the shift x0 is exponentially small in terms of ε, we can approximate the shifted function
as û− = u−−x0

d
dx
u−. Since the first derivative of u− is multiplied by a small number, u− in

that term can be replaced by an appropriately truncated version of the core expansion (55).
Taking derivatives of the resulting equation at x = 0 it is possible to obtain a relation for
the tail-amplitude αm in terms of the central third derivative of u−,

αm =
d3

dx3
u−(0) ε2

(
1 + 5γ2ε2 + 311γ4ε4 + 13407γ6ε6 +

1643903

2
γ8ε8 + . . .

)
. (79)

This relation is very useful, since it is considerably easier to calculate the asymmetric solution
u− than the minimal tail solution um, both numerically and analytically. Numerically, for
u− there is no need for the minimization of the tail, and since there are no infinitely many
oscillations in the tail region, it is possible to apply compactification to transform the infinite
region 0 ≤ x < ∞ into a finite interval. Analytically, a convergent expansion method
to construct u− has been published by Hammersley and Mazzarino [152], which has been
discussed and somewhat improved in our paper [7]. It is natural to determine first the central
third derivative d3

dx3
u−(0) of the asymmetric solution and then use a higher order version

of (79) for the calculation of the tail-amplitude αm of the symmetric solution. However,
we expect that the Hammersley-Mazzarino method will not be generalizable for the more
complicated scalar field systems that we discuss in the next sections. Hence we continue with
the more general and widely applicable complex extension procedure in the next subsections.

The small shift can also be expressed in terms of an asymptotic series expression,

x0 = − αm

4γ4ε

[
1− 9(γε)2 − 113(γε)4 − 4987(γε)6 − 663031

2
(γε)8 −O

(
ε10
)]

. (80)

3.3 Complex extension

Analogously to our procedures in Subsections 2.2 - 2.6 for the linear model problem, we
extend the stationary fKdV equation (47), the solutions u, and the coefficient functions un in
the outer expansion (55) to the complex x plane. Since all un are polynomials in sech2(γx),
we investigate the solutions close to the first singularity above the real axis, defining the
independent variable q by

x =
iπ

2γ
+ εq . (81)

To make the ε→ 0 limit regular we also define a rescaled function,

v = ε2u . (82)
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Substituting (81) into the asymptotic expansion (55) and (61), expanding in powers of 1/q,
and then also in powers of ε, we obtain that

v =
∞∑
n=0

vnγ
2nε2n , (83)

where the expansions of the first four functions are

v0 = − 2

q2
+

30

q4
− 930

q6
+

49662

q8
− 28918350

7q10
+

3495722130

7q12
+ . . . , (84)

v1 =
2

3
, (85)

v2 = −2q2

15
+

2

3
+

64

q2
+

5856

5q4
− 827520

7q6
+

11936160

q8
+ . . . , (86)

v3 =
4q4

189
− 40q2

63
− 1220

63
+

7424

7q2
+

1761280

49q4
− 170074880

49q6
+ . . . . (87)

Since there are only even powers of q with real coefficients, any truncated versions of the
above series correspond to the complex extension of symmetric functions. The expansion
of each vn starts with a q2n−2 term, even at higher orders not shown here. Apart from
the exactly known constant v1 all other vn functions are given here in terms of asymptotic
expansions in 1/q. We will use these expansions as outer boundary conditions for the inner
equations in a matching domain where both ε|q| and 1/|q| are small, hence the inner and
outer expansions are both valid.

The linear correction w given in (69) can be also extended to the complex x plane and
considered close to the singularity in terms of the independent variable q by substituting (81).
Expressing the sine function in terms of exponentials, we can neglect the term proportional
to exp[−kπ/(2γε)]. The result becomes simpler if we use (68) to restore the non-tilde version
of An,

w =
iβ

2
exp

(
kπ

2γε

)
exp (−iq + iδw) exp

(
−(k − 1)π

2γε
+
∞∑
n=1

Anε
n

)
. (88)

We keep k in the first exponential, but substitute k =
√

1 + 4γ2ε2 from (53) into the last
term. Then we proceed by expanding in powers of 1/q and ε. The result up to order ε6 is

w =
iβ

2
exp

(
kπ

2γε

)
exp (−iq + iδw)

[(
1 + 5γ2ε2

)
Q0(q) + γ4ε4Q2(q) + γ6ε6Q3(q) . . .

]
, (89)
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where

Q0(q) = 1 +
6i

q
− 33

q2
− 237i

q3
+

1890

q4
+

17028i

q5
− 167733

q6
+ . . . , (90)

Q2(q) = −2iq3

15
− q2

5
+

39iq

5
− 25 +

234i

q
− 14343

5q2
− 181119i

5q3
+ . . . , (91)

Q3(q) =
4iq5

315
+

26q4

315
− 782iq3

315
− 29q2

5
+

4267iq

21
− 41749

105
+

327162i

35q
− 25898121

245q2
+ . . . .

(92)

The q dependence of w in (89) is through terms proportional to qn exp(−iq) with various
integer n exponents. However, for the calculation of the tail-amplitude we will only need the
purely exponential terms terms with n = 0, i.e. only those proportional to exp(−iq). We
also only need the antisymmetric solutions with δw = 0. The first few such terms are

w
0≈ iβ

2
exp

(
kπ

2γε

)
exp (−iq)

(
1 + 5γ2ε2 − 25γ4ε4 − 41749

105
γ6ε6 − 81737609

7350
γ8ε8 − . . .

)
,

(93)
where

0≈ indicates that we only keep q0 exp(−iq) terms.
Equation (78), relating um, û− and w, will remain valid also on the complex plane. The

singularities of the shifted asymmetric solution û− will be at the same places as that of um.
Actually, this fixes the freedom in the shift of the asymmetric solution. The relation (78) is
valid when δm = 0 and β = αm in (69). In this case w is antisymmetric on the real x line,
implying that it is purely imaginary on the imaginary q axis. On the other hand, um, which
corresponds to a symmetric function, is purely real for Re q = 0. Hence

Im û− = − Imw for Re q = 0 , Im q < 0 . (94)

This equation is extremely useful for the determination of the tail-amplitude. The consid-
eration of the inner equations in the next subsections will provide the imaginary part of û−
along the imaginary axis, and then (94) can be used to obtain αm = β. Since (94) is valid
to any orders in ε and 1/q, we can obtain very precise high order results.

3.4 Inner equations

The inner equation can be obtained from the stationary fKdV equation (47) by using the
rescaled function v = ε2u and the complex coordinate q,

d4v

dq4
+

d2v

dq2
+ 3v2 − ε2c v = 0 , (95)

We substitute c = 4γ2 + 16γ4ε2 and keep γ fixed, as in case of the outer expansion. We
expand v in powers of ε according to (83). For the coefficient functions vj we obtain the
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2j-th order inner equations

d4vj
dq4

+
d2vj
dq2

+ 3

j∑
l=0

vlvj−l − 4vj−1 − 16vj−2 = 0 . (96)

This general form is valid for all j, including j = 0 and 1, if we substitute vn = 0 when n < 0

in the last two terms.
Motivated by the results (84)-(87) that come from the outer expansion, we expand each

vj in even powers of 1/q, starting with a q2j−2 term,

vj =
∞∑

n=1−j
b(j)
n q−2n . (97)

Substituting into (96), for the coefficients b(j)
n we obtain the equations

(2n+ 1)(2n)(2n− 1)(2n− 2)b
(j)
n−1 + (2n+ 1)(2n)b(j)

n

+ 3

j∑
l=0

n+j−l∑
m=1−l

b(l)
m b

(j−l)
n−m+1 − 4b

(j−1)
n+1 − 16b

(j−2)
n+1 = 0 . (98)

These relations are valid for all j ≥ 0 and n ≥ 1− j if we substitute zero for b(j)
n if j < 0 or

n < 1−j. Eq. (98) can be used to calculate b(j)
n in increasing orders of j and n up to very high

orders, using some algebraic manipulation software. However, the solution is not unique,
some coefficients must be determined from the matching to the outer expansion solution. For
the lowest order we have to choose the nonzero solution b(0)

1 = −2. For j ≥ 3 no condition
follows for b(j)

−2, hence we have to obtain those coefficients from the outer expansion. The
first few of those values are

j 3 4 5 6 7

b
(j)
−2

4
189

2
9

3800
2079

524312
15925

13451096
14553

All other coefficients become determined by equation (98), in complete agreement with the
results in (84)-(87).

At ε2 order we obtain b(1)
0 = 2

3
, and all other b(1)

n components turn out to be zero, yielding
v1 = 2

3
. Exceptionally, this is an exact solution of the first-order inner equation, satisfying

the appropriate boundary conditions. All other vj, including the leading order v0, are known
only as non convergent asymptotic expansions in terms of 1/q.

3.5 Laplace transform

Our aim is to determine the imaginary part of the asymmetric solution û− along the imag-
inary axis, close to the singularity. The inner solution corresponding to û− is v̂(−) = ε2û−,
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expressed in terms of the variable q. At order ε2j of the inner expansion this function is
represented by the function v̂(−)

j , according to (83). We intend to apply the Laplace trans-
form method that we have already discussed for the linear model problem in Subsection
2.8. However, for n ≥ 0 integer we cannot obtain qn as the Laplace transform of a smooth
function. Hence we have to separate those terms, defining

ṽj = vj −
0∑

n=1−j
b(j)
n q−2n =

∞∑
n=1

b(j)
n q−2n . (99)

According to (85)-(87), for the first three functions this is equivalent to

v1 =
2

3
+ ṽ1 , v2 = − 2

15
q2 +

2

3
+ ṽ2 , v3 =

4

189
q4 − 40

63
q2 − 1220

63
+ ṽ3 . (100)

It follows that ṽ1 = 0, but we keep it for the time being to make the formalism technically
simpler.

We can now look for the solution ṽj of the order 2j inner equation as the Laplace transform
of a function that we denote by V ′j (s),

ṽj =

∫
γ

Ij(s)ds , Ij(s) = exp(−qs)V ′j (s) , (101)

where the contour γ can be any path from s = 0 to infinity, along which Re(qs)→∞. Using
the identity for the Laplace transform of powers of s it follows from (99) that V ′j (s) can be
expanded as

V ′j (s) =
∞∑
n=0

a(j)
n s2n+1 , (102)

where

a(j)
n =

b
(j)
n+1

(2n+ 1)!
, b(j)

n = (2n− 1)! a
(j)
n−1 . (103)

It can be shown that the series (102) is convergent for |s| < 1 and the functions V ′j (s) can
be analytically extended for larger |s|. The functions V ′j (s) satisfy integral equations that
can be obtained from (96). The zeroth-order equation has been presented in Eq. (31) of
[140]. All singularities are located on the imaginary axis at s = ±ni, where n is any positive
integer. There is no singularity at s = 0.

Although the functions V ′j (s) are unique, the result of the Laplace transform integral
(101) depends on how the contour γ is located with respect to the singularities of V ′j (s).
The change from one path to another can be calculated easily using the residue theorem.
One only need to consider the pole at s = i, since the contribution from the others are
exponentially suppressed.

To obtain the residue at order j we only need to study the behavior of the function
V ′j (s) close to the singularity at s = 1, which is determined by the large n behavior of the
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coefficients a(j)
n . Calculating coefficients up to large n, at leading ε order it is apparent that

a
(0)
n ≈ K(−1)n, where K ≈ 19.97. The value of the constant K is very important, because

it can be used to determine the leading order radiation amplitude. To allow us to get more
precise value for K, and to reach higher order results, we look for a more precise version of
the large n behavior of the coefficients in the form of an 1/n expansion. To compensate the
alternating signs, we define a non-alternating version of the coefficients by

a(j)
n = (−1)n ã(j)

n . (104)

Then the large n behavior for j = 0 is

ã(0)
n = KG0(n) , G0(n) = 1 +

∞∑
l=1

g̃
(0)
l

nl
. (105)

At ε2 order all a(1)
n are zero. At higher orders the leading order behaviors are a

(j)
n ∼

(−1)nn2j−1. For j ≥ 2 we look for the large n behavior of the coefficients in the form

ã(j)
n =

∞∑
l=1−2j

g̃
(j)
l

nl
. (106)

The constants g̃(j)
l should be determined by substituting these expansions into (98). We

assume that n is large and fixed. If we are interested in a finite number of g̃(j)
l constants

we do not have to take into account all terms of the summation in (98). The middle terms
in the inner sum for m turn out to be higher order in 1/n than those close to the limits
m = 1− l and m = n+ j− l. Taking mm as a positive integer, if we use only the first mm + l

and the last mm + l terms in the inner sum, we can still get the first 2mm coefficients g̃(j)
m

correctly. When the lower index in b(j)
n is large, in (98) we use (103) to express the constants

in terms of a(j)
n . For small lower index we keep b

(j)
n , especially since a(j)

n is not defined for
negative indices. The obtained equation is

ã
(j)
n−2 − ã(j)

n−1 − 4̃a(j−1)
n − 16ã(j−2)

n

+
3

(2n+ 1)!

j∑
l=0

mm∑
m=1−l

(−1)m(2n− 2m+ 1)! b(l)
m ã

(j−l)
n−m (107)

+
3

(2n+ 1)!

j∑
l=0

mm∑
m=1−j+l

(−1)m(2n− 2m+ 1)! b(j−l)
m ã

(l)
n−m = 0 .

If the constants b(l)
m are already calculated up to order mm then (107) can be considered

as a system of linear equations for ã(j)
n , which is valid for large n. Substituting the expan-

sions (105) and (106) and expanding in 1/n, one can solve the resulting equations for the
coefficients g̃(j)

l . At leading ε order, when j = 0, we get

G0(n) = 1− 3

n
+

39

4n2
− 69

2n3
+

1929

16n4
− 3381

8n5
+

46041

32n6
− 1089483

224n7
+ . . . . (108)
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At higher ε orders we get inhomogeneous linear equations, where at each order l the lower
order solutions with smaller l also appear with appropriate factors. The general solution is

ã(j)
n = K

j∑
l=0

KlGj−l(n) , (109)

where Kl are constants and Gj(n) are 1/n expansions starting with n2j−1 terms. For j ≥ 2

Gj(n) =
∞∑

l=1−2j

g
(j)
l

nl
. (110)

In (109) the constants K0 = 1, K1 = 0 and the trivial expansion G1(n) = 0 has been
introduced only to make the expression look simpler. The constants g(j)

l can be calculated
from (107) up to relatively high orders using an algebraic manipulation software. Here we
list the next two orders:

G2(n) =
16

15
n3 +

28

5
n2 +

368

15
n− 132

n
+

4122

5n2
− 50833

10n3
+

3144915

112n4
+ . . . , (111)

G3(n) =
128

315
n5 +

1696

315
n4 +

12448

315
n3 +

43304

315
n2 +

18296

35
n− 25530

7n

+
11490537

490n2
− 20719647

140n3
+

3342753723

3920n4
+ . . . . (112)

For all j ≥ 2 we chose the unique particular solution Gj(n) in which there is no n0 term.
The next step is to calculate the constants K and Kj. For this we need to calculate

the constants b(j)
n and a(j)

n up to quite large n using (98) and (103). Instead of calculating
exact rational numbers it is much more efficient to use floating point numbers with hundreds
or even thousands of digits precision. A natural way to get K is to use (105) to calculate
ã

(0)
n /G0(n) using an appropriately high order truncation of the 1/n expansion (108) of G0(n).

An equivalent, but technically simpler and more flexible method is to use Richardson ex-
trapolation [132]. Richardson extrapolation uses m + 1 numbers starting from ã

(0)
n up to

ã
(0)
n+m, approximating the large n limit by

Rn;m =
m∑
l=0

ã
(0)
n+l

(−1)m+l(n+ l)m

l! (m− l)! . (113)

This method provides the same precision as the earlier one with m terms used in the ex-
pansion (108) of G0(n), without the need for explicitly calculating the expansion constants
g̃

(0)
l . For example, starting with lower index n = 1000, taking m = 182 terms, and using 500

digits arithmetics Rn;m gives a value for K in a few seconds, which turns out to be correct
to 237 digits precision. The result up to 40 digits is

K = −19.96894735876096051827097528746184634254 . (114)
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High precision for K is necessary if we intend to calculate the constants Kj for larger j, in
order to obtain higher order results for the tail-amplitude.

As it follows from the general expression (109), at ε4 order the asymptotic behavior of the
constants is ã(2)

n = K(G2(n) + K2G0(n)). Separating the positive powered terms in G2(n),
the constant K2 can be obtained by taking the limit

K2 = lim
n→∞

(
ã

(2)
n

K
− 16

15
n3 − 28

5
n2 − 368

15
n

)
, (115)

which can be calculated to high precision using Richardson extrapolation. At higher orders
the constants can be obtained similarly from

Kj = lim
n→∞

(
ã

(j)
n

K
−

j−2∑
l=0

Kl

2j−2l−1∑
m=1

g
(j−l)
−m nm

)
, (116)

where we have to take K0 = 1 and K1 = 0. The results up to ε12 order and 25 digits are

K2 ≈ −36.54406819358374429346868 , (117)

K3 ≈ −359.9341804574073953698025 , (118)

K4 ≈ −2929.408154629231406658329 , (119)

K5 ≈ 98251.22373221609235350508 , (120)

K6 ≈ 12208129.30713246104350286 . (121)

The advantage of the Richardson extrapolation method, in addition to the easier coding,
is that one only has to calculate the first 2j − 1 negative indexed g

(j)
n coefficients in the

expansion (110) of Gj(n). These components will be also necessary for the computation of
the residue as well, as we shall see soon.

3.6 Asymmetric solution

The imaginary part of of the asymmetric function v̂(−)
j along the lower part of the imaginary

q axis can be calculated using the residue theorem. Similarly to the procedure for the model
problem at Subsection 2.8, one can choose the contour γ in (101) as the upper half of the
imaginary s axis, avoiding the singularities at s = ni by going around them in small half-
circles. Since the coefficients b(j)

n in (97) are real, the straight sections along the axis give no
imaginary contributions to ṽj, and hence neither to vj ≡ v̂

(−)
j . One only needs to consider

the pole at s = i since the contribution from the others are exponentially suppressed. The
result from the half-circle will be exactly half of the full-circle integral, which can be obtained
from the residue theorem.
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The residue of the function Ij(s) = exp(−qs)V ′j (s) at s = i will be exp(−iq) times the
residue of V ′j (s). Substituting (104) and (109) into the expansion (102), we obtain

V ′j (s) =
∞∑
n=0

s2n+1(−1)nK

j∑
l=0

KlGj−l(n) . (122)

Here each Gj(n) can be expanded in powers of 1/n according to (105) and (110) in terms of
the constants g̃(0)

l and g(j)
l . The result will be sum of terms proportional to (−1)nnms2n+1,

where m is integer. For a given m the sum for n can be evaluated in a closed form, but we
could not find an expression for the sum valid for general m. However, the residue of these
functions turn out to be very simple

Res
s=i

∞∑
n=0

(−1)nnms2n+1 =

{
1
2
(−1)m if m ≥ 0 ,

0 if m < 0 .
(123)

From (122) we obtain that the residue is

Res
s=i

V ′j (s) =
K

2

(
Kj +

j∑
l=2

Kj−l

2l−1∑
m=0

(−1)mg
(l)
−m

)
, (124)

where we have to substitute K0 = 1 and K1 = 0. Interpreting the sum as zero for j = 0, the
result is also valid for the leading order, showing that the residue of V ′0(s) is simply K/2.
The residue of V ′1(s) is zero, since the solution v1 = 2

3
is real on the imaginary axis.

The value of the imaginary part of the function vj ≡ v̂
(−)
j at the imaginary q axis will be

half of this residue multiplied by 2π exp(−iq),

Im v̂
(−)
j

0≈ πK

2
exp(−iq)

(
Kj +

j∑
l=2

Kj−l

2l−1∑
m=0

(−1)mg
(l)
−m

)
, (125)

where
0≈ indicates that we neglect terms proportional to qm exp(−iq) with m 6= 0, similarly

as we did at Eq. (93). There are also terms with m > 0, which are generated from lower
orders in j contributions. They have fixed amplitude, hence do not affect our results for the
tail-amplitude.

Using v = ε2u and (83), for the original non-expanded function u we obtain

Im û−
0≈ πK

2ε2
exp(−iq)

[
1 + (K2 − 20) γ4ε4 +

(
K3 −

8816

21

)
γ6ε6

+

(
K4 − 20K2 −

2340812

175

)
γ8ε8 +O(ε10)

]
(126)

for Re q = 0, Im q < 0. Higher order terms can be obtained using (125).
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3.7 Tail-amplitude

Because of its importance in the tail-amplitude calculation we repeat Eq. (94),

Im û− = − Imw for Re q = 0 , Im q < 0 . (127)

Here the linearized solution w is given by (93), and the imaginary part of the asymmetric
solution û− by (126), both include only the q0 exp(−iq) terms. We have to match the two
expressions at various orders in ε. However, the constant β = αm, which give the minimal
tail-amplitude, is also ε dependent. We search it in the form

α(N)
m = α(0)

m

(
1−

N∑
n=1

ξn(γε)2n

)
, (128)

where α(0)
m contains the ε dependent leading behavior, and the constants ξn represent cor-

rections up to order ε2N . Substituting β = α
(N)
m into (93) we get

Imw
0≈ 1

2
α(0)

m exp

(
kπ

2γε

)
exp(−iq)

[
1− (ξ1 − 5) γ2ε2 − (ξ2 + 5ξ1 + 25) γ4ε4

−
(
ξ3 + 5ξ2 − 25ξ1 +

41749

105

)
γ6ε6 − . . .

]
. (129)

Comparing the main factors in (126) and (129), we obtain the leading order behavior of
the minimal tail-amplitude,

α(0)
m =

K
ε2

exp

(
− kπ

2γε

)
, (130)

where
K = −Kπ ≈ 62.73429832220473887883684416488336000742 . (131)

Note that the constant k also has ε dependence, since according to (53), k =
√

1 + 4γ2ε2.
The exponential term can be expanded as

exp

(
− kπ

2γε

)
= exp

(
− π

2γε

)[
1− πγε+

π2

2
γ2ε2 −

(
π3

6
+ π

)
γ3ε3 +O(ε4)

]
. (132)

This shows that the expression for α(0)
m in (130) is correct also to first-order in ε. The leading

order result, i.e. (130) with k = 1 has been obtained first by Pomeau et al. [11]. The more
precise result with the k factor in the exponential has been presented by Grimshaw and Joshi
[140]. However, contrary to a claim in [140], the result (130) is not valid to ε2 order.

To obtain the constants ξn we have to compare the ε2n order corrections in (126) and
(129) in increasing order in n. There is no ε2 term in Im û− in (126), hence the corresponding
term should vanish in Imw as well, implying that

ξ1 = 5 . (133)
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The corresponding approximation to the tail-amplitude is

α(1)
m =

K
ε2

exp

(
− kπ

2γε

)(
1− 5γ2ε2

)
. (134)

The value ξ1 = 5 agrees well with the high precision numerical results of Boyd [153], where
the inconsistency with the incorrect value ξ1 = 0 in [140] has been pointed out.

At order ε4 the identity (127) gives the equation K2 − 20 = ξ2 + 5ξ1 + 25, which yields

ξ2 = −K2 − 30 ≈ 6.544068193583744293468677 . (135)

The numerical results for the next few orders are

ξ3 ≈ 474.4138394894886739024592 , (136)

ξ4 ≈ 4233.412359374196554531744 , (137)

ξ5 ≈ 111053.9527095014662305753 , (138)

ξ6 ≈ 1782156.514208953766632473 . (139)

The method for the calculation of the constants ξn and the above presented values have
been published in our papers [6, 7]. The coefficients ξn appear to increase in a rate which is
slower than factorial increase. From this we might conjecture that the expansion in (128) is
possibly convergent, but this requires further justification.

In Fig. 15 we show the extremely quick decrease of the numerically obtained minimal am-
plitude αm as a function of ε, and also show the relative difference ∆α

(N)
m =

∣∣∣(α(N)
m − αm)/αm

∣∣∣
of the numerical result from various order approximations α(N)

m . It is apparent from the
straight lines on the logarithmic plot that the error of the N -th order approximation α(N)

m

decreases as ε2N+2. The lines only break for ε < 2−7 when the precision of the numerical
results start decreasing. This is due to the large number of necessary collocation points
and very long computation times when the oscillating tail becomes extremely small. The
extremely good agreement of the numerical and analytic expansion results for αm shows that
both methods are reliable and the coefficients ξn have been obtained correctly.
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Figure 15: The upper panel shows the numerically calculated minimal amplitude αm

as a function of ε for c = 1. The lower figure gives the relative difference ∆α
(N)
m =∣∣∣(α(N)

m − αm)/αm

∣∣∣ of the numerically calculated amplitude from various Nth order approxi-
mations as given in (128) and (130).
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4 Scalar field oscillons

4.1 Nonlinear scalar fields on Minkowski background

We consider spherically symmetric time evolution of a massive self-interacting scalar field
φ on d + 1 dimensional Minkowski background. The equation describing the field can be
written as

− ∂2φ

∂t2
+
∂2φ

∂r2
+
d− 1

r

∂φ

∂r
= U ′(φ) , (140)

where U ′(φ) is the φ derivative of the potential U(φ) determining the self-interaction of the
scalar field.

We are interested in long-lived localized states. The simplest such configurations are
the well known breather solutions of the 1 + 1 dimensional sine-Gordon equations, when
the potential is U(φ) = 1− cosφ. There is a one-parameter family of sine-Gordon breather
solutions,

φ(r, t) = 4 arctan

[
ε cos(ωt)

ω cosh(εr)

]
, (141)

where the parameter ε determines the amplitude. The parameter can take any value in the
0 < ε < 1 interval, and the frequency is connected to it by the relation ω2 = 1− ε2.

For 1 + 1 dimensions the only analytic potential is the sine-Gordon potential which
allows the existence of truly localized breather solutions [13, 14, 15]. If d > 1, then for d+ 1

dimensional flat background no analytic potential is known for which exactly periodically
oscillating localized breather solutions exist. Although there are no other breather solutions,
still there exist very long living localized oscillating configurations which slowly lose energy
by emitting scalar radiation to infinity. The possibility of these type of solutions for 1 + 1

dimensional theories has been studied first by using perturbational methods [75, 55]. In 1975
it was shown using numerical methods by Kudryavtsev that by the collision of two 1 + 1

dimensional soliton states (φ4 kinks) such long-lived localized structures can really form [20].
These states are not completely periodic, since they lose energy by emitting scalar radiation
to infinity. At the same time, their frequency and amplitude slowly changes.

Spherically symmetric long-lived oscillating states in 3 + 1 dimensions have been found
first by Bogolyubskii and Makhan’kov in Dubna in 1977, using a numerical time-evolution
code [16, 17, 154]. The solutions were originally called pulsons, but later the naming oscil-
lon became widespread. These configurations are only approximately time-periodic. Taking
into account a longer time period, the amplitude clearly decreases, since the scalar slowly
radiates energy out to infinity. For d ≥ 3 spatial dimensions spherically symmetric oscillons
oscillate several times with slowly decreasing amplitude. However, after having their am-
plitude decreased below a certain value, entering the unstable domain they suddenly decay.
On the contrary, for 1 + 1 and 2 + 1 dimensional oscillons no such sudden decay can be

51

               fodor.gyula_298_24



observed. These oscillons keep on existing for arbitrarily long time, with more and more
slowly decreasing amplitudes.

The interest about oscillons began to grow more quickly after 1994, following the work of
Marcelo Gleiser, who studied the formation of oscillons by numerical methods for symmetric
and asymmetric double well φ4 potentials [18, 19]. It was already apparent from the ini-
tial investigations that similar oscillons evolve from several different spherically symmetric
initial data, which indicates the stability of oscillons with respect to spherically symmetric
perturbations. Later investigations have also shown that oscillons are stable with respect to
general perturbations, since non-symmetric initial configurations also develop quickly into
spherically symmetric oscillon states, quickly radiating out the non-symmetric component
to infinity.

For a more detailed presentation of the history and physical application of oscillons we
refer the reader to an earlier review of the present author [155]. Oscillons are likely to
appear in cosmological phase transitions, and also may have evolved during the inflationary
period of the early universe from the inflaton or from coupled scalar fields, and may have
influenced the dynamics of inflation. They may form by the collapse or collision of domain
walls or cosmic vacuum bubbles. Oscillons also appear in the bosonic sector of the standard
model, in Abelian Higgs models, in supersymmetric theories, and in various Bose-Einstein
condensates. During the preheating epoch scalar fields are likely to form oscillons, which
may even provide a detectable peak on the spectrum of gravitational waves.

There have been a large number of papers studying the formation and time evolution of
oscillons by numerical methods, mostly considering spherically symmetric systems. Regular-
ity at the center can be ensured by requiring that the field φ is reflection symmetric at r = 0.
The outer boundary condition is much more problematic, because of the small amplitude
radiation carrying out energy to infinity. One also has to ensure that there is no incoming
radiation from infinity. Since a numerical grid can only reach out to finite distances, one
has to impose some kind of non-reflecting boundary conditions at the outer boundary. This
may be achieved by introducing a dissipative or damping term in a distant region.

In our numerical calculations we have treated the problem of the outer boundary by the
compactification of space. For details please see our papers [60, 61, 62, 63] or the review [155].
Spatial derivatives are calculated using symmetric fourth-order stencils. Time integration is
performed by the “method of lines”, using a fourth-order Runge-Kutta method. In order to
ensure the stability of the code, we have added a dissipation term that is proportional to the
sixth derivative of the field.

The energy density of the scalar field is

E =
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂r

)2

+ U(φ) , (142)
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Figure 16: Typical evolution of the scalar field φ. The time increases to the right.

and the energy inside a sphere of radius r̄ can be calculated as

E(r̄) =
2π

d
2

Γ
(
d
2

) ∫ r̄

0

rd−1Edr . (143)

The outward directed energy current density is

S = −∂φ
∂t

∂φ

∂r
, (144)

and the energy current going out through the sphere of radius r̄ is

S(r̄) = −dE(r̄)

dt
=

2π
d
2

Γ
(
d
2

) r̄ d−1Sr=r̄ . (145)

4.2 Quasibreathers and nanopterons

Every oscillon loses energy slowly by radiating out the scalar field in a spherically symmetric
way. The amplitude of the outgoing radiation is generally extremely small in comparison
to the amplitude of the oscillations in the central domain. If we compensate the outgoing
radiation by an exactly identical amplitude incoming radiation, then a time-periodic state is
formed. Because of the incoming radiation, in the faraway domain a spherically symmetric
standing wave forms, that we call tail. At the same time, in the inner core domain the larger
amplitude oscillations remain essentially unchanged. We call these time-periodic solutions
weakly nonlocal states [156, 5].

The study of time-periodic weakly nonlocal solutions is considerably easier, both by
analytical and numerical methods, than the direct study of oscillons that slowly change
frequency. For a fixed frequency, still there are many different weakly nonlocal solutions,
with different tail-amplitudes and phases. Obviously, the oscillon is best approximated by
the weakly nonlocal solution that has the minimal tail-amplitude. We denote this solution
as φm. It is unique for a given frequency, and we name it quasibreather [60].
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A closely related concept to quasibreathers is the notion of nanopterons introduced by
John P. Boyd [156, 157, 5]. The naming comes from the Greek expression “dwarf-wing”.
Nanopteron solutions appear in various hydrodynamic, meteorological, oceanographic, plas-
ma physical and particle physics models. According to Boyd’s definition, nanopterons are
weakly nonlocal states for which reducing the core amplitude the amplitude of the wing
decreases exponentially. As we will see, this is always satisfied for quasibreathers associated
to oscillons. The quasibreather solution can be considered as the minimal tail-amplitude
nanopteron.

As numerical calculations show, the amplitude of the outgoing radiating wave tail of
oscillons agree to high precision with the amplitude of the standing wave tail of the identical
frequency quasibreather. Denoting the mass of the scalar field by m, for d + 1 dimensional
spacetimes the asymptotic form of the ωf frequency part of the quasibreather’s tail is

φ =
α

r
d−1
2

cos(λfr + δ) cos(ωf t) , (146)

where λf =
√
ω2
f −m2, and the constants α and δ are a constants giving the amplitude

and phase. Violating the time-reflection symmetry by adding a term with asymptotics
α

r(d−1)/2 sin(λfr + δ) sin(ωf t), we obtain a wave carrying energy outwards, with identical α
amplitude,

φ =
α

r
d−1
2

cos(λfr + δ − ωf t) . (147)

Based on (145), the outgoing energy current S provided by this wave through a sphere of
radius r, averaged for an oscillation period 2π/ωf , is

S̄ =
π

d
2

Γ
(
d
2

)λfωfα2 . (148)

In the following, to obtain the energy loss rate of oscillons we will calculate the amplitude α
of the quasibreather’s tail.
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We search for quasibreather solutions with frequency ω in a Fourier series form

φ =
∞∑
n=0

Φn cos(nωt) , (149)

where the functions Φn are time-independent. In general, the frequency ω of the quasi-
breather’s core is below the mass threshold m, and only the n ≥ 2 order modes can have
standing wave tails. The scalar field φ expanded in the form (149) is time-reflection symmet-
ric at the moment t = 0. The existence of these type of solutions follows from the invariance
of the system with respect to time-reflection. The choice is also motivated by the observation
that according to numerical simulations weakly radiating oscillons also possess this symme-
try to a very good approximation. For those type of potentials that are mirror symmetric
around their minimum, such as the U(φ) = 1− cosφ sine-Gordon potential, there are only
odd indexed terms in the expansion (149), which makes the analysis significantly easier.

We write the expansion of the interaction potential around its minimum in the form

U(φ) =
1

2
m2φ2 +

∞∑
k=2

1

k + 1
gkφ

k+1 , (150)

in terms of the mass of the scalar field m and the expansion coefficients gk. The derivative
of the potential with respect to φ can be written as

U ′(φ) = m2φ+
∞∑
k=2

gkφ
k . (151)

Substituting the expansion (149) into the field equation (140), for the functions Φn we
obtain the following coupled differential equations,

d2Φn

dr2
+
d− 1

r

dΦn

dr
+ (n2ω2 −m2)Φn = Fn , (152)

where the terms Fn are nonlinear functions of Φ0,Φ1,Φ2, . . .. The nonlinear terms on the
right-hand side of equation (152) can be obtained in the following way,

Fn =

(
1− 1

2
δn,0

)[
g2

2

∞∑
p,q=0

ΦpΦqδn,±p±q +
g3

4

∞∑
p,q,r=0

ΦpΦqΦrδn,±p±q±r

+
g4

8

∞∑
p,q,r,s=0

ΦpΦqΦrΦsδn,±p±q±r±s

+
g5

16

∞∑
p,q,r,s,t=0

ΦpΦqΦrΦsΦtδn,±p±q±r±s±t + · · ·
]
, (153)

where
δn,±p±q = δn,p+q + δn,p−q + δn,−p+q + δn,−p−q , (154)
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and we define similarly the other δ expressions, by adding all possible variations for the
signatures. If the potential is chosen to be the symmetric φ4 potential in the form U(φ) =
1
4
φ2 (φ− 2)2, then the mass of the scalar field is m =

√
2, and the nonvanishing expan-

sion coefficients are g2 = −3 and g3 = 1. Equations (152) can be used for the numerical
construction of the time-periodic quasibreather solutions [157, 158, 64].

For d ≥ 2 space dimensions the regularity at the center implies that the functions has
to be mirror symmetric, Φn(x) = Φn(−x). For one spatial dimension we also impose these
conditions to make the solution unique. The appropriate behavior at the center implies one
condition for each Fourier mode Φn.

At large distances from the quasibreather’s core the functions Φn become small, they
decouple, and satisfy the linear left-hand sides of equations (152). The behavior at large
distances depends on the signature of the factor n2ω2 − m2. If n is below a certain value
then n2ω2 −m2 < 0, and the solutions of the homogeneous equation asymptotically has the
form

Φn ≈
1

r
d−1
2

[
α̂n exp(−λ̂nr) + β̂n exp(λ̂nr)

]
, (155)

where λ̂n =
√
m2 − n2ω2. The condition for the existence of at least weakly nonlocal solu-

tions is that β̂n = 0, with arbitrary α̂n. For each mode satisfying the condition n2ω2−m2 < 0

we have one condition at the origin and one at infinity, which considering a second-order
equation can be satisfied generally.

In general, for any frequency there exists an integer nω such that for n ≥ nω the inequality
n2ω2 −m2 > 0 holds. Introducing the notation λn =

√
n2ω2 −m2, the asymptotic behavior

of the modes can be written as

Φn ≈
1

r
d−1
2

[
α̃n sin(λnr) + β̃n cos(λnr)

]
. (156)

Although for d ≥ 2 the function Φn tends to zero for arbitrary α̃n and β̃n, the energy E(r)

contained in a sphere of radius r diverges linearly when r → ∞ for any d when α̃n or β̃n
is nonzero. Truly localized, finite energy, time-periodic breather solution can only exist if
for every n ≥ nω modes α̃n = β̃n = 0, and the central symmetry condition also holds.
Three conditions for each mode for coupled second-order equations are generally too much.
This argument shows that genuine breather solutions can only exist in some very exceptional
cases, such as for the 1+1 dimensional sine-Gordon potential, when the system is integrable.
In other cases we can find the solution most similar to a localized configuration if we look
for the minimal tail-amplitude weakly nonlocal solution, i.e. the quasibreather φm.

The frequency of the observed oscillons is always in the range ω < m, where m is the
scalar field mass. Most numerical simulations in the literature have been carried out for the
φ4 potential choosing m =

√
2. In later sections, in order to make the comparison easier

with the small-amplitude expansion results, we will also use the scaling that makes m = 1.
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The amplitude of the quasibreather’s tail can be extremely small for frequencies that are
only a little smaller than m, but decreasing the frequency the tail-amplitude grows very
quickly. When ω decreases close to the value m/2, the tail generally grows so large that
we cannot talk about a localized state anymore. Hence in the following we only investigate
quasibreathers in the frequency domain 1

2
m < ω < m. In this case the linearized asymptotic

behavior of the modes Φ0 and Φ1 is exponentially decaying, according to the first term of
equation (155). The other Φn modes with n ≥ 2 have standing wave tails according to (156).

For the numerical construction of the minimal standing wave tail quasibreathers in case of
d = 3 spatial dimensions we have applied the LORENE numerical library [159]. The library
was created at Paris Observatory in Meudon, and we carried out our research in collaboration
with Philippe Grandclément, one of the developers of the code [60]. The LORENE library
applies spectral methods and multi-domain decomposition of space. We divide the space
into concentric spherically symmetric shell shaped domains, and for the radial dependences
we employ expansion in terms of Chebyshev polynomials. By this method the solution of
the differential equations is reduced into inversion of matrices on the coefficient space in
each domain. We solve the nonlinear system by an iterative method. We also have to use
numerical minimization to find the quasibreather solution with the minimal tail-amplitude.
For more details on our numerical method please see our paper [60] or the review [155].

In Figure 17 we show the radial behavior of the first few Φn modes of the minimized tail
quasibreather for the φ4 potential with m =

√
2 and frequency ω = 1.365. For potentials
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Figure 17: The r dependence of the Fourier modes Φn of the quasibreather near the core
and in the transitional region where the tail starts to appear.

that are asymmetric around the minimum always the Φ2 mode dominates the tail. The
asymptotic tail in the higher modes have such small amplitude that their oscillations could
not be seen in Figure 17. Since the magnitude of the Fourier component functions Φn

decreases exponentially with growing n, it is usually sufficient to consider relatively few
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components only. During our spectral calculations the use of the first 7 modes already gave
results precise for three or four digits.

In the tail region of the quasibreather the tendency of the decrease of the energy density
is according to 1/r2, from which it follows that the energy E(r) inside a sphere diverges
linearly with increasing r. Although the quasibreathers are not finite energy states, still in
a large region they approximate with high precision the finite energy but radiating oscillon
states. In the outer part of the core domain the energy density decreases approximately
exponentially, until it reaches the value of the energy density of the tail. The energy density
of the tail is essentially proportional to the square of the tail-amplitude α2 of the mode Φ2,
because of the relative smallness of the other modes. We define the radius of the core as the
value r = Rtrans where the dominant mode Φ1 first decreases to the local tail-amplitude of
the oscillating mode Φ2,

Φ1

∣∣∣
r=Rtrans

=
|α2|
Rtrans

. (157)

This is the distance beyond which the oscillating standing wave tail becomes dominant.
We consider the total energy of the quasibreather as the E(Rtrans) energy inside the core

radius Rtrans, calculated using (143). The ω dependence of this total energy can be seen in
Figure 18. The energy is not a monotonic function, it takes a minimal value at the critical
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Figure 18: The energy E(Rtrans) of the quasibreather’s core as a function of the frequency.

frequency ωc ≈ 1.368. The nontrivial behavior is due to two competing effects. Increasing
the frequency the core amplitude decreases, but the core size increases.

The critical frequency ωc is crucial, since numerical simulations show that 3 + 1 dimen-
sional oscillons with frequencies ω < ωc are stable, while they are unstable in case of ω > ωc.
This stability change corresponds to the generally valid astrophysical experience with lo-
calized objects similar to stars. If by the increase of the central energy density the full
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mass-energy is increasing then the configuration is stable, while in the opposite case it is
unstable. In case of oscillons and quasibreathers the the central amplitude and central en-
ergy density increases monotonically with the decrease of the frequency. This argument also
explain how 3 + 1 dimensional oscillons can generally make hundreds of oscillations before a
sudden decay, reaching into the unstable domain.

4.3 Small-amplitude expansion

In this subsection we describe an expansion procedure in terms of a parameter ε that rep-
resent the amplitude of the oscillons. The expansion gives a very good description of the
core region of oscillons and quasibreathers, even for relatively large amplitudes. Originally,
the expansion with respect to the amplitude was applied together with a Fourier expan-
sion with respect to the time coordinate t, and the analysis was for one-dimensional space
[75, 55, 160, 10, 157]. The method can be easily generalized for higher dimensions as well
[76, 77, 154, 161]. Kichenassamy [14] have realized that it is not necessary to apply Fourier
expansion together with the small-amplitude expansion. Time-periodicity follows from the
weaker assumption that the solution must remain bounded during the whole time evolution.
In our paper on the expansion of oscillons we have generalized and worked out in detail this
method for d + 1 dimensional spacetimes [61]. This expansion will play the role of outer
expansion in the asymptotic matching procedure in later subsections.

We expand the scalar field φ with respect to powers of the parameter ε in the form,

φ =
∞∑
k=1

εkφk , (158)

introducing the φk functions that are parameter independent. We solve the field equation
(140), which is valid for spherical symmetry. In case of one spatial dimension we assume
that the scalar φ is mirror symmetric at r = 0, which also implies that we choose a system
moving together with the center of mass.

We specify the self-interaction potential U(φ) by the coefficients gk in (150). In order
to make the expressions simpler we rescale the coordinates t and r so that the mass of the
scalar field is m = 1. For the φ4 potential we use the form U(φ) = 1

8
φ2 (φ− 2)2, when the

nonvanishing expansion coefficients are g2 = −3/2 are g3 = 1/2. The results presented in
this subsection are valid for any analytic potential. We will only choose a specific potential
when comparing with numerical computations.

We can only obtain long-lived localized solutions of the field equation (140) if we choose
the characteristic size of the solutions ε dependent. According to numerical experience, the
size of oscillons grows with decreasing ε amplitude. Because of this, it is advantageous to

59

               fodor.gyula_298_24



introduce a new rescaled radial coordinate ρ by the expression

ρ = εr . (159)

Because of the use of the new coordinate the spatial variation of the obtained solutions will
be much slower than their change with respect to time. This is always a valid assumption in
the core region of the quasibreathers, but in the tail region the derivatives with respect to
t and r have the same order, hence the formalism is not able to describe the standing wave
tail region. This is not a severe problem, since the amplitude of the tail is exp(−1/ε) order
small.

The frequency of oscillons increases slowly when their amplitude decreases due to the
energy loss. If the amplitude ε of oscillons or quasibreathers approaches zero, their frequency
tends to the ω0 = m = 1 value. The change in the time-scale can be taken into account most
easily if we introduce a rescaled time coordinate

τ = ωt , (160)

where ω is a function of ε. Since during our procedure we keep the frequency of the state
at the constant 1 value with respect to the time coordinate τ , the function ω ≡ ω(ε) gives
the physical frequency of the oscillon. We can expand the square of the frequency in the
following form:

ω2 = 1 +
∞∑
k=1

εkωk . (161)

Carrying out the general expansion procedure [61, 155], it can be shown, that it is a natural
and valid choice to take ω2 = −1 and ωn = 0 for all n 6= 2. Hence in the following we assume
that the relation between the parameter ε and the frequency is

ω2 = 1− ε2 . (162)

This can be always achieved by a reparametrization ε → ε̃(ε), which does not change the
initial assumption that ε is proportional to the central amplitude of the oscillons in the
small-amplitude limit.

From (162) also follows that small amplitude oscillons can only exist with frequency ω
below the m ≡ 1 mass threshold. This is physically reasonable, since if the frequency ω is
above the base frequency 1, then there is an oscillating tail associated to the dominating
mode Φ1 according to (156), which necessarily implies large energy loss. We can expect the
existence of long-lived localized states if only the 2ω, 3ω and higher harmonics are able to
radiate.

Using the Laplacian

∆̃φ =
∂2φ

∂ρ2
+
d− 1

ρ

∂φ

∂ρ
, (163)
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with respect to the rescaled coordinate, and taking the expanded form of the potential (150)
with m = 1, the field equation (140) can be written into the form

− ω2∂
2φ

∂τ 2
+ ε2∆̃φ = φ+

∞∑
k=2

gkφ
k . (164)

Substituting the expansion (158) of φ, the identical ε power terms determine equations that
has to be satisfied separately. The general form of these equations is

∂2φk
∂τ 2

+ φk = fk , (165)

where the structure of the left-hand side homogeneous part is always the same, and the
inhomogeneous source terms fk are nonlinear functions of the lower order φl components
with l < k. The expressions for fk depend on the constants gl for l ≤ k. In the first equation
obviously f1 = 0, and the next two source terms are:

f2 = −g2φ
2
1 , (166)

f3 = φ̈1 + ∆̃φ1 − 2g2φ1φ2 − g3φ
3
1 +

∂2φ1

∂τ 2
. (167)

The homogeneous part is always an expression describing a harmonic oscillator, so at the
first glance it may appear that equations (165) only determine the time dependence of the
φk functions. However, as we will see, the requirement that the solutions should not increase
without bound with the evolution of time will fix the spatial dependence of the functions φk.

The general solution of the leading order equation (165) for k = 1 is of the form

φ1 = p1 cos(τ + δ1) , (168)

where the amplitude p1 and the phase δ1 are arbitrary functions of the radial coordinate ρ.
All the other equations for φk from (165) are forced oscillator equations with base frequency
ω̃ = 1. Continuing the expansion in a general way, it turns out that δ1 must be a constant,
and hence δ1 = 0 can be achieved by time-translation [61, 155]. This also implies that the
states which are described by the expansion are time-reflection symmetric. To make the
procedure more transparent, here we continue by setting δ1 = 0, and hence

φ1 = p1 cos τ . (169)

The inhomogeneous source term fk on the right-hand side always constitutes of sums of
terms with time dependence cos(nτ), where n ≥ 0 integer. When n 6= 1 the cos(nτ) term
generates a solution which is time-periodic, and hence bounded. However, if there is a source
term in fk proportional to cos τ , then it generates a solution proportional to τ sin τ , which is
unbounded because of the linearly increasing amplitude. Since we are looking for solutions
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that remain regular and bounded for a long time, we have to require that for all k, in the
expressions for fk the coefficient of the cos τ term has to be zero.

The solution of equation (165) for k = 2 is bounded and periodic in time,

φ2 = p2 cos τ +
g2

6
p2

1[cos(2τ)− 3] , (170)

where p2 is a further arbitrary function of ρ. One could also include a term q2 sin τ in (170)
with some arbitrary function q2, but it can be shown that it would only provide a small shift
in the time-coordinate τ [61, 155].

Substituting the obtained solutions for φ1 and φ2 into the expression (167) of f3, we
obtain the following expression,

f3 =
[
∆̃p1 − p1 + λp3

1

]
cos τ − 1

12
p3

1(2g2
2 + 3g3) cos(3τ)− g2p1 [p2 cos(2τ) + p2] , (171)

where we have introduced the notation

λ =
5

6
g2

2 −
3

4
g3 . (172)

For the φ4 potential λ = 3/2, and for the sine-Gordon potential λ = 1/8.
The necessary condition on the boundedness of the function φ3 is that in equation (171)

the coefficient of cos τ has to be zero,

∆̃p1 − p1 + λp3
1 = 0 . (173)

Since we are looking for localized solutions that tend to zero, at large distances the cubic
term can be neglected. One of the two possible asymptotic solutions of the equation decays
exponentially at large distances.

Multiplying equation (173) by ρd−1p1 and integrating between ρ = 0 and infinity, it can
be seen that if λ ≤ 0 then only the trivial solution p1 = 0 exists [61, 155]. It follows that
small-amplitude solutions can only exist for potentials for which the scalar λ defined in (172)
is positive. In the following we assume that λ > 0. The coefficient g2 makes the potential
U(φ) asymmetric, and any value of it enhances nonlinearity and helps the appearance of
oscillons. For potentials that are symmetric around their minimum, necessarily g2 = 0, and
then g3 < 0 is the necessary condition for the existence of oscillons. In the symmetric case
this negative term makes the potential shallower around its minimum than the Klein-Gordon
potential, hence increases the oscillation time and decreases the frequency compared to that.

4.3.1 The base equation

Introducing the function S =
√
λ p1, from (173) we obtain an equation which is independent

of the parameters,
∆̃S − S + S3 = 0 . (174)
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●

Since (174) is appropriate for the description of small amplitude oscillons for arbitrary po-
tentials, following the nomenclature of Buslaev [76], we refer to it as the base equation.

In case of d = 1 spatial dimension the only bounded localized solution is

S =
√

2 sech ρ . (175)

Obviously, this multiplied by −1 also solves the equation, but it is not necessary to deal
with that, since even for potentials not symmetric around their minimum it leads to the
same solution, just shifted by a half oscillation period. For one space dimension all functions
appearing at the higher orders of the ε expansion can be expressed as linear combinations
of various powers of sech ρ, and hence the expansion can be technically much more easily
performed for d = 1 than for higher dimensions [10, 14, 5].

For higher dimensions the solutions are only known in numerical form. The condition
for central regularity is that at ρ = 0 the value of S is finite and its derivative is zero. For
d = 2 and d = 3 spatial dimensions there are infinitely many localized regular solutions,
characterized by an integer n ≥ 0. The parameter n determines the number of nodes (zero
crossings) of the solution denoted by S ≡ Sn. In Figure 19 we show the first few such
functions. By physical intuition it appears reasonable that the solution S0, which is nowhere
zero, is the most important. It can be shown that the oscillon solutions corresponding to
functions S with nodes have larger energy, are less stable, and have a shorter lifetime [61].
In the following we will focus on oscillons belonging to S0, although the expansion procedure
is valid for the general case as well. The central value of S0 with nine digits precision is

S
(ρ=0)
0 =

{
2.20620086 if d = 2 ,
4.33738768 if d = 3 .

(176)

It can be shown that the base equation (174) has no regular localized solution for d ≥ 4

spatial dimensions [61].
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Figure 19: Localized regular solutions of the base equation (174) in case of d = 2 and d = 3
spatial dimensions.

4.3.2 Higher orders in the expansion

After the elimination of the resonance terms in (171), the solution of equation (165) for φ3

is
φ3 = p3 cos τ +

p1

3

[
1

8

(
4

3
g2

2 − λ
)
p2

1 cos(3τ) + g2p2 (cos(2τ)− 3)

]
, (177)

where p3 is a new, yet unknown function of ρ. Similarly to this, at higher orders, when
solving the equation for φk a new functions appear, pk, which will be determined by the
resonance condition at two orders higher.

As a next step, the source term f4 can be calculated, and the vanishing of the cos τ terms
yields the resonance condition

∆̃p2 − p2 + 3S2p2 = 0 . (178)

This equation corresponds to the linearization of the base equation (174) around S. Hence
it is solved by dS

dr
, which is not a symmetric function around ρ = 0. It can be shown that no

other localized solution exist[76], hence we have to set p2 = 0. Proceeding to higher orders
in the expansion, at even orders the same simple equation determines the free functions, and
hence it follows that p2k = 0 for integer k. The odd indexed p2k+1 functions are determined
by further second-order differential equations.

The ρ dependence of the function p3 is determined at order ε5 from the cancellation of
the terms with time dependence cos τ . Let us introduce the function Z by the expression

p3 =
1

λ2
√
λ

[
σZ − 1

54
λg2

2S(32 + 19S2)

]
, (179)
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where
σ =

1

24
λ2 − 1

6
λg2

2 +
5

8
g5 −

7

4
g2g4 +

35

27
g4

2 . (180)

Then the condition for p3 can be written into the following much simpler form,

∆̃Z − Z + 3S2Z − S5 = 0 , (181)

which is a linear and inhomogeneous equation, independent of the potential U(φ). The
equation is linear in Z, and for given S it has a unique regular and localized solution. For
d = 1 spatial dimension this solution is

Z = S(4− S2)/3 , (182)

where S has the form given in (175). In case of d = 2 or d = 3 spatial dimensions the
function Z can be determined numerically. The value of the function Z in the center is

Z
(ρ=0)
0 =

{
1.4507606 if d = 2 ,
−16.174027 if d = 3 .

(183)

We summarize the results of the expansion up to here. We have constructed the ε
expansion of the solution of the field equation (140) up to fourth order. The solution is
the sum of terms with harmonic time dependence, and the radial dependence is determined
by two universal elliptic partial differential equations, (174) and (181). The result of the
expansion for general potential U(φ) is

φ1 = p1 cos τ , (184)

φ2 =
1

6
g2p

2
1 [cos(2τ)− 3] , (185)

φ3 = p3 cos τ +
1

72
(4g2

2 − 3λ)p3
1 cos(3τ) , (186)

φ4 =
1

360
p4

1

(
3g4 − 5g2λ+ 5g3

2

)
cos(4τ)

− 1

72

[
8g2

(
dp1

dρ

)2

− 12g4p
4
1 + 16g3

2p
4
1 − 24g2p1p3 − 23g2λp

4
1 − 8g2p

2
1

]
cos(2τ)

−g2p
2
1 − g2p1p3 +

1

6
g2λp

4
1 − g2

(
dp1

dρ

)2

+
31

72
g3

2p
4
1 −

3

8
g4p

4
1 . (187)

For potentials U(φ) which are symmetric around their minimum, the even coefficients
are zero, g2k = 0. In this case the resulting expressions become considerably simpler, and it
is easier to proceed to higher orders with the expansion. Then the even indexed terms are
zero in the ε expansion, namely φ2k = 0. Since in the general case φ2n only contain cos(2kτ)

terms, and φ2n+1 only consist of cos((2k + 1)τ) terms, where k = 0 . . . n, from this also
follows that for symmetric potentials even indexed Φn terms do not appear in the Fourier
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expansion (149). In this case, according to (179), the function p3 is proportional to Z, and
the equation determining the function p5 becomes relatively simple,

∆̃p5 − p5 + 3S2p5 +
SZ

576
√
λ

(3Z − 5S3)

(
15g5

λ2
+ 1

)2

(188)

+
S3

32
√
λ

[(
dS

dρ

)2

− S2

]
− S7

576
√
λ

(
315g7

λ3
− 60g5

λ2
+ 1

)
= 0 .

Hence for symmetric potentials the fifth order of the expansion is:

φ5 = p5 cos τ +
S5

1152
√
λ

(
3g5

λ2
+ 2

)
cos(5τ) (189)

− S

384
√
λ

[(
30g5

λ2
+ 2

)
SZ + 12S2 − 12

(
dS

dρ

)2

−
(

15g5

λ2
− 2

)
S4

]
cos(3τ) .

4.4 One-dimensional space with symmetric potential

Because of the technical complexity of the complex plane asymptotic matching method for
oscillons, we first present the procedure for a special case when the calculation of the radiation
is the simplest. In case of a U(φ) potential that is symmetric around its minimum, in the
Fourier expansion (149) there are only odd indexed Φn components, and the equations that
have to be solved are also easier to analyze. As we will see later, for d > 1 spatial dimensions
the leading order tail-amplitude of spherically symmetric quasibreathers can be calculated
by the same expression as the tail-amplitude of the d = 1 dimensional states. Because of
this, it is necessary to investigate the one-dimensional case first.

Applying the notation of the expansion (150), the simplest potential which is symmetric
around its minimum is U(φ) = 1

2
φ2 + g3

4
φ4. In this subsection we still keep the mass of the

scalar field at m = 1. Small-amplitude oscillons can only exist if the constant λ = 5
6
g2

2 − 3
4
g3

defined in (172) is positive. Since now g2 = 0, necessarily g3 must be negative. Because of
this, by the rescaling of the scalar field φ, for an arbitrary symmetric potential we can set
g3 = −1, and then λ = 3/4. To ensure the stability of the system we intend to keep the
potential bounded from below, hence we add a sixth degree term to the potential,

U(φ) =
1

2
φ2 − 1

4
φ4 +

g5

6
φ6 , (190)

where we assume that g5 > 0. During the following calculations we will use this general
symmetric sixth-order potential. We will see that the amplitude of the tail depends strongly
on the value of g5.

4.4.1 Outer expansion

The ε expansion results discussed in Subsection 4.3 resulted in time-periodic solutions oscil-
lating with frequency ω =

√
1− ε2. Hence these solutions can be Fourier expanded according

66

               fodor.gyula_298_24



to (149), in terms of the coefficient functions Φn. The ε expansion becomes significantly sim-
pler for d = 1 spatial dimension, since in that case the differential equations determining the
functions p2k+1 can be solved analytically. For d = 1 the solutions of these equations can be
given as polynomials in sech ρ. There is further simplification for symmetric potentials, since
in that case gk = 0 when k is even. From this also follows that Φn = 0 for even n. According
to equations (184) - (187) and (189), for the symmetric potential (190) the ε expansion of
the first three nonzero Fourier components can be written as

Φ1 =ε
2
√

2√
3

sech ρ+ ε3 1

27
√

6
(80g5 + 3)(2 sech ρ− sech3 ρ)

+ ε5 1

1458
√

6

[
5(6400g2

5 − 96g5 + 63) sech ρ− (25600g2
5 + 480g5 + 171) sech3 ρ

+ 3(1600g2
5 + 240g5 − 9) sech5 ρ

]
+O(ε7) , (191)

Φ3 =− ε3 1

3
√

6
sech3 ρ

+ ε5 1

108
√

6

[
−2(80g5 + 3) sech3 ρ+ (200g5 − 33) sech5 ρ

]
+O(ε7) , (192)

Φ5 =ε5 1

108
√

6
(8g5 + 3) sech5 ρ+O(ε7) . (193)

At higher orders it is also true that for odd k the first term of the expansion of Φk is
proportional to εk sechk ρ. For a general symmetric potential the leading order terms of
the Fourier components would remain the same. The coefficient g7 of the expansion of the
potential would only appear in the third term of (191), which is proportional to ε5.

4.4.2 Complex extension

As it can be seen from equations (191)-(193), the behavior of the Fourier mode functions on
the complex ρ plane are determined by the function sech ρ. The function sech ρ has first-
order poles at the points ρ = iπ

2
+ ikπ, where k is arbitrary integer. The radiation rate will

be determined by the poles at ρ = ±iπ
2
, which are the closest ones to the real axis. Since

our functions take real values on the real axis, because of their symmetry, it is sufficient to
study the behavior near ρ = iπ

2
. In order to make the generalization for higher dimensions

easier later, for the distance of the singularity from the real axis we introduce the notation
P . In the presently discussed one spatial dimensional case P = π

2
. Introducing the variable

R by the equation
ρ = iP +R , (194)

the Laurent series expansion of the function sech ρ around the point ρ = iP is

sech ρ = − i

R
+
iR

6
− 7iR3

360
+

31iR5

15120
+O(R7) . (195)
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In each term of the expansion the coefficient of Rk is purely imaginary.
For the Fourier modes Φk, as functions of the radial coordinate r = ρ/ε, the singularities

closest to the real axis are at the points r = ±iP
ε
, hence they get further and further away

when the amplitude ε is decreased. Let us introduce the variable y, which measures the
distance from the real axis with respect to the scale corresponding to the original radial
coordinate r, with the equation

r = i
P

ε
+ y . (196)

Obviously, then R = εy. The important observation is, that of the expression ε sech ρ, which
appears at several places in (191)-(193), there is a nonvanishing ε independent part, since

ε sech ρ = − i
y

+
iy

6
ε2 − 7iy3

360
ε4 +

31iy5

15120
ε6 +O(ε8) . (197)

Because of this, in case of the (190) symmetric potential, the behavior of the Fourier modes
near the singularity is

Φ1 =− 2
√

2 i√
3 y
− i

27
√

6 y3
(80g5 + 3)− i

486
√

6 y5
(1600g2

5 + 240g5 − 9) +O(ε2) , (198)

Φ3 =− i

3
√

6 y3
− i

108
√

6 y5
(200g5 − 33) +O(ε2) , (199)

Φ5 =− i

108
√

6 y5
(8g5 + 3) +O(ε2) . (200)

The first terms of all higher Φk modes are also proportional to i/yk. For a general symmetric
potential with g3 = −1 the only change in the expansions (198)-(200) would be that in the
third term in (198) the constant g7 also appears. Since the functions obtained by the ε
expansion are mirror symmetric on the real axis around r = 0, in every term of the expansion
the coefficient of y−k is purely imaginary. Because of this, the contribution of all terms are
real on the imaginary y axis.

Since it contains positive powers of 1/y, the approximation (198)-(200) can be applied
if |y| is large. At first sight this might appear contradictory, since we are now considering
places close to the singularity. However, if ε is small enough, it can be easily satisfied that y
is large while the rescaled R = εy is still small. The inequality 1� |y| � 1/ε describes the
matching domain, which is the overlapping part of the inner and outer regions used in the
procedure. The expressions (198)-(200) will provide outer boundary condition to the inner
problem.

The outer region is the part of the complex r plane where the small-amplitude expansion
is valid, giving improving approximation with decreasing ε. Obviously, the real r axis is part
of this domain. However, the ε expansion fails close to the singularity, where |y| is not large
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compared to 1, because the second derivatives of the functions Φn are much larger there
than the functions themselves.

In order to obtain the precise quasibreather solution that includes the tail, in both regions
we have to solve the Fourier mode equations (152) for some frequency ω that is just a little
smaller than 1. In our case, with the choice m = 1 and d = 1, these equations are

d2Φn

dr2
+ (ω2n2 − 1)Φn = Fn , (201)

for odd n. These equations are also valid if we replace the r derivative by y derivative, since
the two coordinates are just complex shifted versions of each other, according to (196).

4.4.3 Inner expansion

The inner region is the part of the complex plane in the vicinity of the singularity, where
|R| = ε|y| is small. Here we use the shifted, but not rescaled y coordinate. Substituting
ω2 = 1− ε2, we can write (201) as

d2Φn

dy2
+ (n2 − ε2n2 − 1)Φn = Fn . (202)

The inner expansion can be obtained by expanding the Fourier components in powers of ε
as

Φn =
∞∑
j=0

Φ(j)
n ε2j . (203)

Substituting into (202) and considering the identical ε power terms we obtain differential
equations for Φ

(j)
n , which should be solved in increasing order in j. So far only the equations

for Φ
(0)
n has been considered in the literature, which are sufficient for obtaining the leading

order tail-amplitude of the quasibreather. The leading order result for the tail-amplitude is
precise only for very small ε values, when the tail is so small that one cannot calculate it
by spectral numerical methods. Hence it would be important to calculate corrections to the
leading order results in the future.

4.4.4 Leading order inner equation

Since we use the y coordinate in the inner region, the ε→ 0 limit of Φn is the function Φ
(0)
n .

The important advantage of the complex extension method is that we obtain a meaningful
ε → 0 limit in the inner region, while in the outer region, especially on the real r axis, the
small ε limit of all Φn are vanishing, even in the central core domain.

The leading order equation that we have to solve in the inner region can be obtained
from (202) by the substitution ε = 0, yielding

d2Φ
(0)
n

dy2
+ (n2 − 1)Φ(0)

n = F (0)
n , (204)
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where the nonlinear source terms F (0)
n are the ε → 0 limits of Fn. These can be obtained

by replacing Φn by Φ
(0)
n everywhere in (153). The crucial advantage of equations (204) is

that in contrast to (201), it is not necessary to solve them for each ω frequency separately.
However, they still determine the leading order tail-amplitude for any small ε.

Substituting the expansion

Φ
(0)
2n−1 = i

∞∑
k=n

A
(n)
k

1

y2k−1
(205)

into the equations (204), apart from a global ±1 factor, the constants A(n)
k become uniquely

determined. In this way we can directly obtain expressions (198)-(200), and also their
higher order generalizations for arbitrary symmetric potentials, without calculating the
small-amplitude expansion. The ambiguity in the signature corresponds to the symme-
try φ → −φ, and related to the choice of the signature of S in (175). The calculation of
the expansion in powers of 1/y is technically much easier in this direct way, and can be
performed to quite high orders by a software package suitable for symbolic algebraic com-
putations. We were able to proceed up to orders of several hundred in powers of 1/y, even if
we used the same large number of Φ2n−1 Fourier components. However, it turns out that the
consideration of Fourier components higher than Φ7 influences the magnitude of the radiat-
ing tail only extremely slightly. The essential information that comes from the ε expansion
procedure is that in the inner region the expansion of all Φn Fourier components begin with
1/yn term, and also that the power of 1/y increases in steps of two. An important property
of the expansion (205) is that all A(n)

k coefficients are purely real.

4.4.5 Asymmetric solution along the imaginary axis

We separate the Fourier mode functions Φ
(0)
n into real and imaginary parts by the notation

Φ(0)
n = Ψn + iΩn , (206)

where Ψn and Ωn are real valued functions, and substitute into equations (204) describing
the leading order inner solution. As an alternative to y we introduce the coordinate ỹ = iy,
which takes increasing real values when coming downwards along the imaginary axis. The
linear part of the equations can be written into the form

− d2Ωn

dỹ2
+ (n2 − 1)Ωn = 0 . (207)

The inner solution can only be matched to the exterior solution if in the limit ỹ → ∞ the
functions Ωn tends to zero. For n ≥ 2 we have the exponentially decaying solutions

Ωn = νn exp
(
−
√
n2 − 1 ỹ

)
, (208)
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where νn are constants that should be determined later.
However, to obtain the correct behavior of the functions Ωn on the imaginary axis the

linearized approximation is not enough. Nevertheless, we can get a very precise description
if we substitute Φ

(0)
n = Ψn + iΩn into (204), and from the terms of Fn given by (153) we only

keep those terms that are linear in the exponentially small variables Ωk. For all Ψn we can
substitute the approximation of the Φn functions given by the expansion (205). In this way
we get coupled linear differential equations for the functions Ωn along the imaginary axis.

In each Ωk the other Ωn generate contributions that decay as exp(−
√
n2 − 1 ỹ). For

large values of ỹ the less quickly decaying exponential mode will dominate, which is Φ3 for
symmetric potentials. Taking into account terms multiplied by powers of 1/ỹ, in case of the
symmetric sixth-order potential (190) one can obtain the following result:

Ω1 =ν3 exp
(
−
√

8 ỹ
)( 1

4ỹ2
− 1

4
√

2 ỹ3
+ . . .

)
, (209)

Ω3 =ν3 exp
(
−
√

8 ỹ
)(

1 +
1√
2 ỹ

+
1

8ỹ2
− 260g5 + 3

162
√

2 ỹ3
+ . . .

)
, (210)

Ω5 =ν3 exp
(
−
√

8 ỹ
)(
− 1

8ỹ2
− 1

4
√

2 ỹ3
+ . . .

)
. (211)

We will present two methods that can be used to calculate the coefficient ν3. The first is a
numerical method which has been developed by Segur and Kruskal [10]. We solve equations
(204) for the functions Φ

(0)
n = Ψn+iΩn by numerically integrating along a constant Im y = yi

line, where yi < 0, starting from a large positive value of Re y = yr. Since we are dealing
with second-order differential equations, as initial value at the point y = yr + iyi we use the
series (205) calculated up to some order in 1/y, and also the derivative of the same truncated
series expression. Reaching to the imaginary axis Re y = 0 at the point y = iyi, from the
numerically obtained value of Ω3 we calculate the coefficient ν3 using (210).

This method is based on the assumption that the in the vicinity of the starting point
y = yr + iyi the series (205) gives good approximation to Φ

(0)
n . Since we start with large

positive yr, this implies that the obtained solutions will have no oscillations on the right hand
side, hence they correspond to the Fourier components of the asymmetric breather solution
φ ≡ φ− which has no tail for r > 0. This solution has a core very similar to the minimal
tail quasibreather solution φm, but on the left side it may have a double amplitude tail, or
more likely a movable singularity. We are not aware of any numerical results up to now that
could establish the behavior of φ− for r < 0. However the important point for us is that for
r > 0 the difference of the solutions φ− and φm is exponentially small in terms of ε.

The numerical solution can be calculated by taking into account only a finite number of
Φn modes. Keeping the Fourier modes up to Φ7 already gives extremely precise results. For
the initial values the expansion (205) up to order 1/y10 is appropriate. Typical place of the

71

               fodor.gyula_298_24



line of integration is at yi = −7 with starting point yr = 300. The result for ν3 depends on
the parameter g5 in the potential (190). For g5 = 1 the result for seven digits is

ν3 = −0.9097496 . (212)

4.4.6 Asymptotic behavior of the coefficients

The second method for the determination of the constant ν3 in (210) requires the analysis of
the large k behavior of the coefficients A(n)

k in the expansion (205) of the Fourier components
Φ

(0)
2n−1. This analytic method has been applied first to the fifth-order KdV equation in [11]

using Borel summation. An equivalent procedure using Laplace transform has been presented
in [140]. We have generalized the method for one-dimensional oscillons in [62].

The large k behavior of the coefficients will be controlled by the fastest increasing coef-
ficients, A(2)

k . The dominant behavior is governed by the linear left hand side of (204),

(2k − 3)(2k − 2)A
(2)
k−1 + 8A

(2)
k = 0 . (213)

This shows that the leading order behavior for large k is

A
(2)
k = K2(−1)k

(2k − 2)!

8k−1/2
, (214)

where K2 is a constant. Through the nonlinear terms this will determine the asymptotic
behavior of the other coefficients as well.

To leading order the coefficients of Φ1 are determined by the equation

(2k − 3)(2k − 2)A
(1)
k−1 = −3g3

4

(
A

(1)
1

)2

A
(2)
k−1 , (215)

where the right-hand side comes from the nonlinear term in (204) proportional to
(

Φ
(0)
1

)2

Φ
(0)
3 .

The solution which is valid for large values of k is A(1)
k = 1

2
k−2A

(2)
k . Equations for all other

A
(n)
k can be constructed in a similar way. It turns out that for large k the coefficients A(n)

k

grow proportionally to k4−2nA
(2)
k for n ≥ 3.

The behavior of the dominant A(2)
k can be more precisely determined if we also take into

account a nonlinear term proportional to
(

Φ
(0)
1

)2

Φ
(0)
2 . It turns out that

A
(2)
k = K2(−1)k

(2k − 2)!

8k−1/2

(
1 +

1

k
+

5

4k2

)
, (216)

apart from corrections of order 1/k3 and higher. Using this identity we can calculate rather
precisely the value of the constant K2, even from not too high order A(2)

k coefficients. For
example, for the sixth-order symmetric potential (190) in case of g5 = 1 we get

K2 = 0.5791646 . (217)

The value of the constant K2 is important, because as we will see soon, a simple formula
connects it with the coefficient ν3.

72

               fodor.gyula_298_24



4.4.7 Laplace transform

Our aim is to get the imaginary part of the dominant radiating mode Φ
(0)
3 along the lower part

of the imaginary y axis. The calculation using Borel transform has been already presented
in [62, 155]. Here we apply a somewhat simpler but equivalent Laplace transform method,
which has been already discussed for the linear model problem in Subsection 2.8, and also for
the fKdV problem in Subsection 3.5. According to (205), the following series is asymptotic
to the function Φ

(0)
3 ,

Φ
(0)
3 = i

∞∑
k=2

A
(2)
k

1

y2k−1
. (218)

Since all individual terms are real on the imaginary axis, the imaginary part will be deter-
mined by the large k behavior of the coefficients. Hence we assume that all A(2)

k coefficients
are given by the expression (214).

We can now look for Φ
(0)
3 as the Laplace transform of a function that we denote by V ′(s),

Φ
(0)
3 =

∫
γ̃

I(s)ds , I(s) = exp(−ys)V ′(s) , (219)

where the contour γ̃ can be any path from s = 0 to infinity, along which Re(ys)→∞. Since
the Laplace transform of sn is n!y−n−1, it follows that the function V ′(s) can be expanded
as

V ′(s) =
∞∑
k=2

iA
(2)
k

(2k − 2)!
s2k−2 = iK2

∞∑
k=2

(−1)k

8k−1/2
s2k−2 . (220)

The sum is convergent, and yields

V ′(s) =
iK2s

2

√
8(s2 + 8)

. (221)

It can be seen that the function V ′(s) has a pole at s = i
√

8, with residue −1
2
K2. The residue

of the integrand I(s) in (219) is then −1
2
K2 exp(−

√
8 iy). As it has been discussed for the

linear model problem and the fKdV equation, choosing the contour γ̃ of integral along the
upper half of the imaginary s axis, avoiding the pole at s = i

√
8 in a small half-circle from

the right, we obtain the asymmetric solution Φ
(0)
3,− that decays without any oscillations in

the right hand side of the complex y plane. Consequently, it corresponds to the asymmetric
breather solution φ−, which has no tail for r > 0, but it is slightly asymmetric with respect
to r = 0. Only the small half-circle gives contribution to the imaginary part of the integral,
which is half of the value that can be obtained by the residue theorem. It follows that

Im Φ
(0)
3,− = −1

2
πK2 exp(−

√
8 iy) for Re y = 0 and Im y < 0 . (222)

Comparing with (210), where ỹ = iy, we obtain the result

ν3 = −K2π

2
. (223)

73

               fodor.gyula_298_24



This relation is valid for any symmetric potential U(φ). In case of the sixth-order symmetric
potential given in (190) and for the choice g5 = 1, the value of K2 given in (217) corresponds
to ν3 = −0.9097496, which agrees with the value written earlier in (212). The good agreement
of the results obtained by the two independent calculations gives strong support for the
correctness of both the numerical and analytic methods. The calculation of ν3 from the
value of K2 is technically much easier than the earlier presented numerical method. In
Figure 20 we show the dependence of ν3 on the parameter g5.
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Figure 20: The coefficient ν3 as a function of the parameter g5 for the symmetric sixth-order
potential (190).

4.4.8 Tail-amplitude

Similarly to our analysis of the fKdV problem, we use the property that the difference of the
minimal tail-amplitude quasibreather φm and asymmetric breather solution φ− is very small.
The function defined as w = φm − φ− is small in the core region, on the right side of the
core, and also in large regions of the complex r plane. For the cos(nωt) Fourier components
of w we can write

wn = Φn,m − Φn,− , (224)

where Φn,m and and Φn,− are the Fourier components of φm and φ−. Substituting Φn →
Φn + wn into (201) and dropping terms containing products or powers of wn, we obtain
a system of equations linear in wn. Then we can represent the background Φn by the
outer expansion result (191)-(193). The solution of this system for wn will approximate
Φn,m − Φn,− extremely well, since this difference is exponentially small in terms of ε. Since
we are interested in the result for small ε, we substitute ω = 1. The originally nonlinear
terms on the right hand side go to zero in the ε → 0 limit, hence we can consider only the
linear part on the left side. The leading order solution for the dominating cos(3t) radiative
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mode turns out to be
w3 = β sin

(√
8 r − δ

)
, (225)

where the amplitude β and the phase δ are constants. In a higher order version the amplitude
and phase would include r dependent O(ε) contributions, similarly to the WKB result (69)
in case of the fKdV problem.

If the Fourier component Φ3 of a symmetric solution φ contains a tail component propor-
tional to cos

(√
8 r
)
, then one can cancel it by adding the linearized solution w3 with phase

δ = π
2
, decreasing its tail-amplitude while keeping the symmetry. It follows that in the tail

region the solution φm has the Fourier component

Φ3,m = α3 sin
(√

8 r
)
, (226)

where α3 is the minimal tail-amplitude that we intend to express in terms of the constant
ν3. Note that α3 may turn out to be negative, which can be interpreted as a tail shifted by
phase π. Canceling the tail in (226) by subtracting w3 given by (225) with β = α3 and δ = 0

we obtain a very good approximation of the asymmetric solution Φ3,−. Hence the difference
Φ3,m − Φ3,− is given by

w3 = α3 sin
(√

8 r
)
. (227)

This is valid globally, including the core domain, not just in the tail region as (226).
We extend the linearized solution to the complex plane and consider the behavior close to

the first singularity above the real axis by substituting r = iP
ε

+y according to (196). For the
currently discussed one-dimensional case the distance to the singularity is P = π

2
. Writing

the result for w3 in terms of the exponential function we can neglect the term proportional
to exp

(
−
√

8 P
ε

)
. We obtain

w3 =
i

2
α3 exp

(√
8
P

ε

)
exp

(
−
√

8 iy
)
. (228)

Because of its symmetry, the Fourier component Φ3,m is purely real along the imaginary
y axis. In the small ε limit the asymmetric solution Φ3,− tends to the leading order inner
solution Φ

(0)
3,−, which has the imaginary part ν3 exp

(
−
√

8 iy
)
according to (210). From (224)

it follows that Imw3 = − Im Φ
(0)
3,−, which yields

α3 = −2ν3 exp

(
−
√

8
P

ε

)
. (229)

The parameter ε is determined by the frequency of the state through the relation ε =√
1− ω2.
The constant α3 corresponds to the amplitude parameter in equation (146) that describes

the general behavior of a standing wave tail. Hence the energy current averaged for an
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oscillation period, S̄, can be calculated by applying (148). In the one-dimensional case, for
symmetric potentials S̄ = 3

√
8α2, and hence

S̄ = 24
√

2 ν2
3 exp

(
−
√

8
π

ε

)
. (230)

In Figure 21 we show the radiation rate for the φ6 potential given in (190), for the case
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Figure 21: The value of the time averaged energy current S̄ for the symmetric φ6 potential
in case of g5 = 1, as a function of 1/ε.

g5 = 1. The analytical result for the time averaged energy current is given by (230), where
according to (212) we have ν3 = −0.9097496. The numerical results have been obtained
by our time-evolution code, using initial data provided by the small-amplitude expansion
procedure. The agreement is reasonably good, but higher order expansion results and more
efficient numerical codes should be worked out in the future.

4.5 Non-symmetric potentials

In case of d = 1 spatial dimension, if the potential U(φ) is not symmetric around its mini-
mum, we can still calculate the magnitude of the radiation tail by a method similar to the
one presented up to here. In the Fourier expansion (149) of the scalar field there are both
even and odd indexed Φn terms in this case. We extend the functions, the equations and the
small-amplitude expansion results into the complex r plane. In the vicinity of the singularity
which is closest to the real axis we introduce the coordinate y by the relation (196), where
P = π

2
in the one-dimensional case. In the outer region we still solve equations (201), while

in the inner region we solve the leading order equations (204), where the nonlinear terms Fn
are given by (153) in both cases.
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Based on the complex extension of the small-amplitude expansion results (184) - (187),
we look for the solution of the inner equations in the form

Φ(0)
n =

∞∑
k=0

a
(n)
n+2k

1

yn+2k
. (231)

Substituting into the inner equations (204), we obtain

Φ
(0)
0 =

g2

λ

1

y2
+

169g3
2λ+ 144g2λ

2 + 72g2σ − 81g4λ

54λ3

1

y4
+ . . . ,

Φ
(0)
1 = −i

√
2√
λ

1

y
− i
√

2(19g2
2λ+ 18σ)

27λ2
√
λ

1

y3
+ . . . ,

Φ
(0)
2 = − g2

3λ

1

y2
− 220g3

2λ− 243g2λ
2 + 72g2σ − 108g4λ

162λ3

1

y4
+ . . . , (232)

Φ
(0)
3 =

i
√

2 (4g2
2 − 3λ)

36λ
√
λ

1

y3
+ . . . ,

where the definition of the constant λ is in (172), and σ is given in (180). The coefficients
a

(2n)
2k belonging to the Fourier components Φ

(0)
2n are always purely real, while the coefficients

a
(2n+1)
2k+1 belonging to Φ

(0)
2n+1 are purely imaginary.

In the same way as in (206), we decompose the Fourier components into real and imagi-
nary parts, Φ

(0)
n = Ψn+ iΩn. For the asymmetric potential the dominating radiating mode is

Φ2, which also dominates the imaginary part along the imaginary y axis. Into the nonlinear
terms in (204) for the functions Ψn we substitute Φ

(0)
n given by the expansion (231), and we

keep only linear terms in Ωn. Solving the coupled linearized system along the imaginary axis
using the coordinate ỹ = iy, we obtain

Ω0 = ν2 exp
(
−
√

3 ỹ
)(
−2g2

2 − 3λ

6λỹ2
+

√
3(16g4

2 − 24g2
2λ− 45λ2)

270λ2ỹ3
+ . . .

)
, (233)

Ω1 = ν2 exp
(
−
√

3 ỹ
)(
−
√

2g2

3
√
λỹ

+
8
√

6g3
2

135
√
λ3ỹ2

+ . . .

)
, (234)

Ω2 = ν2 exp
(
−
√

3 ỹ
)(

1− 2
√

3(4g2
2 − 15λ)

45λỹ
+

32g4
2 − 282g2

2λ+ 255λ2

675λ2ỹ2
+ . . .

)
, (235)

Ω3 = ν2 exp
(
−
√

3 ỹ
)(√2g2

5
√
λỹ
− 8
√

6g2(g2
2 − 6λ)

225
√
λ3ỹ2

+ . . .

)
, (236)

where ν2 is a constant that will be used to calculate the radiation amplitude.
The coefficient ν2 has been calculated first numerically by Segur and Kruskal [10] for the

case of the φ4 potential. We have improved the calculation by taking into account more
Fourier modes in [62, 155]. We take the potential in the form U(φ) = 1

8
φ2 (φ− 2)2, in which
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case m = 1 and the nonvanishing expansion coefficients are g2 = −3/2 and g3 = 1/2. Apart
from a technical difficulty, the method for the numerical determination of ν2 is similar to
the technique that was described after equation (211). We solve numerically the differential
equations (204) for the complex functions Φ

(0)
n = Ψn + iΩn along a constant Im y = yi line,

starting from a large value of Re y = yr, until we reach the imaginary axis at Re y = 0. As
initial value, we use at the point y = yr + iyi the series (232) calculated up to a certain
1/yn order, and its derivative. Reaching the imaginary axis, from the value of Ω2 we intend
to calculate the coefficient ν2 using (235). However, the determination of the numerical
solution as an initial value problem from the point y = yr + iyi is problematic, because of
the exponential behavior of Φ

(0)
0 . Hence, following the method of Segur and Kruskal [10], at

the point y = yr + iyi we only fix the value of Φ
(0)
0 = Ψ0 + iΩ0, but not its derivative. We

exchange the missing two requirements by the boundary conditions Ω0 = 0 and d
dy

Ψ0 = 0 at
the point y = iyi on the imaginary axis. For the other Φ

(0)
n components we still give their

values and derivatives at the point y = yr + iyi. We used the Maple software package to
solve the coupled differential equations as boundary value problems. We have obtained the
result [62, 155]

ν2 = 8.38866 · 10−3 ± 1 · 10−7 . (237)

Using our notation the result of Segur and Kruskal [10] has been ν2 = (9.0 ± 2.0) · 10−3.
Their main aim was to show that ν2 is nonzero, hence no φ4 breather can exist. No analytical
method is known for the calculation of the coefficient ν2 in case of asymmetric potentials.

The tail-amplitude amplitude α2 of the quasibreather solution can be determined in an
analogous way as for the symmetric potential in Subsection 4.4.8. The difference Φ2,m−Φ2,−

is given by
w2 = α2 sin

(√
3 r
)
. (238)

Extending the linearized solution to the complex plane and neglecting an exponentially small
term above the real axis, in the matching region we obtain

w2 =
i

2
α2 exp

(√
3
P

ε

)
exp

(
−
√

3 iy
)
. (239)

Because of its symmetry, the Fourier component Φ2,m is purely real along the imaginary y
axis. Hence Imw2 = − Im Φ

(0)
2,− for Re y = 0 and Im y < 0. According to (235), to leading

order Im Φ
(0)
2,− = ν2 exp

(
−
√

3 iy
)
, hence for the minimal tail-amplitude we obtain

α2 = −2ν2 exp

(
−
√

3
P

ε

)
, (240)

where P = π
2
. Using (148), for the radiated energy current averaged to an oscillation period

we obtain

S̄ = 8
√

3 ν2
2 exp

(
−
√

3 π

ε

)
. (241)
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For one-dimensional φ4 oscillons, in Figure 22 we show the numerically calculated energy
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Figure 22: The time averaged energy current S̄ for φ4 oscillons as a function of the reciprocal
of the parameter ε calculated from the frequency.

current averaged over an oscillation period, and compare it to the theoretical result given
by (237) and (241). It can be seen that for those relatively large amplitude oscillons for
which we were able to determine the energy loss numerically, the radiation is one or two
magnitude larger than the theoretically predicted value. The obvious reason for this is that
our analytic results are valid only to leading order, for small enough ε values. Nevertheless,
it can be seen that by the decrease of the parameter ε the numerical data gets closer to the
theoretical value. For the φ4 potential the value of the radiation coefficient is very small,
ν2 = 8.38866 · 10−3, which makes the numerical checking of the analytical result especially
difficult.

4.6 Spherically symmetric oscillons

The radiation of higher dimensional spherically symmetric oscillon states can be calculated
similarly to the one-dimensional case, but the procedure is technically more complicated
[63]. We look for time-periodic quasibreather solutions with frequency ω, and we intend to
determine their tail-amplitude. The components Φn of the Fourier expansion (149) satisfy
the equations (152), which for a scalar field with mass m = 1 can be written as

d2Φn

dr2
+
d− 1

r

dΦn

dr
+ (n2ω2 − 1)Φn = Fn . (242)

The Fn expressions on the right-hand side are given by (153). The frequency ω is related to
the amplitude parameter ε by ε2 = 1 − ω2. We extend equations (242) into the complex r
plane, and investigate the behavior of the solutions around the singularity which is closest to
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the real axis. In order to achieve this, we first need to study the small-amplitude expansion
results, which has been presented in Section 4.3 for arbitrary dimensions.

Based on the expressions (184)-(187), the first few Fourier components are

Φ0 =− ε2 1

2
g2p

2
1 (243)

+ ε4

[
−g2p

2
1 − g2p1p3 +

1

6
g2λp

4
1 − g2

(
dp1

dρ

)2

+
31

72
g3

2p
4
1 −

3

8
g4p

4
1

]
+ · · · ,

Φ1 =εp1 + ε3p3 + · · · , (244)

Φ2 =ε2 1

6
g2p

2
1 (245)

− ε4 1

72

[
8g2

(
dp1

dρ

)2

− 12g4p
4
1 + 16g3

2p
4
1 − 24g2p1p3 − 23g2λp

4
1 − 8g2p

2
1

]
+ · · · ,

Φ3 =ε3 1

72
(4g2

2 − 3λ)p3
1 + · · · , (246)

Φ4 =ε4 1

360
p4

1

(
3g4 − 5g2λ+ 5g3

2

)
+ · · · . (247)

The function p1 is connected to S by the relation S =
√
λ p1. The function S is determined

by the base equation (174), where ∆̃ is the Laplacian belonging to the coordinate ρ = εr,
given by (163). The solution S determines the Fourier components Φn up to order ε2.

The important difference with respect to the one-dimensional case is that for higher
dimensions the asymptotically decaying regular, nodeless solution for S is only known in a
numerical form. As we have seen, for one spatial dimension S =

√
2 sech ρ. From the study

of the base equation (174) it also follows that small-amplitude oscillons exist only for d ≤ 3

spatial dimensions [61]. The numerical value of the solution S at the central point was given
in (176) for d = 2 and d = 3 spatial dimensions. The position ρ = iP of the singularity
closest to the real axis can be found by numerical solution of the differential equation along
the imaginary axis, yielding

P =

{
1.0925562 for d = 2 ,
0.6021836 for d = 3 .

(248)

For d = 1 spatial dimension P = π
2
≈ 1.5707963.

In the more than one dimensional case the singularity is not a simple pole as in (195),
but because of the appearing logarithmic terms it is a branch point. Introducing R by
ρ = iP +R, the expansion of S contains the following terms:

S =
∞∑
k=0

∞∑
j=4k−1

Sj,k R
j [ln(iR)]k . (249)

The constants Sj,k are real for even j, and purely imaginary for odd j, hence S takes real
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values on the imaginary axis. The first few orders of the expansion are:

S = −i
√

2

R
+

√
2(d− 1)

6P
− i
√

2(d2 − 6P 2 − 8d+ 7)

36P 2
R

−
√

2(d− 1)(4d2 − 18P 2 − 35d+ 85)

216P 3
R2 (250)

− i
√

2(d− 1)(2d3 − 9dP 2 − 21d2 + 18P 2 + 72d− 80)

135P 4
R3 ln(iR) + · · · .

In order to calculate the Fourier components Φn up to order ε4 using equations (243)-
(247), it is necessary to know the function p3. This function is related by the expression
(179) to the potential independent function Z, which can be obtained by the solution of
(181). For one space dimension Z can be obtained by the equations (182) and (175). For
d ≥ 2 the behavior of the function Z on the imaginary axis can be studied by the numerical
solution of the differential equation, using the central values given in (183). The first few
terms of the expansion of Z are:

Z =− i2
√

2

3R3
− 8
√

2(d− 1)

15P

ln(iR)

R2
+ Z−2,0

1

R2
+
i
√

2(d2 − 45P 2 − 32d+ 31)

45P 2

1

R

+
2
√

2(d− 1)(d2 − 6P 2 + 2d+ 1)

135P 3
ln(iR) + · · · , (251)

where the constant Z−2,0 can be obtained by numerical methods.

4.6.1 Inner solution

In the expressions (243)-(247) the function p1 always appears with at least one ε factor.
Similarly, p3 has at least ε3 factor. According to (196) we introduce the y = R/ε inner
coordinate for more than one dimensions as well. Hence up to order ε,

εS =
−i
√

2

y
+ ε

√
2(d− 1)

6P
, (252)

ε3Z =− i2
√

2

3

1

y3
− ε ln ε

8
√

2(d− 1)

15P

1

y2
− ε 8

√
2 (d− 1)

15P

ln(iy)

y2
+ εZ−2,0

1

y2
. (253)

Based on these considerations, substituting into (243)-(247), the inner expansion of the
Fourier components Φn in terms of ε starts in the following way:

Φn = Φ(0)
n + ε ln εΦ(1)

n + εΦ(2)
n +O(ε2 ln ε) , (254)

where the functions Φ
(k)
n are already ε independent.

Using the coordinate y in the inner region, the first terms of the expressions (252) and
(253), which are ε independent, are also independent of the dimension d. Since the parameter
d does not appear in (243)-(247) either, the functions Φ

(0)
n will be the same as in the earlier
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discussed one-dimensional case. Hence the first terms of the expansion of Φ
(0)
n are given

by (232). By this we have shown that the leading order behavior of the Fourier modes in
the inner region are dimension independent, and we can apply the one-dimensional results
that were presented in detail earlier. Only the position of the singularity is changing for
different dimensions, according to (248). Since it is relatively easy to calculate the next
order correction for small ε, we continue with the study of the ε ln ε term in (254).

The terms of the functions Φ
(1)
n which can be obtained from equations (243)-(247) are

Φ
(1)
0 = −16ig2(d− 1)σ

15λ3P

1

y3
+ . . . ,

Φ
(1)
1 = −8

√
2(d− 1)σ

15λ2
√
λP

1

y2
+ . . . , (255)

Φ
(1)
2 =

16ig2(d− 1)σ

45λ3P

1

y3
+ . . . ,

where the definition of the constant σ was given in (180). These and the values of Φ
(0)
n given

by (232) are consistent with the relation

Φ(1)
n = C

d

dy
Φ(0)
n , (256)

where the constant C is given by

C =
8i(d− 1)σ

15λ2P
. (257)

It can be checked that Φ
(1)
n given by (256) is really the appropriate solution of the ε ln ε part

of the inner Fourier mode equations [63, 155]. However, the value of the constant C can be
obtained only from the small-amplitude expansion.

For a potential U(φ) which is not symmetric around its minimum, the imaginary part
along the imaginary y axis is dominated by the second Fourier mode, which is also the main
radiating mode. The imaginary part of the asymmetric solution Φ

(0)
2,− is still given by (235).

For a symmetric potential the imaginary part and the radiation is dominated by the third
mode, and Im Φ

(0)
3,− is given by (210). We can write the leading order behavior along the

lower half of the imaginary y axis for both cases in the following unified way:

Im Φ
(0)
k,− = νk exp(−i

√
k2 − 1 y) , (258)

where now and in the rest of this subsection we set k = 3 for potentials symmetric around
their minimum, and k = 2 for asymmetric potentials. The value of νk is exactly the same as
for one-dimension, we can use the numerical or Laplace transform results obtained there.

From (256) it follows that the ε ln ε component along the imaginary axis behaves as

Im Φ
(1)
k,− =

√
k2 − 1Cνk exp(−i

√
k2 − 1 y) , (259)
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where the constant C is given in (257). Taking into account the order ε ln ε contributions
but neglecting order ε and higher order terms, the imaginary part of the full kth Fourier
component behaves as

Im Φk,− = iνk

(
1 + C̃ ε ln ε

)
exp(−i

√
k2 − 1 y) (260)

for Re y = 0, Im y < 0, where C̃ = −i
√
k2 − 1C is a constant. It is a real number,

C̃ =
√
k2 − 1

8(d− 1)σ

15λ2P
. (261)

4.6.2 Linearized solution

We write the small difference of the minimal tail and the asymmetric Fourier component
solutions as

wk = Φk,m − Φk,− . (262)

Note that although the asymmetric solution is singular at r = 0, the differences wk are small
in the tail region and in most of the core region, also including the complex extension.

Similarly to the one-dimensional case, wk can be well approximated by the solution of the
linearized version of equation (242). The linearized equation can be obtained by dropping
the terms on the right-hand side, and since ε is small we can take ω = 1. For d spatial
dimensions the general solution can be written in terms of Bessel functions,

wk =
4
√
k2 − 1

√
π

2
r1− d

2

[
αkY d

2
−1

(√
k2 − 1 r

)
+ βkJ d

2
−1

(√
k2 − 1 r

)]
, (263)

where αk and βk are real constants. The x→∞ asymptotic behavior of the Bessel functions
are

Jν(x) ≈
√

2

πx
cos
(
x− νπ

2
− π

4

)
, (264)

Yν(x) ≈
√

2

πx
sin
(
x− ν π

2
− π

4

)
. (265)

Setting αk = 0, the function wk becomes symmetric and regular at the center, hence the
minimal tail solution cannot have the J d

2
−1 component. It follows that (262) holds with

β = 0. Hence for large |r|,

wk =
αk

r
d−1
2

sin
[√

k2 − 1 r − π

4
(d− 1)

]
. (266)

Writing it in terms of exponential functions,

wk =
iαk

2r
d−1
2

[
i
d−1
2 exp(−i

√
k2 − 1 r)− (−i) d−1

2 exp(i
√
k2 − 1 r)

]
. (267)
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In the vicinity of the singularity above the real r axis, making the substitution r = iP
ε

+ y,
because of the factor exp(−P/ε) the second term of (267) becomes negligible, and since in
the matching region |y| � P/ε, to leading order in ε we obtain

wk =
1

2
iαk

( ε
P

) d−1
2

exp

(√
k2 − 1

P

ε

)
exp(−i

√
k2 − 1 y) . (268)

4.6.3 Tail-amplitude

Since Φk,m is symmetric, it is purely real along the imaginary y axis. Hence from (262) it
follows that Im Φk,− = − Imwk for Re y = 0 and Im y < 0. Hence comparing (268) with
(260) we obtain the tail-amplitude

αk = −2νk

(
1 + C̃ ε ln ε

)(P
ε

) d−1
2

exp

(
−
√
k2 − 1

P

ε

)
, (269)

where C̃ is the constant given in (261). For d = 1 spatial dimension C̃ = 0, and the
expression yields (229) and (240) for symmetric and asymmetric potentials.

In the expression (269) giving the radiation amplitude αk the coefficient νk is independent
of the number of spatial dimensions, hence one can apply the methods presented for the one-
dimensional case. For symmetric potentials it is advisable to use the Laplace transform
method presented in Subsection 4.4.7, applying the identity ν3 = −K2π/2. For potentials
that are not symmetric around their minimum only the numerical integration method works,
which has been discussed in Subsection 4.5. Although νk agrees, but the expression (269) for
the tail-amplitude differs in several ways from the one-dimensional result, which generally
results in larger radiation amplitude for higher dimensions. According to (248), the distance
P of the singularity from the real axis becomes smaller when increasing the number d of
space dimensions, which makes the exponential term less small in (269). The factor ε(d−1)/2

in the denominator also increases the radiation amplitude αk for the case of d > 1. Since
for 0 < ε < 1 the value of ε ln ε is negative, according to (261), the logarithmic correction
for σ > 0 decreases, and for σ < 0 increases the radiation with respect to the leading order
result. The constant σ has been defined in (180) in terms of the expansion constants gk that
determine the potential.

The parameter αk corresponds to the amplitude parameter in equation (146) that de-
scribes a general tail. Hence the energy current averaged for an oscillation period, S̄, can be
calculated using (148), where ωf = k and λf =

√
k2 − 1 , yielding

S̄ =
π

d
2

Γ
(
d
2

)4ν2
k k
√
k2 − 1

(
1 + C̃ ε ln ε

)2
(
P

ε

)d−1

exp

(
−2
√
k2 − 1

P

ε

)
. (270)

For a symmetric potential k = 3, otherwise k = 2. The constant C̃ is defined in (261). The
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dimension dependent factor is:

π
d
2

Γ
(
d
2

) =


1 for d = 1 ,
π for d = 2 ,

2π for d = 3 .
(271)

In Figure 23 we show the radiation rate for the φ6 potential given in (190) with g5 = 1,
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Figure 23: The time averaged energy current S̄ for the φ6 potential with g5 = 1 in case of
d = 2 spatial dimensions.

for d = 2 spatial dimensions. The analytical result is given by (270). We also show the
leading order result which can be obtained by dropping the ε ln ε order correction. The ε ln ε

contribution takes us closer to the numerical results.
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5 Self-gravitating scalar fields – oscillatons

5.1 History and physical significance of oscillatons

The discovery of localized states formed by self-gravitating real scalar fields happened com-
pletely independently from the studies of flat background oscillons. A possible reason for this
might be that in the gravitational case, because of the nonlinearity of the Einstein equations,
a non-self-interacting massive Klein-Gordon field is already able to form long-lived localized
states, while for flat background a nontrivial U(φ) potential is necessary for this.

It was first shown by Seidel and Suen in 1991, that coupling the Einstein equations to
a real Klein-Gordon field localized states can form, which appear time-periodic [78]. In
their first paper they called these objects oscillating soliton stars. Looking for time-periodic
solutions, they have solved the system of ordinary differential equations for the first few
Fourier modes, and up to the reached precision they have found localized solutions. Using
these as initial data in a numerical code developed for the spherically symmetric system, they
have indeed obtained very closely periodically evolving states. This has also indicated the
stability of the oscillating soliton stars. They have also shown that from general spherically
symmetric initial data similar long-lived solutions can evolve, which supported the physical
significance of the solutions. Although by the applied numerical precision the solutions
appeared to be completely time-periodic, the authors have commented that it is possible
that still there is a very slow change in the amplitude and frequency.

Soliton stars can be formed from both real and complex scalar fields. In case of a complex
field the forming objects are known as boson stars [162, 163, 164, 165, 166, 128]. For boson
stars only the argument of the complex scalar field φ depends on time, in the form eiωt,
the metric of the spacetime remains time-independent. For a real scalar field soliton star
both the scalar and the metric oscillate in time, which makes the investigation technically
much more complicated. For the oscillating soliton stars formed from real scalar fields in
a second paper Seidel and Suen [79] have introduced the name oscillaton. The use of this
name became generally accepted in the literature.

Similarly to flat background oscillons and to complex scalar boson stars, oscillatons are
members of a one-parameter family of solutions. Increasing the central amplitude, the size
of the oscillatons becomes smaller, and their frequency also decreases. Initially the mass of
the oscillaton grows, but with the decrease of the size we get to an Mcrit maximal mass state.
Further decreasing the size the oscillaton becomes unstable as the mass decreases.

Oscillatons formed from scalar fields in various cosmological models has been considered
as dark matter in galaxies [85, 167]. The smaller the amplitude of the oscillaton is, the
less important are the higher order Fourier components, and the more similar the oscillaton
becomes to the same mass boson star configuration. We can find detailed numerical results
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obtained by using the Fourier expansion up to the tenth order in the paper of Ureña-López,
Matos and Becerril [168]. However, the numerical precision used there did not make possible
the detection of the necessarily existing standing wave tail, which is many orders of magni-
tude smaller than the typical amplitude in the inner core domain. In the same paper, it was
shown that for small amplitudes, i.e. for large size and weak gravitation, the time-periodic
oscillatons and boson stars can be described by a specific system of two coupled second-order
ordinary differential equations. These are known as Schrödinger-Newton equations in the
literature.

Applying a numerical code developed for the time-evolution of a spherically symmetric
general relativistic real scalar field, Alcubierre at al. [169] have studied in detail the behavior
of deformed oscillatons. If one applies a relatively small perturbation on oscillatons, they
perform low frequency quasinormal oscillations with decreasing amplitude, and they tend to
another nearby oscillaton state. However, if as a result of the deformation the mass of the
system becomes larger than the Mcrit maximal oscillaton mass, then the end result can be a
black hole. These investigations not only show that the oscillatons are stable, but also that
they correspond to one of the general end states of the system.

Most studies of oscillatons have been restricted to the case of the non-self-interacting
massive Klein-Gordon potential U(φ) = 1

2
m2φ2. Not only because this is the simplest and

most natural choice, but also because it can be shown that for small amplitudes and large
sizes the gravitational interaction dominates above the self-interaction of the scalar field.
For other potentials the maximal mass Mcrit can become larger, similarly to boson stars
[170, 171].

There are one-parameter families of time-periodic oscillaton solutions, which are indexed
by the number of nodes (crossings of zero) of the scalar field as a function of the radial
coordinate [168]. Balakrishna at al. [172] have constructed time-periodic excited states with
nodes, and by a time-evolution code they have demonstrated that the excited states are
unstable. Relatively small amplitude excited states evolve into ground state oscillatons,
while large amplitude ones collapse to black holes. In the same paper the first results about
non spherically symmetric oscillatons can be found, obtained by the use of a 3+1 dimensional
time-evolution code. According to the simulations, non spherically symmetric perturbations
quickly decay by the emission of gravitational radiation. A 3 + 1 dimensional code is used
in [173] for studying the time-evolution of spherically symmetric oscillaton initial data with
physically motivated U(φ) interaction potentials.

The real scalar field necessary for the formation of oscillatons may be provided most
naturally by axions and similar low mass weakly interacting hypothetical bosonic particles.
If the self-interaction is determined by a potential U(φ) describing an axion field, then in
several articles the forming oscillatons are named axion stars. When an axion star and a
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neutron star is collided, the end result is an axion cloud around a black hole or a neutron
star [174]. Scalar dark matter may be accumulated in the center of stars, and form an
oscillaton-like core there. Contrary to initial expectations, the accumulation of dark matter
does not enhance the collapse of stars into black holes [121]. At the collision of oscillatons the
emitted gravitational waves may be quite different from the waves emitted by the collision
of black holes [175]. Boson stars and oscillatons are both members of a larger family of
more complicated scalar field localized solutions [176, 177]. For more detailed review on the
history and physical applications of oscillatons please see [155, 166, 128].

Although in their 1991 paper showing the existence of oscillatons Seidel and Suen [78]
have pointed out that it is possible that oscillatons lose energy very slowly by radiating out
scalar field, the authors of many subsequent papers could not find any indication supporting
this in their numerical simulations. Generally, it was implicitly assumed that oscillatons are
really exponentially localized and time-periodic. It was first pointed out by Don Page in
2003 that oscillatons must necessarily radiate, giving the first results for their classical and
quantum radiation rate [80]. That no indication of mass-energy loss was observed in several
papers is understandable in view of how much smaller is the amplitude of the tail responsible
for the radiation in comparison to the amplitude of the core. The most favorable case to
observe the tail is the maximal mass stable oscillaton, when the central amplitude is near
0.5. For this oscillaton the amplitude of the scalar field decreases exponentially when going
outwards, until the oscillating tail appears with magnitude of the order 10−8. For smaller
mass smaller amplitude oscillatons the ratio of the tail and core amplitudes become even
smaller, since the magnitude of the tail decreases exponentially as a function of the central
amplitude.

5.2 Scalar fields in general relativity

We investigate a real scalar field φ coupled to gravity in the framework of general relativity.
The self-interaction of the scalar is determined by the potential U(φ). In our papers [81, 155]
we have considered d+ 1 dimensional spherically symmetric spacetimes, showing that small
amplitude localized oscillatons only exist for 3 ≤ d ≤ 5 spatial dimensions. For ease of
understanding, here we only deal with the physically important 3 + 1 dimensional case. We
denote the coordinates by xa, and assume that the signature of the metric gab is (−+ ++).
We use G = c = ~ = 1 Planck units.

We have to solve the Einstein equations

Gab = 8πTab , (272)

where the stress-energy tensor of the scalar field is

Tab = ∇aφ∇bφ− gab
[

1

2
∇cφ∇cφ+ U(φ)

]
. (273)

88

               fodor.gyula_298_24



The Klein-Gordon equation can be written as

∇a∇aφ = U ′(φ) , (274)

This wave equation is not independent from the Einstein equations, since it can also be
obtained by taking the divergence of (272) and using the twice contracted Bianchi identity
∇aGab = 0.

Considering them as functions of the coordinates xc, if the scalar φ(xc) and metric gab(xc)
solves the Einstein equations with potential U , then for arbitrary positive constant γ

φ̂(xc) = φ(γxc) , ĝab(x
c) = gab(γx

c) (275)

is also a solution, with rescaled potential γ2U . We can use this freedom to set the value
of the scalar field mass to an arbitrary positive value. In case of spherical symmetry and
spherical coordinates the rescaling of the angular coordinates is of course not necessary, one
only has to rescale the time t and radial r coordinates. The characteristic length scale of
the system is determined by the scalar field mass m. Hence it is natural to make the choice
m = 1, which we will assume in the following. At the application of the physically interesting
results we can use the rescaling (275) to restore the m dependence.

We assume that the potential U(φ) has a minimum at the place φ = 0, and its value there
is U(φ) = 0. We assume that the potential is analytic, and write the expansion around the
minimum of the potential in the form (150), in terms of the mass m of the scalar field and
the coefficients gk. In the wave equation (274), which describes the evolution of the scalar
field, the derivative of the potential, U ′(φ), is given by (151).

In order to eliminate the 8π factors appearing at the terms containing the scalar field,
we introduce a rescaled scalar field and a rescaled potential,

φ̃ =
√

8π φ , Ũ(φ̃) = 8πU(φ) . (276)

Then, according to (273), the right-hand side of the Einstein equations is

8πTab = ∇aφ̃∇bφ̃− gab
[

1

2
∇cφ̃∇cφ̃+ Ũ(φ̃)

]
. (277)

The expansion of the rescaled potential is

Ũ(φ̃) =
1

2
m2φ̃2 +

∞∑
k=2

1

k + 1
g̃kφ̃

k+1 , (278)

where the transformation of the constants determining the expansion are

g̃k =
gk

(8π)(k−1)/2
. (279)

Since Ũ ′(φ̃) =
√

8π U ′(φ), the form of the wave equation (274) is unchanged,

∇a∇aφ̃ = Ũ ′(φ̃) . (280)
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5.3 Spatially conformally flat coordinates

We study spherically symmetric spacetimes using coordinates xa = (t, r, θ, ϕ). We can choose
the metric diagonal, and name the components in the following way,

gtt = −A , grr = B , gθθ = C , gϕϕ = C sin2 θ , (281)

where A, B and C are functions of the time coordinate t and radial coordinate r. The
spherically symmetric diagonal metric form (281) does not yet fixes uniquely the applied
coordinate system. The Einstein equations only give sufficient conditions for two of the
functions A, B and C, one function can be chosen freely. The most often applied method for
fixing the diffeomorphism freedom is the choice of the radial coordinate r =

√
C, i.e. the use

of Schwarzschild coordinates. The assumption that the metric is diagonal fixes the constant
t hypersurfaces as well.

However, as it was pointed out first by Don N. Page [80], it is more reasonable to use a
coordinate system in which the three-dimensional space is conformally flat. This is satisfied
if gθθ = r2grr, which in our notation requires that

C = r2B . (282)

This choice is motivated by the realization that in this case the oscillation of the metric
component gtt is smaller. In correlation to this, the oscillation sensed by observers moving
on constant (r, θ, ϕ) coordinate lines is much larger in the Schwarzschild case. For small
amplitude configurations, if the amplitude of the oscillaton is order ε2, then the periodically
oscillating part of the acceleration of these observers is order ε3 in case of Schwarzschild
coordinates, while it is order ε5 small for the spatially conformally flat case. In the remaining
part of this review we will only use the conformally flat coordinates determined by (282).

Using the conformally flat coordinate system, the nontrivial linearly independent com-
ponents of the Einstein equations can be written in the following form:

3

2B2
(B,t)

2 − 2A

r2B5/4

(
r2B,r

B3/4

)
,r

=
(
φ̃,t

)2

+
A

B

(
φ̃,r

)2

+ 2A Ũ(φ̃) , (283)

(r2B),r
2r4A2B2

(
r2A2B

)
,r
− 2B1/4

A1/2

(
B,t

A1/2B1/4

)
,t

− 2

r2
=
(
φ̃,r

)2

+
B

A

(
φ̃,t

)2

− 2B Ũ(φ̃) , (284)

− A1/2

(
B,t

A1/2B

)
,r

= φ̃,t φ̃,r , (285)

rB

A1/2

(
A,r

rA1/2B

)
,r

+ rB1/2

(
B,r

rB3/2

)
,r

= −2
(
φ̃,r

)2

. (286)

We have chosen the components such that the right-hand sides of (283)-(286) should cor-
respond to 16πTtt, 16πTrr, 8πTtr and 16π(Tθ1θ1/r

2 − Trr), respectively. The wave equation
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(280) in case of spatially conformally flat coordinates is

φ̃,rr
B
− φ̃,tt

A
+

φ̃,r
2r4AB2

(
r4AB

)
,r
− φ̃,t

2B3

(
B3

A

)
,t

− Ũ ′(φ̃) = 0 . (287)

Assuming that the scalar field tends to zero fast enough at infinity, the metric of the
spacetime must tend to the vacuum Schwarzschild metric. In the spatially conformally flat
system, when C = r2B, the Schwarzschild metric can be written in the form

ds2 = −
(

2r −M
2r +M

)2

dt2 +

(
1 +

M

2r

)4 [
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
, (288)

where M is the total mass.

5.4 Time-periodic solutions

It is considerably simpler to examine exactly time-periodic solutions than radiating systems
with slowly changing frequency. These time-periodic solutions have a large amplitude core
and a small amplitude standing wave tail (or wing). They have been named nanopterons by
Boyd [156, 5]. The nanopteron with the minimal amplitude tail is called quasibreather, and
the amplitude of the quasibreather’s tail determines the mass loss of the radiating state [60].

For the exactly time-periodic solutions oscillating with frequency ω we look for the scalar
field and metric components in the following Fourier series form:

φ̃ =

NF∑
n=0

Φn cos(nωt) , (289)

A = 1 +

NF∑
n=0

Ãn cos(nωt) , (290)

B = 1 +

NF∑
n=0

B̃n cos(nωt) , (291)

where φn , Ãn and B̃n only depend on the radial coordinate r, and NF > 0 is some integer.
Although the exact expansion should consist of infinitely many components, due to the ex-
ponential convergence we can already get very good approximation by taking NF moderately
high. We assume that the frequency ω is somewhat lower than the mass threshold m = 1.
We note that since the definition (289) contains φ̃, there is a

√
8π factor difference between

the Φn functions used here and in Section 4.
The necessary and sufficient condition for the regularity at the center is that the functions

Φn, Ãn and B̃n should be finite at the center r = 0, and that their derivative should be zero
at that point. For the r →∞ asymptotic boundary condition the most natural assumption
is that the metric should be asymptotically flat, and the coordinate t should tend to the
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proper time. As we will see soon, this is a too restrictive condition, but if we do not go out
to extreme large r radii, it can still be applied. The asymptotic flatness holds if Ãn → 0 and
B̃n → 0 for all n ≥ 0 when r → ∞. The components of the wave equation (287) at large
distances can be approximated by (152) which is valid on flat background. If the scalar field
tends to zero, the nonlinear source terms Fn become negligible, and the Fourier equations
decouple. In the frequency domain 1

2
< ω < 1, which is relevant for the oscillatons, for

n ≥ 2 the asymptotic behavior of the functions Φn is still described by (156), in terms of the
amplitude parameters α̃n and β̃n. In the same way as at the flat background calculations,
the energy density tends to zero proportionally to r−2. From this follows that if any of the
amplitudes α̃n or β̃n is nonzero for any n ≥ 2, then the proper mass becomes infinite, and
the spacetime cannot be asymptotically flat. The vanishing of all α̃n and β̃n for all Fourier
modes, together with the central regularity, obviously present too many boundary conditions
for the second-order differential equations determining Φn. Generally, we cannot expect the
existence of exactly time-periodic finite mass centrally regular solutions.

If we require that α̃n = β̃n = 0 for all n ≥ 2, then all Φn tend to zero exponentially, and
we obtain a finite mass asymptotically flat solution. However, this solution will be singular
at the center r = 0. This corresponds to the asymmetric solution we have used in Subsection
4.6. Based on counting the parameters, for any fixed ω frequency the asymmetric breather
solution is unique. Apart from a small region around the center, the asymmetric solution is
very close to the intended quasibreather solution, which has a regular center and a minimal
amplitude tail.

It is important to clarify that the quasibreather description is only valid inside a very
large but finite radius. However small is the energy density of the oscillating tail, if we
consider large enough spheres the contribution of the tail to the total mass will not be
negligible anymore. Consequently, the assumption that Ãn and B̃n tend to zero will not
remain valid for arbitrarily large r values, and the form of the wave equation (152) will also
change. For large enough r values the metric component A slowly becomes so large that the
first radiating Fourier component, which is Φ3 for symmetric potentials and Φ2 otherwise,
becomes a decaying mode instead of oscillating. Going out for even larger r, one by one
all the other Φn stop being oscillating. In this way, we obtain exactly time-periodic but
infinite mass breather solutions, which has been discussed in more detail in Chapter IX of
the paper of Don N. Page [80]. The quasibreathers investigated in the present review can
be considered as parts of these infinite mass breathers inside a sphere of large radius. The
quasibreather contains the core region and also a considerable part of the tail region, where
the first radiating mode oscillates, but inside the given radius the contribution of the tail to
the mass is still negligible in comparison to the mass of the core.

For potentials U(φ) which are symmetric around their minimum, i.e. g̃2k = 0 for integer
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k, the Fourier expansion of the scalar contains only odd, while the metric only even indexed
components, Φ2k = 0, Ã2k+1 = 0 and B̃2k+1 = 0. For symmetric potentials the first radiating
mode is Φ3. In the following, we will mainly study symmetric potentials. Obviously, the
Klein-Gordon potential, for which g̃k = 0 for k > 1, is symmetric as well.

5.5 Numerical results

We have used a high precision spectral numerical method to determine the structure of
quasibreathers for a self-gravitating real Klein-Gordon field with mass m = 1. Our code
uses the KADATH spectral library, which has been developed by Philippe Grandclément
[178, 179]. The details of the method can be found in our paper [82] and in the review [155].
The current thesis is focused on asymptotic expansion methods, so here I only present the
main results obtained by the code.

In Figure 24 we show the change of the scalar field and the metric functions during
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Figure 24: Time evolution of the scalar field φ̃ and the metric components A and B during
one oscillation period for an oscillaton with frequency ω = ωc = 0.8608.

one oscillation period in the core domain for the Klein-Gordon oscillaton with the critical
frequency ω = ωc = 0.8608. Oscillatons with lower than the critical frequency are unstable,
while for ωc < ω < 1 they are stable. It can be seen that for A and B the oscillations around
the static component 1 + Ã0 and 1 + B̃0 in (290)-(291) are relatively small. Studying higher
frequency states, it turns out that approaching the value 1 with the frequency ω the relative
magnitude of the oscillation in A and B becomes even smaller, and the state becomes more
similar to the complex field boson star configuration.

In Figure 25, for the same critical frequency oscillaton, we give the radial dependence of
the first few Fourier modes of the scalar field. Because of the several magnitude variation
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Figure 25: The Fourier components Φn of the scalar field φ̃ at the frequency ω = 0.8608.

of the functions we show their absolute value in logarithmic scale. The downwards pointing
peaks correspond to zero crossings. In Figure 26 we can see the components of the metric
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Figure 26: The Fourier components Ãn of the metric function A, in case of ω = 0.8608.

function A, while in Figure 27 we show the components of B. We can obtain similar figures
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Figure 27: The Fourier components B̃n of the function B, for ω = 0.8608.

94

               fodor.gyula_298_24



for other frequencies as well. With the increase of the frequency the tail-amplitude decreases
very quickly. As the frequency approaches the threshold value 1, the relative magnitude of
the higher Fourier modes with respect to the base mode also decreases, and hence in those
cases we can already get precise approximation by taking into account fewer Fourier modes.

A crucial result of our numerical simulations is the demonstration that there is no such
frequency ω for which the oscillating tail responsible for the radiation vanishes. The dominant
part of the tail is in the third mode, having the form Φ3 ≈ α3

1
r

cos(λ3r + δ3), where λ3 =√
9ω2 − 1. In the upper panel of Figure 28 we give the frequency dependence of the minimized
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Figure 28: Frequency dependence of the minimized amplitude α3 and phase δ3.

amplitude α3 in the domain where the tail is large enough so that we were able to compute
it numerically. In the lower panel of the figure we also give the phase δ3 belonging to the
minimal tail-amplitude. The observation that there is no such ω for which α3 = 0 shows
that there is no exactly periodic localized breather solution of the system.

In Figure 29 we plot the total mass M belonging to the core part of the oscillatons. The
mass is maximal at the frequency ωc = 0.8608, with value Mc = 0.60535. This critical state
separates from each other the domain of the stable and the unstable oscillatons. Although
the mass has a maximum, the central values of the Fourier modes Φ1 and Φ3, and hence also
the central energy density, are all monotonically decreasing functions of the frequency ω.

95

               fodor.gyula_298_24



0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.82 0.84 0.86 0.88 0.9 0.92 0.94

stableunstable

ω
c
=

0.
86
08

M

ω

Figure 29: The mass of Klein-Gordon oscillatons as a function of their frequency.

5.6 Small-amplitude expansion of oscillatons

The method described in Section 4.3 for the description of small amplitude oscillons can
be generalized for self-gravitating scalar fields as well. The leading order of the expansion,
usually derived by less systematic methods, has been already known in the literature [168,
80, 180], and leads to the Schrödinger-Newton equations. At first, we have generalized our
method for a coupled dilaton-scalar system on flat background [181]. This theory also leads
to the Schrödinger-Newton equations at leading order, and it behaves very similarly to the
gravitational system. In the rest of this subsection we present our results about the expansion
of 3 + 1 dimensional spherically symmetric oscillatons in general relativity, published in [81].
This asymptotic expansion gives a very good approximation to the core domain, but it is
unable to describe the tail region which is responsible for the radiation. According to this
approximation the scalar field φ tends to zero at large distances exponentially at each order
of the expansion.

We look for a family of localized spherically symmetric solutions of the (272) Einstein
equations and the (280) wave equation, which are characterized by a parameter ε related to
the amplitude of the states. We use the coordinate system determined by (282), in which case
the spatial part of the metric is conformally flat. Similarly to flat background oscillons, we
expect that the smaller the central amplitude of an oscillaton is, the larger its size becomes.
Numerical simulations clearly support this expectation. Hence we introduce a new rescaled
radial coordinate ρ by

ρ = εr . (292)

This also implies that we are looking for solutions which are slowly varying in space.
We expand the scalar field φ̃ and the metric components in terms of the powers of ε,

φ̃ =
∞∑
k=1

ε2kφ2k , (293)
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A = 1 +
∞∑
k=1

ε2kA2k , (294)

B = 1 +
∞∑
k=1

ε2kB2k . (295)

Since we intend to use asymptotically Minkowskian coordinates, where far from the oscillaton
the coordinate t measures the proper time and r measures the radial distance, we search for
such φ2k, A2k and B2k functions which tend to zero if ρ→∞.

The largest difference with respect to flat background oscillons is that in (293)-(295) there
are only even powers of ε. For small amplitude configurations, if we assume that with the
increase of the parameter ε the spatial size decreases as 1/ε, then for flat background oscillons
the amplitude of the core grows proportionally to ε, while for self-gravitating oscillatons the
growth is proportional to ε2. This is a fundamental difference between the scaling properties
of the two kind of objects.

The oscillation frequency also depends on the amplitude of the oscillatons. Similarly to
the flat background case, the smaller the amplitude is the closer the frequency gets to the
value m = 1. In view of this, we introduce a rescaled time coordinate τ by

τ = ωt , (296)

where ω is a function of the parameter ε. We choose the coordinate τ in such a way, that in
terms of that, the frequency should be exactly 1, independently of ε. Since we have already
set the scalar field mass to m = 1, the value of ω gives the oscillation frequency of the
oscillaton. Similarly to flat background oscillons, it can be shown that a natural way to
choose the relation between the frequency and the amplitude parameter is

ω2 = 1− ε2 . (297)

5.6.1 Leading order results

The field equations that we have to solve are the (283)-(286) Einstein equations and the
(287) wave equation. In the equations only the even powers of the frequency ω appear, of
which we can substitute by the help of (297). After this, we can separately solve the parts
of the equations proportional to εn, in increasing orders of n.

We get the first conditions at order ε2. From the Einstein equations follow that ∂2B2

∂τ2
= 0

and ∂2B2

∂τ∂ρ
= 0. Since we are looking for solutions that remain bounded as the time passes,

we get
B2 = −a2 , (298)

where a2 is a new function that only depends on ρ. From the wave equation follows that
∂2φ2
∂τ2

+ φ2 = 0. This has the solution φ2 = p2 cos(τ + δ), where p2 and δ are functions of ρ.
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At higher order of the expansion it turns out that δ is constant, so it can be set to zero by
a shift of the time coordinate τ . Hence

φ2 = p2 cos τ . (299)

The radial dependence of the new functions a2 and p2 will be determined at higher orders.
From the ε4 part of the Einstein equation (283) follows that

d2a2

dρ2
+

2

ρ

da2

dρ
=

1

2
p2

2 . (300)

The ε4 part of the equation (286) gives the condition

∂

∂ρ

{
1

ρ

∂

∂ρ
[A2 − a2]

}
= 0 . (301)

The solution is A2−a2 = ρf1+f2, where f1 and f2 are two functions of τ . Since we are looking
for solutions such that both A2 and a2 tend to zero at infinity, necessarily f1 = f2 = 0, and
hence A2 is time independent,

A2 = a2 . (302)

Using this, from the ε4 part of the Einstein equation (284) follows the condition:

∂2B4

∂τ 2
=
p2

2

2
cos (2τ) . (303)

The solution, which is not growing without bound as time increases, can be written as

B4 = b4 −
p2

2

8
cos (2τ) , (304)

where b4 is a further arbitrary function of ρ.
The part of the wave equation (287) which is proportional to ε4 gives

∂2φ4

∂τ 2
+ φ4 +

g̃2

2
p2

2 [1 + cos(2τ)]−
[

d2p2

dρ2
+

2

ρ

dp2

dρ
− p2 − p2a2

]
cos τ = 0 . (305)

The structure of this equation is the same as that of (165) written at the flat background
case. Solution that remains bounded in time can only exist for φ4 if the coefficient of the
resonant cos τ term vanishes, from which it follows that

d2p2

dρ2
+

2

ρ

dp2

dρ
= p2(a2 + 1) . (306)

This equation and (300) form a coupled system for a2 and p2, of which localized solution may
exist. The solution of this system determines the leading ε2 order behavior of the functions
φ̃, A and B for small amplitude oscillatons. Up to this order the functions are the same for

98

               fodor.gyula_298_24



arbitrary scalar potential, assuming that the mass of the scalar field has been set to the value
m = 1. This means that small amplitude, and hence large sized, oscillatons always behave
in the same way as in the Klein-Gordon case. In other words, the gravitational interaction
dominates over the self-interaction of the scalar for small-amplitude configurations.

If the resonance condition (306) is satisfied then (305) determines the time dependence
of φ4,

φ4 = p4 cos τ +
g̃2

6
p2

2 [cos(2τ)− 3] , (307)

where p4 is a function of ρ. The φ4 given in (307) still remains a solution if we add a further
q4 sin τ term, where q4 is an arbitrary function of ρ. However, from the equations at higher
orders in ε follows that by a small shift in τ it is always possible to set q4 = 0. Similarly, at
all higher orders of ε it can be shown that only terms with time dependence cos(kτ) appear
in the expansions, and hence the oscillaton must be time-reflection symmetric at the moment
τ = 0. The time dependence of the B4 function is given by (304), while the time dependence
of A4 and the spatial dependences will be determined at order ε6.

5.6.2 Schrödinger-Newton equations

Introducing the functions s and S by the relations

s = −a2 − 1 , S =
1√
2
p2 , (308)

equations (306) and (300) can be written into the following form:

d2S

dρ2
+

2

ρ

dS

dρ
+ sS = 0 , (309)

d2s

dρ2
+

2

ρ

ds

dρ
+ S2 = 0 , (310)

which are known as the time-independent Schrödinger-Newton (SN) equations [182, 183].
It is also possible to obtain these equations by the study of the collapse of the quantum
mechanical wave function resulting from gravitational interaction [184, 185]. The near-
Newtonian behavior of a small-amplitude boson star is also described by the SN equations
[163, 186]. From any solution of the SN equations (309)-(310), using the scale invariance

(S(ρ), s(ρ))→ (λ2S(λρ), λ2s(λρ)) (311)

we can obtain another solution for any λ > 0.
For any n ≥ 0 integer there exist a localized regular solution of the SN equations, for

which S has exactly n nodes (zero crossings). The nodeless solution with n = 0 corresponds
to the lowest mass most stable oscillaton, hence in the following we will only study that case.
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For the solutions of the system, if ρ→∞ the function S tends to zero exponentially, and s
tends to a constant s0 < 0 in the following way:

s ≈ s0 +
s1

ρ
. (312)

We use the scaling freedom (311) to set s0 = −1. According to (308) this ensures that a2

tends to zero asymptotically. Then the asymptotic behavior of the function is a2 ≈ −1
ρ
s1,

which is only modified by exponentially decaying contributions. For the case when S is
nodeless, the numerical results for the central values of the functions are s = 0.938323,
S = 1.021493, and the constant is s1 = 3.505330.

5.6.3 Higher orders of the expansion

From the order ε6 components of the field equations follows the time dependence of A4,

A4 = a
(0)
4 + a

(2)
4 cos(2τ) , (313)

where a(0)
4 and a

(2)
4 are functions of the radial coordinate ρ. The functions p4 and a

(0)
4 are

determined by the following coupled differential equations:

d2a
(0)
4

dρ2
+

2

ρ

da
(0)
4

dρ
= p2p4 +

(
da2

dρ

)2

− p2
2(a2 + 1) , (314)

d2p4

dρ2
+

2

ρ

dp4

dρ
= p4(a2 + 1) + a

(0)
4 p2 − 2a2p2(a2 + 1)− 3p3

2

16
−
(

5

6
g̃2

2 −
3

4
g̃3

)
p3

2 . (315)

We look for the unique solution for which both a
(0)
4 and p4 tend to zero if ρ → ∞. The

function p4 tends to zero exponentially, while for large ρ values

a
(0)
4 ≈

s2
1

2ρ2
+
s2

ρ
+ s3 , (316)

where s1 is the constant defined in equation (312), moreover s2 and s3 are further constants.
If a(0)

4 and p4 are solutions of (314)-(315), then for any constant c

ã
(0)
4 = a

(0)
4 + c

[
2(a2 + 1) + ρ

da2

dρ

]
, (317)

p̃4 = p4 + c

(
2p2 + ρ

dp2

dρ

)
, (318)

are also solutions. This family of solutions is generated by the scale invariance (311) of the
SN equations. If we have an arbitrary solution of the equations (314)-(315), then by the
appropriate choice of c we can obtain another solution for which s3 = 0 holds in (316).

The equation determining the function b4 is

db4

dρ
= −da

(0)
4

dρ
+

1

4

da2

dρ

(
ρ

da2

dρ
+ 8a2

)
+
ρ

4

[(
dp2

dρ

)2

− p2
2(a2 − 1)

]
. (319)
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For large ρ values b4 tends to zero according to

b4 ≈
3

8ρ2
s2

1 +
s2

ρ
. (320)

The equation determining the cos(2τ) part of the function A4 is

d2a
(2)
4

dρ2
− 1

ρ

da
(2)
4

dρ
=

1

4
(a2 + 1)p2

2 −
3

4

dp2

dρ

(
dp2

dρ
+

1

ρ
p2

)
. (321)

Summarizing our results so far, up to ε4 order the components of the scalar field and of
the metric are

φ̃ = ε2p2 cos τ + ε4

{
p4 cos τ +

g̃2p
2
2

6
[cos(2τ)− 3]

}
+O(ε6) , (322)

A = 1 + ε2a2 + ε4
[
a

(0)
4 + a

(2)
4 cos(2τ)

]
+O(ε6) , (323)

B = 1− ε2a2 + ε4

[
b4 −

p2
2

8
cos(2τ)

]
+O(ε6) . (324)

Proceeding to higher orders, the expressions become considerably longer and more compli-
cated. However, it can be shown that for symmetric potentials, in which case g̃2k = 0, the
scalar field φ̃ only contains cos(kτ) terms with odd k, while A and B has only even Fourier
components.

The higher order expressions become considerably simpler for symmetric potentials, when
g̃2k = 0. Since for symmetric potentials the first radiating mode in φ̃, which is proportional
to cos(3τ), appears at order ε6, we give its higher order expansion in this case,

φ̃ =
(
ε2p2 + ε4p4 + ε6p6

)
cos τ + ε6

(
3p3

2

128
+
g̃3p

3
2

32
+
p2a

(2)
4

8

)
cos(3τ) +O(ε8) , (325)

where p6 is a function of ρ, which is determined by a long differential equation appearing at
higher orders.

In Figures 30 and 31 we show the numerically calculated p2, a2, p4, a
(0)
4 , a(2)

4 and b4

functions for the Klein-Gordon potential. Equations (322)-(324) determine a one-parameter
family of solutions, which depends on the parameter ε. This family solves the field equations
up to order ε4 for a self-interacting, self-gravitating scalar field with mass m = 1. By the
rescaling (275) of the t and r coordinates we can obtain one-parameter families for arbitrary
scalar field mass m.

5.7 Radiation law of oscillatons

The method presented in Section 4 for the determination of the radiation of flat background
oscillons can also be generalized for self-gravitating oscillatons. The extension into the com-
plex plane of the Fourier mode equations and the small-amplitude expansion was first applied
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4 functions for the Klein-Gordon oscil-
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Figure 31: The functions a2, a
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4 and b4 for the Klein-Gordon system. They tend to zero

according to a power law when ρ→∞.

by Segur and Kruskal for radiation of one-dimensional φ4 oscillons [10]. The Borel summa-
tion method for the calculation of the small correction near the singularity was introduced by
Pomeau, Ramani and Grammaticos [11]. The results in this subsection have been published
in our paper [81]. We only consider symmetric potentials here.

For a small amplitude quasibreather or asymmetric breather we can get the relation
between the (289)-(291) Fourier expansion and the (293)-(295) small-amplitude expansion
by using the expressions (322)-(325). The expansion of the Fourier components are

Φ1 = ε2p2 + ε4p4 +O(ε6) , (326)

Φ3 = ε6

(
3p3

2

128
+
g̃3p

3
2

32
+
p2a

(2)
4

8

)
+O(ε8) , (327)
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Ã0 = ε2a2 + ε4a
(0)
4 +O(ε6) , (328)

Ã2 = ε4a
(2)
4 +O(ε6) , (329)

B̃0 = −ε2a2 + ε4b4 +O(ε6) , (330)

B̃2 = −1

8
ε4p2

2 +O(ε6) . (331)

5.7.1 Singularities on the complex plane

We have to extend to the complex r plane both the small-amplitude expansion and the
Fourier expansion. For the case of the ε expansion, the functions φk, Ak and Bk have sym-
metrically positioned singularities on the imaginary axis, corresponding to the singularities
of the (309)-(310) Schrödinger-Newton (SN) equations. Since their contribution to the radi-
ation decreases exponentially with their distance from the real axis, we only need to consider
the nearest pair of singularities.

Introducing the new variables

z =
1

2
(s+ S) , Z =

1

2
(s− S) , (332)

the two SN equations will have the same structure,

d2Z

dρ2
+

2

ρ

dZ

dρ
+ Z2 − zZ = 0 , (333)

d2z

dρ2
+

2

ρ

dz

dρ
+ z2 − Zz = 0 . (334)

Using the central initial values given after Eq. (312), and numerically integrating the differ-
ential equations along the imaginary axis, it can be observed that z becomes singular at the
points ρ = ±iP , where P ≈ 3.97736, while Z tends to zero oscillating at the same places.

We introduce the complex R coordinate defined by ρ = iP + R. It turns out that the
leading order behavior near the singularity is necessarily z = −6/R2. Then to leading order,
the differential equation for Z is

d2Z

dR2
+

6

R2
Z = 0 . (335)

The solution along the negative half of the imaginary R axis is then

Z = c1

√
iR sin

(√
23

2
ln(iR) + c2

)
, (336)

where c1 and c2 are some real constants. The function Z tends to zero performing increasing
frequency oscillations when approaching ρ = iP from below. The expansion of the function
z to higher orders is

z = − 6

R2
− 12i

5PR
+

48

25P 2
, (337)
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to which there is also a correction of the form (336). It follows from (332) that the leading
terms in the behavior of the functions s and S near the singularity has the same form, given
by the right-hand side of (337). Continuing the expansion without taking into account the
non-analytic terms, logarithmic terms appear, the first having the form R4 lnR. Knowing
the behavior of s and S according to (337), equations (308) determines the order ε2 parts of
the functions φ, A and B near the singularity.

Substituting into (314), (315), (319) and (321), the order ε4 contributions, i.e. a(0)
4 , p4, b4

and a(2)
4 , can also be determined in the neighborhood of the singularity. In the Klein-Gordon

case, when g̃k = 0 for k ≥ 2 we get

a
(0)
4 = − 2547

52R4
+

1944 i ln(iR)

35PR3
+
ia−3

R3
+O

(
lnR

R2

)
, (338)

1√
2
p4 + a

(0)
4 =

225

26R4
+

18 i

5PR3
+O

(
1

R2

)
, (339)

b4 =
16479

260R4
− 1944 i ln(iR)

35PR3
− ia−3

R3
+

36 i

5PR3
+O

(
lnR

R2

)
, (340)

a
(2)
4 = − 27

5R4
− 36 i

5PR3
+O

(
1

R2

)
. (341)

The value of the constant a−3 is fixed by the behavior of the functions on the real axis,
namely by the requirement of the exponential decay of p4 for large real ρ.

5.7.2 Inner region

Since the rescaled radial coordinate is ρ = εr, the singularities closest the the real axis are
located at the points r = ±iP/ε. As ε tends to zero, the singularities get further from
the real axis, but in their neighborhood the Fourier components Φn, Ãn and B̃n will not
be small, they have ε independent parts. In agreement with (196) we introduce the shifted
radial coordinate y by

r =
iP

ε
+ y . (342)

The coordinate y is valid in the inner region, and obviously R = εy. In the neighborhood
of the upper singularity we can obtain the leading order behavior of the Fourier modes, if
we substitute the results (337)-(341) of the small-amplitude expansion into the equations
(326)-(331), and take the ε → 0 limit. By this procedure we get the first leading order
terms of the inner ε expansion. We denote these by upper index (0), similarly as in (254)
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for oscillons. For the case of the Klein-Gordon potential the results are

Φ
(0)
1 =

(
− 6

y2
+

2997

52y4
+ ...

)√
2 , (343)

Φ
(0)
3 =

(
− 243

40y4
+ ...

)√
2 , (344)

Ã
(0)
0 =

6

y2
− 2547

52y4
+ ... , (345)

Ã
(0)
2 = − 27

5y4
+ ... , (346)

B̃
(0)
0 = − 6

y2
+

16479

260y4
+ ... , (347)

B̃
(0)
2 = − 9

y4
+ ... . (348)

Since these expressions are obtained from the outer ε expansion, they are valid for large y
values. They provide boundary conditions for the inner solution, being valid in the matching
region, where y is large but R = εy is still small.

We can also obtain the expansion (343)-(348) if we look for the solution of the ε0-th order
inner Fourier mode equations in a series form with respect to 1/y2,

Φ
(0)
2n−1 =

∞∑
k=n

ψ
(n)
k

1

y2k
, (349)

Ã
(0)
2n =

∞∑
k=n+1

α
(n)
k

1

y2k
, (350)

B̃
(0)
2n =

∞∑
k=n+1

β
(n)
k

1

y2k
, (351)

where ψ(n)
k , α(n)

k and β(n)
k are constants. Substituting the definition (342) of the coordinate

y into (283)-(287), and taking the limit ε → 0, near the singularity certain lower order
terms in r become negligible. After this, substituting the 1/y2 expansion in the form (349)-
(351) into the mode equations, because of the absence of the odd powers of 1/y, apart from
the signature of ψ(1)

1 the coefficients ψ(n)
k , α(n)

k and β
(n)
k will be uniquely determined. The

computation of the expansion (343)-(348) from the Fourier mode equations is technically
much simpler than the small-amplitude expansion method, and by the use of an algebraic
manipulation software it can be calculated to quite high orders in 1/y.

The large k asymptotic behavior of the constants ψ(n)
k , α(n)

k and β(n)
k will determine the

amplitude of the radiative tail of oscillatons. The leading order asymptotic behavior of these
constants can be obtained by the study of the structure of the mode equations. It can be
shown, that for large k the dominating coefficients are ψ(2)

k , belonging to the third Fourier
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mode. The result for the Klein-Gordon potential is

ψ
(2)
k = K2(−1)k

(2k − 1)!

8k

[
1 +

51

2k
+

663

2k2
+O

(
1

k3

)]
, (352)

where K2 is a constant. All other coefficients grow more slowly with k. Although the
coefficients of the 1/k and 1/k2 correction terms may depend on the interaction potential
of the scalar field, the leading order behavior for any symmetric potential is the same as in
(352). The value of the constant factor K2 is crucial for the determination of the mass loss
rate of the oscillatons. Calculating the coefficients up to order k = 100, and using the Fourier
mode equations up to order NF = 6, in the Klein-Gordon case we obtain K2 ≈ −0.301.

5.7.3 The asymmetric breather solution

We can consider an appropriate higher order generalization of (343)-(348) as boundary con-
ditions for the leading order inner Fourier mode equations for large |y| in the directions
−π/2 < arg y < 0, ensuring a unique solution. This corresponds to the requirement that
the scalar field φ tends to zero along the positive part of the real r axis for r →∞, without
a standing wave tail. Similarly to the method described in Subsections 4.4 and 4.6, we look
for the asymmetric breather solution described by the functions Φ

(0)
n,−, Ã

(0)
n,− and B̃(0)

n,−.
The Fourier components of the wave equation (287) can be written in a form agreeing

with (242) even in the self-gravitating case,

d2Φn

dr2
+

2

r

dΦn

dr
+ (n2ω2 − 1)Φn = Fn , (353)

where now the nonlinear source terms Fn are polynomial expressions containing Φk, Ãk, B̃k

and their derivatives, for k ≤ NF . Using the coordinate y in the inner region and taking the
ε→ 0 limit we obtain the leading order inner equation

d2Φ
(0)
n

dy2
+ (n2 − 1)Φ(0)

n = F (0)
n , (354)

where F (0)
n are the ε→ 0 limits of the nonlinear source terms Fn. Apart from the structure

of the nonlinear source terms, this equation has the same form as (204), which describes one-
dimensional oscillons in the inner domain. On the imaginary axis the 1/y2 expansion gives
real valued functions at all orders. On the other hand, the asymmetric breather solution
must necessarily have a small but nonzero imaginary part on the imaginary axis. Since we are
considering symmetric U(φ) potentials, the dominant mode is Φ3, both along the imaginary
y axis and in the radiating tail. To leading order approximation, the imaginary part of Φ

(0)
3

satisfies the linear left-hand side of equation (354). Consequently, in the same way as at
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(210), the asymmetric solution has an imaginary part which is exponentially decaying when
going down along the imaginary axis,

Im Φ
(0)
3,− = ν3 exp

(
−i
√

8 y
)

for Re y = 0 , Im y < 0 , (355)

where ν3 is a constant. On the other hand, the inner solution Φ
(0)
3,m that corresponds to the

regular quasibreather solution has zero imaginary part on the imaginary axis.

5.7.4 Laplace transform

For symmetric potentials the value of the constant ν3 can be calculated by the application of
the Laplace transform method, which has been presented in detail for oscillons in Subsection
4.4.7. According to (349), the following series is asymptotic to the function Φ

(0)
3 ,

Φ
(0)
3 =

∞∑
k=2

ψ
(2)
k

1

y2k
. (356)

Since all individual terms are real on the imaginary axis, the imaginary part will be de-
termined by the large k behavior of the coefficients. Hence we can assume that all ψ(2)

k

coefficients are given by the leading order part of expression (352),

ψ
(2)
k = K2(−1)k

(2k − 1)!

8k
. (357)

We look for Φ
(0)
3 as the Laplace transform of a function denoted by V ′(s),

Φ
(0)
3 =

∫
γ̃

I(s)ds , I(s) = exp(−ys)V ′(s) , (358)

where the contour γ̃ goes from s = 0 to infinity, such that Re(ys) → ∞. Since the Laplace
transform of sn is n!y−n−1, it follows that the function V ′(s) can be expanded in the following
form, which can be summed,

V ′(s) =
∞∑
k=2

ψ
(2)
k

(2k − 1)!
s2k−1 = K2

∞∑
k=2

(−1)k

8k
s2k−1 =

K2s
3

8(s2 + 8)
. (359)

The function V ′(s) has a pole at s = i
√

8, with residue −1
2
K2. The residue of I(s) is then

−1
2
K2 exp(−

√
8 iy). As it has been discussed for the linear model problem, for the fKdV

equation, and also for flat background oscillons, it is natural to choose the contour γ̃ along
the upper half of the imaginary s axis, going around the pole at s = i

√
8 in a small half-

circle, as shown in the middle panel of Fig 10. Then we obtain the asymmetric solution Φ
(0)
3,−

that decays without oscillations in the right side of the complex y plane. Consequently, it
corresponds to the asymmetric breather solution φ−, which has no tail for r > 0, but it is
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singular at r = 0. Only the small half-circle gives contribution to the imaginary part of the
integral, which is half of the value that can be obtained by the residue theorem. It follows
that

Im Φ
(0)
3,− = −1

2
πK2 exp(−

√
8 iy) for Re y = 0 and Im y < 0 . (360)

Comparing with (355), we obtain the result for the constant ν3,

ν3 = −K2π

2
. (361)

For the Klein-Gordon potential the earlier calculated K2 ≈ −0.301 yields ν3 ≈ 0.473.

5.7.5 Tail-amplitude

The tail-amplitude of the quasibreather solution can be obtained essentially in the same way
as in Subsections 4.6.2 - 4.6.3. We denote the difference of the third Fourier mode of the
minimal tail quasibreather and the asymmetric breather solutions by w3 = Φ3,m − Φ3,−. It
is exponentially small apart from a small region around r = 0. Since in the ε → 0 limit
the core amplitude tends to zero and the metric approaches the Minkowski spacetime, the
function w3 can be approximated well by the solution of the linear left hand side of (353)
with n = 3 and ω = 1. The general solution for d+ 1 dimensional spacetimes has been given
in (263). The minimal tail quasibreather cannot have a tail part corresponding to the phase
of the centrally regular solution, hence β3 = 0 in this case also. For the currently discussed
3-dimensional case the solution is

w3 =
α3

r
sin
(√

8 r − π

2

)
= −α3

r
cos
(√

8 r
)
, (362)

where α3 is the constant giving the tail-amplitude. Writing the result in terms of the ex-
ponential function and substituting r = iP

ε
+ y, close to the singularity the leading order

behavior for small ε can be written as

w3 =
iε

2P
α3 exp

(√
8
P

ε

)
exp(−i

√
8 y) . (363)

Since Φ3,m is purely real along the imaginary y axis, in the current case also true that
Im Φ3,− = − Imw3 for Re y = 0 and Im y < 0. Comparing with (355), for the tail-amplitude
we get

α3 =
2ν3P

ε
exp

(
−
√

8
P

ε

)
, (364)

which is valid for any potential which is symmetric around its minimum. For 3 spatial
dimensions P ≈ 3.97736, and for the Klein-Gordon potential ν3 ≈ 0.473. Hence for the
tail-amplitude of the Klein-Gordon oscillaton we get

α3 =
3.761

ε
exp

(
− 11.2497

ε

)
. (365)
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This is only the tail-amplitude of the first radiating Fourier mode Φ3, but the tail in the
higher modes are much smaller than this, as it can also be seen in Fig. 25. According to
(362), the scalar field in the tail region can be described by the expression

φ =
1√
8π
φ̃ = − α3

r
√

8π
cos
(√

8 r
)

cos(3t) . (366)

In Figure 32 we compare the leading order analytical result (365) for the tail-amplitude α3
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Figure 32: Comparison of the numerically obtained values of the tail-amplitude α3 of the
Fourier mode Φ3 to the leading order theoretical result shown by the purple curve. The
green curve was obtained by a fit to the data points.

to the numerical results already presented in Fig. 28, but now as a function of the amplitude
parameter ε =

√
1− ω2.

For these large values of the parameter ε the theoretical curve lies much below the data
points. The following empirical function,

αemp
3 =

3.761

ε

(
1 + ε2

)16.63
exp

[
−11.2497

ε

(
1− 0.2990 ε2

)]
, (367)

fits well the numerical results, furthermore at small ε values it approaches the theoretical
result (365). We can expect that in the whole stable domain (367) gives a good estimate
for the amplitude of the tail, and hence for the strength of the radiation. For the largest
ε values the numerical results shown in Fig. 32 are several hundred times larger than the
analytical results, but with the decrease of ε the relative difference decreases exponentially.
The smallest ε for which we could numerically calculate the tail is ε = 0.341, where the
magnitude of the tail-amplitude α3 is 10−12. In this case the reliable numerical result is
still twenty times larger than the leading order theoretical one. The parameter ε = 0.341

in a power series expansion generally cannot be considered small. However, because of the
exponential decrease of the relative difference it appears convincing that the two approaches
would give more and more agreeing results for smaller ε values.
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5.7.6 Mass loss rate

In order to obtain results which are also precise for large amplitude oscillatons, we do not
assume now that ω = 1. We have to calculate the energy carried out by the following
spherical wave,

φ =
α3

r
√

8π
cos (λ3r − 3ωt) , (368)

where λ3 =
√

9ω2 − 1. Equation (148) giving the radiated energy current averaged for an
oscillation period can also be applied now, where ωf = 3ω, λf = λ3 and α = α3/

√
8π. As a

result of this, the time averaged mass loss rate of oscillatons is

S̄ = − dM

dt
=

3

4
α2

3ω
√

9ω2 − 1 . (369)

Substituting the empirical expression (367) for α3, we can obtain a result for the radiation
rate, which according to our numerical calculations is valid for large amplitude states as well:

S̄ = 10.61
ω
√

9ω2 − 1

ε2

(
1 + ε2

)33.26
exp

[
−22.4993

ε

(
1− 0.2990 ε2

)]
, (370)

where ω =
√

1− ε2. Using only the small-amplitude expansion results, we would obtain

S̄ =
30.0

ε2
exp

(
−22.4993

ε

)
, (371)

which is indeed the small ε appropriation of (370).
According to the numerical calculations discussed in Sec. 5.5, the the maximal oscillaton

mass is Mc = 0.60535, which belongs to the amplitude parameter εc = 0.509. From (370)
follows that the relative mass loss rate of the largest mass stable oscillaton is(

1

M

dM

dt

)
M=Mc

= −5.917× 10−13m , (372)

where m is the scalar field mass in Planck units. In Figure 33 we show how the mass of an
initially maximal mass oscillaton changes in time, giving the ratio M/Mc. Because of the
extremely slow decrease we take the product tm logarithmically on the horizontal axis. The
plot was made using the more precise numerical results.

In Figure 34 we show that during one oscillation period an oscillaton loses how small
part of its mass. This quantity is independent on the scalar field mass m,

∆M

M
= − 2π

ω

1

M

dM

dt
. (373)

From the figure it can be seen that the relative mass loss rate is so small that every stable
oscillaton can be considered as time-periodic to a very good approximation. The leading
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Figure 33: The mass change of the initially Mc maximal mass oscillaton as a function of
the product of the scalar mass m and the elapsed time t, using ordinary units.
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Figure 34: Relative mass loss of oscillatons during one oscillation period.

order theoretical result gives several orders of magnitude too small results in the domain
where the tail is not too small for numerical simulations. This shows that it would be
important to obtain higher order corrections to the available leading order ε expansion
results. Such contributions have been only calculated yet for the case of the fifth-order KdV
problem, which is technically simpler because of the stationarity of the solutions. We plan to
apply the knowledge acquired during the detailed analysis of the fKdV problem to oscillons
and oscillatons in the near future. More advanced numerical methods that could be used for
the calculation of even smaller tail-amplitudes would be also useful for the scalar field case.
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6 Summary and outlook

Although static or exactly time-periodic localized regular solutions do not exist in real scalar
field theories, according to numerical simulations a large class of the possible initial data
evolve into long-lived localized states. The frequency of these objects increases very slowly
because of the weak energy loss resulting from the radiation of the scalar field. If the
nonlinearity of the theory defined on a fixed background is provided by the self-interaction
potential of the scalar field, then the formed object is generally called oscillon. The localized
state formed from a self-gravitating scalar field in the framework of general relativity is
known as oscillaton. In our papers on which this review is based, we have determined the
shape and other properties of oscillons and oscillatons considerably more precisely than it
was known earlier. Our numerical and analytical results consistently support each other.
The extreme precision is mainly needed for the reliable and precise determination of the
radiation loss of oscillons and oscillatons.

For the calculation of the outgoing radiation the necessary first step is the definition
and study of the exactly time-periodic quasibreather state, which has a minimal amplitude
standing wave tail. The periodicity in time makes it possible not only the application of
precise spectral numerical codes, but also allows analytical methods by the extension of the
equations into the complex plane. It can be shown relatively easily, that the radiation is
exponentially small in terms of the parameter ε determining the oscillation amplitude of the
core region. However, the concrete determination of the factor before the exponential term
is only possible by a rather complicated method consisting of several steps. The main aim of
this review is to present the analytical method for the calculation of the radiation rate in a
comprehensible and easily reproducible way. During our work it became apparent, that the
analytical results based on the ε expansion give precise results for small and intermediate
amplitude states, while for the large amplitude states only the spectral numerical method is
able to determine the radiation in a reliable way.

Because of the long lifetime of these configurations, various physical applications become
feasible in cosmology and astrophysics. The radiation of 3 + 1 dimensional oscillons is so
small that several thousands of oscillation periods may happen before they move into the
unstable domain and suddenly decay. The oscillatons coupled to gravity radiate so weakly,
that even during a time period corresponding to the lifetime of the universe they do not
lose more than half of their original mass. Oscillons and oscillatons can be expected to form
in any theory containing several fields, if among them at least one real massive scalar field
is included. But in case of appropriate nonlinearity, even the existence of the scalar is not
necessarily needed, as it is shown by the existence of the oscillating localized states forming
from self-gravitating Proca fields [122, 121].

It is important to clarify how a nonzero cosmological constant Λ influences the formation,

112

               fodor.gyula_298_24



structure and radiation of localized states. A negative cosmological constant, acting as an
effective attractive force, enhances the formation of oscillons and oscillatons, and decreases
their radiation. The influence of a positive cosmological constant is just the opposite. The
effect of a positive Λ for oscillons has been investigated in papers [187, 188, 189]. For
oscillatons in our paper [83] we have presented in detail how a small Λ > 0 induces a small
mass loss rate. By a positive cosmological constant we can model the accelerated expansion
of the current universe, or describe the early inflationary period.

The negative cosmological constant have indirect physical significance because of the
AdS/CFT correspondence. Researchers began to study more extensively the behavior of
self-gravitating scalar fields for the Λ < 0 case after Bizoń and Rostworowski demonstrated
by numerical methods in 2011 the instability of the anti-de Sitter spacetime [190]. They have
investigated the time evolution of spherically symmetric wave packets formed by a massless
real Klein-Gordon field in general relativity, for Λ < 0. According to their results, black
holes can form from arbitrarily small amplitude initial data, by repeated bouncings of the
wave packet through the center to infinity and back, becoming more and more concentrated
in the meantime. However, not all type of initial data evolve into black holes.

If the cosmological constant is negative, there exist exactly time-periodic localized so-
lutions, which do not radiate at all, and hence they can be considered as breathers [191].
For not too large perturbations, the deformed versions of these solutions remain near the
time-periodic solution for all time, and no black hole formation occurs during their evolu-
tion. In this way, “stability islands” are formed around the breather solutions in the space of
the possible initial data [192, 193]. We have studied spherically symmetric scalar breather
solutions on fixed AdS background in our paper [194] for various self-interaction potentials.
Breather solutions with AdS asymptotics exist even for zero mass fields, in which case their
typical size is determined by the cosmological constant. For negative Λ we have studied
spherically symmetric breather solutions formed by a self-gravitating real scalar field in our
paper [195], by analytic and numerical methods, for d spatial dimensions. We have used a
method, which contrary to earlier work, can be applied for odd d as well. For all n ≥ 0

integers, a one-parameter family of breather solutions exists, where n gives the number of
nodes of the scalar field. For the small amplitude limit the oscillation frequency tends to the
integer value ω = d+ 2n.

The study of the scalar fields for Λ < 0 in general relativity was mainly motivated by
the fact that in this case, even if we are restricted to spherical symmetry, the system has
a nontrivial dynamics, which makes it possible that energy is radiated to infinity. In this
way, instead of the complicated theory of gravitational waves and their radiation, we have
to deal with a technically much simpler but in many respects analogously behaving model.
The formation of small black holes in the scalar system makes it very likely that the system
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consisting of only vacuum gravitational waves is also unstable for the Λ < 0 case. On the
other hand, not all solutions evolve into black holes in this case either. When Λ is negative,
there exist exactly time-periodic, but not spherically symmetric, localized breather solutions
of the vacuum Einstein equations [196, 197, 198, 199]. These solutions are not losing energy
by radiation, and for large distances they approach the anti-de Sitter spacetime. The vacuum
AdS breather solutions are generally known by the name AdS geons. The concept of geons
was introduced by John Archibald Wheeler in 1955 for long-lived localized states formed by
electromagnetic or gravitational waves in the asymptotically flat case [200, 201, 202]. The
structure of one-parameter families of AdS geons has been studied in our papers [203] and
[204], by spectral numeric and high order expansion methods. Among these solutions there
are axially symmetric ones, rotating solutions with helical symmetry, and surprisingly, also
non-symmetric ones with zero angular momentum as well.
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