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Bevezetés

A kombinatorika a matematika egy gyorsan fejl6d§ aga, melynek sok kapcsolata van a
klasszikus teriiletekhez, és jelent&s hatassal is van ezekre és alkalmazésaikra. Kiilonosen
jelentGs az elméleti szamitastudomannyal valoé kapcsolata.

A kombinatorika alapfogalmai nagyon egyszertiek, de egyben nagy kifejezs erével ren-
delkeznek. Egy hipergraf egy véges halmaz részhalmazaiboél all6 rendszer. A hipergraf altal
tartalmazott részhalmazokat éleknek nevezziik. Nagyon sok struktira lényege leirhato egy
hipergraffal.

A 20-adik szazad kozepére kikristalyosodtak az alap extremalis és Ramsey-tipusi prob-
léméak. Azéta nagyon szoros kapcsok alakultak ki a kombinatorika, illetve algebra, geomet-
ria, analizis, topologia és valoszintiségszamitas kozott. Ezek a kapcsolatok kétiranytak. A
klasszikus agak sok modszert adnak kombinatorikus problémék megoldasara. Masrészt a
kombinatorikus fogalmak, otletek a klasszikus agakban is gylimolestzének bizonyultak.

Disszertaciom eredményeinek nagy részét a kiilonb6z6 matematikai dgak kozotti kol-
csOnhatésok 6sztonozték. A munkaban kézponti szerepet kapnak azok a problémék, ahol
a motivacié geometriai.

1. fejezet

Fuggetlen csticshalmazok geometriai
hipergrafokban

Gyakran taldlkozunk olyan helyzetekkel, amikor egy geometriai problémat szeretnénk
megoldani, és a probléman alapulva definidlunk egy kombinatorikus struktarat, amely
a kérdés relevans informacioit tartalmazza. A probléma megoldasa megfogalmazhato a
kombinatorikus struktura segitségével, és tamadhaté kombinatorikus modszerekkel. A
kombinatorikus eredmény az eredeti geometriai kérnyezetben értelmezhets. A modszer
nagyon hatékony, annak ellenére hogy a kombinatorikus struktira legtobbszor nem pon-
tosan ,fordit". A geometriai probléméardl egy kombinatorikusra valé attérés matematikai
veszteséggel jarhat.
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Disszertacionk elsd két fejezetében két olyan problémat vizsgélunk, ahol a kombinato-
rikus forditas és kombinatorikus modszerekkel ériink el Gj eredményeket.

Mindkét esetben a geometriai problémat tgy , koédoljuk" egy kombinatorikus strukti-
raval, hogy az alap geometriai kérdés egy ,nagy" fiiggetlen ponthalmaz (csticsok egy élt
nem tartalmazo részhalmaza) keresését jelenti hipergrafunkban. Az Gowers és Heilbronn
fejezetek tartalmazzak ezen irdnyd eredményeimet.

A szemi-véletlen modszert Ajtai Miklos, Komlos Janos és Szemerédi Endre [4] vezette
be grafok esetére. Késébb [88] a modszert kiterjesztette 3-uniform hipergrafokra (minden
él harom elemti). Késébb tovabbi erdsitések, altalanositasok (példaul [5] és [39]) torténtek.

Egy H hipergraf a V' cstcshalmazzal, P(V), a V halmaz hatvanyhalmazanak, egy
részhalmaza. Azaz H a V alaphalmaz bizonyos részhalmazait tartalmazza, amelyeket
éleknek neveziink. Ha az élek elemszama egy kozos k szam, akkor azt mondjuk H egy
k-uniform hipergraf. Egy I c V csticshalmaz fiiggetlen cstcshalmaz ha nem tartalmaz
részhalmazként élt. A H hipergraf fliggetlen halmazai k6zott a legnagyobb elemszamu
fiiggetlen halmaz méretét a(H)-val jeloljiik. Tobb olyan eredmény is van, amely 3-uniform
hipergrafok a paraméterére ad alsé becslés ritkasagi feltételek mellett.

El6szor is felidézek néhény alapfogalmat a hipergrafok elméletébdl: Egy x cstucs fok-
szama (deg(x)) az z-et tartalmazo élek szama. Egy k-kor (k > 2) a ‘H hipergrafban k kii-

16nb6z6 cstcs sorozata: x1,...,TE_1, Xk = Tg, tovabba k kiilonbo6zs él sorozata: Fq, ..., Ej,
amelyek 1 = 1,2..., k esetén teljesitik, hogy z;_1,z; € E;. A fenti kort egyszeridnek nevezziik

hai=1,2...,k esetén E; n (Uj:j#Ej) ={mj_1,2;} is teljesiil.

Lassuk a szemi-random modszer elsé hipergrafos megfogalmazasat.
Tétel ([88], Lemma 1). Legyen H. egy 3-uniform hipergrdfv csicson. Jeldlje d a H hipergrdf
dtlag fokszamdt. Teqyiik fel, hogy d <t? és 1 < t < V110,

Ha H nem tartalmaz legfeljebb 4 hosszu egyszerd kéroket, akkor

o(H) :Q(%\/@).

A tételben (és késébb) f « g egy alkalmas a > 0 (rejtett, nem hangsilyozott) kons-
tanssal az f < ag egyenlGtlenséget jeloli.

Megjegyezziik, hogy Spencer vette észre, hogy ([122], (1972)) a valoszintiségszamitasi
modszer egyszertd alkalmazéasaval kapjuk a a(H) = Q(v/t) becslést. Ezen egyszerti egyen-
16tlenségre mint a grafelméleti Turan tétel hipergréfos kiterjesztésére gondolunk. Ezt élesiti
az el6z6 tétel rovid, egyszerd korok hianya esetén. Alkalmazéasaink soran a konstrualt hi-
pergrafokban lesznek 3, illetve 4 hosszti korok. A kovetkezd tétel nagyon hasznos lesz
szamunkra, Ez az alap szemi-random moddszert terjeszti ki szélesebb hipergréafosztilyra.

Tétel (|39], Theorem 2). Legyen H egy k-uniform hipergrif v csicson. Legyen A a H
hipergraf mazimdlis foka. Tegyiik fel, hogy A <tF71 és 1 « t. Ha H nem tartalmaz 2-kort
(két €l legaldbb két kizos csicesal), akkor

a(H) =0 (%(logt)ﬁ) )
A szerzGk észrevétele, hogy a szemi-random moédszer mar linearis hipergrafokra is al-
kalmazhaté. Ennek a modszernek két geometriai alkalmazasat ismertetjiik.
Az els6 alkalmazas egy Erdds Paltol szarmazd, majd késsbb fiiggetleniil Gowers &ltal

is kimondott kérdés [62]. Adott egy P véges sikbeli ponthalmaz, mi az a miniméalis méret
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amely garantalja legyen P-ben n egy egyenesre es6, vagy n fiiggetlen pont (semelyik harom
sem kollineéris)? Gowers megtette az alapvetd észrevételeket: a négyzetracs pontjainak
egy n/2 x n/2 méreti része mutatja, hogy az Z—lan méret sziikséges, masrészt 2n3 méretd,
n kollinearis pontot nem tartalmazé ponthalmaz esetén a mohd algoritmus garantal n
fiiggetlen pontot. Payne és Wood [106] a fels becslést O(n?logn)-re javitotta. Ok is
egy olyan ponthalmazt vettek, amely nem tartalmaz n kollinearis pontot, de mérete joval
n? alatt van. A mohé algoritmus helyett azonban Spencer lemméjat alkalmaztak, azaz
egy egyszerii véletlen ritkitast vettek a definialt hipergrafukban. A Szemerédi—Trotter-
tétel segitségével egyszerti megbecsiilni a megmaradt élek szamat, amely becslés elvezet a
tételiikkhoz.

Szemerédi Endrével ezt a becslést javitjuk meg. ElGszor definidljuk a kollinearis pont-
harmasok hipergrafjat, majd egy véletlen ritkitast hajtunk végre. Ennek célja nem a kevés
él elérése, hanem a 2-koroktsl valé megszabadulds. FEzek utan alkalmazhatjuk a szemi-
random modszert ([39]) egy nagy fliggetlen ponthalmaz talalasara. Hipergrafunk fiiggetlen
cstcshalmazai pontosan a geometriai fiiggetlen ponthalmazok.

2
1. Tétel. Legyen P egy tetszdleges afz)glf()éz méreti sikbeli ponthalmaz alkalmas o > 0

konstansra. Ekkor taldlhatunk n pontot P-ben, amelyek figgetlenek vagy kollinedrisak.

Maésodik geometriai alkalmazasunk szorosan kapcsol6dik Heilbronn héromszog problé-
méajahoz [112], [119], [113], [114], [115], [116], [87]. Vegyiink egy ,szép" egység teriileti,
zart D tartomanyt (4ltalaban egy négyzetet, korlapot vagy egy szabélyos haromszoget).
Helyezziink n pontot D-be és vegylik az altaluk meghatirozott haromszogek legkisebb
teriiletét. Milyen nagy lehet ez a paraméter? Legyen Ha(n) a maximuma ennek a para-
méternek az Osszes pont n-est figyelembe véve.

Haromszogek helyett vehetiink pont k-asokat is ponthalmazunkboél, majd képezziik
a kivett pontok konvex burkit. Ha ennek teriiletével dolgozunk haromszogek helyett,
akkor a megfelel§ szélsGérték probléma optimumét jelolje Hi(n) (igy Hs(n) = Ha(n)).
A legjobb Ha(n)-re vonatkozo alsé becslés [88]-ben talalhato, ezt és néhany nyilvanvald
egyenlGtlenséget Gsszegeztiink:

«

\/17i)2gn <Ha(n)<Hy(n)<Hs(n)<...< 5%,

ahol «,f alkalmas pozitiv konstansok. Két koézponti kérdést emeliink ki: Igaz-e hogy
Ha(n) = O(1/n*¢) minden pozitiv e-ra és Hy(n) = o(1/n)?

Szamunkra a Hy(n)-re vonatkozo also becslések érdekesek. Schmidt [119] belatta, hogy
Hy(n) = Q(1/n3/?). A bizonyitas egy egyszerii mohé algoritmus. [13]-ben a szerzék egy
1j bizonyitast adnak és kiterjesztik az eredményt. Ezek mellett egy kérdést is feltesznek,
amit nem tudtak megvalaszolni: A Schmidt becslés javithato-e egy logaritmikus szorzéval?
A szemi-random modszer segitségével megjavitjuk Schmidt becslését és igy megvélaszoljuk
[13] kérdéseét.

2. Tétel. Létezik eqgy n elemd ponthalmaz az egqységnégyzetben gy, hogy ne tartalmazzon
olyan pontnégyest amely konvex burkdnak terilete nem éri el 5(log n)l/Z/n?’/Q-t alkalmas B
pozitiv konstansra.
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2. fejezet

Extremalis és Ramsey-tipusi
problémak rendezett alaphalmazzal

Amikor egy geometriai konfigurécié kombinatorikus lényegét fogalmazzuk meg, akkor
nagyon gyakran a kombinatorikus alaphalmazon lesz egy rendezés. Ez a rendezés fontos
szerepet jatszik a kombinatorikus tulajdonsdgok megfogalmazasiaban. Rendezett alaphal-
mazokkal kapcsolatos kombinatorikus strukturak vizsgalatdnak hosszu torténete van. Az
egyik els6 példa a Davenport—Schinzel probléma (|35, (1965)). Az alapkérdés motivacioja
differencialegyenletek vizsgélatabol ered. Definidljak egy fliggvény grafikonjanak bonyo-
lultsagat, ahol a fliggvény n maésik fiiggvény maximuma. Ezen fliggvények grafikonjairél
tudtak metszési feltételeket és igy érdekelte ket milyen nagy lehet a bonyolultsdga a maxi-
mum fiiggvénynek. A kombinatorikus lényeg egyszeri volt. Csak a legegyszertibb kérdést
mondjuk ki: Adott egy n elemt abécé, ebbdl kell felépiteniink szavakat (karaktersorozato-
kat) ugy, hogy két kozvetlen egymasutani karakter mindig kiilonb6z6 legyen és ne forduljon
el6 ababa részszo a # b karakterekre. Milyen hosszu szot épithetiink fel? A részszavakat
gy kapjuk, hogy az eredeti sz6bdl toroliink karaktereket, de a megmaradé karakterek az
eredeti sorrendben kovetik egymast.

A sorrend lényeges. Evtizedek utan sziiletett meg a megoldas: Hart és Sharir ([68],
(1986)) mutatta meg, hogy a kiiszobérték (n karakterbdl feléptils maximalis sz6 hossza)
©(nan), ahol a(n) az inverz Ackermann fiiggvény [1]. Az 6 motivaciojuk adatstruktarak és
analizisiik volt. Egy ut 6sszenyomasi algoritmust, amelyet Tarjan ([132], (1975)) javasolt,
analizaltak. A klasszikus extremalis kombinatorikiban ilyen kiiszobérték nem lépett fel.
Példaul be lehet latni, hogy grafok esetén a Turan-tipusi kérdésekben ez a kiiszobérték
nem lehetséges.

Egy masik probléméat is kiemeliink, amely természetes moédon vezet el egy kombina-
torikus problémahoz, amely alaphalmaza rendezett halmaz. Erddés egyik kombinatorikus
geometriai alapproblémaéja, hogy a sikon n pont legfeljebb hany egységtévolsagot hataroz
meg. A kérdés a kombinatorika egyik legjobban vizsgalt, kozponti kérdése. Ennek ellenére
kevés eredmény ismert. Ennek egyik oka, hogz a ,kombinatorikus forditasok" eléggé pon-
tatlanok. Felmertilt a konvex ponthalmazok (egy konvex sokszog csticshalmaza) vizsgélata.

A legjobb konstrukcié 2n — 7 egységtavolsagot tartalmaz (Hajnal P. és Edelsbrunner
([41], (1990)), amely nagyon tavol volt a O(n*/?)-es felsé becsléstsl. Fiiredi ([57], (1990))
javitotta meg a fels§ becslést O(nlogn)-re. Felismerte azt, hogy konvex ponthalmaz ele-
mei kozott van egy a konvexburok keriilete altal meghatarozott korszerd rendezés. Ezt a
rendezést hasznalva adott egy tiltott konfiguraciot az egységtavolsagok grafjara. Igy ju-

8



haj nal . peter 141 23

Kombinatorika, rendezés és geometria

tott el a kovetkez6 extremélis tételig, amely bizonyitasanak lényege: Ha egy n x n méreti

11 1) konfiguraciot alkotnak, akkor a

1
0-1 matrix nem tartalmaz négy 1l-est, amelyek (

méatrixban az egyesek szama O(nlogn).

A fent kiemelt tétel nagyon gyiimolcsézének bizonyult. Fiiredi és Hajnal P. a fenti
tételhez hasonlo tételeket vizsgélt mas tiltott részkonfiguraciok esetén. Egy elmélet kiala-
kitasat kezdték el és cikkiikben Gsszefoglaltédk az alltaluk legfontossabbnak tartott nyitott
problémaékat. Az elmélet kialakulasa valoban elkezd8dott, amit sok tovabbi cikk jelez (pél-
daul lasd [81], [130], [107], [131]). A 2018-as IMU kongresszus ezen téméarol szol6 meghivott
el6adasa (Tardos Gabor) tovabbi kérdéseket vet fel és kutatasokat 6sztonoz. A Firedi—
Hajnal-cikkbdl egyetlen problémét emeliink ki, amely kiilonésen fontos szerepet kapott: Ha
a tiltott konfiguraciot alkot6 1-esek egy permutacidé matrixot alkotnak, akkor a maximalis
szama az l-eseknek O(n).

A Staircases of Gydrfas fejezetben Gyéarfas egy Ramsey-tipust probléméjat vizsgél-
juk. A motivaci6 geometriai és a kombinatorikus megfogalmazas 0-1 matrixok nyelvén a
legtermészetesebb.

Jol ismert (Erdés és Rado egy korai megjegyzése, ma mar standard feladat BSc graf-
elmélet kurzus keretében) hogy a teljes grafok tetszsleges piros/kék élszinezése esetén lesz
monokromatikus feszit6fa. 1998-ig varatott, hogy Karolyi, Pach és Toth [78] kimondja és
beldssa ennek egy nagyon szép altalanositdsat: Adott n altalanos helyzetd pont a sikon.
Az altaluk meghatéarozott szakaszokat tetszélegesen kiszinezziik piros/kék szinekkel. Ekkor
garantalt, hogy létezik egyszinti, nem-metsz6 feszitéfa.

A fenti kérdéseket teljes paros grafra is feltehetjik. Monokromatikus feszit6fa nem lesz
garantalt, de vizsgalhatd milyen nagy monokromatikus fa-részgraf lesz. A grafelméleti kér-
dés egyszertien megvalaszolhato: Ha K, ,, éleit tetszélegesen kiszinezziik piros/kék szinnel,
akkor a legnagyobb monokromatikus fa csticsszama legaldbb n, ha n paros és n+ 1, ha n
paratlan. Toviabbéa a fenti becslések nem javithatok.

Gyarfas egy szép tétele ([78]) vezetett a geometriai probléma vizsgalatahoz: Adott
2n konvex helyzetdi ponthalmaz és egy egyenes, amely a ponthalmazt két n elemd félre
vagja. Vegyiik az egyenesiinket metszé n? Osszekots szakaszt és szinezziik ki piros/kék
szinnel. Milyen nagy monokromatikus nem-metszé fat garantalhatunk? A fenti geometri-
ai/grafelméleti kérdés megfogalmazhaté mint egy méatrixokra vonatkozé probléma, ahogy
ez egy megjegyzésként megjelenik [26]-ben.

Legyen M egy 0-1 métrix. Egy 0-lépes6 nulla elemek egy {s;}f_, sorozata M-ben
ugy, hogy s;-hez képest s;,1 vagy azonos sorban jobbra, vagy azonos oszlopban alatta
van. (Kiemeljiik, hogy nem tessziik fel, hogy s; és s;.1 kozvetlen egymés mellett &ll.)
Hasonléan definidlhatok az 1-1épcsék, amelyeket 1-es elemek alkotnak. Egy elemsorozat
M-ben homogén 1épcsd, ha 0- vagy 1-lépcsé. Egy S homogén 1épcsé hossza az elemeinek
szama. Ezt |S|-sel jeloljiik. S-re tgy is tekinthetiink mint |S| -1 1épés, ahol minden lépés
egy jobbra, vagy lefelé 1épés egy a kiinduld helyzetben 1év§ értékkel megegyezs értékii
elemre. S egy eleme fordul6pont, ha az odavezets és a kivezet§ 1épés iranya kiilonbozik.
Sejtés (Gyarfas sejtése). Tetszdleges n x n méretd 0-1 mdtriz tartalmaz n — 1 méretd ho-
mogén lépcsot.

Jelolje st(M) az M méatrix homogén lépcssi kozott a legnagyobb méretét. Jelolje
sto(M) (illetve st1(M)) az M matrix 0-homogén lépcssi kozott a legnagyobb méretét
(illetve az 1-lépcsdket tekintve). Tehat st(M) = max{sto(M),st1(M)}.
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Az eredeti Ramsey-tipusi probléméaban a ponthalmaz kettévagasa egy felezés volt, az-
az a matrix nyelvezetben négyzetes matrixokat vizsgaltunk eddig. Most bevezetjiik az
aszimmetrikus valtozatot:

st(n) =min{st(M): M € {0,1}"""},

st(n, N) = min{st(M) : M € {0,1}"V}.

Nyilvanvalo, hogy st(n,N) = st(N,n). A tovabbiakban feltessziik, hogy N > n.

A Gyérfas-sejtés megfogalmazhato gy is, hogy st(n) = st(n,n) >n—-1. A [26] cikk leir
egy egyszerii konstrukciét, amely mutatja, hogy st(n) <n -1 (feltéve, hogy n > 1). Igy a
Gyarfas sejtés pontos allitasa, hogy st(n) =n -1, han> 1.

st(M) = max{sto(M), st;(M)} helyett vizsgalhatjuk a

sty (M) = sto(M) + st1(M)

paramétert is.
Természetes bevezetni a kovetkez Ramsey-tipusa paramétereket:

sty(n) =min{sty (M) : M €{0,1}"""},

sts(n, N) = min{stsx (M) : M ¢ {0,1}"V}.

Cai, Grindstaff, Gyarfas és Shull a stx(n) fiiggvénnyel kapcsolatban kimond egy sej-
tést (lasd [34]), ami hamisnak bizonyult (lasd a [26] cikk, [34] ujsag véaltozatanak utolsd
megjegyzése). A fejezetben meghatarozzuk sty (n, N) pontos értékét.

3. Tétel. n < N esetén
sty(n,N) = [g] +N-1.
A kovetkezd szekcioban st(n, N)-nel foglalkozunk. Két konstrukciot ismertetiink (azaz

felss becsléseket adunk az st(n, N') fiiggvényre).

4. Tétel. N >|3n|-1 esetén,

St(n7N) = "M“ .
2
Tovdbbd, han < N <|3n]| -1 akkor,
2n+ N -2
st(n,N) < [%“

A tétel kimondasabol latszik, hogy bizonyos paraméter értékek esetén a fels§ becsléssel
azonos alsd becslést is tudtunk tarsitani. Azt sejtjiik, hogy becsléseink mindig a helyes
értékeket adjak.

5. Sejtés. n< N <|5n|-1 esetén,

st(n,N) = [%ﬁ] .

10
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Sejtésiink a négyzetes esetben Gyarfas sejtését adja. Sajnos a négyzetes, illetve kozel-
négyzetes matrixok esete mindmaig megoldatlan.

A fejezet végss szekcivjaban lényegesen megjavitjuk st(n) egyszerd %n—es alsé becslését
[63] (szemben a [26] cikkel, ahol a javithatosagot megmutattak, de javitasukban szerepld

konstans csak alig mozdul el). Belatjuk a kovetkezs tételt.

6. Tétel. Tetszdleges M € {0,1}™" mdtriz esetén

) 7
st(M) > -n—-—.
6 12

3. fejezet

Rendezett alaphalmazokkal
rendelkez kombinatorikus
strukturak osszeszamlalasa

Megemlitiink még egy kombinatorikus probléméat, amelyben az alaphalmaz rendezése
fontos szerepet jatszik. Ez egy a fentiektdl kiilonbozé  kultarabol" ered, az dsszeszamolasi
kombinatorikdbol. A témakor egyik fontos probléméja volt a Stanley—Wilf-sejtés. ElG-
szor is definidljuk, hogy mikor mondjuk azt, hogy egy w € S, permutécié tartalmazza a
T € S permutacié-mintat: Ha a m-t leiré permuticiomatrixnak részmatrixa 7 permutaciod
métrixa. Nagyon sok konkrét (kis k-hoz tartozo) T permutécioé esetén ismert hany olyan
7 € S, permutacié van, amely nem tartalmazza 7-t. Konkrét esetekben (példaul 7 = 213)
a valaszt a Catalan-szamok adjak. Méas esetekben bonyolultabb modon adott a megfeleld
permutéiciok szama. Erre a szdmra azonban mindig n-ben exponencialis becslés adhato,
ami joval kisebb |S,| = nl-nal. A Stanley-Wilf-sejtés azt mondja, hogy minden fix 7 € Sy
esetén azon Sy-beli permutéciok szama, amelyek nem tartalmazzak 7-t csak exponenci-
alisan sokan lehetnek. A sejtés vizsgalata sokaig a kozéppontban volt (lasd [19]), tobb
specialis 7-t vizsgaltak, tobb PhD dolgozat sziiletett a témaban.

2000-ben Klazar ([85], (2000)) egy fontos észrevételt tett: Ha a Fiiredi-Hajnal-sejtés
igaz (azaz egy permutéicié méatrix l-eseinek konfiguraciojat tiltjuk egy n x n méretid 0-
1 matrixban, akkor az l-esek szama linéris), akkor a Stanley-Wilf-sejtés is igaz. A két
sejtés két kiilonboz6 kutatoi kultaraban volt ismert. Ez az eredmény meglepd modon
Osszekototte az extremalis és az Gsszeszamolasi kérdést. 2004-ben Marcus és Tardos ([102],
(2004)) bebizonyitotta a Fiiredi-Hajnal-sejtést, igy a Stanley—Wilf-sejtés is bizonyitast
nyert.

Marcus és Tardos tobbet allitott mint amit a Stanley—Wilf-sejtést kivant. A permutéacid
métrixok alaphalmaza helyett a 0-1 métrixok alaphalmazaban szdmolt meg bizonyos tiltott
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konfiguraciot nem tartalmazé matrixokat. Ezzel problémék egy 1j serege felé iranyitotta a
figyelmet.

Kevés példa volt ismert tiltott részmatrixok mellett 0-1 méatrixok Gsszeszamolasara.
Egy azonban kiilondsen fontos lesz szdmunkra. Egy 0-1 matrixot egyedi-dsszeginek neve-
ziink, ha sor és oszloposszegei meghatarozzdk a maétrixot. Jelolje E;k) az n x k méretd
egyedi-sszegl 0-1 matrixok halmazat. Ezen maéatrixok Gale és Ryser (|60], [117], (1957))
egy klasszikus tétele alapjan jellemezhetd két kizart részmaétrixszal. 2008-ban Brewbaker
meghatarozta szamukat.

Tétel (Brewbaker, [15], (2008)). Az n x k méreti egyedi-osszeqd 0-1 mdtrizok szdma

min(n,k)
|Cﬁ|= Z (m!)z{n+1}{k+1}.
m=0

m+1)m+1

Az allitas jobb oldalan szerepls formula mar ismert volt egy teljesen méas kutatési te-
rilletrsl. A ((k) = 2,50 # Dirichlet-sor (amely &k > 1 konvergens), és analitikus komplex
kiterjesztése, a Riemann zeta fliggvény a matematika egyik legfontosabb objektuma. Tor-
ténete a 17-ik szazadban, az ugy nevezett Basel problémaval kezdsdott. Ez ((2) értékének
meghatarozasat kérte. Sok erdfeszités tortént a megoldéasra és a Bernoulli-szamok elGtérbe

keriiltek.

Definici6é. A Bernoulli-szamok (By,);>, sorozatdt exponencidlis generdtorfiigguvényiikkel

definidljuk

X oo n
S

e? -1 ‘= nl

A szamokat Jacob Bernoulli vezette be 1713-ban (posztumusz) publikalt munkajaban,
ahol az els6 n pozitiv egész hatvanyosszegeire vonatkozo formulékat vizsgélta és az els-
forduld egyiitthatok kozott keresett szabalyossédgokat. Euler hasznalta és tovabb vizsgalta
ezeket, § a szdmsorozat keresztsziilGje is. Euler volt, aki megoldotta a Basel problémat és
belatta, hogy ((2) = %f. Eredmény kiterjeszthets a zéta fliggvény pozitiv, paros helyeken
felvett értékeire is: ¢(2k) = (-1)F! (22(7;3;]: Boy, ahol k=1,2,3,.... A tovabbi nagyon széles
kort eredményekhez, kutatasokhoz csak kiindulé forrasokat adunk: [8], [70], [118].

A ( flggvény tobb Kkiterjesztése koziil az egyik kiilonosen fontos lesz szamunkra. A
tobbszoros ¢ értékek (ki, ke, ..., ky) szam n-esekhez tartoznak (ahol k; > 2 egészek), defi-

nicidjuk a kovetkez8 konvergens Osszeg

1
C(k1, ko, ... ky) 2. ki, ks

-
mi>ma>..>myp>0 M My~ .. .My

A Rieman-féle zéta fiiggvény ezen természetes kiterjesztését Euler [48] kezdte el az n = 2
eset vizsgalataval. A 20. szdzad végére a tObbszoros zéta fliggvények a kvantumtérelmélet,
csomok elmélete, mixed Tate motive, vagy kvantum csoportok vizsgalata soran is szerepet
kaptak (|23], [105], [61], [70]), tanulmanyozasuk egyre intenzivebb lett.

A poly-Bernoulli szamokat Kaneko [75] vezette be 1997-ben mint a klasszikus Bernoulli
szamok &ltaldnositasa, a tobbszords zéta fiiggvények értékeinek vizsgéalata soran. Ahogy a
klasszikus ( fliggvény értékei ,tartalmazzak" a Bernoulli szamokat, a tobbszoros zéta fiigg-
vények értékeibdl kiolvashatok relevans szamok. Ezek a poly-Bernoulli szamok, természetes
definici6juk generatorfiiggvényekre alapul.
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Definicié (Kaneko, [76]). A Bv(@k) poly-Bernoulli szamok, ahol n eqy pozitiv egész és k eqy
egész, a kovetkezd exponencidlis generdtorfiiggvénnyel definidlt

S pwd L -e) (3.1)

n _ X
fopar n! 1-e

ahol {
. o i
le(Z) = Z_k7

i=1?

azaz Lix(2) a k-adik polilogaritmikus figguény, ha k > 0, tovdbbd egy raciondlis tortfiggvény
ha k <0.

B,(ll) szamok a klasszikus Bernoulli-szamok. A poly-Bernoulli szamok bevezetése utan
nagyon sok szamelméleti cikk jelent meg tanulmanyozasukrol. Fzek a generatorfiiggvényes
definicion alapultak és algebrai manipulaciokkal vezettek le tulajdonsagokat. Erdekesség-
ként észrevették, hogy negativ k index esetén a poly-Bernoulli szdmok természetes szamok.

3.1. tablazat. A poly-Bernoulli szamok Bé_k) az n,k=0,1,2,3,4,5 paraméterek esetén

4 01 2 3 4 )
n
0 171 1 1 1 1
1 11 2 16 32
2 114 | 14 46 146 454
3 118 | 46 | 230 | 1066 4718
4 1|16 | 146 | 1066 | 6906 | 41506
5 1132|454 | 4718 | 41506 | 329462

A tablazat szimmetridja n és —k-ban egybdl szembetiing. Ez a kivetkezs analitikus
ea:+y
er+e¥—erty "

_ n .k
tulajdonsagbol nyilvanvalé is: $52, ¥ B L4 =

laciok utan jutottak el a kovetkezs képlethez BS ™ = ymm(mk) pfmedd g (RLY g nely bl

Szintén algebrai manipu-

kiolvashatéva, hogy a B,(l_k) szamok (n,k € N) valoban természetes szamok. ({‘:} jeloli
egy s elemi halmaz ¢ darab halmazba vald osztalyozasainak szamat, azaz a maéasodfaji
Stirling-szamokat. )

Ahogy Brewbaker belatta a fent emlitett tételét egybdl észrevette, hogy azt a as |[£F| =
B,(I_k) forméaban is megadhatja. Vagy pedig eredményét hasznalhatja a poly-Bernoulli
szamok kombinatorikus definicidjara: B,,(l_k) definidlhat6 mint az n x k méretd egyedi-
Osszegd 0-1 méatrixok szama.

A kombinatorikus szemlélet a negativ k paraméteri szamokat tudja jol kezelni. Mos-
tantol kezdve csak ezekkel a szamokkal dolgozunk és az egyszertiség kedvéért B,(L_k)—ra
bevezetjiik a B, j, jelolést.

7. Definicié. A (B, 1)y _q poly-Bernoulli szamok a
Bn,k = |£n,k|

szamok, azaz az egyedi-dsszeqid, n x k méretd 0-1 mdtrizok szama.
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A szamtablazat megtalalhato az egész sorozatok online enciklopédidjaban (OEIS [109)]),
mint A099594.

Az a felismerés, hogy a poly-Bernoulli szamok kombinatorikusan is definidlhatok lehe-
t&séget adnak arra, hogy kombinatorikusan bizonyitsunk olyan tulajdonsigokat, amelyek
algebrai atalakitasok ,melléktermékeiként" adodtak, illetve kombinatorikus gondolatok 1j
Osszefiiggésekhez vezessenek. Példaul a poly-Bernoulli szamok szimmetriaja, illetve az,
hogy értékeik természetes szamok kombinatorikusan nyilvanvaléak. Ilyen irdnyt eredmé-
nyeket [11]-ben publikaltunk.

Ohno [104] bevezette a zéta csillag fliggvényeket

C*(kh"'akn): Z ﬁ

n
mi>mo>..2mp21 My ... My

Kaneko |77] ahogy a t6bbszoros zéta fiiggvényekbol ezekbdl a zéta csillag fliggvényekbdl is
kiolvasott relevans egyiitthatokat: C,(Lk). Algebrai manipulaciokkal rekurziok, formulak és
tulajdonsagok vezethetdk le ezekre a szamokra is.

A disszertécioban kombinatorikusan definialjuk a C), ;, szamokat, amely a Kaneko 4ltal
bevezetett egylitthatokat adja negativ k értékekre. A poly-Bernoulli szamokkal valé hason-
l6sdg méar a definici6 szintjén megjelenik és a parhuzamos targyalés ravilagit a hasonlosag
gyokerére. A kombinatorikus definicié esetleges. Kideriil, hogy a C), j, és poly-Bernoulli
szamoknak rengeteg egymastol fiiggetlen definicioja adhato. Ezek a szamelméleti vizsgala-
toktol fliiggetleniil, részben Kaneko munkassiga el6tt mér kutatott volt. Ezek a kutatasok
egymastol fiiggetlenek voltak. Gyakran a C), i, gyakran a poly-Bernoulli szamok, illetve a
veliik rokon D), j, szamokkal kapcsolatosak. Az egyes mar ismert tulajdonsdgok kombina-
torikus igazolasahoz kiilonb6zd alternativ kombinatorikus definicidk lesznek megfelelGek.
Lassuk a definiciokat:

Legyen [,fl(c|) azon n x k méretd 0-1 egyedi-6sszegli matrixok halmaza, amelyek nem
tartalmaznak 0 oszlopot, azaz minden oszlopban legalabb egy 1-es szerepel. Jelolje £X (c|r|)
azon n x k méretd 0-1 egyedi-Osszegii matrixok halmaza, amelyek nem tartalmaznak sem
0 oszlopot, sem 0 sort.

8. Definicié. C,, ;, jeldlje |LE (c])|-t, azaz azon nxk méreti egyedi-Gsszegid mdtrizok szdmdt,
amelyek nem tartalmaznak csupa 0 oszlopot.

D, . jeldlje |LE (c|r|)|-t, azaz azon nxk méretid egyedi-Gsszeqid mdtrivok szamdt, amelyek
nem tartalmaznak csupa 0 oszlopot €s sort sem.

Belatjuk, hogy C,, . = Cfl_k). Nem meglepd a poly-Bernoulli szamokkal valé hasonlésag
és természetes a D, j, szAmok bevezetése is.

A Poly-Bernoulli numbers, their relatives, and their combinatorics fejezetben szdmos
alternativ kombinatorikus definiciét adunk a Cj, ; és D, szamokra. Ezek segitségével
latunk be régi és 1j azonossagokat. Bizonyitasaink kombinatorikusak. Ezek természete-
sebbek az analitikus/algebrai bizonyitasoknal, illetve a kombinatorikus gondolatok gyakran
olyan Osszefiiggésekhez vezetnek, amelyek az analitikus moédszerek hasznaléi nem vettek
észre. A poly-Bernoulli szamok bevezetése/elnevezése viszonylag Gj. Azonban ezek a sza-
mok mar korabban is felbukkantak matematikai vizsgalat soran. Erdekességként megje-
gyezziik, hogy Lovasz Laszlo 1979-ben kiadott [99] klasszikus feladatgytjteményében a
negyedik fejezet 36-os szamu feladata a D, j, szamokkal foglalkozik. Azoéta is tébbszor, a
legkiilonb6zEbb helyeken felmeriiltek ezek a szdmok, legtébbszor minden hivatkozas nélkiil
a korabbi kutatasokra.
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Néhany jellemz8 eredmény ebbdl a fejezetbdl.

9. Tétel.
Cn,k = C1k+1,n—1‘

10. Tétel.
Bn,k = Cn,k + Ck,n = Cn,k + C’n+1,k—1-

A bizonyitasok kombinatorikusak: az egyenlGség mindkét oldala egy-egy halmaz elem-
szamakeént irhato le. Az egyenléség a bal oldalhoz és jobb oldalhoz tartozé halmazok kozott
megadhaté bijekciobol kovetkezik. Mivel sok kombinatorikus interpretacié van, ezért sok
lehetéség van a fenti bizonyitasi séma elvégzésére. Az itt adott indoklasok latvanyosak,
egyszertek.

4. fejezet

Telitett geometrial struktarak

Sokszor a geometria adja a probléma kornyezetét és kérdés kombinatorikus motivacioju.

Telités egy hasznos eszkdz a kombinatorikdban. Gyakran egy T tulajdonsagu kom-
binatorikus struktuarat vizsgalunk. A struktira lehet példaul egy adott ponthalmazon
vett egyszerd grafok. Egy ilyen grafot T-telitettnek nevezziik, ha rendelkezik a T tulaj-
donséiggal, de tetszbleges két nem-szomszédos csiics Osszekotése a tulajdonsig elvesztését
eredményezi. Sokszor a T tulajdonsagi struktirdkra nem mondhatoé tal sok strukturalis
tulajdonsag, szemben a telitett strukturdkkal. A telitett struktirak mély ismerete az Gsszes
T-tulajdonsagu strukturarol ad informaciot. Példaul a teljes parositast nem tartalmazo
grafok kozott a telitettek konnyen leirhatok. FEzek leirdasa gyorsan elvezet a Tutte-tétel
felismeréséhez és bizonyitasahoz. [44], [100], [80] csak néhany fontos publikacio a telitési
modszer bemutatasara. A [54] részletes Osszefoglald cikk az ‘F-et részhipergrafként nem
tartalmaz’ tulajdonsag telitett hipergrafjairél valé ismereteinkrdl.
rozott szakaszok koziil valasztunk ki egy nem-metsz§ részt, amely telitett.

Ez iranyt kutatasaim ismertetéséhez néhany fogalmat kell bevezetni. Legyen G =
(V, E) egy egyszerti graf (E c (‘2/)) A G graf § lerajzolasa egy leképzés a V U E halmazbol:
Sl : V - R? egy 1-1 leképzés, azaz & csticsokhoz a (koordinéta-)sik kiilonbéz pontjait
rendeli. A képpontokra mint cstcspontokra hivatkozunk. Legyen C ,szép" egyszerd sik-
gorbék halmaza. Gondolhatunk egyszerd Jordan-gorbékre vagy egyszert szakaszokbol &llo
gorbékre. 0|g : E — C, azaz § grafunk minden éléhez egy gorbét rendel. A {i(e) :e € E}
halmaz elemeit élgorbéknek nevezziik. Feltessziik, hogy

(1) minden e = xy € E él esetén a d(e) élgorbe a d(x) és 6(y) csiucspontokat koti dssze
és nem halad 4t més csticsponton,
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(2) tetszoleges két élgorbe csak véges sok kozos ponttal rendelkezik, amelyek az esetleges
kozos végpont kivételével a két élgdrbe atmetszése.

Egy lerajzolas szép, ha nincs atmetszés az élgorbék kozott. FEgy lerajzolas egyszerd,
ha tetsz6leges két élgorbének legfeljebb egy kozos pontja van. (Igy egy szép lerajzolas
sziikségszertien egyszert, de forditva ez nem igaz.) Egy lerajzolas k-egyszerti, ha tetszdleges
két élgorbének legfeljebb k kozos pontja van.

Egy (G,0) par, azaz egy graf egy lerajozlasaval egylitt egy topologikus graf. Ez a
topologikus graf egyszert, ha a lerajzolas egyszerd (grafjaink mindig egyszeriiek). (G, J)
pontosan akkor geometriai graf, ha élgorbéi szakaszok. Egy geometriai graf sziikségsze-
riien egyszeri topologikus graf. A teljes grafnak is van geometriai lerajzolasa. Csupan
a cstcspontokat kell altalanos helyzett pontoknak valasztani. Igy minden grafnak van
geometriai, tehat egyben egyszerd lerajzolasa is. A szép lerajzolas fogalma ettsl nagy-
ban kiilénbozik: Szép lerajzoléas létezése egy nagyon megszoritd feltétel. Ez a sikgrafsag
egy megfogalmazésa, specialisan csak ritka grafoknak lehet szép lerajzoléasa. Topologikus
grafokkal foglalkozunk. A csicsok/cstcspontok, illetve élek/élgorbék fogalmakat szinoni-
maként hasznaljuk.

Telités szempontjabol is a szépség, illetve egyszertiség fogalma lényegesen kiillonbozo.
Ha vesziink egy szép lerajzolasat és ezt telitjlik, akkor egy olyan lerajzolashoz jutunk,
amelyben minden tartomanyt harom él hatéarol és az élek szama 3|V| -6 (feltessziik, hogy
|V]| > 3). Azaz a végso, telitett graf mérete nem fiigg a telitési folyamattol.

A [96] cikk kezdte meg az egyszeri topologikus grafok kozott a telitettek vizsgalatat.
Egy teljes graf geometriai lerajzolasa telitett, azaz itt a telitettek kozott vannak nagyon
stirtik. A [96] cikk egyik {6 eredménye, hogy vannak ritka (linearis sok éllel rendelkezd)
telitett egyszerd topologikus grafok. A felismerés utan a szerzék nem probaltak meg az
élszamban szerepls konstans faktorok javitasat.

Eredményeiket élesitjiik. A telitettséget megprobaljuk minél kevesebb él jelenlétével
elérni. Mivel az egyszerd lerajzolasok eléggé | Osszegubancolodnak" a ,sporolos" konst-
rukciok egyéltalaban nem egyszertiek. Az egyszerd esetben az eredeti 17.5-es, illetve a
2-egyszerii esetben 16m-es fels6 becslést egy telitett topologikus graf élszamara sikertilt
megjavitani.

11. Tétel. Tetszbleges pozitiv n esetén létezik legfeljebb Tn €ld egyszertd topologikus grdf,
amely telitett.

A [96] cikk also becslést is ad a telitett egyszerd topologikus grafok élszaméra. Az
alsd becslés a kovetkez§ észrevételen alapul: Ha egy legalabb 4 pontu egyszert topologikus
graf A csucspontjanak foka legfeljebb 2, akkor hozzdadhato egy A-bol induld élgorbe,
ami megorzi a lerajzolas egyszertiségét. Azaz a legalabb négy pontu telitett topologikus
grafokban minden csics foka legaldbb 3. Az érvelés lokalis tulajdonsagok alapjan allit
nem telitettséget. Habar nem tudunk [96] alsé becslésén javitani, de ezen lokalis érvelési
technika korlataira ramutatunk.

12. Tétel. Legyen k tetszdleges természetes szdm. FEkkor létezik 10k cstcsu eqyszerd to-
pologikus grdf, amelyben taldlhatd k darab 5 fokiu csics.

Konstrukcidénkat kiterjesztjitk 2-egyszert topologikus grafokra. Ezen iranyd kutatésa-
inkat a kovetkezs tétel foglalja Gssze.
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13. Tétel. Tetszdleges pozitiv egész n-re létezik 2-eqyszerd topologikus grdf, amely élszdma
legfeljebb 14.5n.
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5. fejezet

(Geometrial transzverzalis egyenesek

A kovetkezd fejezetben sikbeli konvex poligonok egy tulajdonsagat vizsgaljuk.

14. Tétel. Legyenek Ay, ..., Ay és By, ..., By sikbeli konvex poligonok, amelyek kériljdrdsa
ellentétes. Ekkor van olyan egyenes, amelynek az A1 By, ..., A, By szakaszok mindegyikével
van kozos pontja.

Az allitasbeli egyenest az A;B; szakaszok kozos transzverzdlisdnak nevezziik (5.1. abra).

5.1. abra. A konvex poligonok és az A; B; szakaszok k6z0s transzverzalisa

Egy ekvivalens, folytonos megfogalmazésat is adjuk a 14. Tételnek

15. Tétel. Legyenek vy é€s vyo konvex gorbék a sikon. Tegyiik fel, hogy mindkét gorbén egy-
eqy autd mozog kérbe azonos kezdd iddpontbdl indulva. Az eqyik pozitiv, a mdsik negativ
wranyitdsban jdrja be pdlydjdt és azonos pillanatban érkezik vissza a kiinduld pontba. Ekkor
létezik egy olyan £ egyenes, amelynek az utazds teljes ideje sordn az ellentétes oldaldn
tartozkodik o két auto.

Az egyenes pontjait mindkét oldalhoz hozzaértjiikk. Az autok megallhatnak, de vissza-
fordulasukat nem engedjiik meg (lasd 5.2. abra).
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5.2. abra. Két konvex gorbe és egy-egy autd rajtuk

Nyilvan 14. Tétel kovetkezik 15. Tételbdl. Valoban, ha adott Ay,..., A, és By,..., B,
akkor a két autd egy kozos iddpillanatban induljon az Aq, illetve By csiicsbol. A két
auté sokszogiik mindegyik oldalat 1 perc alatt jarja be egyeneletes sebességgel. Az utazas
kezdete utan i — 1 perccel, az els6 aut6 pozicidja A; és a masodiké B; lesz (i=1,...,n). A
15. Tétel altal garantélt ¢ egyenes bizonyitja a 14. Tételt.

Egy egyszerdi approximaciés érvelés mutatja, hogy a masik iranyban is igaz a kovet-
keztetés, azaz a két tétel ekvivalens: Ehhez vegyiik azokat a pontokat, ahol a két autd a
t = (k/n)T idopillanatokban tartozkodnak (k = 1,...,n), ahol T a teljes korbeutazashoz
sziikséges id6. A kapott n-szogre alkalmazhaté 14. Tétel. A kapott egyeneseket vizsgaljuk
n — oo esetben és konstrudlhatunk egy 15. Tételt bizonyité egyenest.

A magasabb dimenzios esetet is vizsgaljuk és R3-ban a kovetkezé eredményeket igazol-
juk.

16. Allitas. Ha A;---A,, és B1---B,, ellenkezdleg irdnyitott eqybevdgd poliéderek (az egybe-
vdgosagndl A; képe By, i=1,2,...,n). Ekkor taldlhato olyan sik a térben, amely az dsszes
A;B;, 1=1,2,...,n szakaszt metszi.

17. Allitas. Legyen Ai---A,, eqy térbeli poliéder és By---B,, ennek eqy affin képe. Ha ezek
a poliéderek ellentétesen vannak irdnyitva (abban az értelemben, hogy megfeleld lapjai ird-
nyitasai ellentétesek), akkor taldlhato eqy sik amely az dsszes A; By, i =1,2,...,m szakaszt
metszi.

Eredményeinket kiterjesztjiik R%re.

Megjegyezziik, hogy maés kiterjesztések is lehetségesek. Az altalunk targyalt kiterjesz-
tésektdl eltérst bizonyitott Holmsen, Kincses és Roldan-Pensado [71] R%-ben vettek két
konvex (barmelyik hipersik legfeljebb d pontban metszi) gorbét, Ci-et és Ca-t, melyek
[0,1]-gyel, ellentétes iranyban paraméterezettek. Belattak, hogy taldlhato olyan H hiper-
sik, hogy tetszsleges ¢ € [0,1] esetén a C1(t) és Co(t) nem esnek H &altal meghatéarozott
ugyanazon nyilt féltérbe.
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