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Bevezetés

A kombinatorika a matematika egy gyorsan fejlődő ága, melynek sok kapcsolata van a
klasszikus területekhez, és jelentős hatással is van ezekre és alkalmazásaikra. Különösen
jelentős az elméleti számítástudománnyal való kapcsolata.

A kombinatorika alapfogalmai nagyon egyszerűek, de egyben nagy kifejező erővel ren-
delkeznek. Egy hipergráf egy véges halmaz részhalmazaiból álló rendszer. A hipergráf által
tartalmazott részhalmazokat éleknek nevezzük. Nagyon sok struktúra lényege leírható egy
hipergráffal.

A 20-adik század közepére kikristályosodtak az alap extremális és Ramsey-típusú prob-
lémák. Azóta nagyon szoros kapcsok alakultak ki a kombinatorika, illetve algebra, geomet-
ria, analízis, topológia és valószínűségszámítás között. Ezek a kapcsolatok kétirányúak. A
klasszikus ágak sok módszert adnak kombinatorikus problémák megoldására. Másrészt a
kombinatorikus fogalmak, ötletek a klasszikus ágakban is gyümölcsözőnek bizonyultak.

Disszertációm eredményeinek nagy részét a különböző matematikai ágak közötti köl-
csönhatások ösztönözték. A munkában központi szerepet kapnak azok a problémák, ahol
a motiváció geometriai.

1. fejezet

Független csúcshalmazok geometriai
hipergráfokban

Gyakran találkozunk olyan helyzetekkel, amikor egy geometriai problémát szeretnénk
megoldani, és a problémán alapulva definiálunk egy kombinatorikus struktúrát, amely
a kérdés releváns információit tartalmazza. A probléma megoldása megfogalmazható a
kombinatorikus struktúra segítségével, és támadható kombinatorikus módszerekkel. A
kombinatorikus eredmény az eredeti geometriai környezetben értelmezhető. A módszer
nagyon hatékony, annak ellenére hogy a kombinatorikus struktúra legtöbbször nem pon-
tosan "fordít". A geometriai problémáról egy kombinatorikusra való áttérés matematikai
veszteséggel járhat.

5

               hajnal.peter_141_23



Kombinatorika, rendezés és geometria

Disszertációnk első két fejezetében két olyan problémát vizsgálunk, ahol a kombinato-
rikus fordítás és kombinatorikus módszerekkel érünk el új eredményeket.

Mindkét esetben a geometriai problémát úgy "kódoljuk" egy kombinatorikus struktú-
rával, hogy az alap geometriai kérdés egy "nagy" független ponthalmaz (csúcsok egy élt
nem tartalmazó részhalmaza) keresését jelenti hipergráfunkban. Az Gowers és Heilbronn
fejezetek tartalmazzák ezen irányú eredményeimet.

A szemi-véletlen módszert Ajtai Miklós, Komlós János és Szemerédi Endre [4] vezette
be gráfok esetére. Később [88] a módszert kiterjesztette 3-uniform hipergráfokra (minden
él három elemű). Később további erősítések, általánosítások (például [5] és [39]) történtek.

Egy H hipergráf a V csúcshalmazzal, P(V ), a V halmaz hatványhalmazának, egy
részhalmaza. Azaz H a V alaphalmaz bizonyos részhalmazait tartalmazza, amelyeket
éleknek nevezünk. Ha az élek elemszáma egy közös k szám, akkor azt mondjuk H egy
k-uniform hipergráf. Egy I ⊂ V csúcshalmaz független csúcshalmaz ha nem tartalmaz
részhalmazként élt. A H hipergráf független halmazai között a legnagyobb elemszámú
független halmaz méretét α(H)-val jelöljük. Több olyan eredmény is van, amely 3-uniform
hipergráfok α paraméterére ad alsó becslés ritkasági feltételek mellett.

Először is felidézek néhány alapfogalmat a hipergráfok elméletéből: Egy x csúcs fok-
száma (deg(x)) az x-et tartalmazó élek száma. Egy k-kör (k ≥ 2) a H hipergráfban k kü-
lönböző csúcs sorozata: x1, . . . , xk−1, xk = x0, továbbá k különböző él sorozata: E1, . . . ,Ek,
amelyek i = 1,2 . . . , k esetén teljesítik, hogy xi−1, xi ∈ Ei. A fenti kört egyszerűnek nevezzük
ha i = 1,2 . . . , k esetén Ei ∩ (∪j∶j/=iEj) = {xi−1, xi} is teljesül.

Lássuk a szemi-random módszer első hipergráfos megfogalmazását.
Tétel ([88], Lemma 1). Legyen H egy 3-uniform hipergráf v csúcson. Jelölje d a H hipergráf
átlag fokszámát. Tegyük fel, hogy d ≤ t2 és 1 ≪ t≪ v1/10.

Ha H nem tartalmaz legfeljebb 4 hosszú egyszerű köröket, akkor

α(H) = Ω(
v

t

√
log t) .

A tételben (és később) f ≪ g egy alkalmas α > 0 (rejtett, nem hangsúlyozott) kons-
tanssal az f ≤ αġ egyenlőtlenséget jelöli.

Megjegyezzük, hogy Spencer vette észre, hogy ([122], (1972)) a valószínűségszámítási
módszer egyszerű alkalmazásával kapjuk a α(H) = Ω(v/t) becslést. Ezen egyszerű egyen-
lőtlenségre mint a gráfelméleti Turán tétel hipergráfos kiterjesztésére gondolunk. Ezt élesíti
az előző tétel rövid, egyszerű körök hiánya esetén. Alkalmazásaink során a konstruált hi-
pergráfokban lesznek 3, illetve 4 hosszú körök. A következő tétel nagyon hasznos lesz
számunkra, Ez az alap szemi-random módszert terjeszti ki szélesebb hipergráfosztályra.

Tétel ([39], Theorem 2). Legyen H egy k-uniform hipergráf v csúcson. Legyen ∆ a H
hipergráf maximális foka. Tegyük fel, hogy ∆ ≤ tk−1 és 1 ≪ t. Ha H nem tartalmaz 2-kört
(két él legalább két közös csúccsal), akkor

α(H) = Ω(
v

t
(log t)

1
k−1) .

A szerzők észrevétele, hogy a szemi-random módszer már lineáris hipergráfokra is al-
kalmazható. Ennek a módszernek két geometriai alkalmazását ismertetjük.

Az első alkalmazás egy Erdős Páltól származó, majd később függetlenül Gowers által
is kimondott kérdés [62]. Adott egy P véges síkbeli ponthalmaz, mi az a minimális méret
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amely garantálja legyen P-ben n egy egyenesre eső, vagy n független pont (semelyik három
sem kollineáris)? Gowers megtette az alapvető észrevételeket: a négyzetrács pontjainak
egy n/2 × n/2 méretű része mutatja, hogy az 1

4n
2 méret szükséges, másrészt 2n3 méretű,

n kollineáris pontot nem tartalmazó ponthalmaz esetén a mohó algoritmus garantál n
független pontot. Payne és Wood [106] a felső becslést O(n2 logn)-re javította. Ők is
egy olyan ponthalmazt vettek, amely nem tartalmaz n kollineáris pontot, de mérete jóval
n3 alatt van. A mohó algoritmus helyett azonban Spencer lemmáját alkalmazták, azaz
egy egyszerű véletlen ritkítást vettek a definiált hipergráfukban. A Szemerédi–Trotter-
tétel segítségével egyszerű megbecsülni a megmaradt élek számát, amely becslés elvezet a
tételükhöz.

Szemerédi Endrével ezt a becslést javítjuk meg. Először definiáljuk a kollineáris pont-
hármasok hipergráfját, majd egy véletlen ritkítást hajtunk végre. Ennek célja nem a kevés
él elérése, hanem a 2-köröktől való megszabadulás. Ezek után alkalmazhatjuk a szemi-
random módszert ([39]) egy nagy független ponthalmaz találására. Hipergráfunk független
csúcshalmazai pontosan a geometriai független ponthalmazok.

1. Tétel. Legyen P egy tetszőleges α n2 logn
log logn méretű síkbeli ponthalmaz alkalmas α > 0

konstansra. Ekkor találhatunk n pontot P-ben, amelyek függetlenek vagy kollineárisak.

Második geometriai alkalmazásunk szorosan kapcsolódik Heilbronn háromszög problé-
májához [112], [119], [113], [114], [115], [116], [87]. Vegyünk egy "szép" egység területű,
zárt D tartományt (általában egy négyzetet, körlapot vagy egy szabályos háromszöget).
Helyezzünk n pontot D-be és vegyük az általuk meghatározott háromszögek legkisebb
területét. Milyen nagy lehet ez a paraméter? Legyen H△(n) a maximuma ennek a para-
méternek az összes pont n-est figyelembe véve.

Háromszögek helyett vehetünk pont k-asokat is ponthalmazunkból, majd képezzük
a kivett pontok konvex burkát. Ha ennek területével dolgozunk háromszögek helyett,
akkor a megfelelő szélsőérték probléma optimumát jelölje Hk(n) (így H3(n) = H△(n)).
A legjobb H△(n)-re vonatkozó alsó becslés [88]-ben található, ezt és néhány nyilvánvaló
egyenlőtlenséget összegeztünk:

α

√
logn

n2
≤H△(n) ≤H4(n) ≤H5(n) ≤ . . . ≤ β

1

n
,

ahol α,β alkalmas pozitív konstansok. Két központi kérdést emelünk ki: Igaz-e hogy
H△(n) = O(1/n2−ε) minden pozitív ε-ra és H4(n) = o(1/n)?

Számunkra a H4(n)-re vonatkozó alsó becslések érdekesek. Schmidt [119] belátta, hogy
H4(n) = Ω(1/n3/2). A bizonyítás egy egyszerű mohó algoritmus. [13]-ben a szerzők egy
új bizonyítást adnak és kiterjesztik az eredményt. Ezek mellett egy kérdést is feltesznek,
amit nem tudtak megválaszolni: A Schmidt becslés javítható-e egy logaritmikus szorzóval?
A szemi-random módszer segítségével megjavítjuk Schmidt becslését és így megválaszoljuk
[13] kérdését.

2. Tétel. Létezik egy n elemű ponthalmaz az egységnégyzetben úgy, hogy ne tartalmazzon
olyan pontnégyest amely konvex burkának területe nem éri el β(logn)1/2/n3/2-t alkalmas β
pozitív konstansra.
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2. fejezet

Extremális és Ramsey-típusú
problémák rendezett alaphalmazzal

Amikor egy geometriai konfiguráció kombinatorikus lényegét fogalmazzuk meg, akkor
nagyon gyakran a kombinatorikus alaphalmazon lesz egy rendezés. Ez a rendezés fontos
szerepet játszik a kombinatorikus tulajdonságok megfogalmazásában. Rendezett alaphal-
mazokkal kapcsolatos kombinatorikus struktúrák vizsgálatának hosszú története van. Az
egyik első példa a Davenport—Schinzel probléma ([35], (1965)). Az alapkérdés motivációja
differenciálegyenletek vizsgálatából ered. Definiálják egy függvény grafikonjának bonyo-
lultságát, ahol a függvény n másik függvény maximuma. Ezen függvények grafikonjairól
tudtak metszési feltételeket és így érdekelte őket milyen nagy lehet a bonyolultsága a maxi-
mum függvénynek. A kombinatorikus lényeg egyszerű volt. Csak a legegyszerűbb kérdést
mondjuk ki: Adott egy n elemű ábécé, ebből kell felépítenünk szavakat (karaktersorozato-
kat) úgy, hogy két közvetlen egymásutáni karakter mindig különböző legyen és ne forduljon
elő ababa részszó a /= b karakterekre. Milyen hosszú szót építhetünk fel? A részszavakat
úgy kapjuk, hogy az eredeti szóból törölünk karaktereket, de a megmaradó karakterek az
eredeti sorrendben követik egymást.

A sorrend lényeges. Évtizedek után született meg a megoldás: Hart és Sharir ([68],
(1986)) mutatta meg, hogy a küszöbérték (n karakterből felépülő maximális szó hossza)
Θ(nαn), ahol α(n) az inverz Ackermann függvény [1]. Az ő motivációjuk adatstruktúrák és
analízisük volt. Egy út összenyomási algoritmust, amelyet Tarjan ([132], (1975)) javasolt,
analizáltak. A klasszikus extremális kombinatorikában ilyen küszöbérték nem lépett fel.
Például be lehet látni, hogy gráfok esetén a Turán-típusú kérdésekben ez a küszöbérték
nem lehetséges.

Egy másik problémát is kiemelünk, amely természetes módon vezet el egy kombina-
torikus problémához, amely alaphalmaza rendezett halmaz. Erdős egyik kombinatorikus
geometriai alapproblémája, hogy a síkon n pont legfeljebb hány egységtávolságot határoz
meg. A kérdés a kombinatorika egyik legjobban vizsgált, központi kérdése. Ennek ellenére
kevés eredmény ismert. Ennek egyik oka, hogz a "kombinatorikus fordítások" eléggé pon-
tatlanok. Felmerült a konvex ponthalmazok (egy konvex sokszög csúcshalmaza) vizsgálata.

A legjobb konstrukció 2n − 7 egységtávolságot tartalmaz (Hajnal P. és Edelsbrunner
([41], (1990)), amely nagyon távol volt a O(n4/3)-es felső becsléstől. Füredi ([57], (1990))
javította meg a felső becslést O(n logn)-re. Felismerte azt, hogy konvex ponthalmaz ele-
mei között van egy a konvexburok kerülete által meghatározott körszerű rendezés. Ezt a
rendezést használva adott egy tiltott konfigurációt az egységtávolságok gráfjára. Így ju-
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tott el a következő extremális tételig, amely bizonyításának lényege: Ha egy n × n méretű

0-1 mátrix nem tartalmaz négy 1-est, amelyek (
1 1
1 1

) konfigurációt alkotnak, akkor a

mátrixban az egyesek száma O(n logn).
A fent kiemelt tétel nagyon gyümölcsözőnek bizonyult. Füredi és Hajnal P. a fenti

tételhez hasonló tételeket vizsgált más tiltott részkonfigurációk esetén. Egy elmélet kiala-
kítását kezdték el és cikkükben összefoglalták az álltaluk legfontossabbnak tartott nyitott
problémákat. Az elmélet kialakulása valóban elkezdődött, amit sok további cikk jelez (pél-
dául lásd [81], [130], [107], [131]). A 2018-as IMU kongresszus ezen témáról szóló meghívott
előadása (Tardos Gábor) további kérdéseket vet fel és kutatásokat ösztönöz. A Füredi–
Hajnal-cikkből egyetlen problémát emelünk ki, amely különösen fontos szerepet kapott: Ha
a tiltott konfigurációt alkotó 1-esek egy permutáció mátrixot alkotnak, akkor a maximális
száma az 1-eseknek O(n).

A Staircases of Gyárfás fejezetben Gyárfás egy Ramsey-típusú problémáját vizsgál-
juk. A motiváció geometriai és a kombinatorikus megfogalmazás 0-1 mátrixok nyelvén a
legtermészetesebb.

Jól ismert (Erdős és Rado egy korai megjegyzése, ma már standard feladat BSc gráf-
elmélet kurzus keretében) hogy a teljes gráfok tetszőleges piros/kék élszínezése esetén lesz
monokromatikus feszítőfa. 1998-ig váratott, hogy Károlyi, Pach és Tóth [78] kimondja és
belássa ennek egy nagyon szép általánosítását: Adott n általános helyzetű pont a síkon.
Az általuk meghatározott szakaszokat tetszőlegesen kiszínezzük piros/kék színekkel. Ekkor
garantált, hogy létezik egyszínű, nem-metsző feszítőfa.

A fenti kérdéseket teljes páros gráfra is feltehetjük. Monokromatikus feszítőfa nem lesz
garantált, de vizsgálható milyen nagy monokromatikus fa-részgráf lesz. A gráfelméleti kér-
dés egyszerűen megválaszolható: Ha Kn,n éleit tetszőlegesen kiszínezzük piros/kék színnel,
akkor a legnagyobb monokromatikus fa csúcsszáma legalább n, ha n páros és n + 1, ha n
páratlan. Továbbá a fenti becslések nem javíthatók.

Gyárfás egy szép tétele ([78]) vezetett a geometriai probléma vizsgálatához: Adott
2n konvex helyzetű ponthalmaz és egy egyenes, amely a ponthalmazt két n elemű félre
vágja. Vegyük az egyenesünket metsző n2 összekötő szakaszt és színezzük ki piros/kék
színnel. Milyen nagy monokromatikus nem-metsző fát garantálhatunk? A fenti geometri-
ai/gráfelméleti kérdés megfogalmazható mint egy mátrixokra vonatkozó probléma, ahogy
ez egy megjegyzésként megjelenik [26]-ben.

Legyen M egy 0-1 mátrix. Egy 0-lépcső nulla elemek egy {si}
`
i=1 sorozata M -ben

úgy, hogy si-hez képest si+1 vagy azonos sorban jobbra, vagy azonos oszlopban alatta
van. (Kiemeljük, hogy nem tesszük fel, hogy si és si+1 közvetlen egymás mellett áll.)
Hasonlóan definiálhatók az 1-lépcsők, amelyeket 1-es elemek alkotnak. Egy elemsorozat
M -ben homogén lépcső, ha 0- vagy 1-lépcső. Egy S homogén lépcső hossza az elemeinek
száma. Ezt ∣S∣-sel jelöljük. S-re úgy is tekinthetünk mint ∣S∣ − 1 lépés, ahol minden lépés
egy jobbra, vagy lefelé lépés egy a kiinduló helyzetben lévő értékkel megegyező értékű
elemre. S egy eleme fordulópont, ha az odavezető és a kivezető lépés iránya különbözik.
Sejtés (Gyárfás sejtése). Tetszőleges n × n méretű 0-1 mátrix tartalmaz n − 1 méretű ho-
mogén lépcsőt.

Jelölje st(M) az M mátrix homogén lépcsői között a legnagyobb méretét. Jelölje
st0(M) (illetve st1(M)) az M mátrix 0-homogén lépcsői között a legnagyobb méretét
(illetve az 1-lépcsőket tekintve). Tehát st(M) = max{st0(M), st1(M)}.
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Az eredeti Ramsey-típusú problémában a ponthalmaz kettévágása egy felezés volt, az-
az a mátrix nyelvezetben négyzetes mátrixokat vizsgáltunk eddig. Most bevezetjük az
aszimmetrikus változatot:

st(n) = min{st(M) ∶M ∈ {0,1}n×n},

st(n,N) = min{st(M) ∶M ∈ {0,1}n×N}.

Nyilvánvaló, hogy st(n,N) = st(N,n). A továbbiakban feltesszük, hogy N ≥ n.
A Gyárfás-sejtés megfogalmazható úgy is, hogy st(n) = st(n,n) ≥ n−1. A [26] cikk leír

egy egyszerű konstrukciót, amely mutatja, hogy st(n) ≤ n − 1 (feltéve, hogy n > 1). Így a
Gyárfás sejtés pontos állítása, hogy st(n) = n − 1, ha n > 1.

st(M) = max{st0(M), st1(M)} helyett vizsgálhatjuk a

stΣ(M) = st0(M) + st1(M)

paramétert is.
Természetes bevezetni a következő Ramsey-típusú paramétereket:

stΣ(n) = min{stΣ(M) ∶M ∈ {0,1}n×n},

stΣ(n,N) = min{stΣ(M) ∶M ∈ {0,1}n×N}.

Cai, Grindstaff, Gyárfás és Shull a stΣ(n) függvénnyel kapcsolatban kimond egy sej-
tést (lásd [34]), ami hamisnak bizonyult (lásd a [26] cikk, [34] újság változatának utolsó
megjegyzése). A fejezetben meghatározzuk stΣ(n,N) pontos értékét.

3. Tétel. n ≤ N esetén
stΣ(n,N) = ⌈

n

2
⌉ +N − 1.

A következő szekcióban st(n,N)-nel foglalkozunk. Két konstrukciót ismertetünk (azaz
felső becsléseket adunk az st(n,N) függvényre).

4. Tétel. N ≥ ⌊5
2n⌋ − 1 esetén,

st(n,N) = ⌈
⌈n/2⌉ +N − 1

2
⌉ .

Továbbá, ha n < N < ⌊5
2n⌋ − 1 akkor,

st(n,N) ≤ ⌈
2n +N − 2

3
⌉ .

A tétel kimondásából látszik, hogy bizonyos paraméter értékek esetén a felső becsléssel
azonos alsó becslést is tudtunk társítani. Azt sejtjük, hogy becsléseink mindig a helyes
értékeket adják.

5. Sejtés. n < N < ⌊5
2n⌋ − 1 esetén,

st(n,N) = ⌈
2n +N − 2

3
⌉ .
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Sejtésünk a négyzetes esetben Gyárfás sejtését adja. Sajnos a négyzetes, illetve közel-
négyzetes mátrixok esete mindmáig megoldatlan.

A fejezet végső szekciójában lényegesen megjavítjuk st(n) egyszerű 4
5n-es alsó becslését

[63] (szemben a [26] cikkel, ahol a javíthatóságot megmutatták, de javításukban szereplő
konstans csak alig mozdul el). Belátjuk a következő tételt.

6. Tétel. Tetszőleges M ∈ {0,1}n×n mátrix esetén

st(M) ≥
5

6
n −

7

12
.

3. fejezet

Rendezett alaphalmazokkal
rendelkező kombinatorikus
struktúrák összeszámlálása

Megemlítünk még egy kombinatorikus problémát, amelyben az alaphalmaz rendezése
fontos szerepet játszik. Ez egy a fentiektől különböző "kultúrából" ered, az összeszámolási
kombinatorikából. A témakör egyik fontos problémája volt a Stanley–Wilf-sejtés. Elő-
ször is definiáljuk, hogy mikor mondjuk azt, hogy egy π ∈ Sn permutáció tartalmazza a
τ ∈ Sk permutáció-mintát: Ha a π-t leíró permutációmátrixnak részmátrixa τ permutáció
mátrixa. Nagyon sok konkrét (kis k-hoz tartozó) τ permutáció esetén ismert hány olyan
π ∈ Sn permutáció van, amely nem tartalmazza τ -t. Konkrét esetekben (például τ = 213)
a választ a Catalan-számok adják. Más esetekben bonyolultabb módon adott a megfelelő
permutációk száma. Erre a számra azonban mindig n-ben exponenciális becslés adható,
ami jóval kisebb ∣Sn∣ = n!-nál. A Stanley–Wilf-sejtés azt mondja, hogy minden fix τ ∈ Sk
esetén azon Sn-beli permutációk száma, amelyek nem tartalmazzák τ -t csak exponenci-
álisan sokan lehetnek. A sejtés vizsgálata sokáig a középpontban volt (lásd [19]), több
speciális τ -t vizsgáltak, több PhD dolgozat született a témában.

2000-ben Klazar ([85], (2000)) egy fontos észrevételt tett: Ha a Füredi–Hajnal-sejtés
igaz (azaz egy permutáció mátrix 1-eseinek konfigurációját tiltjuk egy n × n méretű 0-
1 mátrixban, akkor az 1-esek száma lináris), akkor a Stanley–Wilf-sejtés is igaz. A két
sejtés két különböző kutatói kultúrában volt ismert. Ez az eredmény meglepő módon
összekötötte az extremális és az összeszámolási kérdést. 2004-ben Marcus és Tardos ([102],
(2004)) bebizonyította a Füredi–Hajnal-sejtést, így a Stanley–Wilf-sejtés is bizonyítást
nyert.

Marcus és Tardos többet állított mint amit a Stanley–Wilf-sejtést kívánt. A permutáció
mátrixok alaphalmaza helyett a 0-1 mátrixok alaphalmazában számolt meg bizonyos tiltott
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konfigurációt nem tartalmazó mátrixokat. Ezzel problémák egy új serege felé irányította a
figyelmet.

Kevés példa volt ismert tiltott részmátrixok mellett 0-1 mátrixok összeszámolására.
Egy azonban különösen fontos lesz számunkra. Egy 0-1 mátrixot egyedi-összegűnek neve-
zünk, ha sor és oszlopösszegei meghatározzák a mátrixot. Jelölje L(k)n az n × k méretű
egyedi-összegű 0-1 mátrixok halmazát. Ezen mátrixok Gale és Ryser ([60], [117], (1957))
egy klasszikus tétele alapján jellemezhető két kizárt részmátrixszal. 2008-ban Brewbaker
meghatározta számukat.
Tétel (Brewbaker, [15], (2008)). Az n × k méretű egyedi-összegű 0-1 mátrixok száma

∣L
k
n∣ =

min(n,k)

∑
m=0

(m!)2
{
n + 1

m + 1
}{
k + 1

m + 1
}.

Az állítás jobb oldalán szereplő formula már ismert volt egy teljesen más kutatási te-
rületről. A ζ(k) = ∑m>0

1
mk Dirichlet-sor (amely k > 1 konvergens), és analitikus komplex

kiterjesztése, a Riemann zeta függvény a matematika egyik legfontosabb objektuma. Tör-
ténete a 17-ik században, az úgy nevezett Basel problémával kezdődött. Ez ζ(2) értékének
meghatározását kérte. Sok erőfeszítés történt a megoldásra és a Bernoulli-számok előtérbe
kerültek.

Definíció. A Bernoulli-számok (Bn)
∞

n=0 sorozatát exponenciális generátorfüggvényükkel
definiáljuk

xex

ex − 1
=

∞

∑
n=0

Bn
xn

n!
.

A számokat Jacob Bernoulli vezette be 1713-ban (posztumusz) publikált munkájában,
ahol az első n pozitív egész hatványösszegeire vonatkozó formulákat vizsgálta és az elő-
forduló együtthatók között keresett szabályosságokat. Euler használta és tovább vizsgálta
ezeket, ő a számsorozat keresztszülője is. Euler volt, aki megoldotta a Basel problémát és
belátta, hogy ζ(2) = π2

6 . Eredmény kiterjeszthető a zéta függvény pozitív, páros helyeken

felvett értékeire is: ζ(2k) = (−1)k−1 (2π)
2k

2(2k)!B2k, ahol k = 1,2,3, . . .. A további nagyon széles
körű eredményekhez, kutatásokhoz csak kiinduló forrásokat adunk: [8], [70], [118].

A ζ függvény több kiterjesztése közül az egyik különösen fontos lesz számunkra. A
többszörös ζ értékek (k1, k2, . . . , kn) szám n-esekhez tartoznak (ahol ki ≥ 2 egészek), defi-
níciójuk a következő konvergens összeg

ζ(k1, k2, . . . , kn) ∑
m1>m2>...>mn>0

1

mk1
1 m

k2
2 . . .mkn

n

.

A Rieman-féle zéta függvény ezen természetes kiterjesztését Euler [48] kezdte el az n = 2
eset vizsgálatával. A 20. század végére a többszörös zéta függvények a kvantumtérelmélet,
csomók elmélete, mixed Tate motive, vagy kvantum csoportok vizsgálata során is szerepet
kaptak ([23], [105], [61], [70]), tanulmányozásuk egyre intenzívebb lett.

A poly-Bernoulli számokat Kaneko [75] vezette be 1997-ben mint a klasszikus Bernoulli
számok általánosítása, a többszörös zéta függvények értékeinek vizsgálata során. Ahogy a
klasszikus ζ függvény értékei "tartalmazzák" a Bernoulli számokat, a többszörös zéta függ-
vények értékeiből kiolvashatók releváns számok. Ezek a poly-Bernoulli számok, természetes
definíciójuk generátorfüggvényekre alapul.
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Definíció (Kaneko, [76]). A B
(k)
n poly-Bernoulli számok, ahol n egy pozitív egész és k egy

egész, a következő exponenciális generátorfüggvénnyel definiált
∞

∑
n=0

B(k)n

xn

n!
=
Lik(1 − e

−x)

1 − e−x
, (3.1)

ahol

Lik(z) =
∞

∑
i=1

zi

ik
,

azaz Lik(z) a k-adik polilogaritmikus függvény, ha k > 0, továbbá egy racionális törtfüggvény
ha k ≤ 0.

B
(1)
n számok a klasszikus Bernoulli-számok. A poly-Bernoulli számok bevezetése után

nagyon sok számelméleti cikk jelent meg tanulmányozásukról. Ezek a generátorfüggvényes
definíción alapultak és algebrai manipulációkkal vezettek le tulajdonságokat. Érdekesség-
ként észrevették, hogy negatív k index esetén a poly-Bernoulli számok természetes számok.

3.1. táblázat. A poly-Bernoulli számok B(−k)n az n, k = 0,1,2,3,4,5 paraméterek esetén

@
@
@n
k 0 1 2 3 4 5

0 1 1 1 1 1 1
1 1 2 4 8 16 32
2 1 4 14 46 146 454
3 1 8 46 230 1066 4718
4 1 16 146 1066 6906 41506
5 1 32 454 4718 41506 329462

A táblázat szimmetriája n és −k-ban egyből szembetűnő. Ez a következő analitikus
tulajdonságból nyilvánvaló is: ∑∞k=0∑

∞

n=0B
(−k)
n

xn

n!
yk

k! =
ex+y

ex+ey−ex+y . Szintén algebrai manipu-
lációk után jutottak el a következő képlethez B(−k)n = ∑

min(n,k)
m=0 m!{n+1

m+1
}m!{ k+1

m+1
}, amelyből

kiolvashatóvá, hogy a B(−k)n számok (n, k ∈ N) valóban természetes számok. ({st} jelöli
egy s elemű halmaz t darab halmazba való osztályozásainak számát, azaz a másodfajú
Stirling-számokat.)

Ahogy Brewbaker belátta a fent említett tételét egyből észrevette, hogy azt a as ∣Lkn∣ =

B
(−k)
n formában is megadhatja. Vagy pedig eredményét használhatja a poly-Bernoulli

számok kombinatorikus definíciójára: B
(−k)
n definiálható mint az n × k méretű egyedi-

összegű 0-1 mátrixok száma.
A kombinatorikus szemlélet a negatív k paraméterű számokat tudja jól kezelni. Mos-

tantól kezdve csak ezekkel a számokkal dolgozunk és az egyszerűség kedvéért B(−k)n -ra
bevezetjük a Bn,k jelölést.

7. Definíció. A (Bn,k)
∞

n,k=1 poly-Bernoulli számok a

Bn,k = ∣Ln,k∣

számok, azaz az egyedi-összegű, n × k méretű 0-1 mátrixok száma.
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A számtáblázat megtalálható az egész sorozatok online enciklopédiájában (OEIS [109]),
mint A099594.

Az a felismerés, hogy a poly-Bernoulli számok kombinatorikusan is definiálhatók lehe-
tőséget adnak arra, hogy kombinatorikusan bizonyítsunk olyan tulajdonságokat, amelyek
algebrai átalakítások "melléktermékeiként" adódtak, illetve kombinatorikus gondolatok új
összefüggésekhez vezessenek. Például a poly-Bernoulli számok szimmetriája, illetve az,
hogy értékeik természetes számok kombinatorikusan nyilvánvalóak. Ilyen irányú eredmé-
nyeket [11]-ben publikáltunk.

Ohno [104] bevezette a zéta csillag függvényeket

ζ∗(k1, . . . , kn) = ∑
m1≥m2≥...≥mn≥1

1

mk1
1 . . .mkn

n

.

Kaneko [77] ahogy a többszörös zéta függvényekből ezekből a zéta csillag függvényekből is
kiolvasott releváns együtthatókat: C(k)n . Algebrai manipulációkkal rekurziók, formulák és
tulajdonságok vezethetők le ezekre a számokra is.

A disszertációban kombinatorikusan definiáljuk a Cn,k számokat, amely a Kaneko által
bevezetett együtthatókat adja negatív k értékekre. A poly-Bernoulli számokkal való hason-
lóság már a definíció szintjén megjelenik és a párhuzamos tárgyalás rávilágít a hasonlóság
gyökerére. A kombinatorikus definíció esetleges. Kiderül, hogy a Cn,k és poly-Bernoulli
számoknak rengeteg egymástól független definíciója adható. Ezek a számelméleti vizsgála-
toktól függetlenül, részben Kaneko munkássága előtt már kutatott volt. Ezek a kutatások
egymástól függetlenek voltak. Gyakran a Cn,k, gyakran a poly-Bernoulli számok, illetve a
velük rokon Dn,k számokkal kapcsolatosak. Az egyes már ismert tulajdonságok kombina-
torikus igazolásához különböző alternatív kombinatorikus definíciók lesznek megfelelőek.
Lássuk a definíciókat:

Legyen Lkn(c∣) azon n × k méretű 0-1 egyedi-összegű mátrixok halmaza, amelyek nem
tartalmaznak 0 oszlopot, azaz minden oszlopban legalább egy 1-es szerepel. Jelölje Lkn(c∣r∣)
azon n × k méretű 0-1 egyedi-összegű mátrixok halmaza, amelyek nem tartalmaznak sem
0 oszlopot, sem 0 sort.

8. Definíció. Cn,k jelölje ∣Lkn(c∣)∣-t, azaz azon n×k méretű egyedi-összegű mátrixok számát,
amelyek nem tartalmaznak csupa 0 oszlopot.

Dn,k jelölje ∣Lkn(c∣r∣)∣-t, azaz azon n×k méretű egyedi-összegű mátrixok számát, amelyek
nem tartalmaznak csupa 0 oszlopot és sort sem.

Belátjuk, hogy Cn,k = C
(−k)
n . Nem meglepő a poly-Bernoulli számokkal való hasonlóság

és természetes a Dn,k számok bevezetése is.
A Poly-Bernoulli numbers, their relatives, and their combinatorics fejezetben számos

alternatív kombinatorikus definíciót adunk a Cn,k és Dn,k számokra. Ezek segítségével
látunk be régi és új azonosságokat. Bizonyításaink kombinatorikusak. Ezek természete-
sebbek az analitikus/algebrai bizonyításoknál, illetve a kombinatorikus gondolatok gyakran
olyan összefüggésekhez vezetnek, amelyek az analitikus módszerek használói nem vettek
észre. A poly-Bernoulli számok bevezetése/elnevezése viszonylag új. Azonban ezek a szá-
mok már korábban is felbukkantak matematikai vizsgálat során. Érdekességként megje-
gyezzük, hogy Lovász László 1979-ben kiadott [99] klasszikus feladatgyűjteményében a
negyedik fejezet 36-os számú feladata a Dn,k számokkal foglalkozik. Azóta is többször, a
legkülönbözőbb helyeken felmerültek ezek a számok, legtöbbször minden hivatkozás nélkül
a korábbi kutatásokra.
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Néhány jellemző eredmény ebből a fejezetből.

9. Tétel.
Cn,k = Ck+1,n−1.

10. Tétel.
Bn,k = Cn,k +Ck,n = Cn,k +Cn+1,k−1.

A bizonyítások kombinatorikusak: az egyenlőség mindkét oldala egy-egy halmaz elem-
számaként írható le. Az egyenlőség a bal oldalhoz és jobb oldalhoz tartozó halmazok között
megadható bijekcióból következik. Mivel sok kombinatorikus interpretáció van, ezért sok
lehetőség van a fenti bizonyítási séma elvégzésére. Az itt adott indoklások látványosak,
egyszerűek.

4. fejezet

Telített geometriai struktúrák

Sokszor a geometria adja a probléma környezetét és kérdés kombinatorikus motivációjú.
Telítés egy hasznos eszköz a kombinatorikában. Gyakran egy T tulajdonságú kom-

binatorikus struktúrát vizsgálunk. A struktúra lehet például egy adott ponthalmazon
vett egyszerű gráfok. Egy ilyen gráfot T -telítettnek nevezzük, ha rendelkezik a T tulaj-
donsággal, de tetszőleges két nem-szomszédos csúcs összekötése a tulajdonság elvesztését
eredményezi. Sokszor a T tulajdonságú struktúrákra nem mondható túl sok strukturális
tulajdonság, szemben a telített struktúrákkal. A telített struktúrák mély ismerete az összes
T -tulajdonságú struktúráról ad információt. Például a teljes párosítást nem tartalmazó
gráfok között a telítettek könnyen leírhatók. Ezek leírása gyorsan elvezet a Tutte-tétel
felismeréséhez és bizonyításához. [44], [100], [80] csak néhány fontos publikáció a telítési
módszer bemutatására. A [54] részletes összefoglaló cikk az ‘F -et részhipergráfként nem
tartalmaz’ tulajdonság telített hipergráfjairól való ismereteinkről.

Egy ponthalmaz triangulációját úgy is tekinthetjük, hogy a pontjaink által meghatá-
rozott szakaszok közül választunk ki egy nem-metsző részt, amely telített.

Ez irányú kutatásaim ismertetéséhez néhány fogalmat kell bevezetni. Legyen G =

(V,E) egy egyszerű gráf (E ⊂ (
V
2
)). A G gráf δ lerajzolása egy leképzés a V ∪E halmazból:

δ∣V ∶ V → R2 egy 1-1 leképzés, azaz δ csúcsokhoz a (koordináta-)sík különböző pontjait
rendeli. A képpontokra mint csúcspontokra hivatkozunk. Legyen C "szép" egyszerű sík-
görbék halmaza. Gondolhatunk egyszerű Jordan-görbékre vagy egyszerű szakaszokból álló
görbékre. δ∣E ∶ E → C, azaz δ gráfunk minden éléhez egy görbét rendel. A {δ(e) ∶ e ∈ E}

halmaz elemeit élgörbéknek nevezzük. Feltesszük, hogy
(1) minden e = xy ∈ E él esetén a δ(e) élgörbe a δ(x) és δ(y) csúcspontokat köti össze

és nem halad át más csúcsponton,

15

               hajnal.peter_141_23



Kombinatorika, rendezés és geometria

(2) tetszőleges két élgörbe csak véges sok közös ponttal rendelkezik, amelyek az esetleges
közös végpont kivételével a két élgörbe átmetszése.

Egy lerajzolás szép, ha nincs átmetszés az élgörbék között. Egy lerajzolás egyszerű,
ha tetszőleges két élgörbének legfeljebb egy közös pontja van. (Így egy szép lerajzolás
szükségszerűen egyszerű, de fordítva ez nem igaz.) Egy lerajzolás k-egyszerű, ha tetszőleges
két élgörbének legfeljebb k közös pontja van.

Egy (G, δ) pár, azaz egy gráf egy lerajozlásával együtt egy topologikus gráf. Ez a
topologikus gráf egyszerű, ha a lerajzolás egyszerű (gráfjaink mindig egyszerűek). (G, δ)
pontosan akkor geometriai gráf, ha élgörbéi szakaszok. Egy geometriai gráf szükségsze-
rűen egyszerű topologikus gráf. A teljes gráfnak is van geometriai lerajzolása. Csupán
a csúcspontokat kell általános helyzetű pontoknak választani. Így minden gráfnak van
geometriai, tehát egyben egyszerű lerajzolása is. A szép lerajzolás fogalma ettől nagy-
ban különbözik: Szép lerajzolás létezése egy nagyon megszorító feltétel. Ez a síkgráfság
egy megfogalmazása, speciálisan csak ritka gráfoknak lehet szép lerajzolása. Topologikus
gráfokkal foglalkozunk. A csúcsok/csúcspontok, illetve élek/élgörbék fogalmakat szinoni-
maként használjuk.

Telítés szempontjából is a szépség, illetve egyszerűség fogalma lényegesen különböző.
Ha veszünk egy szép lerajzolását és ezt telítjük, akkor egy olyan lerajzoláshoz jutunk,
amelyben minden tartományt három él határol és az élek száma 3∣V ∣ − 6 (feltesszük, hogy
∣V ∣ ≥ 3). Azaz a végső, telített gráf mérete nem függ a telítési folyamattól.

A [96] cikk kezdte meg az egyszerű topologikus gráfok között a telítettek vizsgálatát.
Egy teljes gráf geometriai lerajzolása telített, azaz itt a telítettek között vannak nagyon
sűrűk. A [96] cikk egyik fő eredménye, hogy vannak ritka (lineáris sok éllel rendelkező)
telített egyszerű topologikus gráfok. A felismerés után a szerzők nem próbálták meg az
élszámban szereplő konstans faktorok javítását.

Eredményeiket élesítjük. A telítettséget megpróbáljuk minél kevesebb él jelenlétével
elérni. Mivel az egyszerű lerajzolások eléggé "összegubancolódnak" a "spórolós" konst-
rukciók egyáltalában nem egyszerűek. Az egyszerű esetben az eredeti 17.5-es, illetve a
2-egyszerű esetben 16n-es felső becslést egy telített topologikus gráf élszámára sikerült
megjavítani.

11. Tétel. Tetszőleges pozitív n esetén létezik legfeljebb 7n élű egyszerű topologikus gráf,
amely telített.

A [96] cikk alsó becslést is ad a telített egyszerű topologikus gráfok élszámára. Az
alsó becslés a következő észrevételen alapul: Ha egy legalább 4 pontú egyszerű topologikus
gráf A csúcspontjának foka legfeljebb 2, akkor hozzáadható egy A-ból induló élgörbe,
ami megőrzi a lerajzolás egyszerűségét. Azaz a legalább négy pontú telített topologikus
gráfokban minden csúcs foka legalább 3. Az érvelés lokális tulajdonságok alapján állít
nem telítettséget. Habár nem tudunk [96] alsó becslésén javítani, de ezen lokális érvelési
technika korlátaira rámutatunk.

12. Tétel. Legyen k tetszőleges természetes szám. Ekkor létezik 10k csúcsú egyszerű to-
pologikus gráf, amelyben található k darab 5 fokú csúcs.

Konstrukciónkat kiterjesztjük 2-egyszerű topologikus gráfokra. Ezen irányú kutatása-
inkat a következő tétel foglalja össze.
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13. Tétel. Tetszőleges pozitív egész n-re létezik 2-egyszerű topologikus gráf, amely élszáma
legfeljebb 14.5n.
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5. fejezet

Geometriai transzverzális egyenesek

A következő fejezetben síkbeli konvex poligonok egy tulajdonságát vizsgáljuk.
14. Tétel. Legyenek A1, . . . ,An és B1, . . . ,Bn síkbeli konvex poligonok, amelyek körüljárása
ellentétes. Ekkor van olyan egyenes, amelynek az A1B1, . . . ,AnBn szakaszok mindegyikével
van közös pontja.

Az állításbeli egyenest az AjBj szakaszok közös transzverzálisának nevezzük (5.1. ábra).

5.1. ábra. A konvex poligonok és az AiBi szakaszok közös transzverzálisa

Egy ekvivalens, folytonos megfogalmazását is adjuk a 14. Tételnek

15. Tétel. Legyenek γ1 és γ2 konvex görbék a síkon. Tegyük fel, hogy mindkét görbén egy-
egy autó mozog körbe azonos kezdő időpontból indulva. Az egyik pozitív, a másik negatív
irányításban járja be pályáját és azonos pillanatban érkezik vissza a kiinduló pontba. Ekkor
létezik egy olyan ` egyenes, amelynek az utazás teljes ideje során az ellentétes oldalán
tartózkodik a két autó.

Az egyenes pontjait mindkét oldalhoz hozzáértjük. Az autók megállhatnak, de vissza-
fordulásukat nem engedjük meg (lásd 5.2. ábra).
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5.2. ábra. Két konvex görbe és egy-egy autó rajtuk

Nyilván 14. Tétel következik 15. Tételből. Valóban, ha adott A1, . . . ,An és B1, . . . ,Bn
akkor a két autó egy közös időpillanatban induljon az A1, illetve B1 csúcsból. A két
autó sokszögük mindegyik oldalát 1 perc alatt járja be egyeneletes sebességgel. Az utázás
kezdete után i− 1 perccel, az első autó pozíciója Ai és a másodiké Bi lesz (i = 1, . . . , n). A
15. Tétel által garantált ` egyenes bizonyítja a 14. Tételt.

Egy egyszerű approximációs érvelés mutatja, hogy a másik irányban is igaz a követ-
keztetés, azaz a két tétel ekvivalens: Ehhez vegyük azokat a pontokat, ahol a két autó a
t = (k/n)T időpillanatokban tartózkodnak (k = 1, . . . , n), ahol T a teljes körbeutazáshoz
szükséges idő. A kapott n-szögre alkalmazható 14. Tétel. A kapott egyeneseket vizsgáljuk
n→∞ esetben és konstruálhatunk egy 15. Tételt bizonyító egyenest.

A magasabb dimenziós esetet is vizsgáljuk és R3-ban a következő eredményeket igazol-
juk.

16. Állítás. Ha A1⋯An és B1⋯Bn ellenkezőleg irányított egybevágó poliéderek (az egybe-
vágóságnál Ai képe Bi, i = 1,2, . . . , n). Ekkor található olyan sík a térben, amely az összes
AiBi, i = 1,2, . . . , n szakaszt metszi.

17. Állítás. Legyen A1⋯An egy térbeli poliéder és B1⋯Bn ennek egy affin képe. Ha ezek
a poliéderek ellentétesen vannak irányítva (abban az értelemben, hogy megfelelő lapjai irá-
nyításai ellentétesek), akkor található egy sík amely az összes AiBi, i = 1,2, . . . ,m szakaszt
metszi.

Eredményeinket kiterjesztjük Rd-re.
Megjegyezzük, hogy más kiterjesztések is lehetségesek. Az általunk tárgyalt kiterjesz-

tésektől eltérőt bizonyított Holmsen, Kincses és Roldán-Pensado [71] Rd-ben vettek két
konvex (bármelyik hipersík legfeljebb d pontban metszi) görbét, C1-et és C2-t, melyek
[0,1]-gyel, ellentétes irányban paraméterezettek. Belátták, hogy található olyan H hiper-
sík, hogy tetszőleges t ∈ [0,1] esetén a C1(t) és C2(t) nem esnek H által meghatározott
ugyanazon nyílt féltérbe.
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