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1. Bevezetés

Szemcsés anyagnak (vagy szemcsés halmaznak) nevezziik azokat az anyagokat, amelyek a
halmaz méretéhez képest kis méretli szilard szemcsékbdl allnak. A mezdgazdasag és az ipar
majdnem minden teriiletén eléfordulnak, dmlesztett anyagok, szemestermények, porok, a talaj
mind ilyen anyagok. A gyakori el6fordulas miatt sokszor meriil fel a mechanikai modellezés
igénye. A szilard testeknél vagy folyadékoknal megszokott modellezési eljarasok sok esetben
nem alkalmasak a viselkedésiik leirdsara, specidlis tulajdonsagaik miatt. Ezek koziil az egyik
legfontosabb, hogy folyadék és szilard test jellegli viselkedést is képesek mutatni a megfeleld
koriilmények kozott. Amikor egy épiilet alapozésat kell megtervezni, akkor a szilard test jellegii
tulajdonsagot kell megtartani és olyan peremfeltételeket eldirni, ahol szilard testként viselkedik
a szemcsés halmaz. Amikor szemesterményt akarunk siloban tarolni és az a célunk, hogy
kifolyjon, amikor {iriteni kell, akkor pedig olyan koriilményeket kell biztositanunk, ahol
folyadékszerii viselkedést mutat. A folyadék és szilard halmazallapot jellegii viselkedés miatt
specialis mechanikai modellekre van sziikség a szemcsés halmazok leirasara. A tudomanyos
kutatdsok soran és gyakorlati alkalmazdsok esetén szdmos modell sziiletett leirasukra, a
klasszikus analitikus modellek a XIX. szazad végétol kezdve. A gyakorlat szamara nagyon
hasznos ¢és jol hasznalhato eredmények a mai napig alkalmazdsban vannak. Ezen a teriileten
kevés 1) eredménnyel taldlkozunk az utdbbi évtizedekben. Jelenleg a numerikus modellezés
keriilt a tudomanyos kutatdsok kézéppontjaba, ezen beliil kiemelt jelentdségii a diszkrét elemes

modellezés.

Kutatdsaim sordn mind az analitikus, mind a numerikus modellezés teriiletén végeztem
kutatasokat. Disszertaciomban a két teriileten elért, 4ltalam legfontosabbnak itélt
eredményeimet mutatom be. Az analitikus modellezést a silokifolyasra alkalmazom, amely a
PhD kutatasaim soran megalkotott eljaras és modell kiterjesztése, altalanositasa. A numerikus
modellezésben a diszkrét elemes modellezés egyik alapjahoz, a kapcsolati modellekhez
fejlesztettem ki Ujszerli megkdzelitésii csillapitdsi modszert, amely az eredmények alapjan
numerikusan stabilabb szdmit4sokat tesz lehetové. Ennek altalanos elméleti megkozelitését és

egy adott modellre torténd alkalmazasat mutatom be dolgozatomban.

Az eredmények alapjat képezd kutatasi munka egy részét kutatdcsoportban, egy részét
onalldéan végeztem el. A dolgozatban az igék egyes szdm és tobbes szam elsd személyben

hasznalt alakjaval kiilonboztetem meg ezeket.



2. A kutatasok soran alkalmazott modszerek

2.1. Boltozédasi vizsgalatok

2.1.1. Berendezés leirasa

Az 1. abran lathatd boltozodéasvizsgald berendezéssel végeztiik el a kisérleteket. A késziilék
célja, hogy sikalakvaltozasi allapotot hozzon létre, aminek az eredményeképp lathato sikbeli
boltozat alakul ki. Ennek érdekében két parhuzamos és fiiggbleges atlatszo plexilap kdzott van
kialakitva egy téglalap alapu iireg. A plexilapra kiviilr6l a boltozat méreteinek rogzitésére
szolgéald négyzetracsot helyeziink. A lapokkal hatérolt lireg szélessége kellden nagy ahhoz,
hogy ne zavarja a kdzépen kialakulo boltozat feltételeit az a két oldalfal. Az als¢ feliilet a
feltoltés idejére teljesen lezarhato, a vizsgalat soran palcakkal beallithatoé rést hozunk létre,
amely szintén a sikmodell feltételeinek megfelelden allando szélességli. Egy palca szélessége

10 mm, a maximalisan beallithaté legnagyobb résméret 220 mm.

= 5
F2 | F2
H H
y
X
A A

1. abra Boltozodasvizsgalo berendezés fényképe és vazlata



A kisérleteket a konnyii kezelhet6ség miatt nedves homokkal végeztiik el.
2.2. Kifolyasi vizsgalatok

2.2.1. Kifolyas szemcseszintii vizualis vizsgalata

A kifolyas soran azt vizsgaltam, hogy folytonos-e az aramlas vagy vannak elkiilonithetd

fazisai. A kisérlethez homokorat hasznaltam (2. abra).

A homokoéraban 1évd aramlasrol készitettem fényképeket. A mozgasokat villanofénnyel
,befagyasztva” lathatova tehetd a kifolyas egy-egy pillanata. A kisérletek soran a sziikiiletben
torténd aramléasra makrofényképezéssel, harmonika kihuzat segitségével tudtam ranagyitani a

megfeleld mindségben.

2. abra Homokora ¢és fényképezgép harmonika kihuzattal

2.2.2. Kisérleti silok

A kifolyasi kisérletek harom modellsilon folytak. A nagyobb hengeres modell méretei: 440
mm atmérdjii és 1250 mm magas, 0,18 m® térfogata hengeres sild, cserélhetd kiipos garattal.
Harom garat késziilt 50mm ¢és 100 mm kozott valtoztathaté atmérdji (kapos toldattal)

kifolyonyilassal. A garatok félkupszoge a = 30°, 45°, 60°.

A mér6berendezés atlatszo fala lehetové tette a folyamat megfigyelését. A kiilonbozo

garatokban térfogati €s tolcséres kifolyasi mod is megfigyelhetd volt a mérések soran.
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A kisebb hengeres silo atmérdje 100 mm, magassaga 1500 mm. A garat cserélhetd, és a kis

méret lehetdvé teszi a cserekipok gyors gyarthatdsagat és modosithatosagat.

A kisérletek soran két paramétert vizsgaltam, amely eltérd kialakitast igényelt.

o Kifolyonyilas atmérdjének hatasa: ebben a kisérletsorozatban a kifolyonyilas
atmérojét 25, 30, 35, 40, 45, 60, 70, 80, 90, 100 mm-es méretekben valtoztattam, a
méréseket buzaval végeztem el haromszoros ismétléssel. A kifolyokup félkupszoge
minden esetben 45° volt. Az atmérd legnagyobb értéke ebben az esetben mar nem
jelentett fizikailag garatot, mert megegyezett a 100mm-es siléatmérdvel, igy annak
meghosszabbitasa volt. A kisérletek sordn ugyanazt a garatot hasznaltam, a

kifolyonyilas 1€pésrdl 1épésre torténd felbdvitésével.

o Félkupszog hatdsa: vizsgalatdhoz 10, 20, 30, 37,5, 45, 90°-os (sikfenék) félkupszogi
garatokat gyartottam, 20 mme-es kifolyonyilas atmér6vel. A mért anyag btiza. Ebben

a vizsgalatban minden félkupszog esetében kiilon garatot kellett gyartani.

Harom erémérot épitettem be (3. abra), ezek a silon (1), a garaton (2) és az elzar6 elemen
(3) érzékelik az erét. Kifolyasi mérésekhez értelemszeriien csak az elsé kett6t hasznaljuk. A

mérdrendszer tobbi eleme nem valtozott a nagyobb modellhez képest.
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3. abra Kis méretti hengeres silomodell

Sebességeloszlas mérésekhez tereldlemezes kiegészitéssel lattam el a kisebb modellsilot,
ehhez a kisérletsorozathoz makot alkalmaztam. A beallitott résméreteket 2 és 15mm kozt Imm-

es 1épésekkel valtoztattam, minden mérést haromszori ismétléssel végeztem el.
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4. dbra Sebességeloszlas mérése

A sikaramlast négyszog keresztmetszetli modellsiloval hoztuk 1étre, a modell vazlata az 5.
abran lathat6. A modell 0,3mm vastag acéllemezbdl késziilt. A garat ennél a modellnél is
cserélhetd, ahogy a kordbbi hengeres silo esetében. Harom kiilonb6zd vizsgalathoz késziilt

harom kiilonb6z6 paraméterében valtozo készlet.



e A garat lejtésének vizsgalatdhoz a szimmetrikus sik lejté félnyilasszogét (18. abra a
méret) 10° és 70° kozott hét 1épcesében valtoztattuk. Ezekben az esetekben a
kifolyonyilas alland6 20mm x 100mm méretii volt. A sild6 mérete 100mm x 100mm,
igy a kis hengeres silo mérettartomanyaba esik. A szélességet nem valtoztattuk ezen

kisérletek soran.

e A masodik kisérletsorozat a silotest szélesség-mélység aranyanak vizsgdlatira
vonatkozott. Ekkor a silo ¢ mérete allanddé 100mm volt, a b méretet 25mm és 125mm
kozott fokozatmentesen allithatova tettiik. A garat félnyilasszoge allando 60° volt.

A sil6 aranyai ebben vizsgalatban c/b = 0,8 - 4 kozott valtoztak.

¢ A harmadik kisérletsorozatban a modell alkalmazhat6sagi hatarainak vizsgalata volt
a cél. Ebben az esetben azt vizsgalatuk, hogy mekkora minimalis garat sziikséges
ahhoz, hogy az aramlasok modellezésére a 1étrehozott modell még alkalmas legyen.

A silo és a kifolyonyilds a/c aranyat 0,15 - 1 hatarok kozott valtoztattuk

silé
garat
5. abra Sikaramlasu modellsilo
2.3. Az Uj kontakt modell vizsgalatara alkalmazott DEM modell

Az 1) kontakt modellt MercuryDPM nyilt forraskoda diszkrét elemes modellezo
szoftverben hoztuk létre. A szoftver lehetdvé teszi, hogy C++ programnyelv hasznalataval 1)
szemcsekapcsolati modellt hozzunk 1étre és azt a modellezés soran alkalmazzuk. A szoftver

sajat modellkonyvtarral rendelkezik, amelyben taldlhaté viszkozus csillapitasi Hertz



(HertzianViscoelasticNormalModel) kapcsolati modell, amelyet az Osszehasonlitashoz

hasznaltunk.

2.3.1. Ejtési vizsgalat egy szemcsével

Az els6 vizsgalat célja, annak megallapitasa, hogy az titk6zési tényezo hatasa az j modell
esetében nem valtozott-e meg. Ennek vizsgalatira egy szemcsét ejtettiink le h, = 100mm
kezdeti magassagbol egy sikra. A visszapattands ¢és az idOben tOrténd mozgas
Osszehasonlitdsaval megallapithato, hogy az Uj modell mennyire tér el a gyakorlatban bevalt

modelltdl.

A vizsgalat vazlata a 6. abran lathato.
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6. abra Ejtésteszt vazlata

A vizsgalat eredményeképpen az egymas utani h és hy litkozés eldtti és utani maximalis

magassagok jelzik, hogy az litk6zési tényezo kezelése szempontjabdl az adott modell helyes-e.

2.3.2. Ejtési vizsgalat tobb szemcsével

A tobb szemcsével végzett vizsgalat célja annak megéllapitasa, hogy a tobbszords
litk6zések esetén milyen hatasa van az uj modellben alkalmazott csillapitasnak. Két beallitassal
tortént a vizsgalat. Elsoként a szemcséket szorosan elrendezve, masodik esetben a szemcséket
lazan, tobb spiral mentén elrendezve inditottuk. Mindkét esetben a szemcse minden

tulajdonsaga megegyezett az el6z0 fejezetben bemutatott esettel.

A vizsgalatokat egy 30mm atméréji €s 300mm magas hengerben végeztiik. A legalso

szemcseék kezdeti magassaga 150mm volt, az elsd esetben szorosan elrendezve 4 sorban



definidltuk a szemcséket. A masodik esetben harom kiilonb6zé sugara spiralban, nagy

hézagokkal rendeztiik el a szemcséket a 7. dbran lathaté modon.

a) b)

7. dbra Tobb szemcsével elvégzett ejtésvizsgalat geometriai modellje

A korabbi vizsgalat arra iranyult, hogy a csillapitds modjanak valtozasat vizsgaljuk abbol a
szempontbol, hogy az iitkdzési tényezd azonos modon viselkedik-e, mint a bevalt modell
esetében. Ez a vizsgalat viszont az eltérésekre koncentral, annak megallapitasa érdekében, hogy

vannak-e a szimulacié soran megfigyelhetd eldnyei az uj modellnek.

2.3.3. Izotrop nyomas

Az izotrop nyomas vizsgalatot annak megallapitasara végeztiik el, hogy a Hertz-Mindlin
kapcsolati modell és az 0j kapcsolati modell numerikus stabilitasat dssze tudjuk hasonlitani. Ezt
gy értiik el, hogy egy 0,095 m?® térfogatu kockat véletlenszerti elrendezéssel kitdltiink az el6zé
vizsgalatoknal is alkalmazott paraméterekkel rendelkezé szemcsés anyaggal (8. abra). Ezutan
egy olyan kinematikai peremfeltételt adtunk meg, amely a kocka minden lapjat allando € = 0,4

1/s deformaciosebességgel 6sszenyomja.



8. abra Izotrop nyomas geometridja

Minden vizsgalat a tg Rayleigh id6lépésnél kisebb id6lépéssel tortént 0,1tz — 0,5tg
tartomanyban annak érdekében, hogy a modell tulajdonsagait az idélépés fiiggvényében is meg

tudjuk hatdrozni.
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3. Silébdl torténd kifolyas 0j analitikus modellje

Az els6 kifolyasi modell a PhD kutatdsaim eredménye, amely a hengeres silok esetére
érvényes analitikus modell. Ennek tovabbfejlesztése sik falu silokra és helyességének
ellendrzése tovabbi kutatdsokat igényelt. Ebben a fejezetben a modell alapjat képezo hipotézist,

az ebbdl 1étrehozott kifolyasi modelleket, valamint ezek igazolasat mutatom be.
3.1. Instabil boltozatok hipotézise
3.1.1. Kifolyas uj definicioja

A szemcsés anyag kifolyasa feltételezésem szerint folyamatosan kialakuld és 6sszeomld
boltozatok sorozataként jon létre. igy az anyag a kifolyonyilas folott egy boltozat alakja altal

megadott pontrdl szabadeséssel hullik ki a silobol.

3.1.2. Kisérleti igazolas

Instabil boltozatok vizudlis igazoldsa
A kisérletek eredményei lathatoak a 9. abran. A 9.b abran (a 9.a részlete ndvelt kontraszttal)
egy instabil boltozatot latunk, amely a tobbi felvételen nem lathatd, tehat csak adott

id6pillanatban létezett.

A\

instabil boltozat

a) b)
9. abra Kifolyas kozben kialakul6 boltozatok

Az instabil boltozatok jelenlétét a kisérletek bizonyitjak. Az a hipotézis, hogy azok
folyamatos osszeomlasa és kihullasa hatarozza meg a kifolyt anyag mennyiségét, az ezen

alapuld szamitasi modell eredményeinek igazolasaval bizonyithato.

11



3.1.3. Hipotézis kovetkezménye

A hipotézisem szerint a kifolyds az instabil boltozatokon alapul. Ezek a boltozatok a
kifolyonyilas folott allandd peremfeltételeket biztositanak, igy a kifolyas minden paramétere
allando, a sebesség €s a tomegaram is. Azaz a kifolyasi tomegaram allando, nem fligg a silo

toltottségétol, fiiggetlen a szemcsés halmaz magassagatol.
3.2. Boltozatalak meghatarozasa

3.2.1. A boltozat alakjanak mérési eredményei

A 4.1.1. fejezetben bemutatott berendezésen a boltozat alakjat az oldalfalon elhelyezett
négyzetracs segitségével rogzitettem. A kapott fliggvények az oldalfalra feltapadt és a leolvasas
pontossagat csokkentd anyag ellenére alkalmasak az alak vizsgélatara. A pontonként rogzitett

alakot kozelit6 fiiggvényekkel irtam le tiz mérés esetében.

Az egyes bedllitdsok és anyagjellemzdk fliggvényében a boltozat szélessége és magassiga
mas és mas értékeket mutatott, azonban a jelenlegi kutatdsokban fontos jellemzd, az alakra

illeszthetd fliggvény tipusa azonos volt a mérések soran.

A mérések soran megallapithatdé volt, hogy az alak jol kozelithetd6 masodfoku parabola
fliggvénnyel. A 10. abran egy olyan mérési eredmény lathato, ahol a masodfoku fiiggvény

determinacids egyiitthatdja R? = 0,9812.

y =-0.0182x2 + 1.989x - 1.217

60 RE=0.0812

0 s N
N e N
N “\
£ AN

; | | | | N\

20 40 60 80 100 120

Boltozat magassaga [mm]

-10

Boltozat szélessége [mm]

10. abra. A boltozat alakjanak kozelitése masodfoku fiiggvénnyel

Tiz mérés esetén az illeszkedés mértékét az 1. tablazatban foglaltam Ossze. A Kisebb

egyiitthato oka a feltapadasok miatt nagyobb az eltérések az elméleti fliggvénytol.
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1. tablazat R? értékek mért boltozatalakok esetén

M¢érés sorszama R? M¢érés sorszama R?

1 0,9945 6 0,9812

2 0,8844 7 0,9074

3 0,9141 8 0,958

4 0,8872 9 0,96

5 0,8258 10 0,884
3.3. Kifolyasi tomegaram meghatarozasa hengeres silékra

3.3.1. Kifolyasi sebesség szamitasa

A kifolyt anyag az 6sszeomlott instabil boltozat anyaga. A boltozat Gsszetdrése utan az
anyag szabadeséssel tavozik a kifolyonyilason (Oldal et al.: 2012.). Ebbdl kovetkezik, hogy a
boltozat alakja, mint a szabadesés kezdOpontja adja meg a kifolyas sebességét adott pontban.
Toleséres kifolyas esetén a boltozat sz€lsd pontjai nem mozognak, igy ebbdl kiindulva zérus
kezdGsebességli szabadesésként szamithato a sebesség. A boltozat h magassaga nem mérhetd,
ezért &, boltozati alaktényezét bevezetve, amely feltételezésem szerint anyagjellemzo, a

boltozat magassag-sz¢lesség arany

)

Ql =

6b:

Tengelyszimmetrikus aramlés (hengeres sild) esetén a kifolyasi sebesség:
2x\2 2
v(x, @) =+/2g6,d - 1—(7> )
Figyelembe véve, hogy a szemcsék csokkentik a kifolyési keresztmetszetet, a tdmegaram:

T

2 5
= /B (d - d,)? ©

Az Osszefliggés toleséres kifolyas esetén fennalld feltételek mellett nyerte el azt a format,

ezért térfogati aramlés esetén nem alkalmazhato.

Sik aramlés esetében a sebesség:

13



2

v(x,z) =./2g6pa- |1— (%) (4)

A tdmegaramot:

T

2 3
w =" 0,55, (a - d)? 5)

A peremfeltételek tOlcséres aramlas esetén teljesiilnek, hasonldéan (3)-hoz, ez sem

alkalmazhato térfogati &ramlés esetén.
3.4. Sebességeloszlas eredmények

3.4.1. Sebességeloszlas kisérleti vizsgalata

A kifolyonyiladsndl az aramlast kettéosztottuk a 4. dbran lathatdé modon. A korszeleten
integralva polarkoordinatakkal —¢ és ¢ valamint a szeld sugarban szamitott hataratol R-ig és

a halmazstirliséggel megszorozva kapjuk a korszeletre szamitott tomegaramot.

¢ 2m
2 2
W; = pn f f \296,d - ’1 - (%) xdxda (6)
—¢@ Rcosg

cosa

ahol @ a t résmérethez tartozo kdzépponti szog fele:

@ = arc cos (1 — %) @)

14
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11. dbra Tomegaram a résméret fliggvényében

A 11. abran lathat6 a kiilonb6zé modellek és a mérési eredmények Osszehasonlitdsa. Az
eredmények azt mutatjdk, hogy a sebességvaltozas figyelembe vételével a mérési

eredményekkel jobban egyezd tdmegaramokat szamoltunk.

A 12. abrén lathatoéak a sebességeloszlas mért és szdmitott eredményei. Z6ld folytonos
vonallal a korabbi modellek alland6 sebességli konstans fiiggvénye. Az adott réshez tartozo
mérések atlaga x jeloldvel, az ezekre illesztett gorbe kék folytonos vonallal. A sajat modellem

szamitott értékeit piros folytonos vonallal dbrazoltam.

Vv
e, —
0.4
0.35 » X = x
0.3 » x  mért atlag
0.25 all. seb.
0.2 {x X saj. modell
0.15 mért illesztett
0.1
0.05
° 0 5 1‘0 15  x[mm]

12. abra Szamitott és mért sebességek a kifolyonyilasnal
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Megfigyelhetd, hogy a mért értékek nagy szorasai ellenére a mérésekre illesztett gorbe jo
egyezést mutat a modellem eredményeivel. Igy megallapithato, hogy a korabbi modellek
allando sebességli megkdzelitése a valds sebességviszonyoktdl jelentdsen eltér és az 1j, instabil

boltozatokra alapozott analitikus modell a sebességviszonyokat jol leirja.

3.4.2. Sebességeloszlas numerikus vizsgalata

Sikaramlasu sil6 esetére nem kisérleti uton, hanem szamitégépes modellezés eredményeivel
hasonlitottuk G6ssze az analitikus modell eredményeit. A kapott eredményeket a 13. dbran
mutatom be. A sikaramlasra kiterjesztett analitikus modellel szamitott sebességeloszlas kék
szaggatott vonallal jelenik meg. A diszkrét modellezést haromszoros ismétléssel végeztiik el,
igy azoknak atlagat és szorasat is meghataroztuk. A 60°-os garat esetében kapott eredményeket

(atlag és szoras) piros szinnel abrazoltuk.

Vv
mis®

0.7

= = analitikus modell
< DEM

/"?%—?\\é
%67 ,% \

0.5 - / \

0.4 . ﬁ' \%‘

=
-2
L
-
-

{
0.1 - I

o
"™
O - =

-0,04 -0,02 0 0.02 0,04 x[mm]

13. abra Szamitott sebességek a kifolyonyilas mentén

Az eredmények szerint a sebességeloszlast sikaramlas esetén is jol leirja a modell. A

szimulaci6 eredményei ol illeszkednek az analitikus modellel meghatarozott gorbére.
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3.5. Tomegaram eredmények

3.5.1. Kifolyonyilas méretének hatasa

Tengelyszimmetrikus silo

Az atmérd hatasanak vizsgalatat a kis modell esetén 25, 30, 35, 40, 45, 60, 70, 80, 90, 100
mm-es atmérdji kifolyonyilast garattal, buzaval végeztem el. A nagy modell esetén 50 mm és
100 mm atmérdjii kifolyonyilast alkalmaztunk. Minden esetben haromszoros ismétléssel

mértunk.

W 35

[ka/s] 3 /

25 /
2 / szamitott
/ B kis silo
15 / ® nagy silé
1

0.5

0 20 40 60 80 100 d[mm]

14. abra Kifolyonyilas atmérdének fiiggvényében mért tomegaramok (btiza)

A 14. abran lathatjuk, hogy a (3) szerinti 2,5 kitevé az atmérdben a mérésekkel igazolhato,
mind a kis, mind a nagy silomodellen végzett mérések illeszkednek a szamitott értékekre. Ez
egyben azt is jelenti, hogy a ebben a tartomanyban a sil6 atmérdjének nincs hatasa a kifolyasra.
Az elméletem szerint csak a kifolyonyilds kozvetlen kdrnyezete hatarozza meg a kifolyast, ezek
a mérések ezt igazoljak. A kis modell eredményeit csak 60 mm-ig abrazoltam. Ennek oka, hogy
amikor elérjiilk a kifolyonyilassal a siloatmérd 60%-at, akkor ardnyaiban a sild fala is a

kifolyonyilas kozvetlen kornyezetébe keriil, azaz hatast kezd kifejteni a kifolyasra.

A modell alkalmazhatosaganak hatarat atmérd esetében a 15. abran mutatom be. Ha a kis
silo esetén az atmeérdt tovabb noveltem 60 mm felett, egészen a 100 mm-es siloatmérdig, akkor
a szamitott értékektdl egyre nagyobb mértékben eltérd kifolyasi tomegaramot mértem. Ennek
okaként azt allapitottam meg, hogy a siloatmérét egyre jobban megkdzelitve az eredeti
feltételezésem a zérus sebességli peremmel 1étrejovo instabil boltozat egyre kevésbé valdsul

meg. A siloatmérd 60%-nal az instabil boltozat mellett 20% garatrész van, amin a boltozat meg
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tud tamaszkodni. Az atmérdt tovabb ndvelve az arany egyre kisebb lesz, azaz eltlinik a perem,
amire a boltozat fel tudna tamaszkodni. Ennek megfelelden azt latjuk a 38. dbran, hogy a mért
értékek a modellel szamitott értékektdl egyre tdvolodnak. Az utolsd pont, ahol a mérések
illeszkednek a szamitott gorbére, a siloatmérd 60%-a, igy ezt tekintem a modellem

alkalmazhatdsagi hataranak.

W g
kals
[g]7

[T N [
[T Y I

szamitott

L m  mért

2 .

0 20 40 60 80 100 d [mm]

15. dbra Szamitott tomegaramok érvényességi hatara

A 15. abran 60 mm feletti &tmérd melletti eltérések a sildatmérd €s a kifolyonyilds aranyabol
kovetkezik. Ez bizonyitja a 14. dbran lathaté 100 mm kifolyonyilas mellett a nagy modellsilon
végzett mérés, amely jol illeszkedik a szamitott értékekre, mert ott a 100 mm-es kifolyonyilas
a 440 mm siloatmérd 23%-a, azaz messze van a 60%-os hatartol.

Sikaramlasu silo

(5) szerint a nyilas szélessége 1,5 kitevovel van hatdssal a tomegaram értékére. A 16. abran
a szélesség hatdsat mutatom be. Mivel hasonl6 eredményt varok, mint a tengelyszimmetrikus
esetben, igy a szélességi méretet eleve a sild szélességének aranydban dbrazolom, hogy az
illeszkedés és az érvényességi hatar is lathatod legyen. A viselkedés a tengelyszimmetrikus
esettel azonos tulajdonsagot mutat. Amig a garat elég tamasztasi feliiletet ad, addig a mért
eredmények illeszkednek a szadmitott tomegaramokra. Ugyanugy a silé szélességének 60%-a az
a hatar, ahol még nincs zavar6 hatasa a perem csokkenésének. A 60% feletti nyilas esetében a
perem tamaszto hatdsa egyre kisebb, a szamitasi hiba pedig egyre nagyobb. Megallapithatjuk
tehat, hogy a tengelyszimmetrikus és sikaramlads esetében is a kifolyonyilas f6 mérete a

sildoméret 60%-ig ad az analitikus modelliinkkel j6 eredményeket a kifolyasi tdmegaramra.
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16. abra Kifolyonyilés szélességének hatdsa a tomegaramra sikaramlés esetén

A sikaramlast modell esetében a b mélység hatasa a (5) szerint szamitva a 17. abran lathato.
Mivel a kérdés az megfeleld illeszkedés mellett az alkalmazhatosag hatara, igy ebben az esetben
is a silo szélességének ardnyaban vizsgaljuk. Itt a mélység kettds szerepben van a sikmodell
miatt. Egyrész a kifolyonyilas mélysége, masrészt a silo mélysége is. Ezért a hatar barmelyik

hatasbodl kovetkezhet vagy a kifolyonyilds vagy a siloszélesség hatdsa okozhatja a modell

hibajat.
W 45 -
\
[ke/s] 4 \
% 2
0,35 - *
\
0,3 \
\
025 - 'R
02 - “a
~
0,15 - ?~\‘
0.1 - Tt ~e L
4 meért *
0,05 11 __ szamitott
0 T T T T | )
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17. abra A b szélesség hatasa a tomegaramra sikaramlas esetén

A 17. dbran lathato, hogy a silo szélességénél nagyobb mélység esetén jo eredményt ad a

modell, 1:1 arany alatt mar hibat mutat. Mivel az a kifolyonyilas 20 mm, igy valoszintileg a
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sil6 aranyai okozzék az eltérést. Azaz ha a szdgletes silo két mérete azonos, akkor az aramlasok

elkezdenek térbelivé valni, igy a sikmodell alkalmazasaval mar hibat kdvetiink el.

3.5.2. Garat nyilasszogének hatasa

Tengelyszimmetrikus silo
Hengeres silo esetén a kisérletekhez a = 10, 20, 30, 37,5, 45, 90°-o0s (sikfenék) félkapszogi
kifolyokupokat hasznaltam. Az alkalmazott modell a kis méretii hengeres silomodell, a

kifolyasi atméré 20 mm minden esetben. A mérésekhez buzaval végeztem el.

W' 0.09
[kg/s]

0.08
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¢ mért
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* - - - - szamitott
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18. abra Félkupszog hatasa a kifolyasi tomegaramra hengeres silo esetén

Buiza esetén 37-38° félkupszog alatt térfogati, felette tolcséres kifolyasi mod varhato az
irodalom szerint, a mérések alapjan tehat igazolhato az a feltétel, hogy az analitikus modellem
tolcséres kifolydsi mod esetére érvényes. A modell kiterjeszthetd a térfogati kifolyas esetére,
ha a 6, anyagallandot térfogati kifolyasnal a szog fiiggvényében modositom, azonban ez mar

nem analitikus, hanem empirikus megoldas lenne.
Sikaramlasu silo
Sikaramlas esetén is hasonld eredményt varhato, mivel azonos elven hataroztuk meg az

analitikus modellt. A modell eredményeit a DEM modell eredményeivel is 6sszehasonlitom.

Az eredményeket a 19. dbran mutatom be.

Az analitikus modell hataraira a mérés és a DEM szadmitds alapjan is ugyanazt a
kovetkeztetést vonhatjuk le. Sikaramlasu silo esetében is azt mutatjak az eredmények, hogy az

analitikus modell csak tolcséres kifolyasi mod esetén alkalmas a tomegaram szamitasara.
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19. &bra Félnyilasszog hatasa a kifolyasi tomegaramra sikaramlasu silo esetén

4. Uj elvii csillapitasi modell DEM alkalmazasra
4.1. Elvi megoldas és altalanos formula

Az 1j modell elveti a korabbiak azon tulajdonsagat, hogy a fiiggvény folytonos legyen.
Mivel a diszkrét elemes modellezéskor eleve iddlépésekben modelleziink, ez nem igényli a
folytonos modellt, de ennek elhagyasaval elérhetd az a cél, hogy az energiaelnyelés a
legnagyobb Gsszenyomodas és erd kozelében legyen a maximalis. A 20. abran lathat6 az uj

modell elve, a ¢ konstanst kell tigy megvalasztani, hogy a k rugalmassagi modulus a teljes

fiiggvényre érvényes legyen.

¥

n

4

20. abra Uj csillapitasi modell elvi vazlata
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Az litk6zési tényezd szamithatod az eré-elmozulas fiiggvényekbdl szamitott munkakbol az

Osszenyomodasi (W) szakaszon és tagulasi (IW;) szakaszon:

_ [we_ [fer@ds _ [err@ds _
= W@‘jffw)da ‘Jff(a)da = Ve ©

azaz a konstans értéke az iitk6zési tényez6bol szamithato:

c= k2. 9)

Az elv a gyakorlatban akkor lesz jol hasznéalhatd, ha a lehetd legegyszeriibb matematikai
formaban irjuk fel. Ha két modellt adunk meg és a programnak kell kivalasztani, hogy melyiket
alkalmazza a terhelés irdnyanak megfelelden, az is alkalmazhato, de ennél jobb, ha zart alakban

irjuk fel a fiiggvényt, amely 0sszenyomddasi €s a tagulasi szakaszra egyarant érvényes.

A modelliink igy a kdvetkezd alakban irhat6 fel:

2 2

+ sign(Vnrer) T) f(6) (10)

Fn(a) = <1 -;k

ahol:

- E,(8): a disszipaciot leird normalis iranyt er6-elmozdulas fiiggvény,
- §: Osszenyomodas,

- k: ltkozési tényezo,

- sign: elgjelfiiggvény,

- Uprer: a két test normalis irdny relativ sebessége,

- f(8): tetszbleges rugalmas eré-elmozdulas fliggvény.

A (10) formaban felirt kapcsolati fliggvény az alakjabol és a definicioja szerint a kovetkezd

elvarasoknak felel meg:

e barmilyen rugalmas fiiggvényre alkalmazhato,

e aziitkozési tényezd elvi helyes alkalmazasat teszi lehetéve,

e a csillapitas aranyos az 6sszenyomodassal,

e cgyszerl felépitési,

e nem torzitja az eredeti fliggvényt, mint a viszkozus taggal kiegészitett fliggvények,
e varhat6an nagyobb numerikus stabilitas,

e varhatoan kisebb szamitasi igény.
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4.2. Uj kapcsolati fiiggvény alkalmazasa

A Hertz-Mindlin kapcsolati fiiggvényt valasztottuk az alkalmazasra és az 6sszehasonlitasra.
Az 1j fliggvény esetében elhagyjuk a sebességfliggd viszkozus tagot és csak a Hertz, rugalmas

tagot hagyjuk meg, igy az Gj modell a Hertz-fiiggvényre alkalmazva:

4 (1+k?
E, 3

2 + Slgn(vnrel) )EO\/_62 (11)

4.2.1. Egy szemcse ejtésének eredményei

Szimulélt kisérletet futtattuk le a Hertz-Mindlin és az 0j (11) kapcsolati fliggvény
alkalmazasédval. Ebben az esetben az volt a cél, hogy megéllapitsuk az Gj modell alkalmassagat
az Uitkozési tényez6 modellezésére Osszehasonlitva azt a gyakorlatban elterjedt modellel. Az
ejtési kisérlet eredményei koziil a szemcse magassaganak idébeli alakulasat vizsgalatuk ¢és
hasonlitottuk Ossze a két modell esetén. A vizsgalatok id6lépéseit a tg Rayleigh-idélépés (a
szemcsén athaladdo mechanikai hullam athaladasi ideje) alapjan valasztottuk ki. A Rayleigh-
1d6lépés 10% és 20%-nal elvégezve nem volt észrevehetd kiilonbség a két modellel szdmitott
eredmények kozott. Igy belathato, hogy a két modell bér teljesen eltéré modon alkalmazza a
csillapitas szamitasara az titkozési tényezot, a végeredmény azonosan jo. Ezzel az 0j kapcsolati

modell alkalmassagat bizonyitottuk az {itkdzési tényezo helyes leirasara.

4.2.2. Tobb szemcse ejtésének eredményei

A szabalyosan, szorosan elrendezett kezdeti helyzetbdl (7. a abra) inditva a halmazt, tobb
1dolepéssel is elvégeztiik a szamitasokat. A Rayleigh-idélépés 10, 20, 30, 40, 50, 60% esetén is
végeztiink szimuldciét. A 7.b é&bra szerinti elrendezésbdl inditva a halmazt ugyanazt a

vizsgalatot végeztiik el.
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21. abra A laza halmaz mozgasi energiaja az id6 fiiggvényében 0,6ty 1d61épés esetén

Mindkét esetben hasonld eredményt kaptunk. A teljes tartomanyon vizsgalva a 21. ébra a
laza halmaz, de ugyanilyen eredményt adott a szoros halmaz is, a két modell ebben a 1éptékben
nagyon hasonld eredményt adott. Komolyabb kiilonbséget a legutols6 szakaszban mutatott

mindkét elrendezés.

7x10°
(7
6x10° |
5x10° |-
4x10% |
3x10° |
Hertz-Mindlin ——
1y modell

2x10° |-
1x10° |

0 1 1 1 ' 1 1 1 ' J
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22. 4bra A laza halmaz mozgési energidja az 1d6 fiiggvényében 0,6ty 1d6lépés esetén az
utolso szakaszon

A 22. édbran lathat6, hogy a halmaz 0,1 masodperccel hamarabb csillapodott le az 1j

csillapitasi modell esetén, ez is hasonl6 a szoros halmaz eredményéhez.
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4.2.3. Izotrop nyomovizsgalat eredményei stabilitasra

Ebben a vizsgalatban a halmaz véletlenszerli elrendezéssel inditottuk, allando
deformacidsebességgel mozog a perem, igy barmelyik modell gyorsan eljut abba a fazisba,
amikor a szimulacio stabilitdsa megsziinik. A vizsgalatokat a Rayleigh-iddlépés 10, 20, 30, 40,
50%-a nagysagu id6lépések mellett végeztiik el. A probafuttatasok alapjan allapitottuk meg a

szimuléaciok id6tartamat, amely az eredmények stabilitasatol fiiggetleniil két masodperc volt.

A halmazokat addig tekintettiik stabilnak, amig a teljes mozgasi energia nagysagrendje el
nem érte a 100 J értéket. Ha a szimulécio soran ezt tullépte a halmaz, akkor méar nem volt képes
stabilitast elérni, utdna mar exponencialisan novekedett a kinetikus energia. (Az abrakon
logaritmikus 1épték van, hogy a kis energiaszintek és a stabilitasat vesztett halmaz energidja is

lathat6 legyen.)

Az adatok attekinthetdsége érdekében a két modell eredményeit kiilon abran mutatom be
egymas alatt. Mindkét modell esetében az egyes gorbék adott iddlépések mellett szamitott
mozgasi energia értékeit mutatjak. Lila szinl 0,1tg, a z6ld 0,2tg, a kék 0,3tg, a narancs 0,4ty
¢s a citromsarga gorbe a 0,5t 1d6lépés esetén szamitott mozgési energia értékeket mutatja a
szimulécios 1d6 fliggvényében. A 23. abran a Hertz-Mindlin kapcsolati modellel szamitott, a

24. 4bran az uj modellel szamitott eredményeket mutatom be.

E. 1x10°
0.1ty
[7 0.2ts
1x107 | 0.3ts
0.4ty
05ty
1x10° |
100000 |
10000 §
1000
100 f
10
1F
0.1 1 1 1 ' J
0 0.5 1 1.5 2 25  t[s]

23. abra Hertz-Mindlin kapcsolati modell esetében szamitott mozgasi energia az id6
fiiggvényében
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24. bra Uj kapcsolati modell esetében szamitott mozgasi energia az id6 fliggvényében

A legkisebb id6lépés esetében mindkét modell mellett stabil maradt a halmaz a

szimulacio végéig.

0,2ty 1d6lépés esetén egy kicsivel laposabb az 1j modell gorbéje 1,5 és 2 s kozott,

de el6tte nincs jelentds kiillonbség.

0,3tg esetén a Hertz-Mindlin modellel az energia 1,2 s utan kezd exponencialis

novekedésbe, az (1j modellel csak 1,5 s utan.

0,4tg 1d6lépés mellett mindkét modellel 1 s utdn veszti el a stabilitdsat a halmaz. Az
1j modellel nagysagrenddel kisebb energiat ér el a halmaz a stabilitas elvesztése
utdn, ami gyakorlati szempontbdl kevésbé érdekes, de mutatja az 1j modell nagyobb

csillapitasat még ezen a tartomanyon is.

0,5ty 1d61épés mellett ismét nagyobb a kiilonbség, a Hertz-Mindlin modell esetén a
halmaz energidja 0,6 s iddpontban kezd exponencialisan novekedni és 0,7 s mar
elveszti stabilitasat. Az 0j modell csak joval késdbb, a szimulacio 1,2 s idépontjanal

veszti el stabilitasat.

Ezen vizsgélatok alapjan megallapithatd, hogy az uj modell néhany esetben, foleg kisebb

1d6lépéseknél hasonlo stabilitast mutatott a Hertz-Mindlin modellhez. Azonban a legtobb

esetben ¢€s foleg az 1d61épés novelésekor az 1) modell nagyobb stabilitast mutatott. Olyan eset

nem fordult eld, ahol az ij modell kisebb stabilitdst mutatott.
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4.2.4. Izotrop nyomovizsgalat eredményei szamitasi idore

Az izotrép nyomovizsgalat nemcsak a kapcsolati modell szimuléciora gyakorolt hatasanak
vizsgalatara alkalmas. A fliggvény egyszeriibb formajabol arra a kovetkeztetésre jutottam, hogy
alkalmazasa esetén varhato a szamitasi 1d6igény csokkenése. A kordbbi vizsgalatok alapjan egy
mindkét modell esetében a stabil szimulaciot jelentd 0,12t 1d61épést valasztottunk a szamitasi

igény megallapitasara.

18
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szamitasi id6 [s]

B Hertz-Mindlin  m Uj modell

25. dbra Szamitas iddigénye
Az eredmények Osszehasonlithatosaga érdekében a szamitdsokat egy magon futtattuk
husszoros ismétléssel. Az eredmény a 25. dbran lathat6. A Hertz-Mindlin kapcsolati modell
alkalmazasa esetén a szamitas Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz processzoron,
egy magon 15,537 s 0,284 s iddt vett igénybe. Az ij modell esetében ugyanez 5,169 s &+ 0,085
s volt. Az j modell elényei koziil gyakorlati szempontbodl ez a legjelentésebb, mert a diszkrét

elemes modellezések esetén nagyon gyakori probléma a nagy a szamitési iddigény.
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5. Uj tudomanyos eredmények

1. tézis: Altalanositott, instabil boltozédason alapulé kifolyasi modellel analitikusan
leirhaté a sikmodellel kozelitheto silok (tengelyszimmetrikus, sikalakvatozas) kifolyasi
sebessége és tomegarama tolcséres kifolyasi mod esetén (Oldal et. al, 2012.) (Safranyik,
Oldal, 2021.)

Az instabil boltozat alakja masodfoku fliggvénnyel kozelithetd, a kifolyonyilds mérete és
&, alaktényez6 alkalmazasaval. Ekkor a kifolyasi sebesség tengelyszimmetrikus (hengeres sil6)

.esetben:

o(u,0) =28 [1- ()
sikmozgés esetében:

v(x,z) = \W' 1-— (%)2
A tomegaram tengelyszimmetrikus esetben:

n@

Ph\/‘s—b(d dp)z

sikmozgas esetében:

3
=T i d)
Osszefliggésekkel szamithato.
A modell alkalmazhat6sagi hatarai a kifolyonyilas d és a méretére:
7d, <d <0,6D
7d, < a < 0,6c
Ahol:

e g : gravitacios gyorsulds,

& : boltozat alaktényezoje,

d : kifolyonyilas atmérdje (hengeres sild),

e x :sugar polarkoordinata (hengeres silo), szélességi koordinata (sikmozgas),
a : kifolyonyilas szélessége (sikmozgas),

pn - halmazsiiriiség,
d,, : atlagos szemcseméret,

b : sil6 mélysége (sikmozgas),
D : siléatmérd (hengeres silo),
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e (:silo szélessége (sikmozgas),
e ¢ :szoOg polarkoordinata (hengeres silo),
e z:mélység koordinata (sikmozgas).

Az 1) modell elényei a korabbiakhoz képest:

e tolcséres kifolyas esetére csak empirikus modellek 1éteztek korabban,
e akorabbi modellek dllando sebességet feltételeztek a kifolyonyilas mentén, az Gy modell
nemcsak ettdl tér el, hanem bizonyitottan jol irja le a sebességeloszlést.

2. tézis: Uj csillapitasi elven alapulé szemcsekapcsolati modell, amely alkalmazhaté
barmely rugalmas fiiggvényre (Oldal, 2024.)

A modell a kovetkezd alakban irhato fel:

2 2

+ Sign(vnrel) T) f(6)

£.(6) = <1 +k

ahol:

- E,(8): a disszipaciot leird normalis iranya er6-elmozdulas fiiggvény,
- §: 0sszenyomodas (atfedés),

- k: litkozési tényezo,

- sign: elgjelfiiggvény,

- VUprer: a két test normalis irdnyu relativ sebessége,

- f(8): tetszbleges rugalmas eré-elmozdulas fliggvény.

Az i) modell elényei a kordbbiakhoz képest, amely magabol a levezetésbdl kovetkezik,

kiilon bizonyitast nem igényel:

e Dbarmilyen rugalmas fiiggvényre alkalmazhato,
e aziitk6zési tényez6t egzakt modon alkalmazza,
e a csillapitas ardnyos az 6sszenyomodassal,

e cgyszerl felépitési,

e nem torzitja az eredeti fliggvényt.
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3. tézis: Uj tipust szemcsekapcsolati modell Hertz-fiiggvényre valé alkalmazisa

(Oldal Istvan; Safranyik Ferenc; Keppler Istvan, Téth Janos: High stability damping model for
discrete element method (biralat alatt))

A modell a kovetkezo alakban irhato fel:

4 (1 + k2
no3\l 2

, 1—k? 3
+ Slgn(vnrel) 2 E()\/ R062

ahol:

- E,: adisszipaciot leird normalis iranya er6-elmozdulas fiiggvény,

- 0 : az érintkez0 testek atfedése,

- k: litkozési tényezo,

- sign: elgjelfiiggvény,

- VUprer: a két test normalis irdny relativ sebessége,

- E, : az érintkez0 teste redukalt rugalmassagi modulusa a (27) alapjan szamitva,
- R, : redukalt szemcsesugar a (20) alapjan szamitva.

A modell szimulaciéval torténd ellendrzése alapjan a kovetkezo tulajdonsagokat igazoltuk:

o azlitkozési tényezbt jol modellezi 0,2ty 1ddlépésig egy szemcse esetében,

e gravitacioval terhelt halmaz 0,1t és 0,6ty id6lépés tartomanyban a viszkozus
csillapitdst  modellel jO egyezést mutat a halmaz laza dallapotdban, az
Osszetomorodott, nyugalmi allapothoz kozelitve az 0j modell minden esetben
nagyobb stabilitast mutatott,

e izotrop nyomas esetében 0,1ty és 0,5ty id6lépés tartoméanyban az 10 fliggvény
hasonl6 vagy nagyobb stabilitdst mutatott, mint a viszkézus csillapitasu modell,
nagyobb iddlépések esetén az (1j modell nagyobb stabilitast mutatott,

e izotrOp nyomas esetén az Uj modellel azonos feltételek mellett kevesebb, mint

rrrrrr
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6. Osszefoglalas

A PhD megszerzése utan a szemcsés anyagok modellezésének analitikus és numerikus
teriiletén is végeztem kutatdsokat. A disszertdcioban két teriileten elért eredményeimet
foglaltam 0ssze. Az egyik teriilet, a silok {iritésének analitkus leirdsa a masik teriilet a diszkrét
elemek modszerén beliil a szemcsekapcsolati modellek csillapitasa és annak modellezése.

Szemcsés anyagok silobol torténd kifolyasara a szakirodalomban térfogati kifolyas esetére
talalunk analitikus szamitasi modellt, tolcséres kifolyasra nem, arra a kifolyasi modra csak
empirikus szamitasi modelleket talalunk. Ezen kiviil az Osszes szamitasi modell allando
sebességet feltételez a kifolyonyilas mentén, ami hibas, mert sem a mérések sem a numerikus
modellek nem mutatnak allando6 sebességet. A kifolyas 1) megkozelitését még a PhD munkam
soran elkezdtem, azonban annak altalanositasat sikmodellekre késébb dolgoztuk ki. A modell
az instabil boltozatok hipotézisének alapjan leirja a kifolyasi sebességet a kifolyonyilas mentén
tengelyszimmetrikus €s sikmozgasu silok esetében. Ezek a sebességek kisérleti vizsgalatokkal
¢s numerikus modellekkel igazolva megfelelnek a valds viszonyoknak. A sebesség alapjan
meghatarozhat6 a kifolyasi tomegaram értéke, amely mind a tengelyszimmetrikus, mind a
sikiramlas esetére mérésekkel igazoltan helyes. Osszességében ezen a teriileten 1étrehoztam
egy korabban nem létez6 elméleten alapulo analitikus modellt, amely altalanosan sikmodellel
leirhat6 silobol valo kifolyas modellezésére alkalmas.

Diszkrét elemek modszerének egyik alap modellje a szemcsekapcsolati modell. Ezt a
modellt a csillapitds szempontjabol vizsgaltam. Kohézidmentes rugalmas anyagokra harom
alaptipust taldltam a szakirodalomban, az elterjedtebb modell a viszkézus csillapitas és az
elasztoplasztikus modell, a harmadik modell két eltér6 meredekségii egyenest alkalmaz a
csillapitas leirasara. Mindegyiknek megvannak az eldnyei és a hatranyai, ebben a kutatasi
munkaban a hatranyokkal és azok megoldasaval foglalkoztam. A két eltérd meredekségii
egyenessel modellezett csillapitas nagymértékben lesziikiti az alkalmazhatdsagot, mivel a valds
szemcsék érintkezése nemlinedris, ezen kiviil nem a zérusba tér vissza a masodik szakasz, igy
ez tovabbi megoldand6 feladat. Viszkoelasztikus modell bonyolultabb és tobb paramétert
igényel. A viszkozus csillapitas sebességfliggd tagot ad a rugalmas kapcsolatot leiré modellhez.
Ennek két f6 hatranya van. Az egyik, hogy eltorzitja az alapfiiggvényt, a masik, hogy kis
sebességek esetén (a legtobb halmaz modellezésekor kvazi nyugalmi helyzet van, igy ez slirlin
eléforduld eset) romlik a csillapitas hatdsa. A probléméak megoldasara egy olyan csillapitasi
modellt dolgoztam ki, ami az eredeti rugalmas modellt nem modositja az 6sszenyomodasi
szakaszon, csak a tagulasi szakasz mddositasaval modellezi a csillapitast. Ez nem ad plusz tagot
a modellhez, igy egyszerti formdja van, kevés paramétert alkalmaz. Az igy felirt modell mentes
az alap modell torzitasatdl és igazoltan stabilabb kis sebességek esetén valamint kisebb a
szamitasi igénye, mint a viszkézus modellnek.

Dolgozatomban a bemutatott eredményeket harom tézispontban foglaltam &ssze.
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/. Summary

After obtaining my PhD, | conducted research in both the analytical and numerical modeling
of granular materials. In my dissertation, | summarized the results achieved in two areas. The
first area focuses on the analytical description of silo discharge, while the second pertains to
damping in particle contact models within the framework of the discrete element method and
its modeling.

In the literature, an analytical calculation model is available for the massflow discharge of
granular materials from silos, but no such model exists for funnel flow, where only empirical
calculation models are found. Additionally, all existing calculation models assume a constant
velocity along the discharge opening, which is incorrect, as neither measurements nor numerical
models show a constant velocity. | began developing a new approach to describe discharge
during my PhD work, but its generalization to planar models was developed later. Based on the
hypothesis of unstable arches, the model describes the discharge velocity along the outlet for
axisymmetric and planar silos. These velocities have been validated through experimentals and
numerical models, demonstrating consistency with real-world conditions. The velocity profile
allows for the determination of the mass flow rate, which has been experimentally verified to
be accurate for both axisymmetric and planar flows. Overall, | developed an analytical model
based on a previously non-existent theoretical framework, which is suitable for modeling silo
discharge in a generalized manner using planar models.

One of the fundamental models of the discrete element method is the contact model of particles.
| examined this model from the perspective of damping. For cohesionless elastic materials, |
identified three basic types in the literature. The more widespread models are the viscous
damping model and the elastoplastic model, while the third model uses two linear segments
with different slopes to describe damping. Each has its advantages and disadvantages. In this
research, | focused on the disadvantages and their solutions. Damping modeled with two linear
segments significantly limits applicability, as the real contact between particles is nonlinear.
Additionally, the second segment does not return to zero, presenting another issue to address.
The viscoelastic model is more complex and requires more parameters. The viscous damping
model introduces a velocity-dependent term to the elastic contact model. This has two main
drawbacks: first, it distorts the fundamental function; second, at low velocities (a common
scenario in most granular material simulations, as they are typically in a quasi-static state), the
damping effect deteriorates. To address these problems, | developed a damping model that does
not modify the original elastic model during the compression phase but models damping by
altering the expansion phase. This approach does not add extra terms to the model, giving it a
simple form and requiring few parameters. The resulting model is free from distortions of the
base model, is demonstrably more stable at low velocities, and has lower computational
demands compared to the viscous model.

In my dissertation, | summarized the presented results in three thesis points.
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