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1. Bevezetés 
 

Szemcsés anyagnak (vagy szemcsés halmaznak) nevezzük azokat az anyagokat, amelyek a 

halmaz méretéhez képest kis méretű szilárd szemcsékből állnak. A mezőgazdaság és az ipar 

majdnem minden területén előfordulnak, ömlesztett anyagok, szemestermények, porok, a talaj 

mind ilyen anyagok. A gyakori előfordulás miatt sokszor merül fel a mechanikai modellezés 

igénye. A szilárd testeknél vagy folyadékoknál megszokott modellezési eljárások sok esetben 

nem alkalmasak a viselkedésük leírására, speciális tulajdonságaik miatt. Ezek közül az egyik 

legfontosabb, hogy folyadék és szilárd test jellegű viselkedést is képesek mutatni a megfelelő 

körülmények között. Amikor egy épület alapozását kell megtervezni, akkor a szilárd test jellegű 

tulajdonságot kell megtartani és olyan peremfeltételeket előírni, ahol szilárd testként viselkedik 

a szemcsés halmaz. Amikor szemesterményt akarunk silóban tárolni és az a célunk, hogy 

kifolyjon, amikor üríteni kell, akkor pedig olyan körülményeket kell biztosítanunk, ahol 

folyadékszerű viselkedést mutat. A folyadék és szilárd halmazállapot jellegű viselkedés miatt 

speciális mechanikai modellekre van szükség a szemcsés halmazok leírására. A tudományos 

kutatások során és gyakorlati alkalmazások esetén számos modell született leírásukra, a 

klasszikus analitikus modellek a XIX. század végétől kezdve. A gyakorlat számára nagyon 

hasznos és jól használható eredmények a mai napig alkalmazásban vannak. Ezen a területen 

kevés új eredménnyel találkozunk az utóbbi évtizedekben. Jelenleg a numerikus modellezés 

került a tudományos kutatások középpontjába, ezen belül kiemelt jelentőségű a diszkrét elemes 

modellezés. 

Kutatásaim során mind az analitikus, mind a numerikus modellezés területén végeztem 

kutatásokat. Disszertációmban a két területen elért, általam legfontosabbnak ítélt 

eredményeimet mutatom be. Az analitikus modellezést a silókifolyásra alkalmazom, amely a 

PhD kutatásaim során megalkotott eljárás és modell kiterjesztése, általánosítása. A numerikus 

modellezésben a diszkrét elemes modellezés egyik alapjához, a kapcsolati modellekhez 

fejlesztettem ki újszerű megközelítésű csillapítási módszert, amely az eredmények alapján 

numerikusan stabilabb számításokat tesz lehetővé. Ennek általános elméleti megközelítését és 

egy adott modellre történő alkalmazását mutatom be dolgozatomban.  

Az eredmények alapját képező kutatási munka egy részét kutatócsoportban, egy részét 

önállóan végeztem el. A dolgozatban az igék egyes szám és többes szám első személyben 

használt alakjával különböztetem meg ezeket.  
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2. A kutatások során alkalmazott módszerek 
 

2.1. Boltozódási vizsgálatok 

 Berendezés leírása 

Az 1. ábrán látható boltozódásvizsgáló berendezéssel végeztük el a kísérleteket. A készülék 

célja, hogy síkalakváltozási állapotot hozzon létre, aminek az eredményeképp látható síkbeli 

boltozat alakul ki. Ennek érdekében két párhuzamos és függőleges átlátszó plexilap között van 

kialakítva egy téglalap alapú üreg. A plexilapra kívülről a boltozat méreteinek rögzítésére 

szolgáló négyzetrácsot helyezünk. A lapokkal határolt üreg szélessége kellően nagy ahhoz, 

hogy ne zavarja a középen kialakuló boltozat feltételeit az a két oldalfal. Az alsó felület a 

feltöltés idejére teljesen lezárható, a vizsgálat során pálcákkal beállítható rést hozunk létre, 

amely szintén a síkmodell feltételeinek megfelelően állandó szélességű. Egy pálca szélessége 

10 mm, a maximálisan beállítható legnagyobb résméret 220 mm. 

 

 

 

1. ábra Boltozódásvizsgáló berendezés fényképe és vázlata 

y 

x 

F2 F2 

F1 
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 A kísérleteket a könnyű kezelhetőség miatt nedves homokkal végeztük el.  

2.2. Kifolyási vizsgálatok 

 Kifolyás szemcseszintű vizuális vizsgálata 

A kifolyás során azt vizsgáltam, hogy folytonos-e az áramlás vagy vannak elkülöníthető 

fázisai. A kísérlethez homokórát használtam (2. ábra). 

A homokórában lévő áramlásról készítettem fényképeket. A mozgásokat villanófénnyel 

„befagyasztva” láthatóvá tehető a kifolyás egy-egy pillanata. A kísérletek során a szűkületben 

történő áramlásra makrofényképezéssel, harmonika kihuzat segítségével tudtam ránagyítani a 

megfelelő minőségben.  

 

2. ábra Homokóra és fényképezőgép harmonika kihuzattal 

 

 Kísérleti silók 

A kifolyási kísérletek három modellsilón folytak. A nagyobb hengeres modell méretei: 440 

mm átmérőjű és 1250 mm magas, 0,18 m3 térfogatú hengeres siló, cserélhető kúpos garattal. 

Három garat készült 50mm és 100 mm között változtatható átmérőjű (kúpos toldattal) 

kifolyónyílással. A garatok félkúpszöge α = 30°, 45°, 60°.  

A mérőberendezés átlátszó fala lehetővé tette a folyamat megfigyelését. A különböző 

garatokban térfogati és tölcséres kifolyási mód is megfigyelhető volt a mérések során. 
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A kisebb hengeres siló átmérője 100 mm, magassága 1500 mm. A garat cserélhető, és a kis 

méret lehetővé teszi a cserekúpok gyors gyárthatóságát és módosíthatóságát. 

A kísérletek során két paramétert vizsgáltam, amely eltérő kialakítást igényelt. 

• Kifolyónyílás átmérőjének hatása: ebben a kísérletsorozatban a kifolyónyílás 

átmérőjét 25, 30, 35, 40, 45, 60, 70, 80, 90, 100 mm-es méretekben változtattam, a 

méréseket búzával végeztem el háromszoros ismétléssel. A kifolyókúp félkúpszöge 

minden esetben 45˚ volt. Az átmérő legnagyobb értéke ebben az esetben már nem 

jelentett fizikailag garatot, mert megegyezett a 100mm-es silóátmérővel, így annak 

meghosszabbítása volt. A kísérletek során ugyanazt a garatot használtam, a 

kifolyónyílás lépésről lépésre történő felbővítésével. 

• Félkúpszög hatása: vizsgálatához 10, 20, 30, 37,5, 45, 90˚-os (síkfenék) félkúpszögű 

garatokat gyártottam, 20 mm-es kifolyónyílás átmérővel. A mért anyag búza. Ebben 

a vizsgálatban minden félkúpszög esetében külön garatot kellett gyártani. 

Három erőmérőt építettem be (3. ábra), ezek a silón (1), a garaton (2) és az elzáró elemen 

(3) érzékelik az erőt. Kifolyási mérésekhez értelemszerűen csak az első kettőt használjuk. A 

mérőrendszer többi eleme nem változott a nagyobb modellhez képest. 
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3. ábra Kis méretű hengeres silómodell 

Sebességeloszlás mérésekhez terelőlemezes kiegészítéssel láttam el a kisebb modellsilót, 

ehhez a kísérletsorozathoz mákot alkalmaztam. A beállított résméreteket 2 és 15mm közt 1mm-

es lépésekkel változtattam, minden mérést háromszori ismétléssel végeztem el. 

 

4. ábra Sebességeloszlás mérése 

A síkáramlást négyszög keresztmetszetű modellsilóval hoztuk létre, a modell vázlata az 5. 

ábrán látható. A modell 0,3mm vastag acéllemezből készült. A garat ennél a modellnél is 

cserélhető, ahogy a korábbi hengeres siló esetében. Három különböző vizsgálathoz készült 

három különböző paraméterében változó készlet. 

 

t 

37. ábra. Sebességeloszlás mérése 

Ød 
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• A garat lejtésének vizsgálatához a szimmetrikus sík lejtő félnyílásszögét (18. ábra α 

méret) 10° és 70° között hét lépcsőben változtattuk. Ezekben az esetekben a 

kifolyónyílás állandó 20mm x 100mm méretű volt. A siló mérete 100mm x 100mm, 

így a kis hengeres siló mérettartományába esik. A szélességet nem változtattuk ezen 

kísérletek során. 

• A második kísérletsorozat a silótest szélesség-mélység arányának vizsgálatára 

vonatkozott. Ekkor a siló c mérete állandó 100mm volt, a b méretet 25mm és 125mm 

között fokozatmentesen állíthatóvá tettük. A garat félnyílásszöge állandó 60° volt. 

A siló arányai ebben vizsgálatban c/b = 0,8 - 4 között változtak. 

• A harmadik kísérletsorozatban a modell alkalmazhatósági határainak vizsgálata volt 

a cél. Ebben az esetben azt vizsgálatuk, hogy mekkora minimális garat szükséges 

ahhoz, hogy az áramlások modellezésére a létrehozott modell még alkalmas legyen. 

A siló és a kifolyónyílás a/c arányát 0,15 - 1 határok között változtattuk 

 

5. ábra Síkáramlású modellsiló 

 

2.3. Az új kontakt modell vizsgálatára alkalmazott DEM modell 

Az új kontakt modellt MercuryDPM nyílt forráskódú diszkrét elemes modellező 

szoftverben hoztuk létre. A szoftver lehetővé teszi, hogy C++ programnyelv használatával új 

szemcsekapcsolati modellt hozzunk létre és azt a modellezés során alkalmazzuk. A szoftver 

saját modellkönyvtárral rendelkezik, amelyben található viszkózus csillapítású Hertz 
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(HertzianViscoelasticNormalModel) kapcsolati modell, amelyet az összehasonlításhoz 

használtunk.  

 Ejtési vizsgálat egy szemcsével 

Az első vizsgálat célja, annak megállapítása, hogy az ütközési tényező hatása az új modell 

esetében nem változott-e meg. Ennek vizsgálatára egy szemcsét ejtettünk le ℎ0 = 100mm 

kezdeti magasságból egy síkra. A visszapattanás és az időben történő mozgás 

összehasonlításával megállapítható, hogy az új modell mennyire tér el a gyakorlatban bevált 

modelltől. 

A vizsgálat vázlata a 6. ábrán látható. 

 

6. ábra Ejtésteszt vázlata 

A vizsgálat eredményeképpen az egymás utáni ℎ0 és ℎ1 ütközés előtti és utáni maximális 

magasságok jelzik, hogy az ütközési tényező kezelése szempontjából az adott modell helyes-e. 

 Ejtési vizsgálat több szemcsével 

A több szemcsével végzett vizsgálat célja annak megállapítása, hogy a többszörös 

ütközések esetén milyen hatása van az új modellben alkalmazott csillapításnak. Két beállítással 

történt a vizsgálat. Elsőként a szemcséket szorosan elrendezve, második esetben a szemcséket 

lazán, több spirál mentén elrendezve indítottuk. Mindkét esetben a szemcse minden 

tulajdonsága megegyezett az előző fejezetben bemutatott esettel. 

A vizsgálatokat egy 30mm átmérőjű és 300mm magas hengerben végeztük. A legalsó 

szemcsék kezdeti magassága 150mm volt, az első esetben szorosan elrendezve 4 sorban 
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definiáltuk a szemcséket. A második esetben három különböző sugarú spirálban, nagy 

hézagokkal rendeztük el a szemcséket a 7. ábrán látható módon. 

 

7. ábra Több szemcsével elvégzett ejtésvizsgálat geometriai modellje 

A korábbi vizsgálat arra irányult, hogy a csillapítás módjának változását vizsgáljuk abból a 

szempontból, hogy az ütközési tényező azonos módon viselkedik-e, mint a bevált modell 

esetében. Ez a vizsgálat viszont az eltérésekre koncentrál, annak megállapítása érdekében, hogy 

vannak-e a szimuláció során megfigyelhető előnyei az új modellnek. 

 Izotróp nyomás 

Az izotróp nyomás vizsgálatot annak megállapítására végeztük el, hogy a Hertz-Mindlin 

kapcsolati modell és az új kapcsolati modell numerikus stabilitását össze tudjuk hasonlítani. Ezt 

úgy értük el, hogy egy 0,095 m3 térfogatú kockát véletlenszerű elrendezéssel kitöltünk az előző 

vizsgálatoknál is alkalmazott paraméterekkel rendelkező szemcsés anyaggal (8. ábra). Ezután 

egy olyan kinematikai peremfeltételt adtunk meg, amely a kocka minden lapját állandó 𝜀̇ = 0,4  

1/s deformációsebességgel összenyomja. 

a) b) 
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8. ábra Izotróp nyomás geometriája 

Minden vizsgálat a 𝑡𝑅 Rayleigh időlépésnél kisebb időlépéssel történt 0,1𝑡𝑅 − 0,5𝑡𝑅 

tartományban annak érdekében, hogy a modell tulajdonságait az időlépés függvényében is meg 

tudjuk határozni. 
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3. Silóból történő kifolyás új analitikus modellje 
 

Az első kifolyási modell a PhD kutatásaim eredménye, amely a hengeres silók esetére 

érvényes analitikus modell. Ennek továbbfejlesztése sík falú silókra és helyességének 

ellenőrzése további kutatásokat igényelt. Ebben a fejezetben a modell alapját képező hipotézist, 

az ebből létrehozott kifolyási modelleket, valamint ezek igazolását mutatom be. 

3.1. Instabil boltozatok hipotézise 

 Kifolyás új definíciója 

A szemcsés anyag kifolyása feltételezésem szerint folyamatosan kialakuló és összeomló 

boltozatok sorozataként jön létre. Így az anyag a kifolyónyílás fölött egy boltozat alakja által 

megadott pontról szabadeséssel hullik ki a silóból.  

 Kísérleti igazolás 

Instabil boltozatok vizuális igazolása 

A kísérletek eredményei láthatóak a 9. ábrán. A 9.b ábrán (a 9.a részlete növelt kontraszttal) 

egy instabil boltozatot látunk, amely a többi felvételen nem látható, tehát csak adott 

időpillanatban létezett.  

 

9. ábra Kifolyás közben kialakuló boltozatok 

Az instabil boltozatok jelenlétét a kísérletek bizonyítják. Az a hipotézis, hogy azok 

folyamatos összeomlása és kihullása határozza meg a kifolyt anyag mennyiségét, az ezen 

alapuló számítási modell eredményeinek igazolásával bizonyítható. 

a) b) 

instabil boltozat 
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 Hipotézis következménye 

A hipotézisem szerint a kifolyás az instabil boltozatokon alapul. Ezek a boltozatok a 

kifolyónyílás fölött állandó peremfeltételeket biztosítanak, így a kifolyás minden paramétere 

állandó, a sebesség és a tömegáram is. Azaz a kifolyási tömegáram állandó, nem függ a siló 

töltöttségétől, független a szemcsés halmaz magasságától. 

3.2. Boltozatalak meghatározása 

 A boltozat alakjának mérési eredményei 

A 4.1.1. fejezetben bemutatott berendezésen a boltozat alakját az oldalfalon elhelyezett 

négyzetrács segítségével rögzítettem. A kapott függvények az oldalfalra feltapadt és a leolvasás 

pontosságát csökkentő anyag ellenére alkalmasak az alak vizsgálatára. A pontonként rögzített 

alakot közelítő függvényekkel írtam le tíz mérés esetében.  

Az egyes beállítások és anyagjellemzők függvényében a boltozat szélessége és magassága 

más és más értékeket mutatott, azonban a jelenlegi kutatásokban fontos jellemző, az alakra 

illeszthető függvény típusa azonos volt a mérések során. 

A mérések során megállapítható volt, hogy az alak jól közelíthető másodfokú parabola 

függvénnyel. A 10. ábrán egy olyan mérési eredmény látható, ahol a másodfokú függvény 

determinációs együtthatója 𝑅2 = 0,9812. 

 

10. ábra. A boltozat alakjának közelítése másodfokú függvénnyel 

Tíz mérés esetén az illeszkedés mértékét az 1. táblázatban foglaltam össze. A kisebb 

együttható oka a feltapadások miatt nagyobb az eltérések az elméleti függvénytől. 

  

y = -0.0182x2 + 1.989x - 1.217
R² = 0.9812
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1. táblázat 𝑅2 értékek mért boltozatalakok esetén 

Mérés sorszáma 𝑅2 Mérés sorszáma 𝑅2 

1 0,9945 6 0,9812 

2 0,8844 7 0,9074 

3 0,9141 8 0,958 

4 0,8872 9 0,96 

5 0,8258 10 0,884 

 

 

3.3. Kifolyási tömegáram meghatározása hengeres silókra 

 Kifolyási sebesség számítása 

A kifolyt anyag az összeomlott instabil boltozat anyaga. A boltozat összetörése után az 

anyag szabadeséssel távozik a kifolyónyíláson (Oldal et al.: 2012.). Ebből következik, hogy a 

boltozat alakja, mint a szabadesés kezdőpontja adja meg a kifolyás sebességét adott pontban. 

Tölcséres kifolyás esetén a boltozat szélső pontjai nem mozognak, így ebből kiindulva zérus 

kezdősebességű szabadesésként számítható a sebesség. A boltozat ℎ magassága nem mérhető, 

ezért  𝛿𝑏 boltozati alaktényezőt bevezetve, amely feltételezésem szerint anyagjellemző, a 

boltozat magasság-szélesség arány  

𝛿𝑏 =
ℎ

𝑑
 (1) 

 

Tengelyszimmetrikus áramlás (hengeres siló) esetén a kifolyási sebesség: 

𝑣(𝑥, 𝜑) = √2𝑔𝛿𝑏𝑑 ∙ √1 − (
2𝑥

𝑑
)

2

 (2) 

 

Figyelembe véve, hogy a szemcsék csökkentik a kifolyási keresztmetszetet, a tömegáram: 

𝑊 =
𝜋√2𝑔

6
𝜌ℎ√𝛿𝑏(𝑑 − 𝑑𝑝)

5
2 (3) 

 

Az összefüggés tölcséres kifolyás esetén fennálló feltételek mellett nyerte el azt a formát, 

ezért térfogati áramlás esetén nem alkalmazható. 

Sík áramlás esetében a sebesség: 
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𝑣(𝑥, 𝑧) = √2𝑔𝛿𝑏𝑎 ∙ √1 − (
2𝑥

𝑎
)

2

 (4) 

 

A tömegáramot: 

𝑊 =
𝜋√2𝑔

4
𝜌ℎ𝑏√𝛿𝑏(𝑎 − 𝑑𝑝)

3
2 (5) 

 

A peremfeltételek tölcséres áramlás esetén teljesülnek, hasonlóan (3)-hoz, ez sem 

alkalmazható térfogati áramlás esetén. 

3.4. Sebességeloszlás eredmények 

 Sebességeloszlás kísérleti vizsgálata 

A kifolyónyílásnál az áramlást kettéosztottuk a 4. ábrán látható módon. A körszeleten 

integrálva polárkoordinátákkal −𝜑 és 𝜑 valamint a szelő sugárban számított határától 𝑅-ig és 

a halmazsűrűséggel megszorozva kapjuk a körszeletre számított tömegáramot. 

𝑊𝑡 = 𝜌ℎ ∫ ∫ √2𝑔𝛿𝑏𝑑 ∙ √1 − (
2𝑥

𝑑
)

2
2𝜋

𝑅 cos 𝜑
cos 𝛼

𝜑

−𝜑

𝑥𝑑𝑥𝑑𝛼 (6) 

 

ahol 𝜑 a 𝑡 résmérethez tartozó középponti szög fele: 

𝜑 = 𝑎𝑟𝑐 cos (1 −
𝑡

𝑅
) 

 

(7) 
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11. ábra Tömegáram a résméret függvényében 

A 11. ábrán látható a különböző modellek és a mérési eredmények összehasonlítása. Az 

eredmények azt mutatják, hogy a sebességváltozás figyelembe vételével a mérési 

eredményekkel jobban egyező tömegáramokat számoltunk. 

A 12. ábrán láthatóak a sebességeloszlás mért és számított eredményei. Zöld folytonos 

vonallal a korábbi modellek állandó sebességű konstans függvénye. Az adott réshez tartozó 

mérések átlaga x jelölővel, az ezekre illesztett görbe kék folytonos vonallal. A saját modellem 

számított értékeit piros folytonos vonallal ábrázoltam. 

 

12. ábra Számított és mért sebességek a kifolyónyílásnál 
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Megfigyelhető, hogy a mért értékek nagy szórásai ellenére a mérésekre illesztett görbe jó 

egyezést mutat a modellem eredményeivel. Így megállapítható, hogy a korábbi modellek 

állandó sebességű megközelítése a valós sebességviszonyoktól jelentősen eltér és az új, instabil 

boltozatokra alapozott analitikus modell a sebességviszonyokat jól leírja. 

 Sebességeloszlás numerikus vizsgálata 

Síkáramlású siló esetére nem kísérleti úton, hanem számítógépes modellezés eredményeivel 

hasonlítottuk össze az analitikus modell eredményeit. A kapott eredményeket a 13. ábrán 

mutatom be. A síkáramlásra kiterjesztett analitikus modellel számított sebességeloszlás kék 

szaggatott vonallal jelenik meg. A diszkrét modellezést háromszoros ismétléssel végeztük el, 

így azoknak átlagát és szórását is meghatároztuk. A 60º-os garat esetében kapott eredményeket 

(átlag és szórás) piros színnel ábrázoltuk. 

 

13. ábra Számított sebességek a kifolyónyílás mentén 

Az eredmények szerint a sebességeloszlást síkáramlás esetén is jól leírja a modell. A 

szimuláció eredményei jól illeszkednek az analitikus modellel meghatározott görbére.  

  

x [mm] 

 
analitikus modell 
DEM 

v 

[m/s] 
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3.5. Tömegáram eredmények 

 Kifolyónyílás méretének hatása 

Tengelyszimmetrikus siló 

Az átmérő hatásának vizsgálatát a kis modell esetén 25, 30, 35, 40, 45, 60, 70, 80, 90, 100 

mm-es átmérőjű kifolyónyílású garattal, búzával végeztem el. A nagy modell esetén 50 mm és 

100 mm átmérőjű kifolyónyílást alkalmaztunk. Minden esetben háromszoros ismétléssel 

mértünk. 

 

14. ábra Kifolyónyílás átmérőének függvényében mért tömegáramok (búza) 

A 14. ábrán láthatjuk, hogy a (3) szerinti 2,5 kitevő az átmérőben a mérésekkel igazolható, 

mind a kis, mind a nagy silómodellen végzett mérések illeszkednek a számított értékekre. Ez 

egyben azt is jelenti, hogy a ebben a tartományban a siló átmérőjének nincs hatása a kifolyásra. 

Az elméletem szerint csak a kifolyónyílás közvetlen környezete határozza meg a kifolyást, ezek 

a mérések ezt igazolják. A kis modell eredményeit csak 60 mm-ig ábrázoltam. Ennek oka, hogy 

amikor elérjük a kifolyónyílással a silóátmérő 60%-át, akkor arányaiban a siló fala is a 

kifolyónyílás közvetlen környezetébe kerül, azaz hatást kezd kifejteni a kifolyásra. 

A modell alkalmazhatóságának határát átmérő esetében a 15. ábrán mutatom be. Ha a kis 

siló esetén az átmérőt tovább növeltem 60 mm felett, egészen a 100 mm-es silóátmérőig, akkor 

a számított értékektől egyre nagyobb mértékben eltérő kifolyási tömegáramot mértem. Ennek 

okaként azt állapítottam meg, hogy a silóátmérőt egyre jobban megközelítve az eredeti 

feltételezésem a zérus sebességű peremmel létrejövő instabil boltozat egyre kevésbé valósul 

meg. A silóátmérő 60%-nál az instabil boltozat mellett 20% garatrész van, amin a boltozat meg 
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tud támaszkodni. Az átmérőt tovább növelve az arány egyre kisebb lesz, azaz eltűnik a perem, 

amire a boltozat fel tudna támaszkodni. Ennek megfelelően azt látjuk a 38. ábrán, hogy a mért 

értékek a modellel számított értékektől egyre távolodnak. Az utolsó pont, ahol a mérések 

illeszkednek a számított görbére, a silóátmérő 60%-a, így ezt tekintem a modellem 

alkalmazhatósági határának. 

 

15. ábra Számított tömegáramok érvényességi határa 

A 15. ábrán 60 mm feletti átmérő melletti eltérések a silóátmérő és a kifolyónyílás arányából 

következik. Ez bizonyítja a 14. ábrán látható 100 mm kifolyónyílás mellett a nagy modellsilón 

végzett mérés, amely jól illeszkedik a számított értékekre, mert ott a 100 mm-es kifolyónyílás 

a 440 mm silóátmérő 23%-a, azaz messze van a 60%-os határtól. 

Síkáramlású siló 

(5) szerint a nyílás szélessége 1,5 kitevővel van hatással a tömegáram értékére. A 16. ábrán 

a szélesség hatását mutatom be. Mivel hasonló eredményt várok, mint a tengelyszimmetrikus 

esetben, így a szélességi méretet eleve a siló szélességének arányában ábrázolom, hogy az 

illeszkedés és az érvényességi határ is látható legyen. A viselkedés a tengelyszimmetrikus 

esettel azonos tulajdonságot mutat. Amíg a garat elég támasztási felületet ad, addig a mért 

eredmények illeszkednek a számított tömegáramokra. Ugyanúgy a siló szélességének 60%-a az 

a határ, ahol még nincs zavaró hatása a perem csökkenésének. A 60% feletti nyílás esetében a 

perem támasztó hatása egyre kisebb, a számítási hiba pedig egyre nagyobb. Megállapíthatjuk 

tehát, hogy a tengelyszimmetrikus és síkáramlás esetében is a kifolyónyílás fő mérete a 

silóméret 60%-ig ad az analitikus modellünkkel jó eredményeket a kifolyási tömegáramra. 
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16. ábra Kifolyónyílás szélességének hatása a tömegáramra síkáramlás esetén 

A síkáramlású modell esetében a b mélység hatása a (5) szerint számítva a 17. ábrán látható. 

Mivel a kérdés az megfelelő illeszkedés mellett az alkalmazhatóság határa, így ebben az esetben 

is a siló szélességének arányában vizsgáljuk. Itt a mélység kettős szerepben van a síkmodell 

miatt. Egyrész a kifolyónyílás mélysége, másrészt a siló mélysége is. Ezért a határ bármelyik 

hatásból következhet vagy a kifolyónyílás vagy a silószélesség hatása okozhatja a modell 

hibáját. 

 

17. ábra A b szélesség hatása a tömegáramra síkáramlás esetén 

A 17. ábrán látható, hogy a siló szélességénél nagyobb mélység esetén jó eredményt ad a 

modell, 1:1 arány alatt már hibát mutat. Mivel az a kifolyónyílás 20 mm, így valószínűleg a 
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siló arányai okozzák az eltérést. Azaz ha a szögletes siló két mérete azonos, akkor az áramlások 

elkezdenek térbelivé válni, így a síkmodell alkalmazásával már hibát követünk el. 

 Garat nyílásszögének hatása 

Tengelyszimmetrikus siló 

Hengeres siló esetén a kísérletekhez 𝛼 = 10, 20, 30, 37,5, 45, 90˚-os (síkfenék) félkúpszögű 

kifolyókúpokat használtam. Az alkalmazott modell a kis méretű hengeres silómodell, a 

kifolyási átmérő 20 mm minden esetben. A mérésekhez búzával végeztem el. 

 

18. ábra Félkúpszög hatása a kifolyási tömegáramra hengeres siló esetén 

Búza esetén 37-38° félkúpszög alatt térfogati, felette tölcséres kifolyási mód várható az 

irodalom szerint, a mérések alapján tehát igazolható az a feltétel, hogy az analitikus modellem 

tölcséres kifolyási mód esetére érvényes. A modell kiterjeszthető a térfogati kifolyás esetére, 

ha a 𝛿𝑏 anyagállandót térfogati kifolyásnál a szög függvényében módosítom, azonban ez már 

nem analitikus, hanem empirikus megoldás lenne. 

Síkáramlású siló 

Síkáramlás esetén is hasonló eredményt várható, mivel azonos elven határoztuk meg az 

analitikus modellt. A modell eredményeit a DEM modell eredményeivel is összehasonlítom. 

Az eredményeket a 19. ábrán mutatom be. 

Az analitikus modell határaira a mérés és a DEM számítás alapján is ugyanazt a 

következtetést vonhatjuk le. Síkáramlású siló esetében is azt mutatják az eredmények, hogy az 

analitikus modell csak tölcséres kifolyási mód esetén alkalmas a tömegáram számítására.  

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 20 40 60 80

mért

számított

𝛼 [°]

W 

[kg/s] 



21 

 

19. ábra Félnyílásszög hatása a kifolyási tömegáramra síkáramlású siló esetén 

 

4. Új elvű csillapítási modell DEM alkalmazásra 

4.1. Elvi megoldás és általános formula 

Az új modell elveti a korábbiak azon tulajdonságát, hogy a függvény folytonos legyen. 

Mivel a diszkrét elemes modellezéskor eleve időlépésekben modellezünk, ez nem igényli a 

folytonos modellt, de ennek elhagyásával elérhető az a cél, hogy az energiaelnyelés a 

legnagyobb összenyomódás és erő közelében legyen a maximális. A 20. ábrán látható az új 

modell elve, a c konstanst kell úgy megválasztani, hogy a k rugalmassági modulus a teljes 

függvényre érvényes legyen. 

 

20. ábra Új csillapítási modell elvi vázlata 

𝛼 [°] 

W 

[kg/s] 



22 

Az ütközési tényező számítható az erő-elmozulás függvényekből számított munkákból az 

összenyomódási (𝑊ö) szakaszon és tágulási (𝑊𝑡) szakaszon: 

𝑘 = √
𝑊𝑡

𝑊ö
= √

∫ 𝑐𝑓(𝛿)𝑑𝛿

∫ 𝑓(𝛿)𝑑𝛿
= √

𝑐 ∫ 𝑓(𝛿)𝑑𝛿

∫ 𝑓(𝛿)𝑑𝛿
= √𝑐 (8) 

  

azaz a konstans értéke az ütközési tényezőből számítható: 

𝑐 =  𝑘2. (9) 

  

Az elv a gyakorlatban akkor lesz jól használható, ha a lehető legegyszerűbb matematikai 

formában írjuk fel. Ha két modellt adunk meg és a programnak kell kiválasztani, hogy melyiket 

alkalmazza a terhelés irányának megfelelően, az is alkalmazható, de ennél jobb, ha zárt alakban 

írjuk fel a függvényt, amely összenyomódási és a tágulási szakaszra egyaránt érvényes. 

A modellünk így a következő alakban írható fel: 

𝐹𝑛(𝛿) = (
1 + 𝑘2

2
+ 𝑠𝑖𝑔𝑛(𝑣𝑛𝑟𝑒𝑙)

1 − 𝑘2

2
) 𝑓(𝛿) 

 

(10) 

 

ahol: 

- 𝐹𝑛(𝛿): a disszipációt leíró normális irányú erő-elmozdulás függvény, 

- 𝛿: összenyomódás, 

- 𝑘: ütközési tényező, 

- 𝑠𝑖𝑔𝑛: előjelfüggvény, 

- 𝑣𝑛𝑟𝑒𝑙: a két test normális irányú relatív sebessége, 

- 𝑓(𝛿): tetszőleges rugalmas erő-elmozdulás függvény. 

A (10) formában felírt kapcsolati függvény az alakjából és a definíciója szerint a következő 

elvárásoknak felel meg: 

• bármilyen rugalmas függvényre alkalmazható, 

• az ütközési tényező elvi helyes alkalmazását teszi lehetővé, 

• a csillapítás arányos az összenyomódással, 

• egyszerű felépítésű, 

• nem torzítja az eredeti függvényt, mint a viszkózus taggal kiegészített függvények, 

• várhatóan nagyobb numerikus stabilitás, 

• várhatóan kisebb számítási igény. 
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4.2. Új kapcsolati függvény alkalmazása 

A Hertz-Mindlin kapcsolati függvényt választottuk az alkalmazásra és az összehasonlításra. 

Az új függvény esetében elhagyjuk a sebességfüggő viszkózus tagot és csak a Hertz, rugalmas 

tagot hagyjuk meg, így az új modell a Hertz-függvényre alkalmazva: 

𝐹𝑛 =
4

3
(

1 + 𝑘2

2
+ 𝑠𝑖𝑔𝑛(𝑣𝑛𝑟𝑒𝑙)

1 − 𝑘2

2
) 𝐸0√𝑅0𝛿

3
2 (11) 

  

 Egy szemcse ejtésének eredményei 

Szimulált kísérletet futtattuk le a Hertz-Mindlin és az új (11) kapcsolati függvény 

alkalmazásával. Ebben az esetben az volt a cél, hogy megállapítsuk az új modell alkalmasságát 

az ütközési tényező modellezésére összehasonlítva azt a gyakorlatban elterjedt modellel. Az 

ejtési kísérlet eredményei közül a szemcse magasságának időbeli alakulását vizsgálatuk és 

hasonlítottuk össze a két modell esetén. A vizsgálatok időlépéseit a 𝑡𝑅 Rayleigh-időlépés (a 

szemcsén áthaladó mechanikai hullám áthaladási ideje) alapján választottuk ki. A Rayleigh-

időlépés 10% és 20%-nál elvégezve nem volt észrevehető különbség a két modellel számított 

eredmények között. Így belátható, hogy a két modell bár teljesen eltérő módon alkalmazza a 

csillapítás számítására az ütközési tényezőt, a végeredmény azonosan jó. Ezzel az új kapcsolati 

modell alkalmasságát bizonyítottuk az ütközési tényező helyes leírására.  

 Több szemcse ejtésének eredményei 

A szabályosan, szorosan elrendezett kezdeti helyzetből (7. a ábra) indítva a halmazt, több 

időlépéssel is elvégeztük a számításokat. A Rayleigh-időlépés 10, 20, 30, 40, 50, 60% esetén is 

végeztünk szimulációt. A 7.b ábra szerinti elrendezésből indítva a halmazt ugyanazt a 

vizsgálatot végeztük el. 
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21. ábra A laza halmaz mozgási energiája az idő függvényében 0,6𝑡𝑅 időlépés esetén 

Mindkét esetben hasonló eredményt kaptunk. A teljes tartományon vizsgálva a 21. ábra a 

laza halmaz, de ugyanilyen eredményt adott a szoros halmaz is, a két modell ebben a léptékben 

nagyon hasonló eredményt adott. Komolyabb különbséget a legutolsó szakaszban mutatott 

mindkét elrendezés. 

 

22. ábra A laza halmaz mozgási energiája az idő függvényében 0,6𝑡𝑅 időlépés esetén az 

utolsó szakaszon 

A 22. ábrán látható, hogy a halmaz 0,1 másodperccel hamarabb csillapodott le az új 

csillapítási modell esetén, ez is hasonló a szoros halmaz eredményéhez. 



25 

 Izotróp nyomóvizsgálat eredményei stabilitásra 

Ebben a vizsgálatban a halmaz véletlenszerű elrendezéssel indítottuk, állandó 

deformációsebességgel mozog a perem, így bármelyik modell gyorsan eljut abba a fázisba, 

amikor a szimuláció stabilitása megszűnik. A vizsgálatokat a Rayleigh-időlépés 10, 20, 30, 40, 

50%-a nagyságú időlépések mellett végeztük el. A próbafuttatások alapján állapítottuk meg a 

szimulációk időtartamát, amely az eredmények stabilitásától függetlenül két másodperc volt. 

A halmazokat addig tekintettük stabilnak, amíg a teljes mozgási energia nagyságrendje el 

nem érte a 100 J értéket. Ha a szimuláció során ezt túllépte a halmaz, akkor már nem volt képes 

stabilitást elérni, utána már exponenciálisan növekedett a kinetikus energia. (Az ábrákon 

logaritmikus lépték van, hogy a kis energiaszintek és a stabilitását vesztett halmaz energiája is 

látható legyen.) 

Az adatok áttekinthetősége érdekében a két modell eredményeit külön ábrán mutatom be 

egymás alatt. Mindkét modell esetében az egyes görbék adott időlépések mellett számított 

mozgási energia értékeit mutatják. Lila színű 0,1𝑡𝑅, a zöld 0,2𝑡𝑅, a kék 0,3𝑡𝑅, a narancs 0,4𝑡𝑅 

és a citromsárga görbe a 0,5𝑡𝑅 időlépés esetén számított mozgási energia értékeket mutatja a 

szimulációs idő függvényében. A 23. ábrán a Hertz-Mindlin kapcsolati modellel számított, a 

24. ábrán az új modellel számított eredményeket mutatom be. 

 

23. ábra Hertz-Mindlin kapcsolati modell esetében számított mozgási energia az idő 

függvényében 
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24. ábra Új kapcsolati modell esetében számított mozgási energia az idő függvényében 

• A legkisebb időlépés esetében mindkét modell mellett stabil maradt a halmaz a 

szimuláció végéig.  

• 0,2𝑡𝑅 időlépés esetén egy kicsivel laposabb az új modell görbéje 1,5 és 2 s között, 

de előtte nincs jelentős különbség.  

• 0,3𝑡𝑅 esetén a Hertz-Mindlin modellel az energia 1,2 s után kezd exponenciális 

növekedésbe, az új modellel csak 1,5 s után. 

• 0,4𝑡𝑅 időlépés mellett mindkét modellel 1 s után veszti el a stabilitását a halmaz. Az 

új modellel nagyságrenddel kisebb energiát ér el a halmaz a stabilitás elvesztése 

után, ami gyakorlati szempontból kevésbé érdekes, de mutatja az új modell nagyobb 

csillapítását még ezen a tartományon is. 

• 0,5𝑡𝑅 időlépés mellett ismét nagyobb a különbség, a Hertz-Mindlin modell esetén a 

halmaz energiája 0,6 s időpontban kezd exponenciálisan növekedni és 0,7 s már 

elveszti stabilitását. Az új modell csak jóval később, a szimuláció 1,2 s időpontjánál 

veszti el stabilitását. 

Ezen vizsgálatok alapján megállapítható, hogy az új modell néhány esetben, főleg kisebb 

időlépéseknél hasonló stabilitást mutatott a Hertz-Mindlin modellhez. Azonban a legtöbb 

esetben és főleg az időlépés növelésekor az új modell nagyobb stabilitást mutatott. Olyan eset 

nem fordult elő, ahol az új modell kisebb stabilitást mutatott. 
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 Izotróp nyomóvizsgálat eredményei számítási időre 

Az izotróp nyomóvizsgálat nemcsak a kapcsolati modell szimulációra gyakorolt hatásának 

vizsgálatára alkalmas. A függvény egyszerűbb formájából arra a következtetésre jutottam, hogy 

alkalmazása esetén várható a számítási időigény csökkenése. A korábbi vizsgálatok alapján egy 

mindkét modell esetében a stabil szimulációt jelentő 0,12𝑡𝑅 időlépést választottunk a számítási 

igény megállapítására.  

 

Az eredmények összehasonlíthatósága érdekében a számításokat egy magon futtattuk 

hússzoros ismétléssel. Az eredmény a 25. ábrán látható. A Hertz-Mindlin kapcsolati modell 

alkalmazása esetén a számítás Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz processzoron, 

egy magon 15,537 s ±0,284 s időt vett igénybe. Az új modell esetében ugyanez 5,169 s ± 0,085 

s volt. Az új modell előnyei közül gyakorlati szempontból ez a legjelentősebb, mert a diszkrét 

elemes modellezések esetén nagyon gyakori probléma a nagy a számítási időigény.  
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5. Új tudományos eredmények 
 

1. tézis: Általánosított, instabil boltozódáson alapuló kifolyási modellel analitikusan 

leírható a síkmodellel közelíthető silók (tengelyszimmetrikus, síkalakvátozás) kifolyási 

sebessége és tömegárama tölcséres kifolyási mód esetén (Oldal et. al, 2012.) (Safranyik, 

Oldal, 2021.) 

Az instabil boltozat alakja másodfokú függvénnyel közelíthető, a kifolyónyílás mérete és 

𝛿𝑏 alaktényező alkalmazásával. Ekkor a kifolyási sebesség tengelyszimmetrikus (hengeres siló) 

.esetben: 

𝑣(𝑥, 𝜑) = √2𝑔𝛿𝑏𝑑 ∙ √1 − (
2𝑥

𝑑
)

2

 

síkmozgás esetében: 

𝑣(𝑥, 𝑧) = √2𝑔𝛿𝑏𝑎 ∙ √1 − (
2𝑥

𝑎
)

2

 

A tömegáram tengelyszimmetrikus esetben: 

𝑊 =
𝜋√2𝑔

6
𝜌ℎ√𝛿𝑏(𝑑 − 𝑑𝑝)

5
2 

síkmozgás esetében: 

𝑊 =
𝜋√2𝑔

4
𝜌ℎ𝑏√𝛿𝑏(𝑎 − 𝑑𝑝)

3
2 

összefüggésekkel számítható. 

A modell alkalmazhatósági határai a kifolyónyílás 𝑑 és 𝑎 méretére:  

7𝑑𝑝 ≤ 𝑑 ≤ 0,6𝐷 

7𝑑𝑝 ≤ 𝑎 ≤ 0,6𝑐 

Ahol: 

• 𝑔 : gravitációs gyorsulás, 

• 𝛿𝑏 : boltozat alaktényezője, 

• 𝑑 : kifolyónyílás átmérője (hengeres siló), 

• 𝑥 : sugár polárkoordináta (hengeres siló), szélességi koordináta (síkmozgás), 

• 𝑎 : kifolyónyílás szélessége (síkmozgás), 

• 𝜌ℎ : halmazsűrűség, 

• 𝑑𝑝 : átlagos szemcseméret, 

• 𝑏 : siló mélysége (síkmozgás), 

• 𝐷 : silóátmérő (hengeres siló), 
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• 𝑐 : siló szélessége (síkmozgás), 

• 𝜑 : szög polárkoordináta (hengeres siló), 

• 𝑧 : mélység koordináta (síkmozgás). 

Az új modell előnyei a korábbiakhoz képest: 

• tölcséres kifolyás esetére csak empirikus modellek léteztek korábban, 

• a korábbi modellek állandó sebességet feltételeztek a kifolyónyílás mentén, az új modell 

nemcsak ettől tér el, hanem bizonyítottan jól írja le a sebességeloszlást. 

 

2. tézis: Új csillapítási elven alapuló szemcsekapcsolati modell, amely alkalmazható 

bármely rugalmas függvényre (Oldal, 2024.) 

A modell a következő alakban írható fel: 

𝐹𝑛(𝛿) = (
1 + 𝑘2

2
+ 𝑠𝑖𝑔𝑛(𝑣𝑛𝑟𝑒𝑙)

1 − 𝑘2

2
) 𝑓(𝛿) 

 

ahol: 

- 𝐹𝑛(𝛿): a disszipációt leíró normális irányú erő-elmozdulás függvény, 

- 𝛿: összenyomódás (átfedés), 

- 𝑘: ütközési tényező, 

- 𝑠𝑖𝑔𝑛: előjelfüggvény, 

- 𝑣𝑛𝑟𝑒𝑙: a két test normális irányú relatív sebessége, 

- 𝑓(𝛿): tetszőleges rugalmas erő-elmozdulás függvény. 

Az új modell előnyei a korábbiakhoz képest, amely magából a levezetésből következik, 

külön bizonyítást nem igényel: 

• bármilyen rugalmas függvényre alkalmazható, 

• az ütközési tényezőt egzakt módon alkalmazza, 

• a csillapítás arányos az összenyomódással, 

• egyszerű felépítésű, 

• nem torzítja az eredeti függvényt. 
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3. tézis: Új típusú szemcsekapcsolati modell Hertz-függvényre való alkalmazása  

(Oldal István; Safranyik Ferenc; Keppler István, Tóth János: High stability damping model for 

discrete element method (bírálat alatt)) 

A modell a következő alakban írható fel: 

 

𝐹𝑛 =
4

3
(

1 + 𝑘2

2
+ 𝑠𝑖𝑔𝑛(𝑣𝑛𝑟𝑒𝑙)

1 − 𝑘2

2
) 𝐸0√𝑅0𝛿

3
2 

ahol: 

- 𝐹𝑛: a disszipációt leíró normális irányú erő-elmozdulás függvény, 

- 𝛿 : az érintkező testek átfedése, 

- 𝑘: ütközési tényező, 

- 𝑠𝑖𝑔𝑛: előjelfüggvény, 

- 𝑣𝑛𝑟𝑒𝑙: a két test normális irányú relatív sebessége, 

- 𝐸0 : az érintkező teste redukált rugalmassági modulusa a (27) alapján számítva, 

- 𝑅0 : redukált szemcsesugár a (20) alapján számítva. 

A modell szimulációval történő ellenőrzése alapján a következő tulajdonságokat igazoltuk: 

• az ütközési tényezőt jól modellezi 0,2𝑡𝑅 időlépésig egy szemcse esetében, 

• gravitációval terhelt halmaz 0,1𝑡𝑅 és 0,6𝑡𝑅 időlépés tartományban a viszkózus 

csillapítású modellel jó egyezést mutat a halmaz laza állapotában, az 

összetömörödött, nyugalmi állapothoz közelítve az új modell minden esetben 

nagyobb stabilitást mutatott, 

• izotróp nyomás esetében 0,1𝑡𝑅 és 0,5𝑡𝑅 időlépés tartományban az új függvény 

hasonló vagy nagyobb stabilitást mutatott, mint a viszkózus csillapítású modell, 

nagyobb időlépések esetén az új modell nagyobb stabilitást mutatott, 

• izotróp nyomás esetén az új modellel azonos feltételek mellett kevesebb, mint 

egyharmad számítási gépidőt igényelt a viszkózus csillapításhoz képest. 
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6. Összefoglalás 
 

A PhD megszerzése után a szemcsés anyagok modellezésének analitikus és numerikus 

területén is végeztem kutatásokat. A disszertációban két területen elért eredményeimet 

foglaltam össze. Az egyik terület, a silók ürítésének analitkus leírása a másik terület a diszkrét 

elemek módszerén belül a szemcsekapcsolati modellek csillapítása és annak modellezése. 

Szemcsés anyagok silóból történő kifolyására a szakirodalomban térfogati kifolyás esetére 

találunk analitikus számítási modellt, tölcséres kifolyásra nem, arra a kifolyási módra csak 

empirikus számítási modelleket találunk. Ezen kívül az összes számítási modell állandó 

sebességet feltételez a kifolyónyílás mentén, ami hibás, mert sem a mérések sem a numerikus 

modellek nem mutatnak állandó sebességet. A kifolyás új megközelítését még a PhD munkám 

során elkezdtem, azonban annak általánosítását síkmodellekre később dolgoztuk ki. A modell 

az instabil boltozatok hipotézisének alapján leírja a kifolyási sebességet a kifolyónyílás mentén 

tengelyszimmetrikus és síkmozgású silók esetében. Ezek a sebességek kísérleti vizsgálatokkal 

és numerikus modellekkel igazolva megfelelnek a valós viszonyoknak. A sebesség alapján 

meghatározható a kifolyási tömegáram értéke, amely mind a tengelyszimmetrikus, mind a 

síkáramlás esetére mérésekkel igazoltan helyes. Összességében ezen a területen létrehoztam 

egy korábban nem létező elméleten alapuló analitikus modellt, amely általánosan síkmodellel 

leírható silóból való kifolyás modellezésére alkalmas. 

Diszkrét elemek módszerének egyik alap modellje a szemcsekapcsolati modell. Ezt a 

modellt a csillapítás szempontjából vizsgáltam. Kohéziómentes rugalmas anyagokra három 

alaptípust találtam a szakirodalomban, az elterjedtebb modell a viszkózus csillapítás és az 

elasztoplasztikus modell, a harmadik modell két eltérő meredekségű egyenest alkalmaz a 

csillapítás leírására. Mindegyiknek megvannak az előnyei és a hátrányai, ebben a kutatási 

munkában a hátrányokkal és azok megoldásával foglalkoztam. A két eltérő meredekségű 

egyenessel modellezett csillapítás nagymértékben leszűkíti az alkalmazhatóságot, mivel a valós 

szemcsék érintkezése nemlineáris, ezen kívül nem a zérusba tér vissza a második szakasz, így 

ez további megoldandó feladat. Viszkoelasztikus modell bonyolultabb és több paramétert 

igényel. A viszkózus csillapítás sebességfüggő tagot ad a rugalmas kapcsolatot leíró modellhez. 

Ennek két fő hátránya van. Az egyik, hogy eltorzítja az alapfüggvényt, a másik, hogy kis 

sebességek esetén (a legtöbb halmaz modellezésekor kvázi nyugalmi helyzet van, így ez sűrűn 

előforduló eset) romlik a csillapítás hatása. A problémák megoldására egy olyan csillapítási 

modellt dolgoztam ki, ami az eredeti rugalmas modellt nem módosítja az összenyomódási 

szakaszon, csak a tágulási szakasz módosításával modellezi a csillapítást. Ez nem ad plusz tagot 

a modellhez, így egyszerű formája van, kevés paramétert alkalmaz. Az így felírt modell mentes 

az alap modell torzításától és igazoltan stabilabb kis sebességek esetén valamint kisebb a 

számítási igénye, mint a viszkózus modellnek. 

Dolgozatomban a bemutatott eredményeket három tézispontban foglaltam össze. 
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7. Summary 
 

After obtaining my PhD, I conducted research in both the analytical and numerical modeling 

of granular materials. In my dissertation, I summarized the results achieved in two areas. The 

first area focuses on the analytical description of silo discharge, while the second pertains to 

damping in particle contact models within the framework of the discrete element method and 

its modeling. 

In the literature, an analytical calculation model is available for the massflow discharge of 

granular materials from silos, but no such model exists for funnel flow, where only empirical 

calculation models are found. Additionally, all existing calculation models assume a constant 

velocity along the discharge opening, which is incorrect, as neither measurements nor numerical 

models show a constant velocity. I began developing a new approach to describe discharge 

during my PhD work, but its generalization to planar models was developed later. Based on the 

hypothesis of unstable arches, the model describes the discharge velocity along the outlet for 

axisymmetric and planar silos. These velocities have been validated through experimentals and 

numerical models, demonstrating consistency with real-world conditions. The velocity profile 

allows for the determination of the mass flow rate, which has been experimentally verified to 

be accurate for both axisymmetric and planar flows. Overall, I developed an analytical model 

based on a previously non-existent theoretical framework, which is suitable for modeling silo 

discharge in a generalized manner using planar models. 

One of the fundamental models of the discrete element method is the contact model of particles. 

I examined this model from the perspective of damping. For cohesionless elastic materials, I 

identified three basic types in the literature. The more widespread models are the viscous 

damping model and the elastoplastic model, while the third model uses two linear segments 

with different slopes to describe damping. Each has its advantages and disadvantages. In this 

research, I focused on the disadvantages and their solutions. Damping modeled with two linear 

segments significantly limits applicability, as the real contact between particles is nonlinear. 

Additionally, the second segment does not return to zero, presenting another issue to address. 

The viscoelastic model is more complex and requires more parameters. The viscous damping 

model introduces a velocity-dependent term to the elastic contact model. This has two main 

drawbacks: first, it distorts the fundamental function; second, at low velocities (a common 

scenario in most granular material simulations, as they are typically in a quasi-static state), the 

damping effect deteriorates. To address these problems, I developed a damping model that does 

not modify the original elastic model during the compression phase but models damping by 

altering the expansion phase. This approach does not add extra terms to the model, giving it a 

simple form and requiring few parameters. The resulting model is free from distortions of the 

base model, is demonstrably more stable at low velocities, and has lower computational 

demands compared to the viscous model. 

In my dissertation, I summarized the presented results in three thesis points. 
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