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1 Introduction

In general terms, control theory can be described as the study of how to design the process of

influencing the behavior of a physical system to achieve a desired goal. An open-loop control is one in

which the control input is not affected in any way by the actual (measured) outputs. If the system

changes during the operational time then the control performance can be severely reduced. In a closed-

loop system the control input is affected by the measured outputs, i.e., a feedback is being applied to

that system. Very often a reference input is given, which is directly related to the desired value of

system outputs, and the purpose of the controller will be to minimize the error between the actual

system output and the desired (reference input) value.

While construction of automatic machines dates back at least to the time of ancient greeks,

Heron of Alexandria

as far as automatic control is concerned, a historical example

cited in many texts is James Watt’s fly-ball governor from

the 18th century, where the control objective is to ensure

that the speed of rotation is approximately constant. As

the fly-balls rotate so they determine, via the valve, how

much steam is supplied; the faster the rotation – the less

steam is supplied. The rate of steam supplied then gov-

erns, via the piston and flywheel, the speed of rotation of

the fly-balls. Although tight limits of operation, in terms

of speed variation, can be obtained with such a device a

possible disadvantage of the feedback scheme is shown: os-

cillations can occur in the system output, i.e., the speed

of rotation, which would not occur if the system were connected in open-loop mode.

MEASURED

SPEED

GOVERNOR

VALVE

OUTPUT

SHAFT

ENGINE

1

Watt’s regulator

In the second half of the 19th century J. C. Maxwell developed

a theoretical framework for such regulators by means of a differen-

tial equation analysis relating to performance of the overall system,

thereby explaining in mathematical terms reasons for oscillations

within the system. It was gradually found that Maxwell’s gover-

nor equations were more widely applicable and could be used to

describe phenomena in other systems, an example being piloting

(steering) of ships.

A common feature with these systems was the employment of

information feedback in order to achieve a controlling action, an

idea that was widely exploited in the technological achievements of the 20th century. As usual,

armed conflicts has a great impact on the technological innovation and the last century was not

in need of such opportunities. In particular, the Second World War provided an ideal breeding
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1 Introduction

ground for further developments in automatic control. In this period was developed the classical

control theory, represented, among others, by the work of H. W. Bode, A. Kolmogorov, H. Nyquist,

L. Pontryagin and N. Wiener that rely heavily on the spectral properties of the signals and reflects

frequency-domain concepts.

In the 1960s the influence of space flight was felt, with optimization techniques gaining in promi-

nence, while digital control also became widespread due to computers. Modern control theory has been

developed to cope with the increasing complexity of multiple-input-multiple-output (MIMO) con-

trol systems. Unlike classical control theory that is based on frequency-domain analysis, modern

control theory is based on time-domain analysis and synthesis using state variables.

R. E. Kalman was the leader in the development of a rigorous theory of control systems. His

research in fundamental systems concepts, such as the formulation and study of most fundamental

state-space notions, controllability and observability, helped put on a solid theoretical basis some

of the most important engineering systems structural aspects. While some of these concepts were

also encountered in other contexts, such as optimal control theory, it was Kalman who recognized

the central role what they play in systems analysis. The paradigms formulated by Kalman and the

basic results he established have become an intrinsic part of the foundations of control and systems

theory. The author of this thesis has had the opportunity to meet professor Kalman during his

regular visits at MTA SZTAKI. The discussions with him on the topics related to controllability

have made a great influence on the research.

There are two main features in the analysis of a control system: system modeling, which means

expressing the physical system under examination in terms of a model (or models) which can be

readily dealt with and understood, and the design stage, in which a suitable control strategy is both

selected and implemented in order to achieve a desired system performance. Forming a mathemat-

ical model which represents the characteristics of a physical system is crucially important as far as

the further analysis of that system is concerned.

Controllability and observability are the main issues in the analysis of a system before deciding

the best control strategy to be applied, or whether it is possible to control or stabilize the system.

Controllability is related to the possibility of forcing the system into a particular state by applying an

appropriate control signal while observability is related to the possibility of reconstructing, through

output measurements, the state of a system.

The model should not be over simple so that important properties of the system are not included,

something that would lead to an incorrect analysis or an inadequate controller design. In some cases

the nonlinear characteristics are so important that they must be dealt with directly, and this can be

quite a complex procedure.

Supersonic flight

As an illustrative example for the importance of adequate

modeling and that of controllability recall the story of the su-

personic aircraft: at the mid forties designing a supersonic con-

trollable airframe was the problem for aeronautical engineers.

The main issue is called shock stall, and it’s what happens when

a control surface approaches the speed of sound. A shockwave

forms around the control surface, rendering it useless, and the

pilot has no way to control the aircraft. In distinction from the
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1 Introduction

subsonic aircraft in which the system of longitudinal control was quite simple and the favorable

conditions of controllability fully assured a rigid kinematic coupling of the control stick with the

elevator, the control system on supersonic machines is more complex. In modern fighters, an ade-

quate effectiveness of the horizontal tail empennage at supersonic flight modes is achieved only in

the presence, in the control system, of a fully rotatable control surface, i.e., of a controlled stabi-

lizer. Longitudinal controllability is provided by the elevator and by a stabilizer which is adjustable

during flight.

Motivated by the need of dealing with physical systems that exhibit a more complicated behavior

that those normally described by classical continuous and discrete time domains, hybrid systems

have become very popular nowadays. In particular, there has been a relevant interest in the analysis

and synthesis of so-called switching systems intended as the simplest class of hybrid systems.

A switching system is composed of a family of different (smooth) dynamic modes such that the

switching pattern gives continuous, piecewise smooth trajectories. Moreover, we assume that one

and only one mode is active at each time instant.

Controllability of switching systems has been investigated mostly for the case when arbitrary

switching is possible (open–loop switching) and the objective is to design a proper switching se-

quence to ensure controllability or stability of (usually) piecewise linear systems, see Altafini (2002),

Sun et al. (2003), Xie and Wang (2002), Yang (2002), or Sontag and Qiao (1999), for recurrent

neural networks. In these investigations the control input set for the individual modes is assumed

to be unconstrained.

Bimodal systems are special classes of switching systems, where the switch from one mode to

the other one depends on the state (closed–loop switching). In the simplest case the switching

condition is described by a hypersurface C in the state space.

Supersonic torpedo

My interest in this topic was triggered by the con-

trollability analysis of a high–speed supercavitating

vehicle. Supercavitation is a means of drag reduction

in water, wherein a body is enveloped in a gas layer in

order to reduce skin friction. After a suitable feedback

linearization of the highly nonlinear dynamics the lon-

gitudinal motion of this device can be cast as a bimodal piecewise linear system, Balas et al. (2006);

Vanek et al. (2007). A fundamental achievement of this study was that for a certain class of bimodal

systems controllability question can be reduced to the problem of controllability of sign constrained

open–loop switching system, Bokor, Balas and Szabó (2006).

One of the most elementary constrained controllability problems is that of the single-input-

single-output (SISO) linear time invariant (LTI) system, with nonnegative inputs, see Saperstone

(1973) for details. The multi-input LTI case, i.e., a special sign constrained switching problem,

was solved in Brammer (1972) and Korobov (1980), for further insights see Stern and Heymann

(1975), Pachter and Jacobson (1978), Hajek et al. (1992). Constrained controllability results for

the linear time varying case with continuous right hand side can be found e.g., in Schmitendorf

and Barmish (1980).

From practical point of view it is important to know if controllability can be performed using a

finite number of switchings. It is known that for the unconstrained case and for the constrained
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1 Introduction

case when the small time controllability property holds or the dynamics is continuous the answer

is affirmative, Lee and Markus (1967), Sun and Ge (2005), Krastanov and Veliov (2005), moreover

in all these cases there exist a bound for the number of switchings.

The first part of the thesis focuses on the controllability problem of LTI switched systems driven

by sign constrained control. After recalling some fundamental results from geometrical control

theory it will be proved that if the system is globally controllable then one can always achieve

controllability by applying only a finite number of switchings, moreover, as in the unconstrained

situation, the number of necessary switchings is bounded.

The first part of the thesis also provides a global controllability condition that can be applied

for input sign constrained systems. In contrast to the unconstrained case where pure Lie algebraic

methods, see, e.g., Jurdjevic (1997); Agrachev and Sachkov (2004), can be used efficiently to obtain

global controllability conditions, in the input sign constrained problem methods borrowed from the

theory of differential inclusions, Aubin and Cellina (1984); Wolenski (1990), and convex processes,

Frankowska et al. (1986), have been proven to be efficient in obtaining global controllability con-

dition formulated in algebraic terms.

For LTI systems Px D Ax C Bu controllability is intimately related to stabilizability in that

the former implies the later, moreover stabilizability can be achieved by applying a linear state

feedback u D Kx, that can be computed relative easily. Similar result, with a suitable set of linear

state feedbacks, is valid for the case when the inputs are sign constrained, see Smirnov (1996) and

Krastanov and Veliov (2003).

Stability issues of switched systems, especially switched linear systems, have been of increasing

interest in the recent decade, see for example Dayawansa and Martin (1999), Liberzon and Morse

(1999), Liberzon et al. (1999), Liberzon (2003), Lin and Antsaklis (2005b), Sun and Ge (2005).

In the study of the stability of switched systems one may consider switched systems governed

by given switching signals or one may try to synthesize stabilizing switching signals for a given

collection of dynamical systems. Concerning the first class a lot of papers focus on the asymptotic

stability analysis for switched homogeneous linear systems under arbitrary switching (strong sta-

bility, robust stabilization), and provide necessary and sufficient conditions, see Blanchini (1995),

Agrachev and Liberzon (1999), Liu and Molchanov (2002).

The requirement of (robust) stability imposes very strict conditions on the dynamics, e.g., all the

subsystems must be stable or stabilizable. Even under this condition, one has, in general, further

restrictions on the allowable switching frequency (dwell time), determined by the spectrum of the

matrices, Wirth (2005).

For strongly stabilizable linear controlled switching systems the feedback control always can

be chosen as a "patchy", linear variable structure controller, see Blanchini (1995). The control is

defined by a conic partition R
n D

SN
kD1 Ck of the state space while on each cone Ck the feedback

is linear, i.e., it is given by u D Fkx.

In the more general situation, when one has unstable modes, more severe conditions on the

switching sequence have to be imposed. In this respect one of the most elusive problems is the

switched stabilizability problem, i.e., under what condition is it possible to stabilize a switched

system by properly designing autonomous (event driven) switching control laws. For autonomous

switchings the vector field changes discontinuously when the state hits certain "boundaries". This
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1 Introduction

problem corresponds to the weak asymptotic stability notion of the associated differential inclu-

sions.

Based on the ideas presented in Molchanov and Pyatnitskiy (1989) it was proved that the (weak)

asymptotic stabilizability of switched autonomous linear systems by means of an event driven

switching strategy can be formulated in terms of a conic partition of the state space, see Lin and

Antsaklis (2004), Lin and Antsaklis (2005a). This result can be seen as a generalization of the

corresponding theorem for strong stability. However, in contrast to the strong stability results, the

corresponding Lyapunov function is not always convex, see Blanchini and Savorgnan (2006).

The second part of the thesis gives an extension of the fundamental LTI stabilizability results for

the weak stabilizability of the class of completely controllable linear switching systems, where the

control inputs might also be sign constrained, i.e., it is shown that a completely controllable linear

switching system is closed–loop stabilizable, moreover, the stabilization can be performed by using

a generalized piecewise linear feedback.

Despite the fact that linear switched systems are time varying nonlinear systems, their control-

lability and stabilizability properties can be described entirely in terms of the system matrices by

using matrix algebraic manipulations. This property does not hold for general LTV systems. There

is a notion, however, that survives the extension from LTI to LTV: the concept of the invariant sub-

space. The germ of this notion was related first to the study of controllability, where the reachability

set behaves as the minimal set invariant to the action of the (controlled) dynamics. For LTV systems

the reachability set is a subspace which induces a controllability decomposition of the system. Later

on variants of the concept and the corresponding decompositions has been proved very useful in

solving design problems.

This geometric view, i.e., the idea of invariance and invariant subspaces, relates the controllability

study of switched systems to the topics from the second half of the thesis. The developed techniques

and algorithms that leads to the specific invariant subspaces, hence, to the specific state space

decompositions, make the glue that unifies the different problems like controllability, detection

filter design or tracking control at an applicational level. Thus the geometric approach provides a

common framework in which all these problems can be handled.

Designing a controller for systems with widely varying nonlinear and/or parameter-dependent

dynamics is a major area of research in control theory. A general theory for the robust control

of nonlinear systems is not computationally tractable and useful progress requires an intermedi-

ate level of complexity that, for example, incorporates scheduling requirements whilst remaining

computationally tractable.

For LTI systems the concept of certain invariant subspaces and the corresponding global decom-

positions of the state equations induced by these invariant subspaces was one of the main thrusts for

the development of geometric methods for solutions to problems of disturbance decoupling or non-

interacting control, see Wonham (1985). In the so called geometrical approach to some fundamental

problems of LTI control theory, such as disturbance decoupling, unknown input observer design,

fault detection, a central role is played by the .A; B/-invariant and .C; A/-invariant subspaces

and certain controllability and unobservability subspaces, Wonham (1985); Massoumnia (1986);

Edelmayer et al. (1997).

Gain-scheduling is a technique widely used to control such systems in a variety of engineering
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1 Introduction

applications. The gains of the gain-scheduled controllers are typically chosen using linear control

design techniques and is a two step process. First, several operating points are selected to cover

the range of system dynamics. At each of these points, the designer makes an LTI approximation

to the plant and designs a linear compensator for each linearized plant. This process gives a set

of linear feedback control laws that perform satisfactorily when the closed-loop system is operated

near the respective operating points. A global nonlinear controller for the nonlinear system is

then obtained by interpolating, or scheduling, the gains from the local operating point designs.

The designer typically cannot assess a priori the stability, robustness, and performance properties

of gain-scheduled controller designs. The above method represents the classical gain-scheduling

method and has immediate application in flight control.

Linear parameter varying (LPV) modeling techniques have gained a lot of interest, especially

those related to vehicle and aerospace control, Becker and Packard (1994); Fiahlo and Balas (1997);

Barker and Balas (1999); Marcos and Balas (2001); Szászi et al. (2005). LPV systems have recently

become popular as they provide a systematic means of computing gain-scheduled controllers. In

this framework the system dynamics are written as a linear state-space model with the coefficient

matrices functions of external scheduling variables. Assuming that these scheduling variables re-

main in some given range then analytical results can guarantee the level of closed loop performance

and robustness. The parameters are not uncertain and can often be measured in real-time during

system operation. However, it is generally assumed that the parameters vary slowly in compari-

son to the dynamics of the system. LPV based gain-scheduling approaches are replacing ad-hoc

techniques and are becoming widely used in control design.

Many of the control system design techniques using LPV models can be cast or recast as con-

vex problems that involve linear matrix inequalities (LMI). Significant progress has been made re-

cently in the use of LMI and H1 optimization in gain-scheduled control. One such control design

technique, described by Apkarian et al. (1995), is the Lyapunov function/quadratic H1 approach

wherein a single Lyapunov function is sought to bound the performance of the LPV system. Such a

framework generally has a strong form of robust stability with respect to time-varying parameters.

However, due to the continuous variation of scheduling parameters,such a synthesis approach is

generally associated with a convex feasibility problem with infinite constraints imposed on the LMI

formulation. This problem can be addressed by using affine LPV modeling that reduces the infinite

constraints imposed on the LMI formation to a finite number. Such a modeling approach has been

used to solve design problems by Packard and Becker (1992); Sun and Postlethwaite (1998).

The above pure LPV model is not quite matched to the flight control problem where the schedul-

ing variables are in fact system states (e.g., airspeed and angle of attack), rather than bounded ex-

ternal variables. An approach to this problem is to generate so-called quasi-LPV models, which are

applicable when the scheduling variables are measured states, the dynamics are linear in the inputs

and other states, and there exist inputs to regulate the scheduling variables to arbitrary equilibrium

values.

In a more general context such robust control problems – both analysis and synthesis – can be

formulated using a generalized plant technique based on a linear fractional transformation (LFT)

description of the uncertain LPV system, see, e.g., Iwasaki and Hara (1998); Iwasaki and Shibata

(2001); Wu (2001). The controller synthesis leads to bilinear matrix inequalities (BMI) but often it
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1 Introduction

is possible to reduce the problem to the solution of a finite set of LMIs, for details see e.g., Scherer

et al. (1997); Scherer (2001); Wu (2001); Gyurkovics and Takács (2009).

These methods concentrate on robust performance, hence, robust stability of the controlled sys-

tem. However, a series of control tasks can be solved efficiently by exploiting the inner structure

present in the dynamics, i.e., to make use of specific invariant manifolds of the controlled system.

Nonlinear systems can be studied using tools from differential geometry, when the central role is

played by the concept of invariant distributions. From the geometric viewpoint results of the classical

linear control can be seen as special cases of more general nonlinear results, for details see Isidori

(1989) and Nijmeijer and van der Schaft (1990). Due to the computational complexity involved,

these nonlinear methods have limited applicability in practice.

The third part of the thesis extends the notions of different LTI invariant subspaces to (quasi)

parameter-varying systems by introducing the notion of parameter-varying .A;B/-invariant and

parameter-varying .C ;A/-invariant subspaces. In introducing the various parameter-varying invari-

ant subspaces an important goal was to set notions that lead to computationally tractable algo-

rithms for the case when the parameter dependency of the system matrices is affine.

In general it is a hard task to give an exhaustive characterization for the solution of the funda-

mental problems such as the disturbance decoupling problem (DDP) or the fundamental problem

of residual generation (FPRG) even in the LPV case. However, since the main ingredient in the so-

lution of these problems are certain local decomposition theorems – in observable and unobservable

subsystems, for example – using suitable invariant subspaces instead of the distributions or codis-

tributions one can get sufficient conditions for solvability that can be useful in practical engineering

applications.

Concerning the structure of the presentation: in order to highlight the motivation background

of these research activities, the thesis starts with a motivation chapter that revolves around the

classical topic of controllability of a linear time varying system. It is concluded that despite the

exhaustive characterization of the controllability property in mathematical terms, the problem re-

mains undecidable in any practical sense in terms of the initial data of the system. Besides giving

this negative result this chapter also provides the germs that leads to the notions that has a real

impact for a series of engineering control design problems.

The first two parts of the thesis are dedicated to the controllability and stabilizability problems

related to switched linear systems, possibly with sign constrained control inputs. Despite to its in-

herent nonlinear nature, the class of linear switched systems provides an example for time varying

systems whose controllability can be decided by using the initial data of the problem (the system

matrices) in algebraic terms. Moreover, it turns out that the transparent relation between control-

lability and stabilizability met in the LTI context remains valid for this class, too.

The third part of the thesis provides the notion of parameter varying invariant subspaces as an

extension of the corresponding ideas that has already been proven to be useful in the LTI context.

These invariant subspaces provides a viable alternative of the more complex objects such as the

corresponding invariant distributions and codistributions of the full nonlinear framework. Efficient

algorithms are provided to compute these subspaces. This is the engineering answer to the challenge

of the decomposition problem sketched in the introductory chapter.

The last part of the thesis presents some of the application examples, in which the geometric
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techniques, the introduced invariant subspaces and the corresponding algorithmic tools can be

efficiently used.

Concerning hybrid systems, the thesis is concluded by stating the controllability result related to

bimodal piecewise linear systems. This application covers almost all topics contained in the thesis:

in order to put the problem in a quasi canonical form and to reduce the original task to an open-

loop input sign constrained linear switched controllability problem, notions related to parameter

varying invariant subspaces and invertibility are applied while the obtained controllability question

is answered based on the results established in the first part of the thesis.

Design for an active suspension system for heavy vehicles and the controllability study for a high

speed supercavitating underwater vehicle made the engineering applicational background for this

research, see Bokor, Balas and Szabó (2006); Bokor, Szabó and Balas (2006a,b, 2007); Gáspár et al.

(2009a).

This chapter is followed by applications, such as invertibility tasks and different decoupling

problems that heavily rely on the state decompositions induced by certain robust invariant sub-

spaces. The procedure to obtain the dynamical inverse of affine LPV systems is emphasized, since

reconstruction of unknown inputs is an important task for either control applications or for fault

detection filter design.

Concerning real engineering applications related to these methods reconfigurable fault detection

controls of vehicle dynamical systems has to be mentioned, e.g., FDI filter design for a Boeing 747

aircraft, fleet control of road vehicles, fault tolerant active suspension design, see Balas et al. (2002,

2004); Szabó et al. (2003); Gáspár, Szabó and Bokor (2008); Gáspár, Szederkényi, Szabó and Bokor

(2008b); Gáspár, Szabó and Bokor (2008f); Gáspár et al. (2009). The developed algorithms were

also successfully applied in the dynamic inversion based controller design for stabilizing the primary

circuit pressurizer at the Paks Nuclear Power Plant in Hungary during 2004-2005, see, e.g., Szabó

et al. (2005); Gáspár et al. (2006).

To improve readability the new scientific results are listed in a separate chapter, while the corre-

sponding publications of the author are contained at the end of the thesis in a separate list. Trying

not to bloat the main text with unnecessary details the additional notations and facts related to the

main material are placed in the Appendix.
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2 Motivation

Let us consider the state dynamics of a controlled linear time varying (LTV) system:

Px.t/ D A.t/x.t/C B.t/u.t/ (2.1)

where x.t/ 2 X � R
n is the state vector, u.t/ 2 R

m is the control input while the initial condition

is x0 D x.t0/. The measured signals are obtained by a linear readout map y.t/ D C.t/x.t/, with

y 2 R
p.

Our interest in such models is motivated by the fact that nonlinear dynamics can be often cast

as an LTV system

Px.t/ D A.�.y//x.t/C B.�.y//u.t/ (2.2)

by choosing a suitable set of scheduling functions � that depend only on measured variables y, i.e.,

its values are available in operational time. These models are called quasi linear parameter varying

(qLPV) systems. A special case is when the dependence from the scheduling variables is affine, i.e.,

A.�.t// D A0 C �1.t/A1 C : : :C �N .t/AN ; (2.3)

B.�.t// D B0 C �1.t/B1 C : : :C �N .t/BN :

For the sake of notational simplicity, in what follows, the time dependency of the matrices will be

dropped (A.�/ WD A.�.t//) where it is possible.

Properties of some hybrid dynamics can also be analyzed in this framework. Hybrid systems in-

volve two kinds of variables: continuous-valued and discrete-valued Branicky (1998). We focus on

controlled switching linear hybrid systems where all mode switches are controllable, the dynamical

subsystem within each mode has a linear time invariant form, the admissible region of operation

within each mode is the whole state and input space, and there are no discontinuous state jumps.

This model fits into the logic based switched system framework (Liberzon; 2003). This class of

linear switched systems can be viewed as:

Px.t/ D A.�.t//x.t/C B.�.t//u.t/ (2.4)

where � W R
C ! N is a piecewise constant switching function, i.e., the matrices A.�/ and B.�/

are piecewise constant.

2.1 Controllability

One of the main questions of system theory is to determine wether the system is controllable and/or

is observable.
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2 Motivation

0

x0

1

A controllable state

A state x0 is said to be controllable at time t0 if there exist a

control function u.t/ that steers the system into the origin in finite

time; a state xf is said to be reachable if the system can be steered

from the origin into xf in finite time. If the property holds for

every state x and every t0 then the system will be called control-

lable (reachable). The system (2.1) is called observable on a finite

interval Œt0; T � if any initial state x0 at t0 can be determined from

knowledge of the system output y.t/ and input u.t/ over the given

interval.

0

xf

1

A reachable state

The controllability subspace is denoted by C , while the reach-

ability subspace by R, respectively. For linear systems (complete)

controllability and reachability are equivalent, i.e., the system is

completely controllable if and only if C D R D X.

Analogously U (O) denotes the unobservability (observability)

subspace; U is the set of all initial states that cannot be recognized

from the output function. The system is observable if and only if

U D 0, i.e., O D X.

A convenient way to study all solutions of a linear equation on the interval Œ�; ��, for all possible

initial values simultaneously, is to introduce the corresponding transition matrix ˚.�; �/1:

x.�/ D ˚.�; �/x.�/C
Z �

�

˚.�; t/B.t/u.t/dt D ˚.�; �/.x0 C
Z �

�

˚.�; t/B.t/u.t/dt /:

Applying the time varying coordinate change z D ˚.�; t/x in the state space, the dynamic equa-

tion transforms into:

Pz D ˚.�; t/B.t/u.t/:

Thus in this new coordinate system controllability reduces to the solvability study of the equation:

z0 D �
Z �

�

˚.�; t/B.t/u.t/dt

for a suitable finite � . If we denote by C� the set of states controllable at � then C� is a (closed)

subspace, moreover C�1
� C�2

for �1 < �2. Since the image space of the corresponding integral

operator is finite dimensional, if the system is controllable there must be a finite2 N� > 0 such that

CN� D R
n.

Hence, the controllability problem of an LTV system has been reduced to the question wether

the finite rank operator L W L2.Œ�; N��;Rm/ ! R
n defined as Lu D

R N�

�
˚.�; t/B.t/u.t/dt is

onto. These type of linear operators have a nice theory: it is immediate that the adjoint operator

1˚.t; t0/ is nonsingular and ˚.t; t0/ D X.t/X�1.t0/ with PX.t/ D A.t/X.t/; X.t0/ D I; X.t/ 2 R
n�n.

2Although it is essential for the reasoning, this statement is often missing from many of the available control text-

books.
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2 Motivation

L� W R
n ! L

�
2.Œ�; N��;Rm/ can be identified with L�x D B�.t/˚�.�; t/x and that L is onto if

and only if LL� > 0. So, the fundamental result (Kalman; 1960) concerning controllability of the

LTV system (2.1) can be stated as the equivalence of the following statements:

Kalman’s Controllability Theorem: There exist a � > 0 such that

K1. the controllability Grammian W.�; �/ D
R �

�
˚.�; s/B.s/B�.s/˚�.�; s/ds is positive definite;

K2. there is no nonzero vector p 2 R
n such that hp;˚.�; t/bi .t/i D 0; for t 2 Œ�; ��; and i D 1; � � � ; m:

It is a standard result (Silverman and Meadows; 1967) that one can derive a rank condition3 that

guarantees controllability while it does not involve integration and it can be obtained directly from

the initial data matrices .A.t/; B.t//:

Silverman & Meadows Controllability Test: if (2.1) is analytic on an interval J and t is an arbitrary
fixed element of J; then the system is completely controllable on every nontrivial subinterval of J if and only if

rank
�

B0.t/ B1.t/ � � � Bk.t/
�

D n; (2.5)

for some integer k; where

B0.t/ WD B.t/; BiC1.t/ WD A.t/Bi .t/ � d

dt
Bi .t/: (2.6)

If the analyticity condition is dropped, then the rank condition is only sufficient.

The problem is that it is hard to compute the rank of a time varying matrix, and we have no

information about how to compute the controllability decomposition of the system4.

Kalman’s controllability result also reveals a structural property of linear systems: namely, by

applying a suitable – in general time-varying – state transformation these systems decompose into

a controllable an a purely uncontrollable part. To see this, suppose that there are at most r vectors

pi 2 X; hpi ; ˚.�; s/B.s/i D 0; s 2 Œ�; ��. Chose them such that ˘�˘ D Ir ; where

˘ D Œ X�.�/pi �. Consider n � r vectors �i 2 X orthogonal on pi ; such that ��� D In�r ;

where � D Œ X�.�/�i �. Then, the time varying matrix z D T x with T .t/ D
�

˘�

��

�

X�1.t/

transforms system (2.1) into the controllability decomposition form:

Pz1.t/ D0 (2.7)

Pz2.t/ D��X�1.t/B.t/u: (2.8)

with the uncontrollable mode z1.t/ D ˘�X�1.t/x.t/ and with the completely controllable mode

z2.t/ D ��X�1.t/x.t/. In other words, the reachable set is invariant to the action of the con-

trolled dynamics. The notion of invariance met in this context plays a central role in the investi-

gations of geometric systems theory and it has been proven to be very useful in solving a series of

control problems.

3For more details see the comments of Section A.2 of the Appendix.
4However, one can give a condition, when the system is surely uncontrollable: namely when the determinant of the

matrix composed by the vectors Bi .t/ vanishes.
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Linear time invariant (LTI) systems

In the framework of LTI theory the question of controllability can be decided by consulting the

dimension of the reachability subspace, that can be computed easily from the initial data .A; B/ of

the problem, i.e.,

R D
n�1
X

kD0

ImAkB: (2.9)

Practically, the dimension of R is equal to the rank of the matrix whose columns are selected

properly from those of the matricesAkB , where k D 1; � � � ; n�1: This condition is called Kalman

rank condition.

The reachability set is a subspace and knowing this subspace one can decompose the system in a

controllable and an uncontrollable part by using a state transformation that does not depend on t .

Moreover, for LTI systems the different stabilizability properties are strictly related to controllability.

For practical reasons it would be very convenient to give – if it is possible – a characterization

of the controllability property for a larger class of systems by using only matrix manipulations and

to construct the controllability decomposition by using a time independent state transformation

matrix.

2.2 Controllability of linear affine systems

For affine time dependency A.t/ D
PN

iD1 �i.t/Ai the fundamental matrix can be given, at least

locally, in terms of the coordinates of second kind (Wei and Norman; 1964), i.e., the solutions of the

Wei–Norman equation:

Pg.t/ D .

KX

iD1

e�1g1 � � � e�i�1gi�1Ei i /
�1�.t/; g.0/ D 0: (2.10)

Here �.t/ D Œ�1.t/; : : : ; �N .t/�
T and f OA1; : : : ; OAKg is a basis of the Lie-algebra L.A1; : : : ; AN /,

the structure matrices �i D Œ
 l
i;j �l;j D1;��� ;K of the algebra are given by Œ OAi ; OAj � D

PK
lD1 


l
i;j

OAl

and Ei i is the matrix with a single nonzero unitary entry at the i -th diagonal element.

Locally, the fundamental matrix is given by the expression:

˚.t/ D eg1.t/ OA1eg2.t/ OA2 � � � egn.t/ OAn; (2.11)

and generally it is not available in closed form.

Exploiting the affine structure and using the Peano–Baker formula for the transition matrix one

can prove the following result:
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2 Motivation

Lemma 1: For affine linear systems the points attainable from the origin are those from the subspace R.A;B/

given by:

R.A;B/ D span f
J
Y

j D1

A
ij
lj
Bk jJ � 0; lj ; k 2 f0; � � � ; N g; ij 2 f0; � � � ; n � 1gg; (2.12)

i. e., R � R.A;B/.

Moreover, if one consider the finitely generated Lie-algebra L.A0; : : : ; AN / which contains the matrices
A0; : : : ; AN ; and a basis OA1; : : : ; OAK of this algebra, then

R.A;B/ D
N
X

lD0

n�1
X

n1D0

: : :

n�1
X

nKD0

Im . OAn1

1 : : : OAnK

K Bl/:

A direct consequence of this fact is that if the inclusion RA;B � R
n is strict, i.e, if RA;B is a

proper subspace, then the system (2.1) cannot be completely controllable.

The main question is that under which condition is the reachability set equal to the Lie algebra,

i.e., when we have R D RA;B . In what follows, if this property holds, then the system will

be called c-excited. Characterization of this property by using only the initial data seems to be

difficult. However, from conditionK2: of the Kalman’s controllability result, one has the following

statement:

Proposition 1: A system is c-exciting if and only if the following implication holds: there exist a nonzero
� 2 R

n such that

B.t/�˚�.t0; t /� D 0

for all t 2 Œt0; T � implies that
R�

A;B˚
�.t0; t /� D 0

for all t 2 Œt0; T �:
It is clear, that for c-excited systems controllability is guaranteed if the relation RA;B D R

n,

i.e., the multivaraiable Kalman rank condition, holds. Moreover, if the rank condition does not hold,

for this class of sytems one can construct the controllability decomposition by using a time inde-

pendent state transformation matrix that depends only on the matrix Lie algebra.

Therefore it would be useful to give a condition that uses the original data only to decide wether

a system is c-exciting or not. Unfortunately, such a condition has not been available yet.

In Szigeti (1992) a sufficient condition for for a system to be c-excited is given by the following

property:

Szigeti, Controllability Test: The system Px D A.t/x C Bu with affine time dependency is c–persistently
excited on Œt0; T � if from the equalities

B�A�
i1

� � �A�
il
A.t/�˚�.t0; t/p D 0 (2.13)

follows

B�A�
i1

� � �A�
il
A�

j˚
�.t0; t/p D 0; j D 0; � � � ; N; (2.14)

where p is a no nonzero vector in R
n:
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This property was characterized indirectly, in terms of the coordinates of second kind, i.e., the

solutions of the Wei–Norman equation in Szigeti et al. (1995):

Szigeti, c-excitedness Test: Let �i be smooth functions. If the components of the fundamental solutions of the
linear affine differential equation are differential–algebraically independent, i. e., there is no non–trivial polynomial
differential equation

P.g; Pg; � � � ; g.q// D 0;

then the multivariable Kalman rank condition is equivalent to the controllability of system.

c-excited systems versus linear independency

Let us consider systems with constant B and such that A.t/ has an affine structure; then the

fundamental matrixQ.t/ can be written as

Q.t/ D
n�1
X

n1D0

: : :

n�1
X

nKD0

OAn1

1 : : : OAnK

K  n1;��� ;nK
.t/: (2.15)

Introducing the multi-index notation OAi WD OAi1
1 : : :

OAiK
K , with K WD f0; 1; � � �n � 1gK and i WD

.i1; � � � ; iK/, let us choose a linearly independent set of matrices from the set f OAi j i 2 Kg; say

f OAj j j 2 j; j � Kg. For the sake of simplicity, let us assume that I is a member of this basis, i.e.,

one can impose the condition that Œ'j.0/�j2j is the first canonical unit vector. With these notations,

one has

Q.t/ D
X

j2j

OAj'j.t/: (2.16)

The system f'j.�/ j j 2 jg is not necessarily linearly independent and it can be obtained as the first

column of the fundamental matrix associated to the equation

PQQ D � QQ�.t/; QQ.0/ D I; (2.17)

where �.t/ is a structure matrix5depending on the matrix Lie algebra and on the parameter func-

tions �.t/. Note, that from this derivation the system f'j.�/ j j 2 jg is not necessarily unique, but

our choice satisfy (A.6).

Since the subspace RA;B is exactly the image space of the matrix

RA;B WD Œ OAjB �j2j; (2.18)

one can obtain the expression

W.�; �/ D RA;B.

Z �

�

Œ 'j.s/ �j2jŒ 'j.s/ �
�
j2jds/R

�
A;B :

5For details see the Appendix, Subsection A.1.
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It is clear that if the system f'j.�/ j j 2 jg is linearly independent then rankW.�; �/ D rankRA;B ,

i.e., the system is c-exciting.
Suppose now that rankRA;B D m, where m � n, and let us consider the singular value

decomposition RA;B D USV � of this matrix. Then

rankW.�; �/ D rank Œ Im 0 �.

Z �

�

Œ Q'j.s/ �j2jŒ Q'j.s/ �
�
j2jds/Œ Im 0 �

�;

where Œ Q'j.s/ �j2J D V �Œ 'j.s/ �j2j. This set of functions can be chosen as the first column of the

fundamental matrix associated to the equation:

P̆ D � N�.t/˘ ˘.0/ D V �; (2.19)

with N�.t/ D V ��.t/V . It follows that if the functions f Q'0; � � � ; Q'mg are linearly independent,

then rankW.�; �/ D rankRA;B . Putting these facts together, one has the following result:

Proposition 2: The time varying system is c-excited if and only if the functions f Q'0; � � � ; Q'mg are linearly
independent, wherem D rankRA;B .

Remark 1: As an example, for LTI systems one has Q.t/ D
Pn�1

j D0A
j'j .t/. Suppose, that An D

Pn�1
kD0 �˛kA

k. Then, the matrix � is given by

� D

2

6
6
6
6
6
4

0 0 0 � � � 0 �˛0

1 0 0 � � � 0 �˛1

0 1 0 � � � 0 �˛2

:::

0 0 0 � � � 1 �˛n�1

3

7
7
7
7
7
5

;

and the system f'j .t/ j j D 0; � � � ; n � 1g is the first column of the fundamental matrix of the equation
PQQ D � QQ; QQ.0/ D I. By an elementary argument one can show that these function are are always

linearly independent, i. e., the LTI system is always c-excited, regardless to the matrix B .
For an affine LTV system if the functions Œ  j.s/ �j2j are not linearly independent, the c-excitedness property

depends on B.t/, too.

One can derive6an explicit expression, i.e.,

'j.t/ D
X

n2N

˛n
j 
n.t/: (2.20)

between the functions Œ 'j.s/ �j2j and the coordinate functions gi of the Wei–Norman formula.

This expression makes possible, in principle, the verification whether these functions are linear

independent. However, the computational burden and the encountered numerical problems are so

high that a practical application of the method for a real-sized application is out of the question.

To conclude this chapter a (negative) example is presented in order to demonstrate through a

nonlinear dynamics, put into an affine qLPV form of (9.10), the importance of the c-excitedness

property of the scheduling variables for controllability.

6For details see the Appendix, Subsection A.1.
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An illustrative example:

Let us consider the system

Px1 D x1x2 C x2 (2.21)

Px2 D u

that can be rewritten as Px D A0 C �A1 C Bu, where

A0 D
�

0 1

0 0

�

A1 D
�

1 0

0 0

�

; B D
�

0

1

�

;

and with � D x2.

Since A0B D
�

1

0

�

one has dimRA;B D 2, i.e., the Kalman rank condition holds.

Applying the Silverman Meadows approach, one hasB0 D B andB1 D A0B , i.e., rank ŒB0B1� D
2, that shows that the system is controllable for any �.t/:

Using the Wei–Normann theory, one has ŒA0; A1� D �A0, i.e., 
0
01 D �1; 
0

10 D 1 and the

rest of the 
 l
ij D 0: It follows that

�1 D
�

0 �1
0 0

�

; �2 D
�

1 0

0 0

�

; i.e., e�1t D
�

1 �t
0 1

�

; e�2t D
�

et 0

0 1

�

:

From

E11 C e�1g1E22 D
�

1 �g1

0 1

�

;

it follows that the Wei–Normann equations are

Pg1 D �g1 C 1

Pg2 D �:

The fundamental solution is given by ˚.t/ D e�1A0e�2A1 , i.e., ˚.t/ D
�

eg2 g1

0 1

�

.

If the system is uncontrollable, according to the Kalman condition there should be a nonzero

vector � such that B�˚��.t/� D 0 for all t , i.e., a number � must exists such that e�g2g1 C � D
0. But such a number does not exists7, hence the system should be controllable.

However, it is immediate that x1 D �1 is an uncontrollable manifold of system (2.21).

The reason why these tests fail relays in the fact that the uncontrollable manifold, i.e., .�1; x2/

is not a subspace, while in the linear case the set of uncontrollable points is always a subspace.

If one shift the system from the equilibria point .�1; 0/; to .0; 0/, i.e., apply a (time-varying)

change of coordinates z1 D x1 C 1; z2 D x2, then one has the system Pz1 D z1z2; Pz2 D u,

with NA.�/ D
�

� 0

0 0

�

; and � D z2 D x2, that is clearly uncontrollable.

7Otherwise d
dt
.e�g2g1/ D 0, i. e., � Pg2g1 C Pg1 D 0; but the left hand side is 1.
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2.3 Conclusions

One of the main motivation doing this "tour de force" in this introductory chapter along a classical

topic of linear control theory was to illustrate that the controllability problem cannot be tackled in

a mathematical completeness and rigor even for linear systems, if the system is time varying. The

situation is even worse if the dynamics is actually nonlinear, but cast as a qLPV system. This stays

in contrast to the familiar framework of LTI systems where the answer to the fundamental problem

concerning controllability is very accessible and transparent. Filling the gap between these two

extremities was one of the motivation backgrounds of my research.

The short review presented on the previous sections, however, reveals that the simplicity of the

time invariant results might be regained in that of a splitting of the state space in a surely uncon-

trollable mode and a mode, that might be controllable. Controllability of this mode cannot be in-

ferred, in general, only if some additional conditions on the parameters are fulfilled (c-excitedness).

Moreover, the simple example at the end of the chapter warn us on the inherent limitations of the

approach when trying to extend it for nonlinear systems. It turns out, however, that for the class of

linear switched systems (2.4), that despite of the linearity of the individual modes are true nonlinear

systems, there always exists a c-exited switching sequence, which explains the effectiveness of the

geometric (algebraic) treatment presented in the next chapter.

Concerning the (q)LPV systems (2.3) with affine parameter dependence the main issue is the

problem of finding a time independent – and global – state transformation that splits the state space

into modes that has specific properties – in these examples potentially controllable/uncontrollable

modes. Concentrating on a rigorous proof of the controllability of the potentially uncontrollable

mode is futile: not only due to the encountered mathematical difficulty of the computations but also

due to the inherent uncertainty present in every practical model used in a nontrivial engineering

application.

Affine (polytopic) LPV models considered in the thesis reflect the fact that the structure of the

model (the system matrices) is known while the scheduling variables are often given by some ap-

proximations or lookup–tables. Therefore trying to test wether they fulfill some differential poly-

nomial relations, in order to check a c-exitedness property for controllability, is not reasonable. The

most that can be supposed, in general, that they are linearly independent, a condition that will be

exploited in the forthcoming chapters.

This fact motivates our desire in finding certain "robust" invariant subspaces that often pro-

vides acceptable (sufficient) conditions to obtain an engineering solution for a series of basic control

problems. What we apparently miss in these constructions, i.e., the knowledge of controllabil-

ity/observability, might cause problems at a different (higher) level of the design: namely, in ob-

taining stable controllers or filters. Lacking of a stable design might be a clear indication that our

assumptions on the c-exitedness of the scheduling variables might not hold, or, more likely, our

techniques to ensure stability are too conservative. Hence, a different approach should be used.

The proposed geometric framework based on parameter varying invariant subspaces provides

an example for a strategy, in which giving up to get the complete mathematical solution of the

problem but not sacrificing the mathematical correctness in following a more "rough" route to an

acceptable result leads to a useful, engineering design.
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Controllability
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3 Linear switched systems

A switching system is composed of a family of different (smooth) dynamic modes such that the

switching pattern gives continuous, piecewise smooth trajectories. We assume that one and only

one mode is active at each time instant. During the last decade there has been a considerably

interest in the analysis and synthesis of linear switched systems, intended as the simplest class of

hybrid systems.

A lot of work has been done to address the fundamental questions of control theory – controlla-

bility, observability, stabilizability – that were reported in a series of papers, Liberzon and Agrachev

(2001); Ge et al. (2001); Xie et al. (2002a); Cheng and Chen (2003); Lin and Antsaklis (2005b);

Sun et al. (2003) and monographs like Liberzon (2003); Sun and Ge (2005), just to list a few of

them.

Controllability of switched systems has been investigated mostly for the case when arbitrary

switching is possible (open–loop switching) and the objective is to design a proper switching se-

quence to ensure controllability or stability of (usually) piecewise linear systems, see Altafini (2002),

Sun et al. (2003), Xie and Wang (2002), Yang (2002), or Sontag and Qiao (1999) for recurrent neu-

ral networks. Usually the input set U is assumed to be unconstrained, i.e., U D R
m, however for

certain systems, e.g., in process engineering applications where the inputs cannot be negative due

to physical reasons, the sign constrained case U D R
m
C is more relevant.

For LTI systems the controllability question was entirely solved. Moreover there is a controlla-

bility condition that describes both the unconstrained and constrained problems, Korobov (1980);

Frankowska et al. (1986). It turns out that a condition of the same type can be also formulated for

switching systems. The elaboration of the solution to the controllability problem gives an oppor-

tunity to revise the main tools applied to the investigation of linear switched systems and to reveal

facts and relations that remain hidden in previous works. In the elaboration of the topic advanced

techniques like the geometric control theory of Jurdjevic (1997); Grasse and Sussmann (1990);

Agrachev and Sachkov (2004), nonsmooth analysis and differential inclusions of Aubin and Cellina

(1984); Wolenski (1990); Dontchev and Lempio (1992); Smirnov (2002) met the more elementary

techniques of Wonham (1985).
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3 Linear switched systems

3.1 General considerations

Consider the class of (open-loop) linear switched1 systems:

Px.t/ D A.�.t//x.t/C B.�.t//u.t/ (3.1)

where x 2 R
n is the state variable and u 2 U is the input variable. � W R

C ! S is a measurable

switching function mapping the positive real line into S D f1; � � � ; sg, i.e., the matricesA.�/ and

B.�/ are measurable. The input set might be unconstrained U D R
m or constrained U D R

m
C.

A solution (Carathéodory) of (3.1) on an interval I is an almost everywhere differentiable function

'.t/ W I ! R
n that satisfies (3.1) a.e. on I . A state x 2 R

n is controllable at time t0, if there

exist a time instant tf > t0, a (measurable) switching function � W Œt0; tf � ! S, and a bounded

measurable input function u W Œt0; tf � ! U such that x.tf I t0; x; u; �/ D 0. A state x 2 R
n is

reachable at time t0, if there exist a time instant tf > t0, a switching function � W Œt0; tf � ! S,

and a bounded measurable input function u W Œt0; tf � ! U such that x.tf I t0; 0; u; �/ D x. We

will term as reachability set the set (R) of points reachable from the origin, and as controllability

set (C ) the set of points from which the origin is reachable.

Following classical lines, (3.1) is said to be completely controllable2 if every point in the state space

is reachable from any other point in the state space by using bounded measurable controls and a

suitable switching function.

A trajectory of the switching system (3.1) will be defined as follows: let x.t/ be an absolutely

continuous function. We say that x.t/ is a (admissible) trajectory of the system (3.1) on Œ t0; tf �

if there exists a finite subdivision t0 < t1 < � � � < tN �1 < tN D tf of the interval Œ t0; tf �;

such that on each subinterval . tk�1; tk / there exists an admissible function uk such that one has

Px D Akx C Bkuk .

The set of admissible inputs depends on the specific application: usually it is fixed to be the set of

piecewise constant functions, but could be the set of sufficiently smooth functions, too. The notion

of the trajectory excludes problematic situations from open– loop switching, like Zeno behavior,

that might appear, however in closed–loop switching systems. In practical problems besides the

left continuity of the switching signal it is often required that any time interval within which � is

constant is no less than a proper positive scalar Tı > 0, which is called the dwell time. Therefore

it is an important issue how complete controllability by trajectories, i.e., using piecewise constant

switching, is related to complete controllability by measurable switchings.

1The fact that the switching signal can be chosen and in particular, can be set to be a specific one, motivates that the

term switched is preferred against switching.
2In Sun and Ge (2005) complete observability and reconstructibility are defined along classical lines as dual notions

for complete reachability (controllability). Since these notions guarantees the possibility to recover the initial state

only for some switching trajectories they does not cover the situation needed in practice. The requirement to

reconstruct the state regardless the switching signal implies the complete observability of the individual modes.

Therefore in this work we does not investigate problems related to this topic.
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3 Linear switched systems

3.2 Switching systems and vector fields

The concept of control system plays a central role in the geometric theory of nonlinear control. A

control system is a collection F of smooth vector fields depending on independent parameters

w D Œw1; � � � ; wm� 2 W � R
m, called control inputs, such that w.t/ belongs to a suitable class

of real valued functions, called admissible controls, Agrachev and Sachkov (2004). Usually it is

supposed that the state space M is an n-dimensional real analytic manifold.

Associated with the control system F denote by AF.x; t/ the set of all elements attainable

from x at time t: For each x 2 M; AF.x/ D [t�0AF.x; t/. To a controlled nonlinear system

Px D f .x; u/ can be associated in a natural way the collection of vector fields

Vf D ffu ju 2 Ug;
that can be used, e.g., in a Lie algebraic treatment, quite suitable for unconstrained problems and

small time local controllability problems3.

An important object of the controllability study of nonlinear systems is the set of (positive)

orbits4 ˚
q
�;x0
.!/.T / D efuq tqefuq�1

tq�1 � � � efu2
t2efu1

t1x0, where efutx0 is the solution of the

equation P� D fu.�/; �.0/ D x0, and � D .t1; t2; � � � tq/; ti � 0 with T D
Pq

j D1 tj while

! D .u1; u2 � � � uq/ 2 Uq; fui
2 F . Observe that an orbit can be interpreted as a possible

trajectory corresponding to a switched system formed by the modes Px D fui
.x/. Starting from

this idea, a switched system can be considered as a nonlinear polysystem of the form

Px D f .x.t/; w.t//; x.0/ D 0 (3.2)

where in general, it is assumed that x 2 M and f .:; w/; w 2 W is an analytic (smooth) vector

field on M . The benefit of this interpretation is that the controllability study of switched systems

with unconstrained inputs can be placed in the framework of the nonlinear geometric control theory.

The aim of this section is to show that the powerful techniques of the general theory provides an

elegant and transparent tool which can be applied efficiently in the controllability study of switched

systems.

We would like to decide (global) controllability by just examining the vector fields that define

a control system without the necessity of obtaining solutions of any kind of the given system. It

turns out that it is possible possible to "expand" the available vector fields, e.g., by convexification,

without changing the system itself, obtaining equivalent descriptions of the same system.

To introduce more and more redundancy in this description – by enlarging the set of vector fields

that describes the system – is very useful in deciding the controllability question. This goal can be

achieved by using the procedure of Lie extension, sketched in the next section.

Lie saturate

The Lie bracket of two vector fields f and g is denoted by Œf; g�. Under the Lie bracket, and the

pointwise addition, the space of all analytic vector fields on M becomes a Lie algebra; Lie.F/

3A system is small-time locally controllable from the initial state x0 if the reachable set from x0 in time at most

T > 0 contains x0 in its interior for each T > 0, i. e., x0 2 intAF.x0; t/ for all t > 0.
4For the notation and for additional details see, e.g., Jurdjevic (1997) and the Appendix.
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3 Linear switched systems

denotes the subalgebra generated by F. For each q 2 M , Lieq.F/ is a subspace of TqM , the

tangent space of M at q. A set of vector fields F on a connected smooth manifold M is called

bracket-generating (full-rank) if LieqF D TqM for all q 2 M .

Families of vector fields F and G are said to be (strongly) equivalent if Lie.F/ D Lie.G/ and

AF.q; T / D AG.q; T / for all q 2 M and for all T > 0, where the overbar denotes the closure

of the sets. The Lie Saturate LS.F/ of a family of vector fields F is the union of families strongly

equivalent to F.

In general it is difficult to construct the Lie saturate explicitly, however one can construct a

completely ascending family of compatible vector fields – Lie extension – starting from a given set

F of vector fields. A vector field f is called compatible with the system F if AF[f .q/ � AF.q/

for all q 2 M . Since LS.F/ is a closed convex positive cone in Lie.F/, a possibility to obtain

compatible vector fields is extension by convexification, see Jurdjevic (1997): for f1; f2 2 F and

any nonnegative functions ˛1; ˛2 2 C1.M/ the vector fields ˛1f1 C˛2f2 is compatible with F.

If LS.F/ contains a vector space V , then Lie.V/ � LS.F/.

The importance of Lie extension is given by the following result, Agrachev and Sachkov (2004):

Lie Saturates – a Controllability Test: If F is a bracket-generating system such that the positive convex cone
generated by F, i. e.,

cone.F/ D f
k
X

iD1

˛ifi j fi 2 F; ˛i 2 C1.M/; ˛i � 0; k 2 N g

is symmetric, i. e., cone.F/ D cone.�F/, then F is completely controllable.

Let us apply this result to the unconstrained situation: by constructing the Lie extension of the

vector field F D fAix C Biu ju 2 Ug, one can observe that Biu is compatible with F, i.e.,

Biu 2 LS.F/. Indeed, Biu 2 co.F/, since Biu D lim�!1
1
�
.Aix C �Biu/. If there is a

vector v 2 LS.F/ such that �v 2 LS.F/; then ˙Aiv 2 LS.F/, too, see Jurdjevic (1997).

Then for the unconstrained case a necessary and sufficient condition for controllability can be

formulated as:

Proposition 3: The unconstrained switching system is controllable if and only if

rank RA;B D n; (3.3)

i. e., the multivariable Kalman rank condition, holds, where the subspace RA;B is defined as

R.A;B/ D span

8

<

:

J
Y

j D1

A
ij
lj
Bk j k D 1; � � � ; s

9

=

;
(3.4)

where J � 0; lj 2 f0; � � � ; sg; ij 2 f0; � � � ; n � 1g: Moreover, if one considers the finitely generated

Lie-algebra L.A0; : : : ; As/ which contains A0; : : : ; As; and a basis OA1; : : : ; OAK of this algebra, then

RA;B D
s
X

kD0

n�1
X

n1D0

: : :

n�1
X

nKD0

Im . OAn1

1 : : : OAnK

K Bk/: (3.5)
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We obtained here a stronger result than that of Lemma 1. Controllability of unconstrained

switched systems can be determined based on the system matrices only. As an early contribution of

the author to the field this controllability result was derived in Stikkel et al. (2004) by using differ-

ent, matrix Lie algebraic, techniques. In that context it was also stressed that the subspace RA;B

is the minimal subspace invariant for all of the Ai s containing the subspace B D [s
iD1ImBi , see

e.g., Balas et al. (2003). Using this fact one can obtain a controllability decomposition analogous

to the corresponding LTV result.

Further results on how linear switched systems can be related to linear time varying systems

are presented in the next section. It is also stressed that for controllable systems the condition on

the finiteness of the switching numbers can be relaxed by admitting merely measurable switching

rules. One of the main technical benefit of this fact is that it permits the use of nonsmooth analysis

(differential inclusions) without the additional condition of piecewise continuity, required by the

concept of trajectory, of the switching rules. This property will be exploited later, in the study of

controllability with sign constrained control inputs.

3.3 Finite number of switchings, sampling

Let us denote by F t
wx0 the solution of the equation P� D fw.�/; �.0/ D x0 on the interval Œ0; t �.

Then for a given vector field F one can consider the associated trajectories (positive orbits), i.e.,

˚q;T
!;� .x0/ WD F

tq

wq
F

tq�1

wq�1
� � �F t2

w2
F t1

w1
x0

where � D .t1; t2; � � � tq/; ti � 0 with T D
Pq

j D1 tj and fwi
2 F corresponding to the sequence

of piecewise constant controls ! D .w1; w2 � � �wq/ 2 Wq.

For a switched linear system fwi
.x/ D Asi

x C Bsi
ui , with wi D .si ; ui/. We will suppress

the switching sequence � D .s1; s2; � � � ; sq/ from the notation and denote the flow by ˚
q
� x0 for

fixed � D .u1; u2; � � � ; uq/ and by ˚
q
�x0 for fixed � .

A point y 2 M is called normally reachable from an x 2 M if there exist a flow such that

˚
q
N� x D y and the mapping � 2 R

q
C ! ˚

q
� .x/, which is defined in an open neighborhood of N� ,

has rank n D dimM at N� . The system is normally controllable if y is normally reachable from x for

every x; y 2 M .

Proposition 4: If the switching system (3.1) is globally controllable than it is also globally controllable by
using piecewise constant switching functions, i. e., using only a finite number of switchings.

Moreover, there exist a bound for the necessary number of switchings, that depends only on the system matrices
and U. There exist a universal (finite) switching sequence � such that the time varying system

Px D A.�/x C B.�/u

is globally controllable.

Proof: The first part of the assertion follows from a fundamental result on controllability, see

Theorem 4:3 in Sussmann (1976), i.e., for a system of C r vector fields F controllability is equiva-

lent to normal controllability.
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For the second part recall that the reachability set R� associated to a switching sequence � is a

pointed cone. In particular from normal controllability follows that the origin is normally accessible

from itself, hence there is a neighborhood of the origin (a ball) that is also normally accessible by the

same switching sequence – by varying the time sequence � . It follows that the pointed cone R�

contains a ball around the origin, i.e., R� D R
n. Since � contains a finite number of switchings

our assertion is proved.

Remark 2: The content of Proposition 4 is that one can concentrate on the global controllability problem in
general, i. e., admitting measurable controls, which is a common setting for studying controllability and the
existence of nice controls (e.g. piecewise constant, non–Zeno) is automatically guaranteed.

Note that for a fixed r > 0 by taking sufficiently large but fixed inputs it is possible to reach all the points
of the ball having radius r by controlling the system only with the individual time length ti of the switching

sequence. Actually all R
n is reachable by having only a finite set of controls and a periodic application of the

sequence � with suitable time instances �k. (It is a sort of a bang–bang property.)

In the definition of normal reachability the control input sequence � is fixed while the switching

times may vary in a certain neighborhood of � . It turns out that the rank of the analogous map

� 2 UN ! ˚N
� .x/ is also significant and it is closely related to the controllability of the sampled

system, in general, for details see Sontag (1983); Sontag and Sussmann (1982); Sontag (1986). A

point y 2 M will be called called full rank reachable from an x 2 M if there exist a flow such that

˚N
N� x D y and the mapping � 2 UN ! ˚N

� .x/, which is defined in an open neighborhood of N�,

has rank n D dimM at N�.

Proposition 5: For the globally controllable linear switching system (3.1) for arbitrary point pairs .x; y/
one has that y is full rank reachable from x. Moreover, every point pair can be joined in a full rank reachable

way by using the same sequence (� and � fixed).

Proof: For unconstrained linear switching systems the assertion is well known, see e.g. Sun and

Ge (2002) or Sun and Ge (2005). The constrained case can be reduced to the unconstrained result

and Proposition 1: let us consider a point that is full rank reachable from the origin with positive

controls. Since the constrained controllable system is also unconstrained controllable, such a point

clearly exists. However, by controllability, the origin can be reached from the point z by using a

finite switching sequence. By joining these two finite sequences one has that an open neighborhood

of the origin is full rank reachable from the origin. Since the reachability set R� is a pointed cone

that contains a ball it follows that R� D R
n.

The next small example illustrates the difference between the concept of "time topology" related

to ˚
q
� .x/ and the "input topology" related to ˚

q
�.x/ – see Sontag (1984) for the terminology.
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Example: Let us consider the switched system defined by the modes A1 D
�

0 1

0 0

�

; b1 D 0 and

A2 D 0; b2 D
�

0

1

�

, respectively.

x1

x2

0

(I)

(V )

(IV )

(II)

(III)

1

The flow ˚5
� .0/

The corresponding flows are

F t
1.x/ D

�

1 t

0 1

�

x

and

F t
2;u.x/ D x C tu

�

0

1

�

:

It follows that for any u > 0 and t > 0 with the switching sequence � D .2; 1; 2; 1; 2/, input sequence
� D .u; 0;�2u; 0; u/ and time sequence N� D .t; t; t; t; t / the flow

˚5
� .0/ D F

t5

2;u ı F t4

1 ı F t3

2;�2u ı F t2

2 ı F t1

2;u.0/ D

D t1u

�

t2 C t4
1

�

� 2t3u

�

t4
1

�

C t5u

�

0

1

�

has full rank at N� with ˚5
N� .0/ D 0.

For any t > 0 with the switching sequence � D .2; 1; 2/, input sequence � D .u1; 0; u2/ and time
sequence � D .t; t; t / the flow

˚3
�.x/ D F t

2;u2
ı F t

2 ı F t
2;u1

.0/ D
�

1 t

0 1

�

x C
�

t2 0

t t

��

u1

u2

�

has full rank at any N� with ˚3
N�.x/ D y ( N� D .0; 0/ for x=y=0).

Observe that in the input topology, i.e., for the discretized system, the design problem is linear

in the unknown variables. This fact motivates that in the investigations of linear switched systems

the usage of this topology is preponderant.

From Proposition 5 it is immediate that for sufficiently small sampling times the sampled system

is also completely controllable – which is already known from the general theory – which is quite

involved in this respect, see e.g. Sontag (1983); Petreczky (2006).

In what follows a more constructive proof of Proposition 5 will be presented: actually the result

is a consequence of the similar fact that holds for the LTI systems, i.e., for the minimalA invariant

set containing V (< A;V >) for almost all t 2 R one has

< A;V >D< eAt ;V > : (3.6)

The content of the assertion is that there is a switching sequence � and times � such that one has

N
Y

iD1

NAsi
xo C C�

� u D xf (3.7)
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where u D ŒuT
1 ; : : : ; u

T
N �

T , the l th column of C�
� is NAsN

� � � NAslC1
Bsl

with . NAi ; NBi/ correspond-

ing to the ti sampled linear system .Ai ; Bi/ and with NAsN C1
D I such that the matrix C�

� is of

full rank. Let us denote by NA� D
QN

iD1
NAsi

.

To obtain the constrained result let us consider a point that is full rank reachable from the

origin. Such a point clearly exists, e.g., z D C�1
�1
e from (3.7), the vector e having ones for its

components. However, by controllability, the origin can be reached from the point z by using a

finite switching sequence, say .�2; �2; Qu.2//. By joining these two finite sequences one has that an

open neighborhood of the origin is full rank reachable from the origin. Since the reachability set

R� is a pointed cone that contains a ball it follows that R� D R
n.

It is instructive to detail these ideas: in the first step one can build a sequence such that C�1
�1

is

of full rank and NA�2
C�1

�1
e C C�2

�2
Qu.2/ D 0. Moreover, the equation NA�2

NA�1
x0 C NA�2

C�1
�1
u1 D

xf has an unconstrained solution u.1/ for arbitrary .x0; xf /. Then for sufficiently large � the

components of u1
c D u1 C �e are all nonnegative, e.g., for � D maxfju1

i j jui < 0g, hence
NA�2

NA�1
x0 C NA�2

C�1
�1
u1

c C �C�2
�2

Qu.2/ D xf . As a consequence, for both cases there is a switching

sequence � and time sequence � such that one has (3.7) with u 2 UN .

The construction is illustrated through the following small example:

Example: Let us consider the switched systems described by the two modes:

A1 D
�

0 1

�1 0

�

; b1 D 0; and A2 D 0; b2 D
�

1

0

�

:

22

1

1

Time topology

The flow corresponding to the time topology is generated by
the switching sequence � D .2; 1; 2/ and fix input sequence
w D .u1; 0; u2/, respectively:

xf D
�

cos t2 sin t2
� sin t2 cos t2

�

x0C
�

cos t2 sin t2
� sin t2 cos t2

� �

t1
0

�

u1C
�

t2
0

�

u2

22

1

2
1

1

Input topology

The flow corresponding to the input topology is generated by the

switching sequence � D .2; 1; 2; 1; 2/ and fixed switching time
sequence � D .

p
2; �

4
;
p
2; � � arctan .1=3/;

p
10/:

xf D NAx0 C NA
�

1
p
2

�1 0

� �

u1

u2

�

C
�p

10

0

�

u3;

where NA D
�

�0:9487 0:3162

�0:3162 0:9487

�

: Accordingly, the full rank matrix C�
� is given by

C�
� D

�

�1:2649 �0:9487
p
2

p
10

�1:2649 �0:3162
p
2 0

�

:

Thus we obtain a generalization of Theorem 1 from Yoshida et al. (2003) derived for positively

controlled discrete LTI systems:

32



3 Linear switched systems

Corollary 1: The sign constrained linear switching system (3.1) is completely controllable if and only if there

exist � D .�1; �2/ and � D .�1; �2/

� C�1
�1

has full rank (i.e. the unconstrained linear switching system is completely controllable)

� equation NA�2
C�1

�1
u1 C C�2

�2
u.2/ D 0 has a solution such that u1 is positive and u2 is nonnegative.

Corollary 2: For every completely controllable linear switching system (3.1) the sampled discrete–time system

is also completely controllable for suitable sampling rates.

As a consequence one has the following embedding/restriction, see Stikkel et al. (2004) for fur-

ther details:

Corollary 3: For every completely controllable linear switching system (3.1) one can associate – not necessary
a unique – completely controllable periodic linear time varying system Px D A.t/x C B.t/.

One can relate this result with c-exitedness. Linear switched systems are c-excited, i.e., there

is a switching sequence and corresponding switching times such that the resulting time varying

system will be c-excited. This fact explains from another point of view why controllability of linear

switched systems can be decided by a multivariate rank condition.

The switching sequence of Proposition 5 can be determined relative easily. The non uniqueness

comes from the fact that one has more switching sequences � such that R� D R
n. For discrete

time systems – with nonsingularAi matrices – the core of the solution is to determine a sequence

� D .s1; : : : ; sN / such that the matrix C� has rank equal to n where

C� D
�

AsN
� � �As2

Bs1
: : : AsN

BsN �1
BsN

�

: (3.8)

For the continuous time case one can use the matrices of the zero-older hold discretized systems

instead. Actually this step can be skipped because the algorithms instead of doing a blind search

based on (3.8) uses the corresponding invariant subspaces. Different techniques exists to determine

such sequences, for details see e.g. Xie and Wang (2003b); Jia et al. (2007); Ji et al. (2007).

However it is an open question that for a given controllable linear switched system what is the

sequence � containing the minimal number of switches (of minimal length) such that rank C� D
n. It is obvious that performing a search on a finite, but possible very big, set such a sequence can be

obtained. The point is if there exist a characterization of the "optimal" sequence that would facilitate

to find it efficiently. To illustrate the idea: for the multi input LTI system .A; B/ the controllability

indices shows where the switch in the "input" direction (actuator) should be performed; these indices

can be determined by a suitable ranking of the vectors Akbj and a basis selection procedure, see

Wonham (1985). Such a transparent algorithm to determine the extended "controllability indices"

is missing yet. These problems are significant for the control synthesis problems, e.g., stabilizability,

which will be detailed in the next part of the thesis.

Controllability of linear switched systems was an intensively researched area, thus, besides our

approach, the multivariable Kalman rank condition was obtained in a series of other papers using

algebraic techniques, see e.g. Sun and Ge (2002); Sun et al. (2003); Xie et al. (2002b); Xie and
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Wang (2003a). These papers basically uses the identity formulated in (3.6). The equivalence of the

controllability of the continuous time system and the discrete time system obtained by sampling,

however, was not realized in these works.

A contribution of the author of the thesis to this topic was to observe and exploit this equivalence

which, together with the invariance property of RA;B , provides a common framework for the study

of discrete-time and continuous-time switched systems. This property was intensively used in the

stabilizability study of these systems.

Relation (3.5) can be obtained by using the general differential geometric approach, see e.g.

Szigeti (1992); Cheng (2005); Petreczky (2006) or equivalently the geometric control theory of

Jurdjevic (1997). We do not insist further in this direction. The main reason to abandon the

technique based on the vector field description is that it is hard to obtain useful conditions for

complete controllability for switched systems with sign constrained inputs, see e.g. Bokor, Szabó

and Balas (2007) for further details. A result that gives a necessary and sufficient condition for

the small time controllability, i.e., controllability in an arbitrary small time, of the constrained

switching system and uses Lie algebraic ideas is Veliov and Krastanov (1986) and Krastanov and

Veliov (2005). These results are quite restrictive, since small time controllability requires that the

convex cone generated by Bi contain a subspace, i.e., co.[s
iD1Bi / � co.[s

iD1Bi/ ¤ ;:
These observations motivates the necessity to search for other methods in order to obtain a useful

algorithm that might test controllability in the sign constrained case. This will be done in the next

chapter.
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4 Linear switched systems with sign

constrained inputs

In practical applications there are often constrains that are imposed to the control input of the

systems. The most widely studied case is when the inputs are constrained to a ball of given radius

(bounded inputs). The obstruction caused by this type of constraint to (global) controllability

is revealed by the equation (3.7): it is immediate that we always have both (small time) local

reachability and (small time) local controllability in a neighborhood of the origin, however, in

general it is not possible to extend this property to the entire state space, i.e., the system is not

globally controllable, in general.

The case when the inputs are sign constrained is more difficult. It differs from the bounded input

constraint in that even (small time) local controllability does not hold, in general, the system might

be globally controllable. As an example, consider the switched system with two modes Px D u and

Px D �u, with u � 0. It is not hard to figure out that the system is globally controllable, see

Figure 4.1 – for illustration purposes the points x0, xf from the line are slightly misplaced.

6

?

-

6

?

-

x0

xf

xc

u

−u

x x

u

−u

x0

xf

xc,1

xc,2

Figure 4.1: From the given point the shaded area cannot be reached directly

This fact explains why the usual differential-geometric (Lie algebraic) techniques fail in obtaining

useful controllability conditions. As in the previous chapter our goal is to decide controllability by

just examining the vector fields that define a control system without the necessity of obtaining

solutions of any kind of the given system.
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4 Linear switched systems with sign constrained inputs

4.1 Differential inclusions

By the Filippov–Wažewski relaxation theorem the solution set defined by (3.1) is dense in the

set of relaxed solutions, i.e., the solutions of the differential inclusion whose right hand side is

the convex hull of the original set valued map, see e.g., Aubin and Cellina (1984). This im-

plies that the corresponding attainable sets coincides. Hence, instead of (3.1) one can consider

the controllability problem associated to the convexified differential inclusion Px 2 Ac.x/, where

Ac.x/ D
Ps

iD1 ˛i.Aix C Biu/ and ˛i � 0 and
Ps

iD1 ˛i D 1.

Generalization of the LTI systems, which maintains some fundamental properties of the class, is

the concept of convex processes. A closed convex process A is a set-valued map whose graph is a

closed convex cone and that it is strict if its domain is the whole space. With a strict closed convex

process A one can associate the Cauchy problem for the differential inclusion:

Px.t/ 2 A.x.t//; x.0/ D 0;

for details see Aubin and Cellina (1984). In this framework the class of LTI systems with sign

(cone) constrained inputs: Px 2 A.x/ D fAx C Cg , with C D R
m
C can be naturally cast and

a fundamental controllability result was obtained, Frankowska et al. (1986), that contains result

of Kalman, Kalman (1960), for the unconstrained case and also the results reported in Brammer

(1972) and Korobov (1980) for the constrained input case.

Let us consider the differential inclusion Px 2 F.x/, x.0/ D � and the corresponding reachable

set RT .�/ D fx.T / j x.0/ D �; x is a solutiong. If F has nonempty, compact, convex values and

is locally Lipschitz then by using the Euler discretization of the inclusion one has

RT .�/ D lim
N !1

.I C T

N
F /N .�/ WD ŒExp F �.T �/;

where the limit is in the sense of Kuratowski, for definitions and details see Wolenski (1990).

Extending this result, Proposition 2 of Cabot and Seeger (2006) shows that for a positively

homogeneous inclusion, (F.˛/ D ˛F.x/, ˛ > 0), one has

ŒExp F �.t�/ D � C
1
X

kD1

tk

kŠ
F k.�/; (4.1)

where F k D F ı F ı � � � ı F . This exponentiation formula was the main tool in obtaining the

controllability result of sign constrained linear switched systems that will be detailed in the next

section.

4.2 Controllability analysis

Even the differential inclusion related to a linear switched system (3.1) does not define a convex

process, a controllability result of the same type still remains valid:
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4 Linear switched systems with sign constrained inputs

Proposition 6: The following conditions are equivalent:

a) the switching system Px D Aix C Biu; i 2 f1; � � � ; sg; u 2 U is controllable,

b) for the associated differential inclusion Px 2 Ac.x/ one has Ak
c .0/ D .�A/kc .0/ D R

n for some
k � 1.

Proof: The assertion follows by applying (4.1) for the differential inclusion defined by Ac which

is a positively homogeneous inclusion with closed, convex values, hence ˛Ak
c .0/ D Ak

c .0/ for any

˛ > 0. Since Ak
c .x/ D cofAigAk�1

c .x/ C Ac.0/ it follows that Ak�1
c .0/ � Ak

c .x/ and that

Ak
c .x/ is a closed convex cone.

It follows that for the reachability set R one has

R D [T �0RT .0/ D lim
N !1

N
X

kD1

Ak
c .0/ D lim

N !1
AN

c .0/:

Since the series Ak
c .0/ is an increasing sequence of closed convex cones it follows, that if R D R

n,

then there is a finite index M such that R D AM
c .0/. Since controllability of Ac.x/ is equivalent

to reachability of �Ac.x/, it follows the condition b:/ of the proposition.

Introducing the notation cofVj g for the convex hull of the subsets Vj � R
n, then the sets

Ak
p WD Ak

c .0/ and Ak
m WD .�A/kc .0/ can be computed using the following algorithm:

General Controllability Algorithm (GCA):

U D cofBiU j i D 1; � � � ; sg (4.2)

A1
p D U ; A1

m D �U ; (4.3)

AkC1
p D cofAiA

k
p C BiU j i D 1; � � � ; sg; (4.4)

AkC1
m D cof�AiA

k
m � BiU j i D 1; � � � ; sg: (4.5)

Example 1: To illustrate the results let us consider the system

A1 D 0; B1 D

2

4

0

1

1

3

5

A2 D

2

4

0 1 0

�1 0 0

0 0 0

3

5 B2 D 0;

A3 D

2

4

0 1 0

0 0 0

�1 0 0

3

5 B3 D 0:

Applying the algorithm one can find that Ak
p D Ak

m with k D 4, i. e., the system is globally controllable.
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Summary

Concerning controllability properties of switched linear time invariant systems the following results

were established:

Full rank reachability: Chapter 3, Proposition 5

For a completely controllable linear switching system for arbitrary point pairs .x; y/ one has

that y is full rank/normally reachable from x. Moreover, every point pair can be joined in a

full rank/normal reachable way by using a fixed sequence, i.e., .�; �/=.�; �/ fixed.

Finite switching number: Chapter 3, Proposition 4, Corollary 1, 2, 3

A completely controllable linear switching system is also globally controllable by using piece-

wise constant switching functions, i.e., using only a finite number of switchings. Moreover,

there exist a bound for the necessary number of switchings, that depends only on the system

matrices and U. There exist a universal (finite) switching sequence � such that the time

varying system Px D A.�/x C B.�/u is globally controllable.

Sign constrained inputs: Chapter 3 and 4, Proposition 3, 6, Algorithm GCA

A complete–controllability condition has been formulated for linear switching systems con-

trolled by sign constrained inputs. The condition – a generalization of the multivariable

Kalman rank condition – is expressed in algebraic terms and an algorithm to test it is also

provided.

The material covered by these chapters was published in the papers Bokor and Szabó (2003a);

Bokor, Szabó and Szigeti (2007c); Stikkel et al. (2004); Szabó (2009).

The theoretical results concerning controllability were used in engineering applications related to

fault tolerant and reconfigurable control of vehicles, Gáspár, Szabó and Bokor (2008c,a); Gáspár,

Szabó, Szederkényi and Bokor (2008d). In cooperation with the Department of Aerospace and

Mechanics, University of Minnesota the developed algorithms were successfully applied in the con-

trollability problem related to the longitudinal dynamics of a supercavitating torpedo, Bokor, Balas

and Szabó (2006).
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Part II

Stabilizability
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5 Stabilizability of completely

controllable linear switched systems

The concept of stabilizability is related to the property that there exists a state dependent control

law (closed-loop) which, starting from any initial state, asymptotically drives the system into the

equilibrium (the origin). This concept expresses the requirements imposed by practical applications

to an automatic control solution and it is a corner-stone of every control design algorithm.

For controlled LTI and LTV systems controllability is intimately related to stabilizability in that

the former implies the later, moreover stabilizability can be achieved by applying a linear state

feedback. Similar result, with a suitable set of linear state feedbacks, is valid for LTI systems when

the inputs are sign constrained, see Smirnov (1996) and Krastanov and Veliov (2003).

For general nonlinear systems, however, there is no such result. Controllability ensures that

from every initial state the system can be driven to the origin in finite time by using a suitable

control. It is not known, in general, whether among these controls there exists at least one which is

uniformly bounded by the norm of the initial condition. If this property holds, the system is called

asymptotically controllable, and despite its name the concept is related to stabilizability rather than

controllability, see Clarke et al. (1997). Moreover, it turns out that asymptotic controllability is not

only equivalent to stabilizability but also guarantees – under fairly mild conditions – the existence

of a not too pathological feedback and control Lyapunov function, see Ancona and Bressan (1999),

Kellett and Teel (2004), Rifford (2002).

Unfortunately, these results are hard to be applied in practice to construct directly the required

feedback, i.e., to obtain the closed–loop switching strategy and necessary control inputs or even to

infer that the control inputs are given by linear feedbacks. Concerning linear switched systems, they

are essentially nonlinear, even the individual dynamics are linear. This fact makes the stabilizability

problem of linear switched systems nontrivial.

5.1 Asymptotic controllability and weak stabilizability

The zero solution of the differential inclusion Px 2 Ac.x/ is called asymptotically weakly stable if

there exists a solution x.t/ such that for any � > 0 there is a ı > 0 and � > 0 such that if

jjx.0/jj < ı then jjx.t/jj < � holds for all t � 0 and if jjx.0/jj < � then limt!1 x.t/ D 0

holds.

In order to prove stabilizability of completely controllable linear switching systems it is sufficient

to show that they are globally asymptotically controllable.

Lemma 2: A completely controllable linear switching system is globally asymptotically controllable.
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5 Stabilizability of completely controllable linear switched systems

Proof: Let us consider the unit sphere S and a point x 2 B. By complete controllability it

follows that there is a finite switching sequence �x D .�Lx
; : : : ; �2; �1/ and a bounded measurable

control sequence (actually a piecewise constant control) ux D .uLx
; : : : ; u2; u1/ 2 ˝Lx such that

the corresponding trajectory steers the point x to the origin, i.e.,

˚.�x; ux/x D
LxY

j D1

e
.Alj

�CBlj
uj /�j x D 0;

where, for notational convenience e
.Alj

�CBlj
uj /�

� denotes the flow associated to the vector field

Alj � C Bljuj that passes through the initial state � at t D 0.
b

b

x

Φ(τx, ux)x

S

ǫS

1

Asymptotic controllability

By the continuity of the map ˚.�x; ux/ for the fixed

pair .�x; ux/ for every � > 0 there is a neighborhood Vx

of x such that

jj˚.�x ; ux/�jj < �; 8 � 2 Vx;

hence for all � 2 Wx D Vx \ S .

Since the unit sphere is compact, there is a finite cov-

ering S D [j 2J Wxj
. It follows that there is a control

strategy that maps the unit sphere into the sphere with

radius � < 1 defined by this finite partition.

Since the linear maps˚.�xj
; uxj

/ are bounded one has

a uniform bound for the "overshoot",

� D max
j 2J

jj˚.�xj
; uxj

/jj:

Since the vector fields are linear the reachable spaces are cones, therefore the control strategy can

be extended from the unit sphere to the whole state space, i.e., one can construct a trajectory with

the bound jjx.t/jj < �jjx0jj that converges to the origin. It follows that a completely controllable

linear switching system is globally asymptotically controllable.

Proposition 7: The completely controllable linear switching system (3.1) is closed–loop stabilizable.

Remark 3: For discrete–time linear switched systems with unconstrained inputs the assertion of Proposition
7 was proved recently, see Xie and Wang (2005). The switching strategy in the proposed solution is a periodic
one, based on the universal switching sequence. In contrast to the continuous time case the proof is constructive,

moreover the necessary linear feedbacks can be obtained by a linear matrix inequality.
The continuous–time result for the unconstrained input case can be obtained directly from the discrete–time

one by using the fact that generically the discretized linear switched system preserves the complete controllability

property, see Sun and Ge (2005). The resulting control will be a stabilizing control with a periodic (open–loop)
switching strategy and a "feedback–like" control for u – a feedback implemented in a sample and hold way.

The assertion of Proposition 7, however, is also valid for the sign constrained control input case, when the
proof based on the discrete–time result is not applicable.
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5 Stabilizability of completely controllable linear switched systems

5.2 Stabilizability by Generalized Piecewise Linear

Feedback

Given an autonomous linear switching system

Px D Aix; i 2 S

it is a nontrivial task to decide if the system is (weakly) stabilizable or not, in general. There are only

a few sufficient conditions that guarantee stabilizability and provide a relatively simple closed-loop

switching strategy. One such situation is when the convex hull of the system matrices contains a

stable (Hurwitz) matrix, i.e., when there are ˛i > 0;
Ps

iD1 ˛i D 1 such that
Ps

iD1 ˛iAi is stable.

For the non-autonomous case with unconstrained inputs it is known that if the sum of the

individual controllability subspaces gives the whole state space, then there are linear state feedbacks

u D Kix such that the resulting linear switching system

Px D .Ai C BiKi/x; i 2 S

is stable with a suitable closed–loop switching strategy, see Sun and Ge (2005). It is not hard to

figure out that the required condition is sufficient to guarantee that for any convex combination

˛i > 0;
Ps

iD1 ˛i D 1 there exist feedbacks Ki such that
Ps

iD1 ˛i.Ai C BiKi/ is stable.

As it can be concluded through simple examples, see Sun and Ge (2005), there are completely

controllable switching systems that are not stabilizable by merely applying a single linear state

feedback for the individual subsystems. However, as it will be shown in this Section, if the number

of linear feedbacks is increased, one can obtain a set of autonomous linear systems that are (weakly)

stabilizable.

For a given set of non–autonomous (controlled) linear switched systems (3.1) we call General-
ized Piecewise Linear Feedback Stabilizability (GPLFS) the problem of finding a closed-loop switching

strategy with

� suitable linear feedbacks ui D Kli
x; i 2 S

� a switching law �.x/ 2 S; x 2 R
n

that (weakly)stabilizes the system.

The reasoning behind introducing the concept of generalized piecewise linear feedback stabiliz-

ability is to separate the task of finding a suitable switching strategy and that of finding suitable

control inputs with low complexity that stabilizes the system in closed–loop.

The main idea is to substitute the original stabilizable non-autonomous system by a stabiliz-

able autonomous linear switched system that might contain more modes then the original one, by

applying as control inputs a number of suitable static linear control feedbacks.

Proposition 8: The completely controllable linear switching system (3.1) is generalized piecewise linear feed-

back stabilizable.
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5 Stabilizability of completely controllable linear switched systems

Proof: In proving the assertion we will apply ideas of the Nagano–Sussmann–Jurdjevic theory

of attainability.

The first observation is that the vector field

f .x/ D ffu.x/ D Ax C Bug

can be replaced by the vector field

F .x/ D ffK.x/ D Ax C BKxg;

if x ¤ 0. Indeed, for any u 2 ˝ one can chose a nonzero component xi of x and a K D Œkl;j �

such that kl;j D 0 if j ¤ i and kl;i D ul

xi
, then u D Kx. Actually one has

F.x/ D F .x/; if x ¤ 0:

Moreover, for any y; z 2 R
n n 0 there is a trajectory of the original system that does not

pass through the origin. This follows from the fact that the origin is normally reachable from

any point, see Grasse and Sussmann (1990), Sussmann (1987). Then by the surjective mapping

theorem, Bartle (1976), follows that a neighborhood of the origin is reachable by the same switching

sequence. Hence, by the linearity of the vector fields, the whole space is reachable with the given

switching sequence.

Since the trajectory x.t/ does not pass through the origin, the original vector fields (F.x/) can

be replaced by the new one (F .x/). Moreover, since a given component of x.t/ might vanish

only a finite times on a finite interval, it follows that the controls Ki of the vector field FK.x/ are

piecewise continuous. It follows that every point pair of the manifold R
n n 0 can be joined by a

trajectory corresponding to the vector field F by admissible controls.

It follows that the vector field F is completely controllable on the manifold R
n n 0. Since

complete controllability implies controllability by piecewise constant controls, see Grasse (1985),

Grasse and Sussmann (1990), it follows that every point pair of the space R
n n 0 can be joined by

a trajectory corresponding to a suitable autonomous switched systems Al C BlKl .

Remark 4: Complete controllability of the vector field F has a very intuitive geometrical background. Since

the solutions of a linear autonomous differential equations realizes some rotations and dilations/compressions in
R

n, it means that for a given point pair .y; z/ it is possible to select a finite set of feedbacks such that the

resulting set of autonomous systems transform the point y into z for a suitable (finite) switching sequence.

In order to show that it is possible to select a finite set of autonomous systems that has the

(weak) stabilizability property, the compactness argument applied in the proof of Lemma 2 can be

repeated.

Indeed, selecting a point y on the unit sphere S and fixing a point z on the sphere �1, there is a

trajectory formed by suitable autonomous systems Al C BlKl that steers y to z, i.e.,

	.�y ; Ky/y D
LyY

j D1

e
.Alj

CBlj
Kj /�j y D z:
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5 Stabilizability of completely controllable linear switched systems

b

b

y

z

Ψ(τy, Ky)y

S

ǫ2S

ǫ1S

1

Closed–loop stabilizability

By continuity of 	.�y; Ky/ for fixed �y and Ky there

is a neighborhood of y that is mapped in a sufficiently

small neighborhood of z, such that jj	.�y ; Ky/�jj < �2,

with 0 < �1 < �2 < 1.

These neighborhoods form a covering of the unit

sphere, from which it is possible to select a finite one.

It follows that it is possible to select a finite set of lin-

ear static state feedbacks such, that the resulting set of

autonomous system is stabilizable.

Concerning the switching strategy the existence of the

suitable closed–loop switching rule is guaranteed by the

general results for nonlinear globally asymptotically controllable systems, Rifford (2002). However,

for nonautonomous switching systems with unconstrained controls slightly more can be asserted.

In Lin and Antsaklis (2007) it was shown that the existence of an asymptotically stabilizing

switching strategy (without sliding motion) of an autonomous linear switched system implies the

existence of a conic partition based switching law which globally asymptotically stabilizes the

closed–loop switching system. The control is defined by a conic partition R
n D

SL
lD1 Cl of

the state space while on each cone Cl the system defined by Ail C BilKl with il 2 S is active.

Remark 5: Since for linear autonomous switching systems asymptotical stability and exponential stability are
equivalent, see Sun and Ge (2005), Proposition 7 shows that completely controllable linear switching systems

with (unconstrained input) are exponentially stabilizable.
The sign constrained case is more delicate. The resulting autonomous systems correspond to certain regions of

the state space, i. e., the resulting switching system is an autonomous state constrained linear switching system.

Therefore the result from Sun and Ge (2005) is not applicable directly and the case needs further investigation.

Remark 6: Proposition 8 guarantees the generalized piecewise linear feedback stabilizability but does not

give a method to compute such feedbacks. However – for the unconstrained input case – the property of com-
plete controllability is feedback invariant. It is known that any controllable unconstrained multi–input lin-

ear switching system can be changed into a controllable single–input system via suitable non–regular state
feedbacks, see Sun and Ge (2005). Moreover, the controllable single–input system can be put into the form
.A1; b1/; A2; � � � ; As. Proposition 7 guarantees that by these transformations not only controllability but

also stabilizability is preserved. Hence one can obtain a switching system with a reduced complexity for which
one might find suitable stabilizing feedbacks more easily, e.g. the resulting BMI or LMI equations in finding
suitable piecewise quadratic Lyapunov functions will be simpler.

Besides the fact that stabilization schemes with state depending switching rules are hard to construct these
schemes might not be robust against the quantization errors introduced by a sampled implementation.

From a more general perspective the difficulties encountered at the feedback stabilization of

switching systems are not surprising. For continuous–time control systems the existence of smooth

Lyapunov functions implies that the differential inclusion satisfy a certain covering condition – an

extension of Brockett’s "covering condition" from continuous feedback stabilization theory, Clarke
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5 Stabilizability of completely controllable linear switched systems

et al. (1998). However, robustness of the feedback scheme and the existence of a smooth con-

trol Lyapunov function are closely related, see Ledyaev and Sontag (1999). Moreover, in general,

stabilizable switched linear systems does not have a convex Lyapunov function, see Blanchini and

Savorgnan (2006).

In contrast to the pure continuous–time approach, discrete–time asymptotic controllability im-

plies smooth control Lyapunov function. Moreover, robustness can be induced via a sample–and–

hold control. For details see Kellett and Teel (2004).

The results of the previous section gives an opportunity to verify these claims for the class of

unconstrained linear switching systems (3.1).

By choosing a nonsingular Schur-stable matrix Ad ; one can explicitly construct the inputs that

stabilize the time–varying systems obtained by a periodic repetition of the sequence � defined in

Proposition 5 by choosing the sequence of inputs as follows:

ux0 D .C�
� /

�.Ad � NA�/x0; (5.1)

where M � denotes a generalized inverse of M . Considering linear feedbacks, i.e., the closed-loop

matrix Ac D
QN

iD1.
NAsi

C NBsi
Ki /, one has Ad D Ac provided that the system

QKi D Ki

i�1
Y

j D1

. NAsi
C NBsi

Ki/ (5.2)

is solvable for QKi D Pi.C
�
� /

�.Ad � NA�/ with Pi the projection that gives the i th input from (5.1).

This is equivalent with the assertion that the resulting feedback sequence is such that NAsi
C NBsi

Ki

is nonsingular.

It is not true, in general, that for an arbitrary nonsingular Ad (5.2) always has a solution. This

can be seen through the following counterexample :

consider the discrete–time linear switching system

A1 D
�

1 0

0 1

�

; B1 D
�

�1
0

�

; A2 D
�

�1 0

0 1

�

; B2 D
�

0

1

�

(5.3)

which is completely controllable. One has � D .2; 1/ and C� D ŒA2B1B2� D I2.

By choosing the nonsingular Schur matrix Ad D
�

0 1
2

�1
2
1

�

one can obtain the gainsK1 D QK1 D Œ1 1
2
�

and QK2 D Œ�1
2
0�. Since A1 C B1K1 D

�

0 �1
2

0 1

�

there does not exist K2 such that the relation

Ad D .A2 C B2K2/.A1 C B1K1/ holds.

Despite this fact there always exist feedback gains such that Ac is a (nonsingular) Schur matrix.

A sketch of the proof is as follows: fix a nonsingular Schur matrix Ad , i.e., jjAd jj < �
2

with

� < 1, and compute the sequence QKi . For any invertible matrix A and matrices U; V one has that

det.A C UVT/ D det.I C VTA�1U/ det.A/. Moreover, the determinant is a continuous function

of the matrix components, hence if at a given step NAsi
C NBsi

Ki would be nonsingular thenKi can
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5 Stabilizability of completely controllable linear switched systems

be perturbed to OKi D Ki C �Ki;�i
such that NAsi

C NBsi
OKi is nonsingular and �i > 0 is arbitrarily

small. Finally one get the matrix

Ac D
N
Y

iD1

. NAsi
C NBsi

OKi / D Ad C
N
X

iD1

�i
NBsi
Ki;�

QAi (5.4)

with QAi D
Qi�1

j D1.
NAsi

C NBsi
OKi/; QA1 D I.

By choosing �i � �

2N jjBsi
Ki;�

QAi jj
one has jjAc jj � �, i.e., Ac is a nonsingular Schur matrix.

Observe that the number of modes needed for the stabilization is bounded by the length of the

switching sequence � . This fact motivates the interest in finding efficiently the shortest sequence.

Remark 7: For the constrained case the formula (3.7) does not leads directly to a stabilizing feedback solution
of the time–varying system. Moreover, since for any nonzero vector k the term kT x cannot be nonnegative for

all x 2 R
n it is immediate that a suitable partition of the state space is also needed, i. e., the solution will be

an event driven switching strategy.

An LMI condition can be given for the synthesis of the stabilizing feedback gains of unconstrained

controllable discrete–time linear switching systems. Moreover, this result can be directly applied

for the stabilization of sampled unconstrained controllable linear switching systems.

This section will be concluded by a slightly extended version of the result, by setting LMIs that

provide robust stabilization for uncertain systems.

Proposition 9: Suppose that the uncertain discrete–time switching system xkC1 D Ai.�/xk CBi .�/uk ,

uk 2 R
m is controllable and suppose that there exist a switching sequence � D .s1; � � � ; sM / such that

R� D R
n independently of �.

Then there exist a positive definite matrix S , nonsingular matrices Vi and matrices Fi such that the
following LMI is feasible.

2

6
6
6
6
6
4

S AsM
VM C BsM

FM : : : 0 0

.�/T VM C V T
M : : : 0 0

:::
:::

:::
:::

:::

0 0 : : : V2 C V T
2 As1

VM C Bs1
F1

0 0 : : : .�/T V1 C V T
1 � S

3

7
7
7
7
7
5

> 0

The system can be stabilized with the periodic switching signal defined by � and the state feedback gains given by

Ki D FiV
�1

i ; i D 1; � � � ;M .

Proof: The proof of the assertion is based by a recursive application of the elimination lemma, see

Boyd et al. (1994). Denote by �i D .si ; � � � ; sM /, then NA�i
D NAi

NA�i�1
with NAi D Asi

CBsi
Ki .

By assumption there is an S > 0 such that NA�1
S NAT

�1
� S < 0 which can be written as

�

I � NAM .�/
�
�

�S 0

0 NA�M�1
.�/S NAT

�M�1
.�/

� �

I

� NAT
M .�/

�

< 0 (5.5)
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5 Stabilizability of completely controllable linear switched systems

By the elimination lemma this inequality is equivalent with:

�

�S 0

0 NA�M�1
.�/S NAT

�M�1
.�/

�

C Symf
�

� NAM .�/

�I

�

VM

�

0 I
�

g (5.6)

Repeating the procedure one can obtain the assertion of the proposition.

Remark 8: Having a polytopic uncertainty, i. e., A.�/ D A0 C ı1A1 C � � � C ıkAK , the LMIs of

Proposition 9 form a finite set of conditions that can be easily solved.

Proposition 10: Completely controllable linear switched systems can be piecewise linear feedback stabilized

using a periodic switching sequence.

Proof: For the proof recall that the reachable set of the Euler discretized differential inclusion

approaches uniformly well the reachable set of the original inclusion Ac, see Proposition 5.3 in

Wolenski (1990), i.e., for a given � > 0 and for all � in a compact set there is an N0 independent

of � such that for each N > N0; 0 � j � N one has dist.Rjh.�/; .I C T
N

Ac/
j .�// < �, where

dist is the Hausdorff distance. Since for almost all � one has < A;V >D< I C �A;V >, the

Euler discretized system will be also completely controllable, moreover their is a common stabilizing

sequence � for the two systems. For the discretized system one can design feedbacks that ensure

arbitrary high decay rates of the closed–loop system. By choosing sufficiently small � the point QA��

will be in a sufficiently small neighborhood of NA��, where QAi D Ai C BiKi and NAi D I C � QAi

and NA� is a Schur matrix. It follows that the matrix e� QAsN � � � e� QAs1 will be also a Schur matrix.

This proves the assertion.

Example

This chapter will be concluded by an illustrative example, which is based on a problem setting

borrowed from the book of Sun and Ge (2005).

Let us consider the controlled linear switching system Px D Aix C Biu; i 2 f1; 2g defined by

A1 D

2

4

0 0 0

1 1 0

0 0 1

3

5B1 D

2

4

1

0

0

3

5 ; A2 D

2

4

0 0 0

0 1 0

1 0 1

3

5 ;

which was exposed in Sun and Ge (2005) as a system which is globally controllable but that is

not trivial to stabilize since < A1; B1 > C < A2; B2 >¤ R
3 and the individual dynamics have a

common unstable mode. By applying the methods presented in this chapter, however, it is possible

to construct a homogeneous linear switched system by applying suitable linear state feedbacks.

Moreover, this switched system can be stabilized by applying a periodic switching law.
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5 Stabilizability of completely controllable linear switched systems

One can figure out that R� D R
3 for the switching sequence � D .1; 1; 1; 2; 1/.
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GPLF stabilizability

Solving the LMIs the stabilizing feedback gains are:

k1 D 104
�

�0:1086 �8:6083 1:4443
�

k2 D 105
�

�0:0112 �1:2846 0:2099
�

k3 D 104
�

�0:1081 �6:6929 �7:1136
�

k4 D 103
�

�1:0000 0:0000 �0:0000
�

The feedbacks were designed for the Euler discretization

corresponding to the sampled time of � D 0:001 sec,

while the simulation was started from the initial point

x0 D Œ1 1 2�.

The overshoots are due to the unstability present in the individual modes that acts as a perfor-

mance barrier in these type of problems. Even some preliminary results concerning the LQ control

of discrete–time switched systems are reported recently in Zhang, Abate, Vitus and Hu (2009) and

Zhang, Hu and Abate (2009), there are no reliable design algorithms for feedback stabilization, in

general. The stabilizability result presented here makes possible to extend the discrete–time results

to continuous–time design problems.

It is a subject of further research to investigate the optimal performance level achievable by

certain configurations and to determine how it can be imposed additional performance requirements

in the design process.
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5 Stabilizability of completely controllable linear switched systems

Summary

Concerning stabilizability properties of switched linear time invariant systems the following results

were established:

Stabilizability Chapter 5, Proposition 7

A completely controllable linear switching system is globally asymptotically controllable,

hence it is closed–loop stabilizable.

Linear feedback Chapter 5, Proposition 8

The completely controllable linear switching system (3.1) is generalized piecewise linear feed-

back stabilizable.

Time driven stabilization Chapter 5, Proposition 9, 10

Completely controllable linear switched systems can be piecewise linear feedback stabilized

using a periodic switching sequence. The feedback gains can be computed by obtaining a

switching sequence that realizes the complete controllability and by solving an LMI.

The topic of the chapter is covered by the following papers Szabó, Bokor and Balas (2007, 2008);

Szabó (2009); Szabó, Bokor and Balas (2009c).

The motivating engineering problems that provide, among others, the applicational background

of these stabilizability results were related to fault-tolerant reconfigurable control with multiple,

possibly conflicting performance specifications, see, e.g., Bokor, Szabó, Nádai and Rudas (2007b);

Gáspár et al. (2009,a), and the control of the supercavitating torpedo..
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Part III

Geometric theory of LPV systems:

Robust Invariance
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6 Parameter-varying invariant subspaces

As it was shown in the first part of the thesis controllability and stabilizability properties of switched

linear systems can be described entirely in terms of the system matrices by using matrix algebraic

manipulations. While this property does not hold for general LTV systems, there is a notion that

survives the transition from LTI to LTV: the concept of the invariant subspace. The notion has already

occurred in the controllability study, where the reachability set behaves as the minimal set invariant

to the action of the (controlled) dynamics. For unconstrained linear systems the reachability set is a

subspace which induces a controllability decomposition of the system. This geometric view, i.e., the

idea of invariance and invariant subspaces, relates the controllability study of switched systems to

the topics that will be presented in this part of the thesis. The developed techniques and algorithms

that leads to the specific invariant subspaces, hence, to the specific state space decompositions, make

the glue that unifies the different problems like controllability, detection filter design or tracking

control at an applicational level. Thus the geometric approach provides a common framework in

which all these problems can be handled.

For LTI systems the concept of certain invariant subspaces and the corresponding global decom-

positions of the state equations induced by these invariant subspaces was one of the main thrusts for

the development of geometric methods for solutions to problems of disturbance decoupling or non-

interacting control, see Wonham (1985). The mathematically dual concepts of .A; B/–invariance

(controlled–invariance) and of .C; A/–invariance (conditioned–invariance) play an important role

in the geometric theory of LTI systems. These concepts were used to study some fundamental prob-

lems of LTI control theory, e.g., Wonham (1985); Massoumnia (1986); Basile and Marro (2002).

Linear time varying (LTV) case and nonlinear systems can be studied using tools from differen-

tial geometry, when the central role is played by the concept of invariant distributions and much

more complex mathematical objects given by the locally controlled or conditioned invariant dis-

tribution(or codistribution) algorithms. From a geometric viewpoint results of the classical linear

control can be seen as special cases of these more general nonlinear results, for details see, e.g.,

Isidori (1989); Nijmeijer and van der Schaft (1990); De Persis and Isidori (2000). Due to the com-

putational complexity involved, these nonlinear methods have limited applicability in practice. The

main problem that arises in practical situations is that either one cannot perform the computations

or one cannot verify the conditions under the given algorithms provide the desired results.

If certain conditions are fulfilled, e.g., if the parameter functions are differential algebraically

independent, then the parameter invariant subspaces, that will be introduced in this chapter, coin-

cide with the corresponding invariant distribution or codistribution, respectively. However, to give

sufficient conditions for the solution of certain state feedback and observer filter design problems

it is enough that some decompositions of the state equations could be performed. The parameter–

varying versions of these invariant spaces are suitable objects to define the required decomposi-
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6 Parameter-varying invariant subspaces

tions, therefore they can play the same role in the solution of the fundamental problems, such as

disturbance decoupling(DDP), unknown input observer design, fault detection (FPRG), as their

counterparts in the time invariant context.

6.1 Invariant subspaces for time varying systems

Before the introduction of the invariance notion that best suits the parameter varying framework

let us recall some the corresponding term used in the general nonlinear context: a distribution� is

said to be invariant1 under a vector field f if for � 2 � one has Œf; �� 2 �, or shortly, Œf; �� � �.

Dealing with codistributions,˝ is said to be invariant2 under the vector field f if for ! 2 ˝ one

has Lf ! 2 ˝ or shortly Lf˝ � ˝.

By doing a usual augmentation, see e.g., Hermann and Krener (1977), of the original state space

to � WD Œt; x�T , an LPV system can be viewed as an affine nonlinear system:

P� D g0.�/C
m
X

iD1

gi.�/ui

y D h.�/�;

where g0.�/ denotes

�

1

A.�/x

�

, gi.�/ is the vector

�

0

Bi.�/

�

with Bi .�/ the i th column of B.�/

and h.�/ D Œ0 C.�/�.

Restricting the investigations to linear subspaces, as special instances of distributions, i.e., with

some subspace V of R
n �.�/ D

�

0

V

�

, then � will be invariant under the vector fields gi if and

only if @�gi�.�/ � �.�/, for all i and �. Performing the computations one has that � is an

invariant distribution for the action of the vector fields gi if and only if A.�/V � V for all � 2 P .

Using a similar argument, one can get the analogous relations for the corresponding codistributions.

These facts motivate the introduction of the following notion:

Definition 1: A subspace V is called parameter-varying invariant subspace (or shortly A–invariant sub-
space) for the family of the linear maps A.�/ if

A.�/V � V for all � 2 P : (6.1)

As for the LTI case an A-invariant subspace V induces a splitting x D Nx C Qx of the state space

1Let �V .x/ D V be a constant distribution, where V is a subspace of R
n and fA.x/ D Ax be a linear vector field.

Since ŒfA; v�.x/ D �Av for all v 2 V and x 2 R
n, we get back the usual invariance notion for subspaces, i. e.,

AV � V .
2Now let˝W .x/ D Wc be a constant codistribution, where Wc is a subspace of .Rn/� and the vector field fA.x/ D
Ax is linear then we get back the invariance notion of subspaces in .Rn/�, i. e., AT W � W . Recall that WcA �
Wc and we identify Wc � .Rn/� with W � R

n in a usual way, i. e., if W D ImW than Wc D ImW T .

52



6 Parameter-varying invariant subspaces

with Nx D PV and Qx D PV? such that the system Px D A.�/x will have the form

PNx D NA.�/ Nx C QA1.�/ Qx (6.2)

PQx D QA2.�/ Qx: (6.3)

where

NA.�/ D A.�/jV ; (6.4)

is the restriction of A.�/ to the subspace V .

The main point here is the fact that the state transform x D T

�

Nx
Qx

�

defined by T D
�

V V?
�

leads to the splitting

A
TAT �1

����!
� NA QA1

�

gV
0 QA2 gV?

„ƒ‚…

V

„ƒ‚…

V?

and this splitting is independent of the actual values of the parameters �, i.e., it can be performed

offline. This fact has a great impact on the applicability of the newly introduced concept for design

problems.

6.2 Controlled invariance

Let us observe, that if V is an A-invariant subspace and ImB.�/ � V for all � 2 P then the

system Px D A.�/x C B.�/u can be decomposed as

PNx D NA.�/ Nx C QA1.�/ Qx C B.�/u (6.5)

PQx D QA2.�/ Qx; (6.6)

An involutive distribution� is said to be controlled invariant on an open set U if

Œgi ; ��.x/ � �.x/CG.x/; i D 0; 1; : : : ; m; x 2 U:

or shortly Œgi ; �� � �C G, assuming that �, G and �C G are nonsingular, where G denotes

the distribution span fg1; : : : ; gmg. For the covectorial version: a codistribution ˝ is said to be

controlled invariant if

Lgi
.˝ \G?/ � ˝; i D 0; 1; : : : ; m:

If the intersection may fail to be smooth, then Lgi
is only defined on the smooth codistributions of

the intersection.

Using again the augmented state space and the distribution

�

0

V

�

one can show that when

B.�/ D B then V � R
n is controlled invariant subspace (distribution) if and only if A.�/V �

V C B for all � 2 P .

These facts motivate the introduction of the following notion:
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6 Parameter-varying invariant subspaces

Definition 2: The subspace V is called a parameter-varying .A; B/–invariant subspace (or shortly (A;B)–

invariant subspace) if for all � 2 P any of the following equivalent conditions holds :

A.�/V � V C B.�/; (6.7)

and there exists a mapping (a state feedback) F ı � W Œ0; T � ! R
m�n such that:

.A.�/C B.�/F.�//V � V ; (6.8)

where B.�/ denotes ImB.�/.

Dealing with parametric uncertainties a similar concept was introduced in Basile and Marro

(1987), called robust controlled invariant subspace. If one sets the gain matrix to be constant then

the resulting subspace will be more restrictive, this approach was used in Bhattacharyya (1983) and

Otsuka (2000), and was termed as generalized controllability .A; B/–invariant subspace.
It is obvious that the subspace R.A;B/ in (3.4) is A.�/ invariant, i.e.,

A.�/R.A;B/ � R.A;B/; for all � 2 P ; (6.9)

moreover, one has that for the induced decomposition R.A;B/ D R. NA; NB/. Actually R.A;B/ is the

minimal A.�/ invariant subspace containing B.

The set of all A–invariants containing B is a nondistributive lattice with respect to the set

operations �; [; \. The supremum of the lattice is the entire state space X, while the infimum

is the intersection of all the A–invariants containing B. It will be called, the minimal A–invariant

subspace containing B, which is also an .A;B/–invariant subspace, and it will be denoted by hAjBi.

As for the LTI systems (6.8) guarantees that with a suitable state feedback u D F.�/x C v

equation (6.5) can be rendered diagonal, i.e.,

Px D A.�/x C B.�/u
TAT �1; TB��������!
uDF .�/xCv

PNx D NA.�/ NxC CB.�/v
PQx D QA2.�/ Qx; (6.10)

Qx being an uncontrollable mode. However, as it was shown in Section 2.1 in general controllability

of Nx can be asserted only if V D hAjBi and the c-persistency property holds.

The set of all .A;B/–invariant subspaces contained in a given subspace K , is an upper semilat-

tice with respect to subspace addition. This semilattice admits a maximum which will be denoted

by V�.

As far as the LPV case is concerned it was found that the following definition would be usable

for the generalization of the concept of the controllability subspace:

Definition 3: A subspace R is called parameter-varying controllability subspace if there exists a constant
matrix K and a parameter varying matrix F W Œ0; T � ! R

m�n such that

R D hA C BF jImBKi; (6.11)

where the notation A C BF stems for the system A.�/C BF.�/ with ImB.�/ D ImB .
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6 Parameter-varying invariant subspaces

Analogously with the corresponding LTI results the following properties hold:

Proposition 11: If OB � B and R D hAjBi then R D hAjB \ Ri. Conversely, if one has
R D hAjB \ Ri then there exists an input mixing map K W U ! U for which R D hAjImBKi.

Proposition 12: A subspace R is parameter-varying controllability subspace if and only if there exists
F W Œ0; T � ! R

m�n such that
R D hA C BF jB \ Ri:

If the parameter dependence is affine, then considering a fixed subspace R � X and defining

the class

� D fZ W Z D R \ .
N
X

iD0

AiZ C B/g:

one has that:

Lemma 3: There exists a unique minimal element Z� of � .

Moreover it can be shown that:

Proposition 13: A subspace R � X is a parameter-varying controllability subspace if and only if it is

.A;B/-invariant and R D Z�.

6.3 Conditioned invariance

The dual notion of controlled invariance is conditioned invariance which can be defined as follows: a

distribution� is said to be conditioned invariant on an open setU if it satisfies Œgi ; �\Ker dh�.x/ �
�.x/, or shortly Œgi ; �\Ker dh� � � for i D 0; 1; : : : ; m, x 2 U . For the covectorial version: a

codistribution˝ is said to be conditioned invariant ifLgi
˝ � ˝Cspan dhg for i D 0; 1; : : : ; m.

Considering a subspace W for affine parameter dependence one hast that for any w 2 W \
KerC

@.A.�/x/v

@x
D A.�/v C

N
X

iD1

Aix
@�i

@y
Cv D A.�/v;

and

@Bi.�/v

@x
D

N
X

iD1

Bi

@�i

@y
Cv D 0:

Using the augmented state space, the distribution

�

0

W

�

and considering the case C.�/ D C it

follows that for LPV systems with affine parameter dependence W � R
n is a conditioned invariant

subspace if and only if A.�/.W \ KerC/ � W for all � 2 P .

This fact leads us to the introduction of the following notion:
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6 Parameter-varying invariant subspaces

Definition 4: The subspace W is called a parameter-varying .C; A/–invariant subspace (or shortly (C ;A)–

invariant subspace) if for all � 2 P any of the following equivalent conditions holds:

A.�/.W \ C.�// � W (6.12)

and there exists a mapping G ı � W Œ0; T � ! R
n�p such that:

.A.�/CG.�/C.�//W � W : (6.13)

where C.�/ denotes KerC.�/.

The set of all A–invariants contained in C is a nondistributive lattice with respect to to the set

operations �; [; \. The infimum of the lattice is clearly f0g, while the supremum is the sum of all

the A–invariants contained in C . It will be called the maximal A–invariant contained in C , which is

also a .C ;A/–invariant subspace, and it will be denoted by hC jAi.

As for the LTI systems (6.12) guarantees that the following splitting holds:

Px D A.�/x

y D Cx

TAT �1; C T �1

���������!
PNx D NA.�/ Nx
PQx D QA21.�/ NxC QA22.�/ Qx
y D NC Nx

(6.14)

Qx being an unobservable mode. In general, however, observability of Nx can be asserted only if

W D hC jAi and the c-persistency property holds.

Moreover, with a suitable output injectionG.�/y one has QA21.�/ Nx D G.�/y D G.�/C Nx, i.e.,

PQx D QA22.�/ Qx CG.�/y: (6.15)

The dual notion of parameter-varying controllability subspace is the following:

Definition 5: A subspace S is called parameter-varying unobservability subspace if there exists a constant
output mixing matrix H and a parameter varying output injection gain G W Œ0; T � ! R

n�p such that

S D hKerHC jA C GC i; (6.16)

where A C GC denotes the system A.�/CG.�/C:

The family of parameter-varying unobservability subspaces containing a given subspace L is

closed under subspace intersection. The minimal element of this family will be denoted by S�.
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7 Parameter-varying invariant subspace

algorithms

In Basile and Marro (1987) an algorithm was given to determine the robust controlled invariant

subspace for arbitrary parameter dependence, however, since the number of conditions is not finite,

the algorithm, in general is not applicable in practice. Therefore, from a practical point of view it

is an important question to characterize these parameter-varying subspaces by a finite number of

conditions.

It turns out that this is possible for the class of LPV systems, where the parameter dependency

is affine. To impose this requirement is not too restrictive: even the true parameter dependency is

more general, e.g., is given by a linear fractional transform, commonly used relaxation techniques

that are used to obtain stability will embed it in a finitely generated (polytopic) convex set. But

this convexified set can be always associated with an affine parameter dependence.

7.1 Affine parameter dependency

Assuming an affine parameter dependency of the state matrix, i.e., A.�/ D
PN

iD1 �iAi , it is

immediate that if the inclusions hold for all Ai ; then they hold also for all � 2 P : It is not so

straightforward under which conditions the reverse implication is true, too.

A sufficient condition that characterizes property can be given as:

Lemma 4: If the functions �1; : : : ; �N are linearly independent over R then A.�/V � W 8� 2 P if

and only if

AiV � W ; i D 0; : : : ; N: (7.1)

In what follows, as otherwise is not stated, an affine parameter dependence is assumed. We are

interested in finding supremal A-invariant subspaces in a given subspace K or containing a given

subspace L. As far as the first purpose is concerned, by applying Lemma 4, one can formulate the

A-Invariant Subspace Algorithm over L as:

AISAL W V0 D L; VkC1 D L C
N
X

iD0

AiVk; k � 0; (7.2)

V� D lim
k!1

Vk: (7.3)

Obviously the algorithm will stop after a finite number of steps, i.e., V� D Vn�1.
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7 Parameter-varying invariant subspace algorithms

Proposition 14: The subspace V� given by (7.2) is such that

L � V�; V� is A-invariant

and assuming that the parameters are c-excited, it is minimal with these properties.

Proof The invariance property is satisfied by construction. For minimality let us consider a

subspace S for which the properties claimed by the Proposition holds. From Lemma 4 it follows

that AiS � S is true for all i . It follows by induction that Vk � S for all k: the k D 0 case is

obvious and suppose that Vk � S holds for an arbitrarily fixed k, then:

VkC1 D L C
N
X

iD0

AiVk � L C
N
X

iD0

AiS � L C
N
X

iD0

S � S :

It follows that V� � S , hence V� D S .

Similar to the linear case the subspace V� is denoted by hAjLi.

By duality, one has the A-Invariant Subspace Algorithm in K , i.e.,

AISAK W W0 D K; WkC1 D K \
N
\

iD0

A�1
i Wk; k � 0; (7.4)

W� D lim
k!1

Wk: (7.5)

The subspace W� will be denoted by hKjAi:
The corresponding version of Proposition 1. follows by duality, and can be stated as:

Proposition 15: The subspace W� given by (7.4) is such that

W� � K W� is A-invariant

and assuming that the parameters are c-excited, it is maximal with these properties.

The set of all (A;B)-invariant subspaces contained in a given subspace K , is an upper semilattice

with respect to subspace addition. This semilattice admits a maximum which can be computed from

the (A;B)-Invariant Subspace Algorithm (ABISA):

ABISA V0 D K (7.6)

VkC1 D K \
N
\

iD0

A�1
i .Vk C B/: (7.7)

The limit of this algorithm will be denoted by V� and its calculation needs at most n steps.

58



7 Parameter-varying invariant subspace algorithms

The set of all (C ;A)-invariant subspaces containing a given subspace L, is a lower semilattice

with respect to subspace intersection. This semilattice admits a minimum which can be computed

using the (C ;A)-Invariant Subspace Algorithm (CAISA) (note that C D KerC ):

CAISA W0 D L; WkC1 D L C
N
X

iD0

Ai.Wk \ C/: (7.8)

The limit of this algorithm will be denoted by W�. It takes at most n steps to compute.

As in the classical case, it can be seen that the family of controllability subspaces contained in

a given subspace K is closed under subspace addition. Hence this family has a maximal element

which can be computed from the parameter-varying Controllability Subspace Algorithm:

CSA W R0 D 0; RkC1 D V� \
 

N
X

iD0

AiRk C B

!

(7.9)

R� D lim
k!1

Rk (7.10)

where V� is computed by ABISA.

Proposition 16: The subspace R� is the largest parameter–varying controllability subspace in C .

Proposition 13 reveals that for a fixed .A;B/-invariant R � X the minimum Z� of the set

� D fZ W Z D R \ .

N
X

iD0

AiZ C B/g

is a parameter-varying controllability subspace. The minimal element Z� can be computed from

the following algorithm:

Z0 D 0; ZkC1 D R \ .

N
X

iD0

AiSk C B/: (7.11)

The family of unobservability subspaces associated to an LPV system containing a given subspace

L is closed under subspace intersection. The minimal element S� of this family is the result of the

Unobservability Subspace Algorithm (USA) :

USA W S0 D X; SkC1 D W� C
 

N
\

iD0

A�1
i Sk \ C

!

(7.12)

S� D lim
k!1

Sk (7.13)

where W� is computed by CAISA.

Remark 9: Under the conditions of the Lemma 4 the subspaces W� and S� are exactly the distributions that
can be obtained by the maximal conditioned invariant distribution algorithm and minimal unobservability

distribution algorithm, see Isidori (1989); De Persis and Isidori (2000).
The benefit of this approach is that these algorithms use only linear algebraic tools avoiding the complexity of

dealing with vector space distributions and associated Lie - product calculations.
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Summary

Concerning parameter invariant invariant subspaces the following results were established:

Invariant subspaces Chapter 6, Lemma 4, Proposition 11, 12, 13

An extension was given of the classical invariant subspaces – such as controlled invariant,

conditioned invariant, controllability and unobservability subspaces – defined for LTI systems

to a parameter-varying context, i.e., for LPV systems.

Invariance Algorithms Chapter 7, Proposition 14, 15, 16, Algorithm AISAL, AISAK, ABISA,

CAISA, CSA, USA

If the parameter dependence is affine, a series of algorithms is provided for the effective

computation of the parameter-varying invariant subspaces. These algorithms are formulated

in terms of the original data, i.e., the state space matrices, uses only matrix manipulations

and terminates in a number of finite steps.

The material covered by these chapters was published in the papers Balas et al. (2002, 2003);

Bokor, Szabó and Stikkel (2002a); Szabó et al. (2002).

Results of the research and the developed LPV algorithms were directly applied in solving vehicle

control problems, such as the FDI filter design for a Boeing 747 aircraft, see Bokor, Szabó and Balas

(2002c); Bokor, Szabó and Stikkel (2002a); Stikkel et al. (2003).
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Part IV

Application of geometric analysis and

design for hybrid and LPV systems
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8 Bimodal systems

Bimodal systems are special classes of switched systems governed by event-driven switchings, where

the switch from one mode to the other is performed in closed-loop, i.e., in the simplest case the

switching condition is described by a hypersurface in the state space. The controllability study of

event-driven switched systems is very involved, since, in general, not even the well-posedness of

the system, i.e., the existence and uniqueness of the solutions starting from any initial condition, is

guaranteed.

The study of bimodal systems was motivated by an application representing a true emerging

technology, related to the linearized longitudinal motion of a high speed supercavitating vehicle.

There are more common examples, however, for a bimodal behavior, e.g., the dynamics of a hy-

draulic actuator in an active suspension system. The research revealed that for a wide class of

bimodal systems the controllability can be cast in terms of the behavior of an associated open-loop

switch system that has sign constrained control inputs, i.e., the controllability conditions can be

tested in practice by using matrix algebraic tools. In this study the geometric view and the tools

concerning robust invariant subspaces have been proven to be very useful. In what follows a detailed

presentation of the results is provided.

8.1 Problem formulation

Consider a bimodal piecewise linear system, i.e., a division of the state space by a hyperplane C . The

dynamics valid within each region is

Px.t/ D
(

A1x.t/C B1u.t/ if x 2 C�;

A2x.t/C B2u.t/ if x 2 CC;
(8.1)

where x.t/ 2 R
n is the state vector and u.t/ 2 U � R

m is the input vector1.

C D fys D 0g

CC

C 

xf

x0

Bimodal system

The initial state of the system at time t0 is determined by

the initial state x0 D x.t0/ and the initial mode s0 2 f1; 2g
in which the system is found at t0. C denotes the hyperplane

KerC D fx jCx D 0g and let C˙ denote the half spaces

CC D f x jCx � 0 g and C� D f x jCx � 0 g. The state ma-

trices are constant and of compatible dimensions,B1; B2 having

full column rank. ys D Cx defines the decision vector.

1One can consider a number of different inputs for each mode. For sake of simplicity we chose m1 D m2 D m but

this does not affect the generality of the results.

62



8 Bimodal systems

Let us suppose that the relative degree corresponding to the output ys and the i th mode is ri , i.e.,

y
.k/
s D CAk

i x; k < ri and y
.ri /
s D CA

ri

i xCCAri �1
i Biu withCA

ri �1
i Bi ¤ 0, see Isidori (1989).

It is reasonable to assume that ri < n, otherwise it would follows that ys fulfills a homogeneous

differential equation, defined by the characteristic polynomial of Ai . In this case the i th mode

would not be able to leave the points of the hypersurface C , characterized by ys D 0, i.e., such a

system would not be well–posed nor completely controllable.

If ri < n then the system is right invertible. Right invertibility denotes the possibility of im-

posing any sufficiently smooth output function by a suitable input function, starting at the zero

state. It turns out that this property is related to Si;�, i.e., the minimal .Ci ; Ai/�invariant sub-

space containing ImBi . On the other hand left invertibility, i.e., the property that for every ad-

missible ys corresponds uniquely an input u, is closely related to the subspace V�
i , the maximal

.Ai ; Bi/�invariant subspace contained in C .

For linear systems the points of V�
i are not visible by the output. Only the orthogonal projection

of the state on the subspace V
�;?
i can be deduced from the output and its derivatives, moreover

this is the largest subspace where the orthogonal projection of the state can be recognized solely

from the output. If the state is known, the orthogonal projection of the input can be determined

modulo B
�1;T
i V�

i , see Basile and Marro (1973).

Having a single output, in order to remove the ambiguity in the right inverse, one can always

redefine the inputs of the system. Indeed, define an input transformationMiu D
�

Qui

wi

�

such that

BiM
�1
i D

� QBi bi

�

with CA
ri �1
i

QBi D 0 and CA
ri �1
i bi D 1, e.g., by considering the basis

fbi ; Qbi;j D bi;j � CA
ri �1
i bi;j bi ; j D 2; � � � ; mg in ImBi . Then the single input single output

(SISO) subsystem .Ai ; bi ; C / is left and right invertible, i.e., QV�
i \ QSi;� D 0 and QV�

i C QSi;� D
R

n, where the invariant subspaces correspond to the SISO system, while the remaining subsystem

.Ai ; QBi ; C / is not invertible.

The invariant subspace V�
i produces a decomposition of the state corresponding to the i th, i.e.,

the system can be transformed2into :

� P�i

P�i

�

D
�

Pi�i CRiys CQi Qui

Ari
�i C Bri

vi

�

(8.2)

ys D Cri
�i ; (8.3)

where �i 2 V�
i and the subsystem for �i is a chain of integrators with Bri

D Œ1 0 � � � 0�T and

Ci D Œ0 � � � 0 1�. The inputs vi and wi are related as vi D CAr
i x Cwi .

Since ys is common for both systems, if r1 D r2 D r then �1 D �2 D �. Recall that

the components of � are formed by ys and its derivatives up to order r � 1. It follows that

the complementer subspaces (zero dynamics) have the same dimension, i.e., there exist a basis

2The transformation is a special case of the one used for the dynamical inversion of the systems, which is presented in

details in the next chapter, Section 9.2, applied for a SISO setting.
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8 Bimodal systems

transformation T such that �2 D T �1 D T �. In this case the bimodal system can be written as

P� D
(

P1�CR1ys CQ1 Qu1 if ys � 0

P2�CR2ys CQ2 Qu2 if ys � 0
(8.4)

P� D
(

Ar� C Brv1 if ys � 0

Ar� C Brv2 if ys � 0
(8.5)

Remark 10: Observe that the required transformation can be performed by the same change of base in the

state space. e.g.,

�

�

�

�

D T x, where for the last rows of T are chosen the vectors CA
j
2 ; j D 0; � � � ; r � 1.

However the feedback to obtain the desired structure might differ. The input transformations are also different,
in general; this difference is reflected in the notation u1; u2 and v1; v2, respectively.

Since the decomposition – i.e., the transformation T – depends only on C;A and r , the choice of the input

transformation does not play any role in the validity of the controllability results.

In the case when r1 ¤ r2 such a splitting is not possible but the system can be transformed into

(suppose that r1 < r2):

P� D
(

P1�C R1ys CQ1 Qu1 if ys � 0

P2�C R2ys CQ2 Qu2 CQ3v2 if ys � 0
(8.6)

P� D
(

Ar� C Brv1 if ys � 0

Ar� C Br N� if ys � 0;
: (8.7)

where N� denotes the last component of �.

In contrast to the previous situation, in this case the subsystem �, hence the decision variable ys ,

cannot be controlled independently from the subsystem � in both modes. Moreover, in the first

mode the only way to control the higher order derivatives of ys is through the inputs Qu1. This fact

makes the study of the controllability problem for these systems, in general, more difficult.

Here it is addressed the case when ri D r , for which the system is always well posed, see Imura

(2003). For sake of simplicity the results will be presented for the case when r D 1, i.e.,

P� D
(

P1�C R1ys CQ1u if ys � 0

P2�C R2ys CQ2u if ys � 0
: (8.8)

Pys D v; (8.9)

but the assertions remain valid for the general case.

8.2 The controllability result

The controllability question of the bimodal system can be reduced to the question of controllabil-

ity/reachability of the origin through the closed-loop switchings allowed by the switching surface
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8 Bimodal systems

C . Due to the fact that the bimodal system is not a linear system, the affirmative answer given on

this question is not completely trivial.

The reference Veliov and Krastanov (1986) deals directly with problems described by (8.8) and

(8.9), while Çamlibel et al. (2004) assumes only single input left and right–invertible systems whose

dynamics are smooth, i.e., continuous along the trajectories. In this case one has A1x C B1u D
A2x C B2u, for all x 2 C ; u 2 U. It follows that A2 D A1 � KC and B1 D B2 D B for a

suitable matrix K, i.e., one has P1 D P2 D P and Q1 D Q2 D 0 in (8.8).

Note, that in Proposition 3 the subspace RA;B is the minimal subspace invariant for all of the

Ai s containing B D
Ps

iD0 ImBi . Thus the bimodal system can be transformed, via a state

transform and suitable feedbacks, to

P�1 D
(

P1;1�1 C QR1ys C QQ1u1 if ys � 0

P2;1�1 C QR2ys C QQ2u2 if ys � 0
; (8.10)

P�2 D
(

P1;2�2 C R1ys if ys � 0

P2;2�2 C R2ys if ys � 0
; (8.11)

Pys D v; (8.12)

where, by Proposition 3, subsystem (8.10) is controllable on C using open–loop switchings. It fol-

lows that this decomposition can be viewed as a controllability decomposition of the bimodal LTI

system where the study of the controllability of the original bimodal system reduces to controlla-

bility of the bimodal system formed by (8.11) and (8.12).

Remark 11: When ys D 0; i. e., on C , subsystems (8.10) does not contain ys and the switching law

must be defined externally. However for linear switching systems there exist a universal switching sequence that
provides complete controllability, hence the switching sequence is fixed and a fundamental solution of (8.10) (
as a linear time varying system) is well defined. Therefore, by linearity, the controllability of (8.10) is not

affected by the values of ys .

Lemma 5: The bimodal system (8.8), (8.9) is completely controllable if and only if the subsystem defined by
(8.11), (8.12) is completely controllable.

Proof The necessity is obvious. For the sufficiency it is enough to consider the reachability case,

i.e., the situation when x0 D 0 and a given xf is to be reached. Decompose xf into �1;f and

.�2;f ; ys;f / according to (8.10) and (8.11),(8.12). Since the open–loop linear switched system

(8.10) is completely controllable, there is a finite switching sequence, see Sun and Ge (2005), and

suitable inputs u1,u2 that steers the origin according to (8.10) to �1;f . Let us denote these inputs

by u� . The switching sequence can be realized by a suitable y
�
s that has sign changes at the

required time instances, e.g., a modulated sine signal. Let us denote by v� one of the controls that

realizes y
�
s . By linearity and complete controllability of (8.11), (8.12) there are points .�2;o; ys;o/

from which the system (8.11), (8.12) is steered into .�2;f ; ys;f / applying v�. Let us denote by

vo the input that steers (8.11),(8.12) from the origin to .�2;o; ys;o/. During this the inputs ui are

maintained at zero, i.e., �1 D 0. It follows that applying the inputs .0; u�/; .vo; v�/ one can steer

the origin into �1;f and .�2;f ; ys;f /, i.e., into xf .
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8 Bimodal systems

Having the decomposition (8.11),(8.12) for a bimodal system it is immediate that if the system

is controllable then the input constrained open–loop switching system of the type

P� D Pi�C NRiw; i 2 f 1; 2 g; w � 0 (8.13)

with NRi D .�1/iC1Ri is also controllable. Consulting the result of Çamlibel et al. (2004), i.e., the

case P1 D P2, it is apparent that the controllability condition of the bimodal system is equivalent

to the input constrained controllability condition of the corresponding open–loop system given by

(8.13). It is less apparent, but this consequence also holds for the case presented in Veliov and

Krastanov (1986).

8.3 A separation theorem

The bimodal system (8.11), (8.12) can be seen as a dynamic extension3 of

P�2 D Pi;2�2 C NRi;2w; i 2 f 1; 2 g; w � 0: (8.14)

Controllability of the dynamically extended system, provided that the original system was control-

lable, is by far non–trivial issue though for smooth vector fields it was proved in Sussmann (1991);

Sontag and Qiao (1999). For linear systems it is straightforward for unconstrained input case. This

can be verified by checking the Kalman rank condition of the extended system, however this result

cannot be directly applied here, since the input is signed constrained.

Lemma 6: If the points �0 and �f can be connected by a trajectory of the linear system P� D P�CRw using
nonnegative control w � 0 then, for a given r , they can be also connected using a smooth nonnegative control

! � 0 with prescribed end points, i. e., !.k/.0/ D !0;k and !.k/.Tf / D !Tf ;k for k D 0; 1; � � � ; r .

Proof The proof of the assertion is an adaptation of the proof for controllability by smooth con-

trols given in Chapter 5., Theorem 4 of Jurdjevic (1997). The main points of the proof are the fol-

lowing: for a linear system every accessible point is normally accessible (i.e., by using piecewise con-

stant controls). Consider the control formed by the sequence .w; Ot/ D f.w1; Ot1/; � � � ; .wF ; OtF //g
where the control wi � 0 is applied for a duration of Oti , that steers �0 to �f . By the inverse map-

ping theorem, there exist functions ti defined on a neighborhood V of �f such that the sequence

f.w1; t1.z//; � � � ; .wF ; tF .z///g steers �0 to z for all z 2 V . Denote by �i D
Pi

lD1 tl and for

any sufficiently small � > 0 consider the smooth nonnegative control !.t; z; �/ defined by

!.t; z; �/ D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

ˇ1.t; z/ if t 2 Œ0; ��
w1 if t 2 Œ�; �1.z/ � ��
w� if t 2 Œ�1.z/ � �; �1.z/C ��

:::

wF if t 2 Œ�F �1.z/C �; �F .z/ � ��
ˇF .t; z/ if t 2 Œ�F .z/ � �; �F .z/�;

(8.15)

3See Isidori (1989) for details.
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8 Bimodal systems

where w� D .1 � ˛1.t; z//w1 C ˛1.t; z/w2 and ˛i ; ǰ are smooth, nonnegative, increasing

functions in t for each z in the interval Œ��
i ; �

C
i � WD Œ�i .z/ � �; �i.z/ C ��, with end conditions

˛i.�; z/ D 0; @k
tk˛i.�; z/ D 0 at � 2 f��

i ; �
C
i g and k � 1. The same end conditions are imposed

for ˇ1 at tC1 and for ˇF at t�F . We also impose @k
tkˇ1.0; z/ D !0;k and @k

tkˇF .�F .z/; z/ D
!F;k for k D 0; 1; � � � ; r . If we denote the associated integral curve by ˚�.t/ then one has that

lim�!0˚�.�F .z// D z in some neighborhood of �f .

The assertion of the Lemma follows by a fix point argument, for details see Jurdjevic (1997) or

Sussmann (1991).

Using this lemma the main controllability result for the given bimodal system can be formulated

as:

Proposition 17: The bimodal system given by (8.11) and (8.12) is controllable if and only if the input

constrained open–loop switching system (8.14) is controllable.

Using this result controllability can be decided by using the result of Proposition 6 and the

Controllability Algorithm of Section 4.2.

Remark 12: The assertion of Proposition 17 remains valid for q‘LPV systems, too. If the dynamics depends
affinely on the scheduling variables, the reduction of the bimodal systems to the form given by (8.10), (8.11),

(8.12) can be performed by using the algorithms of Chapter 7.

This section is concluded by an example to illustrate the content of the controllability result an

the role of the separation lemma in the construction.

Example 2: Let us consider the system:

Px D
�

P1x CR1ys if ys � 0

P2x CR2ys if ys � 0
; (8.16)

Pys D u; (8.17)

where

P1 D
�

0 1

0 0

�

R1 D
�

0

1

�

and

P2 D
�

1 0

0 1

�

R2 D
�

0

1

�

:

According to Proposition 17 controllability of the original system is equivalent to controllability of the sign

constraint switched system:

P� D Pi�C NRiw: w � 0 (8.18)
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8 Bimodal systems

It is not hard to figure out that the coordinates corresponding to trajectories of the individual subsystems can be

obtained as:

�1;1.t/ D �1;1.t0/C �1;2.t0/t C
Z t

0

Z �

0

w.�/d�d�

�1;2.t/ D �1;2.t0/C
Z t

0

w.�/d�;

and

�2;1.t/ D et�2;1.t0/

�2;2.t/ D et�2;2.t0/ � et

Z t

0

v.�/d�;

with w.�/ D e�v.�/:

Let us apply the following control strategy: fix t1 > 0 and steer the second subsystem with constant control

v � 0 then apply the first subsystem for a time t2 with constant control w � 0.
One has the following system of equations:

�2;1.t1/ D et1�2;1.t0/;

�2;2.t1/ D et1�2;2.t0/ � t1et1v;

�1;1.t2/ � �2;1.t1/ D �2;2.t1/C 1

2
wt22 ;

�1;2.t2/ � �2;2.t1/ D wt2:

One has

t2 D 2
�1;1.t2/ � �2;1.t1/

�1;2.t2/C �2;2.t1/
; w D

�2
1;2.t2/ � �2

2;2.t1/

2.�1;1.t2/ � �2;1.t1//
;

i. e.,

Q�f
1 � �0

1 � �0
2 D 1

2
Qwt2;

�2;2.t1/ D et1�2;2.t0/ � t1et1v;

Q�f
2 � �0

2 D Qw � t1e
t1v;

with Q�f
i D e�t1�fi and Qw D e�t1wt2. This equation can be solved satisfying the nonnegativity constraint

for a suitable choice of t1 and v for any �0 and �f . Therefore the input constrained open–loop switching system

(8.18) is controllable.
In order to prove complete controllability for the original bimodal system, we have to ensure that (8.18) can

be controlled with inputs that has arbitrarily prescribed end conditions. By linearity it is sufficient to ensure
null end conditions for the input w.
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8 Bimodal systems

By replacing the piecewise constant inputs by w ! w't.�/ and v ! v't.�/ where the function defined

as

't.�/ D 6

t2
�.t � �/

is nonnegative on Œ0; t � and fulfills the end–point conditions 't.0/ D 't.t/ D 0 and has

Z t

0

't.�/d� D t;

Z t

0

Z �

0

't.�/d�d� D t2

2
;

one obtain the same equations for t1; t2; v; w, i. e., it follows that the bimodal system is also controllable.

8.4 Stabilizability of bimodal systems

The bimodal system (8.1) is said to be stabilizable if any initial state can be asymptotically steered

to the origin by a suitable admissible input u, i.e., for all x0 2 R
n there exist a solution x.t/ of the

bimodal system such that limt!1 x.t/ D 0.

Let us first examine bimodal systems with continuous dynamics. In view of Proposition 17 these

systems are equivalent with an LTI system with two sign constrained inputs. Starting from this

observation one has the following result:

Proposition 18: If the bimodal system has continuous dynamics, i. e., P1 D P2 D P , then the bimodal
system (8.11), (8.12) is stabilizable if and only if the corresponding sign constrained open–loop switching system

is stabilizable.

Proof: The necessity is obvious. For sufficiency let us recall the following basic fact: for a

stabilizable LTI system, in particular for the sign constrained system Px D PxCŒ NR1
NR2�w; w � 0,

there exist numbers ˛ > 0 and 
 > 0 such that for any point x0 a trajectory of system satisfying

the condition x.0/ D x0 and

jjx.t/jj � ˛jjx0jje�
t t � 0 (8.19)

can be found, see Smirnov (1996). It follows, that for this trajectory one has
R1

0
w < 1, i.e.,

limt!1w.t/ D 0. Moreover this w can be chosen to be continuous, see Smirnov (1996), i.e.,,

the implied switching sequence induced by the sign changes of w is piecewise constant. Then

the construction leading to Proposition 17 can be applied and it follows, that the corresponding

bimodal system, which has the state

�

x

w

�

, is also stable.

In Heemels et al. (1998) one can find the following characterization of the stabilizability of a sign

constrained LTI system:
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8 Bimodal systems

HT: The system

Px D Px CRw w 2 R
2
C

is stabilizable if and only if

� the unconstrained system is stabilizable and

� all real eigenvectors v of P T corresponding to a nonnegative eigenvalue of P T have the

property that RT v has both positive and negative components.

Remark 13: An equivalent result was given in Smirnov (1996), where a method for the construction of the
stabilizing feedback was also presented.

If the more severe conditions of small time local controllability are satisfied, then Lipschitz continuous piecewise
linear stabilizing feedback can be constructed, see Krastanov and Veliov (2003).

The conditions HT are satisfied for controllable systems.

The general case is more difficult. We conclude this section with a result that provides a sufficient

condition for stabilizability:

Proposition 19: If the bimodal system (8.11), (8.12) is globally controllable, then it is asymptotically
stabilizable.

Proof: By controllability one has that from any initial state x0 there is a control that steers the

point to the origin in a finite time, say T . By the finite switching property, see Proposition 4, at

time T a well defined system is active. Setting the input u D 0 for T > 0 the system is maintained

in the origin, i.e., the system is stable.
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Summary

The engineering applications that provide the motivation background for the research of bimodal

systems were related to control of the hydraulic actuator of an active suspension system and the

controllability study for a high speed supercavitating underwater vehicle, see Bokor, Szabó and

Balas (2006b, 2007); Gáspár, Szabó and Bokor (2008a); Gáspár et al. (2009a).

Controllability decomposition Chapter 8, Lemma 5, Proposition 17 , 18 and 19

A controllability decomposition was established for bimodal systems that have a well defined

relative degree. It was shown that such a bimodal system is completely controllable if and

only if a given subsystem of the controllability decomposition is completely controllable. It

turns out that the latter is equivalent to the controllability of an input constrained open–loop

switching system. If the bimodal system is globally controllable, then it is asymptotically

stabilizable.

Additional details can be found in the papers Bokor, Szabó and Balas (2007, 2006a,b); Bokor

and Szabó (2009).
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9 Inversion of LPV systems

The solution of the problem of dynamic inversion of systems gave rise to considerable attention

in the control literature: in his classical paper Silverman (1969) considered the properties and

calculation of the inverse of LTI systems guaranteeing neither minimality nor stability properties of

the resulting inverse system. The problem was also considered by Fliess (1986) for nonlinear input-

output systems. For certain classes of nonlinear state space representations Isidori (1989) provided

algorithms and also sufficient or necessary conditions of invertibility.

There are two aspects concerning dynamical system inversion: left invertibility, which is related to

unknown input observability – the target application field being fault detection filter design – and

right invertibility, related to the solution of output tracking control problems. Dynamic inversion

based controllers are popular in aerospace control, see, e.g., Morton et al. (1996); Looye and Joos

(2001).

This chapter provides a geometric view of dynamic inversion of LPV systems. In contrast to the

pseudo-inversion techniques, in the proposed method the availability of the full state measurements

is not assumed, instead, it is supposed that measured outputs, and possibly some of their derivatives

are available, for which the resulting system is minimum phase and left (right) invertible. For

output tracking a two degree of freedom controller structure is proposed, where the first part is an

inversion based controller making the linearization of the plant while the second controller, using

an error feedback, achieves the required stability properties.

The algorithm was successfully applied in the dynamic inversion based controller design for

stabilizing the primary circuit pressure at the Paks Nuclear Power Plant in Hungary in 2004-

2005, see, e.g., Szabó et al. (2005). This controller implementation (together with other important

reconstruction steps) largely contributed to the possibility that the average thermal power of the

plant units could be increased by 1-2 %.
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9 Inversion of LPV systems

The general nonlinear setting

Let us consider the nonlinear input affine system˙;

Px D f .x/C
m
X

iD1

gi.x/ui (9.1)

y D h.x/;

with y D Œ yj �j D1;p and h.x/ D Œ hj .x/ �j D1;p, respectively. It is reasonable to assume that the

rank of g D Œ gi �iD1;m is m and that the rank of h is p.

The problem when the outputs – and possible its derivatives – are measured and the unknown

input is to be determined involves the notion of the left invertibility of the system. We are going to

construct another dynamic system

P�.t/ D '.�; y; Py; : : : ; u; Pu; : : :/
u.t/ D !.�; y; Py; : : : ; u; Pu; : : :/

with outputs u and inputs # D . Qy; Qu/ that contains the measurements of the signals u; y and

possible their time derivatives.

Let us recall, that the system (9.1) is (left)invertible at x0; if the output functions corresponding

to the initial state x0 and distinct admissible controls u are different. A system is called strongly
invertible if there exist an open and dense submanifold of the state manifold on which the system is

invertible.

Left invertibility can be characterized more completely by using algebraic techniques, for more

details see, e.g., Zheng and Cao (1993); Conte et al. (2006). However, for practical purposes design

algorithms based on a geometrical framework are often more suitable.

A dual problem is to find a suitable input signal that produces a desired behavior of the outputs,

i.e., output tracking, is related to the concept of right invertibility. A dynamical system is right

invertible at x0 if the rank of its input-output map at this point is p, i.e., the number of outputs

(to be tracked), see Nijmeijer (1986).

9.1 A geometrical framework

Let us recall, first, some elementary definitions and facts from Isidori (1989) and Nijmeijer (1991).

A smooth connected submanifold M which contains the point x0 is said to be locally controlled

invariant at x0 if their is a smooth feedback u.x/ and a neighborhood U0 of x0 such that the vector

field Qf .x/ D f .x/C g.x/u.x/ is tangent to M for all x 2 M \ U0, i.e. M is locally invariant

under Qf :
An output zeroing submanifold of ˙ is a smooth connected submanifold M with contains x0 and

satisfy:

1. for all x 2 M one has h.x/ D 0;
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9 Inversion of LPV systems

2. M is locally controlled invariant at x0:

This means that for some choice of the feedback control u.x/ the trajectories of ˙ which start in

M stay inM for all t in a neighborhood of t0 D 0 and the corresponding output is identically zero.

Such a submanifold Z� can be determined by a "zero dynamics algorithm", Nijmeijer and van der

Schaft (1990).

If in addition

dim span f gi.x0/ j i D 1;mg D m; (9.2)

and dim span f gi.x/ j i D 1;mg \ TxZ
� is constant for all x 2 Z� then Z� is a locally maximal

output zeroing submanifold. Moreover, if

dim span f gi.x/ j i D 1;mg \ TxZ
� D 0; (9.3)

then there is a unique smooth feedback u� such that f �.x/ WD f .x/ C g.x/u�.x/ is tangent

to Z�: An algorithm for computing Z� for a general case can be found in Isidori (1989) and

Nijmeijer (1991). In some cases, however, Z� can be determined relative easily relating it to

the maximal controlled invariant distribution �� contained in Ker dh, given by the controlled

invariant codistribution algorithm (�� D ˝?
� ), namely ��.x/ D TxZ

�, for details see D.3 and

Isidori (1989).

An important case when this relation holds is the set of LTI systems and the class of systems

that have a vector relative degree. The concept of relative degree plays a key role in several control

problems both for linear and nonlinear systems. In particular, the computation of the relative

degree and the derivation of consequent normal forms for nonlinear systems, represents key design

step in order to solve successfully several control problems, like disturbance decoupling, feedback

linearization and system inversion problems.

A multivariable nonlinear system has a vector relative degree r D fr1; � � � ; rpg at a point x0 if

i. Lgj
Lk

f
hi .x/ D 0 for j D 1; � � � ; m; i D 1; � � � ; p; and k < ri � 1:

ii. the matrix

A.x/ WD

2

6
4

Lg1
L

r1�1

f
h1.x/ � � � Lgm

L
r1�1

f
h1.x/

� � � � � � � � �
Lg1

L
rp�1

f
hp.x/ � � � Lgm

L
rp�1

f
hp.x/

3

7
5 (9.4)

has rank m for left invertibility (p for right invertibility) at x0:

For further usage let us denote by

B.x/ WD

2

6
4

L
r1

f
h1.x/
:::

L
rp

f
hp.x/

3

7
5 : (9.5)

If condition (ii.) does not hold but there exist numbers ri with property (i.) then they are called

relative orders of the system (9.1).
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9 Inversion of LPV systems

Lemma 7: Let us suppose that the system (9.1) has relative degree. Then the row vectors

dh1.x0/; � � � ; dLr1�1

f
h1.x0/; � � � ; dhp.x0/; � � � ; dLrp�1

f
hp.x0/ (9.6)

are linearly independent.

Conditions (9.2) and (9.3) can be interpreted as a special property of (left) invertibility of the

system ˙: Our interest in the determination of the output zeroing manifold is motivated by the

role played by these notions in the question of invertibility and the construction of the reduced

inverse of linear and nonlinear controlled systems.

The characterization of right invertibility, related to the number of zeros at infinity, is analogous,

for details see Nijmeijer (1986).

Nonlinear systems with vector relative degree

In this section the construction of a left inverse of a nonlinear system is presented – the construction

of a right inverse is similar, hence, it is left out.

As it was already stated, if rankA.x/ D m then

Z� D fx jLk
f hi D 0; i D 1; � � � ; p k D 0; � � � ; ri � 1g

and the maximal controlled invariant distribution in Ker dh is

V � D Ker span f dLk
f hi ; i D 1; � � � ; p k D 0; � � � ; ri � 1g;

see also Nijmeijer (1991). Moreover the feedback u�.x/ D ˛.x/ is the solution of an equation

A.x/˛.x/ D B.x/:

Let us denote by � D .�i /iD1;p D �.x/ the diffeomorphism defined by �i D .Lk
f
hi .x//kD0;ri �1.

It is a standard computation, that

P�i D Ai�i C B iy
.ri /
i ;

where Ai ; B i are in the Brunowsky form (�i
1 D yi ).

Let us complete �.x/ to a diffeomorphism on X :

�

�

�

�

D ˚.x/ WD
�

�.x/

�.x/

�

:

Since @x� D ŒdLk
f
hi �; one has

P� D ŒdLk
f hi �f j˚�1 C ŒdLk

f hi �gj˚�1u;

i.e., maintaining the nonzero rows:

Œ P�i
ri
� D Bj˚�1 C Aj˚�1u; (9.7)
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9 Inversion of LPV systems

and

P� D @x�f j˚�1 C @x�gj˚�1u: (9.8)

The zero dynamics1 can be obtained by

P� D @x�f j˚�1 C @x�g˛j˚�1 ; (9.9)

putting � D 0:

Finally, the output equations of the dynamic inverse are

u.t/ D A�1

�

�

�

��

y.r/ � Lr
f h

�

�

�

��

and one can get the (minimal) inverse dynamics as

P� D f .�; �/;

where � contains the corresponding output derivatives. Observe that the inverse does not inherit

the structure of the original system, i.e., it is not necessarily input affine.

 

   

1
a.�;�/

. b.�; �/C v/ a.�; �/uC b.�; �/

P� D q.�; �/

R R
Plant

stabilizing
controller

+
v P�r

yP�1u

�r �1

inversion
based control

y
.r/

d

P� D q.�; Qyd/

Qyd D Œy
.r 1/

d � � �yd �

R Ry
.r 1/

d
yd

   

 

Figure 9.1: Inversion based control: general scheme

The main difficulty in the construction of the dynamical inverse in this general nonlinear context

consists in obtaining and handling the time varying coordinate transform ˚.x/ with its splitting

1If g is involutive, then one can choose d� � g?; and then P� D @x�f j˚�1 :
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9 Inversion of LPV systems

in �.x/ and �.x/. This is a state dependent nonlinear transformation, and the construction of

the suitable extension requires, in general, solution of partial differential equations, hence, it is

necessary to know the full state vector of the system. The linearized system will be a chain of

integrators and the actual input of the linearizing controller will be the derivative, with order equal

to the relative degree of the system, of the desired output. For a schematic view of this approach

for a SISO system see Figure 9.1.

Even if all the data required for the implementation of dynamical the inverse is available the

method might be useless in practice. Invertibility does not involve the knowledge of the initial

condition but for the implementation it plays an implicit role. The zero dynamics should be stable

because it cannot be influenced by output injection since it is not observable for the outputs used

in the inversion process.

The next section will provide a method for a class of LPV systems when the entire construction

can be performed based on a suitable parameter varying conditioned invariant subspace.

9.2 Dynamic inverse of LPV systems

Let us consider the class of LPV systems with m inputs and p outputs, that can be described as:

Px.t/ D A.�.t//x.t/C B.�.t//u.t/ (9.10)

y.t/ D Cx.t/ (9.11)

where

A.�.t// D A0 C �1.t/A1 C : : :C �N .t/AN ; (9.12)

B.�.t// D B0 C �1.t/B1 C : : :C �N .t/BN ; (9.13)

(9.14)

and the dimension of the state space is supposed to be n. It is assumed that each parameter �i

ranges between known external values �i.t/ 2 Œ�
i
; �i � and the parameter set that contains all

.�1.t/; � � � ; �N .t//; where t 2 Œ0; T � will be denoted by P . For the sake of notational simplicity

the time dependency of the matrices will be omitted (A.�/ WD A.�.t//) where it is possible.

It is not hard to figure out that in the LTI case TxZ
� D V �, where V � is the maximal .A; B/-

invariant subspace contained in Ker C while for the LPV case if some technical conditions for

the parameter functions (persistency) are fulfilled, then TxZ
� D V�, where V� is the maximal

(A;B)-invariant subspace contained in C D Ker C . The minimal (C ;A)-invariant subspace

containing B D ImB is denoted by S�.

Left and right invertibility of LPV system can be characterized in geometric terms as follows:

Proposition 20: The LPV system (9.10),(9.11) is left-invertible if

V� \ B D 0: (9.15)

The system is right invertible if

S� C C D X: (9.16)
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9 Inversion of LPV systems

Let us observe, that if conditions (9.15) are fulfilled, one can always choose a coordinate transform

of the form

z D T x; where T D
�

V�?

�

�

; � � B?:

Accordingly, the system will be decomposed into:

P� D A11.t/� C A12.t/�C NB.t/u
P� D A21.t/� C A22.t/� (9.17)

y D NC�:
It follows, that applying a suitable feedback

u D F2.t/�C v; (9.18)

that makes the subspace V� be (A C BF;B) invariant, one can obtain the system:

P� D A11.t/� C NBv (9.19)

y D NC�: (9.20)

Maximality of V� ensures that both � and v can be expressed as functions of y and its derivatives.

By introducing the notation Qy D ��, where

Qy D
h

y1; � � � ; y.r1�1/
1 ; � � � ; yp; � � � ; y.rp�1/

p

iT

one has v D NBf�1g��1. PQy � P���1 Qy � �A11��1 Qy/, i.e.,

P� D A22�C A21��1 Qy (9.21)

u D F2�C NBf�1g��1. PQy � P���1 Qy � �A11��1 Qy/: (9.22)

The coordinate transform �.t/ can be obtained by applying the recursive algorithm defined by:

S0
i .t/ D ci ;

SkC1
i .t/ D PSk

i .t/C Sk
i .t/A11.t/;

see, e.g., Silverman and Meadows (1967).

Remark 14: It is clear that the method presented above can be also applied for nonlinear dynamics cast as

quasi LPV systems with affine parameter dependence. One can observe that to compute the matrix �.t/ one
needs certain derivatives of the parameter functions �i.y/, i. e., certain derivatives of the output y, but the

order of these derivatives are bounded by maxi ri .

The main result of this section can be formalized as:

Proposition 21: If the the LPV system (9.10)-(9.11) has a relative degree, i. e., conditions (9.15) are

fulfilled, the system has a well defined left dynamical inverse of the form (9.21)-(9.22).
Moreover, if the parameter dependence is affine V�, the maximal (A;B)-invariant subspace contained in

KerC , and the transformation matrix � needed to obtain the dynamical inverse can be computed in finite
steps.
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9 Inversion of LPV systems

9.3 Inversion based output tracking controller

Since the condition of right-invertibility is equivalent to V� C S� D X, one has the dual result as:

Proposition 22: If the the LPV system (9.10)-(9.11) has a relative degree and condition (9.16) is fulfilled,
the system has a well defined right dynamical inverse of the form (9.21)-(9.22).

Moreover, if the parameter dependence is affine the dynamical inverse, i. e., the output tracking controller can

be computed in finite steps.

The right inverse is realizable in exactly the same way as the (left)inverse system. The input

u corresponding to the desired output is not unique, in general. The difference between any two

admissible input corresponds to a zero-state motion on RV� D V� \ S� which does not affect the

output. A common solution is to set to zero the input components which, expressed in a suitable

basis, correspond to forcing actions belonging to V� \ B.

 

   

 

P� D A11� CA12�C NBu

P� D A21�CA22�

y D NC �

NBf 1g
�
 1. PQy  P��

 1 Qy 

 �A11�
 1 Qy/

R Ry
.r 1/

d

yd

+ u D F2�C v

Plant

stabilizing
controller

v

y
.r/

d

yu

� �

inversion
based control

PO� D A21 O�CA22 Qyd

Qyd D Œy
.r 1/
d

� � �yd �

Figure 9.2: Inversion based tracking controller

Applying the dynamic inversion algorithm, one can obtain a system that realizes the tracking

if the initial conditions are known. Let us denote the outputs to be tracked by yd . Due to the

effect caused by the unknown initial condition, there will be an error of the estimated state �.

Introducing an outer-loop based on error feedback, one can obtain the following structure for the
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9 Inversion of LPV systems

tracking controller, see Figure 9.2:

PN� DA22 N�C A21��1 Qyd C �1 Qe
Nu DF2 N�C �. Qyd /C �2 Qe; (9.23)

with �. Qyd / D NBf�1g��1. PQy � P���1 Qy � �A11��1 Qy/, the tracking error e D Oy � yd and the

possibly parameter dependent gain matrices �1 and �2.

Let us denote by e� D O� � �d and e� D O� � N� and recall that Qe D �ex1
. Then the error

dynamics can be expressed as:

Pe� D .A11 C NB�2�/e� C A12e� (9.24)

Pe� D .A21 C �1�/e� C A22e� (9.25)

Qe D �e� : (9.26)

Actually the decay rate of e� cannot be increased – the dynamics determined by A22 should be

stable – therefore a convenient choice is �1 D �A21��1. The gain �2 is tuned to obtain a desired

decay rate for e� , this can be done by solving a suitable set of LMIs, see also Section 10.3.

In implementing the tracking control a problem might be that Qe is not available for the measure-

ment. If a state observer is available, then the inversion scheme can be replaced by the combination

of this observer and the linearization feedback. Such a state observer can be design if additional

measured outputs are available, say:

z D C2x D C21� C C22�; (9.27)

that makes the plant fully observable. Then, the inversion is achieved by the following dynamical

system:

PNw D .A �K NC C BF / Nw CK Ny C B�. Qyd /C �1 Qe
Nu D F Nw C �. Qyd /C �2 Qe: (9.28)

where NC T D Œ C T C T
2 � and Ny D Œy z�T .

The additional degree of freedom can be used to improve the performance properties – estimation

time, disturbance rejection – of the unknown input observer or of the output tracking controller,

respectively.
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9 Inversion of LPV systems

Example

As an illustrative example for the LPV inversion scheme let us consider the following linearized

parameter varying model:

Px.t/ D A.�/x.t/C B�.t/

y.t/ D Cx.t/;

where A.�/ D A0 C �1A1 C �2A2: The state matrices are:

A0 D

2

6
6
6
6
4

�1 0 0 0 0

0 �1 0 0 0

0 0 �1 0 0

0 0 0 �1 0

0 0 0 0 �1

3

7
7
7
7
5

; A1 D

2

6
6
6
6
4

0 �1 1 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

3

7
7
7
7
5

; A2 D

2

6
6
6
6
4

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

3

7
7
7
7
5

;

B D

2

6
6
6
6
4

1 0

0 1

0 1

0 0

0 0

3

7
7
7
7
5

; C D

2

4

0 0 0 0 1

0 1 0 0 0

0 0 0 1 1

3

5 :

Applying the ABISA algorithm one has V� D Im
�

0 0 1 0 0
�T

and the correspond-
ing state transform can be chosen as:

T D

2

6
6
6
6
4

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 �1 1 0 0

3

7
7
7
7
5

; i.e., T �1 D

2

6
6
6
6
4

1 0 0 0 0

0 1 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

3

7
7
7
7
5

:

Accordingly the the system splits as

�

A0
11 A0

12

A0
21 A0

22

�

D

2

6
6
6
6
4

�1 0 0 0 0

0 �1 0 0 0

0 0 �1 0 0

0 0 0 �1 0

0 0 0 0 �1

3

7
7
7
7
5

;

�

A1
11 A1

12

A1
21 A1

22

�

D

2

6
6
6
6
4

0 0 1 0 1

0 0 0 1 0

0 0 0 0 0

1 0 0 0 0

0 0 0 �1 0

3

7
7
7
7
5

;

�

A2
11 A2

12

A2
21 A2

22

�

D

2

6
6
6
6
4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

1 0 0 0 0

3

7
7
7
7
5

;

� NB
0

�

D

2

6
6
6
6
4

1 0

0 1

0 0

0 0

0 0

3

7
7
7
7
5

;

� NC 0
�

D

2

4

0 0 0 1 0

0 1 0 0 0

0 0 1 1 0

3

5 :
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The matrix F.�/ D F0 C �1F1 C �2F2; is given by

F0 D 0; F1 D
�

0 0 �1 0 0

0 0 0 0 0

�

; F2 D 0:

The transformation �.�/ D S0 C �1S1 C �2S2; where

S0 D

2

6
6
4

0 0 0 1

0 0 0 �1
0 1 0 0

0 0 1 1

3

7
7
5
; S1 D

2

6
6
4

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

3

7
7
5
; S2 D

2

6
6
4

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

3

7
7
5
;

maps � to Qy D
�

y1 Py1 y2 y3

�T
:

One can figure out that

��1.t/ D

2

6
6
4

1
�1

1
�1

��2

�1
0

0 0 1 0

�1 0 0 1

1 0 0 0

3

7
7
5

and P�.t/��1.t/ D

2

6
6
4

0 0 0 0
P�1

�1

P�1

�1
� P�1�2

�1
C P�2 0

0 0 0 0

0 0 0 0

3

7
7
5

It follows, that

�A11��1 D

2

6
6
4

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

3

7
7
5

C �1

2

6
6
6
4

1
�1

1
�1

��2

�1
0

�2 � �1 � 1
�1

� 1
�1

�2

�1
0

1 0 0 0
1
�1

1
�1

��2

�1
0

3

7
7
7
5

C �2

2

6
6
4

0 0 1 0

0 0 �1 0

0 0 0 0

0 0 1 0

3

7
7
5
;

NB�r��1 D
� 1

�1

1
�1

��2

�1
0

0 0 1 0

�

:

Finally, for the unknown input observer, i.e., the left inverse system one has

P� D ��C .
�2

�1

� �1/y1 C �2

�1

Py1 � �2
2

�1

y2;

and

O� D
�

��1

0

�

�C
� 1

�1

1
�1

��2

�1
0

0 0 1 0

�

.

2

6
6
4

Py1

Ry1

Py2

Py3

3

7
7
5

�

2

6
6
4

0 1 0 0

�1�2 � �2
1 C P�1��1

�1

P�1��1

�1

P�2�1� P�1�2

�1
�2

1

�1 0 �1 0

1 1 0 �1

3

7
7
5

2

6
6
4

y1

Py1

y2

y3

3

7
7
5
/:
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During the simulation the parameters vary as on Figure 9.3 and some measurement noise was

also considered. The applied and reconstructed inputs are depicted on Figure 9.4.
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Figure 9.3: Parameters �1 and �2 (dashed) and its derivatives
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Figure 9.4: Applied and reconstructed inputs

Since S� D Im

2

6
6
6
6
4

0 1 0 �1
0 0 1 0

1 0 0 0

0 0 0 0

0 1 0 1

3

7
7
7
7
5

one has S�CV� ¤ X, i.e., the right invertibility condition

is not fulfilled, as it was expected.
To make the system right invertible consider the first two outputs only, i.e., yt D Ctx with
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Ct D

2

4

0 0 0 0 1

0 1 0 0 0

0 0 0 1 1

3

5. With this setting one has V� D Im

�

0 0 0 1 0

0 0 1 0 0

�T

and

S� D Im

2

6
6
6
6
4

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 0

0 0 0 1

3

7
7
7
7
5

, i.e., S� C V� D X. The corresponding state transform can be

chosen as:

T D

2

6
6
6
6
4

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 �1 1 1 0

0 0 0 1 0

3

7
7
7
7
5

; i.e., T �1 D

2

6
6
6
6
4

1 0 0 0 0

0 1 0 0 0

0 1 0 1 �1
0 0 0 0 1

0 0 1 0 0

3

7
7
7
7
5

:

Accordingly the the system splits as

�

A0
11 A0

12

A0
21 A0

22

�

D

2

6
6
6
6
4

�1 0 0 0 0

0 �1 0 0 0

0 0 �1 0 0

0 0 0 �1 0

0 0 0 0 �1

3

7
7
7
7
5

;

�

A1
11 A1

12

A1
21 A1

22

�

D

2

6
6
6
6
4

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

0 0 �1 0 0

0 0 0 0 0

3

7
7
7
7
5

;

�

A2
11 A2

12

A2
21 A2

22

�

D

2

6
6
6
6
4

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

3

7
7
7
7
5

;

� NB
0

�

D

2

6
6
6
6
4

1 0

0 1

0 0

0 0

0 0

3

7
7
7
7
5

;

� NC 0
�

D
�

0 0 1 0 0

0 1 0 0 0

�

:

One has �.�/ D

2

4

0 0 1

�1 �2 �1
0 1 0

3

5 that maps � to Qy D
�

y1 Py1 y2

�T
:

One can figure out that

S�1.t/ D

2

4

1
�1

1
�1

��2

�1

0 0 1

1 0 0

3

5 and PS.t/S�1.t/ D

2

4

0 0 0
P�1

�1

P�1

�1
� P�1�2

�1
C P�2

0 0 0

3

5 ;

while

�A11��1 D

2

4

0 1 0

�1�2 � 1 �2 0

�1 0 �1

3

5 ; NB�r��1 D
�

1
�1

1
�1

��2

�1

0 0 1

�

:
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9 Inversion of LPV systems

The output tracking controller has the form:

P� D �� C
� �2

�1
� �1

�2

�1
��2�2

�1

�

Qy

u D ��1� C
�

1
�1

1
�1

��2

�1

0 0 1

�

. PQy �

2

4

0 1 0

�1�2 C P�1��1

�1

P�1�2�1

�1

P�2�1� P�1�2

�1

�1 0 �1

3

5 Qy/C � Qy;

with the gain � D
�

�100
�1

�100
�1

100�2

�1

��1 0 �50

�

.

The results of the simulation are depicted on Figure 9.5.
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Figure 9.5: Desired and actual outputs
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Summary

Dynamical inversion of qLPV systems Chapter 9, Proposition 20, 21, 22

An algorithm was established for the computation of the dynamical inverse of linear param-

eter varying systems. The method can be applied for the class of nonlinear systems that can

be cast in the qLPV form.

Based on the dynamic inversion method a design algorithm for an unknown input observer,

and for an output tracking controller was given.

If the parameter dependency is affine the algorithm provides the state matrices of the dy-

namic inverse by using only a finite number of matrix manipulations.

Further details can be found in the papers Balas et al. (2004); Edelmayer et al. (2003, 2004,

2009); Szabó et al. (2003a).

The results were used in engineering applications, such as reconfigurable fault detection controls

of vehicle, fault tolerant active suspension design, see Szabó et al. (2003); Gáspár, Szabó and Bokor

(2007, 2008f); Gáspár et al. (2009). The developed algorithms were also successfully applied in the

dynamic inversion based controller design for stabilizing the primary circuit pressurizer at the Paks

Nuclear Power Plant Hungary, see Gáspár et al. (2006); Szabó et al. (2005).
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10 Decoupling in FDI and control

Up to this point applicability of the geometrical concepts has been manifesting through a more the-

oretical context, where the geometric tools were hidden in the derivations that lead to the solutions.

To conclude the last part of the thesis two additional applications are presented in this chapter in

order to provide a more direct example for the usability of the geometric view. These apllications

represent the two facades of the very same problem of decoupling: in the first application the fault

to be detected is decoupled from the other, nuisance, faults while in the second application the

classical problem of disturbance decoupling is tackled. The proposed solutions are extensions of the

classical LTI methods to the LPV framework based on the suitable introduced parameter varying

invariant subspaces and the induced state decompositions.

Fundamental problem of residual generation (FPRG)

Let us consider the following LTI system, that has two failure events:

Px.t/ D Ax.t/C Bu.t/C L1m1.t/CL2m2.t/ (10.1)

y.t/ D Cx.t/; (10.2)

then the task to design a residual generator that is sensitive to L1 and insensitive toL2 is called the

fundamental problem of residual generation (FPRG). More precisely, one has to design a residual

generator with outputs r such that if m1 ¤ 0 then r ¤ 0 and if m1 D 0 then limt!1 jjr.t/jj D
0, i.e., a stability condition is required.

In the solution of this problem a central role is played by the .C; A/–invariant subspaces and

certain unobservability subspaces, Massoumnia (1986); Massoumnia et al. (1989) or observability

codistributions, De Persis and Isidori (2000, 2001), in the nonlinear version of this problem.

As it is well known, for LTI models, a subspace W is .C; A/–invariant if A.W \ KerC/ � W

that is equivalent with the existence of a matrix G such that .A C GC/W � W . A .C; A/–

unobservability subspace U is a subspace such that there exist matricesG andH with the property

that .AC GC/U � U, i.e., U is .C; A/–invariant, and U � KerHC . The family of .C; A/–

unobservability subspaces containing a given set L has a minimal element U�.

Let us denote by S� the smallest unobservability subspace containing L2; where Li D ImLi :

Then one has the following result, Massoumnia (1986):

MA: A FPRG has a solution if and only if S� \ L1 D 0; moreover, if the problem has a solution, the

dynamics of the residual generator can be assigned arbitrary.
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10 Decoupling in fault detection and control

Given the residual generator in the form

Pw.t/ D Nw.t/ �Gy.t/C Fu.t/ (10.3)

r.t/ D Mw.t/ �Hy.t/; (10.4)

then H is a solution of KerHC D KerC C S�; and M is the unique solution of MP D HC;

where P is the projection P W X ! X=S�. Let us consider a G0 such that .ACG0C/S
� � S�

and denote by A0 D A C G0C jX=S� . Then there is a G1 such that N D A0 C G1M has

prescribed eigenvalues. Then set G D PG0 CG1H and F D PB .

Extending this result to the case with multiple events one has the extension of the fundamental

problem of residual generation (EFPRG), that has a solution if and only if S�
i \ Li D 0; where S�

i

is the smallest unobservability subspace containing Li WD
P

j ¤i Lj :

These ideas were also applied to nonlinear systems, and a similar condition was obtained for the

solvability of the FPRG problem in terms of the observability codistributions, see Hammouri et al.

(1999); De Persis and Isidori (2002).

In what follows, this result will be extended to the LPV systems where the state matrix de-

pends affinely on the parameter vector and quasi LPV systems, where the parameters depends on

measurable outputs.

10.1 FPRG for LPV systems

Let us consider the class of linear parameter–varying systems of which state matrix depends affinely

on the parameter vector will be considered. This class of systems can be described as:

Px.t/ D A.�/x.t/C B.�/u.t/C
m
X

j D1

Lj .�/vj .t/

y.t/ D Cx.t/; (10.5)

where vj are the failures to be detected, C is right invertible,

A.�/ D A0 C �1A1 C � � � C �NAN ; (10.6)

B.�/ D B0 C �1B1 C � � � C �NBN ; (10.7)

Lj .�/ D Lj;0 C �1Lj;1 C � � � C �NLj;N ; (10.8)

and �i are time varying parameters. It is assumed that each parameter �i and its derivatives P�i

ranges between known extremal values �i.t/ 2 Œ��i ; �i � and P�i.t/ 2 Œ� P�i ; P�i �, respectively. Let

us denote this parameter set by P .

The assertion of MA remains valid also for the LPV systems (10.5), i.e.,

Proposition 23: For the LPV systems (10.5) one can design a – not necessarily stable – residual generator

of type

Pw.t/ D N.�/w.t/ �G.�/y.t/C F.�/u.t/ (10.9)

r.t/ D Mw.t/ �Hy.t/; (10.10)
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10 Decoupling in fault detection and control

if and only if for the smallest (parameter varying) unobservability subspace U� containing L2 one has U� \
L1 D 0; where Li D [N

j D0ImLi;j .

Proof Let H be the solution of KerHC D KerC C U�, and M is the unique solution of

MP D HC , where P is the projection P W X ! X=U�. By the definition of the unobserv-

abilitry subspaces there is a matrix G0.�/ such that .A.�/CG0.�/C /U
� � U� holds. Then set

A0.�/ D A.�/CG0.�/C jX=U�; N.�/ D A0.�/ and F D PB.�/.

One can compute an acceptable G0.�/ as follows: let H1 be the matrix that completes H to a

nonsingular matrix and let us consider a matrix K1 that has as raws the coordinates of the basis

vectors for X 	 U�. Let us denote by

K D

2

4

K1

H1C

K3

3

5 ;

where K3 is an arbitrary matrix that makes K nonsingular.

Then

KA.�/K�1 D

2

4

A11.�/ A12.�/ 0

A21.�/ A22.�/ A23.�/

A31.�/ A32.�/ A33.�/

3

5 ;

and the matrix G0.�/ can be chosen as

G0.�/ D K�1

2

4

0 �A12.�/

0 0

0 0

3

5

�

H

H1

�

:

Example: As an illustrative example let us consider the following linearized parameter varying

model of the longitudinal dynamics of an aircraft:

Px.t/ D A.�/x.t/C Bu.t/CL1v1.t/CL2v2.t/

y.t/ D Cx.t/;

whereA.�/ D A0C�1A1C�2A2: It is assumed that the parameter �1 and �2 vary in the intervals

Œ�0:3; 0:3� and Œ�0:6; 0:6�; respectively, see Figure 10.1.
The state matrices are:

A0 D

2

6
6
6
6
6
4

�1:05 �2:55 0 0 �169:66 �0:0091
2:55 �1:05 0 0 57:09 0:0017

0 0 �77:53 39:57 0 0
0 0 0 �20:20 0 0
0 0 �8:80 0 �20:20 0
0 0 0 0 0 �0:1000

3

7
7
7
7
7
5

A1 D

2

6
6
6
6
6
4

0 1 0 0 1 0
1 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7
7
7
7
7
5

A2 D

2

6
6
6
6
6
4

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7
7
7
7
7
5

B D

2

6
6
6
6
6
4

0
0
0

�4:49
0
0

3

7
7
7
7
7
5
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Figure 10.1: Scheduling variables for the simulation
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Figure 10.2: Fault signals and the estimated residuals

L1 D

2

6
6
6
6
6
4

0
0
0
0

1:00
0

3

7
7
7
7
7
5

; L2 D

2

6
6
6
6
6
4

3:55 2:41
�0:55 8:04

0 0
0 0

�0:02 0:56
0 0

3

7
7
7
7
7
5

; C D

2

6
6
4

�0:01 0:1 0:07 0 0:0 �0:000
�0:48 �0:6 0:00 0 �49:5 �0:002
0:03 0:1 �0:06 0 �0:0 0:000
0:26 �0:1 0:01 0 0:0 �0:000

3

7
7
5

The simulation results are depicted on Figure 10.2.

10.2 Disturbance decoupling

The scope of this section is to solve the disturbance decoupling problem(DDP), see Wonham (1985),

for LPV systems.

Consider the system

Px D A.�/x C B.�/uC S.�/q (10.11)

y D Cx (10.12)

where q represents a disturbance and the matrix S.�/ has the same affine parameter dependent

structure like A.�/.
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10 Decoupling in fault detection and control

By using the concept of generalized controllability .A; B/–invariant subspaces, Bhattacharyya

(1983), one can provide a possible solution to the DDP problem, see Otsuka (2000). A generalized

.A; B/–invariant subspace can be viewed as a special .A;B/–invariant subspace, where the gain

matrix F is independent of the parameters.

As it is shown in the following example, there are .A;B/–invariant subspaces that are not

generalized .A; B/–invariant: let us consider

A.�/ D
�

1 �

0 1

�

; B D
�

1

0

�

; V D Im

�

0

1

�

: (10.13)

Then there exists F.�/; namely Œ0 � ��; such that

.A.�/C BF.�//V � V ; � 2 P ; (10.14)

but there does not exist a parameter independent F; such that A.�/C BF satisfy the invariance

property. Therefore by using parameter varying invariant subspaces one might obtain less conser-

vative solutions for the disturbance decoupling problem.

The aim of the proposed algorithm is to find, if it is possible, F W Œ0; T � ! R
m�n, such that

hA C BF jSi � C : (10.15)

Here S represents all possible images of matrices S.q/ which can occur on the time interval

Œ0; T �. Practically we have to use

S D
X

�2P

S.�/ (10.16)

to be sure that all possible disturbances will be decoupled. Another practical assumption is that

B.�/ D B . Then the following theorem holds:

Proposition 24: Let us denote by V� the maximal .A;B/–invariant subspace contained in C . Then the
DDP problem is solvable if and only if

S � V�: (10.17)

In contrast to the LTI case, when stabilizability is guaranteed by certain pole allocation proper-

ties, in the LPV case the problem of stability is more involved. A common stabilization strategy

in these schemes is to suppose a Lyapunov function of certain type – usually a quadratic Lyapunov

function defined by a constant positive definite matrix – and to find the stabilizing feedback gains

starting from the corresponding analysis equations. This method is sketched in the next section.
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10 Decoupling in fault detection and control

10.3 The question of stability

An (q)LPV system is said to be quadratically stable if there exist a matrix P D P T > 0 such that

A.�/TP C PA.�/ < 0 (10.18)

for all the parameters � 2 P : A necessary and sufficient condition for a system to be quadratically

stable is that the condition (10.18) holds for all the corner points of the parameter space, i.e., one

can obtain a finite system of LMI’s that has to be fulfilled for A.�/ with a suitable positive definite

matrix P; see Apkarian et al. (1995).

In order to obtain a quadratically stable residual generator one can setN.�/ D A0.�/CG.�/M
in (10.9), where G.�/ D G0 C �1G1 C � � � �NGN is determined such that the LMI defined in

(10.18), i.e.,

.A0.�/CG.�/M/TP C P.A0.�/CG.�/M/ < 0

holds for suitableG.�/ and P D P T > 0: By introducing the auxiliary variableK.�/ D G.�/P;

one has to solve the following set of LMIs on the corner points of the parameter space:

A0.�/
TP C PA0.�/CM TK.�/T CK.�/M < 0:

Remark 15: If KerC � U� then one can choose G.�/ such that the matrix N.�/ be parameter indepen-
dent with arbitrary eigenvalues, since the equation G.�/CU D UT �A.�/U has a solution for arbitrary
T; where U is the insertion map of X=U�:

This method for quadratic stabilization can be also used for computing the gains �i for the

inversion based tracking controller (9.23).
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11 New Scientific Results

11.1 Controllability

Consider the (open-loop) linear switched system ˙.S;U/:

Px.t/ D A.�.t//x.t/C B.�.t//u.t/ (11.1)

where x 2 R
n is the state variable, u 2 U � R

m is the input variable � W R
C ! S is

a measurable switching function mapping the positive real line into S D f1; � � � ; sg, i.e., the

matricesA.�/,B.�/ andC.�/ are measurable. The input set might be unconstrained U D R
m or

constrained U D R
m
C. A finite switching sequence is � D .s1; s2; � � � ; sq/ while the corresponding

switching time sequence is denoted by � D .t1; t2; � � � tq/; ti < 0 and the control input sequence

is � D .u1; u2; � � � ; uq/.

In what follows the main results of the research concerning controllability of this system and

reported in the Thesis are presented:

Thesis 1 ( Chapter 3 and 4, Propositions 3, 4, 5, 6 and Corollary 1, 2, 3).

Concerning controllability properties of switched linear time invariant systems the following results were estab-
lished:

Full rank reachability For a completely controllable linear switching system for arbitrary point pairs

.x; y/ one has that y is full rank/normally reachable from x. Moreover, every point pair can be joined
in a full rank/normal reachable way by using a fixed sequence, i. e., .�; �/=.�; �/ fixed.

Finite switching number A completely controllable linear switching system is also globally controllable
by using piecewise constant switching functions, i. e., using only a finite number of switchings. Moreover,
there exist a bound for the necessary number of switchings, that depends only on the system matrices

and U. There exist a universal (finite) switching sequence � such that the time varying system Px D
A.�/x C B.�/u is globally controllable.

Sign constrained inputs A complete–controllability condition has been formulated for linear switching
systems controlled by sign constrained inputs. The condition – a generalization of the multivariable

Kalman rank condition – is expressed in algebraic terms and al algorithm is also provided.

For every completely controllable linear switching system (11.1) the sampled discrete–time sys-

tem is also completely controllable for suitable sampling rates. Moreover for every completely

controllable linear switching system one can associate – not necessarily a unique – completely con-

trollable periodic linear time varying system Px D A.t/x C B.t/. The non–uniqueness comes
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11 New Scientific Results

from the fact that one has more switching sequences that � such that for the reachability subspace

R� D R
n holds.

The solution set of of (11.1) is dense in the set of the relaxed solutions, i.e., the solutions of

the the convexified differential inclusion Px 2 Ac.x/, where Ac.x/ D
Ps

iD1 ˛i.Aix C Biu/ and

˛i � 0 and
Ps

iD1 ˛i D 1. Hence, the corresponding attainable sets coincide.

It was shown that the following conditions are equivalent:

a) the switching system Px D Aix C Biu; i 2 f1; � � � ; sg; u 2 U is controllable,

b) the associated differential inclusion Px 2 Ac.x/; x.0/ D 0 is controllable,

c) for some k � 1, one has Ak
c .0/ D .�A/kc .0/ D R

n.

Introducing the notation cofVj g for the convex hull of the subsets Vj � R
n, then the sets Ak

p WD
Ak

c .0/ and Ak
m WD .�A/kc .0/ can be computed using the following algorithm:

General Controllability Algorithm:

U D cofBiU j i D 1; � � � ; sg
A1

p D U ; A1
m D �U ;

AkC1
p D cofAiA

k
p C BiU j i D 1; � � � ; sg;

AkC1
m D cof�AiA

k
m � BiU j i D 1; � � � ; sg:

If the system is completely controllable then there is a k such that Ak
p D Ak

m.

Additional details can be found in the papers Bokor and Szabó (2003a); Bokor, Szabó and Szigeti

(2007c); Stikkel et al. (2004); Szabó (2009).

The theoretical results concerning controllability in engineering application related to fault tol-

erant and reconfigurable control of vehicles, Gáspár, Szabó and Bokor (2008c,a); Gáspár, Szabó,

Szederkényi and Bokor (2008d). In cooperation with the Department of Aerospace and Mechanics,

University of Minnesota the developed algorithms were successfully applied in the controllability

problem related to the longitudinal dynamics of a supercavitating torpedo, Bokor, Balas and Szabó

(2006).

11.2 Stabilizability

The zero solution of the differential inclusion Px 2 Ac.x/ is called asymptotically (weakly) stable

if there exists a solution x.t/ such that for any � > 0 there is a ı > 0 and � > 0 such that if

jjx.0/jj < ı then jjx.t/jj < � holds for all t � 0 and if jjx.0/jj < � then limt!1 x.t/ D 0

holds.

For a given set of non–autonomous (controlled) linear switched systems (11.1) we call General-
ized Piecewise Linear Feedback Stabilizability (GPLFS) the problem of finding a closed-loop switching

strategy with
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� suitable linear feedbacks ui D Kli
x; i 2 S

� a switching law �.x/ 2 S; x 2 R
n

that (weakly)stabilizes the system.

Thesis 2 ( Chapter 5, Propositions 7,8, 9, 10 ).

Concerning stabilizability properties of switched linear time invariant systems the following results were estab-

lished:

Stabilizability A completely controllable linear switching system is globally asymptotically controllable,

hence it is closed–loop stabilizable.

Linear feedback The completely controllable linear switching system (11.1) is generalized piecewise linear
feedback stabilizable.

Time driven stabilization Completely controllable linear switched systems can be piecewise linear feedback

stabilized using a periodic switching sequence. The feedback gains can be computed by obtaining a
switching sequence that realizes the complete controllability and by solving an LMI.

The reasoning behind introducing the concept of generalized piecewise linear feedback stabiliz-

ability is to separate the task of finding a suitable switching strategy and that of finding suitable

control inputs with low complexity that stabilizes the system in closed–loop.

The main idea is to substitute the original stabilizable non–autonomous system by a stabiliz-

able autonomous linear switched system that might contain more modes then the original one, by

applying as control inputs a number of suitable static linear control feedbacks.

It was shown that for a controllable uncertain discrete–time switching system xkC1 D Ai .�/xkC
Bi.�/uk ; uk 2 R

m and a corresponding switching sequence � D .s1; � � � ; sM / such that

R� D R
n independently of �, there exist a positive definite matrix S , nonsingular matrices

Vi and matrices Fi such that the following LMI is feasible:
2

6
6
6
6
6
4

S AsM
VM C BsM

FM : : : 0 0

.�/T VM C V T
M : : : 0 0

:::
:::

:::
:::

:::

0 0 : : : V2 C V T
2 As1

VM C Bs1
F1

0 0 : : : .�/T V1 C V T
1 � S

3

7
7
7
7
7
5

> 0

The system can be stabilized with the periodic switching signal defined by � and the state feedback

gains given by Ki D FiV
�1

i ; i D 1; � � � ;M .

Additional details can be found in the papers Szabó, Bokor and Balas (2007, 2008); Szabó (2009);

Szabó, Bokor and Balas (2009c).

The motivating engineering problems that provide, among others, the applicational background

of these stabilizability results were related to fault-tolerant reconfigurable control with multiple,

possibly conflicting performance specifications, see Bokor, Szabó, Nádai and Rudas (2007b); Gáspár

et al. (2009,a).
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11.3 Parameter varying invariant subspaces

Thesis 3 ( Chapter 6 and 7, Lemma 4, Proposition 11, 12, 13, 14, 15, 16, Algorithm AISAL,

AISAK, ABISA, CAISA, CSA, USA).

An extension was given of the classical invariant subspaces defined for LTI systems to a parameter–varying
context, i. e., for LPV systems. Moreover, if the parameter dependence is affine, a series of algorithms are

provided for the effective computation of these subspaces.

Invariant subspaces: For LPV systems a subspace V is called parameter-varying invariant sub-

space for the family of the linear maps A.�/ (or shortly A-invariant subspace) if

A.�/V � V for all � 2 P :

Furthermore, if B denotes ImB.�/, a subspace V is called parameter-varying .A; B/–invariant

subspace (or shortly (A;B)-invariant subspace) if for all � 2 P any of the following equivalent

conditions holds :

A.�/V � V C B.�/I

there exists a mapping F ı � W Œ0; T � ! R
m�n such that:

.A.�/C B.�/F.�//V � V :

The dual notion is the following: if C.�/ denotes KerC.�/, a subspace W is called parameter-

varying .C; A/-invariant subspace (or shortly (C ;A)-invariant subspace) if for all � 2 P any of

the following equivalent conditions holds:

A.�/.W \ C.�// � W I

there exists a mapping G ı � W Œ0; T � ! R
n�p such that:

.A.�/CG.�/C.�//W � W :

These definitions are suitable for quasi-LPV (qLPV) systems, too.

For the LPV case and with a constant B matrix one can get the following definition for the

controllability subspace: R is called parameter-varying controllability subspace if there exists a

constant matrixK and a parameter–varying matrix F W Œ0; T � ! R
m�n such that

R D hA C BF jImBKi;

where the maximal A-invariant subspace contained in a constant subspace K is denoted by hKjA.�/i.

The family of controllability subspaces contained in a given subspace K has a maximal element R�.

The dual notion of parameter-varying controllability subspace is the following: S is called an

unobservability subspace associated to an LPV system if there exists a constant matrix H and a

parameter–varying matrix G W P ! R
n�p such that

S D hKerHC jA.�/CG.�/C i:
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The family of unobservability subspaces associated to an LPV system containing a given subspace

L has a minimal element denoted by S�.

Invariance Algorithms: from a practical point of view it is an important question to characterize

these subspaces associated to an LPV system by a finite number of conditions. Assuming an affine

structure of the matrix A.�/ one has the following algorithms for finding supremal A-invariant

subspaces in a given subspace K or containing a given subspace L:

A-Invariant Subspace Algorithm over L

AISAL W V0 D L; VkC1 D L C
N
X

iD0

AiVk; k � 0;

V� D lim
k!1

Vk:

Obviously the algorithm will stop after a finite number of steps, i.e., V� D Vn�1. Similar to the

LTI case the subspace V� is denoted by hAjLi’

By duality, one has the A-Invariant Subspace Algorithm in K:

AISAK W W0 D K; WkC1 D K \
N
\

iD0

A�1
i Wk; k � 0;

W� D lim
k!1

Wk;

where A�1
i Wk denotes the inverse image of Wk under A�1

i : The subspace W� is denoted by

hKjAi.

The set of all (A;B)-invariant subspaces contained in a given subspace K , is an upper semilat-

tice with respect to subspace addition which admits a maximum that can be computed using the

(A;B)-Invariant Subspace Algorithm:

ABISA W V0 D K; VkC1 D K \
N
\

iD0

A�1
i .Vk C B/:

The limit of this algorithm is denoted by V� and its calculation needs at most n steps. The set of

all (C ;A)-invariant subspaces – note that C D KerC – containing a given subspace L, is a lower

semilattice with respect to subspace intersection. This semilattice admits a minimum which can be

computed from the (C ;A)-Invariant Subspace Algorithm that can be obtained by duality from

the ABISA algorithm:

CAISA W0 D L; WkC1 D L C
N
X

iD0

Ai.Wk \ C/:

The limit of this algorithm will be denoted by W�. The minimal element of the family of

parameter-varying unobservability subspaces containing a given subspace L can be computed as
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the result of the parameter-varying Unobservability Subspace Algorithm (USA) :

USA W S0 D X; SkC1 D W� C
 

N
\

iD0

A�1
i Sk \ C

!

S� D lim
k!1

Sk

where W� is computed by CAISA.

By duality one can obtain the parameter-varying Controllability Subspace Algorithm.

Additional details can be found in the papers Balas et al. (2002, 2003); Bokor, Szabó and Stikkel

(2002a); Szabó et al. (2002).

Results of the research and the developed LPV algorithms were directly applied in solving vehicle

control problems, such as the FDI filter design for a Boeing 747 aircraft, see Bokor, Szabó and Balas

(2002c); Bokor, Szabó and Stikkel (2002a); Stikkel et al. (2003).

11.4 Dynamical inversion of LPV systems

Let us consider the class of LPV systems with m inputs and p outputs that can be described as:

Px.t/ D A.�.t//x.t/C B.�.t//u.t/

y.t/ D Cx.t/

where

A.�.t// D A0 C �1.t/A1 C : : :C �N .t/AN ;

B.�.t// D B0 C �1.t/B1 C : : :C �N .t/BN ;

and the dimension of the state space is supposed to be n.

It is assumed that each parameter �i ranges between known external values �i .t/ 2 Œ�
i
; �i � and

the parameter set that contains all .�1.t/; � � � ; �N .t//; where t 2 Œ0; T � will be denoted by P .

Thesis 4 ( Chapter 9, Proposition 20, 21, 22).

A method was established for the computation of the dynamical inverse system corresponding to the class of

(q)LPV systems with affine parameter dependence. Based on the dynamical inversion algorithm an unknown
input observer and a controller that solves the output tracking problem was designed.

The LPV system is left-invertible if

V� \ B D 0;

and it is right invertible if

S� C V� D X;

98



11 New Scientific Results

where V� is the maximal (A;B)-invariant subspace contained in C D Ker C . The minimal

(C ;A)-invariant subspace containing B D ImB is denoted by S�.

To construct the dynamical inverse, one can always choose a coordinate transform of the form

z D T x; where T D
�

V�?

�

�

; � � B?:

Accordingly, the system will be decomposed to:

P� D A11.t/� C A12.t/�C NB.t/u
P� D A21.t/� C A22.t/�

y D NC�:

Follows, that applying a suitable feedback

u D F2.t/�C v;

such that V� is (A C BF;B) invariant, one can obtain the system:

P� D A11.t/� C NBv
y D NC�:

By the maximality of V� follows that both � and v can be expressed as functions of y and its

derivatives. With Qy D S�, where

Qy D
h

y1; � � � ; y.
1/
1 ; � � � ; yp; � � � ; y.
p/

p

iT

one has v D NB�1S�1. PQy � PSS�1 Qy � S NA11S�1 Qy/, i.e.,

P� D A22�C A21�

u D F2�C NB�1S�1. PQy � . PSS�1 C SA11S�1/ Qy/:

Given an output yd to be tracked the tracking controller has the following structure:

PN� DA22 N�C A21��1 Qyd C �1 Qe
Nu DF2 N�C �. Qyd /C �2 Qe;

with �. Qyd / D NBf�1g��1. PQy � P���1 Qy � �A11��1 Qy/ and suitable, possibly parameter varying,

gains �1; �2 that are selected to improve the performance of the controller.

Further details can be found in the papers Balas et al. (2004); Edelmayer et al. (2003, 2004,

2009); Szabó et al. (2003a).

The results were used in engineering applications, such as reconfigurable fault detection controls

of vehicle, fault tolerant active suspension design, see Szabó et al. (2003); Gáspár, Szabó and Bokor

(2007, 2008f); Gáspár et al. (2009). The developed algorithms were also successfully applied in the

dynamic inversion based controller design for stabilizing the primary circuit pressurizer at the Paks

Nuclear Power Plant Hungary, see Gáspár et al. (2006); Szabó et al. (2005).
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11.5 Bimodal systems

Thesis 5 ( Chapter 8, Lemma 5, Proposition 17 , 18 and 19).

A controllability decomposition was established for bimodal systems that have a well defined relative degree. It

was shown that such a bimodal system is completely controllable if and only if a given subsystem of the control-
lability decomposition is completely controllable. It turns out that the latter is equivalent to the controllability
of an input constrained open–loop switching system. If the bimodal system is globally controllable, then it is

asymptotically stabilizable.

A bimodal piecewise linear system is a switching system where the switching law defined by a division

of the state space by a hyperplane C , i.e.,

Px.t/ D
(

A1x.t/C B1u.t/ if x 2 C�;

A2x.t/C B2u.t/ if x 2 CC:

The initial state of the system at t0 is determined by the initial state x0 D x.t0/ and the initial

mode s0 2 f1; 2g in which the system is found at t0. If ys D Cx defines the decision vector then

C D KerC D fx jCx D 0g , CC D f x jCx � 0 g and C� D f x jCx � 0 g, respectively. The

state matrices are constant and of compatible dimensions, B1; B2 having full column rank.

Let us suppose that the relative degree corresponding to the output ys and the i th mode is

ri , i.e., y
.k/
s D CAk

i x; k < ri and y
.ri /
s D CA

ri

i x C CA
ri �1
i Biu with CA

ri �1
i Bi ¤ 0. If

r1 D r2 D r – when the system is always well posed – the the bimodal system can be written as

P� D
�

P1�CR1ys CQ1 Qu1 if ys � 0

P2�CR2ys CQ2 Qu2 if ys � 0

P� D
�

Ar� C Brv1 if ys � 0

Ar� C Brv2 if ys � 0
:

The bimodal system can be transformed, via a state transform and suitable feedbacks, to

P�1 D
�

P1;1�1 C QR1ys C QQ1u1 if ys � 0

P2;1�1 C QR2ys C QQ2u2 if ys � 0
; (11.2)

P�2 D
�

P1;2�2 CR1ys if ys � 0

P2;2�2 CR2ys if ys � 0
; (11.3)

Pys D v; (11.4)

where the subsystem (11.2) is controllable on C using open–loop switchings. Thus, this decompo-

sition can be viewed as a controllability decomposition of the bimodal LTI system where the study

of the controllability of the original bimodal system reduces to controllability of the bimodal system

formed by (11.3) and (11.4).

The bimodal system (11.3), (11.4) can be seen as a dynamic extension of

P�2 D Pi;2�2 C NRi;2w; i 2 f 1; 2 g; w � 0: (11.5)
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If the points �0 and �f can be connected by a trajectory of the linear system P� D P�CRw using

nonnegative control w � 0 then, for a given r , they can be also connected using a smooth nonneg-

ative control ! � 0 with prescribed end points, i.e., !.k/.0/ D !0;k and !.k/.Tf / D !Tf ;k for

k D 0; 1; � � � ; r . It follows that controllability of (11.3),(11.4) is equivalent to controllability of

(11.5). Moreover the bimodal system (11.3), (11.4) is stabilizable if and only if the corresponding

sign constrained open–loop switching system (11.5) is stabilizable.

If the bimodal system has continuous dynamics, i.e., P1 D P2 D P , then the system

Px D Px CRw w 2 R
2
C

is stabilizable if and only if the unconstrained system is stabilizable and all real eigenvectors v ofP T

corresponding to a nonnegative eigenvalue of P T have the property that RT v has both positive

and negative components.

Additional details can be found in the papers Bokor, Szabó and Balas (2007, 2006a,b); Bokor

and Szabó (2009).

The engineering applications that provide the motivation background for the research of bimodal

systems were related to control of the hydraulic actuator of an active suspension system and the

controllability study for a high speed supercavitating underwater vehicle, see Bokor, Szabó and

Balas (2006b, 2007); Gáspár, Szabó and Bokor (2008a); Gáspár et al. (2009a).
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Demands imposed by a series of engineering applications have motivated the controllability and

stabilizability study concerning hybrid systems of the thesis. Although the presented results are

formulated in theoretical terms they were successfully used, however, in practice as the numerous

applicational examples contained in the corresponding publications illustrates. The design of an

active suspension system for heavy vehicles and problems related to fault-tolerant reconfigurable

control with multiple, possibly conflicting performance specifications provided the main field where

the result were applied, Bokor, Szabó, Nádai and Rudas (2007b); Gáspár, Szabó and Bokor (2008);

Gáspár, Szederkényi, Szabó and Bokor (2008b); Szabó, Bokor and Balas (2008); Bokor, Szabó and

Nádai (2009a); Gáspár et al. (2009).

The target of the research presented by the thesis is placed at the forefront of modern control

theory. The work extends the formulation of basic properties of LTI control systems originated

from R.E. Kalman, such as controllabiliy and stabilizability, to a special class of switched systems,

the bimodal systems. A main result of the research states that controllability of bimodal systems is

equivalent to controllability of a corresponding open-loop switched system having sign constraint

control inputs. Moreover, using geometric tools an algebraic condition that describes controllability

and extends the Kalman rank test was given.

The study of bimodal systems was motivated by an application representing a true emerging

technology, Bokor, Balas and Szabó (2006); Bokor, Szabó and Balas (2006a,b, 2007). The research

concerning controllability study of a high speed supercavitating underwater vehicle was done in

cooperation with the Department of Aerospace and Mechanics, University of Minnesota, headed

by Prof. Gary Balas. The research was supported by the Office of Naval Research through the

project "Stability and Control of Very High Speed Cavity Running Bodies". The designed control

algorithms were applied on the special test-field of the project in Minneapolis.

The basic geometric view present in the controllability study is more accentuated in the second

half of the thesis. This part presents results concerning parameter-varying invariant subspaces, a

concept obtained by extending the notion of invariant subspaces of LTI systems and applying it to

the class of (q)LPV systems. In the solution of engineering applications it is a central issue to use

efficient design tools. Dealing with problems raised by the practice the work aims to provide appli-

cable solutions, both theoretical procedures and practical algorithms. The research work revealed

new methods which has been proven to be useful in the design of control solutions that satisfy

more efficiently the practical need for robust and fault-tolerant systems. Results of the LTI con-

trol theory were extended to LPV systems which makes possible the application of current efficient

optimization techniques based on LMIs.

The thesis provides a set of algorithms to obtain the different parameter-varying invariant sub-

spaces for the case of affine parameter dependence. Based on these tools in the (q)LPV context
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solutions to a series of basic control problems, such as unknown input detectability, disturbance

decoupling, output tracking, are presented. In the development of these design methods the geo-

metric approach has played a central role.

Results of the research and the developed LPV algorithms were directly applied in solving vehicle

control problems, such as preventing lane departure by asymmetric braking or rollover prevention.

As an example, a (q)LPV based detection algorithm was provided that finally in the fault detection

for the longitudinal dynamics of the airplanes (Boeing 747) was applied, Bokor, Szabó and Stikkel

(2002a); Balas et al. (2004); Szabó et al. (2003); Bokor and Szabó (2009).

An other application example is from process engineering. Based on the developed dynamical

inversion techniques a set-point tracking control was designed for stabilizing the primary circuit

pressurizer at the Paks Nuclear Power Plant, Szabó et al. (2005); Gáspár et al. (2006). The imple-

mented controller is still in operation on all four blocks of the power plant. Using the new controller

the variation of the pressure in the primary circuit was reduced from the maximal interval of 1 bar

to 0:25 bar in a wide range of operational conditions. The implemented control scheme demon-

strates that significant improvement of the performance can be achieved by a combined application

of accurately identified mathematical models and controllers based on modern principles without

the need for a costly change of the technological environment.

Since the basic topics of control theory, such as controllability, geometrical system theory, are

revisited by the research work, the provided theoretical methods and practical algorithms can be

used through the educational activity. The results demonstrate directly the applicability and impact

of theoretical concepts to the solution of practical, engineering problems.

The thesis contains the results of a research work that lasts a decade. However, there are still a

lot of problems related to this relatively narrow field, motivated by real world applications, to solve.

Considering a quadratic performance criteria for controlled linear switched systems is a relatively

new topic, where only a few preliminary results for discrete time switched systems are available. An

extension of the bimodal class, the cone-wise systems, i.e., systems with a state space having a conic

partition and on each of the individual partitions the dynamics being linear, is also a recent topic

with some early results for the planar setting. Related to robust invariant subspaces, a combination

of the geometric based methods with other techniques that aims robustness and less conservative

solutions, is a current research topic. There are also a series of problems concerning reachability

set computations and controllability problems combined with a required performance level for the

reconfiguration of controls, cast as (q)LPV systems. In the solution of these problems the starting

points are the techniques and methods used through the thesis.
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A Linear time varying systems

Let us consider the state dynamics of a controlled linear time varying (LTV) system:

Px.t/ D A.t/x.t/C B.t/u.t/ (A.1)

where x.t/ 2 X � R
n is the state vector, u.t/ 2 R

m is the control input while the initial condition

is x0 D x.t0/. The measured signals are obtained by a linear readout map y.t/ D C.t/x.t/, with

y 2 R
p.

A convenient way to study all solutions of a linear equation on the interval Œ�; ��, for all possible

initial values simultaneously, is to introduce the corresponding transition matrix ˚.�; �/:

x.�/ D ˚.�; �/x.�/C
Z �

�

˚.�; t/B.t/u.t/dt D ˚.�; �/.x0 C
Z �

�

˚.�; t/B.t/u.t/dt /;

where ˚.t; t0/ is nonsingular and ˚.t; t0/ D X.t/X�1.t0/ with PX.t/ D A.t/X.t/; X.t0/ D
I; X.t/ 2 R

n�n. The inverse map Q.t/ D X�1.t/ obeys to the equation PQ.t/ D �Q.t/A.t/
with Q.t0/ D I.

A diffeomorphism T .t/ defines a time varying coordinate change1 z D T x in the state space.

The dynamic equation transforms as:

Pz D . PT T �1 C TAT �1/z C TBu:

By using the Lyapunov transformation defined by Q.t/ D X�1.t/, one has the equivalent system

Pz D Q.t/B.t/u.t/. Recall that ˚.�; t/ D X.�/X�1.t/, i.e.,

PNz D ˚.�; t/B.t/u.t/;

with Nz D X.�/z.

Thus in this new coordinate system controllability reduces to the solvability study of the equa-

tion:

Nz0 D �
Z �

�

˚.�; t/B.t/u.t/dt

for a suitable finite � .

1Lyapunov transformation; the corresponding dynamics are called Lyapunov equivalent.
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A.1 Linear affine dynamics

For affine time dependency A.t/ D
PN

iD1 �i.t/Ai the fundamental matrix can be given, at least

locally, in terms of the coordinates of second kind (Wei and Norman; 1964), i.e., the solutions of the

Wei–Norman equation:

Pg.t/ D .

K
X

iD1

e�1g1 � � � e�i�1gi�1Ei i /
�1�.t/; g.0/ D 0: (A.2)

Here �.t/ D Œ�1.t/; : : : ; �N .t/�
T and f OA1; : : : ; OAKg is a basis of the Lie-algebra L.A1; : : : ; AN /,

the structure matrices �i D Œ
 l
i;j �l;j D1;��� ;K of the algebra are given by Œ OAi ; OAj � D

PK
lD1 


l
i;j

OAl

and Ei i is the matrix with a single nonzero unitary entry at the i -th diagonal element.

Locally, the fundamental matrix is given by the expression:

˚.t/ D eg1.t/ OA1eg2.t/ OA2 � � � egn.t/ OAn; (A.3)

and generally it is not available in closed form.

c-excited systems

Exploiting the affine structure and using the Peano–Baker formula for the transition matrix, i.e.,

˚.t; �/ D I C
Z t

�

A.s1/ds1 C I1.t; �/C � � � C Il.t; �/C � � � ;

where

Il.t; �/ D
Z t

�

� � �
Z sl

�

A.s1/ � � �A.slC1/dslC1 � � � ds1;

one can give an upper bound of the reachability (sub)space.

Let us consider systems with constant B and such that A.t/ has an affine structure; then the

fundamental matrixQ.t/ can be written as

Q.t/ D
n�1
X

n1D0

: : :

n�1
X

nKD0

OAn1

1 : : : OAnK

K  n1;��� ;nK
.t/: (A.4)

Introducing the multi-index notation OAi WD OAi1
1 : : :

OAiK
K , with K WD f0; 1; � � �n � 1gK and i WD

.i1; � � � ; iK/, let us choose a linearly independent set of matrices from the set f OAi j i 2 Kg; say

f OAj j j 2 j; j � Kg. For the sake of simplicity, let us assume that I is a member of this basis, i.e.,

one can impose the condition that Œ'j.0/�j2j is the first canonical unit vector. With these notations,

one has

Q.t/ D
X

j2j

OAj'j.t/: (A.5)
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Note, that the system f'j.�/ j j 2 jg is not necessarily linearly independent.

Recall that
PN

iD0Ai�i.t/ D
PK

iD0
OAi O�i.t/ and denote by�i the matrices for which OAi Œ OAj�j2j D

Œ OAj�j2j.In ˝�i /. Then

A.t/Œ OAj�j2j D Œ OAj�j2j.In ˝�.t//; (A.6)

where �.t/ D
PK

iD0 O�k.t/�i :

Putting all these things together, it follows that the system f'j.�/ j j 2 jg is the first column of

the fundamental matrix associated to the equation

PQQ D � QQ�.t/; QQ.0/ D I: (A.7)

Note, that from this derivation the system f'j.�/ j j 2 jg is not necessarily unique, but our choice

satisfy (A.6).
Since

X.�/�1W.�; �/X.�/�� D
Z �

�

Œ OAjB �j2jŒ 'j.s/ �j2jŒ 'j.s/ �
�
j2jŒ

OAjB �
�
j2jds;

and subspace RA;B is exactly the image space of the matrix

RA;B WD Œ OAjB �j2j: (A.8)

one has

W.�; �/ D RA;B.

Z �

�

Œ 'j.s/ �j2jŒ 'j.s/ �
�
j2jds/R

�
A;B :

It is clear that if the system f'j.�/ j j 2 jg is linearly independent then rankW.�; �/ D rankRA;B ,

i.e., the system is c-exciting.
Suppose now that rankRA;B D m, where m � n, and let us consider the singular value

decomposition RA;B D USV � of this matrix. Then

rankW.�; �/ D rankŒ Im 0 �.

Z �

�

Œ Q'j.s/ �j2jŒ Q'j.s/ �
�
j2jds/Œ Im 0 �

�;

where Œ Q'j.s/ �j2J D V �Œ 'j.s/ �j2j. This set of functions can be chosen as the first column of the

fundamental matrix associated to the equation:

P̆ D � N�.t/˘ ˘.0/ D V �; (A.9)

with N�.t/ D V ��.t/V . It follows that if the functions f Q'0; � � � ; Q'mg are linearly independent,

then rankW.�; �/ D rankRA;B .

To conclude this section, a relation will be investigated between the functions Œ 'j.s/ �j2j and the

coordinate functions gi of the Wei–Norman formula. In the special case when g.t/ D t and A has
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n distinct eigenvalues the computation of the coefficients ˛i in etA D
Pn�1

iD0 ˛i.t/A
i , is relatively

easy, see e.g., Vidyasagar (1970):

˛i�1.t/ D
n
X

j D1

 Pn
kDi ak�

k�i
j

Pn
lD1 lal�

l�1
j

!

e�j t :

with P.s/ D
Pn

iD0 ais
i D

Qn
j D1.s��j /, the characteristic polynomial of A, and �j the distinct

eigenvalues.

The general case is more involved; let

P.s/ D .s � �1/
q1C1 � � � .z � �k/

qkC1

be the characteristic polynomial of the complex square matrixA, Pp.s/ WD Q.s/

.s��p/qpC1 . Let bp;n be

the n-th Taylor coefficient of 1
Pp.s/

at s D �p. Consider an entire function, i.e., a complex-valued

function that is holomorphic over the whole complex plane, f and letQ.f .s/; s/ 2 CŒs� be P.s/

times the singular part of f .s/

Q.s/
.

Hermite Lemma: A result due to Hermite reveals that:

h1. bp;n D .�1/n
P

ˇpD0

jˇ jDn

Q

j D1;:::;k

j 6Dp

�
qj C ǰ

qj

�
1

.�p��j /
qj C1C ǰ

where jˇj WD ˇ1 C � � � C ˇk and

ˇ runs over N
k ,

h2. Q.f .s/; s/ D
Pk

pD1

Pqp

qD0

Pq
j D0

f .j /.�p/

j Š
bp;q�j .s � �p/

q Pp.s/;

h3. f .A/ D Q.f .s/; A/:

Accordingly, then one can define functions 'j W R ! C for 0 � j < d such that

Q.ets; s/ D 'n�1.t/s
n�1 C � � � C '1.t/s C '0.t/:

By the Wei-Norman theorem, at least locally, the computation of the fundamental matrix X.t/

can be done by the product of matrices of the form eg.t/A, namely

X.t/ D eg1.t/ OA1eg2.t/ OA2 � : : : � egl .t/ OAl :

Substituting the formulae for each of the the matrix exponentials, i.e., egj .t/ OAj D
Pn�1

kD0 

j

k
.t/ OAk

j ,

where 

j

k
.t/ D 'k;j .gj .t//, one has that

X.t/ D
n�1
X

n1D1

: : :

n�1
X

nl D1


1
n1
.t/ � : : : � 
 l

nl
.t/ OAn1

1 � : : : � OAnl

l
:

Expressing the products in the basis determined by the multi-index sets J; and N, respectively, i.e.,

An D
P

j2j
OAj˛n

j , one has X.t/ D
P

j2j

P

n2N ˛
n
j 
n.t/A

j, with 
n.t/ D 
1
n1
.t/ � : : : � 
 l

nl
.t/, i.e.,

'j.t/ D
X

n2N

˛n
j 
n.t/: (A.10)

This expression makes possible, in principle, the verification whether these functions are linear

independent. However, the computational burden and the encountered numerical problems are so

high that a practical application of the method for a real-sized application is out of the question.
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A.2 Connection to the general nonlinear theory

Time varying systems can be viewed as input affine nonlinear systems, by augmenting the state

with the time variable as � WD Œt; xt �T and rewriting the system equations as:

P� D g0.�/C
m
X

iD1

gi.�/ui ;

with g0.�/ D
�

1

A.t/x

�

, gi.�/ D
�

0

Bi.t/

�

, and Bi is the i th column of B .

A distribution � will be invariant on an open set U under the vector fields gi if and only if

Œgi ; �j � D @�j

@�
gi � @gi

@�
�j 2 �.�/; for all �j 2 � and � 2 U; where �j ; j D 1; � � � dim.�/ are

vector fields locally spanning�; see Remark 6.1 on pp. 44 of Isidori (1989).

Controllability depends on the rank of the smallest distribution that contains g and is invariant

under the vector field f , given by the following algorithm : �0 D g; �iC1 D �i C Œf; �i � as

the limiting distribution of �� D limi!1�i .

For the linear affine system the distribution�i is spanned exactly by the vectors Bi .t/ given by

the Silverman–Meadows algorithm.

If �� is involutive, by the Frobenius theorem, one can determine the transformation that de-

composes system equations in the controllability form. To do this, it is necessary to solve partial

differential equations of the form .@x�/ıj D 0, where f ıj g span the distribution ��, for details

see Isidori (1989).

109



B Vector Fields

f W R
n ! R

n is a smooth vector field if all of its coordinate functions are real valued functions of

xT D
�

x1 x2 : : : xn

�T
with continuous partial derivatives of any order. These mappings may

be represented in the form of n-dimensional column vectors of real valued functions. The dual

object is called a covector field, which is a smooth mapping assigning to each point x an element of

the dual space .Rn/�. A special covector field is the so-called differential of a real-valued function �

defined on an open subset U of R
n:

d�.x/ WD @�

@x
WD
h

@�
@x1

@�
@x2

: : : @�
@xn

i

:

The derivative of � along f is defined as

Lf �.x/ WD d� � f D
n
X

iD1

@�

@xi

fi .x/;

which is a real-valued function. The Lie product Œf; g� of two vector fields f and g is a vector field

of the form

Œf; g�.x/ D @g

@x
f .x/ � @f

@x
g.x/:

The last operation of frequent use involves a covector field ! and a vector field f :

Lf !.x/ D f T .x/

�
@!T

@x

�T

C !.x/
@f

@x

and the result is a covector field, the derivative of ! along f .

The differential operations introduced above can be related to each other in the following way:

� if ˛; ˇ are real-valued functions and f; g are vector fields then

Œ f̨; ˇg�.x/ D ˛.x/ˇ.x/Œf; g�.x/ C .Lf ˇ.x//˛.x/g.x/ � .Lg˛.x//ˇ.x/f .x/;

� if ˛; ˇ are real-valued functions f a vector field and ! a covector field then

L f̨ ˇ!.x/ D˛.x/ˇ.x/.Lf !.x//C ˇ.x/h!.x/; f .x/id˛.x/

C.Lf ˇ.x//˛.x/!.x/:
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Suppose we have d smooth vector fields f1; : : : fd , all defined on the same open set U . The

vectors f1.x/; : : : ; fd .x/ span a subspace of R
n:

�.x/ WD span ff1.x/; : : : ; fd .x/g

which is called a smooth distribution. Starting from the dual objects, if we have !1; : : : ; !d smooth

covector fields we can define a subspace of .Rn/�:

˝.x/ WD span f!1.x/; : : : ; !d .x/g

and this mapping is called a smooth codistribution.

A distribution� is said to be involutive if �1; �2 2 � implies that Œ�1; �2� 2 �.

Let � be a distribution, the annihilator of � at point x is

�?.x/ WD fw� 2 .Rn/� W w�.v/ D 0 for all v 2 �.x/g:

Analogously, for a codistribution˝ one has

˝?.x/ WD fv 2 R
n W w�.v/ D 0 for all w� 2 ˝.x/g:

It is well-known that the dual space of R
n is isomorph with itself, i.e., for every w� 2 .Rn/� there

exists one and only one w 2 R
n such that

w�.v/ D hw; vi WD wT v:

The effect of a linear map A W R
n ! R

n on covectors, i.e., on the elements of .Rn/� can be

expressed as:
QA W .Rn/� ! .Rn/� QA.w�/ D wA:

Hence the notion WA makes sense for any "cosubspace" of covectors W . This cosubspace, gener-

ated by the covectors wT
1 ; : : : ; w

T
k

, is:

W D spanfwT
1 ; : : : ; w

T
k g

and it is often identified with the row image of the matrixW , with rows wT
1 ; : : : ; w

T
k

.

A control system on a smooth n-dimensional manifold M is a collection F of smooth vector

fields depending on independent parameters w D Œw1; � � � ; wm� 2 � � R
m called control inputs

such that w.t/ belongs to a suitable class of real valued functions W , called admissible controls.

A dynamical system can be considered as a nonlinear polysystem of the form

Px D f .x.t/; w.t//; x.0/ D 0; (B.1)

where in general, it is assumed that x 2 M and f .:; w/; w 2 � is an analytic (smooth) vector

field on M: It is supposed that M is an n-dimensional real analytic manifold (para-compact and

connected).

111



B Vector Fields

Associated with the system (B.1), denote by AF .x; t/ the set of all elements attainable from x

at time t: For each x 2 M; AF .x/ D [t�0AF .x; t/:

Under the Lie bracket, and the pointwise addition, the space of all analytic vector fields on

M becomes a Lie algebra; Lie.F / denotes the subalgebra generated by F . For each q 2 M ,

Lieq.F / is a subspace of TqM , the tangent space of M at q. A set of vector fields F on a

connected smooth manifold M is called bracket-generating (full-rank) if LieqF D TqM for all

q 2 M .

Families of vector fields F and G are said to be (strongly) equivalent if Lie.F / D Lie.G / and

AF .q; T / D AG .q; T / for all q 2 M and for all T > 0, where the overbar denotes the closure

of the sets. The Lie Saturate LS.F / of a family of vector fields F is the union of families strongly

equivalent to F .

In general it is difficult to construct the Lie saturate explicitly, however one can construct a

completely ascending family of compatible vector fields – Lie extension – starting from a given set

F of vector fields. A vector field f is called compatible with the system F if AF [f .q/ � AF .q/

for all q 2 M . Since LS.F / is a closed convex positive cone in Lie.F /, a possibility to obtain

compatible vector fields is extension by convexification, see Jurdjevic (1997): for f1; f2 2 F and

any nonnegative functions ˛1; ˛2 2 C1.M/ the vector fields ˛1f1 C˛2f2 is compatible with F .

If LS.F / contains a vector space V , then Lie.V/ � LS.F /.

B.1 Normal controllability

Let us denote by efwtx0 the solution of the equation P� D fw.�/; �.0/ D x0. Then for a given

vector field F one can consider the (positive) orbits of the vector field, i.e.,

˚q
�;x0
.!/.T / D efwq tqefwq�1

tq�1 � � � efw2
t2efw1

t1x0

where � D .t1; t2; � � � tq/; ti � 0 with T D
Pq

j D1 tj and ! D .w1; w2 � � �wq/ 2 �q; fwi
2 F .

We will use ˚
q
� for ˚

q
�;0.!/ with fixed !.

A point y 2 M is called normally reachable from an x 2 M if there exist a finite sequence of vector

fields ffi ; i D 1; � � � qg and N� 2 R
q
C such that ˚

q
N�;x D y and the mapping � 2 R

q
C ! ˚

q
�;x ,

which is defined in an open neighborhood of N� , has rank n D dimM at N� .

As a consequence of the surjective mapping theorem, Bartle (1976) Theorem 41:6, one has that

there is a neighborhood V of y such that the points z 2 V are normally reachable points from x.

Let us denote by N .x/ the set of normally reachable points. It follows that if N .x/ is not empty,

then it has a nonempty interior. A fundamental result is Theorem 4:3 in Sussmann (1976):

Theorem 1: Let F be a system of C r vector fields on the C rC1 manifold M , 1 � r � 1. Then the

following conditions are equivalent:

i. F is controllable

ii. F is normally controllable

iii. M is connected and, for every x 2 M , x is normally accessible from x.
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Remark 16: Further details concerning the relation between controllability and normal controllability can be

found in Grasse (1985), too. In Grasse and Sussmann (1990) it is proved that globally controllable smooth
systems are controllable by using piecewise constant controls. The key point here is that for a globally controllable
system every point has the normal accessibility property. Actually the interior points of the reachability set are

reachable by piecewise constant controls, for details see Sussmann (1987).

B.2 Convex processes

A convex processA from R
n to itself is a set-valued map satisfying �A.x/C�A.y/ � A.�xC�y/

for all �; � � 0, or, equivalently, a set-valued map whose graph is a convex cone. A convex

process is closed if its graph is closed and that it is strict if its domain is the whole space. With a

strict closed convex process A one can associate the Cauchy problem for the differential inclusion:

Px.t/ 2 A.x.t//; x.0/ D 0, for details see Filipov (1960) and Aubin and Cellina (1984).

If G � R
n, let us denote by GC its (positive) polar cone defined by

GC D fp 2 R
n j hp; xi � 0; 8x 2 G g :

The transpose A� of A is defined as the set-valued map defined by p 2 A�.q/ , 8.x; y/ 2
Graph.A/; hp; xi � hq; yi : For � 2 R the eigenvectors v of A� are the nonzero solutions of the

inclusion �v 2 A�.v/.

Motivated by the terminology used for linear systems we say that A satisfies the rank condition if

the subspace spanned by the cone Ak.0/ is the whole space for some integer k � 1.

Theorem 2 (Frankowska et al. (1986)): The following conditions are equivalent:

a) the differential inclusion Px.t/ 2 A.x.t//; x.0/ D 0 is controllable,

b) the differential inclusion is controllable at some time T > 0,

c) the rank condition is satisfied and A� has no eigenvectors,

d) for some k � 1, one has Ak.0/ D .�A/k.0/ D R
n.

Controllability of a linear control system is equivalent to the controllability of the differential

inclusion defined by Px.t/ 2 Ax.t/ C U; x.0/ D 0; with U D co.B˝/ is a closed convex cone

of controls, where co.S/ denotes the closure of the convex hull of the set S , see Aubin and Cellina

(1984). The adjoint inclusion is �Pq.t/ 2 AT q.t/; q.t/ 2 UC, see Frankowska et al. (1986).
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C Geometry of LTI systems

Let us consider the LTI control system

Px D Ax C Bu

with the output

y D Cx

It is assumed that columns of the matrix B 2 R
n�m and the rows of the matrix C are linearly

independent.

C.1 Brunovsky canonical form

The set of points that lies on the same trajectory with the origin is called the reachability (control-

lability) subspace. Let us denote the controllability subspace of the pair .A; B/ by R.A; B/:

The state space of the system is partitioned by the manifolds of type xCR.A; B/;where x 2 X:
By definition, the points of two different manifolds cannot be joined by a trajectory.

Any controllable linear system can be effectively transformed to Brunovsky canonical form,

Brunovsky (1970) by feedback and a change of state and input coordinates as asserted in the next

result:

Theorem 3 (Generalized Brunovsky canonical form): For every pair . A; B /, there exists a unique
sequence of integers k D . k1; k2; � � �km / satisfying

k1 � k2 � � � � � km; k1 C k2 C � � � C km D nc;

a linear transformation G and invertible linear transformations F and H such that the pair

. QA; QB / D . F.A � BH�1G/F �1; FBH�1 /

is in Brunovsky normal form, i.e.,

QA D

2

6
6
6
6
6
4

Ak1
0 � � � 0 0

0 Ak2
� � � 0 0

:::

0 0 � � � Akm
0

0 0 � � � 0 AJ

3

7
7
7
7
7
5

QB D

2

6
6
6
6
6
4

Bk1
0 � � � 0 0

0 Bk2
� � � 0 0

:::

0 0 � � � Bkm
0

0 0 � � � 0 0

3

7
7
7
7
7
5

;
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with

Aki
D

2

6
6
6
6
6
4

0 1 0 � � � 0

0 0 1 � � � 0
:::

0 0 0 � � � 1

0 0 0 � � � 0

3

7
7
7
7
7
5

Bki
D

2

6
6
6
6
6
4

0

0
:::

0

1

3

7
7
7
7
7
5

;

and AJ a block diagonal matrix with Jordan blocks.

The Generalized Brunovsky form reveals two kinds of complete invariants: the controllability

indices ki of the controllable part of . A; B / and the invariant factors of the uncontrollable part of

. A; B / shown in Aj :

An LTI system with unconstrained inputs is not only controllable on its controllability subspace,

but it can also be driven on any sufficiently smooth trajectory that lies in the controllability sub-

space. However, if there is a constrain on the input u, this property might not hold, as the following

small example shows:

Px1 D x2

Px2 D u;

if u � 0; then x1 cannot be decreased.

Considering the measured output y D Cx then by using feedback, and output injection one

can obtain the Morse canonical form, i.e.,

. QA; QB; QC / D . F.AC BH CKC/F �1; FBH;GCF �1 /

where

QA D

2

6
6
4

A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4

3

7
7
5

QB D

2

6
6
4

0 0

B2 0

0 0

0 B4

3

7
7
5

QC D
�

0 0 C3 0

0 0 0 C4

�

with . Ai ; Bi /; i D 2; 4 Note that the transformed system is related to original system by an

invertible state/input transformation U :
�

Qx
Qu

�

D
�

F 0

G H

��

x

u

�

D U

�

x

u

�

:

If there is a constraint on u, the feedback might not be implemented, so the system is equivalent

through similarity with a canonical form that also contains coupling terms.

C.2 Controlled and conditioned invariance

In the absence of control action a subspace of the state space X is a locus of trajectories if and

only if it is an A-invariant1set. The extension of this property to the case in which the control is

1For the details concerning the notions and propositions used in this section the interested reader is sent to Basile and

Marro (2002) and Wonham (1985).
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present and suitably used to steer the state along a convenient trajectory leads to the concept of

.A; B/-controlled invariant subspace V defined as:

AV � V C B; B D ImB:

The dual of a controlled invariant subspace is an .A; C /�conditioned invariant subspace S , which is

defined as:

A.S \ C/ � S ; C D KerC:

The set of all .A; B/�controlled invariants VE contained in a given subspace E is an upper semi-

lattice that admits a supremum, the maximal .A; B/�controlled invariant contained in E , which will

be denoted by V�
E

D maxV.A;B;E/. Similarly the set of all .A; C /�conditioned invariants

SD containing a given subspace D is a lower semilattice that admits an infimum, the minimal
.A; C /�conditioned invariant containing D , which will be denoted by S�

D
D minS.A; C;D/.

These subspaces can be determined by efficient algorithms in finite steps.

A trajectory of the pair .A; B/ can be controlled on E if and only if its initial state belongs to

a controlled invariant contained in E , hence in VE . In general, for any initial state belonging to a

controlled invariant VE , it is possible not only to continuously maintain the state on VE by means

of a suitable control action, but also to leave VE with a trajectory on E and to pass to some other

controlled invariant contained in E . On the other hand there exist controlled invariants that are

closed with respect to the control, i.e., that cannot be exited by means of any trajectory on E: these

will be called self-bounded with respect to E . An .A; B/�controlled invariant V contained in a

subspace E is said to be self-bounded with respect to E if V�
E

\ B � V .

The duals of the self-bounded controlled invariants are the self-hidden conditioned invariants:

an .A; C /�conditioned invariant S containing a subspace D is said to be self-hidden with respect

to D if S � S�
D

C C .

In general, however, it is not possible to reach any point of a controlled invariant from any other

point (in particular, from the origin) by a trajectory completely belonging to it. In other words,

given a subspace E , by leaving the origin with trajectories belonging to E , hence to VE , (the

maximal .A; B/�controlled invariant contained in E), it is not possible to reach any point of VE ,

but only a subspace of it, which is called the reachable set on E and denoted by RE . It can be

proved that RE D V�
E

\ S with S D min S.A;E;B/.

Let us denote by V� D max V.A; B;C/ the maximal . A; B /-controlled invariant subspace

contained in C and by S� D min S.A; C;B/ the minimal . A; C /-conditioned invariant subspace

containing B:

Theorem 4 (Four Map Theorem): Let us consider the state transformation � D T �1x defined by

T D
�

T1 T2 T3 T4

�

;

with Im T1 D V� \ S� and Im Œ T1 T2 � D V�; Im Œ T1 T3 � D S�. Then

T �1AT D

2

6
6
4

A11 A12 A13 A14

0 A22 A23 A24

A31 A32 A33 A34

0 0 A43 A44

3

7
7
5

T �1B D

2

6
6
4

B1

0

B3

0

3

7
7
5

CT D
�

0 0 C3 C4

�

;
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where A23 D NA23C3 and A43 D NA43C3. Moreover by a suitable feedback A31 and A32 can be zeroed

out.

C.3 Left and right invertibility

It is well known that the response of the triple .A; B; C / is related to initial state x.0/ and control

function u.t/ by

y.t/ D 	x0

.A;B;C /
u D CeAtx.0/C C

Z t

0

eA.t��/Bu.�/d� D 	.A;B;C /x.0/C ˚0
.A;B;C /u:

The term system invertibility denotes the possibility of reconstructing the input from the output

function; more precisely the term invertibility refers to unknown-input invertibility, i.e., to the

invertibility of map ˚0
.A;B;C /

such that u.t/ D .˚0
.A;B;C /

/�1˚0
.A;B;C /

.u.t//.

When .A; C / is not observable(reconstructable), the initial or final state can be determined modulo

the subspace

Ker	.A;B;C / D Q

where Q denotes the maximal A�invariant subspace contained in C , which is called unobservability

subspace (unreconstructability subspace). This means that the state canonical projection on X=Q can

be determined from the output function. Q is the locus of the free motions corresponding to the

output function identically zero. A dynamical system is completely unknown-input state observable

by means of differentiators if it is possible to determine its state x when an arbitrary short output

segment y is given.

The subspace of unknown input state observability by means of differentiators is

min S.AT ;KerBT ; ImC T / D max V?.A; B; C /

and the subspace of functional input observability is BT min S.AT ;KerBT ; ImC T /. The or-

thogonal projection of the state on the subspace V�;? can be deduced from the output and from

its derivatives, moreover this is the greatest subspace where the orthogonal projection of the state

can be recognized solely from the output. If the state is known the orthogonal projection of the

input can be determined on BT V�;? and it cannot be recognized a greater subspace (it can be

determined modulo B�1;T V�).

Definition 6: Assume that B has maximal rank. The system .A; B; C / with x.0/ D 0 is said to
be invertible (left-invertible) if, given any output function y.t/ defined on Œ0; t1�; t1 > 0 belonging to

Im˚0
.A;B;C /

, there exists a unique input function u.t/ such that ˚0
.A;B;C /

u.t/ D y.t/ holds, i. e.,

KerT 0
.A;B;C /

D 0.

The triple .A; B; C /, with B having maximal rank, is unknown-state (zero-state) invertible if

and only if it is unknown-state, unknown-input (zero-state, unknown-input) completely recon-

structable.
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A dynamic system exists which, connected to the system output and with initial state suitably

set as a linear function of the system state (which is assumed to be known), provides tracking of the

system state modulo S�. This system is is not necessarily stable. The observer equations, expressed

in the basis that corresponds to the transformation T D ŒT1 T2�, with ImT1 D S�, can be written

as: �

P�1

P�2

�

D
�

A11 A12

0 A22

��

�1

�2

�

C
�

B1

0

�

uC
�

G1

G2

�

y;

where G is such that .AC GC/S� � S�. If the observer initial state is set according to �.0/ D
T �1x.0/ a state estimate modulo S� is derived.

An algebraic reconstructor with differentiators provides as output a state estimate z1 modulo V�

and works if neither the initial state nor the input function is known, while the dynamic tracking

device provides as z2 a state estimate modulo S�, but requires the initial state to be known. A

state estimate modulo V� \ S� is obtained as a linear function of the outputs of both devices, i.e.,

z D Mz1 C Nz2. This state reconstructor provides the maximal information on the system state

when the input function is unknown and the initial state known, by observing the output in any

nonzero time interval.

The term functional controllability denotes the possibility of imposing any sufficiently smooth

(piecewise differentiable at least n times) output function by a suitable input function, starting

at the zero state. Starting from the identity y.t/ D ˚0
.A;B;C /

.˚0
.A;B;C /

/�1.y.t// it is also called

right invertibility.

For multi input single output (MISO) systems a formal definition can be given as:

Definition 7: Assume that C has maximal rank. The system .A; B; C /is said to be functionally con-
trollable (right-invertible) if there exists an integer � � 1 such that, given any output function y with �th

derivative piecewise continuous and such that y.0/ D 0; � � �y.�/.0/ D 0, there exists at least one input
function u such that ˚0

.A;B;C /
u D y holds. The minimum value of � satisfying the above statement is called

the relative degree of the system.

In order to define the relative degree for MIMO systems in geometric terms the following extension

of functional output controllability is introduced:

Definition 8 (Constrained Functional Output Controllability): A subspace Y.h/ is said to be a func-
tional output controllability subspace with respect to the hth derivative if the output of the triple .A; B; C /
can be driven along any trajectory y such that y 2 Y.h/ with the hth derivative piecewise continuous.

This is possible exactly when there exist an .A; B/�controlled invariant subspace V such that

Y.h/ D CV . Let us consider E D C�1Y.h/ and V
.h/

E
, the maximal .A; B/�controlled invariant

subspace contained in E such that the output can be driven on CV
.h/

E
along any trajectory y with

piecewise continuous hth derivative for all the initial states x.0/ 2 V
.h/

E
.

Definition 9 (Multivariable Relative Degree): The relative degree �i of output yi is defined as �i D h

(if exists), where Y.h/ D CV
.h/

E
assuming that Y.h/ D fy jyk D 0; k ¤ ig.
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C Geometry of LTI systems

The functional controller is realizable in exactly the same way as the (left)inverse system, i.e., by a

state reconstructor completed with a further differentiator stage and an algebraic part. Its dynamic

part is asymptotically stable if and only if all the invariant zeros of .A; B; C / are stable. In this case,

however, the input u corresponding to the desired output is not unique, in general. The difference

between any two admissible input corresponds to a zero-state motion on RV� D V� \ S� which

does not affect the output, so that the functional controller can be realized to provide any one of the

admissible inputs, for instance by setting to zero input components which, expressed in a suitable

basis, correspond to forcing actions belonging to V� \ ImB .

Left and right invertibility can be characterized in geometric terms as follows:

Theorem 5: Triple . A; B; C / is left-invertible if and only if

V� \ B D 0:

Condition of left-invertibility is equivalent to V� \ S� D 0.

Theorem 6: Let C WD KerC: Triple . A; B; C / is right-invertible if and only if

S� C C D X:

Condition of right-invertibility is equivalent to V� C S� D X .
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D Invariant distributions and

codistributions

Let � be a distribution defined on an open set U . We are interested in finding the smallest

distribution, which is invariant under given vector fields (�1; : : : ; �q) and which is denoted by the

symbol h�1; : : : ; �qj �i. Given a distribution� and a set �1; : : : ; �q of vector fields we define the

nondecreasing sequence of distributions:

�0 D �

�k D �k�1 C
q
X

iD1

Œ�i ; �k�1�; (D.1)

i.e., for all k one has that �k � h�1; : : : ; �kj �i. If there exists an integer k� such that �k� D
�k�C1 then �k� D h�1; : : : ; �kj �i.

Let˝ be a codistribution defined on an open set U and we are interested in finding the smallest

codistribution, which is invariant under the given vector fields (�1; : : : ; �q) and which is denoted

by the symbol h�1; : : : ; �qj ˝i. Given a codistribution ˝ and a set �1; : : : ; �q of vector fields we

define the dual version of (D.1), i.e.,

˝0 D ˝

˝k D ˝k�1 C
q
X

iD1

L�i
˝k�1: (D.2)

Then for all k one has ˝k � h�1; : : : ; �kj ˝i while ˝k� D h�1; : : : ; �kj ˝i provided that there

exists an integer k� such that ˝k� D ˝k�C1.

Example 3: In the special case of LTI systems the algorithm (D.1) ends up with the well-known controllable

subspace of the system:

�n�1.x/ D Im ŒB AB : : : An�1B�; x 2 R
n

Considering the dual case let ˝0 be the codistribution spanned by the row vectors c1; : : : ; cp of C , the
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D Invariant distributions and codistributions

algorithm (D.2) ends up with the subspace:

˝n�1.x/ D span fc1; : : : ; cp; c1A; : : : ; cpA; : : : ; c1A
n�1; : : : ; cpA

n�1g D

D QIm

2

6
6
6
4

C

CA
:::

CAn�1

3

7
7
7
5

D Im .C T ATC T : : : .AT /n�1C T /:

By duality ˝?
n�1.x/ is the largest distribution invariant under the vector field fA and contained in the

distribution ˝?
0 .x/. Moreover, by construction, at each x 2 R

n,

˝?
0 .x/ D KerC

˝?
n�1.x/ D Ker

2

6
6
6
4

C

CA
:::

CAn�1

3

7
7
7
5
:

Example 4: As far as bilinear systems are concerned, denoting by �i .x/ D Aix; i D 0; 1; : : : ; m one

can get

�k D �k�1 C
m
X

iD0

Ai�k�1

yielding

�n�1 D
n�1
X

lD0

X

ji 2f0;:::;mg; iD1;:::;l

Aj1
: : : Ajl

�

where the algorithm was initialized at a constant distribution �.

Starting from the constant codistribution ˝0 D QImC D ImC T , one has

˝k D ˝k�1 C
m
X

iD0

˝k�1Ai :

Let p1.x/; : : : ; pd .x/ be a set of smooth vector fields defined on an open set U , set P D
spanfp1; : : : ; pdg and consider the nondecreasing sequence of distributions defined as follows:

S0 D P

Sk D Sk�1 C
m
X

iD0

Œgi ; Sk�1 \ Ker dhg�

where S denotes the involutive closure of S .

Suppose there exists an integer k� such that Sk�C1 D Sk� and set˙P
� D Sk� . Then˙P

� is the

minimal conditioned invariant and involutive distribution containing P . This algorithm is called

termed as conditioned invariant distribution algorithm.
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Example 5: By setting

g0.x/ D Ax; g1.x/ D B; h.x/ D Cx

one has

Œg0; Sk�1 \ KerC�.x/ D A.Sk�1 \ KerC/;

thus one can obtain the well-known (C;A)-invariant subspace algorithm for LTI systems:

S0 D P

Sk D Sk�1 C A.Sk�1 \ KerC/:

Example 6: For bilinear systems, i. e., gi.x/ D Aix it follows that:

S0 D P

Sk D Sk�1 C
m
X

iD0

Ai.Sk�1 \ KerC/:

Example 7: Using the augmented state space � D Œt; x�T one can obtain the algorithm

S0.�/ D P

Sk.�/ D Sk�1.�/C
�
@

@t
� A.�.t//

�

.Sk�1.�/ \ KerC/;

for a linear time varying dynamics, a readout map with constant C matrix and a constant distribution P .

The dual is the controlled invariant distribution algorithm which is defined via codistributions:

˝0 D span dh

˝k D ˝k�1 C
m
X

iD0

Lgi
.˝k�1 \G?/: (D.3)

Suppose there exists an integer k� such that ˝k�C1 D ˝k� . Then ˝k D ˝k� , for all k > k�

and if ˝k� \ G? and ˝?
k� are smooth, then ˝?

k� is the maximal controlled invariant smooth

distribution contained in Ker dh.

Example 8: Considering LTI systems, the algorithm

˝0 D QIm C D ImC T

˝k D ˝k�1 C .˝k�1 \ KerBT /A;

ends up in the minimal (BT ; AT )-invariant subspace over ImC T so its dual is the maximal (A;B)-
invariant subspace in KerC .
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D Invariant distributions and codistributions

Remark 17: The derivation of the time-dependent form (i.e., in the augmented state space) of the controlled

invariant distribution algorithm (D.3) will end up in

Q̋
kC1.�/ D span fdhg C . Q̋

k \ B?/A.�/;

provided that there exists k� such that˝k�C1 D ˝k�. Then Q̋ ?
k�

will be the maximal controlled invariant
distribution in Ker fdhg which contains G D span fg1; : : : ; gmg. Considering constant codistributions

in each step we get the dual form of (7.7):

Q̋
kC1 D span fdhg C

N
X

iD0

. Q̋
k \ B?/Ai :

Let � be a fixed codistribution and define the nondecreasing sequence of codistributions as:

Q0 D � \ span dh

QkC1 D � \
 

m
X

iD0

Lgi
Qk C span dh

!

: (D.4)

Suppose that all the codistributions of this sequence are nonsingular, i.e., there exists an integer

k� � n � 1 such that Qk D Qk� for all k > k�, set ˝� D Qk� and use the notation:

˝� D o.c.a..�/

where o.c.a. stands for observability codistribution algorithm. Then

Q0 D ˝� \ span dhg

QkC1 D ˝� \
 

m
X

iD0

Lgi
Qk C span dh

!

:

provided that all the codistributions generated by the observability codistribution algorithm are

nonsingular. As a consequence o.c.a..˝�/ D ˝� and if � is conditioned invariant, so is the

codistribution˝�.

˝ is said to be a observability codistribution if fulfills the relations:

Lgi
˝ � ˝ C span dh; i D 0; 1; : : : ; m

o.c.a..˝/ D ˝:

The distribution� is called unobservability distribution if its annihilator˝ D �? is an observability

codistribution. If the algorithm (D.4) is initialized at .˙P
� /

?, then o.c.a.(.˙P
� /

?) is an observability

codistribution contained in P ?. Moreover, it is the largest codistribution having this property.
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D Invariant distributions and codistributions

Example 9: Let us consider the nonlinear system

Px D A0x C
m
X

iD1

uiAix C l.x/mC
d
X

iD1

pi .x/wi

y D Cx

with the assumption that

P D span fp1; : : : ; pdg
is independent of x. Then the observability codistribution algorithm will be read as:

Q0 D � \ QImC

QkC1 D � \
 

m
X

iD0

QkAi C QImC

!

: (D.5)
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Balas, G., Bokor, J. and Szabó, Z. (2002). Failure detection for LPV systems - a geometric ap-

proach., Proceedings of the 20th Annual American Control Conference (ACC’02), Anchorage, AK, USA,

pp. 4421–4426.
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