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1 Bevezeto

A doktori fokozat megszerzése 6ta az additiv kombinatorikaval és ahhoz kapcsolodd
problémakkal foglalkozom. Ennek a fiatal matematikai kutatasi teriiletnek szamos
aga van fontos alkalmazasokkal a szamitogéptudomanyban, szamelméletben, kom-
binatorikaban vagy éppen harmonikus analizisben. Kiilonosen kedvelem azokat a
problémakat ahol kozvetve vagy kozvetleniil geometriat lehet alkalmazni szamelméleti
kérdésekben, illetve amikor szamelméleteti eredmények segitségevel oldhatoak meg
geometriai problémak. Kutatasom harom — egymassal kapcsolatban allé — témakor
koré csoportosithatd: Szemerédi tételének dltaldnositasai, Erdds és Szemerédi Gsszeg-
szorzat sejtése és Erdos kiillonbozo tavolsagokkal kapcsolatos sejtései.

Jelen értekezésben mindharom témakorben bemutatunk eredményeket. Tizenkét
cikket fogunk ismertetni négy fejezetben a kovetkezok szerint:

1. Els6 fejezet: A ”Hypergraph Removal Lemma” alkalmazésai a Szemerédi tétel
altalanositdsaban.

a. Bevezetés: Regularity, uniformity, and quasirandomness
b. Els6 cikk: Roth tételének altaldnositasa.
c. Masodik cikk: Erdés és Graham egy probléméjarol.

d. Harmadik cikk: Szamtani sorozatok kis 6sszegii halmazokban

2. Masodik fejezet: Az Gsszeg-szorzat problémarol
e. Negyedik cikk: Osszeg-szorzat becslés komplex szémokra
f. Otodik cikk: Javitott becslés a Szemerédi-Trotter tétel alkalmazasaval
g. Hatodik cikk: Osszeg-szorzat becslés métrixokra
h. Hetedik cikk: Tovabbi javitas elemi linearis algebra alkalmazasaval

3. Harmadik fejezet: Szamelméleti eredmények alkalmazasa a diszkrét geometria
teriiletén.

i. Nyolcadik cikk: Extremalis pont-egyenes illeszkedési rendszerek lokalis strukturéja

j. Kilencedik cikk: Osszeg-szorzat becslések geometriai alkalmazésa

k. Tizedik cikk: Erdos és Ulam egy problémajarol

4. Negyedik fejezet: Kiilonbozo tavolsagok
l. Tizenegyedik cikk: A kiilonboz6 tavolsagok szama magasabb dimenzidban

m. Tizenkettedik cikk: Kiilonboz6 tavolsagok homogén ponthalmazokban
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2 Szemerédi tételének altalanositasa

Szemerédi Endre bizonyitotta 1970-ben Erdds és Turan sejtését miszerint az egészek
barmely siirti részhalmaza tartalmaz tetszolegesen hosszi szamtani sorozatokat. Ezt a
fontos eredményt ergodikus mdodszerekkel Gijrabizonyitotta és altalanositotta Fiirstenberg
és Katznelson [7].

Megmutattak hogy barmely § > 0 és pozitiv egész r-re minden X C Z" halmazhoz
van olyan N hogy minden A C {1,2,...,N}" esetén ha |A| > JN" akkor A-ban
talalhatd egy részhalmaz ami a 4+ dX alaku. (d egy pozitiv egész)

2000-ben Timothy Gowers egy analitikus bizonyitast dolgozott ki Szemerédi tételére.
Roth 3-hosszi szamtani sorozatokra vonatkozé tételénél alkalmazott technikat ter-
jesztette ki a hosszabb szdmtani sorozatok problémajara.

A publikacié elétti kézirat végén Gowers fontos nyitott problémanak jelolte meg
hogy talaljunk egy elemi bizonyitast Roth tételének egy kétdimenzids valozatara
(a kérdés részleteit hamarosan meglatjuk). A kézirat olvasdsa utédn egy egyszerii
bizonyitast talaltam Szemerédi és Ruzsa ”6;3” tétele alkalmazasaval. Az itt alka-
Imazott modszer — amit késébb altalanositottam — lehetdséget adott Fiirstenberg és
Katznelson fent emlitett tételének elemi bizonyitdséra. (egy maésik, sokkal nehezebb,
grafelméleti eredmény segitségével)

[15]-ben bizonyitottam hogy minden siir{i részhalmaza a kétdimenzids egész racsnak
tartalmaz egy négyzetet. (A Fiirstenberg-Katznelson tétel specidlis este amikor X =
{(0,0),(0,1),(1,0),(1,1)}) Azt is megmutattam, hogy a Fiirstenberg-Katznelson tétel
kovetkezik egy — akkor még csak sejtett — allitasbdl, az ugynevezett " Hypergraph Re-
moval Lemma”-bol.

A Hypergraph Removal Lemma kovetkezik Szemerédi graf-regularitasi lemmajanak
altaldnositasabdl ! ; a hipergraf regularitdsi lemma és az ehhez tartozé leszamoldsi
lemma alkalmazasabdl. Ezeket az allitdasokat egymastdl fliggetleniil Tim Gowers és
Vojta Rodl didkjaival igazoltak. (Gowers [3] and Rodl et al. [2])

Rodl, Nagle, Skokan, Schacht és Kohayakava cikke, ”The hypergraph regularity
method and its applications” a Proceedings of the National Academy of Sciences of
USA-ben jelent meg. Az 1jsag szerkesztoi felkértek, hogy irjak egy ”Commentary”-t
a cikkhez, amit csak az dltalanos tudomany kiemelt fontossagu eredményekhez szok-
tak kérni. Ezt az irast is csatoltam a doktori dolgozatomhoz, bevezetoként az elso
fejezethez.

A Hipergraf Regularitasi Lemma az elsé két bizonyitds utan tjabb bizonyitdasokat

LA Regularitdsi Lemma a diszkrét matematika egyik legfontosabb eszkoze. Szemerédi a fen-
tiekben mar emlitett Frdés-Turdn sejtés bizonyitdsahoz fejlesztette ki, mely szerint egy pozitiv
fels6 stirliségli egész szdmokbdl all6 sorozat tartalmaz hosszi szdmtani sorozatokat [32]. A lemmét
gy lehetne roviden Osszefoglalni, hogy bizonyos értelemben minden nagy gréafot jol lehet kozeliteni
kisebb silyozott éli grafokkal. A Regularitasi Lemmaval és az ezzel a mddszerrel kapcsolatos tovabbi
informacidkért lasd a [31] dttekinté cikket és a tovabbi regularitdsra vonatkozo referencidkat a cikkj-
egyzékben
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kapott, Terry Tao, Elek Gabor és Szegedi Balazs, valamint Yoshi Ishigami is bi-
zonyitotta, részben a kordbbi bizonyitdsokra alapozva. (Vannak akik kétlkednek
Ishigami bizonyitasdnak korrektségében) Bar ez az eredmény tul mutat jelen doktori
dolgozat keretein, megemlitjiik még, hogy Szemerédi tételét is hasznéalva és részben a
hipergraf regularitasi lemma &altal inspiralva Ben Green és Terry Tao bebizonyitotta
hogy a primszamok kozott tetszolegesen hosszu szamtani sorozatok talalhatok.

3 Az Osszeg-szorzat probléma

Minden olyan probléma ide sorolhaté ami a két miivelet, az Osszeadds és a szorzés
osszeférhetetlenségét mutatja; Ha egy halmaz Gsszeghalmaza nem sokkal nagyobb
mint az eredeti halmaz akkor a szorzathalmaz nagy kell hogy legyen. Ezt az allitast
pontosan megfogalmazzuk valds szamok véges részhalmazaira.

Legyen A valds szamok egy véges részhalmaza. Az Osszegehalazt az aldbbiak

szerint definialjuk:
A+ A={a+bla,be A}.

Hasonléan, a szorzathalmazt a kovetkezoképpen kapjuk:
A-A={abla,b e A}.

Erdés és Szemerédi azt sejtette hogy az osszeghalmaz vagy a szorzathalmaz mindig
majdnem kvadratikus méretben az eredi halmazhoz képest.

max(|A+ Al [A- AJ) > |AP~

ahol § tart nulldhoz amint |A| tart a végtelenhez.

Egy rendkiviil elegans cikkben Elekes [26] megmutatta, hogy diszkrét geometria
hasznalhaté jo Osszeg-szorzat becslésekhez. Elkes modszerét tovabbfejlesztve megmu-
tattam [10]-ban, hogy

max(|A + A|,|A- A]) > | A"/ log | A|.

Egy Tardos Gaborral kozosen irt cikkben igazoltuk, hogy a fenti egyenlétlenség
komplex szamok véges halmazara is igaz. Ezzel megjavitottuk egy korabbi eredményemet
ahol a

max(|A + A, |A- A]) > c|A]P*

egyenlotlenséget igazoltam komplex szamokra. Mindamellett, az ott alkalmazott
modszerem &ltaldnosithaté mas testek/gytirtik feletti Osszeg-szorzat problémékra is,
igy ez az eredmény bekeriilt tobb egyetemi jegyzetbe.

A kozelmultban egy még egyszertibb bizonyitast talaltam az erdsebb

max(|A + A|,|A- A|) > c|A|*3log | A|

4
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egyenldtlenségre amikor A valds szdmok részhalmaza [11].
Van Vu-val kozos cikkben a négyzetes matrixok gytirtije felett igazoltuk a

max(|A + A, [A - A]) > c[AP

egyenlotlenséget ”szép” matrixok csaladjara.

Az Osszeg-szorzat probléma nagyon érdekes és fontos alkalmazasokkal bir a véges
testek felett is. Itt persze tovabbi megkotésekre van sziikség hiszen példaul egy
részgytlrinek az 6sszeghalmaza és a szorzathalmaza is nagyon kicsi, a fenti egyenlotlenségekhez
hasnonléak altalanosan nem varhatoak.

Bourgain, Katz és Tao bizonyitott egy |A alsd becslést a véges testek felett
[24] az aldbbiak szerint: Legyen A C F,, és p® < |A| < p'~*. Ekkor van olyan € > 0
ami csak a-tdl fiigg hogy

‘1“!‘6

max(|A + A, [A- A]) > | A=,

Ez az eredmény fontos alkalmazasokkal bir szamelméletben, szamitégéptudomanyban,
Ramsey elméletben és kriptografidban. Kidertlt, hogy a valds esetre hasznalt ge-
ometriai latasmod a véges karakterisztikaju testek felett is alkalmazhaté. Hart és
Tosevich-el ko6z6s cikkiinkben [25] els6ként adtunk j6 becslést max(|A + A|, |A - Al)-re
ahol A C F, and p'/? < |A| < p. (Hozza kell tennem, hogy a legtébb alkalmazashoz
a |A| < p/? szakasz az érdekes)

4 Kiilonbozo6 tavolsagok

Ez a harmadik témakor érdekesen kapcsolédik az additiv kombinatorikahoz. A kordbban
emitett Bourgain, Katz, Tao cikk foglalkozik a kiilonboz6 tdvolsdgok problémjival
véges testek felett. Megmutattak hogy a probléma bizonyos értelemben ekvivalens az
Osszeg-szorzat kéréssel Fi—ben.

Eloszor Erdés egy klasszikus probléméjat targyaljuk. Erdés irja [28]-ben: "My
most striking contribution to geometry is, no doubt, my problem on the number of
distinct distances.”

Jelolje g(n) egy n-elemti sikbeli ponthalmaz altal meghatarozott kiilonbozé tavolsagok
lehetséges minimum4lis szdmat. Erdés megmutatta, hogy a y/n X y/n méretii egész
rdcs pontjai cn/y/Togn kiilonbozd tévolsigot hatdroznak meg. Ugy sejtette, hogy
hasonlé becslés feliilrdl is igaz.

Té6th Csabaval [13]-ben megmutattuk hogy g(n) > en®7. Székely immar klasszikus-

nak mondhaté modszerét javitottuk meg. Cikkiink egy szamelméleti lemmajat Katz
és Tardos megjavitottak, megnovelve a 6/7 kitev6t egy tovabbi 0.007-tel. Ez a
mostani rekord, és Ruzsa Imre egy konstrukciéval megmutatta hogy jelen modszertinkkel
Erdos sejtett becslése nem elérhetd, tovabbi, 1j otletekre lesz sziikség az elorelépéshez.
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Jelen dolgozatban a magasabb dimenzids véltozatat vizsgaljuk Erdos sejtésének.
A sejtés (Erdés) szerint n pont a d-dimenziés euklideszi térben legalabb na—< kiilonboz6
tavolsagot hataroz meg.

Van Vu-val kozos cikkiinkben [16] elsének sikeriilt megmutatnunk hogy Erdds
sejtése asszimptotikusan igaz;

n pont a d-dimenzios euklideszi térben legalabb

2 2
nE - d(d+2)

kiilonbo6z6 tavolsagot hataroz meg.

Harmonikus analizisben kutatékat érdekli a kiillonboz6 tavolsagok probléma egyen-
letes eloszlasui ponthalmazokra is, ahol esetleg jobb becslés varhaté. Tom Wolff
munkassaga alapjan Laba, losevich és masok is kapcsolatot taldltak a hires Kakeya
sejtés és a kiillonbozo tavolsagok problémaja egyenletes eloszldsi ponthalmazokra
kozott.

Téth Csabdval kézos cikkiinkben [19] az erdsebb

2d
nd2+1

alsé becslést bizonyitottuk egyenletes eloszlast ponthalmazokra.

5 A cikkek bemutatasa

Ebben az Osszefoglald szekciéban roviden bemutatjuk a tézis cikkeit. A bemutatés
soran hasznaljuk a jeloléseket az el6z6 bekezdésekbdl.

1. Els6 fejezet: A "Hypergraph Removal Lemma” alkalmazéasai a Szemerédi tétel
altalanositdsaban.
a. Bevezetés: Regularity, uniformity, and quasirandomness
[20]'Regularity, uniformity, and quasirandomness’. Proceedings of the National

Academy of Sciences of the United States of America. 102.23 (2005): 8075 -
8076.

Ezt a cikket bevezetének széntam az els fejezethez. Uj 6nallé eredményt nem
tartalmaz, de segit a késobbi erdmények megértésében.

b. Els6 cikk: Roth tételének dltaldnositasa.

[21]'Note on a generalization of Roth’s theorem’. Discrete and computational
geometry; Algorithms Combin. Vol. 25. Ed. Janos Pach. Springer, 2003. 825
— 827.

Gowers kérdésére valaszolva egyszeri bizonyitast adunk a kovetkezd problémara:
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Barmely § > 0-hoz van olyan N hogy minden A C {1,2,..., N} esetén ha
|A] > §N? akkor A-ban talalhaté harom pont amik egy derékszogii egyenl8szart
haromszoget alkotnak, azaz (z,y), (r+d,y), (x,y+d) alakuak. (d egy nemnulla
egész)

Ezt az eredményt nemrég Ilya Shkredov megjavitotta. Tovabbfejlesztve Gow-
ers és Bourgain analitikus médszereit megmutatta hogy (logloglog n)~! stirliség
garantdl ilyen haromszoget. (Az én bizonyitdsom csak (log*n)~! siirliségre
miikodik)

c. Masodik cikk: Erdés és Graham egy probléméjardl.

[15] A note on a question of Erdés and Graham’, Combin. Probab. Comput.
13 (2004), no. 2, 263-267.

A 6 erdménye a cikknek egy 1j modszer bevezetése; hogyan hasznalhaté a
"Removal Lemma” a tébbdimenzids Szemerédi tétel bizonyitasara.

Példaként elemi bizonyitast adtunk Erdds és Graham egy kérdésére, miszerint
minden stri részhalmaza a kétdimenzids egész racsnak tartalmaz egy négyzetet.
Ez a Firstenberg-Katznelson tétel specidlis este amikor

X = {(07 0)7 (Ov 1)’ (17 0)7 (17 1)}
d. Harmadik cikk: Szamtani sorozatok kis 6sszegli halmazokban

[18] "Arithmetic Progressions in Sets with Small Sumsets’, Combinatorics, Prob-
ability and Computing. 15 (2006): 597 - 603.

Ez a cikk egy tovéabbi illusztraciéo a ”"Removal Lemma” erjére. Megmutattuk,
hogy ha |A + A| < C|A| akkor A tartalmaz hosszi szamtani sorozatokat. Ezt
akkor is meg tudjuk mutatni, ha az Osszeghalmaz csak egy stirti graf mentén
kicsi. Balog és Szemerédi [1] egy tétele alapjan tudjuk, hogy ez az eset vis-
szavezetheto az elézore, de itt nem kell hasznalnunk ezt az eredményt. A 6
érdekesség azonban nem ez, hanem hogy bizonyitani tudjuk a fenti allitast a
nehéz Freiman-Ruzsa tétel [4] alkalmazasa nélkil is.

. Méasodik fejezet: Az Osszeg-szorzat problémardl

e. Negyedik cikk: Osszeg—szorzat becslés komplex szamokra
A
max(|A + A|,|A- A|) > c|A]/4

egyenlGtlenséget igazoljuk komplex szamokra. Az itt alkalmazott médszer altalanosithatd
més testek/gytirtik feletti 6sszeg-szorzat problémékra is.
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f. Otodik cikk: Javitott becslés a Szemerédi-Trotter tétel alkalmazaséval

[10] On the number of sums and products’, Bull. London Math. Soc. 37
(2005), no. 4, 491-494.

Elekes otletét tovabbfejlesztve igazoljuk az alabbi Osszeg-szorzat becslést:
max(|A + A|,|A- A]) > | A" /log | A|.

Mint Elekesnél is, a bizonyitéas f6 eleme Szemerédi és Trotter becslése egyenesek
és pontok illeszkedésére.

g. Hatodik cikk: Osszeg-szorzat becslés matrixokra

[17](Van Vu-val kozos cikk) ’Sum-product estimates for well-conditioned matri-
ces’. Bulletin of the London Mathematical Society 2009 41(5):817-822

a négyzetes matrixok gytrtje felett igazoltuk a

max(|A + A, |A- A]) > | AP

egyenlttlenséget ” well-conditioned” matrixok csaladjara, azaz olyan matrixokra
amelyeknek a legnagyobb és legkisebb sajatértékei hanyadosa nem til nagy.

h. Hetedik cikk: Tovabbi javitas elemi linearis algebra alkalmazasaval

[11] 'Bounding multiplicative energy by the sumset’, Advances in Mathematics,
Volume 222, Issue 2, 2009, 402-408.

Igazoljuk a
max(|A + A|,|A- A|) > ¢|A[*3log | A

egyenlGtlenséget a valds szamok egy A részhalmazara.

. Harmadik fejezet: Szamelméleti eredmények alkalmazasa a diszkrét geometria
tertiletén.

i. Nyolcadik cikk: Extremdlis pont-egyenes illeszkedési rendszerek lokalis
strukturaja

[12]'Dense arrangements are locally very dense 1.”. STAM JOURNAL ON DIS-
CRETE MATHEMATICS. 20.3 (2006): 623 - 627.

Olyan pont-egyenes rendszerek szerkezetét vizsgaljuk ahol az illeszkedések szama
kozel van a Szemerédi-Trotter becslés altal adott korlathoz. Megmutatjuk —
ami intuitive sejtheté — hogy az ilyen rendszerek tartalmaznak haromszogeket,
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sot nagyobb teljes részstrukturdkat is. Ez az elsé ilyen struktira erdmény.
A bizonyitas Szemerédi regularitasi lemmaéajan alapul, illetve Ruzsa-Szemerédi
tétetlét hasznalja.

j. Kilencedik cikk: Osszeg-szorzat becslések geometriai alkalmazdsa

(Mei-Chu Changgal kozos cikk) ’Sum-product theorems and incidence geom-
etry’. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. 9.3
(2007): 545 - 560.

Osszeg-szorzat becsléseket alkalmazunk geometriai allitdsok igazoldsira. Egy
tipikus allitas a kovetkez6: Ha a sikban négy ponton keresztiil gy adott n—mn—
n —n egyenes, hogy legaldbb n'? pont illeszkedik négy egyenesre, akkor a négy
pont kollinedris. A bizonyitasra az adott lehetdséget, hogy az Osszeg-szorzat
becsléseknél alkalmazott geometriai technikak altalanosan is alkalmazhatok.

k. Tizedik cikk: Erdos és Ulam egy problémajarél

23] (Frank De Zeeuw-al koz0s cikk) ’On a question of Erdos and Ulam’. Discrete
and Computational Geometry, Volume 43, Issue 2 (2010), Page 393-401.

Erdos kérdezte hogy vajon barmely k természetes szamra megadhato-e k altalanos
helyzetii pont a sikon (nincs hdrom egy egyenesen és négy egy koron) ugy
hogy barmely kettd tavolsdga egész szam? Sasha Kurz taldlt egy ilyen egész
tavolsagu ponthalmazt hét ponton, ez eddig a rekord. A masik oldalrél Ulam
kérdezte, hogy megadhaté-e egy mindeniitt stirii ponthalmaz, hogy barmely
ketto tavolsdga raciondlis szam. Erdds sejtette hogy ez nem lehetséges. Tobb
kutato is probélkozott racionalis tavolsagl ponthalmazokat talalni algebrai gorbék
mentén.

Didkommal, Frank De Zeeuw-val, megmutattuk hogy ha egy algebrai gorbe
tartalmaz egy végtelen raciondlis ponthalmazt, akkor a pontok egy korén vagy
egyenesen vannak.

. Negyedik fejezet: Kiilonbo6zo6 tavolsagok
. Tizenegyedik cikk: A kiilénb6zo tavolsagok szama magasabb dimenziéban

[16] (Van Vu-val kozos cikk) Near optimal bound for the distinct distances
problem in high dimensions. COMBINATORICA, 28.1 (2008): 113 — 125.

Erdoés sejtésének megfeleloen n pont a d-dimenzids euklideszi térben legalabb
2

2
nd  d(d+2)

kiilonb6zo6 tavolsagot hataroz meg.
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m. Tizenkettedik cikk: Kiilonbozo tavolsagok homogén ponthalmazokban

[19](T6th, Csabédval kozos cikk) Distinct distances in homogeneous sets in Eu-
clidean space. Discrete Comput. Geom. 35 (2006), no. 4, 537-549.

Ha n pont egyenletes eloszlasi a d-dimenziés euklideszi térben akkor ezek le-
galdbb

2d
nd2+1

kiilonbozo6 tavolsagot hataroznak meg.
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raph theory is the appropriate

language for discussing binary

relations on objects. Results in

graph theory have numerous
applications in biology, chemistry, com-
puter science, and physics. In cases of
multiple relations, instead of binary re-
lations more general structures known
as hypergraphs are the right tools. How-
ever, it turns out that because of their
extremely complex structure, hyper-
graphs are very difficult to deal with. As
with number theory, there are questions
about hypergraphs that are easy to state
but very difficult to answer. In this issue
of PNAS, Rodl et al. (1) extend a pow-
erful tool, the regularity lemma, from
graphs to hypergraphs.

Contrary to the general terminology,
in extremal graph theory regularity is a
measure of randomness. Random graphs
are easy to work with, especially when
one wants to estimate the (expected)
number of small subgraphs. In complex
structures, like in dense graphs, one can
substitute randomness with weaker but
still useful properties. The motivation
behind graph regularity is to arrange the
vertices of a graph in such a way that
the graph becomes similar to the union
of a few random graphs, and then one
can apply standard counting methods
from probability theory. In order to de-
fine hypergraph regularity, one has to
introduce somehow complicated and
technical notations. However, even with-
out these notations we can formulate
the most important consequence of the
so-called hypergraph regularity method.
The method, which is the combination
of the hypergraph regularity lemma and
a counting lemma is described by Rodl
et al. (1). Similar results with the same
consequences have been obtained inde-
pendently by Gowers (2). Inspired by
the methods of refs. 1 and 2, very re-
cently Tao (T. Tao, personal communi-
cation) gave another proof of the main
results. The road to the hypergraph reg-
ularity and counting lemmas was long
and challenging.

Graph Regularity

Graph regularity was first introduced by
Szemerédi (3), who used it to prove his
celebrated theorem that every dense
subset of integers contains arbitrary
long arithmetic progressions. Today, one
of the main tools in extremal graph the-
ory is Szemerédi’s regularity lemma (4),
which makes arbitrary (usually large and
dense) graphs manageable.* It was

www.pnas.org/cgi/doi/10.1073/pnas.0503263102

widely expected that hypergraph regu-
larity could provide a similarly useful
tool to deal with hypergraphs. The prob-
lem is that one can easily formulate fake
hypergraph regularity lemmas by simply
generalizing the original regularity
lemma. The question was if one can find
the “right” hypergraph lemma that can
be used to prove theorems that do not
follow from an application of the ordi-
nary regularity lemma. Chung (5) was

Rodl et al. extend
a powerful tool, the
regularity lemma, from
graphs to hypergraphs.

the first to come up with generaliza-
tions of regularity; however, her result
had certain limitations. Her findings
were not strong enough for applica-
tions to Szemerédi-type theorems, but
still they formed a significant precursor
to the more modern hypergraph regular-
ity lemmas. After several years of hard
work, Rédl and his students (1) have
devised a solution providing a right
notation of hypergraph regularity and
proving the corresponding theorems
using purely combinatorial tools.
Gowers’ approach (2) is somehow dif-
ferent, more analytic. The notations and
proofs are related to his earlier proof of
Szemerédi’s theorem using Fourier anal-
ysis (6). One should mention here that
the Cauchy-Schwarz-type arguments
Gowers uses in his counting lemma were
very influential in the recent results of
Green and Tao (7) on long arithmetic
progressions in the primes.

An Important Corollary

Graphs and hypergraphs are general
combinatorial objects. A graph G is
given by its vertex set ' (G) and the
edge set E(G), a list of vertex pairs that
are connected by an edge. The notation
of a hypergraph is similar. Given a set S
as the vertex set, a family of the subsets
of S will define the hyperedges. In this
paper, we will focus on k-uniform hy-
pergraphs, on hypergraphs where all the
edges have the same size, k. With this
notation, the two uniform hypergraphs
are the ordinary graphs.

Given a k-uniform hypergraph, H7, on
an n-element vertex set, V(H}) a clique,
K 11, is a k+1-clement subset of V(H})
such that any k-tuple of Ky, is an edge
of the hypergraph Hy. Two cliques are
said to be edge-disjoint if they don’t
have a common edge. Any set of pair-
wise edge-disjoint cliques in H}, has
cardinality at most (%)/(k+1) because
every clique has k + 1 edges. The main
result of ref. 1 is that if a hypergraph
contains a large set, S, of pairwise edge-
disjoint cliques, then it contains many
cliques. In particular, the hypergraph
contains at least one clique that is not
in §. We will refer to the result below
as the Removal Lemma for k-uniform
hypergraphs. The reason why it is called
Removal Lemma is that one can formu-
late the statement in the following
equivalent way. If a hypergraph contains
few cliques, then after removing only
few edges from the hypergraph, the
remaining hypergraph will not contain
cliques at all.

Removal Lemma. For any ¢ > 0 real num-
ber and k = 2 integer, there is a 6 > 0
that depends on c and k only, such that
the following is true. If H}, contains a set,
S, of pairwise edge-disjoint cliques with
cardinality |S| = ¢(}), then H}, contains at
least 8(;. 1) cliques.

A typical application of the result
would be as follows. We want to prove
that a given hypergraph contains two
cliques sharing an edge. If we can show
that there is a large set of pairwise
edge-disjoint cliques, then we are done.
To illustrate the method, we prove a
generalization of Roth’s theorem (8)
about three-term arithmetic progressions
in dense subsets of integers. We will
show that if S is a dense subset of a
large N X N integer grid, then S con-
tains an isosceles equilateral triangle,
three points with coordinates (x, y),

See companion article on page 8109.
tE-mail: solymosi@math.ubc.ca.

*For a graph G = (V, E) and two disjoint sets V3, V> C V, we
denote by E (V4, V2) the set of edges with one endpointin
V4 and one endpoint in V>. The density d(V4, V>) is given by
d(V1, Va) = |E(V1, V2)|/([V4]|V2)). We say that the graph
induced by V1, V2 is e-regular if for all Vi C V4 and V3 C v
with [V| = e|V4] and |V3| = &|Val, [d(VF, V3) — d(V4, Va)| < e.
Szemerédi’s regularity lemma claims that for any ¢ > 0
there is a number, t = t(g), such that any graph'’s vertex set
can be partitioned into t almost equal vertex classes such
that with only et2 exemptions the bipartite graphs be-
tween the classes are e-regular.

© 2005 by The National Academy of Sciences of the USA
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Take a tripartite graph in which the vertices of the graph are the red, yellow, and green lines and

the edges are defined by the set S. Two vertices are connected by an edge if the crossing point of the
corresponding lines is a point of S. A triangle in the graph corresponds to three lines such that any two
intersect in a point of S. If there are two triangles sharing an edge, then at least one triangle is not
degenerate; thus, we have an isosceles equilateral triangle in S. If Sis a dense subset of a large grid, then
by the Triangle Removal Lemma there are many triangles in the graph. Therefore, there is an edge that
is the edge of two triangles, so S contains an isosceles equilateral triangle.

(x +d,y), and (x,y + d), where d is a
non-zero integer. It is easy to see that
the statement implies Roth’s theorem
(Fig. 1).

The very same trick can be applied
for higher dimensional grids, hyper-
planes, and hypergraphs. This calcula-
tion leads us to a combinatorial proof of
the so-called multidimensional Szemerédi
theorem, which was proved by Fiirsten-
berg and Katznelson (9) using ergodic
theory.

It is not known how & depends on c.
Even in the simplest case, k = 2, the
gap between the best known upper and
lower bounds is huge. When 7 is large
enough, 8(; ") is larger than (3)/(k+1), so

1. Raodl, V., Nagle, B., Skokan, J., Schacht, M. &
Kohayakawa, Y. (2005) Proc. Natl. Acad. Sci. USA
102, 8109-8113.

2. Gowers, W. T. (2005) Comb. Probab. Comput., in

press.

. Szemerédi, E. (1975) Acta Arith. 27, 199-245.

4. Szemerédi, E. (1978) in Problémes Combinatoires

w

there is at least one clique in Hy, that is
not in S. It is surprising that this seem-
ingly weak statement needs such heavy
machinery. In most of the applications,
all we need is to show that in a hyper-
graph there are two cliques that have a
common edge. Random hypergraphs
almost surely have such a pair of
cliques. Therefore, if one can show that
a given hypergraph is somehow similar
to the random hypergraph, then this
could lead to the proof. What we want
from a hypergraph regularity lemma is
to find for a given hypergraph, H} a
partition of the one-, two-, three-, ...,
(k — 1)-element subsets of V(H}) into
few classes such that the subgraphs,

et Théorie des Graphes (Centre Natl. Rech. Sci.,
Paris), pp. 399-401.

5. Chung, F. R. K. (1990) Random Struct. Algorithms
1, 363-382.

6. Gowers, W. T. (2001) Geom. Funct. Anal. 11,
465-588.

7. Green, B. & Tao, T. (2005) Ann. Math., in press.

8076 | www.pnas.org/cgi/doi/10.1073/pnas.0503263102

spanned by the classes, behave in a
random-like way with only few excep-
tions. Also, one should come up with
the right definition of “random-like.”
This plan is nice, but unfortunately for
k > 2 the solution is quite complicated.
In 1978, for k = 2, Ruzsa and Szeme-
rédi (10) proved that graph regularity
implies the Removal Lemma for graphs.
What Ruzsa and Szemerédi proved by
using the regularity lemma for graphs is
the following.

Triangle Removal Lemma. If a graph on
n vertices contains at least cn? edge
disjoint triangles, then it contains at
least &n® triangles.

It was 25 years later when Frankl and
Rodl (11) published the & = 3 case.
This shows how difficult it was to find
the right generalization of graph regu-
larity to hypergraphs. There is a test to
decide whether a hypergraph regularity
is useful or not. Does it imply the
Removal Lemma? If the answer is yes,
then it is a correct concept of regularity
indeed. On the contrary, applications
of the hypergraph regularity could go
beyond the Removal Lemma. There are
already examples for which the hyper-
graph regularity method, combined with
ergodic theory, analysis, and number
theory, are used efficiently to solve
difficult problems in mathematics.

8. Roth, K. F. (1953)J. London Math. Soc. 28, 104-109.

9. Fiirstenberg, H. & Katznelson, Y. (1978) J. Anal.
Math. 34, 275-291.

10. Ruzsa, 1. & Szemerédi, E. (1976) Comb. Coll.
Math. Soc. J. Bolyai 18, 939-945.

11. Frankl, P. & V. Radl, V. (2002) Random Struct.
Algorithms 20, 131-164.
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Note on a Generalization of Roth’s Theorem
Jézsef Solymosi

Abstract

We give a simple proof that for sufficiently large N, every subset of [N]* of
size at least 6N contains three points of the form {(a,b), (a+d,b), (a,b+d)}.

In this note we give a simple proof for a theorem of Ajtai and Szemerédi [1].
In their proof Ajtai and Szemerédi used and iterated Szemerédi’s theorem
about long arithmetic progressions in dense sets of integers [8]. A more
general theorem of Fiirstenberg and Katznelson also implies Theorem 1, but
does not give bound on N as it uses ergodic theory [2]. After improving
the bound in Szemerédi’s theorem, Gowers asked for a quantitative proof of
Theorem 1 [3, 4].

Theorem 1 (Ajtai-Szemerédi) For any real number 6 > 0 there is a natural
number No such that for N > Ny every subset of [N]? of size at least IN?
contains a triple of the form {(a,b),(a + d,b),(a,b + d)} for some integer
d# 0.

The key of the proof is a lemma of Ruzsa and Szemerédi [7]. A subgraph of
a graph G is a matching if every vertex has degree one. A matching M is an
induced matching if there are no other edges of G between the vertices of M.

Lemma 2 (Ruzsa-Szemerédi) If G,, is the union of n induced matchings,
then e(G,) = o(n?).

The lemma, with a simple proof deduced from Szemerédi’s Regularity Lemma,
can be also found in a survey paper of Komlés and Simonovits [5].

Proof of Theorem 1: Let S be a subset of the grid [N]? of size at least
OdN2. We refer to a point of the grid with its coordinates, which are pairs
(i,7);1,5 € {1,2,...,N}. Let us define a bipartite graph G(A, B) with vertex
sets A = {v1,...,on} and B = {w1,...,wn}. Two vertices v; and w; are
connected by an edge iff (i,7) € S (see Fig. 1).

Let us partition the edges of G according to their length, (v;,w;) ~ (v, ws,)

iff i+j = [4+m. Every partition class is a matching, so we can apply Lemma 2
to G. If N is large enough, then at least one matching is not induced. A triple
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2 GENERALIZATION OF ROTH’S THEOREM

o<t

L 4
(4,6) w
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(2,5) (6.5) W,
*

(3.4 W

[ L 4
(1,2) (6,3) w

2.2) T<5,2> W,

*@n

Figure 1: Converting points into edges

of edges (vi, W), (vs, w;), (v, wr,) such that (v;, w;) ~ (v, wr,) guarantees a
triple in S, {(a,b), (a +d,b), (a,b+ d)} (see bold edges in Fig.1). O

The only known proof of Lemma 2 uses Szemerédi’s Regularity Lemma [8],
so while the proof is quantitative, it gives a tower-type bound on Ny =
No(671). It would be very important to find another, maybe analytical proof
for Lemma 2 to get a better bound.
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We give a quantitative proof that, for sufficiently large N, every subset of [N]?> of size
at least N2 contains a square, ie., four points with coordinates {(a,b),(a +d,b),(a,b+
d),(a+d,b+d)}.

1. Introduction

In this note we prove a generalization of Szemerédi’s theorem about arithmetic pro-
gressions of length four [12]. This generalization, Theorem 1.1, was first considered by
Ron Graham in 1970 and conjectured by him and Erdds (published in [2] and [1]).
Using Szemerédi’s deep theorem [11] about arithmetic progressions of length k, Ajtai and
Szemerédi [1] proved a simpler statement: for sufficiently large N, every subset of [N]?
of size at least 6N? contains three points with coordinates {(a,b),(a + d,b), (a,b + d)}.
(IN]=1{0,1,2,...,N —1}). Later Fiirstenberg and Katznelson proved a much stronger
general theorem [3] (see Theorem 3.1), but their proof does not give an explicit bound
as it uses ergodic theory. After giving an analytic proof for Szemerédi’s theorem, Tim
Gowers again raised the question of finding a quantitative proof for Graham’s question
[5, 6]. Using a recent result of Frankl and Rodl we give a combinatorial proof for this
theorem.

Theorem 1.1. For any real number 6 > 0 there is a natural number Ny = Ny(0) such that
for N > Ny every subset of [N]? of size at least SN contains a square, i.e., a quadruple of
the form {(a,b),(a+ d,b),(a,b +d),(a+d, b+ d)} for some integer d # 0.

 Supported by the Berlin—Ziirich European Graduate Program ‘Combinatorics, Geometry, and Computation’
and by MTA SZTAKI. Present address: Department of Mathematics, University of British Columbia, BC,
Vancouver V6T 1Y4, Canada (e-mail: solymosi@math.ubc.ca).
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z A

(1,1,1)

(0,0,0)
(0,1,0) y

(1,0,0)

Figure 1. A quadruple of the form (1.1)

Before Theorem 1.1 we prove the following theorem.

Theorem 1.2. For any real number 6 > 0 there is a natural number No= Ny(d) such that,
for N > Ny, every subset of [N]® of size at least SN> contains a quadruple of the form

{(a,b,c),(a+d,b,c),(a,b+d,c),(a+d,b+d,c+d)} (1.1)

for some integer d + 0.

Proposition 1.3. Theorem 1.2 implies Theorem 1.1. ]

Proof. Let us suppose that Theorem 1.1 is false. Then there is a real number 6 > 0 and,
for every N, a subset Sy of [N]?, such that |Sy| > N2 and Sy does not contain any square.
For every Sy we can define a subset of [N]? by lifting up all the points of Sy into 3D:

Sy = {(a,b,c) : (a,b) € Sy.c € [N]}.

The size of Sy is larger than 6N and does not contain any quadruple of the form (1.1).
This contradicts Theorem 1.2. ]
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2. Proof

Proof of Theorem 1.2. We define a three-uniform hypergraph s#. The vertex set V() is
a collection of planes:

a={z=1i} and Vi={a; :0<i<N—1},

bi={—x+z=1i} and Vo={b;: =N+ 1<i<N-—1},
c={—y+z=i} and V3={¢; : =N+ 1 <i<N—1},
di={x+y—z=i} and Vy={d; : —N +1<i<2N -2},

V(AH)=ViUV,UV3U V.

These are the planes parallel with the faces of any simplex given by (1.1) and have points
from [N]°. The edge set E(#) is defined by a point set S = [N]3. Three distinct vertices
v, 02, and v3 form an edge if the intersection point of the corresponding planes py, p» and
p3 is in S, that is,

E(A) = {(v1,02,03) 10, € V(I <i<3),prNpaNps €S}

A is a 4-partite hypergraph with classes Vi, V,, V3, and V4. We are going to show that
if S does not contain any quadruple like (1.1), then |E(s#)| — and therefore also |S| — is
o(N?). This will prove Theorem 1.2.

The next conjecture is a special case of a more general conjecture of Frankl and Rodl
[8]. A subgraph in a k-uniform hypergraph is a complete subgraph if it has at least k + 1
vertices and all k-tuples of its vertices are edges.

Conjecture 2.1. Given an integer k > 2. If 9 is a k-uniform hypergraph such that every edge
is an edge of exactly one complete subgraph, then the number of edges |E(%)| is o(|V(%)[¥).

For k=2 the conjecture is equivalent to the so-called (6,3)-theorem proved by Ruzsa
and Szemerédi [10], and the k =3 case was proved by Frankl and Rodl [8].
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Theorem 2.2. (Frankl and Rodl) If 9 is a 3-uniform hypergraph such that every edge is
an edge of exactly one complete subgraph, then the number of edges |E(%)| is o(|V(%)]).

Remark. In their proof Frankl and Rodl applied Szemeredi’s Regularity Lemma; there-
fore here we cannot achieve more than a tower-type upper bound on Ny in Theorem 1.1.
(For the details of why, in general, the Regularity Lemma gives only a weak bound, we
refer to the paper of Gowers [4].)

In & four vertices a;,bj,ck, and d; form a complete subgraph if any triple has its
intersection point in S. If the planes are not concurrent planes, i.e., ¢; N b; N ¢y Nd; =0,
then a;,bj, ¢k, and d; is a quadruple like (1.1), i.e., the intersection points of the triples
form a simplex similar to {(0,0,0),(1,0,0),(0,1,0),(1,1,1)}, because the corresponding faces
are parallel. Let us suppose that there is no such quadruple in S. Then every edge of #
is an edge of exactly one complete subgraph, and |E(#')| = o(N?) by Theorem 2.2. ]

3. Conjectures
If Conjecture 2.1 was true, then it would imply the following ‘multidimensional Szemerédi

theorem’ [3].

Theorem 3.1. (Fiirstenberg and Katznelson) For any real number 6 > 0 and positive in-
tegers K, d there is a natural number Ny= Ny(9,K,d) such that for N > Ny every subset of
[N]¢ of size at least SN contains a homothetic copy of [K]".

We state a special case of Conjecture 2.1. It would also imply Theorem 3.1 following
the steps of the proof of Theorem 1.1 in higher dimensions, and as a plus there is some
geometry which could be useful for a possible proof.

Conjecture 3.2. For any real number 6 > 0 and positive integer d there is a natural number
No = Ny(5,d) such that, for N > Ny, any set of N hyperplanes S and at least SN® points,
where every point is an element of at least d + 1 hyperplanes, contains a simplex (i.e., d 4 1
distinct points such that any d-tuples are contained by a hyperplane from S).

We close this note with a nice conjecture of Graham [7] which, if true, would give a
sufficient condition for the existence of a square in an infinite lattice set.

Conjecture 3.3. (Graham) Given a set of lattice points in the plane

S:{p1>p27"'api>pi+1>---}a
let us denote the distance of p; from the origin by d;. If

1
ZEZOO’
=1 i

then S contains the four vertices of an axes-parallel square.
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We present an elementary proof that if 4 is a finite set of numbers, and the sumset
A+ Aissmall, |4 +¢ A| < c|A|, along a dense graph G, then 4 contains k-term arithmetic
progressions.

1. Introduction

A well-known theorem of Szemerédi [15] states that every dense subset of integers contains
long arithmetic progressions. A different, but somehow related result of Freiman [5] says
that if the sumset of a finite set of numbers A4 is small, i.e., |4 + A| < C|A|, then A4 is the
subset of a (not very large) generalized arithmetic progression. Balog and Szemerédi proved
in [1] that a similar structural statement holds under weaker assumptions. (For correct
statements and details, see [8].) As a corollary of their result, Freiman’s theorem, and
Szemerédi’s theorem about k-term arithmetic progressions, Balog and Szemerédi proved
Theorem 1.1 below. The goal of this paper is to present a simple, purely combinatorial
proof of this assertion.

Let A be a set of numbers and G be a graph such that the vertex set of G is A. The
sumset of A along G is

A4+gA={a+b:abeAand (ab)c E(G)}.
Theorem 1.1. For every c¢,K,k >0 there is a threshold ny = ny(c,K,k) such that if

A =n > ny, |A+¢A| <K|A|, and |E(G)| > cn?, then A contains a k-term arithmetic
progression.

 Research partially supported by NSERC and OTKA grants.
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2. Lines and hyperplanes

There are arrangements of n lines on the Euclidean plane such that the maximum number
of points incident with at least three lines is % Not much is known about the structure of
arrangements where the number of such points is close to the maximum, say cn’, where
c is a positive constant. Nevertheless, the following is true.

Lemma 2.1. For every ¢ > 0 there is a threshold ny = nyg(c) and a positive 6 = é(c) such
that, for any set of n > ng lines L and any set of m > cn® points P, if every point is incident
to three lines, then there are at least on’ triangles in the arrangement. (A triangle is a set
of three distinct points from P such that any two are incident to a line from L.)

Proof. This lemma is implied by the following theorem of Ruzsa and Szemeredi [13].

Theorem 2.2. ([13]) Let G be a graph on n vertices. If G is the union of cn’® edge-disjoint
triangles, then G contains at least on’ triangles, where & depends on ¢ only.

To prove Lemma 2.1, let us construct a graph where L is the vertex set, and two vertices
are adjacent if and only if the corresponding lines cross at a point of P. This graph is the
union of cn? disjoint triangles, and every point of P defines a unique triangle, so we can
apply Theorem 2.2. ]

The result above suffices to prove Theorem 1.1 for 3-term arithmetic progressions. But
for larger values of k, we need a generalization of Lemma 2.1.

Lemma 2.3. For every ¢ >0 and d > 2, there is a threshold ny = ny(c,d) and a positive
8 = d(c,d) such that, for any set of n > ng hyperplanes L and any set of m > cn® points P,
if every point is incident to d + 1 hyperplanes, then there are at least on't! simplices in the
arrangement. (A simplex is a set of d + 1 distinct points from P such that any d are incident
to a hyperplane from L.)

Lemma 2.3 follows from the Frankl-Rodl conjecture [4], the generalization of The-
orem 2.2. The d = 3 case was proved in [4] and the conjecture has been proved recently
by Gowers [6] and independently by Nagle, Rodl, Schacht and Skokan [7, 10]. For details
on how Lemma 2.3 follows from the Frankl-Ro6dl conjecture, see [14].

3. The k = 3 case

Let 4 be a set of numbers and G be a graph such that the vertex set of G is 4. We define
the difference-set of A along G as

A—gA=1{a—b:abeAand (a,b) € E(G)}.
Lemma 3.1. For every €,¢,K > 0 there is a number D = D(e, c,K) such that, if |A +¢ A| <

K|A| and |E(G)| > c|AJ?, then there is a graph G' = G such that |E(G')| > (1 — €)|E(G)| and
|4 —g A| < D|A.
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Proof. Let us consider the arrangement of points given by a subset of the Cartesian
product A x A and the lines y =a, x =a for every a€ 4, and x+y =1t for every
t € A+ A. The pointset P is defined by (a,b) € P if and only if (a,b) € E(G). By
Lemma 2.1, the number of triangles in this arrangement is dn’. The triangles here are
right isosceles triangles. We say that a point in P is popular if the point is the right-
angle vertex of at least an triangles. Selecting o = 5(:5“), where d(-) is the function from
Lemma 2.1, all but at most ecn® points of P are popular.

Ate A—Ais popular if |{(a,b) : a—b =t;a,b € A}| > an. The number of popular ts
is at most Dn, where D depends on o only. 4 x 4 is a Cartesian product; therefore every
triangle can be extended to a square adding one extra point from A x A. Every popular
point p is the right-angle vertex of at least an triangles. Therefore p is incident to a line
X —y =t, where t is popular, because this line contains at least an ‘fourth’ vertices of
squares with p. U]

Proof of Theorem 1.1, case k = 3. Let us apply Lemma 2.1 to the pointset P’ defined by
(a,b) € P’ if and only if (a,b) € E(G’) and the lines are y =a foreverya € A, x —y =t
foreveryt € A —g A, and x + y = s for every s € A +¢ A. By Theorem 2.2, if |A| is large
enough, then there are triangles in the arrangement. The vertices of such triangles are
vertices from P’ = A x A. The vertical lines through the vertices form a 3-term arithmetic
progression and therefore A contains dn’ 3-term arithmetic progressions, where § > 0
depends on ¢ only. |

4. The general, k > 3, case

Following the steps of the proof for k = 3, we prove the general case by induction on k. We
prove the following theorem, which was conjectured by Erd6s, and proved by Balog and
Szemerédi in [1]. Theorem 4.1, together with the k = 3 case, gives a proof of Theorem 1.1.

Theorem 4.1. For every ¢ > 0 and k > 3 there is an ng such that, if A contains at least c|A|*
3-term arithmetic progressions and |A| > ny, then A contains a k-term arithmetic progression.

Instead of triangles, we must consider simplices. Set k = d. In the d-dimensional space
we show that 4 x --- X A, the d-fold Cartesian product of A, contains a simplex in which
the vertices’ first coordinates form a (d + 1)-term arithmetic progression.

The simplices we are looking for are homothetic' images of the simplex S; whose
vertices are listed below:

(0,0,0,0,...,0,0)
(1,1,0,0,...,0,0)
(2,0,1,0,...,0,0)
(3,0,0,1,...,0,0)
(d—1,0,...,1,0)
(d,0,0,0,...,0,0).

! Here we say that two simplices are homothetic if the corresponding facets are parallel.
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An important property of S, is that its facets can be pushed into a ‘shorter’ grid. The
facets of S; are parallel to hyperplanes, defined by the origin (0,0,0,0,...,0,0), and some
(d — 1)-tuples of the grid

{0,1,2,...,d — 1} x {=1,0,1} x {0,1}472,
For example, if d = 3, then the facets are

{(0,0,0),(1,1,0),(2,0,1)}
{(0,0,0),(1,1,0),(3,0,0)}
{(0,0,0),(2,0,1),(3,0,0)}
{(1,1,0),(2,0,1),(3,0,0)},

and the corresponding parallel planes in
{0,1,2} x {—1,0,1} x {0,1}
are the planes incident to the triples

{(0,0,0),(1,1,0),(2,0,1)}

{(0,0,0),(1,1,0),(2,0,0)}

{(0,0,0),(2,0,1),(2,0,0)}
{(0,0,0),(1,—1,1),(2,—1,0)}.

In general, if a facet of S; contains the origin and the ‘last point’ (d,0,0,0,...,0,0),
then if we replace the later one by (d — 1,0,0,0,...,0,0), the new d-tuples define the same
hyperplane. The remaining facet f, given by

(1,1,0,0,...,0,0)
(2,0,1,0,...,0,0)
(3,0,0,1,...,0,0)

(d—1,0,...,1,0)
(d,0,0,0,...,0,0),

is parallel to the hyperplane through the vertices of f —(1,1,0,0,...,0,0),

(0,0,0,0,...,0,0)
(1,—1,1,0,...,0,0)
2,—1,0,1,...,0,0)

(d—2,—1,...,1,0)
(d—1,-1,0,0,...,0,0).
In a homothetic copy of the grid
Ty=1{0,1,2,....d — 1} x {—1,0,1} x {0,1}472,

the image of the origin is called the holder of the grid.
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As the induction hypothesis, let us suppose that Theorem 4.1 is true for a k > 3 in a
stronger form, provided that the number of k-term arithmetic progressions in A is at least
clA%.

Then the number of distinct homothetic copies of Ty in

Aj=Ax...xA4
—_————
d

is at least ¢’|4|*"! (¢’ depends on c only). Let us say that a point p € Ay is popular if p is
the holder of at least o|A4| grids. If p is popular, then, for any facet of S;, f, the point p is
the element of at least «|A| d-tuples, similar and parallel to f. If o is small enough, then
at least y|4|¢ points of A, are popular, where y depends on ¢ and « only.

A hyperplane H is f-rich if it is incident to many points, |H N Ay| > |A|4". For every
facet of Sy, f, let us denote the set of S-rich hyperplanes which are parallel to f by ;.

Lemma 4.2. For some choice of f3, at least half of the popular points are incident to d + 1
p-rich hyperplanes, parallel to the facets of S,.

Suppose to the contrary that, for a facet f, more than §|A\d popular points are not
incident to hyperplanes of 2#;. Then, more than

v Ve
oAl 5l = A (4.1)

d-tuples, similar and parallel to f, are not covered by ;. Let us denote the hyperplanes
incident to the ‘uncovered’ d-tuples by Ly, L,,...,L,, and the number of points on the
hyperplanes by %1, %>,..., %, A simple result of Elekes and Erdés [2, 3] implies that
hyperplanes with few points cannot cover many d-tuples.

Theorem 4.3. ([3]1) The number of homothetic copies of f in L; is at most cdgilﬂ/(d_l),
where c; depends on d only.

The inequalities
> #i <A1, and £; < 1A
i=1
lead us to the proof of Lemma 4.2.
The number of d-tuples covered by L;s is at most

m | ‘

e Z filJrl/(dfl) <

i=1

(ﬁ|A|d_1)1+1/(d_1) — Cdﬂl/(d_l)|A|d+1.

plaj!

If we compare this bound to (4.1), and choose f such that 15 = ¢,8'/(~1, then at least
half of the popular points are covered by d 4+ 1 f-rich hyperplanes parallel to the facets
of Sd.

Finally we can apply Lemma 2.3 with the pointset P of ‘well-covered’ popular points
of A; and with the sets of hyperplanes L = UchL, ' y. The number of points is at least
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%|A|d. For a given f, || < /3\‘;1{;\“7*‘ = |A|/f. The number of hyperplanes in L is at most

(d 4+ 1)|A|/B. By Lemma 2.3, we have at least 6'|4|*t! homothetic copies of S; in A,4. Let
us project them onto xi, the first coordinate axis. Every image is a (k + 1)-term arithmetic
progression, and the multiplicity of one image is at most |4|4~!. Therefore there are at
least 8'|A|* (k + 1)-term arithmetic progressions in A.

5. G, =K,

When the full sumset 4 + A is small then it is easier to prove that A contains long
arithmetic progressions. We can use the following Pliinnecke-type inequality [8, 9, 12].

Theorem 5.1. Let A and B be finite subsets of an abelian group such that |A| =n and
|[A+ Bl <on Letk>1and | > 1. Then

|kB — IB| < oK*'n.

It follows from the inequality that, for any dimension d and d-dimensional integer
vector ¥ = (x1,...,Xq), X; € Z, there is a ¢ > 0 depending on d,0 and ¢ such that the
following holds: If |4 + A| < |A|, then Ay can be covered by c|A| hyperplanes with the
same normal vector v. Using this, we can define our hyperplane-point arrangement, with
the hyperplanes parallel to the facets of S; containing at least one point of A;, and the
pointset of the arrangement is A,;. Then we do not have to deal with rich planes and
popular points, and we can apply Lemma 2.3 directly.
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On sum-sets and product-sets of complex numbers

par JOZSEF SOLYMOSI

RESUME. On donne une preuve simple que pour tout ensemble
fini de nombres complexes A, la taille de ’ensemble de sommes
A+ A ou celle de I'ensemble de produits A- A est toujours grande.

ABSTRACT. We give a simple argument that for any finite set of
complex numbers A, the size of the the sum-set, A + A, or the
product-set, A - A, is always large.

1. Introduction

Let A be a finite subset of complex numbers. The sum-setof Ais A+A =
{a+b:a,be A}, and the product-set is given by A- A= {a-b:a,be€ A}.
Erdés conjectured that for any n-element set the sum-set or the product-
set should be close to n?. For integers, Erd6s and Szemerédi [7] proved the
lower bound n'*¢.

max(|A + A, |A - A]) > |A]'T.

Nathanson [9] proved the bound with ¢ = 1/31, Ford [8] improved it to
e =1/15, and the best bound is obtained by Elekes [6] who showed ¢ = 1/4
if A is a set of real numbers. Very recently Chang [3] proved € = 1/54 to
finite sets of complex numbers. For further results and related problems
we refer to [4, 5] and [1, 2].

In this note we prove Elekes’ bound for complex numbers.

Theorem 1.1. There is a positive absolute constant ¢, such that, for any
finite sets of complex numbers A, B, and @,

AP |BIY2|QIV? <A+ B|-|A- Q)

whence c|A]P/* < max{|A + A|,|A- A]}.

Manuscrit regu le 26 aout 2003.
This research was supported by an NSERC grant.
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2. Proof

For the proof we need some simple observations and definitions. For
each a € A let us find ”the closest” element, an @’ € A so that a’ # a and
for any a” € A if |a — d/| > |a — a”| then a = o”. If there are more then
one closest elements, then let us select any of them. This way we have |A]
ordered pairs, let us call them neighboring pairs.

Definition. We say that a quadruple (a, d’, b, q) is good if (a,a’) is a neigh-
boring pair, b € B and g € (), moreover

28|A + B
’{uEA+B:|a+b—u]§|a—a'|}‘§‘|A+|‘
and
284 - Q
{06 4-Q: lag - ol < Jag - aqly| < 59

When a quadruple (a,d’, b, q) is good, then it means that the neighbor-
hoods of a + b and aq are not very dense in A+ B and in A - Q.

Lemma 2.1. For any b € B and q € Q the number of good quadruples
(a,a’,b,q) is at least |A|/2.

Proof. Let us consider the set of disks around the elements of A with radius
la — d’| (i.e. for every a € A we take the largest disk with center a, which
contains no other elements of A in it’s interior). A simple geometric ob-
servation shows that no complex number is covered by more then 7 disks.
Therefore

> fucA+B:lat+b—ul<la—d|}| <T7|A+ B

a€A

and

Z‘{veA-Q:\aq—v\ S\aq—a’q\}‘ <T7A-Q|
acA

providing that at least half of the neighboring pairs form good quadruples
with b and ¢. Indeed, if we had more then a quarter of the neighboring
pairs so that, say,
28|A-Q
{veA-Q:|ag—v| <l|ag—dq|}| > ||A]’
then it would imply

A
74- = 2 v € 4-QJag v < Jag  d'a}}| > 7/4- Q.
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Proof of Theorem 1 To prove the theorem, we count the good quadruples
(a,a’,b,q) twice. For the sake of simplicity let us suppose that 0 ¢ Q. Such
a quadruple is uniquely determined by the quadruple (a + b,a’ + b, aq, a’q).
Now observe that there are |A + B| possibilities for the first element, and
given the value of a + b, the second element a’ + b must be one of the
28|A + B|/|A| nearest element of the sum-set A + B. We make the same
argument for the third and fourth component to find that the number of
such quadruples is at most

98|A + B 28|14 - Q)
A-Q .
TR ARV

On the other hand, by Lemma 1 the number of such quadruples is at least

|A+ B

|A]
~ |BlIQ|
that proves the theorem.

A similar argument works for quaternions and for other hypercomplex
numbers. In general, if T' and @ are sets of similarity transformations and A
is a set of points in space such that from any quadruple (¢(p1), t(p2),q(p1),
q(p2)) the elements t € T, q € Q, and p; # p2 € A are uniquely determined,
then

| APPITIVIQIN? < |T(A)] - [Q(A)],
where ¢ depends on the dimension of the space only.
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ON THE NUMBER OF SUMS AND PRODUCTS

JOZSEF SOLYMOSI

ABSTRACT

A new lower bound on max{|A + A|,|A- A|} is given, where A is a finite set of complex numbers.

1. Introduction

Let A be a finite subset of complex numbers. The sum-set of Ais A+ A={a+b:
a,b € A}, and the product-set is A- A= {a-b:a,b e A}. Erdés and Szemerédi [7]
proved the inequality

max(|A + AJ,|A - Al) > o] A"+
for a small but positive €, where A is a subset of integers. They conjectured that
max(|]A + A|,|A- A|) > ¢|A*?

for any positive 0. (In this paper, ¢ stands for the general constant. Some authors
use the n < m or n > m notation instead of our n < ¢m or n > cm.)

After improvements given in [9], [8], and [3], the best bound so far has been
obtained by Elekes [4], who showed that € > 1/4 if A is a set of real numbers. His
result was extended to complex numbers in [13] and [11]. For further results and
related problems, we refer the reader to [1] and [5].

In this paper, we prove the following theorem.

THEOREM 1. There is a positive absolute constant ¢ such that, for every n-
element set A,

cn14

—5— < A+ AB-|A- AP,
log” n

whence cn¥/M /log® "' n < max{|A + A|,|A - A}
Nathanson and Tenenbaum [10] proved that the product set should be large,
namely |A|>7¢, if the sumset is at most 3|A| — 4. Chang [2], and independently

Elekes and Ruzsa [6], proved a similar bound if the sumset is at most c|A|. As a
consequence of Theorem 1, we obtain the following corollary.

COROLLARY 1. If|A| =n and |A+ A| < Cn, then |A - A| > cn?/logn.

Received 1 August 2003; revised 8 June 2004.
2000 Mathematics Subject Classification 11B75 (primary), 52C10 (secondary).
This research was supported by NSERC and OTKA grants.
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2. Proof

Our proof is based on the following estimates of the number of incidences between
lines and points.

THEOREM 2 (Szemerédi and Trotter [12]). The maximum number of incidences
between n points and m straight lines of the real plane is O(n?/3m?/3 + n 4+ m).

COROLLARY 2 (Szemerédi and Trotter [12]). Given a set of n points on the
real plane, the number of k-rich lines (that is, lines incident to at least k points) is

O(n?/k® + n/k).

In the proof of Theorem 1 we use Theorem 2 and Corollary 2 on Cartesian
products only; similar statements are easy to prove for complex lines in the complex
plane. (The general case has recently been solved by Téth [13].) The following
lemma has been proved but not published by the author.

LEMMA 1. Given two sets of complex numbers Sy and Sy with sizes |Si| =
ny and |Sa|=ng, let S=S51 xSy be the Cartesian product. The maximum
number of incidences between S and m complex lines of the complex plane is
O((n1n2)?*3m?/3 + ning +m).

Proof of Theorem 1. 1If |A- A| = t, then the number of pairs (a;,a;), (4, ay)
such that a; - a; = ay - a, (where a;,a;,a,,a, € A) is at least cn?/t. Then the
number of pairs (a;,a,), (ay,a;) € A x A, where a;/a, = a,/a;, is at least cn*/t
as well. Let us partition the elements of A x A into classes (lines) L, Lo, ..., Lg
using the relation (a;,a;) ~ (au,ay) if and only if a;/a; = a./a,. Each class is a
collection of collinear points, and the line through them contains the origin (0, 0).
If I; denotes the size of L;, then

R
—~\2)7 t~
We partition these lines into sets Cy,Cs,...,Cs (s < logn?) with respect to their
‘squared’ sizes. Then L; € C; <= 220~V < (g) < 2%, There are at most logn?
sets, so there is at least one set, C;, which covers many elements. Let X; be a set of
all pairs ((a,, ap), (aq, a,)) such that there exists L; in C; with (a,,a,) and (a,, a,)
both in L;. Then at least one of the sets X is large. Also,

4
cn
|Xj| = \{(al,,au), (ag,ap) : (ay,a,) € Ly, (agaap) €L;,L; e Cj}‘ > tlogn’
and therefore
221|C;| > en' (2.1)
I tlogn’ '

This is the key element of the proof: every point of A x A is incident to at least |C}|
lines, each of them incident to at least 27~1 points of (A+ A) x (A+ A). Indeed, the
translated lines (ay,a,) + L with L in C; are incident to (a.,a,), and the points
of the lines are points from (A + A) x (A+ A) (see Figure 1). We denote the set of
translated lines by L, as follows:

L={(au,ay)+L:LeCj (ay,a,) € Ax A}
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(A+A)x (4+A4)

7

(au, av)

A

FIGURE 1. Translates of the lines of Cj.

Because of Corollary 2, the number of 2/~ 1-rich lines (that is, lines incident to
at least 27! points) on (A + A) x (A + A) is

|A—&-A|4 |A+ A
O( @1 T @) )

The first term is always larger than the second because |A+A| > |A| and 2771 < |A].
Therefore,

clA+ At

(29-1)%

Applying the bound from Theorem 2 to the number of incidences I between £
and the n? points of A x A, we have

I1£] <

1=0( LR + L] +n?).
Therefore,
n?|C;| < ¢|L|*3n?/3, (2.2)
or
n?|C;| < L], (2.3)
or
n?|Cy| < en®. (2.4)

The right-hand side of (2.2) is always at least cn?, and therefore (2.2) includes
case (2.4). The next step is to see that (2.2) covers case (2.3) as well. Let us suppose
that, on the contrary,

1230 < |L.
Then

nt? < |L)V3 - nt <L,

but this is not possible, since £ consists of n? translates of less than n? lines.
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Now we are ready for the final step of the proof. It follows from (2.1), that

4
g2y M 2.5
~ tlogn|Cj] (25)
Putting (2.2) and (2.5) together, we have
2/3 8/3
2 2/3_4/3 A+ Al* 43 A+ A 4/3
A+ APB
S C(ni/tlo | ™
gn|L
which gives
enld
— < |A+ AP -4
log” n
as stated. O
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Sum—product estimates for well-conditioned matrices

J. Solymosi and V. Vu

Dedicated to the memory of Gyérgy Elekes

ABSTRACT

We show that if A is a finite set of d x d well-conditioned matrices with complex entries, then
the following sum-product estimate holds |A + A| x |A - A| = Q(|A[>/?).

1. Introduction

Let A be a finite subset of a ring Z. The sum-product phenomenon, first investigated by
Erd6s and Szemerédi [4], suggests that either A-A or A+ A is much larger than A. This
was first proved for Z, the ring of integers, in [4]. Recently, many researchers have studied
(with considerable success) other rings. Several of these results have important applications in
various fields of mathematics. The interested readers are referred to Bourgain’s survey [1].

In this paper we consider Z being the ring of d x d matrices with complex entries. (We are
going to use the notation ‘matrix of size d’ for d x d matrices.) It is well known that one cannot
generalize the sum—product phenomenon, at least in the straightforward manner, in this case.
The archetypal counterexample is the following:

EXAMPLE 1.1. Let I denote the identity matrix and let E;; be the matrix with only one non-
zero entry at position ¢j and this entry is one. Let M, := I + aF4 and let A = {M;,..., M,}.
It is easy to check that A+ Al = |A- A| =2n — 1.

This example suggests that one needs to make some additional assumptions in order to
obtain a non-trivial sum—product estimate. Chang [2] proved the following

THEOREM 1.2. There is a function f = f(n) tending to infinity with n such that the
following holds. Let A be a finite set of matrices of size d over the reals such that for any
M # M’ € A, we have det(M — M') # 0. Then we have

A+ Al +[A-Al = f(JADIA]

The function f in Chang’s proof tends to infinity slowly. In most applications, it is desirable
to have a bound of the form | A|' ¢ for some positive constant c. In this paper, we show that this
is indeed the case (and in fact ¢ can be set to be i) if we assume that the matrices are far from
being singular. Furthermore, this result provides a new insight into the above counterexample
(see the discussion following Theorem 2.2).

Received 12 February 2008; revised 9 April 2009; published online 19 July 2009.
2000 Mathematics Subject Classification 11B75 (primary), 15A45, 11C20 (secondary).
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NoTAaTION. We use asymptotic notation under the assumption that |A| =n tends to
infinity. Notation such as f(n) = Q¢(m) means that there is a constant ¢ > 0, which depends
on ¢ only, such that f(n) > cm for every large enough n. Throughout the paper letter £ might
be a number like d or a vector like £, d or a, r. The notation f(n) = O¢(m) means that there is
a constant ¢, which depends on ¢ only, such that f(n) < em for every large enough n. In both
cases m is a function of n or it is the constant one function, m = 1, in which case we write
Q¢(1) or Og(1). Throughout the paper symbol C denotes the field of complex numbers.

2. New results

The classical way to measure how close a matrix is to being singular is to consider its condition
number.

For a matrix M of size d, let omax(M) and omin (M) be the largest and smallest singular
values of M. The quantity £(M) = omax (M )omin (M) ™! is the condition number of M. (If M
is singular, then o,in (M) = 0 and ~(M) = o0.)

Our main result shows that if the matrices in A are well conditioned (that is, their condition
numbers are small, or equivalently they are far from being singular), then | A + A| 4 |A - A] is
large.

DEFINITION 2.1. Let k be a positive number at least one. A set A of matrices is called
k-well conditioned if the following conditions hold.

(i) For any M € A, we have x(M) < k.

(ii) For any M, M’ € A, we have det(M — M) # 0, unless M = M'.

THEOREM 2.2. Let A be a finite k-well-conditioned set of size d matrices with complex
entries. Then we have

A+ A x A Al > Qual|AP2).
Consequently, we have

A+ A+ A Al > Qa(JAP).

Theorem 2.2 is a generalization of the first author’s sum—product bound on complex numbers
[7]. Some elements in the proof of Theorem 2.2 were inspired by techniques applied in [7]. The
idea of using geometry for sum-product problems was introduced by Elekes [3].

REMARK 2.3. By following the proof closely, one can set the hidden constant in  as (%)dz7

where ¢ is an absolute constant (1—(1)0, say, would be sufficient).

REMARK 2.4. We reconsider the set in the counterexample. It is easy to show that both
Omax(My) and opin (M,) ™! are Qg4(a). Thus k(M,) = Q4(a?), which, for a typical a, is Q4(].A]?).
Hence, the matrices in the counterexample have very large condition numbers.

REMARK 2.5. Note that if the entries of a matrix M of size d are random integers from
{=n,...,n}, then, with probability tending to one as n tends to infinity, (M) = Og4(1).
(In order to see this, note that by Hadamard’s bound, op.x(M) < dn with probability one.
Moreover, it is easy to show that with high probability |det M| = Q4(n?), which implies that
Unlin(M) = Qd(n))
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The proof of Theorem 2.2 is presented in Sections 3-6.

3. Neighborhoods

Consider a matrix M of size d. We can view M as a vector in C¢ by writing its entries (from
left to right, row to row) as the co-ordinates. From now on we consider A as a subset of c®.
The matrix operations act as follows:

(i) addition: this will be viewed as vector addition;

(ii) multiplication: this is a bit more tricky. Take a matrix M of size d and a d*-vector
M’. To obtain the vector M'M, we first rewrite M’ as a matrix, then do the matrix
multiplication M’'M, and finally rewrite the result as a vector. This multiplying by M
is a linear operator on c.

Next, we need a series of definitions. Note that here we are considering M as a vector in c.
The norm ||M|| indicates the length of this vector in C%. Then we have the following.
(i) Radius of M, that is, r(M) := mianeA\{M} \|M — M']|.

(ii) Nearest neighbor of M, that is, n(M) is an M’ such that ||[M — M'|| = r(M) (if there

is more than one M’ then choose one arbitrarily).

(i) Ball of M, that is, B(M) is the ball in C%" around M with radius r(M).

The following lemma will be used frequently in the proof. Let x,y, z be three different points
in C". The angle zyz is the angle between the rays yz and yz. We understand that this angle
is at most 7. In C” there are various ways of defining the angle between two vectors = and y.
(See [6] for a survey of some possible choices.) We are using the

Re(y*x)
[2l[lyll

notation, where Re(y*z) is the real part of the Hermitian product, (y*z) =Y i_, y;z;. It is
important to us that with this definition the law of cosines remains valid, and we have

Z(x,y) = arccos

lz +yl* = [l + 1y + 2llz ]| ly]| cos(£(x, ). (3.1)

LemMA 3.1. For any positive integer r and any constant 0 < o < 7, there is a constant
C(a,r) such that the following holds. There are at most C'(«,r) points on the unit sphere in
C" such that for any two points z, 2’, the angle zoz' is at least «. (Here o denotes the origin.)

This lemma is equivalent to the statement that a unit sphere in C” has at most C'(d, ) points
such that any two has distance at least d. It can be proved using a simple volume argument.
(See [5] for a more advanced approach.) The optimal estimate for C (o, ) is unknown for most
pairs (a,7), but this value is not important in our argument.

LEMMA 3.2. For any positive integer r there is a positive constant Ci(r) such that the
following holds. Let A be a set of points in C". Then for z € C" there are at most Cy(r)
elements M of A such that z € B(M).

Proof. Let My, ..., M}, be elements of A such that z € B(M;) for all i. By the definition
of B(M) the distance between two distinct elements, M; and Mj, is at least as large as their
distances from z. Then, by (3.1), the angle M;zM; is at least m/3 for any i # j. The claim
follows from Lemma 3.1. UJ
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4. K-normal pairs

Let K be a large constant to be determined. We call an ordered pair (M, M") product K-normal
if the ellipsoid B(M)M’ contains at most K(|.4-.A|/|A|) points from A-.A. (Recall that
multiplying by M’ is a linear operator on (Cdz, and thus it maps a ball into an ellipsoid.)

LEMMA 4.1. There is a constant Co = Cy(d) such that the following holds. For any fixed
M’ and K > Cy, the number of M such that the pair (M, M') is product K-normal is at least
(1—Co/K)|A]

Proof. Let My, ..., M, be the elements of A, where (M;, M) is not product K-normal. By
definition, we have

S IBM)MNA- Al > rmAAl

pa Al

Set ¢ := m/|A|. By the pigeon hole principle, there is a point z in A - A belonging to at least

Ke ellipsoids B(M;)M. By applying the map M1, it follows that M ~! belongs to at least

Ke balls B(M;). By Lemma 3.2, Ke = O(d?) = O(d). Thus, ¢ = O(d)/K, proving the claim.

O

By the same argument, we can prove the sum version of this lemma. An ordered pair (M, M”)
is sum K-normal if the ball B(M) + M’ contains at most K (].4 + A|/|A|) points from A + A.

LEMMA 4.2. For any fixed M’, the number of M such that the pair (M,M') is sum
K-normal is at least (1 — Cy/K)|A|.

5. Cones
For a ball B in C" and a point ¢ B, define the cone Cone(z, B) as
Cone(z, B) := {tx + (1 —t)B|0 < ¢t < 1}.

Now let a be a positive constant at most 7. For two different points x and y, we define the cone
Cone, (x,y) as Cone(x, B, (y)), where B, (y) is the unique ball around y such that the angle
of Cone(xz, B, (y)) is exactly a. (The angle of Cone(x, B, (y)) is given by max, ;cp, () £52t.)

LeEmMA 5.1. For any positive integer r and any constant 0 < o < 7, there is a constant
C(a,r) such that the following holds. Let A be a finite set of points in C" and let L be any
positive integer. Then for any point x € C", there are at most C'(«, )L points y in A such that
the cone Cone, (z,y) contains at most L points from A.

Proof. Case 1: We first prove the case L = 1. In this case, if y € A and Cone, (x,y) contains
at most one point from A, then it contains exactly one point which is y. For any two points
y1,y2 € A such that both Cone,(z,y;) and Cone,(z,y2) contain exactly one point from A,
the angle yizys is at least «, by the definition of the cones. Thus, the claim follows from
Lemma 3.1.

Case 2: We reduce the case of general L to the case L =1 by a random sparsifying
argument. Let Y = {y1,...,ym} be a set of points in A such that Cone,(z,y;) contains at
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most L points from A for all 1 < i < m. We create a random subset A" of A by picking each
point with probability p (for some 0 < p < 1 to be determined), randomly and independently.
We say that y; survives if it is chosen and no other points in A N Cone, (z,y;) are chosen. For
each y; € ), the probability that it survives is at least p(1 — p)*~1. By linearity of expectations,
the expected number of points that survive is at least mp(1 — p)Y. Thus, there are sets
V' c A C A, where |V'| > mp(1 — p)* with the property that each point 3; € )’ is the only
point in A’ that appears in Cone(z,y;) N.A". By the special case L =1, we conclude that
mp(1 —p)E=1 < |V'| = Oq4,-(1). The claim of the lemma follows by setting p = 1/L. O

6. Proof of the main theorem

Consider a point M and its nearest neighbor n(M). Let M; be another point, viewed as a
matrix. We consider the multiplication with M;j. This maps the ball B(M) to the ellipsoid
B(M)M; and n(M) to the point n(M)M.

Since the condition number (M) is not too large, it follows that B(M)M; is not degenerate.
In other words, the ratio between the maximum and minimum distance from M M; to a point
on the boundary of B(M)M; is bounded from above by O (1).

Let b(M, M) be the largest ball contained in B(M)M; and Cone(M, M7) be the cone with
its tip at n(M)M; defined by

Cone(M, My) := {tn(M)M; + (1 — t)b(M, M)|0 < t < 1}.

The assumption that M; is well conditioned implies that the angle of this cone is bounded from
below by a positive constant « depending only on x and d. Thus, we can apply Lemma 5.1 to
this system of cones.

Let T be the number of ordered triples (My, M, M) such that (My, M) is product
K-normal and (Mg, M) is sum K-normal.

We choose K sufficiently large so that the constant (1 — C2/K) in Lemmas 4.1 and 4.2 is
at least 1%. It follows that for any fixed M; and Ms, there are at least %|A\ matrices My such
that (My, My) is product K-normal and (Mg, Ms) is sum K-normal. This implies that

T> %\AP. (6.1)

Now we bound T from above. First we embed the triple (M, M7, M) into the quadruple
(Mo, n(My), My, Ms). Next, we bound the number of (Mg, n(My), My, M) from above.

The k-well-conditioned assumption of Theorem 2.2 guarantees that the quadruple
(Mo, n(My), My, My) is uniquely determined by the quadruple

(MoMy,n(Mo) M, Mo + Ma,n(My) + Ma).

In order to see this, set A = MyMy, B = n(My)My,C = My + My and D = n(My) + Ms. Then
(Mo —n(Mop))My = A — B and My — n(My) = C — D. Since M — M’ is invertible for any M #
M' € A, wehave M; = (C — D)"'(A — B). (This is the only place where we use this condition.)
Since M, is also invertible (as it has a bounded condition number), it follows that My = AM; ",
n(My) = BM; " and My = C — M.

It suffices to bound the number of (MM, n(My)My, My + Ma,n(My) + Ms).

We first choose n(My)M; from A - A. There are, of course, |A - A| choices. After fixing this
point, by Lemma 5.1 and the definition of product K-normality, we have O, 4(K (].A - Al/|A|))
choices for MyM;. Similarly, we have | A 4 A| choices for n(Mj) + M; and for each such choice,
we have Oy 4(K(]A + A|/|A])) choices for My + Ms. It follows that

A - A A+ A>
|A| Al )

T<|A-Al-Ona (K >-|A+A| O <K (6.2)
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Recall that K is also a constant depending only on x and d. Putting (6.1) and (6.2) together,
we obtain

%|A|3 < O <|AA|A+A|> ,

|AJ?
concluding the proof. |
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Abstract

We prove that the sumset or the productset of any finite set of real numbers, A, is at least |A|4/3—,
improving earlier bounds. Our main tool is a new upper bound on the multiplicative energy, E(A, A).
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction
The sumset of a finite set of an additive group, A, is defined by
A+A={a+b:a,beA}.
The productset and ratioset are defined in a similar way,
AA ={ab: a,be A},
and
A/A={a/b: a,be A}.

A famous conjecture of Erd6s and Szemerédi [5] asserts that for any finite set of integers, M,
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max{|M + M|, |MM|} > |M|>~*,
where ¢ — 0 when |M| — oo. They proved that

max{|M + M|, [MM|} > |M|'*,

for some & > 0. In a series of papers, lower bounds on § were find. § > 1/31 [10], 6 > 1/15 [6],
6 =2 1/413],and 6 > 3/11 [12]. The last two bonds were proved for finite sets of real numbers.

2. Results
Our main result is the following.

Theorem 2.1. Let A be a finite set of positive real numbers. Then

Al*

JAA|JA+ AP > ————
4Tlog| A[T

holds.

The inequality is sharp—up to the power of the log term in the denominator—when A is the
set of the first n natural numbers. Theorem 2.1 implies an improved bound on the sum-product
problem.

Corollary 2.2. Let A be a finite set of positive real numbers. Then

|A|4/3
A+ A |AAl} 2 ————

holds

2.1. Proof of Theorem 2.1

To illustrate how the proof goes, we are making two unjustified and usually false assump-
tions, which are simplifying the proof. Readers, not interested in this “handwaving”, will find the
rigorous argument about 20 lines below.

Suppose that AA and A/A have the same size, |AA| ~ |A/A|, and any element of A/A has
about the same number of representations as any other. This means that for any reals s, € A/A
the two numbers s and ¢ have the same multiplicity, |{(a,b) |a,b € A, a/b=s}| = |{(b,c) |
b,c € A, b/c =t}|. A geometric interpretation of the cardinality of A/A is that the Cartesian
product A x A is covered by |A/A| concurrent lines going through the origin. Label the rays
from the origin covering the points of the Cartesian product anticlockwise by ri,r2, ..., 7,
where m = |A/A].

Our assumptions imply that each ray is incident to |A|?/|AA| points of A x A. Consider the
elements of A x A as two-dimensional vectors. The sumset (A x A) 4+ (A x A) is the same set
as (A+ A) x (A+ A). We take a subset, S, of this sumset,
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m—1
S=|JrinAxA) + (i NAXA)C(A+A) x (A+A).

i=1
Simple elementary geometry shows (see the picture below) that the sumsets in the terms are
disjoint and each term has |[r; N A x A||r;41 N A x A| elements. Therefore

2
S| = |AAI(IAI*/IAA])” < A + A

After rearranging the inequality we get |A|* < |AA||A + A2, as we wanted. Now we will show
a rigorous proof based on this observation.

We are going to use the notation of multiplicative energy. The name of this quantity comes
from a paper of Tao [13], however its discrete version was used earlier, like in [4].

Let A be a finite set of reals. The multiplicative energy of A, denoted by E(A), is given by

E(A) = |{(a,b,c,d) € A*|In e R: (a,b) = (re, Ad)}|.

In the notation of Gowers [8], the quantity E(A) counts the number of quadruples in log A.
To establish the proof of Theorem 2.1 we show the following lemma.

Lemma 2.3. Let A be a finite set of positive real numbers. Then

E(A
EA gasap

[og|All

Theorem 2.1 follows from Lemma 2.3 via the Cauchy—Schwartz type inequality

|A]*
E(A) > ——.
|AA|

2.2. Proof of Lemma 2.3

Another way of counting E(A) is the following:

E(A)= ) [xAnA]. (1)

x€A/A

The summands on the right hand side can be partitioned into [log|A|] classes according to
the size of xA N A.

[og|A[]

E(A) = Z Z IxAN A2
i=0

X
2 |xAnA|<2i+]

There is an index, I, that

E(A) )
= < ANAPR
MoglA[] 2, ANl

X
2l IxAnA| <2+
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Fig. 1.

Let D={s: 2l <|sANA| < 2”1}, and let 51 < s < --- < 5, denote the elements of D,
labeled in increasing order,

E(A
_EA) < Z IXANAP? <m22+2, )
[og| Al

X
2l xAnA|<2!+!

Each line /;: y = s;x, where 1 < j <m, is incident to at least 2! and less than 2/+! points
of A x A. For easier counting we add an extra line to the set, /,,11, the vertical line through the
smallest element of A, denoted by a;. Line /,,+1 has |A| points from A x A, however we are
considering only the orthogonal projections of the points of /,,. (See Fig. 1.)

The sumset,’ GNAXA)+UNAXA), 1L j<k<m, hassize | NA X AlllxNA X A,
which is between 22! and 22/*2. Also, the sumsets along consecutive line pairs are disjoint, i.e.

(LiNAXA) +Uipi NAXA))N(UNA X A)+ (ks1 NA X A)) =0,

forany 1 < j <k <m.
The sums are elements of (A + A) x (A + A), so we have the following inequality,

m
m2* < U(liﬂAxA)+(l,~+1ﬂAxA) <A+ A%
i=1

The inequality above with inequality (2) proves the lemma. O

1" As customary, by the sum of two points on R? we mean the point which is the sum of their position vectors.
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2.3. Remarks
Let A and B be finite sets of reals. The multiplicative energy, E(A, B), is given by
E(A,B)=|{(a,b,c,d)e Ax Bx Ax B|3rLeR: (a,b) = (Ac, rd)}|.

In the proof of Lemma 2.3 we did not use the fact that A = B, the proof works for the asymmetric
case as well. Suppose that |A| > | B|. With the lower bound on the multiplicative energy

|A%|B|?
E(A,B) > ———
|AB|

our proof gives the more general inequality

IAFIBE < 4[log|B|||A + Al|B + B|
|AB| '

3. Very small productsets

In this section we extend our method from two to higher dimensions. We are going to consider
lines though the origin as before, however there is no notion of consecutiveness among these
lines in higher dimensions available. We will consider them as points in the projective real space
and will find a triangulation of the pointset. The simplices of the triangulation will define the
neighbors among the selected lines.

The sum-product bound in Theorem 2.1 is asymmetric. It shows that the productset should be
very large if the sumset is small. On the other hand it says almost nothing in the range where the
productset is small. For integers, Chang [2] proved that there is a function §(¢) that if [AA| <
|A|'*¢ then |A + A| > |A|*~%, where § — 0 if ¢ — 0. A similar result is not known for reals. It
follows from Elekes’ bound [3] (and also from Theorem 2.1) that there is a function §(¢) that if
|AA| < |A|'F¢ then |A 4+ A| > |A]?/?7%, where § — 0 if ¢ — 0. We prove here a generalization
of this bound for k-fold sumsets. For any integer k > 2 the k-fold subset of A, denoted by kA is
the set

kA={a1+ay+---+ar|ai,...,a; € A}.

Theorem 3.1. For any integer k > 2 there is a function § = 8;(¢) that if |AA| < |A|'*¢ then
lkA| > |A>~ YV, where § — 0 if e — 0.

Proof. We can suppose that A has only positive elements WLOG. Let [AA| < |A|'*¢. By a
Pliinnecke type inequality (Corollary 5.2 [11] or Chapter 6.5 [14]) we have |A/A| < |A|'T2%.
Consider the k-fold Cartesian product A x A x --- x A, denoted by x*A. It can be covered by
no more than |A/A|*~! lines going through the origin. Fig. 2 illustrates the k = 3 case. Let H
denote the set of lines through the origin containing at least |A|'=2*®=1 /2 points of x¥A. With
this selection, the lines in H cover at least half of the points in x* A since

|A|1728(k71) |A|k 1 |A|k
SlA/AR < 28

k—1 __
2 | / | _2|A|(]+25)(k*1
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Fig. 2.

As no line has more than |A| points common with x¥A, therefore |H| > |A|*~!/2. The set of
lines, H, represents a set of points, P, in the projective real space RP 1. Point set P has full
dimension k — 1 as it has a nice symmetry. The symmetry follows from the Cartesian product
structure; if a point with coordinates (ay, ..., ax) is in P then the point (o (ay), ..., o (ag)) is
also in P for any permutation o € S. Let us triangulate P. By triangulation we mean a decom-
position of the convex hull of P into non-degenarate, k — 1-dimensional, simplices such that
the intersection of any two is the empty set or a face of both simplices and the vertex set of the
triangulation is P. It is not obvious that such triangulation always exists. For the proof we refer
to Chapter 7 in [7] or Chapter 2 in [9]. The size of the triangulation (the number of simplices in
the triangulation) is at least | P| — (k — 1). It is possible that for sets with symmetries like P the
maximum triangulation size is much larger, however we were unable to find a better bound. For
similar problems about maximum triangulations see [1]. Let t(P) be a triangulation of P. We
say that k lines /1, ..., [y € H form a simplex if the corresponding points in P are vertices of a
simplex of the triangulation. We use the following notation for this: {/1,...,l;} € T(P). In the
two-dimensional case we used that the sumsets of points on consecutive lines are disjoint. Here
we are using that the interiors of the simplices are disjoint, therefore sumsets of lines of simplices
are also disjoint. Note that we assumed that A is positive, so we are considering convex combi-
nations of vectors with positive coefficients. Let {/1,..., [t} € T(P) and {/{,...,[;} € T(P) are
two distinct simplices. Then

k k
(Z’i N xkA> N (Zz; N xkA> =0.
i=1

i=1

Also, since the k vectors parallel to the lines {/1,...,lx} € t(P) are linearly independent, all
sums are distinct,

k

=[]l nxkAl.

i=1

k
Zli N xkA
i=1

Now we are ready to put everything together into a sequence of inequalities proving Theorem 3.1,
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k k
kAF > Y DY onnxFAlz (1A =k + ) ] |0 <k Al
(h,...krer(P)li=1 i=1

Every line is incident to at least |A|'=2¢%=1) /2 points of x¥A, therefore

|A|k—l+k(l—28(k—l)) _ (k _ 1)|A|k(1—28(k—l))

k
KA > =

Taking the kth root of both sides we get the result we wanted to show
|kA|>CkIA|271/k72(k*1)€‘ O
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DENSE ARRANGEMENTS ARE LOCALLY VERY DENSE. I*

JOZSEF SOLYMOSIT

Abstract. The Szemerédi-Trotter theorem [Combinatorica, 3 (1983), pp. 381-392] gives a
bound on the maximum number of incidences between points and lines on the Euclidean plane. In
particular it says that n lines and n points determine O(n4/3) incidences. Let us suppose that an
arrangement of n lines and n points defines cn?/3 incidences, for a given positive c. It is widely
believed that such arrangements have special structure, but no results are known in this direction.
Here we show that for any natural number, k, one can find k points of the arrangement in general
position such that any pair of them is incident to a line from the arrangement, provided by n > ng(k).
In a subsequent paper we will a establish a similar statement for hyperplanes.

Key words. point-line incidences, Szemerédi—Trotter theorem, regularity lemma
AMS subject classifications. 52C10, 52C30, 52C45

DOI. 10.1137/05062826X

1. Introduction. The celebrated Szemerédi—Trotter theorem [21] states that for
n points on the plane, the number of m-rich lines cannot exceed

(1.1) O(n*/m® +n/m),

and this bound is tight in the worst case. This result has numerous applications
not only in geometry [11, 22], but also in number theory [4]. The Szemerédi—Trotter
theorem has various proofs; the most elegant is Székely’s [22]. However, the proofs
provide very limited insight view of the structure of extremal arrangements. It is
widely believed that a point-line arrangement which defines many incidences has a
special, somehow rigid structure. For example, let us mention here a question of
Elekes. Is it true that for every ¢ > 0 there is a ¢’ > 0 such that if a set of n points
on the plane contains at least cn? collinear triples, then at least n¢ points are along
an algebraic curve of degree d, where d is a universal constant?

The main purpose of this paper is to show that any arrangement with close to the
maximum number of incidences is locally a collection of complete geometric graphs.
For the sake of simplicity we state the theorem for the balanced case, when the number
of lines equals the number of points, but it is quite straightforward to see the similar
statement for unbalanced cases as well.

Recent work of Gowers [6] and Nagle, Rédl, Schacht, and Skokan [9, 12, 13] has
established a hypergraph removal lemma, which in turn implies similar results to hy-
perplanes; however, a slightly different approach is needed, mainly because the higher
dimensional extensions of the Szemerédi—Trotter theorem are not as well defined as in
the planar case. To obtain sharp bounds one needs certain restrictions on the arrange-
ments. Therefore the corresponding structure theorems will appear in a subsequent

paper.

*Received by the editors April 1, 2005; accepted for publication (in revised form) February 27,
2006; published electronically DATE. This research was supported by OTKA and NSERC grants.
http://www.siam.org/journals/sidma/x-x/62826.html
fDepartment of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2
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A point set or a set of lines is in general position if no three of the elements are
collinear or concurrent.

THEOREM 1.1. For every natural number k and real ¢ > 0 there is a threshold
ng = no(k,c) such that if an arrangement of n > ng lines and n points defines at least
en*/3 incidences, then one can always find k points of the arrangement in general
position, such that any pair of them is incident to a line from the arrangement.

As we will see from the proof, the complete k-tuple is “local” in the sense that for
any pair of points of the k-tuple, p; and ps, the number of points from the arrange-
ment, incident to the line segment (p1,ps2), is less than k.

2. Proof of Theorem 1.1. The main tool of the proof is Szemerédi’s regularity
lemma [19, 20]. We will use its counting lemma form, because it is easier to extend to
hypergraphs which we will need for the higher dimensional extensions. Let us prove
first the simplest case, to show that there is always a triangle. This “simplest case” is
interesting in its own right; the statement of Lemma 2.1 implies Roth’s theorem [14]
about arithmetic progressions on dense subsets of integers. For the details we refer
to [16, 17].

LEMMA 2.1. For every ¢ > 0 there is a threshold ny = ng(c) and a positive
§ = d(c) such that, for any set of n > ng lines L and any set of m > cn? points P,
if every point is incident to three lines, then there are at least on® triangles in the
arrangement. (A triangle is a set of three distinct points from P such that any two
are incident to a line from L.)

This lemma follows the following theorem of Ruzsa and Szemerédi [15], which is
also called the triangle removal lemma or the counting lemma for triangles.

THEOREM 2.2 (see [15]). Let G be a graph on n wvertices. If G is the union of
cn? edge-disjoint triangles, then G contains at least Sn> triangles, where & depends on
c only.

The same theorem from a different angle is the following.

THEOREM 2.3. Let G be a graph on n vertices. If G contains o(n®) triangles,
then one can remove o(n?) edges to make G triangle-free.

To prove Lemma 2.1, let us construct a graph where L is the vertex set and two
vertices are adjacent if and only if the corresponding lines cross at a point of P. This
graph is the union of en? disjoint triangles, every point of P defines a unique triangle,
so we can apply Theorem 2.2.

To determine the number of triangles in any arrangement of lines and points
seems to be a hard task. A related conjecture of de Caen and Székely [1] is that n
points and m lines cannot determine more than nm triangles.

One can repeat the same argument, now with k instead of 3. The corresponding
counting lemma can be proven using Szemerédi’s regularity lemma. The proof is
analogous to the Ruzsa—Szemerédi theorem. There are slightly different ways to state
the regularity lemma,; for our purposes the so called degree form is convenient. For
the notations and proofs we refer to the survey paper of Komlés and Simonovits [7].

THEOREM 2.4 (regularity lemma). For every e > 0 there is an M = M(e) such
that if G = (V,E) is any graph and d € (0,1] is any real number, then there is a
partition of the vertex set V into k+ 1 clusters Vo, Vi, ..., Vi, and there is a subgraph
G' C G with the following properties:

o k<M,

o Vo <€V,

o all clusters V;, i > 1, are of the same size m < [¢|V]],
o degq (v) > degg(v) — (d+ €)|V| for allv €V,
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e ¢(G'(V})) =0 for each i > 1,
o all pairs G'(V;,V;) (1 <i < j <k) are e-reqular, each with a density either 0
or greater than d.

Armed with the regularity lemma we are ready to prove the following statement,
which is crucial in the proof of Theorem 1.1.

LEMMA 2.5. For every ¢ > 0 there is a threshold ng = ng(c) and a positive
§ = (c) such that, for any set of n > ng lines L and any set of m > en? points P, if
every point is incident to k lines, then there are at least dn* complete k-tuples in the
arrangement. (A complete k-tuple is a set of k distinct lines in general position from
L such that any two intersect in a point from P.)

Proof. To avoid having too many degenerate k-tuples, we remove some points
from P which have many lines incident to them. Let P’, which is the subset of P,
consist of points incident to at most 100/c lines from L. We can apply (1.1) to see
that P’ is a large subset of P, say 2|P’| > |P|. Let us construct a graph G where
L is the vertex set and two vertices are adjacent if and only if the corresponding
lines cross at a point of P’. This graph, G, is the union of at least §n2 edge-disjoint
Kj—s. Find a subgraph, G’, provided by Theorem 2.4 with € < ¢. In G’ we still have
some complete Kj—s (when going from G to G’ we removed (e + d)n? edges, much
less than cn?). The edges of such a complete graph are connecting V;—s such that
the bipartite graphs between them are dense and regular. This already implies the
existence of many complete subgraphs, Ki—s, as the following lemma, quoted from
[7], shows. O

LEMMA 2.6. Given d > € > 0, a graph R on k vertices, and a positive integer m,
let us construct a graph G by replacing every vertex of R by m wvertices, and replacing
the edges of R with e-reqular pairs of density at least d. Then G has at least am”
copies of R, where a depends on €,d, and k, but not on m.

Most of the complete k-vertex subgraphs of graph G’ define a complete k-tuple
in the arrangement, i.e., the corresponding lines are in general position. To see this,
let us count the “degenerate” k-tuples, where at least one triple is concurrent. The
number of concurrent triples is at most cn? (10g/ C) < ¢/n?. For every concurrent triple
one can select k — 3 lines to get a degenerate k-tuple. The expression ¢/n*~1 is clearly
an upper bound on the degenerate k-tuples; therefore most of the complete graphs on
k vertices in G’ are complete k-tuples if n is large enough, n > ng = ng(c).

The final step of the proof of Theorem 1.1 is to show that arrangements with
many incidences always have a substructure where one uses Lemma 2.1. We divide
the arrangement into smaller parts where we apply the dual of Lemma 2.1. The
common technique to do that is so-called cutting, which was introduced by Chazelle
(see in [2] or in [10]) about 20 years ago. Here we use a more general result, a theorem
of Matousek [8].

LEMMA 2.7. Let P be a point set, P C R |P| = n, and let r be a parameter,
1 < r < n. Then the set P can be partitioned into t sets Ay, Ao, ... Ay, in such
a way that n/r < |A;| < 2n/r for all i, and any hyperplane crosses no more than
O(r'=1/4) sets, where t = O(r).

One can use the d = 2 case and we choose the value r = 3,n?/3, where [ is a
constant that depends on k£ and which we will specify later. Let us count the number
of incidences along the lines of L, according to the partition of P. For a given line
& € L, we count the sum Z§=1 [|1A; N &|/k], which is not much smaller than the
number of incidences on £ over k if £ is rich of incidences, say, incident to much more
than r'/2k points of P. From the condition of Theorem 1.1 and the properties of the
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partition we have the following inequality:

t A,
;n4/3gzzw ;ngHL’"l/Q'

geL i=1
Choosing By = 57, the inequality becomes
'S 4 AN | N5 | 1ANg
=t < T3 | SR = 3 [
¢el i=1 i=1¢€l

Therefore there is an index 4, such that

crn®? <N {mngw .

el

If s= L%J, then we can partition the points incident to £ into s consecutive
k-tuples. We can break the line into s k-rich line segments and consider them as
separate lines. Our combinatorial argument in Lemma 2.5 is robust enough to allow
such modifications. Then we have some ¢'n?/? k-rich lines on |A;| = ¢’n'/3 points.
(Another possible way to show that there are at least ¢/ n?/3 k-rich lines is to apply
the Szemerédi-Trotter theorem, (1.1), to show that most of the lines are not “very
rich.”) To complete the proof of Theorem 1.1, we apply the dual statement of Lemma
2.5.
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Abstract. We prove the following theorems in incidence geometry.

1. There iss > 0 such that for anyPy, ..., P4 € C2, and Q1. ..., O, € C2, if there are<
n1+9/2 distinct lines betweer?; and Q; for all i, j, then Py, ..., P4 are collinear. If the
number of the distinct lines is ¢nl/2, then the cross ratio of the four points is algebraic.

2. Givenc > 0, there iss > 0 such that for anyP, P>, P3 € 2 noncollinear, and?4, ..., O, €
C?, if there are< cn/2 distinct lines betwee; and Q; for all i, j, then for anyP € C? ~
{P1, P>, P3}, we havesn distinct lines betwee® and 0.

3. Givenc > 0, there i« > 0 such that for anyPq, P, P3 € C? (respectively]RZ) collinear, and
01, ..., On € C2 (respectivelyR?), if there are< cn'/2 distinct lines betweet; and Q; for

all i, j, then for anyP not lying on the lineL (P, P), we have at leastl—¢ (resp.n/logn)
distinct lines betwee® andQ;.

The main ingredients used are the subspace theorem, Balog—$zérBowers theorem, and Sze-
meredi—Trotter theorem. We also generalize the theorems to higher dimensions, extend Theorem 1

to ]FIZ, and give the version of Theorem 2 ovr

0. Introduction

Notation.

e ForP # Q, L(P, Q) denotes the line through, Q.
e Let A be asubsetofaring. Them2={a +da’ :a,d’ € A}, A2 ={ad' :a,d € A).

We first prove the following two theorems.

Theorem 1. There is§ > 0 such that for anyPs, ..., P4 € C2,andQ4, ..., 0, € C?,
if

HL(P, Q) :l<i<4 1< j<n} <n@2 (0.1)
thenPy, ..., P4 are collinear. If

HL(P, Q) :l<i<4 1<j<n} <cn™? (0.2)
then the cross ratio oPy, ..., P4 is algebraic.

J. Solymosi: Mathematics Department, University of British Columbia, Vancouver, BC V6T 1Z2,
Canada; e-mail: solymosi@math.ubc.ca

M.-C. Chang: Mathematics Department, University of California, Riverside, CA 92521, USA,;
e-mail: mcc@math.ucr.edu
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Theorem 2. Givenc > 0, there is§ > 0 such that for anyPy, P», P3 € C2 noncollinear,
andQ1, ..., 0, € C2, if

HL(Pi, Q) :1<i<3 1< j<n}| <cn®? 0.3
then for anyP e C2? \ { Py, P», P3}, we have

HL(P, Qj) :1=<j <n}| =dn. (0.4)

Theorem 3. Givenc > 0, there ise > 0 such that for anyPy, P>, P3 € C2 collinear,
andQ1, ..., Q, € C2 if

HL(P, Q) :1<i<3 1<j<n}| <en'/? (0.5)
then for anyP € C2 ~. L(P1, P»), we have
HL(P, Q) :1<j<n)| >n'" (0.6)

Remark 4. In Theorem 3, the bound! < in (0.6) is replaced by /logn if the points are
in R? instead ofC2.

Remark 5. In Remark 1.1 below, we see that assumption (0.3) does occur.

We will first interpret the geometric problems under consideration as sum-product
problems. Roughly speaking, for Theorem 2, we want to show that given tw6 sets-
C? of about the same size, {fli/c; : (¢;,di) € C x D, 1 < i < n}is small, then
{di +b)/(ci +a) : (ci,di) € C x D, 1<i <n}islarge, wheres, b are fixed. So we
want to have an upper bound on the number of solutionsl;, c;, d;) of the equation
di+b di +b

ci+a ci+a

This interpretation is introduced in Section 1. In Section 2, we use the subspace the-
orem to prove Theorem 2, for the case when the p#ing not on any line connecting
the P;’s. In Section 3, we use the Szeradi—Trotter theorem to prove the corresponding
case of Theorem 1. We also give a short proof using a theorem about convex functions by
Elekes, Nathanson and Ruzsa[ENR]. The argument using the SadirEnotter theorem
[S], besides applying ovef (rather tharR), has the advantage that the set-up (reducing
the problem to bounding the number of solutions of equations) was already used for the
subspace theorem approach. Also, it generalizes easily to the prim& ficletting. In
Section 4, we use the sum-product theorem to take care of all the cases when more than
two of the P;’s are at infinity. In Section 5, we generalize the theorems to high dimen-
sions. In Section 6, we prove a stronger theorem @vday using thei, constant (see
[BC]).

This work is one more illustration of the relations between arithmetic combinatorics
and point-line incidence geometry. Let us recall that presently the strongest results on the
sum-product problem were obtained using the Szédiefrotter theorem (due to Elekes
and the second author). The results in this paper are another demonstration of the interplay
between these two fields.
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1. The set-up

Our strategy of proving Theorem 1 is to assume thatP,, P3 are not collinear and get
a large family of linesL(P4, Q;) violating assumption (0.1). Therefore, the settings for
Theorem 1 and Theorem 2 are the same. For simplicity, we describe the situation for
Theorem 2 here and indicate the (small) difference when we prove Theorem 1.

We will work in the projective spac€P? = (C3\ {0})/~, where (x, y,z) ~
(Ax, Ay, Az) for any A # 0. We identify C2 with the affine space i€P? defined by
z#0via(x,y) — (x,y,1).

Let Lo be the line at infinity defined by = 0. We may assume

(i) Py, P2, P3are(1,0,0), (0, 1,0),(0,0,1). (Clearly,PL and P; lie on L.)
(i) No Q; liesonL .

In fact, letA be the 3< 3 matrix with the vectoP; as the'th column. Since thé;’s are
not collinear, the matri¥ is invertible. Hence the linear transformatign: C3 — C3
defined byP — A~1PT sendsPy, P», P3 to (1,0,0), (0,1, 0), (0,0, 1). To see (ii),
we notice that for anyQ = (1,d,0) € L, the lineL(Q, P3) is defined byy = dx.
Assumption (0.3) implies thatQ; : Q; € Lao}| < cn'/? « n.

Let
Qi = (ci,d;, 1),
C={¢:1<i<n}, D={d:1<i<n} 1.1
G={(ci,d):1<i<n}, ClxD={dijci:1<i<n). (1.2)
g
Then
|Gl =n (1.3
and assumption (0.3) implies
IC™Y x D| <en?,  |C| = |D| = c'n'?, (1.4
g

since the lined.(P1, Q;), L(P2, Q;), L(P3, Q;) are defined by = diz, x = ¢ijz, y =
(di/ci)x,and|C||D| > n.

Remark 1.1. Assumption (0.3) does occur. For example, if wedgt; = (2, 2/, 1),
1<i,j<N,then

HL(P1, Qi j)}ijl = HL(P2, Qi D)}ijl =N, HL(P3, Qi j)}i,jl =2N — 1.

To be able to apply the tools from sum-product theory, we need the Laczkovich—Ruzsa
version [LR] of the Balog—Szemedi—Gowers theorem.

Theorem BSG-LR. Let A, B be subsets of an abelian group wijth| = |B| = N, and
letG C A x B with |G| > K~1N2. Define

AL B={a+b:(ab)ecG) (1.5)
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G
If |JA + B| < KN, then there are subsets ¢ A andB’ C B such that
A"+ B'| < KN
and
|A'|,|B'| > K~°N. (1.6)

Remark 1.2.The absolute constantin the above theorem is at most 8 (see [ESV]).

2. The proof of Theorem 2 for finite points

Let N = nl/2. Take a pointP = (—a, —b,1) € C2. The line L(P, Q;) has slope

(d; + b)/(c; + a). With the help of Theorem BSG-LR, Theorem 2 is reduced to the fol-
lowing

Theorem2.1. LetX = {x; e C2:1<i < N%}andY = {y; € C2: 1 <i < N2} with
|Y/X| <cNand|X|=1|Y|=cN.Fixa, b € C. Define

zz{yi+b:1§i§N2}.
Xi +a

Then|Z| > §N? for somes > 0.

Proof. Let I, = {i : (yi +b)/(xi +a) = z}. Then}_,, |I.| = n = N? and Cauchy—
Schwarz gives
N* < 1Z| Y I

Now

Z|Iz|2=‘{(i,j):u=yf—, 1§i,j§n}
Xi t+a Xj+a

=

b "4+ b
{(x,x’,y,y’)eX><X><Y><Y:er _r Tt H

x+a x'+a
=, x,y, Y)eXxXxYxY x'y+bx' +ay=xy +bx+ay}]. (21
To bound (2.1), we invoke the subspace theoflem [ESS], which gives an upper bound

on the number of solutions of a linear equation in a multiplicative group.
A solution(x, ..., x;;) of the equation

m
Yaxi=1 ¢eC 2.2)
i=1

is callednondegeneraté Zle ci;xi; # 0 for all k. The bound given below is due to
Evertse, Schlickewei and Schmidt [ESS].
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Subspace Theorem.LetI" < (C*, -) be a subgroup of the multiplicative group @f,
and let the rank of” ber. Then

m

. . 3m

Hnondegenerate solutions (X: cix; = 1in FH < D6
i=1

The formulation of the subspace theorem we need is the followingl(sée [C2])
Corollary 2.2 ([C2]). Letl’ < (C*, -) be a subgroup of rankandA c I" with |A| = N.
Then the number of solutions i of

X1+ ---+x3 =0 2.3
is bounded byv"~1e"¢ + N up to a constant depending @nHerec = c(h).
In order to apply the subspace theorem, we need the following[(se€ [Fr], [R1], [Bi]).

Freiman's Lemma. Let (G, -) be a torsion-free abelian group antl C G with |A?| <
K|A|. Then ' ‘

AcC{gl g tji=1....¢4, andg € G}, (2.4)
whered < K and]]¢; < c(K)|A|.
We letT" < (C*,-) be the subgroup generated py, ..., gs. Then the rank of" is

bounded byl < K and the number of nondegenerate solutions of (2.2) is bounded
by e“»X . We now obtain the subspace theorem under the product set assumption.

Notation. d <; f meansd < c(h) f, wherec(h) is a function ofa.
Theorem 2.3([C2]). LetA c Cwith|A| = N, and
[A%] < KA. (2.5
Then
|{solutions Oft1 + - - - 4+ x2, = 0in A}| <4 N 1K + N,

Theorem 2.3 givesV3 as a bound on the number of solutionsdrwith |[A| = N to the
equation
§1+ 86+ 8 =281+ + & (2.6)

On the other hand, we expect (2.1) to be bounde®/BySo we introduce a new variable
zin (2.1), and let
)C/ZM//Z, x=u/z5

whereu, u’ € X?. Then the equation in (2.1) becomes
uw'y+bu +ayz=uy +bu+ayz. 2.7)

A solution (&1, ..., &) € X2Y x bX2 x aXY x X2Y x bX? x aXY of (2.6) is in
one-to-one correspondence to a soluti@hu, y', y,z) € X2 x X?x Y x ¥ x X of (2.7)
by the following relations:

&1=u'y, &=>bu', E=ayz, &=uy, E&=bu, E=ayz,
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or
7 €5 ,_ bés bé1 §283
Uw=—, u=-—, y=— Y=—,——, 2I= .
b b &5 &2 abgy

In order to apply Theorem 2.3, we take
A= X%y UbX?UaXY.

Then we haveA?| < K|A| by the following Proposition 2.26 if [T\V].

Proposition. Let A, B be subsets of an abelian group wjth| = |B| = N.If |[A+ B| <
¢N, then
|[n1A —noA +n3B —naB| < 'N.

3. The proof of Theorem 1 for finite points

If we replace assumption (0.3) by assumption (0.1), then instead of (1.4) and Theorem
2.1, we have (3.1) and Theorem 3.1 below

nI™2 < || = D] < n*V/21c7t x D < n@/2, (3.1
g

Theorem 3.1. LetX = {x; e C2:1<i < N2} andY = {y; € C?: 1 <i < N2} with

N <X = Y| < NS (3.2
and
‘Y < N3, (3.3
Fix a, b € C. Define
zz{y"+b :151'5N2}.
Xi +a

Then|Z| > N1t for somen = n(8) > .

Remark 3.2. Let §’ be thes in (3.1). Then thes in Theorem 3.1 ig2¢ + 1) with an
absolute constanrtas in Theorem BSG-LR.

Similar to the argument from (2.1) to (2.7), we need to prove

E:=|{u,u,y,y, 2 €eX?x X°xY x Y xX:u'y+bu' +ayz=uy +bu+ayz|
< N+ (3.4

for somen > 0.
Rewriting the equation in (3.4) as

(y+bu' — (' +bu+a(y—yHz=0, (35)
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we see thatu’, u) lies on the lineZ, ,/ . defined by

! b v/
g Y tbo ab—yiz

(3.6)
y+b y+b
Assume
E > N+, (3.7)
We will get a contradiction fon small. (See (3.14).)
We define
K={0,y,2) €Y xY xX:|f,y N(X*>x X?)| > N2, (3.8)
Claim 1. If 3§ < n, then
IK | 3.9

> — .
1 X2|

Proof. By (3.4)—(3.6) and (3.8),

E< ) |lyy:N(X?x X?)| < [X?|K|+ N"27X]| Y2,
Y.z

and by (3.2)N1-211X||Y|?2 < N1-21+30+9) — N4=1_ The claim follows from (3.7).
Ruzsa’s Inequality ([R2]). LetM and N be finite subsets of an abelian group such that
IM + N| < p|M]|.

Leth > 1and¢ > 1. Then
IhN — ¢N| < p" M.

It follows from Ruzsa’s inequality, (3.2) and (3.3) that

N1+s 3 N 3+38
1X?| < ( X ) 1X| < T = NS, (3.10)

By (3.9), (3.7) and (3.10), we have

4-n

N 3—n—5s
K| > s = N7 (3.11)
Let
L= {Ey,y’,z S, y’, 7) € K}. (3.12

Since for any(&, ¢), there are at most'| < N1t9 triples(y, y’, z) such that

Y +b _aly =Yz

§ y+b’ s y+b
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for each line inC there are at mosvy*? triples in K corresponding to it. Therefore,
L] > N?7178 (3.13)

The following version of the Szem@dli—Trotter theorem ove€ is exactly what we
need.

Szemeedi—Trotter Theorem ([S]). LetP = C x D c C? be a set of points and be a
set of lines such that NP| > k for any¢ € L. Then

IPI% > ck®|L).

In the above theorem we tae = X2 x X?, £ as in (3.12) and = N1, Together
with (3.10) and (3.13), we have

N4(1+53) > |X2|4 - c(Nl_Z")3|,C| - N5—717—68'

This cannot happen if

1-— 268
-
Remark 3.3. The conditions thaf > 35 (cf. Claim 1) and (3.14) imply < 1/47.

n< (3.19

Remark 3.4. The case of;, Q; € F, x[F,, can be taken care of by the following theorem
(seellB, Theorem 2.2]).

Szemeedi-Trotter Theorem for F,. LetP C F, be a set of points, and be a set of
lines such that
P, I1Ll <M < p* forsomed < a < 2. (3.15

LetZ = {(p,£) € P x L: p € £} be the incidence relation. Then
IZ| < cM¥?7Y  forsomey = y(a) > 0. (3.16)

In (3.15), takeP = X2 x X2, £ as in (3.12), and¥ = N?t1¥ (cf. (3.10)). By (3.13)
(which follows from the assumption th@ > N*~"), we may assumgl| = N2-1-%,
Since each line it contains at leasv'~2" points, we have

17| > |LINT=2n. (3.17)

Hence

This is a contradiction if andn are small. Therefore (3.4) holds, and Theorem 3.1 is true
overlF,.

Remark 3.5. The finite points case of Theorem 1 oalso follows from the following
theorem by Elekes, Nathanson and Ruzsa [ENR].

Theorem ENR. Let S C R be finite and letf be a piecewise convex function (i.e.
f' > 0). Then
25| + 12£ ($)] = c| S|/,
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Proof of Remark 3.5Similar to the way we derive the assumption of Theorem 3.1, we
will start with (3.1) and use Theorem BSG-LR (twice, this time). Let

G={(ci.d)eCxD:1<i<N?. (3.18)
Assume
N <|Cl=|D| < N*, |G|~ N2, (3.19)
HCCL D (cindy) € Q} < N, (3.20)
Hfl Is ey dy) € g} < NI (3.21)

First, from (3.20), we obtai®’ c C andD’ c D such that
IC'|~|Cl, ID'|~ID|, |GN(C" x D"~ N?

and
< NS (3.22

~

D/
&

Let
G =GN xD.

Applying Theorem BSG-LR again, we obtalhc ¢’ ¢ C andY C D’ C D such that

IX| ~[C'|~ICl, Y] ~|D'|~ID|, 1G'N(X xY)|~N?

Y D’
‘Yfz;gww, (3.23)
Y+b
8]
The bound (3.23) implies that
llogY —logX| < N+, (3.25)
Ruzsa’s inequality and (3.25) give
12logX| < N1, (3.26)

Assume’ < 1/20. In Theorem ENR, we tak& = log X, and letf be the convex function
f(s) =log(ef 4+ a). Then
1210g(X +a)| > NY4. (3.27)
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On the other hand, (3.24) implies
llog(Y + b) — log(X + a)| < N, (3.28)
Again, applying Ruzsa’s inequality to (3.28) gives
12log(X +a)| < N7,

which contradicts (3.27) if < 1/20.

4. The cases of points at infinity

In this section we handle all the cases when more than two afthare at infinity.
LetP = (1, —1/d,0) € L. Then the lined.(P, Q;) are defined by

x+dy—(ci +ddj)z =0.
To prove Theorems 1 and 2, we need the following two theorems.
Theorem4.1. LetX = {x; e C?2:1<i < N%andY = {y; € C2: 1 <i < N%} with

N <X = Y| < NP8 4.1)
and v
H < N, 4.2)
X
Fix d € C. Define
Z={xi+dy:1<i<N?. 4.3)
Then
|Z| > N*™  for somen = n(8) > . (4.4

Theorem 4.2. LetX = {x; e C2:1<i < N%}andY = {y; € C2: 1 <i < N%} with

Y
IX|=|Y|=c¢N and ‘} < ¢N.

Fixd € C. DefineZ = {x; +dy; : 1 <i < N?}. Then|Z| > §N? for somes > O.
To prove Theorem 4.1, we assume the contrary that
1Z| < N**7 (4.5)

for somen = n(8) > §. We will show that this cannot happeryjfis small.
LetA = X, B = dY, whereX, Y satisfy the assumptions of Theorem 4.1. Applying
Theorem BSG-LR td and B, we have

N < |A| = |B] < NY, (4.6)
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B
‘— < NYH, 4.7)
A
|A+ B| < N (4.8)

By the same argument as that to obtain (3.10), (4.6)—(4.8) implies
|24], |A%] < N5,
On the other hand, (4.6) and the sum-product theorem below imply
24] + A > NHAD,
This is a contradiction iff < 1/23.

Theorem (Solymosi [S])
24] + |A?] > |A|T1<.

Remark 4.3. Letn’ be then in (4.5). Then the; in (4.6)—(4.8) is bounded byy’, where
¢ < 8 is an absolute constant. (See Remark 1.2.) For exampj}é=f §, we can take
n < (2c + 1)6.

The proof of Theorem 4.2 by using the subspace theorem is rather straightforward,
since as in the proof of Theorem 2.1, it suffices to show that

1
He, x', v, ) e X x X xY xY ix+dy=x"+dy}| < ENZ'

Proof of Theorem 3.Since Py, P>, P3 are collinear, we may assume tiat= (1, 0, 0),

P, = (0,1,0), P3 = (1, —1,0) € L. Assumption (0.5) means that|, |D|, |C + D|

S N. ForapointP = (—a, —b,1) ¢ L, the family of lines{L(P, Q;)}; corresponds
to {i’f%i’ : (¢i,d;j) € C x D, 1 <i < N?). Applying the theorems below to the sets
C + a, D + b, and by Ruzsa’s inequality, we hay@ + a)(D + b)| ~ N2~¢ (respec-
tively, N2/log N). This together with the Balog—Szenadi-Gowers theorem implies that
{L(P, Qj)};| = N2~ (respectivelyN?/log N).

Theorem ([C1]). LetA c C be afinite set with2A| ~ |A|. Then

|A%| > |A|>~¢ for somee > 0.

Theorem (Elekes—Ruzsa [ER])Let A C R be a finite set. Then
|A+ A|*-|A?| - log|A| > A5

The special case of Theorem Assume (0.2) holds. Thehy, ..., P4 are collinear. After
a Mobius transformation, we may assume that the four pointPare (1, 0, 0), P, =
(1,-1,0),P3 = (0,1,0), P4 = (1, -1/d,0) € L. The lines{L(P;, Qj)}; fori =
1,...,4 correspond t&, C + D, D and{c; + dd; : (¢;,d;) € C x D,1 < i < N?
respectively. SincéC| ~ |D| ~ |C + D| ~ N, we haveC’ c C with |C'| ~ N and
C’ C a + D for somea. HenceC’ + dD C a + (D + d D) and our conclusion follows
from the following theorem.
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Theorem (Konyagin—Labal[KL]) Lett € C be transcendental. Then

|A]log |A|

A+1tA _—
A+ |>Ioglog|A|

5. Higher dimensional cases

The case ofX with k > 2 follows easily from the case &f= 2.
Theorem 5.1. There is§ > 0 such that for anyPy, ..., Pry2, O1, ..., Q, € Ck, if

HL(P, Q) 1 1<i<k+2 1< j<n)|<n®HE (5.1)
thenPy, ..., P2 lie on a hyperplane.
Theorem 5.2. Givenc > 0, there is§ > 0 such that for anyP, ..., P41 € C* not
contained in any hyperplane, and agy, ..., 0, € CK, if

HL(Pi, Q) :1<i<k+1 1<j<n} <en® D/ (5.2)
then for anyP € Ck ~ {Py, ..., Piy1) we have

{L(P, Qj):1<j <n}{=dn. (5.3)

The set-up is similar to that of th&? case. We work oi€P¥ instead ofC*. Assuming
P, ..., P41 are not contained in any hyperplane, after a linear transformation we may
assume thaP; = (1,0,...,0), P> = (0,1,0,...,,0),..., Pry1 = (0,...,0,1). By

the same reasoning as before, we may assume thad theall lie in the affine space.
Hence we may set

Q; = (1, ...,c0)9 = (cij),...,c,(cj)) e RF c C*,

wherej =1,...,n.
Let N = n/k. Assumption (5.2) implies
; k o vk : k _
{(c2, ..o eV Cen ea, oo e YL e - e )N < NETE
' (5.4)

and o
(ca/et, .y er/e)VY ) < NL (5.5)

For a finite pointP = (—aa, ..., —a, 1), the family of lines{L(P, Q;) : 1 < j < N*}
corresponds one-to-one to

@)
Z={<C2+a2,...,ck+ak> :1§j§Nk}.
c1+ax c1+ax

Hence (5.3) is equivalent to
|Z| = §N* (5.6)



dc_52 10

Sum-product theorems and incidence geometry 13

forsomes > 0. LetC; = {cfj) j=1..., N*}. We will show that

1

ICi/l=cN fori=1,... k. (5.7)

For simpler notations and without losing generality, we give an argument for the case
k=4.Let

A= {Qla sy QN4}7
and letpj,...;, (x1,...,x4) = (xj,...,xj,) be the projection to thgs-th, ..., j,-th
coordinates.
First, we may assume
|piaac1. c2.c)) NA| 2 N forall (c1, c2, c3) € p123(A). (5.8)

In fact, letA¢ = {(c1,...,cq4) € A": |pl_213(cl, c2,c3) N Al = o(N)}. Then
|A°] < o(N)N3 = o(N%), (5.9

andA¢ can be ignored.
Next, we see that for the sdtconsidered in (5.8), the boumgi24(A)| < N3 implies

Ip12(A)| < N2, (5.10)
Indeed,

N2> |p12a(A)| > Ip12(A) - min [ proa(pra(ct, c2) N A)| = [p12(A)| N.
(c1,c2)€p12(A)
(5.11)

The last inequality is because of (5.8). Similarly, we hgwg(A)|, | p23(A)] < N2,
Using (5.10) instead of (5.4), by the same reasoning as for (5.8), shrinking the set
in (5.8) a bit, we may assume

|p1a(c1, c2) N Al 2 N2 forall (c1, c2) € p12(A). (5.12)
Therefore, (5.4) and (5.12) imply

N2 |p13a(A)| Z | p1(A)] . gi?A) |paza(py (c1) N A)| > |p1(A)| N?, (5.13)
1€p1

which implies
IC1] = |p1(A)] < N. (5.14)
Similarly, we haveCs|, |C3| < N for |A| ~ N4
Repeating this process on the gebbtained in (5.12) with different projections, we
have|Cy4| = | pa(A)| < N. Now (5.7) follows fromN* < |C1| |C2| |C3| |Cal < N4
Getting back to the case of aky> 2, we letB = {Q1, ..., O« }. We will show that

i/ 1< j<NKj|~N foralli. (5.15)

Let
C1 = {(c1, ¢1) € C1 x C; © |pp(er, ¢i) N B| = N¥72), (5.16)
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Since|B| ~ N*, by the same reasoning as for (5.8) we have
|C1i| ~ N2. (5.17)
Let 7r; be the projection
{(c2/c1, s erfe)V t (er, eV € Cui} = {(ei /e < (er, €NV € Cu).

The fiber ofr; at(c1, ¢2) corresponds one—to—onepi‘il(cl, ¢i) N B. Hence the image of
7; has size< N by (5.5). We replaces by plj.l(Cl,-) N B. (Note that (5.16) and (5.17)
imply |p1*l.1(C1,-) N B| ~ N*.). We do this for each (and shrinka a little if necessary.).
Thus (5.15) is proved.

To prove (5.6), we want to show that under condition (5.15),

¢ +a; ¢ +a;
Clyerey ChrChyC)ECI X XCpXxCL X o X Cpt —t =2 ,Vi”
H(l k> C1 ©) 1 k 1 k cital dta
< Nk (518
It follows from the case of2 that
c2t+ay  cptar (5.19
c1t+ar  cj+a '
has< N? solutions incy, cz, ¢}, ¢,. Fixing c1, ¢}, the equation
c3+az  c3tas (5.20)

cat+ar  Ha

has at mostV choices ofcz (thencj is determined). Hence (5.19) and (5.20) together
have< N3 solutions inc1, 2, ca, c}. ¢4, c5. Therefore, (5.18) follows by induction, and
the finite point case of Theorem 5.2 is proved.

Only set theory is used in the argument above, hence Theorem 5.1, the other case of
Theorem 5.2, and the caseltf are proved in exactly the same way.

Remark 5.3. Theorems 5.1 and 5.2 are true if we repléteby F¥.

6. Theorem 2 overQ

We have a stronger result by using thgconstant, when the points are@f.

Theorem 6.1. Givene > 0, there is§ > 0 such that for anyPy, P>, Pz € Q? non-
collinear, andQ4, ..., 0, € Q?, if

HL(Pi, Q) :1<i <3, 1<) <n}| <n/? (6.1)
then for anyP € Q2 < {P1, P>, P3}, we have

HL(P, Qj):1<j<n}) >n'? (6.2)
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We use the same set-up as for thease. Given a set ¢ Q with N1=¢ < |A| < N1t¢
and|A?| < N1t5 we want to bound the number of solutiofis ..., & € A in the
following equation byN3t? for somes(e) > 0:

§1+8+ 8 =48+ +8. (6.3
We use the., constant ofA for this. We recall

Definition. LetA C Z be finite. The, constanbf A is

_ 1 aea e@nlly
VIAT

Proposition ([BC]). Givene > 0andg > 2, there exists$ = §(g, ¢€) such thatifA c Z
with [A2] < |A|1te, then

AgA where e(9) = %17,

Ag(A) < |AP,
wheres — Oase — 0. Therefore]| Y° _ e(ax)ll, < |A[Y/2F%.

Definer(n) = |{(&1,£2,83) € A x A x A : n = &1+ & + &3}|. In the proposition above,
we takeg = 6. Then

Er . b0 E1+ 6+ e =Ea+Es+Eoll = Y r(n)?
- () = 5 o] < sy,
acA acA
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Abstract Ulam asked in 1945 if there is an everywhere dense rational set, i.e., 1 a
point set in the plane with all its pairwise distances rational. Erdés conjectured that
if a set S has a dense rational subset, then S should be very special. The only known
types of examples of sets with dense (or even just infinite) rational subsets are lines
and circles. In this paper we prove Erd6s’ conjecture for algebraic curves by showing
that no irreducible algebraic curve other than a line or a circle contains an infinite
rational set.

Keywords Rational distances - Erdds problems in discrete geometry - Rational
points

1 Introduction

We define a rational set to be a set S C R? such that the distance between any two
elements is a rational number. We are interested in the existence of infinite rational
distance sets on algebraic curves.

On any line, one can easily find an infinite rational set that is in fact dense. It is
also an easy exercise to find an everywhere dense rational subset of the unit circle.
On the other hand, it is not known if there is a rational set with 8 points in general
position, i.e., no 3 on a line, no 4 on a circle. In 1945, Anning and Erd6s [1] proved
that any infinite integral set, i.e., where all distances are integers, must be contained
in a line. Problems related to rational and integral sets became one of Erd6s’ favorite
subjects in combinatorial geometry [6-9, 11, 12].
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In 1945, when Ulam hgﬁl_Eﬁigs’_égple proof [5] of his theorem with Anning,
he said that he believed there is no everywhere dense rational set in the plane, see
Problem II1.5 in [22] and also [10]. Erd6s conjectured that an infinite rational set must
be very restricted, but that it was probably a very deep problem [10, 11]. Not much
progress has been made on Ulam’s question. There were attempts to find rational sets
on parabolas [3, 4], and there were some results on integral sets, in particular bounds
were found on the diameter of integral sets [15, 21]. Very recently Kreisel and Kurz
[18] found an integral set with 7 points in general position.

In this paper, we prove that lines and circles are the only irreducible algebraic
curves that contain infinite rational sets. Our main tool is Faltings’ Theorem [13].
We will also show that if a rational set S has infinitely many points on a line or on a
circle, then all but 4 resp. 3 points of S are on the line or on the circle. This answers
questions of Guy, Problem D20 in [14], and Pach, Sect. 5.11 in [2].

2 Main Result
Our main result is the following.

Theorem 2.1 Every rational set of the plane has only finitely many points in common
with an algebraic curve defined over R, unless the curve has a component which is a
line or a circle.

The two special cases, line and circle, are treated in more detail in the next theorem.

Theorem 2.2 [f a rational set S has infinitely many points on a line or on a circle,
then all but 4 resp. 3 points of S are on the line or on the circle.

Note that there are infinite rational sets with all but 4 points on a line, and there are
infinite rational sets with all but 3 points on a circle. The circle case follows from the
line case by applying an inversion with rational radius and center one of the 4 points
not on the line. A construction of Huff [16, 19] gives an infinite rational set with all
but 4 points on a line.

We can formulate our Theorem 2.1 in a different way by using the term curve-
general position: we say that a point set S of R? is in curve-general position if no
algebraic curve of degree d contains more than d(d + 3)/2 points of S. Note that
d(d + 3)/2 is the number of points in general position that determine a unique curve
of degree d.

Corollary 2.3 If S is an infinite rational set in general position, then there is an
infinite S’ C S such that S’ is in curve-general position.

Proof Let S5 consist of any five points in S, and let 75 be the set of finitely many
points on the unique conic through those five points. Continue recursively; at step n,
add a point from S\7,—1 to S,—1 to get S,. For each d such that d(d 4+ 3)/2 <n,
let T, be the union of T,,_; and the set of points of S that are on a curve of degree
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d through any d(d + 3)/ qum.é %_S;!-.Qaince each T, is finite, we can always add
another point. Then the infinite union of the sets S, is an infinite subset of S with the
required property. O

3 Proof of Theorem 2.1
3.1 General Approach
We will use the following theorem of Faltings [13].

Theorem (Faltings) A curve of genus > 2, defined over a number field, contains only
finitely many rational points.

In this paper by curve (defined over a field K C R) we usually mean the zero set
in R? of a polynomial in two variables with coefficients from K. However, when we
consider the genus of a curve, we are actually talking about the projective variety
defined by the polynomial. For definitions, see [20].

First suppose that we have an infinite rational set S contained in a curve C of
genus > 2, defined over R. We can move two points in S to (0,0) and (0, 1), so
that by Lemma 3.2 below the elements of S are of the form (ry, rzﬁ). Then by the
remark after Lemma 3.2, the curve is defined over Q(«/E). By Faltings’ theorem, S
must be finite.

Below we will show that if we have an infinite rational set S on a curve C; of
genus O or 1, then all but finitely many of the points in S will in fact give points on
a curve C; in R3 of genus > 2. More precisely, assuming that (0, 0) and (0, 1) are
in S, a point (ry, rgﬁ) will give a point (rq, rz«/%, r3) on a curve Cp, with all the
r; rational. Again we conclude by Faltings’ theorem that the original set S could not
have been infinite.

3.2 Two Lemmata

Rationality of distances in R? is clearly preserved by translations, rotations, and uni-
form scaling ((x, y) — (Ax, Ly) with A € Q). More surprisingly, rational sets are
preserved under certain central inversions. This will be an important tool in our proof
below.

Lemma 3.1 If we apply inversion to a rational set S, with center a point x € S and
rational radius, then the image of S\{x} is a rational set.

Proof We may assume the center to be the origin and the radius to be 1. The proper-
ties of inversion are most easily seen in complex notation, where the map is z — 1/z.
Suppose that we have two points z1, zo with rational distances |z1], |z2| from the
origin and with |zo — z1| rational. Then

1 1

<1 22

22—z _ l2—zl

zllzal

2122
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is also rational. dC_52_10 O

A priori, points in a rational set could take any form. However, after moving two
of the points to two fixed rational points by translating, rotating, and scaling, the
points are almost rational points. The following simple lemma is well known among
researchers working with integer sets. As far as we know, it was proved first by Kem-
nitz [17].

Lemma 3.2 For any rational set S, there is a square-free integer k such that if a
similarity transformation T transforms two points of S into (0,0) and (1,0), then
any point in T(S) is of the form

(rl, m/%), ri,r € Q.

Note that this implies that any curve of degree d containing at least d(d + 3)/2
points from 7'(S) is defined over Q(v/k).

3.3 Curves of Genus 1

Let Cy: f(x,y) =0 be an irreducible algebraic curve of genus g; = 1 and degree
d > 3. Suppose that there is an infinite set S on C; with pairwise rational distances.
Assume that the points O = (0, 0) and (1, 0) are on Cj and in S and that O is not a
singularity of C;. Below we will be allowed to make any other assumptions on Cj
that we can achieve by translating, rotating, or scaling it, as long as we also satisfy
the assumptions above. In particular, we can use any of the infinitely many rotations
about the origin that put a different point of S on the x-axis.
We wish to show that the intersection curve C; of the surfaces

X: f(x,y)=0,
Y :x2 4yt =22
has genus g» > 2.

Consider C; as a curve in the z = 0 plane, and define the map 7 : C; — Cj
by (x,y,z) — (x,y), i.e., the restriction to C; of the vertical projection from the
cone Y to the z = 0 plane. The preimage of a point (x, y) consists of the two points
(x,y, £v/x2 + y2), except when x2 + y? = 0, which in C2 happens on the two lines
x +iy=0and x —iy =0. Then we can determine (or at least bound from below)
the genus of C using the Riemann—Hurwitz formula [20] applied to 7,

2g> —2>degm - (2g1 —2) + Z (ep —1).
PeCy

This is usually stated with equality for smooth curves, but we are allowing Cq and C,
to have singularities. To justify our use of it, observe that the map 7 corresponds to
amap 7 : (:‘1 — C‘z between the normalizations of the curves, for which Riemann—
Hurwitz holds. The normalizations have the same genera as the original curves, and
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7 has the same degree. Fg'@lenﬁgfe_él-gmiﬁcation point of 7 away from any sin-
gularities gives a ramification point of 7. It is enough for our purposes to have this
inequality, but there could be more ramification points for 7, above where the singu-
larities used to be.

Applying this formula with gy =1, d =2, we have

1
g21+5 ) (epr—1),
PeC,

so to get g2 > 2, we only need to show that 7 has some ramification point.

The potential ramification points are above the intersection points of C; with the
lines x £ iy = 0, of which there are 2d by Bézout’s theorem, counting with multi-
plicities. Such an intersection point P can only fail to have a ramification point above
it if the curve has a singularity at P or if the curve is tangent to the line there. We
will show that there are only finitely many lines through the origin on which one of
those two things happens. Then certainly one of the infinitely many rotations of C;
that we allowed above will give an intersection point of C{ with x £ iy = 0O that has
a ramification point above it.

The intersection of a line y = ax with f(x, y) =0is givenby p,(x) = f(x,ax) =
0, and if the point of intersection is a singularity or a point of tangency, then p,(x)
has a multiple root. We can detect such multiple roots by taking the discriminant
of ps(x), which will be a polynomial in a that vanishes if and only if p,(x) has
a multiple root. Hence for all but finitely many values of a, the line y = ax has d
simple intersection points with f(x, y) = 0. So indeed there is an allowed rotation
after which 7 is certain to have a ramification point.

3.4 Curves of Genus 0, d > 4

Let C : f(x,y) =0 be an irreducible algebraic curve of genus g; = 0, and again
assume that it passes through the origin but does not have a singularity there. Then
Riemann—Hurwitz with the same map 7 as above gives

1
$22-1+5 > (epr—1),
PeC,

so to get g» > 2 we need to show that there are at least 5 ramification points. As
above, we can ensure that the lines x =+ iy each have d simple points of intersection.
Discounting the intersection point of the two lines, this gives 2d — 2 ramification
points. Hence if the degree of f is d > 4, we are done.

3.5 Curves of Genus 0, d =2,3
Let d = 3 and assume that f(x,y) =0 is not a line or a circle. Consider applying
inversion with the origin as center to the curve. This is a birational transformation, so

does not change the genus. Therefore, when inversion increases the degree of f to
above 4, we are done.
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Algebraically, inversiordﬁ;ﬂléc%dg-gound the origin with radius 1 is given by

X
(. y) > (ﬁ %)
x“+ys x°+y

and since this map is its own inverse, the curve f(x, y) =0 is sent to the curve

X Yy
C : x2 + 2y : ) = 07
35 y)fx2+y2xz+y2
where k < d is the lowest integer that makes this a polynomial. This curve is ir-
reducible if and only if the original curve is irreducible. Since f does not have a
singularity at the origin, it has a linear term ax + by with a, b not both zero. After
inversion this gives a highest-degree term

(ax + by)(x* + yz)kfl.

In our situation, d = 3, so if k = 3, the curve C3 has degree 2k — 1 =5, and we are
done.

The only other possibility is that k = 2, which happens if x> 4+ y? divides the
leading terms of f. We will treat these cases in a completely different way.

If d = 2, then applying inversion will give a curve of degree 3, unless its leading
terms are x> + y2, which exactly means that it is a circle! So we treat this case by
reducing it to the d = 3 case.

Since f has degree 3 and genus 0, it must have a singularity. The singularity need
not be in our rational set, but it is always a rational point, so we can move it to the
origin, while maintaining the almost-rational form of the points in our rational set.
Then f must have the form

(ax + by)()c2 + y2) +ex? 4 dy2 + exy.

Note that this is exactly what we get if we apply inversion to a quadratic that is not a
circle and goes through the origin.

In fact, we can ensure that (1, 0) is on the curve again, so that a + ¢ = 0. Then if
we divide by ¢, f is of the form

(=x +by) (x* +y?) + x + dy? + exy.
We can parameterize this curve using lines x = ¢y, giving the parameterization

tet+d  pQ)

(—H@+D qu 0=

y() =

If we let ¢; be a value of ¢ that gives one of the points from our rational distance set,
it follows that for infinitely many ¢,

P _ p(tj))2 + (, p(1) p(t,-)>2

i ) PO,
(V@O =)+ () = y)) —(qm q(1)) a7

q(r)
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is a square. Then we can ngl@iplylsl%_qaqu (t j)2 to get infinitely many squares of the
form

(p(q () — pt))g))’ + (tp(Dq(t)) — 1 p(t))g (1))’

This polynomial has degree 6 in ¢. It has a factor (r — ¢ j)2 and a factor > + 1, since
taking ¢ = +i gives (using g (£i) =0)

(p(EDq () + (i - pCEDg () =0.

Factoring these out, we get a quadratic polynomial Q;(¢) in ¢. Its leading coefficient
is

(7 + 1)((d® + %)t} +2(b*e + db — d*b)t; + b*e® + b*d” + d* + 2¢bd),
and its constant term is
(7 + 1)((1+ (e +b)*)17 +2(bd — b+ de)t; +d* +b7).

These polynomials in ¢; are not identically zero (if » and d were both 0, then f would
be reducible), hence we can pick #; so that they are not zero. Then in turn Q; () is a
proper quadratic polynomial, and since it is essentially a distance function in the real
plane, it cannot have real roots, so it has two distinct imaginary roots.

Therefore our infinite rational set gives infinitely many solutions to the equations

Z=(F+1)-0,0).

Multiplying three of these together, and moving (¢> + 1) into the square on the left,
we get infinitely many solutions to

2 =(F+1)Q1(1)02(1) Q3(1).

If there are no multiple roots on the right, then this is a hyperelliptic curve of degree 8,
so it has genus 3, hence cannot have infinitely many solutions, a contradiction.

The one thing we need to check is that we can choose the ¢; so that the Q; do not
have roots in common. We need some notation: write

(1) = c2(t)t* + 1t + co(t;),
where
c2(tj) = (1+ (e +b)*)t] +2(bd + de — b)t; +d* + b
ci(tj) =2(bd +de — b)t; + 2(b*> + d* — bed — bd — be — d)t;
+2(bd + b*e — bd?)
co(tj) = (d* + b?)17 +2(b*e + db — d°b)t; + b*e* + b*d* + d* + 2ebd.

@ Springer
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Suppose that for inﬁnitelpﬁa.n? Zj_,_tligpolynomial Q;(t) has the same roots x;
and x,. Then for each of those #;, we have

c1(tj) = —(x1 + x2) - c2(t}), co(tj) = x1 - x2 - co(t5).

If we look at the coefficients of the ¢; terms in these equations, we see that

_2(b*+d? —bed —bd —be —d) be +d —d?
o= 2(bd — b + de) - bd +de—b
2(b%e +db — d*b) be +d — d?
X1 X = — . .
VT T bd + de — b) bd +de—b
be+d—d?

Here we can read off that the roots are x; = b and x, = which is a contra-

R . . ” ~ bd+de—b’
diction, since the roots had to be imaginary.

4 Proof of Theorem 2.2

We will prove that if a rational set has infinitely many points on a line, then it can
have at most 4 points off the line. The corresponding statement for 3 points off a
circle then follows by applying an inversion. More precisely, suppose that we have a
rational set S with infinitely many points on a circle C and at least 4 points off that
circle. Assume that the origin is one of the points in S N C, and apply inversion with
the origin as center and with some rational radius. That turns C into a line L, and we
get a rational set with infinitely many points on L and 4 other points. Moreover, the
new origin can be added to S, so that we get 5 points off the line, contradicting what
we will prove below. To see that the new origin has rational distance to all points in
S, observe that in complex notation the distances |z| to the old origin were rational
for all z € S and that the distances to the new origin are 1/|z|.

To prove the statement for a line, our main tool will again be Faltings’ theorem,
but now applied to the hyperelliptic curve

6
= l_[(x —a;),
i=1

which has genus 2 if and only if the «; are distinct.

Suppose that we have a rational set S with infinitely many points on a line, say
the x-axis, and 5 or more points off that line. Then we can assume that 3 of those
points are above the x-axis and that one of them is at (0, 1). Let the other two points
be at (a1, b1) and (az, b2). Note that we are taking 3 points on one side of the line,
because we want to avoid having one point a reflection of another. If we had, say,
(ay, b1) = (0, —1), the argument below would break down.

Take a point (x, 0) of S on the x-axis with x % 0, a;, a>. Then we have that

x2+1, (x—al)z—i—bz, and (x—az)z—l—b%

@ Springer
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are rational squares, so thad\ge_glét%_taliglal point (x, y) on the curve
y2 = ()c2 + 1)((x —a))’+ b%) ((x —a)* + b%)

This is a curve of genus 2, since the roots on the right-hand side are distinct: they

are i and x =a; £,/ —bi2 for i =1, 2, which are distinct by the assumptions on the
points (a;, b;).

Therefore the curve has genus 2 and cannot contain infinitely many rational points,
contradicting the fact that S has infinitely many points on the line.

Acknowledgements We thank Kalle Karu for the useful discussions. We are also indebted to an anony-
mous referee who noticed that the d = 3 case in Sect. 3.7 was not completely covered in the previous
version of the paper.
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2 2
We show that the number of distinct distances in a set of n points in R? is N(nd™ d@d+2))
d>3. Erdés’ conjecture is £2(n?/%).

1. Introduction

One of the most famous and important problems in discrete geometry is the
following question, posed by Erdés [7,1]:

What is the minimum number of distinct distances
determined by n points in R 2

Given a finite point set A, let g(A) denote the number of distinct dis-
tances between the elements of A. Define g4(n)=mingcpd 4=, 9(A). Erdés’
question is to estimate gg(n). To this end, d is a constant and 7 is sufficiently
large. The asymptotic notation is used under the assumption that n— oo.

To find an upper bound for g4(n), let us consider the following natural
construction. Let A be the set of integral lattice points (x1,...,24) where
1 <x; <n'? assuming that n'/? is an integer. The distance between any
two points in A is the square root of a positive integer less than dn?/®. This
shows that g4(n) = O(n*%). Erdés and many other researchers conjecture
that g4(n) is close to this upper bound.

Research on this problem has led to various new methods and concepts
which are very useful for many other problems in discrete and computational
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geometry. The monograph by Agarwal and Pach [1] is an excellent place to
read about these developments. In the last few years, an intersting link was
found between the Erdds distance problem and problems in analysis. The
reader who is interested in this new direction is referred to a recent survey
by losevich [8].

Let us now give a brief account about previous lower bounds of g4(n).
Erdés proved, in 1946, that go(n) = 2(n'/?) [7]. It is easy to show, using a
variant of his argument that g4(n)=£2(n'/%), for all d>1. There is a series
of improvements for the case d =2, due to Moser [11], Chung [4], Chung-
Szemerédi-Trotter [5], Székely [14], Solymosi-Téth [12] and Tardos [15].
The most current bound is gz(n) = 2(n%83%) [15]. Little has been known
for d>3. Clarkson, Edelsbrunner, Gubias, Sharir and Welzl [6] proved that
g3(n)=02(n'/?). Very recently, Aronov, Pach, Sharir and Tardos [2] proved
that gs(n) = 2(n™/1*1=€) for any positive constant e. More general, they
proved that gg(n)=2(n'/(¢=9/77)=¢) for any d>3. This result gives a non-
trivial improvement for small d, compared to the previous bound n'/¢. On
the other hand, as d is getting large, the exponent 1/(d—90/77)—e converges
to 1/d, rather than to the conjectured bound 2/d.

Our main goal in this paper is to prove that the exponent 2/d is essen-
tially best possible, as it cannot be replaced by (2 —¢€)/d for any positive
constant €, given that d is sufficiently large. More precisely, we show that
ga(n)=02(nP=)/d) where e4=0(1/d) tends to 0 as d tends to infinity. Our
bound improves the above mentioned result by Aronov et al. for every d > 3.

Theorem 1.1. (a) g3(n)=2(n5%43).
(b) For any d>4, gd(n):Q(n?fd(diz))'

This theorem is a corollary of the following stronger result, which gives
a recursive estimate for gg4(n).

Theorem 1.2. (a) If g4,(n)=92(n%o), then for all d>dy

_ (d+d0+1)(d—230)+2d0/ad
1) ga(n) = 2(n ).

(b) If gg,(n)=12(n"0), then for all d>dy, d—dy even

2(d+1)
2) ga(n) = Q(n(d+do+2)(d—d0)+2(d0+1)/ad0 )

Tardos result [15] asserts that one can set s =.8635. Applying (1) with
do =2, d=3 and as = .8635 gives g3(n) = 2(n"°%43), proving part (a) of
Theorem 1.1. This estimate improves the bound 2(n"/141=¢) by Aronov et
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al. as 77/141 < .5461. This bound on g3(n) can be further improved to n-°%
using additional arguments. The details will appear later.
Part (b) of Theorem 1.2 implies:

Corollary 1.3. For any even d,
2(d+1)
(3) ga(n) = Q(ne+aisioses ).

For any odd d>3
(d+1)
(4) ga(n) = Q(n a4 o )

As mentioned above, we can set ag =.8635 and a3 =.5643. With these
values, the exponents in Corollary 1.3 are larger than (Zi— a( d2+2) in both
cases. This proves part (b) of Theorem 1.1.

We would like to point out that for those d where d—dj is an even positive
integer, the bound in part (b) of Theorem 1.2 is superior to the bound in
part (a). We leave the details as an exercise.

Finally, let us mention that recently several variants of Erdds distance
problem have been raised by analysts. The method developed in this paper
helps us to obtain new results concerning these problems. The details will
appear in a future paper.

The rest of the paper is organized as follows. In the next section, we
present two recursive theorems and use them to obtain Theorem 1.2. The
next section, Section 3, discusses a lemma that we need in the proof of these
recursive theorems. The full proofs of these theorems follow in Sections 4
and 5, respectively. The final section, Section 6, is devoted to concluding
remarks.

2. Recursions

For a finite set A we denote by ¢(A) the maximum number of distinct dis-
tances measured from a point in A. Furthermore, define

t = i t(A).
an) = | min  HA)

It is clear that ty(n) <g4(n). Instead of lower bounding g4(n), we are going
to bound t4(n) from below. All theorems and corollaries in this section hold,
with the same proofs, if we replace t4(n) by gq(n).
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Theorem 2.1. Let A be a set of n points in R? (d>3) and m be the maxi-
mum cardinality of the intersection of A with a hyperplane of co-dimension 1.
Then

(5) #HA) = Q(max{ m(d’fl) /d,td,1<m)}).

Theorem 2.2. Let A be a set of n points in R? (d>3) and m be the maxi-
mum cardinality of the intersection of A with a hyperplane of co-dimension 2.
Then

(6) HA) = Q(max{ ”(Zﬂl))//z,td_g(m)}).

m/

2.1. A recursion using Theorem 2.1

In this subsection, we use Theorem 2.1 to obtain part (a) of Theorem 1.2.
First, we can prove the following general result.

Corollary 2.3. Let o be a positive constant such that ty_1(n) = 2(n%),
then

da
(7) ta(n) = Q(ndaﬂd*l)).
Proof. Theorem 2.1 implies that
n n o
(8) ta(n) = Q(mw—l)/d “d—l(m)) - Q(mw—l)/d tm )

Set 0=, +d(§—1)' By convexity,

n el n 0 a\1-60 __ A a dor
O) et M2 (m(d—l)/d> (m)!~ = 2(n) = 0 (naasan ),
completing the proof.

Corollary 2.3 gives rise to the following recursive estimate. Assume that
for some dp>1 there is a constant oy, such that t4,(n)=2(n%). Define

da
10 Qq =
(10) T dogy + (d—1)
for d>dy+1.
Corollary 2.4. With the above assumption and notation, we have

(11) ta(n) = 2(n%).
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We have an exact formula for ag4, given ay,.
Fact 2.5. For any d>dy
2d
(d+do+1)(d — do) + 2do/va,
Corollary 2.4 and Fact 2.5 imply statement (a) of Theorem 1.2.

(12) g =

Proof. Define v4=1/ay4; (10) implies

(13) Ya=1+" -1
Using induction, it is easy to show that for any d>dy

(d+do+1)(d—do)  do
14 =
( ) Yd 2d =+ d Ydo >

which is equivalent to (12).

2.2. A recursion using Theorem 2.2

The arguments here are very similar to the arguments in the previous sub-
section. As an analogue of Corollary 2.3, we have:

Corollary 2.6. Let o be a positive constant such that ty_o(n) = 2(n%),
then

(d+1)a
(15) ta(n) = Q(nzda+<d—1> )
Proof. Theorem 2.2 implies that

n(d+1)/2d nld+1)/2d
(16) ta(n) = Q(m(d1)/2d + td—Q(m)> = ‘Q<m(d1)/2d +m )

Set 0=, da?ﬂ&_l). By convexity,

d+1)/2d d+1)/2d \ 0
n(d+)/ +m® n(d+1)/ (ma)lfﬁ _ Q(na(d+1)/2d)
(17)  m@-D/2d m(d—1)/2d
(d+1)a
— Q(nQda-&-(d—l)),
completing the proof.

Assume that for some dy > 1 there is a constant ag, such that tg4,(n)=

2(n%o). Define

(d+1)ag2
18 pu—

(18) Y= 2dag_s+ (d— 1)

for d=dy+2, dy+4, etc.
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Corollary 2.7. With the above assumption and notation, we have
(19) ta(n) = 2(n).

For a fixed pair of dy and ag4,, we can give an explicit formula for ag.
Fact 2.8. For any d>dy and d—dy even

2(d + 1)

(20) YT+ do+2)(d — do) +2(do + 1)/,

Proof. Define v4=1/ay4; (18) implies

2d d—1

21 _
(21) R R T

Yd—2-

Using induction, it is easy to show that for any d>dy and d—dy even

(d+do+2)(d—do)  do+1

22 =

which is equivalent to (20).
Corollary 2.7 and Fact 2.8 together imply part (b) of Theorem 1.2.

3. Partition of spaces

In this section, we present a lemma which we shall need in the proofs of
Theorems 2.1 and 2.2. The development of this lemma was motivated by
practical problems in geometric searching. One of the main techniques for
doing a search is divide-and-conquer. In many problems, the situation looks
as follows: Given a set B of hyperplanes (of co-dimension 1) in R, one would
like to partition R in not too many parts so that each part intersects only
few hyperplanes. The following lemma, due to Chazelle and Friedman [3]
was discovered along these lines. The reader who is interested in this lemma
and its applications is referred to Section 6 of Matousek’s monograph [10],
which contains a detailed discussion about this lemma and its origin.

Definition 3.1. A hyperplane H strongly intersects a set P if HNP is not
empty and P has a point on both side of H.

Lemma 3.2. Let B be a set of k hyperplanes in R%. For any 1<r <k, one
can partition R? into r sets Py,..., P, such that for each 1<i<r, there are
only O(k/r'/?) planes which strongly intersect P;.
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The bound O(k/r'/4) is best possible; the hidden constants in O depend
on d but not on r. One can also guarantee that the sets P; are generalized
simplices. Strong intersection actually means intersection with the interior
(see [10]), but this information is not important to our proofs. Let us now
consider a little bit more complex situation when beside B we also have a
set. A of n points. We can require, in addition, that each part contains not
too many points.

Lemma 3.3. Let A be a set of n points and B be a set of k hyperplanes
in R%. For any 1<r <k, one can partition R? into r sets P, ..., P, such that
for each 1<i<r, |P,NA|<2n/r and P; strongly intersects O(k/rl/d) planes.

Proof. Let us assume, without loss of generality, that r is even and 2n/r is
an integer. Apply Lemma 3.2 with ' =7 /2. If |[PNA|<2n/r for alli=1,... 7/
then we are done. Otherwise, for each i where |P;N A| > 2n/r, partition P,
into smaller parts so that all but at most one of them have exactly 2n/r
points. The resulting finer partition has at most ' +r/2=r parts and each
part satisfies the requirement of the lemma.

Lemma 3.2 is not restricted to hyperplanes. It is known that this lemma
still holds if we replace a family of hyperplanes by a family of surfaces
satisfying certain topological conditions. In particular, the lemma holds if
we replace hyperplanes by (full dimensional) spheres (see Section 6.5 of [10]).
As an analogue of Lemma 3.3, we obtain the following lemma, which we shall
use in the next proof.

Definition 3.4. A sphere S strongly intersects a set P if SNP is not empty
and P has a point on both side of S.

Lemma 3.5. Let A be a set of n points and B be a set of k spheres in R%.
For any 1 <r <k, one can partition R? into r sets Py,...,P, such that for
each 1<i<r, |P;NA|=0(n/r) and there are only O(k/r'/®) spheres which
strongly intersect P.

4. Proof of Theorem 2.1

Since m is the maximum number of points of A on a hyperplane, there is
a hyperplane of dimension d—1 containing m points of A and thus ¢(A) >
ta—1(m). The non-trivial half of the bound is to show ¢t(A)=£02( "))
Set t=t(A). Since there are at most ¢ distinct distances from v, all points
in A (except v) are contained on t spheres S1(v),...,S:(v) centered at v (we
can add a few dummy spheres which contain no points from A). Together we
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have k =nt spheres. We apply Lemma 3.5 to A and the collection of these
k spheres. The sets Py, ..., P. in the partition will be referred to as cells.
We call a pair (u,v), u € A,v € A, consistent if u and v belong to the
same cell. Let M, denote the number of consistent pairs. We are going to
estimate M, from both above and below. The statement of the theorem will
follow from these estimates, under a proper choice of r.
Since |P;NA|=0(n/r) for all 1<i<r,

& we=o () =o(7)

To lower bound M,, let us consider a point v € A. If a cell P has a
common point with S;(v) but does not intersect S;(v) strongly, then we say
that it intersects S;(v) weakly. Let s;(v) be the number of cells intersecting
S;i(v) (either strongly or weakly).

Consider a sphere S;(v). Without loss of generality, we can assume that
the cells intersecting S;(v) are Py,...,P. Let x;=|P;NS;(v)|, 1<j<I. The
number of consistent pairs on 5; is

!
(24) Z (ZJ) > Z (xj —1) = AN S;(v)] — s;i(v).

zj>1

Summing the above estimate over all spheres S;(v) centered at v and
then summing over all v€ A give us

Y D (ANSi(v)] = 5i(v))

veA Si(v)

consistent pairs. However, this is not yet an estimate for M,., as a pair can be
counted many times. Indeed, if the vertices of a pair are of the same distance
from p points in A, then the pair is counted p times. The points which are at
the same distance from the vertices of a pair lie on a hyperplane. We assume
that a hyperplane contains at most m points from A, so the multiplicity of
any pair is at most m. It follows that

(25) Mz S ST (AN Si)] - si(e)).
veA S;(v)

Now we are going to bound the right hand side of (25) from below. First
of all, it is trivial that for any ve A

> AN Si(v) = A\ {v} =n—1,

Si(v)
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SO

(26) > > AN Si(v) = n(n —1).

vEA S;(v)

To estimate »_,c 4 >, () Si(v), We split each s;(v) as the sum of two terms

!/

si(v) and s/ (v) which count the number of strong and weak intersections,

respectively. It follows that

(27) YD si) =) s+ Y si(v)

vEA i=1 vEA i=1 vEA i=1

Thesum ) 4 St s(v) counts the total number of strong intersections
between the spheres and the cells. Since there are r cells and for each cell
there are only O(k/r'/®) spheres strongly intersect it, it follows that

t
(28) S sw) = O(rrlk/d) < entrl@-D/d

veEA 1=1

for some constant c.

The sum >, .4 S, s7(v) counts the total number of weak intersections
between the spheres and the cells. To bound this number, notice that for a
fixed point v€ A and a fixed cell P, there are at most two spheres centered
at v which intersect P weakly (if P weakly intersects S then either P is
inside S or P is outside S). Thus we have

(29) Z Z s (v) < 2nr.

veA i=1

The estimates in (25-29) together imply that

M, > (Z Z|AOS )| — entr(d= 1)/d—2nr)

1 veEA i=1
— 1) — (d-1)/d _
= (n(n 1) — entr 2nr).

(30)

This, together with the upper bound (23), yields
n? 1
— 1) — (d=1)/d _
(31) Q(m (n(n 1) — entr 2nr)).

r

Let us choose r= e(?)d/ (d=1) " where € is a positive constant. Setting e suf-
ficiently small compared to 1/¢, we have that cntr(¢=1/4 <n2/3 and also
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that 2nr <n?/6 (the second inequality is due to the fact that ¢t = 2(n'/%),
mentioned in the introduction). So with this setting of r, we have

n(n—1) — entr @ D/4 _2pr > n(n — 1) = n?/2 > n?/3.

So with this choice of 7, (31) implies

n? n?
It follows that d/(d—1
(33) iy _ oY
m b
namely,
n

concluding the proof.

5. Proof of Theorem 2.2

This proof, in spirit, is very similar to the previous one. The main (and
only) difference here is that we now consider triplets instead of pairs. We

only need to show that
n(d+1)/2d
H4) =2 <m(d—1)/2d) :

We call a triplet in A consistent if its three elements belong to the same
cell. Let N, denote the number of consistent triplets. Similar to the previous
proof, we are going to estimate NV, from both above and below.

Since |P;NA|=0(n/r) for all 1<i<r,

o wo(()-o(?)

To lower bound N,, again let us consider a point v € A. Consider a
sphere S;(v). Without loss of generality, we can assume that the cells inter-
secting S;(v) are Py,...,P. Let x; =|P;NS;(v)], 1 <j <I. The number of
consistent triplets on S; is

Lo I
(36) ) >N (z;,—2) = |ANS;(v)] — 2si(v).
- (5)= 2

J Jj=1
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Summing the above estimate over all spheres S;(v)’s and then summing

over all ve A give us
D D (AN Si(v)] = 2si(v))
vEA S;(v)

consistent triplets. Similar to the previous proof, this is not yet an esti-
mate for N,, as a triplet can be counted many times. Notice that if the
three vertices of a consistent triplet 7" are colinear, then there is no point
which is at the same distance from the vertices of T'. Otherwise, the points
which are at the same distance from the vertices of T' lie on a hyperplane
of co-dimension 2. By the assumption of the theorem, a hyperplane of co-
dimension 2 contains at most m points from A, so the multiplicity of T is
at most m. It follows that

(37) Z > (AN Si(v)] — 2s4(v)).
veA S;(v)

The estimates in (25-29) from the previous proof imply that

N, > (Z Z]ADS (v)| — entr(d- 1)/d—cnr)

1 veEA i=1
= (n(n —1) — entrd=D/d ch),
m

(38)

for some constant ¢. This, together with the upper bound (35), yields

3

(39) ZQ = (2(7711 (n(n —1) — entrd=D/d ch)).

We set r as before: r= e(?)d/ (d=1) "where € is a small positive constant. With
this choice of r, (39) implies

n3 n?
It follows that A1) /(d—1
(41) -ty _ o MY
m M
namely,
nld+1)/2d
(42) b= <m<d1)/2d)’

concluding the proof.
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6. Concluding remarks

Distinct distances in homogeneous sets. A set A of cardinality n is
homogeneous if it is a subset of a full dimensional hypercube of volume n and
any unit hypercube contains only O(1) elements of A. If A is homogeneous,
then a hyperplane of co-dimension 1 contains only O(n(dfl)/ @) elements of A.
Thus, in Theorem 2.1, we can set m=nld—1/d ¢ get

(43) HA) = 0 (21T

for any d > 3. This estimate improves a results of Iosevich [8,9], who used
a stronger definition of homogeneity. Applying Theorem 2.2 instead of The-
orem 2.1 results in the same bound. For the special case d = 3, we can
obtain the bound 2(n-74) (see [13]) for details. The homogeneity assump-
tion is very popular among analysts, since their finite sets are usually the
discretized versions of continuous domains.
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Abstract. It is shown that every homogeneous set of n points in d-dimensional Euclidean
space determines at least Q (n24/@*+1 /10g°® p) distinct distances for a constant c(d) > 0.
In three-space the above general bound is slightly improved and it is shown that every
homogeneous set of n points determines at least  (2%%®!) distinct distances.

1. Introduction

The history of the distinct distance problem goes back to Erdds [10] who asked the
question: What is the minimal number g,(n) of distinct distances determined by n
points in d-dimensional Euclidean space R¢? n points in the d-dimensional integer
grid [1,2,..., n'/414 show that ga(n) = O(nz/d) for any d > 2 and, in particular,
g2(n) = O(n/+/logn). Erd6s conjectured that these bounds are essentially optimal [11].

An initial lower bound of g,(n) > Q(4/n) by Erdés [10] was improved over the last
almost 60 years by Moser, Beck, Chung, Szemerédi, Trotter, and Székely [19], [3], [5],
[6], [25]. Research efforts have lead to several powerful methods (such as the crossing
theory [25] and the e-cutting theory [7]) which, in turn, found innumerable applications
in discrete and computational geometry. An excellent survey by Pach and Sharir [20]
elaborate on the history of the distinct distance problem and its connections to other
fields of discrete mathematics. Determining the order of magnitude of g,(n) (and g, (n)
for every d € N) seems elusive. The currently known best lower bound in the plane,

* The research by Jozsef Solymosi was supported by OTKA and NSERC grants.
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o) =Q (n%8%41) is due to Katz and Tardos [17]. Their proof combines a method of
Solymosi and Téth [21] with results from entropy and additive number theory.

Not much work has been done in higher dimensions. After some initial results by
Clarkson et al. [7] and by Spencer et al. [24], Aronov et al. [2] have showed recently that
the number of distinct distances determined by a set of n points in three-dimensional
spaceis g3(n) = Qn’"/1*17¢) = Q(1%34) for any & > 0. Solymosi and Vu [23] proved
a general lower bound of g;(n) = Q (n*/4=2/4@+2) for any fixed d > 4.

In this paper we consider the minimum number /4 ,4(n) of distinct distances in homo-
geneous sets of n points in R?. A finite point set P C R? is homogeneous if the following
two conditions hold: P lies in the interior of an axis-aligned d-dimensional cube C of
volume | P|, and any unit cube in R contains at most O (1) points of P. Homogeneous
sets represent an important special case for the distinct distance problem because the
best known upper bound constructions (the d-dimensional integer grids) are homoge-
neous, and because of numerous connections to harmonic analysis [4], [12], [14], [16],
[18]. Tosevich [13] studied the distinct distance problem for homogeneous sets (with
additional restrictions). He showed that /,(n) = Q(n%??) for any fixed d > 2. Soly-
mosi and Vu [22] proved a general bound of h;(n) = €2 (n?/4=V/ dz) for every dimension
d > 2. For d = 3, they have also obtained a slightly better bound /3 (n) = Q(n%37%%).
In this paper we improve all previous lower bounds on the number of distinct distances
in homogeneous sets of n points in R?, d > 3.

Theorem 1. For every d € N, there is a constant cq such that in every homogeneous
set P of n points in RY, there is a point p € P from which there are at least

¢y nzd/(d2+1) log(l—dz)/(derl)n

distinct distances measured to other points of P. In particular, we have hgi(n)
cy n2d/(d2+1) log(l—dz)/(dz-H)n.

v

For d = 3,4, and 5, our general lower bound is h3(n) = Qn%*%), hy(n) =
Q(n%47%), and hs(n) = Q(n"3%). In three dimensions we slightly improve on this
bound and prove the following:

Theorem 2. In every homogeneous set P of n points in R?, there is a point p € P
from which there are at least

Q(n53/87) — Q(n0'6091)

distinct distances measured to other points of P. In particular, we have hs(n) =
Q(f’l53/87).

We prove Theorem 1 in Section 3. The proof of Theorem 2 can be found in Section 4.
In the next section we present a key lemma on the number of k-flats incident to many
points in a homogeneous point set in R?, for 1 < k < d.
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2. Rich Hyperplanes in Homogeneous Sets

Consider a set P of n points in RY. We say that a k-flat (a k-dimensional affine subspace)
is m-rich if it is incident to at least m points of P. The celebrated Szemerédi—Trotter
Theorem [26] states that for n points in the plane, the number of m-rich lines (1-flats) is
at most O (n?/m> + n/m), and this bound is tight in the worst case.

The number of m-rich k-flats in R has been intensely studied. The Szemerédi—
Trotter type results have widespread applications in discrete and combinatorial geometry.
The Szemerédi—Trotter Theorem’s multi-dimensional generalizations [1], [8], [9] always
impose some kind of restriction on the point set or on the set of k-flats, otherwise m
points on a line give rise to infinitely many m-rich k-flats for any 2 < k < d.

We adopt the following terminology. A set of k + 1 points in R?, k < d, is affine
independent if it is contained in a unique k-flat, which is said to be spanned by the
point set. A point set P determines all the k-flats spanned by some k + 1 affine in-
dependent points of P. For a constant & > 0, a finite point set P C R? that spans a
k-flat is a-degenerate if any (k — 1)-flat contains at most « - | P| points of P. For a
finite point set P C R? and a constant & > 0, we say that a k-flat F is a-degenerate
if the point set P N F is «-degenerate. Note, for example, that all points of P N F
in a 1-degenerate k-flat F may lie on a (k — 1)-flat, but an o-degenerate k-flat for
a < 1 must be spanned by points of P. We recall a result of Beck [3] on a-degenerate
hyperplanes.

Theorem 3 [3]. For every k € N, there are constants oy, By > 0 with the following
property. For everyd € N and every finite point set P C RY, ifa k-flat F is a-degenerate,
then P N F spans at least By - |F N P|* distinct (k — 1)-flats.

Elekes and T6th [9] proved that for every dimension d € N, there is a constant
¥a > 0 such that the number of m-rich y,-degenerate hyperplanes for n points in R?
is at most O (n?/m*! + n=1/m4="). The first term, O (n?/m?*'), is dominant only
if m = O(y/n). We show below a much stronger upper bound for homogeneous sets.
A homogeneous set of n points in R? determines at most O (n?/m*+") distinct m-rich
hyperplanes for every m € N, d <m < n.

‘We formulate our result for a slightly more general class of point sets, where n denotes
the volume of the enclosing cube, rather than the number of points. We say that a point
set P is well separated if any unit cube in RY contains at most O (1) points of P. By
definition, every homogeneous set of n points in R? is well separated, and lies in a cube
of volume n.

Let f; x (P, m) denote the maximal number of m-rich k-flats in a well separated point
set P contained in the interior of a d-dimensional cube of volume n in R?, and let

Sfar(m,m)=max  f;,(P,m).
PCRA,|Pl=n

Solymosi and Vu [22] established the following lemma for the number of m-rich lines in
homogeneous sets of  points in R, Their proof carries over verbatim for well separated
sets of volume n.
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Lemma 4 [22]. Foreveryd € N, there is a constant c4 such that

2

Jaa(n.m) < cq -

We extend their result for arbitrary k e N, 1 <k <d — 1.

Lemma5. Foreveryd,k € N,1 <k < d, there is a constant cq . such that

k+1

Jax(n,m) < cqx 1

The example of the d-dimensional integer grid [1, 2, ..., n 1/d1d shows that this bound
is best possible for every m € N, 1 < m < n*/?,

Proof. For afixed d € N, we prove that f;;(n, m) = O(n**!/m?*!). We proceed by
induction on k, 1 < k < d. The base case, k = 1, is equivalent to Lemma 4. Assume
that 1 < k < d and that f;;, (ng, m) = O (ng™' /m?+1) for every ko, 1 < ko < k, and
np € N.

Consider a well separated set P that lies in the interior of a d-dimensional cube C
of volume n. Clearly, we have |P| = O(n). We may choose an orthogonal coordinate
system such that all coordinates of every point of P are irrational and P lies in the
interior of cube C, whose vertices have rational coordinates. This guarantees that for
any subdivision of C into congruent subcubes, every point of P lies in the interior of a
subcube. Fori = 0,1, ..., [log n'/47, let C; denote the subdivision of the cube C into
2/ congruent cubes. For instance, Cy = {C}, C; is a subdivision of C into 2¢ cubes, and
Crogny/a7 is a subdivision into constant volume cubes. There is a constant §; > d such
that every k-flat F intersects at most 84|C;|¥/¢ = 8,27 cubes of C;. If we put

11 m
= —10g — |,
= e s, + 1)

then every m-rich k-flat F is incident to an average of at least m/(8,2"%) > 4(k + 1)
points in a cube Q € C,,. That is, at least m /2 points of P N F lie in subcubes Q € C,,
where |[PNF N Q| >2(k +1).

Let oy and B be the constants from Theorem 3. Let F denote the m-rich k-flats. We
classify the k-flats in F as follows:

o Fi ={F € F: PN F isnot oy-degenerate},

o F, = {F € F: at least m/4 points of P N F lie in cubes Q € C,, such that the
point set P N F N Q is ax-degenerate},

o F3=F\(F1UF).

We show below that | F,| = O (n**!/m9*), forq = 1,2, and 3. Every F € F contains
an (agm)-rich (k — 1)-flat. By induction, the number of (om)-rich (k — 1)-flats is
O (n*/(cxm)?*1) = O (n*/m?*1). Every (agm)-rich (k — 1)-flat R can be extended to
an m-rich k-flat in O (n) different ways: R together with a point of P\R spans a k-flat.
This gives an upper bound | F;| = O (n**!/md*).
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For an upper bound on ||, we consider the subdivision C,,. Let K denote the affine
independent (k 4 1)-element subsets of P that determine some m-rich k-flat in 7, and lie
in some cube Q € C,. The volume of every cube Q € C, is O(n/2"?) = O(n/m*).
Since P is well separated, we have |P N Q| = O(n/m?/*). A trivial upper bound for
the number of affine independent (k + 1)-element sets in all cubes of C,, is

=i (0 () = o ().

‘We obtain a lower bound for | K'| by counting the affine independent sets in each F € F,.
At least m /4 points of P N F lie in cubes Q € C, where the point set P N F N Q is
ai-degenerate. By Theorem 3, every o;-degenerate set P N F N Q determines at least
Bi|P N F N Q|*! affine independent (k + 1)-element sets. If we denote by K (F) the
number of (k + 1)-element subsets of K that span F', then we have

m/4 \
|Kwnz§:ﬂmwmewaﬂ”Q£ﬁ) = Q127 = Q(m).
QeC,

ONF#(

We conclude that | K| = ZFE?Z Q(m) = |F,| - Q(m). By contrasting the upper and
lower bounds for | K |, we get | F»| = O (n**!/md*).

Finally, we consider F3. For every m-rich k-flat F € F3, we define a set S(F) of
cubes fromC;,i =1,2,..., lognl/d. A cube Q € C; isin S(F) if and only if the point
set P N F N Q is not ai-degenerate, but P N F N Q(i’) is ai-degenerate for every i’,
0 < i’ < i, where Q(i’) is the (unique) cube Q(i’) € C; containing Q. If P N F is
not o -degenerate, for example, then C ¢ S(F). Observe that the cubes of S(F) are
pairwise interior disjoint and they jointly cover P N F N C. We denote by dim(X) the
dimension of the affine subspace spanned by a finite point set X. For each F € F3, we
further classify the cubes in S(F) according to three parameters: Fori € {1,2, ..., u},
je{0,1,...,logm},and r € {1,...,k — 1}, let S(F, i, j, r) denote the set of cubes
Q € S(F) such that

1. QGC,‘,
2. 217 m /8,2 < |[PNFNOQ| <2 -m/8,2,
3. r = min(k — 1, dim(P N F N Q).

Some of the cubes Q € S(F) are not included in any S(F, i, j,r,) C S(F): This is
the case for every Q € S(F) NC; for which [P N F N Q| < (m/8,2*+") or u < i. The
total of number points of P N F in these cubes is less than

m m

I[PNFNOQ|+ -
QeS(F)NC; QeS(F)NC; 8a2! 2

O<i<p i>n

Therefore, the cubes in S(F, i, j, r) for all i, j, r jointly contain at least m /4 points of
PNEF:

logm k—1

3 i—1
ZZZWW¢M2£3% (1)

i=1 j=0 r=1

~
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For every Q € S(F,i, j,r), there is an r-flat R C F, such that [P N RN Q| >
ax|PNF N QI > o2/ 'm/(8,2%) = ©(Q2/~*m). Let us denote by Q’ the cube
in C;_; that contains Q € C;. Since P N F N Q' is already «y-degenerate, we have
[PNRNQ| <alPNFN Q' Let D(Q, R) be the set of all (k — r)-element affine
independentsetsu C (PNFNQ’)\ R such that R and u together span F'. Since PNFNQ’
is o -degenerate, there are @ (| PN F N Q'|* "y setsin D(Q, R).Let D'(Q, R) be asubset
of D(Q, R) of size ®(|P N F N QF7") = O((m2/~kyk—T).

Let T(F,i, j, r) denote the set of triples (Q, R, u) such that Q € S(F,i, j,r), R is
anr-flat with [PNRN Q| > o |PNFNQ|,andu € D'(Q, R). We have a lower bound

\T(F,i, j,r)| > |S(F,i, j,r)|- ©(m2/ -k,

Let us put
. |T(F,i,j,r)
T(F’I’Lr):W,

and then inequality (1) can be rewritten as

logm k—1 n logm k—1 o
t(F.ij.r) =) IS(F. i, j,r)| - Qm2 %) > Q(m).
i=1 j=0 r=1 i=1 j=0 r=1
By summing over all F' € F3, we get
u logm k—1
>N ©(F,i, j,r) = |F3| - Q(m). )

‘We also compute an upper bound for the quantity on the left side of inequality (2). First,
we give an upper bound on the number of triples (Q, R, u) € T(F, i, j,r)forall F € F3.
Recall that (Q, R, u) € T(F,1i, j, r) implies that Q € C;, and R is an r-flat incident to
£ = Q(m2/~%) points of P N Q. Every cube Q € C; has volume n/2'¢ and P N Q is
well separated. By our induction hypothesis, the number of £-rich r-flats in P N Q is
O((n/2!4y+1/¢4+1) The cube Q' € C;_; contains [P N Q| = O(n/2" V)= 0(n/2'¢)
points. So PN Q' contains (O (n/2/¢))*=" distinct (k—r)-element subsets. Forall Q € C;,
we obtain an upper bound

. (n/2id)yr+1 n o\ k—r
;JT(FJ,JJN < |cl|~0(W o((zm) )
nktl o
¢ (W | 2”‘"“’*”) : 3)

After dividing by (m2/~"*)k="=1 we sum inequality (3) over all i, j, and r:

k+1 ik \ k—r—1
o™ i-jarny (20
- ma+l1 2im ’
FeF;

Y IT(F i, j. )

FeF;

IA

A

> t(Fij.r)

« n*! k—j(d+1)
. _nik—j(d+
E t(F,i, j,r) < O(md“ 2 ),

A
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logm k—1 k+1
NSNS wFi o < 0 B 2
9 b ,]7 —_— md+1 9
j=0 r=1 FeF;
wn logm k—1 nk+1
.. < o
> Y r(F.ij.r) < 0<md+1 m> )

By contrasting inequalities (2) and (4), we conclude that | 53| = O (n**!/m¢*"). This
completes the proof of Lemma 5. O

Corollary 6. Foreveryd,k € N, 1 < k < d, the number of incidences of points and
m-rich k-flats in a homogeneous set of n points in R? is at most

nk+l
o("5).

Proof. In any homogeneous point set of size n in R?, the number of incidences of
points and m-rich k-flats is bounded by

n nk+l n nk+l nk+l
mfa (P, m) + Z fax(P,j) <O (W) + Z (0] (ﬂT) <0 (W) |

j=m+l1 j=m+1

3. Proof of Theorem 1

We are given a homogeneous set P of n points in d-dimensions. We may choose an
orthogonal coordinate system such that all coordinates of every point of P are irrational
and P lies in the interior of cube C, whose vertices have rational coordinates. This
guarantees that for any subdivision of C into congruent subcubes, every point of P lies
in the interior of a subcube. Let ¢ denote the maximum number of distinct distances
measured from a point of P (including distance 0). There is a constant §; > d such that
for every s € N, every hyperplane or sphere intersects the interior of at most 875!
cubes in the subdivision of C into s¢ congruent cubes. We subdivide C into s¢ congruent

subcubes Cy, C,, ..., Cs, where
n \ /@D
- 4541 ’

Let T be a set of triples (p, g, ¢) € P such that
@ p#aq.
d

(ii) p and g lie in the same subcube C; for some 1 <i < 57,
(iii) p and g are equidistant from c.

All points are located on nt spheres centered at the n points of P. The cubes C;,
1 < i < s subdivide each sphere into patches. Since every sphere intersects at most
845%~" subcubes C;, there are at most ynts?~! = n2/4 patches, where each patch lies
entirely in a subcube C;. There are n> sphere-point incidences. The average number of
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points on a patch is at least four. If x points lie on a sphere patch centered at c, then this
patch contributes ()26)2! triples (p, g, ¢) to T. We conclude that the number of triples is
IT| = Q(n?).

For every m € N, let T,,, denote the set of triples (p, g, ¢) € T such that the bisector
hyperplane of the segment pqg is incident to at least m but less than 2m points of P.
Since every bisector plane is incident to less than n points, we can partition 7" into log n
subsets

logn

T = U Ty
j=0

There is a value m = 2/ for some 0 < j < logn, such that |T,,,| > |T|/logn
Qn?/logn).

For a pair (p, q) € P2, p # g, all points of the set M(p, q) = {c € P: dist(p, c) =
dist(q, c¢)} lie on the bisector hyperplane of the line segment pg. Every bisector hy-
perplane intersects at most 8,59~ subcubes, and in each subcube C; it can bisect at
most |C; N P|/2 point pairs. So the number of pairs (p, g) € P? bisected by the same

hyperplane is at most
84571 0 (%) =0 (f) .
s s

Let B, denote the set of all bisector hyperplanes that bisect the pair (p, g) for some
(p,q,c) € T,. By definition, every hyperplane in B, is incident to at least m but less
than 2m points of P. By Lemma 5, we have

nd
Bl < o(mdﬂ).

We can now give an upper bound for |7,,|. In a triple (p, ¢, ¢) € T,,, point ¢ lies on a
bisector hyperplane of B,,. Each bisector hyperplane is incident to less than 2m points
of P and bisects at most O (n/s) pairs (p, q). Therefore

a2 <I|T,| <O A O 0(”)
m| = s zm - I K
logn/) — ma+tl s

v

d-1
md < 0(” logn)’
N
n@=0/d 101/
m < 0(7). (5)

We obtain another upper bound for |7,| by the following argument. In a triple
(p,q,c) € T,, both p and g lie in the same subcube C; C C. There are s? sub-
cubes, and each subcube contains (O (n/s%))> < O(n?/s*?) point pairs. Hence, there
are at most s¢ - O(n?/s*) = O (n?/s?) such pairs (p, g). For each pair (p, q), where
(p, q,c) € Ty, there are at most 2m points ¢ € P on the bisector hyperplane of pg. We

conclude that
n? n?
logn 54
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Using the upper bound for m from inequality (5), we have

s@+0/d < O/ log(d+l)/d n.

< O@U=DId ogld+D/d ).

t
Q(n2/(d—l)10g—(l+d)/d n) < t(d2+l)/d(d—l)7

(n)(d2+1)/d(d71)

Q(HZd/(d2+l) log(l—dz)/(d2+1)n) <1,

as required. This completes the proof of Theorem 1. O

4. Proof of Theorem 2

Consider a homogeneous set P of n points in R>. Similarly to the previous section,
we assume that all coordinates of every point in P are irrational, and the vertices of
the bounding cube C have rational coordinates. Let ¢ denote the maximum number of
distinct distances measured from a point of P (including distance 0). We subdivide C
into s> congruent cubes Cy, Cy, ..., Ca, for

-1y}

where y > 0 is a constant to be specified later.

By Theorem 3, P C R? contains Q2 (n?) affine independent point pairs. This implies
that there is a subset Py C P such that |Py] > Q(n) and every ¢ € P, is incident to
2 (n) distinct lines spanned by P. For every ¢ € Py, let P(c) C P\{c} be a set of Q2 (n)
points such that the lines cp, p € P(c), are distinct. For every point ¢ € Py, let H, be a
unit sphere centered at ¢. For every x € R*\{c}, we denote by X the projection of x to
the unit sphere H,. Points of P (c) have distinct images in H, under this projection. The
set of projection points is denoted by

P(c):={p: ce P(p)}.

We partition the unit sphere H, into 65> convex spherical regions S;(c), S>(c), ...,
Ses2(c) by 6s — 12 circular arcs: Consider an axis-parallel cube centered at ¢ and subdivide
each of its six faces into s> congruent squares, then project these squares to the sphere
H. from c. The area of each spherical region is ©(1/s?) and each one is contained in a
disk of area ®(1/ s2). Every circle on the sphere H, intersects at most O (s) regions. We
then subdivide R?\{c} into 6s2 regions R;(c),i = 1,2, ..., 6s2, such that

Ri(c) = {x e R:\{c}: % € S;(c)}.

For every c € Pyand j = 1,2,..., 652, the region R;(c) contains |P N R;(c)| =
O (n/s?) points because the region R;(c) N C can be covered by O(n /s%) unit cubes.
Note also that every plane incident to ¢ intersects at most O(s) regions R;(c), since
every great circle of S intersects at most O (s) spherical regions S;. If F is a plane, then
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|[FNORj(c)NP| = 0(n2/3/s) because F N C can be covered by O (n?/?) unit cubes,
and area(F N R;(c)) < O(area(F N C)/s).
For every ¢ € Py, consider the at most ¢ spheres centered at ¢ that contain all points of

P(c). Every sphere S centered at ¢ is partitioned into patches by the cubes C;, 1 < i < s3,

and theregions R;(c),1 < j < 6s2. We can partition C into the subcubes C;, 1 <i < $3,
by 3(s — 1) planes. These planes partition every sphere S along 3(s — 1) circles. Hence
every sphere S is partitioned by O (s) circular arcs into O (s?) patches. We partition the
points of P lying on a patch into disjoint triples, after deleting at most two points from
each patch if necessary. This produces a set Q of quadruples (p, g, 7, ¢) € P x Py such

that

(i) the points p, g, and r are in P(c);
(ii) p, g, and r lie on a sphere centered at c;
@iii) p, g, and r lie in the same subcube C; for some 1 <i <'s
(iv) p, g, and r lie in the same regions R;(c), for some 1 < j < 6s2;
(v) if (p1,q1,r1,¢) € Qand (p2, g2, 12, ¢) € Q,then{py, g1, ri}N{p2, g2, r2} = 0.

3.
>

We give a lower bound on the number of quadruples in Q. Let g(c) denote the number
of patches on all O(¢) spheres centered at c: We have g(c) = O(ts?) = O(n/y). The
average number of points on a patch centered at ¢ is 2(yn/g(c)) = Q(y). We choose
the constant y > 0 such that a patch contains at least six points of P(c) on average.
If the kth patch contains a set of points G¢(c) C P(c), then Q contains ||G(c)|/3]
quadruples (p, g, r, ¢). We conclude that the total number of quadruples is

g(c) |Gk| g(c) 5
10| =ZZ{TJ >Qn) (G -2)) = Qm?.
k=1

cePy k=1
We define the multiplicity of a pair (p, q) € P? as

m(p,q) = |{c € Py: Ir such that (p,q,r,c) € Qor(q,r, p,c) € O
or (r, p,q,c) € Q}].

We choose a parameter m to be specified later, and distinguish two types of quadruples in
Q: A quadruple (p, g, r, c) is low if at least one edge of the triangle pgr has multiplicity
at most m. A quadruple (p, g, r, ¢) is high if the multiplicity of all three edges of pgr
are above m. Let O~ and Q% denote the sets of low and high quadruples, respectively.
We distinguish two cases: First we consider the case that |Q*| < |Q~|, then we proceed
with the case |QF| > |07|.

Case |QF| < |Q~|. There are at least Q (n?) low quadruples in Q. We define a set of
triples

T :={(p.q.0): (p,q,r,c) € 0", m(p,q) <m}.
We have extracted |T'| = Q(n?) triples from Q. Similarly to the previous section, we

compute an upper bound on |T'|. Every pair (p, ¢) from a triple of T lies in one of the
s3 subcubes of C, and for every pair (p, ¢) there are at most m centers c. Therefore, we

have an upper bound
2
7= (0(4)) m=0 (2)
s 5
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Comparing this upper bound with the lower bound |T'| = € (n?), we obtain

Q@) < m,

n3/2

n
Q(W) =t

Case |Q*| > |Q~|. Atleast half of the quadruples in Q are high, and so |QF| > Q(n?).

For every ¢ € Py, project the points of P(c) to the sphere H..If (p, g, r, c) € Q, then
the intersection of the bisector plane of pg and H, is the bisector (great circle) of the
segment pq in the sphere H.. A (possibly degenerate) triangle pg7 defines three distinct
bisectors. The bisectors of a triangle pg7 meet in two antipodal points on the sphere. The
triangles that determine the same triple of bisectors are similar (the center of similarity is
the intersection of the bisectors). Specifically, if the triangles p1g171, p2gara, - - ., Peqete
determine the same triple of bisectors, then the points py, p1, ..., p¢ are collinear (the
points g1, G2, - .., qe and 7, 7, ..., 7, are also collinear). Every triple of bisectors de-
termines a family of triangles. We define a family of quadruples to be a collection of
quadruples (p, g, r, ¢) € QT with a common center ¢ such that the triangles pg7 form
a family.

For every ¢ € Py, we define a set of triangles in the sphere H, by

T(c) = {pgr: (p.q.1.0) € Q")

By construction, all these triangles have pairwise disjoint vertex sets. There is a set
Py C P, of size Q2 (n) such that for every ¢ € P;, we have |T (c¢)| = Q(n) triangles. For
apoint ¢ € Py, let B, denote the set of m-rich planes incident to c. We denote by B, the
set of intersections of planes in B, and the unit sphere H,., which are great circles on H,.
Note that the bisector of every edge pg of a triangle of T'(c) is in B..

For ¢ € P;, we consider the partition of the sphere H, into 652 regions S;(c), 1 <
j < 652, defined above. Each triangle of T (c) lies entirely in one of the regions. Let us
denote by 7;(c) the set of triangles of T (c) in S;(c) forevery j = 1,2, ..., 6s2. Since
the triangles have disjoint vertex sets, we have |Tj(c)| < |P N R;(c)|/3 < O(n/sz) =
O(t). But Z?S:] |Ti(c)| = Q(n), and so there are Q(s?) indices j such that ITi(c)| =
Q(n/ s2) = Q(¢). Vertices of similar triangles lie on three main circles. We have shown
that every region R;(c) contains at most 0n?*3/s) = 0n'/%t'/?) coplanar points.
Hence, there are at least Q(¢'/2/n'/%) families of triangles in Ti(c). Since each such
family determines three distinct bisectors of B (¢), the triangles in T;(c) determine

172 1/3 £1/6
2 1176 = L 1/18
distinct bisectors in éc. A bisector crosses at most O (s) regions, and so we obtain the

same bisector of BA(. from at most O (s) regions. We conclude that the number of bisectors
determined by the €2 (n) triangles of T (c) is

Q(s?) £1/6 PRI 149
|BC|2 O(S) Q nl/18 EQ ;-—nl/ls ZQ [1? .
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Each of the Q2 (n) points of P, is incident to 2 (n*° / t1/3) distinct m-rich planes. This
gives Q(n'3/%/¢1/3) incidences on m-rich planes of P. By Corollary 6, we have

213/9 w3
AT O\ )

m 0271119, )

o™
1473 =t

In both cases we have derived lower bounds for ¢ in terms of n and m. We choose
m € N such that we obtain the same result in both cases. By comparing inequalities (6)
and (7), we have

IA

132
Q (W) <m < O0m"1,

®)

Q (n53/87) <t

The choice m = n'”/?° establishes inequality (8) in both cases. This completes the
proof of Theorem 2. |
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