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Introduction and objectives

Nowadays, engineering science tackles problems of previously unseen spatial and temporal
complexity. In solving engineering problems, the processing of the information is performed
typically by model-based approaches which contain a representation of our knowledge about the
nature and the actual circumstances of the problem in hand. These models are part of the (usually
computer based) problem solving procedure. Up to recently, classical problem solving methods
proved to be entirely sufficient in solving engineering problems, however in our days traditional
information processing methods and equipment fail to handle the problems in a large number of
cases. It became clear that new ideas are required for the specification, design, implementation, and
operation of sophisticated systems.

Fortunately however, parallel with the complexity explosion of the problems in focus, we can
witness the appearance of increased computer facilities, and also new, fast and intelligent
techniques. As a consequence of the new challenges, not only the new problems, arising from the
increasing complexity have to be solved, but also new requirements, formulated for information
processing, have to be fulfilled. The previously accepted and used (classical) methods only partially
cope with these challenges.

Due to the growth of the amount of available computational resources, more and more complex
tasks can/are to be addressed by more and more sophisticated solutions. In many cases, processing
has to be solved on-line, parallel with information acquisition or operation. Many processes should
run with minimized human interaction or completely autonomously, because the human presence is
impossible, uncomfortable, or it is against human nature. Furthermore, no matter how carefully the
design of the operation/processing scheme is done, we can not avoid changes in the environment;
concerning the goals of the processing, one also have to deal with time/resource insufficient
situations caused by failures or alarms. It is an obvious requirement that the actual processing
should be continued to ensure appropriate performance in such cases.

What previously was called ‘processing’ became ‘preprocessing’, giving place to more advanced
problems. Related to this, the aims of the newly developed preprocessing techniques have also
changed. Besides the improvement of the performance of certain algorithms, a new requirement
arose: the introduced methods have to give more support to the ‘main’ processing following them.
In signal processing, image processing, and computer vision this trend means that the previous
processing tasks like noise smoothing, feature extraction (e.g. edge and corner detection), and even
pattern recognition became part of the preprocessing phase and processing covers fields like 3D
modeling, medical diagnostics, or the automation of intelligent methods and systems (automatic 3D
modeling, automatic analysis of systems/processes etc.).

This work deals with the problems outlined above and tries to offer appropriate computational tools
in modeling, data representation, and information processing with dedicated applications in the
fields of measurement, diagnostics, signal and image processing, computer vision, and control.

The special circumstances of online processing and the insufficient, unambiguous, or even lacking
knowledge call for fast methods and techniques, which are flexible with respect to the available
amount of resources, time, and information, i.e. which are able to tolerate uncertainty and changing
circumstances. Thus, the focus of this work is on methods of this type.

Part 1 addresses the topic of signal processing and data representation. New fast recursive
transformed-domain transformations, filter and filter-bank implementations are presented as replies
to the complexity challenges. Besides complexity reduction, and the decrease of processing delay,
the introduction of soft computing (e.g. fuzzy and anytime) techniques offers flexible and robust



operational modes. The newly initiated concepts and techniques however require reconsideration of
data and error representation. This question is also briefly addressed here and the usage of some
new data and error models is analyzed.

In Part II, new problems of image processing are studied. Different aspects of information
enhancement, like corner detection, useful information extraction, and high dynamic range imaging
are investigated. The proposed novel tools usually include improvements achieved by fuzzy
techniques. Besides being very advantageous from the automation point of view, they may also
give an efficient support to the increase of the reliability of further processing.

Based on the results of the previous chapter, Part III presents new methods in computer vision
together with the basic elements of a possible intelligent expert system in car-crash analysis.
Autonomous camera calibration and 3D reconstruction are solved with the help of recent results of
epipolar geometry and fuzzy techniques. The proposed analyzer system is able to autonomously
determine the 3D model of a crashed car and estimate speed and direction of the crash currently in
case of one car hitting a wall.

Part IV introduces the generalized concept of anytime processing. Fuzzy and neural network based
models are very advantageous if the processing has to be done under incomplete and imperfect
circumstances, or if it is crucial to keep computational complexity low. Here, the usage of such
models is investigated in anytime systems. With the help of (Higher Order) Singular Value
Decomposition based complexity reduction, certain fuzzy and neural network models are extended
to anytime use and new error bounds are determined for the non-exact models. In case of Product-
Sum-Gravity-Singleton fuzzy systems, a novel transformation opening the way for iterative
evaluation is also derived.

Part V deals with observer based fuzzy and neural network model inversion. Model inversion has a
significant role in measurement, diagnostics, and control, however until recently, the inversion of
fuzzy and neural network model could be solved only with strong limitations on the model. The
presented new concept can be applied in more general circumstances and the condition of low
complexity, global convergence can also be met.



Part 1 New Methods in Digital Signal Processing and Data
Representation

Signal processing is involved in almost all kinds of engineering problems. When we measure,
estimate, or qualify various parameters and signals during the monitoring, diagnostics, control,
etc., procedures, we always execute some kind of signal processing task. The performance of
measurement and signal processing has usually a direct effect on the performance of the whole
system and vice versa, the requirements of the monitoring, diagnostics, or control raise demands
in the measurement and signal processing scheme.

The recent development of modern engineering technology, on one hand lead to new tools like
model based approaches, computer based systems (CBS), embedded components, dependability,
intelligent and soft computing based techniques offering new possibilities; while on the other
hand new problems like complexity explosion, need for real-time processing (very often
mission-critical services), changing circumstances, uncertain, inaccurate and insufficient
information have to be faced. The current situation of engineering sciences is even more
complex due to the fact that in very complex systems various modeling approaches, expressing
different aspects of the problem, may be used together with a demand for well orchestrated
integration. The price to be paid for integration is that the traditional metrological concepts, like
accuracy and error have to be reconsidered and in many cases they are no more applicable in
their usual approved sense. Furthermore, the representation method of the uncertainty and the
error must be in harmony with both the modeling and information processing method. They also
need to be uniform or at least “interpretable” by other representation forms. All these lead to the
consideration of new, fast and flexible computational and modeling techniques in measurement
and signal processing.

This chapter deals with new methods in the fields of digital signal processing and data
representation, which offer solution to some of the above outlined problems.

1.1 Introduction

In signal processing the model of a system in question serves as a basis to design processing
methods and to implement them at the equipment level. In case of complex signal processing
analytical models, it is not enough to obtain a well defined numerical optimal information
processing. The complexity of the problem manifests itself not only in the (possibly huge)
amount of tasks to be solved or as a hierarchy of subsystems and relations: often several
modeling approaches are needed to grasp the essence of the modeled phenomenon. Analytical
models rarely suffice. Numerical information is frequently missing or it is uncertain, making
place for various qualitative or symbolic representation methods.

The subject of Part I is a topics with increasing actuality. New methods of signal processing are
introduced and their role in overcoming several aspects of the above problems is investigated.
Because of the nature of the problems and because we usually need online processing to solve
the tasks in hand, only fast algorithms of digital signal processing and new soft computing based
methods are concerned. The idea of using fuzzy logic and neural networks combined with other
tools like anytime algorithms comes from many other fields of research where similar problems
have appeared. It appeared natural to explore and adopt the solutions.



In the fields of Artificial Intelligence (Al), Soft Computing (SC), and Imprecise Computations
(IC), numerous methods have been developed, which address the problem of symbolic, i.e. non-
numerical information processing and a rational control of limited resources. They may offer a
way in signal processing as well when classical methods fail to solve the problems [S46], [S48].
Besides the “basic” method of SC and IC, a major step was done by the introduction of anytime
models and algorithms that offer an on-line control over resources and the trade-off between
accuracy and complexity (i.e. the use of resources).

The concepts and algorithms presented in this part are advantageous from complexity point of
view however the reduction of complexity most often runs parallel with the decrease of accuracy
that makes necessary in certain applications to change from one model to another according to
the actual situation. The use of different models within one system initiates further difficulties.
We can not forget that results (outputs) produced by different representation methods have to be
comparable, convertible, interpretable by each other. This leads to a huge number of open
questions not fully answered yet.

The chapter is organized as follows: In Section 1.2 a new concept of multisine synthesis and
analysis via Walsh-Hadamard transformation is presented. It is a low complexity, symmetrical,
highly parallel structure-pair, also decreasing such disadvantageous effects like picket fence and
leakage. In Section 1.3 the usage of fast sliding transforms is discussed in transform-domain
adaptive filtering. The resulted reduction of the delay is also analyzed. Section 1.4 is devoted to
a novel, low complexity implementation of Fourier transformation, resulting in anytime
operational mode, which is able to produce good quality frequency and amplitude estimations of
multisine signal components as early as the quarter of the signal block. In Section 1.4 a new
overcomplete signal representation is proposed for representing non-stationary signals. Finally,
in Section 1.5 new problems of data and uncertainty representation, arising from the non-
linearity of systems and from the use of non-conventional modeling methods, are investigated
together with some possible solutions offered.

1.2  Multisine synthesis and analysis via Walsh-Hadamard transformation

In this section, we present a new multisine synthesizer and analyzer based on a special filter-
bank pair. The new tool can efficiently be utilized for solving system identification problems.
The filter-banks are fast indirect implementations of the inverse discrete (IDFT) and discrete
Fourier Transformation (DFT) algorithms providing low computational complexity and high
accuracy. The proposed structures are based on the proper combination of polyphase filtering
and the Walsh-Hadamard (WHT) Transformations. The inherent parallelism of these structures
enables very high speed in practical implementations and the use of several parallel A/D, D/A
converters.

1.2.1 Introduction

The classical solutions in digital signal processing offer very well established methods for the
frequency-domain signal representation like the discrete Fourier Transformation (DFT) and its
fast algorithm the fast Fourier transformation. [1], [2]. However, we have to face serious limits
due to the contradictory requirements of magnitude and frequency resolution. To reduce these
problems the application of multisine perturbation signals came into focus [3] recently.

Another disadvantageous aspect of the widely used FFT techniques is that they are operated
block-oriented, (i.e. the algorithm processes whole blocks of data). Thus, they do not directly
support real-time signal processing, which also has become an important claim in this field.
Using the classical recursive DFT methods [1] the real-time processing can be solved with a
higher computational burden relative to the FFT. Later, the classical version based on the
Lagrange structure was replaced by an observer structure [4], [5] however, computational



complexity remained the same.

Recently a fast implementation of the recursive DFT has been developed [6] which combines the
idea of polyphase filtering [7] and the FFT; it is based on the decomposition of a larger size
single-input multiple-output (SIMO) DFT filter-bank into proper parallel combination of smaller
ones. Its computational complexity is in direct correspondence with the FFT and besides, its
polyphase nature provides additional advantages in parallelization.

Using this structure, a fast adaptive Fourier analyzer [8] can be derived and by applying
recursive building blocks within the structure a recursive DFT with fading memory can also be
implemented [9]. These have real importance in system identification problems where periodic,
multi-frequency perturbation signals are applied.

In this Section, a dedicated novel structure pair is presented for the efficient solution of the
above described problems. In Subsection 1.2.2 the application of synchronized signal synthesis
and analysis is proposed while in section 1.2.3 the new fast recursive synthesis and analysis
structure based on the Walsh-Hadamard Transformation will be detailed. Subsection 1.2.4 is
devoted to the extension towards multiple parallel running A/D converters.

1.2.2 Synchronized synthesis and analysis ([S6], [S7], [S34], [S35])

In multisine measurements the perturbation signal of the system to be identified is a multisine
signal and the amplitudes and phases of the harmonic components of the response are to be
measured. The accuracy of the identification depends on the accuracy of the determination of the
input/output ratio of the components. If we synchronize the synthesis and analysis of the
harmonic components then the systematic error of the DFT/FFT methods can be eliminated. The
synchronization can be solved through the use of a joint pair of signal synthesizer and analyzer.
Fig. 1.1 shows the block diagram of the multisine measuring procedure.

Xl o Synthesizer = Unknown = Analyzer o Y1
: system :
XN o7 = Yna

F Evaluation
Control <

Fig. 1.1 Block diagram of the multisine measuring setup

The synthesizer and analyzer units contain the signal conditioning circuits and the D/A and A/D
converters, respectively. The synthesizer generates a multisine input signal for the system with
components in given frequency positions and with maximized quasi-uniform amplitudes. This
can be optimized through the appropriate setting of the phase positions [3]. The analyzer is the
inverse of the synthesizer: its channels are “tuned” to the components of the multisine signal.
The transfer function is determined by the ratio of the complex output/input values. This is
evaluated by the common control unit.

1.2.3 Synthesis and analysis via Walsh-Hadamard transformation ([S2], [S6], [S33])

The block diagram of the proposed synthesizer is given in Fig. 1.2. It is a multiple input single
output (MISO) system which can generate arbitrary periodic waveforms. It operates like a
parallel to serial converter, i.e. it has a nonzero parallel input in every N-th step and generates a
sequence of N samples corresponding to the actual input. If this input is repeated in every N-th
step the output will be a periodic waveform. The overall structure implements a complete
weighted set of Walsh-Hadamard basis sequences in an efficient form with a complexity



corresponding to that of the fast algorithms. It is important to note that the input signal is the
Walsh-Hadamard representation of the sequence to be generated with an accuracy depending
only on the accuracy of the weights since within the structure only additions and subtractions are
to be performed. The output is obtained via a demultiplexer which can be applied to a D/A
converter.

As an example Fig. 1.3 shows a single sinusoid waveform generated using the above method.
The input values of the Walsh-Hadamard synthesizer can be easily calculated as the Walsh-
Hadamard transform of the time-sequence to be generated. Let us denote the vector of this
sequence by x=[x(0), x(1),....x(n-1)]" , and the N*N transformation matrix by . The N vectors
to be applied in every N-th step at the input of the synthesizer are given by X=Wx.

The block diagram of the analyzer structure is given in Fig. 1.4. It is in complete correspondence
with the synthesizer and can be considered as a serial to parallel converter system maximally
decimated at its output if necessary. The different channels calculate the Walsh-Hadamard
coefficients corresponding to the last N input samples. The complexity remains the same as for
the generation.

If the output of the synthesizer is connected directly to the input of the analyzer then after N

oo
)

X0
et

oo
o)

z(n)o 1+71
Xg(Mo—1-2"

Fig. 1.2 Block diagram of the Walsh-Hadamard synthesizer for N=8

(a) input signal, (b) output of the WHD synthetizer
T T T T

amplitude

. . . . . .
0 10 20 30 40 50 60 70 80
steps

Fig. 1.3 Single sinusoid waveform generated using WHT-synthesizer: (a) desired signal; (b)
output signal



steps its output values will equal the Walsh-Hadamard transform components, i.e. the
components of X. If there is a system to be identified in between, then we can characterize the
unknown system by the corresponding channel inputs X and outputs Y of the synthesizer and the
analyzer, respectively. The widely used frequency domain characterization of the system,
however, requires some additional computations. On the input side the vector of the complex
Fourier components X can be calculated as

X, =Fx=FW 'X=VX (1.1)

where F stands for the N*N discrete Fourier Transformation (DFT) matrix, while at the output of
the analyzer
Yol
Y00
Y500
Y40
Y400
Yol0)
Y0
Y500

Fig. 1.4 Block diagram of the Walsh-Hadamard analyzer for N=8

y(n) %

Y,=Fy=FW'Y=VY. (1.2)

The stationary behavior of the system to be identified can be characterized by the transfer values
derived as the ratio of the corresponding components of Yr and Xr as the transients of the overall
system die out. It is important to note that the results will be available at the end of a complete
sequence of N samples, i.e. in every N-th step.

Based on (1.1), the practical measurements start with the specification of the proper multisine
signal. This is performed by setting the proper initial magnitude and phase via the components
of Xr (see [3]). The next step is the calculation of the vector X=V"' Xy, which is directly used in
the signal generation (see Fig. 1.2). Finally, the output of the analyzer (see Fig. 1.4) should be
introduced into (1.2) to get the corresponding sine-wave parameters. The measurement setup
described above is a finite impulse response FIR filter-bank which performs a sliding-window
mode of operation and therefore its outputs characterize always the last block of N samples, i.e.
each channel of the bank can be considered as a “moving-average” filter. If we consider the
effect of the sliding window also for Xr then we can extend the method to get a new
measurement in every step.

In practical measurements the presence of noise is unavoidable If we model the noise effects as
an additive white noise input to the analyzer having variance o, then this variance will be
reduced to o”/N in every channel. Further improvement can be achieved if we introduce the
fading memory effect described in [11] and [12]. The characterization of this effect can be given
as
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where the poles located at the positions determined by the N-th roots of 0 < a < 1 are responsible
for further noise reduction. The effects of these poles can be illustrated with the corresponding
magnitude characteristics (see Fig. 1.5 for different a values). The extension of the Walsh-
Hadamard transformer to such a fading memory version can be solved with the application of
simple second-order recursive blocks. If the first stage of the structure in Fig. 1.4 consisting of
N/2 2*2 Walsh-Hadamard transformers is realized using e.g. the second-order blocks of Fig. 1.6
with

(1.3)

(1.4)
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Fig. 1.5 Magnitude characteristics of the filter-banks with different @ > 0 parameters: (a) a=0,
(b) a=0.4, (c) a=0.6, and (d) a=0.8.

then the overall structure will produce the modified performance described by (1.3). The prize
to be paid for this improvement in noise reduction is the increase of the measurement time, since
the poles introduced will cause longer transients. As simple example Fig. 1.7 shows the
simulated measurement results of a Sth-order Butterworth low-pass filter. After 10 complete
periods of the multisine input the measurement results show very good coincidence with the
calculated theoretical values.



1 ‘ Yo(n)

Y,(n)

Fig. 1.6 Second-order recursive filter block

-15F

magnitude response [dB]
&
o

magnitude response [dB]

. . . . . . . . . -3 I I I I I
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05 0 0.05 0.1 0.15 0.2 0.25
relative frequency relative frequency

Fig. 1.7 Simulation results of a Sth-order Butterworth low-pass filter: (-) theoretical results, (o)
simulated values

1.2.4 Multiple A/D converters within the fast polyphase transformed domain analyzer
[S33]

A more detailed block diagram of the complete measuring system shown in Fig. 1.1 is given in
Fig. 1.8. This system can be considered as a highly parallel network analyzer, i.e., it is devoted
to problems where perturbation signals are to be applied and the system to be measured can be
considered as linear. The multisine synthesizer and the signal analyzer operate synchronously
together with the D/A and A/D converters. If frequency transposition circuits are also applied
then a synchronized “carrier-band” analysis, i.e., “zoom” analysis is also possible. Concerning
errors within the system: if we neglect the quantization errors of the digital signal processing
parts then only the side-effects of the D/A and A/D conversions and the frequency transpositions
are to be considered. Fortunately, frequency mismatch problems can be completely avoided
since frequency transpositions can share common frequency reference. On the other hand, the
magnitude and phase errors of these circuits can be “measured” by the system itself, since the
output of the signal generator can be directly analyzed and the calculated difference of the
multisine signal parameters can directly serve for correction. If the D/A and A/D converters
share common voltage reference then the system is capable to calibrate itself automatically
relative to this reference.

Nowadays the accuracy of measurement systems can be considerably improved by the direct
utilization of signal processing techniques. The available DSP processors can provide also good
speed performance. Speed and accuracy, however, are contradictory requirements in
measurements. As far as A/D conversion is concerned flash converters can operate at very high
speed, but their resolution is not acceptable. Sigma-delta A/D converters provide excellent
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Fig. 1.8 Detailed block diagram of the multisine measuring system

resolution and accuracy, but at the prize of low conversion rate. For high resolution (>16 bits)
measurements a possible alternative can be the application of parallel sigma-delta converters at
the input of the polyphase DFT/WHT analyzer (see Fig 1.4) since its internal processing
elements operate at a much lower rate. The delay caused by the converters can be easily
compensated either in the phase of the generated signal or as a correction during self-calibration.
If the signal processing part of the system would limit the speed of operation then the
proposition in the previous section may help where signal generation and analysis is performed
via the computationally extremely efficient Walsh-Hadamard transformation.

1.3 Fastsliding transforms in transform-domain adaptive filtering

Transform domain adaptive signal processing proved to be very successful in numerous
applications especially where systems with long impulse responses are to be evaluated. The
popularity of these methods is due to the efficiency of the fast signal transformation algorithms
and that of the block oriented adaptation mechanisms. In this section the applicability of the fast
sliding transformation algorithms is investigated for transform domain adaptive signal
processing. It is shown that these sliding transformers may contribute to a better distribution of
the computational load along time and therefore enable higher sampling rates. It is also shown
that the execution time of the widely used Overlap-Save and Overlap-Add Algorithms can also
be shortened. The prize to be paid for these improvements is the increase of the end-to-end delay
which in certain configurations may cause some degradation of the tracking capabilities of the
overall system. Fortunately, however, there are versions where this delay does not hurt the
capabilities of the adaptation technique applied.

1.3.1 Introduction

In recent years, transform-domain adaptive filtering methods became very popular especially for
those applications where filters with very long impulse responses are to be considered [13]. The
basic idea is to apply the fast Fourier Transformation (FFT) for signal segments and to perform
adaptation in the frequency domain controlled by the FFT of an appropriate error sequence.
There are several algorithms based on this approach [13] and further improvements can be
achieved ([14]). The formulation of the available methods follows two different concepts. The
first one considers transformations as a “single” operation to be performed on data sequences
(block-oriented approach), while the other emphasizes the role of multirate analyzer and
synthesizer filter-banks.

In this section, using some former results concerning fast sliding transformation algorithms ([6],
[S33]) a link is developed which helps to identify the common elements of the two approaches.
The fast sliding transformers form exact transformations, however, operate as polyphase filter-
banks. These features together may offer further advantages in real-time applications, especially

10



when standard DSP processors are considered for implementation.

There are two major configurations for transform-domain adaptive filtering (see Fig. 1.9). First
let us consider standard (not sliding) transformers. Here transformers perform a serial to parallel
conversion while inverses convert to the opposite direction. Adaptation is controlled by the
transformed input and error signals once for each input block, i.e. decimation is an inherent
operation within these algorithms. At the same time, investigations related to the block-oriented
approach rarely consider real-time aspects of signal processing. It is typically supposed that
sampling frequency is relatively low compared to the computational power of the signal
processors and therefore, if a continuous flow of signal blocks must be processed, the block-
period is enough to compute the transformations and the filter updating equations. Moreover, in
the case of the widely used Overlap-Save and Overlap-Add methods (see e.g. [13] and
Subsection 1.3.4) filter updating requires further transformations, therefore further
computational power is needed.

VA
Input - idi Output
an) | (siding) Adaptive (Siiding) y(r?)
Transform Filter T Inv;rse
ransform
Adaptive (Sliding) %é d(n)
Algorithm Transform Desired Signal
(€Y
VA
Input - idi Output
| (siding Adaptive Sidng | T
Transform Filter T Inv;rse
ransform
Adaptive H (Sliding) L = d(n)
Algorithm +| Transform Desired Signal

(b)

Fig. 1.9 Frequency-domain adaptive filter configurations

Filter-bank and consequently fast sliding transformation techniques do not offer extra savings in
computations however they may provide a much better distribution of the computational load
with time. This means that potentially they give better behavior when real-time requirements are
to be met. This section present a new combined structure having advantageous computational
complexity and load features. The section is organized as follows: Subsection 1.3.2 describes the
basic idea of the fast sliding transforms while Section 1.3.3 is devoted to review the concepts of
transform domain adaptive filtering. The new results of the section are introduced in 1.3.4 where
the combined structure is characterized.

1.3.2 Fast sliding transformations

Recently a fast implementation of the recursive Discrete Fourier Transformation DFT has been
proposed [6] which combines the idea of polyphase filtering and the Fast Fourier
Transformation (FFT) algorithm. Figs. 1.10 and 1.11 show the analyzer and the synthesizer DFT
filters, respectively. The operation can be easily understood if we observe that e.g. the analyzer
at its input follows the decimation-in-time, while at its output the decimation-in-frequency
principle. The computational complexity of these structures is in direct correspondence with that
of the FFT and its parallel nature provides additional advantages in parallelization.
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Fig. 1.11 Polyphase DFT synthesizer for N=8

The analyzer bank can be operated as a sliding-window DFT or as a block-oriented transformer.
The latter one means that the parallel outputs are maximally decimated as it is typical with serial
to parallel converters. However, if overlapped data segments are to be transformed, the structure
is well suited to support decimation by any integer number. The widely used Overlap-Save
Method concatenates two blocks of size N to perform linear convolution and calculates 2/N-point
FFTs. A 2N-point sliding transformer can easily produce output in every N-th step.

In certain applications it may be advantageous to produce signal components instead of the
Fourier coefficients as it is dictated by the definition of the DFT. In this case the filter-bank is a
set of band-path filters with center frequencies corresponding to the N-th roots of unity values.
Such DFT filter-banks can easily be derived using the ideas valid for the DFT transformers.
With this DFT filter-bank approach, transform-domain signal processing can have the following
interpretation: the input signal to be processed first is decomposed by a filter-bank into
components and the actual processing is performed on these components. The modified
components enter into a N-input single output filter-bank (the so-called synthesizer bank) which
produces the output sequence.

1.3.3 Transform-domain adaptive filtering [S44]

The concept of transform-domain adaptive filtering offers real advantages if adaptive FIR filters
with very long impulse responses are to be handled. The first important aspect is the possible
parallelization described above achievable using fast transformation algorithms. The second is
the applicability of block adaptive filtering: the parallel channels enable decimation and
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therefore a coefficient update only once in every N-th step. In the meantime, however, a much
better gradient estimate can be derived.

Fig. 1.9 shows two possible forms of frequency-domain adaptive filtering. In the first version
adaptation is controlled by the time-domain difference of the filter output and the desired signal.
The adaptive filter performs N multiplications using the N-dimensional weighting vector
generated by the adaptive algorithm. From the viewpoint of this section, the adaptation
mechanism can be of any kind controlled by an error signal, however, in the majority of the
applications the least-mean-square (LMS) algorithm is preferred (see e.g. [13]) for its relative
simplicity. Adaptation can be performed in every step however drastic reduction of the
computations can be achieved only if the transformer outputs are maximally decimated. The
techniques developed for this particular case are the so-called block adaptive filtering methods.
[13] gives a very detailed analysis of the most important approaches. It is emphasized that the
classical problem of linear versus circular convolution appears also in this context. This problem
must be handled because in the majority of the applications a continuous data flow is to be
processed and therefore the dependence of the neighboring blocks can not be neglected without
consequences. The correct solution is either the Overlap-Save or the Overlap-Add Method. Both
require calculations where two subsequent data blocks are to be concatenated and double-sized
transformations are to be performed.

If we consider the system of Fig. 1.9a from timing point of view, it is important to observe that
at least two transformations must be calculated within the adaptation loop. If real-time
requirements are also to be fulfilled, the time needed for these calculations may be a limiting
factor. Moreover, if we investigate more thoroughly e.g. the Overlap-Save Method it turns out
that the calculation of the proper gradient requires the calculation of two further transformations,
i.e. there are altogether four transformations within the loop. This may cause considerable delay
and performance degradation especially critical in tracking non-stationary signals.

The adaptation of the transform-domain adaptive filtering scheme on Fig. 1.9b is controlled by
an error vector calculated in the transform-domain. Due to this solution the transformer blocks
are out of the adaptation loop, therefore the delay within the loop can be kept at a lower level.
Here the adaptation is completely parallel and is to be performed separately for every “channel”.
The operation executed in this scheme corresponds to the circular convolution which may cause
performance degradation due to severe aliasing effects.

In the literature of the analysis filter-banks the so-called sub-band adaptive filters see e.g. [13]
are suggested for such and similar purposes which provide better aliasing suppression at the
prize of smaller L<N decimation rates. The fast sliding transformers are in fact efficiently
implemented special filter-banks. If they are maximally decimated they suffer from the side-
effects of the circular convolution. In order to reduce aliasing the application of L=N/2 can be
advised. If the number of the adaptive filter channels is lower than the size of the sliding
transformer the standard windowing techniques (see e.g. [1]) can be used for channel-filter
design.

1.3.4 Adaptive filtering with fast sliding transformers [S44]

In this subsection the timing conditions of the frequency-domain adaptive filters using the
famous Overlap-Save Method are investigated. The block diagram of the method can be
followed by Fig. 1.12. The technique is carefully described in [13] therefore here only the most
critical elements are emphasized. Other techniques can be analyzed rather similarly.

Fig. 1.13 shows the timing diagram of the standard block-oriented solution. Here the acquisition
of one complete data block (N samples) is followed by the processing of this data vector. A
continuous sequence of data blocks can be processed if the execution time of one block
adaptation is less or equal to the corresponding acquisition time (¢.<¢,). One block adaptation
consists of several steps, among them the transformation of the input and the error sequences,
respectively (see Fig. 1.9a). The generation of the output sequence requires an additional
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Fig. 1.12 Block diagram of the Overlap-Save Method

transformation. Due to the requirements of the linear convolution all these transformations work
on double blocks i.e. on 2N data points. The calculation of the gradient and coefficient update
requires two further transformations of this type. A detailed analysis of the steps using the 2/N-
point transformations shows that none of them is “complete” i.e. some savings in the
computations are possible.
With the introduction of the sliding transformers, the acquisition of the input blocks and the
processing can be over-lapped, since the sliding transformers can start working already before
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Fig. 1.13 Timing diagram of the standard overlap-save frequency-domain adaptive algorithms (z,
denotes the acquisition time of one data block of N samples, ¢, stands for the execution time of
one block adaptation, and ¢, is the calculation time of the gradient and the # update). The end-

to-end delay is of N samples
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having the complete block. If we permit an end-to-end delay of 2V samples then the processing
can be extended for three acquisition intervals (see Fig. 1.14). During the first interval the data
acquisition is combined with the transformation, the second can be devoted for finishing the
transformation, for updating the coefficient vector and to start the inverse transformation which
can be continued in the third interval because the data sampling performed parallel provides the
d(n) samples (see Fig. 1.9) sequentially. At the prize of larger end-to-end delay, the execution
time can be extended for more blocks, as well.

In the case of the Overlap-Save Method, the gradient calculation consists of an inverse
transformation, some simple manipulations and a transformation. Since with the sliding inverse
transformation a parallel to serial conversion is performed and the sliding transformer
implements a serial to parallel conversion, further overlapping in the execution is possible as it
is indicated in Fig. 1.14.

The above considerations can result savings if the granularity of the hardware and software
elements of implementation enable smooth distribution of the computational load. If separate
hardware units are available for the sliding transformations then the parallelism of the execution
can be considerably improved. It is important to note that the precedence conditions of block
processing do not support such parallelization: the complete data block must be available for a
block-oriented operation like a signal transformation.

To illustrate the achievable gain of using fast transforms here, a comparison is made considering
the timing and computational conditions of the two approaches. In the usual implementations of
the conventional method, data acquisition and processing are separated in time, i.e. after the
arrival of a complete input data block an efficient DSP program calculates the transformed
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Fig. 1.14 Timing diagrams of a possible frequency-domain adaptive algorithm using sliding
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values. The sliding FFT introduced in [6] has the same computational complexity as the
traditional algorithm. However, data acquisition and processing overlap in the proposed
polyphase filter-bank, therefore calculations start well before the complete block becomes
available. There are many ways to characterize the complexity of the FFT, one possible figure
can be the number of complex multiplications. This figure for the maximally decimated sliding
N-point FFT equals (see [6])

N N
Cl=—1log,| — |+1, 1.5
4 gz(gj (1.5)

i.e. this figure is one of the possible characterizations. These operations, however, are performed
partly during the data acquisition, and the number of complex multiplications, which can not be
executed before the arrival of the last sample of the block remains only

C2=%—10g2(N). (1.6)

As an example, for N=1024 C1=1793 and C2=502, i.e. the possible time gain due to the overlap
can be considerable. Similar figures can be given for other operations, as well.

As a summation of the above investigations we can state that with such techniques further
parallelism can be achieved and utilized for applications where higher sampling rates are
required. The solutions which follow the scheme of Fig. 1.9b are in good correspondence with
some successful multirate filter-bank techniques while the other group related to Fig. 1.9a can
significantly be improved. The prize to be paid for the additional parallelism is the increase of
the overall end-to-end delay which requires further investigations concerning step-size and
stability issues. This can be started following the ideas of [15], where a similar problem was to
be solved.

In this section, the term “transform-domain” was used instead of the explicit term “frequency-
domain” The reason for this is that all the above developments can be extended for other type of
transformations, as well. The application of other transformers may reduce either the
computational load or in certain cases they improve the adaptation performance.

1.4 Anytime Fourier Transformation

Anytime signal processing algorithms are to improve the overall performance of larger scale
embedded digital signal processing (DSP) systems. The early availability of the amplitude
and/or frequency components of digital signals can be very important in different signal
processing tasks, where the processing is done on-line, parallel with measurements and input
data acquisition. It may offer a possible way for increasing the sampling rate (or the complexity
of the tasks to be solved during one sampling period) and also to decrease the delay caused by
the necessary information collection for setting the measurement/signal processing scheme.

In this section the concept of anytime Fourier transformation is presented and a new fast anytime
fuzzy Fourier transformation algorithm is introduced. The method reduces the delay problem
caused by the block-oriented fast algorithms and at the same time keeps the computational
complexity on relatively low level. It yields partial results of good quality or estimates before
the samples of the period arrive. This is especially advantageous in case of abrupt reaction need
and long or possibly infinite input data sequences. As a possible application field, the usage of
the presented new method in Adaptive Fourier Analysis of multisine signals is also investigated.

The determination of the frequencies of a multisine signal can be very important at different
signal processing tasks, like vibration measurements and active noise control related to rotating
machinery and calibration equipment. Adaptive Fourier Analyzers have been developed for
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measuring periodic signals with unknown or changing fundamental frequency. Higher frequency
applications have limitations since the computational complexity of these analyzers are
relatively high as the number of harmonic components to be measured (or suppressed) is usually
above 50.

Recently, a fast-filter bank structure has been proposed for Adaptive Fourier Analysis based on
the combination of the concept of transform domain signal processing and the adaptation of a
simple linear combiner. It results in the reduction of the above computational complexity,
however for the correct use we have to have pre-estimation about the range of the fundamental
frequency to be able to set the applied single-input multiple-output filter-banks, which in many
cases causes significant and possibly non-tolerable delay in the operation.

In this section, a new fast fuzzy logic supported anytime frequency range estimation procedure
is also proposed which makes possible to execute the frequency estimation after one quarter of
the period of the unknown signal, i.e. the adaptation and Fourier analysis can be performed
without any delay.

1.4.1 Introduction

Computer-based monitoring and diagnostic systems are designed to handle abrupt changes due
to failures within the supervised system or in its environment. This capability involves on one
hand different, simultaneously operated digital signal processors (DSPs), while on the other the
corresponding information processing algorithms. These algorithms should be performed under
prescribed response time conditions.

Block-oriented signal processing techniques have exceptional role in time critical signal
processing applications due to the availability of fast algorithms. However, if larger data
segments are to be evaluated in real-time, the delay caused by the block-oriented approach is not
always tolerable especially if the response time of our evaluating system is also specified. This
can be exceptionally critical if the signal processing is related to feedback loops. The
introduction of anytime techniques can help overcoming the problem.

In this section block-oriented signal processing methods are combined with recursive ones
thereby resulting in anytime signal processing transformation algorithms. This combination
reduces the delay problem caused by the block-oriented fast algorithms and at the same time
keeps the computational complexity on relatively low level. The proposed technique makes
possible not only the application of fast algorithms in sharp time requirement conditions but also
the availability of partial results or estimates in case of long or possibly infinite input data
sequences. The latter is very advantageous if pre-considerations based on some features of the
signal to be analyzed are needed for the further processing (or for the setting of the processing
equipment). A typical example of this case is adaptive Fourier analysis, The early, approximate
results can help in starting the processing earlier and to reduce the not always tolerable side-
effects of processing delay.

The section is organized as follows: In Subsection 1.4.2 the novel concepts of block-recursive
averagers are detailed. Subsection 1.4.3 discusses how the block-recursive averagers can be used
in anytime Fourier transformation. Subsection 1.4.4 summarizes the improvement of the
anytime Fourier analysis scheme by introducing fuzzy techniques in the interpretation of the
results. The next section is devoted to adaptive Fourier analysis, where it is shown that the new
methods described in Subsections 1.4.3 and 1.4.4 are suitable to decrease the delay of the
adaptive Fourier analysis. In Subsection 1.4.5 illustrative examples are shown.

1.4.2 The novel concept of block recursive averaging ([S8], [S45])

In this section the standard algorithms for recursive averaging are extended for data-blocks as
single elements. To illustrate the key steps, first the block-recursive linear averaging will be
introduced. For an input sequence x(n), n=1,2, ..., the recursive linear averaging can be
expressed as
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0 =" yn-1+ 2 x(n-1) (1.7)
n n
For n > N the “block-oriented” linear averaging has the form of
1 N
X(n—-N)=—>"x(n—k) (1.8)
N k=1
while the block-recursive average can be written as
y) =" 3= Ny + X ) (1.9)

If (1.9) is evaluated only in every N-th step, i.e. it is maximally decimated, then we can replace
(1.9) with n=mN, m=1,2, ..., by

y(mN) ==Ly m - )N + L x[m -1 (1.10)
m m
or simply
m—1 1
y(m)=——y(m-1)+—X(m-1I) (L.11)
m m

where m stands as block identifier. Note the formal correspondence with (1.6).

If the block identifier m in equation (1.11) is replaced by a constant Q > 1 then an exponential
averaging effect is achieved. This change makes the above block-oriented filter time-invariant
and thus a frequency-domain characterization is also possible.

In many practical applications exponential averaging provides the best compromise if both the
noise reduction and the signal tracking capabilities are important. This is valid in our case as
well, however, in this section only the linear and the sliding averagers are investigated because
they can be used directly to extend the size of certain signal transformation channels and they
can be applied in anytime systems.

A similar development can be provided for the sliding-window averagers. The recursive form of
this algorithm is given for a block size of N by

y(n)=y(n_1)+%[x(n_1)_x(n_zv_1>] (1.12)

If in (1.12) the input samples are replaced by preprocessed data, e.g. as in (1.8), then a block-
recursive form is also possible:

()= y(n-N)+[X(n~N)~ X (n—2N)] (1.13)

which, however, has no practical meaning, since it gives back (1.8). But if the window size is
integer multiple of V, e.g. MN, then the form

¥ = pn= M)+ X (1= N) = X (1= (M + D) (1.14)

has real importance. If (1.14) is evaluated only in every N-th step, i.e. it is maximally decimated,
then we can replace (1.14) with n=mN, m=1,2, ..., by
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HN) = = DN+ X (= DN) = X (=M =DV} (1.15)
or simply
1
y(m)=y(m—l)+ﬁ[X(m—l)—X(m—M—1)] (1.16)

where m stands as block identifier. Note the formal analogy to (1.12).

The generalization of these averaging schemes to signal transformations and/or filter-banks is
straightforward. Only (1.8) should be replaced by the corresponding “block-oriented” operation.
Fig. 1.15 shows the block diagram of the linear averaging scheme. This is valid also for the
exponential averaging except m must be replaced by Q. In Fig. 1.16 the sliding window averager
is presented. These frameworks can incorporate a variety of possible transformations and
corresponding filter-banks which permit decimation by the block-size. Standard references, e.g.
[7] provide the necessary theoretical and practical background.

1
nput Block-oriented Decimation m Output
x(n) ——— _ _ y(m)
preprocessing YN V
1 21
X y(m-1)

Fig. 1.15 Block-recursive linear averaging signal processing scheme, n=mN

The idea of transform-domain signal processing proved to be very efficient especially in
adaptive filtering (see e.g. [13]). The contribution of this section is directly applicable for the
majority of these intensively cited algorithms. The most important practical advantage here
compared to other methods is the early availability of rough estimates which can orientate in
making decisions concerning further processing.
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X(n) ——— . * » y(m)
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g—»—%f m-1
1 y(m-1)

Fig. 1.16 Block-recursive sliding-window averaging scheme, n=mN, window-size MN

The multiple-block sliding-window technique can be mentioned as a very characteristic
algorithm of the proposed family. For this the computational complexity figures are also
advantageous. Using conventional methods to evaluate in “block-sliding-window” mode the
transform of a block of MN samples would require M times an (MN)*(MN) transformation,
while the block-recursive solution calculates only for the last input block of N samples, i.e. M
times an (MN)*(N) “transformation”.

1.4.3 The new Anytime Fast Fourier Transformation algorithm (AnDFT, AnFFT) ([S8],
[S110], [S120], [S112])

As block-oriented preprocessing the DFT is the most widely used transformation for its fast
algorithms (FFTs) and relatively easy interpretation. The above schemes can be operated for
every “channel” of the DFT and after averaging this will correspond to the channel of a larger

19



scale DFT. If linear averager is applied, this scale equals mN while for sliding averager this
figure is MN. The number of channels obviously remains N unless further parallel DFTs are
applied.

These additional DFTs have to locate their channel to the positions not covered by the existing
channels. For the case where M=2 (i.e. only one additional parallel DFT is needed), this
positioning can be solved by the so-called complementary DFT which is generated using the N-
th roots of -1. This DFT locates its channels into the positions @/N, 3n/N, etc. For M>2 proper
frequency transposition techniques must be applied. If e.g. M=4 then the full DFT will be of size
4N and four N-point DFTs (working on complex data) are to be used (Fig. 1.17). The first DFT
is responsible for the channels in positions 0, 8x/4N, etc. The second DFT should cover the
21/4N, 10m/4N, etc., the third the 4n/4N, 127/4N, etc, and finally the fourth the 67/4N, 14m/4N,
etc. positions, respectively (Fig. 1.18). The first DFT does not need extra frequency
transposition. The second and the fourth process complex input data coming from a complex
modulator which multiplies the input samples by ¢*™*" and ¢*™*", respectively. The third DFT
should be a complementary DFT.

It is obvious from the above development that if a full DFT is required the sliding-window DFT
must be preferred otherwise the number of the parallel channels should grow with m.

Here we would like to remark that with appropriate frequency transposition, this scheme can be
further extended theoretically: more than 4 FFT blocks may run parallel, however with a burden
of higher complexity.

input
x(n)

output
yim)
Averager |-»—@

Freq. transp.
eNj 2mn/4N)

Freq. transp.
eNj 4mn/4N)

‘TY;

Freq. transp.
eNj 6rn/4N)

Fig. 1.17 Block diagram of the anytime FFT scheme

Angles

o V1 0, $7/4N, ...

N
O V=1 414N, 124N, ...

© % 2m/4N, 10m/4N, ...

® N—j 6mAN, 14n/AN, ...

Fig. 1.18 The poles of a (4N)-point DFT composed of four N-point DFTs

The majority of the transform-domain signal processing methods prefers the DFT to other
possible transformations. However, there are certain applications where other orthogonal
transformations can also be utilized possibly with much better overall performance. A further
aspect of practical interest can be the end-to-end delay of the block-oriented processing. The
time-recursive transformation algorithms described e.g. in [16] are sliding-window
transformations, i.e. they are filter-banks providing transform domain representation of the last
input data block in every step. Decimation is not “inherent” as it is the case if the transformation
is considered as a serial to parallel conversion, therefore the processing rate can be the input rate,
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the maximally decimated one, or any other in between. These techniques are not fast algorithms,
however, they “produce” less delay as those block-oriented algorithms which start working only
after the arrival of the complete input data block.

1.4.4 Anytime Fuzzy Fast Fourier Transformation (FAnFFT) ([S41])

We have developed a new interpretation method of the non-exact estimations of the anytime
results. According to it, the noisy frequency characteristics is viewed as a fuzzy set over the
Universe of Frequencies. Before the defuzzification we first evaluate the a-cut of the fuzzy set
based on a properly chosen o value. This value serves to determine the limit separating the
“useful” signals from what is interpreted as noise. In the obtained a-cut, the separated “picks”
are handled and defuzzificated separately since each pick, as an individual fuzzy set, represents
the frequency of a signal component. As defuzzification, the indexed Center of Gravity (iCoG)
defuzzification method is applied based on the chosen a-cut of the output.

Since the most typical errors, the picket fence and the leakage cause symmetrical error around
the accurate value, the applied fuzzy defuzzification method results in high accuracy. This is
because instead of taking the non-accurate values as exact ones, thus bringing error into the
interpretation, we apply value imprecisiation which in reality means ‘meaning precisiation’ [17].

1.4.5 Decreasing the delay of Adaptive Fourier Analysis based on FAnFFT ([S14], [S38],
[S42], [S51])

Recently, the measurement of periodic signals with unknown or changing fundamental
frequencies has come into the focus. It has a significant role in such application fields like
vibration analysis, active noise control, rotating machinery, calibration equipment, and the
autonomous analysis of signals and noises. If we want to measure the unknown fundamental
frequency of a periodic signal or the frequency components of multi-rate signals, the classical
solution is to use a Fourier transformer however we have to apply some kind of synchronization
between the (unknown) frequencies and the sampling frequency of the Fourier transformer.
Otherwise, we face the problems of picket-fence effect and leakage.

The earlier solutions can be classified into two groups. The first applies re-sampling by the
estimate of the fundamental frequency, i.e. after an interpolation, it applies re-sampling which is
followed by an FFT (see e.g. [18]).

The other group uses a so called Adaptive Fourier Analyzer (AFA) filter-bank structure
originally proposed by Nagy in [19]. The adaptive filter-bank can be tuned to each signal
component. This adaptation procedure “locks” the fundamental frequency component of the
periodic signals like a PLL and tunes the recursive DFT channels accordingly.

The method implements a structurally adaptive system with an order depending on the actual
ratio of the fundamental to the sampling frequencies. The actual number of the channels N(n)
should meet the condition of

[N(n) - 11f; (n) < fs < [N(n) + 11f; (n), (1.17)

where fi(n) and f; denote the fundamental frequency at time instant n and the sampling
frequency, respectively. This results in applying, always, as many DFT channels as can be
accommodated within the frequency range up to one half of the sampling frequency.

Besides many advantages, the disadvantage of the AFA is that fast transformations cannot
directly be utilized.

The author of this thesis introduced a special implementation of the AFA structure in [S14],
which is a filter-bank version of a fast transformation (e.g. FFT) applying adaptive linear
combiners at the output of the transformer (Fig.1.19). This opens the possibility for block
oriented operation, i.e. the computational complexity of this latter solution is much lower than
that of the previous one.
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The consequence of the possible decimation is that the condition in (1.17) has to be replaced by
a stronger requirement. If the adaptation is done in every k-th sampling step then the following
requirement has to be met

foo oo 3 1.18
AU (1.18)

In case of maximum decimation, i.e. when k=N, it takes the form of

MEMORY  |=— fi(n)

=] E=—=Yo(n
LINEAR . ol
X(n) —=| RDFT . .

COMBINER

H
= =Y N-1(n)

& 1M
v

Y 1(n) X

4(n+1)

FREQUENCY
ADAPTATION

]

fy(n+1)

Fig. 1.19 Block diagram of the Adaptive Fourier Analysis

/i 3f, 1.19
ALy, (1.19)

For more details about the AFA see [S14].

As a consequence of (1.18) and (1.19), we have to pre-estimate the range of the frequencies to
be measured before starting with the frequency estimation, to be able to set the AFA structure
properly. Normally, this may cause a significant delay in the procedure which cannot always be
tolerated, especially in real-time processing.

The fast anytime Fourier transformation methods presented in the last two subsections are
excellent tools for obtaining pre-estimates of the frequencies of multisine signals to be analyzed.
It only needs the operation of the FAnNFFT or AnFFT algorithm in the first part of the period.
Based on the frequency estimations, the filter-banks of the AFA scheme can properly be set.

1.4.6 Illustrative examples

In the followings three simple examples are presented illustrating the usability of the results. For
more experiments and examples, see ([S8], [S14], [S35], [S45], [S38], [S42], [S51], [S110],
[S120], [S112])).
In the first example (AnFFT method, Subsection 1.4.2) a 256-channel DFT is calculated
recursively, in anytime mode with N=64 for m=1,2,3,4. The input sequence applied is

. (n):cos[ﬁ(N+0.5)nj_

2N (1.20)
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This single sinusoid is just in the middle between two measuring channels. The MATLAB
simulations after processing the first, second, etc. blocks are given in Fig. 1.20.
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Fig. 1.20 Ex. 1: 256-channel anytime DFT of a single sinusoid in the middle between two
measuring channels. N=64, m=1, 2, 3, 4

In the second example (AnFFT method, Subsection 1.4.2) a 256-channel DFT is calculated
recursively, in anytime mode with N=64 for m=1,2,8,16. The input sequence is

x(n) :cos(ﬂzn)wand -05 (1.21)

where rand stands for a random number generated by MATLAB between 0 and 1. The sinusoid
is located exactly to a DFT channel position. The simulation results for m=1,2,8, and 16 are
given in Fig. 1.21. The improvement in resolution and noise reduction is remarkable.

The third example is illustration for the improvement achieved by the fuzzy techniques (see also
FAnFFT method in Subsection 1.4.3). The FAnDFT is applied on a noisy multi-sine signal. The
256-channel DFT of two sinusoids, exactly at the DFT channel positions, corrupted by noise is
calculated according to the presented anytime method recursively with N=64 for m=1, 2, §, 16.
The input sequence is

x(n) = sin( Z”SOHJ +0.8 sin( 2r112n j +rand—0.5 - (1.22)
4N AN

The simulation results for m=1, 2, 8, and 16 are given in Fig. 1.22. Fig. 1.23 shows the a-cuts
with a=-17 dB for m=1, 2, 8, 16. Table | summarizes the obtained frequencies evaluated by o = -
17 dB. In Fig. 1.24 the convergence of the non-zero amplitude components can be followed if
(a) the non-noisy and (b) the noisy signals are processed. The improvement in both the
resolution and noise reduction is remarkable.

Here we would like to remark that if value o is chosen too small then false picks caused by the
noise may also appear in the spectrum. At 0=-25 dB e.g., in case of m=1 and 2 we obtain 10-11
picks (of which 6-7 come of noise) however as the approximation becomes more accurate along
the time, at m=8 and 16, the false picks disappear and only the 4 “useful” frequencies remain in
the spectrum.

23



2 ]V‘p\f ]'{w 122 ‘ '

.l | "ﬂﬂ!'f i [‘f‘ [r H'uﬁﬂrﬂ\ _ﬂ.l\,!ﬂ'*[ér I{H‘M " 1 s o | _

e \ll'ylr ﬁ\l \ M(U LJﬂ}NI f ’ ’ 1]'1 i z‘”ﬂjwri‘ﬂu*ffllﬁw\l,lp;vhr}kr\»\bwwm!!‘%iM‘L’N\‘WW
e

N Y '“ﬁ

¥ LT A P

w”ull | i’ | Ni “ W m&hﬁm&ﬁ\wl(k M wmr g ﬂ U«lw »ﬂ| w' ]

Fig. 1.21 Ex. 2: 256-channel anytime DFT of a single sinusoid, exactly at a DFT channel, plus
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Fig. 1.22 Ex. 3: 256-channel anytime DFT of a noisy multi-sine, exactly at a DFT channel.
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Fig. 1.23 Ex. 3: a-cuts with a=-17 dB of the 256-channel anytime DFT of a noisy multi-sine,
exactly at a DFT channel. N=64, m=1, 2, 8, 16.
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Fig. 1.24 Convergence of the amplitude of the two non-zero multisine components: the non-
noisy signal in ex. 3 (upper) and ex. 3 (with noise) (lower)

Table 1.1

Ex. 3: Obtained Frequencies form =1, 2, 8, and 16, o—=-17 dB

obtained frequencies
m=1 -2.7515 -1.2268 1.2267 2.7515
m=2 -2.7490 -1.2275 1.2275 2.7490
m=8 -2.7517 -1.2267 1.2267 2.7517
m=16 -2.7488 -1.2271 1.2271 2.7488

1.5

For representing stationary signals, several well-established methods are available. For non-
stationary signals, however, these approaches can be used only with serious limitations. If the

Overcomplete signal representations
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signal can be characterized as sequence of stationary intervals overcomplete signal
representations help to handle such problems.

This section introduces the concept of recursive overcomplete representations using different
recursive signal processing algorithms. The novelty of the approach is that an on-going set of
signal transformations together with appropriate (e.g., L; norm) minimization procedures can
provide optimal on-going representations, on-going signal segmentations into stationary
intervals, and on-going feature extractions for immediate utilization in diagnostics, or other
applications. The proposed technique may be advantageous in case of processing non-stationary
signals when complete signal representations can be used only with serious limitations because
of their relative weakness in adaptive matching of signal structures.

1.5.1 Introduction

The standard methods for representing stationary (non-time-varying) signals include techniques
utilizing special signal representations based on dedicated signal transformations. The
trigonometric transformations are typical examples. For non-stationary signals however, the
applicability of these approaches is limited. Sliding-window transformation techniques may
offer a good compromise, but the window-size limits the resolution.

The so-called overcomplete signal representation is a technique where a given signal is
decomposed using more basis components than the necessary minimum. Obviously, without
further constraints, this representation is not unique. Having an accurate model, a reasonable
metric for further evaluation is the compaction of the representation that the model provides.
This means that solutions with the minimum number of non-zero coefficients are required. If a
representation is both accurate and compact, then it will capture the “principal components” of
the signal behavior. It is an important result that by minimizing the L; norm of this
representation, optimal solutions can be obtained [20], [21].

A compact representation is useful for compression. If all the basis vectors have the same norm,
a good approximation of the signal can be generated using only those components that have
significant weights. The negligible components can be thresholded (i.e. set to zero) without
substantially degrading the signal reconstruction. It is obvious that representations where the
coefficients are all of similar value, thresholding is not acceptable and compaction cannot be
readily achieved.

An additional aspect is that compression and denoising are linked. A white noise sequence is
essentially incompressible even if it is transformed by an orthogonal transform. If a
deterministic signal degraded by additive noise is compressed, this representation will extract
the primary structure of the signal, and the reconstruction based on such a compact model will
be a denoised or enhanced version of the original.

With the exception of overcompleteness, all the above considerations, compactness, accuracy,
and optimum behavior with respect to data compression are taken into account with the
Karhunen-Loeve transformation (see [22]). However, this technique requires intensive
calculations hardly performable in real time applications.

In this section, a relatively simple technique is introduced to provide an approximate solution to
the compact representation/compression problem for the case of non-stationary signals. The
method is based on recursive signal transformers (see, e.g., [S6] and [5]) running in parallel, and
providing an on-going overcomplete signal representation (i.e. the signal processing is running
parallel with the sampling (data collection)). The novelty of the approach is that an on-going set
of signal transformations together with appropriate (e.g., L; norm) minimization procedures can
provide nearly optimal on-going representations and support on-going signal segmentation into
stationary intervals, together with feature extraction for immediate utilization in diagnostics, or
other applications.

Subsection 1.5.2 gives an overview of overcomplete signal representation. Subsection 1.5.3
describes the proposed new method, while Section 1.5.4 is devoted to an illustrative example.
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1.5.2 Overcomplete signal representation

In transformed-domain digital signal processing, the traditional method is to represent a signal
using a discrete, preferably orthogonal basis, like the discrete Fourier (DFT), the discrete cosine
(DCT), the Hadamard, Wavelet, etc. bases. Each transformation uses one complete basis (for a
vector space /of dimension &, the complete basis B contains exactly N basis vectors, by, by,...,
bn.1) and the representation is unique. The coefficients of an expansion can be derived using an
inverse matrix computation. Well-established theories and fast transformation algorithms help
the applications. The disadvantage of such a representation is its relative weakness in adaptive
matching of signal structures.

Recently a new method [22], the overcomplete signal representation (OSR), has been reported
which is an adaptive signal representation method having special advantages in cases of non-
stationary signals. Here the signals are decomposed onto a number of optimal basis components
that are found from an overcomplete basis dictionary via some optimization method [22] (i.e. the
representation is not unique). The overcomplete dictionary consists of a collection of bases, and
the applied basis for a given signal expansion is chosen from the set of bases according to a
metric. This means that the basis is redundant (e.g. some extra basis components are added to a
complete basis or several complete bases are merged), for a vector space V/of dimension N the
overcomplete basis D contains L basis vectors, by, by, ... , by.1 where L>N. The expansion means
that a nonzero solution is found for the following equation

x=Da, (1.23)

or in case of approximate decomposition

x =Da + r, (1.24)
where x=[x¢, X1, ... , Xy.1] stands for the input signal, a=[ay, a1, ... , ocL_l]T, Qz[&oﬁzl,...,&L_l]T
denote the coefficient (basis component selection) vector, D=[by, b1, ... , bi1] denotes the

overcomplete basis dictionary, and r is the error vector.

The expansion functions (from D) are chosen in a signal-adaptive fashion and the algorithms for
choosing the functions are decidedly nonlinear in both cases. There are many different possible
overcomplete expansions corresponding to the different metrics and methods used as the criteria
of optimum. This leads to signal adaptivity and compact representations with a burden of
additional computations, since the coefficients have to be determined by using some
optimization task, like singular value decomposition, different norm optimizations, method of
frame bounds, etc. The properties of adaptively tracking or matching the varying structure of a
given non-stationary signal depend also on the content and the number of components of the
overcomplete basis dictionary, so a balance has to be found between the computational costs and
performance level.

The first class of the optimization methods (1.23) results in exact solutions. Best basis methods
are typical examples to this. One of the most promising methods among the numerous
possibilities is the basis pursuit (BP) method proposed by Chen and Donoho [23]. The idea of
this method is to define the basis selection vector by minimizing the L;-norm of o under the
constraint of x= Da which leads to the minimum fuel problem (see e.g. [24]). Minimizing || o || |
ensures finding the least number of basis components from an overcomplete basis dictionary to
exactly represent a given signal. In this section, the concept of the BP method is used to select
from a predefined set of transformations the most compact one, and to improve its compactness
by replacing one of its basis vectors with another providing good approximation of the signal in
hand.
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1.5.3 Recursive Overcomplete Signal Representation and Compression ([S19], [S66])

In this section a relatively simple technique is introduced to provide an approximate solution to
the compact representation/compression problem for the case of non-stationary signals. The
overcomplete signal representation method is based on recursive signal transformers running in
parallel, and on an appropriate minimization procedure which ensures near optimal on-going
signal representation. It also supports on-going signal segmentation into stationary intervals,
together with feature extraction for immediate utilization in diagnostics, or other applications.
The transform library contains several normalized, complete, orthogonal or “weakly”
overcomplete transformations (using more bases means on one hand that the adaptivity increases,
while on the other hand, that the additional computational needs of the representation also
increase compared to methods based on less bases or on one complete basis). “Weakly”
overcomplete transformation means here a transformation where a complete, preferably
orthogonal, transform is merged with one “extra” basis function.

For optimum-criteria the L; norm minimum is chosen which provides optimal solution, i.e., the
representation having the minimum L; norm contains the minimum number of non-zero
coefficients.

Method 1.1 ([S19], [S66])
The steps of the algorithm are as follows (see Fig. 1.25):
Coding:

Step 1. Parallel transformations: The incoming signal is processed in blocks and to each of the
blocks the best fitting transformation is chosen from the transform library. The block length
corresponds to the transformation sizes, i.e. if the transformations are N-point transformations
than the input signal blocks will include N samples. The input signal blocks are transformed into
the different transform-domains of the transform library. If the transformation is a “weakly”
overcomplete one (having N+1 basis functions) then the basis dictionary is to be reduced
appropriately.

Theorem 1.1. ([S19], [S66])
The input signal blocks can always be transformed into the possible most compact basis
representation of the weakly overcomplete transform library.

4@ Transform
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Signal coding Signal reconstruction

Fig. 1.25 Block diagram of the signal coding and signal reconstruction for the proposed OSR
model

Proof:

As first step, the input signal block is transformed into the starting, complete basis ([Xo, X, ... ,
Xn-1]). The additional “extra” basis function is also expressed by the same basis ([Yo, Y1,..., Vi
1]). If the “extra” basis function is taken into consideration by an unknown weight factor ¢ then
the overcomplete representation of the input signal will take the following form: [Xo-cYo, Xi-cY1,

., Xn1-¢Yn.1, ¢]. Since we know that the L; norm minimum ensures the minimum number of
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non-zero coefficients, at least one of the above N+1 coefficients has to be zero which means that
according to the L; norm minimum criteria the value of ¢ is of {0, Xo/Yo, Xi/Y1, ... , Xnve1/Yn1}-
Substituting ¢ with these values, the one which has the minimum L; norm provides the most
compact representation and we can drop out the corresponding, zero-weighted basis function
from the basis dictionary. This results in a complete, not necessarily orthogonal transform-basis.

Step2. Transform selection: The optimal representation for the given input block is determined
by the L; norm minimum of the input signal, i.e., the transformation having the smallest L; norm
contains the minimum number of non-zero coefficients, thus, the given signal block will be
represented in this transform-domain and this transform gives the basis for the signal coding of
the block.

Step 3. Data reduction: The “principal components” of the “winner” are selected, i.c., the basis
functions having the most significant weights. The accuracy of the approximation is ensured by
using an L, norm bound, i.e., the zero-valued or less significant basis components can be
dropped while it holds that the L, norm of the approximate signal exceeds an appropriate ratio
(a) of the L, norm of the original input signal represented in the time-domain.

Step 4. Signal coding: The remaining coefficients and the identifier of the optimal or near
optimal transformation are coded in a suitable form.

Reconstruction:

Signal reconstruction: Using the coded information the approximate signal can be reconstructed.

1.5.4 Illustrative examples

In Figs. 1.25-1.30, simple examples are presented to illustrate the proposed OSR method. For
more examples and details, see [S19], [S66]. Theoretically, the more complete and weakly
overcomplete transformations in the transform library we use, the more increased adaptivity we
get, however, with a burden of higher additional computational need. Using bigger
transformation (and block) size means on one hand that the code segments will be longer,
however, the transferred information amount may be altogether less. On the other hand,
transforming longer input signal blocks has negative effect on the adaptivity property of the
method, i.e., the adaptivity decreases. This may cause serious limitations especially in case of
representing highly non-stationary signals. Thus, in general, smaller transformation sizes may
perform better, however, we have to find a compromise for it.

In the illustrative examples the applied transform library contains 8 transformations of size 16
(see Table 1.2). Besides some “pure” transformations (T1-T4: Hadamard, DFT, DCT, Haar
transformations) the following overcomplete transformations are taken into consideration:
“pure” transformations merged with the “principal” basis function of another transformation
(T5-T6: Hadamard basis + 1 DCT basis function, DFT basis + 1 Hadamard basis function) and
“pure” transformations merged with the previous block of the approximate signal (T7-TS:
Hadamard basis + the last sent signal block, DCT basis + the last sent signal block). All the basis
functions are normalized according to the same rule.

Each figure consists of 4 parts. The first shows the input signal, while the second the
reconstructed signal based on the proposed overcomplete transformation (OT). The chosen
transformation (T.) and the necessary number of coefficients (C.) are also presented for each
signal block. On the third part of the figures the signal is reconstructed based on DFT using as
many of the most significant basis components as is necessary for the coding in case of the OT
to fulfill the L, norm requirement. The fourth part compares the L, errors of the approximate
signals reconstructed in the two different ways compared with the original input signal.

The above results for a single sinusoid with a periodicity of Nj=14 are illustrated in Fig. 1.26
(the L, bound is 0.99). Fig. 1.27 shows the signals and errors for a square waveform input signal
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with period N1=14, the L2 bound is 0.99. The input signal in Fig. 1.28 is pure white noise, the
L2 bound is 0.99. Fig. 1.29 shows the case of sinusoid input with period N1=14 + 50% noise
(the L2 bound is 0.98), Figs. 1.30-31 illustrate the cases of noisy square inputs (the noise ratio is
50 %), N\=14, L, bound is 0.99 and N,=16, L, bound is 0.90, accordingly.

Table 1.2 The transform library

Overcomplete Transformation # Transformation Dictionary
T1 Hadamard basis
T2 DFT basis
T3 DCT basis
T4 Haar basis
T5 Hadamard basis + 1 DCT basis function
T6 DFT basis + 1 Hadamard basis function
T7 Hadamard basis + the last approximate signal block
T8 DCT basis + the last approximate signal block
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Fig. 1.26 The input signal, the reconstructed signal based on OT, the reconstructed signal based
on DFT, and the L, errors (OT - dashed line, DFT - continuous line) for a single sinusoid input
with period N,=14 (the L, bound is 0.99)
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Fig. 1.27 The input signal, the reconstructed signal based on OT, the reconstructed signal based
on DFT, and the L, errors (OT - dashed line, DFT - continuous line) for a square waveform
input signal with period Ny=14 (the L, bound is 0.99)
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Fig. 1.28 The input signal, the reconstructed signal based on OT, the reconstructed signal based
on DFT, and the L, errors (OT - dashed line, DFT - continuous line) for a white noise input (the
L, bound is 0.99)
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Fig. 1.29 The input signal, the reconstructed signal based on OT, the reconstructed signal based
on DFT, and the L, errors (OT - dashed line, DFT - continuous line) for a sinusoid input with
period N;=14 + 50% noise (the L, bound is 0.98)
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[}
e}
=
s 0r
£
a
- original noisy square ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140
2 T T T T T T T
° T6-C:l ‘T6-C:1 T6-C:l :T6-C:1 :T6-C:1 :T6-C:1 :T6-C:2 :T6-C;2 T6-C:1
2
s Oor 7
&
reconstructed noisy square with OT ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140
2 T T T T T T T

amplitude

-— - o . _OT - - =

amplitude [dB]
N
o

average 12 errors

20 40 60 80 100 120 140
time [samples]

Fig. 1.31 The input signal, the reconstructed signal based on OT, the reconstructed signal based
on DFT, and the L, errors (OT - dashed line, DFT - continuous line) for square waveform input
signal with period N=16 + 50% noise (the L, bound is 0.90)
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1.6 Uncertainty handling in non-linear systems

Measurements of any kind are characterized by their uncertainty and/or accuracy. Unfortunately
for several reasons this characterization is not easy and in many cases requires human and/or
machine based considerations and intensive computing. The complexity of the measurement
problems of current interest has considerably increased. Thus, since all of these computations
require time, additional requirements like speed, costs, etc. may strongly limit the achievable
precision. With the appearance and spreading of new modeling and computing techniques,
especially in real-time and/or embedded measurement systems, new possibilities arise to
overcome the problems but the price to be paid for this is the reconsideration of measurement
uncertainty. The representation method of the uncertainty must be on one hand in harmony with
the modeling and information processing method; on the other hand it has to be uniform or at
least “interpretable” by other representation forms.

This section deals with the above questions. First of all we point out the limits of the “classical”,
probability theory based uncertainty representation and we examine some possible new, fuzzy
based uncertainty representation methods. This is followed by simulations focusing on the
questions of “communication” between entirely different representations and how to express
“optimally” the resultant (output) uncertainty based on hybrid (input) information.

1.6.1 Introduction

The information coming from our environment - including the results of measurement
procedures - usually involves a certain amount of uncertainty, inaccuracy. The degree of this
uncertainty is important additional information, because we can decide only in possession of this
knowledge, in what degree and for what purpose the information is usable. The problem
becomes even more critical due to the fact, that the information often comes through complex,
nonlinear channels and most of the results are computed based on different, possible uncertain
input data. Thus, it is important to have a uniform method for the representation and handling of
uncertainty, by the aid of which the resultant uncertainty can be computed during the
information process.

When we choose an uncertainty representation method, we have to consider several aspects of
the problem. It is an essential expectation that the measure of uncertainty is analogous to the
subjective opinion, i.e. a higher degree of uncertainty has to be connected to subjectively “more
uncertain” data. The uniformity and popularity are also important factors, because the
uncertainty of the information must be interpretable by everybody.

Important aspects are the nature and characteristics of the information processing system, as well.
Traditionally the probability and interval analysis based data models are used to represent the
information, and its uncertainty. Thus, in case of simpler, nearly linear systems based on
“classical” modeling and computing methods, this well-proved and theoretically well established
probability theory based uncertainty representation is preferable. In case of complex, non-linear
and/or “soft” systems it can be more suitable - or even necessary - to find other representation
forms [S48], [25], [26], which should cope with the data representation, resulting in a more
accurate uncertainty expression and more comfortable usage. On the other hand, sometimes the
type of uncertainty makes the probability theory-based representation difficult or even
impossible (e.g. uncertainty originated from incomplete data and/or data-processing or
subjective information sources).

At the same time, we can not forget that the different representation methods have to be
comparable, convertible. Thus, the new representation methods have to be comparable with the
“classical” probability theory-based methods.

The aim of this section is to establish the analysis of this topic and to investigate possible
solutions for these problems. Subsection 1.6.2 deals with the “classical”, probability theory
based representation and its limits. Subsection 1.6.3 describes the new, promising fuzzy based
representation methods, while Subsection 1.6.4 deals with mixed data models where different
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modeling methods and thus different uncertainty representation methods are used within one
(possibly huge) system. Different conversion methods between probability based and fuzzy data
models are compared and some suggestions are made how to reduce the conversion error.
Subsection 1.6.5 analyzes the comparability, convertibility of the new methods and the
“classical” techniques. The qualification of the data is investigated together with proposing new
uncertainty measures for the quantification of uncertainty of fuzzy variables.

1.6.2 Uncertainty representation based on probability theory

In practical applications, the probability theory based uncertainty representation is wide-spread
used for the expression of the uncertainty of the information. The advantages of this method are
the uniformity, popularity, and the profound theoretical background [27]. The standards and
recommendations regarding the expression of measurement uncertainty are also linked to this
method.

Traditionally, two main types of measurement errors were considered: the so-called random and
the systematic errors. The effects of random errors can be reduced by statistical methods, while
the systematic ones call for deterministic corrections. Simultaneously in the recently wide-
spread standards ([28]) a different approach has appeared: the so-called ‘A’ and ‘B’ types of
uncertainty. The uncertainty is expressed in both cases as variance or standard deviation. For
category ‘A’ the evaluation is based only on the statistical evaluation of the measurement, while
for category ‘B’ also a priory information, like calibration data, can be considered.

Sometimes it is necessary to define the measurement uncertainty by an interval, which includes
a great part of the - hypothetical - distribution of the measured data (see [29]). The width of this
interval (in the standards: extended measurement uncertainty) is computed from the standard
deviation (in the standards: standard measurement uncertainty) with the help of a so-called
extension factor:

U, =k*d_, (1.25)

where U, stands for the half-width of the interval, and d_ denotes the standard deviation. The

extension factor k& depends on the confidence level and the type of the distribution. In case of
non-linear transformations, the actual distribution of data is not or only with difficulties
obtainable, so the extension factor and the width of the confidence interval are not or only
approximately computable. On the other hand, when computing the confidence intervals the
resultant standard deviation is used, thus it is an important question, how accurate the computing
of the resultant standard deviation can be in non-linear systems.

In case of nearly linear systems, there are known methods, based on the first-order Taylor
expansion of the system, for the expression of the resultant uncertainty. If f{) maps the input
variables x,, x,,...,x, into the output variable y, the resultant uncertainty can be assessed

according to the followings:
N N-1 N
=3 (L yar 12 949, . 1.26
R R A (120
where d, stands for the standard deviation of x;, and r, ; denotes the covariance between x; and
X;.
For the examination of the probability theory based uncertainty representation the MATLAB

package [30] was used. By simulating different non-linear characteristics the computed standard
deviation of the output variable (1.26) and the variance got from the simulations were compared.

Theorem 1.2 ([S17], [S117], [S55], [S60]):

The classical, probability based uncertainty representations given by the measurement standards
[28] cannot be used with high confidence for expressing the resultant uncertainty if the
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characteristics of the system is non-monotone and changes rapidly on the interval, which
contains a great part of the - hypothetical - distribution of the measured data.

Proof:

The opposite of Theorem 1.2 can be disproved by counter-examples. For this, we used the
MATLAB package and analyzed the error propagation in case of different non-linear mapping
function. We have analyzed approximately fifty non-linear and non-monotonous characteristics.
As input values, random variables were used (generated by the random generator of the
MATLAB toolbox) and the output were measured and analyzed by statistical methods.

Here we include two typical (one monotonous and one non-monotonous) results. As a
conclusion, we could prove that if the requirement in Theorem 1.2 does not held, the formulas of
the standards do not give accurate results, in fact sometimes they are not at all suitable for the
computing the resultant uncertainty (Figs. 1.31-1.32).
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Fig. 1.32 The effect of the exponential transformation on the variance and the standard deviation.
++++++ : values computed by (1.26); ********: yalues got by the simulation
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Fig. 1.33 The effect of the sinusoidal transformation on the variance and the standard deviation.
++++++ : values computed by (1.26); *******: yalues got from the simulation

For the problems, a possible solution can be the improving of the formulas - e. g. by the aid of
the higher-order derivatives. But this would make the computing more complex and not
necessary result in better result e. g. in case of systems, where also the higher-order derivatives
change fast or are non-monotone. So it is worth considering, using other modeling techniques
for the representation of the uncertainty in non-linear systems.

Another, not negligible aspect is, that recent complex systems, which are often based on “soft”
computing methods, raise new problems in the area of uncertainty representation. These systems
are often based on modeling methods, which are completely different from the probability
theory, so the “classical” tools for uncertainty representation are not usable. Furthermore,
transformations realized by complex systems are often not describable by simple functions, so
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the derivative can not or only approximately be computed. In these systems, the representation
of the uncertainty during the data processing has not been yet solved and, thus, the authenticity
and accuracy of the resultant data are also not known.

1.6.3 Uncertainty representation based on fuzzy theory ([S17], [S117], [S55])

Fuzzy theory [31] is often used to solve modeling and computing tasks, thus, with the fuzzy
based uncertainty representation we can solve two problems. First, there is a possibility, that we
can improve the overall accuracy of the computing of the resultant uncertainty in non-linear
systems. Secondly, we can easily represent and compute the uncertainty in fuzzy based systems,
where probability theory can be used only with difficulties. Another great advantage of the fuzzy
representation is that it is close to human thinking, and the effect of parameter changes can be
easily estimated, so the fuzzy based systems are usually easy to survey. Furthermore, some kinds
of uncertainty (e. g. incomplete data or subjective information) can be expressed far better by
fuzzy sets, then by probabilistic or statistical methods.

In case of fuzzy representation of the information, data is not expressed by a definite value
(“measured data”) and the degree of the connected uncertainty (variance, standard deviation,
confidence-interval); nor by an - approximate - probability distribution. It is expressed by a
membership function, which gives the degree in which the elements of the universe belong to
the set, containing the value(s) of the measured data. This method can be used to express non-
statistical type uncertainty, e. g. originated from subjective data, as well.

To express the data we can use fuzzy numbers, i. e. fuzzy sets defined on R (the universe of
real numbers), which are normalized (at least one of its elements attains the “1” membership
grade) and convex:

u(Ar+(1=2)s) > min(u(r), u(s))  Vr,seR; 1e[0,l] (1.27)

If during the information processing fuzzy data representation is used and we manage to define a
degree of uncertainty to the membership function, the uncertainty becomes expressible and
measurable at any point of the system. The fuzzy data representation is solved in some soft
computing (e.g. fuzzy, fuzzy-neural), systems. In case of “classical” data-processing methods
the membership function of the output variable y is computable from the membership functions
of the input variables x,, x,, ..., x, with the help of the extension principle [32]:

/u(y):Sup{min(/ul(xl)a,uz(xz):---uuzv(x/v))| y:f(xlaxz""axzv) } (1.28)

If we want to change to “classical” data representation (e.g. at the end of the data processing we
need a definite output value), the fuzzy numbers have to be defuzzificated. Different
defuzzification methods are known, here the center of gravity (CoG) method [33] is used,
because of its analogy to probability theory and because this method may possibly express the
information involved in the membership function the most faithfully. With the center of gravity
method, the defuzzificated value can be computed accordingly

J.x,u(x)dx

x = . (1.29)
_f H(x)dx

In the literature (see e.g. [33]) there are several measures for the expression of the uncertainty of
fuzzy sets (e. g. U-uncertainty), however these measures are based on discrete domains, where
no distance is defined or considered between the discrete values. Thus, though these measures

can be very useful at the expression of the uncertainty in case of diagnostic tasks, they are not
suitable for the expression of measurement uncertainty.
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During our examinations several candidates, avoiding the above problem, were examined to
express the fuzzy type uncertainty (e.g. quadratic deviation from the defuzzificated value). In the
followings two of them will be proposed, which proved to be the most promising.

Width of a-cut

The uncertainty represented by a fuzzy number can be expressed by the width of the interval,
where the membership function is higher or equal then a given a value. Since the membership
function is convex, this interval can’t be “holed”.

u, =x,—x, where x, = inf{x|,u(x) 2a} and x, = sup{x|,u(x) >al. (1.30)
Integral of the membership function

The area under the curve can also express the uncertainty, since wider, higher membership
functions result in a higher value. Theoretically there can be cases, when two datasets with
subjectively different uncertainty get the same value, but if we use only fuzzy numbers, these
cases can be excluded.

u, = [ p(x)dx. (1.31)

Beyond being analogous with the subjective opinion (e.g. data represented by wider membership
function must have a higher uncertainty value), the measure of uncertainty must also be
comparable with the probability theory based representation, and it must behave similarly to the
“classical” measures during different transformations. Partly because the probability theory
based representation is widely used and it is favorable for the users, the new measure of
uncertainty should be comparable, convertible with the “classical” techniques. Furthermore, we
must ensure the “communication” between systems based on different modeling techniques,
which means the existence of some kind of “rule of conversion” between the different measures
of uncertainty.

In this section, two aspects of the question of comparability, convertibility are examined:

1. Relations between the fuzzy measures of uncertainty and the standard deviation

2. Relations between the fuzzy measures of uncertainty and the standard deviation after different
transformations

In the practice, the normal distribution is often used, as supposed distribution of the variables, so
random variables with normal distribution and the corresponding fuzzy numbers are considered
for the comparisons.

Relations between the fuzzy measures of uncertainty and the standard deviation

The membership function of a fuzzy number, corresponding to a normal random variable with

an expected value of x and standard deviation of o, can be computed over a discrete universe
as [34] (see Fig. 1.34):

X, +x, S
) = Zmin{. 4, (132
k=1
X, 1 x_; 2 —_ l—l 6
where 4 :X:[l O_mexr)(_%)dx , and x, =-0 , x, =40 , X, =x—3o-+(N_)20' )

i=1..N-L

With the help of these formulas we can examine the relation between the standard deviation and the
uncertainty of the corresponding fuzzy number (Fig. 1.35). It is preferred, to have a linear relationship
between the uncertainty measures, because then they can be converted easily to each other. This
expectation is fulfilled in both cases (u, and u, ).
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Fig. 1.34 A normal distribution function (dashed line) and the membership function (continuous
line) of the corresponding fuzzy number

dx

Figure 1.34 Relation between the standard deviation and the uncertainty of the corresponding
fuzzy number. :u; (o -cut, a=0,5); - - - -: up (integral)

Relations between the fuzzy measures of uncertainty and the standard deviation after
different transformations

The linear transformations are a special and important group of transformations. It is known,
that in case of a linear transformation, given by the formula

y=ax+b, (1.33)
it is true for the standard deviation of the variables x and y, that
d, = lald .. (1.34)

This conforms to the subjective expectation, as well, thus it is necessary, that the new measures of
uncertainty also fulfill this formula. Since this transformation (if a # 0) is a one-to-one mapping, we get
from the extension principle ( 1.28):

y=>b
u,(y) = ﬂx(T) (1.35)

Width of a-cut
From formula (1.35)

u(x)za< u(ax, +b)2a. (1.36)

Thus, if the a-cut of the input fuzzy number is [xl,xz], with width x, — x,, the a-cut of the output

variable will be [ax, +b,ax, +b] (if a>0) or [ax, +b,ax, +b] (if a<0) with a width of |al(x, - x,).
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Integral of the membership function
With the y = ax + b substitution we get

u,(v) = [ 4,0y = al [ 41, (0)dx = lalu, () (137)

A further expectation can be, that there must be a simple relationship between the standard deviation and
the uncertainty of the corresponding fuzzy number in case of other, nonlinear transformations, as well. It
is preferred, if this relation is also linear, with the same or similar factor. This factor must be the same or
similar to the factor computed from the input variables.

In this case, the examinations were carried out by simulations, using the MATLAB Package. The fuzzy
uncertainties were estimated by ‘ad’, where d is the standard deviation of the corresponding random
variable. The results are summarized in Tables 1.3 and 1.4: I’ is the “optimal” factor of the linear

—1Id
estimation (where Z(ul —1d)* is minimal), and ‘e’ is the relative quadratic error (e = Z(MIT)2 )-

The fuzzy uncertainties can also be estimated with ‘/,d °, where / is the “optimal” factor for the input

variables (u;: /p=3.1224; u,: [;=3.1606). In this case, there is a bigger relative quadratic error

u, —l,d
l,d

transformations, and ‘e’ and ‘e, are small.

e, =2( )2 >e . It is preferred, if the ‘I’ factors are nearly the same in case of different

As it appears from the results, in most cases, there may exist a linear conversion between the standard
deviation and the fuzzy uncertainty (u, =Id ) with a relatively small error. In some cases, there are

higher errors (e. g. addition, multiplication). This fact needs further examinations.

Table 1.3 Fuzzy uncertainties in case of different non-linear mappings

X xty xty x*y x*y 1/x X X
m=1 m~l,m=2 |m=l,m=2 |m~=2m~1 [m~=5m~] |m=10 |m=1 m=>5
d,=0.1 =d, d,=0.1 d,=0.1
u a |[3.1224 3.3712 4.3708 3.6604 4.0753 3.0774 [2.6592 ]3.0948
e |0 0.1278 0 0.0987 0.0483 0.0028 [0.1337 ]0.0012
e |0 0.2976 1.2237 0.5753 0.9067 0.0035 [0.1964 ]0.0016
u, a |3.1606 3.444 4.4504 3.7747 4.1165 3.1677 |[2.8861 |3.1297
e |0 0.1244 0 0.0696 0.0454 0.0021 [0.0316 ]0.0019
e |0 0.3226 1.2237 0.6051 0.888 0.002 0.0787 [0.0026
Table 1.4 Fuzzy uncertainties in case of different non-linear mappings
Jx x log(x) log(x) e* e sin(x) sin(x) sin(x)
m,=10 m,=25 m,=10 m,=25 m,=1 m,=2 m,=0 m,=1 m,=m/2
u a |3.1226 3.1323 3.0868 3.1431 15001 1.5255 3.0262 2.9412 2.3609
e [0.0048 0.0067 0.007 0.0043 2.2799 2.1312 0.0616 0.0358 0.4742
e |0.0048 0.0067 0.0063 0.0048 5.8949 5.7440 0.0483 0.0704 1.8262
u, a |3.1683 3.145 3.1468 3.1818 2.3317 2.3623 2.8294 2.746 2.281
0.0019 0.0007 0.0028 0.002 0.5841 0.51110 ]0.0661 0.0617 0.0388
e |0.0017 0.001 0.0022 0.0018 0.5967 0.5975 0.1279 0.1794 1.3697
1.6.4 Mixed data models ([S17], [S117], [S60])

Although there are several information processing methods based on the different homogenous
data models, mixed data models often need to be used with the increasing complexity of the
problems and with the appearance and spreading of heterogeneous, connected systems,

Complex, difficult problems need the partitioning of the task and the system. It can be found,
that different parts of the problem need different computing methods, which are possibly based
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on different data models. For example, after some “classical” pre-processing methods, a fuzzy
based pattern recognizing algorithm can follow. In this case, the different data models follow
each other in time, inside one part of the system one uniform data model is used, but some
conversion method is needed between the different parts.

Different data models can be in use parallel with each other, as well. E.g., in case of a system
obtaining its inputs from different sources, it may be possible that the inputs are variables given
in different data representation models. For example, inputs originated from measurement
procedures or some “classical” information processing methods, are given as probability
variables, while other input, originating from fuzzy production systems or subjective
information sources are given as fuzzy variables. In this case, some methods for the treating of
these different data models are needed.

A possible solution can be the use of fuzzy random variables [36]. Fuzzy random variables are
fuzzy-valued random variables, and can be described by a set of v={(F,p)), i=1,2,...n}, where F;
is a fuzzy set, over the universe of real numbers and p; is the probability of the event, labeled F.
The expected value of a fuzzy random variable is a fuzzy variable

v=3pF, (3.38)

An exact, real-valued result can be obtained by the defuzzification of the expected value.

In general term, fuzzy and random variables can also be treated as special fuzzy random
variables. In the first case, the probability of the given fuzzy variable is considered to be 1 while
in the second case, the real numbers could be treated as special fuzzy variables (singletons),
where the membership function is 1 only in one point, and 0 otherwise.

With that extension, any operation on fuzzy and random variables can be carried out and the
obtained results will be fuzzy random variables. For example, if g(x,y) maps the x random and
y fuzzy input variables into the output variable v, then the result will be the v={(F,p;), i=1,2,...n}
fuzzy random variable, where F, =g (x,,y) (¢ is the fuzzy version of g(), got from the
extension principle), and p; is the original probability of x; (Fig. 1.36).

The problem with the fuzzy random variables is that the calculations are very time consuming.
In the above example, ¢* must be executed n-times and in the next phase when the outputs of

the procedure are fuzzy random variables, the operations must be carried out n°-times. This can
cause an exponential explosion during the information processing.

{(x,p)}: rand oM ——p
variable g(Xy) > {(g (xy)p)}: fuzzy
y: fuzzy — random variable
variable

Fig. 1.36 Computation with random and fuzzy variables

Another solution is, if instead of using fuzzy random variables, all input variables are converted
into one uniform data model, which could be either the fuzzy or the probability based data
model. In this case, information processing can be carried out in that uniform data model, so the
computation is not so time-consuming.

Conversion methods

Conversion between different data models is needed, in case of complex, heterogeneous systems,
where the different parts of the system are based on different data models. On the other hand, the
conversion of the inputs into one uniform data model can be a solution in cases of input, given in
different data models, as well.

Conversion can be treated as calculation of the x() membership function from the f{) density

function. Another, different approach is that the conversion is made between the
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p=(p;»Py,--»,p,) Pprobability distribution and the r=(,r,...,r,) possibility distribution,
where p; > p,,,, 1, >r,, and r, =1. The possibility distribution can be treated as the discrete

sampling of the x() membership function, but the values are ordered not by x,, but by » = u(x,) .
Several conversion methods between fuzzy and probability based data models can be found in
the literature (e. g. [37], [38], [39]). The simplest conversion method is the scaling ([38], [39]),
where

_ f(x) _Di

2(x) =T F ) or 7, = _Pl and (3.39)
R LE)) _ 7

f(x)= _[u(x)dx orp, = _Zrl- . (3.40)

Another, more complicated method can be the following [38], [39]

w(x) = [min{f (p), £(x)}dy, or 7, = anmin{pi,p,} and (3.41)
5= 07 7) _.r"”)- (3.42)
J=i J

Conversion can also be based on the correspondence between the confidence intervals of the
random variable and the a-cut of the fuzzy variable [38], [39]

u(x) = u(x) = [ f()dx+ [ f(x)dx, or 1= Zp (3.43)

where [x,,x,] is a confidence interval. Instead of the inverse of this conversion, usually the

previous conversion method (3.42) is used.
The different conversion methods give different results (see Fig. 1.37), so two main questions
arise:

e Into which data model to convert the data?

e By which conversion method?

In some cases, the answer for the first question can be predetermined (for example, calculation
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Figure 1.36 The results of different conversion methods.
— density function of a normal random variable (m=4, d=3); -——-: membership function
(3.39); : membership function (3.41); ----: membership function (3.43)
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methods and their data model is given and only the conversion of input into the proper data
model is required), but if the calculation methods and data models are not yet settled, the
uniform data model can be freely chosen.

For the finding answers for these questions, several (appr. 50) examinations were carried out by
making simulations using the MATLAB package. The above-described five conversion methods
were examined.

The examinations were carried out in case of the basic arithmetic operators (addition,
multiplication, division), thus the input variables/results can be extended to rational functions.
One of the input variable was a normal random variable and the other was a triangular fuzzy
variable. In case of division, the cases of fuzzy and random denominators were separately
examined.

First, input was converted into one, uniform - fuzzy or probability based - data model and results
were calculated based on this data model. After that, the results were compared to the reference
value, which was computed by using fuzzy random variables according to the following steps:

1. Discrete approximation of the input random variable: {(x.p;), i=1,2,...n}.
2. Calculation of the F, = g"(x,,y) values, where g () is the fuzzy extension of the g() mapping,

describing the transformation.
3. The result is a fuzzy random variable: {(F.p;), i=1,2,...n}.

4. Calculation of the (fuzzy) expected value of the result: Z p.F .

5. The reference value is the defuzzificated expected value.

A part of the resultant error originates from the discrete approximations (step 1), but it is
considerably smaller, then the error originated from the conversion itself.
The following observations can be made (Table 1.5 shows some of the results):

- Usually conversion into random variables gives better results. Nevertheless, in many cases,
the use of fuzzy variables can be not or only at great costs avoided. Fuzzy based systems
simply need fuzzy input and some kind of inaccuracy, uncertainty can not be correctly
represented by random variables.

- If the output is highly non-linear function of one of the input variables (e.g. in case of
division, where the denominator is less, then 1), the conversion of that input causes bigger
errors. So, in this case, conversion into the data model of this “non-linear” input gives better
results. The cause of this phenomenon can be that in case of linear or nearly linear functions,
if the original density/membership functions are symmetric, then results have also symmetric
or nearly symmetric density/membership functions. In case of symmetric or nearly symmetric
density/membership functions, the expected value/defuzzified value will be around the center
of the distribution/fuzzy set, independently of the exact shape of the distribution/membership
functions. Therefore in these cases, conversion can not cause too high error (all of the
examined conversion methods preserve the symmetric property).

- Conversion methods into random variable give similarly “good” results, there can not be
made a distinction among them.

- From conversion methods into fuzzy variable, the third (3.43) gives the best results, while the
second (3.41) the worst.

Consequently, if the uniform data model can be chosen freely (e.g., if information processing
and the data model used by it is not given), then it is suitable to choose the data model of the
“less linear” input of the system, as uniform data model. If there are no great differences in the
linearity, then the probability based data model can be a good choice.

In many cases, the data model of the system is given, e.g., expert knowledge must be used or the
lack of information must be represented, therefore fuzzy data model must be used. A similar
case is, when a highly non-linear module follows, where the use of fuzzy data model can be
more suitable and we choose it in order to reduce the number of conversions. In these cases, the
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Table 1.5 Difference from the reference value. a) Addition of fuzzy and random variables (the
expected value and the defuzzificated values of the inputs are 10); b, Multiplication of fuzzy and
random variables (the expected value and the defuzzificated value of the inputs are 10); c)
Division of random variable by fuzzy variable (the expected value of the dividend is 10, and the
defuzzificated value of the divisor is 0.5); d, Division of fuzzy variable by random variable (the
defuzzificated value of the dividend is 10 and the expected value of the divisor is 0.5); h1-h3:
absolute errors in case of conversion into fuzzy variables, according to (3.39), (3.41), and (3.43),
respectively; h4-h5: absolute error in case of conversion into random variables, according to
(3.40), and (3.42), respectively; dx: the standard deviation of the random input

1.a dx=0.1 dx=0.2 dx=0.3
hl df=0.3 0.0006 0.0009 0.0001
df=0.6 0.0007 0.0005 0.0008
h2 df=0.3 0.00007 0.0008 0.0006
df=0.6 0.0007 0.0008 0.0011
h3 df=0.3 0.0008 0.0009 0.0749
df=0.6 0.0006 0.0008 0.0004
h4 df=0.3 0.0025 0.0021 0.0004
df=0.6 0.0009 0.0016 0.0006
h5 df=0.3 0.0000 0.0011 0.0014
df=0.6 0.0003 0.0010 0.0047
1.b dx=0.1 dx=0.2 dx=0.3
hl df=0.3 0.0443 0.0741 0.1131
df=0.6 0.0769 0.1467 0.2243
h2 df=0.3 0.0499 0.0887 0.1221
df=0.6 0.0862 0.1711 0.2424
h3 df=0.3 0.0349 0.0887 0.0749
df=0.6 0.0611 0.1711 0.1819
h4 df=0.3 0.0032 0.0026 0.0017
df=0.6 0.0052 0.0078 0.0083
h5 df=0.3 0.0054 0.0056 0.0061
df=0.6 0.0067 0.0067 0.0064
1.c dx=0.1 dx=0.2 dx=0.3
hl df=0.3 0.1541 0.3631 0.5679
df=0.48 0.4318 1.0166 1.6032
h2 df=0.3 0.1752 0.4050 0.6353
df=0.48 0.4885 1.1223 1.7625
h3 df=0.3 0.1211 0.2965 0.4733
df=0.48 0.3504 0.8530 1.3670
h4 df=0.3 0.8704 3.8430 3.8278
df=0.48 15.8224 15.9831 16.0178
h5 df=0.3 4.3603 4.3657 43331
df=0.48 17.1521 17.2090 17.2090
1.d dx=0.1 dx=0.14
hl df=0.3 2.6339 14.9361
df=0.6 2.7887 23.6055
h2 df=0.3 4.0444 26.9831
df=0.6 4.2486 41.0495
h3 df=0.3 1.3041 6.0385
df=0.6 1.4439 8.9964
h4 df=0.3 0.0106 0.0542
df=0.6 0.0177 0.1309
h5 df=0.3 0.0037 0.1378
df=0.6 0.0113 0.1441
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third conversion method can be used to make lower conversion error. If a faster, simpler
conversion method is needed, the first one, scaling can be a good choice.

We would like to remark that a recently proposed new fuzzy alternative, the use of type-2 fuzzy
sets (see e.g. [40]) seems to be also a promising possibility, however it needs further
investigations.

1.6.5 Qualification of results in case of mixed data models ([S17], [S117], [S55], [S60])

The qualification can easily be solved if we convert every data into one, uniform data model. In
this case, qualification can be carried out according to the uniform data model. If the uniform
data model is the probability theory based data model (e.g. the system calculated with random
variables), the resultant standard deviation can be calculated either from the distribution function
of the output or with the help of some approximate method.

If the uniform data model is the fuzzy data model, we must define a “measure of uncertainty”,
which can be calculated from the membership function. The measure of uncertainty has to fulfill
the following requirements: (1) it must be analogous with the subjective opinion; (2) it must be
comparable with the probability theory based uncertainty measures (e.g. standard deviation); (3)
it must behave similarly to the “classical” measures during different transformations; (4) we
must ensure communication between systems based on a “rule of conversion” between the
different measures of uncertainty; and, finally (5) comparability and convertibility are important
for human users, who are at home in probability theory based uncertainty measures and expect
similar behaving from fuzzy uncertainty measures, as well.

Based on the results of Subsection 1.6.3, two methods can be proposed for quantifying
uncertainty of fuzzy data:

1. Width of a-cut:
u,, =x, —x,, where x, =inf{x|u(x) > a} and x, = sup{x|u(x) > a}. (3.44)
In some aspects this uncertainty measure is analogous with the width of a confidence interval, a
higher a value means a higher level of confidence.

2. Integral of the membership function
U, = j 2(x)dx . (3.45)

This second method can be recommended, if the fuzzy variable is not normalized and/or is not
convex.

As a summation of the above results we can conclude that if we represent the uncertainty with the
width of a-cut of a fuzzy number or with the integral of the membership function, we get a suitable
method which behaves similar to the standard deviation and the classical and fuzzy based uncertainty
measures are easily convertible.

In case of inputs of different data models, one solution could be the use of fuzzy random
variables. Although, calculations with fuzzy random variables are very time-consuming, so a
faster and more general solution can be the use of conversion methods. With them, all input can
be converted into one, uniform data model and calculations can be carried out using this uniform
data model. With the use of these methods, conversion between the parts of the complex,
heterogeneous systems, based on different data models can be solved.

Examinations also showed that usually the conversion into random variables causes less error,
except in cases, when the output is strongly non-linear function of one of the input variables
when it is recommended to keep the original data model of that input. In case of conversion into
fuzzy variable, there can be stated a “goodness” order of the conversion methods.
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PartII New Methods in Digital Image Processing

Enhancement of noisy image data is a very challenging issue in many research and application
areas. In the last few years, non-linear filters, feature extraction, high dynamic range (HDR)
imaging methods based on soft computing models have been shown to be very effective in
removing noise without destroying the useful information contained in the image data. In
Chapter II new image processing techniques are introduced in the above mentioned fields, thus
contributing to the variety of advantageous possibilities to be applied. The main intentions of
the presented algorithms are (1) to improve the quality of the image from the point of view of
the aim of the processing, (2) to support the performance, and parallel with it (3) to decrease the
complexity of further processing using the results of the image processing phase.

2.1 Introduction

With the continued growth of multimedia and communication systems, the instrumentation and
measurement fields have seen a steady increase in the focus on image data. Images contain
measurement information of key interest for a variety of research and application areas such as
astronomy, remote sensing, biology, medical sciences, particle physics, science of materials, etc.
Developing tools and techniques to enhance the quality of image data plays a very relevant role
in any case. Enhancement of noisy images, however, is not a trivial task. The filtering action
should distinguish between unwanted noise (to be removed) and image details (to be preserved
or possibly enhance). Soft computing, and especially fuzzy systems based methods can
effectively complete this task outperforming conventional methods. Indeed, fuzzy reasoning is
very well suited to model uncertainty that typically occurs when both noise cancellation and
detail preservation (enhancement) represent very critical issues. As a result, the number of
different approaches to fuzzy image processing has been progressively increasing [1].

In this chapter we deal with different areas of image processing and introduce new soft
computing (fuzzy) supported methods. In Section 2.2 corner detection is addressed. Two new
fuzzy based corner detection methods represent our contribution to the field.

Section 2.3 deals with useful information extraction. “Useful” information means that the
information is important from the further processing point of view and the, from this aspect non-
important (in other situations possibly significant) image information is handled as noise, i.e. is
filtered out. In this section, we present a new method for separating the primary and non-primary
edges in the images.

Sections 2.4 and 2.5 are devoted to high dynamic range imaging. 5 novel approaches are detailed
for reproduction of images distorted by the high dynamic range of illumination. Finally, Section
2.7 shows illustrative examples.

2.2 Corner detection

Recently, the significance of feature extraction, e.g. corner detection has increased in computer
vision, as well in related fields. Corner detection helps to determine the most characteristic
points of an object and thus to reconstruct it. Corners are also useful in pattern recognition. In
this chapter, a new corner detection technique is introduced, which is based on fuzzy reasoning
and applies a special local structure matrix. Furthermore, by introducing a new attribute
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associated to the corners, the method efficiently supports further processing, e.g. point
correspondence matching in stereo images or 3D reconstruction of schemes.

2.2.1 Introduction

Corner detection plays an important role in computer vision, pattern recognition [2], in shape
and motion analysis [3] as well as in 3D reconstruction [4], [5] of a scene. Motion is ambiguous
along an edge and unambiguous at a corner [S108]. In most cases, shapes can approximately be
reconstructed from their corners. 3D reconstruction from images is a common issue of several
research domains.

More and more applications are using computer generated models. In many cases, models of
existing scenes or objects are desired. Creating photorealistic 3D models of a scene from
multiple photographs is a fundamental problem in computer vision and in image based modeling.
The emphasis for most computer vision algorithms is on automatic reconstruction of the scene
with little or no user interaction. The basic idea behind 3D model reconstruction, from a
sequence of un-calibrated images, can be defined in several steps [S107]: first, we need to relate
the images in the whole sequence then extract information based on pixel correspondences to be
able to apply methods of epipolar geometry.

In real-life image sequences, certain points are much better suited for automated matching than
others. The environments of these points contain significant intensity variations and are
therefore easy to differentiate from others. The correspondence between such points of interest
has to be done by some kind of matching procedure. A possible approach to select points of
interest is corner detection. Corners in a scene are the end points of the edges. As we know,
edges represent object boundaries and are very useful in 3D reconstruction of a scene.

There are two important requirements for the selection of interesting points. First, points
corresponding to the same scene point should be extracted consistently over the different views.
Secondly, there should be enough information in the environment of the points, to be able to
automatically match the corresponding points [s116]. Corner points are good candidates from
both points of view, because they are usually “easily” detectable and identifiable and,
furthermore, may have a ‘“characteristic” environment, which all increase the chances for
matching the corresponding points in other images [s9].

There are several known corner detection algorithms for the estimation of the corner points.
These detectors are based on different algorithm-specific principles. It is known that there are
corner detectors, whose functionality is based on a so-called feature orientation matrix L(x,y),
which utilizes the local structure matrix Li(x,y) consisting of the first partial derivatives of the

intensity function:
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where G(x,y) corresponds to the a Gaussian smoothing function (see (2.9)) and * stands for the
convolution operation. (The idea behind is that corners are local image features characterized by
locations where the variations of the intensity function /(x,y) are high both in directions x and y
(1.e. both partial derivatives /, and I, are large) anyhow the main axes of the coordinate system
are chosen. Examples of it are the Harris feature point detector [6] and Forstner’s method [7].
Harris’ method evaluates a comparison: the measure of the corner strength

R, =det(L(x,y)— k(trace(L(x,))), (2.2)

L(x,y)=G(x,y)* L (x,y) = G(x,y)* (2.1)

is compared to an appropriately chosen constant threshold. If Ry exceeds the threshold, the point
is taken as a corner. Here, trace(L(x,y)) = A4; + A, 45, A2 stand for the eigenvalues of matrix
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L(x,y), and k denotes a parameter effecting the sensitivity of the method (typical values for & are
ke [0.04 —0.2]).
Forstner determines the corners as the local maxima of the beneficial function H(x, y)

det(L(x, y))
( ol )2 ( ol Jz
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A further well-known corner detector is the SUSAN (Smallest Univalue Segment Assimilating
Nucleus) detector based on brightness comparison [8]. The algorithm does not depend on image
derivatives; it uses the brightness values of the pixels. The first step of the algorithm is to place a
circular mask around the pixel in question (the nucleus). After this, the method calculates the
number of pixels within the circular mask which have similar brightness values to the nucleus.
(These pixels define the so-called USAN.). The next step is to produce the corner strength image
by subtracting the USAN size from a given geometric threshold. The possible false positives can
be neglected by finding the USAN's centroid and its contiguity. The so called USAN area
reaches a minimum (SUSAN), when the nucleus lies on a corner point. This method is more
resistant to image noise than the previous ones.
The above, most well known algorithms all apply the following idea: the processed image point
is detected as a corner when the calculated value of a certain feature (which is characteristic for
a corner) exceeds a given, constant threshold. The effectiveness of these methods from corner
detection point of view is acceptable. However, modern signal/image processing methods need
to fulfill certain new requirements as well.
A new requirement set against signal and image processing algorithms (or in more general,
against all pre-processing algorithms) is that they have to give an efficient support to further
processing and to autonomous operation of the whole procedure [S9], [S119]. (This requirement
has been defined by the author and has been accepted by the international research community.)
The above summarized standard methods usually fail to satisfy these requisites.
In the following three subsections, simple procedures (noise elimination, smoothing and creation
of the local structure matrix) are summarized, which serve as building blocks of the new
introduced corner detectors. This is followed by the presentation of the methods themselves in
2.2.5, and their comparison to existing algorithms in 2.2.6.

H(x,y)= 2.3)

2.2.2 Noise Elimination

Before starting to search for the corner points of an image, it is necessary to eliminate the noise.
For this purpose we use FIRE filters, a special fuzzy system characterized by an IF-THEN-
ELSE structure and a specific inference mechanism proposed by Russo [9]. Different noise
statistics can be addressed by adopting different combinations of fuzzy sets and rules. In the
followings, we will present a simple FIRE filter removing impulse noise.

Let I(r) be the pixel luminance at location r=[x,y] in the noisy image, where x is the horizontal
and y the vertical coordinate of the pixel. Let /y=I(r) denote the luminance of the input sample
having position ry (ro =[xo,)0]) and being smoothed by a FIRE fuzzy filter. The input variables
of the fuzzy filter are the amplitude differences defined by:

Al =1,-1,,j=1,..8 (2.4)
where [;=1(r;), j=1,...,8 values are the luminance values of the neighboring pixels of the actually

processed pixel rj (see the left side of Fig. 2.1). Let K be the luminance of the pixel having the
same position as ry in the output image. This value is determined by the following relationship:

new value = old value + correction,

K, =1,+Al (2.5)
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where A/ is determined in (2.8).
Let W = U; W, be defined by a subset of the eight neighboring pixels around r, belonging to a

3x3 moving window (see the right hand side of Fig. 2.1). Let the rule base deal with the pixel
patterns W,...,Wy . Value K, can be calculated, as follows [9], [1]:

L [[of |[ @ | |@ @
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Fig. 2.1 The neighboring pixels of the actually processed pixel ry (left) and the pixel patterns

(right)
A =MAX\MINm,,(AL):r, €W, i =1,....9 (2.6)
X = MAX{MIN{m, (A1) :r, e W, i =1,...9] 2.7)
Al =(L-DAL,  K,=I,+AIl (2.8)

where Al=/l—i*, L is the maximum of the gray level intensity, m;p and m;y correspond to the
membership functions large negative and large positive, and mp(l)=mn(-1) (see Fig. 2.2). The
filter is recursively applied to the input data.

-L+1 b a 0

Fig. 2.2 Membership functions mx (large negative) and myp_(large positive), a and b are
parameters for the tuning of the sensitivity to noise of the filtering

Here we would like to remark that the fuzzy sets above are suitable for removing impulse noise
which is the most typical noise type in case of images. Although, FIRE filters can be used for
removing other types of noise, as well, however in these cases different fuzzy sets have to be
applied. A further advantageous feature of these filters is that the fuzzy sets can be combined, i.e.
different noise statistics can be addressed simultaneously.

2.2.3. Gaussian Smoothing

The algorithm uses a convolution kernel of size NxN that represents the shape of a Gaussian
hump. This kernel has special properties detailed below. A circularly symmetric Gaussian hump
has the form of

X +y?

e 2 (2.9)

G(x,y) =

270
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where x and y stand for the 2D coordinates of a point and ¢ is a shaping parameter of the
distribution (see Fig. 2.3) [10]. The main idea of Gaussian smoothing is to use this 2D
distribution as a ‘point-spread’ function which can be achieved by convolution. Since digital
images are stored as a collection of discrete pixels we need to produce a discrete approximation
to the Gaussian function before we can perform the convolution [10]. An example of this
distribution can be seen in Table 2.1.

The idea of Gaussian smoothing is to use this 2-D distribution as a ,,point-spread” function
achieved by convolution.

0.0003 0.0023 0.0062 0.0062 0.0023 0.0003
0.0023 0.0168 0.0458 0.0458 0.0168 0.0023
0.0062 0.0458 0.1244 0.1244 0.0458 0.0062
0.0062 0.0458 0.1244 0.1244 0.0458 0.0062
0.0023 0.0168 0.0458 0.0458 0.0168 0.0023
0.0003 0.0023 0.0062 0.0062 0.0023 0.0003

Table 2.1 Gaussian 6x6 convolution kernel with c=1

G.Y)

Fig. 2.3 2D Gaussian distribution function with c=1
The convolution is implemented as follows:

for(yo=n; y0<=ymax-n; yo++)
for(xo=n; xo<=xmax-n; xo++)
{
newvalue=0
for(y=-n; y<=n; y++)
for(x=-n; x<=n; x++)
newvalue=newvalue+g(x,y)-f(x+x0,y+y0)
newvalue=newvalue/S

5

where x,, y, stand for the identifiers of the element on which we want to execute convolution (in
our case these correspond to the 2D coordinates of the analyzed pixel), x and y denote the
relative positions of the kernel points, S is the sum of the kernel values, g(x,y) represent the
weighting factors of the convolution kernel, and f stands for the function which has to be
smoothed.
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2.2.4 Determination of the local structure matrix

The local structure matrix Lg(x,y) is composed of the first derivatives of the intensity function
I(x,y) (see (2.1)). The calculation of the first derivatives of /(x, y) can be solved by applying the
following convolution masks at each image point:

-1 0 1 -1 -1 -1

..ol ..ol
-1 0 1| fordetermining —,and | 0 0 0 | for determining —.
“1 0 1 ’ o1 »

For increasing the effectiveness of the corner detection algorithm it is proposed to smooth each
of the entries of matrices %, Iyz, L1, in (2.1) by applying a Gaussian convolution kernel, see
2.23.

2.2.5 The new corner detection methods

In this section two new corner detection algorithms are proposed that on one hand out perform
the previously used corner detectors, while on the other hand fulfill also the previously
mentioned new requirements.

Method 2.1 improves the Harris corner detection method by introducing a fuzzy measure for the
determination of points being corners.

Method 2.1 ([S108], [S123]): The steps of the corner detection method are
Step 1. Noise smoothing by Russo’s fuzzy filters (subsection 2.2.2)

Step 2. Determination of the local structure matrix Ls(x,y) (subsection 2.2.4)

Step 3. Application of a convolution mask for the determination of the elements of Forstner’s
feature orientation matrix L(x,y) ((2.1) and subsection 2.2.3).

Step 4. Determination of the values of the beneficial function H(x, y) ((2.3)).

Step 5. Determination of the fuzzy membership values of the pixels representing the strength of
being corner. For this, fuzzy reasoning is introduced which is applied to the calculated values
H(x, y). By the score of the membership function (see Fig. 2.4) of fuzzy set “corners” m.(H), we
can determine a weighting factor, which characterizes the rate of the corner’s membership. The
value of the membership function is 1 for those image points for which the calculated value H
equals or is larger than a given threshold value. With the help of parameters p, ¢ we can modify
the shape of the membership function and, thus change the sensitivity of the detection.

Step 6. The output of the detection is yielded by the following relation:

z,, =(L-D*m.(H), (2.10)

where z;; represent the gray-level intensity values of the output image, L stands for the largest
intensity value (e.g. for 8 bit gray-scale images L=255), and H denotes the calculated H(x,y)
values.

H
threshold

Fig. 2.4 Membership function of fuzzy set “corner” (m.). Axis H is the universe of the calculated
H(x,y) values
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Step 7. Finally, if the detected corners are neighbors then we have to keep only the corner with
the largest calculated value H(x,y). The others should be ignored to avoid multiple detection of
an, in practice, single corner.

Method 2.2 starts off the basics of the fuzzy based corner detection algorithm described in
Method 2.1. In addition, it applies an image smoothing procedure in the preprocessing phase,
furthermore its performance is improved by introducing a fuzzy based technique assigning new
attributes to the detected corner candidates (showing the membership value of being a ‘real’
corner). This latter property of the detector is very advantageous for the matching of
corresponding points in stereo image pairs and thus it results in a better output.

Method 2.2 ([S9], [S125]):
Step 1. Noise smoothing by Russo’s fuzzy filters (Subsection 2.2.2)

Step 2. Gaussian smoothing of the filtered image (Subsection 2.2.3). This new step improves the
performance of the detection significantly. In corner detection, besides the noise, a further
problem can occur because the digital image is stored as a collection of discrete pixels. An edge
is represented as a series of points possibly resulting in small brakes in the edge which, in many
of the cases, causes that false corners appear during the detection. In Fig. 2.5, the left image
illustrates how a line looks like (producing false corners) when the resolution of the image is
finite. For improving the performance of the corner detection algorithm, the false corners should
be eliminated before applying the corner detector. For this purpose a Gaussian smoothing
algorithm can be implemented, which is usually used to 'blur' images and to remove unimportant
details and noise. In Fig. 2.5 the right image shows how a line after smoothing appears in the
image.

Fig. 2.5 Edge representation without smoothing (left) and after applying a smoothing
algorithm (right)

Step 3. determination of the local structure matrix Lg(x,y) (Subsection 2.2.4)

Step 4. Application of a convolution mask for the determination of the elements of Forstner’s
feature orientation matrix L(x,y) ((2.1) and subsection 2.2.3). L(x,y) can also be derived from
locally approximating the autocovariance function of a real valued stochastic signal I(x,y)
(generated by a stochastic process) in the origin [11].

Step 5. Determination of the values of the beneficial function H(x, y).

Step 6. Determination of the membership values of the pixels representing the strength of being
corner.

In most of the cases, we can not unambiguously determine whether the analyzed image point is a
corner or not based only on a certain concrete threshold value. Therefore, in the proposed
algorithm fuzzy techniques are applied for the calculation of the values (corners) significantly
increasing the rate of correct corner detection. The higher the calculated H is, the higher the
membership value representing that the analyzed pixel is a corner becomes. After fuzzifying the
H values into fuzzy sets and applying a fuzzy rulebase we can evaluate the “degree of corner-
ness” of the analyzed pixels. This attribute of the pixels can advantageously be used in further
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processing, e.g. when searching for the corresponding corner points in stereo image pairs, as
well [S25]. (Point correspondence matching is an indefinite step of automatic 3D reconstruction.
The consideration of an additional feature, i.e. the similarity of the degree of corner-ness of the
projections of a certain point in different pictures taken from near camera positions, can highly
increase the reliability of the decision.)

The antecedent and consequent fuzzy sets of the detector are illustrated in Figs. 2.6 and 2.7,
respectively. In Fig. 2.6 (antecedent fuzzy sets) the horizontal axis represents the universe of the
H values with three fuzzy sets, Cwrax, Cumepium, and Csrrong corresponding to points being
WEAK, MEDIUM, and STRONG corners, respectively. Parameters Hj (k=1,2,3,4,5) serve for
the shaping of membership functions . » ue, by which the sensitivity of the

D) .
K 'Ll Creprum

described detector can be tuned.

A
1 T ﬂCWEA K ‘u Cm:‘u/uw /JCSTR ONG
C WEAK Cuepum C STRONG
>
0
H, H, H, H, H; H

Fig. 2.6 Illustration of antecedent fuzzy sets Cwrax, Creprum, and Csrrong of universe H. The
values H(k=1,2,3,4,5) serve for shaping membership functions x4, Heymmmn * MCsrone ? i.e.

for tuning the sensitivity of the detector

In Fig. 2.7 (consequent fuzzy sets) the horizontal axis is the axis of universe I (output intensity)
also with three fuzzy sets, l.ow, Iuepium, and Iygy. 1f the pixel is not at all a corner (none of the
fuzzy rules are fired) then its intensity will be set to zero, while in other cases the output
intensity showing the degree of cornerness will be evaluated by the aggregation of the following
fuzzy rulebase:

If (H(x’y): CWEAK) then (I(xay)’ ILOW)9
If (H(x,y), Cyepium) then  (/(x,y), Ivepium),
If (H(x,y), Cstrone) then (1(x.,y), TriGn),
A
H Low Hy MEDIUM H; HGH
1
ILO"V IMEDIU.’W IHIGH
0 L. L L1

Fig. 2.7 Nlustration of consequent fuzzy sets I;ow, Iuepium , and Iygy of universe I (output
intensity). Values /x (k=1,2,3,4) serve for shaping the membership functions x

and ‘LtCHEIGHT

» M Cuepiom

which means that if the H(x,y) value is member of the fuzzy set Cwex , Cyepium, or Crigr then
the output intensity of the pixel is low, medium, or high, respectively. Let 4 (.) be the
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membership function of the consequent fuzzy set generated as the superposition of the rule
consequents. As defuzzification algorithm we use the center of gravity method, thus the intensity
value of a pixel in the output image is obtained by

D),
1,(x,y)="——, (2.11)
Zﬂ(l,-)

where /,(x,y) denotes the intensity value of the pixel in the output image at position [x,y] and L
stands for the maximum of the intensity.

2.2.6 Comparison of different corner detection methods

While the new algorithms are for sure advantageous for further processing and automation, we
also performed a comparison to demonstrate their effectiveness. We have made several (appr.
35) simulations and tested the four methods by running them on different pictures partly taken
from the literature (like the famous “Lena” photo) and partly on photos chosen by us because we
thought them characteristic from corner detection point of view. For simplicity, we have
processed gray scale images, with maximum intensity L = 255.
Before starting with corner detection, we have applied the same noise smoothing (typically a
FIRE filter with a=66 and b=100) in each case. As an example of the results, we include here a
“typical” running result in Table 2.2, where the parameters of the different corner detectors were
set as follows:
o  Method 2.2: smoothing: by 2x2 Gaussian hump; fuzzy set: for the comparative runs,
we have applied only one fuzzy set with threshold =161 and tg a=1/544 (see Fig. 2.8)
and the membership value corresponds to the strength of being a corner. This
simplification can be accepted here because the aim of the illustration is only to show
the performance of the corner detection and not to use it for further processing, e.g
point correspondence matching. The threshold is set as in case of the Forstner’s
method to make the comparison easier.

o Forstner’s method: threshold=161.
e Harris corner detector: k=0.15, threshold=5000.

o SUSAN corner detector: brightness threshold=10 (the maximum difference in grey
levels between two pixels which allows them to be considered part of the same
“region” in the image), geometric threshold=37 pixel fixed mask.

L+ 0 t L-1

Fig. 2.8 Fuzzy set “corner”

As illustration, we include two very simple examples to show the effectiveness of the new
method. For more details and examples, see [S9].
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Fig. 2.9 presents results got using the new corner detectors (a) by and (b) without image
smoothing. The comparison in this figure illustrates very well the improvement of the results
after applying smoothing. (Here we would like to remark the following: In the right hand side
image you can find a detected corner not located in a grid point which at first glance could be
thought as false detection. However, at closer look we have found that during the cutting out of
the check pattern we have made a corner by the scissors, i.e. the detection is correct.)

(b)

Fig. 2.9 Detected corners in the fuzzy filtered image (a) using fuzzy based detector without
image smoothing, (b) using the same detector but with image smoothing

The next example serves for the comparison of different corner detection algorithms. In case of
all methods, the same fuzzy filter was applied for noise removal. Fig. 2.10 (a) shows a part of a
corridor with several lamps and doors. In Fig. 2.10 (b) the corners detected by the introduced
new fuzzy supported algorithm (method 2.2) can be seen. By analyzing the results we can see
that all the corners are detected and no false corner was found. Figs. 2.10 (c)-(e) illustrate the
results obtained by the Forstner’s, Harris, and SUSAN corner detection algorithms, respectively.

(b)
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(e)

(k=0.001), (e) SUSAN detector

Fig. 2.10 Corridor — (a) Original photo, corner detection applying (b) the proposed new fuzzy
based corner detection algorithm, (c) Forstner’s corner detector, (d) the Harris corner detector

Table 2.2: Comparison of different corner detection methods

Methods \  Corners Correct [%] False [%] Non detected
(7]
Fuzzy based corner detector 84 0 16
(2x2 Gaussian hump,
a=100, b=161, tg p=1/544)
Forstner’s method 78,7 0 21.3
(threshold=161)
SUSAN corner detector 52 47 48
(brightness threshold=10,
geometric treshhold=37 pixel
fixed mask)
Harris corner detector 71 15.3 29

(k=0.15, threshold=5000)
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2.3 “Useful” information extraction

Recently, in digital image processing a large amount of research has been focused on
information retrieval and image understanding. Typical examples are searching for similar
objects/images in large databases and understanding the objects in images. The main point of
these tasks is to extract the most characteristic features of the objects in the images, like edges,
corners, characteristic textures, etc. Another very important aspect can be the separation of the
“significant” and “unimportant” parts of these features, i.e. the enhancement of those features
which carry primary information and to filter out the part, which represents information of minor
importance. By this, the complexity of the searching and/or interpreting algorithms can be
decreased while the performance is increased. This chapter describes a new edge processing
method which is able to extract the “primary” ones, i.e. those edges which can advantageously
be used in sketch based image retrieval algorithms.

2.3.1 Introduction

The recent tremendous growth in computer technology parallel with the appearance of new
advances in digital image processing has brought a substantial increase in the storage and aims
of digital imagery. On one hand, this means the explosion of database-sizes, while on the other
hand the increasing complexity of the stored information calls for new, intelligent information
managing methods. To address this challenge, a large number of the digital image processing
algorithms which have been introduced in the past years apply soft computing and/or intelligent
techniques. All of these algorithms aim some kind of (intelligent) feature extraction supporting
the further, more advanced processing, like object recognition, image understanding, image
information retrieval, etc. in a single photo or in (large) data bases.

A typical problem of the above type is searching for similar objects/images in large databases.
Usually, this process is very time consuming, thus manual searching is not acceptable. A large
amount of effort was put on the automation of the procedure. As a result, numerous methods of
different kinds were developed.

Some of the methods are based on the description of the images using text attributes, enabling
the organization of images by topical or semantic hierarchies to facilitate easy navigation and
browsing based on standard boolean queries [12], [13]. Automatically generating descriptive
texts for a wide spectrum of images is not feasible, most text-based image retrieval systems
require manual annotation of images. Obviously, annotating images manually is an expensive
task for large image databases, and is often subjective, context-sensitive, and incomplete [12],
[13]. Because of this reason, searching procedures based on image content analysis have been
developed, which can select the images more effectively as the text based retrieval methods.

The possibly most interesting and important step in image retrieval is the extraction of the
“useful” features from the images. There are several characteristic attributes of the images (e.g.
the edges and corners) which carry useful information and can be of help during the extraction
of the primary information by appropriate techniques.

The edges in an image can advantageously be used when comparing two images and searching
for similar objects [s11]. An image usually contains a lot of different edges, among which there
are texture edges and object contour edges. From the point of view of image retrieval, only the
latter ones are important because they carry the primary information about the shape of the
objects. By considering both types of edges during the search/comparison, the complexity/ time
need of the procedure might dramatically, and the (probably high number of) non-important
details (edges) might lead to false decisions. As a consequence, it is of key importance to
separate the “significant” and “unimportant” subsets of the edges, i.e. to enhance the ones which
correspond to the object boundaries and thus carry primary information, but to filter out the
others which represent information of minor importance

In this chapter a new primary edge extraction method is introduced, which applies surface
deformation combined with fuzzy edge detection technique. In 2.3.2 a standard method of
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surface smoothing is described, while in 2.3.3 an existing edge detection method due to Russo is
summarized. The novel method of the author is then presented in 2.3.4.

2.3.2 Surface smoothing

Let S; be the surface describing an image to be processed, i.e. S; = {(x, y, z); z = I(x,,f)}, where
variables x and y represent the horizontal and vertical coordinates of the pixels, z stands for the
luminance value, which is the function of the pixel coordinates and of time z. Smoothing is
performed by image surface deformation. Such a process preserves the main edges (contours) in
the image. The surface deformation process satisfies the following differential equation [14]:

a, _

ot
where k corresponds to the ,,speed” of the deformation along the normal direction n of the
surface S;. In our case, value k is represented by the mean curvature of the surface at location [x,

y], i.e. the speed of the deformation at a point will be the function of the mean curvature at that
point. The mean curvature is defined as

kn, (2.12)

_k +k,
2

where k; and k; stand for the principal curvatures. Starting from equation (2.13), the following
partial differential equation can be derived (Because of the limitations on the volume, we skip
the details of the deduction. For details, see [15]):

_(+IDL =200 ] + (4T,
2 2 /2 :
2(1 +17+ Iy)3

k : (2.13)

2.14)

Here I, I,, I« I, I, stand for the partial derivatives with respect to the variables indicated as
lower indices. Starting from equation (2.12) the surface at time t+A¢ (for small A7) can be
calculated as follows [14]:

I(x,y,t+ A = I(x,p,0) + k[ 1+ 12 (x, y,0) + 12 (x, y,1) At + 0(Ar) (2.15)

where o(4t) represents the error of the approximation.
Fig 2.11 illustrates the virtual process of the surface deformation along the time.

Fig. 2.11 Illustration of an image surface before (left) and after (right) the deformation

2.3.3 Edge detection
In the followings, the fuzzy edge detection method of Russo [1] is summarized. The idea of the
method is very similar to that of the noise smoothing algorithms presented in Subsection 2.2.2.
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Let zy, be the pixel luminance at location [x,y] in the original image. Let us consider the group
of neighboring pixels which belong to a 3x3 window centered on zy,,. The output of the edge
detector is yielded by the following equation:

2!, =(L=D)MAX{m,,(Av,),m,(Av,)}
(2.16)

Avl = ‘ZO,xfl,y - ZO,x,y

sz = ‘Zo,x,y—l - ZO,x,y

where 2/, denotes the pixel luminance in the edge detected image and m; 4 stands for the used
membership function (see Fig. 2.12). zj..;, and zjy,; correspond to the luminance values of
the left and upper neighbors of the processed pixel at location [x,y]. L-1 equals to the
maximum luminence value (e.g. 255). For more details see [1].

A

o
=N Z

Fig. 2.12. Fuzzy membership function m ;4 of “edge”. L-1 equals to the maximum intensity
value, p and ¢ are tuning parameters

2.3.4 The new primary edge extraction method ([S11], [S139])

Assume that we have an image and we want to extract the edges corresponding to the object
contours. This can be done with the help of the new primary edge extraction method detailed
below.

Prepocessing

Step 1. Surface smoothing (Subsection 2.3.2): As the first step, it is necessary to remove the
unimportant details from the image. After smoothing the image, only the most characteristic
contours are kept.

Step 2. Constructing the edge map: The edge map of the original (unsmoothed) image is
constructed using the fuzzy based edge detection method described in Subsection 2.3.3. Such an
edge map contains all the possible edges.

After preprocessing, the new edge separation follows according to Method 2.3
Method 2.3 ([S11], [S139]):

The new method aims to extract the most characteristic edges of images. This is done by a
simultaneous analysis of the smoothed image and the edge map of the original image: in case of
each of the edge points a small environment of the point is taken in the original image and using
the smoothed image the variance of the color components inside this environment is analyzed. If
the variance is below a predefined threshold value then the edge point is removed while
otherwise it is considered as a useful, primary edge point. The procedure is performed as
follows:

Step 1. For each edge point taken from the edge map of the original image, the environment of
the point is analyzed in the smoothed image. The analysis is realized by calculating the mean
squared deviation of the color components (in case of grayscale images the gray-level
component) in the environment of the selected edge point.

60



Let p=[ps, p,] be an edge point in the original image and let M denote a rectangular environment
of p with width w and height /4. The mean squared deviation is calculated as follows:

Ptw/2 P},~+h/2

Z Z(ﬂ_l(iaj’tstop))z

d i=p,—w/2 j=p,—h/2

hw

, 2.17)

where f,,, represents the duration of the surface deformation.

In case of grayscale images, u denotes the average gray level inside the environment M. For
color images, the whole process should be done for each component separately and in this case
corresponds to the average level of this color component inside the environment M.

Step 2. If the calculated deviation exceeds a predefined threshold value, then the edge point is
considered as useful edge. As result, an image containing only the most characteristic edges is
obtained.

For illustrating the behavior of the method, in Figs. 2.13-2.16 an example is presented showing
the useful edge extraction procedure. For more examples and details, see [S11], [S139]. As
shown in Fig. 2.16, many of the details disappear after the processing and only the characteristic
edges of the car are left. This helps filtering out the non-important details and enhancing the
most significant features/objects in images, thereby making image retrieval, object recognition,
etc. easier.

Fig. 2.13. Original image taken of a car Fig. 2.14. Smoothed image using surface
deformation based on mean curvature

Fig. 2.15. Edge map of the original image  Fig. 2.16. Edges after applying the proposed
information enhancement method
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2.4 High Dynamic Range (HDR) Imaging

The high dynamic range of illumination may cause serious distortions and problems in the view
and further processing of digital images. Important information can be hided in the highly or
extreme lowly illuminated parts. This chapter deals with the reproduction of such images and
introduces two anchor based and one tone reproduction pre-processing algorithms which may
help in developing the hardly or non viewable features and content of the images.

2.4.1 Introduction

Digital processing can often improve the visual quality of real-world photographs, even if they
have been taken with the best cameras by professional photographers in carefully controlled
lighting conditions. This is because visual quality is not the same as the accurate reproduction of
the scene. In image processing, most of the recently used methods apply preprocessing
procedures to obtain images which guarantee - from the point of view of the concrete aims —
better conditions for the processing. For example, if we eliminate the noise from the images to
be processed we can obtain much better results then else or applying different feature extraction
methods, like edge and corner detection, may significantly help in pattern recognition.

There are many kinds of image properties to which the certain methods are more or less
sensitive [1]. It is also known that in most of the cases certain regions of images have different
features while at the same time the parameters of the processing methods are usually functions
of the image features. This fact may make difficult to find the optimal parameters for the applied
image processing procedure or to correctly interpret the results.

The light intensity at a point in the image is the product of the reflectance at the corresponding
object point and the intensity of the illumination at that point. The amount of light projected to
the eyes (luminance) is determined by a number of factors: the illumination that strikes visible
surfaces, the proportion of light reflected from the surface, and the amount of light absorbed,
reflected, or deflected by the prevailing atmospheric conditions (such as haze or other partially
transparent media) [16]. Only one of these factors, the proportion of light reflected (lightness) is
associated with an intrinsic property of surfaces and hence is of special interest to the visual
system. If a visual system only made a single measurement of luminance, acting as a photometer,
then there would be no way to distinguish a white surface in dim light from a black surface in
bright light. Yet, humans can usually do so and this skill is known as lightness constancy [17].
The constancies are central to perception. An organism needs to know about meaningful world
properties, such as color, size, shape, etc. These properties are not explicitly available in the
retinal image and must be extracted by visual processing. A gray patch appears brighter when
viewed against a dark background and darker when viewed against a bright background. This
effect, known as “simultancous contrast” is one of many brightness effects that are commonly
attributed to simple visual processes, such as the lateral inhibition that occurs in the retina,
whereby cells in one region inhibit cells in adjacent regions.

In this chapter we deal with a further, relatively new research topic in image processing, namely
with the reproduction of images when the high dynamic range of the lightness causes distortions
in the appearance and contrast of the image in certain regions e.g. because a part of the image is
highly illuminated looking plain white or another is in darkness. It may cause serious problems
in the processing and analysis of the view. (Just consider the problem when you are leaving a
dark tunnel and would like to be sure that nothing is in front of you, i.e. it is safe to enter or
drive to the bright sunshine.) Using such a reproduction algorithm in preprocessing phase of the
images, we can make the information hided in the picture attainable, we can avoid information
loss, and we can improve the performance of further processing and analysis.
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The chapter is organized as follows: Section 2.4.2 deals with the background of tone
reproduction, in Section 2.4.3 the principles of anchoring theory are summarized. Section 2.4.4
is devoted to the segmentation of images, while Sections 2.4.5 and 2.4.6 discuss new HDR
imaging techniques due to the author: in Section 2.4.5 two new anchoring based reproduction
algorithms are described; in Section 2.4.6 another new and promising concept, the so called tone
mapping function based algorithm is introduced. In Section 2.4.7 a simple example illustrates
the performance of the techniques.

2.4.2 Background

Everybody knows the phenomena: if we switch off the lights at night, at first we cannot see
anything at all. But the eye adapts to the new lighting situation and after one minute we begin to
detect first objects and after about twenty minutes most features are visible again (although they
without color). The same happens if the illumination suddenly changes from dark to bright, but
this time the process of adaptation is less noticeable, because it happens much faster: in the first
two seconds more than 80 percent of the adaptation is done [18]. The task of a tone reproduction
operator is to present the global illumination solution for a scene on the display (monitor, print,
etc.) such that it closely matches the impression of an observer of the corresponding real world’s
scene. The tone reproduction operator has to face two major problems when fulfilling this task:
First, it must mimic how the eye would see the real world and the displayed image and find a
match between the two impressions. As the second task, it must compress the high dynamic
range of the real world to the small dynamic range of the display (e.g. for standard monitors 1 -
120 cd/m2 ).

The tone reproduction problem was first defined by photographers. Often their goal is to
produce realistic “renderings” of captured scenes and they have to produce such renderings
while facing the limitations presented by slides or prints on photographic papers. Many common
practices were developed over the 150 years of photographic practice [19]. In computer graphics
the dynamic range of a scene is expressed as the ratio of the highest scene luminance to the
lowest scene luminance. Photographers are more interested in the ratio of the highest and lowest
luminance regions where details are visible. This can be viewed as a subjective measure of
dynamic range.

Fig. 2.17 illustrates the scale of a high dynamic range image. This scale can be divided into two
main parts: the first contains displayable luminance values while the second one contains such
high luminance values, which are not displayable by today’s devices. Images may contain
different parts with different illumination characteristics. Real images often contain regions,
which are highly illuminated and much less illuminated parts, as well. The highly illuminated
regions can contain non-displayable luminance values. From the point of view of the observer,
the image data falling into such luminance intervals are lost. Thus, to avoid the image
information loss, it is necessary to map these high luminance values to the displayable range.
There are several known methods in the literature addressing these problems. Each of them tries
to compress the high dynamic range of luminance values to the displayable range. Just to
mention two of them, Kawahito’s method [20] is based on multiple exposure time signals while
Reinhards in [21] applies a so called zone system. Recently, the authors of this paper have also
introduced new fuzzy supported anchor based and tone reproduction algorithms in [S29], [S31].
We would also like to mention the work of Ukovich et.al. [22], in which a comprehensive tool
for the qualitative and visual evaluation of the different techniques is presented.

In this Section three new methods are introduced for anchoring and tone reproduction. The first
two are based on anchoring theory and image segmentation. During the development of the
second method, the author started from the segmentation technique described in the first method
[S29] and kept the fuzzy merging technique introduced also in [S29]. However, the technique
was improved by a new anchor estimation algorithm and a new operator for the determination of
the display luminance of the output pixels.
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Fig. 2.17 Illustration of the mapping the high dynamic scale to a displayable range

The basis of the third method presented here is the application of a new, modified form of the so
called tone mapping function. All three introduced techniques result in an improvement of the
preservation of the visual information and in the quality of the reproduction of the input pictures.

2.4.3 Anchoring theory

Although the ambiguous relationship between the luminance of a surface and its perceived
lightness is widely understood, there has been little appreciation of the fact that the relative
luminance values are scarcely less ambiguous than absolute luminance values [23]. Consider,
e.g. a pair of adjacent regions in the retinal image whose luminance values stand in a five to one
ratio. This five to one ratio informs the visual system only about the relative lightness values of
the two surfaces, not their specific or absolute lightness values. It informs only about the
distance between the two gray shades on the gray scale, not about their specific location on that
scale. There is an infinite family of pairs of gray shades that are consistent with the five to one
ratio. For example, if the five represents white then the one represents middle gray. But the five
might represent middle gray as well, in which case the one will represent black. Indeed, it is
even possible that the one represents white and the five represents an adjacent self-luminous
region. So the solution is not even restricted to the scale of the gray surface. To derive specific
shades of gray from relative luminance values in the image, one needs an anchoring rule. An
anchoring rule defines at least one point of contact between luminance values in the image and
gray scale values along our phenomenal black to white scale. Lightness values cannot be tied to
absolute luminance values because there is no systematic relationship between absolute
luminance and surface reflectance, as noted earlier. Rather, lightness values must be tied to some
measure of relative luminance. The relative lightness of two regions in an image can remain
fully consistent with the luminance ratio between them, even though their absolute lightness
levels depend on how the luminance values are anchored [23]. The most frequently used rules
for anchoring are the followings:

Highest Luminance Rule: The value of white is assigned to the highest luminance in the display
and serves as the standard for darker surfaces [24].

Average Luminance Rule: The average luminance rule derives from the adaptation level theory
and states that the average luminance in the visual field is perceived as middle gray. Thus, the
relative luminance values have to be anchored by their average value to middle gray [23].

There is a tendency of the highest luminance to appear white in the human vision system and
also a tendency of the largest area to appear white [17]. Therefore, the highest luminance rule
was redefined based on this experimental evidence. As long as there is no conduct, i.e. the
highest luminance covers the largest area, the highest luminance becomes a stable anchor.
However, when the darker area becomes larger, the highest luminance starts to be perceived as
self-luminous. Thus, the anchor is chosen as a weighted average of the luminance proportionally
to the covered area.
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2.4.4 Fuzzy set theory based segmentation of images into frameworks

The anchoring rule, described in the previous section, cannot be applied directly to complex
images in an obvious way. The main concept is based on the decomposition of the image into so
called frameworks or segments and then on the application of the anchoring rule in the
individual segments, separately. However, the borders of the segment are not unambiguous, thus
as an improvement, in the following, a new method is presented for the segmentation, which
takes into consideration of this ambiguousness and applies fuzzy reasoning in the segmentation.

Method 2.4 ([S29], [S31], [S121], [S122]):

Step 1. By the segmentation we have to find the so called centroids of the segments using, e.g.
the K-means clustering algorithm [25]. The K-means algorithm is initialized by values ranging
from the minimum to maximum luminance in the image with a luminance step equal to one
order of magnitude and we execute the iterations until the algorithm converges. We operate on a
histogram in the 10 based logarithm of luminance. After the K-means algorithm has finished, the
centroids we have got are merged according to the following criteria: when the difference
between two centroids is below a certain threshold, e.g. one then these centroids have to be
merged. This is also done iteratively. In each iteration step the two closest centroids are merged
together and the new centroid value is calculated as the weighted average of the two merged
centroids proportional to their area:

_Gh e (2.18)

C..
v a,+a;

where ¢; and ¢; are the values corresponding to the centroids with indices i and j, a; and a; stand
for the number of pixels in the ith and jth frameworks, i.e. they represent the number of pixels
corresponding to the ith and jth centroid.

Step 2. It is not an ambiguous step to assign a border to the certain frameworks. We can get
better results if we look at the frameworks as fuzzy sets, which means that to each pixel a fuzzy
membership value is assigned to define the membership of the pixels belonging to the
frameworks [S29]. Thus, as next step we have to estimate the membership functions
corresponding to the frameworks. For this, we suggest to use the centroids determined in the
previous step by the K-means clustering algorithm.

Let 4, be the membership function corresponding to the ith centroid (framework) defined as

follows (see Fig. 2.18):

4(x,y)=0 I(x,y)<c¢,,
I(x,0)-c,. ; (2.19)
Hi(x, ) = _ : ¢y <I(x,y)<¢
i i-1
F 3
I,
L1x -1 L1x' ci+1 CH—2

log,; luminance

Fig. 2.18 Illustration of the membership function ,, which defines the membership of the

luminance values in the ith framework
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i+l _I(X,y)

C
u(x,y)= cn2I(x,y)2¢

(2.20)

i+l i

w,(x,y)=0 I(x,y)2c;,

The c¢; values are the centroids estimated by the K-means clustering algorithm and /(x,y) stands
for the luminance value in the log10 space of the pixel at position [x, y].

Step 3. Besides to develop as much details of the images as possible, we also want to keep the
“character” of the image. This means that during the determination of the output intensity of the
pixel, we don’t simply take into account the membership values showing the measure of
belonging to the different frameworks. We also apply a so-called articulation factor [26]
associated to each framework and modify the membership values by these articulation factors in
order to ensure that the “big” frameworks (i.e. having wide intensity ranges) will have a more
characteristic influence on the output intensity than the “small” frameworks, i.e., frameworks
with low variance have less influence on the global lightness. Thus, as the next step we have to
determine an articulation factor for each framework independently. Frameworks with wider
intensity range will have a greater weighting factor in the determination of the final luminance
value of the output pixel. A framework whose dynamic range is higher than one order of
magnitude has a maximum articulation and as the dynamic range goes down to zero, the
articulation reaches the minimum:

7(max1,—min1,)

F=l-¢ > . (2.21)

Here F; denotes the articulation factor of the ith framework, max /; and min /; correspond to the
maximum and minimum values of the intensity within the ith framework, respectively, and s
stands for a parameter by which the influence of F; on the final membership value can be set.
After the articulation factors have been estimated, we have to multiply these factors by the
corresponding  values to get the final membership value in the frameworks (see (2.21)).

#;(x, ) = 4, (x, Y)F,, (2.22)

where i=1..n, n is the number of frameworks.

2.4.5 Anchor based new algorithms

In the followings two new anchor based algorithm are introduced.
Method 2.5 ([S29], [S121], [S122]):

Step 1. Segmentation of the image into frameworks according to Method 2.4.

Step 2. Anchor estimation: The anchors within each framework are estimated separately based
on the so-called log-average luminance of an image.

The log-average luminance is calculated by finding the geometric mean of the luminance values
of all pixels [27]. The log-average luminance can usefully be used as the approximation of the
anchor of a concrete framework in a scene. This quantity is computed by

I = Niexp( Zlog(5 + I(x,y))j , (2.23)

i x.yefim,

where /(x,y) stands for the luminance of pixel [x,y], &V; is the total number of pixels in the image
and J is a small value to avoid singularity occurring if black pixels are present in the image.
frm; denotes the ith framework.
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I, is then used to scale the luminance 7 to the middle grey zone. For this we define a scaling
factor for each framework, as follows:

L =

1

: (2.24)

~i|8

where I, is the estimated anchor for the ith framework and a; is the key-value to indicate

whether the ith framework is subjectively light (“high key”) or dark (“low key”). The standard
value is 0.18 for normal-key frameworks, but the user can set a; to 0.09 and 0.045 or to 0.36,
0.72 or 1.0 if the scene makes it necessary.

Step 3. Merging the frameworks. The global lightness of the pixels is computed by merging the
frameworks using the following fuzzy rulebase:

If (] (x ,y) ,fW 1) Then LG:L 1
If {(xy),fwy) Then  Lg=L,
If ({(xy),fws) Then  Lg=Ls;

If (U(xy).fw,) Then Lg=L,

where (/(x,y), fw;) denotes that the luminance /(x,y) is the member of the ith framework (fw;)
with nonzero membership value. i=1..n, n stands for the number of frameworks. L; represents the
estimated anchor corresponding to the ith framework while L¢ stands for the global lightness,
which is used for shifting the original luminance values to achieve a displayable range of
luminance. This value is got after evaluation of the above defined fuzzy rulebase, i.e. as the
weighted sum of the local lightness values, where the membership values serve as weighting
factors.

Step 4. Finally, a simple global operator is applied to obtain the display luminance:

_ Iy, (2.25)
¢ 1+I(x,y)LG

The other anchor based algorithm presented here keeps the segmentation technique described in
Subsection 2.4.4 and the fuzzy merging algorithm introduced in Method 2.6 (Step 3). On the
other hand, a new anchor estimation algorithm is suggested and a new operator for the
determination of the display luminance of the output pixels:

Method 2.6 ([S31], [S126]):

Step 1. Segmentation of the image into frameworks according to Method 2.4.

Step 2. Anchor estimation: The anchors within each framework are estimated separately based on
the so-called highest luminance rule. This means that we need to find the luminance value that
would be perceived as white. Although, we apply the highest luminance rule, we cannot directly
use the highest luminance in the framework as an anchor. Seemingly, there is a relation between
what is locally perceived as white and the relative magnitude of its area. If the highest luminance
covers a large area it becomes a stable anchor. On the other hand, if the highest luminance is
largely surrounded by darker pixels, the light pixels have a tendency to appear white (i.e. lighter
than in reality). This is called self-luminance. The opposite is also true, i.e. if the lowest
luminance is largely surrounded by light pixels, the (small region of) dark pixels have a
tendency to appear black (i.e. darker than in reality). We can decrease the effect (the highest
luminance to appear as self-luminous). When estimating the local anchor it is advised to remove
a certain amount, e.g. 5% of all pixels in the framework’s area that have the highest luminance
and then take the highest luminance of the rest of the pixels as the anchor (the 5% is an
experimental factor) [26].
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Step 3. Merging the frameworks, as is described in Method 2.5, except that the new operator
applied in Step 4 gives a different interpretation to the determined lightness values:

If (I(xy).fw;) Then Ly~=L,,
If (I(xy),fwy) Then  Ly~=L,,
If (I (X ,y) ,fW3) Then L M:L 3

If ((xy),fw,) Then Ly=L,

where (/(x,y),fwi) denotes that the luminance /(x,y) is the member of the ith framework (fwi)
with nonzero membership value, i=1..n, n stands for the number of frameworks. L; represents the
estimated anchor corresponding to the ith framework while L) stands for the lightness
modification value, which is used for shifting the original luminance values to achieve a
displayable range of luminance. This value is obtained after evaluation of the above defined
fuzzy rulebase, i.e. as the weighted sum of the local lightness values, where the membership
values serve as weighting factors. Finally,

Step 4. Determination of the display luminance of the output pixels: The lightness values of the
output image /., (x,)) are obtained according to

L, () =1(x,y) =L, (2.26)

2.4.6 A new Tone mapping function based algorithm

The method presented in this section solves the task of mapping the high dynamic range of
luminance values to a displayable one by maintaining the complexity so low, that real time
processing can be achieved, as well.

Method 2.8 ([S31], [S126]):

The main idea lies on defining a simple mapping function, which maps the wide range of
luminance values to a displayable one.

Besides it, the simple and easily evaluable mapping function (having low complexity) can be
combined with a nonlinear scaling of the vertical axis (the axis of displayable luminance values),
as well thus extending the mapping possibilities. The nonlinear vertical axis on one hand enables
to keep the image data, which should not be modified, invariable while on the other hand the
high or less illuminated areas can be corrected without having any influence on the areas
containing correct image data. Furthermore, the nonlinear mapping function makes possible to
compress regions where unimportant or sparse information is stored thus offering a way to keep
wider parts of the displayable or viewable domain for the important (dense) regions. The
importance of the regions can be measured easily and automatically by the magnitude of
“strong” intensity changes (e.g. density of the edges) within the region which is characteristic
for the density of the represented amount of (seen or hided) information in this region (see
Section 2.5). The displayable luminance region can be allocated proportional to this measure, i.e.
if we have an important (dense) high dynamic region, we can modify the originally
corresponding region (assigned according to the log function) proportional to the characteristic
information dense measure. The mapping will keep the relativity of the luminance, i.e. lighter
regions will remain lighter while darker regions darker. Fig. 2.19 illustrates a possible mapping
function and a simple nonlinear vertical axis of the displayable luminance values. The
nonlinearity of the vertical axis is influenced by a set of linear functions. By changing the linear
functions the nonlinear characteristics of the vertical axis can also be modified.

The mapping function in Fig. 2.19 has the form of:
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Fig. 2.19 Example of the most frequently used logarithmic mapping function (left) and the
proposed new complex function: the logarithmic mapping combined with nonlinear (or
piecewise linear) vertical axis (bottom)

if 0<log(L,)<SW1 then L, =log(L, )/ cose,
if SWi<log(L,)<(SW1+Sw2) then L, =log(L, )/ cos ,
if (SW1+Sw2)<log(L,)<(SW1+SW2+SW3) then L, =log(L, )/ cosa,

SW1l/cosa, + SW2/cosa, + SW3/cosa, =L, .. (2.27)

where L,, stands for a wide range luminance value, SWi represents the width of the ith section
(logarithmic scale), L, denotes the displayable luminance value (luminance value in the resulted
output image, with upper limit Lgnax) and ¢, is the angle between the side of the ith section of

the axis and the original vertical axis.

2.4.7 Illustrative example

In the followings, a simple example, an image taken of a satellite, is presented for illustrating the
effectiveness of the proposed new methods. For simplicity, we process grayscale images where
the displayable range is between 0 and 255. For more examples and details, see [S29] and [S31].

Fig. 2.20 Image of a satellite
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Fig. 2.21 Processed image using Fig. 2.22 Processed image using
Method 2.6 Method 2.7

\ 4

Fig. 2.23 Processed image using logarithmic Fig. 2.24 Processed image using Method 2.8
mapping function with linear vertical axis

In Fig. 2.20 the original image can be seen where a part of the scene is highly illuminated and
the details can badly be recognized. Fig. 2.21 shows the output after using the fuzzy anchor
based tone reproduction algorithm presented in Method 2.5, while in Fig. 2.22 the result after
applying Method 2.6 can be followed. Fig. 2.23 illustrates the processed image when applying a
simple logarithmic mapping function with linear vertical axis. Finally, in Fig. 2.24, the
processed image is got by the complex tone mapping function based algorithm (logarithmic
mapping and vertical axis) described in Method 2.7.

2.5 Multiple exposure time HDR image synthetization

In many of the image processing tasks, like object recognition and categorization, the color
information may have a primary role. In case of complex searching and image understanding
tasks, the application of gray scale images is usually not effective enough. The primary aim is to
keep and/or enhance the color information, as well because it is useful for categorizing the
detected object(s) more precisely, thus the color information may significantly improve the
reliability of the decisions.
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In this section a new tone reproduction algorithm is introduced which may help in developing
hardly or non-viewable features and content of color images. The method is based on the
synthetization of multiple exposure images, from which the dense part, i.e. regions having the
maximum level of detail are included in the output image. The Red, Green, and Blue color
components of the pixels are handled separately and in the output, the corresponding (modified)
color components are blended. As a result, a high quality color HDR image is obtained, which
contains both all of the detail and the color information. Using HDR color images, the
performance of information enhancement, object and pattern recognition, scene reconstruction,
etc. algorithms can significantly be improved.

The section is organized as follows: In 2.5.1 the basic concept of the proposed new gradient
based multiple exposure time synthesization algorithm is presented. Section 2.5.2 describes how
we can measure the level of detail in an image region. Section 2.5.3. is devoted to image
synthesization.

2.5.1 Introduction

When the dynamic range of a scene is high, taking just one photo by using a normal camera is
not enough for producing a high quality image containing all the information. In such cases,
several pictures are needed to capture all the scene details. These images should be merged
together in such a way, that all the involved information is preserved.

If the scene contains regions with high luminance values, then it is necessary to take a picture
with low exposure time for the visualization of the details in the highly illuminated region. On
the other hand, if the scene contains very dark areas, then the exposure time should be possibly
much higher. Approaching from the opposite site, if we have images with different exposures
we have to decide somehow which exposure contains the maximum level of information in case
of a certain region.

2.5.2 Measuring the Level of the Color Detail in an Image Region

There are existing methods, which use statistical elements for measuring the amount of
information in images/image regions. Others apply the histogram of the luminance values of the
processed region. We propose a new measurement method: to measure the level of the details in
a region based on the sum of gradient magnitudes of luminance in that region. The higher sum
of the gradient values is in a region corresponds to higher amount of details. This quantity can
be computed easily by handling and measuring the RGB components of the region separately
and at the end by summing up the component results. The complexity of this approach is
significantly lower than that of the other ones, and as we demonstrate below, it provides good
results.

Theorem 2.1: The level of detail in an image/image region can be measured by summing up the
intensity changes of the RGB components.

Proof:

The amount of information in an image is strongly related to the number and complexity of the
objects in the image. The boundary edges of the objects carry the primary information about the
object’s shape. Thus, image content information can be represented by the characteristic features,
like corners and edges in the image, i.e. the number of characteristic pixels is proportional to the
amount of information in the image.

Let IR(x,y), I (x,y), and & (x,y) be the R, G, and B intensity components of the pixel at location [x,
y] in the image to be processed. Let us consider the group of neighboring pixels which belong to
a 3x3 window centered on [x, y]. For calculating the gradients of the intensity functions in
horizontal A/, and vertical A/, directions at position [x, y], the intensity differences of the RGB
components between the neighboring pixels are considered. For simplicity, we show the
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expressions for only one (let’s say the R) component (the same has to be evaluated in case of the
other two, G and B components):

Alf z‘IR(x+1,y)—IR(x,yX
AL =1,y =1)-1*(x, )

For the further processing the maximum of the estimated gradient values should be chosen,
which solves as the input of the normalized linear mapping function P defined as follows:

P(v)=v/I (2.29)

(2.28)

max ?

here I.x stands for the maximum intensity value. (For 8 bit RGB scales it equals 255.)
Let R be a rectangular image region of width rw and height 74, with upper left corner at position
[xr, ¥:]. The R component level of the detail inside of region R is defined as

rw rh

MER) =YY P(max(ALF (x, +i,y, + j)L AL (x, +i,7, + j))) (2.30)

i=0 j=0
The sum of the three, R, G, and B component levels of detail gives the level of detail in region R
M,(R)=M5R)+Mg(R)+M(R) (2.31)

As higher is the calculated M value as detailed the analyzed region is.

2.5.3 HDR image synthesization

Consider that we have N color images of a static scene obtained at different exposures by using a
stationary camera. The aim of the image synthesization method introduced in this subsection is
to combine the images into a single one in such a way that all input information is included in
the output image without producing noise.

For extracting all of the details involved in a set of images of the same scene made with different
exposures, it is required to introduce a factor for characterizing the level of the detail in an image
region and then we will be able to choose the most information dense parts of the input images
to include in the output image. The measure proposed in the previous subsection (see Theorem
2.1) is a serious candidate for this purpose. In the followings a new gradient based multiple
exposure time synthesization algorithm is detailed which uses the above detail level
measurement method and solve the HDR image synthesization task.

Method 2.9 ([S32], [S], [S137]):

Step 1. Image segmentation: The first step of the processing is to divide the pictures into n rows
and m columns, which yields nxm rectangular image regions. The regions in the images are of
the same size with height 74 and width rw (see Fig. 2.25). (In Fig. 2.25 you can see a 3x3
division.) Let Ry denote the region in the ith row and jth column of the image with index 4.
Let rx;, ry; denote the horizontal and vertical coordinates of the center of the region in the ith
row and jth column. I%(x,y), I°%x.), I’«(x,y) stand for the RGB intensity values of the pixel at
position (x,y) in the image with index k, where k=1, ... , N and N stands for the number of
images to be processed, each of them taken with different exposures.

Step 2. Measuring the level of detail: For each image, the level of the detail has to be estimated
inside every region R (Method 2.8 described in Subsection 2.5.2). This information helps us to
select the most detailed region among the corresponding image segments (indexed by the same i
and j values) which is included into the output scene. This step is repeated for each image
segment, i.e. fori=1..n,j=1...m.

72



w
Exposure k

/ ) \ Exposure 2

/ ) \ Exposure 1

Fig. 2.25 Image regions after the segmentation

Let D denote the matrix of regions with the highest level of detail. Let dj; be the element in the
ith row and jth column of D, which stands for the index of the image, which has the most
detailed region in the ith row and jth column, i.e.

MR, )> MR ) k=10l =11+ 1, N5l = d,. (2.32)

Step 3. Merging the most informative segments: The next step is to merge the most detailed
(Rj7) R, G, and B regions together, where /=d;; i=1..n, and j=1..m. Merging the selected regions
together results in three images (a red, a green, and a blue) which contain every detail involved
in the N input images.

Step 4. Smoothing:_Unfortunately, the resulted images usually contain sharp transitions along
the borders of the regions. These sharp transitions should be eliminated. A Gaussian blending
function having the form of
,[(x‘”‘x/ )2+(Y"yu' )EJ
2 20_2
e

G,(x,y)= _[M Mj

2 2
20 3

(2.33)

ze 20
p=1 g=1

can be applied advantageously, for this purpose. Here i and j stand for the row and column
indices of the region over which the Gaussian hump Gy(x,y) is centered (see Fig. 2.26), m
denotes the total number of columns and # the total number of rows in the input images. o, and
o, stand for the standard deviation of the 2D Gaussian function. The values rx,, and 7y,,
represent the coordinates of the center of the region in the pth column and gth row, 1<r<n,
1<s<m.

Let U be a function defined as

Ulx.y) = {1 (x,y)eR, ‘ ‘rxm - rxl.j‘ A ‘ryrs - ryl.j‘ <¢ RN

0 else

Function U(x,y) is used for cutting the Gaussian function, i.e. for eliminating the influence of
those segments, who’s center points fall outside a predefined & environment of the actually
processed pixel.

Combining the Gaussian smoothing function Gj(x,y) and the cutting function U(x,y), the output
image can be evaluated according to
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Fig. 2.26 Illustration of the Gaussian humps over the maximum level of detail regions used in
the blending of the three (Red, Green, and Blue) output component images

The output color and intensity can be influenced by changing the size of the regions and the
standard deviations of the Gaussian functions. E.g., as smaller is the standard deviation of the
Gaussian function as higher influence the regions with low detail level onto the result have.

In Fig. 2.26 in case of exposure 1 the region in the 2nd row and 2nd column has the maximum
level of detail compared to the other images, in case of exposure 2 the region in the 2nd row and
Ist column while in case of exposure £ the region in the 3rd row and 3rd column is the most
detailed. The Gaussian functions are centered at (rx;;, 7y;;) of the maximum level regions.

For increasing the speed of the processing, during the merging we can formulate groups of the
adjacent regions originally belonging to the same exposure time image. Then for blending, a
single Gaussian smoothing function can be applied over each of the groups, with center point
falling into the center of gravity of the group. The cutting function U can also be defined in such
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a way that the values of the blending function exceed zero over the whole image domain.

2.5.4 Illustrative example

The effectiveness of the proposed algorithm is illustrated by an example. The photos of the
example are taken by Lou Haskell [28]. As input, three different exposure time color images are
used. The width and height of the regions are chosen to 10 x 10 pixels. Deviations o; and o
equal to 60. For increasing the speed of the processing, during the merging we formulated
groups of the adjacent regions originally belonging to the same exposure time image. A single
Gaussian smoothing function is applied over each of the groups for the blending, with center
point falling into the center of gravity of the group. The cutting function U is defined in such a
way that the values of the blending function exceed zero over the whole image domain.

Photo: Low Haskell

Fig. 2.27 Images of a scene taken by different exposure times, photo: Lou Haskell [28]
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Fig. 2.29 Picture processed by the gradient based multiple exposure time synthesization
algorithm (Method 2.9)

In Fig. 2.27 three photos of the same scene can be seen taken by different exposure times. For
comparison, Fig. 2.28 presents a picture processed with easyHDR [28] while Fig. 2.29 shows the
result got by the proposed new method.
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PartIIl Automatic 3D reconstruction and its application in
vehicle system dynamics

3D model reconstruction plays a very important role in computer vision as well as in different
other engineering fields. The determination of the 3D model from multiple images is of key
importance. One of the primary difficulties in autonomous 3D reconstruction is the (automatic)
selection of “significant” points which carry information about the shape of the 3D bodies i.e.
which are characteristic from the model point of view. Another problem to be solved is the point
correspondence matching in different images. An automatic solution for finding the point
correspondences would open new possibilities for the automation of many methods, currently
done under manual assistance. The automation of 3D reconstruction may grease the skids to the
development of new intelligent systems. The results of such a procedure could advantageously
be applied among others in car-crash analysis, robot guiding, object recognition, supervision of
3D scenes, etc. In this chapter, besides describing an automatic 3D reconstruction method, we
focus on its possible application in the field of vehicle system dynamics where we use it for car-
crash analysis.

3.1 Introduction

Feature matching is a key element in many computer vision applications, for example in stereo
vision, motion tracking, and identification. The most significant problem in stereo vision is how
to find the corresponding points in two, (‘left’ and ‘right’) images, referred to as the
correspondence problem. In the field of computer vision several applications require to
reconstruct 3D objects from images taken form different camera positions. In recent time the
interest in 3D models has dramatically increased [1], [2]. The emphasis for most computer
vision algorithms is on automatic reconstruction of the scene with little or no user interaction
[3].

Stereo techniques can be distinguished by several attributes, e.g., whether they use area-based or
feature-based techniques (see explanation below), if they are applied to static or dynamic scenes,
if they use passive or active techniques, or if they produce sparse or dense depth maps.

The extremely long computational time needed to match stereo images is still the main obstacle
on the way to the practical application of stereo vision techniques. In applications such as
robotics, where the environment being modeled is continuously changing, these operations must
also be fast to allow a continuous update of the matching set, from which 3D information is
extracted [4]. The correspondence search in stereo images is commonly reduced to significant
features as computing time is still an important criterion in stereo vision.

There exist several stereo vision techniques, from which the most popular are the area-based and
the feature-based method. The first kind of the mentioned techniques finds corresponding points
based on the correlation between the corresponding areas in the left and right images [5]. First, a
point of interest is chosen in one of the images. A correlation measure is then applied to search
for a corresponding point with a matching neighborhood in the other image. Area-based
techniques have the disadvantage of being sensitive to photometric variations during the image
acquisition process and are sensitive to distortions, which are caused first of all by the changing
viewing position.
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Feature-based stereo techniques, on the other hand, match features in the left image to those in
the right image. Features are selected as the most prominent parts in the image, such as, for
example, edge points or edge segments, corner points etc. Feature-based techniques have the
advantage of being less sensitive to photometric variations and of being faster than the area-
based stereo method, because there are fewer candidates for matching corresponding points [6].
In this chapter a new approach is presented which combines the two techniques and, thus obtains
better results. Based on the method, the automatic 3D reconstruction from images becomes also
reality.

The alternative approach proposed in this chapter avoids most of the problems mentioned above.
The object which has to be modeled is recorded from different viewpoints by a camera. The
relative position and orientation of the camera and its calibration parameters are automatically
retrieved from image data. For the reconstruction we use characteristic features, like edges and
corner points of the objects. The complexity of the technique is kept low on one hand by
filtering out the points and edges carrying non-primary information (i.e. the so-called texture
edges and points) while on the other hand by applying recent methods of digital image
processing (see e.g. [7]-[10]) combined with intelligent and soft (e.g. fuzzy) techniques.

The introduced autonomous 3D reconstruction and its algorithms can be applied advantageously
at many fields of engineering. Here, we will show a possible application in vehicle system
dynamics: the usage in car-crash analysis.

The chapter is organized as follows: In Section 3.2 the new automatic point correspondence
matching method is detailed. Section 3.3 deals with the automation of the camera calibration
while the description of the new automatic 3D reconstruction technique can be found in Section
3.4. Section 3.5 presents CASY, the car-crash analysis system: an intelligent application of the
introduced algorithms.

3.2 Matching the corresponding feature points in stereo image pairs

Feature matching is commonly referred to as the correspondence problem. The problem is how
to automatically match corresponding features from two images, while at the same time not
assigning matches incorrectly. In the followings, an automatic point corresponding algorithm is
presented.

The common approach for corners is to take a small region of pixels around the detected corner
(referred to as a correlation window) and compare this with a similar region around each of the
candidate corners in the other image. Each comparison yields a score, a measure of similarity.
The match is assigned to the corner with the highest matching score. The most popular measure
of similarity is the cross-correlation. Most matching algorithms include constraints to
complement the similarity measure. These may take the form of constraints on which corners are
selected as candidate matches: a maximum disparity, or corners which agree with some known
relationship between the images (such as the epipolar geometry). Constraints such as uniqueness
or continuity may also be applied after candidate matches have been found.

Theorem 3.1. The complexity of point correspondence matching can be reduced based on the
combination of fuzzy techniques and epipolar constraints. It is sufficient to analyze as candidate
corresponding points in the other image only the points carrying the same type of primary
information (like corner and edge points) lying on the epipolar line in fuzzy sense ([S11], [S25]).

Proof:
Epipolar geometry [11] defines the connection between two images of a scene taken from

different camera positions. Consider a point M in the 3D space. Consider the case of two
perspective images of the 3D scene illustrated by Fig. 3.1. The 3D point M projects to point my
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in the left image and m; in the right one. Let C; and C; be the centers of projection of the left
and right cameras respectively.

: W
c, I, [ez
Image1 Image2

Fig. 3.1 Illustration of epipolar geometry

Points e; and e, are the so-called epipoles, and they are the intersections of the line [C;C;] with
the two image planes. The plane formed by the three points [Ci{MC.] is called epipolar plane.
The lines [m;e;]|=ly2 and [mye;]=ly; are called epipolar lines of m; and my, respectively. Point
m; is constrained to lie on the epipolar line 1, of point my. This is called epipolar constraint.
Epipolar line 1,1 is the intersection of the epipolar plane mentioned above with the second image
plane Image2. This means that image point m; can correspond to any 3D point on the line
[CiM] and that the projection of [C{M] in the second image Image2 is the line ly;. All epipolar
lines of the points in the first image pass through the epipole e, and form thus a pencil of planes
containing the baseline [C1C;]. The above definitions are symmetric, i.e. the point of m; must
lie on the epipolar line I, of point m,.

Let m; = (x, y, z)’ be the homogeneous coordinates of a point in the first image and e; = (1, v, w)
be the coordinates of the epipole of the second camera in the first image. The epipolar line
through my and e, is represented by the vector

1., =(a,b,c) =m, xe, (3.1)

The mapping m;—ly; is linear and can be represented by a 3x3 rank 2 matrix C:

a yW—zv 0 w -z
bl=lzu—xwl|=|-w 0 u |y 3.2)
c Xv—yu z —u 0 )\z

The mapping of epipolar line Iz from Imagel to the corresponding epipolar line 1y in Image?2
is a collineation defined on the 1D pencil of lines through e; in Imagel. Let 4 be one such
collineation: lp; = A4 lia.

Since A has cight degrees of freedom and we only have five constraints, it is not fully
determined. Nevertheless, the fundamental matrix F = AC is fully determined [12][13]. We get

I, =4Cm, = Fm, (3.3)
It is a fact that all epipolar lines in the second image pass through e, for all transferred I

el =0. (3.4)
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F defines a bilinear constraint between the coordinates of the corresponding image points. If m,
is the point in the second image corresponding to my, it must lie on the epipolar line L.

Ly = Fm, (3.5)
and hence

m,l =0. (3.6)
The epipolar constraint can therefore be written as

m; Fm, =0 (3.7)

For 3D reconstruction the edge and corner points are the most characteristic features because
they carry the primary information about the boundaries, i.e. the shape of the objects. Edges can
be decomposed to sections ending in corners, where the sections are either piecewise linear
pieces which can be represented by their endpoints or are curved. In the first case the section can
unambiguously be determined by its endpoints, i.e. the determination of the 3D coordinates of
the corner points are sufficient for the 3D reconstruction which need the point correspondence
matching of the corners. In the latter case, the common section of the curve and an epipolar line
defines a finite set of points. If the angle between two camera positions is relatively low then the
points keep their main character, i.e. to corner points in Imagel also corner points correspond in
Image?2 and edge points correspond to edge points.

This means that to determine the corresponding points to the characteristic corner or edge points
of an object in Imagel, we have to analyze only points which are corner or edge points lying in
fuzzy sense on the corresponding epipolar line (i.e. near the epipolar line) (see Fig. 3.2). Thus,
the number of candidate points is reduced significantly. This can be especially effective if before
starting with point correspondence matching, we apply the surface smoothing procedure
described in Section 2.3, which may cause a small “climbing” of the points.

3.2.1 Linear solution for the fundamental matrix

Each point match gives rise to one linear equation in the unknown entries of matrix F. The
coefficients of this equation can easily be written in terms of the known coordinates of m; and
m,. Specifically, the equation corresponding to a pair of points m; and m; will be

Epipolar line corresponding to point m1

X X
V|m1
7
Al
Y my Y / N The environment
y 2 of point m2

/
Image1 I / Image2

; ! ‘ Point of interest
The environment of point m1 Searching window (corner or edge point)

Fig. 3.2 Illustration of the point matching technique: in the left image a chosen corner is
illustrated, while in the right image the candidate corner points can be seen

xxfiy + Xy, + X+ X+ W + Vs X+ Y + fi,=0 (3.8)
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where the coordinates of my and m, are (x, y, 1) and (x',",1)’, respectively. Combining the
equations obtained for each match gives a linear system that can be written as Aw = 0, where w
is a vector containing the 9 coefficients of F (f;;) and each row of 4 is built of the coordinates my
and m; of a single match. Since F is defined only up to an overall scale factor, we can restrict
the solution for w to have norm 1. We usually have more than the minimum number (8) of
points, but these are perturbed by noise so we will look for a least squares solution:

min] 4u] (3.9)

[wf=1

2
As Héwﬂ = v_vréT Aw, we have to find the eigenvector associated with the smallest eigenvalue of

the 9x9 symmetric, positive semidefinite normal matrix 4’4. However, this formulation does not
enforce the rank constraint, so a second step must be added to the computation to project the
solution £ onto the rank 2 subspace. This can be done by taking the Singular Value
Decomposition (SVD) of matrix £ and setting the smallest singular value to zero. Basically,
SVD decomposes any real valued matrix F in the form of

F=0DR (3.10)

where D is diagonal and Q and R are orthogonal matrices. Setting the smallest diagonal element
of D to 0 and reconstituting gives the desired result.

3.2.2 New similarity measure for image regions

The images in which we have to find the corresponding feature points are taken from different
camera positions. If the angle of the camera positions is relatively small, we have greater chance
to match the mentioned feature points, because of the small deformation of image pixels
between two views. In this case the corresponding points can be found with high reliability in
each image. Feature point mentioned in this section can be either corners or edge points.
Matches are found by evaluating the similarity between image regions and selecting the match
of the pair of regions with the highest similarity (see Fig.3.2).

There are many similarity measure definitions known in the literature (see [14]). In this chapter,
we introduce a new measure of similarity which is based on the combination of cross-correlation
and a fuzzy measure:

Definition 3.1. Fuzzy cross-correlation similarity measure for image points ([S25], [S113],
[S116])

_ > F, (6, ), (3, 0 (%, 9)
O, o (6 0) D F, (6 ) (x, )

(3.5)

where /;, and Iy are the intensity functions of the input images (left and right image) and £,
stands for the fuzzy measure corresponding to the pixel with coordinates x,y. F, can be
calculated, as follows:

F,(x,y) = MIN{1,(x), p15(¥)} , (3.6)

14 and pp are the membership functions in universes X and Y representing the closeness of the
points in the environment to the analyzed corner point-candidate (see Fig. 3.3).
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Fig.3.3 Fuzzy membership functions u4 and up of closeness used in (3.5) and (3.6)

3.2.3 Automatic image point matching

Based on the results of Subsections 3.2.1 and 3.2.2, automatic image point matching can be
achieved according to Method 3.1 without any human intervention.

Method 3.1 ([S25], [S11], [S113], [S116]):

Step 1. Image preprocessing (noise filtering)

Step 2. Determination of the most characteristic image points (fuzzy corner detection, fuzzy
edge detection, primary edge extraction, see Part II)

Step 3. Determination of the corresponding epipolar line of the processed corner/edge point

Step 4. Search for the candidate points. We know that the corresponding point will lay (in fuzzy
sense) on the epipolar line and is also a corner/edge point (see Figure 3.2).

Step 5. Determination of the most probably corresponding point by the fuzzy similarity measure
given in Subsection 3.2.2. It is worth remarking that the new corner detection methods proposed
in 2.2.5 assign a new attribute, the fuzzy strength of being a corner, to the corner points. If the
angle between the two camera positions is small, then the points keep this attribute in the images.
Thus, the reliability of the matching can be improved by comparing this feature as well.

Step 6. The procedure has to be repeated for all characteristic corner points.

3.2.4 Experimental results

There are several known 3D reconstruction softwares in the market, however all of them need
manual assistance in the point correspondence matching step, i.e., the user has to give manually
the corresponding characteristic points in the images. On the contrary, the new method presented
in the previous sections is able to solve this task automatically, without any human intervention.
In the followings, one simple example is presented for illustrating the usability of the technique,
more result can be found in works [S11], [S25], [S113], [S116].

Fig.3.4 illustrates two images taken of a car with different camera positions. In each of them an
epipolar line corresponding to the pointed image pixel can be followed. In the right hand side
figure, epipolar line LA corresponds to image point A of the left hand side figure while epipolar
line LB corresponds to image point B. The corresponding image point of A is image point B and
inversely: the point which corresponds to point B is point A.

In Fig. 3.5 the matching procedure can be followed. Here, the position of the car is
approximately similar in both images, which results in that the search can be limited to a certain
area of the image (the bigger, yellow searching window around the point to be matched) and we
do not have to analyze all corner points on the corresponding epipolar line. After finding the
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candidate corner points falling into the searching window, the determined image regions around
the points (the smaller, red window) are compared by evaluating the similarities according to
Definition 3.1. The point with the most similar region is chosen as corresponding point.

Fig. 3.5 Illustration for the determination of the corresponding pixels (Method 3.1)
Here, since the position of the car is approximately similar in the images, the search can be
limited to a certain area of the image (the bigger, yellow searching window around the point to
be matched). The smaller, red window represents the image regions around the points where the
similarities are evaluated.

According to our experience, the reliability of the matching is over 98% in case of characteristic
points of crashed cars like in Figures 3.4 and 3.5. Problematic cases cover situations where the
scene is composed of identical parts, which are located “parallel” to the epipolar line. Even in
this case, by matching another point from the neighborhood (which epipolar line will not be
“parallel” to the locations) and taking into account a possible distance interval of the points, the
false matching can be neglected and the reliability can be increased to theoretically 100 %.

Fig. 3.6 illustrates several samples and a test sample which is compared to the others. Fig 3.7
shows the similarity measures calculated using the new fuzzy based technique (solid line) and
the method without fuzzy reasoning (dashed line). Higher levels of similarity correspond to
smaller calculated similarity measure values (see e.g. samples 1 and 5). The scene of sample 5 is
very similar to that of the test sample but the illumination is quite different. Although, the
significant differences appear in the farther environment of the image point to be matched which
is taken into consideration through the fuzzy weighting by the new method. As a result, the
fuzzy based method finds in sample 5 higher similarity than the other technique.
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Test sample sample 1 sample 2
Lia 9 w
sample 3 sample 4 sample 5

Fig. 3.6 Illustration for the application of the new similarity measure. The five samples are
compared to the test sample using the fuzzy based similarity measure (Definion 3.1)

Sirmilarity meagure

L L L L L L L
1 2 &) 4 5}
Sarmples from the list above

Fig.3.7 The corners of the graphs represent the samples which are compared to the test sample
illustrated in Fig. 3.6. The solid line illustrates the results using the fuzzy based similarity
measure, while the dashed line shows the results using the same similarity measure without
fuzzy reasoning

3.3 Camera Calibration by Estimation of the Perspective Projection Matrix

In the followings, we propose a novel, autonomous method for camera calibration.

Method 3.2: Automatic calibration of uncalibrated cameras ([S25], [S11], [S113], [S116]):
Proof of the correct operation of the algorithm:

There exists a collineation, which maps the projective space to the camera’s retinal plane: 3D to
2D. Then the coordinates of a 3D point M = [My, My, Mz]" (determined in an Euclidean world
coordinate system) and the retinal image coordinates m = [m,, m,]" (see Fig. 3.8) are related by
the following equation:

MX
mW a b c d

MY
mW|=\e f g h u 3.7
74 i j ko1 1Z

where W is a scale factor, m = [m,, m,, l]T and M = [My, My, Mz, 1]T are the homogeneous
coordinates of points m and M, and P is a 3 X 4 matrix representing the collineation 3D to 2D.
One parameter of P can be fixed (/ = 1). P is called the perspective projection matrix. Values a,
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b c d e f g h i j, k are the elements of the projection matrix P. The optical axis passes
through the center of projection (camera) C and is orthogonal to the retinal plane. The focal
length f; of the camera is also shown, which is the distance between the center of projection and
the retinal plane. If only the perspective projection matrix P is available, it is possible to recover
the coordinates of the optical center or camera [12]. It is clear that

Optical Axis

Fig. 3.8 Perspective projection — illustration of points M=[X,Y,Z] and its projection m=[x,y] in
the retinal plane R.

W=iM,+ jM,+kM, +1 (3.8)

From (3.7) we can compute the coordinates of point m (m,, m,), as follows:

m = aM , +bM, +cM , +d

3.9
. W (3.9)
my:eMX+W;V+gMZ+h (3.10)

Ma+Mb+M,c+d+0e+0f+0g+0h-M mi-M,mj—M,mk=m_  (3.11)
0a+0b+0c+0d+Mye+M,f+M.g+h—Mmi-Mmj—Mmk=m, (3.12)

All together we have eleven unknowns, the elements of the projection matrix that means that we
need six points to determine the projection matrix. After substitutions and equivalent
transformations we get the following equations and matrices:

Aq=b (3.13)
where matrix 4 and vectors g and b are described thereinafter (see (3.16), (3.18), and (3.19)).

A" 4g=4"b (3.14)

From (3.13) the projection matrix can be obtained:
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g=(4"4)"4"b (3.15)

My M, M, 1 0 0 0 o -m M, -mM, -mM,

— mlyMlX — mlyMlY — mlyMlZ

I
Il
(e
(e}
(e}
(e
<
-
X
=
<
N

v M, 1 0 0 0 o -m M, -m M, -m M,k

nx nx

0 0 o oM, M, M, 1 -m M, -m M, -mM,

ny ny

(3.16)

The first two lines of matrix 4 correspond to points M; and m,, the second two lines correspond
to points M, and m;, etc. With the help of these points we can compute the elements of the
projection matrix P

a b ¢ d
P=|le f g h (3.17)
i j k1
Vector g is composed of the elements of projection matrix P
g=[a b cde f g hij kl. (3.18)
The elements of vector b are the coordinates of points m;, where i=1...n
b= [mu m, my om,, .o.o.om, om | . (3.19)

From the following deduction follows that we need six known points to determine the projection
matrix. It can be solved if we place a known 3D object with minimum six easily localizable
points (not located in one plane) to the camera’s field of vision and fix the origin of the above
coordinate system to one of the base corners of the object. Then, the automatic calibration can be
performed. This object can be e.g. a cube-shaped frame with known edge-length where the
corners of the cube can easily be determined.

3.4 3D reconstruction of objects starting of 2D photos of the scene

3.4.1 3D reconstruction
After solving automatic point correspondence matching and camera calibration, automatic 3D
reconstruction simplifies to the following algorithm:

Method 3.3 ([S10], [S30], [S39], [S127], [S130], [S132]):

Stepl. Preprocessing (noise elimination edge detection, primary edge extraction, see Part II)
Step 2. Determination of the 3D coordinates of the extracted characteristic corner/edge points.

This step means the determination of the corner and edge correspondences, which is followed by
the camera calibration (determination of the Perspective Projection Matrix). In the knowledge of
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the 3D coordinates and the correspondences of the significant points the spatial model of the car
body can easily be built.

Step 3. Building the 3 model.

3.4.2 Experimental results

In the followings a simple example is shown for the 3D reconstruction procedure. For more
examples and details see [S10], [S30], [S127], [S130], [S132].

Fig. 3.9 shows an unknown object to be modeled in 3D. The cube-shaped frame (with edge-
length=20 cm) for the automatic calibration is also included.

Fig. 3.9 An unknown object and the cube-shaped frame (with edge-length=20 cm) for the
automatic calibration

Fig. 3.10 Two images of the object taken from different camera positions

In Fig. 3.10 two pictures taken from different camera positions can be followed. Here, we are
after the camera calibration step, as the coordinates of the calibration object have already been
determined. Fig. 3.11 presents the reconstructed 3D model of the unknown object.
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Fig. 3.11 The reconstructed 3D model of the object

3.5 The intelligent car-crash analysis system

3.5.1 Introduction

Crash and catastrophe analysis has been a rather seldom discussed field of traditional
engineering in the past. In recent time, both the research and theoretical analyses have become
the part of the everyday planning work (see e.g. [15]). The most interesting point in crash
analysis is that even though the crash situations are random probability variables, the
deterministic view plays an important role in them. The stochastic view, statistical analysis, and
frequency testing all concern past accidents. Crash situations, which occur the most frequently
(e.g. the characteristic features of the crash partner, the direction of the impact, the before-crash
speed, etc.) are chosen from these statistics and are used as initial parameters of crash tests.
These tests are quite expensive, thus only some hundred tests per factory are realized annually,
which is not a sufficient amount for accident safety. For the construction of optimal car-body
structures, more crash-tests were needed. Therefore, real-life tests are supplemented by
computer-based simulations which increase the number of analyzed cases to 1-2 thousands. The
computer-based simulations — like the tests — are limited to precisely defined deterministic cases.
The statistics are used for the strategy planning of the analysis. The above mentioned example
clearly shows that the stochastic view doesn’t exclude the deterministic methods [16].

Crash analysis is also very helpful for experts of road vehicle accidents, since their work
requires simulations and data, which are as close to the reality as possible. By developing the
applied methods and algorithms we can make the simulations more precise and thus contribute
towards the determination of the factors causing the accident.

The results of the analysis of crashed cars, among which the energy absorbed by the deformed
car body is one of the most important, are of significance at other fields, as well. They carry
information about the deformation process itself, as well, having a direct effect on the safety of
the persons sitting in the car. Thus, through the analysis of traffic accidents and car crash tests
we can obtain information concerning the vehicle which can be of help in modifying the
structure/parameters to improve its future safety. There is an ever-increasing need for more
correct techniques, which need less computational time and can more widely be used. Thus, new
modeling and calculating methods are highly welcome in deformation analysis.

The techniques of deformation energy estimation used until now can be classified into two main
groups: The first one applies the method of finite elements [17]. This procedure is accurate
enough and is suitable for simulating the deformation process, but this kind of simulation
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requires very detailed knowledge about the parameters of the car-body and its energy absorbing
properties, which in most of the cases are not available. Furthermore, if we want to get enough
accurate results, its complexity can be very high.

The other group covers the so called energy grid based methods, which start from known crash
test data and from the shape of the deformation, or from the maximal car-body deformation
[18][19]. The distribution of the energy, which can be absorbed by the cells is considered just in
2D and the shape of the deformation is described by a 2D curve. This curve is the border of the
deformation visible from the top view of the car-body. Of course, there are a lot of cases, when
the shape of the deformation can not be described by 2D curves. Furthermore, in many of the
cases considering the energy distribution in 2D is not enough precise, because the absorbing
properties of the car-body change along the vertical axis as well, which is not considered by
these methods.

Starting from these reasons, in this section a new energy estimation method is presented, which
avoids the mentioned limitations of the standard methods. First, the energy distribution is
considered in 3D. Secondly, for describing the shape of the deformation, spline surfaces are used,
with the help of which complex deformation surfaces can be modeled easily. Furthermore, for
decreasing the computational cost and time, soft computing techniques are used, which also
enable to achieve more accurate results. Last, the deformation surface is obtained from the
digital photos of the car body by 3D reconstruction.

We will show how we can construct a system capable to automatically build the 3D model of a
crashed car as well as to determine the energy absorbed by the car-body deformation and the
speed of the crash.

Section 3.5 is organized as follows: In Subsection 3.5.2 the intelligent car crash analysis system
is discussed briefly. Subsection 3.5.3 shows how to evaluate the shape of the deformation and
based on it the deformation energy from digital pictures. Section 3.5.4 presents extraction of the
3D car body model from digital images. Section 3.5.5 discusses how to determine the direction
of impact and the absorbed energy. Section 3.5.6 shows an example to illustrate the
effectiveness of the presented methods

3.5.2 The concept of the car-crash analysis system ([S10], [S39], [S40])

The block structure of the proposed new car crash analysis system can be followed in Fig. 3.12.
It contains four well defined sub-blocks. The first (image processing) is responsible for the pre-
processing of the digital photos (noise elimination/filtering, edge detection, corner detection,
primary edge extraction) and for the 3D modeling (including the point correspondences and the
3D model building). The second part of the system (comparison of models) calculates the
volumetric change of the car body from the deformed and the original 3D models of the car.
Parallel with it, an expert system (Expert system) determines the direction of the impact. Based
on the direction of impact and volumetric change a hierarchical fuzzy-neural network system
determines the absorbed energy and the energy equivalent speed of the car.

The methods applied in the first block are summarized in Part I and the previous sections of
Part III. The volumetric change can be determined after fitting the deformed and undamaged
car-body models. Here we utilize the fact that if the car hits a wall then the backside of it will
remain undamaged and this part of the models can be fitted based on minimization of the mean
squares error of the deviation of the 3D shapes. The ideas and main steps of the other blocks are
detailed in the next sections.

3.5.3 Determination of the direction of impact, the absorbed energy and the equivalent
energy equivalent speed ([S10], [S30], [S39], [S40])

The spatial model of the deformed car-body serves as input to the “Expert system” block, as
well. This module applies an expert system and produces the direction of impact. For this we use
the so called “energy-centers” of the undamaged and deformed car bodies and the direction is
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estimated from the direction of movement of the energy-center of the car-body part attached in
the deformation.

A

3D
model (undamaged)

Digital photos R
taken from Comparswn
different — f del
camera positions 3D car-body ol models
model
3D car-body (deformed) Volumetric
model Change
(crashed) Energy
Equivalent
Impact Speed
- T ]
Absorbed
Energy

Fig. 3.12 Block-structure of the intelligent car crash analysis system

Definition 3.2 Energy-center of a body ([S30], [S127]):

3D bodies can be represented by elementary 3D cells of the body. These cells can be got by
cutting the body to elementary pieces along all 3 dimensions. If we deform the body, during the
deformation the different 3D cells of the body absorb a certain amount of energy. The energy-
center can be determined by weighting the cells by the corresponding energy values.

The above technique usually gives acceptable estimation for the direction of impact. Although,
problem may occur when the speed of the car is very low or when the angle of the direction of
impact and the angle, between the main axis of the car (which goes through the energy-center
and points “forward”) and the central axis of the attached surface, are very different. In these
latter cases a more sophisticated new method, surface fitting can be used for the determination of
the direction of impact.

Method 3.4 (these results have been developed in the frame of the GVOP -3.3.1-05/1.2005-
05-0160/3.0 project under the leadership of the author)

Surface fitting applied in the determination of direction of impact is based on the fitting of the
3D surfaces of the attached objects created by the deformation during the crash.

Step 1. The fitting is solved by minimizing the LMS error of the differences between the two
surfaces. The fitting is done in 3D. As a result, the positions of the two vehicles or objects can
be reconstructed with acceptable accuracy (as an illustration, see Fig. 3.13).

The collision can be decomposed into two parts. The major part of the deformation during
collision belongs to the type of plastic collision, resulting in lasting deformation in the body,
while a small part is elastic collision resulting in reversible deformation and thus error in the
energy estimation. According to our experiences, the error caused by the elastic deformation can
be tolerated, it usually is below 10%.

Step 2. The direction of impact is estimated as the angle between the longitudinal axes of the
two objects/vehicles attached in the impact.

Here we would like to remark that Method 3.4 can be applied both if the car hits a wall and if
two vehicles are crashed.
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Fig. 3.13 Illustration for the surface fitting

The absorbed energy and the equivalent energy equivalent speed (EES) is evaluated from the
volumetric difference and from the direction of impact by an intelligent hierarchical fuzzy-
neural network system (lower right hand side block in Fig. 3.12). Several classes of cases are
formulated according to the main types of the crash and the car and different sets of NNs are
used in the different classes. A concrete set of NN is suitable for modeling the problem of a
certain class and the elements of the set are smaller size NNs operating as local models over a
subspace of the state space of the class.

Before choosing the correct set of neural networks we have to pre-determine the category of the
analyzed vehicle and the main character of the crash: Cars are classified into car categories
according to their weights. Concerning the character of the crash we have formulated 12
different cases which follow the system used in car factories during the crash tests (frontal full
impact, frontal offset impact, side impact, corner impact, rear impact, ...), see also Fig. 3.14.

For increasing the reliability of the modeling and for decreasing the teaching phase of the neural
networks we have applied a fuzzy weighted locally approximated neural network system for the
neural network based modeling of the absorbed energy.
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Fig. 3.14 Hierarchical structure of the pre-classification in the EES determination

Definition 3.3 Fuzzy weighted locally approximated neural network system ([S10], [S30],
[S39], [S40], [S127]):

For the neural network based modeling of a system, the n-dimensional state space of the
problem is decomposed into subspace domains which can “easily” be modeled by neural
networks, i.e. does not contain many local minima which could “trap” the neural networks. Over
each domain an elementary neural network is developed and trained separately. Since the
transitions between the neighboring domains are unambiguous and to ensure the smooth
transition between the domains, a fuzzy system is used for the determination of the actual (fired)
local neural networks to be applied, with a rulebase as

Ri...in: If x1 is A;;; and ... and x,, 1S A, then use NNij, . in (3.20)

where R;; _;, stands for the il,...,in-th rule, x; (j=1...n;) denotes the j-th input variable, 4;; is the
i-th fuzzy set in input universe x; ,and NN, ;. represents the local neural network model of
domain iy,...,i,.

Applying the above NN system, for each class of EES determination a different set of neural
networks is developed. For the determination of the elementary neural networks (local models)
the surface is divided into domains. The elementary neural networks are trained over these
surface domains. The fuzzy system for the determination of the fired local neural networks
consists of rules as

Ri:  If the direction of impact is Di and the volumetric change is Vj then use NNij

For the training of the neural networks simulation and crash test data is used. The training data
include the volumetric change, the direction of the impact (input data) and the corresponding
deformation energy (output data). The surface is usually symmetric (to the longitudinal axes of
the vehicle) in which case it is enough to deal with its half part.

After the determination of the absorbed energy, the equivalent energy equivalent speed can be
determined according to e.g. [20].

3.5.4 Experimental results

A software package and an experimental analysis system (CASY) has been developed for the
intelligent analysis of crashed cars in the frame of the GVOP -3.3.1-05/1.2005-05-0160/3.0
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project under the leadership of the author. At current stage, the system is able to automatically
determine the 3D model, the absorbed energy, the direction of impact, and the energy equivalent
speed based on digital photos made of the crashed car from different camera positions, if the car
hits a (massive) wall. The methods and algorithms of Parts II and III are built in the system.

In the followings, an example is shown illustrating the operation of the system. The example is
taken from a car crash test, with the following parameters:

Vehicle / Mass of the vehicle: Audi 100/ 1325 kg

Real direction of impact: 0 Degree

Real EES of the vehicle: 55 km/h

Volumetric change (evaluated): 0.62 m3

Absorbed deformation energy (evaluated): 171960 Joule

The absorbed energy surface (Fig. 3.15) belonging to this car-class is symmetric (to the
longitudinal axes of the vehicle) so only half of the surface has to be dealt with. The used NNs
modeling this surface shown in Fig. 3.15 has been taught based on the simulation data of a
similar class, but Mercedes car. The approximation of domains D1 and D2 can be solved by
simple feed-forward backpropagation NNs with one hidden layer and three hidden neurons. The
NNs are used to determine the deformation’s energy and EES. During the teaching period of the
system, the determined EES values were compared to known test results and the parameters of
the expert system were modified to minimize the LMS error. The accuracy of the system is
influenced by the accuracy of the crash test data.
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Fig. 3.15 Relation among the direction of impact, volumetric change, and the deformation
energy based on simulation data (Mercedes 290)

The half of the surface is decomposed into two parts along the impact direction (Fig. 3.16). The
fuzzy sets for the weighting of the NNs are shown in Fig. 3.17. (Although, in this case this
simple decomposition results in good performance, here we would like to remark that in general
the mapping is more complex and it can be advantageous to define more domains along both
inputs to keep the complexity of the used NNs low.)

In Figs. 3.18 and 3.19 steps of the processing of two of the thirty used viewpoints can be
followed. The resulted 3D models of the damaged and undamaged car-bodies are shown by Figs.
3.20 and 3.21, respectively, while in Fig. 22 the corresponding energy cells can be followed.

The results of the analysis are summarized in Tablel. For comparison, the results got by the 2D
method are also attached. (The 2D method uses a 2D deformation curve for identifying the
deformation and a 2D energy grid. The error of this method is usually much higher than is in this
simple example, because in most of the cases the deformation shape can not accurately be
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identified in 2D. Furthermore, the 2D method is not able to model the differences in the energy
absorption properties along the vertical axis. Although, we included this example to demonstrate
that new method out performs the known 2D method even in these cases when the deformation
is “simple” and “visible” from above. The proposed new method is able to handle such cases as
well and uses 3D distribution of the energy, which also increases the accuracy of the results.)
For more details and examples see [S10], [S11], [S25], [S30].
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Fig. 3.16 Segmentation of the surface in Fig. 3.14
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Fig. 3.17 Membership functions defined on the universe of impact direction

Fig. 3.18 Noise filtered photo of a crashed Audi (viewpoint 1); edge map of the car;
corners detected in the image
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Fig. 3.19 Noise filtered photo of a crashed Audi (viewpoint 2); edge map of the car; corners
detected in the image

Fig. 3.20 3D model of the deformed part of the car body

Fig. 3.21 3D model of the undeformed car-body

95



Fig. 3.22 3D energy cells of the deformed and undeformed car-bodies

Table 3.1 Estimation of the direction of impact and energy equivalent speed of the crashed Audi

Direction of impact EES of the
[deg] vehicle [km/h]
Real Data 0 55
Proposed method 2 58
2D method 2 59,2
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Part IV  Generalization of Anytime Systems, Anytime Extension of
Fuzzy and Neural Network Based Models

Nowadays practical solutions of engineering problems involve model-integrated computing.
Model based approaches offer a very challenging way to integrate a priori knowledge into the
procedure. Due to their flexibility, robustness, and easy interpretability, the application of soft
computing, in particular fuzzy and neural network based models, may have an exceptional role at
many fields, especially in cases where the problem to be solved is highly nonlinear or when only
partial, uncertain and/or inaccurate data is available. Nevertheless, ever so advantageous their
usage can be, it is still limited by their exponentially increasing computational complexity.
Combining soft computing and anytime techniques is a possible way to overcome this difficulty,
because the anytime mode of operation is able to adaptively cope with the available, usually
imperfect or even missing information, the dynamically changing, possibly insufficient amount of
resources and reaction time.

In this part the applicability of (Higher Order) Singular Value Decomposition based anytime Soft
Computational models is analyzed in dynamically changing, complex, time-critical systems.
Practical questions of implementing and operating anytime systems are also analyzed.

4.1 Introduction

Nowadays, solving engineering problems model-integrated computing has become very popular.
This integration means that the available knowledge is represented in a proper form and acts as an
active co