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Introduction and objectives 

Nowadays, engineering science tackles problems of previously unseen spatial and temporal 
complexity. In solving engineering problems, the processing of the information is performed 
typically by model-based approaches which contain a representation of our knowledge about the 
nature and the actual circumstances of the problem in hand. These models are part of the (usually 
computer based) problem solving procedure. Up to recently, classical problem solving methods 
proved to be entirely sufficient in solving engineering problems, however in our days traditional 
information processing methods and equipment fail to handle the problems in a large number of 
cases. It became clear that new ideas are required for the specification, design, implementation, and 
operation of sophisticated systems.  
Fortunately however, parallel with the complexity explosion of the problems in focus, we can 
witness the appearance of increased computer facilities, and also new, fast and intelligent 
techniques. As a consequence of the new challenges, not only the new problems, arising from the 
increasing complexity have to be solved, but also new requirements, formulated for information 
processing, have to be fulfilled. The previously accepted and used (classical) methods only partially 
cope with these challenges.  
Due to the growth of the amount of available computational resources, more and more complex 
tasks can/are to be addressed by more and more sophisticated solutions. In many cases, processing 
has to be solved on-line, parallel with information acquisition or operation. Many processes should 
run with minimized human interaction or completely autonomously, because the human presence is 
impossible, uncomfortable, or it is against human nature. Furthermore, no matter how carefully the 
design of the operation/processing scheme is done, we can not avoid changes in the environment;  
concerning the goals of the processing, one also have to deal with time/resource insufficient 
situations caused by failures or alarms. It is an obvious requirement that the actual processing 
should be continued to ensure appropriate performance in such cases. 
What previously was called ‘processing’ became ‘preprocessing’, giving place to more advanced 
problems. Related to this, the aims of the newly developed preprocessing techniques have also 
changed. Besides the improvement of the performance of certain algorithms, a new requirement 
arose: the introduced methods have to give more support to the ‘main’ processing following them. 
In signal processing, image processing, and computer vision this trend means that the previous 
processing tasks like noise smoothing, feature extraction (e.g. edge and corner detection), and even 
pattern recognition became part of the preprocessing phase and processing covers fields like 3D 
modeling, medical diagnostics, or the automation of intelligent methods and systems (automatic 3D 
modeling, automatic analysis of systems/processes etc.).  
This work deals with the problems outlined above and tries to offer appropriate computational tools 
in modeling, data representation, and information processing with dedicated applications in the 
fields of measurement, diagnostics, signal and image processing, computer vision, and control.  
The special circumstances of online processing and the insufficient, unambiguous, or even lacking 
knowledge call for fast methods and techniques, which are flexible with respect to the available 
amount of resources, time, and information, i.e. which are able to tolerate uncertainty and changing 
circumstances. Thus, the focus of this work is on methods of this type. 
Part I addresses the topic of signal processing and data representation. New fast recursive 
transformed-domain transformations, filter and filter-bank implementations are presented as replies 
to the complexity challenges. Besides complexity reduction, and the decrease of processing delay, 
the introduction of soft computing (e.g. fuzzy and anytime) techniques offers flexible and robust 
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operational modes. The newly initiated concepts and techniques however require reconsideration of 
data and error representation. This question is also briefly addressed here and the usage of some 
new data and error models is analyzed. 
In Part II, new problems of image processing are studied. Different aspects of information 
enhancement, like corner detection, useful information extraction, and high dynamic range imaging 
are investigated. The proposed novel tools usually include improvements achieved by fuzzy 
techniques. Besides being very advantageous from the automation point of view, they may also 
give an efficient support to the increase of the reliability of further processing. 
Based on the results of the previous chapter, Part III presents new methods in computer vision 
together with the basic elements of a possible intelligent expert system in car-crash analysis. 
Autonomous camera calibration and 3D reconstruction are solved with the help of recent results of 
epipolar geometry and fuzzy techniques. The proposed analyzer system is able to autonomously 
determine the 3D model of a crashed car and estimate speed and direction of the crash currently in 
case of one car hitting a wall. 
Part IV introduces the generalized concept of anytime processing. Fuzzy and neural network based 
models are very advantageous if the processing has to be done under incomplete and imperfect 
circumstances, or if it is crucial to keep computational complexity low. Here, the usage of such 
models is investigated in anytime systems. With the help of (Higher Order) Singular Value 
Decomposition based complexity reduction, certain fuzzy and neural network models are extended 
to anytime use and new error bounds are determined for the non-exact models. In case of Product-
Sum-Gravity-Singleton fuzzy systems, a novel transformation opening the way for iterative 
evaluation is also derived. 
Part V deals with observer based fuzzy and neural network model inversion. Model inversion has a 
significant role in measurement, diagnostics, and control, however until recently, the inversion of 
fuzzy and neural network model could be solved only with strong limitations on the model. The 
presented new concept can be applied in more general circumstances and the condition of low 
complexity, global convergence can also be met.  
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Part I  New Methods in Digital Signal Processing and Data 
Representation  

Signal processing is involved in almost all kinds of engineering problems. When we measure, 
estimate, or qualify various parameters and signals during the monitoring, diagnostics, control, 
etc., procedures, we always execute some kind of signal processing task. The performance of 
measurement and signal processing has usually a direct effect on the performance of the whole 
system and vice versa, the requirements of the monitoring, diagnostics, or control raise demands 
in the measurement and signal processing scheme.  
The recent development of modern engineering technology, on one hand lead to new tools like 
model based approaches, computer based systems (CBS), embedded components, dependability, 
intelligent and soft computing based techniques offering new possibilities; while on the other 
hand new problems like complexity explosion, need for real-time processing (very often 
mission-critical services), changing circumstances, uncertain, inaccurate and insufficient 
information have to be faced. The current situation of engineering sciences is even more 
complex due to the fact that in very complex systems various modeling approaches, expressing 
different aspects of the problem, may be used together with a demand for well orchestrated 
integration. The price to be paid for integration is that the traditional metrological concepts, like 
accuracy and error have to be reconsidered and in many cases they are no more applicable in 
their usual approved sense. Furthermore, the representation method of the uncertainty and the 
error must be in harmony with both the modeling and information processing method. They also 
need to be uniform or at least “interpretable” by other representation forms. All these lead to the 
consideration of new, fast and flexible computational and modeling techniques in measurement 
and signal processing.  
This chapter deals with new methods in the fields of digital signal processing and data 
representation, which offer solution to some of the above outlined problems.  

1.1 Introduction 
In signal processing the model of a system in question serves as a basis to design processing 
methods and to implement them at the equipment level. In case of complex signal processing 
analytical models, it is not enough to obtain a well defined numerical optimal information 
processing. The complexity of the problem manifests itself not only in the (possibly huge) 
amount of tasks to be solved or as a hierarchy of subsystems and relations: often several 
modeling approaches are needed to grasp the essence of the modeled phenomenon. Analytical 
models rarely suffice. Numerical information is frequently missing or it is uncertain, making 
place for various qualitative or symbolic representation methods. 
The subject of Part I is a topics with increasing actuality. New methods of signal processing are 
introduced and their role in overcoming several aspects of the above problems is investigated. 
Because of the nature of the problems and because we usually need online processing to solve 
the tasks in hand, only fast algorithms of digital signal processing and new soft computing based 
methods are concerned. The idea of using fuzzy logic and neural networks combined with other 
tools like anytime algorithms comes from many other fields of research where similar problems 
have appeared. It appeared natural to explore and adopt the solutions.  



 4

In the fields of Artificial Intelligence (AI), Soft Computing (SC), and Imprecise Computations 
(IC), numerous methods have been developed, which address the problem of symbolic, i.e. non-
numerical information processing and a rational control of limited resources. They may offer a 
way in signal processing as well when classical methods fail to solve the problems [S46], [S48]. 
Besides the “basic” method of SC and IC, a major step was done by the introduction of anytime 
models and algorithms that offer an on-line control over resources and the trade-off between 
accuracy and complexity (i.e. the use of resources). 
The concepts and algorithms presented in this part are advantageous from complexity point of 
view however the reduction of complexity most often runs parallel with the decrease of accuracy 
that makes necessary in certain applications to change from one model to another according to 
the actual situation. The use of different models within one system initiates further difficulties. 
We can not forget that results (outputs) produced by different representation methods have to be 
comparable, convertible, interpretable by each other. This leads to a huge number of open 
questions not fully answered yet.  
The chapter is organized as follows: In Section 1.2 a new concept of multisine synthesis and 
analysis via Walsh-Hadamard transformation is presented. It is a low complexity, symmetrical, 
highly parallel structure-pair, also decreasing such disadvantageous effects like picket fence and 
leakage. In Section 1.3 the usage of fast sliding transforms is discussed in transform-domain 
adaptive filtering. The resulted reduction of the delay is also analyzed. Section 1.4 is devoted to 
a novel, low complexity implementation of Fourier transformation, resulting in anytime 
operational mode, which is able to produce good quality frequency and amplitude estimations of 
multisine signal components as early as the quarter of the signal block. In Section 1.4 a new 
overcomplete signal representation is proposed for representing non-stationary signals. Finally, 
in Section 1.5 new problems of data and uncertainty representation, arising from the non-
linearity of systems and from the use of non-conventional modeling methods, are investigated 
together with some possible solutions offered. 

1.2 Multisine synthesis and analysis via Walsh-Hadamard transformation  
In this section, we present a new multisine synthesizer and analyzer based on a special filter-
bank pair. The new tool can efficiently be utilized for solving system identification problems. 
The filter-banks are fast indirect implementations of the inverse discrete (IDFT) and discrete 
Fourier Transformation (DFT) algorithms providing low computational complexity and high 
accuracy. The proposed structures are based on the proper combination of polyphase filtering 
and the Walsh-Hadamard (WHT) Transformations. The inherent parallelism of these structures 
enables very high speed in practical implementations and the use of several parallel A/D, D/A 
converters. 

1.2.1 Introduction 

The classical solutions in digital signal processing offer very well established methods for the 
frequency-domain signal representation like the discrete Fourier Transformation (DFT) and its 
fast algorithm the fast Fourier transformation. [1], [2]. However, we have to face serious limits 
due to the contradictory requirements of magnitude and frequency resolution. To reduce these 
problems the application of multisine perturbation signals came into focus [3] recently. 
Another disadvantageous aspect of the widely used FFT techniques is that they are operated 
block-oriented, (i.e. the algorithm processes whole blocks of data). Thus, they do not directly 
support real-time signal processing, which also has become an important claim in this field. 
Using the classical recursive DFT methods [1] the real-time processing can be solved with a 
higher computational burden relative to the FFT. Later, the classical version based on the 
Lagrange structure was replaced by an observer structure [4], [5] however, computational 
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complexity remained the same. 
Recently a fast implementation of the recursive DFT has been developed [6] which combines the 
idea of polyphase filtering [7] and the FFT; it is based on the decomposition of a larger size 
single-input multiple-output (SIMO) DFT filter-bank into proper parallel combination of smaller 
ones. Its computational complexity is in direct correspondence with the FFT and besides, its 
polyphase nature provides additional advantages in parallelization. 
Using this structure, a fast adaptive Fourier analyzer [8] can be derived and by applying 
recursive building blocks within the structure a recursive DFT with fading memory can also be 
implemented [9]. These have real importance in system identification problems where periodic, 
multi-frequency perturbation signals are applied. 
In this Section, a dedicated novel structure pair is presented for the efficient solution of the 
above described problems. In Subsection 1.2.2 the application of synchronized signal synthesis 
and analysis is proposed while in section 1.2.3 the new fast recursive synthesis and analysis 
structure based on the Walsh-Hadamard Transformation will be detailed. Subsection 1.2.4 is 
devoted to the extension towards multiple parallel running A/D converters. 

1.2.2 Synchronized synthesis and analysis ([S6], [S7], [S34], [S35]) 

In multisine measurements the perturbation signal of the system to be identified is a multisine 
signal and the amplitudes and phases of the harmonic components of the response are to be 
measured. The accuracy of the identification depends on the accuracy of the determination of the 
input/output ratio of the components. If we synchronize the synthesis and analysis of the 
harmonic components then the systematic error of the DFT/FFT methods can be eliminated. The 
synchronization can be solved through the use of a joint pair of signal synthesizer and analyzer. 
Fig. 1.1 shows the block diagram of the multisine measuring procedure. 

N-1 N-1X

1

X 0
X

Y

Y
Y

1

0

Analyzer
Unknown

system

Evaluation

Control

Synthesizer

 

Fig. 1.1 Block diagram of the multisine measuring setup 
 

The synthesizer and analyzer units contain the signal conditioning circuits and the D/A and A/D 
converters, respectively. The synthesizer generates a multisine input signal for the system with 
components in given frequency positions and with maximized quasi-uniform amplitudes. This 
can be optimized through the appropriate setting of the phase positions [3].  The analyzer is the 
inverse of the synthesizer: its channels are “tuned” to the components of the multisine signal. 
The transfer function is determined by the ratio of the complex output/input values. This is 
evaluated by the common control unit. 

1.2.3 Synthesis and analysis via Walsh-Hadamard transformation ([S2], [S6], [S33]) 

The block diagram of the proposed synthesizer is given in Fig. 1.2. It is a multiple input single 
output (MISO) system which can generate arbitrary periodic waveforms. It operates like a 
parallel to serial converter, i.e. it has a nonzero parallel input in every N-th step and generates a 
sequence of N samples corresponding to the actual input. If this input is repeated in every N-th 
step the output will be a periodic waveform. The overall structure implements a complete 
weighted set of Walsh-Hadamard basis sequences in an efficient form with a complexity 
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corresponding to that of the fast algorithms.  It is important to note that the input signal is the 
Walsh-Hadamard representation of the sequence to be generated with an accuracy depending 
only on the accuracy of the weights since within the structure only additions and subtractions are 
to be performed. The output is obtained via a demultiplexer which can be applied to a D/A 
converter.  
As an example Fig. 1.3 shows a single sinusoid waveform generated using the above method. 
The input values of the Walsh-Hadamard synthesizer can be easily calculated as the Walsh-
Hadamard transform of the time-sequence to be generated. Let us denote the vector of this 
sequence by x=[x(0), x(1),...,x(n-1)]T , and the N*N transformation matrix by W. The N vectors 
to be applied in every N-th step at the input of the synthesizer are given by X=Wx. 
The block diagram of the analyzer structure is given in Fig. 1.4. It is in complete correspondence 
with the synthesizer and can be considered as a serial to parallel converter system maximally 
decimated at its output if necessary. The different channels calculate the Walsh-Hadamard 
coefficients corresponding to the last N input samples. The complexity remains the same as for 
the generation.  
If the output  of  the  synthesizer is  connected  directly to  the input of the  analyzer then after N 
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Fig. 1.2 Block diagram of the Walsh-Hadamard synthesizer for N=8 
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Fig. 1.3 Single sinusoid waveform generated using WHT-synthesizer: (a) desired signal; (b) 
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steps its output values will equal the Walsh-Hadamard transform components, i.e. the 
components of X. If there is a system to be identified in between, then we can characterize the 
unknown system by the corresponding channel inputs X and outputs Y of the synthesizer and the 
analyzer, respectively. The widely used frequency domain characterization of the system, 
however, requires some additional computations. On the input side the vector of the complex 
Fourier components XF can be calculated as 

XVXWFxFX F === −1     (1.1) 

where F stands for the N*N discrete Fourier Transformation (DFT) matrix, while at the output of 
the analyzer 
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Fig. 1.4 Block diagram of the Walsh-Hadamard analyzer for N=8 

YVYWFyFY F === −1 .    (1.2) 

The stationary behavior of the system to be identified can be characterized by the transfer values 
derived as the ratio of the corresponding components of YF and XF as the transients of the overall 
system die out. It is important to note that the results will be available at the end of a complete 
sequence of N samples, i.e. in every N-th step. 
Based on (1.1), the practical measurements start with the specification of the proper multisine 
signal. This is performed by setting the proper initial magnitude and phase via the components 
of XF (see [3]).  The next step is the calculation of the vector X=V-1XF, which is directly used in 
the signal generation (see Fig. 1.2).  Finally, the output of the analyzer (see Fig. 1.4) should be 
introduced into (1.2) to get the corresponding sine-wave parameters. The measurement setup 
described above is a finite impulse response FIR filter-bank which performs a sliding-window 
mode of operation and therefore its outputs characterize always the last block of N samples, i.e. 
each channel of the bank can be considered as a “moving-average” filter. If we consider the 
effect of the sliding window also for XF then we can extend the method to get a new 
measurement in every step. 
In practical measurements the presence of noise is unavoidable If we model the noise effects as 
an additive white noise input to the analyzer having variance σ2, then this variance will be 
reduced to σ2/N in every channel. Further improvement can be achieved if we introduce the 
fading memory effect described in [11] and [12]. The characterization of this effect can be given 
as 
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where the poles located at the positions determined by the N-th roots of 0 < a < 1 are responsible 
for further noise reduction. The effects of these poles can be illustrated with the corresponding 
magnitude characteristics (see Fig. 1.5 for different a values). The extension of the Walsh-
Hadamard transformer to such a fading memory version can be solved with the application of 
simple second-order recursive blocks. If the first stage of the structure in Fig. 1.4 consisting of 
N/2 2*2 Walsh-Hadamard transformers is realized using e.g. the second-order blocks of Fig. 1.6 
with 
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Fig. 1.5 Magnitude characteristics of the filter-banks with different a > 0 parameters: (a) a=0, 

(b) a=0.4, (c) a=0.6, and (d) a=0.8. 

then the overall structure will produce the modified performance described by (1.3).  The prize 
to be paid for this improvement in noise reduction is the increase of the measurement time, since 
the poles introduced will cause longer transients. As simple example Fig. 1.7 shows the 
simulated measurement results of a 5th-order Butterworth low-pass filter. After 10 complete 
periods of the multisine input the measurement results show very good coincidence with the 
calculated theoretical values. 
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Fig. 1.6 Second-order recursive filter block 
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Fig. 1.7 Simulation results of a 5th-order Butterworth low-pass filter: (-) theoretical results, (o) 
simulated values 

1.2.4 Multiple A/D converters within the fast polyphase transformed domain analyzer 
[S33] 

A more detailed block diagram of the complete measuring system shown in Fig. 1.1 is given in 
Fig. 1.8. This system can be considered as a highly parallel network analyzer, i.e., it is devoted 
to problems where perturbation signals are to be applied and the system to be measured can be 
considered as linear. The multisine synthesizer and the signal analyzer operate synchronously 
together with the D/A and A/D converters. If frequency transposition circuits are also applied 
then a synchronized “carrier-band” analysis, i.e., “zoom” analysis is also possible. Concerning 
errors within the system: if we neglect the quantization errors of the digital signal processing 
parts then only the side-effects of the D/A and A/D conversions and the frequency transpositions 
are to be considered. Fortunately, frequency mismatch problems can be completely avoided 
since frequency transpositions can share common frequency reference. On the other hand, the 
magnitude and phase errors of these circuits can be “measured” by the system itself, since the 
output of the signal generator can be directly analyzed and the calculated difference of the 
multisine signal parameters can directly serve for correction. If the D/A and A/D converters 
share common voltage reference then the system is capable to calibrate itself automatically 
relative to this reference. 
Nowadays the accuracy of measurement systems can be considerably improved by the direct 
utilization of signal processing techniques. The available DSP processors can provide also good 
speed performance. Speed and accuracy, however, are contradictory requirements in 
measurements. As far as A/D conversion is concerned flash converters can operate at very high 
speed,  but  their  resolution is not  acceptable.  Sigma-delta  A/D  converters  provide  excellent 
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Fig. 1.8 Detailed block diagram of the multisine measuring system 

resolution and accuracy, but at the prize of low conversion rate. For high resolution (>16 bits) 
measurements a possible alternative can be the application of parallel sigma-delta converters at 
the input of the polyphase DFT/WHT analyzer (see Fig 1.4) since its internal processing 
elements operate at a much lower rate. The delay caused by the converters can be easily 
compensated either in the phase of the generated signal or as a correction during self-calibration. 
If the signal processing part of the system would limit the speed of operation then the 
proposition in the previous section may help where signal generation and analysis is performed 
via the computationally extremely efficient Walsh-Hadamard transformation. 

1.3 Fast sliding transforms in transform-domain adaptive filtering 
Transform domain adaptive signal processing proved to be very successful in numerous 
applications especially where systems with long impulse responses are to be evaluated. The 
popularity of these methods is due to the efficiency of the fast signal transformation algorithms 
and that of the block oriented adaptation mechanisms. In this section the applicability of the fast 
sliding transformation algorithms is investigated for transform domain adaptive signal 
processing. It is shown that these sliding transformers may contribute to a better distribution of 
the computational load along time and therefore enable higher sampling rates. It is also shown 
that the execution time of the widely used Overlap-Save and Overlap-Add Algorithms can also 
be shortened. The prize to be paid for these improvements is the increase of the end-to-end delay 
which in certain configurations may cause some degradation of the tracking capabilities of the 
overall system. Fortunately, however, there are versions where this delay does not hurt the 
capabilities of the adaptation technique applied. 

1.3.1 Introduction 

In recent years, transform-domain adaptive filtering methods became very popular especially for 
those applications where filters with very long impulse responses are to be considered [13]. The 
basic idea is to apply the fast Fourier Transformation (FFT) for signal segments and to perform 
adaptation in the frequency domain controlled by the FFT of an appropriate error sequence. 
There are several algorithms based on this approach [13] and further improvements can be 
achieved ([14]). The formulation of the available methods follows two different concepts. The 
first one considers transformations as a “single” operation to be performed on data sequences 
(block-oriented approach), while the other emphasizes the role of multirate analyzer and 
synthesizer filter-banks. 
In this section, using some former results concerning fast sliding transformation algorithms ([6], 
[S33]) a link is developed which helps to identify the common elements of the two approaches. 
The fast sliding transformers form exact transformations, however, operate as polyphase filter-
banks. These features together may offer further advantages in real-time applications, especially 
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when standard DSP processors are considered for implementation. 
There are two major configurations for transform-domain adaptive filtering (see Fig. 1.9). First 
let us consider standard (not sliding) transformers. Here transformers perform a serial to parallel 
conversion while inverses convert to the opposite direction. Adaptation is controlled by the 
transformed input and error signals once for each input block, i.e. decimation is an inherent 
operation within these algorithms. At the same time, investigations related to the block-oriented 
approach rarely consider real-time aspects of signal processing. It is typically supposed that 
sampling frequency is relatively low compared to the computational power of the signal 
processors and therefore, if a continuous flow of signal blocks must be processed, the block-
period is enough to compute the transformations and the filter updating equations. Moreover, in 
the case of the widely used Overlap-Save and Overlap-Add methods (see e.g. [13] and 
Subsection 1.3.4) filter updating requires further transformations, therefore further 
computational power is needed. 

Adaptive
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Fig. 1.9 Frequency-domain adaptive filter configurations 

Filter-bank and consequently fast sliding transformation techniques do not offer extra savings in 
computations however they may provide a much better distribution of the computational load 
with time. This means that potentially they give better behavior when real-time requirements are 
to be met. This section present a new combined structure having advantageous computational 
complexity and load features. The section is organized as follows: Subsection 1.3.2 describes the 
basic idea of the fast sliding transforms while Section 1.3.3 is devoted to review the concepts of 
transform domain adaptive filtering. The new results of the section are introduced in 1.3.4 where 
the combined structure is characterized. 

1.3.2 Fast sliding transformations 

Recently a fast implementation of the recursive Discrete Fourier Transformation DFT has been 
proposed [6] which combines the idea of polyphase filtering and the Fast Fourier 
Transformation (FFT) algorithm. Figs. 1.10 and 1.11 show the analyzer and the synthesizer DFT 
filters, respectively. The operation can be easily understood if we observe that e.g. the analyzer 
at its input follows the decimation-in-time, while at its output the decimation-in-frequency 
principle. The computational complexity of these structures is in direct correspondence with that 
of the FFT and its parallel nature provides additional advantages in parallelization. 
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Fig. 1.10 Polyphase DFT analyzer for N=8 
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Fig. 1.11 Polyphase DFT synthesizer for N=8 

The analyzer bank can be operated as a sliding-window DFT or as a block-oriented transformer. 
The latter one means that the parallel outputs are maximally decimated as it is typical with serial 
to parallel converters. However, if overlapped data segments are to be transformed, the structure 
is well suited to support decimation by any integer number. The widely used Overlap-Save 
Method concatenates two blocks of size N to perform linear convolution and calculates 2N-point 
FFTs. A 2N-point sliding transformer can easily produce output in every N-th step. 
In certain applications it may be advantageous to produce signal components instead of the 
Fourier coefficients as it is dictated by the definition of the DFT. In this case the filter-bank is a 
set of band-path filters with center frequencies corresponding to the N-th roots of unity values. 
Such DFT filter-banks can easily be derived using the ideas valid for the DFT transformers. 
With this DFT filter-bank approach, transform-domain signal processing can have the following 
interpretation: the input signal to be processed first is decomposed by a filter-bank into 
components and the actual processing is performed on these components. The modified 
components enter into a N-input single output filter-bank (the so-called synthesizer bank) which 
produces the output sequence. 

1.3.3 Transform-domain adaptive filtering [S44] 

The concept of transform-domain adaptive filtering offers real advantages if adaptive FIR filters 
with very long impulse responses are to be handled. The first important aspect is the possible 
parallelization described above achievable using fast transformation algorithms. The second is 
the applicability of block adaptive filtering: the parallel channels enable decimation and 
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therefore a coefficient update only once in every N-th step. In the meantime, however, a much 
better gradient estimate can be derived. 
Fig. 1.9 shows two possible forms of frequency-domain adaptive filtering. In the first version 
adaptation is controlled by the time-domain difference of the filter output and the desired signal. 
The adaptive filter performs N multiplications using the N-dimensional weighting vector 
generated by the adaptive algorithm. From the viewpoint of this section, the adaptation 
mechanism can be of any kind controlled by an error signal, however, in the majority of the 
applications the least-mean-square (LMS) algorithm is preferred (see e.g. [13]) for its relative 
simplicity. Adaptation can be performed in every step however drastic reduction of the 
computations can be achieved only if the transformer outputs are maximally decimated. The 
techniques developed for this particular case are the so-called block adaptive filtering methods. 
[13] gives a very detailed analysis of the most important approaches. It is emphasized that the 
classical problem of linear versus circular convolution appears also in this context. This problem 
must be handled because in the majority of the applications a continuous data flow is to be 
processed and therefore the dependence of the neighboring blocks can not be neglected without 
consequences. The correct solution is either the Overlap-Save or the Overlap-Add Method. Both 
require calculations where two subsequent data blocks are to be concatenated and double-sized 
transformations are to be performed.  
If we consider the system of Fig. 1.9a from timing point of view, it is important to observe that 
at least two transformations must be calculated within the adaptation loop. If real-time 
requirements are also to be fulfilled, the time needed for these calculations may be a limiting 
factor. Moreover, if we investigate more thoroughly e.g. the Overlap-Save Method it turns out 
that the calculation of the proper gradient requires the calculation of two further transformations, 
i.e. there are altogether four transformations within the loop. This may cause considerable delay 
and performance degradation especially critical in tracking non-stationary signals.  
The adaptation of the transform-domain adaptive filtering scheme on Fig. 1.9b is controlled by 
an error vector calculated in the transform-domain. Due to this solution the transformer blocks 
are out of the adaptation loop, therefore the delay within the loop can be kept at a lower level. 
Here the adaptation is completely parallel and is to be performed separately for every “channel”. 
The operation executed in this scheme corresponds to the circular convolution which may cause 
performance degradation due to severe aliasing effects. 
In the literature of the analysis filter-banks the so-called sub-band adaptive filters see e.g. [13] 
are suggested for such and similar purposes which provide better aliasing suppression at the 
prize of smaller L<N decimation rates. The fast sliding transformers are in fact efficiently 
implemented special filter-banks. If they are maximally decimated they suffer from the side-
effects of the circular convolution. In order to reduce aliasing the application of L=N/2 can be 
advised. If the number of the adaptive filter channels is lower than the size of the sliding 
transformer the standard windowing techniques (see e.g. [1]) can be used for channel-filter 
design. 

1.3.4 Adaptive filtering with fast sliding transformers [S44] 

In this subsection the timing conditions of the frequency-domain adaptive filters using the 
famous Overlap-Save Method are investigated. The block diagram of the method can be 
followed by Fig. 1.12. The technique is carefully described in [13] therefore here only the most 
critical elements are emphasized. Other techniques can be analyzed rather similarly. 
Fig. 1.13 shows the timing diagram of the standard block-oriented solution. Here the acquisition 
of one complete data block (N samples) is followed by the processing of this data vector. A 
continuous sequence of data blocks can be processed if the execution time of one block 
adaptation is less or equal to the corresponding acquisition time (te≤ta). One block adaptation 
consists of several steps, among them the transformation of the input and the error sequences, 
respectively  (see  Fig. 1.9a).  The  generation  of  the  output  sequence  requires  an  additional 
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Fig. 1.12 Block diagram of the Overlap-Save Method 

transformation. Due to the requirements of the linear convolution all these transformations work 
on double blocks i.e. on 2N data points. The calculation of the gradient and coefficient update 
requires two further transformations of this type. A detailed analysis of the steps using the 2N-
point transformations shows that none of them is “complete” i.e. some savings in the 
computations are possible.  
With the introduction of the sliding transformers, the acquisition of the input blocks and the 
processing  can  be  over-lapped,  since the sliding transformers can start working already before  
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Fig. 1.13 Timing diagram of the standard overlap-save frequency-domain adaptive algorithms (ta 
denotes the acquisition time of one data block of N samples, te stands for the execution time of 
one block adaptation, and tw is the calculation time of the gradient and the W update). The end-

to-end delay is of N samples 
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having the complete block. If we permit an end-to-end delay of 2N samples then the processing 
can be extended for three acquisition intervals  (see Fig. 1.14).  During  the first interval  the data 
acquisition is combined with the transformation, the second can be devoted for finishing the 
transformation, for updating the coefficient vector and to start the inverse transformation which 
can be continued in the third interval because the data sampling performed parallel provides the 
d(n) samples (see Fig. 1.9) sequentially. At the prize of larger end-to-end delay, the execution 
time can be extended for more blocks, as well. 
In the case of the Overlap-Save Method, the gradient calculation consists of an inverse 
transformation, some simple manipulations and a transformation. Since with the sliding inverse 
transformation a parallel to serial conversion is performed and the sliding transformer 
implements a serial to parallel conversion, further overlapping in the execution is possible as it 
is indicated in Fig. 1.14.  
The above considerations can result savings if the granularity of the hardware and software 
elements of implementation enable smooth distribution of the computational load. If separate 
hardware units are available for the sliding transformations then the parallelism of the execution 
can be considerably improved. It is important to note that the precedence conditions of block 
processing do not support such parallelization: the complete data block must be available for a 
block-oriented operation like a signal transformation. 
To illustrate the achievable gain of using fast transforms here, a comparison is made considering 
the timing and computational conditions of the two approaches. In the usual implementations of 
the conventional method, data acquisition and processing are separated in time, i.e. after the 
arrival  of a  complete input  data  block an  efficient  DSP  program  calculates  the  transformed  
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Fig. 1.14 Timing diagrams of a possible frequency-domain adaptive algorithm using sliding 
transformations. (ta denotes the acquisition time of one data block, te stands for the execution 
time of one block adaptation, and tw is the calculation time of the gradient and the W update). 

The end-to-end delay is of 2N samples 
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values. The sliding FFT introduced in [6] has the same computational complexity as the 
traditional algorithm. However, data acquisition and processing overlap in the proposed 
polyphase filter-bank, therefore calculations start well before the complete block becomes 
available. There are many ways to characterize the complexity of the FFT, one possible figure 
can be the number of complex multiplications. This figure for the maximally decimated sliding 
N-point FFT equals (see [6]) 

1
8

log
4

1 2 +





=

NNC ,     (1.5) 

i.e. this figure is one of the possible characterizations. These operations, however, are performed 
partly during the data acquisition, and the number of complex multiplications, which can not be 
executed before the arrival of the last sample of the block remains only 

( )NNC 2log
2

2 −= .     (1.6) 

As an example, for N=1024 C1=1793 and C2=502, i.e. the possible time gain due to the overlap 
can be considerable. Similar figures can be given for other operations, as well. 
As a summation of the above investigations we can state that with such techniques further 
parallelism can be achieved and utilized for applications where higher sampling rates are 
required. The solutions which follow the scheme of Fig. 1.9b are in good correspondence with 
some successful multirate filter-bank techniques while the other group related to Fig. 1.9a can 
significantly be improved. The prize to be paid for the additional parallelism is the increase of 
the overall end-to-end delay which requires further investigations concerning step-size and 
stability issues. This can be started following the ideas of [15], where a similar problem was to 
be solved.  
In this section, the term “transform-domain” was used instead of the explicit term “frequency-
domain” The reason for this is that all the above developments can be extended for other type of 
transformations, as well. The application of other transformers may reduce either the 
computational load or in certain cases they improve the adaptation performance. 

1.4 Anytime Fourier Transformation  
Anytime signal processing algorithms are to improve the overall performance of larger scale 
embedded digital signal processing (DSP) systems. The early availability of the amplitude 
and/or frequency components of digital signals can be very important in different signal 
processing tasks, where the processing is done on-line, parallel with measurements and input 
data acquisition. It may offer a possible way for increasing the sampling rate (or the complexity 
of the tasks to be solved during one sampling period) and also to decrease the delay caused by 
the necessary information collection for setting the measurement/signal processing scheme. 
In this section the concept of anytime Fourier transformation is presented and a new fast anytime 
fuzzy Fourier transformation algorithm is introduced. The method reduces the delay problem 
caused by the block-oriented fast algorithms and at the same time keeps the computational 
complexity on relatively low level. It yields partial results of good quality or estimates before 
the samples of the period arrive. This is especially advantageous in case of abrupt reaction need 
and long or possibly infinite input data sequences. As a possible application field, the usage of 
the presented new method in Adaptive Fourier Analysis of multisine signals is also investigated. 
The determination of the frequencies of a multisine signal can be very important at different 
signal processing tasks, like vibration measurements and active noise control related to rotating 
machinery and calibration equipment. Adaptive Fourier Analyzers have been developed for 
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measuring periodic signals with unknown or changing fundamental frequency. Higher frequency 
applications have limitations since the computational complexity of these analyzers are 
relatively high as the number of harmonic components to be measured (or suppressed) is usually 
above 50. 
Recently, a fast-filter bank structure has been proposed for Adaptive Fourier Analysis based on 
the combination of the concept of transform domain signal processing and the adaptation of a 
simple linear combiner. It results in the reduction of the above computational complexity, 
however for the correct use we have to have pre-estimation about the range of the fundamental 
frequency to be able to set the applied single-input multiple-output filter-banks, which in many 
cases causes significant and possibly non-tolerable delay in the operation. 
In this section, a new fast fuzzy logic supported anytime frequency range estimation procedure 
is also proposed which makes possible to execute the frequency estimation after one quarter of 
the period of the unknown signal, i.e. the adaptation and Fourier analysis can be performed 
without any delay. 

1.4.1 Introduction 

Computer-based monitoring and diagnostic systems are designed to handle abrupt changes due 
to failures within the supervised system or in its environment. This capability involves on one 
hand different, simultaneously operated digital signal processors (DSPs), while on the other the 
corresponding information processing algorithms. These algorithms should be performed under 
prescribed response time conditions. 
Block-oriented signal processing techniques have exceptional role in time critical signal 
processing applications due to the availability of fast algorithms. However, if larger data 
segments are to be evaluated in real-time, the delay caused by the block-oriented approach is not 
always tolerable especially if the response time of our evaluating system is also specified. This 
can be exceptionally critical if the signal processing is related to feedback loops. The 
introduction of anytime techniques can help overcoming the problem.  
In this section block-oriented signal processing methods are combined with recursive ones 
thereby resulting in anytime signal processing transformation algorithms. This combination 
reduces the delay problem caused by the block-oriented fast algorithms and at the same time 
keeps the computational complexity on relatively low level. The proposed technique makes 
possible not only the application of fast algorithms in sharp time requirement conditions but also 
the availability of partial results or estimates in case of long or possibly infinite input data 
sequences. The latter is very advantageous if pre-considerations based on some features of the 
signal to be analyzed are needed for the further processing (or for the setting of the processing 
equipment). A typical example of this case is adaptive Fourier analysis, The early, approximate 
results can help in starting the processing earlier and to reduce the not always tolerable side-
effects of processing delay.  
The section is organized as follows: In Subsection 1.4.2 the novel concepts of block-recursive 
averagers are detailed. Subsection 1.4.3 discusses how the block-recursive averagers can be used 
in anytime Fourier transformation. Subsection 1.4.4 summarizes the improvement of the 
anytime Fourier analysis scheme by introducing fuzzy techniques in the interpretation of the 
results. The next section is devoted to adaptive Fourier analysis, where it is shown that the new 
methods described in Subsections 1.4.3 and 1.4.4 are suitable to decrease the delay of the 
adaptive Fourier analysis. In Subsection 1.4.5 illustrative examples are shown. 

1.4.2 The novel concept of block recursive averaging ([S8], [S45]) 

In this section the standard algorithms for recursive averaging are extended for data-blocks as 
single elements. To illustrate the key steps, first the block-recursive linear averaging will be 
introduced. For an input sequence x(n), n=1,2, ..., the recursive linear averaging can be 
expressed as 
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For n ≥ N the “block-oriented” linear averaging has the form of 
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while the block-recursive average can be written as 
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If (1.9) is evaluated only in every N-th step, i.e. it is maximally decimated, then we can replace 
(1.9) with n=mN, m=1,2, ..., by 
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where m stands as block identifier. Note the formal correspondence with (1.6). 
If the block identifier m in equation (1.11) is replaced by a constant Q > 1 then an exponential 
averaging effect is achieved. This change makes the above block-oriented filter time-invariant 
and thus a frequency-domain characterization is also possible.  
In many practical applications exponential averaging provides the best compromise if both the 
noise reduction and the signal tracking capabilities are important. This is valid in our case as 
well, however, in this section only the linear and the sliding averagers are investigated because 
they can be used directly to extend the size of certain signal transformation channels and they 
can be applied in anytime systems. 
A similar development can be provided for the sliding-window averagers. The recursive form of 
this algorithm is given for a block size of N by 

)]1()1([1)1()( −−−−+−= Nnxnx
N

nyny  (1.12) 

If in (1.12) the input samples are replaced by preprocessed data, e.g. as in (1.8), then a block-
recursive form is also possible: 

)]2()([)()( NnXNnXNnyny −−−+−=  (1.13) 

which, however, has no practical meaning, since it gives back (1.8). But if the window size is 
integer multiple of N, e.g. MN, then the form 

))1(()([1)()( NMnXNnX
M

Nnyny +−−−+−=  (1.14) 

has real importance. If (1.14) is evaluated only in every N-th step, i.e. it is maximally decimated, 
then we can replace (1.14) with n=mN, m=1,2, ..., by 
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)])1(())1(([1])1[()( NMmXNmX
M

NmymNy −−−−+−=   (1.15) 

or simply 

)]1()1([1)1()( −−−−+−= MmXmX
M

mymy  (1.16) 

where m stands as block identifier. Note the formal analogy to (1.12). 
The generalization of these averaging schemes to signal transformations and/or filter-banks is 
straightforward. Only (1.8) should be replaced by the corresponding “block-oriented” operation. 
Fig. 1.15 shows the block diagram of the linear averaging scheme. This is valid also for the 
exponential averaging except m must be replaced by Q. In Fig. 1.16 the sliding window averager 
is presented. These frameworks can incorporate a variety of possible transformations and 
corresponding filter-banks which permit decimation by the block-size. Standard references, e.g. 
[7] provide the necessary theoretical and practical background. 
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Fig. 1.15 Block-recursive linear averaging signal processing scheme, n=mN 

The idea of transform-domain signal processing proved to be very efficient especially in 
adaptive filtering (see e.g. [13]). The contribution of this section is directly applicable for the 
majority of these intensively cited algorithms. The most important practical advantage here 
compared to other methods is the early availability of rough estimates which can orientate in 
making decisions concerning further processing.  

x(n)
Input

Block-oriented

preprocessing N

1
M

z -1z -M

Decimation

y(m-1)

y(m)
Output

-1  
Fig. 1.16 Block-recursive sliding-window averaging scheme, n=mN, window-size MN 

The multiple-block sliding-window technique can be mentioned as a very characteristic 
algorithm of the proposed family. For this the computational complexity figures are also 
advantageous. Using conventional methods to evaluate in “block-sliding-window” mode the 
transform of a block of MN samples would require M times an (MN)*(MN) transformation, 
while the block-recursive solution calculates only for the last input block of N samples, i.e. M 
times an (MN)*(N) “transformation”. 

1.4.3 The new Anytime Fast Fourier Transformation algorithm (AnDFT, AnFFT) ([S8], 
[S110], [S120], [S112]) 

As block-oriented preprocessing the DFT is the most widely used transformation for its fast 
algorithms (FFTs) and relatively easy interpretation. The above schemes can be operated for 
every “channel” of the DFT and after averaging this will correspond to the channel of a larger 
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scale DFT. If linear averager is applied, this scale equals mN while for sliding averager this 
figure is MN. The number of channels obviously remains N unless further parallel DFTs are 
applied.  
These additional DFTs have to locate their channel to the positions not covered by the existing 
channels. For the case where M=2 (i.e. only one additional parallel DFT is needed), this 
positioning can be solved by the so-called complementary DFT which is generated using the N-
th roots of -1. This DFT locates its channels into the positions π/N, 3π/N, etc. For M>2 proper 
frequency transposition techniques must be applied. If e.g. M=4 then the full DFT will be of size 
4N and four N-point DFTs (working on complex data) are to be used (Fig. 1.17). The first DFT 
is responsible for the channels in positions 0, 8π/4N, etc. The second DFT should cover the 
2π/4N, 10π/4N, etc., the third the 4π/4N, 12π/4N, etc, and finally the fourth the 6π/4N, 14π/4N, 
etc. positions, respectively (Fig. 1.18). The first DFT does not need extra frequency 
transposition. The second and the fourth process complex input data coming from a complex 
modulator which multiplies the input samples by ej2πn/4N and ej6πn/4N, respectively. The third DFT 
should be a complementary DFT.  
It is obvious from the above development that if a full DFT is required the sliding-window DFT 
must be preferred otherwise the number of the parallel channels should grow with m. 
Here we would like to remark that with appropriate frequency transposition, this scheme can be 
further extended theoretically: more than 4 FFT blocks may run parallel, however with a burden 
of higher complexity. 

 
 

Fig. 1.17 Block diagram of the anytime FFT scheme 

 

Fig. 1.18 The poles of a (4N)-point DFT composed of four N-point DFTs 

The majority of the transform-domain signal processing methods prefers the DFT to other 
possible transformations. However, there are certain applications where other orthogonal 
transformations can also be utilized possibly with much better overall performance. A further 
aspect of practical interest can be the end-to-end delay of the block-oriented processing. The 
time-recursive transformation algorithms described e.g. in [16] are sliding-window 
transformations, i.e. they are filter-banks providing transform domain representation of the last 
input data block in every step. Decimation is not “inherent” as it is the case if the transformation 
is considered as a serial to parallel conversion, therefore the processing rate can be the input rate, 
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the maximally decimated one, or any other in between. These techniques are not fast algorithms, 
however, they “produce” less delay as those block-oriented algorithms which start working only 
after the arrival of the complete input data block. 

1.4.4 Anytime Fuzzy Fast Fourier Transformation (FAnFFT) ([S41]) 
We have developed a new interpretation method of the non-exact estimations of the anytime 
results. According to it, the noisy frequency characteristics is viewed as a fuzzy set over the 
Universe of Frequencies. Before the defuzzification we first evaluate the α-cut of the fuzzy set 
based on a properly chosen α value. This value serves to determine the limit separating the 
“useful” signals from what is interpreted as noise. In the obtained α-cut, the separated “picks” 
are handled and defuzzificated separately since each pick, as an individual fuzzy set, represents 
the frequency of a signal component. As defuzzification, the indexed Center of Gravity (iCoG) 
defuzzification method is applied based on the chosen α-cut of the output.  
Since the most typical errors, the picket fence and the leakage cause symmetrical error around 
the accurate value, the applied fuzzy defuzzification method results in high accuracy. This is 
because instead of taking the non-accurate values as exact ones, thus bringing error into the 
interpretation, we apply value imprecisiation which in reality means ‘meaning precisiation’ [17]. 

1.4.5 Decreasing the delay of Adaptive Fourier Analysis based on FAnFFT ([S14], [S38], 
[S42], [S51]) 

Recently, the measurement of periodic signals with unknown or changing fundamental 
frequencies has come into the focus. It has a significant role in such application fields like 
vibration analysis, active noise control, rotating machinery, calibration equipment, and the 
autonomous analysis of signals and noises.  If we want to measure the unknown fundamental 
frequency of a periodic signal or the frequency components of multi-rate signals, the classical 
solution is to use a Fourier transformer however we have to apply some kind of synchronization 
between the (unknown) frequencies and the sampling frequency of the Fourier transformer. 
Otherwise, we face the problems of picket-fence effect and leakage.  
The earlier solutions can be classified into two groups. The first applies re-sampling by the 
estimate of the fundamental frequency, i.e. after an interpolation, it applies re-sampling which is 
followed by an FFT (see e.g. [18]). 
The other group uses a so called Adaptive Fourier Analyzer (AFA) filter-bank structure 
originally proposed by Nagy in [19]. The adaptive filter-bank can be tuned to each signal 
component. This adaptation procedure “locks” the fundamental frequency component of the 
periodic signals like a PLL and tunes the recursive DFT channels accordingly. 
The method implements a structurally adaptive system with an order depending on the actual 
ratio of the fundamental to the sampling frequencies. The actual number of the channels N(n) 
should meet the condition of 

[N(n) - 1]f1 (n) < fs < [N(n) + 1]f1 (n),    (1.17) 

where f1(n) and fs denote the fundamental frequency at time instant n and the sampling 
frequency, respectively. This results in applying, always, as many DFT channels as can be 
accommodated within the frequency range up to one half of the sampling frequency.  
 Besides many advantages, the disadvantage of the AFA is that fast transformations cannot 
directly be utilized.   
The author of this thesis introduced a special implementation of the AFA structure in [S14], 
which is a filter-bank version of a fast transformation (e.g. FFT) applying adaptive linear 
combiners at the output of the transformer (Fig.1.19). This opens the possibility for block 
oriented operation, i.e. the computational complexity of this latter solution is much lower than 
that of the previous one.  
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The consequence of the possible decimation is that the condition in (1.17) has to be replaced by 
a stronger requirement. If the adaptation is done in every k-th sampling step then the following 
requirement has to be met 

k
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2
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2 1 〈〈  .    (1.18) 

In case of maximum decimation, i.e. when k=N, it takes the form of 
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Fig. 1.19 Block diagram of the Adaptive Fourier Analysis 
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For more details about the AFA see [S14]. 
As a consequence of (1.18) and (1.19), we have to pre-estimate the range of the frequencies to 
be measured before starting with the frequency estimation, to be able to set the AFA structure 
properly. Normally, this may cause a significant delay in the procedure which cannot always be 
tolerated, especially in real-time processing.  
The fast anytime Fourier transformation methods presented in the last two subsections are 
excellent tools for obtaining pre-estimates of the frequencies of multisine signals to be analyzed. 
It only needs the operation of the FAnFFT or AnFFT algorithm in the first part of the period. 
Based on the frequency estimations, the filter-banks of the AFA scheme can properly be set. 

1.4.6 Illustrative examples 

In the followings three simple examples are presented illustrating the usability of the results. For 
more experiments and examples, see ([S8], [S14], [S35], [S45], [S38], [S42], [S51], [S110], 
[S120], [S112]).  
In the first example (AnFFT method, Subsection 1.4.2) a 256-channel DFT is calculated 
recursively, in anytime mode with N=64 for m=1,2,3,4. The input sequence applied is 
 







 +

=
N

nNnx
2

)5.0(cos)( π . 
(1.20) 



 23

This single sinusoid is just in the middle between two measuring channels. The MATLAB 
simulations after processing the first, second, etc. blocks are given in Fig. 1.20. 

  

 

Fig. 1.20 Ex. 1: 256-channel anytime DFT of a single sinusoid in the middle between two 
measuring channels. N=64, m=1, 2, 3, 4  

In the second example (AnFFT method, Subsection 1.4.2) a 256-channel DFT is calculated 
recursively, in anytime mode with N=64 for m=1,2,8,16. The input sequence is 

5.0
2

cos)( −+





= randnnx π  (1.21) 

where rand stands for a random number generated by MATLAB between 0 and 1. The sinusoid 
is located exactly to a DFT channel position. The simulation results for m=1,2,8, and 16 are 
given in Fig. 1.21. The improvement in resolution and noise reduction is remarkable. 
The third example is illustration for the improvement achieved by the fuzzy techniques (see also 
FAnFFT method in Subsection 1.4.3). The FAnDFT is applied on a noisy multi-sine signal. The 
256-channel DFT of two sinusoids, exactly at the DFT channel positions, corrupted by noise is 
calculated according to the presented anytime method recursively with N=64 for m=1, 2, 8, 16. 
The input sequence is 

5.0rand
4
1122sin8.0

4
502sin)( −+






+






=

N
n

N
nnx ππ .     (1.22) 

The simulation results for m=1, 2, 8, and 16 are given in Fig. 1.22. Fig. 1.23 shows the α-cuts 
with α=-17 dB for m=1, 2, 8, 16. Table I summarizes the obtained frequencies evaluated by α = -
17 dB. In Fig. 1.24 the convergence of the non-zero amplitude components can be followed if 
(a) the non-noisy and (b) the noisy signals are processed. The improvement in both the 
resolution and noise reduction is remarkable. 
Here we would like to remark that if value α is chosen too small then false picks caused by the 
noise may also appear in the spectrum. At α=-25 dB e.g., in case of m=1 and 2 we obtain 10-11 
picks (of which 6-7 come of noise) however as the approximation becomes more accurate along 
the time, at m=8 and 16, the false picks disappear and only the 4 “useful” frequencies remain in 
the spectrum. 
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Fig. 1.21 Ex. 2: 256-channel anytime DFT of a single sinusoid, exactly at a DFT channel, plus 
noise. N=64, m=1, 2, 8, 16.  

 

Fig. 1.22 Ex. 3: 256-channel anytime DFT of a noisy multi-sine, exactly at a DFT channel. 
N=64, m=1, 2, 8, 16.  
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Fig. 1.23 Ex. 3: α-cuts with α=-17 dB of the 256-channel anytime DFT of a noisy multi-sine, 

exactly at a DFT channel. N=64, m=1, 2, 8, 16.  

 

 

Fig. 1.24 Convergence of the amplitude of the two non-zero multisine components: the non-
noisy signal in ex. 3 (upper) and ex. 3 (with noise) (lower) 

Table 1.1 
Ex. 3: Obtained Frequencies for m = 1, 2, 8, and 16, α=-17 dB 

 obtained frequencies 
m=1 -2.7515 -1.2268 1.2267 2.7515 
m=2 -2.7490 -1.2275 1.2275 2.7490 
m=8 -2.7517 -1.2267 1.2267 2.7517 
m=16 -2.7488 -1.2271 1.2271 2.7488 

1.5 Overcomplete signal representations 
For representing stationary signals, several well-established methods are available. For non-
stationary signals, however, these approaches can be used only with serious limitations. If the 
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signal can be characterized as sequence of stationary intervals overcomplete signal 
representations help to handle such problems.  
This section introduces the concept of recursive overcomplete representations using different 
recursive signal processing algorithms. The novelty of the approach is that an on-going set of 
signal transformations together with appropriate (e.g., L1 norm) minimization procedures can 
provide optimal on-going representations, on-going signal segmentations into stationary 
intervals, and on-going feature extractions for immediate utilization in diagnostics, or other 
applications. The proposed technique may be advantageous in case of processing non-stationary 
signals when complete signal representations can be used only with serious limitations because 
of their relative weakness in adaptive matching of signal structures. 

1.5.1 Introduction  

The standard methods for representing stationary (non-time-varying) signals include techniques 
utilizing special signal representations based on dedicated signal transformations. The 
trigonometric transformations are typical examples. For non-stationary signals however, the 
applicability of these approaches is limited. Sliding-window transformation techniques may 
offer a good compromise, but the window-size limits the resolution. 
The so-called overcomplete signal representation is a technique where a given signal is 
decomposed using more basis components than the necessary minimum. Obviously, without 
further constraints, this representation is not unique. Having an accurate model, a reasonable 
metric for further evaluation is the compaction of the representation that the model provides. 
This means that solutions with the minimum number of non-zero coefficients are required. If a 
representation is both accurate and compact, then it will capture the “principal components” of 
the signal behavior. It is an important result that by minimizing the L1 norm of this 
representation, optimal solutions can be obtained [20], [21].  
A compact representation is useful for compression. If all the basis vectors have the same norm, 
a good approximation of the signal can be generated using only those components that have 
significant weights. The negligible components can be thresholded (i.e. set to zero) without 
substantially degrading the signal reconstruction. It is obvious that representations where the 
coefficients are all of similar value, thresholding is not acceptable and compaction cannot be 
readily achieved. 
An additional aspect is that compression and denoising are linked. A white noise sequence is 
essentially incompressible even if it is transformed by an orthogonal transform. If a 
deterministic signal degraded by additive noise is compressed, this representation will extract 
the primary structure of the signal, and the reconstruction based on such a compact model will 
be a denoised or enhanced version of the original. 
With the exception of overcompleteness, all the above considerations, compactness, accuracy, 
and optimum behavior with respect to data compression are taken into account with the 
Karhunen-Loeve transformation (see [22]). However, this technique requires intensive 
calculations hardly performable in real time applications. 
In this section, a relatively simple technique is introduced to provide an approximate solution to 
the compact representation/compression problem for the case of non-stationary signals. The 
method is based on recursive signal transformers (see, e.g., [S6] and [5]) running in parallel, and 
providing an on-going overcomplete signal representation (i.e. the signal processing is running 
parallel with the sampling (data collection)). The novelty of the approach is that an on-going set 
of signal transformations together with appropriate (e.g., L1 norm) minimization procedures can 
provide nearly optimal on-going representations and support on-going signal segmentation into 
stationary intervals, together with feature extraction for immediate utilization in diagnostics, or 
other applications. 
Subsection 1.5.2 gives an overview of overcomplete signal representation. Subsection 1.5.3 
describes the proposed new method, while Section 1.5.4 is devoted to an illustrative example. 
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1.5.2 Overcomplete signal representation 

In transformed-domain digital signal processing, the traditional method is to represent a signal 
using a discrete, preferably orthogonal basis, like the discrete Fourier (DFT), the discrete cosine 
(DCT), the Hadamard, Wavelet, etc. bases. Each transformation uses one complete basis (for a 
vector space V of dimension N, the complete basis B contains exactly N basis vectors, b0, b1,…, 
bN-1) and the representation is unique. The coefficients of an expansion can be derived using an 
inverse matrix computation. Well-established theories and fast transformation algorithms help 
the applications. The disadvantage of such a representation is its relative weakness in adaptive 
matching of signal structures.  
Recently a new method [22], the overcomplete signal representation (OSR), has been reported 
which is an adaptive signal representation method having special advantages in cases of non-
stationary signals. Here the signals are decomposed onto a number of optimal basis components 
that are found from an overcomplete basis dictionary via some optimization method [22] (i.e. the 
representation is not unique). The overcomplete dictionary consists of a collection of bases, and 
the applied basis for a given signal expansion is chosen from the set of bases according to a 
metric. This means that the basis is redundant (e.g. some extra basis components are added to a 
complete basis or several complete bases are merged), for a vector space V of dimension N the 
overcomplete basis D contains L basis vectors, b0, b1, … , bL-1 where L>N. The expansion means 
that a nonzero solution is found for the following equation 
 
        x= Dα,        (1.23) 
 
or in case of approximate decomposition 
 

,~ r+= αDx         (1.24) 
 

where x=[x0, x1, … , xN-1] stands for the input signal, α=[α0, α1, … , αL-1]T, [ ]TL 110
~,,~,~~

−= αααα K                    
denote the coefficient (basis component selection) vector, D=[b0, b1, … , bL-1] denotes the 
overcomplete basis dictionary, and r is the error vector.  
The expansion functions (from D) are chosen in a signal-adaptive fashion and the algorithms for 
choosing the functions are decidedly nonlinear in both cases. There are many different possible 
overcomplete expansions corresponding to the different metrics and methods used as the criteria 
of optimum. This leads to signal adaptivity and compact representations with a burden of 
additional computations, since the coefficients have to be determined by using some 
optimization task, like singular value decomposition, different norm optimizations, method of 
frame bounds, etc. The properties of adaptively tracking or matching the varying structure of a 
given non-stationary signal depend also on the content and the number of components of the 
overcomplete basis dictionary, so a balance has to be found between the computational costs and 
performance level. 
The first class of the optimization methods (1.23) results in exact solutions. Best basis methods 
are typical examples to this. One of the most promising methods among the numerous 
possibilities is the basis pursuit (BP) method proposed by Chen and Donoho [23]. The idea of 
this method is to define the basis selection vector by minimizing the L1-norm of α under the 
constraint of x= Dα which leads to the minimum fuel problem (see e.g. [24]). Minimizing ║α║1 
ensures finding the least number of basis components from an overcomplete basis dictionary to 
exactly represent a given signal. In this section, the concept of the BP method is used to select 
from a predefined set of transformations the most compact one, and to improve its compactness 
by replacing one of its basis vectors with another providing good approximation of the signal in 
hand. 
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1.5.3 Recursive Overcomplete Signal Representation and Compression ([S19], [S66]) 

In this section a relatively simple technique is introduced to provide an approximate solution to 
the compact representation/compression problem for the case of non-stationary signals. The 
overcomplete signal representation method is based on recursive signal transformers running in 
parallel, and on an appropriate minimization procedure which ensures near optimal on-going 
signal representation. It also supports on-going signal segmentation into stationary intervals, 
together with feature extraction for immediate utilization in diagnostics, or other applications.  
The transform library contains several normalized, complete, orthogonal or “weakly” 
overcomplete transformations (using more bases means on one hand that the adaptivity increases, 
while on the other hand, that the additional computational needs of the representation also 
increase compared to methods based on less bases or on one complete basis). “Weakly” 
overcomplete transformation means here a transformation where a complete, preferably 
orthogonal, transform is merged with one “extra” basis function.  
For optimum-criteria the L1 norm minimum is chosen which provides optimal solution, i.e., the 
representation having the minimum L1 norm contains the minimum number of non-zero 
coefficients.  
 

Method 1.1 ([S19], [S66]) 
 

The steps of the algorithm are as follows (see Fig. 1.25): 

 Coding: 
Step 1. Parallel transformations: The incoming signal is processed in blocks and to each of the 
blocks the best fitting transformation is chosen from the transform library. The block length 
corresponds to the transformation sizes, i.e. if the transformations are N-point transformations 
than the input signal blocks will include N samples. The input signal blocks are transformed into 
the different transform-domains of the transform library. If the transformation is a “weakly” 
overcomplete one (having N+1 basis functions) then the basis dictionary is to be reduced 
appropriately.  

Theorem 1.1. ([S19], [S66]) 
The input signal blocks can always be transformed into the possible most compact basis 
representation of the weakly overcomplete transform library. 
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Fig. 1.25 Block diagram of the signal coding and signal reconstruction for the proposed OSR 
model 

Proof: 

As first step, the input signal block is transformed into the starting, complete basis ([X0, X1, … , 
XN-1]). The additional “extra” basis function is also expressed by the same basis ([Y0, Y1,…, YN-

1]). If the “extra” basis function is taken into consideration by an unknown weight factor c then 
the overcomplete representation of the input signal will take the following form: [X0-cY0, X1-cY1, 
… ,   XN-1-cYN-1, c]. Since we know that the L1 norm minimum ensures the minimum number of 
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non-zero coefficients, at least one of the above N+1 coefficients has to be zero which means that 
according to the L1 norm minimum criteria the value of c is of {0, X0/Y0, X1/Y1, … , XN-1/YN-1}. 
Substituting c with these values, the one which has the minimum L1 norm provides the most 
compact representation and we can drop out the corresponding, zero-weighted basis function 
from the basis dictionary. This results in a complete, not necessarily orthogonal transform-basis. 

Step2. Transform selection: The optimal representation for the given input block is determined 
by the L1 norm minimum of the input signal, i.e., the transformation having the smallest L1 norm 
contains the minimum number of non-zero coefficients, thus, the given signal block will be 
represented in this transform-domain and this transform gives the basis for the signal coding of 
the block.  

Step 3. Data reduction: The “principal components” of the “winner” are selected, i.e., the basis 
functions having the most significant weights. The accuracy of the approximation is ensured by 
using an L2 norm bound, i.e., the zero-valued or less significant basis components can be 
dropped while it holds that the L2 norm of the approximate signal exceeds an appropriate ratio 
(a) of the L2 norm of the original input signal represented in the time-domain.  

Step 4. Signal coding: The remaining coefficients and the identifier of the optimal or near 
optimal transformation are coded in a suitable form. 

Reconstruction: 

Signal reconstruction: Using the coded information the approximate signal can be reconstructed. 

 

1.5.4 Illustrative examples 

In Figs. 1.25-1.30, simple examples are presented to illustrate the proposed OSR method. For 
more examples and details, see [S19], [S66]. Theoretically, the more complete and weakly 
overcomplete transformations in the transform library we use, the more increased adaptivity we 
get, however, with a burden of higher additional computational need. Using bigger 
transformation (and block) size means on one hand that the code segments will be longer, 
however, the transferred information amount may be altogether less. On the other hand, 
transforming longer input signal blocks has negative effect on the adaptivity property of the 
method, i.e., the adaptivity decreases. This may cause serious limitations especially in case of 
representing highly non-stationary signals. Thus, in general, smaller transformation sizes may 
perform better, however, we have to find a compromise for it.  
In the illustrative examples the applied transform library contains 8 transformations of size 16 
(see Table 1.2). Besides some “pure” transformations (T1-T4: Hadamard, DFT, DCT, Haar 
transformations) the following overcomplete transformations are taken into consideration: 
“pure” transformations merged with the “principal” basis function of another transformation 
(T5-T6: Hadamard basis + 1 DCT basis function, DFT basis + 1 Hadamard basis function) and 
“pure” transformations merged with the previous block of the approximate signal (T7-T8: 
Hadamard basis + the last sent signal block, DCT basis + the last sent signal block). All the basis 
functions are normalized according to the same rule.  
Each figure consists of 4 parts. The first shows the input signal, while the second the 
reconstructed signal based on the proposed overcomplete transformation (OT). The chosen 
transformation (T.) and the necessary number of coefficients (C.) are also presented for each 
signal block. On the third part of the figures the signal is reconstructed based on DFT using as 
many of the most significant basis components as is necessary for the coding in case of the OT 
to fulfill the L2 norm requirement. The fourth part compares the L2 errors of the approximate 
signals reconstructed in the two different ways compared with the original input signal. 
The above results for a single sinusoid with a periodicity of N1=14 are illustrated in Fig. 1.26 
(the L2 bound is 0.99). Fig. 1.27 shows the signals and errors for a square waveform input signal 
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with period N1=14, the L2 bound is 0.99. The input signal in Fig. 1.28 is pure white noise, the 
L2 bound is 0.99. Fig. 1.29 shows the case of sinusoid input with period N1=14 + 50% noise 
(the L2 bound is 0.98), Figs. 1.30-31 illustrate the cases of noisy square inputs (the noise ratio is 
50 %), N1=14, L2 bound is 0.99 and N1=16, L2 bound is 0.90, accordingly. 

Table 1.2 The transform library 

Overcomplete Transformation # Transformation Dictionary 

T1 Hadamard basis 

T2 DFT basis 

T3 DCT basis 

T4 Haar basis 

T5 Hadamard basis + 1 DCT basis function 

T6 DFT basis + 1 Hadamard basis function 

T7 Hadamard basis + the last approximate signal block

T8 DCT basis + the last approximate signal block 
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Fig. 1.26 The input signal, the reconstructed signal based on OT, the reconstructed signal based 
on DFT, and the L2 errors (OT - dashed line, DFT - continuous line) for a single sinusoid input 
with period N1=14 (the L2 bound is 0.99) 
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Fig. 1.27 The input signal, the reconstructed signal based on OT, the reconstructed signal based 
on DFT, and the L2 errors (OT - dashed line, DFT - continuous line) for a square waveform 

input signal with period N1=14 (the L2 bound is 0.99) 
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Fig. 1.28 The input signal, the reconstructed signal based on OT, the reconstructed signal based 
on DFT, and the L2 errors (OT - dashed line, DFT - continuous line) for a white noise input (the 

L2 bound is 0.99) 
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Fig. 1.29 The input signal, the reconstructed signal based on OT, the reconstructed signal based 
on DFT, and the L2 errors (OT - dashed line, DFT - continuous line) for a sinusoid input with 

period N1=14 + 50% noise (the L2 bound is 0.98) 
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Fig. 1.30 The input signal, the reconstructed signal based on OT, the reconstructed signal based 
on DFT, and the L2 errors (OT - dashed line, DFT - continuous line) for square waveform input 

signal with period N1=14 + 50% noise (the L2 bound is 0.99) 
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Fig. 1.31 The input signal, the reconstructed signal based on OT, the reconstructed signal based 
on DFT, and the L2 errors (OT - dashed line, DFT - continuous line) for square waveform input 

signal with period N=16 + 50% noise (the L2 bound is 0.90) 
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1.6 Uncertainty handling in  non-linear systems 
Measurements of any kind are characterized by their uncertainty and/or accuracy. Unfortunately 
for several reasons this characterization is not easy and in many cases requires human and/or 
machine based considerations and intensive computing. The complexity of the measurement 
problems of current interest has considerably increased. Thus, since all of these computations 
require time, additional requirements like speed, costs, etc. may strongly limit the achievable 
precision. With the appearance and spreading of new modeling and computing techniques, 
especially in real-time and/or embedded measurement systems, new possibilities arise to 
overcome the problems but the price to be paid for this is the reconsideration of measurement 
uncertainty. The representation method of the uncertainty must be on one hand in harmony with 
the modeling and information processing method; on the other hand it has to be uniform or at 
least “interpretable” by other representation forms.  
This section deals with the above questions. First of all we point out the limits of the “classical”, 
probability theory based uncertainty representation and we examine some possible new, fuzzy 
based uncertainty representation methods. This is followed by simulations focusing on the 
questions of “communication” between entirely different representations and how to express 
“optimally” the resultant (output) uncertainty based on hybrid (input) information. 

1.6.1 Introduction 

The information coming from our environment - including the results of measurement 
procedures - usually involves a certain amount of uncertainty, inaccuracy. The degree of this 
uncertainty is important additional information, because we can decide only in possession of this 
knowledge, in what degree and for what purpose the information is usable. The problem 
becomes even more critical due to the fact, that the information often comes through complex, 
nonlinear channels and most of the results are computed based on different, possible uncertain 
input data. Thus, it is important to have a uniform method for the representation and handling of 
uncertainty, by the aid of which the resultant uncertainty can be computed during the 
information process. 
When we choose an uncertainty representation method, we have to consider several aspects of 
the problem. It is an essential expectation that the measure of uncertainty is analogous to the 
subjective opinion, i.e. a higher degree of uncertainty has to be connected to subjectively “more 
uncertain” data. The uniformity and popularity are also important factors, because the 
uncertainty of the information must be interpretable by everybody. 
Important aspects are the nature and characteristics of the information processing system, as well. 
Traditionally the probability and interval analysis based data models are used to represent the 
information, and its uncertainty. Thus, in case of simpler, nearly linear systems based on 
“classical” modeling and computing methods, this well-proved and theoretically well established 
probability theory based uncertainty representation is preferable. In case of complex, non-linear 
and/or “soft” systems it can be more suitable - or even necessary - to find other representation 
forms [S48], [25], [26], which should cope with the data representation, resulting in a more 
accurate uncertainty expression and more comfortable usage. On the other hand, sometimes the 
type of uncertainty makes the probability theory-based representation difficult or even 
impossible (e.g. uncertainty originated from incomplete data and/or data-processing or 
subjective information sources). 
At the same time, we can not forget that the different representation methods have to be 
comparable, convertible. Thus, the new representation methods have to be comparable with the 
“classical” probability theory-based methods.  
The aim of this section is to establish the analysis of this topic and to investigate possible 
solutions for these problems. Subsection 1.6.2 deals with the “classical”, probability theory 
based representation and its limits. Subsection 1.6.3 describes the new, promising fuzzy based 
representation methods, while Subsection 1.6.4 deals with mixed data models where different 
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modeling methods and thus different uncertainty representation methods are used within one 
(possibly huge) system. Different conversion methods between probability based and fuzzy data 
models are compared and some suggestions are made how to reduce the conversion error. 
Subsection 1.6.5 analyzes the comparability, convertibility of the new methods and the 
“classical” techniques. The qualification of the data is investigated together with proposing new 
uncertainty measures for the quantification of uncertainty of fuzzy variables.   

1.6.2 Uncertainty representation based on probability theory 

In practical applications, the probability theory based uncertainty representation is wide-spread 
used for the expression of the uncertainty of the information. The advantages of this method are 
the uniformity, popularity, and the profound theoretical background [27]. The standards and 
recommendations regarding the expression of measurement uncertainty are also linked to this 
method. 
Traditionally, two main types of measurement errors were considered: the so-called random and 
the systematic errors. The effects of random errors can be reduced by statistical methods, while 
the systematic ones call for deterministic corrections. Simultaneously in the recently wide-
spread standards ([28]) a different approach has appeared: the so-called ‘A’ and ‘B’ types of 
uncertainty. The uncertainty is expressed in both cases as variance or standard deviation. For 
category ‘A’ the evaluation is based only on the statistical evaluation of the measurement, while 
for category ‘B’ also a priory information, like calibration data, can be considered. 
Sometimes it is necessary to define the measurement uncertainty by an interval, which includes 
a great part of the - hypothetical - distribution of the measured data (see [29]). The width of this 
interval (in the standards: extended measurement uncertainty) is computed from the standard 
deviation (in the standards: standard measurement uncertainty) with the help of a so-called 
extension factor: 

xx dkU *= ,     (1.25) 

where U x  stands for the half-width of the interval, and d x  denotes the standard deviation. The 
extension factor k depends on the confidence level and the type of the distribution. In case of 
non-linear transformations, the actual distribution of data is not or only with difficulties 
obtainable, so the extension factor and the width of the confidence interval are not or only 
approximately computable. On the other hand, when computing the confidence intervals the 
resultant standard deviation is used, thus it is an important question, how accurate the computing 
of the resultant standard deviation can be in non-linear systems.   
In case of nearly linear systems, there are known methods, based on the first-order Taylor 
expansion of the system, for the expression of the resultant uncertainty. If f() maps the input 
variables x1 , x2 ,..., xN   into the output variable y, the resultant uncertainty can be assessed 
according to the followings:  
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where di stands for the standard deviation of xi , and ri j, denotes the covariance between xi  and 
x j . 
For the examination of the probability theory based uncertainty representation the MATLAB 
package [30] was used. By simulating different non-linear characteristics the computed standard 
deviation of the output variable (1.26) and the variance got from the simulations were compared. 
 

Theorem 1.2 ([S17], [S117], [S55], [S60]):  
 

The classical, probability based uncertainty representations given by the measurement standards 
[28] cannot be used with high confidence for expressing the resultant uncertainty if the 
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characteristics of the system is non-monotone and changes rapidly on the interval, which 
contains a great part of the - hypothetical - distribution of the measured data.  
 

Proof: 
 

The opposite of Theorem 1.2 can be disproved by counter-examples.  For this, we used the 
MATLAB package and analyzed the error propagation in case of different non-linear mapping 
function. We have analyzed approximately fifty non-linear and non-monotonous characteristics.  
As input values, random variables were used (generated by the random generator of the 
MATLAB toolbox) and the output were measured and analyzed by statistical methods.   
Here we include two typical (one monotonous and one non-monotonous) results. As a 
conclusion, we could prove that if the requirement in Theorem 1.2 does not held, the formulas of 
the standards do not give accurate results, in fact sometimes they are not at all suitable for the 
computing the resultant uncertainty (Figs. 1.31-1.32). 
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Fig. 1.32 The effect of the exponential transformation on the variance and the standard deviation. 
++++++ : values computed by (1.26); ********: values got by the simulation 
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Fig. 1.33 The effect of the sinusoidal transformation on the variance and the standard deviation. 
++++++ : values computed by (1.26); *******: values got from the simulation 

For the problems, a possible solution can be the improving of the formulas - e. g. by the aid of 
the higher-order derivatives. But this would make the computing more complex and not 
necessary result in better result e. g. in case of systems, where also the higher-order derivatives 
change fast or are non-monotone. So it is worth considering, using other modeling techniques 
for the representation of the uncertainty in non-linear systems. 
Another, not negligible aspect is, that recent complex systems, which are often based on “soft” 
computing methods, raise new problems in the area of uncertainty representation. These systems 
are often based on modeling methods, which are completely different from the probability 
theory, so the “classical” tools for uncertainty representation are not usable. Furthermore, 
transformations realized by complex systems are often not describable by simple functions, so 
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the derivative can not or only approximately be computed. In these systems, the representation 
of the uncertainty during the data processing has not been yet solved and, thus, the authenticity 
and accuracy of the resultant data are also not known. 

1.6.3 Uncertainty representation based on fuzzy theory ([S17], [S117], [S55]) 

Fuzzy theory [31] is often used to solve modeling and computing tasks, thus, with the fuzzy 
based uncertainty representation we can solve two problems. First, there is a possibility, that we 
can improve the overall accuracy of the computing of the resultant uncertainty in non-linear 
systems. Secondly, we can easily represent and compute the uncertainty in fuzzy based systems, 
where probability theory can be used only with difficulties. Another great advantage of the fuzzy 
representation is that it is close to human thinking, and the effect of parameter changes can be 
easily estimated, so the fuzzy based systems are usually easy to survey. Furthermore, some kinds 
of uncertainty (e. g. incomplete data or subjective information) can be expressed far better by 
fuzzy sets, then by probabilistic or statistical methods. 
In case of fuzzy representation of the information, data is not expressed by a definite value 
(“measured data”) and the degree of the connected uncertainty (variance, standard deviation, 
confidence-interval); nor by an - approximate - probability distribution. It is expressed by a 
membership function, which gives the degree in which the elements of the universe belong to 
the set, containing the value(s) of the measured data. This method can be used to express non-
statistical type uncertainty, e. g. originated from subjective data, as well. 
To express the data we can use fuzzy numbers, i. e. fuzzy sets defined on ℜ  (the universe of 
real numbers), which are normalized (at least one of its elements attains the “1” membership 
grade) and convex: 

))(),(min())1(( srsr µµλλµ ≥−+   Rsr ∈∀ , ; [ ]1,0∈λ    (1.27) 

If during the information processing fuzzy data representation is used and we manage to define a 
degree of uncertainty to the membership function, the uncertainty becomes expressible and 
measurable at any point of the system. The fuzzy data representation is solved in some soft 
computing (e.g. fuzzy, fuzzy-neural), systems. In case of “classical” data-processing methods 
the membership function of the output variable y is computable from the membership functions 
of the input variables x1 , x2 , ..., xN  with the help of the extension principle [32]: 

))(),...,(),(sup{min()( 2211 NN xxxy µµµµ = }),,,( 21 Nxxxfy K=   (1.28) 

If we want to change to “classical” data representation (e.g. at the end of the data processing we 
need a definite output value), the fuzzy numbers have to be defuzzificated. Different 
defuzzification methods are known, here the center of gravity (CoG) method [33] is used, 
because of its analogy to probability theory and because this method may possibly express the 
information involved in the membership function the most faithfully. With the center of gravity 
method, the defuzzificated value can be computed accordingly 
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In the literature (see e.g. [33]) there are several measures for the expression of the uncertainty of 
fuzzy sets (e. g. U-uncertainty), however these measures are based on discrete domains, where 
no distance is defined or considered between the discrete values. Thus, though these measures 
can be very useful at the expression of the uncertainty in case of diagnostic tasks, they are not 
suitable for the expression of measurement uncertainty. 
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During our examinations several candidates, avoiding the above problem, were examined to 
express the fuzzy type uncertainty (e.g. quadratic deviation from the defuzzificated value). In the 
followings two of them will be proposed, which proved to be the most promising.  
Width of α-cut 
The uncertainty represented by a fuzzy number can be expressed by the width of the interval, 
where the membership function is higher or equal then a given α value. Since the membership 
function is convex, this interval can’t be “holed”.  

u x x1 2 1,α = − , where x x x1 = ≥inf{ ( ) }µ α  and  x x x2 = ≥sup{ ( ) }µ α .  (1.30) 

Integral of the membership function  
The area under the curve can also express the uncertainty, since wider, higher membership 
functions result in a higher value. Theoretically there can be cases, when two datasets with 
subjectively different uncertainty get the same value, but if we use only fuzzy numbers, these 
cases can be excluded. 

u x dx2 =
−∞

+∞

∫ µ( ) .     (1.31) 

Beyond being analogous with the subjective opinion (e.g. data represented by wider membership 
function must have a higher uncertainty value), the measure of uncertainty must also be 
comparable with the probability theory based representation, and it must behave similarly to the 
“classical” measures during different transformations. Partly because the probability theory 
based representation is widely used and it is favorable for the users, the new measure of 
uncertainty should be comparable, convertible with the “classical” techniques. Furthermore, we 
must ensure the “communication” between systems based on different modeling techniques, 
which means the existence of some kind of “rule of conversion” between the different measures 
of uncertainty. 
In this section, two aspects of the question of comparability, convertibility are examined: 
1. Relations between the fuzzy measures of uncertainty and the standard deviation 
2. Relations between the fuzzy measures of uncertainty and the standard deviation after different 
transformations 
In the practice, the normal distribution is often used, as supposed distribution of the variables, so 
random variables with normal distribution and the corresponding fuzzy numbers are considered 
for the comparisons. 

Relations between the fuzzy measures of uncertainty and the standard deviation 
The membership function of a fuzzy number, corresponding to a normal random variable with 
an expected value of x  and standard deviation of σ, can be computed  over a discrete universe 
as  [34] (see Fig. 1.34): 
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i N= −1 1,... .  
With the help of these formulas we can examine the relation between the standard deviation and the 
uncertainty of the corresponding fuzzy number (Fig. 1.35). It is preferred, to have a linear relationship 
between the uncertainty measures, because then they can be converted easily to each other. This 
expectation is fulfilled in both cases ( u1  and u2 ). 
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Fig. 1.34 A normal distribution function (dashed line) and the membership function (continuous 
line) of the corresponding fuzzy number 
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Figure 1.34 Relation between the standard deviation and the uncertainty of the corresponding 
fuzzy number. ______: u1  (α -cut, α=0,5); - - - -: u2  (integral) 

 

Relations between the fuzzy measures of uncertainty and the standard deviation after 
different transformations 
The linear transformations are a special and important group of transformations. It is known, 
that in case of a linear transformation, given by the formula 

y ax b= + ,      (1.33) 

it is true for the standard deviation of the variables x and y, that 

d a dy x= .     (1.34) 

This conforms to the subjective expectation, as well, thus it is necessary, that the new measures of 
uncertainty also fulfill this formula. Since this transformation (if a ≠ 0 ) is a one-to-one mapping, we get 
from the extension principle ( 1.28): 

     
µ µy xy

y b
a

( ) ( )=
−

.     (1.35) 

Width of α-cut 
From formula (1.35) 

        
µ α µ αx yx ax b( ) ( )1 1≥ ⇔ + ≥ .     (1.36) 

Thus, if the α-cut of the input fuzzy number is [ ]x x1 2, , with width x x2 1− , the α-cut of the output 

variable will be [ ]ax b ax b1 2+ +,  (if a>0) or [ ]ax b ax b2 1+ +,  (if a<0) with a width of a x x( )2 1− .  
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Integral of the membership function  
With the y ax b= +  substitution we get 

u y y dy a x dx au xy x2 2( ) ( ) ( ) ( )= = =
−∞

+∞

−∞

+∞

∫ ∫µ µ
   

(1.37) 

A further expectation can be, that there must be a simple relationship between the standard deviation and 
the uncertainty of the corresponding fuzzy number in case of other, nonlinear transformations, as well. It 
is preferred, if this relation is also linear, with the same or similar factor. This factor must be the same or 
similar to the factor computed from the input variables.  
In this case, the examinations were carried out by simulations, using the MATLAB Package. The fuzzy 
uncertainties were estimated by ‘ad’, where d is the standard deviation of the corresponding random 
variable. The results are summarized in Tables 1.3 and 1.4: ‘l’ is the “optimal” factor of the linear 

estimation (where ∑ − 2)( ldui  is minimal), and ‘e’ is the relative quadratic error ( 2)(
ld

ldue i −Σ= ). 

The fuzzy uncertainties can also be estimated with ‘ dl0 ’, where 0l  is the “optimal” factor for the input 
variables (u1: l0=3.1224; u2: l0=3.1606). In this case, there is a bigger relative quadratic error 

e
dl

dlue i ≥
−

Σ= 2

0

0
0 )( . It is preferred, if the ‘l’ factors are nearly the same in case of different 

transformations, and ‘e’ and ‘ e0 ’ are small. 
As it appears from the results, in most cases, there may exist a linear conversion between the standard 
deviation and the fuzzy uncertainty ( ldui = ) with a relatively small error. In some cases, there are 
higher errors (e. g. addition, multiplication). This fact needs further examinations. 
 

Table 1.3 Fuzzy uncertainties in case of different non-linear mappings 

 x 
mx=1 
 

x+y  
mx=1,my=2 
dx=0.1 

x+y  
mx=1,my=2 
dx=dy 

x*y  
mx=2,my=1 
dx=0.1 

x*y  
mx=5,my=1 
dx=0.1 

1/x 
mx=10 

x2 
mx=1 

x2 
mx=5 

u1       a 3.1224 3.3712 4.3708 3.6604 4.0753 3.0774 2.6592 3.0948 
       e 0 0.1278 0 0.0987 0.0483 0.0028 0.1337 0.0012 
       e0 0 0.2976 1.2237 0.5753 0.9067 0.0035 0.1964 0.0016 
u2       a   3.1606 3.444 4.4504 3.7747 4.1165 3.1677 2.8861 3.1297 
       e 0 0.1244 0 0.0696 0.0454 0.0021 0.0316 0.0019 
       e0 0 0.3226 1.2237 0.6051 0.888 0.002 0.0787 0.0026 

Table 1.4 Fuzzy uncertainties in case of different non-linear mappings 
 
 x  

mx=10 
x  

mx=25 
log(x) 
mx=10 

log(x) 
mx=25 

ex 

mx=1 
ex 

mx=2 
sin(x) 
mx=0 

sin(x) 
mx=1 

sin(x) 
mx=π/2 

u1       a 3.1226 3.1323 3.0868 3.1431 15001 1.5255 3.0262 2.9412 2.3609 
       e 0.0048 0.0067 0.007 0.0043 2.2799 2.1312 0.0616 0.0358 0.4742 
       e0 0.0048 0.0067 0.0063 0.0048 5.8949 5.7440 0.0483 0.0704 1.8262 
u2    a 3.1683 3.145 3.1468 3.1818 2.3317 2.3623 2.8294 2.746 2.281 
       e 0.0019 0.0007 0.0028 0.002 0.5841 0.51110 0.0661 0.0617 0.0388 
       e0 0.0017 0.001 0.0022 0.0018 0.5967 0.5975 0.1279 0.1794 1.3697 
 

1.6.4 Mixed data models ([S17], [S117], [S60]) 

Although there are several information processing methods based on the different homogenous 
data models, mixed data models often need to be used with the increasing complexity of the 
problems and with the appearance and spreading of heterogeneous, connected systems,  
Complex, difficult problems need the partitioning of the task and the system. It can be found, 
that different parts of the problem need different computing methods, which are possibly based 
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on different data models. For example, after some “classical” pre-processing methods, a fuzzy 
based pattern recognizing algorithm can follow. In this case, the different data models follow 
each other in time, inside one part of the system one uniform data model is used, but some 
conversion method is needed between the different parts. 
Different data models can be in use parallel with each other, as well. E.g., in case of a system 
obtaining its inputs from different sources, it may be possible that the inputs are variables given 
in different data representation models. For example, inputs originated from measurement 
procedures or some “classical” information processing methods, are given as probability 
variables, while other input, originating from fuzzy production systems or subjective 
information sources are given as fuzzy variables. In this case, some methods for the treating of 
these different data models are needed.  
A possible solution can be the use of fuzzy random variables [36]. Fuzzy random variables are 
fuzzy-valued random variables, and can be described by a set of ν={(Fi,pi), i=1,2,...n}, where Fi 
is a fuzzy set, over the universe of real numbers and pi is the probability of the event, labeled Fi. 
The expected value of a fuzzy random variable is a fuzzy variable 

∑=
i

ii Fpν      (3.38) 

An exact, real-valued result can be obtained by the defuzzification of the expected value. 
In general term, fuzzy and random variables can also be treated as special fuzzy random 
variables. In the first case, the probability of the given fuzzy variable is considered to be 1 while 
in the second case, the real numbers could be treated as special fuzzy variables (singletons), 
where the membership function is 1 only in one point, and 0 otherwise. 
With that extension, any operation on fuzzy and random variables can be carried out and the 
obtained results will be fuzzy random variables. For example, if  g(x,y) maps the  x random and 
y fuzzy input variables into the output variable v, then the result will be the ν={(Fi,pi), i=1,2,...n} 
fuzzy random variable, where F g x yi i= * ( , )  ( g*  is the fuzzy version of g(), got from the 
extension principle), and pi is the original probability of xi  (Fig. 1.36). 
The problem with the fuzzy random variables is that the calculations are very time consuming. 
In the above example, g*  must be executed n-times and in the next phase when the outputs of 
the procedure are fuzzy random variables, the operations must be carried out n2-times. This can 
cause an exponential explosion during the information processing. 

g(x,y) 

y: fuzzy 
variable 

{(xi,pi)}: random 
variable {(g*(xi,y),pi)}: fuzzy  

random variable 

 
Fig. 1.36 Computation with random and fuzzy variables 

Another solution is, if instead of using fuzzy random variables, all input variables are converted 
into one uniform data model, which could be either the fuzzy or the probability based data 
model. In this case, information processing can be carried out in that uniform data model, so the 
computation is not so time-consuming. 
Conversion methods 
Conversion between different data models is needed, in case of complex, heterogeneous systems, 
where the different parts of the system are based on different data models. On the other hand, the 
conversion of the inputs into one uniform data model can be a solution in cases of input, given in 
different data models, as well. 
Conversion can be treated as calculation of the µ()  membership function from the f() density 
function. Another, different approach is that the conversion is made between the 
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p p p pn= ( , ,..., )1 2  probability distribution and the r r r rn= ( , , ... , )1 2  possibility distribution, 
where p pi i≥ +1 , r ri i≥ +1  and r1 1= . The possibility distribution can be treated as the discrete 
sampling of the µ()  membership function, but the values are ordered not by xi , but by r xi i= µ( ) . 
Several conversion methods between fuzzy and probability based data models can be found in 
the literature (e. g. [37], [38], [39]). The simplest conversion method is the scaling ([38], [39]), 
where 

µ( )
( )

max( ( ))
x

f x
f x

=   or r
p
pi

i=
1

 and      (3.39) 

f x x
x dx
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Another, more complicated method can be the following [38], [39] 
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Conversion can also be based on the correspondence between the confidence intervals of the 
random variable and the α-cut of the fuzzy variable [38], [39] 
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where [ x x1 2, ] is a confidence interval. Instead of the inverse of this conversion, usually the 
previous conversion method (3.42) is used. 
The different conversion methods give different results (see Fig. 1.37), so two main questions 
arise: 

• Into which data model to convert the data? 
• By which conversion method? 

In some cases,  the answer for the first question can be predetermined  (for example,  calculation  
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Figure 1.36 The results of different conversion methods. 
_____: density function of a normal random variable (m=4, d=3); _._._._: membership function 

(3.39); ...........: membership function (3.41);  _ _ _ _: membership function (3.43) 
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methods and their  data model is  given and  only the  conversion of input into the proper data 
model is required), but if the calculation methods and data models are not yet settled, the 
uniform data model can be freely chosen.  
For the finding answers for these questions, several (appr. 50) examinations were carried out by 
making simulations using the MATLAB package. The above-described five conversion methods 
were examined. 
The examinations were carried out in case of the basic arithmetic operators (addition, 
multiplication, division), thus the input variables/results can be extended to rational functions. 
One of the input variable was a normal random variable and the other was a triangular fuzzy 
variable. In case of division, the cases of fuzzy and random denominators were separately 
examined.  
First, input was converted into one, uniform - fuzzy or probability based - data model and results 
were calculated based on this data model. After that, the results were compared to the reference 
value, which was computed by using fuzzy random variables according to the following steps: 

1. Discrete approximation of the input random variable: {(xi,pi), i=1,2,...n}.  
2. Calculation of the ),(* yxgF ii =  values, where ()*g  is the fuzzy extension of the g() mapping, 

describing the transformation. 
3. The result is a fuzzy random variable: {(Fi,pi), i=1,2,...n}.  
4. Calculation of the (fuzzy) expected value of the result: ∑

i
iiFp . 

5. The reference value is the defuzzificated expected value. 

A part of the resultant error originates from the discrete approximations (step 1), but it is 
considerably smaller, then the error originated from the conversion itself. 
The following observations can be made (Table 1.5 shows some of the results): 

- Usually conversion into random variables gives better results. Nevertheless, in many cases, 
the use of fuzzy variables can be not or only at great costs avoided. Fuzzy based systems 
simply need fuzzy input and some kind of inaccuracy, uncertainty can not be correctly 
represented by random variables. 

-  If the output is highly non-linear function of one of the input variables (e.g. in case of 
division, where the denominator is less, then 1), the conversion of that input causes bigger 
errors. So, in this case, conversion into the data model of this “non-linear” input gives better 
results. The cause of this phenomenon can be that in case of linear or nearly linear functions, 
if the original density/membership functions are symmetric, then results have also symmetric 
or nearly symmetric density/membership functions. In case of symmetric or nearly symmetric 
density/membership functions, the expected value/defuzzified value will be around the center 
of the distribution/fuzzy set, independently of the exact shape of the distribution/membership 
functions. Therefore in these cases, conversion can not cause too high error (all of the 
examined conversion methods preserve the symmetric property). 

- Conversion methods into random variable give similarly “good” results, there can not be 
made a distinction among them.  

-  From conversion methods into fuzzy variable, the third (3.43) gives the best results, while the 
second (3.41) the worst. 

Consequently, if the uniform data model can be chosen freely (e.g., if information processing 
and the data model used by it is not given), then it is suitable to choose the data model of the 
“less linear” input of the system, as uniform data model. If there are no great differences in the 
linearity, then the probability based data model can be a good choice.  
In many cases, the data model of the system is given, e.g., expert knowledge must be used or the 
lack of information must be represented, therefore fuzzy data model must be used. A similar 
case is, when a highly non-linear module follows, where the use of fuzzy data model can be 
more suitable and we choose it in order to reduce the number of conversions. In these cases, the  
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Table 1.5 Difference from the reference value. a) Addition of fuzzy and random variables (the 
expected value and the defuzzificated values of the inputs are 10); b, Multiplication of fuzzy and 

random variables (the expected value and the defuzzificated value of the inputs are 10); c) 
Division of random variable by fuzzy variable (the expected value of the dividend is 10, and the 
defuzzificated value of the divisor is 0.5); d, Division of fuzzy variable by random variable (the 
defuzzificated value of the dividend is 10 and the expected value of the divisor is 0.5); h1-h3: 

absolute errors in case of conversion into fuzzy variables, according to  (3.39), (3.41), and (3.43), 
respectively; h4-h5: absolute error in case of conversion into random variables, according to 

(3.40), and (3.42), respectively; dx: the standard deviation of the random input 
1.a  dx=0.1 dx=0.2 dx=0.3 
h1 df=0.3 0.0006 0.0009 0.0001 

 df=0.6 0.0007 0.0005 0.0008 
h2 df=0.3 0.00007 0.0008 0.0006 

 df=0.6 0.0007 0.0008 0.0011 
h3 df=0.3 0.0008 0.0009 0.0749 

 df=0.6 0.0006 0.0008 0.0004 
h4 df=0.3 0.0025 0.0021 0.0004 

 df=0.6 0.0009 0.0016 0.0006 
h5 df=0.3 0.0000 0.0011 0.0014 

 df=0.6 0.0003 0.0010 0.0047 
 

1.b  dx=0.1 dx=0.2 dx=0.3 
h1 df=0.3 0.0443 0.0741 0.1131 

 df=0.6 0.0769 0.1467 0.2243 
h2 df=0.3 0.0499 0.0887 0.1221 

 df=0.6 0.0862 0.1711 0.2424 
h3 df=0.3 0.0349 0.0887 0.0749 

 df=0.6 0.0611 0.1711 0.1819 
h4 df=0.3 0.0032 0.0026 0.0017 

 df=0.6 0.0052 0.0078 0.0083 
h5 df=0.3 0.0054 0.0056 0.0061 

 df=0.6 0.0067 0.0067 0.0064 
 

1.c  dx=0.1 dx=0.2 dx=0.3 
h1 df=0.3 0.1541 0.3631 0.5679 

 df=0.48 0.4318 1.0166 1.6032 
h2 df=0.3 0.1752 0.4050 0.6353 

 df=0.48 0.4885 1.1223 1.7625 
h3 df=0.3 0.1211 0.2965 0.4733 

 df=0.48 0.3504 0.8530 1.3670 
h4 df=0.3 0.8704 3.8430 3.8278 

 df=0.48 15.8224 15.9831 16.0178 
h5 df=0.3 4.3603 4.3657 4.3331 

 df=0.48 17.1521 17.2090 17.2090 
 

1.d  dx=0.1 dx=0.14 
h1 df=0.3 2.6339 14.9361 

 df=0.6 2.7887 23.6055 
h2 df=0.3 4.0444 26.9831 

 df=0.6 4.2486 41.0495 
h3 df=0.3 1.3041 6.0385 

 df=0.6 1.4439 8.9964 
h4 df=0.3 0.0106 0.0542 

 df=0.6 0.0177 0.1309 
h5 df=0.3 0.0037 0.1378 

 df=0.6 0.0113 0.1441 
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third conversion method can be used to make lower conversion error. If a faster, simpler 
conversion method is needed, the first one, scaling can be a good choice. 
We would like to remark that a recently proposed new fuzzy alternative, the use of type-2 fuzzy 
sets (see e.g. [40]) seems to be also a promising possibility, however it needs further 
investigations.  

1.6.5 Qualification of results in case of mixed data models ([S17], [S117], [S55], [S60]) 

The qualification can easily be solved if we convert every data into one, uniform data model. In 
this case, qualification can be carried out according to the uniform data model. If the uniform 
data model is the probability theory based data model (e.g. the system calculated with random 
variables), the resultant standard deviation can be calculated either from the distribution function 
of the output or with the help of some approximate method. 
If the uniform data model is the fuzzy data model, we must define a “measure of uncertainty”, 
which can be calculated from the membership function. The measure of uncertainty has to fulfill 
the following requirements: (1) it must be analogous with the subjective opinion; (2) it must be 
comparable with the probability theory based uncertainty measures (e.g. standard deviation); (3) 
it must behave similarly to the “classical” measures during different transformations; (4) we 
must ensure communication between systems based on a “rule of conversion” between the 
different measures of uncertainty; and, finally (5) comparability and convertibility are important 
for human users, who are at home in probability theory based uncertainty measures and expect 
similar behaving from fuzzy uncertainty measures, as well. 
Based on the results of Subsection 1.6.3, two methods can be proposed for quantifying 
uncertainty of fuzzy data: 

1. Width of α-cut: 
12,1 xxu −=α , where })(inf{1 αµ ≥= xxx  and })(sup{2 αµ ≥= xxx .    (3.44) 

In some aspects this uncertainty measure is analogous with the width of a confidence interval, a 
higher α value means a higher level of confidence. 

2. Integral of the membership function 

∫
+∞

∞−

= dxxu )(2 µ .     (3.45) 

This second method can be recommended, if the fuzzy variable is not normalized and/or is not 
convex. 
As a summation of the above results we can conclude that if we represent the uncertainty with the 
width of α-cut of a fuzzy number or with the integral of the membership function, we get a suitable 
method which behaves similar to the standard deviation and the classical and fuzzy based uncertainty 
measures are easily convertible. 
In case of inputs of different data models, one solution could be the use of fuzzy random 
variables. Although, calculations with fuzzy random variables are very time-consuming, so a 
faster and more general solution can be the use of conversion methods. With them, all input can 
be converted into one, uniform data model and calculations can be carried out using this uniform 
data model. With the use of these methods, conversion between the parts of the complex, 
heterogeneous systems, based on different data models can be solved. 
Examinations also showed that usually the conversion into random variables causes less error, 
except in cases, when the output is strongly non-linear function of one of the input variables 
when it is recommended to keep the original data model of that input. In case of conversion into 
fuzzy variable, there can be stated a “goodness” order of the conversion methods. 
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Part II New Methods in Digital Image Processing 

Enhancement of noisy image data is a very challenging issue in many research and application 
areas. In the last few years, non-linear filters, feature extraction, high dynamic range (HDR) 
imaging methods based on soft computing models have been shown to be very effective in 
removing noise without destroying the useful information contained in the image data. In 
Chapter II new image processing techniques are introduced in the above mentioned fields, thus 
contributing to the variety of advantageous possibilities to be applied.  The main intentions of 
the presented algorithms are (1) to improve the quality of the image from the point of view of 
the aim of the processing, (2) to support the performance, and parallel with it (3) to decrease the 
complexity of further processing using the results of the image processing phase. 

2.1 Introduction 
With the continued growth of multimedia and communication systems, the instrumentation and 
measurement fields have seen a steady increase in the focus on image data. Images contain 
measurement information of key interest for a variety of research and application areas such as 
astronomy, remote sensing, biology, medical sciences, particle physics, science of materials, etc. 
Developing tools and techniques to enhance the quality of image data plays a very relevant role 
in any case. Enhancement of noisy images, however, is not a trivial task. The filtering action 
should distinguish between unwanted noise (to be removed) and image details (to be preserved 
or possibly enhance). Soft computing, and especially fuzzy systems based methods can 
effectively complete this task outperforming conventional methods. Indeed, fuzzy reasoning is 
very well suited to model uncertainty that typically occurs when both noise cancellation and 
detail preservation (enhancement) represent very critical issues. As a result, the number of 
different approaches to fuzzy image processing has been progressively increasing [1]. 
In this chapter we deal with different areas of image processing and introduce new soft 
computing (fuzzy) supported methods. In Section 2.2 corner detection is addressed. Two new 
fuzzy based corner detection methods represent our contribution to the field.  
Section 2.3 deals with useful information extraction. “Useful” information means that the 
information is important from the further processing point of view and the, from this aspect non-
important (in other situations possibly significant) image information is handled as noise, i.e. is 
filtered out. In this section, we present a new method for separating the primary and non-primary 
edges in the images.  
Sections 2.4 and 2.5 are devoted to high dynamic range imaging. 5 novel approaches are detailed 
for reproduction of images distorted by the high dynamic range of illumination. Finally, Section 
2.7 shows illustrative examples. 

2.2 Corner detection 
Recently, the significance of feature extraction, e.g. corner detection has increased in computer 
vision, as well in related fields. Corner detection helps to determine the most characteristic 
points of an object and thus to reconstruct it. Corners are also useful in pattern recognition. In 
this chapter, a new corner detection technique is introduced, which is based on fuzzy reasoning 
and applies a special local structure matrix. Furthermore, by introducing a new attribute 



 48

associated to the corners, the method efficiently supports further processing, e.g. point 
correspondence matching in stereo images or 3D reconstruction of schemes.   

2.2.1 Introduction 

Corner detection plays an important role in computer vision, pattern recognition [2], in shape 
and motion analysis [3] as well as in 3D reconstruction [4], [5] of a scene. Motion is ambiguous 
along an edge and unambiguous at a corner [S108]. In most cases, shapes can approximately be 
reconstructed from their corners. 3D reconstruction from images is a common issue of several 
research domains.  
More and more applications are using computer generated models. In many cases, models of 
existing scenes or objects are desired. Creating photorealistic 3D models of a scene from 
multiple photographs is a fundamental problem in computer vision and in image based modeling. 
The emphasis for most computer vision algorithms is on automatic reconstruction of the scene 
with little or no user interaction. The basic idea behind 3D model reconstruction, from a 
sequence of un-calibrated images, can be defined in several steps [S107]: first, we need to relate 
the images in the whole sequence then extract information based on pixel correspondences to be 
able to apply methods of epipolar geometry.  
In real-life image sequences, certain points are much better suited for automated matching than 
others. The environments of these points contain significant intensity variations and are 
therefore easy to differentiate from others. The correspondence between such points of interest 
has to be done by some kind of matching procedure. A possible approach to select points of 
interest is corner detection. Corners in a scene are the end points of the edges. As we know, 
edges represent object boundaries and are very useful in 3D reconstruction of a scene.  
There are two important requirements for the selection of interesting points. First, points 
corresponding to the same scene point should be extracted consistently over the different views. 
Secondly, there should be enough information in the environment of the points, to be able to 
automatically match the corresponding points [s116]. Corner points are good candidates from 
both points of view, because they are usually “easily” detectable and identifiable and, 
furthermore, may have a “characteristic” environment, which all increase the chances for 
matching the corresponding points in other images [s9]. 
There are several known corner detection algorithms for the estimation of the corner points. 
These detectors are based on different algorithm-specific principles. It is known that there are 
corner detectors, whose functionality is based on a so-called feature orientation matrix L(x,y), 
which utilizes the local structure matrix Ls(x,y) consisting of the first partial derivatives of the 
intensity function:  
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where G(x,y) corresponds to the a Gaussian smoothing function (see (2.9)) and * stands for the 
convolution operation. (The idea behind is that corners are local image features characterized by 
locations where the variations of the intensity function I(x,y) are high both in directions x and y 
(i.e. both partial derivatives Ix and Iy are large) anyhow the main axes of the coordinate system 
are chosen. Examples of it are the Harris feature point detector [6] and Förstner’s method [7].  
Harris’ method evaluates a comparison: the measure of the corner strength 

))),((trace(),(det( yxLkyxLRH −= ,   (2.2) 

is compared to an appropriately chosen constant threshold. If RH exceeds the threshold, the point 
is taken as a corner. Here, trace(L(x,y)) = λ1 + λ2, λ1, λ2 stand for the eigenvalues of matrix 
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L(x,y), and k denotes a parameter effecting the sensitivity of the method (typical values for k are 
k∈ [0.04 – 0.2]).  
Förstner determines the corners as the local maxima of the beneficial function H(x, y)  
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A further well-known corner detector is the SUSAN (Smallest Univalue Segment Assimilating 
Nucleus) detector based on brightness comparison [8]. The algorithm does not depend on image 
derivatives; it uses the brightness values of the pixels. The first step of the algorithm is to place a 
circular mask around the pixel in question (the nucleus). After this, the method calculates the 
number of pixels within the circular mask which have similar brightness values to the nucleus. 
(These pixels define the so-called USAN.). The next step is to produce the corner strength image 
by subtracting the USAN size from a given geometric threshold. The possible false positives can 
be neglected by finding the USAN's centroid and its contiguity. The so called USAN area 
reaches a minimum (SUSAN), when the nucleus lies on a corner point. This method is more 
resistant to image noise than the previous ones.  
The above, most well known algorithms all apply the following idea: the processed image point 
is detected as a corner when the calculated value of a certain feature (which is characteristic for 
a corner) exceeds a given, constant threshold. The effectiveness of these methods from corner 
detection point of view is acceptable. However, modern signal/image processing methods need 
to fulfill certain new requirements as well. 
A new requirement set against signal and image processing algorithms (or in more general, 
against all pre-processing algorithms) is that they have to give an efficient support to further 
processing and to autonomous operation of the whole procedure [S9], [S119]. (This requirement 
has been defined by the author and has been accepted by the international research community.) 
The above summarized standard methods usually fail to satisfy these requisites. 
In the following three subsections, simple procedures (noise elimination, smoothing and creation 
of the local structure matrix) are summarized, which serve as building blocks of the new 
introduced corner detectors. This is followed by the presentation of the methods themselves in 
2.2.5, and their comparison to existing algorithms in 2.2.6. 

2.2.2 Noise Elimination 

Before starting to search for the corner points of an image, it is necessary to eliminate the noise. 
For this purpose we use FIRE filters, a special fuzzy system characterized by an IF-THEN-
ELSE structure and a specific inference mechanism proposed by Russo [9]. Different noise 
statistics can be addressed by adopting different combinations of fuzzy sets and rules. In the 
followings, we will present a simple FIRE filter removing impulse noise. 
Let I(r) be the pixel luminance at location r=[x,y] in the noisy image, where x is the horizontal 
and y the vertical coordinate of the pixel. Let I0 =I(r0) denote the luminance of the input sample 
having position r0  (r0 =[x0,y0]) and being smoothed by a FIRE fuzzy filter. The input variables 
of the fuzzy filter are the amplitude differences defined by: 

8,...,1,0 =−=∆ jIII jj     (2.4) 

where Ij=I(rj), j=1,…,8 values are the luminance values of the neighboring pixels of the actually 
processed pixel r0 (see the left side of Fig. 2.1). Let K0 be the luminance of the pixel having the 
same position as r0 in the output image. This value is determined by the following relationship: 

new value = old value + correction, 

IIK ∆+= 00      (2.5) 
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where ∆I is determined in (2.8). 
Let U

9

1=
=

i iWW  be defined by a subset of the eight neighboring pixels around r0 belonging to a 
3x3 moving window (see the right hand side of Fig. 2.1). Let the rule base deal with the pixel 
patterns W1,…,W9 . Value K0 can be calculated, as follows [9], [1]: 

r0 r5

r7

r3r2

r4

r1

r6 r8
   

Fig. 2.1 The neighboring pixels of the actually processed pixel r0 (left) and the pixel patterns 
(right)  

{ }{ }9,...,1;:)( =∈∆= iWrImMINMAX ijjLPλ    (2.6) 

{ }{ }9,...,1;:)(* =∈∆= iWrImMINMAX ijjLNλ   (2.7) 

  IIKLI ∆+=∆−=∆ 00,)1( λ      (2.8) 

where ∆λ=λ-λ*, L is the maximum of the gray level intensity, mLP and mLN correspond to the 
membership functions large negative and large positive, and mLP(I)=mLN(-I) (see Fig. 2.2). The 
filter is recursively applied to the input data. 

0 a b L-1

mLP

1

- +L 1 ab

mLN

 
Fig. 2.2 Membership functions mLN (large negative) and mLP, (large positive), a and b are 

parameters for the tuning of the sensitivity to noise of the filtering  

Here we would like to remark that the fuzzy sets above are suitable for removing impulse noise 
which is the most typical noise type in case of images. Although, FIRE filters can be used for 
removing other types of noise, as well, however in these cases different fuzzy sets have to be 
applied. A further advantageous feature of these filters is that the fuzzy sets can be combined, i.e. 
different noise statistics can be addressed simultaneously.  

2.2.3. Gaussian Smoothing 

The algorithm uses a convolution kernel of size NxN that represents the shape of a Gaussian 
hump. This kernel has special properties detailed below. A circularly symmetric Gaussian hump 
has the form of 
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where x and y stand for the 2D coordinates of a point and σ is a shaping parameter of the 
distribution (see Fig. 2.3) [10]. The main idea of Gaussian smoothing is to use this 2D 
distribution as a ‘point-spread’ function which can be achieved by convolution. Since digital 
images are stored as a collection of discrete pixels we need to produce a discrete approximation 
to the Gaussian function before we can perform the convolution [10]. An example of this 
distribution can be seen in Table 2.1.  
The idea of Gaussian smoothing is to use this 2-D distribution as a „point-spread” function 
achieved by convolution.  
 

0.0003 0.0023 0.0062 0.0062 0.0023 0.0003 
0.0023 0.0168 0.0458 0.0458 0.0168 0.0023 
0.0062 0.0458 0.1244 0.1244 0.0458 0.0062 
0.0062 0.0458 0.1244 0.1244 0.0458 0.0062 
0.0023 0.0168 0.0458 0.0458 0.0168 0.0023 
0.0003 0.0023 0.0062 0.0062 0.0023 0.0003 

Table 2.1 Gaussian 6x6 convolution kernel with σ=1  

 
 

Fig. 2.3 2D Gaussian distribution function with σ=1 

The convolution is implemented as follows: 

for(yo=n; y0<=ymax-n; yo++)  
for(xo=n; xo<=xmax-n; xo++) 

{ 
newvalue=0 

     for(y=-n; y<=n; y++) 
for(x=-n; x<=n; x++) 
         newvalue=newvalue+g(x,y)·f(x+xo,y+yo) 
  newvalue=newvalue/S 
}, 

 
where xo, yo stand for the identifiers of the element on which we want to execute convolution (in 
our case these correspond to the 2D coordinates of the analyzed pixel), x and y denote the 
relative positions of the kernel points, S is the sum of the kernel values, g(x,y) represent the 
weighting factors of the convolution kernel, and f stands for the function which has to be 
smoothed.  
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2.2.4 Determination of the local structure matrix 

The local structure matrix LS(x,y)  is composed of the first derivatives of the intensity function 
I(x,y) (see (2.1)). The calculation of the first derivatives of I(x, y) can be solved by applying the 
following convolution masks at each image point: 
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For increasing the effectiveness of the corner detection algorithm it is proposed to smooth each 
of the entries of matrices Ix

2, Iy
2, IxIy, in (2.1) by applying a Gaussian convolution kernel, see 

2.2.3.  

2.2.5 The new corner detection methods 

In this section two new corner detection algorithms are proposed that on one hand out perform 
the previously used corner detectors, while on the other hand fulfill also the  previously 
mentioned new requirements.  
Method 2.1 improves the Harris corner detection method by introducing a fuzzy measure for the 
determination of points being corners. 
 
Method 2.1 ([S108], [S123]): The steps of the corner detection method are 
Step 1. Noise smoothing by Russo’s fuzzy filters (subsection 2.2.2) 

Step 2. Determination of the local structure matrix LS(x,y)  (subsection 2.2.4) 

Step 3. Application of a convolution mask for the determination of the elements of Förstner’s 
feature orientation matrix L(x,y) ((2.1) and subsection 2.2.3). 

Step 4. Determination of the values of the beneficial function H(x, y) ((2.3)).  

Step 5. Determination of the fuzzy membership values of the pixels representing the strength of 
being corner. For this, fuzzy reasoning is introduced which is applied to the calculated values 
H(x, y). By the score of the membership function (see Fig. 2.4) of fuzzy set “corners” mc(H), we 
can determine a weighting factor, which characterizes the rate of the corner’s membership. The 
value of the membership function is 1 for those image points for which the calculated value H 
equals or is larger than a given threshold value. With the help of parameters p, q we can modify 
the shape of the membership function and, thus change the sensitivity of the detection.  
Step 6. The output of the detection is yielded by the following relation: 
 

)(*)1(, HmLz cji −= ,     (2.10) 
 

where zi,j represent the gray-level intensity values of the output image, L stands for the largest 
intensity value (e.g. for 8 bit gray-scale images L=255), and H denotes the calculated H(x,y) 
values. 

0 q

p

threshold

mc

1

H

 
Fig. 2.4 Membership function of fuzzy set “corner” (mc). Axis H is the universe of the calculated 

H(x,y) values 
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Step 7. Finally, if the detected corners are neighbors then we have to keep only the corner with 
the largest calculated value H(x,y). The others should be ignored to avoid multiple detection of 
an, in practice, single corner. 
 

Method 2.2 starts off the basics of the fuzzy based corner detection algorithm described in 
Method 2.1. In addition, it applies an image smoothing procedure in the preprocessing phase, 
furthermore its performance is improved by introducing a fuzzy based technique assigning new 
attributes to the detected corner candidates (showing the membership value of being a ‘real’ 
corner). This latter property of the detector is very advantageous for the matching of  
corresponding points in stereo image pairs and thus it results in a better output. 
 

Method 2.2 ([S9], [S125]): 
Step 1. Noise smoothing by Russo’s fuzzy filters (Subsection 2.2.2) 

Step 2. Gaussian smoothing of the filtered image (Subsection 2.2.3). This new step improves the 
performance of the detection significantly. In corner detection, besides the noise, a further 
problem can occur because the digital image is stored as a collection of discrete pixels. An edge 
is represented as a series of points possibly resulting in small brakes in the edge which, in many 
of the cases, causes that false corners appear during the detection. In Fig. 2.5, the left image 
illustrates how a line looks like (producing false corners) when the resolution of the image is 
finite. For improving the performance of the corner detection algorithm, the false corners should 
be eliminated before applying the corner detector. For this purpose a Gaussian smoothing 
algorithm can be implemented, which is usually used to 'blur' images and to remove unimportant 
details and noise. In Fig. 2.5 the right image shows how a line after smoothing appears in the 
image.  

    

Fig. 2.5 Edge representation without smoothing (left) and after applying a smoothing  
algorithm (right) 

Step 3. determination of the local structure matrix LS(x,y)  (Subsection 2.2.4) 

Step 4. Application of a convolution mask for the determination of the elements of Förstner’s 
feature orientation matrix L(x,y) ((2.1) and subsection 2.2.3). L(x,y) can also be derived from 
locally approximating the autocovariance function of a real valued stochastic signal I(x,y) 
(generated by a stochastic process) in the origin [11].  

Step 5. Determination of the values of the beneficial function H(x, y).  

Step 6. Determination of the membership values of the pixels representing the strength of being 
corner.  
In most of the cases, we can not unambiguously determine whether the analyzed image point is a 
corner or not based only on a certain concrete threshold value. Therefore, in the proposed 
algorithm fuzzy techniques are applied for the calculation of the values (corners) significantly 
increasing the rate of correct corner detection. The higher the calculated H is, the higher the 
membership value representing that the analyzed pixel is a corner becomes. After fuzzifying the 
H values into fuzzy sets and applying a fuzzy rulebase we can evaluate the “degree of corner-
ness” of the analyzed pixels. This attribute of the pixels can advantageously be used in further 
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processing, e.g. when searching for the corresponding corner points in stereo image pairs, as 
well [S25]. (Point correspondence matching is an indefinite step of automatic 3D reconstruction. 
The consideration of an additional feature, i.e. the similarity of the degree of corner-ness of the 
projections of a certain point in different pictures taken from near camera positions, can highly 
increase the reliability of the decision.) 
The antecedent and consequent fuzzy sets of the detector are illustrated in Figs. 2.6 and 2.7, 
respectively. In Fig. 2.6 (antecedent fuzzy sets) the horizontal axis represents the universe of the 
H values with three fuzzy  sets,  CWEAK,  CMEDIUM, and CSTRONG corresponding to points being 
WEAK, MEDIUM, and STRONG corners, respectively. Parameters Hk (k=1,2,3,4,5) serve for 
the shaping of membership functions 

WEAKCµ , 
MEDIUMCµ  ,

STRONGCµ by which the sensitivity of the 
described detector can be tuned.  

W EAKCµ

H

1

0

M EDIUMCµ
STRONGCµ

1H 2H 3H 4H 5H

W E A KC MEDIUMC STRONGC

 

Fig. 2.6 Illustration of antecedent fuzzy sets CWEAK, CMEDIUM, and CSTRONG of universe H. The 
values Hk (k=1,2,3,4,5) serve for shaping membership functions  

WEAKCµ , 
MEDIUMCµ  ,

STRONGCµ , i.e. 
for tuning the sensitivity of the detector 

In Fig. 2.7 (consequent fuzzy sets) the horizontal axis is the axis of universe I (output intensity) 
also with three fuzzy sets, ILOW, IMEDIUM, and IHIGH. If the pixel is not at all a corner (none of the 
fuzzy rules are fired) then its intensity will be set to zero, while in other cases the output 
intensity showing the degree of cornerness will be evaluated by the aggregation of the following 
fuzzy rulebase: 

 
If (H(x,y), CWEAK)   then  (I(x,y), ILOW),  

  If (H(x,y), CMEDIUM)   then  (I(x,y), IMEDIUM), 
  If (H(x,y), CSTRONG)   then (I(x,y), IHIGH), 
 

 

1

0

LOWI MEDIUMI HIGHI

I

LOWIµ
MEDIUMIµ

HIGHIµ

1I 2I 3I 4I  

Fig. 2.7 Illustration of consequent fuzzy sets ILOW, IMEDIUM , and IHIGH of universe I (output 
intensity). Values Ik (k=1,2,3,4) serve for shaping the membership functions 

LOWCµ , 
MEDIUMCµ  , 

and
HEIGHTCµ   

which means that if the H(x,y) value is member of the fuzzy set CWEAK , CMEDIUM, or CHIGH then 
the output intensity of the pixel is low, medium, or high, respectively. Let µ (.) be the 
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membership function of the consequent fuzzy set generated as the superposition of the rule 
consequents. As defuzzification algorithm we use the center of gravity method, thus the intensity 
value of a pixel in the output image is obtained by 

∑

∑

=

== L

i
i

L

i
ii

o

I

II
yxI

1

1

)(

)(
),(

µ

µ
,     (2.11) 

where Io(x,y) denotes the intensity value of the pixel in the output image at position [x,y] and L 
stands for the maximum of the intensity. 

2.2.6 Comparison of different corner detection methods 

While the new algorithms are for sure advantageous for further processing and automation, we 
also performed a comparison to demonstrate their effectiveness. We have made several (appr. 
35) simulations and tested the four methods by running them on different pictures partly taken 
from the literature (like the famous “Lena” photo) and partly on photos chosen by us because we 
thought them characteristic from corner detection point of view. For simplicity, we have 
processed gray scale images, with maximum intensity L = 255.  
Before starting with corner detection, we have applied the same noise smoothing (typically a 
FIRE filter with a=66 and b=100) in each case. As an example of the results, we include here a 
“typical” running result in Table 2.2, where the parameters of the different corner detectors were 
set as follows: 

• Method 2.2: smoothing: by 2x2 Gaussian hump; fuzzy set: for the comparative runs, 
we have applied only one fuzzy set with threshold t=161 and tg α=1/544 (see Fig. 2.8) 
and the membership value corresponds to the strength of being a corner. This 
simplification can be accepted here because the aim of the illustration is only to show 
the performance of the corner detection and not to use it for further processing, e.g 
point correspondence matching. The threshold is set as in case of the Förstner’s 
method to make the comparison easier. 

• Förstner’s method: threshold=161.  

• Harris corner detector:   k=0.15, threshold=5000. 

• SUSAN corner detector: brightness threshold=10 (the maximum difference in grey 
levels between two pixels which allows them to be considered part of the same 
“region” in the image), geometric threshold=37 pixel fixed mask. 

 

Fig. 2.8 Fuzzy set “corner” 

As illustration, we include two very simple examples to show the effectiveness of the new 
method. For more details and examples, see [S9]. 

0 -L+1 L-1 

1

α 

t 
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Fig. 2.9 presents results got using the new corner detectors (a) by and (b) without image 
smoothing. The comparison in this figure illustrates very well the improvement of the results 
after applying smoothing. (Here we would like to remark the following: In the right hand side 
image you can find a detected corner not located in a grid point which at first glance could be 
thought as false detection. However, at closer look we have found that during the cutting out of 
the check pattern we have made a corner by the scissors, i.e. the detection is correct.) 

   
(a)   (b) 

Fig. 2.9 Detected corners in the fuzzy filtered image (a) using fuzzy based detector without 
image smoothing, (b) using the same detector but with image smoothing 

The next example serves for the comparison of different corner detection algorithms. In case of 
all methods, the same fuzzy filter was applied for noise removal. Fig. 2.10 (a) shows a part of a 
corridor with several lamps and doors. In Fig. 2.10 (b) the corners detected by the introduced 
new fuzzy supported algorithm (method 2.2) can be seen. By analyzing the results we can see 
that all the corners are detected and no false corner was found.  Figs. 2.10 (c)-(e) illustrate the 
results obtained by the Förstner’s, Harris, and SUSAN corner detection algorithms, respectively.  

     
 (a)           (b) 
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(c)     (d) 

 
(e) 

Fig. 2.10  Corridor – (a) Original photo, corner detection applying (b) the proposed new fuzzy 
based corner detection algorithm, (c) Förstner’s corner detector, (d) the Harris corner detector 

(k=0.001), (e) SUSAN detector 

Table 2.2: Comparison of different corner detection methods 

Methods       \       Corners Correct [%] False [%] Non detected 
[%] 

Fuzzy based corner detector 
(2x2 Gaussian hump,      

a=100, b=161, tg β=1/544) 

84 0 16 

Förstner’s method 
(threshold=161) 

78,7 0 21.3 

SUSAN corner detector 
(brightness threshold=10, 

geometric treshhold=37 pixel 
fixed mask) 

52 4,7 48 

Harris corner detector   
(k=0.15, threshold=5000) 

71 15.3 29 
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2.3  “Useful” information extraction 
Recently, in digital image processing a large amount of research has been focused on 
information retrieval and image understanding.  Typical examples are searching for similar 
objects/images in large databases and understanding the objects in images. The main point of 
these tasks is to extract the most characteristic features of the objects in the images, like edges, 
corners, characteristic textures, etc. Another very important aspect can be the separation of the 
“significant” and “unimportant” parts of these features, i.e. the enhancement of those features 
which carry primary information and to filter out the part, which represents information of minor 
importance. By this, the complexity of the searching and/or interpreting algorithms can be 
decreased while the performance is increased.  This chapter describes a new edge processing 
method which is able to extract the “primary” ones, i.e. those edges which can advantageously 
be used in sketch based image retrieval algorithms. 

2.3.1 Introduction 

The recent tremendous growth in computer technology parallel with the appearance of new 
advances in digital image processing has brought a substantial increase in the storage and aims 
of digital imagery. On one hand, this means the explosion of database-sizes, while on the other 
hand the increasing complexity of the stored information calls for new, intelligent information 
managing methods. To address this challenge, a large number of the digital image processing 
algorithms which have been introduced in the past years apply soft computing and/or intelligent 
techniques. All of these algorithms aim some kind of (intelligent) feature extraction supporting 
the further, more advanced processing, like object recognition, image understanding, image 
information retrieval, etc. in a single photo or in (large) data bases. 
A typical problem of the above type is searching for similar objects/images in large databases. 
Usually, this process is very time consuming, thus manual searching is not acceptable. A large 
amount of effort was put on the automation of the procedure. As a result, numerous methods of 
different kinds were developed.  
Some of the methods are based on the description of the images using text attributes, enabling 
the organization of images by topical or semantic hierarchies to facilitate easy navigation and 
browsing based on standard boolean queries [12], [13]. Automatically generating descriptive 
texts for a wide spectrum of images is not feasible, most text-based image retrieval systems 
require manual annotation of images. Obviously, annotating images manually is an expensive 
task for large image databases, and is often subjective, context-sensitive, and incomplete [12], 
[13]. Because of this reason, searching procedures based on image content analysis have been 
developed, which can select the images more effectively as the text based retrieval methods.  
The possibly most interesting and important step in image retrieval is the extraction of the 
“useful” features from the images. There are several characteristic attributes of the images (e.g. 
the edges and corners) which carry useful information and can be of help during the extraction 
of the primary information by appropriate techniques.  
The edges in an image can advantageously be used when comparing two images and searching 
for similar objects [s11]. An image usually contains a lot of different edges, among which there 
are texture edges and object contour edges. From the point of view of image retrieval, only the 
latter ones are important because they carry the primary information about the shape of the 
objects. By considering both types of edges during the search/comparison, the complexity/ time 
need of the procedure might dramatically, and the (probably high number of) non-important 
details (edges) might lead to false decisions. As a consequence, it is of key importance to 
separate the “significant” and “unimportant” subsets of the edges, i.e. to enhance the ones which 
correspond to the object boundaries and thus carry primary information, but to filter out the 
others which represent information of minor importance  
In this chapter a new primary edge extraction method is introduced, which applies surface 
deformation combined with fuzzy edge detection technique. In 2.3.2 a standard method of 
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surface smoothing is described, while in 2.3.3 an existing edge detection method due to Russo is 
summarized. The novel method of the author is then presented in 2.3.4. 

2.3.2 Surface smoothing 

Let St be the surface describing an image to be processed, i.e. St = {(x, y, z); z = I(x,y,t)}, where 
variables x and y represent the horizontal and vertical coordinates of the pixels, z stands for the 
luminance value, which is the function of the pixel coordinates and of time t. Smoothing is 
performed by image surface deformation. Such a process preserves the main edges (contours) in 
the image. The surface deformation process satisfies the following differential equation [14]: 

nk
t
It =

∂
∂ ,      (2.12) 

where k corresponds to the „speed” of the deformation along the normal direction n of the 
surface St. In our case, value k is represented by the mean curvature of the surface at location [x, 
y], i.e. the speed of the deformation at a point will be the function of the mean curvature at that 
point. The mean curvature is defined as 

2
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where k1 and k2 stand for the principal curvatures. Starting from equation (2.13), the following 
partial differential equation can be derived (Because of the limitations on the volume, we skip 
the details of the deduction. For details, see [15]): 
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Here Ix, Iy, Ixx, Ixy, Iyy stand for the partial derivatives with respect to the variables indicated as 
lower indices. Starting from equation (2.12) the surface at time t+∆t (for small ∆t) can be 
calculated as follows [14]: 
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where o(∆t) represents the error of the approximation.  
Fig 2.11 illustrates the virtual process of the surface deformation along the time.  

  

Fig. 2.11 Illustration of an image surface before (left) and after (right) the deformation 

2.3.3 Edge detection 
In the followings, the fuzzy edge detection method of Russo [1] is summarized. The idea of the 
method is very similar to that of the noise smoothing algorithms presented in Subsection 2.2.2. 
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Let z0,x,y be the pixel luminance at location [x,y] in the original image. Let us consider the group 
of neighboring pixels which belong to a 3x3 window centered on z0,x,y. The output of the edge 
detector is yielded by the following equation: 
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where zp
x,y denotes the pixel luminance in the edge detected image and mLA stands for the used 

membership function (see Fig. 2.12).  z0,x-1,y  and z0,x,y-1  correspond  to  the luminance values  of  
the  left   and   upper neighbors  of  the  processed pixel at location [x,y]. L-1 equals to the 
maximum luminence value (e.g. 255). For more details see [1]. 

0 q

p

L-1

mLA
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Fig. 2.12.  Fuzzy membership function m LA of “edge”. L-1 equals to the maximum intensity 
value, p and q are tuning parameters 

2.3.4 The new primary edge extraction method ([S11], [S139]) 
 

Assume that we have an image and we want to extract the edges corresponding to the object 
contours. This can be done with the help of the new primary edge extraction method detailed 
below. 
Prepocessing 
Step 1. Surface smoothing (Subsection 2.3.2):  As the first step, it is necessary to remove the 
unimportant details from the image. After smoothing the image, only the most characteristic 
contours are kept.  

Step 2. Constructing the edge map: The edge map of the original (unsmoothed) image is 
constructed using the fuzzy based edge detection method described in Subsection 2.3.3. Such an 
edge map contains all the possible edges. 

After preprocessing, the new edge separation follows according to Method 2.3 

Method 2.3 ([S11], [S139]): 

The new method aims to extract the most characteristic edges of images. This is done by a 
simultaneous analysis of the smoothed image and the edge map of the original image: in case of 
each of the edge points a small environment of the point is taken in the original image and using 
the smoothed image the variance of the color components inside this environment is analyzed. If 
the variance is below a predefined threshold value then the edge point is removed while 
otherwise it is considered as a useful, primary edge point. The procedure is performed as 
follows:  
Step 1. For each edge point taken from the edge map of the original image, the environment of 
the point is analyzed in the smoothed image. The analysis is realized by calculating the mean 
squared deviation of the color components (in case of grayscale images the gray-level 
component) in the environment of the selected edge point. 
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Let p=[px, py] be an edge point in the original image and let M denote a rectangular environment 
of p with width w and height h. The mean squared deviation is calculated as follows: 
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where tstop represents the duration of the surface deformation. 
In case of grayscale images, µ denotes the average gray level inside the environment M. For 
color images, the whole process should be done for each component separately and in this case µ 
corresponds to the average level of this color component inside the environment M. 

Step 2. If the calculated deviation exceeds a predefined threshold value, then the edge point is 
considered as useful edge. As result, an image containing only the most characteristic edges is 
obtained. 

For illustrating the behavior of the method, in Figs. 2.13-2.16 an example is presented showing 
the useful edge extraction procedure. For more examples and details, see [S11], [S139]. As 
shown in Fig. 2.16, many of the details disappear after the processing and only the characteristic 
edges of the car are left. This helps filtering out the non-important details and enhancing the 
most significant features/objects in images, thereby making image retrieval, object recognition, 
etc. easier. 

       

      Fig. 2.13. Original image taken of a car   Fig. 2.14. Smoothed image using surface 
           deformation based on mean curvature 

    

Fig. 2.15. Edge map of the original image     Fig. 2.16. Edges after applying the proposed 
        information enhancement method 



 62

2.4 High Dynamic Range (HDR) Imaging 
The high dynamic range of illumination may cause serious distortions and problems in the view 
and further processing of digital images. Important information can be hided in the highly or 
extreme lowly illuminated parts. This chapter deals with the reproduction of such images and 
introduces two anchor based and one tone reproduction pre-processing algorithms which may 
help in developing the hardly or non viewable features and content of the images.  

2.4.1 Introduction 

Digital processing can often improve the visual quality of real-world photographs, even if they 
have been taken with the best cameras by professional photographers in carefully controlled 
lighting conditions. This is because visual quality is not the same as the accurate reproduction of 
the scene. In image processing, most of the recently used methods apply preprocessing 
procedures to obtain images which guarantee - from the point of view of the concrete aims – 
better conditions for the processing. For example, if we eliminate the noise from the images to 
be processed we can obtain much better results then else or applying different feature extraction 
methods, like edge and corner detection, may significantly help in pattern recognition. 
There are many kinds of image properties to which the certain methods are more or less 
sensitive [1]. It is also known that in most of the cases certain regions of images have different 
features while at the same time the parameters of the processing methods are usually functions 
of the image features. This fact may make difficult to find the optimal parameters for the applied 
image processing procedure or to correctly interpret the results.   
The light intensity at a point in the image is the product of the reflectance at the corresponding 
object point and the intensity of the illumination at that point. The amount of light projected to 
the eyes (luminance) is determined by a number of factors: the illumination that strikes visible 
surfaces, the proportion of light reflected from the surface, and the amount of light absorbed, 
reflected, or deflected by the prevailing atmospheric conditions (such as haze or other partially 
transparent media) [16]. Only one of these factors, the proportion of light reflected (lightness) is 
associated with an intrinsic property of surfaces and hence is of special interest to the visual 
system. If a visual system only made a single measurement of luminance, acting as a photometer, 
then there would be no way to distinguish a white surface in dim light from a black surface in 
bright light. Yet, humans can usually do so and this skill is known as lightness constancy [17]. 
The constancies are central to perception. An organism needs to know about meaningful world 
properties, such as color, size, shape, etc. These properties are not explicitly available in the 
retinal image and must be extracted by visual processing. A gray patch appears brighter when 
viewed against a dark background and darker when viewed against a bright background.  This 
effect, known as “simultaneous contrast” is one of many brightness effects that are commonly 
attributed to simple visual processes, such as the lateral inhibition that occurs in the retina, 
whereby cells in one region inhibit cells in adjacent regions.  
In this chapter we deal with a further, relatively new research topic in image processing, namely 
with the reproduction of images when the high dynamic range of the lightness causes distortions 
in the appearance and contrast of the image in certain regions e.g. because a part of the image is 
highly illuminated looking plain white or another is in darkness. It may cause serious problems 
in the processing and analysis of the view. (Just consider the problem when you are leaving a 
dark tunnel and would like to be sure that nothing is in front of you, i.e. it is safe to enter or 
drive to the bright sunshine.)  Using such a reproduction algorithm in preprocessing phase of the 
images, we can make the information hided in the picture attainable, we can avoid information 
loss, and we can improve the performance of further processing and analysis. 
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The chapter is organized as follows: Section 2.4.2 deals with the background of tone 
reproduction, in Section 2.4.3 the principles of anchoring theory are summarized. Section 2.4.4 
is devoted to the segmentation of images, while Sections 2.4.5 and 2.4.6 discuss new HDR 
imaging techniques due to the author: in Section 2.4.5 two new anchoring based reproduction 
algorithms are described; in Section 2.4.6 another new and promising concept, the so called tone 
mapping function based algorithm is introduced. In Section 2.4.7 a simple example illustrates 
the performance of the techniques. 

2.4.2 Background 

Everybody knows the phenomena: if we switch off the lights at night, at first we cannot see 
anything at all. But the eye adapts to the new lighting situation and after one minute we begin to 
detect first objects and after about twenty minutes most features are visible again (although they 
without color). The same happens if the illumination suddenly changes from dark to bright, but 
this time the process of adaptation is less noticeable, because it happens much faster: in the first 
two seconds more than 80 percent of the adaptation is done [18]. The task of a tone reproduction 
operator is to present the global illumination solution for a scene on the display (monitor, print, 
etc.) such that it closely matches the impression of an observer of the corresponding real world’s 
scene. The tone reproduction operator has to face two major problems when fulfilling this task: 
First, it must mimic how the eye would see the real world and the displayed image and find a 
match between the two impressions. As the second task, it must compress the high dynamic 
range of the real world to the small dynamic range of the display (e.g. for standard monitors 1 - 
120 cd/m2 ).  
The tone reproduction problem was first defined by photographers. Often their goal is to 
produce realistic “renderings” of captured scenes and they have to produce such renderings 
while facing the limitations presented by slides or prints on photographic papers. Many common 
practices were developed over the 150 years of photographic practice [19]. In computer graphics 
the dynamic range of a scene is expressed as the ratio of the highest scene luminance to the 
lowest scene luminance. Photographers are more interested in the ratio of the highest and lowest 
luminance regions where details are visible. This can be viewed as a subjective measure of 
dynamic range.  
Fig. 2.17 illustrates the scale of a high dynamic range image. This scale can be divided into two 
main parts: the first contains displayable luminance values while the second one contains such 
high luminance values, which are not displayable by today’s devices. Images may contain 
different parts with different illumination characteristics. Real images often contain regions, 
which are highly illuminated and much less illuminated parts, as well. The highly illuminated 
regions can contain non-displayable luminance values. From the point of view of the observer, 
the image data falling into such luminance intervals are lost. Thus, to avoid the image 
information loss, it is necessary to map these high luminance values to the displayable range. 
There are several known methods in the literature addressing these problems. Each of them tries 
to compress the high dynamic range of luminance values to the displayable range. Just to 
mention two of them, Kawahito’s method [20] is based on multiple exposure time signals while 
Reinhards in [21] applies a so called zone system. Recently, the authors of this paper have also 
introduced new fuzzy supported anchor based and tone reproduction algorithms in [S29], [S31]. 
We would also like to mention the work of Ukovich et.al. [22], in which a comprehensive tool 
for the qualitative and visual evaluation of the different techniques is presented.  
In this Section three new methods are introduced for anchoring and tone reproduction. The first 
two are based on anchoring theory and image segmentation. During the development of the 
second method, the author started from the segmentation technique described in the first method 
[S29] and kept the fuzzy merging technique introduced also in [S29]. However, the technique 
was improved by a new anchor estimation algorithm and a new operator for the determination of 
the display luminance of the output pixels. 
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Fig. 2.17 Illustration of the mapping the high dynamic scale to a displayable range 
 
The basis of the third method presented here is the application of a new, modified form of the so 
called tone mapping function. All three introduced techniques result in an improvement of the 
preservation of the visual information and in the quality of the reproduction of the input pictures. 

2.4.3 Anchoring theory  

Although the ambiguous relationship between the luminance of a surface and its perceived 
lightness is widely understood, there has been little appreciation of the fact that the relative 
luminance values are scarcely less ambiguous than absolute luminance values [23]. Consider, 
e.g. a pair of adjacent regions in the retinal image whose luminance values stand in a five to one 
ratio. This five to one ratio informs the visual system only about the relative lightness values of 
the two surfaces, not their specific or absolute lightness values. It informs only about the 
distance between the two gray shades on the gray scale, not about their specific location on that 
scale. There is an infinite family of pairs of gray shades that are consistent with the five to one 
ratio. For example, if the five represents white then the one represents middle gray. But the five 
might represent middle gray as well, in which case the one will represent black. Indeed, it is 
even possible that the one represents white and the five represents an adjacent self-luminous 
region. So the solution is not even restricted to the scale of the gray surface. To derive specific 
shades of gray from relative luminance values in the image, one needs an anchoring rule. An 
anchoring rule defines at least one point of contact between luminance values in the image and 
gray scale values along our phenomenal black to white scale. Lightness values cannot be tied to 
absolute luminance values because there is no systematic relationship between absolute 
luminance and surface reflectance, as noted earlier. Rather, lightness values must be tied to some 
measure of relative luminance. The relative lightness of two regions in an image can remain 
fully consistent with the luminance ratio between them, even though their absolute lightness 
levels depend on how the luminance values are anchored [23]. The most frequently used rules 
for anchoring are the followings: 
Highest Luminance Rule: The value of white is assigned to the highest luminance in the display 
and serves as the standard for darker surfaces [24]. 
Average Luminance Rule: The average luminance rule derives from the adaptation level theory 
and states that the average luminance in the visual field is perceived as middle gray. Thus, the 
relative luminance values have to be anchored by their average value to middle gray [23]. 
There is a tendency of the highest luminance to appear white in the human vision system and 
also a tendency of the largest area to appear white [17]. Therefore, the highest luminance rule 
was redefined based on this experimental evidence. As long as there is no conduct, i.e. the 
highest luminance covers the largest area, the highest luminance becomes a stable anchor. 
However, when the darker area becomes larger, the highest luminance starts to be perceived as 
self-luminous. Thus, the anchor is chosen as a weighted average of the luminance proportionally 
to the covered area. 
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2.4.4 Fuzzy set theory based segmentation of images into frameworks 

The anchoring rule, described in the previous section, cannot be applied directly to complex 
images in an obvious way. The main concept is based on the decomposition of the image into so 
called frameworks or segments and then on the application of the anchoring rule in the 
individual segments, separately. However, the borders of the segment are not unambiguous, thus 
as an improvement, in the following, a new method is presented for the segmentation, which 
takes into consideration of this ambiguousness and applies fuzzy reasoning in the segmentation.  
 
Method 2.4 ([S29], [S31], [S121], [S122]): 
Step 1. By the segmentation we have to find the so called centroids of the segments using, e.g. 
the K-means clustering algorithm [25]. The K-means algorithm is initialized by values ranging 
from the minimum to maximum luminance in the image with a luminance step equal to one 
order of magnitude and we execute the iterations until the algorithm converges. We operate on a 
histogram in the 10 based logarithm of luminance. After the K-means algorithm has finished, the 
centroids we have got are merged according to the following criteria: when the difference 
between two centroids is below a certain threshold, e.g. one then these centroids have to be 
merged. This is also done iteratively. In each iteration step the two closest centroids are merged 
together and the new centroid value is calculated as the weighted average of the two merged 
centroids proportional to their area: 
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where ci and cj are the values corresponding to the centroids with indices i and j, ai and aj stand 
for the number of pixels in the ith and jth frameworks, i.e. they represent the number of pixels 
corresponding to the ith and jth centroid.  

Step 2. It is not an ambiguous step to assign a border to the certain frameworks. We can get 
better results if we look at the frameworks as fuzzy sets, which means that to each pixel a fuzzy 
membership value is assigned to define the membership of the pixels belonging to the 
frameworks [S29]. Thus, as next step we have to estimate the membership functions 
corresponding to the frameworks. For this, we suggest to use the centroids determined in the 
previous step by the K-means clustering algorithm. 
Let iµ  be the membership function corresponding to the ith centroid (framework) defined as 
follows (see Fig. 2.18): 
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Fig. 2.18 Illustration of the membership function iµ , which defines the membership of the 

luminance values in the ith framework  
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The ci values are the centroids estimated by the K-means clustering algorithm and I(x,y) stands 
for the luminance value in the log10 space of the pixel at position [x, y].  

Step 3. Besides to develop as much details of the images as possible, we also want to keep the 
“character” of the image. This means that during the determination of the output intensity of the 
pixel, we don’t simply take into account the membership values showing the measure of 
belonging to the different frameworks. We also apply a so-called articulation factor [26] 
associated to each framework and modify the membership values by these articulation factors in 
order to ensure that the “big” frameworks (i.e. having wide intensity ranges) will have a more 
characteristic influence on the output intensity than the “small” frameworks, i.e., frameworks 
with low variance have less influence on the global lightness. Thus, as the next step we have to 
determine an articulation factor for each framework independently. Frameworks with wider 
intensity range will have a greater weighting factor in the determination of the final luminance 
value of the output pixel. A framework whose dynamic range is higher than one order of 
magnitude has a maximum articulation and as the dynamic range goes down to zero, the 
articulation reaches the minimum:  
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Here Fi denotes the articulation factor of the ith framework, max Ii and min Ii correspond to the 
maximum and minimum values of the intensity within the ith framework, respectively, and s 
stands for a parameter by which the influence of Fi on the final membership value can be set. 
After the articulation factors have been estimated, we have to multiply these factors by the 
corresponding iµ values to get the final membership value in the frameworks (see (2.21)).  

 ,),(:),( iii Fyxyx µµ =      (2.22) 

where i=1..n, n is the number of frameworks. 

2.4.5 Anchor based new algorithms  

In the followings two new anchor based algorithm are introduced. 
 
Method 2.5 ([S29], [S121], [S122]): 
 
Step 1. Segmentation of the image into frameworks according to Method 2.4. 

Step 2. Anchor estimation: The anchors within each framework are estimated separately based 
on the so-called log-average luminance of an image.  
The log-average luminance is calculated by finding the geometric mean of the luminance values 
of all pixels [27]. The log-average luminance can usefully be used as the approximation of the 
anchor of a concrete framework in a scene. This quantity is computed by 
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where I(x,y) stands for the luminance of pixel [x,y], Ni is the total number of pixels in the image 
and δ  is a small value to avoid singularity occurring if black pixels are present in the image. 
frmi denotes the ith framework. 
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iI  is then used to scale the luminance I to the middle grey zone. For this we define a scaling 
factor for each framework, as follows: 

  
i

i
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aL = ,     (2.24) 

where iI  is the estimated anchor for the ith framework and ai is the key-value to indicate 
whether the ith framework is subjectively light (“high key”) or dark (“low key”). The standard 
value is 0.18 for normal-key frameworks, but the user can set ai to 0.09 and 0.045 or to 0.36, 
0.72 or 1.0 if the scene makes it necessary.   

Step 3. Merging the frameworks. The global lightness of the pixels is computed by merging the 
frameworks using the following fuzzy rulebase: 
 

If  (I(x,y),fw1)  Then   LG=L1, 
If  (I(x,y),fw2)  Then   LG=L2, 
If  (I(x,y),fw3)  Then   LG=L3, 
… 
If  (I(x,y),fwn)  Then   LG=Ln, 

 

where (I(x,y), fwi) denotes that the luminance I(x,y) is the member of the ith framework (fwi) 
with nonzero membership value. i=1..n, n stands for the number of frameworks. Li represents the 
estimated anchor corresponding to the ith framework while LG stands for the global lightness, 
which is used for shifting the original luminance values to achieve a displayable range of 
luminance. This value is got after evaluation of the above defined fuzzy rulebase, i.e. as the 
weighted sum of the local lightness values, where the membership values serve as weighting 
factors. 

Step 4. Finally, a simple global operator is applied to obtain the display luminance: 
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The other anchor based algorithm presented here keeps the segmentation technique described in 
Subsection 2.4.4 and the fuzzy merging algorithm introduced in Method 2.6 (Step 3). On the 
other hand, a new anchor estimation algorithm is suggested and a new operator for the 
determination of the display luminance of the output pixels: 
 
Method 2.6 ([S31], [S126]): 
 
Step 1. Segmentation of the image into frameworks according to Method 2.4. 

Step 2. Anchor estimation: The anchors within each framework are estimated separately based on 
the so-called highest luminance rule. This means that we need to find the luminance value that 
would be perceived as white. Although, we apply the highest luminance rule, we cannot directly 
use the highest luminance in the framework as an anchor. Seemingly, there is a relation between 
what is locally perceived as white and the relative magnitude of its area. If the highest luminance 
covers a large area it becomes a stable anchor. On the other hand, if the highest luminance is 
largely surrounded by darker pixels, the light pixels have a tendency to appear white (i.e. lighter 
than in reality). This is called self-luminance. The opposite is also true, i.e. if the lowest 
luminance is largely surrounded by light pixels, the (small region of) dark pixels have a 
tendency to appear black (i.e. darker than in reality). We can decrease the effect (the highest 
luminance to appear as self-luminous). When estimating the local anchor it is advised to remove 
a certain amount, e.g. 5% of all pixels in the framework’s area that have the highest luminance 
and then take the highest luminance of the rest of the pixels as the anchor (the 5% is an 
experimental factor) [26]. 
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Step 3. Merging the frameworks, as is described in Method 2.5, except that the new operator 
applied in Step 4 gives a different interpretation to the determined lightness values:   
  

If  (I(x,y),fw1)  Then   LM=L1, 
If  (I(x,y),fw2)  Then   LM=L2, 
If  (I(x,y),fw3)  Then   LM=L3, 
… 
If  (I(x,y),fwn)  Then   LM=Ln, 

 
where (I(x,y),fwi) denotes that the luminance I(x,y) is the member of the ith framework (fwi) 
with nonzero membership value, i=1..n, n stands for the number of frameworks. Li represents the 
estimated anchor corresponding to the ith framework while LM stands for the lightness 
modification value, which is used for shifting the original luminance values to achieve a 
displayable range of luminance. This value is obtained after evaluation of the above defined 
fuzzy rulebase, i.e. as the weighted sum of the local lightness values, where the membership 
values serve as weighting factors. Finally, 

Step 4. Determination of the display luminance of the output pixels: The lightness values of the 
output image Ires (x,y) are obtained according to 

    Mres LyxIyxI −= ),(),( .    (2.26) 

2.4.6 A new Tone mapping function based algorithm  

The method presented in this section solves the task of mapping the high dynamic range of 
luminance values to a displayable one by maintaining the complexity so low, that real time 
processing can be achieved, as well.  
 

Method 2.8 ([S31], [S126]): 
 

The main idea lies on defining a simple mapping function, which maps the wide range of 
luminance values to a displayable one.  
Besides it, the simple and easily evaluable mapping function (having low complexity) can be 
combined with a nonlinear scaling of the vertical axis (the axis of displayable luminance values), 
as well thus extending the mapping possibilities. The nonlinear vertical axis on one hand enables 
to keep the image data, which should not be modified, invariable while on the other hand the 
high or less illuminated areas can be corrected without having any influence on the areas 
containing correct image data. Furthermore, the nonlinear mapping function makes possible to 
compress regions where unimportant or sparse information is stored thus offering a way to keep 
wider parts of the displayable or viewable domain for the important (dense) regions. The 
importance of the regions can be measured easily and automatically by the magnitude of 
“strong” intensity changes (e.g. density of the edges) within the region which is characteristic 
for the density of the represented amount of (seen or hided) information in this region (see 
Section 2.5). The displayable luminance region can be allocated proportional to this measure, i.e. 
if we have an important (dense) high dynamic region, we can modify the originally 
corresponding region (assigned according to the log function) proportional to the characteristic 
information dense measure. The mapping will keep the relativity of the luminance, i.e. lighter 
regions will remain lighter while darker regions darker. Fig. 2.19 illustrates a possible mapping 
function and a simple nonlinear vertical axis of the displayable luminance values. The 
nonlinearity of the vertical axis is influenced by a set of linear functions. By changing the linear 
functions the nonlinear characteristics of the vertical axis can also be modified. 
The mapping function in Fig. 2.19 has the form of: 
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Fig. 2.19 Example of the most frequently used logarithmic mapping function (left) and the 
proposed new complex function: the logarithmic mapping combined with nonlinear (or 

piecewise linear) vertical axis (bottom) 

if  ( ) 1log0 SWLw ≤≤              then ( ) 1cos/log αwd LL =  
if  ( ) ( )21log1 SWSWLSW w +≤<            then ( ) 2cos/log αwd LL =  
if ( ) ( ) ( )321log21 SWSWSWLSWSW w ++≤<+       then ( ) 3cos/log αwd LL =       

  max321 cos/3cos/2cos/1 dLSWSWSW =++ ααα  (2.27) 

where Lw stands for a wide range luminance value, SWi represents the width of the ith section 
(logarithmic scale), Ld denotes the displayable luminance value (luminance value in the resulted 
output image, with upper limit Ldmax) and iα  is the angle between the side of the ith section of 
the axis and the original vertical axis.  

2.4.7 Illustrative example 

In the followings, a simple example, an image taken of a satellite, is presented for illustrating the 
effectiveness of the proposed new methods. For simplicity, we process grayscale images where 
the displayable range is between 0 and 255. For more examples and details, see [S29] and [S31]. 

    

Fig. 2.20 Image of a satellite 



 70

    

Fig. 2.21 Processed image using      Fig. 2.22 Processed image using 
Method 2.6      Method 2.7 

    

Fig. 2.23 Processed image using logarithmic    Fig. 2.24 Processed image using Method 2.8 
    mapping function with linear vertical axis 

In Fig. 2.20 the original image can be seen where a part of the scene is highly illuminated and 
the details can badly be recognized. Fig. 2.21 shows the output after using the fuzzy anchor 
based tone reproduction algorithm presented in Method 2.5, while in Fig. 2.22 the result after 
applying Method 2.6 can be followed. Fig. 2.23 illustrates the processed image when applying a 
simple logarithmic mapping function with linear vertical axis. Finally, in Fig. 2.24, the 
processed image is got by the complex tone mapping function based algorithm (logarithmic 
mapping and vertical axis) described in Method 2.7. 

2.5 Multiple exposure time HDR image synthetization 
In many of the image processing tasks, like object recognition and categorization, the color 
information may have a primary role. In case of complex searching and image understanding 
tasks, the application of gray scale images is usually not effective enough. The primary aim is to 
keep and/or enhance the color information, as well because it is useful for categorizing the 
detected object(s) more precisely, thus the color information may significantly improve the 
reliability of the decisions. 
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In this section a new tone reproduction algorithm is introduced which may help in developing 
hardly or non-viewable features and content of color images. The method is based on the 
synthetization of multiple exposure images, from which the dense part, i.e. regions having the 
maximum level of detail are included in the output image. The Red, Green, and Blue color 
components of the pixels are handled separately and in the output, the corresponding (modified) 
color components are blended. As a result, a high quality color HDR image is obtained, which 
contains both all of the detail and the color information. Using HDR color images, the 
performance of information enhancement, object and pattern recognition, scene reconstruction, 
etc. algorithms can significantly be improved.  
The section is organized as follows: In 2.5.1 the basic concept of the proposed new gradient 
based multiple exposure time synthesization algorithm is presented. Section 2.5.2 describes how 
we can measure the level of detail in an image region. Section 2.5.3. is devoted to image 
synthesization. 

2.5.1 Introduction 

When the dynamic range of a scene is high, taking just one photo by using a normal camera is 
not enough for producing a high quality image containing all the information. In such cases, 
several pictures are needed to capture all the scene details. These images should be merged 
together in such a way, that all the involved information is preserved. 
If the scene contains regions with high luminance values, then it is necessary to take a picture 
with low exposure time for the visualization of the details in the highly illuminated region. On 
the other hand, if the scene contains very dark areas, then the exposure time should be possibly 
much higher. Approaching from the opposite site, if we have images with different exposures 
we have to decide somehow which exposure contains the maximum level of information in case 
of a certain region.  

2.5.2 Measuring the Level of the Color Detail in an Image Region 

There are existing methods, which use statistical elements for measuring the amount of 
information in images/image regions. Others apply the histogram of the luminance values of the 
processed region.  We propose a new measurement method: to measure the level of the details in 
a region based on the sum of gradient magnitudes of luminance in that region. The higher sum 
of the gradient values is in a region corresponds to higher amount of details. This quantity can 
be computed easily by handling and measuring the RGB components of the region separately 
and at the end by summing up the component results. The complexity of this approach is 
significantly lower than that of the other ones, and as we demonstrate below, it provides good 
results. 
 

Theorem 2.1: The level of detail in an image/image region can be measured by summing up the 
intensity changes of the RGB components.  
 

Proof: 
 

The amount of information in an image is strongly related to the number and complexity of the 
objects in the image. The boundary edges of the objects carry the primary information about the 
object’s shape. Thus, image content information can be represented by the characteristic features, 
like corners and edges in the image, i.e. the number of characteristic pixels is proportional to the 
amount of information in the image. 
Let IR(x,y), IG(x,y), and IB(x,y) be the R, G, and B intensity components of the pixel at location [x, 
y] in the image to be processed. Let us consider the group of neighboring pixels which belong to 
a 3x3 window centered on [x, y]. For calculating the gradients of the intensity functions in 
horizontal ∆Ix and vertical ∆Iy directions at position [x, y], the intensity differences of the RGB 
components between the neighboring pixels are considered. For simplicity, we show the 
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expressions for only one (let’s say the R) component (the same has to be evaluated in case of the 
other two, G and B components): 
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For the further processing the maximum of the estimated gradient values should be chosen, 
which solves as the input of the normalized linear mapping function P defined as follows: 

              ( ) max/ IvvP = ,     (2.29) 

here Imax stands for the maximum intensity value. (For 8 bit RGB scales it equals 255.) 
Let R be a rectangular image region of width rw and height rh, with upper left corner at position   
[xr, yr]. The R component level of the detail inside of region R is defined as  
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The sum of the three, R, G, and B component levels of detail gives the level of detail in region R 
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As higher is the calculated MD value as detailed the analyzed region is.  

2.5.3 HDR image synthesization 
Consider that we have N color images of a static scene obtained at different exposures by using a 
stationary camera. The aim of the image synthesization method introduced in this subsection is 
to combine the images into a single one in such a way that all input information is included in 
the output image without producing noise.   
For extracting all of the details involved in a set of images of the same scene made with different 
exposures, it is required to introduce a factor for characterizing the level of the detail in an image 
region and then we will be able to choose the most information dense parts of the input images 
to include in the output image. The measure proposed in the previous subsection (see Theorem 
2.1) is a serious candidate for this purpose. In the followings a new gradient based multiple 
exposure time synthesization algorithm is detailed which uses the above detail level 
measurement method and solve the HDR image synthesization task. 
 

Method 2.9 ([S32], [S], [S137]): 
 

Step 1. Image segmentation: The first step of the processing is to divide the pictures into n rows 
and m columns, which yields nxm rectangular image regions. The regions in the images are of 
the same size with height rh and width rw (see Fig. 2.25). (In Fig. 2.25 you can see a 3x3 
division.) Let  Rijk  denote  the  region in the ith row and jth column of the image with index k. 
Let  rxij, ryij denote the horizontal and vertical coordinates of the center of the region in the ith 
row and jth column. IR

k(x,y), IG
k(x,y), IB

k(x,y) stand for the RGB intensity values of the pixel at 
position (x,y) in the image with index k, where k = 1, … , N and N stands for the number of 
images to be processed, each of them taken with different exposures. 

Step 2. Measuring the level of detail: For each image, the level of the detail has to be estimated 
inside every region Rijk (Method 2.8 described in Subsection 2.5.2). This information helps us to 
select the most detailed region among the corresponding image segments (indexed by the same i 
and j values) which is included into the output scene. This step is repeated for each image 
segment, i.e. for i = 1 … n, j = 1 … m. 
 



 73

Exposure k

rw

rh
rxij ,ryij

Ik( )x,y

Exposure 1

Exposure 2

Rijk

 

Fig. 2.25 Image regions after the segmentation 

Let D denote the matrix of regions with the highest level of detail. Let dij be the element in the 
ith row and jth column of D, which stands for the index of the image, which has the most 
detailed region in the ith row and jth column, i.e. 

( ) ( ) ijijkDijlD dlNllkRMRM =+−=> ;,...,1,1...,1| .     (2.32) 

Step 3. Merging the most informative segments: The next step is to merge the most detailed 
(Rijl) R, G, and B regions together, where l=dij i=1..n, and j=1..m. Merging the selected regions 
together results in three images (a red, a green, and a blue) which contain every detail involved 
in the N input images. 

Step 4. Smoothing: Unfortunately, the resulted images usually contain sharp transitions along 
the borders of the regions. These sharp transitions should be eliminated. A Gaussian blending 
function having the form of 
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can be applied advantageously, for this purpose. Here i and j stand for the row and column 
indices of the region over which the Gaussian hump Gij(x,y) is centered (see Fig. 2.26), m 
denotes the total number of columns and n the total number of rows in the input images. σx and 
σy stand for the standard deviation of the 2D Gaussian function. The values rxpq and rypq 
represent the coordinates of the center of the region in the pth column and qth row, 1≤r≤n, 
1≤s≤m.  
Let U be a function defined as 
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Function U(x,y) is used for cutting the Gaussian function, i.e. for eliminating the influence of 
those segments, who’s center points fall outside a predefined ε environment of the actually 
processed pixel. 
Combining the Gaussian smoothing function Gij(x,y) and the cutting function U(x,y), the output 
image can be evaluated according to  
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Fig. 2.26 Illustration of the Gaussian humps over the maximum level of detail regions used in 
the blending of the three (Red, Green, and Blue) output component images 

The output color and intensity can be influenced by changing the size of the regions and the 
standard deviations of the Gaussian functions. E.g., as smaller is the standard deviation of the 
Gaussian function as higher influence the regions with low detail level onto the result have. 
In Fig. 2.26 in case of exposure 1 the region in the 2nd row and 2nd column has the maximum 
level of detail compared to the other images, in case of exposure 2 the region in the 2nd row and 
1st column while in case of exposure k the region in the 3rd row and 3rd column is the most 
detailed. The Gaussian functions are centered at (rxij, ryij) of the maximum level regions. 
For increasing the speed of the processing, during the merging we can formulate groups of the 
adjacent regions originally belonging to the same exposure time image. Then for blending, a 
single Gaussian smoothing function can be applied over each of the groups, with center point 
falling into the center of gravity of the group. The cutting function U can also be defined in such 
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a way that the values of the blending function exceed zero over the whole image domain. 

2.5.4 Illustrative example 

The effectiveness of the proposed algorithm is illustrated by an example. The photos of the 
example are taken by Lou Haskell [28].  As input, three different exposure time color images are 
used. The width and height of the regions are chosen to 10 x 10 pixels. Deviations σx and σy 
equal to 60. For increasing the speed of the processing, during the merging we formulated 
groups of the adjacent regions originally belonging to the same exposure time image. A single 
Gaussian smoothing function is applied over each of the groups for the blending, with center 
point falling into the center of gravity of the group. The cutting function U is defined in such a 
way that the values of the blending function exceed zero over the whole image domain. 

 

 

 

Fig. 2.27 Images of a scene taken by different exposure times, photo: Lou Haskell [28] 
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Fig. 2.28 Picture processed by easyHDR [28] 

 

Fig. 2.29 Picture processed by the gradient based multiple exposure time synthesization 
algorithm (Method 2.9) 

In Fig. 2.27 three photos of the same scene can be seen taken by different exposure times. For 
comparison, Fig. 2.28 presents a picture processed with easyHDR [28] while Fig. 2.29 shows the 
result got by the proposed new method. 
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Part III  Automatic 3D reconstruction and its application in 
vehicle system dynamics  

3D model reconstruction plays a very important role in computer vision as well as in different 
other engineering fields. The determination of the 3D model from multiple images is of key 
importance. One of the primary difficulties in autonomous 3D reconstruction is the (automatic) 
selection of “significant” points which carry information about the shape of the 3D bodies i.e. 
which are characteristic from the model point of view. Another problem to be solved is the point 
correspondence matching in different images. An automatic solution for finding the point 
correspondences would open new possibilities for the automation of many methods, currently 
done under manual assistance. The automation of 3D reconstruction may grease the skids to the 
development of new intelligent systems. The results of such a procedure could advantageously 
be applied among others in car-crash analysis, robot guiding, object recognition, supervision of 
3D scenes, etc. In this chapter, besides describing an automatic 3D reconstruction method, we 
focus on its possible application in the field of vehicle system dynamics where we use it for car-
crash analysis.  

3.1 Introduction 
Feature matching is a key element in many computer vision applications, for example in stereo 
vision, motion tracking, and identification. The most significant problem in stereo vision is how 
to find the corresponding points in two, (‘left’ and ‘right’) images, referred to as the 
correspondence problem. In the field of computer vision several applications require to 
reconstruct 3D objects from images taken form different camera positions. In recent time the 
interest in 3D models has dramatically increased [1], [2]. The emphasis for most computer 
vision algorithms is on automatic reconstruction of the scene with little or no user interaction 
[3].  
Stereo techniques can be distinguished by several attributes, e.g., whether they use area-based or 
feature-based techniques (see explanation below), if they are applied to static or dynamic scenes, 
if they use passive or active techniques, or if they produce sparse or dense depth maps.  
The extremely long computational time needed to match stereo images is still the main obstacle 
on the way to the practical application of stereo vision techniques. In applications such as 
robotics, where the environment being modeled is continuously changing, these operations must 
also be fast to allow a continuous update of the matching set, from which 3D information is 
extracted [4]. The correspondence search in stereo images is commonly reduced to significant 
features as computing time is still an important criterion in stereo vision.  
There exist several stereo vision techniques, from which the most popular are the area-based and 
the feature-based method. The first kind of the mentioned techniques finds corresponding points 
based on the correlation between the corresponding areas in the left and right images [5]. First, a 
point of interest is chosen in one of the images. A correlation measure is then applied to search 
for a corresponding point with a matching neighborhood in the other image. Area-based 
techniques have the disadvantage of being sensitive to photometric variations during the image 
acquisition process and are sensitive to distortions, which are caused first of all by the changing 
viewing position.  
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Feature-based stereo techniques, on the other hand, match features in the left image to those in 
the right image. Features are selected as the most prominent parts in the image, such as, for 
example, edge points or edge segments, corner points etc. Feature-based techniques have the 
advantage of being less sensitive to photometric variations and of being faster than the area-
based stereo method, because there are fewer candidates for matching corresponding points [6]. 
In this chapter a new approach is presented which combines the two techniques and, thus obtains 
better results. Based on the method, the automatic 3D reconstruction from images becomes also 
reality.  
The alternative approach proposed in this chapter avoids most of the problems mentioned above. 
The object which has to be modeled is recorded from different viewpoints by a camera. The 
relative position and orientation of the camera and its calibration parameters are automatically 
retrieved from image data. For the reconstruction we use characteristic features, like edges and 
corner points of the objects. The complexity of the technique is kept low on one hand by 
filtering out the points and edges carrying non-primary information (i.e. the so-called texture 
edges and points) while on the other hand by applying recent methods of digital image 
processing (see e.g. [7]-[10]) combined with intelligent and soft (e.g. fuzzy) techniques.  
The introduced autonomous 3D reconstruction and its algorithms can be applied advantageously 
at many fields of engineering. Here, we will show a possible application in vehicle system 
dynamics: the usage in car-crash analysis.  
The chapter is organized as follows: In Section 3.2 the new automatic point correspondence 
matching method is detailed. Section 3.3 deals with the automation of the camera calibration 
while the description of the new automatic 3D reconstruction technique can be found in Section 
3.4. Section 3.5 presents CASY, the car-crash analysis system: an intelligent application of the 
introduced algorithms. 

3.2 Matching the corresponding feature points in stereo image pairs 
Feature matching is commonly referred to as the correspondence problem. The problem is how 
to automatically match corresponding features from two images, while at the same time not 
assigning matches incorrectly. In the followings, an automatic point corresponding algorithm is 
presented. 
The common approach for corners is to take a small region of pixels around the detected corner 
(referred to as a correlation window) and compare this with a similar region around each of the 
candidate corners in the other image. Each comparison yields a score, a measure of similarity. 
The match is assigned to the corner with the highest matching score. The most popular measure 
of similarity is the cross-correlation. Most matching algorithms include constraints to 
complement the similarity measure. These may take the form of constraints on which corners are 
selected as candidate matches: a maximum disparity, or corners which agree with some known 
relationship between the images (such as the epipolar geometry). Constraints such as uniqueness 
or continuity may also be applied after candidate matches have been found.  
 
Theorem 3.1. The complexity of point correspondence matching can be reduced based on the 
combination of fuzzy techniques and epipolar constraints. It is sufficient to analyze as candidate 
corresponding points in the other image only the points carrying the same type of primary 
information (like corner and edge points) lying on the epipolar line in fuzzy sense ([S11], [S25]). 
 
Proof: 
 
Epipolar geometry [11] defines the connection between two images of a scene taken from 
different camera positions. Consider a point M in the 3D space. Consider the case of two 
perspective images of the 3D scene illustrated by Fig. 3.1. The 3D point M projects to point m1 
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in the left image and m2 in the right one. Let C1 and C2 be the centers of projection of the left 
and right cameras respectively.  

M

C C1 2
e e1 2

m1 m2

lmlm2

lm

Image1 Image2

1

    

1C

2C

M

1e

2e

1m

2m
ml

m
l

1Ω

2Ω

X

Z

Y

x

y

 

Fig. 3.1 Illustration of epipolar geometry 

 
Points e1 and e2 are the so-called epipoles, and they are the intersections of the line [C1C2] with 
the two image planes. The plane formed by the three points [C1MC2] is called epipolar plane. 
The lines [m1e1]≡lm2 and [m2e2]≡lm1 are called epipolar lines of m2 and m1, respectively. Point 
m2 is constrained to lie on the epipolar line lm1 of point m1. This is called epipolar constraint. 
Epipolar line lm1 is the intersection of the epipolar plane mentioned above with the second image 
plane Image2. This means that image point m1 can correspond to any 3D point on the line 
[C1M] and that the projection of [C1M] in the second image Image2 is the line lm1. All epipolar 
lines of the points in the first image pass through the epipole e2 and form thus a pencil of planes 
containing the baseline [C1C2]. The above definitions are symmetric, i.e. the point of m1 must 
lie on the epipolar line lm2 of point m2. 
Let m1 = (x, y, z)t be the homogeneous coordinates of a point in the first image and e1 = (u, v, w) 
be the coordinates of the epipole of the second camera in the first image. The epipolar line 
through m1 and e1 is represented by the vector 

11m2 eml ×== tcba ),,(    (3.1) 

The mapping m1→lm2 is linear and can be represented by a 3x3 rank 2 matrix C:  
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The mapping of epipolar line lm2 from Image1 to the corresponding epipolar line lm1 in Image2 
is a collineation defined on the 1D pencil of lines through e1 in Image1. Let A be one such 
collineation: lm1 = A lm2.  
Since A has eight degrees of freedom and we only have five constraints, it is not fully 
determined. Nevertheless, the fundamental matrix F = AC is fully determined [12][13]. We get  

11m1 mml FAC ==      (3.3) 

It is a fact that all epipolar lines in the second image pass through e2 for all transferred lm1 

0. =m12 leT .     (3.4) 
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F defines a bilinear constraint between the coordinates of the corresponding image points. If m2 
is the point in the second image corresponding to m1, it must lie on the epipolar line lm1. 

1m1 ml F=      (3.5) 

and hence  

0. =m12 lmT .      (3.6) 

The epipolar constraint can therefore be written as 

0=12 mm FT      (3.7) 

For 3D reconstruction the edge and corner points are the most characteristic features because 
they carry the primary information about the boundaries, i.e. the shape of the objects. Edges can 
be decomposed to sections ending in corners, where the sections are either piecewise linear 
pieces which can be represented by their endpoints or are curved. In the first case the section can 
unambiguously be determined by its endpoints, i.e. the determination of the 3D coordinates of 
the corner points are sufficient for the 3D reconstruction which need the point correspondence 
matching of the corners. In the latter case, the common section of the curve and an epipolar line 
defines a finite set of points. If the angle between two camera positions is relatively low then the 
points keep their main character, i.e. to corner points in Image1 also corner points correspond in 
Image2 and edge points correspond to edge points.  
This means that to determine the corresponding points to the characteristic corner or edge points 
of an object in Image1, we have to analyze only points which are corner or edge points lying in 
fuzzy sense on the corresponding epipolar line (i.e. near the epipolar line) (see Fig. 3.2). Thus, 
the number of candidate points is reduced significantly. This can be especially effective if before 
starting with point correspondence matching, we apply the surface smoothing procedure 
described in Section 2.3, which may cause a small “climbing” of the points.  

3.2.1 Linear solution for the fundamental matrix 
Each point match gives rise to one linear equation in the unknown entries of matrix F. The 
coefficients of this equation can easily be written in terms of the known coordinates of m1 and 
m2. Specifically, the equation corresponding to a pair of points m1 and m2 will be 
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The environment of point m1

Epipolar line corresponding to point m1
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X

Y
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Fig. 3.2 Illustration of the point matching technique: in the left image a chosen corner is 
illustrated, while in the right image the candidate corner points can be seen 

0333231232221131211 =+′+′++′+′++′+′ ffyfxyffyyfxyxffyxfxx  (3.8) 
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where the coordinates of m1 and m2 are (x, y, 1)t and (x',y',1)t, respectively. Combining the 
equations obtained for each match gives a linear system that can be written as Aw = 0, where w 
is a vector containing the 9 coefficients of F (fij) and each row of A is built of the coordinates m1 
and m2 of a single match. Since F is defined only up to an overall scale factor, we can restrict 
the solution for w to have norm 1. We usually have more than the minimum number (8) of 
points, but these are perturbed by noise so we will look for a least squares solution:  

2

1
min wA

w =
     (3.9) 

As wAAwwA TT=
2

, we have to find the eigenvector associated with the smallest eigenvalue of 

the 9x9 symmetric, positive semidefinite normal matrix ATA. However, this formulation does not 
enforce the rank constraint, so a second step must be added to the computation to project the 
solution F onto the rank 2 subspace. This can be done by taking the Singular Value 
Decomposition (SVD) of matrix F and setting the smallest singular value to zero. Basically, 
SVD decomposes any real valued matrix F in the form of 

F = Q D R      (3.10) 

where D is diagonal and Q and R are orthogonal matrices. Setting the smallest diagonal element 
of D to 0 and reconstituting gives the desired result. 

3.2.2 New similarity measure for image regions 
The images in which we have to find the corresponding feature points are taken from different 
camera positions. If the angle of the camera positions is relatively small, we have greater chance 
to match the mentioned feature points, because of the small deformation of image pixels 
between two views. In this case the corresponding points can be found with high reliability in 
each image. Feature point mentioned in this section can be either corners or edge points. 
Matches are found by evaluating the similarity between image regions and selecting the match 
of the pair of regions with the highest similarity (see Fig.3.2).  
There are many similarity measure definitions known in the literature (see [14]). In this chapter, 
we introduce a new measure of similarity which is based on the combination of cross-correlation 
and a fuzzy measure: 
 

Definition 3.1. Fuzzy cross-correlation similarity measure for image points ([S25], [S113], 
[S116]) 
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where IL and IR are the intensity functions of the input images (left and right image) and Fm 
stands for the fuzzy measure corresponding to the pixel with coordinates x,y. Fm can be 
calculated, as follows: 

)}(),({),( yxMINyxF BAm µµ= ,   (3.6) 

µA and µB are the membership functions in universes X and Y representing the closeness of the 
points in the environment to the analyzed corner point-candidate (see Fig. 3.3). 
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A point in the environment 
of the analyzed cornerAnalyzed corner

Membership functions  

Fig.3.3 Fuzzy membership functions µA and µB of closeness used in (3.5) and (3.6) 

3.2.3 Automatic image point matching 
Based on the results of Subsections 3.2.1 and 3.2.2, automatic image point matching can be 
achieved according to Method 3.1 without any human intervention.  

Method 3.1 ([S25], [S11], [S113], [S116]): 
 

Step 1. Image preprocessing (noise filtering) 

Step 2. Determination of the most characteristic image points (fuzzy corner detection, fuzzy 
edge detection, primary edge extraction, see Part II)  

Step 3. Determination of the corresponding epipolar line of the processed corner/edge point 

Step 4. Search for the candidate points. We know that the corresponding point will lay (in fuzzy 
sense) on the epipolar line and is also a corner/edge point (see Figure 3.2).  

Step 5. Determination of the most probably corresponding point by the fuzzy similarity measure 
given in Subsection 3.2.2. It is worth remarking that the new corner detection methods proposed 
in 2.2.5 assign a new attribute, the fuzzy strength of being a corner, to the corner points. If the 
angle between the two camera positions is small, then the points keep this attribute in the images.  
Thus, the reliability of the matching can be improved by comparing this feature as well. 
Step 6. The procedure has to be repeated for all characteristic corner points. 

3.2.4 Experimental results 
There are several known 3D reconstruction softwares in the market, however all of them need 
manual assistance in the point correspondence matching step, i.e., the user has to give manually 
the corresponding characteristic points in the images. On the contrary, the new method presented 
in the previous sections is able to solve this task automatically, without any human intervention. 
In the followings, one simple example is presented for illustrating the usability of the technique, 
more result can be found in works [S11], [S25], [S113], [S116]. 
Fig.3.4 illustrates two images taken of a car with different camera positions. In each of them an 
epipolar line corresponding to the pointed image pixel can be followed. In the right hand side 
figure, epipolar line LA corresponds to image point A of the left hand side figure while epipolar 
line LB corresponds to image point B. The corresponding image point of A is image point B and 
inversely: the point which corresponds to point B is point A.  
In Fig. 3.5 the matching procedure can be followed. Here, the position of the car is 
approximately similar in both images, which results in that the search can be limited to a certain 
area of the image (the bigger, yellow searching window around the point to be matched) and we 
do not have to analyze all corner points on the corresponding epipolar line. After finding the 

µA 

µB 
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candidate corner points falling into the searching window, the determined image regions around 
the points (the smaller, red window) are compared by evaluating the similarities according to 
Definition 3.1. The point with the most similar region is chosen as corresponding point.  

  
 

Fig.3.4. The epipolar lines (LA, LB) of two corresponding feature points (A,B) 

 

Fig. 3.5 Illustration for the determination of the corresponding pixels (Method 3.1)  
Here, since the position of the car is approximately similar in the images, the search can be 

limited to a certain area of the image (the bigger, yellow searching window around the point to 
be matched). The smaller, red window represents the image regions around the points where the 

similarities are evaluated. 

According to our experience, the reliability of the matching is over 98% in case of characteristic 
points of crashed cars like in Figures 3.4 and 3.5. Problematic cases cover situations where the 
scene is composed of identical parts, which are located “parallel” to the epipolar line. Even in 
this case, by matching another point from the neighborhood (which epipolar line will not be 
“parallel” to the locations) and taking into account a possible distance interval of the points, the 
false matching can be neglected and the reliability can be increased to theoretically 100 %.  
Fig. 3.6 illustrates several samples and a test sample which is compared to the others. Fig 3.7 
shows the similarity measures calculated using the new fuzzy based technique (solid line) and 
the method without fuzzy reasoning (dashed line). Higher levels of similarity correspond to 
smaller calculated similarity measure values (see e.g. samples 1 and 5). The scene of sample 5 is 
very similar to that of the test sample but the illumination is quite different. Although, the 
significant differences appear in the farther environment of the image point to be matched which 
is taken into consideration through the fuzzy weighting by the new method. As a result, the 
fuzzy based method finds in sample 5 higher similarity than the other technique. 
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sample 2 

 

 
sample 3 

 
sample 4 

 
sample 5 

Fig. 3.6 Illustration for the application of the new similarity measure. The five samples are 
compared  to the test sample using the fuzzy based similarity measure (Definion 3.1) 

 

Fig.3.7 The corners of the graphs represent the samples which are compared to the test sample 
illustrated in Fig. 3.6.  The solid line illustrates the results using the fuzzy based similarity 
measure, while the dashed line shows the results using the same similarity measure without 

fuzzy reasoning 

3.3 Camera Calibration by Estimation of the Perspective Projection Matrix 
 
In the followings, we propose a novel, autonomous method for camera calibration.  

Method 3.2: Automatic calibration of uncalibrated cameras ([S25], [S11], [S113], [S116]): 
 
Proof of the correct operation of the algorithm: 
 
There exists a collineation, which maps the projective space to the camera’s retinal plane: 3D to 
2D. Then the coordinates of a 3D point M = [MX, MY, MZ]T (determined in an Euclidean world 
coordinate system) and the retinal image coordinates m = [mx, my]T (see Fig. 3.8) are related by 
the following equation: 
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where W is a scale factor, m = [mx, my, 1]T and  M = [MX, MY, MZ, 1]T  are the homogeneous 
coordinates of points m and M, and P is a 3 × 4 matrix representing the collineation 3D to 2D. 
One parameter of P can be fixed (l = 1). P is called the perspective projection matrix. Values a, 
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b, c, d, e, f, g, h, i, j ,k are the elements of the projection matrix P. The optical axis passes 
through the center of projection (camera) C and is orthogonal to the retinal plane. The focal 
length fl of the camera is also shown, which is the distance between the center of projection and 
the retinal plane. If only the perspective projection matrix P is available, it is possible to recover 
the coordinates of the optical center or camera [12]. It is clear that 
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Fig. 3.8 Perspective projection – illustration of points M=[X,Y,Z] and its projection m=[x,y] in 

the retinal plane R. 

1+++= ZYX kMjMiMW     (3.8) 
 

From (3.7) we can compute the coordinates of point m (mx, my), as follows: 
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xxZxYxXZYX mkmMjmMimMhgfedcMbMaM =−−−+++++++ 0000  (3.11) 

 
yyzyyyxzYX mkmMjmMimMhgMfMeMdcba =−−−+++++++ 0000  (3.12) 

 
All together we have eleven unknowns, the elements of the projection matrix that means that we 
need six points to determine the projection matrix. After substitutions and equivalent 
transformations we get the following equations and matrices: 
 

bqA =      (3.13) 
 
where matrix A and vectors q and b are described thereinafter (see (3.16), (3.18), and (3.19)). 
 

bAqAA TT =      (3.14) 

From (3.13) the projection matrix can be obtained: 
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bAAAq TT 1)( −=     (3.15) 
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The first two lines of matrix A correspond to points M1 and m1, the second two lines correspond 
to points M2 and m2, etc. With the help of these points we can compute the elements of the 
projection matrix P  
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Vector q is composed of the elements of projection matrix P  

[ ]Tkjihgfedcbaq = .   (3.18) 

The elements of vector b are the coordinates of points mi, where i=1...n 
 

[ ]Tnynxyxyx mmmmmmb ...2211=  .  (3.19) 
 
From the following deduction follows that we need six known points to determine the projection 
matrix. It can be solved if we place a known 3D object with minimum six easily localizable 
points (not located in one plane) to the camera’s field of vision and fix the origin of the above 
coordinate system to one of the base corners of the object. Then, the automatic calibration can be 
performed. This object can be e.g. a cube-shaped frame with known edge-length where the 
corners of the cube can easily be determined. 

3.4 3D reconstruction of objects starting of 2D photos of the scene  

3.4.1 3D reconstruction  

After solving automatic point correspondence matching and camera calibration, automatic 3D 
reconstruction simplifies to the following algorithm: 
 
Method 3.3 ([S10], [S30], [S39], [S127], [S130], [S132]): 
 
Step1. Preprocessing (noise elimination edge detection, primary edge extraction, see Part II)  

Step 2. Determination of the 3D coordinates of the extracted characteristic corner/edge points. 

This step means the determination of the corner and edge correspondences, which is followed by 
the camera calibration (determination of the Perspective Projection Matrix). In the knowledge of 
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the 3D coordinates and the correspondences of the significant points the spatial model of the car 
body can easily be built.  

Step 3. Building the 3 model. 

3.4.2 Experimental results 
In the followings a simple example is shown for the 3D reconstruction procedure. For more 
examples and details see [S10], [S30], [S127], [S130], [S132]. 
Fig. 3.9 shows an unknown object to be modeled in 3D. The cube-shaped frame (with edge-
length=20 cm) for the automatic calibration is also included. 

 

Fig. 3.9 An unknown object and the cube-shaped frame (with edge-length=20 cm) for the 
automatic calibration 

 

Fig. 3.10 Two images of the object taken from different camera positions 

In Fig. 3.10 two pictures taken from different camera positions can be followed. Here, we are 
after the camera calibration step, as the coordinates of the calibration object have already been 
determined. Fig. 3.11 presents the reconstructed 3D model of the unknown object. 
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Fig. 3.11 The reconstructed 3D model of the object 

3.5 The intelligent car-crash analysis system 

3.5.1 Introduction 

Crash and catastrophe analysis has been a rather seldom discussed field of traditional 
engineering in the past. In recent time, both the research and theoretical analyses have become 
the part of the everyday planning work (see e.g. [15]). The most interesting point in crash 
analysis is that even though the crash situations are random probability variables, the 
deterministic view plays an important role in them. The stochastic view, statistical analysis, and 
frequency testing all concern past accidents. Crash situations, which occur the most frequently 
(e.g. the characteristic features of the crash partner, the direction of the impact, the before-crash 
speed, etc.) are chosen from these statistics and are used as initial parameters of crash tests. 
These tests are quite expensive, thus only some hundred tests per factory are realized annually, 
which is not a sufficient amount for accident safety. For the construction of optimal car-body 
structures, more crash-tests were needed. Therefore, real-life tests are supplemented by 
computer-based simulations which increase the number of analyzed cases to 1-2 thousands. The 
computer-based simulations – like the tests – are limited to precisely defined deterministic cases. 
The statistics are used for the strategy planning of the analysis. The above mentioned example 
clearly shows that the stochastic view doesn’t exclude the deterministic methods [16].  
Crash analysis is also very helpful for experts of road vehicle accidents, since their work 
requires simulations and data, which are as close to the reality as possible. By developing the 
applied methods and algorithms we can make the simulations more precise and thus contribute 
towards the determination of the factors causing the accident.  
The results of the analysis of crashed cars, among which the energy absorbed by the deformed 
car body is one of the most important, are of significance at other fields, as well. They carry 
information about the deformation process itself, as well, having a direct effect on the safety of 
the persons sitting in the car. Thus, through the analysis of traffic accidents and car crash tests 
we can obtain information concerning the vehicle which can be of help in modifying the 
structure/parameters to improve its future safety. There is an ever-increasing need for more 
correct techniques, which need less computational time and can more widely be used. Thus, new 
modeling and calculating methods are highly welcome in deformation analysis.  
The techniques of deformation energy estimation used until now can be classified into two main 
groups: The first one applies the method of finite elements [17]. This procedure is accurate 
enough and is suitable for simulating the deformation process, but this kind of simulation 
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requires very detailed knowledge about the parameters of the car-body and its energy absorbing 
properties, which in most of the cases are not available. Furthermore, if we want to get enough 
accurate results, its complexity can be very high. 
The other group covers the so called energy grid based methods, which start from known crash 
test data and from the shape of the deformation, or from the maximal car-body deformation 
[18][19]. The distribution of the energy, which can be absorbed by the cells is considered just in 
2D and the shape of the deformation is described by a 2D curve. This curve is the border of the 
deformation visible from the top view of the car-body. Of course, there are a lot of cases, when 
the shape of the deformation can not be described by 2D curves. Furthermore, in many of the 
cases considering the energy distribution in 2D is not enough precise, because the absorbing 
properties of the car-body change along the vertical axis as well, which is not considered by 
these methods.  
Starting from these reasons, in this section a new energy estimation method is presented, which 
avoids the mentioned limitations of the standard methods. First, the energy distribution is 
considered in 3D. Secondly, for describing the shape of the deformation, spline surfaces are used, 
with the help of which complex deformation surfaces can be modeled easily. Furthermore, for 
decreasing the computational cost and time, soft computing techniques are used, which also 
enable to achieve more accurate results. Last, the deformation surface is obtained from the 
digital photos of the car body by 3D reconstruction.  
We will show how we can construct a system capable to automatically build the 3D model of a 
crashed car as well as to determine the energy absorbed by the car-body deformation and the 
speed of the crash.  
Section 3.5 is organized as follows: In Subsection 3.5.2 the intelligent car crash analysis system 
is discussed briefly. Subsection 3.5.3 shows how to evaluate the shape of the deformation and 
based on it the deformation energy from digital pictures. Section 3.5.4 presents extraction of the 
3D car body model from digital images. Section 3.5.5 discusses how to determine the direction 
of impact and the absorbed energy. Section 3.5.6 shows an example to illustrate the 
effectiveness of the presented methods  

3.5.2 The concept of the car-crash analysis system ([S10], [S39], [S40]) 
The block structure of the proposed new car crash analysis system can be followed in Fig. 3.12. 
It contains four well defined sub-blocks. The first (image processing) is responsible for the pre-
processing of the digital photos (noise elimination/filtering, edge detection, corner detection, 
primary edge extraction) and for the 3D modeling (including the point correspondences and the 
3D model building). The second part of the system (comparison of models) calculates the 
volumetric change of the car body from the deformed and the original 3D models of the car. 
Parallel with it, an expert system (Expert system) determines the direction of the impact. Based 
on the direction of impact and volumetric change a hierarchical fuzzy-neural network system 
determines the absorbed energy and the energy equivalent speed of the car.  
The methods applied in the first block are summarized in Part II and the previous sections of 
Part III. The volumetric change can be determined after fitting the deformed and undamaged 
car-body models. Here we utilize the fact that if the car hits a wall then the backside of it will 
remain undamaged and this part of the models can be fitted based on minimization of the mean 
squares error of the deviation of the 3D shapes. The ideas and main steps of the other blocks are 
detailed in the next sections. 

3.5.3 Determination of the direction of impact, the absorbed energy and the equivalent 
energy equivalent speed ([S10], [S30], [S39], [S40]) 

The spatial model of the deformed car-body serves as input to the “Expert system” block, as 
well. This module applies an expert system and produces the direction of impact. For this we use 
the so called “energy-centers” of the undamaged and deformed car bodies and the direction is 
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estimated from the direction of movement of the energy-center of the car-body part attached in 
the deformation.  
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Fig. 3.12 Block-structure of the intelligent car crash analysis system 

Definition 3.2 Energy-center of a body ([S30], [S127]): 
 
3D bodies can be represented by elementary 3D cells of the body. These cells can be got by 
cutting the body to elementary pieces along all 3 dimensions. If we deform the body, during the 
deformation the different 3D cells of the body absorb a certain amount of energy. The energy-
center can be determined by weighting the cells by the corresponding energy values. 
 
The above technique usually gives acceptable estimation for the direction of impact. Although, 
problem may occur when the speed of the car is very low or when the angle of the direction of 
impact and the angle, between the main axis of the car (which goes through the energy-center 
and points “forward”) and the central axis of the attached surface, are very different. In these 
latter cases a more sophisticated new method, surface fitting can be used for the determination of 
the direction of impact.  

Method 3.4 (these results have been developed in the frame of the GVOP -3.3.1-05/1.2005-
05-0160/3.0 project under the leadership of the author) 
 
Surface fitting applied in the determination of direction of impact is based on the fitting of the 
3D surfaces of the attached objects created by the deformation during the crash. 

Step 1. The fitting is solved by minimizing the LMS error of the differences between the two 
surfaces. The fitting is done in 3D. As a result, the positions of the two vehicles or objects can 
be reconstructed with acceptable accuracy (as an illustration, see Fig. 3.13). 
The collision can be decomposed into two parts. The major part of the deformation during 
collision belongs to the type of plastic collision, resulting in lasting deformation in the body, 
while a small part is elastic collision resulting in reversible deformation and thus error in the 
energy estimation. According to our experiences, the error caused by the elastic deformation can 
be tolerated, it usually is below 10%. 

Step 2.  The direction of impact is estimated as the angle between the longitudinal axes of the 
two objects/vehicles attached in the impact.  

Here we would like to remark that Method 3.4 can be applied both if the car hits a wall and if 
two vehicles are crashed. 
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Fig. 3.13 Illustration for the surface fitting 

The absorbed energy and the equivalent energy equivalent speed (EES) is evaluated from the 
volumetric difference and from the direction of impact by an intelligent hierarchical fuzzy-
neural network system (lower right hand side block in Fig. 3.12). Several classes of cases are 
formulated according to the main types of the crash and the car and different sets of NNs are 
used in the different classes. A concrete set of NN is suitable for modeling the problem of a 
certain class and the elements of the set are smaller size NNs operating as local models over a 
subspace of the state space of the class.  
Before choosing the correct set of neural networks we have to pre-determine the category of the 
analyzed vehicle and the main character of the crash:  Cars are classified into car categories 
according to their weights. Concerning the character of the crash we have formulated 12 
different cases which follow the system used in car factories during the crash tests   (frontal full 
impact, frontal offset impact, side impact, corner impact, rear impact, …), see also Fig. 3.14.  
For increasing the reliability of the modeling and for decreasing the teaching phase of the neural 
networks we have applied a fuzzy weighted locally approximated neural network system for the 
neural network based modeling of the absorbed energy. 
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Fig. 3.14 Hierarchical structure of the pre-classification in the EES determination 

Definition 3.3 Fuzzy weighted locally approximated neural network system ([S10], [S30], 
[S39], [S40], [S127]):  
 
For the neural network based modeling of a system, the n-dimensional state space of the 
problem is decomposed into subspace domains which can “easily” be modeled by neural 
networks, i.e. does not contain many local minima which could “trap” the neural networks. Over 
each domain an elementary neural network is developed and trained separately. Since the 
transitions between the neighboring domains are unambiguous and to ensure the smooth 
transition between the domains, a fuzzy system is used for the determination of the actual (fired) 
local neural networks to be applied, with a rulebase as 
 

Ri1,..,in:      If x1 is A1i1 and … and xn is Anin then use NNi1,…,in  (3.20) 
 

where Ri1,..,in stands for the  i1,…,in-th rule, xj (j=1…nj) denotes the j-th input variable, Ajij is the 
ij-th fuzzy set in input universe xj ,and NNi1,…,in represents the local neural network model of 
domain i1,…,in.  
 
Applying the above NN system, for each class of EES determination a different set of neural 
networks is developed. For the determination of the elementary neural networks (local models) 
the surface is divided into domains. The elementary neural networks are trained over these 
surface domains. The fuzzy system for the determination of the fired local neural networks 
consists of rules as 
 

Rij:      If the direction of impact is Di and the volumetric change is Vj then use NNij 
 

For the training of the neural networks simulation and crash test data is used. The training data 
include the volumetric change, the direction of the impact (input data) and the corresponding 
deformation energy (output data). The surface is usually symmetric (to the longitudinal axes of 
the vehicle) in which case it is enough to deal with its half part.  
After the determination of the absorbed energy, the equivalent energy equivalent speed can be 
determined according to e.g. [20].  

3.5.4 Experimental results 

A software package and an experimental analysis system (CASY) has been developed for the 
intelligent analysis of crashed cars in the frame of the GVOP -3.3.1-05/1.2005-05-0160/3.0 
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project under the leadership of the author. At current stage, the system is able to automatically 
determine the 3D model, the absorbed energy, the direction of impact, and the energy equivalent 
speed based on digital photos made of the crashed car from different camera positions, if the car 
hits a (massive) wall. The methods and algorithms of Parts II and III are built in the system. 
In the followings, an example is shown illustrating the operation of the system. The example is 
taken from a car crash test, with the following parameters: 

Vehicle / Mass of the vehicle: Audi 100 / 1325 kg 
Real direction of impact: 0 Degree 
Real EES of the vehicle: 55 km/h 
Volumetric change (evaluated): 0.62 m3 
Absorbed deformation energy (evaluated): 171960 Joule 

The absorbed energy surface (Fig. 3.15) belonging to this car-class is symmetric (to the 
longitudinal axes of the vehicle) so only half of the surface has to be dealt with. The used NNs 
modeling this surface shown in Fig. 3.15 has been taught based on the simulation data of a 
similar class, but Mercedes car. The approximation of domains D1 and D2 can be solved by 
simple feed-forward backpropagation NNs with one hidden layer and three hidden neurons. The 
NNs are used to determine the deformation’s energy and EES. During the teaching period of the 
system, the determined EES values were compared to known test results and the parameters of 
the expert system were modified to minimize the LMS error. The accuracy of the system is 
influenced by the accuracy of the crash test data. 

 

Fig. 3.15 Relation among the direction of impact, volumetric change, and the deformation 
energy based on simulation data (Mercedes 290) 

The half of the surface is decomposed into two parts along the impact direction (Fig. 3.16). The 
fuzzy sets for the weighting of the NNs are shown in Fig. 3.17. (Although, in this case this 
simple decomposition results in good performance, here we would like to remark that in general 
the mapping is more complex and it can be advantageous to define more domains along both 
inputs to keep the complexity of the used NNs low.) 
In Figs. 3.18 and 3.19 steps of the processing of two of the thirty used viewpoints can be 
followed. The resulted 3D models of the damaged and undamaged car-bodies are shown by Figs. 
3.20 and 3.21, respectively, while in Fig. 22 the corresponding energy cells can be followed. 
The results of the analysis are summarized in Table1. For comparison, the results got by the 2D 
method are also attached. (The 2D method uses a 2D deformation curve for identifying the 
deformation and a 2D energy grid. The error of this method is usually much higher than is in this 
simple example, because in most of the cases the deformation shape can not accurately be 
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identified in 2D. Furthermore, the 2D method is not able to model the differences in the energy 
absorption properties along the vertical axis. Although, we included this example to demonstrate 
that new method out performs the known 2D method even in these cases when the deformation 
is “simple” and “visible” from above. The proposed new method is able to handle such cases as 
well and uses 3D distribution of the energy, which also increases the accuracy of the results.) 
For more details and examples see [S10], [S11], [S25], [S30]. 

 

Fig. 3.16 Segmentation of the surface in Fig. 3.14 
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Fig. 3.17 Membership functions defined on the universe of impact direction  

         

 Fig. 3.18 Noise filtered photo of a crashed Audi (viewpoint 1); edge map of the car; 
corners detected in the image  
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Fig. 3.19 Noise filtered photo of a crashed Audi (viewpoint 2); edge map of the car; corners 
detected in the image 

   
Fig. 3.20 3D model of the deformed part of the car body 

  
Fig. 3.21 3D model of the undeformed car-body 
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Fig. 3.22 3D energy cells of the deformed and undeformed car-bodies 

 

Table 3.1 Estimation of the direction of impact and energy equivalent speed of the crashed Audi 
 

 
Direction of impact 

[deg] 
EES of the 

vehicle [km/h] 

Real Data 0 55 

Proposed method 2 58 

2D method 2 59,2 
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Part IV Generalization of Anytime Systems, Anytime Extension of 
Fuzzy and Neural Network Based Models 

Nowadays practical solutions of engineering problems involve model-integrated computing. 
Model based approaches offer a very challenging way to integrate a priori knowledge into the 
procedure. Due to their flexibility, robustness, and easy interpretability, the application of soft 
computing, in particular fuzzy and neural network based models, may have an exceptional role at 
many fields, especially in cases where the problem to be solved is highly nonlinear or when only 
partial, uncertain and/or inaccurate data is available. Nevertheless, ever so advantageous their 
usage can be, it is still limited by their exponentially increasing computational complexity. 
Combining soft computing and anytime techniques is a possible way to overcome this difficulty, 
because the anytime mode of operation is able to adaptively cope with the available, usually 
imperfect or even missing information, the dynamically changing, possibly insufficient amount of 
resources and reaction  time.  
In this part the applicability of (Higher Order) Singular Value Decomposition based anytime Soft 
Computational models is analyzed in dynamically changing, complex, time-critical systems. 
Practical questions of implementing and operating anytime systems are also analyzed. 

4.1 Introduction  
Nowadays, solving engineering problems model-integrated computing has become very popular. 
This integration means that the available knowledge is represented in a proper form and acts as an 
active component of the procedure (computer program) to be executed during the operation of 
signal processing, diagnostics, measuring, control, etc. devices. Thus, model based approaches are 
very useful in integrating a priori knowledge into the procedures. 
In case of linear problems, well established methods are available and they have been successfully 
combined with adaptive techniques to provide optimum performance. Nonlinear techniques, 
however, are far from this maturity. There is a wide variety of possible models to be applied based 
on both classical methods [1] and recent advances in handling information [2] but systematic 
methods to solve a larger family of nonlinear engineering problems became only recently 
available: the efforts on the fields of fuzzy and neural network (NN) modeling seem to result in a 
real breakthrough in this respect (see e.g. [3]-[11]). These techniques can be applied even in cases 
when no analytical knowledge is available about the system, the information is uncertain or 
inaccurate, or when the available mathematical form is too complex to be used.  
One of the greatest advantages of fuzzy systems is that they are able to handle not only imprecise 
data, but also inexactly formulated concepts which cannot be easily expressed by classical tools 
only. Thus, fuzzy systems can be well used in cases, when only expert knowledge and/or 
(imprecise) sample data is available, and furthermore, the interpretation may depend on the 
context [12], [S54]. 
A major limitation of fuzzy (and NN) models is their exponentially increasing complexity. One 
can easily get into trouble when considering complex problems with a large number of parameters, 
especially, when only partial and uncertain measured data is available about the system to be 
modeled. The usability of fuzzy tools in time-critical systems is limited by the lack of any 
systematic method for determining the complexity of handling the system. Moreover, in order to 
better approximate the modeled system, one can be tempted to overestimate the needed 
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granularity (e.g. the number of antecedent fuzzy sets), which results in huge and redundant 
systems with too many rules and too high complexity.  
An especially critical situation is, when due to failures or an alarm appearing in the 
modeled/processing system, the required reaction time is significantly shortened and one has to 
make decisions before the needed and sufficient information arrives or the processing can be 
completed. In such cases, it is an obvious requirement to provide enough computational power but 
the achievable processing speed is highly influenced by the precedence, timing, and data access 
conditions of the processing itself. It seems to be unavoidable even in the case of extremely 
careful design to get into situations where the shortage of necessary data and/or processing time 
becomes serious. Such situations may result in a critical breakdown of monitoring and/or 
diagnostic systems [S52]. 
The temporal shortage of time/resources may lead to evaluation of only a subset of the fuzzy rules. 
On the order hand, the significance of the rules can highly be dependent on the actual inputs; thus 
the estimation of the accuracy of the approximation, which is of primary importance from 
interpretation point of view, can become problematic. Without evaluating all of the rules or 
making further considerations, it is always possible, that the most significant ones are left out, i.e. 
this way does not offer any real solution to the problem. 
In such cases, anytime techniques can be applied advantageously to carry on continuous operation 
and to avoid critical breakdowns. These systems are able to provide short response time and are 
able to maintain the information processing even in cases of missing input data, temporary 
shortage of time, or computational power [6], [13], [14]. Anytime processing tries to handle the 
case of too many abrupt changes and their consequences in the signal processing, monitoring, 
diagnostics, or larger scale embedded systems [13]. The idea is that if there is a temporal shortage 
of computational power and/or there is a loss of some data the actual operations should be 
continued to maintain the overall performance “at lower price”, i.e., information processing based 
on algorithms and/or models of simpler complexity should provide outputs of acceptable quality 
to continue the operation of the complete system. The accuracy of the processing will be 
temporarily lower but possibly still enough to produce data for qualitative evaluations and 
supporting decisions. Thus, “anytime” processing provides short response time and is very 
flexible with respect to the available input information and computational power. Accordingly, 
the aim of these techniques is to ensure the continuous operation of the system in case of changing 
circumstances and to provide optimal overall performance for the whole system.    
Anytime systems utilize mainly two types of processing: the first one is the iterative approach, 
which is much easier to use and needs less consideration however its applicability is limited by the 
availability of adequate iterative methods. The second technique uses a modular architecture 
which makes possible the usage of any algorithm/method in anytime environment, however with a 
burden of need for extra pre-considerations and decisions [S72]. 
Fuzzy and NN systems can be applied in anytime systems, as well. Embedding fuzzy and NN 
systems in anytime systems extends the advantages of the Soft Computing (SC) approach with the 
flexibility with respect to the available input information and computational power. There are 
mathematical tools, like Singular Value Decomposition (SVD), which offer a universal scope for 
handling the complexity problem by anytime operations, however only within the frame of 
modular architectures, which makes their operation less flexible [S72]. The extension of the 
processing of fuzzy and NN structures towards the iterative evaluation is highly welcome. 
In this chapter we deal with the applicability of SC models in dynamically changing, complex, 
time-critical, anytime systems. The analyzed models are generated by using (Higher Order) 
Singular Value Decomposition ((HO)SVD). This technique provides a uniform frame for a family 
of modeling methods, and results in low (optimal or nearly optimal) computational complexity, 
easy realization, robustness, a possibility to maintain continuous operation, and to cope with the 
limits arising in the system or in its environment. Furthermore, the accuracy can also easily and 
flexibly be increased and we do not need any a priori or expert knowledge about the system to be 
modeled.  It can be used either when a mathematical description (possibly too complex to be 
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handled) or when only (possibly partial, inaccurate, and uncertain) measurement data is available. 
A new transformation opening the possibility for iterative type evaluation of 
product-sum-gravity-singleton consequents (PSGS) fuzzy systems will also be presented.  
The chapter is organized as follows: In Section 2 the generalized idea of anytime processing is 
introduced. Section 3 summarizes the basics of Singular Value Decomposition. Section 4 is 
devoted to the SVD based exact and non-exact complexity reduction of neural networks and fuzzy 
models while Section 5 presents the transformation of PSGS fuzzy systems to iterative models 
which can directly be operated in an an anytime way. Section 6 deals with the usage of fuzzy and 
NN models in anytime systems: both complexity reduction and the improvement of the 
approximation are discussed. Finally, in Section 7 the most fundamental elements of anytime 
control are outlined.  

4.2 Anytime processing  
 
Today, there are an increasing number of applications where the computing must be carried out 
on-line, with guaranteed response time and limited resources. Moreover, the available time and 
resources are not only limited but can also change during the operation of the system. 
Good examples are the modern computer-based diagnostics and monitoring systems, which are 
able to supervise complex industrial processes and determine appropriate actions in case of 
failures or deviation from the optimal operational mode. In these systems, usually the model of the 
faultless system is used for the diagnosis. The evaluation of the model must be carried out on-line, 
thus the model needs not only to be correct, but also treatable by the limited resources during 
limited time. Moreover, if some abnormality occurs in the system’s behavior, some kind of fault 
diagnostic task should also be completed, which means the reallocation of a part of the finite 
resources from the evaluation of the system model to this task. Also in case of an alarm signal, 
lower response time may be needed.  
Several alternative solutions, like complexity reduction techniques, application of less accurate 
evaluations or decreasing the granulation of the model (e.g. by reduction of the sampling rate in 
the signal processing scheme), can be proposed if due to a temporary shortage of computer power 
the processing can not be performed in time (temporal shortage of computing power/time). 
Another, more problematic consequence of system failures is the case of missing input data, when 
due to temporary overload of certain communication channels, the input data fail to arrive in time 
or are lost. If the output of the processing is still required the usual approach is to utilize some 
prediction mechanism. This means that based on previous data the information processing units 
try to generate estimations.  
In Subsection 4.2.1 we outline two, the standard and a new, algorithm types that are suitable for 
anytime processing due to their adjustable evaluation time (and accuracy). Subsection 4.2.2 is 
devoted to the measurement of the dependence of error/speed characteristics of such algorithms. 
This characteristics is needed to schedule subtasks of complex anytime systems in a (nearly) 
optimal way, for which standard methods are discussed in 4.2.3. Although, the applicability of 
these techniques are limited by the complexity of the system and furthermore, the standard local 
compilation can be used only in case of SISO system modules. To overcome these problems, in 
4.2.4 two new compilation methods, the hierarchical and the output-based incremental 
compilations are presented which can be used in MISO systems, as well. In subsection 4.2.5 some 
open questions are briefly discussed. 
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4.2.1 Alternatives of anytime processing 

Iterative processing 

In recourse, data, and time insufficient conditions, the so-called anytime algorithms and systems 
[14] can be used advantageously. They are able to provide guaranteed response time and are 
flexible with respect to the available input data, time, and computational power. This flexibility 
makes these systems able to work in changing circumstances without critical breakdowns in the 
performance. Naturally, while the information processing can be maintained, the complexity must 
be reduced, thus the results of the computing become less accurate [S68].  
The algorithms/computing methods, which are suitable for anytime usage, have to fulfill the 
following requirements: 

• Low complexity: for the optimized behavior the results must be produced with as little 
computing as possible, i.e. the redundant calculations must be omitted. 

• Changeable, guaranteed response time/computational need and accuracy: the achievable 
accuracy of the results and the necessary amount of computing time/resources must be 
flexibly changeable and usually known in advance. 

• Known error: the error, originating from the necessary model “fitting” (e.g. complexity 
reduction resulting in non-exact solutions) must also be known, to be able to find the optimal 
or at least still acceptable solution in the given circumstances, and to be able to compute the 
resultant error of the outputs. 

Iterative algorithms are popular tools in anytime systems, because their complexity can easily and 
flexibly be changed. The idea is that based on the previous, less accurate approximation of the 
result, we improve the evaluation and produce a new, better approximation of the output. In some 
cases, this may also mean the improvement of the approximation (measurement, modeling, etc.) 
scheme itself.  Concerning anytime systems, the main point is that these algorithms always give 
some, possibly not accurate result and more and more accurate results (better approximations) can 
be obtained, if the calculations are continued.  
A further advantageous aspect of iterative algorithms is that we don’t have to know the 
time/resource-need of a certain configuration in advance. The calculations can be started without 
any pre-considerations and the procedure can be continued until the results are needed. Then, by 
simply stopping the calculations, feasible results are obtained. (If the procedure does not produce 
“continuously” the output, we can apply a memory storing the last (in the given circumstances 
best) approximation.) 

The new modular architecture ([S1], [S5]) 

Unfortunately, the usability of iterative algorithms is limited. There is a wide range of problems, 
which can be solved by iterative algorithms, however adequate iterative evaluation methods can 
not always be found. Even if some kind of iterative evaluation method is available, the accuracy of 
the results is often unknown: we only know, that the algorithm gives more and more accurate 
results, but we do not know, how much time is needed to achieve a given accuracy or what will be 
the rate of error if the calculations are stopped at a given point. 
Because of this limitation, a general technique for the application of a wide range of other types of 
computing methods/algorithms in anytime systems has been suggested in [S72]. A wider class of 
problems can be addressed with this technique, however at the expense of lower flexibility and a 
need for extra planning and considerations. 
The frame is based on a modular architecture (see Fig. 4.1).  

Definition 4.1. An anytime modular architecture is composed of modules realizing the subtasks of 
a given problem. Each module of the system offers several implementations (characterized by 
different attribute-values) for a certain task. These units within a given module have uniform 
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interface (same set of input, output, and solve the same problem) but differ in their computational 
need and accuracy. An expert system is monitoring the actual circumstances (tasks to complete, 
achievable time/resources, needed accuracy, etc.) with the help of a set of shortage indicators, in 
order to choose the adequate configuration, i.e. the units to be used.  

Thus, the whole system is optimized rather than the individual modules: in some cases it can be 
more advantageous to temporarily reduce the computational complexity and accuracy of some 
parts of the system and rearrange the resources to other, more important tasks. 
 

Module BModule A

Unit A/1

Unit A/3

Unit A/2

Unit B/1

Unit B/3

Unit B/2

Expert System

Selection

 
 

Fig. 4.1 Anytime system with modular architecture 
 
Although, the units implementing a certain task may have different internal structure, from several 
points of view (e.g. transient behavior, see [S72]) it is advantageous if they are built of similar 
structure. In this case, the adaptation or change between the units means only the change of some 
parameter set. 

4.2.2 Measurement of speed/accuracy characteristics (performance profiles) 

Anytime algorithms are algorithms that can be executed for different running times with a tradeoff 
between time allocation and output quality. They are characterized by relations between execution 
times and the quality of the input or the output. These relations, or rather mappings, are called 
performance profiles [15], [16]; they are represented as one-, two-, and sometimes 
multidimensional tables.  
Several types of profiles can be defined and constructed, the main distinction being which 
parameter is present as part of the input in the relation: input quality and/or output quality. If input 
quality is used, then the profile is conditional. The input-output relation may be treated 
statistically, in which case the output of the profile is a distribution of probability. Output quality 
is the parameter of this distribution and thus of the profile itself. Time is a parameter of every 
profile. The most important profile types are the Performance Profile (PP), the Conditional 
Performance Profile (CPP), the Performance Distribution Profile (PDP), the Conditional 
Performance Distribution Profile (CPDP), the Expected Performance Profile (EPP), and the 
Conditional Expected Performance Profile (CEPP) (Table 4.1). (Note that anytime literature uses 
the notation CPP mostly for Conditional Performance Distribution Profiles.) 
Quality is the measure of the “goodness” of any given object in some aspect based on the possible 
values of the given object. Quality may be defined for simple numbers and for complex and 
abstract structures.  
The quality function is mapping from object values to quality values. Together with this, the (time 
dependent) output function, and a measurement method, performance profiles can be constructed. 
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Table 4.1 Performance profiles 
 

 Function Name 
)t(q  PP 

Deterministical 
)t,q(q in  CPP 
]q)[t(p out  PDP 

Statistical 
]q)[t,q(p outin  CPDP 

)t(qE  EPP 
Expected 

)t,q(q inE  ECPP 
 

Since using algorithms with decreasing quality (or expected quality) by increasing time allocation 
is pointless, profiles must possess an increasing monotonic property along time allocation. 
Similarly, any increasing input quality is assumed to cause non-decreasing output quality. 
Other profile types are also definable. For details on dynamic profiles and time-dependent 
planning under uncertainty, see [1], [3], [18], and [7]. 

4.2.3 Compilation of complex anytime algorithms 

Complex anytime systems, like other complex systems, can be decomposed into elementary 
anytime or non-anytime modules to facilitate design.  Systems operate as whole entities, therefore 
compilation is needed to handle and operate these systems. Compilation compiles numerous 
elementary algorithms into a so-called composite that acts as an elementary module and has one or 
more profiles and a special structure containing elementary allocation times for modules involved 
in compilation. Because a composite and an elementary module have the same type of description 
and, usually, the same behavior, a composite may be both the output of a compilation step and its 
input. 
The compilation process compiles elementary modules into one composite. This process may 
involve one or more compilation steps, which make transitional composites and contain 
composites in their input.  
Let expression },...,,,,...,,{ 2121 nk BBBSSSC  denote a single compilation step in which elements of 
sets iS  ( ki ..1= ) and all elements iB  ( ni ..1= ) are compiled into one composite. 
For modules having at least one input driven by an output of another module, only conditional 
profiles (CPPs (ECPPs) and CPDPs) can be used.  

Compilation of two single-input-single-output anytime modules 
For systems with two single-input-single-output (SISO) anytime modules connected serially and 
using CPPs, output quality is formulated as follows: 

)],,[( 2112 TTqqq in , (4.1) 

where inq  is the (omittable) quality of the system input, the second module (with index 2) is 
connected after the first one, q denotes conditional performance profiles, and T stands for time 
allocations. 
The composite profile is constructed so that for every composite allocation and composite input 
quality, the elementary allocation pair with the highest composite output quality is selected from 
possible pairs. 
Using CPPs: 

)],,[(max),( 1112
1

TTTqqqTqq inTin −= , (4.2) 

where 21 TTT += , obviously. 
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If modules are characterized by CPDPs, then better output quality means better expected output 
quality, because statistical profiles operate with probability distributions: 

{ }

( ) ])[,(])[,( ])[,,(

 ])[,,( maxarg])[,(

1,12
1

,11121

11

1

1

outiout

N

i
ioutinoutin

outinTE
outin

qTTqpqTqpqTTqp

qTTTqpEqTqq

q

−⋅=

−=

∑
=

, (4.3) 

where inq  and outq  denote the system input and output, respectively. 
1qN  and 

2qN  nominate the 
extent of elementary profiles among the quality dimension. 
We focus here only on compilation with CPPs.  

Global Compilation of single-input-single-output modules 
The above method for two modules can be extended to multi-modular systems. Note, however, 
that the complexity of the algorithm grows exponentially with the number of modules, limiting its 
practical applicability. 
Assume system Y  with N  number of elementary modules NMM ,...,1  connected in any structure 
and characterized by CPPs. Let NM  be the notation of the module at system output. The output 
quality of the composite is expressed as follows: 

)],...,[...,],...,[...,(...,),...,,( 11111 NNNNNinC TTqTqqTTqq −−= , (4.4) 

where )(..., ii Tq  denotes the CPP of the i -th module. Cq  is a compound function in which the 
elementary profiles and compound functions are the subfunctions.  
The composite profile is formulated as 

),,...,,(max),(
1

1
11,..., 11

∑
−

=
− −=

−

N

i
iNinCTTin TTTTqqTqq

N

 (4.5) 

Unfortunately, because of its complexity figure, this method does not appear applicable for more 
than 3 modules. 

Compilation of MISO modules by local compilation 
Using SISO modules alone enables us to create chain structured systems only. More generally, 
tree systems can be made of multiple-input-single-output (MISO) modules (Fig.4.2). These tree 
structures are effectively compiled by the local compilation introduced by Zilberstein ([15]) and 
discussed in the next section. 
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q1,2

q1,1

q0,3
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q3,1

C
q0 q3,1

q0 
M1,2

M2,1

M1,3

M1,4

M2,2

M3,1

q1,3

q1,4

 

Fig.4.2 Tree-structured system 
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Local compilation compiles a module and modules connected to its immediate input into one 
composite. Local compilation produces a global optimum with pseudo-polynomial complexity 
under the following assumptions: 

1. Modules have conditional profiles 
2. Profiles are monotonic non-decreasing functions of input quality 
3. System has a tree structure with bounded degree 
4. CPDPs have the input linearity property 

The proof is given in [15]. Tree and chain anytime systems are discussed briefly in [20]. 
The example in Fig. 4.2 may be compiled by the following compilation process: 

},,{ 1,22,11,1
)(

1,1 MMMCC L=  

},,{ 2,24,13,1
)(

2,1 MMMCC L=  

},,{ 1,32,11,1
)( MCCCC L=  

where operator C(L) denotes a local compilation step that is expressed for the compilation of 
modules M1,1, M1,2, and M2,1, for example, in the following form: 

]),,(),,([max),,( 2,11,11,22,12,02,11,11,01,11,2,1,22,01,01,2,
2,11,1

TTTTqqTqqqTqqq
TTC −−=  (4.6) 

This formula differs from the general formula of global compilation (4.5) only in the arrangement 
of sub-functions and not in complexity, a tree structure with a degree of more than 3 has the same 
complexity as a chain with as many modules as the degree. 
If the degree of the tree is quite high and/or the system has a structure other than a tree, the use of 
local compilation raises difficulties. Local compilation processes the graph from the inputs, so 
modules with multiple outputs cannot be compiled in such a way. 

4.2.4 New compilation methods  

Hierarchical compilation ([S24], [S100], [S97], [S103]) 
System graphs can also be processed from output, and subsystems with special interfaces can be 
compiled independently then added to the rest of the system. The idea of processing subsystems as 
independent systems leads to the novel hierarchical compilation and the new output-based 
incremental compilation. 
Definition 4.2: Selecting a subsystem S with single output and multiple input from any given 
directed acyclic graph-represented (DAG-represented) anytime system Y and replacing the 
subsystem with its global, local, or hierarchical compiled composite is called hierarchical 
compilation. 
Hierarchical compilation may yield the optimality of global compilation if certain assumptions are 
made: 
 

 

S

R

qSqS,0

q
q0

Y  

Fig. 4.3 Hierarchical compilation 
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1. DAG represented system 
2. Input monotonity (along both time and input quality dimensions) 
3. Modules described by CPPs 

Theorem 4.1: Hierarchical compilation provides global optimum under the above assumptions. 
([S24], [S100]) 

The proof of Theorem 4.1 needs the usage of two additional lemmas. 

Lemma 4.1: For any monotonic increasing functions f and g and any vector v the formula below is 
true: 

]),,(max[]),,([max :],[],[ 2121 vvugfvvugfvxfvxfxx
uu

=≤<∀  (4.7) 

Proof: 
Let mu  and Mu  denote the arguments belonging to the left and the right side of equation (4.7): 

]),,([]),,(max[

]),,([]),,([max

vvugfvvugf

vvugfvvugf

Mu

mu

=

=
 (4.8) 

By the maximum operation yielding Mu : 

),(),( vugvug Mm ≤  (4.9) 

With input monotonity of f : 

]),,([]),,([ vvugfvvugf Mm ≤  (4.10) 

By the maximum operation yielding mu : 

]),,([]),,([ vvugfvvugf mM ≤  (4.11) 

The last two equations prove the theorem. 

Lemma 4.2: Global compilation creates an increasing monotonic conditional profile from 
increasing monotonic conditional profiles. 

Proof: Let S be the subsystem and its global compiled profile: 

( ) 







−= ∑

−

=
−

−

1

1
110,...,0
,,...,,max),(

11

N

i
iNSTT

G
S TTTTqqTqq

N

, (4.12) 

where 
0

q  denotes the inputs of S and T  expressed by iT -s. Sq is a compound function which has 
two types of sub-functions: 

1. Functions (profiles) of SISO and MISO modules and composites 
2. Functions (profiles) SIMO and MIMO modules (composites can have only one output) 

Assume that all sub-functions possess the assumptions given in Theorem 4.1. In this case, 
increasing of any input causes that the sub-function immediately after increases or reserves its 
output value (non-decreasing). This increasing output value causes the sub-function of the next 
“level” to give a non-decreasing output, etc. If the output quality is better with another allocation 
set, then by the maximum operation it also produces better quality. Consequently, if every 
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elementary module fulfills the assumptions of Theorem 4.1 then so does their composite, too. 
Finally, the assumptions also hold for the subsystem composite. 

Proof of Theorem 4.1: 

Let system Y be divided into two parts: MISO subsystem S and remainder R (Fig. 4.3). The 
number of modules in Y ( N ) is thus divided into two sets: NSSS MM ,1, ,...,  are in S and 

NRRR MM ,1, ,...,  are in R. NNSNR =+  is true. Time allocations for modules in S and R are 

NSSS TT ,1, ,...,  and NRRR TT ,1, ,..., , respectively. The global compilation of Y is:  
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. (4.13) 

By separating the allocations of S and R: 
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where ST  is expressed by other allocations. Hierarchical compilation of Y using S is: 
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where ST  is expressed by T  and RT -s. Expand (4.15) using (4.14): 
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(4.16) 

q  and Sq  are monotonic non-decreasing functions of their arguments, every iST ,  is in the inner 
maximum function, and 

0,S
q  depends on iRT , -s only, thus, Lemma 4.1 can be used 
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Merging maximum functions and eliminating decomposition yields the following : 
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Equation (4.18) is equivalent with (4.14) so the proof is ready. 



 107

Output-based incremental compilation and monitoring of contract algorithms 
There are two types of anytime algorithms: interruptible and contract. Interruptible algorithms 
may be interrupted after any elapsed run time to provide valid output. Contract algorithms do not 
give useful output values before the contract time expires. Contract time is an allocation 
calculated before the algorithm is activated. Interruptible algorithms can be constructed from 
contract algorithms ([18]). 
Anytime monitoring is the process of distributing allocations for elementary algorithms to 
optimize operation of the anytime system using information about the current state. The 
distribution itself is part of the scheduling process responsible for managing executable code 
under timing considerations as in real-time systems. 
Anytime monitoring may be passive or active. Passive monitoring assigns allocation times before 
an anytime (sub)system is activated. Active monitoring assigns allocation times during the 
execution of modules and subsystems, i.e., interruptible anytime operation applies active 
monitoring. 

Method 4.2 Output based incremental compilation ([S24], [S97], [S103]):  

Let NMM ,...,1  be a set of elementary contract modules characterized by their CPPs and 
connected in some structure. C denotes the system composite (created by compiling all iM -s into 
one composite). Assume one system output and a total system allocation obtained from the current 
state, e.g., by utility-driven computation, nominated as T. The purpose of a system is to perform 
certain tasks by executing elementary operations in a well-defined order called an execution order. 
These operations in our anytime system are implementation functions of anytime modules. The 
task is accomplished when the output value appears in the system output. 
When the scheduler is about to execute the subsequent (actual) elementary module, it must 
calculate an allocation for the module. This allocation depends only on the remainder of modules 
to be scheduled and the input quality of the actual module, i.e., the remainder may be treated as an 
individual anytime module or rather a composite. This remainder, called a residual composite, is 
used to obtain an allocation for it by the above total allocation calculation and allocation for the 
actual module is given by compilation. This mode of scheduling requires the creation of these 
residual composites. 
Let },...,{ 1 NEE  denote the execution order, formally a list of modules sorted by the order of 
activation. The following expression is true: 
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≡ , (4.19) 

If the system has only one output, then compilation steps implemented by hierarchical 
compilation can be used to build residual composites. The first composite will be the last module 
in the activation list; the second composite will be the result of the last two modules in the list, etc. 
This compilation process is called output based incremental compilation (OBIC), since the actual 
residual composite and the forthcoming module are compiled together at each compilation step. 
The order of modules is the reverse of the activation list. Assuming a chain structure, the OBIC 
and the scheduling of active monitoring based on the OBIC are formulated as follows (formulas 
are too complicated for any other structure): 
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where 
i : Step variable, Ni ..1= . 

iT : Allocation for the module executed at the i-th step 
),( ,,0,, iRiTqi TqT : Allocation table of the next module 

iRT , : Residual allocation 

TF : Function or algorithm giving the residual allocation 
S : Set of state parameters 
it : Elapsed absolute time from system activation at the i-th scheduling step 

iRC , : The i-th residual composite 

The formulas of qualities are: 
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where iP  is the performance profile of module iE  and 0q is the quality of system input.  
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where {})(HC  denotes hierarchical compilation.  
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Fig. 4.4 Block diagram of active monitoring 

Fig. 4.4. shows the block diagram of the monitoring system. The numbers in braces denote the 
sequence of the monitoring steps: 

(0) Arrived request, real-time clock is set to zero 
(1) Obtaining the time needed by the monitor for the scheduling of the residual composite. 

Calculating the approximate values of the current state (using the initial values). 
Computing the time allocation needed by the operating system in the interval of 
executing the residual composite (e.g. interrupts) 

(2) Determining the input quality of the first module to execute and the initial state values 
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(3) Counting the input quality of the next elementary module by using the input quality 
and time allocation of the previously scheduled module (The value is simply read from 
the CPP of that module) 

(4) Computing the optimal allocation (TR,i) for the residual composite. (Utility driven 
computation may be used.) The input quality computed in step (3) is applied 

(5) Obtaining the allocation for the forthcoming elementary module by using the input 
quality and the residual allocation ( ),( ,,0,,,1 iRiTqi TqT  is used.) 

(6) Executing the implementation function of the module with allocation obtained by the 
previous step 

(7) Saving the current value of the real-time clock (tEND,i-1 for the next scheduling step) 

4.2.5. Open questions 

Anytime schemes based on feedback systems unavoidably suffer from transients. These 
well-known phenomena are due to the dynamic nature of the processing structures applied. With 
the spreading of time critical, reconfigurable, and embedded systems, transient handling, covering 
both active and passive methods, has become an important research area.  
Active transient management methods (like state initialization and anti-transient signal injection) 
can over perform the passive methods when the run-time interaction is possible and the system has 
free computational power to run the transient management algorithms. These methods manipulate 
the system when the reconfiguration happens in order to decrease the transient effects. At the same 
time, active transient management methods have serious drawbacks: additional (sometimes 
remarkable) computational power may be required, and their application field is narrower than 
that of the passive methods [21]. 
Both parameter and structure adaptations generate transients. The nature of these transients 
depends not only on the transfer function of the structures to be implemented, but also on the 
actual implementation of the processing structure [22]. For this very reason the implementation of 
anytime algorithms must be performed using structures having good transient behavior. This 
structure dependency is strongly related to the „energy distribution” within the processing 
structure. It can be proved that orthogonal structures meet the general conditions of having 
relatively small transients [22]. 
Another aspect to be considered is that if the system is reconfigured between the old and the new 
configurations through intermediate steps, the transients may decrease. The transients depend on 
the selection of the number and the actual locations of these intermediate steps. Unfortunately, the 
simplest method, i.e., the linear interpolation does not ensure good results in most cases [22]. 
Fuzzy decision making may help to find the optimal strategy of the adaptation; however, 
controlling transients in reconfigurable systems is still an important area of investigations and 
research. 
We have to mention here a further non-negligible effect of anytime systems. The temporary 
reduction of complexity causes the reduction of the accuracy, as well. In some cases, like 
SVD-based complexity reduction, the error can easily be estimated, however further computations 
must be made to obtain the so called resultant error (the error of the whole system): the errors of 
the different modules, as well as the path of data and error through the modules has to be 
considered.  
For the calculation of the resultant error the error transfer functions of the modules must also be 
known. If module B uses the results of module A, then, if the accuracy of module A reduces, the 
accuracy of the output of B will reduce, as well. The y=fE (x) error transfer function means, that if 
the input of the module has an absolute error x, then the output of the module will have an 
additional absolute error y. The error along the data-path is cumulative. It is supposed, that the 
internal error of the modules, originating from inexact computations, noise, etc., can be modeled 
as an additive error component in the output of the module. Thus, in the example above, if module 
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A has an error EA and module B has an error EB then the resultant error on the output of B is 
f E Ee B A B, ( ) + , where fe B,  is the error expansion function of module B. 

In dynamic systems, further considerations must be made. In these cases, the error can spread not 
only in space, but also in time in the system, namely, the temporary reduction of accuracy may 
effect the operation of the system even after the restoration of the original accuracy. If the system 
contains additive memory elements then the error theoretically will never disappear from the 
system. (However, it can also be proved that if the absolute value of the error expansion function 
fE() is always less then one then the error will sooner or later disappear from the system, but if its 
absolute value is greater or equal than one then the effect of a temporal accuracy-reduction will 
influence all later results ([23].) 

4.3 Singular Value Decomposition  
Singular Value Decomposition (SVD) has successfully been used to reduce the complexity of a 
large family of systems based on both classical and soft techniques [24]. An important advantage 
of the SVD reduction technique is that it offers a formal measure to filter out the redundancy 
(exact reduction) and also the weakly contributing parts (non-exact reduction). This implies that 
the degree of reduction can be chosen according to the maximum acceptable error corresponding 
to the current circumstances. In case of multi-dimensional problems, the SVD technique can be 
defined in a multidimensional matrix form, i.e. Higher Order SVD (HOSVD) can be applied.  
SVD is serious candidate to overcome the complexity problems arising in modeling of complex 
systems where we either have an analytical description of the system (possibly too complicated to 
be handled), or the system is represented only by input-output sample pairs. In these cases, we can 
build a model approximating the system using local (linear) models. Such techniques include 
Takagi-Sugeno (TS) fuzzy model approximation [25] or polytopic model approximation (PMA). 
These methods have theoretically a universal approximation property; however, it can not really 
be exploited because they have an exponentially increasing complexity growing with the number 
of parameters. This means that if the number of the local units is bounded then the built model will 
only be an approximation of the original system. Thus, we have to find a balance between the 
computational complexity and the accuracy. On the other hand, after ensuring a needed or given 
accuracy, which may mean the application of a huge number of local models, the computational 
complexity can be reduced by applying some kind of exact or non-exact complexity reduction 
method like SVDR. 

Definition 4.3. (SVDR): The SVD based complexity reduction algorithm is based on the 
decomposition of any real valued F  matrix: 
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A . Let the matrices be partitioned in the following way: 

d
nnnk

r
nnkk rkkrk

AAA
))((,)(, −××

=
 
and d

nnnn

r
nn

rr

rr

B

B
B

))()((

)(

21
0

0

−×−

×= ,   

where r denotes “reduced” and n nr SVD≤ .  
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If dB  contains only zero singular values then dB  and d

k
A  can be dropped: rTrr ABAF

21
= . If dB  

contains nonzero singular values, as well, then the rTrr ABAF
21

'=  matrix is only an approximation 

of F  and the maximum difference between the values of F  and 'F  equals ([26]) 

   
)(

1
21

1)('
nn

n

ni
iRSVD

SVD

r

FFE
×

+=
∑≤−= λ

   .    
    (4.24) 

 
Theorem 4.2. (4.24) can be improved and better upper bound can be given for the SVD-based 
matrix reduction. The error of the matrix reduction can be estimated by the maximum element of 
the error matrix ([S22], [S70], [S76], [S89]):   

)max(EERSVD = , where  ∑
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=−=
SVD

r

n

np

T
kkp aaFFE

1
,2,1' λ  

Proof: 

Utilizing that the first  nr columns of matrices 
k

A  és r
k

A  are similar, the elements of matrix 'F  
can be calculated as 
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Utilizing that the last  nk-nr columns of matrices 
k

A  és d

k
A  are similar, the maximum difference 

between the elements of  matrices F  and 'F  is 
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SVD

r

n

np
pjpip

n

np
pjpppijijiji aaabaffe

1
,,2,,1

1
,,2,,,1,,, ' λ , 

∑
+=

=−=
SVD

r

n

np

T
kkp aaFFE

1
,2,1' λ ,            (3.42) 

 
Thus, the error of the matrix reduction can be estimated by the maximum element of error matrix 
E . 

 
For higher order cases Higher Order SVD (HOSVD) can be applied in a similar way (see e.g. 
[S78]).  
Here we have to remark that if SVD is applied to a two dimensional matrix then it can be proved 
that the resulting matrix of lower rank will be the best approximation of the original matrix in 
least-squares sense (minimum 2L  norm of the error, i.e. the reduction is “optimal”). In case of 
higher dimension matrices where HOSVD is applied, the minimum property does not hold 
anymore. We can only state that the “significant” singular values will have the “lower” indices. 
However, in most cases if there is a considerable difference among the singular values HOSVD 
results in an approximation which is “very near” to the optimal one.  
Remark: The above procedure can be also applied on a sub-matrix of E . This offers a possibility 
to give a better error bound for a subspace of the system, which can be advantageous in cases 
when the output of the system may vary in a large domain and we need lower bounds for the 
relative error of the system in the different domains. 
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4.4 Exact and Non-Exact Complexity Reduction of Fuzzy Models and Neural 
Network Based on SVD  

SVD based complexity reduction can be applied to various types of soft computational systems 
such as Product-Sum-Gravity-Singleton Consequent (PSGS) [27], Product-Sum-Gravity-Non- 
Singleton Consequent (PSGN), Takagi-Sugeno fuzzy models [25], and generalized neural 
networks (GNN)  [S83]. Combined with the Singular Value Decomposition technique, they are 
excellent tools for “anytime” operations. By using SVD, not only the “sequence” of the rules can 
be defined but also the extent in which they contribute to the mapping. To cope with the limits 
arising in the system or in its environment, determined by the computational need of the 
remaining truncated model, one can appropriately abandon the less significant part of the rule base 
and give the approximation error. Their further advantages are that they are suitable for modeling 
a large class of non-linear problems and may have relatively low (optimal) computational 
complexity. It can be proved that after exact reduction the remaining computational complexity is 
minimal and the computational need and error of the further, non-exact reductions can easily be 
obtained. The unavoidable extra calculations, caused by the SVD algorithm itself, can be 
pre-executed off-line. 
Here, as examples the complexity reduction of the product-sum-gravity fuzzy systems with 
singleton consequents (PSGS), that of the Takagi-Sugeno fuzzy models, and the reduction of 
generalized neural networks (GNN) are presented.  Extensions of the SVD based reduction to 
PSGN fuzzy  models and for systems having extremely large rule-bases, where the size of the 
rule-base is greater then the available operational memory, can be found in [S57], [S62], and [28]. 

4.4.1 Reduction of PSGS fuzzy rule-bases with SVD 

Let us first enumerate some definitions which will be used in the followings. Let µi(x) i=1,2,...n be 
functions, defined on some compact domain, and {µi(x) i=1,2,...n } a function set. The following 
properties of the function set can be defined: 

Definition 4. 4. Sum normalization (SN): the {µi(x) i=1,2,...n } function set is SN, if  
 

∑
=

=
n

i
i x

1
1)(µ , 

 
for every x of the domain. A matrix is SN, if the sums of the rows are 1. 

Definition 4. 5. Nonnegativeness (NN): the {µi(x) i=1,2,...n } function set is NN, if  
 

0)( ≥xiµ ,    i=1,2,...,n 
 

for every x of the domain. A matrix is NN, if all of its elements are nonnegative. 

Definition 4. 6. Normality (NO): the {µi(x) i=1,2,...n } function set is NO, if it is SN and NN, and 
each of the µi(x) functions takes the value 1 at some point within the domain. A matrix is NO, if it 
is SN and NN, and has an element of value 1 in every column. 
If the µi(x) functions are membership functions, then the SN and NN properties ensure that the 
membership values fall into the [0,1] interval. Besides, the SN property means, that if a given x 
has a high membership value in one of the fuzzy sets, then it has low membership values in the 
other fuzzy sets which may be a typical property in case of the antecedent fuzzy sets of a fuzzy 
inference system. The NO property implies, that the membership functions are normalized. 

Definition 4.7. Ruspini-partition: the fuzzy sets, defined by the µi(x) i=1,2,...,n membership 

functions are in Ruspini-partition, if :x∀   µi
i

n
x( ) =

=
∑ 1

1
; the membership functions satisfy the SN 

and NN conditions. 



 113

Definition 4.8. Product-sum-gravity (PSG) fuzzy inference with singleton consequences (PSGS): 
The antecedent fuzzy sets are in Ruspini-partition, the consequent fuzzy sets are singletons. The 
rules are 

NiiR ,...,1
: If x1  is 

1,1 iA , 2x  is 
2,2 iA ,…,  and Nx  is 

NiNA ,  then y= yi iN1 ,..., . 
The output of the system equals 

∑ ∏
=

=
N

jijN
ii

N

j
jXii xyy

,..., 1

*
,...,

*

1

,1
)(µ  

where x1 ,..., xN  are the input variables, 
kikA ,  is the antecedent fuzzy set of the k-th input variable 

in the 
NiiR ,...,1

rule and 
Niiy ,...,1

 is the consequence of the rule, in this case a singleton value. 

Definition 4.9. Product-sum-gravity fuzzy inference with non-singleton consequences (PSGN): 
The antecedent fuzzy sets are in Ruspini-partition, the consequences are fuzzy sets. The rules are: 

NiiR ,...,1
: If 1x  is 

1,1 iA , 2x  is 
2,2 iA ,…, and Nx  is 

NiNA ,  then y is 
NiiY ,...,1

, 
where 1x ,..., Nx  are the input variables, 

kikA ,  is the antecedent fuzzy set of the k-th input variable 
in the 

NiiR ,...,1
rule and 

NiiY ,...,1
 is the consequence fuzzy set of the rule. The consequent fuzzy sets 

can be characterized by two parameters: their center of gravity (
Niiy ,...,1

) and their area (
Niis ,...,1

). 
The fuzzification method is singleton, during the inference, product T-norm and sum S-norm are 
used, thus the result of the inference is  
 

∑ ∏

∑ ∏
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==
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µ
, where 

NNN iiiiii syb ,...,,...,,..., 111
=  

 
Definition 4.10. Near SPGS fuzzy inference: The only difference compared to the PSGS fuzzy 
systems is, that the input fuzzy sets are not in Ruspini-partition. Because the input fuzzy sets are 
not in Ruspini-partition, the result of the inference will take the form of 

∏

∑ ∏

=

== N

j
jX

ii

N

j
jXii

x

xy
y

jij

N
jijN

1

*

,..., 1

*
,...,

*

)(

)(

,

1

,1

µ

µ
.  

Consider a fuzzy rule base with two inputs, where the antecedent fuzzy sets are in 
Ruspini-partition and the consequence fuzzy sets are singletons. Thus, the rules are 

Ri j, : If x1  is A i1,  and x2  is A j2,  then y = yi j, , where i n= 1 1...  and j n= 1 2... . 
 
The fuzzyfication method is singleton and during the inference, product T-norm and sum S-norm 
are used.  The result of the fuzzy inference in case of the input values ( , )* *x x1 2  
 

 
y y x xi i A A

i i i i
*

,.
* *

,. , ,
( ) ( )= ∑

1 2 1 1 2 2
1 2

1 2µ µ .   (4.25) 

 
Let F  be a matrix, containing the yi j,  elements, then apply the SVDR procedure discussed in 

Section 3 to obtain rTrr ABAFF
21

' =≈ , where 1A  and 2A  are SN (Sum-Normalized: the sum of 
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each row equals to one) and NN (Non-Negative),  and “r” denotes “reduced”. The new rule-base 
takes the form of 
 

R i j' , : If x1  is A i' ,1  and x2  is A j' ,2  then y = y i j' , ,  
 

where i n r= 1 1... , j n r= 1 2... , y i j' ,  are the elements of B , and the new membership functions can 
be obtained as 

 
µ µA k A k k j i

jk i k j
x x A' , ,, ,

( ) ( )= ∑ ,     (4.26) 

 
ijkA ,,  stands for the (j,i)-th element of 

k
A . 

The reduced rule-base contains only rr nn 21 ∗  rules instead of n1*n2 and the error can be estimated 
from the discarded singular values. 

Definition 4.11. (HOSVD): The SVDR method can be extended to n-dimension cases by 
applying HOSVD, as follows ( )(),,,(

1
FHOSVDRFAA r

n
=L ): In this case the reduction can be 

made in n steps, in every step one dimension of matrix F , containing the yi in1,...,  consequences is 
reduced. The first step sets FF =1  . In the followings, 

i
F is generated by step i-1. The i-th step of 

the algorithm (i>1) is 

1. Spreading out the n-dimensional matrix iF  (size: n n n nr
i
r

i n1 1× × × × ×−... ... ) into a 

two-dimensional matrix 
i

S  (size: n n n n ni
r

i
r

i n× − +( *...* * *...* )1 1 1 ).  

2. Reduction of  
i

S : *' ii
T
iii SAABAS =≈ , where the size of 

iA is n ni i
r×  and the size of  ∗

i
S  is 

n n n n ni
r r

i
r

i n× − +( *...* * *...* )1 1 1 . 

3. Re-stacking ∗

i
S  into the n-dimensional matrix 

1+i
F  (size n n n nr

i
r

i n1 1× × × × ×+... ... ), and 

continuing with step 1. for 
1+i

F . 

The consequences of the reduced rule-base are the elements of 
n

F  and the new membership 

functions are µ µA k A k k j i
jk i k j

x x A' , ,, ,
( ) ( )= ∑ . 

The reduced rule base contains only n nr
n
r

1 *...*  rules instead of n nn1*...* . 
The following theorem illustrates the advantageous property of SVD reduction:  
Theorem 4.3. The maximum error (eFSVD) of the SVD based reduction of PSGS fuzzy systems 
with non-linear antecedent fuzzy set in Ruspini partition can not exceed the sum of the discarded 
singular values at any point ([S22], [S76]). 
 
Proof of the 2-dimensional case:  
The statement we prove reads: 

∑
+=

≤
SVD

r

n

ni
iFSVDe

1
λ       (4.27) 

The output of the non-reduced system can be written as (see also 4.25)  
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where matrix F  contains consequents 
21 ,iiy  and vectors )( *

kk xµ  correspond to the membership 

values of input *
kx  in the antecedent fuzzy sets of the k-th (k=1,2) input variable. Let apply SVDR 

to obtain the reduced rule-base  

21 ,' iiR : If 1x  is 
1,1' iX  and 2x  is 

2,2' iX  then y=
21 ,' iiy , 

where r
kk ni ...1= , az 

21 ,' iiy  are the elements of  'F  (see also (4.24)) and the new membership 
functions can be obtained as  

∑= ijkkjkjk ax ,,,, )(' µµ ,     (4.29) 

where ijka ,,  correspond to the elements of matrix 
k

A .  
The output of the new, reduced rulebase is (from (4.28) and (4.29) ) 
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The error of the reduction 
 

)())(()()()()( *
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** xABAFxxABAxxFxyy µµµµµµ −=−=−  

(4.31) 

The elements of 
21

ABAF −  correspond to the errors in the grid points and they are less or equal 

then the sum of the discarded singular values (ERSVD) 
 

)(21 21
1'

nnRSVDEFFABAF
×

≤−=−  .    (4.32) 

 
Using (4.24) and that the original antecedent fuzzy sets are in Ruspini-partition follows that 
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Proof of the n-dimensional case: 

Here we have to prove 
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where dk corresponds to the number of discarded singular values in the k-th step, ik ,λ  stands for 
the j-th discarded singular value in step k.  
The rulebase of a PSGS fuzzy system with N inputs is 

NiiR ,...,1
: If 1x  is 

1,1 iX  and 2x  is 
2,2 iX  and .... and Nx  is 

NiNX ,  then y =
Niiy ,...,1

, 

where jj ni ...1= , jn  stands for the number of antecedent fuzzy sets in the universe of the  j-th 
input,

jijX ,  corresponds to the .ji -th antecedent fuzzy set of input j, and 
Niiy ,...,1

 is a real valued 

output of rule
NiiR ,...,1

. 
The result of the inference with the original rule-base can be written as  
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where  
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The size of matrix 

1
S  is )...( 21 nnnn ×  and it contains values 

niiiy ,...,, 21
. 

During the reduction, matrix 
1

S and with it values 
niib ,...,2
are estimated: *

11111
' SAABAS T =≈ . The 

error of this estimation is less or equal then the sum of the discarded singular values (ERSVD,1)  
The error of the estimation of   values 

niib ,...,2
 equals to 
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Because the original antecedent fuzzy sets are in Ruspini-partition.  
Using (4.35) and (4.36), the error of the first step of the reduction: 
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           (4.37) 

Because the original antecedent fuzzy sets are in Ruspini-partition. Thus, the error of the first step 
will not exceed the sum of the discarded singular values.  
For the following steps, the same procedure and the same error bound is valid. The only difference 
is that in (4.37), not only the original but also the reduced antecedent fuzzy sets appear. Thus, for 
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the validity of the error bound, the reduced antecedent fuzzy sets must be in Ruspini-partition, as 
well. This can be ensured, if matrices 

k
A are sum-normalized (SN).  

So, the overall error of the reduction at any point, is less or equal the the sum of the discarded 
singular values, even if the antecedent fuzzy sets are non-linear   
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4.4.2 Reduction of near PSGS fuzzy rule-bases with SVD  

While the SVD-based complexity reduction can be applied to PSGS fuzzy systems, in case of 
rule-bases, constructed from expert knowledge, the input fuzzy sets are not always in 
Ruspini-partition. This section presents how the SVD-based reduction can be extended to “near 
PSGS” fuzzy systems, where the input fuzzy sets are not in Ruspini-partition.   

Theorem 4.4. Non-exact HOSVD complexity reduction can be applied to “Near PSGS” fuzzy 
systems [S98].  
 
Proof: 
Consider a “near PSGS” fuzzy system with two inputs, where the numbers of antecedent fuzzy 
sets are n1 and n2, respectively. The antecedent fuzzy sets are not in Ruspini-partition and the 
consequents are singletons. Thus, the rule-base contains n1*n2 rules:  

21 ,iiR : If 1x  is 
1,1 iX  and 2x  is jX ,2  then y =

21,iiy . 

The fuzzification method is singleton, during the inference product T-norm, sum S-norm, and 
center-of-gravity defuzzification are used, so the result of the inference in case of the input values 
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where )(, kik x
k

µ  is the membership function of the ki -th antecedent set of the k-th input. Thus, the 
SVD-based complexity-reduction algorithm given for PSGS fuzzy systems can not be applied in 
this case. However, (4.38) has the same form, as a PSGN fuzzy system (see Definition 4.9), where 
the centers of gravity of the consequent fuzzy sets are 

21 ,iiy , and their areas (
21 ,iis ) are 1. Thus, the 

reduction can be solved similarly, as in case of PSGN systems (Definition 4.11. HOSVD) and the 
result of the reduction of a near PSGS fuzzy system will be a PSGN fuzzy system. 
Let us define the 3-dimensional matrix F  (with size 221 ×× nn ) as follows 
 

 
2121 ,1,, iiii yf =  and 12,, 21

=iif .    (4.39) 
 

First, matrix F  is spread out to the 2-dimensional matrix 
1

S  (size: 21 2nn × ), and 
1

S  is reduced 
with the the SVD-based matrix-reduction algorithm: 

 *
)2(1)(1111 2111

' nnnn
T

rr SAABAS ××=≈ ,     (4.40) 

where matrix 
1

A  is SN and NN.  
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In the second step, matrix *

1
S  is restacked to the 3-dimensional matrix 

2
F  (size: 221 ×× nnr ). 

Then 
2

F  is spread out to the 2-dimensional matrix 
2

S  (size: rnn 12 2× ), and 
2

S  is reduced: 
 

 *
)2(2)(2222 1222

' rrr nnnn
T SAABAS ××=≈ ,     (4.41) 

where matrix 
1

A  is SN and NN. 

By the restacking of 
2

S  we get the 3-dimensional matrix *F  (size 221 ×× rr nn ).  
The elements of the original F  can be estimated as: 

 ∑∑
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*
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where the *
,, 321 iiif  values are the elements of *F , and the 

kk iika ,,  values are the elements of the 

matrices kA . 
The reduced, PSGN rule-base: 

21 ,' iiR : If 1x  is 
1,1' iX  and 2x  is 

2,2' iX  then y =
21 ,' iiY , 

where the new antecedent fuzzy sets are 
 

 ∑=
l

killikkkil xax
kk

)()(' ,,,, µµ .    (4.43) 

 

Because of the SN and NN properties of the kA  matrices, the values of the new membership 
functions are in the [0,1] interval and the new antecedent fuzzy sets are in Ruspini-partition. Thus, 
the reduced system is a PSGN fuzzy system. The consequent fuzzy sets have center of areas of 

21 ,' iiy  and areas of 
21 ,' iis , which parameters can be determined from the elements of matrix *F  
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The new rule-base contains rr nn 21 ×  rules instead of the original 21 nn × . 
The above-described procedure can be extended to N-dimensional cases, as well. In that case 
matrix F  is N+1 dimensional, and the reduction can be made in N steps. In every step, F  will be 
spread along one of its dimensions, and the given dimension will be reduced. The result will be a 
reduced N+1 dimensional matrix, *F , which contains the parameters of the new consequent fuzzy 
sets, and the kA  matrices (k=1..N), from which the new membership functions can be generated.  
Because the reduced rule-base is of different type than the original one, for the determination of 
the rate of reduction further considerations are needed. The computational need of the original and 
the reduced rule-bases from Definitions 4.9 and 4.10 : 
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N stands for the number of inputs, in  and r
in  are the number of antecedent fuzzy sets of the i-th 

input variable in the original and reduced rule-bases, respectively.  
It can be seen, that in case of a complex system, where N and in  are high, the computational 

complexity of the original and the reduced systems will be approximately proportional to ∏
=

N

i
in

1

 

and ∏
=

N

i

r
in

1

. In case of smaller systems, the whole equations must be considered. 

 
Theorem 4.5. The error bound of the nonexact HOSVD reduction for „near” PSGS fuzzy systems 
can be given as ([S98]) 
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Where  kU  (k=1,…,N) stand for the upper bounds of the sum of the membership functions. 

Proof: 
 
While the SVD-based complexity-reduction of near PSGS fuzzy systems can be solved similarly 
to the reduction of PSGN fuzzy systems, for the error-bound of the non-exact reduction a new 
proof is needed, because in case of PSGN fuzzy systems the proof of the error-bound is based on 
the fact, that the input fuzzy sets are in Ruspini-partition [29]. 
The output of the reduced system, in the N-dimensional case equals 
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The errors of the numerator and denominator can be estimated separately. In the followings, the 
estimation of the error of the numerator will be shown; the error of the denominator can be 
estimated similarly. 
Let kL  and kU  (k=1,…,N) be the lower and upper bounds of the sum of the membership 
functions: 
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The numerators of the original system can be written as: 
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where  
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The error of the numerator in the first step from (4.47) and (4.48): 
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In the following steps, the error can be estimated similarly, the only difference is, that in (4.49) the 
antecedent fuzzy sets of the reduced system are also present. Because the antecedent fuzzy sets of 
the reduced system are in Ruspini-partition, the above described error bound is valid, if kU≤1  for 
every k. In general, the overall error of the numerators can be estimated as: 
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where dk is the number of discarded singular values in the kth step, and jk ,λ  is the jth singular 
value, discarded in the kth step. 
The error of the denominator can be estimated similarly, the above-described error bound is valid 
for that, as well: 
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Let us define  
 

000 ' NNN −=∆  and 000 ' DDD −=∆ .      (4.52) 
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The error of the output: 
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Because 00 EN ≤∆  and 00 ED ≤∆  
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If 0'0 ≥D , namely ∏
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k
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1
0 , then from (4.50), (4.51) and (4.54) the error-bound is 
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Remark: Based on the value of y∗ a better error bound can be given starting of (4.53).  
If 1* ≤y , then 
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If 1* −≤y , then 
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4.4.3 Reduction of Takagi-Sugeno fuzzy models with SVD ([S3], [S20], [S23]) 

Takagi-Sugeno (TS) fuzzy modeling is a technique to describe a nonlinear dynamic system using 
local linearized models [25]. The idea is that the system dynamics is captured by a set of fuzzy 
implications, which characterize local regions in the state space. The overall fuzzy model, i.e. the 
description of the whole system is achieved by the convex combination (fuzzy blending) of the 
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linear models. The combination is usually defined by an array of local models and the 
n-dimensional matrix product of basis functions, which expresses the local dominance of the local 
models. Using the TS fuzzy model approximation, the controller design and Lyapunov stability 
analysis reduces to solving the Linear Matrix Inequalities (LMIs) problem.  Appropriately chosen 
operating points, i.e., the number of local linear models and the size of the corresponding regions 
used in the supervision system can guarantee the stability of the dynamic system [31].  
Unfortunately, this latter can be a serious limitation on the applicability of such control schemes 
because the computational complexity of the system increases exponentially with the number of 
models. This leads to the same problem as we have discussed in case of PSGS fuzzy models. The 
solution can be the application of exact (to find the minimum number of the necessary models) 
and non-exact (to cope with the temporal circumstances) HOSVD based complexity reduction. 
TS fuzzy modeling technique can be used both if we have an analytical description of the system, 
i.e. the system is given e.g. by differential equations or if only input-output samples are given, thus 
we make a black-box modeling. In the first case, we are to sample the system over a rectangular 
hyper-grid, which leads to a similar problem as black-box modeling, accept that in this case the 
samples, i.e. the approximation points can directly serve as linear models, while in the latter case 
we have to evaluate a Lagrange interpolation to adapt the local models to force the overall model 
to copy the behavior of the system in the sampling points. 
TS fuzzy models are theoretically universal approximators. Despite this advantage, their use is 
practically limited, because the computational complexity grows exponentially with the number 
of parameters and the universal approximation property doesn’t hold if the number of antecedent 
sets are limited [33]. Consequently, methods helping to find the minimum number of necessary 
building units to a given accuracy are highly desirable. 
In Fig. 4.5 the block-diagram of a TS fuzzy observer based control scheme is shown [30]. 
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Fig. 4.5 TS fuzzy observer based control scheme 

For the fuzzy observer design it is assumed that the fuzzy system model is locally observable. 
Using the idea of Parallel Distributed Compensation (PDC) [32] a linear time invariant observer 
can be associated with each rule of the TS fuzzy model: 
 

If ω  is fuzzy set tA  then model tM ,           (4.59) 
 

mt ..1=  and m  is the number of the models. 
Model tM  is defined as (see (3.1) in [32]): 
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Let us use arbitrary shaped fuzzy sets )(: ωµ
tAtA , t=1…T. Actually, fuzzy sets tA  are the 

weighting functions for the combination of the models. For general view and simpler notation let 
us define weighting functions )(ωtf  instead of fuzzy sets )(: ωµ

tAtA . So the combination of the 
models according to the fuzzy rules can be expressed as 
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The t -th generalized model is calculated as: 
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From this, the following general form can be got for the weighed combination of the models  

∑ ∑∑
= ==

==
T

t

U

u
uultt

T

t
tltl

txBftzft
1 1

,,
1

, )()()()()( ωωy .               (4.62) 

The structure of the TS fuzzy model based approximation is illustrated in Fig. 4.6. 
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Fig. 4.6 Weighted combination of the models. 
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Fig. 4.7 Compressed model structure 

Applying SVD based complexity reduction to (8) yields the following form  
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where “r” denotes “reduced”, the sizes of  lA , uC ,  and r
ultB ,,  are r

ll OO × , r
uu II ×  and r

u
r
l IO × , 

respectively, further l
r
l OOl ≤∀ : , u

r
u IIu ≤∀ :  and the number of models is reduced as TT r ≤ . 

The reduced form is shown in Fig. 4.7. (For more details see [S20].) 
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If not only zero singular values are discarded then the effectiveness of the reduction is improved, 
however reduction error is obtained. The error resulted by SVDR is bounded by the sum of the 
discarded singular values. 

4.4.4 Reduction of generalized neural networks with SVD 
Definition 4.12. Generalized neural networks (GNN). The classical multi-layer neural network 
can be generalized if the non-linear transfer functions are moved from the nodes into the links. It 
results in neurons that apply only a sum operation to the input values, and links that are 
characterized by possibly non-linear weighting functions instead of simple constant weights (see 
Fig. 4.8). A further advantage of this generalization is that it makes possible to apply even 
different weighting functions at the connections. 
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Fig. 4.8 Generalized Neural Network 

Let us focus on two neighboring layers l and l+1 of a forward model. Let the neurons be denoted 
as ilN , , lni ..1=  in layer l, where ln  is the number of the neurons. Further, let input values of 

ilN ,  be kilx ,, , 1..1 −= lnk  and its output ily , . The connection between layers l and l+1 can be 

defined by the )( ,,, ilijl yf  weighting functions ( 1..1 += lnj ). Thus  

  )( ,,,,,1 ilijlijl yfx =+       (4.64) 

and the output of neuron jlN ,1+  is  
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The weighting functions can also be changed during the training: the unknown weighting 
functions are approximated with linearly combined known functions, where only the linear 
combination must be trained (Fig. 4.9).  
Definition 4.13. PSGS generalized neural networks (SGNN). For the approximation of the 
weighting functions of the GNN, PSGS fuzzy systems are used, with one input and one output 
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Fig. 4.9 SGNN approximation of the GNN 

To reduce the size of a generalized neural network the SVD based complexity reduction can be 
used. (4.66) can always be transformed into the following form 
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where “r” denotes “reduced”, further 11 ++ ≤ l
r
l nn  and il

r
il mmi ,,: ≤∀ . 

The reduced form is represented as a neural network with an extra inner layer between layers l and 
l+1 (see Fig. 4.10). Between the original layer l and the new layer the weighting functions are 
approximated from the reduced PSGS fuzzy systems, and layer l+1 simply computes the weighted 
sum ( al j z, , ) of the output of the new layer.  
The reduction means the reduction of the [ ]tijlbB ,,,=   three-dimensional matrix in two steps by 
applying the HOSVD reduction algorithms ((Definition 4.11.): In the first step, the first dimension 
is reduced, and the al j z, ,  values are determined while in the second the third dimension is reduced, 
and the new membership functions are determined. The detailed description of the algorithm can 
be found in [34]. 
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Fig. 4.10 Reduced SGNN 
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The maximal error of the resulted neural network can be computed from the discarded singular 
values, considering that the singular values discarded in the first step “count” nl  times ([35]). 
Definition 4.14. PSGN generalized neural networks (NGNN). For the approximation of the 
weighting functions of the GNN, PSGN fuzzy systems are used with rules 

If tA  then tB ,  

where the consequent fuzzy sets are non-singleton fuzzy sets with centers of gravity of td  and 
areas of ts  (PSGN fuzzy inference). The result of the inference is 
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In order to approximate the contribution of each neuron to the neurons of the next layer by the 
PSGN technique, let (4.68) be substituted into (4.65). Let a more general form be defined where 
all antecedent universes may have different number of antecedent sets: 
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Here ilm ,  is the number of antecedent sets in layer l, tijltijltijl sdb ,,,,,,,,, = , ijlN ,,  denote the 
nominators and ijlD ,,  the denominators. Fig. 4.11 depicts the NGNN representing (4.69). 
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Fig. 4.11 NGNN approximation of the GNN 

Theorem 4.6. (4.69) can always be transformed into the form of 
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Fig. 4.12. Reduced NGNN 

where “r” denotes “reduced”, and il
r

il mmi ,,: ≤∀ , and the maximum error of the reduction can be 
computed from the discarded singular values [S73], [S83]. The reduced form can be represented 
as a neural network in Fig. 4.12.  

Proof: 

Let 
i

µ  and 
il

M
,

 be defined as: 

[ ])()()( ,,,1,1,,, , ilmillilili
yyy

il
µµµ L=  

illil

l

minlmil

inlil

il

bb

bb
O

,1,

1

,,,,,1,

1,,1,,1,

,

+

+

=
L

MOM

L

 , 

illil

l

minlmil

inlil

il

ss

ss
P

,1,

1

,,,,,1,

1,,1,,1,

,

+

+

=
L

MOM

L

, ililil POM ,,, =  . 

With this notations 

[ ] ililiinlil OyNN
l ,,,,,1, )(

1
µ=

+
L , and [ ] ililiinlil PyDD

l ,,,,,1, )(
1

µ=
+

L . (4.71) 

Applying the above described singular value-based reduction to the 
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The error of this reduction ( ililil
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'− ) will be the sum of the discarded singular values, Ei. 

The output of the reduced neural network is  
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where 
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The antecedent fuzzy sets of the reduced network can be obtained as 
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The reduced consequent fuzzy sets of the reduced network will have centers of gravity of 
tijltijltijl sbd ,,,,,,,,, '/'' =  and areas of tijls ,,,' , where tijlb ,,,'  and tijls ,,,'  are the elements of  ilO ,'  and 

ilP ,' , accordingly.  
The errors of the numerators can be determined as: 
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because the original antecedent fuzzy sets are in Ruspini-partition.  
The error of the denominator can be estimated in the same way, and it is also equal or less, then Ei. 
Let 

ijlijlijl NNN ,,,,,, ' −=∆  and ijlijlijl DDD ,,,,,, ' −=∆ . 
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Because ∆N El j i i, , ≤ and ∆D El j i i, , ≤  : 
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Since the original antecedent fuzzy sets were in Ruspini-partition, the maximum of 
ijl
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D
N

,,

,,  will be 

in one of the grid-points (points, where one of the original 1)( ,,, =iltil yµ  for every i): 
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If 0' ,, ≥ijlD , i.e. )(min ,,, tijl
t

i sE ≤ , then the error is 
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where iE  is the sum of discarded singular values, tijls ,,,  are the areas and tijld ,,,  are the centers of 
gravity of the original consequent fuzzy sets.  
 
The effectiveness of the complexity reduction may be improved, if the fuzzy logic form can be 
lost in the resulted network.  

Theorem 4.7.  (4.69) can always be written into the form of 
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where „r” denotes „reduced”, „ ” denotes values in the denominator corresponding to values in 

the numerator, further 111, +++ ≤ l
r
l

r
l nnn  and il

r
il

r
il mmmi ,,, ,: ≤∀ , and the maximum error of the 

reduction can be computed from the discarded singular values [S73], [S83].  

Proof: 
The numerator and denominator parts can be reduced separately. In the following, first the 
reduction of the numerator is shown and the error bound is given. The reduction of the 
denominator can be carried out in the same way, and the error-bound can be determined similarly.  
The reduction can be made in two steps. First, the zjla ,,  values are computed, while in the second 

the new )( ,,, iltil
r yµ  functions are determined.  

Step 1. Determination of the zjla ,,  values 
Let 

i
µ  and 

l
S  be defined as: 
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where the 
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µ  vectors (lengths: ilm , ) contain the values of the membership functions in a given 
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With this notation: 
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Applying the above described singular value-based reduction to the 
l

S  matrix one gets:    
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The error of the reduction is the sum of the discarded singular values, EN,1: 
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where tijlb ,,,'  are the elements of lS ' . The numerators after the first step are: 
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The difference between the current and the original numerators, using that the original antecedent 
fuzzy sets are in Ruspini-partition (i.e. 1))(( ,,1
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Step 2. Determination of the new membership functions 
Applying the singular value-based reduction to the H l i

T' , matrices one gets:  
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The error of this reduction ( T
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il HTH ,,, ''' − ) will be the sum of the discarded singular values, EN,2,i 

(the error also depends on i). The numerators after the reduction is: 
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The new )( ,,, iltil
r yµ  functions can be obtained as 

   [ ] ilil
T
iilmil

r
liil

r
ili

r Tyyyy il ,,,,,11,,, )()()()( , µµµµ == L  ,  (4.88) 

where the tijlb ,,,''  values are the elements of  ilH ,'' . 
The error of the numerator in the second step: 
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For the last step, the sum of the rows of 
l

A  must be less or equal than one. This can be ensured by 
a further transformation in the first step: 
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Thus, the error of the numerator will be altogether the sum of the errors originating from the first 
and second steps (from (4.85) and (4.89)):  
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iNNijlijliN EENNE ,2,1,,,,,, '' +≤−= .    (4.91) 

Similarly can be obtained iDE , , the error of the denominator, as well.  
Let 

ijlijlijl NNN ,,,,,, ''' −=∆  and ijlijlijl DDD ,,,,,, ''' −=∆ . 

The overall error of jly ,1+  is (using (4.76)) 
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Because iNijl EN ,,,' ≤∆ and iDijl ED ,,,' ≤∆  : 
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If 0'' ,, ≥ijlD , i.e., )(min ,,,, tijl
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iD sE ≤  then the error is, using (4.78): 
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where tijls ,,,  are the areas and tijld ,,,  are the centers of gravity of the original consequent fuzzy 
sets, and iNE ,  and iDE ,  are the sums of the discarded singular values during the reduction of the 
numerators and denominators, accordingly. 

4.5 Transformation of PSGS fuzzy systems to iterative models 
In case of fuzzy systems, the needed time/resources can be flexibly changed by the evaluation of a 
subset of the rules. However, since the significance of the rules highly depends on the actual 
inputs, it has been hard to tell until recently, which rules could be omitted if we wanted to ensure a 
given accuracy. Nor could we ensure that the result of the processing would be the available most 
accurate one. For this, we should be able to give the order of the significance of the rules, for 
arbitrary input and then evaluate them one by one until the available time is over. Unfortunately, 
the rules which are formulated based on either expert knowledge or some other source (analytical 
model, sampling, etc.) are not of this type.   
In the following, an SVD based transformation method will be described, by which PSGS fuzzy 
systems can be transformed into a new form. The new form can be evaluated iterative-type, rule 
by rule with known error bound in every step (see also [S27]) and holds the optimum (minimum 
error) criteria. This makes the use of fuzzy systems possible in anytime applications, without 
constructing a modular architecture. 

4.5.1. SVD based transformation of PSGS fuzzy systems to iterative models 
Theorem 4.8. PSGS fuzzy system can always be transformed to a form, which can be evaluated 
iterative type, ensuring the assumption of monotonously decreasing error of the estimation ([S4], 
[S27], [S88]). 
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Proof: 

Consider a PSGS fuzzy rule base with N inputs, containing m1, m2, ... , mN antecedent fuzzy sets, 
respectively. The antecedent fuzzy sets are in Ruspini-partition, the consequent fuzzy sets are 
singletons. Thus, the rule base contains m1*m2*...*mN rules as 
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where the length of the vectors ),...,( **
11 Hxxµ  and ),...,( **

12 NH xx +µ  are n1 and n2, respectively. 
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where [k] denotes the k-th element of the given vector. 

4.5.2. Error estimation 
The transformed form of a PSGS fuzzy system ((4.96)) can be evaluated gradually, by computing 
and summing the terms one after the other. The advantage of this form is that the error can be 
estimated at any point of the evaluation without considering the actual inputs contrary to the 
original form where the error usually highly depends on the input values.  

Theorem 4.9. The error of the estimation after evaluating mnSVD −  terms can not exceed the sum 
of the discarded singular values of the transformed form ([S4], [S27], [S88]). 

Proof: 

After summing up mnSVD −  terms, the output is  
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Let ESVD,m be the upper bound for the error of the SVD based matrix reduction after discarding m 
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(Here we have used the fact that the original antecedent fuzzy sets are in Ruspini partition.) 
(4.99) implies two important things. First, the terms corresponding to zero singular values can be 
left out without degrading the accuracy, i.e. an exact complexity reduction can be made. 
Secondly, if because of some temporal time/resource shortage further non-zero terms are left out, 
the error will still be easily estimable, according to (4.99). It is always equal to or less than the sum 
of the discarded singular values at the given point, thus the accuracy of the computations is 
monotonously increasing by adding more and more terms.  
Moreover, since the SVD algorithm sets the singular values in the order of magnitude (starting 
with the highest one in matrix B ), the most significant terms are added first during the evaluation, 
ensuring that the error decreases as fast as possible. Thus, if the available time is not enough to 
evaluate all the terms corresponding to nonzero singular values and some of them must be left out, 
it will cause the smallest possible error. 
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It is worth mentioning, that the effectiveness of the evaluation method depends on the properties 
of the original fuzzy system. If the singular values are nearly equal, which means that the terms 
contribute to the result in nearly the same degree, non-exact complexity reduction may cause 
considerable, possibly not acceptable error with a magnitude more or less proportional to the 
number of neglected terms. Even if that is the case, the results may help in making qualitative 
decisions. 
On the contrary, if the singular values are highly different (in the practice, this is the more 
common case) then the first terms have much higher contribution to the result then the last ones. 
The error will decrease faster and a good approximation can be generated by using only those 
terms which have significant weights and the negligible components can be omitted.  

4.6 Anytime Modeling: Complexity Reduction and Improving the 
Approximation 

With the help of the SVD-based reduction not only the redundancy of the rule-bases of fuzzy 
systems (or neural nets) can be removed, but further reduction can also be obtained, considering 
the allowable error. This latter can be done adaptively according to the temporal conditions, 
thereby offering a way to use soft computational, fuzzy and generalized neural network based 
models in anytime systems.  

Theorem 4.10. PSG fuzzy and GNN models can be operated in anytime mode ([S1], [S5], [S4], 
[S12], [S3], [S18], [S21], [S22], [S72], [S26], [S93], [S94], [S95], [S75], [S77], [S82], [S86], 
[S87], [S91], [S95], [S102]). 

Proof: Methods 4.3-4.6, discussed below, ensure Theorem 4.10. 

The method also offers a way for improving the model if later on we get into possession of new 
information (approximation points) or more resources. An algorithm can be suggested, which 
finds the common minimal implementation space of the compressed original and the new 
approximation points, thus the complexity will not explode as we include new information into 
the model.  
These two techniques, non-exact complexity reduction and the improvement of the approximation 
accuracy, ensure that we can always cope with the temporarily available (finite) time/resources 
and find the balance between accuracy and complexity. 

4.6.1 Reducing the complexity of the model 

The steps of using anytime models for coping with the temporarily insufficient resources and/or 
computational time, are the followings:  

Method 4.3. ([S1], [S5], [S18], [S4], [S27], [S72], [S77]) 

Step 1. First a practically “accurate” fuzzy or NN system is to be constructed. For the 
determination of the rule-base, expert knowledge can be used. Further improvement can be 
obtained by utilizing training data and some learning algorithm. 

Step 2. In the second step, by applying the above described (HO)SVD based complexity reduction 
algorithm, a reduced but “accurate” model can be generated. (In this step only the redundancy is 
removed.)  

Step 3. The SVD based model can be used in anytime systems either by applying the iterative 
transformation algorithm described in Section 4.5 (PSGS fuzzy systems) or in the more general 
frame of the modular architecture presented in Section 4.2.  
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In the first case, the transformation can be performed off-line, before the anytime operation starts 
(i.e. it does not cause any additional computational load on the system) and the model evaluation 
can be executed without knowing about the available amount of time. The newest output will 
always correspond to the in the given circumstances obtainable best results. 
In the second case, based on the SVD transformed model of the system, further non-exact 
variations of the rule-bases of the model must be constructed. These models will differ in their 
accuracy and complexity. For anytime use, an alternative rule-base is characterized by its 
complexity and its error that can be estimated by the sum of the discarded singular values. 
The different rule-bases form the different units realizing a given module (Fig. 4.1).  

Step 4. During the operation, an intelligent expert system, monitoring the actual state of the 
supervised system, can adaptively determine and change for the units (rule base models) to be 
applied according to the available computing time and resources at the moment. These 
considerations need additional computational time/resources (further reducing the resources). On 
the other hand, because the inference algorithm within the models of a certain module is the same, 
only the rule-bases - a kind of parameter set - must be changed resulting in advantageous dynamic 
behavior.  

It is worth mentioning, that the SVD based reduction finds the optimum, i.e., minimum number of 
parameters which is needed to describe the system. 
One can find more details about the intelligent anytime monitor and the algorithmic optimization 
of the evaluations of the model-chain in Section 4.2.3 and in [S24], [S97], [36]. 

4.6.2 Improving the approximation of the model ([S72], [S92], [S93], [S21], [S75], [S86]) 

The main goal of anytime systems is to keep on the continuous, near optimal operation through 
finding a balance between the quality of the processing and the available resources. The 
complexity of the model can be tuned both by evaluating only a degraded model (decreasing the 
granulation), and both by improving the existing model (increasing the granulation) in the 
knowledge of new information. In our case, this latter means the improvement of the density of 
the approximation points. Here a very important aim is not to let to explode the complexity of the 
compressed model when the approximation is extended with new points. Thus, if approximation A 
is extended to B with a new set of approximation points and basis, then the question is how to 
transform Ar to Br directly based on the new information without decompressing Ar, where Ar and 
Br are the SVD based reduced forms of A and B. In the followings an algorithm is summarized for 
the complexity compressed increase of such approximations. 
To enlighten more the problem, let us show a simple example. Assume that we deal with the 
approximation of function ),( 21 xxF  (see Fig. 4.13). For simplicity, assume that the applied 
approximation A is a bi-linear approximation based on the sampling of ),( 21 xxF  over a 
rectangular grid (Fig. 4.14), so, the basis are formed of triangular fuzzy sets (or first order B-spline 
functions). After applying the SVD based reduction technique, the minimal dimensionality of the 
basis functions is defined. In Fig. 4.15, as the minimum basis, two basis functions are shown on 
each dimension instead of the original three as depicted in Fig. 4.14. (Note that after reduction, the 
grid-net of the approximation points disappears. The approximation points can be localized by 
normalization.) 
Let us suppose that at a certain stage, further points are sampled (Fig. 4.16) in order to increase the 
density of the approximation points in dimension X1, hence, to improve approximation A to 
achieve approximation B.  The new points can easily be added to approximation A shown in Fig. 
4.14 to yield approximation B with an extended basis, as is shown in Fig. 4.17. Usually, however, 
once reduced approximation Ar is found then the new points should directly be added to Ar (where 
there is no localized approximation point) to generate a reduced approximation Br (see Fig. 4.18). 
Here again, as an illustration, two basis are obtained in each dimension, hence the calculation 
complexity of Ar and Br are the same, but the approximation is improved. 
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Fig. 4.13 Sampling ),( 21 xxF  over a 
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Fig. 4.14 Bi-linear approximation A of function 
),( 21 xxF  
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Fig.4.15 Approximation Ar, which is the 
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Fig. 4.17 Approximation B  
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Fig. 4.18 Reduced approximation Br

 

In more general, the crucial point here is to inject new information, given in the original form, into 
the compressed one. If the dimensionality of Br is larger than Ar then the new points and basis lead 
to the expansion of the basis’ dimensionality of the reduced form Ar. On the other hand, if the new 
points and basis have no new information on the dimensionality of the basis then they are 
swallowed in the reduced form without the expansion of the dimensionality, however the 
approximation is improved. Thus, the approximation can get better with new points without 
increasing the calculation complexity. This implies a practical question, namely: how to apply 
those extra points taken from a large sampled set to be embedded, which have no new information 
on the dimensionality of the basis, but carry new information on the approximation? Again, the 
main difficulty is that the extra points and bases are given in the form of A and they have to be 
embedded in Ar without decompressing it. 

Method 4.4. For the fitting of two approximations into a common basis system, we will use the 
transformation of the rational general form of PSGS and Takagi-Sugeno-Kang fuzzy systems. The 
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rational general form ([37]) means that these systems can be represented by a rational fraction 
function 
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It can be proved (see e.g. [S57], [24]) that (19) can always be transformed into the form of 

∑∏∑

∑∏∑

= ==

= === r
n

n

ni

r

r
n

n

ni

r

e

j

n

i

r
jji

r
ji

e

j

n

e

j

n

i

r
jji

r
ji

e

j

wx

xxfx
y

1 1
,,,

1

1
1 1

,,,
1

1

1

1

1

1

1

)(

),,()(

L

L

L

LL

µ

µ
    (4.101) 

where  
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i eei ≤∀ : , which is the essential point in the sense 

of complexity reduction. 
Let us suppose that two n-variable approximations are defined on the same domain with the same 
basis functions iµ . One is called “original” and is defined by matrix O  of size  pee n ×××L1  
where p is m or 1+m  (see (4.100) and (4.101)). The other one is called “additional” and is given 
by matrix A of the same size. Let us assume that both approximations are reduced by the HOSVD 

complexity reduction technique detailed in Section 4.1 as: )(),,,( 1 OHOSVDRONN r
n =L and 

)(),,,( 1 AHOSVDRAGG r
n =L , where the sizes of matrices iN , rO , iG  and rA  are o

ii re × , 

prr oo ××× 11 L , a
ii re ×  and prr aa ××× 11 L , respectively, and i

o
i eri ≤∀ :  and i

a
i eri ≤∀ : . This 

implies that the size of rO  and rA  may be different, thus the number and the shape of the reduced 
basis of the two functions can also be different.  
The method detailed in the followings finds the minimal common basis for the reduced forms. 
(The reduction can be exact or non-exact, the number of the minimal basis in the non-exact case 
can be defined according to a given error threshold like in case of HOSVD.) 

Method 4.5. Finding the minimal common basis ),,( ao
iU ΦΦ  for ( iN , rO ) and ( iG , rA )  

The following steps have to be executed in each ni ..1=  dimension 
( :i∀ ),,,,(),,( r

i

r

i

ao

i
iunify AGONΦΦU = ): 

 

Step 1. The first step of the method is to determine the minimal unified basis )( iU  in the i-th 
dimension:  
Let us apply [ ]),(),(

iiii
GNireductZU =  where function ),( Bdreduct  reduces the size of an 

n-dimensional ( nee ××L1  ) matrix B  in the d-th dimension. The results of the function are 

matrices N  and rB . The size of N  is r
dd ee × ,  d

r
d ee ≤  ; the size of rB  is  ncc ××L1 , where 
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r
dd ec =  and ii ecdii =≠∀ :, . (The algorithm of the function is similar to the HOSVD reduction 

algorithm, the steps are: spread out, reduction, re-stack.) 
As a result of the first step we get ii ZU ,  where the size of iU  is u

ii re × (“u” denotes unified) and 

the size of iZ  is )( a
i

o
i

u
i rrr +× .  

Step 2. The second step of the method is the transformation of the elements of matrices rO  and 
rA  to the common basis: 

Let iZ  be partitioned as: [ ]iii TSZ = , where the sizes of iS  and iT   are o
i

u
i rr ×  and a

i
u

i rr ×  

respectively. oΦ and aΦ are the results of transformations ),,( r
i

o OSiproduct=Φ  and 

),,( r
i

a ATiproduct=Φ  where function ),,()( LNdproductA =  multiplies the multi-dimensional 
matrix L  of nee ××L1  by matrix N  in the d-th dimension. If the size of N  is hg ×  then L  
must hold that hed = . The size of the resulted matrix A  is naa ××L1 , where ii eadii =≠∀ :, , 
and gad = .  
 

Let us return to the original aim, which is injecting the points of additional approximation A into 
Or that is the reduced form of the original approximation O. According to the problem the union of 
A and Or must be done without the decompression of Or. For this purpose the following method is 
proposed:  
Let us assume that an n-variable original approximation O is defined by basis functions o

i
µ , 

ni ..1=  and matrix O  of size pee o
n

o ×××L1  in the form of (4.100) (see also Fig. 4.14). Let us 
suppose that the density of the approximation grid lines is increased in the k-th dimension (Figs. 
4.16 and 4.17). Let the extended approximation E be defined by matrix E  whose size agrees with 
the size of O  except in the extended k-th dimension where it equals a

k
o
k

e
k eee +=  ( a

ke  indicates the 
number of additional basis functions) (Fig. 4.17). The basis of the extended approximation is the 
same as the original one in all dimensions except in the k-th one, which is simply the joint set of 
the basis functions of  approximations O and A  












= a

k

o
ke

k
P

µ
µ

µ ,           (4.102) 

a
k

µ  is the vector of the additional basis functions. P  stands for a perturbation matrix if some 

special ordering is needed for the basis functions in e
k

µ . The type of the basis functions, however, 
usually depends on their number due to various requirements of the approximation, like 
non-negative-ness, sum normalization, and normality. Thus, in case of increasing the number of 
the approximation points, the number of the basis functions is increasing as well and their shapes 
are also changing. In this case, instead of simply joining vectors o

k
µ  and a

k
µ , a new set of basis e

k
µ  

is defined according to the type of the approximation like in Fig. 4.16. Consequently, having 
approximation O and the additional points the extended approximation E can easily be obtained as 

),,( AOkfitE =  where function ),,,( 1 zLLdfitA L=  is for fitting the same sized, except in the 
d-th dimension, matrices in the d-th dimension: Matrices ][ ,,, 1 niikk lL L=  have the size of 

nkk ee ,1, ××L , zk ..1= to the subject that iik eediik =≠∀ .:,, . The resulted matrix A  has the size 

as nee ××L1 , where ∑
=

=
z

k
dkd ee

1
,  and the elements of  ][ ,,1 niiaA L=  are 

nn jjkii la ,,,,, 11 LL =   
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where tt jidtt =≠∀ :,  , ∑
−

=

+=
1

1
,

k

s
dsdd eji , zk ..1= . 

More precisely, according to the perturbation matrix in (21) )),,(,,( AOkfitPkproductE = . Once 
again, the main goal is to embed the additional approximation to the reduced O, namely, to 

)(),,,( 1 OHOSVDRONN r
n =L  on such a way that the result will be the same as the reduction of 

the extended approximation )(),,,( 1 EHOSVDREUU r
n =L .  As a matter of fact, the result of 

SVDR is not unique. The “same” means here that the reduced size of E  must be the same on both 
ways. 

Method 4.6. Embedding the new approximation A into the reduced form of O 
The steps of the method are as follows: 

Step 1. First, the redundancy of approximation A is filtered out by applying 
)(),,,( 1 AHOSVDRAGG r

n =L . 

Step 2. As next, the merged basis of Or and Ar is defined. The common minimal basis is 
determined in all dimensions except the k-th one:  
Let rOW =]1[  and rAQ =

]1[
. Then, for t= 1 … n-1 evaluate ),,(

]1[]1[ ++ ttj QWU  as 

),,,,(),,(
][][]1[]1[ tjtjttj QGWNjunifyQWU =

++
 where 
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=
ktt
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j
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Finally, let 
][n

o Q=Φ  and 
][n

a Q=Φ . 

For the k-th dimension let 







=

k

k

G
N

PM
0

0
, where 0  contains only zero elements and P  can 

ensure any  special ordering, as used in (4.102). kN  and kG  are full rank matrices which means 

that no further (exact) reduction of M  can be obtained. According to the basis, matrices oΦ  and 
aΦ  are unified as ),,( ookfitF ΦΦ= . 

Step 3. Finally, the redundancy is removed, i.e., the linear dependence between matrices oΦ  and 
aΦ is filtered out of F  by ),(),( FkreductEK r = . Thus, KMU k = . (Here we would like to note 

again that K  is full rank matrix, i.e., no further (exact) reduction of kU  can be obtained.) 

Matrix iU , having the size of u
ii re × , is to transform the basis as e

ii
u
i

U µµ T= . The size of matrix 
rE  is prr u

n
u ×××L1 . For more details about the improvement of the approximation, see [S21].  

4.7  Anytime Control Using SVD Based Models ([S12], [S68], [S72], [S91], 
[S92], [S93], [S94], [S96], [S101]) 

Recently, the popularity of fuzzy control has grown rapidly. There are numerous successful 
applications of fuzzy control which affect on the analysis and design of fuzzy control systems. The 
previously discussed ideas and tools can fruitfully be combined if a certain type of fuzzy model 
based control, namely TS fuzzy modeling and for the controller design Parallel Distributed 
Compensation (PDC) [38] is used. If the model approximation is given in the form of TS fuzzy 



 140

model, the controller design and Lyapunov stability analysis of the nonlinear system reduce to 
solving the LMI problem. This means that first of all we need a Takagi-Sugeno model of the 
nonlinear system to be controlled. The construction of this model is of key importance. This can 
be carried out either by identification based on input-output data pairs or we can derive the model 
from given analytical system equations. 
The PDC offers a direct technique to design a fuzzy controller from the TS fuzzy model. This 
procedure means that a local controller is determined to each local model. This implies that the 
more complex the system model is, the more complex controller will be obtained. According to 
the complexity problems outlined in the previous sections we can conclude that when the 
approximation error of the model tends to zero, the complexity of the controller explodes to 
infinity. This pushes us to focus on possible complexity reduction and anytime use. 
SVD based complexity reduction can be applied on two levels in the TS fuzzy controller. First, we 
can reduce the complexity of the local models (local level reduction). Secondly, it is possible to 
reduce the complexity of the overall controller by neglecting those local controllers, which have 
negligible or less significant role in the control (model level reduction). Both can be applied in an 
anytime way, where we take into account the “distance” between the current position and the 
operating point, as well. The model granularity or the level of the iterative evaluation can cope 
with this distance: the further we are, the more rough control actions can be tolerated. Although, 
the approximated models may not guarantee the stability of the original nonlinear system, this can 
also be ensured by introducing robust control (see e.g. [39]). 

4.8 Anytime Development Environment and the ATDL Anytime Description 
Language ([S24], [S100], [S97], [S103]) 

In this chapter, we introduce a simple anytime development tool and an anytime description 
meta-language to ensure an effective environment for the development. In Section 4.8.1 the basic 
structure and main requirements are outlined. The anytime library is detailed in Section 4.8.2, 
while Section 4.8.3 presents the instructions and usage of the introduced ATDL meta-language. 

4.8.1. Anytime Development Tool 

The design of an anytime system has the main parts as  
- (System specification/system decomposition) [D] 
- (Creation of anytime/non-anytime algorithms) [D] 
- Determination of the profiles [D] [C] 
- Compilation of the anytime algorithms [C] 
- Monitoring/scheduling [R] 

The points surrounded by round brackets are out of the scope of this work. It can be easily noticed 
that the points marked by [D] belong to the design process. Mark [C] is for activities done by the 
Anytime Compiler which is a part of the Anytime Development Tool and is responsible for the 
creation of the run-time information database of the system used by the Monitor during the 
operation (see (C1) and (C2) in Fig. 4.4.). The Monitor operates in run-time [R], obviously. 
Analyzing the operation of the anytime systems, it can be realized that on one hand, there is a gap 
between the Compiler and the Monitor in that sense that the compilation occurs before the 
activation of the system in contrast to the monitoring which works after the activation, during the 
process of the system operation. On the other hand, compilation and the monitoring are strongly 
related to each other, a particular monitoring scheme requires certain compilation modes and 
methods. 
The operation of the elementary modules is implemented by functions written in some 
programming language and the execution of these algorithms is started by function-call-like code 
fragments. The gap itself is caused by the simple fact that it is not trivial (or is even impossible) to 
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“dig out” the execution order from a source code, especially off-line. (E.g. if these function calls 
are located inside if or for structures.)  
The way of the description of the anytime algorithms is not as easy in practice as it comes from the 
theoretical results and from the abstract handling of the profiles at first glance because the profiles 
are tables with certain sampling properties and dimensions. It is unlikely to have profiles with 
fitting dimensions and appropriate sampling intervals. Different profiles are valid for different 
definitions of the output qualities and they have to be adjusted properly for different target 
platforms.  
In the following, a simple meta-language is presented which can be used advantageously in 
anytime systems. Needless to say, the complete solution of the above problems is far from what is 
proposed here. The requirements set against the meta-language follow from the features of the 
anytime operation, i.e., that from system point of view, compilation (fitting) can be best down in 
compilation time while monitoring should be executed during run time.  
The problem is that for the correct compilation we need a lot of information about the modules 
that are not trivial to “dig out” from the source files (execution order, etc.). The result of the 
anytime development has to be an executable file written in a given programming language but on 
source code level. This can not simply be fulfilled in case of high level languages. One  solution is 
that the anytime development tool prepares a so called target source code from the anytime 
algorithms, from their description, and from the system source code. The target source code is 
compiled to an executable file by a special compiler. This is supported by a meta-language which 
helps the anytime development tool to connect the anytime algorithms and their description tables 
stored in files.  
For the above purposes, a simple AnyTime Description meta-Language (ATDL) is proposed 
which makes the full description of anytime systems possible, in cooperation   with   the   C++   
high level programming language. From the ATDL description, a C++ code is generated, which 
operates as an extension to the anytime operating system. This extension can be included in the 
operating system on source code level and results in the target source code. Thus, to each anytime 
system a separate anytime operating system is created. The block diagram of this architecture is 
shown in Fig. 4.19.  
The anytime system design block covers the source code of the system, where the system features 
and properties are given in ATDL language. It collects all the results of the design process: it 
contains source code portions, the architectural description of the anytime system, and many 
option settings. 
The anytime library contains the source codes, profiles of the anytime algorithms, and their ATDL 
descriptions.  

System 
source 

System 
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Anytime system design 

Module 
source

Module 
data 

Module 
ATD 

Anytime Library 

Module 
platform 

data library 

Anytime 
OS 

source 
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Tool 
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source

 

Fig. 4.19 Block diagram of the architecture of anytime development 
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The anytime platform data library includes the timing data. This database is built by measurement 
performed by the Anytime Development Tool with the aid of the so-called timer functions.  This 
database is not necessarily created in compilation time and at every design iteration (step) since 
working with the same platform means the platform database is needed to be created only once. 
The anytime operation and the monitor are described in the anytime OS source library. This part 
of the development system contains template-like source code portions for the several types of 
anytime systems. It supports various monitoring schemes and an individual operation system can 
be created from it for the given anytime system design. This results in a set of compilable and/or 
linkable target sources and data files which are processed by an extant language compiler (C++ 
compiler, for example) to get an executable software as the final result of the anytime system 
design process. 
The anytime development tool ensures the development environment. The target source is the 
result of the development (compilable C++ source and data files). 

4.8.2. Anytime Library 
An anytime algorithm can be completely described by the (1) Source code(s) (written in certain 
language(s)), (2) Profiles, (3) Description, and (4) Other information. 
The source code can be written in several languages and compiled to intermediate files like object 
files or can be included into the source of the system code. 
Profiles bring the essential information about the time dependent performance of the algorithms. 
Different platforms have different timing properties therefore the profiles have to be transformed. 
A reference computer has been suggested by Zilberstein which can be compared to a given 
platform in order to connect profile times with the real time. However, it is apparent that various 
possible execution times (allocations) of an algorithm are resulted from conditional commands in 
its code therefore choosing timing properties of a specific platform for parametrisation of the 
profiles is not the most efficient way. An algorithm can have only finite number of possible 
allocations and if the profiles would have the index of these allocation times as their time 
parameter then they would be platform independent. This allocation time index is called as step 
time. The quality in the profiles can be defined in several ways so a particular profile has to store 
its quality function (a mapping from output values to quality values or distribution) to keep all the 
information consistent. 
The platform-independent anytime algorithms can be collected in an Anytime Library which can 
provide basic or complex elements for the system design. Fig. 4.20 summarizes the data needed to 
completely characterize an anytime algorithm. 
 

Algorithm Characterization 
Source code(s): + language info., compiler/compilation options 

profile type 
profile data 
quality function(s) Profiles 

source code of the profile maker fn. 

Fig. 4.20 Anytime algorithm characterization 

The Module description is responsible for supporting the linkage between the pure source, the 
profile, and timing database (see later), and the target source. It can also define calling 
conventions of the implementation function. The profile maker function creates the profiles of the 
algorithm by executing it for appropriate inputs, determining the output qualities or distributions 
in the proper way, and collecting the performance data. The profile data is an array containing the 
samples of the mapping implemented by the profile. 
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4.8.3. Description of anytime systems: the new ATDL meta-language 
 
The Module ATD and System ATD sub-blocks in Fig. 4.19. can be given in a meta-language. A 
simple example of a proposed a language is shown in this section. The AnyTime Description 
Language (ATDL) can be used to define modules, tasks, and systems. From the ATDL description 
a C++ code is generated which operates as an extension to the anytime operating system. This 
extension can be included in the operating system on source code level and results in the target 
source code. Thus, to each anytime system a separate anytime operating system is created. 
Assume a simple anytime system shown in Fig. 4.21. 

 
A1 A2

 

Fig. 4.21 Simple anytime chain 

In the followings, the simplicity and plasticity of the proposed ATDL language is illustrated via 
characteristic parts of the problem description: the descriptions of the system, a module, and a 
(sub)task are given in Figs. 4.22-4.25. The system, task, and module commands define the 
anytime system, task-units, and anytime modules, respectively. Tasks can be included in the 
system with the help of the include command. With the monitor command the type of monitoring 
(active, passive) can be set and the header points to the header file of the system. The utility 
function file can be pointed by the utility command. The connections among the modules can be 
defined by the connection command. External_use means that the given inputs and outputs are 
the external inputs and outputs of the task-unit. The profile, header, and timing elements give the 
corresponding file names. The implementation is followed by the interface of the 
implementation function of the algorithm. The profile functions can be given after the 
profile_maker or maker commands. 
The ATDL code parts can easily be merged with C++ codes resulting in an anytime operating 
system. 
The ATDL description of the block A1 can be given in the form shown in Fig.4.22. The profile is 
stored in a .prf file, the header (included by the #include directive) of the module functions 
is “A1.h”, the timing data are located in file “A1.tim”.  
Fig. 4.23. shows an example of a header. Note that the algorithm’s identifier (class) is “MA1”. 
The request of the task consisting of the execution of the two modules can also be described by the 
ATDL. This task description determines the structure of the system (see Fig. 4.24). 
The two module definitions (A1 and A2) have to be included to instantiate the algorithm a1 of 
type MA1, and the a2 which is an MA2 typed anytime algorithm. The single connection between 
the modules is defined by the connections keyword. The output and the input of the system 
can be referred by the identifiers T1_input and T1_output. 
The system definition has the form shown in Fig. 4.25. In this example, the system can run only 
one task, T1. 

 // A1.atd 
module MA1(A1_INPUTSTRUCT input – double output) 
{ 
 profile "A1.prf"; 
 header "A1.h"; 
 timing "A1.tim"; 
 implementation A1(input, output); 
 profile_maker A1_profile_maker; 
 timing_meter A1_timing_meter; 
}; 

 

Fig. 4.22 ATDL Example for module (algorithm) definition 
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 // A1.h 
#if !defined(_A1_H_INCLUDED_) 
#define _A1_H_INCLUDED_ 
#include "atdefs.h" 
 
 struct A1_INPUTSTRUCT 
 { 
  int a, b; 
 }; 
 
 void A1(A1_INPUTSTRUCT &, double &, unsigned); 
 CProfile* A1_profile_maker(); 
 CTiming* A1_timing_meter(); 
 
#endif 

 

Fig. 4.23 ATDL Example for an algorithm header
 

 // T1.atd 
task T1 
{ 
 utility "T1.utl"; 
 include "A1.atd"; 
 include "A2.atd"; 
 
 MA1 a1; 
 MA2 a2; 
 
 connections a1.output – a2.input; 
 
 external a1.input T1_input; 
 external a2.output T1_output; 
}; 

 

Fig. 4.24 ATDL example for Task definition 

 

 

 

system Sys 
{ 
 include "T1.atd"; 
 header "Sys.inl"; 
 monitor active; 
}; 

 

Fig. 4.25 ATDL example for system definition

4.9 Conclusion 
In modern embedded signal processing, monitoring, diagnostics, measurement, and control 
systems, the available time and resources are often not only limited, but can also change during 
the operation of the system. In these cases, the so called anytime models and algorithms can be 
used advantageously. While different soft computing methods are widely used in system 
modeling, their usability is limited, because the lack of any universal method for the determination 
of the needed complexity often results in huge and redundant neural networks/ fuzzy rule-bases. 
In Part IV, we investigated a possible way to carry out anytime processing in certain fuzzy and 
neural network models, with the help of the (Higher Order) Singular Value Decomposition based 
transformation and complexity reduction.  
Practical questions of implementing and operating anytime systems are also analyzed. Although, 
such systems may provide an optimal tradeoff between time/resource needs and computational 
complexity and the quality (accuracy) of results, since the monitor operates under prescribed 
response time requirements and the number and complexity of the executable tasks may be very 
high, new considerations must constantly be made to achieve optimal or acceptable performance. 
In software terms, this requires the application of special compilation methods dealing also with 
timing considerations and constraints of the underlying operating system and even with the 
run-time characteristics of the monitor. This must be supported by anytime development tools and 
special anytime description languages. In this part, a hierarchical compilation method is also 
introduced together with theoretical considerations about a possible anytime development tool 
and the basics of the anytime description meta-language ATDL are presented, as well. 
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Part V  Observer Based Iterative System Inversion 

Nowadays model based techniques play very important role in solving measurement and control 
problems. Recently for representing nonlinear systems fuzzy and neural network (NN) models 
became very popular. For evaluating measurement data and for controller design also the inverse 
models are of considerable interest. In Part V., different observer based techniques to perform 
fuzzy and neural network model inversion are introduced. The methods are based on solving a 
nonlinear equation derived from the multiple-input single-output (MISO) forward fuzzy model 
simple by interchanging the role of the output and one of the inputs. The utilization of the 
inverse model can be either a direct compensation of some measurement nonlinearities or a 
controller mechanism for nonlinear plants. For discrete-time inputs the technique provides good 
performance if the iterative inversion is fast enough compared to system variations, i.e., the 
iteration is convergent within the sampling period applied. The proposed method can be 
considered also as a simple nonlinear state observer which reconstructs the selected input of the 
forward (fuzzy or NN) model from its output using an appropriate strategy and a copy of the 
fuzzy model itself [S49]. Improved performance can be obtained by introducing genetic 
algorithms in the prediction-correction mechanism [S56]. Although, the overall performance of 
the suggested technique is highly influenced by the nature of the non-linearity and the actual 
prediction-correction mechanism applied, it can also be shown that using this observer concept 
completely inverted models can be derived. The inversion can be extended towards anytime 
modes of operation, as well, providing short response time and flexibility during temporal loss 
of computational power and/or time [S69].  

5.1 Introduction 
Model based schemes play an important role among the measurement and control strategies 
applied to dynamic plants. The basically linear approaches to fault diagnosis [1], optimal state 
estimation [2] and controller design [3] are well understood and successfully combined with 
adaptive techniques (see. e.g. [4]) to provide optimum performance. Nonlinear techniques, 
however, are far from this maturity or still are not well understood. Although, as we have 
mentioned earlier, there is a wide variety of possible models to be applied based on both 
classical methods [5] and recent advances in handling [6] information, up till recently practically 
no systematic method was available which could be offered to solve a larger family of nonlinear 
control problems. The efforts on the field of fuzzy and neural network (NN) based modeling and 
control however, seem to result in a real breakthrough also in this respect. With the advent of 
adaptive fuzzy controllers very many control problems could be efficiently solved and the model 
based approach to fuzzy controller design became a reality [7]. Using model based techniques in 
measurement and control also the inverse models play a definite role [4].  
Recently different techniques have been published (see e.g. [7]-[11]) for inverting certain fuzzy 
models, however, exact inverse models can be derived only with direct limitations on the fuzzy 
models applied. In this part, an alternative approach is investigated which is based on the quite 
general concept of state observation widely used in measurement and filtering applications. The 
key element of this concept is to force a model of a physical system to “copy” the behavior of 
the system to be observed (see Fig. 5.1). This scheme is the so called observer structure which is 
a common structural representation for the majority of iterative data and/or signal processing 
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algorithms. From Fig. 5.1, it is obvious that here the inversion of dynamic system models is 
considered.  
Traditionally, the observer is a device to measure the states of dynamic systems having state 
variable representation. According to our proposition, however, these states can be regarded as 
unknown inputs, and therefore their “copy” within the observer as the result of model inversion. 
In this scheme, the fuzzy models appear as static nonlinear Multiple Input Single Output (MISO) 
mappings from the state variables to the system output, i.e., represent the output equation. A 
copy of this output equation is also present within the observer, and in this case observer 
dynamics is simply due to the iterative nature of the algorithm.  
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PHYSICAL SYSTEM

y y
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SYSTEM

-1

MEASURED INTERNAL
STATES

MECHANISM

FORCING

MEASUREMENT PROCEDURE  

Fig. 5.1 The observer concept 

At this point it is important to note that the inversion is not unique if more than one input is 
considered, i.e., from one observer input value more than one output is to be calculated. In this 
chapter only unique inversions are investigated, therefore the calculation of one controllable 
input is regarded based on the desired output and uncontrollable input values. Although, we also 
point out the generalization of the inversion for more then one input. 
The chapter is organized as follows. The possible role of inverse fuzzy models and the main 
features of the explicit inversion methods are described in Section 5.2 Section 5.3 presents the 
observer based iterative inversion technique. Section 5.4 is devoted to the genetic algorithm and 
its application within the inversion procedure. In Section 5.5 the inversion scheme is extended to 
be able to operate in anytime modes.  

5.2 Inverse fuzzy models in measurement and control 
 

Nowadays solving measurement and control problems involves model-integrated computing. 
This integration means that the available knowledge finds a proper form of representation and 
becomes an active component of the computer program to be executed during the operation of 
the measuring and control devices. Since fuzzy models represent a very challenging alternative 
to transform typically linguistic a priori knowledge into computing facilities therefore it worth 
reconsidering all the already available model based techniques whether a fuzzy model can 
contribute to better performance or not.  
The role of the inverse models in measurements is obvious: observations are mappings from the 
measured quantity. This mapping is performed by a measuring channel the inverse model of 
which is inherent in the data/signal processing phase of the measurement. In control applications 
inverse plant models are to be applied as controllers in feedforward (open-loop) systems, as well 
as in various alternative control schemes. Additionally there are very successful control 
structures incorporating both forward and inverse plant models (see e.g. [4]).  
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In measurement and control applications the forward and inverse models based on fuzzy 
techniques are typically MISO systems (see Fig. 5.2) representing static nonlinear mappings. 
Typical Single Input Single Output (SISO) dynamic system models are composed of two delay 
lines and a MISO fuzzy model as in Fig. 5.3. The first delay line is a memory for a limited 
number of last input samples (u(n), u(n-1), …) while the second one contains the last segment of 
the outputs ( ),...)1(ˆ),(ˆ −nyny . In the scheme of Fig. 3, )1(ˆ +ny  is an estimated system output 
for time instant n+1 calculated from input and estimated output samples available at time instant 
n. It is important to note that there is an inherent delay in such and similar systems since the 
model evaluations take time. The (partial) inverse of such a dynamic system is also a SISO 
scheme (see Fig. 5.4) which is in correspondence with Fig. 5.3 except the role of the input and 
output is transposed. The input r(n) is a sample of the reference signal and a predicted value of 
the input will be the model output. It is obvious from these figures that if the forward fuzzy 
model is available only the inverse (nonlinear static) mapping must be derived.  
There are different alternatives to perform such a derivation. One alternative is to invert the 
fuzzy model using the classical regression technique based on input-output data. To solve this 
regression problem, iterative algorithms can also be considered. The result of such a procedure is 
an approximation of the inverse, and the accuracy of this approximation depends on the 
efficiency of the model fitting applied. In this case, however, the inverse is not necessarily a 
fuzzy model in its original sense. 
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Fig. 5.2 Forward and inverse model 
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Fig. 5.3 Dynamic system model 

Recently very interesting methods have been reported for exactly inverting certain type of fuzzy 
models [7]. For the case of the standard Mamdani fuzzy model [12] with singletons in the rule 
consequents exact inverse can be derived. Obviously the general conditions of invertibility must 
be met: the forward fuzzy model should be strictly monotone with respect to the input which is 
considered to be replaced by the output. If the forward model implements a noninvertible 
function it must be decomposed into invertible parts and should be inverted separately. There are, 
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however, several other prerequisites of the exact inversion concerning both antecedent and 
consequent sets, rule base, implication and T-norm, as well as the defuzzification method. The 
construction of the inverse proved to be relatively simple at the price of strong limitations.  
There are other promising approaches ([8], [10]) where the inversion is solved on linguistic level, 
i.e. rule base inversion is performed. These techniques can accommodate various fuzzy concepts 
but must be combined with fuzzy rule base reduction algorithms if the number of the input sets 
is relatively high. 
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Fig. 5.4. Inverse model 

5.3 Observer based iterative inversion 
Theorem 5.1. Based on the observer concept, globally convergent MISO fuzzy model inversion 
can be achieved under the assumption of model observability ([S37], [S49]). 
 
Proof.  
See Methods 5.1. and 5.2. 

Method 5.1.  

Step 1. Initial direct model building. The general concept of the observer is represented by Fig. 
5.1. The physical system produces output y and we suppose that its behavior can be described by 
a dynamic system model e.g. like the structure given in Fig. 5.3.  
The fuzzy model can be created based on observed input-output pairs of the system, probably 
with support of human expert knowledge. This system description becomes the inherent part of 
the measurement procedure and is forced to behave similarly to the physical system. A more 
detailed description of this idea for static nonlinear fuzzy model is given by Fig. 5.5. As an 
example, here a three-input one-output fuzzy model can be shown.  

Step 2. Iteration. Repeat steps 3-5 till convergence or stopping criteria is reached.  

Step 3. Estimation of the output-error based cost function. Input x1 is considered unknown and 
therefore to be observed via comparing the output of the physical system and that of the model.  

Step 4. Evaluation of the adaptation (forcing) mechanism. 

Step 5. Correction of the unknown model input estimation with the help of step 3. If the 
correction (forcing) mechanism is appropriate the observer will converge to the required state 
and produce the estimate of the unknown input. The strength of this approach is that this 
iterative evaluation is easy to implement, e.g., using standard digital signal processors. The 
complete system of Fig. 5.5 can be embedded into a real-time environment, since the necessary 
number of iterations to get the inverse can be performed within one sampling time slot of the 
measurement or control application.  
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For the correction several techniques can be proposed based on the vast literature of numerical 
methods (see e.g. [13]) since the proposed iterative solution is nothing else than the numerical 
solution of a single variable nonlinear equation. The iteration is based on the following general 
formula 

](),),(ˆ,ˆ[)(ˆ)1(ˆ µfnxyycorrectionnxnx −+=+    (5.1) 

Where y is the output of the unknown system to be inverted,  ŷ  denotes the estimation of the 
output produced by the (direct fuzzy) model, f( ) stands for the nonlinear function to be inverted 
and µ for the step size. The convergence properties of the inversion depend on the convergence 
properties of the applied correction technique, i.e. if locally convergent method is used, then 
only local convergence of the iteration can be ensured. Although, after the convergence of a step, 
in most of the cases, the output remains within a predictable distance of the previous output if 
the input change is under a limit and vice versa. 
One of the simplest solutions is if Newton iteration is applied. In this case, (5.1) has the form of 

))(ˆ(
)ˆ()(ˆ)1(ˆ

nxf
yynxnx

′
−

+=+ µ      (5.2) 

where f'( ) denotes the derivative of the f( ). This latter must be evaluated locally using simple 
numerical technique: 

   ∆
∆−−∆+

≅′
2

))(ˆ())(ˆ())(ˆ( nxfnxfnxf    (5.3) 

The computational complexity of this iterative procedure depends mainly on the complexity of 
the forward fuzzy model itself. It is anticipated, however, that after the first convergence, if the 
input of this observer changes relatively smoothly, then in the majority of the cases only a few 
iterations will be required to achieve an acceptable inverted value.  
In principle the proposed method can be generalized even for two or more (forward model) 
inputs (see Fig. 5.5). For this generalization, however, it must make clear that to calculate two or 
more inputs at least the same number of (“measured”) outputs is required. With static nonlinear 
MISO models this is not possible. If the fuzzy model in Fig. 5.5 is replaced by a dynamic, state 
variable model, where the “inputs” will correspond to the state variables, following the state 
transitions new outputs can be “measured” and as many values can be collected as required to 
the iterative solution of the multi input problem. This idea obviously requires the “observability” 
[2] of the states and the application of state variable models instead of the schemes of Fig. 5.4 
and Fig. 5.5. The complexity of the iterative technique to be applied in such cases is under 
investigation. 
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Fig. 5.5 Block diagram of the iterative inversion scheme for a three input one output case 
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5.4 Genetic algorithms for fuzzy model inversion 
Unfortunately, the simple Newton iteration may fail if the nonlinear function represented by the 
fuzzy model has multiple minima. This is because gradient-based techniques work using only 
locally available information. If multiple minima may occur global search techniques are to be 
considered, however usually with a burden of high complexity. 

5.4.1 The multiple root problem 

Another problem is the case of multiple roots. Fig. 5.6 illustrates these situations. Here a 
function y=f(x1,x2,…) is shown with fixed x2, … input values. The calculation of the inverse 
means to find the corresponding roots x10i (i=1,…) for a given y=y0. Unfortunately, in general it 
is a hard problem to decide which root equals (or approximates) the actual fuzzy model input. At 
our present knowledge the only thing we can state is that, having the correspondence, small 
variations of the input should result in small deviation of the estimate. Intuitive techniques based 
on Taylor series expansion may provide proper orientation, but the general solution is still an 
open issue.  
Since the situation indicated in Fig. 5.6 is not necessarily typical, there are intervals with one-to-
one correspondence between input and output. Based on these values the root decision problem 
can be solved.  
It is important to note at this point that if multiple roots may occur in a region, and there is no 
proper hint available to find the appropriate one, then it is unavoidable to search for all the roots 
and make the decision afterwards. 

y=y0

x1 01 x1 02 x1 03 x1 04

x1

y

MULTIPLE ROOTS LOCAL MINIMUM

 
Fig. 5.6. Illustration for the multiple roots-local minimum problem 

5.4.2 Genetic algorithm based inversion 
Genetic algorithms (GAs) [14],[15] are optimization methods which search in the entire space to 
find the global optimum, and they are quite resistant against the problem of local minima. The 
classical versions of GAs are applied to solve discrete optimization problems, however, by 
applying new forms for representation and for genetic operators more and more continuous 
optimization problems are solved based on GAs. 
In the continuous optimizations the chromosomes should store, instead of the traditional binary 
strings (as representation of numbers, e.g. [16]), one or more real numbers. Here the so-called 
direct real coding is used, (see e.g. [17]) which is a more efficient representation and it is 
immune against several unfortunate effects [15],[17]. 
The presented methods apply real-coded representation. The chromosome contains basically one 
real number x that is the candidate for x1. The fitness-function ff(x) is derived from the difference 
d(x) = | f(x) - y|  as ff(x) = M- d(x) where, M = max d(x) + min d(x), max and min are evaluated 
over the entire population. 
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The initialization of the population and the mutation are performed in a similar way. The 
population is derived from an interval In which is updated in every generation. The operators 
work on random values having uniform distribution over this interval.  
If the tracing mode is applied, then the initial population comes from interval I0. This interval is 
around the value x0  with radius r which is derived from the previous x1 and ∆x1  values: x0 = x1 + 
∆x1, r = ∆x1 . As the generations go on, In is grown as follows: In,min = I0,min - nv1, In,max = I0,max + 
nv1,  where v1 = 0.5∆x1. 
The crossover operator is the same in both the global search and the tracing mode methods. It 
uses linear interpolation of the function, deriving from parent values xA, xB  and from f(xA), f(xB): 

x x f x x f x
f x f xC

A B B A

B A
0 =

−
−

( ) ( )
( ) ( ) . The final children are taken from an interval around xC0, with radius 

r x x x xA C B C= − −0 1 0 0. min( , ) . 
The GAs use roulette wheel selection. The probability of the crossover is 0.8, the mutation 
works with 0.05. The population size is 10. The terminating condition depends on the error of 
the best value: d(xb) /|f’(xb)| < E where f’(xb) is estimated by the nearest x to xb, E is the 
estimation error limit. 
In our experience the performance of the GAs for iterative fuzzy model inversion is quite 
acceptable, but its computational complexity is relatively high.  
In the followings, as a low complexity global search technique, a new hybrid method is 
presented which is based on the combination of some low complexity local search technique 
(like Newton iteration) and globally convergent genetic algorithms.  

5.4.3 The new globally convergent hybrid inversion method 

To decrease the complexity of the inversion, a combined technique has been elaborated which is 
basically a Newton method, but if it fails, it is switched to the GAs for one iteration. 

Method 5.2. ([S37], [S56]) 

Our assumption concerning operation is that of associated with the observer mechanism, i.e., a 
tracking mode, where the iteration is based on a “good”, previous estimate, since the inputs and 
the output do not change drastically. The introduction of genetic search can be justified (1) at the 
beginning, as we start the iterative procedure, and try to find the first estimate of the input, (2) 
during continuous operation, when gradient based search techniques fail due to local minima. In 
other cases the simple Newton iteration might be acceptable. 
The major steps of the combined method are as follows:  

Genetic algorithm: 
Evaluate genetic algorithm 
Switch to Newton iteration 

Newton iteration: 
Set the input variables, evaluate the fuzzy model y = f( ), y(n) 
Evaluate equation (5.3) 
IF y y n f x n E− 〈$( ) / ' ( $( )) , where E > 0 is the estimation error limit, THEN stop 

ELSE IF f x n' ( $( )) 〈δ , where δ > 0 is a small number, OR IF the number of iterations is 
larger than a predefined value N, THEN switch to the genetic algorithm 

ELSE Evaluate equation (5.2) 
n = n + 1 
Switch to Newton iteration 

The advantageous, low complexity figures of the proposed hybrid method has been proved by 
simulations (see also [S56] and Subsection 5.7). 
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5.5 Fuzzy inversion in anytime systems 
With the help of the (HO)SVD based complexity reduction (see Section 4.3) fuzzy systems can 
be operated in an anytime mode. This operational form can be advantageous in model inversion, 
as well.   

Method 5.3. ([S37], [S69], [S84]) 

The steps of preparing a fuzzy model to be able to work in anytime inversion, are the same as 
described in Section 4.6., i.e. first a practically “accurate” fuzzy system is to be constructed, for 
which expert knowledge and/or training data can be used. In this step there is no need to deal 
with the complexity of the obtained model.  
In the second step, with the SVD-based complexity reduction algorithm a reduced, but accurate 
rule-base can be generated. In case of PSGS fuzzy systems, the model can be transformed to a 
form which can be evaluated iteratively (Section 4.5). 
In all other cases, the modular frame has to be used (Section 4.2.2) and further variations of the 
rule-base must be constructed, with different accuracy and complexity. An alternative rule-base 
can be characterized by its complexity (proportional with n nr

n
r

1 *...* ) and its error that can be 
estimated by the sum of the discarded singular values.  
The different rule-bases can form the different units realizing a given module. The expert system 
can adaptively change the units - rule-bases - according to the available computing time and 
resources at the moment. Because the inference algorithm is the same, only the rule-bases - a 
kind of parameter set - must be changed. 
For anytime fuzzy model inversion the forward model within the inversion scheme has to be 
replaced by the appropriate truncated model corresponding to the actual circumstances, i.e., the 
temporarily available amount of computational resources and time. The computational need of 
the inversion based on the reduced forward model is directly proportional to the computational 
complexity of the used model, thus the necessary model reduction can be computed.  
Since convergence can be ensured in the observer scheme, the accuracy of the inverted model 
will be determined by the accuracy and the transfer characteristics of the forward model. This 
latter can be approximated locally using e.g. the simple numerical technique in (5.3). 

5.6 Inversion of Neural Network Models ([S118]) 
When we refer to “inversion” of a neural network for the acquisition of certain input parameters, we are 
actually referring to a constrained inversion. That is to say, given the functional relationship of the NN 
input to the output, we have the forward and want to have the inverse relationships (see Fig. 5.7), where 
x1, x2,…,xn is the input set of  the forward neural network model and y is the output vector of the model. 
Fig. 5.7b illustrates the inverse NN model, where output vector xs is composed of a subset of the input 
variables of the forward model. Given the forward relationship described in a neural network form 

),( uxfy s=              (5.4) 

where xs stands for the unknown environmental parameters we wish to obtain, and u denotes a vector of 
the known environmental and system parameters ( uxx s ∪= ),  we wish to find an inverse mapping  

),( uygx = .          (5.5) 

 For the inversion, Method 5.2 can be used, however with taking into consideration that we need 
as many input as many output is to be inverted, i.e. e.g. in case of a multiple-input-single-output 
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(MISO) system we have to use as many output values as input of the inversion scheme as many 
input parameters are to be inverted.  

 

 
Fig. 5.7 Forward and inverse neural network models 

{ },,...,1 nxxx = { } { }jin
s xxxxxx ,...,\,...,1≡⊆  

5.7 Illustrative examples 
In this Section, to illustrate the proposed iterative inversion method, two simple examples are 
presented. (For more examples see [S37], [S36], [S49], [S56], [S69]). The first one is a three 
input one output forward fuzzy model. The purpose of this model is to describe the frequency, 
sound intensity and age dependency of the human hearing system [18]. The output of the model 
is the sound intensity felt by the person, i.e., the subjective intensity. The inversion of this fuzzy 
model might be interesting if the input sound intensity is to be estimated from known subjective 
intensity, frequency, and age information. 
The inputs are represented by Gaussian shape membership functions: five-five sets for the 
frequency and the input intensity, respectively, and another three to represent the age. The 
characterization of the output is solved by five triangular shape sets (see Fig. 5.8). The rule base 
of the model consists of 49 rules which is a linguistic equivalent of the widely known, 
measurement-based plots describing the human hearing system (see Table 5.1). Fig. 5.9 shows 
the obtained surface as a function of frequency and sound intensity at age of 60 years. The 
inverse was calculated by two methods. The proposed iterative gradient method was operated 
with µ=1 and termination condition at E = −10 4  or 50 iterations. The error surface given in Fig. 
5.10 is defined as the absolute difference of the original and the calculated values of the input 
variable objective intensity ( x x n− $( ) ). The number of iterations can be kept at a relatively low 
level as it is illustrated by Fig. 5.11. The inversion was carried out also by using GA based 
inverse search. The obtained results (an average of ten independent runs) for the error surface 
and for the number of evaluations are shown in Figs. 5.12-5.13. 
In the second example (Ex2) the inversion is carried out over a relatively different surface 
containing several local minima. The five-five Gaussian shape sets for the input variables and 
the five triangular shape output sets of the two input one output forward fuzzy model  are shown 
on Fig. 5.14. The rule base of the model consists of 25 rules as is given by Table 5.2. The 
obtained surface can be followed on Fig. 5.15. As it is illustrated by Fig. 5.16 the gradient based 
iteration suffers from the local minima (see also Fig. 5.17 for the number of iterations). The GA 
based iteration avoids this problem (see Figs. 5.18-5.19).  
To keep the computational complexity on a lower level the proposed combined method can be 
applied. Fig. 5.20 shows the obtained error surface, while Fig. 5.21 the number of evaluations. 
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Fig. 5.8 Input and output fuzzy sets for the frequency, intensity, age, and hearing 
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Fig. 5.9 The obtained surface as a function of 

frequency and sound intensity at age of 60 
years 
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Fig. 5.10 The error surface (gradient method) 
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Fig. 5.11 The number of iterations (gradient 
method) 
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Fig. 5.12 The error surface (GA method) 
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Fig. 5.13 The number of evaluations (GA 
method)  
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Fig.5.14 Ex2: input fuzzy sets for x1 and x2(left); output fuzzy sets (right) 
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Fig. 5.15 Ex2: The obtained surface 
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Fig. 5.16 Ex2: The error surface (gradient 
method) 
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Fig. 5.17 Ex2: The number of iterations 
(gradient method) 
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Fig. 5.18 Ex2: The error surface (GA method) 
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Fig. 5.19 Ex2: The number of evaluations (GA 
method) 
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Fig. 5.20 Ex2: The error surface (combined 
method)
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Fig. 5.21 Ex2: The number of evaluations (combined method) 
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Table 5.1 Rules of hearing fuzzy-model 
Objective intensity  Hearing  (Age = Young) 

Very low Low Middle Loud Very loud 
Low H1 H1 H2 H3 H5 
Low middle H1 H2 H3 H4 H5 
Middle H2 H3 H4 H5 H5 
Low high H1 H2 H3 H4 H5 

Frequency 

High H1 H1 H2 H3 H5 
 

Objective intensity Hearing (Age = Middle) 
Very low Low Middle Loud Very loud 

Low H1 H1 H1 H2 H5 
Low middle H1 H1 H2 H3 H5 
Middle H1 H2 H3 H4 H5 
Low high H1 H1 H2 H3 H5 

Frequency 

High H1 H1 H1 H2 H5 
 

Objective intensity Hearing (Age = Old) 
Very low Low Middle Loud Very loud 

Low H1 H1 H1 H2 H5 
Low middle H1 H1 H2 H3 H5 
Middle H1 H1 H3 H4 H5 
Low high H1 H1 H2 H3 H5 

Frequency 

High H1 H1 H1 H2 H5 

H1 = non-audible, H2 = slight noise, H3 = normal, H4 = loud, H5 = painful 

Table 5.2 Rules of example 2 
Input 2 Output 

mf1 mf2 mf3 mf4 mf5 
mf1 mf5 mf1 mf3 mf2 mf5 
mf2 mf1 mf3 mf2 mf4 mf5 
mf3 mf3 mf1 mf5 mf2 mf4 
mf4 mf1 mf3 mf4 mf5 mf2 

Input 1 

mf5 mf2 mf3 mf5 mf4 mf1 
 

5.8 Conclusions 
In this part an “on-line” iterative technique has been proposed to solve the inversion of fuzzy 
and neural network models for measurement and control applications. The derivation of this 
iterative technique is related to the state observer concept which proved to be very successful in 
the interpretation of the different techniques applied on this field. Additionally a step toward 
completely inverted models can also initiated by introducing state variable dynamic models 
combined with fuzzy logic based components. The proposed inversion scheme can be operated 
in anytime systems, as well, if as forward model SVD-based fuzzy or NN model is used. The 
main results presented in Part V are published e.g. in [S37], [S36], [S49], [S56], [S69], [S84], 
[S118], [S115]. 
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Part VI Summary of the new results 

Result 1: New methods in digital signal processing and data representation 
 
1.1.  I presented a new, low-complexity structure-pair based on the Walsh-Hadamard 

transformation for the synthesis and analysis of multisine signals. I extended this 
structure to the transformed domain orthogonal signal representations (having fast 
algorithms).   

 
1.2  I introduced novel, low-complexity realizations of sliding-window and block-recursive 

filters and filter-banks. I demonstrated via simulations that these filters and filter-banks 
are able to follow slowly varying signals, and I proved analytically that the new 
(transformed domain) fast recursive sliding window realizations reduce significantly the 
processing time of signal samples in case of Overlap-Save and Overlap-Add Methods. 

 
1.3  I constructed a new low-complexity implementation of the Discrete Fourier 

Transformation, which enables good estimation of the frequencies and amplitudes of the 
signal components after only a quarter of a complete signal period. Using this estimator, 
I introduced the Anytime Discrete Fourier Transformation (AnDFT) and its fast 
algorithm called Anytime Fast Fourier Transformation (AnFFT). I also showed how the 
new method helps to significantly reduce the delay of certain Adaptive Fourier Analyzer 
and other signal processing structures. 

 
1.4  I introduced a novel, low-complexity overcomplete signal representation, which is 

appropriate also for anytime communication: it supports the adaptive adjustment of 
accuracy of the communicated signals based on the momentarily available capacity of 
the communication channel, thereby helping to find the optimal tradeoff between cost 
and accuracy. 

 
1.5  I demonstrated that the applicability of the classical error- and error-propagation models 

of the measurement standards to nonlinear systems is strongly limited. I introduced novel 
non-classical data, error, and error-propagation models and demonstrated that they 
exhibit better behavior in case of nonlinear and non-monotonic systems than the classical 
ones. I also proposed adequate conversion methods for matching equivalent, classical 
and non-classical, qualitative and quantitative data and error models. 

Result 2: New methods in digital image processing 
 
2.1  I introduced a new, fuzzy-based corner detection method, which assigns also a fuzzy 

attribute ‘the strengths of cornerness’ to each detected corner. I showed that the new 
characterization of the corners fulfills the new requirements of pre-processing and offers 
enhanced support to further processing, such as automatic point correspondence 
matching of stereo-images.  
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2.2  I proposed new fuzzy-based methods for the separation of ‘useful’ and ‘secondary’ 
components (i.e. the enhancement and filtering) of visual information in digital images. I 
showed that by the application of this method, the complexity of the further automated 
processing (searching for patterns, object recognition, classification, etc.) can be 
significantly decreased, and their reliability can be improved. 

 
2.3  I presented new high dynamic range (HDR) image reproduction techniques for the 

extraction of distorted or hidden information. I worked out several fuzzy-supported local 
anchor based and global tone-reproduction techniques. I also proposed a novel, low-
complexity method to measure visual information density, which is used to optimally 
tune the information extraction algorithms.    

 
2.4.  I proposed a new image-synthesis method to generate high dynamic range images with 

optimal information density, based on a set of different exposure time color images taken 
from static scenes.   

Result 3:  Automatic 3D reconstruction and its application in intelligent 
vehicle system dynamics 

 
3.1  I proposed a new, low complexity autonomous method for point correspondence 

matching in 2D stereo-images taken of static scenes. 
 
3.2  Based on the previous result and a novel method of automatic camera calibration, I 

introduced a complete algorithm for automatic 3D reconstruction of static scenes based 
on 2D images from different viewpoints.  

 
3.3  I worked out the structure and algorithms of an automatic, intelligent vehicle crash 

analysis system. I also realized the system software and validated it for the vehicle-wall 
collision experiments of standard crash-tests.  

 
3.4  I proposed a new method for the approximation of high complexity neural networks via 

fuzzy weighting of small size ‘local’ neural network models of the system, thereby 
significantly decreasing the complexity and training time of the whole system model.  
Based on this hybrid neural network and the novel automatic 3D reconstruction method, 
I proposed a new technique for automatic energy equivalent speed (EES) based 
estimation of the collision speeds. 

 
3.5  I worked out two new automatic methods for the estimation of the direction of impact. 

The first one is based on the displacement of the newly proposed ’energy-center’ due to 
deformations. The second one applies surface fitting of the attached bodies for the 
determination of the impact direction. 
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Result 4: Generalization of anytime systems, anytime extension of fuzzy and 
neural network models  

 
4.1  I introduced the concept of modular anytime framework, which enables the application 

of a set of non-recursive, not anytime algorithms and processes (based on different 
models of a system) in anytime mode of operation. I proposed a method for automatic 
generation of contract-based anytime algorithms in case of existing models of a system, 
which are not anytime. I introduced a novel description of the algorithms based on 
anytime error, which is often more efficient than contract-based descriptions. I also 
proposed a method to increase the adaptivity of existing anytime systems without 
complexity explosion (complexity-optimal refinement), i.e. to include new information. 

 
4.2  I worked out two new compilation optimization algorithms (referred to as ‘hierarchical’ 

and ‘output based incremental’ algorithm), which fit unconditional and time-scaled 
quality, performance profiles, and scheduling functions more effectively than the 
existing methods. 

 
4.3  Based on singular value decomposition (SVD)-based transformation, I gave a better 

upper bound of the anytime error of Product-Sum-Gravity-Singleton (PSGS) fuzzy 
systems with linear or nonlinear antecedent (input) sets than the known estimations. I 
generalized these results to ‘nearly’ PSGS systems, in which the antecedent sets are not 
in Ruspini partition. I also extended the method to the estimation of anytime error in 
generalized fuzzy neural networks.  

 
4.4  I gave a constructive proof of the statement that arbitrary PSGS fuzzy system can be 

transformed to iterative anytime system. 
 
4.5  I worked out the structure of a novel anytime compiler and scheduler (with the steps of 

active and passive monitoring processes), the basic framework of an anytime 
programming language (called ATDL), a development tool, and a (real-time) operating 
system. I determined the basic setup, the (descriptor, fitting, and scheduling) data-
structures, the fundamental principles of operation (optimal fitting, scheduling), and the 
basic linguistic elements of the framework. 

Result 5:  Observer-based system inversion 
 
5.1  I proposed a novel, globally convergent, low complexity method supported by genetic 

algorithms for model parameter tuning based on learning.  
 
5.2  I introduced the observer-based iterative model inversion scheme and applied it to the 

observer-based, globally convergent inversion of static and dynamic MISO fuzzy and 
neural network systems. I also extended the inversion method towards anytime operation. 
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