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Abstract

The objective of this dissertation is to give a summary of a research work
aiming at the use of simple, geometrically well interpretable mathematical means in
the adaptive control of partially and imperfectly modeled nonlinear systems. Such
systems may have dynamic coupling with hidden subsystems and may also be under
a priori unknown external disturbances.

The novelty in this research consists in the fact that it did not want to proceed
in the well established ruts of using Lyapunov functions. Lyapunov’s 2" or “direct”
method seems to dominate contemporary nonlinear control worldwide. Though the
fundamentals of this technique have lucid geometric interpretation, finding a proper
Lyapunov function candidate for a given problem is a kind of “art”. Furthermore,
guaranteeing its non-positive time-derivative needs intricate mathematical
manipulations that need great technical skills. Normally, these parts of the proofs
take whole pages in the papers, and they usually result in special conditions that have
to be met for the stability of the controllers. As it will be emphasized in this
dissertation, the so obtained controllers may contain too much more or less arbitrary
parameters. Furthermore, they do not result in optimal tuning. Certain adaptive
solutions that try to exactly learn the analytical model of the system under control are
vulnerable by the effects of unknown external disturbances and hidden, coupled
subsystems.

To avoid the difficulties related to the application of Lyapunov’s 2™ method I
tried to utilize very simple and lucid geometric structures and convergent iterations
obtained from contractive maps to construct adaptive controllers.

The basic philosophy of this approach is similar to that of the prevailing soft
computing techniques. However, it does not apply the typical uniform structures of
the modern soft computing that are related to Kolmogorov’s approximation theorem
proved in 1957. Instead approximating continuous functions my approach
approximates a far better behaving set of smooth functions by utilizing uniform
structures of small sizes taken from various Lie groups.

After giving a brief historical review on the advantages of “geometric way of
thinking” the Computed Torque Control in Robotics and Lyapunov’s 2™ Method in
general and its illustrative applications in Robotics are critically studied and
modified. Following that the subject area of soft computing as a special application
of universal approximators is critically studied. The emphasis is on the sizing and
scalability problems that generate difficulties in parameter tuning.

Instead using “universal approximators” various special elements of special
Lie groups are suggested to the realization of partial, temporal, and situation-
dependent system identification. The first approach is based on the phenomenological
basis of Classical Mechanics in the control of Classical Mechanical Systems. The
second one uses these structures at higher level of abstraction. It is shown that these
structures have limited number of tuneable parameters and they can be used for the
approximation of the observed behavior of the system under control.

In the next research phase various parametric Fixed Point Transformations
were proposed for adaptive control to further release the problem of the complexity
of system-identification. The geometric interpretation of the Singular Value
Decomposition (SVD) of real matrices is also utilized in these approaches. In
contrast to Lyapunov’s 2" method that normally guarantees global stability of the
control, in the new approach the convergence of the iteration that is necessary for
stable control is guaranteed within a local region. However, it is shown that in many
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cases the basin of convergence is wide enough for practical applicability of the
proposed novel methods. Furthermore, it is shown that the novel approach using
“Robust Fixed Point Transformations” can be completed by various parameter
tuning methods that are able to keep the controller nearby the center of the basin of
attraction of the necessary iteration. This approach works only with three adaptive
control parameters of which only one parameter has to be tuned. It also is shown
that this tuning is not drastically coupled with the dynamics of the tuning-free
controller. It slightly affects the speed of convergence of the iteration and the
tracking precision of the tuned adaptive controller.

It also is shown that by the use of this novel adaptive approach a new branch
of the “Model Reference Adaptive Controllers” can be developed in the design of
which the Lyapunov function can be replaced by the simple Robust Fixed Point
Transformations.

Finally, a simple parametric numerical approximation of Caputo’s fractional
order derivatives is presented and applied in nonlinear control for smoothing
purposes.

The dissertation contains an “Appendix” that summarizing the most important
geometric and group theoretical analogies that are utilized in the Thesis. To maintain
the page limitation formally prescribed for the “core” material certain mathematical
details and numerical computational results are presented in the Appendix, too.

The dissertation separately contains the author’s own publications strongly
related to the results given in the thesis, and the “References” that refer to other
researchers’ results and own publications that are not so strictly related to results of
the present Thesis.
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Preliminary Remarks

In the present dissertation the results of research efforts of many years are
summarized. Certain less elaborated and completed achievements are referred to as
“antecedents”, while the more matured and crystallized ones are included in the
“theses”. Therefore certain cited works in which I am a co-author myself occur
amongst the “References” denoted by the “prefix” “R” in the numbered lists. The
results that more strictly belong to the theses of this dissertation are marked by prefix
“B” if they are book excerpts, prefix “J” if they are journal publications, and by
prefix “C” if they were published in conference or workshop proceedings. The
citations are arranged according to their first appearance in the Thesis. (The so
obtained sequence considerably differs from the chronological one.)

The diversity and variety of “ad hoc” notations in the various publications
related to these results do not justify any effort for developing a unified “system of
notations” that is valid for the whole dissertation. Instead of that I tried to develop a
consistent system of notations within each chapter only.

Since the dissertation partly is built on the use of more or less well known
mathematical theorems, I give only the proofs of those ones that have significant
details from the point of view of the present dissertation. The other fundamental
statements are cited or referred to without their proofs.

The present subject area of control technology has a huge literature on the
linear methodologies that are mainly useful for linear systems. Similar considerations
or even notations frequently occur in control applications developed for nonlinear
systems, too. It was not my aim to make any survey on these methods. I concentrated
mainly on smooth nonlinear systems in which certain non-smooth nonlinearities (e.g.
friction) may also be present. On this reason I mention and analyze in details only
certain fundamental methods that are relevant for this dissertation, for making
comparisons only.

The “comparative analysis” in this context can be understood in a very
cautious manner. Since as alternatives to Analytical Modeling (AM) Soft Computing
(SC) approaches based on various universal approximators having a huge number of
parameters came into use in our days any effort for obtaining simple and decisive
statement as e.g. “method A is superior to method B” seems to lose its sense. For
instance in the field of Evolutionary Computation (EC) in which attempts are made
for efficient setting of a huge number of parameters similar conditions prevail: “A
broad spectrum of representation techniques makes new results in EC almost
incomparable. Sentences like ‘This experiment was repeated ten times to obtain
significant results’ or ‘We have proven that algorithm A is better than algorithm B’
can still be found in current EC publications. ...Evolutionary Computation shares
these problems with other scientific disciplines such as simulation, artificial
intelligence, numerical analysis, or industrial optimization.” [R2], [R3]. In
connection with such statements Eiben and Jelasity listed four typical problems as a)
the lack of standardized test-functions or benchmark problems, b) the usage of
different performance measures, c) the impreciseness of results, and therefore no
clearly specified conclusions, and d) the lack of reproducibility of experiments
especially when stochastic elements are applied in the methods [R4].

I definitely would like to evade such errors so in the comparisons I restrict
myself only to certain fundamental points as “simplicity”, “lucidity”, “reduced
computational burden”, and “simple realizability”, “scalability”, “smoothness of the
results”. 1 have also been content with giving the relevant mathematical proofs and
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providing illustrative numerical simulations to exemplify the potential applicability
of the novel control methods proposed in the dissertation. The particular examples
used in these “illustrations” can also serve as “fypical paradigms” of classes of
physical systems for the control of which the novel approaches can be proposed.
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Chapter 1: The Aims of the Dissertation

The main goal of the research efforts partly summarized in the present
dissertation was finding simple, geometrically interpreted adaptive methods in the
control of partially modeled and/or imprecisely known nonlinear physical systems.
The conditions prevailing in the relatively small segment of control technology that I
was able to study urged me to step ahead in this direction. More specifically the
following observations gave the most important impetus:

A typical class of control papers tackles the problems on the basis of
the use of classical analytical models of the physical systems to be
controlled. The main deficiency of such approaches is that they have
very limited circle of applications: a detailed analytical model is
valid only for a particular system. In analytical models quite little
numerical contributions sometimes can be obtained by huge
computational efforts. (A typical example is. the increasing order of
the contributions in perturbation calculus.) In many cases it is very
difficult or even impossible to identify the parameters of the
analytical models of the systems as e.g. robots [RS5], [R6]. For
instance, in coding the precise dynamic model of a 6 Degree of
Freedom (DOF) PUMA robot three persons worked for 5 weeks
[R7]. In various publications the measured parameters of PUMA
robot has considerable diversities, too [R8]. Identification of other
parameters as that of a friction model is not very easy, too [R9],
[R10].

Even adaptive approaches that are based on some analytical model
utilize very special properties of certain matrices as e.g. Slotine’s
and Li’s adative robot control [R11], and assume the lack of
unknown external perturbations and coupled hidden subsystems.
The model-based approaches (e.g. the Adaptive Inverse Dynamics)
also assume that the external disturbances are zeros, or at least
temporal and almost negligible.

The great majority of the control papers use Lyapunov’s ingenious
2" Method that itself has a lucid geometric interpretation, too.
However, its application is not too easy, needs lot of invention in
forming the candidate functions, and frequently leads to the
introduction of ample number of almost arbitrary control parameters
(for details see e.g. [C106]). My definite aim was to find far simpler
methods that can guarantee the stability of the new control methods
elaborated.

Other popular and modern approaches instead of the analytical
models use various means of Soft Computing that correspond to the
“hidden application” of universal approximators [R12] being either
Artificial Neural Networks (ANN) [R13] or Fuzzy Systems (FS)
[R14]. Essentially the same can be stated for the use of Tensor
Product Models [R15], [R49]. As it will be discussed later such
“universal models” may have a huge number of parameters, suffer
from bad scalability (“curse of dimensionality”) and setting their
parameters needs considerable computational efforts.

In spite of the difficulties of the traditional SC approaches their important features
as “uniformity” of the model structures and the parameter tuning/setting procedures

10
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remained an attractive property. It has challenged me to construct similar
approaches that are free of the scalability problems or the curse of dimensionality.

A search for the cause of scalability problem revealed that the problem roots
in the fact that Kolmogorov's approximation theorem [R16] is valid for the very wide
class of continuous functions that contains even very “extreme” elements at least
from the point of view of the technical applications. (The first example of a function
that everywhere is continuous but nowhere is differentiable was given by Weierstral3
in 1872 [R17] on the inspiration by Riemann who formerly failed with constructing
such a function [R18].) Intuitively it was expected that restricting our models to the
far better behaving "everywhere differentiable" functions the problems with the
dimensionality ab ovo could be evaded or at least reduced. It was also assumed that
such a problem class is still wide enough for practical technical applications.

Later it was understood that other resource of complexity was the
unnecessary effort for developing “‘complete”, “everlasting”, ‘“‘everywhere
applicable” models of the system to be controlled. In principle such efforts are
correct and can be understood since the so obtained models (being expressed either
by analytically or by the use of the means of universal approximators) can be
inserted and used in various control and application environments. However, if we
restrict ourselves to the use of uniform structures determined by the degree of
freedom of the “modeled part” of the whole system then simple model structures can
be obtained that may be satisfactory for developing “partial”, “temporal”, and
“situation-dependent” models. Such models need continuous maintenance. In this
manner a significant source of complexity can be eliminated. In this case the cost of
complexity reduction is the continuous need of observing the behavior of the system
under control.

In contrast to the traditional ideas the novel approaches partly use Lie groups
the size of which is determined by the number of the modeled/directly controlled
Degrees of Freedom (DOF) of the system. Therefore the number of the independent
parameters is determined by the linearly independent generators of the Lie group
chosen. Consequently this number is relatively very small and allows the use of
simple tuning/setting procedures.

In the sequel, following the section in which the scientific methods of the
research are summarized, in connection with the “antecedents” as well as the
appropriate theses these solutions will be detailed together with the appropriate
“ancillary” algebraic and group theoretical considerations.

11
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Chapter 2: On the Scientific Methods of the Research

In the field of noninear control two typical methodologies can be chosen.

A typical possibility is assuming “ideal controllers and sensors” of extremely
fast response. In this case the equations of motion of the controlled system can
mathematically be approximated by a set of differential equations. A considerable
segment of the control literature using Lyapunov’s direct method (e.g. [R11])
proceeds along this rut. However, it must be emphasised that the great majority of
the practical problems results in differential equations that do not have solutions in
closed analytical form. If we wish to see numerical details on the operation of the
controllers the stability of which has been mathematically proved we have to develop
numerical simulations.

To achieve more realistic results it is expedient to take into account the
limitations of our digital controllers and sensors of finite time-resolution. In this case
the system originally described by differential equations must be completed by the
insertion of event clocks and sample holders that represent the “cyclic” nature of the
controllers. In this manner the “cycle time of the controller” can be distinguished
from the time-resolution of the numerical simulations.

It must be emphasized that besides the discrete time-resolution applied
various numerical simulators may apply different numerical integration methods and
also allow setting certain numerical parameters that evidently concern the “results”
of the numerical simulations. In the lights of the ‘“believabilty considerations”
expounded in the sequel I applied the following methods.

As the simplest and fastest approach, by the use of INRIA’s SCILAB
programming environment I developed numerical programs applying simple Euler
integration with fixed time resolution. It was found that for stable control rough
approximate results can be obtained for making the assumed cycle time of the
controller (1 ms) identical with the time-resolution of the numerical integration. For
checking consistency this time step was halved and if the results did not show
significant modification they have been accepted for illustrating the operation of the
proposed controller.

A further step towards more reliable results the fixed time-resolution was
distinguished from the controller’s cycle time and a control cycle was divided into 10
segments for numerical simulations. For such calculations I used the same simple
SCILAB program language.

To make more professional simulations I applied the SCILAB’s numerical
co-simulator, SCICOS, that gave a convenient graphical interface for calling more
professional numerical integrators. For simulating the discrete nature of digital
controllers sample holders and event clocks were built in these simulations.

Another aspect concerning the methodology of research is the fact that the
question of “believability of the numerical results” arises in each of the above
mentioned numerical solutions. Following the pioneering work by Lorenz who made
numerical computations on simple meteorological model of Earth using the computer
technology of the sixties it became evident that there are “stable” and “unstable”
systems in which the consequences of the initial errors remain finite or grow
exponentially with time, respectively [R24]. Though for certain special systems of
differential equations there are theoretical results for the proper application of finite
element methods in general this problem cannot be tackled. In certain cases they can
be tackled or understood by using the concepts of Riemannian Geometry if the
solution of the equations corresponds to some geodesic line of a given geometry.

12
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Using the concept of “parallel translation of vectors and tensors” two geodesic lines
starting from neighboring points with identical initial velocity can be considered as it
was discussed by Arnold [R25].

In my investigations I assumed that

¢ The successful adaptive control corresponds to a stable system;

¢ The actual numerical results obtained naturally depend on the time
resolution applied but only in a slight extent;

e For a finite duration of motion the stable numerical results were
declared to be believable if halving the finite time-step in the
simulation did not lead to observable differences in them. This
attitude is right since the convergence, or at least the possibility of
the convergence within a region of attraction were theoretically
proved before running the simulations that only illustrated but
proved the stability and usability of the proposed methods.

e In certain cases I also used the ODE Solver of INRIA’s SCILAB
and SCICOS software that generally applies various, quite
sophisticated numerical integration methods, depending on the
stiffness of the problem considered. (Its use is especially convenient
when graphical programming can be applied to build up the
appropriate environment in which the ODE Solver can be called.) It
also modifies the density of the discrete time-resolution
automatically to meet the prescribed precision requirements. By
carefully prescribing the allowable maximal time step and the
relative and absolute tolerance consistent results were obtained for
the stable systems to illustrate the operation of the stable controller

e [f the results were divergent their details were not “believed”. Such
runs only illustrated the possibility of leaving the range of
convergence of the applied method.

Another relevant point is the “believability or realistic nature of the models”
applied in the simulations. While in general it can be accepted that no any given
model can fully and completely describe the reality, a good model can be regarded at
least as a “cubist picture” that contains significant features of the reality, therefore it
can be used as a “paradigm” i.e. as characteristic representative of a whole set or
class of problems. In this sense the simulation results obtained cannot be regarded
completely worthless or improper means of illustration, though it has to be admitted
that any particular practical application of the proposed method needs further
detailed investigations.

To technically realize the proposed novel approaches the observation of the
behavior of the controlled system was necessary. For this purpose the “Expected —
Realized Response Scheme” was introduced. According to that scheme a
considerable part of the control tasks could be formulated by using the concepts of
the appropriate “excitation” Q of the controlled system to which it is expected to
respond by some prescribed or “desired response” . (The physical meaning of the
appropriate excitation and response depend on the phenomenology of the system
under consideration. In the case of Classical Mechanical Systems the excitation
physically can be force and/or torque, while the response can be linear or angular
acceleration, etc.) The appropriate excitation can be computed by the use of some
available approximate “inverse dynamic model” as Q=p(r"). Since normally this
inverse model is neither complete nor exact, the actual response determined by the
system's dynamics, v, results in a “realized response” r" that differs from the desired
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one: r’=t//(go(rd))¢rd. It is worth noting that the functions ¢() and w() may contain
various hidden parameters that partly correspond to the dynamic model of the
system, and partly pertain to unknown external dynamic forces acting on it. Due to
phenomenological reasons the controller can manipulate or “deform” the input value
from # to some r+/ so that rd:w((p(r*d)). Other possibility is the manipulation of the
output of the rough model.

The above structure evidently indicated that using the pairs of the “desired”
response known and set by the controller and comparing it to the observed “realized”
response mathematically can be formulated as seeking the solution of a Fixed Point
Problem. From this point on the main direction of the research was seeking various
deformations or fixed point transformations that were able to generate appropriate
sequences of responses that can converge to the fixed point. In this approach in each
control cycle one iterative step can be done with the actually available updated
“desired response”, and in the next cycle the deformation applied can be updated on
the basis of the “observed response”. If the dynamics of the adaptive iteration is
considerably faster than that of the control task such solution may result in
practically acceptable tracking. (This idea is in strict analyogy with the use of
Cellular Neural Networks in picture processing based on the concept of Complete
Stability [R19].) Similar “dynamic approaches” were also applied in the literature as
e.g. dynamic inversion of nonlinear maps by Getz, Getz and Marsden [R20], [R21],
but these considerations extensively used the technique of the Lyapunov Functions.

In contrast to Lyapunov’s 2" Method [R22], [R23] that normally can generate
quadratic expressions with absolute minima in wide environments that can act as
basins of attraction of convergent solutions, in the novel approach convergence can
be achieved by applying contractive maps in Banach Spaces. In this manner iterative
sequences converging to the fixed point of the appropriate map can be obtained. This
latter solution can be more “fragile”, but in the same time far simpler than the
application of some Lyapunov function. Furthermore, its realization may need far
less complicated computations.
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Chapter 3: Introduction

In order to substantiate the main aim of the dissertation i.e. the “systematic
use of geometric way of thinking” in control technology first I would like to give a
very brief historical survey to show how fruitful and profitable it was in the field of
the natural sciences. Since the historical background of these methods normally are
not mentioned (neither in the standard university-education of Mathematics nor in
the more specific scientific papers), for collecting this information (rigorously only
for this purpose) 1 intensively used the materials available on the Web at the pages of
Wikipedia, the free encyclopedia [R26]. The result of this brief historical research
was quite surprising and shocking for me because it revealed that Mankind has clear,
precise, and well generalized concepts of this subject area practically only from the
middle of the 19" Century.

3.1. Certain Representative Examples of Uneven Development

From a historical point of view it can be stated that the main concepts had
crystallized only “recently” that has the interesting consequences that certain
fundamental mathematical methods widely used in Technical Sciences obtained
rigorous mathematical explanation only after their invention. To mention only a few
significant examples: when Euler invented one of the fundamental equations of Fluid
Dynamics in 1755 no systematic concepts of vectors, tensors, or other directed
quantities were available [R27]. When Maxwell published his famous “Treatise on
Electricity and Magnetism” in 1892 [R28] both Hamilton’s “quaternions” [R29] as
well as Grassmann’s “vectors” already existed [R30] (he worked on this idea from
1832), however, the latter concept became widely available only a few years after
issuing the “Treatise”, therefore Maxwell used quaternions for the quantitative
description of electromagnetic phenomena. This observation highlights the
“incidental nature” of the development in sciences. As is well known the later issues
of the “Treatise” already used the concept of vectors and tensors instead of
quaternions. It was an interesting and inspiring question to look after what kind of
Electrodynamics we could have now if the “custom” of using quaternion prevailed.
For instance, in a common work with Ivan Abonyi and Janos F. Bit6 we found that
the two invariants in Electrodynamics could be more easily explored by using the
complex extension of Quaternion Algebra than by using tensors. It was also found
that the significant components of the relativistic tensor formulation of
Electrodynamics could be also identified in the quaternion representation [R31]. On
this reason in the next part I present a very brief historical summary of the
fundamental concepts.

3.2. Historical Antecedents of Geometric Way of Thinking

Until the 1* half of the 20™ Century the development of Mathematics aimed
at serving the needs of natural and technical sciences. In the history of the
"quantitative sciences" geometric way of thinking always played a pioneering role.

The principles of geometry first were reduced to a small set of axioms by
Euclid of Alexandria, a Greek mathematician who worked during the reign of
Ptolemy I (323-283 BC) in Egypt. His method of proving mathematical theorems by
logical reasoning from accepted first principles remained the backbone of
mathematics even in our days, and is responsible for that field's characteristic rigor
[R32].
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Following the pioneering work clarifying the phenomenology of Classical
Mechanics by Galilei and Newton, in his fundamental work entitled "Mécanique
Analytique" [R33] Joseph-Louis Lagrange (1736-1813) solved various optimization
problems under constraints, introduced the concept of “Reduced Gradient” and that
of what we refer to nowadays as “Lagrange Multipliers” [R34]. It has to be noted
that at that time the concept of "linear vector spaces" was not clarified at all.

The first mathematical means of describing quantities with direction, i.e. the
quaternions introduced by Sir William Rowan Hamilton (1805-1865) appeared not
very long time after Lagrange's death [R29]. In the 19" Century quaternions were
generally used for such purposes. For instance, in the first edition of Maxwell's
famous “Treatise on Electricity and Magnetism” quaternions were used for
describing the "directed" magnetic and electric fields.

The first known appearance of what are now called “linear algebra” and the
notion of a “vector space” is related to Hermann Giinther Grassmann (1809-1877),
who started to work on the concept from 1832. In 1844, Grassmann published his
masterpiece [R30] that commonly is referred to as the "Ausdehnungslehre", ("theory
of extension" or “theory of extensive magnitudes”). This work was mainly inspired
by Lagrange's "Mécanique analytique" [R33]. Grassmann showed that once
geometry is put into the algebraic form he advocated, then the number three has no
privileged role as the number of spatial dimensions: the number of possible
dimensions is in fact unbounded [R35].

The close relationship between geometry and algebra was realized and
strongly utilized by William Kingdon Clifford (1845-1879) who introduced various
“associative algebras”, the so called "Clifford Algebras" [R36]. As special cases
Clifford Algebras contain the algebra of the real, the complex, the dual numbers, the
quaternion algebra, and the algebra of octonions (biquaternions) [R37]. His
“Geometric Algebra” is widely used in technical sciences as e.g. in computer
graphics, robotics, etc.

Equipped with the concepts of linear vector spaces Marius Sophus Lie (1842-
1899) in his PhD dissertation studied the properties of geometric symmetry
transformations [R38]. One of his greatest achievements was the discovery that
continuous transformation groups (now called after him Lie groups) could be better
understood by studying the properties of the tangent space of the group elements,
that form linear vector spaces (the vector space of the so-called infinitesimal
generators), and with the commutator as multiplication also form algebras, the so
called “Lie Algebras’.

In the very fertile period of Mathematics, in the 19" Century Georg Friedrich
Bernhard Riemann (1826-1866) elaborated the geometry of curved spaces in a
special form that made it possible to study physical quantities as tensors even if the
geometry of the space differs from the Euclidean Geometry [R39]. This concept was
very fruitfully used in the General Theory of Relativity.

David Hilbert (1862-1943) [R40] extended the concept of the Euclidean
Geometry to linear, normed, complete metric spaces in which the norm originates
from a scalar product.

Stefan Banach (1892-1945) [R41] introduced the more general concept, the
concept of Banach Spaces that are linear, normed, complete metric spaces in which
the norm not necessarily originates from a scalar product. The great practical
advantage of Banach's invention is that by adding various norms to the same
mathematical set various complete, linear, normed metric spaces can be obtained that
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offer a wide basis for elaborating diverse practical variants and solutions pertaining
to the essentially same basic idea.

Vladimir Igorevich Arnold (1937-) [R42] studied the Symplectic Geometry
and Symplectic Topology that are extremely useful means of studying the behavior of
various mechanical and other physical systems.

The geometric way of thinking outlined above appeared in one of the best
textbooks used for teaching functional analysis, too (the excellent book by Ldszlo
Mdté [R43)).

By the middle of the eighties of the past century certain elements of the
sophisticated geometric concepts were systematically utilized in control technology.
The first edition of Isidori’s book in 1985 [R44] contained cahpeters as “Geometric
Theory of State Feedback™ and “Geometric Theory of Nonlinear Systems”. An even
more systematic surveay and application of Group Theory and Differentiable
Manifolds can be found in Jurdjevic’s book from 1997 [R45].

Another, very important mathematical tool that makes it easy to apply
geometric way of thinking is the Singular Value Decomposition (SVD). The history
of matrix decomposition goes back to the 1850s. During the last 150 years several
mathematicians — Eugenio Beltrami (1835-1899), Camille Jordan (1838-1921),
James Joseph Sylvester (1814—1897), Erhard Schmidt (1876—-1959), and Hermann
Weyl (1885-1955), who were perhaps the most important ones, contributed to
establishing the existence of the singular value decomposition and developing its
theory [R46]. Thanks to the pioneering efforts of Gene Golub, there exist efficient,
stable algorithms to compute the singular value decomposition [R47]. Certain
realization of SVD is available in Hungarian for a long time in the excellent book by
Pdl Rozsa [R48]. In our days SVD is a standard service (function) of software
designed for the use in research, as e.g. INRIA’s SCILAB.

More recently, SVD, and its novel variant, the so called Higher Order
Singular Value Decomposition (HOSVD) (e.g. [R49], [R50]) started to play an
important role in several scientific fields as signal processing (e.g. [R51], [R52],
[R53]), control applications in dealing with system models of Tensor Product (TP)
form (e.g., the very interesting PhD Thesis by Zoltdn Petres [R54] can be referred to
in this context). The real variant of SVD was extensively used in the present Thesis,
too.

My aim with providing this brief historical survey was to show that geometric
way of thinking is a very useful and fruitful mode of problem-tackling in various
fields. The use of the inventions by Hamilton, Grassmann, Hilbert, Banach, and
Clifford in Physics and technical fields makes it possible

e To apply a “geometric way of thinking” with which we became
familiar in our childhood in our playing house. Then we daily
experienced the Euclidean Geometry of the reality around us.
Selection and use of adequate associations with simple pictures as
vectors or directed quantities, linear combinations, basis vectors,
orthogonality, orthogonal subspaces, tangents and tangent space of a
surface in a given point, the notion of surfaces or hypersurfaces
embedded in higher dimensional spaces became instinctive, hidden
practice of our early years;

e To strengthen the above, almost “instinctive” associations with the
aid of lucid, simple, aesthetic equations of algebraic relationships.
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In the sequel its advantages will be shown in the field of nonlinear control.
For this purpose I try to give a brief survey on the prevailing, from certain point of
view “classic” approaches.
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Chapter 4: Brief Survey on the Prevailing Approaches Based on the
Use and Learning of Exact Analytical Models

A plausible approach to solving control tasks would be to elaborate and use
the “exact dynamic model” of the system to be controlled. In the case of the control
of mechanical systems as robots this approach can be referred to as “Computed
Torque Control” since in this case the mechanical model establishes mathematical
relationships between the joint coordinate accelerations and the torques or forces
acting on the system partly by its own drives and/or by its environment with which
the system may be in dynamic coupling. In the case of other systems as e.g. chemical
reactions considered in [RS55] the notion of “Globally Linearizing Controllers
(GLC)” can be mentioned in which certain order time-derivative of the state variable
of the system to be controlled or that of a well-defined function of the state variables
can instantaneously be set by the control signal. In the sequel these typical cases are
considered. I intentionally do not mention the classical “canonical forms” concerning
controllability and observability issues the use of which already became a standard
approach for a wide set of systems and also has a huge literature. The same holds for
the various parameter estimation techniques using some Kalman filters and typical
assumptions regarding the statistical nature of the noises characteristic to the problem
under consideration. My aim was to develop and use different techniques for system
identification.

4.1. Computed Torque Control (CTC) in Robotics

Before going into details it has to be noted that involving the model of the
operation of the drives of a Classical Mechanical System may considerably increase
the complexity of the problem. However, even modeling the mechanical behavior
itself is a very complex task. As a result of such efforts the Euler-Lagrange
Equations of Motion can be obtained for an open kinematic chain as follows:

H(q)j+h(q,4)=Q 4.1.1)

in which H(q) describes the configuration-dependent “inertia matrix” of the system,
a part of h(q,dq/dr) is quadratic in dq/dt and describes e.g. the Coriolis terms, while
its other part depending only on q is responsible for the gravitational effects. It is
worth noting that due to physical reasons H is always symmetric and positive
definite, though it may be badly conditioned, too. The term Q stands for the
generalized forces that partly originate from the robot's own drives or from the
environment. (This equation is valid only if the kinetic energy of the system is given
with respect to an inertial frame of reference in which case the components of Q can
be interpreted as forces for the prismatic generalized coordinates, and torques for the
rotational axes.) In the possession of this "exact" model on the basis purely
kinematic considerations some desired d°q‘/df* can be computed in each control
cycle to exert the necessary Q“. This part of the controller is often referred to as
“feedforward” control. For more precise tracking the “feedforward part” generally
has to be completed by PID-type feedback terms basec on the tracking error.
However, an important practical problem related to the application of CTC
control is the fact that in many cases it is very difficult or even impossible to identify
the parameters of the analytical models of the systems as e.g. robots [R5], [R6]. In
the classical example in which Armstrong et al. developed the dynamic model of a
six degree of freedom PUMA robot arm three persons worked for five weeks [R7].
This work involved the measurement of the appropriate data besides coding the

19



dc_62_10

model in software blocks. In various publications the measured parameters of PUMA
robot has considerable diversities, too [R8].

Another practical problem in the application of this method is that normally
there are no sensors available that could exactly measure the external parts of Q.
Their effects can be observed only as their consequences in the actual motion of the
system and in general cannot efficiently be compensated by simply prescribing some
feedback correction in d°q/ds>. Such kind of feedback correction can work only if
the unknown external perturbations are

e generally insignificant, or, if they are significant,
¢ they can be only instantaneous but permanent.

It is worth noting that the kinematic structure of the robot arm itself determines the
main mathematical “skeleton” of (4.1.1): normally a parameter vector can be
introduced that contains the unknown dynamical information, while the elements of
this vector in (4.1.1) are multiplied by known kinematic functions. This fact serves as
a basis for developing the analytical model based controllerss toward adaptive
solutions in order to correct the imprecisions in the parameters of the available
dynamic model. Representative examples are the “Adaptive Inverse Dynamics” or
the “Adaptive Slotine-Li Controller” approaches. Since these methods are based on
analytical modeling and the use of Lyapunov functions in the sequel Lyapunov’s 2™
Method will be studied.

4.2. On Lyapunov's 2" Method in General

Lyapunov's 2" Method is a widely used technique in the analysis of the
stability of the motion of the non-autonomous dynamic systems of equation of
motion as x =f(x,7). Since in the prevailing literature this method normally is
referred to, in the sequel, for the purposes of making comparisons between this
method and the proposed novel one, I would like to pay some attention to its
background and deeper details.

The typical stability proofs provided by Lyapunov's original method
published in 1892 [R22] (and later on e.g. in [R23]) have the great advantage that
they do not require to solve the equations of motion. Instead of that the uniformly
continuous nature and non-positive time-derivative of a positive definite Lyapunov-
function V constructed of the tracking errors and the modeling errors of the system's
parameters are assumed in the z€ [0,00] domain from which the convergence dV/dt—0
can be concluded according to Barbalat's lemma [R56]. This lemma states that if the
integral of a uniformly continuous function (in this case the integral of dV/dt i.e. V)
in [0,00) is bounded then this function has to converge to zero [R11]. The uniform
continuity of dV/dt used to be guaranteed by showing that d*V/df* is bounded. Due to
the positive definite nature of V from that it normally follows that the tracking errors
have to remain bounded, or in certain special cases, have to converge to 0.

An alternative possibility for utilizing Lyapunov's theorem is the use of the
so-called special “function class x” certain elements of which can serve as upper and
lower bounds of V so evading the direct application of Barbalat's lemma to show
uniform stability of the system.

By definition a function & :[0,k)— [0,00) is of class xif x(0)=0 and &(7) is
strictly increasing (normally k<eo but k=co may happen in special cases, now we
restrict ourselves to the k<eo case). In the forthcoming considerations x denotes some
tracking error, therefore the desired stable equilibrium point x=0 is sought for.

By definition the state X is an equilibrium state if ¥ t € [t,, o) f(x* ,t) =0.
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The x state is a stable equilibrium in t=ty if for Vp >0 there exists
r(p,1,)>0 such that Hx(to)—x*u <r(p.t,)= Hx(r)—x*” <p Vi>t,.

Uniformly stable states can be defined if in the above definitions in
r(p.t,)>0 to does not play significant role: r(0)>0.

The x' equilibrium state is asymptotically stable at t=t, if it is stable and
there exists r(z,)>0 such that Hx(to)—x*u <r(t,)= Hx(t)—x” —0for t—oo.

The x' equilibrium state is globally asymptotically stable if x(t)— x* as
t > for Vx(to) (its basin of attraction is the whole space).

According to Fig. 4.1., by the use of the above definitions the following
statements can be done. Let the af(lixll), AIxIl), KlIxIl) functions belong to function
class !

e If V(0,)=0 and V(x,t)Za(“x”)>O and V(x,7)<0 then the

equilibrium point x=0 is stable.

Forbidden
region for V

AlIXID) o] |x]))

Forbidden
region for the
drift of ||x||:

Allowed region
for / drift of ||x||:

Forbidden
region for ||x||

BV (Xot0)) a’'(V(Xo:1p))
— a'[B(xo)2|x(3)]

Figure 4.1. The geometric interpretation of Lyapunov’s 2™ Method

To prove that it is enough to consider the  limit
||x(t)||£a_1(V(xO,to)) for t>t, in Fig. 4.1. Here the initial error norm in #, has

significance! In this case the allowable range in V and IIxIl is bounded by the graph of
alIxll) from the right side, and by the V(xy,f) line from the top.

o If V(0,1)=0 and V(x)2elx|)>0 and V(x,)<0, and
V(X,I)S,B(“x||)>0 then the equilibrium point x=0 is uniformly
stable.
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To prove this statement it is enough to consider Fig.4.1. again. Evidently
B (V(xy.t,) < |x(t) <@ (V(xy.2,)) for t>1, and a@'[Bxo)IZIx(®I. This
estimation is independent of #,!
o If V(O,t)z 0 and V(X,I)Z a'(“x||)> 0, and V(x,t)SO, and
V(x,r)< ,B(“x||)> 0, and V< —}’(“X||)< 0 then the equilibrium point
x=0 is uniformly asymptotically stable.
For proving that consider the Fig. 4.1. again! Evidently V cannot be stopped at finite

lIxIl. It can be stopped only in lIxll=0. The allowed range is shrunk to lIxll=0 as the
level of V sinks down to 0.

4.3. Globally Linearizing Controllers
The concept of "Globally Linearizing Controllers" as introduced e.g. by

Khalil [R57], Goodwine & Stepan [R58], are designed for the following more or less
"canonical" form of equations of motion:

x=f(x)+g(x)u, y=h(x) 4.3.1)

in which xe R" denotes the state variable of the system, ye R" denotes its observable
output, ue R* means the manipulated input (control signal). By applying the chain
rule of derivation the time-derivative of y can be obtained from (4.3.1) as

n k

@:z% L)+ g X, |=Lh+(Lh (4.3.2)
dt  “5 ox, pr

in which the very condensed notation of the Lie-derivatives is applied as L, etc. If

the lucky situation occurs in which L,h#0 then dy/dt can simply be expressed as an

9, (x)

affine function of u. In this case the matrix M, (x):= z aa
X

s=1 K}

g, (x) and the single

G o1

dt  “H ox,
considerations we idea on the desired value of dy/dt, in principle the Mu=b equation
may be soluble and the necessary control signal can be computed, of course, only in
the possession of the analytic form of the model coded in functions f and g. If L;h=0
then d’y/df* can be expressed by repeating the use of the chain rule, etc. In general if
we have j>0 so that L,L/=0 if s=0,1,2,...,j-1, but LgLf[;tO the dependence of the jth
time-derivative of y on u has an affine form as

yY =Lh+L L hu. (4.3.3)

index array b, = f.(x) can be defined. If on the basis of some kinematic

In this case j is referred to as the relative degree of the nonlinear system. In the
possession of the exact system model the appropriate Lie-derivatives in (4.3.3) can
be computed. Whenever (4.3.3) is able to uniquely determine the appropriate value
of $u$ that is needed for achieving a desired 7™ derivative of the observable output
y(i)d determined on the basis of some “kinematic” consideration, this formalism can
evidently be successfully used for the control. The control signal u evidently can be
fed back in the form of u=p(x)+q(x) y(i)d from which the name of the controller, i.e.
the notion of “Globally Linearizing Control” originates. It is worth noting that in
spite of the very “special form” of the suppositions concerning the identically zero
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values of certain Lie-derivatives in the practice various physical systems meet these
conditions. In [R55] e.g. the temperature control of a “Jacketed Continuous Stirred
Tank Rector (JCSTR)” is considered in which the heat released in an exothermic
reaction has to be extracted by the cooling system in the jacket, while in e.g. [C90] a
4™ order Classical Mechanical system is considered.

In general it has to be noted that the elegant form of (4.3.3) in the case of a
higher relative order j covers quite complicated computations due to the repeated
application of the chain rule. In the case of a complex process this may mean quite
considerable computational burden while developing the analytical model for the
control.

It has to be noted again that even if we are not in the possession of the exact
model, the analytical form of (4.3.3) still can be a good basis for developing a novel
type adaptive controllers as e.g. in the case of the control of a polymerization process
we applied in [C95]. It is also worthy of note that the novel controller can be
developed even in the cases in which the conditions for developing a GLC do not
prevail as e.g. in the case of a convoy of coupled vehicles [C99]. In the sequel the
most sophisticated classical adaptive controllers based on analytical modeling in
Robotics will be studied and modified.

4.4. Adaptive Inverse Dynamics Control of Robots

Before going into any detail we note that in the forthcoming considerations
we use the Lyapunov function technique in a special case in which the eigenvalues of
positive definite and negative definite matrices can be used for estimation purposes.
(More systematic and general analysis of this method will be given later.) This
approach is based on a more detailed form of (4.1.1) and assumes that at least the
kinematic model of the system is precisely known. On this basis a parameter vector p
representing the dynamical parameters and an array built up of well known
kinematic functions Y(q,dq/dt,dzqd/dtz) can be introduced in the dynamic model as
follows:

H(q)j+h(q.q)=Q=Y(q.q,4)p (4.4.1)

It is also supposed that some approximate model built up of the functions ﬁ(q),

ﬁ(q,q) also is available with the model parameters p on the basis of which the

generalized forces are calculated and exerted. The exerted forces ab ovo contain
feedback-correction depending on the tracking error and its derivatives

e= qN —q,e:= qN —q,€é:= qN —( with symmetric positive definite gain matrices
Ky and K| as

ﬁ@%”+Km+K@FMm®=Q=H@M+Mm@ (4.4.2)

It is worth noting that in this method it is a supposition of crucial importance that the
validity of (4.4.2) is supposed, i.e. it is assumed that Q originates from the drives
and does not contain unknown external components. On the basis of this assumption
4.4.2) can be subtracted from 4.4.1) to obtain

H(q)q+h(q,q)—ﬁ(q)(qN +K0e+K1é)—ﬁ(q,q)=o. By subtracting and adding

ﬁ(q)q at the left hand side and keeping only the modeling errors at this side it is
obtained that
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ﬁ(q)[é +K. e+ Klé] =

= [H(q)—ﬁ(q)]ii{h(q,cI)iﬁ(q,Q)} = Y(q,q,ii)[g—ﬁ

] (4.4.3)

-H ~h

in which one side contains the model data, while the other side contains the modeling
errors defined by the quantities denoted by the tilde (~) symbol. Via multiplying
both sides of (4.4.3) with the inverse of the known model and formally introducing

: é

e e . . . :
the array x:= { } X = {} an equation of motion can be obtained for the system with
e

error-feedback that corresponds to the ‘“standardized form” of that of the non-
autonomous dynamic systems:

okl e

%,—/
A
or
i - 0
x—Ax=B®p, B = L} 4.4.5)

Now let us try to construct a Lyapunov function of the tracking error and its 1*' time-
derivative and of p as V:=x"Px+p’Rp where P and R are constant, symmetric
positive definite matrices of proper dimensions! Then evidently

V=x"Px+x"Px+p'Rp+p 'Rp <0. (4.4.6)
From (4.4.5) it follows that
V=x"(A"P+PAK+p ® B Px+x"PB®P +pRPp+p ' Rp <0 (4.4.7)
Due to the symmetry of matrices P and R (4.4.7) can be simplified as
Vi=x"(ATP+PA K +2p"® B Px +2p"Rp < 0 (4.4.8)

To guarantee dV/dt<0 for finite x the following restrictions can be prescribed: let U
be a negative definite symmetric matrix, and let

A'P+PA=U (4.4.9)

and
p’ (@"B"Px+Rj)=0=p =-R"'®'B"Px (4.4.10)

Equation (4.4.9) is referred to as the “Lyapunov Equation”. Normally an appropriate
U is prescribed and the task is to find a proper P for this U by solving the Lyapunov
Equation that equation evidently sets linear functional connection between the
elements of P and U that may or may not have solution. (For the existence of a
solution the real part of each eigenvalue of A must be negative.) Since A=const. the
Lyapunov Equation has to be solved only one times in order to find a proper P for
the prescribed U. (Each common software package as e.g. INRIA’s SCILAB or
Wolfram Research’s MATLAB immediately yields the solution of this equation in a
single command.) To satisfy the second important equation (4.4.10), its right hand
side has to be expressed from its definition through B and ®. It is obtained that
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p=p-p=0-p=—RYA '[0,I]Px (4.4.11)

in which the computational burden mainly consists in the need for inverting the
model inertia matrix that must have the exact, intricate form determined by the
particular kinematic model of the given robot arm.

If the adaptation rule is applied by the controller for the convergence of this
method the following cases can be imagined.

A possibility is the case of lIx|l—0 and ||i3|| > F >0, i.e. exponential

trajectory tracking in principle may be achieved without exactly
learning the system model. That may happen if the nominal and
realized (controlled) trajectories do not yield satisfactory
information on the complete dynamic model.

[IxIl—0 and ||ﬁ|| — 0 i.e. exponential trajectory tracking with exactly

learned dynamic model may also happen.
It is impossible to have IIxII>E>0 for arbitrarily long time because
dv/di<0 can be estimated as

V<0, V\ =—x"Ux> \UE"g x'x> \UE"g E*>>0 for finite x, while

min min

V2P E*+p TP P, E’ >0 that is a contradiction since an
initially finite positive value V(0) with at least constant speed of
decrease has to achieve 0 during finite time.

Similar observations can be done if we use Barbalat’s lemma for
dV/dt: since V is a quadratic function of the errors constructed of
positive definite terms, for finite V these errors must be bounded in
the future since dV/dt<0; due to the bounded errors d*V/df* remains
bounded that means that dV/dt is uniformly continuous in time; in
this case its finite integral 0<V(e0)<eco means that dV/dt—0 as t—>oo,
ie. V(eo):=x" (oo)(ATP +PA )x(oo) =0 since the parameter tuning in
(4.4.11) always guarantees that the additions to the quadratic term in
(4.4.8) take zero; since A"P+PA =U is negative definite it is
concluded that x(e0)=0.

To sum up the main features of this method the following criticism can be

done:
[ ]

The great advantage is that the under the relatively clear conditions
of applicability it guarantees asymptotically zero error according to
the above considerations.

The details of error relaxation are prescribed by the construction of
V and (4.4.3), and cannot be further manipulated.

Besides that a lot of tedious computations have to be done by the
direct use of the exact form of the normally quite complicated
kinematic model, and real-time inversion of a positive definite
model inertia matrix is needed in a cycle, too. We have to note that
in spite of its positive definite nature this matrix can be badly
conditioned as it was pointed out in connection with the adaptive
control of a cart plus double pendulum system in one of our works
[C63]. Another consequence of the presence of this inverted matrix
is the relatively limited acceptable speed of parameter tuning: in a
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finite element approach too big step in the estimation of ﬁ(q) may
lead to singularity that can stop the numerical learning algorithm.

e According to (4.4.2) it is assumed that the generalized force Q is
fully known and correspond to that exerted by the drives on the
basis of the available model. Therefore, the external perturbations
must be only temporal and insignificant otherwise the method tends
to compensate their effects on the basis of false assumption (by
modifying the model parameters instead of observing/identifying
the external perturbations).

e Furthermore, the present form is exempt of any feedback of the
integrated tracking error that usually considerably can improve the
quality of control by making small and slowly varying errors relax,
too.

In the sequel two step modifications of the Adaptive Inverse Dynamics Controller
will be proposed. It will be shown that the slow tuning process of the original
approach can be replaced by a far more efficient one if we do not insist on the use of
a single Lyapunov function for deriving the tuning rule. In the next step the original
method will be completed by the use of an integrated feedback that also allows the
more conventional parameter tuning via using a Lyapunov function, as well as the
improved tuning in which the Lyapunov function is dropped.

4.4.1. Modification of the Tuning Rule of the Adaptive Inverse Dynamics
Controller

The proposed modification is based on the observations as follows:

e Let us exert the driving force/torque values exactly as it was
proposed in (4.4.2) by using the actual approximate values of the
model parameters;

e (Consider (4.4.3) in its original form and do not use the inverse of
the actual estimation of the inertia matrix since this step may be
critical and may lead to ill-conditioned estimation the inverse of
which may cause numerical problems:

H(g)é+K,e+K¢|= Y(q,q,ii){p_ng (4.4.12)

=p

e Since the LHS of (4.4.12) consists of known and measurable terms,
and the same holds for matrix Y at the RHS, observe that (4.4.12)
contains all the actual information that is available for the
parameter estimation error. Instead manipulating with the inverse
of the estimated inertia for the sake of using some Lyapunov
function take the following observation: if the parameters are

already properly estimated, the RHS becomes zero, and since ﬁ(q)
in principle must be positive definite, for precise parameter
estimation it holds that €+Kpe+K;e=0. With properly chosen
feedback parameters from this equation it follows that e—0 as r—0.
From that it follows that the tracking error can increase only during

the tuning process while the estimation error at the RHS means
some perturbation. To estimate the significance of this possible
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“meandering” of the tracking error consider the following equation
that utilizes (4.4.3):

=20
—

di x' Px |= xT(ATP+PA)x+2f)T<I)TBTPX. (4.4.13)
t

e [tis evident that if a symmetric positive definite matrix P is properly

chosen, 1i.e. ATP+PA is negative definite, the LHS of (4.4.13)
corresponds to the time-derivative of a positive error metrics, the
dominating quadratic term for large x values at the RHS is negative
and the disturbance term that is only linear in x yields negligible
contribution. That means that during the tuning process the tracking
error is kept at bay even if the tuning itself is not based on the use of
a Lyapunov function and it is yet imperfect.

e So we can utilize this possibility by applying the Singular Value
Decomposition (SVD) for Y" to obtain information on the
appropriate orthogonal directions of the parameter estimations that
significantly influence the actual value at the LHS of (4.4.12). By
replacing the too small singular values with zero, a proper
generalized inverse of Y” containing the reciprocal of the significant
singular values can be introduced for a quick exponential tuning
with a positive yparameter

- AT H(q)é+K,e+Ke]=—p. (4.4.14)

This approach is evidently free of the “critical step” of computing the inverse of the
model inertia, evidently allows more efficient parameter tuning by properly utilizing
the actual information available for the parameter estimation error. However, this
control still does not contain any integrated feedback that practically used to be very
efficient. In the next step the feedback terms in the original form of the Adaptive
Inverse Dynamics Controller will be modified in order to introduce the integrated
error in the feedback.

4.4.2. Introduction of Integrating Term in the Adaptive Inverse Dynamics
Controller

For the seek of simplicity let us have only a single positive definite matrix A
and consider the time-derivative of the integrated tracking error in the following
form:

1
&(t)=[e(r)dr,
0 (4.4.15)

e e e
[upany N

3 ——
S = (% + Aj &(t)=E(1)+3AE(r)+3A%E(e)+ Ae(r)

The term S is similar to the “error metrics” usually used in the Variable Structure /

Sliding Mode (VS/SM) controllers, and from S=0 it follows that &0 as r—. So
modify the exerted force/torque components in (4.4.2) as follows:
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ﬁ(q)(qN + A% +3A%+ 3Aé)+ﬁ(q,q) =Q=H(q)j+h(q.q). (4.4.16)

Evidently (4.4.16) is a counterpart of (4.4.2) and via similar manipulations it yields
the counterpart of (4.4.3) as

ﬁ(q)lé+3Aé+ 3A%+ A3<:J= Y7 (q,4.4)p (4.4.17)

that justifies the introduction of the array x = [Z;T,eT,éT]T as “‘state variable” of the

formal dynamic system in Lyapunov’s theory, and leads to the differential equation
e 0 I 0 |¢& 0
e—- 0 0 I |[e|=| 0 (4.4.18)
é

W (
P> (
w(

that is a strict analogy of (4.4.5). On this basis now a new Lyapunov function similar
to the original one as V= iTPi+ﬁTRﬁ can be introduced in which the positive

definite symmetric matrix P contains much more independent elements than the
original matrix P. It is evident that exactly the same manipulations can be done with
the time-derivative of this new function that lead to the “orthodox” tuning rule:

—p=-R'@"B"Px. (4.4.19)

It is evident again that (4.4.17) contains all the available information on the
parameter estimation error therefore the more “brave” tuning can be applied even in
this case, too:

- 7YT+ﬁ(q)['e'+ 3Aé+3A% + A3§]= . (4.4.20)

Again, (4.4.17) guarantees that in the case of proper parameter estimation the
tracking error and its integral must converge to zero. In similar manner, for the stage
of imperfect tuning the following equation is valid

>0
—

di X Px =% (ATP+13A):2+ 2p” "B Px (4.4.21)
1

From which it follows that if a symmetric positive definite matrix P is properly

chosen, i.e. ATP+PA is negative definite, the LHS corresponds to the time-
derivative of a positive error metrics, the dominating quadratic term for large X at
the RHS is negative and the disturbance term that is only linear in X yields
negligible contribution. That means that during the tuning process the tracking error
is kept at bay even if the tuning itself is not based on the use of a Lyapunov function
and it is yet imperfect. In general similar observations can be done in connection
with the original and the adaptive variants of Slotine’s and Li’s control method [R11]
as it will be analyzed in details in the next section.

4.5. Adaptive Slotine-Li Controller for Robots

This controller utilizes subtle details of the equation of motion of the robots
(more generally Classical Mechanical Systems) that are not observed and used in the
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Adaptive Inverse Dynamics approach, namely the terms quadratic in the time-
derivatives of the generalized coordinates are not independent of the inertia matrix.
Really, the Euler-Lagrange equations in details are as follows

1 d oL JL
L=—>» H:q:.qg;-VI\q), =
. 4.5.1)
oH ; 1 _OH; AV (q)
Qi =X Hylij+ X =454 = X454 +
l ; yaj = g, 59 2s,j dg; SR ;

It can be observed that the since the quadratic term gyq; is symmetric in the indices

(s,j) those part of its coefficient that is skew-symmetric in this indices does give
contribution in the sum according to j and s. Therefore, though it is seemingly more
complicated because containing more terms, it is enough to keep the symmetric part
of this coefficient the symmetry of which later can be conveniently utilized. Since in
the symmetrized term the components of ¢yq; are in equal position, one of them can

be included in a matrix C that yields the following, generally valid equations of
motion:

. 1ooH; .. 1_9H;  1_0Hg = 9V
Q=Y Hyji+- Y =44, +=>—L44;—— X —L454; + @), (4.5.2)
j 25,794, 25945 257 9 dg;
\_V_J
>C,(a.9)g, 8

Assuming that neither unknown external disturbances, nor dynamically coupled
subsystem unknown by the controller exist, in the possession of an approximate
dynamic model in this control method the following generalized forces can be
exerted / equations of motion can be obtained for a symmetric positive definite
matrix Kp:

Q=H(q) GV +A¢é [+C| " +Ae +§+KD[é+AeJ—H(q)q+Cq+g (4.5.3)
ﬁ_/ %K_J ._Vr
v v -

in which the Coriolis and the gravitational terms are separately dealt with, q" denotes
the nominal trajectory, e:=q"-q denotes the tracking error. It can be observed that the
term denoted by r corresponds to some error metrics used in the Variable Structure /
Sliding Mode controllers. In order express the modeling errors and keep the quantity
v in the equations Hdv/dt, g, Kpr and Cv is subtracted from both sides, and it is
utilized again that the array of the dynamic parameters p can be separated in a
multiplicative form. The result is

= "

Y(q.q.v.9) p-p |=(A-H}y+(€-Clv+8-g=—K pr—Hi ~Cr 4.5.4)

The Lyapunov function chosen by Slotine and Li and its time-derivative is
V= %rTHr +%§Trf) (4.5.5)

V= rTHr+%rTHr+foTrf) (4.5.6)
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in which I' is symmetric positive definite matrix. From (4.5.4) Hr can be expressed
and substituted into (4.5.6). By selecting the quadratic terms in r we obtain that

V=-rKpr +rTGH —er+§TF§ ~Yp (4.5.7)

in which the 1 term in the LHS is negative, the 2" one is zero on symmetry reasons
(for this purpose was symmetrized the term containing the quadratic gyq; products),

and making the remnant terms zero yields the parameter tuning rule as

oz(f)Tr—Y)is —p=r"1y". (4.5.8)
#0

This tuning is much better than that of the Adaptive Inverse Dynamics Controller,
since it does not require the use of the inverse of the model inertia, and does not
require a symmetric positive definite matrix P with its large number of arbitrary
matrix elements. However, it still contains a lot of arbitrary elements in the matrix I,
and does not contain integrated feedback.

4.5.1. Modification of the Parameter Tuning Process in the Adaptive Slotine-Li
Controller

Regarding the tuning rule it applies the same observations can be done as in
connection with the Adaptive Inverse Dynamics Controller:

e Equation (4.5.4) as Y(q,q,v,v)(p—p)= -Kpr—Hr—-Cr does not
contain all the actually available information on the actual
parameter estimation error since the exact matrix H is unknown.
Therefore, for tuning purposes the use of some I' matrix containing
a lot of arbitrary control parameters is needed on formal reasons in
the present construction. Its presence is the consequence of insisting
on the use of some Lyapunov function.

e To release this difficulty let us go back to (4.5.3), and instead of

Hdv/dt, g and Cv subtract form both sides ﬁ(’j, éq ! This again
leads to the appearance of the modeling errors and to the appearance

of a well known matrix ¥ serving as a coefficient of the modeling
errors as follows:

Ai+Cr+Kpr=(H-Ak+(C-Clq+eg-=2(q.q.d)p-p). @59

e Since each term in the LHS of (4.5.9) is either known or
measurable, and the same holds to the component of E at the RHS,
by the application of the SVD on E in (4.5.9) fast and efficient
tuning can be achieved.

® Regarding the behavior of the tracking errors during the tuning
process consider the time-derivative of the following quantity that
can serve as a kind of metrics for the tracking error, independently
of the fact that H in it is actually unknown:

di(rTHr)z rTHi'+%rTHr (4.5.10)
t

e Since (4.54) and (4.5.9) are simultaneously valid quite
independently of the actual parameter tuning applied, the term Hr
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can be substituted from (4.5.9) into (4.5.10) yielding

di(rTHr): 'K pr—Yp from which it immediately follows that
t

in the case of exact parameter estimation r—0 as /—0 (consequently
the tracking error also converges to zero), and for improper
estimation, i.e. during the process of tuning it is kept at bay by the

quadratic negative term —r’'K pr. This observation does not

exclude the tuning on the basis of (4.5.9).
The possibility for the introduction of integrated feedback will be considered
in the next section.

4.5.2. Introduction of Integrating Feedback in the Adaptive Slotine-Li Controller

To obtain only 2™ order time-derivatives consider the following modification
of the error metrics to be used instead of r:

e
—

()= [elchdz, S [ij E() =B+ 2050+ A%(),  (45.11)
0

by the use of which the exerted forces force / torque components and the equations of
motion can be modified as

H(q) §V +2Aé+A% |+C @V +2Ae+ A% [+8+Kp| é+2Ae+ A% |=
Y R —

v v =S
=H(q)i+Cq+g

[strict counterpart of (4.5.3)]. As it was originally done, in order express the

modeling errors and keep the quantity v in the equations, Hv, g, KpS and CV can
be subtracted from both sides, and it is utilized again that the array of the dynamic
parameters p can be separated in a multiplicative form we can obtain that

(4.5.12)

Y(0.q.%.7) p-p|=[@-H +(€-Cl+§-g=-K,S-HS-CS 4.5.13)

The modified Lyapunov Function can be constructed as
V= %STHS +%f)TFi5 , (4.5.14)

its derivative is
v =STHS +%STHS+§T1T), (4.5.15)

from (4.5.13) HS can be substituted to obtain the structure for negative time-
derivative

=0

>0 —_—— 20
s _ QT 71y T )R
V=-STK),S+S (EH—CJS+(p r-v)s <o (4.5.16)
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that leds to the “orthodox tuning rule”
pl =Yr—. (4.5.17)

As it was previously done, the “non-orthodox tuning” can be introduced in the
following manner: manipulate (4.5.12) by subtracting fl(q)ij+éq+§ from both
sides leading to

AS+CS+KpS=(H-Ak+(C-Cl+g-8=Y(qq.d)p-p) 4.5.18)

where the LHS and Y is known, therefore this equation contains all the available
information on the parameter estimation error. Therefore, via using SVD for Y,
replacing the negligible singular values by 0, and computing the “generalized
inverse” we arrive at the tuning rule

—7Y+(q,q,i1)[ﬁs+CS+KDS]=—f>. (4.5.19)

Since (4.5.13) still is valid independently of the parameter tuning, the time-derivative
of a positive definite error metrics is
4 1gThs | =sTHS + L sTHS =
dr\?2 2
) _ , 4.5.20
= ST(lH—st -STK,S- STYp ( )
2 —_— —

_ >0 "disturbance"
0 due to symmetry

that for the case of “perfect estimation” (i.e. when p =0) guarantees the S—0 as

t—0, and for imperfect estimation the negative, quadratic contribution to the time-
derivative of the positive number, —STKDS keeps at bay the error-metrics since the
disturbance is only its linear function.

4.5.3. Simulation Examples for Adaptive Inverse Dynamics Controller and the
Adaptive Slotine-Li Controller

To illustrate the operation of the original and modified controllers simulation
results are detailed in Appendix A.1l. for the Adaptive Inverse Dynamics Controller,
and in Appendix A.2. for the Adaptive Slotine-Li Controller, and their modifications.

On the basis of the simulation results it can be stated and must be stressed
that both the original and the modified versions of the above considered adaptive
controllers mathematically are based on the fundamental assumption that the
generalized forces are exactly known by the controller, i.e. the controlled system
cannot be under permanent effects of external perturbations, and cannot contain not
modeled, dynamically coupled subsystems. Such phenomena as friction mean
significant difficulties in this context since the friction models normally are strongly
nonlinear and their parameters cannot be separated into a single array within a matrix
product structure. Therefore the significant segment of reality does not meet the
formal requirements needed for the application of these otherwise very sophisticated
methods.
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4.6. Thesis 1: Analysis, Criticism, and Improvement of the Classical “Adaptive
Inverse Dynamics Controller” and ‘“Adaptive Slotine-Li Controller”’ (Summary
of the Results of Chapter 4)

In this Thesis I gave an analysis of the most sophisticated classical model-
based adaptive control approaches as the “Adaptive Inverse Dynamics Controller”
and the “Adaptive Slotine-Li Controller”. These controllers are designed on the basis
of appropriate Lyapunov functions and parameter tuning guaranteeing asymptotic
stability of the control by assuring negative time-derivative of the Lyapunov
functions. I have shown

¢ that both methods can be completed by the inclusion of integrated
tracking error in their feedback loops;

e this completion can be treated by essentially similar Lyapunov
functions and parameter tuning strtategies as that of the original
methods; (I developed the new Lyapunov functions and the
appropriate modification of the original parameter tuning rules;)

e that by dropping the use of the original Lyapunov functions and
tuning strategies more efficient parameter adaptation can be
developed; the novel tuning proposed directly utilizes all the
information available on the actual parameter estimation error by
using the same feedback terms and equations of motion as the
original methods; this novel tuning is not deduced from the original
Lyapunov functions;

e that the tracking errors have to asymptotically converge to zero
independently of any Lyapunov function, following the
accomplishment of the process of parameter identification;

e that during the novel tuning processes, independently of the details
of these processes the tracking errors are kept at bay;

e that in the case of the “Adaptive Inverse Dynamics Controller” the
critical step, i.e. calculation and use of the inverse of the actual
estimation of the inertia matrix can be avoided;

¢ that both the original and the modified versions are very sensitive to
unknown external disturbances and dynamic interactions of the
controlled subsystem with not modeled ones;

e that the present form of these controllers cannot be applied
whenever the dynamic parameters cannot be separated into a
parameter array in a matrix product structure.

All the above statements were substantiated/illustrated by simulation examples. The
following publications are related to this Thesis: [J14], [C104], [C106], and [C116].
The subject area was concerned in the oral presentation in [C115].

The general difficulties in the construction of Lyapunov functions, the
problems related to the identification of system parameters embedded in nonlinear
models of various forms made me seek alternative approaches. For this purpose in
the sequel the Soft Computing based approaches will be briefly analyzed.
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Chapter 5: Soft Computing as the Use of Universal Approximators

To be correct in briefly and properly evaluating the method of analytical
modeling in technical applications one has to take into account historical issues
regarding the technological background actually available by the researchers.

Historically analytical modeling is strictly related to Euclid’s Geometry from
the timed 300 BC [R32]. These early steps in the history of mankind made it
necessary to study and understand the necessity for introducing the set of Real
Numbers in order to make certain geometric tasks soluble, and in the same time to
study the properties of certain particular functions as x°, x'%, the trigonometric
functions, the exponential and the logarithm functions, etc. The first iterative and
numerical techniques were elaborated for calculating the values of these special
functions and the first numerical tables were created for these functions only.

Together with the need of the physical interpretation (phenomenology) of the
modeled concept for a very long time analytical modeling was the only practically
viable way for scientists to create quantitative models of reality. With the
development of the theory of integrals in the 16™ Century it became clear that this set
of special functions is not satisfactory for describing everything. For instance the
integrals of several special functions cannot be expressed by closed analytical form
by using the same set of special functions. In spite of that there was a strict insistence
on using these functions together with integral tables even for approximate modeling
purposes purely due to the lack of computing power and other technological
possibilities for making calculations.

As theoretical possibility the use of function sequences and series to
approximate ‘“non-special” functions with “special and well known ones” was a
possibility extensively used even in early calculations in Quantum Mechanics in the
1°* half of the 20" Century, obtaining precise numerical values was possible only for
rich institutions having expensive equipment of high computational power.

Though the mathematical background of using universal approximators for
continuous functions appeared in the late fifties [R16] and in the sixties [R62] and
[R61], preliminary stage of computer technology at that time did not allow real
practical applications. It can be stated that in the beginning of the 21 Century the
price of a common PC or laptop with considerable computational power together
with available software achieved the level for which it can generally be stated that
cheap and efficient computational power became commonly available for everybody
for making numerical computations.

The mathematical foundation of the modern Soft Computing (SC) techniques
goes back to the middle of the 20™ Century, namely to the first rebuttal of David
Hilbert's 13 conjecture [R59] that was delivered by Arnold [R60] (considering
continuous functions of 3 variables), and Kolmogorov [R16] in 1957. Hilbert
supposed that there exist such continuous multi-variable functions that cannot be
decomposed as the finite superposition of continuous functions of fewer variables.
Kolmogorov provided a constructive proof stating that arbitrary continuous function
on a compact domain can be approximated with arbitrary accuracy by the
composition of single-variable continuous functions. Though the construction of
Kolmogorov's functions as well as that of the later refinements of the essentially
same idea in the sixties as e.g. by Sprecher [R61], and Lorentz [R62] that are used in
this theorem is difficult, his theorem later was found to be the mathematical basis of
the present SC techniques.
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From the late eighties several authors proved that different types of neural
networks possessed the universal approximation property [R12], [R13], [R63],
[R64]. Similar results have been published from the early nineties in fuzzy theory
claiming that different fuzzy reasoning methods are related to universal
approximators, too [R14], [R65], [R66]. As it will be highlighted in the sequel, the
practical applications of these firm theoretical results always have to cope with sizing
and tuning problems.

5.1. Observations on Sizing and Scalability Problems of Classic SC

In spite of these theoretically inspiring and promising conclusions, from the
point of view of the practical applicability of these methods various theoretical
doubts emerged. The most significant problem was, and remained important problem
even in our days, the “curse of dimensionality” that means that the approximating
models have exponential complexity in terms of the number of components i.e. the
number of components grows exponentially as the approximation error tends to zero.
If the number of the components is bounded, the resulting set of models is nowhere
dense in the space of the approximated functions. These observations frequently
were formulated in a negatory style, as e.g. in [R67] stating that “Sugeno controllers
with a bounded number of rules are nowhere dense”, and initiated various
investigations on the nowhere denseness of certain fuzzy controllers containing pre-
restricted number of rules e.g. in [R68], [R69].

In general similar problems arise with the application of the Tensor Product
(TP) representation of multiple variable continuous functions that were also extended
to Linear Parameter-Varying (LPV) models [R70]. The TP representation can be
used for achieving polytopic decomposition of LPV models i.e. obtaining a linear
combination of Linear Time-Invariant (LTI) models in which the coefficients of the
linear combination depend on time. The application of the Higher Order Singular
Value Decomposition (HOSVD) provides this result in an especially convenient form
[R49], [R50]. Such a preparation or preprocessing of the initial model is very
attractive from practical point of view since due to it the Lyapunov-functions based
stability criteria generally used in the control of nonlinear systems can be
reformulated in the form of Linear Matrix Inequalities (LMI). Due to the pioneering
work by Gahinet, Apkarian, Chilai [R71], Boyd [R72], and Bokor e.g. [R15], [R73],
the feasibility problem of Lyapunov-based criteria was reinterpreted as a Convex
Optimization Problem. J. Bokor and his research group gave a very lucid geometrical
interpretation of this new representation and methodology that was found to be very
fruitful in solving optimization problems, too, beyond stability issues. When
polytopic model decomposition is realized and the appropriate control is designed by
the use of commercially available software as e.g. MATLAB as in [R74] the
available finite computational capacity always seems to be a “bottleneck”. Possible
complexity reduction techniques as e.g. HOSVD have to be applied in order to
remain within treatable problem sizes. This technique reduces modeling accuracy in
a “controlled” or at least well interpreted manner [R54].

In the case of the use of “traditional” universal approximators various
approaches were elaborated to cope with the sizing problem. For instance, a
Feedforward Artificial Neural Network (also referred to as Multilayer Perceptron)
generally must have only a well defined number of layers (i.e. the input layer, the
layer hyperplanes halving the input space, the layer of convex objects, the layer of
concave objects, and some output weighting and output layer), the number of the
necessary neurons depends on the particular problem under consideration, and can be
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quite big within the frames of the universal approximators elaborated for
multivariable continuous functions. Consequently, for a huge number of
“independent parameters” complicated or computational power consuming tuning
methods have to be applied.

The “first phase” of using SC methods, that is identification of the problem
class and finding the appropriate structure, normally is relatively easy. The following
phase, i.e. determining the necessary structure-size and fitting it is far less easy. Even
in the nineties considerable improvements were achieved in the “learning methods”.
For neural networks certain solutions start from a quite big initial network and apply
dynamic pruning for getting rid of the “dead” nodes (e.g. Reed in 1993 [R75]). An
alternative method starts with small network, and the number of nodes is increased
step by step (see e.g. in Fahlmann & Lebiere 1990 [R76], and Nabhan & Zomaya
1994 [R77]). Due to the possible existence of “local optima” in “backpropagation
training” inadequacy of a given number of neurons cannot be concluded simply.
Alternative learning methods also including stochastic elements were seriously
improved in the nineties and to some extent released this problem (see e.g. in
Magoulas et al. 1997 [R78], Chen & Chang 1996 [R79], Kinnenbrock 1994 [R80],
Kanarachos & Geramanis 1998 [R81]). However, the generally big size of the classic
universal approximators, i.e. the great number of the parameters necessary for
accurate modeling generates tuning or learning problems, too, that are briefly
considered in the next section.

5.2. Observations on Parameter Tuning Problems in Classic SC

Classic Soft Computing in my view is based on three essential pillars: on
certain universal structures representing universal approximators having either
Artificial Neural Networks or Fuzzy Systems based implementation or their
combination, and some efficient parameter tuning/setting method that may be based
on the traditional causal Gradient Descent (often called “Backpropagation” in the
ANN literature in connection with teaching perceptrons) or its close relatives as the
Newton, Gauss-Newton and Levenberg-Marquardt Algorithms (this latter was the
result of two independent researches [R82], [R83]) or Simplex or Complex
Algorithms, semi-causal and semi-stochastic tuning like Simulated Annealing (SA),
or Particle Swarm Optimization (PSO) [R84], or any stochastic or semi-stochastic
Genetic Algorithm (GA), or other Evolutionary Computation (EC) methods.

It can generally be stated that due to the huge number of parameters to be set
in the case of any universal approximators based model the tuning task itself needs
considerable computational burden so these approaches are rather fit to offline
development of models. The main problem with the gradient descent like methods
and the simplex or complex algorithms is that they are apt to converge to a local
optimum depending on the surroundings of the normally stochastically chosen initial
values. Non-satisfactory operation of this optimum does not automatically mean the
necessity of modifying/resizing the structure itself. From different initial values
appropriate solution may be achieved by using the same structure. The old method of
SA (e.g. [R85]) to some extent solves this problem by adding stochastic noise to the
gradients so increasing the probability of jumping out of the basin of attraction of
local optima that are far from the global one(s). For this purpose various cooling
techniques are in use.

The concept of the simple GA was invented by Holland and his colleagues in
the 1960s and 1970s [R86]. It is especially appropriate for searching in the space of a
huge number of parameters for minimizing a single cost function (e.g. [R87], [R88])
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that ab ovo means a stochastic approach in which the “repetitive search” of the
gradient descent like methods is replaced by dealing with the numerous members of
great populations. According to [R89] it can be stated that the main problems related
to the application of GA based methods that is the selection of a proper set of
parameters as number of generations, population size, crossover probability,
mutation rate, etc. surprisingly are not the subject of ample systematic research.
Mainly “rules of thumb” obtained on the basis simulation experience are available
for this purpose (e.g. [R90], [R91]). Statistics based approaches are relatively rare
and they are restricted to specific problems as e.g. [R92] in which the effect of 17 GP
parameters on three binary classification problems were investigated.

The Multi Objective Genetic Algorithms (MOGA) try to find the limits of the
set of feasible solutions (the so called Edgeworth-Pareto optimum [R93]) by
describing this set in the system of coordinates of the non negative cost functions.
According to this definition a solution is Pareto optimal if no feasible vector of
decision variables exists that would decrease some criterion without causing a
simultaneous increase in at least one other criterion. That means that if we wish to
decrease one of the cost components by moving towards the (desired) zero value
along an axis, along some other axis we must increase the appropriate cost
component. According to that the multi objective optimum forms some hypersurface
in the embedding space (the Pareto front), and its points correspond to various
compromises between the different goals, therefore the designer can choose an
appropriate point of this geometric object. The result of the basic algorithm that
contains dominated (i.e. “optimal”) and non-optimal solutions must be filtered for
obtaining the elements of the front (e.g. [R94]). The improvement of this filtering
technique recently obtained considerable attention (e.g. [R95]). The basic algorithm
suffered various modifications to more evenly cover the Pareto front (e.g.
Nondominated Sorting Genetic Algorithm (NSGA) [R96], Fast Non-dominated
Sorting Genetic Algorithm (NSGA-II) [R97], etc.) and now they are implemented in
the publicly available software package SCILAB 5.1.1. by INRIA.

In spite of this development for strongly coupled non-linear multivariable
systems SC still has considerable drawbacks. The number of the necessary fuzzy
rules, as well as that of the necessary neurons in a neural network strongly increases
with the degree of freedom and the intricacy of the problem. External dynamic
interactions on which no satisfactory information is available for the controller
influences the system's behavior in dynamic manner. The big structure-sizes and the
huge number of tunable parameters, as well as the time-varying “goal” still mean
serious problem. These sophisticated approaches need ample computations and do
not correspond to our main purposes.

In contrast to these observations SC techniques obtained very wide range of
real practical applications. As examples implementation of backward identification
methods [R99], the control of a furnace testing various features of plastic threads by
Schuster [R100], [R101], sensor data fusion by Hermann [R102], building up control
mechanisms for Expert Systems by Bucko and Madardsz [R103], linearization of
sensor signals by Kovacova et al. [R104], can be mentioned. The methodology of the
SC techniques, partly concerning control applications, had fast theoretical
development in recent years, too. Various operators concerning the operation of the
fuzzy inference processes were investigated by Tick and Fodor [R105], [R106],
minimum and maximum fuzziness generalized operators were invented by Rudas
and Kaynak [R107], and new parametric operator families were introduced by Rudas
[R108], etc.
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To resolve the seemingly “antagonistic” contradiction between the successful
practical applications and the theoretically proved “nowhere denseness properties” of
SC methods one became apt to arrive at the conclusion that the problem roots in the
fact that Kolmogorov's approximation theorem is valid for the very wide class of
continuous functions that contains even very “extreme” elements at least from the
point of view of the technical applications.

The “extremities” in the class of continuous functions inspire me to seek the
possibilities for working with the approximation of models using less “intricate”
functions. These efforts are summarized in the next chapter.
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Chapter 6: Introduction of Uniform Model Structures for Partial,
Temporal, and Situation-Dependent Identification on
Phenomenological Basis

The relationship between the proposed novel method and “Classic Soft
Computing” is symbolized by Fig. 6.1. It indicates that Classic Soft Computing in my
view is based on three essential pillars: on certain universal structures representing
universal approximators having either Artificial Neural Networks or Fuzzy Systems
based implementation or their combination, and some efficient parameter
tuning/setting method that can be used for fitting the given structure to the particular
problem considered.

Neural

Novel method & problem approach

Figure 6.1. The relationships between the proposed novel method and “Classic Soft
Computing”

To illustrate the “extremity” of the class of continuous functions for which
the nowhere denseness of uniform SC structures of limited number of components is
valid may be the first example of a function that everywhere is continuous but
nowhere is differentiable given by Weierstrall in 1872 [R17].

As it was already mentioned the important features of the traditional SC
approaches as “uniformity” of the model structures and the parameter tuning/setting
procedures sometimes also referred to as “machine learning” remained an attractive
property that generated a “challenge” to construct similar approaches that are free of
the scalability problems or the curse of dimensionality.

The first steps in this direction were done by considering the
phenomenological and formal mathematical structure of Classical Mechanics (CM).
It was observed that Classical Mechanics in the present control literature can be
tackled in essentially two different manners. The direct use of the Euler-Lagrange
equations is strictly related to the phenomenological foundations of CM: at first a
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Lagrange function has to be constructed by choosing an inertial frame of coordinates
and expressing the kinetic energy of the system considered minus the potential
energy i.e. that part of the interaction between the system’s components and between
the system components and the external world that can be originated from some
potential. The kinetic energy can be expressed by using the time-derivatives of the
Cartesian coordinates of the elementary mass points of the bodies constituting this
system by using some generalized coordinates. As a consequence, in the time
derivatives appearing in the Euler-Lagrange equations of motion the second
derivatives of the Cartesian coordinates occur multiplied with the masses of the
elementary points. With respect to an inertial frame such quantities can be interpreted
as forces, therefore the generalized forces of these equations obtain the physical
interpretation as force or torque quantities for prismatic or rotary axles. This
phenomenology-close formulation does not have too much mathematical simplicity
and lucidity because it does not assume direct and simple geometric interpretation.

A more abstract level of mathematical tackling of CM can be achieved by
using Legendre Transform due to which in the equations of motion only the first
time-derivatives of the independent variables appear. The mathematical form of the
so obtained Canonical Equations of Motion is in close relationship with the
Symplectic Geometry [R25].

Taking into account that due to the phenomenology of the CM systems the
primary agents immediately determining the second time-derivatives of the
generalized coordinates according to the Euler-Lagrange equations in general and in
a more specific case of robots [(4.1.1)] are the generalized forces related to the
second time-derivatives through the inertia matrix, the positive definite nature of the
inertia matrix offered a formal possibility to model the CM system by using uniform
structures instead of the given, particular analytical dynamic model constructed by
the use of e.g. the Denavit-Hartenberg conventions [R6]. Similar statement is true for
the used of Symplectic Geometry as alternative source of uniform structures for
modeling.

Both kinds of “uniformities” were treatable by the systematic use of
appropriate mathematical tools (diagonalization of symmetric matrices by orthogonal
transformations leading to studying the Orthogonal Group), and directly studying the
properties of the Symplectic Group.

In the sequel at first the approaches based on the Orthogonal Group and the
Symplectic Group will be briefly considered.

6.1. The Orthogonal Group as Source of Uniform Structures in CM

This approach was based on the observation that the inertia matrix of a
Classical Mechanical system [H(q) in (4.1.1)] is symmetric positive definite and each
symmetric positive definite matrix can be diagonalized by an appropriate Orthogonal
Transformation as

H(q)=0(q)D(q)0" (q) (6.1.1)

in which D is a diagonal matrix with positive main diagonal elements, and O is an
orthogonal matrix. If besides this in (4.1.1) [H(q)g+h(q,q)=Q] we consider that
the q and the dq/dt quantities only slowly can vary due to the inertia of the system,
but d°q/ds* can abruptly be modified by exerting appropriate generalized force Q by
the drives of the system, (4.1.1) practically corresponds to an affine function of
d’q/dr* i.e. it consists of a linear and a constant part in this variable. If we
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concentrate on the linear part of (4.1.1) (6.1.1) serves a mathematical means to give a
uniform formulation of H(q) if we apply group theoretical considerations.

More specifically it is well known that the Orthogonal Matrices of Unit
Determinant form a Lie group. The elements of any Lie group can conveniently be
parameterized by using matrix exponential functions (see more generally e.g. in
[R109]) of the form

0(G, &) =exp(&G) (6.1.2)

in which the matrix G is a generator (i.e. an element of the tangent space of the
group at the unit matrix also belonging to the group), and & is a continuous
parameter. Since the generators of a Lie group form a linear space (in our case of
finite dimensions), and in the particular case of the Orthogonal Group the generators
are the skew symmetric matrices several different variants of (6.1.2) can be invented.
For instance, in three dimensional case three linearly independent skew symmetric
generators “mixing” the (1,2), (2,3), and (3,1) dimensions can be invented (in higher
dimensional cases in similar manner two dimensional subspaces can be chosen for
“mixing” the components while the remaining sub-spaces of the whole space remain
invariant during the transformations generated by the appropriate generators)
generating the elements as

cosé, -—sing, O [cosé, O —siné,| |0 O 0
sin§, cosé, O[,| 0O O 0 |,]0 cos&, —siné, |.(6.1.3)
0 0 0| |sin&, 0 cosé, 0 siné,, cosé,

It is also evident that the diagonal matrices of positive main diagonal
elements also form a Lie group and can be expressed with their generators in the
diagonal form as

(exp(&,) - expl&, ). (6.1.4)

Furthermore, taking into account, too, that an even more detailed mathematical form
of (4.1.1) can be obtained on phenomenological considerations of Classical
Mechanics as

i} H; . H,. . N
Xtk + S5 0, - X b, +

sj i

=0, (6.1.5)

i

that makes it possible to express the parts originating from matrix H of (6.1.5) by
using the uniform structures in (6.1.3) and (6.1.4). Certain particular forms as e.g.

cosé, -—sing, O exp(fn) 0 0| cosé, siné, O

sin, cosé, O 0 exp(&,) O —siné&, cos&, 0|+
0 0 0 0 0 0 0 0 0
[cosé, 0 —sing; [exp(g,) O 0 cosg;; 0 sing,
+ 0 0 0 0 0 0 0 0 0 [+(6.1.6)
[sing; 0 cosg; |0 0 exp($y) | —sing, 0 cosg,
0 0 o Jo o 0o Jo o 0
+{0 cosé,, —siné, |0 exp(&,) 0 0 cosé,, siné,
[0 singy  cosgy |0 0 exp(£;) | 0 —sing,  cosé,
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and

8I—Iij aévt
07% Z 075 A,

(6.1.7)

were introduced e.g. in [C24], in which the appropriate tunable parameters were
adjusted by the Simplex Algorithm..

This tuning is a rough analogy of controlling a bowl rolling on the surface of
a plane in a gravitational field: small variation in tilting the plane can keep the bowl
on the appropriate trajectory. (In an n dimensional real linear vector space the set of
n+1 vertices {w(i)li:O, 1,...,n} forms a simplex if the vectors {x(i)—w(o)lizl,...,n} are
linearly independent. The essence of the Simplex Algorithm is finding the worst
vertex and mirroring it to the center of mass of the remaining n vertices. In this
manner the whole simplex proceeds towards a local optimum. Stretching the simplex
can improve the speed of the procedure, shrinking the simplex improves its
precision. The Complex Algorithm is similar to the Simplex Algorithm: instead of the
simplex it applies some complex that consists of more vertices than a simplex. While
in the case of using a simplex only linearly independent “directions” are available,
the Complex Algorithm is similar to animals having many pieces of hair in their
whisker, therefore they have very fine direction-resolution.) The number of the free
parameters was found to be large enough to cope with the problem of environmental
interactions. The need for small and fast changes in the directly tuned parameters
made it possible to use a fast, dynamic, “incomplete or partial system identification”
with time-varying “identified” parameters in (6.1.6).

The form of (6.1.6) has the following advantages with respect to the
"traditional" and Artificial Neural Network -based descriptions:

¢ The tedious work of constructing a dynamic model on the basis of
the Denavit-Hartenberg conventions can be avoided.

e The number, the characteristic range and the proper role of each
tuned parameter is completely independent of the particular
dynamic properties of the robot, is clearly set ([-m,m] for the
rotational ones, and for the exponential terms it is trivial that exp(-
10) is very small and exp(10) is very big). This number is quite
limited in comparison with the possibly required number of neurons
in the case of a multilayer perceptron.

Further ancillary tool to back learning i.e. regression analysis to deal with the
distinction between the H-dependent and the remaining parts in (6.1.5) was applied
in [C25] (later extended to [J3]). To make the initial phase of learning more efficient
an “Additional Generalized Force” term based on a simple approximation assuming
that for the few previous control steps the change in the joint acceleration must be
proportional with the change in the observable generalized forces exerted by the
robot drives:

MA{ = AQ,

HZAqt—s)Aq r—s) ZAQt sG" (- s)

(6.1.8)

This led to simple version of Regression Analysis needing the inversion of a
symmetric matrix at the right hand side. Since this relation is significantly concerned
by the external dynamic interactions, the matrix H so obtained cannot be considered
as the estimation of the robot's inertia matrix. It is worth noting that instead
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calculating the sum of finite number of terms in (6.1.8) computationally it is more
efficient to apply the sum of infinite number of terms combined with a forgetting
factor 0<ax1: in this case in the control cycle a buffer's content can be multiplied by
o and the new term must be added to it.

oo 10
HY o’ At —s)NG" (t-5)= > a’AQ(t — s )AG (¢t —s) (6.1.9)
s=1 s=1

The basic idea of the above approach was investigated in various contexts
(e.g. in [C22], [C23], [C26], [C28], [C40]). In the sequel a polishing application is
considered in details using the results published in [C24] [C23]. Following that an
alternative approach is detailed that considers the quasi-diagonalization of the inertia
matrix in an alternative manner.

6.1.1. Application Example for the Use of the Orthogonal Matrices as Sources of
Uniform Structures in Classical Mechanics

Figure 6.1.1.1. The idea of transforming the force/position/velocity task into pure
kinematic problem by using a passive compliance and the proposed control

The here presented figures and conclusions are taken from [C23]. In the
present method a 3 DOF SCARA arm having a translational and two rotary joints
was completed by a third “link” in the form of a “pipe” parallel with the telescopic
shaft and rigidly attached to the end of the second rotary link. The pipe contains a
passive elastic component, a spring of a not very large, a priori known stiffness and
negligible viscous damping. Consequently, from the purely kinematic data of the
spring's deformation its force depending on the contact force prescribed for polishing
as a technology requirement can be determined. By knowing the location of the
surface to be polished the required contact force can be transformed into the desired
location of the endpoint of the last rotary link which otherwise may have arbitrary
velocity with respect to the workshop's system of reference. Via applying a cardan
link for fixing the polishing disc in the case of mechanical contact the disc will
always be located in the tangent plane of the surface of the work-piece at the given
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point. In the case of a relatively precise location of the disk the errors in the
positioning of the disk will be transformed into a minor error in the contact force
originally prescribed (see Fig. 6.1.1.1.).

Due to the flexibility of the cardan shaft in the model of dynamic interaction
of polishing -used in the simulation only- an even pressure distribution “p” over the
disc's surface was supposed. The small surface element of the disc “dS” gives the

following contribution into the torque:

v+ Qxr
dM = updS| ———  |Xr (6.1.10)
o [‘VTR+Q><1"J

The polishing disc was supposed to have a fast rotation therefore for the great
majority of the surface of the disk the velocity component originating from the
rotation far exceeded the translational component v'*. By neglecting the effect of the
central part of the disk this yields the normal component of

2r R 3
2R 2UR
M = |d drupr2 _Ap = F 6.1.11
norm '([ ¢£ 3 3 ( )

in which “F” is the absolute value of the contact force pressing the disc against the
work-piece, and “4” denotes the friction coefficient. The net force of friction from
the small surface element has an expression to (6.1.10)

vR 4+ Qxr J

v o] (6.1.12)

dF—ﬂpdS{

Again, by neglecting the effect of the small central part of the disc the term in the
parentheses in (6.1.12) corresponds to a rotating unit vector resulting in zero in the
integral. Therefore the effect of the contact forces was modeled according to
(6.1.11).

The directly tuned parameters were the “gii

b

parameters defined as

8 = Y in (6.1.6) and in (6.1.7). The estimated inertia was integrated according to

k
these ever varying coefficients. In principle such decomposition can describe the
Coriolis forces and other terms quadratic in the angular velocities in (6.1.5). The
initial model was a pure diagonal matrix proportional to the identity operator. This
was improved step by step by tuning the “g;”” parameters according to the Simplex
Algorithm in which the optimum i.e. the difference between the desired and the
achieved joint accelerations was minimized. To support this process the following
ancillary tools were applied:
® an “Additional Generalized Force” term based on a simple version
of regression analysis in which the prediction is “qualified” and
suppressed according to the noisiness of the environment it
originates from;
e a tuned PID term described in details e.g. in [C24] (also detailed
below);
e a truncation in the angular velocities at a lover limit when
calculating the inertia matrix according to (6.1.6) to achieve good
adaptivity for slow motion, too;
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e a slower external loop simultaneously tuning a “slope” in the
PID/ST term and a parameter qualifying the ‘“noisiness” of the
regression correction also optimizing a longer term integral of the
acceleration error.
Regarding the details, the initial model was a pure diagonal matrix proportional to
the identity operator. This model was improved step by step by tuning the “g;”
parameters according to the Simplex Algorithm in which a function of the difference
between the desired (“D”) and the realized (“R”) joint accelerations is minimized:

§” - 4" ||| << KRel

Costz‘(iD_th‘ = ‘QD—"R‘ (6.1.13)
§°| KRel%if‘ijD‘ >> KRel o
+ 0"
KRel

This cost function is proportional to the relative error in the acceleration for “large”
desired acceleration, and it approximates the absolute error for “small” desired ones
(terms large and small are to be understood in comparison with a constant KRel). To
support this process further ancillary tools were applied:

® a sigmoid (x) =x/ (1 + |x|)e (- 1,1) function used in stabilization
against the effect of extreme noises in the terms
sin (flj )= sin(zx sigmoid (flj /7))

cos(fl.j ) cos(zx sigmoid (flj /7))

eXp(fﬁ ) — exp(2.3x sigmoid(fﬁ /2.3))

(for reducing computational complexity this saturated nature is not

taken into account in the calculation of the partial derivatives of H);

® an “additional generalized force” term based on a simple version of
regression analysis in which the prediction is ‘“qualified” and
suppressed according to the noisiness of the environment it
originates from [C23];

e a PID term in which the coefficients of the proportional, derivative
and integrated term are tuned as the function of the integrated error
in order to keep a prescribed pole-structure in the desired damping
of the coordinate errors fixed (described in details e.g. in [9]); in the
present version this approach is improved by allowing this feedback
increase if the overall torques of the drives are smooth functions of
time, and it is decreased in the more "noisy" phases of the motion;
here “noisiness” is determined by the forgetting sum

Ciny (t+1)=ax Ciny (t)+ |Q(t) —Qlr- 11 and a fuzzy membership
function describing the “smoothness” of the torque signal in
comparison with a reference value cCoeff.

c=c,|1+2 cCoelf (6.1.14)
cCoeff +(1-a)c,,

E=—be-c'é—k [elt)dr (6.1.15)

—oo
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K= %{1 + sigmoid(SO

jé‘(t')dt'

H (6.1.16)

C=ctrb =t k=« 6.1.17)
4 4

The fraction in ‘c’ can be also interpreted as a fuzzy set describing the

“smoothness” of the control: for small torque derivatives it approaches

1, while for too fast changes in the momentum it converges to zero; this

rigid rule means that for strongly varying momentum it is not

reasonable to require too strong feedback in order to avoid instabilities
and overshoots, but in the “stable phase” of the control an increase in
the feedback may improve accuracy.

e “external loop parameters” of slow tuning used as reference values
-built in certain fuzzy membership functions- in the “assessment” of
several properties of the control; their appropriate value can be set
roughly “experimentally”; further slow real-time tuning can help in
finding their optimum value; since the optimum setting can change
in time, it is expedient to keep them adjusted in real-time.

All the above ancillary tools required minor computational power and also
were independent of the particular characteristics of the control problem to be solved.

6.1.2. Simulation Results for the Use of Diagonalization of the Inertia Matrix

In the simulations the robot had the task of polishing a strip on a bell-shaped
surface. The strip was located at constant distance from the telescopic axis of the
robot. The force with which the polishing disk was requested to press the surface was
1200 [N], the spring in the elastic component had the stiffness of Spr=400 [N/m].
Detailed figures are given in Appendix A.3.

As a conclusion of this section it can be stated that it was illustrated via
simulations that the proposed method combining an improved version of the classic
PID/ST and simple uniform structures with free parameters adjusted by the Simplex
Algorithm and with the ancillary tool of regression analysis can co-operate
successfully. The synthesis of the individually quite limited methods leads to an
efficient control in which the significance of the different components remains
comparable and changes according to the task to be executed. The method is free
from scaling problems. It can be regarded as a compromise between the traditional
Soft Computing and Hard Computing. The introduction of the passive compliant
element makes was successful for technological operations.

6.2. The Symplectic Group as Source of Uniform Structures in CM

The phenomenological foundation of any analytical description in Classical
Analytical Mechanics is the Lagrangian Model, by the use of which the kinetic
energy of the mechanical systems can be formulated in an inertial system of
coordinates in the Newtonian sense. The generalized coordinates and generalized
forces in the Lagrangian model normally in principle are directly measurable
(observable) quantities as rotational angles, angular or linear velocities, and force or
torque components. Via introducing the generalized momentums the Hamiltonian
Model can be “built up” on the basis of the Lagrangian one for conservative
mechanical systems by using the Legendre Transformation. This model considers the
set of the possible physical states of the system to be a differentiable manifold for the
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description of which different “maps” or abstract systems of coordinates can be
applied. Nature distinguishes those maps by the use of which the mathematical form
of the state propagation gains the possible simplest form. The coordinates of these
special maps are referred to as canonical coordinates, by the use of which the
equations of motion take the form of

. J{(X) A Free |:0 I:|
5=>3, +0/", 3= (6.2.1)
Z‘ ok -1 0

J

in which in which H(x) describes the Hamiltonian (that is the full energy) of the
conservative system as the function of its physical state x. This physical state is
represented by the canonical coordinates consisting of the generalized coordinates q
in the first, and the generalized momentums p in the second block of DOF
dimensions (DOF = Degrees of Freedom) [q",p’]", and the block of the generalized

~ T . ,
forces Q7 =[0",Q" " |". It is important to note that the first DOF components of

Q7" must be zero, this directly follows from the Legendre Transformation and from
the Euler-Lagrange equations of motion. From physical point of view the nonzero
components of the generalized forces have force dimension [/N] for linear, and torque
dimensions [Nm] for the rotary joints. They represent the appropriate projections of
the external free forces exerted by the environment on the robot or by its own drives.
By applying some different map for describing the same physical system another
canonical coordinates x'(x) can be introduced leaving the form of the equation of
motion exactly the same as in (6.2.1). These transformations are defined by the
restriction that their Jacobian must be Symplectic, that is

st jt ij?

o
T=—", >T,3,T,=3,.detT=1 (6.2.2)
Jj st

and lead to the “transformation rule” for the generalized momentums as

Q;Free — ZE‘YQ;FVM ) (623)

As in the case of the Euclidean Geometry the internal symmetry of which is
described by the Orthogonal Transformations leaving the scalar product of two
arbitrary vectors unchanged both in form and in numerical value, the Symplectic
Transformations can also be considered as mathematical tools describing the internal
symmetry of the Classical Mechanical Systems. They leave both the numerical value

and the form of the quadratic Symplectic structure Zuis ;v; invariant. (Here u and
LJ

v are two arbitrary vectors of the tangent space of the system's physical states. The

geometry based on the Symplectic structure is called the Symplectic Geometry (see

details in Appendix A.10. for the analogies between various geometries occurring in

Natural Sciences).

In close analogy with the idea applied by Lajos Janossy the Symplectic
Transformations given in (6.2.2) can be also interpreted in an alternative manner that
offers the possibility for using them in modeling Classical Mechanical Systems for
control purposes. Janossy studied the Lorentz Transformations for the four-
component space-time and other physically important vectors x’(x)=Ax being the
internal symmetry of Maxwell’s Electrodynamics (see details in Appendix A.10.)
and applied the following observation: a given Lorentz transformation may have two
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kinds of physical interpretation: a) the X’ coordinates serve as new coordinates on
the same physical system for the description of which the original coordinates X were
used; b) the X’ coordinates may be interpreted as the coordinates of a different
physical system (the “deformed” version of the original one) that behaves similar
manner as the original physical system since it obeys the same symmetry restriction.
Janossy called this latter interpretation as the “Deformation Principle”.

According to the Deformation Principle the Canonical Transformations may
be also interpreted as deformations of the original mechanical system, and on this
basis local canonical transformations may be regarded as mathematical possibilities
for describing adaptive control by modifying the free parameters of these local
transformations. Geometric, group-theoretic and algorithmic aspects of the method
were analyzed in details in [J2]. However, for correct phenomenological

. .. .. . ~ Free T .
interpretability the restriction guaranteeing the structure Q7 =[0",Q"™ |" in

(6.2.3) has to be kept in mind, too.
As it will be discussed in details in paragraph “6.2.2. Complementary Tuning
Possibilities in the Cumulative Control”, for keeping the first n (n is equal to the

Degree of Freedom of the mechanical system) components of (~)F "¢ zero even in the
case of external perturbations in general block-diagonal symplectic transformations
are needed. (Though these special block-diagonal transformations do not “mix” the q
and p components, some coupling between them still remains: if q is
shrunk/stretched then p has to suffer stretching/shrinking. The dimension of the
Symplectic transformations not mixing the q and p components is r>.)

If we apply a very rough approximate dynamic system model, it can be
characterized by a constant inertia matrix M, a constant gravitational term h, and a
Lagrangian defined as

L(q.q)= %qTMq +h'q (6.2.4)

The appropriate restrictions to be imposed for the purposes of the deformation
principle are as follows: In the canonical map directly deduced from the Lagrangian
model the generalized force vectors have only 1xDOF non-zero components. Since a
general canonical transformation can combine all the 2xDOF components of the
transformed generalized force vectors, a considerable part of the canonical
transformations cannot be applied for deformation purposes. Only those solutions
can be accepted for which the necessarily “truncated”, phenomenologically non-
interpretable components of the generalized force vector are negligible in
comparison with the interpretable parts.

On the basis of simple geometric and algebraic considerations (using the
Symplectizing Algorithm operating with the concept of the Antiorthogonal Subspaces
detailed in Table A.10.1. of Appendix A.10.) in the first step of the control a
“drastic” Symplectic transformation can be introduced.

The effect of this transformation can either be “refined” by applying further
Symplectic deformations in the consecutive control steps, or it can be started from
the initial rough model immediately in each step.

In the first case, due to the group properties of the symplectic matrices the
expected result is a symplectic matrix expressed as a product of the first matrix and
many other, near unity symplectic transformations, assuming that the method
converges. Since the effects of the step by step deformations are “accumulated” in
this product, this solution is referred to as the “cumulative approach”. The latter one
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using drastic deformations in each single step is called the ‘“‘non-cumulative
approach”. Of course, when the result of the cumulative approach starts to become
“extreme”, casually the identification can be started the onslaught again.

Further possibility independent of this cumulative/non-cumulative approach
is tuning the parameters of the Symplectic Group. For each Lie Group in a manner
similar to that of the Orthogonal Matrices uniform structures can be introduced for
describing its elements. In the sequel the use of these two kinds of transformations
will be discussed.

6.2.1. Simple Cumulative Control based on the Symplectizing Algorithm

The essence of this control consists in the difference in the phase currents
generated by H' and H in the same point of the differentiable manifold. The idea of
partial system identification is related to this interpretation: starting with a very
rough initial model of constant M in the Lagrangian and with a constant h the model
establishes a connection between the exerted local generalized forces and the

propagation of the state-vector yM"d . In the reality the encoders measure a different

propagation y*** #y™* . It is expected that the difference can be eliminated by

some deformation of the initial model in the form of H'(z)=H(y(z)). According to the
original canonical formulation, an appropriate Symplectic matrix is to be found for

which a =x"" =Sx™? =Sb is valid. This can be done e.g. in the following way:
by making two quadratic matrices of the column vectors a and b (A and B,
respectively) via “putting near them” further linearly independent vectors the matrix
relation A=SB can be prescribed. Due to the group properties of the Symplectic
matrices this can be satisfied if both A and B are Symplectic and their first column is
equal to a and b, respectively. This can be achieved by the use of the symplectizing
algorithm (Table A.10.1. of Appendix A.10.). The solution is simply S=AB'=A3B”
3’ in connection with it is worth noting that calculating the inverse of the matrices
belonging to Lie Groups defined by nonsingular fundamental quadratic expressions
computationally is very cost-efficient: can be solved by two matrix production that is
far simpler than inverting a general quadratic matrix. In these investigations step by
step “refining” this drastic initial deformation in a “cumulative” way was applied.

Regarding stability and convergence issues, for certain conventional control
methods as e.g. Model Reference Adaptive Control, on the basis of well defined
mathematical restrictions concerning the model of the system to be controlled
asymptotic stability can be proved in closed analytical way. In the case of the method
here presented such elegant step cannot be done due to the following reasons:

¢ In general, no any assumption was made regarding the nature of the
external perturbations influencing the system.

e Instead such modeling assumptions in each control point the
controller can find an appropriate Symplectic matrix which deforms
the actual model according to the observed behavior without trying
to “explain” the reason of the difference between them.

¢ (Consequently the behavior of such a control can be tested via
simulation instead of closed analytical calculations.

However, insisting on the use of the elements of the Symplectic Group already
contains inherent “brakes” serving the stability and keeping the errors finite. Each
Symplectic matrix 1is unimodular and is invertible via transposition and
multiplication by other unimodular matrices. Consequently, all the numerical
operations used by the controller are far away from the possibility of singularities
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(“inherent brake”). Besides the “inherent brakes” the method gives ample
possibilities for additional or “built in brakes” for serving stability. Any appropriate
motion planning guarantees finite error if the desired joint accelerations in it are well
approximated. In connection with this the following problems may arise. Though
these matrices can never be singular, it may occur that the unimodularity is
guaranteed by the occurrence of very big and very small matrix elements. In
principle this may cause overflow problems in the digital representation of these
matrices. However, such situations may occur only in special cases which can easily
be identified by the controller’s “built in brakes”:

¢ In the equation A=SB the first column of A or B or both of them is
close to zero: in this case the Symplectic identification based on the
Symplectizing Algorithm can be switched off by the controller and a
simple linear control can be followed;

e The extra columns in A and B or in both are so chosen that one of
them is almost parallel with the first vector: this case can be evaded
by choosing an initially well conditioned, 2XDOF pieces of linearly
independent Symplectic set of vectors in the columns of the
matrices, and try to replace the first one with the model and the
measured data, respectively; this replacement can be preceded by a
permutation of the columns, so the Symplectizing Algorithm will
operate without numerical overflow problems;

¢ In the cumulative approach certain matrix elements may increase in
a dangerous manner; this situation can easily be monitored and it
can be evaded by starting the Symplectic identification from the
beginning with a new, rough single step; after this step further
cumulative corrections can be allowed again.

The Symplectizing Algorithm used in the cumulative control, too, from certain point
of view may behave as a “drastic”, non-continuous algorithm especially when the
sequence of choosing the appropriate vector to be transformed for being the
“Symplectic mate” of the previously chosen vector is concerned. For achieving
“continuous” tuning the Symplectic Group can be considered as a set parameterized
by continuous parameters. This mathematical approach and its complementary use
are considered in the next paragraph.

6.2.2. Complementary Tuning Possibilities in the Cumulative Control

From a purely mathematical point of view Symplectic matrices form a Lie
Group more or less similar to the Orthogonal Group. By the use of special
generators of this group, each of its elements can be “parameterized” by continuous
parameters in the form of simple closed analytical expressions describing
simultaneous exponential stretches and shrinks, conventional and hyperbolic
rotations in the tangent space [J2]. On the above basis the following model strategy
can be elaborated. Instead using the original matrix relation A=SB its slight
modification can be introduced in the form as

P*A=SPB (6.2.5)

in which P* is a special Symplectic matrix leaving the first column of A invariant. In
similar way, P also is a Symplectic matrix leaving the first column of B invariant. It
is evident, that (6.2.5) corresponds to the same control requirement as the original
equation A=SB, but the resulting Symplectic transformation S will differ from the
original one. The difference between the two controls consists in different dealing
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with the antiorthogonal subspaces of the 1* columns of A ad B, respectively. Since
the first columns of the A(n) and B(n) matrices of the n™ control step may contain
components from the antiorthogonal subspaces of the 1% columns of the preceding
A(n-1) and B(n-1) matrices, slight tuning of the P* and P matrices can improve the
control quality since it can “reveal” and ‘“trace” tendencies in the variation of the
control task.

For constructing appropriate P and P* matrices their exponential series
expression can be used. For instance, let u correspond to the first column of matrix
B, and G be one of the generators of the Symplectic Group:

u=Pu=exp(Gtu= zt—'Gsu ) (6.2.6)
= §!
Evidently, if Gu=0, that is if G maps u to zero, (6.2.6) is fulfilled, therefore it is
expedient to systematically study the structure of the generators of the Symplectic
Group.
For this purpose the standard technique for constructing the generators of a
Lie Group considering almost unit transformations can conveniently be used:

([+5G)3(1+&G) =3+£G+GT)3+0(62)=3 . (6.2.7)

In the 1% order approximation according to &0 (6.2.7) satisfied if G3+3G'=0. Since
3= -3 this means that 3G'=-3'G'=-(G3)’, therefore the matrix (G3)=S must be
symmetric. This immediately reveals the dimension of the linear space of the
generators: for an n DOF mechanical system S has the dimensions of 2nx2n that may
have 2n+(4n*-2n)/2=2n"+n linearly independent elements. Considering S in a block-
diagonal structure it must consist of the symmetric real A and B matrices, and an

arbitrary H matrix as
A H
S=- ) (6.2.8)
H| B

in which the minus sign was introduced for later convenience, A and B together have
2[n+(n*-n)/2)=n"+n independent elements due to their symmetry, and H has n’
independent elements that altogether is 2n*+n. Since 3%= -1, G3°= -G=S3, so from
(6.2.8) it is obtained that

R NOIIT

It s worth noting that for achieving block-diagonal transformations not
mixing the q and p components, in (6.2.9) the condition A=(0, B=0 has to be met, and
we have the n” linearly independent components of the arbitrary real H.

A relatively lucid description of the generators can be achieved if we observe that G”
in (6.2.9) essentially has the same structure as G, therefore if G is generator then G”

is a generator, too:
-H|-B’
G’ { } . (6.2.10)

A" | H

Really, in the upper left block of G” an arbitrary matrix stands, and in the lower right
block minus one times its transpose can be found. In the upper right and lower left
corners two independent symmetric matrices can be found, just as in G.
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Utilizing the fact that the generators form a linear space, symmetric and skew
symmetric generators can be constructed of (6.2.9) and (6.2.10) as

_—l(HT+H)‘ Lia—n")
lg+c7)=| -2 2( , (6.2.11)
2 1 1
Har-B) | L +m)
1 1
o | R | S )
E(G_G )= 21 - 12 | (6.2.12)
—§(B+A ) E(H—H )

It is worth noting again that for not mixing the q and p components in the
symmetric generators (6.2.11) we have the n+(n*n)/2 linearly independent
symmetric components of H, and in the skew symmetric part (6.2.12) we have the
(n*-n)/2 linearly independent skew symmetric components of H, that altogether is n”.

It is very easy to find conveniently applicable basis vectors in the space of the
generators that consist of 0 and £1 matrix elements, and lead to simple exponential
series that can be expressed in closed analytical form.

Consider at first the symmetric generators! For instance in the case of n=1 the

generators that have elements only in the main diagonal of the symmetric matrices

yield as e.g.
1]0]] [o]oO explt) | 0 0]0]
ojoJ [ofof|_|L o |1 0]0

eXpt{o o1 1T=110]/["| ToToT [Texpl=1) 0]

(6.2.13)

0]0 010 00 0 1

These generators generate simultaneous stretches and shrinks strictly in the main
diagonals. In similar manner, if we have nonzero elements in the nondiagonal parts

we easily obtain that
0|1 010
10 0]0
t =

BHIE }

exp

(6.2.14)
0

cosh(z) | sinh(r 0

sinh(¢) | cosh(z 0

00 cosh(t) | —sinh(r)

0]0 —sinh(z) | cosh(r)
since the 2™ power of this generator just yields the unit matrix, therefore the proper
powers of variable ¢ can be recognized in the appropriate matrix elements. So these
generators generate hyperbolic rotations in the main block diagonals. In close

analogy with that hyperbolic rotations can be generated between the nondiagonals as
e.g. by
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0 0|1 0 cosh(r) 0| sinh(r) 0
0‘0 0 0O 1| 0 0

expyf 0‘0 0|[ | sinn(:) 0] cosh(t) 0 (62.15)
0 0/0 0 0 0| o0 1

since the 3™ power of such generators is just identical with their 1** power therefore it
is very easy to recognize the appropriate power series of ¢ in the matrix elements.

Regarding the skew symmetric generators similar considerations can be done.
Consider the main block diagonals in (6.2.12) for n=1:

0 -1/0 0 cos(t) —sin(t)| © 0
1 00 O sin(t) cos(t) | © 0
expst = - (6.2.16)
0 0|0 -1 0 0 cos(r) —sin(r)
0 0|1 0 0 0 |sin(t) cos(r)

since the 3™ power of such generators just are equal to minus one times their first
power. Similar observation can be done for the transformations originating by the
off-main diagonals as e.g. the example below, in which

0 0]-1 0 cos(r) 0| —sin(t) 0
0 0‘ 0 0 0 1‘ 0 0

e 0‘ 0 0| |sinf) 0] cost) 0 62.17)
00/0 0 0 0] 0 1

because the 3" power of such generators yield their 1** power again, etc. In higher
dimensional cases just the same considerations can be done with very similar
generators and their power series.

Now let us return to the problem in (6.2.6) for finding appropriate generator
for the condition Gu=0. For convenient utilization of the block structures in (6.2.11)
and (6.2.12) let us decompose u into two sub-blocks of dimension n as u=[a’ b"]"
and consider the generally n-2 dimensional orthogonal subspace of a and b. (For
their specialties the a parallel to b, a=0, b=0, and a=b=0 cases are not considered
since they are insignificant from the needs of the control as later it will be explained).
Let the set of orthonormal basis vectors {c(i)li=3,4,. ..,n} in the orthogonal subset of a
and b! It is very easy to create symmetric blocks for (6.2.11) in the form of
SD =V V)2 and  skew symmetric blocks for (6.2.12) as
A(U)kl::(c(i)kc(j)l—c(i)lc(i)k)/Z making arbitrary linear combinations of these matrices
according to their upper pair of indices (i;j) since the linear combination of
symmetric and skew symmetric matrices remain symmetric and skew symmetric,
respectively. If the appropriate blocks of generator G are built up of such linear
combinations the Gu=0 restriction automatically and trivially holds.

The next question is for the goal of elaborating continuous parameterization:
how can we calculate the power series of such generators in closed analytical form.
The answer is very easy if the set of n+2 vectors is considered consisting of a and b,
and of the columns of the nxn dimensional unit matrix as {a, b, e(i)li:1,2,...,n}, in
which e(i)j= ;. Normally this set is linearly dependent. If we apply the Gram-Schmidt
orthonormalization algorithm detailed in Table A.10.1. of Appendix A.10., n linearly
independent, orthonormal unit vectors have to be obtained as {c(i)li:1,2,...,n}, in
which ¢ is parallel with a, ¢'” is parallel with the component of b that is orthogonal
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to a, while the remaining {c(i)li=3,4,. ..,n} vectors span the n-2 dimensional subspace
orthogonal to both a and b. By putting near each other the columns of the
{c(i)li=1,2,...,n} vectors, due to their orthogonality an orthogonal matrix C is
obtained, that satisfying the relationships with the unit matrix I as C=CI, can be
interpreted in the following manner:

[V @ . cM]=ci=cle” e? ... e"]=

=[Ce(l) Ce(z) Ce(n)] (6.2.18)

i.e. for obtaining the ¢ vectors the columns of the e vectors have to be rotated by
the orthogonal matrix C. Since the orthogonal matrices satisfy the simple
relationship C”C=I, the appropriate blocks of G can be obtained from the Ce®e?’C”
matrices. Now consider arbitrary blocks D, E, F, G, K, L, M, N of the dimension
nxn, and consider the matrix product below

CDC’ | CEC” | CKC" | CLC"
CFC’ | CGC” | CcMCT | eNC?

_|CDKC’ +CEMC’ | CDLC" + CENC’
B {CFKCT +CGMC’ | CFLC” + CGNCT}
_|c(DK+EM)C" | C(DL+EN)C’

- L:(FK +GM)C’ | C(FL + GN)CT}

= (6.2.19)

from which it follows that e.g. the appropriate blocks of the exponential series of the
transformed generators can be obtained from the blocks of the exponential series of
the original generators multiplied by the orthogonal matrix C from the left hand side,
and by C” from the right hand side. If the original generators are cleverly chosen
their exponential series can easily be computed in closed analytical form as it was
shown in the equations (6.2.13)-(6.2.17).

Now for the sake of a simple application example apply the above
considerations for the case of n=3, in which the components of u as a and b allow
only a single dimensional subspace. Since from a single vector no non-zero skew
symmetric matrix can be produced, we can produce only the symmetric generators in
(6.2.11) by wusing the unit vector e and C in the form as
K:Ce(3)e(3)TCT:CK0(3)CT:KT, and this symmetric matrix can be placed either into
the main diagonals and in the non main diagonals as

K| 0][0]|K
: . (6.2.20)
0-K[|K]|o

The first generator evidently yields the power series as
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exp{{K 0 }}:[Cexp(tKﬁf))CT | 0

0| -K 0 |Cexp(—tK(()3))CT -
1 0 0 |
T

¢go 1 0 |C 0 6.2.21)
1 100 exp(r)
- 1 0 0

0 clo 1 0 |CT
| 0 0 exp(—t)

Regarding the second one, its 2" and 3™ powers can directly be considered as

o o]V e

Cee?"CTCeeCT | 0

=. (6.2.22)

BokGolkos
ot
6o

therefore even and the odd powers can be separately accumulated as

0K cosh(K) | sinh(K)
eXp t = ; =
K| 0 sinh(K ) | cosh(K)
1 0 0 1 0 0
0 |CT 1 0 |CT
cosh(r) 0 0 sinh(r)
0 1 0 0

co1 o [c"|co1 o0 |CT
0 0 sinh(r) 0 0 cosh(r)

(6.2.23)

(6.2.24)

o
ol =

It is evident that (6.2.21) and (6.2.24) well and easily programmable, as well as the
Gram-Schmidt Algorithm that can be used for a given u to construct C. In the sequel
an application example will be given for the control of a robot arm the endpoint of
which is connected to a dashpot producing elastic spring forces and viscous damping
as external perturbations.
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6.2.3. Application Example for the Use of Symplectic Transformations as the
Sources of Uniform Structures in Classical Mechanics

Detailed simulation results obtained for a possible application example are
given in Appendix A.4. It can be stated that these results well illustrate and
substantiate the applicability of the above theoretical considerations.

6.3. Thesis 2: Introduction of Uniform Model Structures for Partial and
Temporal, Situation-Dependent Identification on Phenomenological Basis by
Uniform Procedures (Summary of the Results of Chapter 6)

Following a brief critical analysis of the Classic Soft Computing based
approaches I realized that they have mathematical difficulties of general nature. I
have shown that its main theoretical problem as “bad scalability” (“curse of
dimensionality” or the “nowhere denseness property” of the uniform structures
containing only finite number of elements) originate from the fact that these
“models” are related to Kolmogorov’s Approximation Theorem. According to that
multiple variable continuous functions are approximated by single variable ones over
a compact domain.

Keeping in mind the famous example by Weierstra3 from 1872 [R17] I
realized that the class of “continuous functions” is too wide for the great majority of
technical applications in which mainly “smooth” functions occur. I also realized that
this simple fact can explain the historically long observation that in many
applications Classical Soft Computing works very well in spite of the “nowhere
denseness property” of the practically useful approximations.

To utilize the attractive idea of “uniformity of structures and procedures” 1
proposed the introduction of “uniform structures and procedures” that do not suffer
from the curse of dimensionality. For this purpose I restricted the modeling domain
to the description of Classical Mechanical Systems that were considered in two
different levels of abstraction. The first attempt considered the level of the Euler-
Lagrange Equations of Motion directly related to the phenomenological foundations
of Classical Mechanics. The second attempt considered a higher level of abstraction,
in the form of the Canonical Equations of Motion. On this basis the following
modeling structures have been elaborated and investigated via simulations:

e [ have shown that uniform structures can be constructed for the
mathematical description of the inertia matrices of Classical
Mechanical Systems independently of the intricate traditional
procedure (i.e. the use of Homogeneous Matrices and the Denavit-
Hartenberg Conventions to elaborate precise analytical models
[R6]). For n Degree of Freedom systems nxn dimensional
Orthogonal Matrices and main diagonal stretches/shrinks of
tuneable parameters were introduced to diagonalize a rough initial
model of the inertia matrix. I have shown that for this purpose the
number of the freely tunable parameters is n+(n2—n)/2.

e [ have illustrated via simulation examples that this technique can
improve the tracking properties of the control.

® To improve the capacities of the novel uniform modeling technique
I analyzed the internal symmetry of the Canonical Equations of
Motion. 1 also analyzed the phenomenological aspects related to the
Symplectic Group that conserves this internal symmetry. I applied
Lajos Janossy’s Deformation Principle for developing uniform
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models and restricted Symplectic Transformations for tuning to be
used in the adaptive control of Classical Mechanical Devices.

I have pointed out that the number of the free parameters of the
Symplectic Transformations not mixing the q and p components in
the case of an n DOF system is altogether n” that normally is
considerably more than the n+(n*-n)/2 parameters of the
transformations diagonalizing the inertia matrix.

I have shown that for parameterizing purposes symmetric and skew
symmetric generators can be introduced for describing the
Symplectic Group, and elaborated a simple method to express the
uniform structures in closed analytical form.

I have shown that the above Symplectic Transformations can be
used for realizing a partial and situation-dependent identification of
the uniform models of the classical mechanical systems. These
models need continuous maintenance via observing the “realized
behavior” and mapping it to the “expected behavior” calculated on
the basis of the actual model.

I have shown that this simple approach has the great advantage that
no any effort it needs to distinguish between the effects of the
improper system model and that of the external perturbations. Their
overall effects are taken into account in the construction of a simple
mapping. This is significant advantage in comparison with the
Adaptive Inverse Dynamics Control, or with Slotine’s and Li’s
methods in which either the lack, or at least temporal and
insignificant nature, or exact knowledge of the external
perturbations are assumed, and the adaptation is based on
complicated calculations based on Lyapunov’s 2" Method.

I have shown that the modeling method proposed has the great
advantage in comparison with the Classic Soft Computing
approaches that the sizes of the applicable uniform structures and
the numbers of their tunable parameters essentially are determined
by the Degrees of Freedom of the systems under consideration. They
are limited, and independent of the systems’ analytical models. In
contrast to that, for instance in a Multilayer Perceptron for
modeling nonlinear mapping only the number of the necessary
layers is bounded and pre-determined. The number of the free
parameters to be tuned is determined by the required precision of
the approximation, and strongly depends on the details of the
particular problem under consideration.

Via discussing the results of simulation examples I illustrated the
applicability of this proposed method in the case of a 3 Degree of
Freedom Classical Mechanical System under external perturbation.

The most important publications related to the contents of Thesis 2 are as
[B1], [B2], [J1]1, [J2], [J3], [J4], [J5], [J6], (J7], [J13], [C1], [C2], [C3],
[C4], [C5], [C6], [CT], [C8], [C9], [C10], [C11], [C12], [C13], [C14], [C15], [C16],
[C17], [C18], [C19], [C20], [C21], [C22], [C23], [C24], [C25], [C26], [C27], [C28],
[C29], [C30], [C31], [C40]. Furthermore, the parts of publications conveying some
“criticism” are also relevant here as [J14], [C102], [C106].
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Chapter 7: Adaptive Control of Particular Physical Systems by the
Abstract Use of Special Elements of Various Lie Groups

As it was already briefly outlined in “Chapter 6: Introduction of Uniform
Model Structures for Partial, Temporal, and Situation-Dependent Identification on
Phenomenological Basis” It seemed to be reasonable to risk the assumption that
“generality” and “uniformity” of the ‘“traditional SC structures” exclude the
application of plausible simplifications which may be characteristic to a whole set of
typical tasks. This made the idea rise that several “simplified” branches of SC could
be developed for narrower problem classes if more specific features could be
identified and taken into account in the uniform structures.

The first steps in this direction were made in the field of Classical
Mechanical Systems (CMSs) [J2], while further refinements were published in [J4],
on the basis of principles detailed e.g. in [R25]. This approach used the internal
symmetry of CMSs, the Symplectic Group (SG) of Symplectic Geometry in the
tangent space of the physical states of the system. The result of the situation-
dependent system identification was a symplectic matrix mirroring the effects of the
inaccuracy of the rough dynamic model initially used as well as the external dynamic
interactions not modeled by the controller.

By considering the problem from a purely mathematical point of view quite
independently of the phenomenology of CMSs, it became clear that all the essential
steps used in the control can be realized by other mathematical means than
symplectic matrices. The SG can be replaced by other Lie groups defined in a similar
manner by the use of some “basic quadratic expression” [J5]. In this approach the Lie
group used in the control does not describe any internal physical symmetry of the
system to be controlled. In the next paragraph the details of this idea are developed.

7.1. The Idea of Cumulative Control Using Minimum Operation
Transformations

As is well known, a discrete time model of a causal physical system can be
formulated in the form of a difference equation with an external input {u;} that is
usually considered to be known (Autoregressive Moving Average Model with
external input - ARMAX) (e.g. [R113]):

N M
Yea = D4 Ve, + D b, (7.1.1)
s=0 w=0
For instance, in the so-called Takagi-Sugeno fuzzy models the consequent parts are
expressed by analytical expressions similar to (7.1.1) and they use some linear
combinations of the (7.1.1)-type rules in which the coefficients depend on the
antecedents. With the help of such Takagi-Sugeno fuzzy IF-THEN rules sufficient
conditions to check the stability of fuzzy control systems are now available (e.g.
[R114]).

From our particular point of view the most important feature of the model
described by (7.1.1) is that the fading consequences of the past are taken into
account in it in an additive manner with expectedly vanishing linear coefficients i.e.
as, b0 as s—oo. This additive structure entails significant consequences regarding
the mathematical form of the various proofs elaborated for describing the behavior of
such systems or dealing with the problem of the identification of these coefficients.

58



dc_62_10

Quite different formal approach can be developed for transformations that
can be described by the use of Lie groups. For instance, consider the parametric
matrix transformation of some “initial” array a(#y) in which the transformation g(z,,#)
is the element of certain Lie group:

a(t,)=g(t,.t,)alty ) =g(t,.0, )80, 1.1, g (e, 5. 0,5)- - 8(6 1 Jaley) - (7.1.2)

Equation (7.1.2) is valid because of the group properties and it interprets the
transformation g(7,,f) as a sequence of consecutive transformations for an arbitrary
time-grid [ty,ty1,...,t1,t0]. If this grid is very fine, the consecutive transformations
must be in the close vicinity of the identity operator so they must have the
approximate form as

g(t,.t,)=1+(,-t,)G, (7.1.3)

in which G, is a certain generator of this group. Perhaps this simple observation gave
M.S. Lie an impetus that led him to invent the concept of Group Algebra and to
elaborate the details of his theory [R38]. It is evident in (7.1.2) that the effects of the
past a(#;) “states” are accumulated in it as well as in (7.1.1), but instead of the form of
some sum it appears in the form of a product. If we take into account the
accumulated past in the matrix g(z,.1,%), for finding the next step we have to make
only some estimation for G, that seems to be far simpler task than identifying some
hypothetical ARMAX coefficients. This simple idea may be applied for modeling and
control purposes as it will be detailed in the sequel.

From purely mathematical point of view several control problems can be
formulated as follows: there is given some imperfect model of the system on the basis
of which some excitation is calculated for a desired reaction of the system used as
the input of the controller i’ as e:(p(id). The system has its inverse dynamics
described by the unknown function  resulting in a realized response i" instead of the
desired one, i%: i’=\|l((p(id)):=f(id). (In certain Classical Mechanical Systems these
values are the desired and the realized joint accelerations, while the external
disturbance forces and the joint velocities serve as the parameters of this temporarily
valid and changing function.)

Normally any information on the behavior of the system can be obtained only
via observing the actual value of the function f(). In general it can considerably vary
in time. Furthermore, no any possibility exists to “directly manipulate” the nature of
this function with the exception of the direct manipulation of its actual input from i’
to certain i’ that is referred to as the “deformed input’. The controller’s aim is to
achieve and maintain the id=f(id*) state. [Only the nature of the model function (p(id)
can directly be determined or manipulated.] According to [C51] the following
iteration was suggested to find a proper “deformation” of the input argument:

i0;S,£(iy)=i4;1, =Sip;.sS, £, )=y 1,,=S,.i,:S, ——=>1(7.1.4)
in which iy denotes the initial estimation that can be calculated on the basis of the
rough model. Really, if the series of these consecutive linear transformations
converges to the identity operator, no further deformation is needed, and the matrix
obtained as the matrix product of the consecutively obtained matrices yields the
necessary solution of the problem. This can be so interpreted that the controller
“learns” the behavior of the observed system via step-by-step amending and

maintaining the initial model.
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Equation (7.1.4) evidently does not yield unambiguous proposition to the
necessary S, matrices. Infinitely many matrices can be constructed that map a given
vector to another given vector. For making the problem mathematically unambiguous
this task can be transformed into a matrix equation by putting the values of f and iy
into well-defined blocks of bigger quadratic matrices having linearly independent
columns as e.g. in the form

od -1

i
. |[=8,=|d |.
] ] b L ]
Via the application of a physically not interpreted constant “dummy parameter” the
occurrence of the mathematically dubious 0—0, 0—finite, finite—0 transformations
can be evaded. If the “columns of the arbitrary parameters” are well defined
continuous functions of the first column and a set of linearly independent initial
vectors, then the f=i¢ case evidently results in S,=I that cannot cause computational
problems. Via computing the inverse of the matrix containing f the problem becomes
mathematically well-defined. For this purpose it is expedient to choose special
matrices of fast and easy invertibility. The accumulated product of the linear
transformations in (7.1.4) and the expected matrices converging to the identity
operator I naturally make the idea arise that this approach can be implemented by the
use of Lie Groups. This expectation is reasonable since the criterion i,,, =S, i, is

fn—l
S| d

n

(7.1.5)

ambiguous and does not determine any unique matrix S,.,. Therefore it can be hoped
that by imposing extra criteria the solutions can be so restricted that they really
belong to certain Lie Group. On this reason, before going into the details of
convergence issues it is expedient to consider certain algebraic details concerning
the construction of the appropriate linear transformations.

The idea of Minimum Operation Transformations means that in each step
we try to construct matrices that make considerable transformation only in the 2D
subspace spanned by f and iy (i.e. the directions for which we have fresh information
on the behavior of the controlled system), and leave their orthogonal subspaces
invariant since no fresh information we have on the temporal behavior of the system
in these directions.

7.1.1. Introduction of Particular Symplectic Matrices

There are various algebraic possibilities to meet this requirement. Let G be
nonsingular, quadratic, otherwise arbitrary constant matrix. The set of the V matrices
for which

detV=1,V'GV=G=V'=G"'V'G (7.1.6)

trivially form Lie groups that contain elements in arbitrary close vicinity of the unit

-11]0
and g =<1,...,1,—c2>, result in the Orthogonal, the Symplectic, and the Generalized

0 |I
matrix. For instance the special cases in which G corresponds to I, 3 :={ } ,

Lorentz Group, respectively (“c”, that is the velocity of light in the Lorentz group
being the internal symmetry of electromagnetic and relativistic phenomena here can
be chosen to be equal to 1). The appropriate special sets are the Orthonormal, the
Symplectic, and the Generalized Lorentzian Matrices. It is very easy to construct
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certain special versions of these matrices in which the “arbitrary blocks” are properly
selected [J10], [B3].

The Minimum Operation Symplectic Transformations introduced for this
purpose have relatively big size but can be constructed by simple rotations and
stretches [J5]. They have the structure as follows:

0 u? e _|-F? —a" o ..
e 0 T ~(2) 3) (7.1.7)
f u 0O .| f u e
with
@)Te )
u® = 1 fa)_f f £
fOTg® FOTE®D
T g(2)
u(2): 1 f(2)_f f f(l)
f(Z)Tf(Z) f(l)Tf(l)
(7.1.8)
Fo _ £ o _ £
b
f(l)Tf(1)+f(2)Tf(2) f(l)Tf(1)+f(2)Tf(2)
1 a® ) u®
u = DT (), T <2>’ﬁ(): DT (), DT (2)
u"u’ +u?’u u"u’ +u?’u

In (7.1.7) the degree of freedom of the problem considered (DOF), influences
the dimension of the appropriate submatrices. " has the dimension of DOF+1 in
which the last component is a nonzero constant to evade the problems of mapping
zeros, while the other components are physically interpreted. £2 can be obtained
from £ e.g. via permutation of its components. Generally f" and £ must be

linearly independent non-zero vectors. The {e”) e R”"1j=23,.. DOF }

orthonormal set can arbitrarily be chosen in the orthogonal subset of " ,f (2)}. For

realizing this, a full orthonormal set of (DOF+1) vectors can be chosen. The 1*
vector of this set can be rotated into the direction of £ in a way that leaves the
orthogonal subspace of these two vectors invariant while rigidly rotating the whole
set. Then the component of £ orthogonal to £ can be determined, and a similar
rigid rotation of the previously rotated set can be executed in a special manner that
transforms the 2™ vector of this set into this component of 2 and leaves the
orthogonal subspace of these vectors invariant. (This latter rotation evidently does
not alter the direction of the previously set 1* vector.) If it is needed by the particular
application under consideration, for finding two nonzero, linearly independent
vectors, more than one physically not interpreted constant components can be
introduced in f". The “desired” and the “observed” values can be substituted into the
1*' DOF components of ). By using the simple rules for real vectors (arrays) that
a’b=b’a, as well as the orthogonality of its special block components, the fact that
the matrix defined in (7.1.7) trivially can be proved by substituting it into the
definition S"3S=3. Actually, due to the orthogonality relationships of certain
components only a few terms of this product is not completely trivial. The structure
of the terms in (7.1.8) is so constructed that the required zeros, ones, and —ones can
easily be obtained in the not completely trivial terms.

Though the above construction worked well according to the simulations, the
relatively complicate structure of the matrix in (7.1.7) gave me impetus to find an
even simpler structure. The solution came from the simple and trivial observation
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that the matrix S itself is Symplectic. On this basis I tried to modify a little bit the
simple structure of this matrix as

S = 0 Tm Tm —-e .- (7.1.9)

m(l) m(2) e(3)me(5)| 0

The structure of the matrix in (7.1.9) is really similar to that of  but in its upper
right block instead of the pairwisely orthogonal components of the unit matrix
pairwisely orthogonal vectors of not necessarily unit norm are situated. For instance,
in the case of a 3 DOF physical system (7.1.9) can contain the following
components:

: . 3 L@ 6
q, —4q, e ¢ €
: o 3 L@ 6
q, —dq, € & &
: o 3 L@ 6
M=[m(”,m(z),m“),m(‘”,m(s)]: Gy =Gy & e’ & (71.10)
O NNE NG
d -d e, e e
e 2 2
q +d FORENOINC)
D 5 5 5

that evidently can be generalized for higher dimensions as follows: the lower left
block has DOF+2 components, m'" and m® are trivially orthogonal to each other,
and they are orthogonal to the pairwisely orthogonal unit vectors of DOF+2

dimensions {e(3),...,eD OF+2 } It is not difficult to construct such vectors: one can start

with the columns of the unit matrix that is an orthonormal set; its columns can rigidly
be rotated in a special rotation modifying only the 2D subspace spanned by e'" and
m'" so that eV will be parallel to m"". Since m® and e? are in the orthogonal
subspace of m'”, a similar rigid rotation can be constructed that makes e'* parallel
with m®. This rotation can leave the orthogonal subspace of e and m® invariant,
that means that in the result e’ =e"". Again, it is very easy to see that the matrix
defined by (7.1.9) is symplectic. If it is substituted into the definition equation of the
Symplectic matrices, due to the lot of zeros in the matrices and the orthogonality
relationships only two non-trivial restrictions remain:

D*=i"§+d>, s=2D" (7.1.11)

that certainly can be satisfied. This idea was published in [C53], it was called as
“Special Symplectic Transformations”, and was applied in numerous numerical
simulation tests. Before showing simulation example for its application, in the sequel
the construction of other special transformations will be considered.

7.1.2. Introduction of Other Special Transformations

As an alternative possibility, the Generalized Lorentz Group can be
considered. Really, it is very easy to construct special Lorentzian matrices for control
purposes. For instance, it is easy to prove that the columns of the following matrix
form a generalized Lorentzian set [C42]:

emm | e? | | e’ | f _ (7.1.12)

fret Lo [l 0 e+
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The size of this matrix is determined by the number of the
modeled/observed/controlled degrees of freedom of the physical system to be
controlled (DOF). The physically interpreted vector f is accomplished with a
fictitious (DOF+1)" component, and it is placed into the last column of a generalized
Lorentzian. The scalar f denotes the absolute value of f (Frobenius norm). [The e?,

.., €299 set of pairwisely orthogonal unit vectors within the orthogonal subspace of
f. They can be obtained by rigidly so rotating a whole set of orthonormal basis
vectors, e.g. the columns of the unit matrix, that this operation alters only the 2D
subspace spanned by f and e'” by rotating e" into the direction of f. ¥ denotes the
unit vector of the direction of f.] It is again trivial to prove that (7.1.12) is Lorentzian:
it has to be substituted into the quadratic part of the equation of the definition. This
construction was also used in several simulation tests.

The “Minimum Operation Symplectic Transformations”, the “Special
Symplectic Matrices”, and the “Special Generalized Lorentzian Matrices” share the
common feature that the Frobenius norm of their appropriate block into which the
physically interpreted arrays have to be placed is not bounded. The Orthogonal
Group as a plausible and simple Lie group does not have such a property. On this
reason some attempts were done to introduce the combination of rotations and
isotropic stretch operation as follows:

T=sW (7.1.13)

in which W is orthogonal matrix, and s>0 is a positive parameter. These T matrices
trivially form a Lie group and they can easily be constructed for a pair of non-zero
vectors a and b so that a=Tb. In this operation simply s=lal/lbl, and W makes a
rotation concerning only the two-dimensional sub-space stretched by a and b. It is
clear that while the calculation of these “Stretched Orthogonal Transformations” is
very simple, and they immediately yield the solution needed, their stretch factor s
concerns any sub-spaces. This construction evidently does not correspond to the
principle of “Minimum Operation Transformations” while “Special Generalized
Lorentzian Matrices”, the “Minimum Operation Symplectic Matrices”, and the
“Special Symplectic Transformations” correspond to it because they apply
stretch/shrink only in well-defined sub-spaces, while the other sub-spaces are rotated
only. This may explain that the application of the “Stretched Orthogonal Group”
normally gave considerably weaker results than the other matrices.

The special transformations introduced above provide us with a convenient
mathematical framework within which linear transformations converging to the
identity matrix I can conveniently be constructed. The next question is whether what
conditions are needed to guarantee this desired convergence. From this point of view
the properties of the appropriate physical system under consideration as well as that
of their approximate models used by the controller in the beginning of the control
process are important factors. In the next subsection we show that the iterative
learning expressed by (7.1.4) can be convergent for a wide class of physical systems.

7.2. Proof of Complete Stability for a Wide Class of Physical Systems

In the realm of Cellular Neural Networks the concept of Complete Stability is
often used as a criterion [R19]. It means that for a constant input excitation the
network asymptotically converges to a constant response. If the variation of the input
is far slower than the network’s dynamics, with a good accuracy, the net provides
with a continuous response corresponding to some mapping of the time-varying
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input. The same idea is applied when we seek for series pertaining to a constant
desired response.
The f (in) — i, requirement can be expressed in more or less restricted forms.

For instance, assume, that there exists O<K<1 for which

G, )—i,| < K|e, , )—i,|<..<K"

f(i,)—i, (7.2.14)

This requirement trivially guarantees the desired complete stability with a
convergence to the desired value. So assume that there is given an unknown,
differentiable, invertible function f(x) for which there exists an inverse of x? as

A

£ =f"'(x*)#0. Let the Jacobian of f that is £'(&)= ? be positive definite and of a
X

norm considerably smaller than 1. Furthermore, let us assume that the actual
estimation of the deformed input x is quite close to the proper inverse of x‘.
Consequently two near-identity linear transformations must exist in the chosen group

for which Tk =x, and Sf(x)=x“. Following the classical perturbation theory, if

variable & is chosen to be the “small variable” the above operators can be written as
T=1+£G,S=I+£H in which G and H must be certain generators of the given

group used for describing the transformations. Taking into account only the 0™ and
the 1% order terms in & we obtain the estimations as

f(x)=f([I+£GJR)=x? +§%Gf{

(7.2.15)
Sf(x) = (I+§H)[xd +§&fo(J5xd +§[&fo(+Hx"j+O(§2)=x"
ox Ix
This implies that
ﬁGf(+de =0. (7.2.16)
oJx
The next approximation so is determined as
f(Sx)=f(STX)=
(7.2.17)

=f([I+fH[T+ G ]R) = x! +§%(G+H)§(

For the convergence we need decreasing error, that is Hf (Sx)—deSKHf (x)-x* H

which means that

Hf%(G+H)§( or [Hx* —g—fo( <k[Hx!| (7.2.18)

X

< KH{%G&

For a finite generator H HxX and Hx? must be approximately of the same norm and
same direction that is the angle between them is acute because it was assumed that

% =x?, and because the matrix multiplication is a continuous operation. Due to the

o - of e oy .
positive definite nature of f ':=a— multiplication with it also can result in an acute
X

angle between Hx? and —ﬁHf(. Therefore (7.2.17) has the following geometric

X
interpretation [Fig. 7.2.1.]:
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A
Hx %-f'Hx

The allowed set of\the vectors of reduced norm

Figure 7.2.1. Geometric interpretation of the convergence criteria

On the basis of Fig.7.2.1. it is evident that under quite general conditions the
algorithm can converge to the desired solution. For instance, in the Euler-Lagrange
equations of a Classical Mechanical System the inertia matrix can be roughly
approximated by a small scalar inertia plus a big additive ,vector® term. The
positive definite nature of the inverse of the actual inertia matrix of the system can
guarantee convergence for this problem class.

To keep the desired value in the vicinity of the actual one, which also is a
necessary criterion of convergence, instead of the joint accelerations its
“interpolated” version is taken into account, that is a “regulated correction” is applied
as:

HXd _fH fj,/l =1+¢ + (e —1—81)%»’?d = f+/1(f<d ‘f)'(7'2'19)

E}

1 + max (de

For large relative difference the “regulating factor” A—& (a small value moderating
the norm of the transformation matrices to be applied), while for small difference it
approaches (1+&), with a mall positive & meaning a kind of slight extrapolation of
the tendency. The v>0 variable has the function of a shape-parameter.

7.3. Simulation Example for Potential Application of the Special Symplectic
Matrices

In the forthcoming simulations the Special Symplectic Matrices defined in
(7.1.10) are applied. An important aspect in connection with incomplete modeling is
the existence of two possible alternative approaches: application of a single, complex
rough initial model containing each modeled degree of freedom, or tackling the
problem in a “distributed” manner in which certain subsystems are controlled by
independent controllers modeling and controlling only certain degrees of freedom of
the subsystem in their care. In this case, for the local, decentralized controllers, any
dynamic coupling between the locally controlled subsystems appears as external
perturbation influencing the behavior of the subsystem under their control. This
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problem was discussed in details e.g. in a plenary speech by D’ Andrea in connection
with the dynamic coupling of wings located in each other’s vicinity in flowing air
[R120]. Since the above discussed approach offers simple and convenient
implementation for both “centralized” and “distributed” approach to control the
incompletely modeled system, in Appendix A.S. its operation was investigated via
simulation. It can be stated that the simulation results well illustrated the applicability
of the proposed ideas.

7.4. Thesis 3: Adaptive Control of Particular Physical Systems by the Abstract
Use of Special Elements of Various Lie Groups (Summary of the Results of
Chapter 7)

This Thesis concentrates on the potential application of the formal
mathematical properties of particular Lie groups. The elements of these groups occur
in multiplicative terms realizing a cumulative control by multiplying near-identity
matrices in the realization of the situation-dependent, temporal, and partial system
identification. 1 have elaborated various particular matrices of very simple structure.
Instead parameter tuning 1 introduced “Minimum Operation Transformations” that
map the “expected” and “observed” behavior of the controlled systems to each other.
These mappings are so constructed that essential modification happens only in the
freshest available information in the direction of the recently observed subspaces of
the systems’ behavior. This means a restriction on the arbitrary parameters of the
possible mappings. The controller utilizes the inverses of certain matrices. Since
these matrices belong to special Lie Groups the computation of their inverse is very
cost effective (the maximum effort is the calculation of two matrix products). More
specifically:

¢ For application purposes I invented two kinds of particular symplectic
matrices, invented special generalized Lorentzian matrices, and
introduced the stretched orthogonal transformations.

¢ [ have provided a proof that shows that the so constructed adaptive
control can be convergent for a wide class of physical systems. The
proof is based on considerations similar to those that are in use in
“perturbation approximations” (Perturbation Calculus);

e [ have invented ancillary methods as the application of the
“regulating” and “weighting” factors that can keep the control
convergent in the initial phase when the appropriate transformation
matrices are very far from the identity transformation, so in this stage
of the control the use of the Perturbation Calculus would not be
justified;

¢ [ have demonstrated the potential use of these approaches in various
simulation tasks, among others in the control of partially and
imprecisely modeled, dynamically coupled subsystems in a
centralized and in a distributed implementation.

In general it can be stated that the present approach uses far simpler uniform
structures and procedures than any conventional soft computing approach, does not
apply any parameter tuning, and does not require the construction of a complicated
Lyapunov function. Its deficiency is that it can guarantee complete stability on the
basis of local (i.e. not global) basis. The convergence of the so constructed control
can be lost outside of a local basin of attraction.

The most important publications strictly related to the contents of Thesis 3
are as follows: [B3], [B6], [J5], [J6], [J7], [J8], [J9I, [J10], [C32], [C33], [C34],
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[C35], [C36], [C37], [C38], [C39], [C40], [C41], [C42], [C43], [C44], [C45], [C46],
[C47], [C48], [C49], [C50], [C51], [C52], [C53], [C54], [C56], [C57], [C58], [C59],
[C60], [C61], [C62], [C63], [C64], [CO65], [C67], [C68], [CT74]. Other related
publications are as follows: [C80], [C83], [C84], [CI93], [CI6].
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Chapter 8: Introduction of Various Parametric Fixed Point
Transformations for the Adaptive Control of Special SISO and
MIMO Systems

In this chapter an even more simple possible control effort is considered than
that detailed in the previous chapters. While the above approaches invested some
energy into the task of “identifying” some temporal and situation-dependent ‘““system
model of uniform structure and limited size” via uniformized algorithms or
procedures of strongly reduced number of operations, in the present chapter we
investigate the possibility of developing adaptive control without any particular
identification effort. The convergence of this approach can be guaranteed only by
certain simple, qualitative properties of the system to be controlled. These
“qualitative” features known in advance mean the “speciality” of these systems. As it
will be shown in the sequel the proposed solutions can be embedded into the general
mathematical framework of convergent sequences generated by contractive
mappings defined over Banach Spaces. Their convergence can be proved by using
simple geometric analogies. The first attempts were made for Single Input — Single
Output (SISO) systems, and then later the idea was generalized to Multiple Input —
Multiple Output (MIMO) systems by using various norms in the appropriate Banach
Spaces and norms for the operators defined over these spaces. Another important fact
is the introduction of the “robust variant” of these transformations applying strongly
saturated sigmoids for the generation of a local basin of attraction for these
sequences.

. THE EXCITATION - RESPONSE SCHEME AND FIXED
POINT TRANSFORMATIONS
A possible variant for Single Input -- Single Output

(SISO) Systems and its Application in the Coordinate
Projections for Multiple Input — Multiple Output (MIMO)

Systems
- ..ﬁﬂ—x\
Drive a ball on an
: elastic surface by )\
Prgmsg Mathematical creating a local
Realization realization basin ofattraction ™

fixed point that slowmy moves

transformation and - along the surfagel
iterafion

Xppp = G(xn:xd}_if x? :f(x*)‘[heu Ny = G(x*;xd)
X, —> X

) The idea of local deformations resulting in local basins of
attraction: pressing the valance with one’s finger local deformation can
be brought about; by varying the location of the deformation the small

ball can be kept moving along a desired trajectory on the valance

Figure 8. A rough sketch concerning the idea of applying local deformations for
convergent adaptive control

In contrast to the Lyapunov function based techniques that normally try to guarantee
“Global Stability” i.e. forming an unbounded basin of attraction for the initial errors,
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the present approach is satisfied by creating some local basin of attraction as it is
intuitively outlined in Fig. 8.

8.1. Fixed Point Transformations with a Few Parameters for “Increasing” and
“Decreasing” SISO Systems

As in the case of “Chapter 7.1. The Idea of Cumulative Control Using
Minimum Operation Transformations” the (in this case SISO) system is considered
according to the “expected and realized response scheme”. As it is indicated by the
forthcoming pictures it is possible to create properly and improperly convergent
sequences by considering the geometric similarity of various simple triangles for
learning sequences as

Y Properly Convergent Series for
Monotone Increasing System

d)_
snf(sn—lsn—2"'slx )_ X
ﬁzf(xn—l):>

Xn Xn—1

d

Flogpy)

Imroperly Convergent Series for
Monotone Increasing System
(Converges to the false
x=0 value.)

y

Y=Xd

Figure 8.1.1. Properly and improperly convergent sequences for “increasing
system”

As it is clear from Fig. 8.1.1. by simple manipulations involving the “origin”, on the
basis of some qualitative and certain approximate quantitative information
concerning the behavior of the controlled system. In similar manner, by the
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application of some “mirroring” technique similar propositions can be done for
“decreasing systems” (Fig. A.6.2. in the Appendix).

It is evident that the above ideas can be more systematically applied if the
“special role” of the origin is evaded by translating the appropriate vertex of the
geometrically similar triangles. In this manner a systematic set of transformations
using only two parameters for the adaptive control of SISO systems was introduced
as follows: a) for increasing systems [Fig. A.6.4.], and b) for decreasing systems
[Fig. A.6.6.]. These figures indicate the combinations of two special functions in the
role of function G of Fig. 8. with two parameters as follows:

Xd —A¢
flx)-Ag
h(x* I xd,D_,A;):z X

h(xlxd,D_,A;):z (x=D_)+D_

(e D))+ £ G
—_——|— X—D_ ’.x X)—
(()-as P A

7’ X*_D
L

and
g(xlxd,D_,Ai):zd—A X—

*
(x* | x4 ,D_,A4 )=

g':{_(x)(x D)+ f(;)—m (8.1.2)

X —Ar ~As
£ xs
d

g'(x*lx D_,A+) )(x* D_)+1
*

-A

in which f(x,)= x? . Tt is evident that by properly manipulating the parameters Az,
A4, and D_ it is possible to obtain contractive mapping in the vicinity of the
solution, x,, therefore either for “decreasing” or “increasing” systems properly

convergent sequences can be obtained.

Regarding the question of “designing the parameters” of the adaptive control
at first the qualitative properties of the system to be controlled has to be studied. At
first information has to be obtained on the expected sign of f” in the vicinity of the
estimated solution. Following that, according to (8.1.1) and (8.1.2) a properly big

absolute value has to be given to Ay or A to meet the conditions ‘xd‘ <<|A;| or
‘xd‘ << |AJ_r| . In the final step proper sign and absolute value has to be given to D_ to

guarantee the small absolute value of the factors f'(x,—D_ )/ (xd —Ai) or
f'(x.—D_ )/ (f (x*)—AJ—r). In this manner small negative correction can be given to

the value 1 in 4’ and g’ to guarantee contractive mapping and convergence. For this
purpose some qualitative and rough quantitative information in many cases is quite
enough.
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In the next section some application case will be studied for a 4™ order
physical system in which the appropriate system response to be manipulated is the 4™
time-derivative of the coordinate values.

8.1.1. A Higher Order Application Example for Fixed Point Transformations of a
Few Parameters

The physical paradigm considered for the investigations is outlined in
Fig. A.6.1.1. of Appendix A.6. also containing the equations of motion of the system.
The results are convincing and well illustrate the applicability of the proposed
adaptive control method.

As it was indicated by the “ball-beam paradigm” the simple adaptive control
based on the idea of geometrically similar triangles can work well. However, one of
its deficiencies may be the fact that the size of the appropriate triangles influenced by
the parameters Az, A4, and D_ may be varied depending on the “steepness” of the

almost unknown response function f. With other words, this solution for creating
local deformations and basin of attraction for the process of iterative learning is not
very much robust as far as the variation of fis concerned. In the next section, in order
to tackle this deficiency “robust fixed point transformations” will be introduced, at
first for SISO systems. As it will be also shown, this latter variant will be easily
extended to MIMO systems in two possible ways, too.

8.2. Robust Fixed Point Transformations for SISO Systems

In the above suggested fixed point transformations in (8.1.1) and (8.1.2) the
response error occurs either in the numerator or the denominator of a fractional term.
That means that the “wideness” of the basin of attraction cannot very efficiently be
manipulated in this solution. With other words, this solution is not very “robust”. To
address the problem of “robustness” of the similar triangles based fixed points
transformations better ones were proposed in [C105] in the form as

G(x;xd )= (x+ K)[l + Btanh(A[f(x)— x4 ])]— K
Gx*;xd)zx*, G(—K;xd)z—K (8.2.1)

'=(x+ ABf'(x) 7+ [+ Btan xX)—x
&= K)coshz(Alf(x)—de) [1 5 h(A[f() d])]

G'(x*;xd)z(x* +K)ABf(x,)+1

It is evident that the transformation defined in (8.2.1) has a “proper” and a “false”
fixed point, but by properly manipulating the A, B and K control parameters the good
fixed point can be located within its basin of attraction, and the requirement of
|G ’(x+)I<1 can be guaranteed, too. This means that the iteration can have considerable
speed of convergence even nearby x:, and the strongly saturated tanh function can
make it more robust in its vicinity, that is the properties of f{x) have less influence on
the behavior of G.

Regarding the convergence issues the following simple formal consideration

can be applied. Assume that for fixed x? the restriction |G'| = ‘BG(x; x4 )/ ax‘ <H<lis

valid for a region. This naturally means that for arbitrary a and b values within this
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region ‘G(a;xd )—G(b; x4 ] = G'(f;xd

dé<H|a-b

, that is we have

Tole. vt lagl<

a contractive mapping. This entails the consequence for the sequence obtained as
Xnr1:=G(x, ;xd) that

|xn+L _xn| = ‘G(xn—l—i-L;xd )_ G(xn—l;xd ] < H|xn—1+L _xn—1| <.
. (8.2.2)

< H"|xp —xo| > 0asn — oo

This means that we have a Cauchy Sequence in a complete, linear, normed metric
space, therefore it must have a limit value x,. It is easy to show that this limit value
converges to the fixed point of G:

S‘G(x*;xd )— X,

‘G(x*;xd )— Xe| = ‘G(x*;xd )— X+ X, — Xy +|xn —x*|

<
.(823)
< H|x* —xn_1|+|xn —x*| —0asn—oo

Regarding the issue of the “design of the control parameters” the following
simple practice can be carried out: parameter B can be made equal to 1; according to
the saturated nature of the tanh function, parameter A determines the ‘“‘sampling
width” within which the variation of the “response error” f—xd can be “monitored”:
very small A means wide, very big A means very narrow range of monitoring. Via
making simulations by the use of a simple non-adaptive, e.g. PID-like controller the
numerical range (order of magnitude) of the occurring responses can be
determine/estimated. The proper absolute value of parameter K can be a few times of
the occurring maximum. It is not very difficult to satisfy the condition of I1G’(x«)I<1
in the possession of the above estimations. Furthermore, by properly manipulating
the signs of A and K, both “increasing” and “decreasing” systems can be tackled in
this manner, according to the last equation of the group (8.2.1). Before showing any
application example possible ways of generalizing the transformation (8.2.1) for
MIMO system will be considered in the next section.

8.2.1. Possible Generalizations for MIMO Systems

The generalization of (8.2.1) for Multiple Input — Multiple Output (MIMO)
systems may be done in different manners. A possibility is the use of the norm for

the system-response ||f || = Z| fi|, and a multiple dimensional sigmoid function in the

l

role of the fanh function as o(f): R"” - R" as y, = G(i)( f;) in which each function
O'(i)( ) is a single-dimensional sigmoid. If each of them is contractive, i.e.
Vi3d0 < M; <1 so that ‘G(i)(a)— G(i)(b)( < Ml-|a - b| then it can be stated that

||o(a) - c(b)” =>

i

SMax{Ml}Z|al —bi|:M||a—b
! i

G(i)(al.)—c(")(b,-)( <YM la; —b;| <
i (8.2.4)

,0<M <1
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that means that this multiple dimensional sigmoid function is contractive in a Banach
space. In this case it is possible to find the A;, B;, and K; control parameters for each
component i.

An alternative possibility is to define the response error and its direction in

the n™ control step as h, =f(r,) —r, e,=h, /||hn|| (here the Euclidean or
Frobenius norm is in use), and apply the following transformation:

if ||hn|| >ethenx, = (1+ E)xn +BKeelsex, | =X,, B:= BO’(A||hn||)(8.2.5)

in which €is a small positive threshold value for the response error. If the response
error is quite small, the system already attained the fixed point and no any
manipulation is needed with the unit vector the computation of which would be near
singular. In the case of this implementation we have four control parameters, &, A, B,
and K, and a single sigmoid function o(). This realization applies correction in the
direction of the response error only, and normally leads to more precise tracking than
the more complicated one using separate control parameters for various directions. In
the next section a possible application will be discussed. In the sequel typical
application examples will be discussed.

8.2.2. Application Example a): Precise Control of an AGV Equipped with
Omnidirectional Wheels

As is well known, in contrast to the so called Ackerman Devices, Automatic
Guided Vehicles (AGVs) using omnidirectional wheels (e.g. [R121]) can precisely
track arbitrary trajectories at least from kinematic point of view. On this reason for
our purposes a triangular structure similar to that in [R121] was chosen as a
paradigm detailed in Appendix A.6.2.

8.2.3. Application Example b): Precise Control of the Cart-Beam-Hamper System

Since the more traditional “Adaptive Inverse Dynamics” and “Slotine-Li
Adaptive Controller” and their modifications as inclusion of integrated feedback
terms and dropping the use of Lyapunov function for tuning were quantitatively
analyzed in “4.4. Adaptive Inverse Dynamics Control of Robots” and in “4.5.
Adaptive Slotine-Li Controller for Robots”, for the purposes of comparison it is
expedient to give here some simulation results for the “alternative generalization” of
the “Robust Fixed Point Transformations” as defined in (8.2.5) applied for the same
physical system as paradigm (Fig. A.1.1.). In the comparison the same nominal

trajectory  was  applied with a  trajectory  tracking  prescription
t

G2 =q" +3A&(t)+3A%()+ A%E(r) with &(r)= j e(r)dr with A=10xI [1/s] and
0

besides the friction hectic disturbance force was applied in the linear direction (it was

generated by 3 order periodic spline functions). Detailed results are given in

Appendix A.6.3.

As a summation of the here presented results and that of many others
published in other papers it can be stated that on the basis of simple qualitative
information and some rough quantitative knowledge in many cases quite satisfactory
adaptive control can be constructed by the use of local deformations guaranteeing
stability within a reasonably wide region though no “global stability” can be
guaranteed in this manner.
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8.3. Convergence Stabilization by Tuning only one Adaptive Control Parameter

For guaranteeing the stability of the control the motion must be kept within
the basin of attraction of the fixed point of the iterative sequence. A plausible
possibility is tuning only A if K and B were already properly estimated. For this
purpose we have to note that in the vicinity of the fixed point in (8.2.5) B<<1 and
Be = Bo{[n|h/|n| = BAh, so Hﬁr” << KBe. Therefore, instead of the formerly
successfully used version e.g. in the examples of Appendix A.6.2. and A.6.3. we

proposed the following iterative transformations for MIMO Systems, for the (n+1)"
control cycle:

(Al

. )hn,hn =f(r,)-r’ (8.3.1)

n+l

o
r,, =r, + KB

n

In the vicinity of the fixed point (that is when the difference llr,,;—r,ll is small, the
modification of the response error h can be estimated by the use of the 1st order term
of the Taylor series of f(r) as follows:

f(r,,)=f(, )+ WKBA h,,
r

(8.3.2)
) = 00 ry el + 200 g,
r
This means that
af(rn)
hn+1 = [I + KBAT}hn - (rnd+2 - rnd+1 ) (833)

For normal cases the desired control signal varies only slowly, therefore this second
term is not significant, and it is expected that for the reduction of the response error
the first term in the brackets must be properly set. For instance, if it can be known in
advance that of/Or is positive definite (this situation can be met in the great majority
of the fully actuated Classical Mechanical Systems, for small A>0 and B=1
KBA(of/or)h,, is a small vector of direction approximately opposite to that of h, that
corresponds to step by step decreasing response error. The same holds if of/Or is not
completely symmetric, but its symmetric part is positive definite (for negative
definite systems the setting B=—1 can be used in similar manner): its skew—
symmetric part yields some contribution that is orthogonal to h,. If the controller
stores certain past data the necessary modification of A can be estimated if the
controller computes the quantity in the (n+2)™ control cycle:

— h: [hn+1 _ hn + (rnd+2 B I‘nd+1 )] 3 (834)

E,, .
est h zh ]

By assuming positive definite of/Or the following tuning rule can be suggested:
A = oo (gen‘ - ggaal )A (83'5)

that tries to stabilize €., about gg,,~—0.5 to keep the control within the center of the
basin of attraction of the iteration (¢>0). (For avoiding extreme tuning the same
saturated sigmoid function that was used in the fixed point transformations (8.2.5) is
applied here, too.)
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8.3.1. Possible Application:Control of the Cart and Double Pendulum System

In the sequel a possible application will be shown for a Classical Mechanical
paradigm, viz. the cart + double pendulum system already depicted in details in
Fig. A.5.1. with The Euler-Lagrange equations of motion given in (A.5.4). However,
in these examples it was considered as an underactuated system that means that the
linear degree of freedom (g3) was left without own drives, i.e. Qs=0 was assumed.
The motion in the linear direction was controlled through the dynamic coupling
between the linear axis and the two rotary ones. With other words it means that the
reaction forces needed for moving the two “counterweights” m; and m, were used for
generating acceleration along g;.

Detailed simulation results are given in Appendix A.6.4. obtained by simple
SCILAB programs with Euler integration and the more sophisticated integrator of
SCICOS co-simulator. The results well exemplify the consistent behavior of tuning
and the comparable output of the simple and sophisticated simulators. The
superiority of the SCICOS-based computation reveals itself in the values of the &,
estimated values according to (8.3.4).

8.4. Thesis 4: Introduction of Various Parametric Fixed Point Transformations
for the Adaptive Control of Special SISO and MIMO Systems (Summary of the
Results of Chapter 8)

On the basis of simple geometrical observation I developed a special class of
situation-dependent, temporal adaptive control for special Single Input — a Single
Output nonlinear system that practically does not need any partial system
identification. Instead of that it uses certain “qualitative information” that
corresponds to the “specialty” of the system to be controlled. The system’s response
function must be either clearly “increasing” or clearly “decreasing”. The method is
based on local deformations creating a local basin of attraction for the result of the
iterative learning process it applies. It can compensate the effects of unknown
external disturbances that partly may origin from dynamic coupling with unmodeled
subsystems. For this purpose

¢ [ introduced four variants of fixed point transformations to be used
in adaptive control. These transformations have two adaptive
parameters only. These parameters have simple geometric
interpretation related to geometrically similar triangles defined in
the “input — response space” of the system to be controlled;

e The control produces iterative learning resulting in convergent
Cauchy sequences in the input space;

e [ have shown that the convergence of the method can simply be
proved by using the concept of “linear, normed, complete metric
spaces” (i.e. Banach Spaces) with contractive mappings;

¢ [ have shown that since this concept allows the use of various norms
to be applied over the same set, the method is very versatile and
may have numerous particular variants;

e | have proposed a very simple design method setting the much
reduced number of the constant adaptive parameters of this method.
This is a considerable advantage in comparison with the traditional
adaptive control methods like “Adaptive Inverse Dynamics” or
“Adaptive Slotine — Li Control” that have to use very detailed and
complicated system models, have to tune a lot of model parameters,
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and have to apply a lot of “adaptive control parameters”;
Furthermore, numerical details can be obtained only by numerical
simulations for these classic approximations, too;

¢ [ have shown that — in contrast to the very sophisticated “Adaptive
Inverse Dynamics” and “Adaptive Slotine — Li Control” methods —
the here proposed one separates from each other the phases of
controller design and prescription of the trajectory tracking. The
desired trajectory tracking can arbitrarily be formed using only
purely kinematic terms. In this manner the here proposed method is
very flexible.

e | have shown that in contrast to the “Adaptive Inverse Dynamics”
and “Adaptive Slotine — Li Control” the here proposed method is
able to simultaneously compensate the effects of unknown external
perturbations and that of the existence of unknown and not
controlled subsystems in dynamic coupling with the controlled one;

¢ [ have elaborated a “more robust version” of this control applying
saturated sigmoidal functions. This form has three parameters of
which practically two parameters must be set, the third one normally
may be taken equal to *1; I have interpreted its operation on
geometrical basis;

e [ have elaborated two kinds of generalization of this method for
special Multiple Input — Multiple Output (MIMO) systems in the
case of which the “increasing” or “decreasing” nature can be
generalized by using the concepts of “vectors approximately of the
same direction” in real Hilbert spaces;

¢ In order to test the potential applicability of the proposed method 1
made investigations for 2nd, 3rd, 4th, and fractional order systems (in
this latter case the system’s response function may be a fractional
order derivative of the state variable) including holonomic and
non-holonomic mechanical and electromechanical systems,
underactuated  classical ~mechanical systems, electrostatic
microactuator, and the model of a chemical reaction describing a
polymerization process. I also made comparisons regarding the
results of the present approach and that of “ad hoc” solutions using
similar qualitative information.

e To extend the applicability of the method based on iterations of
local basin of attraction I introduced a tuning procedure for one of
the three adaptive control parameters of the Robust Fixed Point
Transformations; I have shown mathematically and illustrated via
SILAB and SCICOS based simulations that this complementary
tuning stabilizes the controller near the fixed point that is the
solution of the controller’s task. In this manner the proposed method
can be competitive with the traditional ones offering global stability.

The most important publications strictly related to the contents of Thesis 4
are as follows: [B7], [BS8], [J5], [J15], [J16], [J18], [J19], [J20], [C77], [C85], [C86],
[C87], [C97], [C100], [C101], [C103], [C105], [C107], [C108], [C109], [C110],
[C111], [C113], [C114], [C116], [C117], [C122]. Other related publications are as
follows: [C89], [C91], [C96].
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9. Novel Approach in Model Reference Adaptive Control:
Replacement of Lyapunov’s Direct Method with Robust Fixed Point
Transformations

Adaptive control of physical systems having uncertain, time-varying, directly
neither observable nor controllable, dynamically coupled subsystems still is an
interesting challenge. The classical “parameter adaptive” approaches as “Adaptive
Inverse Dynamics” or “Adaptive Slotine-Li Controllers” e.g. in Robotics try to
exactly learn the dynamic parameters of the systems under control. They commence
their operation with initial approximate model parameters that they tune until
reaching their exact values. These approaches naturally have to cope with either the
lack or infinite complexity of the appropriate analytical system models in a wider
scope. A typical example is a not completely full tank containing some wobbling
fluid that dynamically interacts with the tank's wall. Development and real-time
identification of any fluid model would evidently be a hopeless for precisely
controlling the motion of the tank.

The so called “signal adaptive” controllers have far simpler construction than
the above mentioned ones. They do not wish to compensate the observed
discrepancies in the system's behavior by tuning the parameters of any analytical
model. Instead of that they quickly manipulate certain additive and/or gain
parameters for error compensation. To this class belongs the idea of the “Model
Reference Adaptive Control (MRAC)”’. The MRAC technique is a popular and
efficient approach in the adaptive control of nonlinear systems e.g. in robotics. A
great manifold of appropriate papers can be found for the application of MRAC from
the early nineties (e.g. [R135]) to our days (e.g.[R138]). One of its early applications
was a breakthrough in adaptive control. In [R136] C. Nguyen presented the
implementation of a joint-space adaptive control scheme that was used for the
control of a non-compliant motion of a Stewart platform-based manipulator that was
used in the Hardware Real-Time Emulator developed at Goddard Space Flight
Center to emulate space operations.

The essence of the idea of MRAC is the transformation of the actual system
under control into a well behaving reference system (reference model) for which
simple controllers can be designed. In the practice the reference model used to be
stable linear system of constant coefficients. In particular cases the reference models
can also be the nonlinear analytical models of the systems built up of their nominal
parameters. The controllers normally are constructed by the use of the Lyapunov
function technique, too. Recently it became clear that the “Robust Fixed Point
Transformations” [C105] can be also used for developing novel simple versions of
MRAC controllers without using Lyapunov's complicated technique (e.g. in [C118],
[C119]). In these early papers simultaneous compensation of the effects of modeling
imprecision and external disturbances were considered.

Assume that on purely kinematical basis we prescribe a trajectory tracking
policy that needs a desired acceleration of the mechanical system as (d°¢/dr*)”. From
the behavior of the reference model for that acceleration we can calculate the
physical agent that could result in the response (d°g/df’)" for the reference model (in
our case the generalized force components are denoted by U”). The direct application
of this U” for the actual system could result in different response since its physical
behavior differs from that of the reference model. Therefore it can be “deformed”
into a “required” U™ value that directly can be applied to the actual system. Via
substituting the realized response of the actual system d’°g/df’ into the reference
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model the “realized control action” UX can be obtained instead of the “desired one”
UP. Our aim is to find the proper deformation by the application of which U well
approaches U”, that is at which the controlled system seems to behave as the
reference system. The proper deformation may be found by the application of an
iteration as follows. Consider the iteration generated by some function G as
Ut =G(U*,,UX,,U",. ;) in which n is the index of the control cycle. For slowly
varying desired value U” can be considered to be constant. In this case the iteration
is reduced to U, ;=G(U**,,UX,,U") that must be made convergent to U

It is evident that the same function G and the same considerations can be
applied in this case as that detailed in Section 8.2. with the same extension to MIMO
systems as in Subsection 8.2.1. Furthermore, the same convergence stabilization by
tuning as applied is Section 8.3. can be in this case, too. The comparison of the
“traditional” and the “novel” schemes is given in Fig. 9.1.

The Traditional MRAC Scheme The Adaptive Part of the Controller

m
C y The ,Deformed System”
u The Reference Model

Delay

U’ |

Parameter Tuning =——>Reference Model Deformatior SyStem  fm——
u I

The Controller The System Delay |¢=—— Reference Mode! |qmmdi

I g

Figure 9.1. The “traditional” MRAC scheme operated by some Lyapunov function
based parameter tuning, and the novel one based on “Robust Fixed Point
Transformations”

The scheme in Fig. 9.1. does not need any further sophisticated mathematical
analysis. If it works it evidently has to result in precise trajectory, velocity, and
acceleration tracking, and also determines the appropriate deformation of the force /
torque signal calculated to the reference model to achieve appropriate acceleration of
the actual system under control. Therefore in the sequel potential application
examples are given.

9.1. Application Examples

In this section the results of a comparative analysis with that of the more
“traditional” MRAC strategies will be given. The “traditional MRAC philosophy” is
a wide framework that can be filled in with various particular solutions. For
comparison we choose a relatively simple implementation containing integrated

feedback in the tracking error. Let the tracking error be denoted as e:=q" —q and
let &(r):= J-e(f)dr (q" denotes the nominal, q is the actual trajectory). The
0

kinematically prescribed trajectory tracking can be defined by the positive definite

3
matrix A and the ,,error metrics” of the VS/SM controllers as S = (di—i_ Aj <";(t) =0
t
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leading to q” =q" + A’ +3A%e+3Aé as the desired joint acceleration. Let the
reference model consist of two symmetric positive definite constant matrices as
M®§+B"q=Q" where Q' corresponds to its force/torque need for the actual
4, q values. Let H(q)j+h(q,q)=Q be the actual system’s equation of motion. By
,copying” the idea of the Adaptive Inverse Dynamics Controller let the exerted
force/torque be M™'§” + B*'q+D=H(q)j+h(q,q)=Q in which D corresponds to an

additive force to be determined by the MRAC controller. Via subtracting M*'q from

both sides we can express the known difference of the desired and actual joint
accelerations as §” - =M"""'[(H(q)-M" )j +h(q.4)-B*'q - D]. By the introduction

of the arrays x:= [&T,er,éT]7 and x:= [eT,éT,éT]7 the following equation of motion
holds:
0 I 0 &
x=Ax+®=| 0 0 I |e|+
~A’ —3A° -3A|é
0
+ 0
M [(H(q)-M* )i+ -B"g-D]

(9.1.1)

With a positive definite matrix P the Lyapunov function V=x'Px can be introduced
with the desired negative time-derivative V =x" (ATP + PA)x +2x'P® < 0. By solving
the Lyapunov equation the term quadratic in X can be made negative, therefore it is
sufficient to guarantee the non-positive nature of the remaining one. Since q” —q is
known the remaining part consists of the sum of known and unknown terms as

Z
‘meas

X PO = XTP[OT;OT;(('iD —ii)T] =

9.1.2)

WT

= x"P[0";07; M 1{[H - M* i+ h - Bq}-x"P[07 ;0" ;M* D < 0

in which z,,..; and w are known quantities, and u is not known. Let us seek D in the
form of a(r)w! Then the condition ze.=u —a(t)wTw<0 should be achieved. Since
wTw20, in the possession of z,,.,; we have idea if a(r) must be increased or decreased.
Let us apply a tuning rule with x>0 as follows: &= K[1+sgn(zmm )]me- With

properly great x and P this tuning can soon lead to decreasing Lyapunov function,
1.e. to stable control. This tuning leaves the negative terms unchanged but decreases
the positive ones.

The novel MRAC approach was simulated according to Fig. 9.1.

Two interesting application examples are presented in this Thesis.
Comparison of the operation of the “traditional” and “novel” is given for the Cart +
Beam + Hamper system as depicted in Fig. A.1.1. using simple SCILAB programs.

The other application is a pendulum of uncertain mass center point for which
only the novel approach was investigated by the professional numerical integrator of
SCILAB-SCICOS co-simulator.
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9.1.1. Possible Applications: a) MRAC Control of the Cart + Beam + Hamper
System

The comparative simulations were made for the paradigm depicted in
Fig. A.1.1. The system’s parameters were M=30 kg, m=10 kg, L=2 m, ®=20 kgxm?,
and g=10 m/s’ (gravitational acceleration). The ,,reference model” was defined by
MR=20xI, B*'=3xI. In both cases a strong feedback gain was chosen for trajectory

tracking as A=10xI. In the ,traditional case” x=15; and AP +PA =—600x1I was
chosen.

The adaptive control parameters of the “adaptive control parameters”
(without tuning parameter A) were: K=7000, B=-1, A=10". Detailed results are given
in Appendix A.7.1. Fig. A.7.1.3. well illustrate that the torque need of the reference
model is in close vicinity of the “recalculated” values, that is the MRAC idea is well
realized by the novel approach. The appropriate results of Figs. A.7.1.4. and
Fig. A.7.1.5. that were made for the lack of external disturbances are even more
convincing: the “non-adaptive” part of the controller has the “illusion” that it
calculates the torque / force needs of the reference model and obtains appropriate 2™
time-derivatives of the generalized coordinates accordingly.

9.1.2. Possible Applications: b) Novel MRAC Control of a Pendulum of Uncertain
Mass Center Point

In this example the controller calculates with a rigid pendulum of 1 DOF
while the actual system has 2 DOFs: inside the jig of the pendulum a ball of
significant mass positioned by a spring of limited stiffness is located. As the
pendulum rotates the ball can considerably be translated in the radial direction. In
this case we have dynamic coupling with a not modeled subsystem. The simulation
investigations revealed that in this case very aggressive tuning was necessary to the
adaptive control parameter A (it is detailed in Appendix A.7.2.). Since the controller
assumed an 1 DOF system the here applied estimation a little bit differed from that
we used for the MIMO systems in Section 8.3. In the earlier investigations it was
found that the use of constant adaptive control parameters once estimated were
satisfactory during the whole control session. However, for ' considerably varying
in time the following estimation can be done in the vicinity of the fixed point when
el issmalls =G )G )OG (gt NP (e )+
[0G(F.1,7 0 )IOF ) (#*,-r",..1). Since from the analytical form of o(x) [0G(ry.i.r*.1)/0r")
is known, and the past “desired” inputs as well as the arguments of function G are
also known, this equation can be used for real-time estimation of [0G(r.1,,.)/0r]
therefore for calculating the estimated actual value in 9G(r,r)/or=1- &4:

T h (r, + K)BAOG,(A[fn —r ])("nil - rnd)_l 9.1.2.1)
Fe =T

&

est

[0’ (x) denotes the derivative of o(x)].
For the novel MRAC control of this pendulum detailed simulation results are
given in Appendix A.7.2. These results are quite convincing, too.

9.2. Thesis 5: Replacement of Lyapunov’s Direct Method with Robust Fixed
Point Transformations in Model Reference Adaptive Control (Summary of the
Results of Chapter 9)

I have realized that the “Robust Fixed Point Transformations” with the
convergence stabilizer parameter tuning and the “Expected — Realized Response
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Scheme” can replace Lyapunov’s direct method in “Model Reference Adaptive

Control”.

I have shown that for this purpose in the role of the “expected
response” the generalized force components calculated from the
reference model (nominal system) and a kinematically prescribed
joint coordinate acceleration, and in the place of the “realized
response” the reference model’s torque needs calculated from the
observed accelerations of the controlled system have to stand;

By the use of simulation investigations I have shown that the “novel”
approach precisely can realize the main idea of MRAC: it provides the
model based controller with the illusion that the controlled system
behaves like the reference model, i.e. it responses to the same
generalized force with the same joint accelerations like the reference
model;

The design of the novel controller is far simpler task than the
application of the technique that uses Lyapunov functions.

Publications related this Thesis are as follows: [C118], [C119], and [C121].
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10. Adaptive Control for MIMO Systems by the Use of Approximate
SVD of the Available Approximate Model

In this section a further step ahead is discussed concerning the novel
approach to develop adaptive nonlinear control for non-special MIMO systems. This
means a kind of generalization of the solutions elaborated for SISO systems in
section 8.1. The previously applied parametric transformations were tailored to
systems in which such concepts as “increasing”, “decreasing”, “greater/smaller than
...” had definite meaning. However, in the state space of multiple dimensional
systems uncountable manifold of the possible directions exists, so the above concepts
cannot directly be applied for them. The idea behind the here proposed generalization
is very simple. By utilizing the fact that in any Real Hilbert Space the scalar product
of the elements, therefore the angles between two vectors can be defined, it can be
said that if two vectors define an acute angle this means that these vectors have
“approximately the same direction”, while if they define an obtuse angle the
situation can be interpreted that these vectors have “approximately opposite
directions”. Therefore instead of “quantities that increase in a given step”, we can
speak of “vectors that vary approximately in the direction of the original vector”. In
similar manner, instead of “quantities that decrease in a given step”, we can speak of
“vectors that vary approximately in the direction opposite to that of the original
one”.

The only problem is that in the case of such systems no any a priori
information we have on the relationship connecting the directions of the modification
of the control agent and the modification in the response caused by it. The nature of
this connection can vary in time during the motion (state propagation) of the
controlled system. Fortunately enough, if some approximate analytical model of the
system under control is available together with the very rough model used for control
purposes, by the use of the method of SVD this relationship can roughly be
estimated, and on this basis some adaptive controller can be designed or at least
outlined. (We have similar situation in the case of the sophisticated traditional
adaptive controllers, i.e. in the case of the “Adaptive Inverse Dynamics” and the
“Adaptive Slotine - Li Controllers” that assume that the exact analytical form of the
model of the system to be controlled is available, and we have imprecision only in
the values of the dynamical parameters.)

In the sequel it will be shown in details that this idea can be utilized by using
the means of Singular Value Decomposition (SVD) of real matrices for the purposes
of developing adaptive control for MIMO dynamical systems. At first we consider
the geometric interpretation of SVD as is given in Appendix A.11. by Eq. (A.11.7) as

D, 0 0 Ju"
b=vDUa=[v" | .. [v"] i i | . Ja=

:[D“V(l) | | Dkkv(k) | - (A.11.7)
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in which k=min(n,m), and in the central line following the matrix element Dy in
“[...IDgl...]" either nothing stands or zeros are located. The geometric interpretation
of (A.11.7) is straightforward: characteristic pairs of orthogonal directions are found
in the input and the output spaces to which characteristic stretch/shrink denoted by
the singular values D;>0 belong. To zero singular values special directions pertain
that do not take part in the mapping realized by the linear operator under
consideration. By using this geometric interpretation we can create appropriate,
convergent Cauchy Sequences as solutions of the control problem in the case of
MIMO systems almost exactly in the same manner as it was done by the parametric
fixed point transformations we applied for the SISO systems.

10.1. Mathematical Formulation

Consider the following task: it is given an initial X, value, a smooth f:R"—R"
function, an x? “desired value”, and the appropriate solution x- is sought for which
x‘=f(x+). We should like to achieve a first order correction in the value of f(x) that
moves f in the direction of X°, that is a positive number >0 can be introduced as

af = 2 Ax = afx’ ~£(x)] (10.1.1)

ox

If the Jacobian of f can be inverted the following sequence of points can be defined
by (10.1.1):

X, =X +a[ } [ —f(x )] (10.1.2)

To estimate the approximation error belonging to x,,; the first order Taylor series
expansion of f can be used as

< E(x )= —f(xn R 0{%} I —t(x, )]j -

X! () o{gﬂ[gj [k —t(x,)] = (10.1.3)

= (1-a)lx —£(x,)

This error in absolute value evidently can be decreased if approximately O<o<2.
Normally (10.1.3) cannot exactly be realized since of/0x is not exactly known. To
obtain better idea on the possibilities for reducing the approximation error, imagine

the application of the SVD for of/ox as [g—f} UDV’, Bf} =VD'U" that leads
X X

to the step Ax in the above outlined iteration as Ax=aVD™'U” [x* —f(x)]. Now

apply the form (A.11.7) by expressing the actual error used for calculating the next
step with the components of the orthogonal matrix U. In the ideal case

x! —f(x ZCIu —u(Z)T [Xd —f(x)]

(10.1.4)
Ax=ay D;'c,v"
I
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For guaranteeing convergence small Ax is needed. Since the SVD for an invertible
quadratic matrix yields D;;>D>..>D,, it can be said that 0<D_111S...§D_l,m SO
IIAXIIS(\/n) o max“lzl{lc,I}D_lnn. For introducing the quantity K expressing the
maximum allowable step length in the X space the proper value of the proposed
maximum of o can be estimated as

KD,
(04

. D, (10.1.5)
max (HlaX/:l ﬂcl }’C""’ )\/;

in which the parameter C., has the function of limiting & in the case of small ¢,
coefficients in (10.1.4).

The geometric way of thinking here can be utilized as follows: it is not
necessary to exactly move in the x space as it is defined in (10.1.1): it is just enough
to make a small step “approximately in the same direction”. Therefore, if we have
some approximate model of the Jacobian of £ of our system, only one times executing
SVD on this approximation may be satisfactory to approximate the U, D, and V
matrices that can be used for estimating the factor o, and the system can be directed
to the direction of the decreasing error even if not exactly the direction of the
“steepest descent” according to (10.1.4) is achieved. In the sequel this idea will be
applied in the adaptive control of the cart plus double pendulum system.

10.2. Application Example: Adaptive Control of the Cart plus Double Pendulum
System

Certain excerpts of the consideration obtained here have been published in
[C102]. The structure of the paradigm for the control of which the proposed method
was proved is described in Fig. A.5.1. and with the equations of motion (A.5.4) of
the Appendix and also discussed in details in [C63]. However, the dynamic
parameters of the system were different in this case. The cart the mass of M=5 [kg],
the pendulums assembled on the cart by parallel shafts and arms having negligible
masses and lengths L;=2 and L,=3 [m], respectively. At the end of each arm balls of
negligible sizes and considerable masses of m;=6 and m,=4 [kg] are attached,
respectively, and the gravitational acceleration was g=9.81 [m/s’]. Detailed
simulation results are provided in Appendix A.8. These results well exemplify the
applicability of the proposed method.

10.3. Thesis 6: Adaptive Control for MIMO Systems by the Use of Approximate
SVD of the Available Approximate Model (Summary of the Results of Chapter
10)

Based on the simple geometric interpretation of the Singular Value
Decomposition (SVD) for real matrices I proposed a novel adaptive controller for
non-special, nonlinear dynamical systems the approximate analytical model of which
is available. This control has the following main features:

e Jtis a kind of generalization of the fixed point transformations using
only two parameters, but in contrast to them, it is not restricted to
either “increasing” or “decreasing” systems;

e The controlled system may have varying “increasing” and
“decreasing” nature, the role of the rough analytical model and the
SVD is to approximately “track” the variation of this nature in the
state space of the controlled system;
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The proposed method does not require the real time application of
SVD within the control cycles. Proper information on this nature of
the system can be observed in the grid points of a mesh before
exerting any control effort, and the result of these observations can
be applied in the control process by the use of some interpolation
technique, e.g. by applying Support Vector Machine applying radial
basis functions.

The operation of the proposed control was demonstrated via
numerical simulations for an appropriate nonlinear paradigm.

The publications strictly related to this Thesis are as follows: [J14], [C102],

[C104], [C106].
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11. Approximation and Application of Fractional Order Derivatives
in the Time Domain

In various physical, chemical, economic, etc. processes typical momentum is
the existence of a great number of dynamically coupled degrees of freedom.
Normally we can concentrate on modeling and control only of a few of them while
no detailed information is available on the state of the other, not modeled and
directly not controlled variables. Within the framework of Classical Physics, if x
denotes those variables of the coupled system that are in the centre of our attention,
the formal state propagation equation of type x=f(x,u) containing the controller’s

action in variable u will not be valid due to the presence of the not modeled coupled
subsystems. A plausible way of modeling approximation is to assume that the
coupled subsystems also are excited by the control action u, and the state
propagation of these subsystems may reveal itself in a kind of memory of the system
that depends on the relaxation properties of the excited subsystems. A formal
possibility to introduce “memory” into the model is the replacement of the d/dt
differential operator with another operator that conveys some memory. For this
purport the concept of the so-called “fractional derivatives” were found to be
excellent tools.

Though the formal mathematical idea of introducing non-integer order
derivatives can be traced from the 17" century in a letter by L'Hospital in which he
asked Leibniz what would be the meaning of D"y if n = %2 in 1695 [R122], it was
better outlined in the 19™ century [R123]-[R125]. Due to the lack of their physical
interpretation their first applications in Physics appeared only later, in the 20™
century, in connection with visco-elastic phenomena [R126]-[R127]. The topic later
obtained quite general interests [R128]-[R130], and also obtained new applications in
material science [R131], analysis of earth-quake signals [R132], control of robots
[R133], and in the description of diffusion [R134].

The concept of fractional derivatives has many, only more or less equivalent
definitions, e.g. by Riemann-Liouville, Caputo, Griinwald-Letnikov, Hadamard,
Marchaud, Riesz, etc. For our purposes, for its lucidity and simplicity, we use the
discrete time resolution approximation of the form invented by Caputo that also was
used in a fractional order controller developed for integer order system e.g. in [C94].
It will be shown that this approximation is applicable for modeling the dynamic
behavior stable dissipative and unstable physical systems damped/excited by
dynamical coupling to unmodeled internal degrees of freedom. Furthermore, it will
be shown that an adaptive control method originally elaborated for integer order
systems can be extended to the control of systems of fractional order dynamics.

11.1. Numerical Approximation of Caputo’s Fractional Order Derivatives
The definition given by Caputo for the Se(0,1) order derivative of a function
u(t) for a<t is given as
ro. _ YA
€y :=u<ﬁ>(z)::jmdr (11.1.1)
. T-5)
in which the parameter a is in the role of some initial condition. If we wish to apply
this concept for describing physical systems no any special time-instant can be in

some “distinguished” position. Instead of that it is more reasonable to assume that
this operator has to describe the “memory properties” of the physical system that
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normally can be modeled by some “finite length of memory” L. According to that
(11.1.1) can be applied in the form as

“u? —u(ﬁ’() ( )(t 2') dr (11.1.2)
/IL r(1-p)

that has the interesting property that for du/dt=const. it also yields uPD=const. since

by substitution &=t-7, dé= -dt, & [L,0], it is obtained that

(B.L) .__uo §ﬁ _ “[Olﬁ Llﬁ]
e I By L v )

The expression in (11.1.3) immediately suggest the following approximation for non
constant classical first derivative: let us divide the [#-L.f] interval into small sub-
intervals as [t-To, t-(T-1)t], [t-(T-1), t-(T-2) X, [+-(T-2) o, t-(T-3) ), ..., [t-6%, 1]
(L=T ), and let us suppose that du/dt=const. within these small intervals. In this
manner (11.1.2) can be approximated as a sequence of discrete u(s) values as

L& a(e—sals+1) 7 =

W)=Y

(11.1.3)

5=0 F(Z—ﬁ)
. (11.1.4)
Ll o 8L =]
= ;Gsu(t sé), G, = r2-5)

If the interval ¢t is small enough, in (11.1.4) finite element approximation can be
applied for the estimation of the first order derivative as

T
u®(r) ZGvu(t

T —
“ZGﬂQS&)Mtbﬂb) | (11.1.5)
5=0 &
y _
- Z ult—st) :ﬂ, H., = G -G,
s=0 & é‘t

In similar manner, for higher order fractional derivatives (11.1.1) can be generalized
for e (0,1) as

t n —,3

= “‘“’”(t)::j—”()(T)(t_f) dr. (11.1.6)
2 T(-5)

that in strict analogy with the above considerations yields the following

approximation

u" Pt ZGW —5dt) (11.1.7)

in which
59 41) 7 -
G, =
r2-p)

It is worth noting that for B (0,1) G;>0, and G,,1<G;. By applying one of the usual
finite order approximation of the higher integer order derivatives similar time-

-B
a ] s=01,...T. (11.1.8)
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sequences can be obtained. In the sequel we restrict ourselves for n=2 for which the
following sequences can be obtained:

T
u™P(r) = Z J u(t—s6t)
s=0

G G, -2G,
. (11.1.9)
JizG’l_Zé,tgi+G’+‘,z=2,...,T
G, . -2G G
Jry = T1§t2 T’JT+2_§€’

In the next step the behavior and modeling capabilities of this approximation is
investigated.

11.2. The Behavior of the Proposed Numerical Approximation of Caputo’s
Fractional Order Derivatives

Consider the behavior of a hypothetical physical system that satisfies the
“fractional order differential equation” in the form of the above finite approximation
as

uPT (1) = —ou(t)+ g(r). (11.2.1)

that in the case of f=1 must be similar to an exponentially damped system driven by
the “driving force” g(#). Applying the approximation (11.1.5), and considering the
time ¢ as a discrete variable from this point on for the simplicity, the following
sequence is obtained for the u(r) signals:

T+1

g(t)—Z:Hsu(t—s)

H,+«a

u(t)

(11.2.2)

It is evident, that in this case the “initial values” {u(#-i)l i=1,2,...,7+1} that altogether
can also be referred to as the “preceding history” uniquely determine the u(?), u(¢+1),
etc. future values so we obtained a causal system. In contrast to the integer order
systems the number of the possible independent values defining the “preceding
history” is independent from the order of differentiation. For studying the behavior of
this system various estimations can be applied. The most efficient estimation can be
based on the matrix form of (11.2.2) for the non-excited case of g=0:
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ut ut—l
ur.—l -M, ”r:—z _
u,_r U (111
I —-H, —-H, _HT+1_ u,_, (11.2.3)
H,+a H,+«a H,+«a U
~| 1 o 0 0 -2
0 0 1 0 ur—(T+1)
MH

The propagation of the system’s state is evidently described the increasing powers of
the My matrix of very special structure. Therefore it is interesting to see the spectrum
and the eigenvalues of these matrices. In the vicinity of the “classical limit”, i.e. short
memory (7=2 is the smallest available number) and almost integer order derivative
(f—1) with some small &—0. For calculating the eigenvalues of the My matrix the
following secular equation has to be solved [due to the simple structure of the matrix
in (11.2.4) it is not difficult to calculate it in closed analytical form]:

| -H, -H, -H, |
H,+x H,~a H,+o
det 1 -1 0 =
0 1 -1 (11.2.4)
_|_—H, _alp- H, 21— -H, ~0
H,+t«x H,+o H,+t«x

According to (11.1.4) if B>1 Gy=&"P/T'(2-p)—1, and if i>0 Gi—0, so Hy—>1/4,
H;—-1/t, H—0, H;—0 that in the limit case reduces the secular equation to

Vs
_ o
1
Ve+a
The nonzero eigenvalue works as follows: during time o the appropriate eigenvector

is multiplied by A=1/(1+ad¥), so the variation of a quantity x during one cycle is as
follows:

-1 =0.

(11.2.5)

(4-1) _11-(+ad) _
T& (+as)

b _
& &
if || <<1

(11.2.6)

That evidently corresponds to an exponential damping with the exponent -« as it is
expected in the case of an integer order system.

For the near-limit case numerical calculations have to be done because in
general the secular equations do not have solutions of closed analytical form. For
instance, in the vicinity of the “classical limit”, i.e. short memory (7=2) and almost
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integer order derivative (£#=0.99) with &=0.01 the following matrix is obtained for
the case o=1:

0.9828115 0.0028349 0.0040490
M, = 1 0 0 . (11.2.7)
0 1 0

The eigenvalues of this matrix easily can be calculated by some popular software as
e.g. SCILAB. They are {0.9898084, - 0.0034984 + 0.0638626i, - 0.0034984 -
0.0638626i} (each of them is smaller than 1 in its absolute value, while the
determinant of the matrix V the columns of which are made of the appropriate
eigenvectors is - 3.903D-17 - 0.0735043i+0, that is any complex (therefore as special
case real) initial vector can be calculated as a linear combination of the columns of
V. The appropriate components of this sum are multiplied by the appropriate
eigenvalues of the matrix My in each time step. Since the absolute values of these
eigenvalues are smaller than 1, the system is stable and its “initial perturbation”
relaxes to zero. It is worth noting that the real eigenvalue has the biggest absolute
value, so it corresponds to the slowest relaxation. The absolute values of the two
complex eigenvalues that describe some damped oscillation are very small, so these
oscillations are relaxed very quickly. Therefore the components of the “preceding
history” belonging to the eigenvectors of very fast relaxation die out very quickly,
and the effect of a single “initial condition” seems to be more or less lasting
[Fig. 11.2.1.].

Solution of x4(0.99)=-1 x [10"-2] vs Time [s]

7
7

0.0 3.4 6.8 10.2

Figure 11.2.1. The approximately exponential relaxation of the “preceding history”
nearby the classical limit

According to the terminology we already used, the “very fractional limit”
means long memory (e.g. 7=100), and small order of differentiation (e.g. £4=0.01). In
this numerical example the eigenvectors form a complete system (the appropriate
determinant is equal to 0.0129997 - 1.388D-17i#0), and the absolute value of the
biggest eigenvector is 0.9931726. However, there are eigenvalues of considerable
real parts and very small imaginary ones, therefore this system relaxes slowly and the
structural richness of the “preceding history” does not die out quickly. This situation
is well demonstrated by Fig. 11.2.2.
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Solution of x*(0.01)=-1 x [10"-1] vs Time [s]

0 ﬂ\j/_/\_/—/
0.0 3.4 6.8 102

Figure 11.2.2. The relaxation of the “preceding history” in the “very fractional
limit”

Quite similar considerations can be done for the fractional order derivatives
higher than one. According to (11.1.9) the appropriate structure is as follows.

u, u,_,
U, -M, ”r:—z _
U _(r41) U (112)
=N = T (11.2.8)
Jota J,to J,ta
u
= 1 0 0 0 -2
0 0 1 0 _ur—(T+2)
M,

In this case the “classical limit” corresponds to 7=3 and f—1. The secular equation
belonging to ((11.2.8)) has quite similar structure as (11.2.4) and the appropriate
determinant can easily be computed:

oD p S T s
J,+ta Joto Jota Jota  J,to

- =0. (11.2.9)

In the classical limit according to (11.1.9) Jo—1/&, Ji—-2/&, J,—1/6, J3—0,
J4—0, J5—0. This reduces (11.2.9) to

2 SA- 1 2j:o. (11.2.10)
1+ oot 1+ oot

The nontrivial solution can exactly be obtained by making the 2" order term in the
parentheses equal to zero yielding

/13(— 2+

1Fida

= . 11.2.11
2 1+ adt’ ( )

Assuming that [1+ad’l<<1 the polar form of these eigenvalues approximately is
exp(xion a). Since during the time-slot of length & one matrix multiplication
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happens this corresponds to the circular frequency w= dp/ o = Jo . This evidently
corresponds to the non-damped harmonic oscillation of the classical limit. As a
numerical example, 7=3, &=0.01, and £=0.99 can be considered. The appropriate
eigenvalues of M; are as follows: {0.9998961 + 0.0101323i, 0.9998961 -
0.0101323i, 0.0642578 + 0.1318036i, 0.0642578 - 0.1318036i, - 0.1354708} that
corresponds to a complex conjugate pair of slowly relaxing eigenvalues, while the
others relax relatively quickly [Fig. 11.2.3.]. The determinant of the matrix of the
eigenvectors is 0.0000610 - 4.382D-19i, that is this system is nonsingular again.

Solution of xA(1.99)=-1 x [10"-1] vs Time [s]
20

AN A
AR /R
AR

207
0.0 3.4 6.8

10.2

Figure 11.2.3. The approximately exponential relaxation of the “preceding history”
nearby the classical limit

Since during & exactly one multiplication happens with the matrix, that corresponds
to a circular frequency @ = 0.0101334 /0=1.01334 rad/s and a period 24/ @=6.2 s.
This well agrees with the period of the signal in the upper chart of Fig. 11.2.3.. (In
the case of the integer 2™ order derivatives @ would be V1=1.) Similar calculation
for a=100 yields a period of 0.6222019 s for the slowly damped pair of eigenvalues
that also is in good agreement with the charts, and with the period of the second
order system. (For the integer order system 27710=0.6283185 s.)

Solution of xA(1.01)=-1 x [10”-1] vs Time [s]

A

o]

TN

B

.

/M

; A
VAV

10.2

Figure 11.2.4. The relaxation of the “preceding history” in the “very fractional
limit”

The case “far from the classical limit” is defined by 7=100, and $=0.01. (The
biggest eigenvalue then was 0.9996263.) The results of certain numerical
calculations are given in Fig. 11.2.4. The determinant of the matrix of the
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eigenvectors was - 8.327D-17 - 0.1067265i, that is this system was far from being
singular again. The slowly relaxing pair of eigenvalues of the near classical limit
have the exponential form 0.9999475 x exp(£i0.0101334). Simulation results for a
“medium value” are given in Fig. 11.2.5.

Solution of xA(1.8)=-1 x [107-1] vs Time [s]

\

0.0 3.4 6.8 10.2

Figure 11.2.5. The relaxation of the “preceding history” in a “medium” case

It is interesting to see what happens if in the closed analytical formulae
obtained as the numerical approximation of the Caputo derivatives 2>£>1. Though
the original integrals cannot be calculated for such cases, the approximations yield
physically interpretable behavior [Fig. 11.2.6.].

Solution of xA(2.8)=-1 x [107] vs Time [s]

105

101

2301
0.0 3.4 6.8 102

Figure 11.2.6. 2>>1 case far from the classical limit: T=100, p=1.8

The approximation from the “lower order side” yields relaxing oscillations, while
from the higher order side we obtain unstable system with the eigenvalue of maximal
absolute value 1.004497.

To sum up it can be stated that this simple discrete approximation of the
Caputo derivatives seems to be a useful means of modeling fractional order systems
in the time domain.

In the sequel potential applications of the proposed approximation are
discussed.
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11.3. Application Example: the Use of Fractional Order Terms in the Control of
Integer Order Systems

For application example the control of the same physical system already
considered in section “7.3. Simulation Example for Potential Application of the
Special Symplectic Matrices”, i.e. the control of two coupled cart+double pendulum
system [depicted in Fig. A.5.1. and described by (A.5.4) and (A.5.5)] was chosen.
The same kinematically prescribed tracking strategy was considered as in (A.5.6)
with the same adaptive control for the “centralized” approach using the special
symplectic matrices of size 12x12 defined in (7.1.10) but the computation of the
torque to be exerted happened in different manner. Observing that according to
(11.1.1), (11.1.2), (11.1.4), (11.1.5) a constant integer order derivative of a function
du(t)/dt=const. yields constant fractional order derivative u(ﬁ)(t), and that the ratio of
the two constants is very close to 1 if Sis close to 1, the rough initial system model
was utilized to exert the generalized forces. In the simulation the rough initial system

model for both carts was Q:10q(“ﬁ)m+10><[1,1,1]T instead  of

Q=10¢"" +10x[1,L1]". It is reasonable to expect for O<f<1 this degrades the
tracking accuracy, however, due to the “internal memory” of the fractional order
derivators it can smooth the fast fluctuation in the torque typically appearing in
Fig. A.5.2. Detailed computational results are given in Appendix A.9.

11.4. Thesis 7: Numerical Approximation of Fractional Order Derivatives and
Their Potential Applications (Summary of the Results of Chapter 11)

I have introduced a discrete approximation of the Fractional Order derivatives
defined by Caputo.

¢ [ have shown that the proposed approximation has three parameters
as follows: the time-step of discretization, the memory length of the
approximation, and the order of differentiation;

¢ Instead of the concept of “initial condition” usually used in the
literature I proposed to apply the concept of “preceding history” that
naturally takes into account the memory length of the approximation
of the operator and makes the distinguished position of the “initial
time instant” cease;

® Via considering the numerical solutions of homogeneous, linear,
fractional order differential equations with constant coefficients I
have shown that in the limit case the proposed approximation yields
the common integer order derivatives; For this purpose the
eigenvalues of special matrices were calculated in analytical form;

e [ have shown that by extending the “order” parameter of the
derivation to a higher possible set of values than that allowed by the
original definition given by Caputo both stable dissipative and
unstable systems can simply be modeled;

e [ have shown that the numerical approximation can well be
combined with the novel adaptive control approaches I formerly
introduced;

¢ [ have shown that the frequency filtering property of the proposed
approximation can well be used for smoothing the operation of the
adaptive controller.
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To the subject area of Thesis 7 the following publications are strictly related:
[Co6], [CO9], [CT0], [CT1], [CT72], [CT3], [CT5], [CT6], [CT8], [CT9], [C81], [C82],
[C92], [C93], [J13].
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Appendix

A.1. Simulation Results for Section “4.4.1. Modification of the Tuning Rule of
the Adaptive Inverse Dynamics Controller”

The appropriate tuning strategies were numerically studied by the use of a
paradigm sketched in Fig. A.1.1. The exact parameters of the system were M=30 kg,
m=10 kg, L=2 m, ®=20 kgxm’, g=10 m/s*. The approximate model parameters in the

dynamic model were M =60 kg, m=20 kg, [ =25 m, ® =50 ngmZ, and g =8 m/s’.

Paradigm for Simulation Investigations:
Cart + Beam + Hamper System

y C W
0, m
a4
c Yo
M w,
D U O . X=0g
(mL2 + ®) ® mLcosgq, | g, —mgLsin g, 0,
Q) Q) 0 g, |+ 0 =10,
mLcosq, 0 (m+M) | g, | |—mLsingg’ 0,

Figure A.1.1. The schematic picture and the equations of motion of the
cart+beam+hamper system

In Fig. A.1.2. the operation of the “conventional” Adaptive Inverse Dynamics
Controller 1s shown for the parameter setting Kp= KoxI, K;=2 VKOxI,
A"P+PA=10°L, R=5L

We note that for smaller R value (i.e. faster tuning) the tuning process caused
numerical overflow. Figure A.1.4. is the counterpart of Fig. A.1.2. with modified
tuning based on the use of the directly available information and SVD. The
improvement in the tracking accuracy is quite impressive. It is worthy of note that
while the original, Lyapunov function based technique, due to the use of matrix R,
almost unnecessarily modifies each parameters and cannot reach any settling point
during the simulations, the SVD-based method reveals that only two of the three
singular values differ significantly from zero, therefore the proper tuning concerns
only two-dimensional subspaces of the space of the parameter errors.

Furthermore, in the cases when simultaneously each singular value is small
but remains within the range for being kept, by the use of a few “brave” steps the
tuning quickly is settled at good approximation of the dynamical parameters and the
trajectory tracking becomes precise.
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Mominal & Simulated Trajectories Nominal & Simulated Phase Space
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Figure A.1.2. The operation of the original “Adaptive Inverse Dynamics Controller”
for Ko=10 57’1, K;=2V10xI, A"P+PA=10°L, R=5I
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The improvement in tuning is even more illustrative for the variant of
Adaptive Inverse Dynamics also using integrated feedback and modified tuning
(Fig. A.1.3.).
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Figure A.1.4. The operation of the “Adaptive Inverse Dynamics Controller” with
modified tuning for Ky=10 s'ZI, K1=2\/ 10x1, 9=50, and the minimal singular value
kept in the generalized inverse 8SVD=10'2;

It is worth noting that the parameter tuning again happens in two-dimensional
subspaces of the space of the parameter estimation errors, furthermore, the presence
of the integrated error-feedback results in more precise tracking from the onslaught.

In the sequel simulation investigations will show that even relatively
insignificant external perturbations can considerably degrade the operation of
these sophisticated controllers trough fobbing/misleading/foolishing their sensitive
parameter tuning processes. For this purpose it is satisfactory to show the phase
trajectories of the controlled motion and certain excerpts revealing details of the
tuning process.

Figure A.1.5. pertains to the original “Adaptive Inverse Dynamics
Controller”. The external disturbance was created by fitting a 3™ order periodic
spline function to 11 randomly selected points within a narrow interval. It was
applied as addition only to Qs, its “insignificance in comparison with the exerted
control forces” is well exemplified by the chart in the lower left corner of the figure
that displays a zoomed excerpt of the chart in the upper right corner (the curve in
magenta).

Similar effect can be observed in Fig. A.1.6. for the variant applying
modified parameter tuning. The “hectic behavior” of the controlled system in the last
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seconds considered well exemplifies what may happen to a nonlinear system if it is
kicked out of one its “normal regimes of operation”. It cannot be taken granted that
the controller can pull its state back to the normal regime. The same conclusion can
be drawn from Fig. A.1.7. that belongs to the more efficient parameter tuning and
integrated feedback.
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Figure A.1.5. The operation of the original “Adaptive Inverse Dynamics Controller”
for K¢=10 s, K=2V10x1, ATP+PA:106I, R=51 under external noises acting as
addition to Q3 only (the line in magenta in the force/torque diagram)
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Figure A.1.6. The operation of the “Adaptive Inverse Dynamics Controller” with
modified tuning for Ky=10 s'ZI, K1:2\/ 10x1, =50, and the minimal singular value
kept in the generalized inverse gyp=10" under external noises acting as addition to
Q; only (the line in magenta in the force/torque diagram)
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Figure A.1.7. The operation of the “Adaptive Inverse Dynamics Controller” with
modified tuning and integrated feedback for A=10xI s, 1=50, and the minimal
singular value kept in the generalized inverse esyp=10" under external noises acting
as addition to Q;z only (the line in magenta in the force/torque diagram)

A.2. Simulation Results for Section ‘“4.5.1. Modification of the Parameter
Tuning Process in the Adaptive Slotine-Li Controller”

To illustrate the operation of the original and modified Slotine-Li controllers
further simulations were made for the same physical system and nominal trajectory.
Their results are discussed in the sequel. Figure A.2.1. belongs to the original version
with the control parameters given in the caption of the figure. It can well be seen that
due to the not very efficient tuning that is the consequence of insisting on the use of
Lyapunov function, though in the beginning significant variation of the tuned
parameters happens, within the duration of the simulations the parameters were not
fairly tuned and the tracking errors remained significant. The introduction of
integrated feedback [Fig. A.2.2.] allowed faster tuning and resulted in more precise
tracking in general.

In Fig. A.2.3. the results describing the operation of “Adaptive Slotine-Li
Controller” modified by the introduction of integrated feedback term and SVD-based
tuning are given. The benefits of the modifications are quite similar to that obtained
in the case of the modification of the “Adaptive Inverse Dynamics Controller”.
Though for a while a three-dimensional subspace of the five-dimensional parameter-
error space was tuned in the beginning, later on the tuning process was restricted to
two-dimensional subspaces. (Of course the direction of these subspaces can vary in
time, therefore it is possible to study the whole five-dimensional space in this
manner.)
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Figure A.2.1. The operation of the original “Adaptive Slotine-Li Controller” for
A=10xI s, Kp=100, ['=0.05xI (for smaller T i.e. for faster tuning numerical
overflow happened)
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Figure A.2.3. The operation of the “Adaptive Slotine-Li Controller” modified by the
introduction of integrated feedback and SVD-based tuning for A=10xI s, K»=100,
7=50x1

The next simulations belong to the presence of external noises. The original
version of the “Adaptive Slotine-Li Controller” suffered the smallest catastrophe

though its precision was very bad, too [Fig. A.2.4.].
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Figure A.2.4. The operation of the original “Adaptive Slotine-Li Controller” for
A=10xI s, Kp=100, ['=0.05xI under external noises acting as addition to Qs only
(the line in magenta in the force/torque diagram)

Its completion with integrated feedback without speeded up parameter tuning
remained relatively robust [Fig. A.2.5.]. The more drastic tuning in Fig. A.2.6.
destroyed the stable behavior of this controller.
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Figure A.2.5. The operation of the “Adaptive Slotine-Li Controller” modified by the
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Figure A.2.6. The operation of the “Adaptive Slotine-Li Controller” modified by the
introduction of integrated feedback and SVD-based tuning for A=10x1I 5™, Kp=100,
1=50xI under external noises acting as addition to Q3 only (the line in magenta in
the force/torque diagram)

A.3. Simulation Results for Section “6.1.2. Simulation Results for the Use of
Diagonalization of the Inertia Matrix ”’

In Fig. A.3.1. the kinematic data of the motion are described, while
Fig. A.3.2. reveals the error values regarding the trajectory and the contact force
versus time.
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Figure A.3.1. The phase trajectory and the trajectory for the required (nominal) and
the simulated motion ([m/s] vs. [m] and [rad/s] vs. [rad], time: 5 [ms] units).
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Figure A.3.2. The error in the trajectory and the contact force versus time (in [m]
and [rad] and [N] and the time in 5 [ms] units, respectively).
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Figure A.3.3. The full amount of the generalized forces and the regression-based
addition versus time (in [Nm] [N] and 5 [ms] units, respectively).

The maximum error in the contact force is about 80 [N] which is small enough if
compared to the requested 1200 [N]. The error of the first rotational link is about
0.15 [rad], the second one keeps its required constant value with the error of about
0.05 [rad], while the error of the telescopic axis is about 0.05 [m].
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Figure A.3.4. The estimated "inertia data” in SI units (the various components of
matrix H have different physical dimensions).
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Figure A.3.6. The variation of the integrating term in the PID/ST part and that of one
of the quadratic terms in the Euler-Lagrange equations vs. time (in 5 [ms] units).

Fig. A.3.3. reveals that the regression-based “addition” is quite significant that is this
ancillary solution is quite useful in the control. To disclose the other “background
processes” in Fig. A.3.4. the six independent elements of the estimated “inertia
matrix” are plotted. The change in these matrix elements is quite considerable that
means that this part of the control well cooperates with the other parts, too. The same
can be told of the directly tuned parameters some of which described in Fig. A.3.5.,
and of the integrating term of the PID/ST part also displayed in Fig. A.3.6. It is worth
noting that the quadratic terms in the Euler-Lagrange equations play a quite
important role in the control according to Fig. A.3.6., too. Regarding the operation of
the slower external loop the simulation results did not show considerable drift though
considerably different initial values were investigated. It seems that the other parts of
the control almost form a local "optimum" for these parameters at least in the cases
investigated.

A.4. Simulation Results for Section ‘6.2.3. Application Example for the Use of
Symplectic Transformations as the Sources of Uniform Structures in Classical
Mechanics™

In the forthcoming simulation examples the same robot arm structure was
used as that of Fig. A.4.1. [its Euler-Lagrange equations of motion are given in
(A.4.1) and (A.4.2)].
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Figure A.4.1. The particular paradigm considered

M(q)i+k(g.9)+(a)=Q. (A4.1)
m,+m, 0 -m,R,Sing,
M= 0 m_ R;Sin’q, 0 ,
-m, R,Sing, 0 m R;
) (A4.2)
-m,R,Cosq,q, m,g+m.g
k =|2m_R;Sing,Cosq.qq, |, g = 0
-m,R,Cosq,q,q, —m,gR,Sing,

The endpoint of the arm was connected to a dashpot producing elastic spring forces
(with stiffness of 600 [N/m]) and viscous damping (100 [Ns/m]) as external
perturbations. This manipulator arm consists of a vertical rod of 5 kg moving up and
down (g; in m), rotating around itself as a vertical axis (g, in rad), and a second rod
joined to it by a wrist tilting around a horizontal axis (g3 in rad). This latter joint also
was translated by ¢; and rotated by ¢,. The second rod had negligible mass but
carried a point-like small body of variable mass. It also had constant length
(Ro=3 [m]). The three axes were controlled by drives exerting force for g; and torque
for ¢, and g3 prescribed by the control strategy. In each case considered the end-point
of the robot arm was desired to be moved with circular frequency £2 [rad/s] along a
circle of 0.5 m radius lying in a vertical plane at a distance of 2 m from the vertical
axis. In each case the "initial rough estimation" of the dynamic model consisted of a
non-singular, constant inertia matrix and a constant gravitational term. No quadratic
velocity coupling was taken into account. Making all the further corrections was the
task of the Symplectizing Algorithm.

The “canonical coordinates” without system identification were
[q",(Mdq/dr)"]" with the estimated model inertia M. Simulations were run for pure
application of the Symplectizing Algorithm and with complementary tuning only one
of the Symplectic matrices in (6.2.5), namely matrix B by matrix P.
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Figure A.4.2. Simulation results for “slow” motion £2=5 [rad/s] without (LHS) and

with (RHS) external perturbation without complementary tuning (the first two rows)

and with complementary tuning of step length 10° [dimensionless] ( 3 and 4™ rows)
[qi:black, q2:blue, gs:green lines]

(For the sake of simplicity P*=I was investigated only with independent tuned
variables @ in (6.2.21) and ¥ in (6.2.24).) In the simulations in the first half of the
time considered no any Symplectic identification was applied, only the rough initial
model was in use. In the second half of the time of the investigations the
[q",(Mdq/dr)"]" “canonical coordinates” were transformed by Symplectic matrices
obtained by the Symplectizing Algorithm and the additional tuning if it was applied.
For trajectory tracking the purely kinematically formulated
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i’ =" -bl@" -q")-clg" -q") (A4.3)

error relaxation was prescribed with 5=30[1/s], and c=0.8x(b*)/4 [1/s’] that
guarantees oscillation-free desired tracking (the superscripts “R”, “N” and “D”
corresponds to the realized, the nominal, and the desired quantities).

In the calculations £2=5 [rad/s], £2=10 [rad/s], £2=20 [rad/s] and £2=25 [rad/s]
nominal motions were considered referred to as “slow”, “normal”, “fast’, and “very
fast” nominal motions. The controller’s cycle time was supposed to be 1 [ms].

The phase trajectories and the tracking errors with and without external
perturbation (i.e. the dashpot) and with and without complementary tuning for “slow”
motion are given in Fig. A.4.2. It is clear that in each case turning on the symplectic
identification considerably improves the tracking accuracy and the phase trajectory,
too. Due to the essentially exponential nature of the generators of the fine tuning in
(6.2.21) and (6.2.24) small step length in fine tuning ( 10® [dimensionless]) was
found to be reasonable. At slow motion no essential improvement by fine tuning was
achieved.

Phenomenology Test: Tail -- Time [1070 vs Time s] Phenomenology Test: Tail -- Time [1020 vs Time s]
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Figure A.4.3. Simulation results for “slow” motion 2=5 [rad/s] without (LHS) and
with (RHS) external perturbation using only the Symplectizing Algorithm: the norm
of the “truncated generalized force components” (1" row) and the generalized forces
(2™ row) [q;:black, qz:blue, qs:green lines]

Since the main “tool of system identification” is the Symplectizing Algorithm
in these simulations obtaining precisely and exceptionally ‘“phenomenologically
correct” block diagonal transformations was not guaranteed. On this reason the
illegally nonzero components of the transformed generalized forces have been
simply truncated from the resulting force after executing the multiplication by the
symplectic matrix. In the sequel this “truncated” part (more precisely its norm
according to Frobenius) is referred to as “tail” and is described in the charts called
“Phenomenology Test”.
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Phase Spaces [107-1 vs 107-1] q1[m/s vs m], q2,q3[rad/s vs rad] Phase Spaces [107-1 vs 10~-1] q1[m/s vs m], g2,q3[rad/s vs rad]
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Figure A.4.4. Simulation results for “normal” motion £2=10 [rad/s], without (LHS)
and with (RHS) external perturbation without complementary tuning (the first two
rows) and with complementary tuning of step length 10° [dimensionless] (3™ and 4"
rows) [q;:black, q»:blue, qs:green lines]

In Fig. A.4.3. the norm of the truncated components and the generalized
forces are described for “slow” motion and the use of the “pure Symplectizing
Algorithm”. It can be seen that while the generalized forces are in the =500 or =1000
[N] or [Nm], the norm of the truncated components is small, about =5 =8 [N] or [Nm]
only (with the exception of certain “extreme points” in which they achieve =40 [N]
or [Nm] that is also small in comparison with the full force components). (On this
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reason was allowed in the fine tuning the use of non-block-diagonal generators, too.)
The generally increased force component at the right hand side of the figures in Q,
reveals the significance of the external perturbations. It is worth noting that the fine
tuning did not essentially influence these charts in Fig. A.4.3., therefore, for saving
room, these charts are not described here.

The appropriate counterpart of Fig. A4.2. for “normal” speed of
=10 [rad/s] is given in Fig. A.4.4. It can well be seen that in this case the fine
tuning definitely improved the tracking accuracy. Figure A.4.5. reveals some details
on the variation of the generalized forces and the tuned parameters versus time. It has
to be noted that for 10 consecutive steps only parameter ¢, and following that, for the
next 10 steps only parameter ¥ was tuned by the Simplex Algorithm.

The Greneralized Forces Q [1072] Q1[N], Q2,Q3[Nm] vs Time s The Greneralized Forces Q [1072] Q1[N], Q2,Q3[Nm] vs Time s
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Variable phi [107-3] vs Time s Variable phi [107-3] vs Time s
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Figure A.4.5. Simulation results for “normal” motion 2=10 [rad/s] without (LHS)
and with (RHS) external perturbation (1* row) and the variation of the tuned
parameters ( 2" row and 3 row ) [ qi:black, g>:blue, q;:green lines]

Similar observations can be done in the case of “fast” motion of 2=20 [rad/s]
when the fine tuning rather “smoothes” the phase trajectories and has less influence
on the tracking errors (Fig. A.4.6.).
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In the case of the “very fast” motion (Fig. A.4.7.) it can well be observed that
the fine tuning keeps the tracking errors “at bay”, i.e. makes their variation less
chaotic than without fine tuning.

Phase Spaces [1070 vs 107-1] q1[m/s vs m], q2,q3[rad/s vs rad] Phase Spaces [10%0 vs 10"-1] q1[m/s vs m], q2,q3[rad/s vs rad]
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Figure A.4.6. Simulation results for “fast” motion £2=20 [rad/s], without (LHS) and
with (RHS) external perturbation without complementary tuning (the first two rows)
and with complementary tuning of step length 5 x10° [dimensionless] (3" and 4"
rows) [q;:black, q,:blue, qs:green lines]
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Phase Spaces [1070 vs 10”-1] q1[m/s vs m], q2,q3[rad/s vs rad]
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Figure A.4.7. Simulation results for “very fast” motion £2=25 [rad/s], without (LHS)
and with (RHS) external perturbation without complementary tuning (the first two
rows) and with complementary tuning of step length 107 [dimensionless] (3™ and 4"

rows) [q;:black, g»:blue, qs:green lines]

At first the paradigm used for the investigations is described mathematically,
i.e. two coupled cart plus double pendulum systems.

A.S5. Simulation Results for Section ‘“7.3. Simulation Example for Potential
Application of the Special Symplectic Matrices”

112



dc_62_10

my, L, q,
Z qs
M

O

O

Figure A.5.1. The cart plus double pendulum system

m;,L;,q,

Each cart under consideration consists of a body of considerable mass and wheels of
negligible masses and momentums. The overall cart-masses are M"=4 [kg], and
MP=4 [kg]. The pendulums are assembled on the cart by parallel shafts and arms of
negligible masses and lengths L1A=2 and L,"=2 [m], L®=15 and L,°=15 [m],
respectively. At the end of each arm a ball of negligible size and considerable mass
(m*=10 and m,"=10, m,®=8 and m,=7) [kg] are attached, respectively [Fig. A.5.1.].
The Euler-Lagrange equations of motion of a single cart are given as follows (A.5.4):

2 . y
O myLj 0 -mLising; | g
2 . .
O |= 0 myls —mylysing; | Gy |+
0 —mLisingg —mylysingy (M +my+m))| i
3 1Ly sin g 2Ly 2 1+m) | g3 (AS54)
my gLy cos g
+ my gLy cos q)

) )
—myLy cos q1qi —my L, cosgaq)

In the above formulae g denotes the gravitational acceleration [m/sz], Q) and O,
[Nxm] denote the driving torque at shaft 1 and 2, respectively, and Qs [N] stands for
the force moving the cart in the horizontal direction. The appropriate rotational
angles are g; and ¢, [rad], and the linear degree of freedom belongs to g3 [m]. The 1st
rotational and the linear degrees of freedom were the controlled and actuated ones,
while the second rotary axis is without observation, control, and actuation that
means that Q, takes the constant value zero. Furthermore, two pieces of the above
described subsystems are coupled along their linear direction of motion by the forces

Q3A = —Q3B given in [N] as

0f =klgf ~af - Lo+ A - A (A5.5)
’ 3 3 (gbump"'q?{g_q?_l'SXLO)z (gbump+q3B—qéA —O.SXLO)Z

in which k=10* [N/m] describes a spring stiffness, and Ly=3 [m] belongs to the zero
spring force length.
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Figure A.5.2. Simulation results for the non-adaptive (LHS) and the “centralized

adaptive” (RHS) control approaches (the notation “f=1" refers to the occurrence of
integer order derivatives in the symplectic matrices)

To model the buffers two non-linear terms are applied that are very sharp near the
0.5xLy and 1.5xL, distances, while in the “internal points” they are very flat. They
are described by two parameters, namely by the “strength” A=1000 [Nxm’], and a
small parameter gbu,np:IO'3 [m] determining the “nearness” of the singularity of these
coupling forces. In the simulation the rough initial system model for both carts was

Q= 10('1'+10[1,1,1]T instead of (A.5.4). A PID-type kinematic trajectory tracking
strategy was prescribed for the relaxation of the tracking error h=q"-q according to
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three oscillation-free (real) time-constants

o=20 [1/s]:

1
hP% =—Ph—Dh-1I[h(r)dz, P=oo, +ayaz+aza;, D=aj+ay+a3, =003
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Figure A.5.3. Simulation results for the non-adaptive (LHS) and the “centralized

adaptive” (RHS) control approaches [continued] (the notation “B=1" refers to the
occurrence of integer order derivatives in the symplectic matrices)
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In the control the “Regulating Factor” was calculated according to (7.2.19) with
v=0.5, £=0.2, 82:10'5. The finite element time-resolution for the control was =10
3 [s], the numerical integration happened according to the Euler formula with step
length 6t/10. For the “centralized” approach the special symplectic matrices of size
12x12 defined in (7.1.10) were applied with the “dummy parameter” d=80. The first
column in the upper half of these matrices were defined as

GiDesA GDesA G DesB & DesB ,d,D]T, in which the symbol “tilde” denotes “weighted

[Y3+4]

contributions” in each control cycle “i” as

w(i) = 0.92u(i — 1)+ (1-0.92)G 2" ()PeA (g PE (NgP<B (i), w(i)=1+wli). (11.5.7)
§ @) =" @rw )

The function of this weighting is maintaining a proper relationship between b and the
norm of the appropriate accelerations: the physically interpreted part of the column
remains commensurate with b. (The former solutions that applied the accelerations
without weighting with fixed dummy parameter b were found to be less precise.)

The simulation results obtained for the non-adaptive and the “centralized
adaptive” approaches are given in Figs. A.5.2., A.5.3., A.5.4., and A.5.5. It is clear
that both the trajectory and the phase trajectory tracking accuracy have been
considerably improved by switching on the adaptive law. Following a sharp transient
section the driving forces applied at both subsystems have been well stabilized. The
same statement can be done in connection with the “weighting factor” in the case of
the adaptive control. Figure A.5.5. also reveals that the variation of the “regulating
factor” became “canonical”, and that the symplectic matrices applied by the control
were really in the vicinity of the unit matrix.

Weighting Factor [beta=1] Weighting Factor [beta=1]

500

3751+

250 - th---Ft--mp -

104 [dimens
104 [dimensionle:

18337~ it e

0.00 333 667 10.00 0.00 333 667 10.00

Figure A.5.4. Simulation results for the non-adaptive (LHS) and the “centralized
adaptive” (RHS) control approaches [continued] (the notation “f=1" refers to the
occurrence of integer order derivatives in the symplectic matrices), (these factors
are not in use in the non-adaptive case)

The simulation results pertaining to the “distributed approach” are described
in Figs. A.5.7.-A.5.11. It used two smaller symplectic matrices with the first columns

in the upper half as |§.2¢4 G eSA,d,D]T and [ng esB G DesB ,d,D]T , and also used two

“regulating factors” and “weighting factors”, too. In this case slower motion was
considered with a=10 [1/s].
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Figure A.5.5. Simulation results for the “centralized adaptive” control approach
[continued] (the notation “[f=1" refers to the occurrence of integer order derivatives
in the symplectic matrices)

Switching on the adaptive law again considerably improved the precision of the
trajectory- and phase-trajectory tracking. As in the case of the “centralized
approach” the existence of a sharp initial transient section can be observed in which
the appropriate symplectic matrices are not in the close vicinity of the unit matrix. In
these regimes the use of the “regulating factor” plays important role in guaranteeing
the convergence of the method. Following this transient phase stable control can be
observed in which the transformation matrices remain in the close vicinity of the unit
matrix, the weighting and regulating factors as well as the control forces and torques

vary “regularly”.
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Figure A.5.6. Simulation results for the non-adaptive (LHS) and the “distributed
adaptive” (RHS) control approaches (the notation “f=1" refers to the occurrence of
integer order derivatives in the symplectic matrices)
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Figure A.5.7. (continued)Simulation results for the non-adaptive (LHS) and the

“distributed adaptive” (RHS) control approaches (the notation “ff=1" refers to the

occurrence of integer order derivatives in the symplectic matrices)
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Figure A.5.8. Simulation results for the non-adaptive (LHS) and the “distributed
adaptive” (RHS) control approaches [continued] (the notation “f=1" refers to the
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occurrence of integer order derivatives in the symplectic matrices)
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Figure A.5.9. (continued) Simulation results for the non-adaptive (LHS) and the

“distributed adaptive” (RHS) control approaches [continued] (the notation “p=1"
refers to the occurrence of integer order derivatives in the symplectic matrices)
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Figure A.5.10. Simulation results for the non-adaptive (LHS) and the “distributed
adaptive” (RHS) control approaches [continued] (the notation “fB=1" refers to the
occurrence of integer order derivatives in the symplectic matrices); (these factors
are not in use in the non-adaptive case)
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Figure A.5.11. Simulation results for the “distributed adaptive” control approach
[continued] (the notation “[f=1" refers to the occurrence of integer order derivatives
in the symplectic matrices)

A.6. Illustrative Figures for Section “8.1. Fixed Point Transformations with a
Few Parameters for “Increasing” and “Decreasing’” SISO Systems”

v s,/ )= £l )+ (F () - x7)
¢ >0

X, =s8,X

n 17 n-17

Properly Convergent Series for
onotone Decreasing System

%

[\)
(o)
Y
7

Y=X:\
Y=H(x)

=1(X

Xa=X, X, X, X

Figure A.6.1. Properly and improperly convergent sequences for “decreasing
system”
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Improperly Convergent Series for
Monotone Decreasing System
(Converges to the false
x=0 value.)

Y=f(x)

d d
s f(sn_lsn_z...slx )=x

X, X, Xd=X,

Figure A.6.2. (contimnued) Properly and improperly convergent sequences for
“decreasing system”

Figure A.6.3. Two parametric transformations for sequences for “increasing
system”
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x _A+ _ f(xo)_A+
x,—D_ x—D_

A

+

Figure A.6.4. (continued) Two parametric transformations for sequences for
“increasing system”

¥ -A _ flg)-A ,
x,-D x-D 0>f (x)
xd/f(Xg)  y=f(x) I> <
D Txd X
A

Figure A.6.5. Two parametric transformations for sequences for “decreasing
system”
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xd _A+ _ f(xo)_A+

x-D_ x,—-D. 0>f'(x)

Figure A.6.6. (continued) Two parametric transformations for sequences for
“decreasing system”

A.6.1. Further Details Belonging to Subsection “8.1.1. A Higher Order Application
Example for Fixed Point Transformations of a Few Parameters”

In the control of this system a ball or cylinder can roll on the surface of a
beam the tilting angle of which is driven by some actuator. The motion of the ball
essentially is determined by the tilting angle and the force of gravitation. This means
that even if we are in the possession of a very strong actuator, the acceleration of the
ball along the beam is limited by the above two factors. Since the directly
controllable quantity is the torque determining the 2" time-derivative of the angle
tilting the beam, this system acts as a 4™ order one in the sense that the 4th time-
derivative of the ball’s position along the beam is determined by the tilting torque. It
has the following parameters: the momentum of the beam Op,,=2 (kgxmz), the mass
of the ball mp,=2 (kg), the radius of the ball »=0.05 (m), and the gravitational
acceleration is g=9.81 (Ir1/s2). Via introducing the quantities A=0p..,, and
B=®Ba”/r2+m3all, the following equations of motion are obtained as given in

Fig. A.6.1.1. in which variable @ (rad) describes the rotation of the beam counter-
clockwisely with respect to the horizontal position, and x (m) denotes the distance of
the ball from the center of the beam where it is supported. Variable Q (Nxm)
describes the torque at the axis rotating the beam. This quantity consists of two
different components: the torque directly exerted by the drive and the contribution by
the friction forces acting at the surface of the axle. In the present investigations this
latter component is unknown by the controller, only the consequences of its existence
in the trajectory tracking can be observed. It is evident that only the 4™ time-
derivative of x can be related to the 2" time-derivative of the tilting angle of the
beam that is in direct relationship with the rotating torque taking part in tilting this
angle. For making the model more realistic in the simulations it was assumed that the
axle of the beam has considerable dynamic friction approximated by the LuGre
model as follows.
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A 4th order system as investigated paradigm:
The Ball-Beam System.

. 8
/ A=@Beam’ and B=@Bal/r2+mBa//

e X
Dynamic friction at CQD
the axle (unknown
by the controller). ¢

In variable ,,x”
it is 4th order
system
because only
d?@/dF can
directly be set
by the torque
tilting the beam

AQ+ My, XCOS P—Mpy,, T Sin@ =0

o U

Bx+mg,gsing=0

x(4) mBall g

= — (sin QP° — cos (ogb?

Figure A.6.1.1. The Ball-Beam System

Instead of the dubious “velocity limit” normally applied in simulations with static
friction models (i.e. the limit value at which the relative motion of the contacted
surfaces is practically zero) to describe the “stick-slip phenomenon” an “‘internal
degree of freedom”, 7 is introduced with the appropriate equations of motion as

dz 60|V|Z

Xy ,
dt Fo+Fg exp(—|v|/vs)

(A.6.1.1)

dz
Ffric = O'Oz-l-O'lZ-i- FVV

in which 6p=5000 (Nm/rad), 6;=1000 (Nms/rad), Fv=100 (Nms/rad), Fc=10 (Nm),
Fs=20 (Nm), v=0.05 (rad/s) are the friction model parameters, and v (rad/s)
describes the rotational speed characteristic to the surfaces in contact at the axle. The
kinematic tracking requirements were set by (A.6.1.2) with the order of
differentiation m=4 and A=10s™"

d m
(Z-i_/lj [xNom—x]zO, A>0 (A.6.1.2)

from which the desired 4™ time-derivative x(4)D % can be computed. Since normally

the beam must be in an almost horizontal position for stabilizing purposes it was
expedient to limit its allowable rotational angle, and angular speed. For this purpose

potential-like limiting terms were introduced in the calculation of the desired ¢D e

as follows:
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.. Des _ _Ex(4)Des Tt .2 T i h ﬁPot(ﬁ _
(1) =———+tan @@ ¢y cos —1 P
Mpqi18 COS P 4 : (A.6.1.3)
—F(/,i_cosh(MJ
o0 3

with Ty, =I'j, =3 and Bpo; =5 that worked well setting limitation to the angle at 1.5

(rad) and angular velocity of 3 (rad/s). The parameters B and mp, mean the
estimated model values. The effects of the rough dynamic model data and the friction
that were unknown by the controller could manifest themselves in the low accuracy
of the non-adaptive control. The significance of adaptation can be measured by
observing the improved tracking accuracy of the adaptive controller. In the control

approach applied for negative realized x(4) the g(xlxd,D_,A+) function, for positive
realized values the h(xlxd,D_,A_) functions were used.

Phase space of fi [10™-1 rad/s vs 10"-2 rad] Phase space of fi [10™-1 rad/s vs 10"-2 rad]

6.00 7.00
5.89
478
3.337 3.67
2.56
1.44
0.677 0.33
-0.78
-1.89

_2'0-%.00 -5.71 -3.43 -114 114 343 571 800 _3'0-%.00 367 -133 100 333 567 8.00

Figure A.6.1.2. The phase space of the tilting angle ¢ vs ¢ : non-adaptive (LHS) and
adaptive (RHS) solutions

According to Fig. A.6.1.2. adaptivity considerably “regularizes” the motion of the
beam.

fi [10%-2 rad] vs time [s] fi [107-2 rad] vs time [s]
8.00 8.00
5.713 ) 5671
3.433 533
1.143
1.003
-1.144
-3.434 133
-5.713 ) -3.677
8.0 6.0
800 3.33 6.67 10.00 800 3.33 6.67 10.00

Figure A.6.1.3. The tilting angle @ vs time: non-adaptive (LHS) and adaptive (RHS)
solutions
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Phase space of x [10*-1 m/s vs 10"-1 m] Phase space of x [10*-1 m/s vs 10"-1 m]
2.500 2.500
1.944 1.944
1.389 1.389
0.8331 0.8331
0.278 0.278
-0.2787 -0.2787
-0.8334 -0.8334
-1.3894 -1.3894
-1.9447 -1.9447
-2.500 -2.500
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0.5 0.5
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1.37 -1.37
] A / 3 L' ]
1.9 o N Y -1.9 N
-2.5 -2.5
0.0 25 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0

Figure A.6.1.4. The phase space and time dependence of the displacement of the
cylinder along the beam: non-adaptive (LHS) and adaptive (RHS) solutions

Tracking error for x [10"-3 m] vs time [s] Tracking error for x [10"-3 m] vs time [s]
8.00 4.500
; e K

5.713 3.944
3.389
3.43 2.833
1144 2.278
1143 1.722
343 1.167
0.611

7\ . 00667 N\ S Sy
-8.00, -0.500

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

Figure A.6.1.5. The tracking error vs. time: non-adaptive (LHS) and adaptive (RHS)
solutions

Similar can be stated for the displacement of the ball (cylinder) along the beam
(Fig. A.6.1.4.). Adaptivity drastically improved the tracking accuracy (Fig. A.6.1.5.).
In both the adaptive and the non-adaptive cases the effort of the feedback exerted for
the compensation of the friction torque can be traced. In these figures the adaptive
and the non-adaptive solutions show differences only nuances (Fig. A.6.1.6.),
however, due to the integration according to time these nuances have significant
effect on the tracking accuracy. Figure A.6.1.7. well reveals the essence of the
adaptive method that realizes precise 4™ time-derivative of the coordinate x. To study
the operation of the adaptive control further charts were made (Fig. A.6.1.8.) that
displays when the functions g or & were used for realizing adaptivity.
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The friction torque [1070 Nxm] vs time [s] The friction torque [1070 Nxm] vs time [s]
60 60
367 367
S y ' y s / SN /
129 129
-127 -127
N N N N N N
-367 -367
Y 25 5.0 7.5 10.0 Y 25 5.0 7.5 10.0
The actuator torque [10%1 Nxm] vs time [s] The actuator torque [10%1 Nxm] vs time [s]
15.00 20
8.757
2.50\/\/\J\/\J 59
-3.753 S \/\/.H\,J\/\’\/\J\/\\/
-10.04 25 5.0 7.5 10.0 %5 25 5.0 7.5 10.0

Figure A.6.1.6. Compensation of the friction torques: non-adaptive (LHS) and
adaptive (RHS) solutions

xD(4) and x(4) vs. time [10"1 m/s*4 vs s] xD(4) and x(4) vs. time [10"1 m/s*4 vs s]
10.0 10.0

e

-13.3

-25.07
-36.77

' 4
-48.3] /NM\W /&R«\\f\/a
-1.74
25 5.0 75 1

_60'00.0 25 5.0 7.5 10.0 0.0

00

Figure A.6.1.7. Desired and realized 4™ time-derivative of “x”: non-adaptive (LHS)
and adaptive (RHS) solutions

Using g=1, h=-1 vs. Time [s] Adaptive factor s [10"-1 dimless] vs time [s]
2.00 10.18
10.127
//i y //*
0.67
10.063
10.007
-0.67
9.947 \
-2.00 9.88
0 5 10 0.0 25 5.0 7.5 10.0

Figure A.6.1.8. The use of functions “g” and “h” versus time, and the “cumulative
deformation factor” vs. time in the case of the adaptive control
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According to (8.1.1) and (8.1.2) a “cumulative deformation factor” can be defined

for functions & and g as follows: s(tk ) = ﬁ (xd (t,- )— Ay )/ ( f (x(tl- ))— A+) and

i=0
k
s(tk )= I (f (x(tl- )-A_ )/ (xd (tl- )—A_) that somehow are characteristic to the control
i=0
(Fig. A.6.1.8.).

The consequences of the strongly nonlinear nature of the friction model applied can
well be traced in Fig. A.6.1.8.

A.6.2. Further Details Belonging to Subsection “8.2.2. Application Example a):
Precise Control of an AGV Equipped with Omnidirectional Wheels”

e
ra

Elastic
connection

(Spring)

Connected
burden

Actual place of the
4th mass

Figure A.6.2.1. The sketch of the triangular cart considered

The cart was supposed to have canonical triangular shape of side length L=2 (m).
The orientation of the active forces were supposed to be described by the orthogonal
unit vectors ey, fa, ep, f5, ec, and f¢ at the wheels A, B, and C in the (x,y) plane in
which the direction of the appropriate e vectors was identical to that of the straight
line connecting the geometric center of the triangle to the appropriate vertices. These
vectors were assumed to rigidly rotate around the axis z with angle ¢3;. Each wheel
had the common constant vector component in the z direction e, along which the
contact constraint forces originating from the ground acted. It was assumed that the
plane of motion was exactly horizontal, so the vector of the gravitational acceleration
in the reality had a component only in the z direction. At the vertices of the triangle
three heavy wheels and drive systems were located, each of them had the mass
M=30 (kg). It was assumed that further 2 mass was located over the geometric
center of the triangle at the height of 4p=0.5 (m). The vehicle was assumed to move
on the (x,y) plane with prescribed nominal location of the projection of its
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hypothetical mass center point S“" (m) and nominal rotational pose q3N (rad) around
the axis z. According to Fig. A.6.2.1. the “not modeled degree of freedom” in this
system was a mass-point connected to wheel C by an elastic connection, a spring. In
this case it had the mass of 0.45M attached to the spring of stiffness k=1000 (N/m)
and zero force length Ly=1 (m). It was assumed to move along the (x,y) plane with a
viscous friction coefficient #=5 (Ns/m).

Utilizing the well known fact that the acceleration of the mass center point of
a rigid body multiplied by its full mass is equal to the sum of the external forces
acting on that system, and that the time-derivative of momentum of the system
computed with respect to the actual mass center point is equal to the momentum of
the external forces (torque) with respect to this point, the required active driving
force components Faca, Fagp, Fpep, Fam, and Fe.c, Fcre, as well as the hypothetical
vertical constraint force components Fy4,, Fp;, and F¢, can be calculated. (According
to Fig. A.6.2.1., if the small wheels do not have drives in the horizontal e directions
no any forces can be exerted.) The rough dynamic model available for the controller
is given as follows:

F; (A.6.2.1)

i which A =fe epec].  BM=[t,tpt0]. ) =oo. L]

D(m)=leA><x£§”),eB><X%n)’ec><X(cm)J’ E(m):lfAXXgn)’foxgn)’fCXX(Cm)J’ and

FOm) =l sex e sx™ e x| g=0.061.  FemlFuonFaenFecl”

FF[FAfA,FBfB,FCfC]T, and FZ=[FAZ,FBZ,FCZ]T, and the Xgn),xgl),xgn) vectors connect
the assumed mass center point with the appropriate vertices at the wheels A, B, and

C, while P(m) denotes the model value of the momentum of the rotating system. The
“actual system’s” equation of motion that can be used for calculating the “realized
accelerations” and “realized contact forces in the z direction” is similar to (A.6.2.1),
but it contains the acceleration of the actual mass center point S and the actual
momentum calculated with respect to that (P). Fortunately S”” and S have simple
geometric connection. Beside that it contains the X4, X, and X¢ vectors that connect
the actual mass center point with the appropriate vertices at the wheels A, B, and C.

Furthermore, the equation has to be rearranged since in it in the “input side” we have
F, and F;, and the unknown quantities are F,, S and 3. By expressing P with

q3.93,G3 itis obtained that

) R e

in which P contains certain elements of the actual inertia matrix ®, and the array
H=[e,xx,,e,xX3p, €,XXc, —®(3); 1,1,1,0]. From the fact that certain kinematic data can
be exactly known it concludes that A=A"". B=B"™, and C=C". In the calculations it
was taken into account that the full momentum of the gravitational forces with
respect to the actual mass center point is zero, and that no acceleration component
may exist in the z direction (supposing that the vehicle does not turn over). So the
appropriate component of the gravitational forces must be compensated by the
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contact forces in the direction z. In the solution of the “actual system’s equations” it
can be utilized that they are decoupled to some extent: S has only x and y
components, as well as the arrays A and B, while the array C does not have 1* and
2" components. On this reason the two nontrivial nonzero components of S can be
determined independently of the F, values, while its zero 31 component yields some
restriction for the sum of the components of F,. This can be associated with the three

equations pertaining to P, therefore we obtain 4 equations for 4 unknown quantities
in (A.6.2.3):

oo ] [ ~Real |
—43073 Fyg
.2 Real
93013 | _ {_ FABCEf} —H Fg (A.6.2.3)
O SMg Fcl:\‘zeal
o0 | _c-jgl){eal

Figure A.6.2.2. The sketch of the omnidirectional wheel

It is worth noting that according to Fig. A.6.2.2. the omnidirectional wheels normally
are driven to rotate around the axle of the “big wheel”, and normally can freely roll
in the direction of this axle due to the “small wheels”. In Fig. A.6.2.1. the axles of the
big wheels were denoted by the vectors ey, e, and ec, therefore in (A.6.2.1) F.=0,
that means that the arrays A”™ and D™ do not play role in this equation. Horizontal
driving forces can be exerted only in the actual directions of the vectors £y, fp, and fc.
Equations (A.6.2.1) and (A.6.2.3) do not contain the model of the connected
subsystem the existence of which can be taken into account by calculating the
contact forces (and their momentum) that appear due to the dynamic coupling of
these subsystems. (The equations of motion of the mass point were solved
separately.)

In the simulations the trajectory tracking strategy was prescribed on purely
kinematical basis as a PID-type control to obtain the “desired accelerations” as
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Nominal and Computed Trajectories on the Plane .y}
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Figure A.6.2.3. The location of the “hypothetical mass center point” on the (x,y)
plane (upper row, in [m] units), and the rotational orientation of the cart (lower row
in 107 [rad] units)vs. time (in [s] units) for the non-adaptive control (LHS) and the
adaptive one (RHS) [Nominal trajectory: black solid line, simulated trajectory: blue

dashed line]
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Figure A.6.2.4. The trajectory tracking error vs. time (upper row): for the non-
adaptive control in 1 o’ [m] units [LHS], and for the adaptive control in 1 0? [m]
units [RHS] (black solid line: for “x”, blue dashed line: for “y”), and the orientation
tracking error vs. time (lower row) for the non-adaptive control in 10™" [rad] units
[LHS], and for the adaptive control in 1 0° [rad] units [RHS], time is given in [s]
units
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EDeS (1) EN 1)+ P Y ()~ 0 D [V (- £0))+ 1 [V (0)- ()i (6240

0

in which P, D, and [, are appropriate positive constants [actually P,=50 (s'z)
D,=10 (s"l) and I,=5 (s'3)]. The superscript N refers to the nominal accelerations
determined by the trajectory to be traced. Simulation results are presented in the
sequel. The adaptive parameters were: K.,= -4000, B.,=1, Act,1:1x10'4.

In Figs. A.6.2.3. and A.6.2.4. the trajectory and orientation tracking is
displayed for the non-adaptive and the adaptive controls. They reveal that the
proposed adaptivity well compensates the simultaneously occurring modeling errors
and the dynamic interaction with the unmodeled sub-system.

Mominal and Computed Acceleration vs Tme Mominal and Computed Acceleration vs Tme
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Figure A.6.2.5. The linear acceleration (upper row in 10 [m/s’] units, black solid:
for desired “x”, blue dashed for desired “y”, green dense dashes for simulated “x”,
light blue dash-dot for “y”), and the rotational acceleration (lower row in [rad/s’]
units, black solid: desired values, blue dashed: simulated values) vs time (in [s]) for
the non-adaptive control [LHS], and the adaptive one [RHS]

In Fig. A.6.2.5. the linear and rotational accelerations are described. It well reveals
that the adaptive law far better approximates the “desired” acceleration values than
the non-adaptive one, that is the essence of the control idea is well realized. By the
help of Fig. A.6.2.6. it can be seen that the unmodeled dynamics of the coupled sub-
system completely “destroys” the “canonical” form of the velocity pattern that is
well saved by the adaptive version.

Figure A.6.2.7. indicates that the “high frequency” of the force pattern mainly
originates from the “chaotic”” motion of the directly uncontrolled, unmodeled coupled
subsystem.
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‘The Velocity in the f Directions & the Wheels vs Time ‘The Velocity in the f Directions t the Wheels vs Time
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Figure A.6.2.6. The velocities at the wheels (A: black solid, B: blue dashed, C: green
dense dashes) vs. time (in [s] units) for the non-adaptive controller (LHS in [m/s]
units), and the adaptive one (RHS in 1 0’ [m/s] units)

The Active Ff Forces at the Wneets vs Time The Active Ff Forces at the Wheels vs Time
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Figure A.6.2.7. The active driving force components in the direction of the
appropriate f vectors at the wheels (A: black solid, B: blue dashed, C: green dense
dashes in 10° [N] units) vs. time (in [s] units) for the non-adaptive controller (LHS in
[m/s] units), and the adaptive one (RHS in 1 0" [m/s] units ) (upper row); The
location of the coupled burden in the (x,y) plane in [m] units for the non-adaptive
controller [LHS] and the adaptive one (lower row)

A.6.3. Further Details Belonging to Subsection “8.2.3. Application Example b):
Precise Control of the Cart-Beam-Hamper System”

The adaptive control parameters (naturally only in the adaptive case) took the
following constant values: K.,= -32000, B.=1, Ac,,,:2x10'6. The simulation results
are presented in Fig. A.6.3.1. revealing how efficient this simple approach is in
comparison with the more sophisticated but more restricted methods (Figs. A.1.2.-
A.2.6.). For demonstrating the robustness of the adaptive method two of the most
significant control parameters K. and A, were tuned in real-time using the
SCILAB’s real-time package and the figure handling properties. The acceleration
error was plotted as a function of the actual parameter values (Fig. A.6.3.2.). Other
details were published in [C116].
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Figure A.6.3.1. Comparison of the non-adaptive (LHS) and the adaptive (RHS)
controllers’ operations for the cart-beam-hamper system with friction and external
disturbance forces for A=10xI [1/s], K.;=-32000, B.yj=1, Acni=2%1 0°.
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Figure A.6.3.1. (continued) Comparison of the non-adaptive (LHS) and the adaptive
(RHS) controllers’ operations for the cart-beam-hamper system with friction and
external disturbance forces for A=10xI [1/s], K.n=-32000, B =1, Acn=2%1 0°.

134



dc_62_10

Acceleration Error Map: q_pp_err vs A_cirl, K_ctrl
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Figure A.6.3.2. Real-time modification of the adaptive control parameters A..,; and
K. reveals the very robust environment around A .j=4x1 0° and K= -60x1 0’

A.6.4. Simulation Results Belonging to Subsection “8.3.1. Possible
Application:Control of the Cart and Double Pendulum System”

In these examples the cart plus double pendulum system of Fig. A.5.1. and
equations of motion (A.5.4) was considered as an underactuated system that means
the the linear degree of freedom (g3) was left without own drives, i.e. Q3=0 was
assumed. The motion in the linear direction was controlled through the dynamic
coupling between the linear axis and the two rotary ones. That is the reaction forces
needed for moving the two “counterweights” m; and m, were used for generating
acceleration along gs.

So let us assume that we prescribe two “desired” second time derivatives as
g according to the trajectory along which we wish to move the cart, and an
“ancillary acceleration”, g . Via substituting these values into the 3rd equation of
the set (A.5.4) the necessary ¢,* can be determined. Following that, by substituting
these components of ¢ into the 1* and ond equations of (A.5.4) Q) and Q; can be
determined. For this calculation we can use the available approximate values of the
dynamic parameters s, /m,, M (it can be assumed that the gravitational acceleration
is precisely known as well as the lengths of the arms of the cart, that is
L =L,L =L, %=g ). The so calculated generalized forces then can be exerted to the
actual system, and cause the “realized accelerations” [4,,4,.4,] according to (A.5.4).
Then by observing the response error, viz. the differences between [, ] and

[4..4,] the adaptive can be applied to achieve precise tuning. (In this approach the
realization of the appropriate g’ is out of any interest.)

While implementing the above program the following difficulties arise: for
determining ¢, we have to make a division with its coefficient in the last row of
(A.5.4) which is m,L,sing, . It evidently is singular around g,=%r, 0. Similar problems
arise around g;=%x, 0, too. To avoid this situation we can combine the reaction forces
of the masses m; and m, in the following manner: a) both angles are started from the
“best position”, i.e. from 7/2; if g; is within a “safe region” (i.e. g€ [7/4, 37/4]) then
the particular value of ¢, is not important, but g, can be forced to move into the
direction of /2 by the control law §> =-C*(¢,-x/2)-Cq, (C>0), and §” can be
determined accordingly; if ¢; 1is outside of the safe region then

.- Des

G’ =—-C*(q,—7/2)-C4, can be prescribed and ;> can be determined accordingly.
(More sophisticated compromises can be invented according to the ideas used e.g. in
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optimal control or by a fuzzy-type mixing of the above “crisp”, if ... then type
application of the acceleration of the counterweights.) The prescribed tracking error

relaxation used the following PID setting: ¢ (c)=¢" (r)+3A%(r)+ 3Aé(t)+A3je(§)d§ , in

which e(r):=¢"(t)-¢,(r) denotes the trajectory tracking error, A>0 is the reciprocal of
a time constant. Actually A=12/s, C=10/s, m =8kg,m,=8kg, M =20kg,
M =4kg, m,=6kg, M =18 kg, Li=L,=2 m, g=9.81 mls® were used in the simulations
detailed in the next section that also contains information on the adaptive control
parameters. The nominal trajectory was a 3 order spline function of time consisting
of consecutive intervals of linear variation of the 2" time derivative.

For simulation purposes the SCILAB 5.1.1 version and its SCICOS ver. 4.2
co simulator package were applied that can freely be used for research purposes. For
the simple SCILAB program representative results are given in Figs. A.6.3.1. and
A.6.3.2. and A.6.3.3.

Mominal & Simulated Trajectories. Mominal & Simulated Trajectories.
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Figure A.6.3.1. Simulation results obtained by the simple SCILAB program: nominal
(green line) and simulated (red line) trajectories [ 1 0" m] (upper chart), phase
trajectories i.e. dq"s/dt [107 m/s] vs. ¢"3 [107 m] (green, “canonical” line) and
dqs/dt [1 0’ m/s] vs. g3 [1 o' m] (red, “less canonical” line), and trajectory tracking
error [107 m] vs. time [LHS: simple non-adaptive PID controllers, RHS: adaptive
controller tuning parameter A according to (8.3.5) with a=6/s];
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Figure A.6.3.2. Simulation results obtained by the simple SCILAB program:
variation of the ancillary axes [10” rad] (upper chart, q1 green “upper in the
beginning” line, g, red line), the exerted generalized forces (chart in the middle, Q;
black “upper in the beginning” line, Q» green “lower in the beginning” line [1 0’
Nxm], Q3=0[1 0’ N | red “middle in the beginning” line), and the second time
derivatives for q; [1 0! m/s’ | (lower chart, nominal: black “canonical” line, desired:
green “slowly varying” line , realized: red “more hectic” line) [LHS: simple non-
adaptive PID controllers, RHS: adaptive controller tuning parameter A according to
(8.3.5) with a=6/s];
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Figure A.6.3.3. Simulation results obtained by the simple SCILAB program for the
adaptive controller tuning parameter A according to (8.3.5) with a=6/s: parameter A
vs. time
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To investigate the “reality” of this “ideal” SCILAB-based solution the built in
integrator of the SCICOS simulator was used. It was assumed that we had a digital
controller of discrete time-resolution A.y=1 ms. This means that the controller
yields constant torque/force command signals for a duration of Ay, and the drive
system has so fast response (i.e. small time-constant) that Q can well be
approximated as a step function. In similar manner, it can be assumed that the
system's response is observed in discrete steps and the controller is provided with
constant observed quantities within the steps of duration A.,... For this purpose small
buffers and sample holders can be used as typical electronic / software components.
In principle the sample holders should be set to Ageuy=Acycle. However, in this
construction the sampling practically would be indefinite (i.e. depending on the
accuracy of the electronic components) in the steps of the command and observed
quantities. To make the situation definite the Ageuy=0.999A.,c choice was used. In
this case in the beginning of a new control cycle for a very short duration the values
just preceding the previous values are sampled. The SCICOS numerical co-simulator
had the following parameter settings: “Integrator absolute tolerance = 0.0001”,
“Integrator relative tolerance = 0.000001”, “Tolerance on time = 1.000D-10”,
“Maximum step size in integration = 0.0001 s”.
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Figure A.6.3.4. Simulation results obtained by the SCICOS program: the nominal
trajectory (upper chart), the simulated trajectories (chart in the middle, ql green
“upper in the beginning” line, q, red “middle in the beginning” line, q; yellow
“lower” line), and the control parameter A (lower chart) [LHS: simple non-adaptive
PID controllers, RHS: adaptive controller tuning parameter A according to (8.3.5)
with a=6/s];

Representative simulation results are given for the SCICOS program in Figs.
A.634., A6.3.2., and A.6.3.3. It can well be seen that the common SCILAB
programs with the simplest Euler integration and the far more sophisticated SCICOS
simulations provided comparable results and that the main qualitative/quantitative
features are reliable in the case of the simple SCILAB programs, too. [Also consider
Fig. A.6.3.7.] For Fig. A.6.3.7. it can be noted in the simulations the function
o(x):=x/(1+Ixl) was used, so the region of convergence is oe[0(0),0(-1)]=[0,-0.5].
For the ideal case 0(&;,a)=0(-0.5)=-0.333..... The SCICOS-based program also took
it into account that following a tuning act for & the controller must wait 3XA.,, time
in order to obtain quite relevant data for tuning since it is based on past information.
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Graphic 1

Graphic 1

Figure A.6.3.5. Simulation results obtained by the SCICOS program: the 2" time
derivatives of the controlled axis: nominal (black “canonical” line), desired (green

“slowly varying” line), and simulated (red “more hectic” line) [LHS: simple non-
adaptive PID controllers, RHS: adaptive controller tuning parameter A according to

(8.3.5) with a=6/s];
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Figure A.6.3.6. Simulation results obtained by the SCICOS program for the adaptive
controller tuning parameter A according to (8.3.5) with a=6/s: the trajectory
tracking error (LHS upper chart), the nominal and simulated trajectories (LHS lower
chart, green and red lines), and the nominal and simulated phase trajectories (RHS);

1001
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T 5]

Figure A.6.3.7. Variation of o(€,) obtained by the simple SCILAB (LHS) and the
SCICOS (RHS) programs for the adaptive controller tuning parameter A according
to (8.3.5) with a=6/s
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A.7.1. Simulation Results Belonging to Subsection “9.1.1. Possible Applications:
a) MRAC Control of the Cart + Beam + Hamper System”
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Figure A.7.1.1. The operation of the “traditional” (LHS) and the “novel” (RHS)
MRAC controllers: tracking for a nominal trajectory generated by a 3rd order spline
function: trajectory tracking (1st row), phase trajectory tracking (2nd row); 2"
derivetives (3rd row), color coding: qNI:black, qNZ:blue, qNgzgreen (for the
nominal values), g° j=bright blue, ¢">=red, q°s=magenta (for the “desired” values),
and q;=yellow, g,=dark blue, qs=light blue (for the realized values)

The main results of the comparative analysis are given in Fig. A.7.1.1. The
figures reveal that both methods resulted in acceptable control. However, the novel
controller resulted in far more precise ‘“acceleration tracking” than the traditional
one, in spite of the drastic disturbance forces applied. The zoomed excerpts in
Fig. A.7.1.3. reveals that the nominal, desired, and realized joint coordinate
accelerations are in each other’s vicinity. Really, the black, bright blue and yellow
lines belonging to ¢, the blue, red, and dark blue lines belonging to ¢», and the
green, magenta, and light blue lines belonging to g3 keep together in the three
groups. Actually the desired and the realized values fluctuate around the nominal
values (straight lines in the case of 3" order spline trajectories). The fluctuation is
caused by the external disturbance forces.
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Figure A.7.1.2. Other characteristics of the “traditional” MRAC controller: tracking
for a nominal trajectory generated by a 3rd order spline function: zoomed excerpt of
the 2™ derivatives (color coding as in Fig. A.7.1.1.) [LHS, I* line], exerted
generalized forces Q; [Nm] (black), Q> [Nm] (blue), Q3 [N] (green), and disturbance
components Q;”' [Nm] (bright blue), Q" [Nm] (red), Q5" [N] (magenta) [RHS,
1" line]; The additive adaptive component D: D; [Nm] (black), D; [Nm] (blue), D3
[N] (green) [LHS, 2" line]; the tuned parameter otvs. time [RHS, 2" line]

Furthermore, the desired 2" derivatives only slightly differ from the nominal
ones, that in the case of a purely kinematically designed trajectory tracking policy
means that only small PID corrections were necessary. The desired ant the realized
accelerations are in each other’s vicinity, too, that proves the operation of the
adaptation. The situation is far less elegant in the case of the traditional solution
using a Lyapunov function (Fig. A.7.1.2.).
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Figure A.7.1.3. Other characteristics of the “novel” MRAC controller: tracking for a
nominal trajectory generated by a 3 order spline function: zoomed excerpt of the
2" derivatives (color coding as in Fig. A.7.1.1.) [LHS], ], exerted generalized forces
Q; [Nm] (black), Q, [Nm] (blue), Q3 [N] (green), the “desired” QJD”[Nm] (bright
blue), Q;"“[Nm] (red), Qs"[N] (magenta), and the “recalculated” torque/force
components Q,*““INm] (yellow), Q-"“““[Nm] (dark blue), Q5*“““[N] (light blue)
[RHS]
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Figure A.7.1.4. Comparison of the “traditional” [LHS] and “novel” [RHS] MRAC
controllers without external disturbances: zoomed excerpt of the 2" derivatives
(color coding as in Fig. A.7.1.1.) [1" row], exerted generalized forces Q; [Nm]

(black), Q> [Nm] (blue), Q3 [N] (green), and disturbance components Q 5 [Nm]
(bright blue), Q""" [Nm] (red), Qs [N] (magenta) [2"™ row]
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Figure A.7.1.5. The additive adaptive component of the “traditional” MRAC without
external disturbances D: D; [Nm] (black), D, [Nm] (blue), D3 [N] (green) [LHS];
The generalized forces of the “novel” MRAC without external disturbances: the
“exerted” Q; [Nm] (black), Q> [Nm] (blue), Q3 [N] (green), the “desired”
Q,°“[Nm] (bright blue), Q;°“[Nm] (red), Q;°“[N] (magenta), and the
“recalculated” torque/force components Q~“““INm] (yellow), Q;%“““INm] (dark
blue), Q5*““““IN] (light blue) [RHS]

The superiority of the novel approach is even more evident in the case when no
external disturbances were present. The 1% row of Fig. A.7.1.4. reveals that the
nominal, desired, and realized 2™ time-derivatives are almost identical to each other.
Furthermore, according to Fig. A.7.1.5. the desired torque components deduced from
the reference model very precisely agree with the recalculated values.
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A.7.2. Simulation Results Belonging to Subsection “9.1.2. Possible Applications:
b) Novel MRAC Control of a Pendulum of Uncertain Mass Center Point”

The Dynamic Model of the Paradigm

e The Euler-Lagrange
O Equations of Motion
Y g [m]
g o/ %

*

. I ., 1 o

T=204 +5m{(Lo v, di+ g3}

_ 1

q, [rad] Lo V= [C+mg(L0 +4q, )]COS 4 +Ekq2
L=T-V

d oL JL
=9

For determining the ,actual” joint dt 8ql aqi
accelerations:

[Ql} _ {®+ m(Ly+q,) 0}[61} } N {2m(Lo +4,)i1G, = [C + mg(L, +4,)sin ql]}

0, 0 m | 4, _m(Lo +4q, )%2 +kq, +mg cos g,

0,=0

Figure A.7.2.1. The dynamic model of the pendulum of uncertain mass center point

The dynamic model of the pendulum of mass center point of uncertain
location is given in Fig. A.7.2.1. It has an extra degree of freedom that behaves as a
not controllable axis completely hidden for the controller. It is a mass-point that can
move along the rod of the pendulum against viscous friction and elastic bounding
forces. In the case of the presence of viscous friction along the linear axis the model
given in Fig. A.7.2.1. has to be completed by the friction force as Q, =—uqg,. The

precise parameters of the dynamic model were: ®=30 kgxm?, C=50 kg, m=50 kg,
k=3000N/m, g=9.81 m/s’, 4#=5 Ns/m, and Lo=2 m. The appropriate approximate
values used by the controller were as follows (in the same measuring units,
respectively): ©"=50, C"=70, m"=20, g"=10, #"=0.01, and L";=Lo. (The model
value of the spring stiffness k and the viscous friction coefficient did not play any
role, the controller assumed that no 2" axis exists in the system.)

In the sequel simulation results will be provided for the novel MRAC control
of this system. The adaptive control parameters initially were set as K= -2x10°, B=1,
Ap=10". In this case parameter A had an aggressive, agile tuning quite different to
that used in the case of the cart + double pendulum system in (8.3.5). This tuning has
some “exponential nature” and can be described as follows:

e et us start with a roughly estimated initial value Ay;

e the estimated value of the partial derivative of the actual & is
calculated according to equation (9.1.2.1);

e from its present value it can be determined whether A must be
increased or decreased;

¢ since for the estimation various delayed (“past”) values are used, for
proper modification of A we have appropriate information in 3A.y.
time steps;
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e et us prescribe a “quasi-exponential” variation for decreasing A in a
discrete approximation by using a parameter 0<)<1 as A,.;=7A4,; if the
discrete time step is of duration A this corresponds to the
derivative dA,/dt=[A,+1-Anl/(BAcycie)=[(}#1)/(3Acycie)]A, that roughly
corresponds to the exponent 7=(}1)/(3A.c.) of an exponential
function A(t)=Agexp(m) leading to the estimation )=7A.yq+1;

e forincreasing A the A,;=A,/yoperation can be applied;

e for decreasing A the A+ ;=)A,/Cfacior Operation can be applied;

e to avoid numerically achieving 0 by decreasing A that could result in
constant A=0, if A,.; becomes smaller than Ay/1000, we restart the
tuning from A,; ;=Ao;

e also, for critically small denominator lr,-r,.;I<=%eps (%eps means the
“small value” in the SCILAB program) we again use the initial
A,+1=Ao estimation.

Simulation examples are presented in Figs. A.7.2.2.-A.7.2.6. that reveal that the
MRAC idea works well in this case, too. The tuned parameter suffers from drastic
variation.

aaaaaaaaaaaaaaaa

Figure A.7.2.2. The results for the non-adaptive simple PID controller (LHS) and the
adaptive one (RHS): the nominal trajectory of the rotary joint (joint #1) [rad] vs time
[s] (Ist chart); the simulated trajectory of the rotary joint #1 (green line) [rad] and
the swinging of the not controlled linear joint (#2) (red line) [m] vs time [s] (2nd
chart); the tuned control parameter A [ s*/rad | vs. time [s] (3rd chart, purple line)
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Figure A.7.2.3. The results for the non-adaptive (LHS) and the adaptive (RHS)
controllers: the nominal and simulated phase trajectories of the rotary joint (joint
#1) dql/dt [rad/s] vs. ql [rad]
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Figure A.7.2.4. The results for the non-adaptive simple PID (LHS) and the adaptive

(RHS) controllers: the trajectory tracking error of the controlled rotary joint (joint

#1) [rad] vs. time [s] (1st chart); the nominal (green line) and simulated (red line)
trajectories of the controlled rotary joint (2nd chart)
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Figure A.7.2.5. The results for the non-adaptive (LHS) and the adaptive (RHS)
controllers: the Q components to be exerted according to the reference model at the
rotary joint (joint #1) [Nm] (black line) and the zero force for the not controlled
linear joint (green line) vs. time [s] (upper graph), the exerted torque at (joint #1)
(red line, central graph), and the Q components of the reference model recalculated
from the actual system's response (purple line, lower graph)
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Figure A.7.2.6. The results for the non-adaptive (LHS) and the adaptive (RHS)
controllers: the realized acceleration of the rotary joint (joint #1) [rad/s’] vs. time
[s] (black line), the desired acceleration computed from the PID block (green line),
and the nominal acceleration (red line)
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A.8. Simulation Results for Section “10.2. Application Example: Adaptive
Control of the Cart plus Double Pendulum System”

The determinant of the inertia matrix in (A.5.4) has the form of
detM =m,Lim,L} (M +m, +m, —m, sin’ g, —m, sin” qz) (A.8.1)

It can well be seen from (A.8.1) that the minimum value of this determinant is equal
to

min(detM) = m,L:m,[*M (A.8.2)

and this situation happens whenever ¢,, ¢, =*7/2 simultaneously. If
M << m,, m, these points correspond to near singular or badly conditioned inertia
matrix that may cause problems in the control and simulation. On the basis of (A.5.4)
it is easy to express the inverse dynamical equations of motion in closed analytical
form used for simulation purposes. For making the simulation tests more realistic the
purely conservative mechanical model in (A.5.4) was completed by dissipative
Dynamic Friction terms yielding an additional contribution to the array Q. (This term
was used only in the equations applied for representing the results of real time
measurement, but is was “unknown’ by the controller.) For numerical description a
variant of the Lund-Grenoble (LuGre) Model was used in which the deformation of
the bristles of some “brushes” are applied to describe the deformation of the surfaces
in dynamic contact, so friction is described as a dynamic coupling between two
subsystems having their own equations of motion as

dz_ oz
dt F.+F exp(—|v| /v,

),F:00z+01%+,uv (A.8.3)

for which the proper direction of F has to be set in the applications, i describes the
usual viscous friction coefficient that dominates at “higher velocity” of the relative
motion of the surfaces in contact “v” (this term is to be understood as a comparison
between Ivl and v;>0 since v, represents the limit of the low velocity region), oy
corresponds to some elastic deformation of the surfaces in contact, “z” is the hidden
internal degree of freedom, and o) is a new parameter pertaining to the effect of the
bending bristles. To clarify the role of the positive Fs and F¢ parameters observe that
the 1* equation in (A.8.3) pulls z in the direction of v if Izl is small (in this case the 1*
term dominates in the right hand side of the equation). For big Izl values the
dominating term is the 2" term that tries exponentially damp z. The z variable stops

varying when the limit for it z, = sgn(v)[FC + F exp(—|v|/ v, )]/ o, is achieved that
corresponds to the contribution of 0,z = sgn(v)[FC +F; exp(—|v|/ vs) . From it

follows that for near zero velocities and stabilized z values big contribution (Fc+F)
is obtained (the so called “sticking” phenomenon), while for “big” velocities it is
reduced to F¢, therefore this model is able to describe the “slipping” phenomenon,
too. This model is physically complete in the sense that no any velocity limit of
dubious interpretation must be introduced for its use, in contrast to the static friction
models that cannot yield definite friction force for v=0, and also leave the question
open how to use this equation in numerical simulations. The behavior of the whole
system is described by the dynamic coupling between the hidden internal and the
observed degrees of freedom. Though the appropriate quantities in (A.8.3) were
developed for linear motion and forces, it easily can be generalized for rotary motion
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in which torques appear in the role of the forces, and rotational velocities are present
instead of the linear motion’s velocity.

For control purposes the “very rough model* used instead of (A.5.4) was
defined as

o1 1o o o747 10
0, |={0 10 0|g,|+|10], (A.8.4)
o, [0 0 10]4,]| |10

and the approximate model exact in its form but imprecise in its parameters (just as
in the case of the Adaptive Inverse Dynamics Control or the Adaptive Slotine-Li
Control) had the same form as (A.5.4) with the appropriate model parameters
M"=0.7xM, L{"=09xL; and L,"'=0.8x L, m= 0.6xm; and m,"=0.5xm.
Regarding the friction parameters, the appropriate values defined in (A.8.3) were
chosen for each axis as follows: 079=10, 07,=156, =1, Fc1=100, F5;=200, v,;=0.1
for the 1% axis, 030=20, 02,;=300, (=2, F»,=200, F5,=400, v,=0.2 for the 2" axis,
and 030=30, 03;=450, 15=3, F3=300, Fs3=300, v3=0.3 for the 3" one (each in
appropriate physical dimensions). For better testing the control method additional
disturbance force components were added that had the same numerical value and had
the dimension of torque for Q; and @, and force for Qs.

The parameters of the adaptive controller in (10.1.5) were K=200, n=3 (this
paradigm has 3 DOF), C.,=0.5, and the kinematically prescribed trajectory tracking
resulted in the desired 2™ time-derivatives of the generalized coordinates as follows:

i 0)=0) +38() a0} 3ol a0} 5 [l o e, as)
that corresponds to some PID-type controller resulting in the convergence of the
tracking error to zero if it is precisely implemented. (superscript N refers to the
nominal motion). This convergence is roughly exponential with the exponent of -A.
In the simulations A=15/s value was used. As further refinement of the control
instead of the desired accelerations prescribed by (A.8.5) a reduced desired
acceleration was applied as

i (¢)- - )

- 1+max(ﬂ('jd (t)(, ii(t—&)”)
- 1 ashapeé:
A=(+g)+(g,~1 el)—HaW(: (A.8.6)

a(e)" = (1= )il - &)+ A4 (e)*

where O corresponds to the assumed cycle time of the control (107 s in the
simulations) with small positive &, &, and some positive dgq,. parameters. Equation
(A.8.6) corresponds to some linear interpolation between the actual desired and the
past realized accelerations in which the parameters & and g measure the
significance of their difference. These parameters can be set according to the order of
magnitude of the signals occurring in the particular application. For zero ¢ it
practically corresponds to insignificant modification, for &>1/agup. it results in A=&
that means drastic reduction. In the simulations we had £=0.2, &=107, and
ashape=0.5. The control signal was supposed to be constant during o, and the
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integration of the equations of motion happened with the time-resolution of /10
with the simple method proposed by Euler. Since the simulations revealed that the
direct application of (10.1.5) still resulted in very small fluctuation of the value of
Onar, Instead of it a smoothed value was used as

af)=a.. (t)tanh( =) (e~ &)J (A.8.7)

K

That reduced the relative significance of the fluctuation in & for small values.
Finally, the torque / force components that should have been exerted according to
at), (A.8.6) and (A.8.4) (i.e. the actual proposal) was smoothed according to its past
proposed values by a forgetting filter

> BQl-18)"
Q (t )Actual — 1=0 _
s

that can be realized very easily by multiplying the content of a buffer by 0<f<1 and
adding to it the new contribution (the normalizing factor can be computed in closed
form). In the simulations £=0.5 was applied.

It is worthy of note that the SVD was not executed within the control cycle.
Instead of that, by the use of the very rough and the approximate model it was
calculated in advance over a grid of dimensions 5x5 in the
[-7m+7x[- 7+ 7] grid in advance, and the appropriate diagonal and the orthogonal
matrices were stored in memory. During the calculations these grid points served as
the supports of a Support Vector Machine (SVM) of cylindrical function with
Gaussian shape, and within the cycle only a simple interpolation happened by
calculating “distance dependent averages” with the “distance functions”

(A.8.8)

d, (q)= exp(— }/”qk —q||2) with 7=0.2 in which q denotes the actual state, and q

means the k" grid point.

In the 1* series of simulations the effect of the modeling errors (without
friction and external disturbances) were studied in the case of the non-adaptive and
the adaptive controller, respectively.
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The Phase Spaces [10"1 rad/s or m/s vs 10*1 rad or m] The Phase Spaces [10"0 rad/s or m/s vs 10*-1 rad or m]
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Figure A.8.1. The phase trajectories (1* row), the tracking error ( 2" row), and the
exerted generalized forces (3™ row) for the non-adaptive (LHS) and the adaptive
(RHS) control (for the nominal motion: q;: black, q»: blue, q;: green, for the
simulated motion: q;: light blue, q,: red, q;: magenta line in the phase trajectories,
and q;: black, q»: blue, q3: green for the rest)
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Figure A.8.2. The variation of the adaptive factors a and A versus time
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The Phase Spaces [10*-1 rad/s or m/s vs 10*1 rad or m] The Phase Spaces [10*0 rad/s or m/s vs 10*-1 rad or m]
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Figure A.8.3. The phase trajectories (1*' row), the tracking error ( 2" row), and the
exerted generalized forces (3™ row) for the non-adaptive (LHS) and the adaptive
(RHS) control for balls moving in the opposite directions [counterpart of Fig. A.8.1.]
(for the nominal motion: q;: black, q»: blue, q;: green, for the simulated motion: q;:
light blue, q;: red, q;: magenta line in the phase trajectories, and q;: black, q;: blue,
q3: green)

The appropriate phase trajectories and the tracking errors (Fig. A.8.1.) well
exemplify the superiority of the adaptive control. The difference in the variation of
the generalized forces exerted by the controller is significant and informative, too.
Fig. A.8.2. reveals the fast variation of the adaptive variables « and A versus time. It
is worthy of note that the initial velocities considerably differ from the nominal ones,
therefore in the beginning a “shock” was defied by the controller thank to the
detailed interpolation and smoothing techniques. To demonstrate that the method
worked at different regions of the state space the counterparts of Figs. A.8.1. and
A.8.2. were calculated for a different nominal motion in which balls were moving in
opposite directions (Figs. A.8.3. and A.8.4.).

In the next series of the investigations the dynamic friction forces unknown
by the controller were switched on (Figs. A.8.5. A.8.6.and A.8.7.).
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The Aplha Factor [10*0 dimless vs Time s] The Regulating Factor [10*-1 dimless vs Time s]
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Figure A.8.4. The variation of the adaptive factors a and A versus time for balls
moving in the opposite directions [counterpart of Fig. A.8.2.]
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Figure A.8.5. The phase trajectories (1° row), the tracking error (2" row), and the
exerted generalized forces ( 3 row) for the non-adaptive (LHS) and the adaptive
(RHS) control with dynamic friction in the controlled system (for the nominal
motion: q;: black, q»: blue, q;: green, for the simulated motion: q;: light blue, q;:
red, q;: magenta line in the phase trajectories, and q;: black, q,: blue, qs3: green for
the rest)
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The Aplha Factor [10%0 dimless vs Time s] The Regulating Factor [10*1 dimless vs Time s]
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Figure A.8.6. The variation of the adaptive factors @ and A versus time in the case of
dynamic friction in the controlled system
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Figure A.8.7. The variation of the friction forces versus time in the case of dynamic
friction in the controlled system (for q;: black, q,: blue, qs: green line)

Figures A.8.5. and A.8.6. again reveal the superiority of the proposed adaptive
control. In Fig. A.8.7. the friction forces are described that are quite significant and
they considerably destroy the tracking quality of the non-adaptive controller.

To make the control task even more difficult, besides that of the internal
friction, the effects of additional external disturbance forces were studied in the last
series of simulations. The appropriate results are described by Fig. A.8.8. that reveals
that while the non-adaptive controller is very considerably disturbed, the adaptive
version quite efficiently resists.

As a summary of the simulation investigations it can be stated that in this
section the generalization of certain parametric fixed point transformations was
presented from SISO to MIMO systems for control technical purposes. The
theoretically expected adaptive behavior was also illustrated by simulation results for
a very wide range of motion velocities. The method is based on the properties of the
SVD of an approximation of the Jacobian of the system’s response.

In the presented example the matrices of the decomposed models were stored
within certain typical regions of the generalized coordinates q (in the case
numerically investigated the rigid translation in the direction of g3 is internal
symmetry of the system, therefore it is satisfactory to consider the part of the q space
determined by the coordinates g; and ¢). In combination with the adaptive approach
this idea is the counterpart of storing fuzzy rules over the whole domain of interest.
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The Phase Spaces [100 rad/s or m/s vs 10*1 rad or m] The Phase Spaces [10"0 rad/s or m/s vs 101 rad or m]
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Figure A.8.8. The phase trajectories (1*' row), the tracking error ( 2" row), and the
exerted generalized forces (3™ row) for the non-adaptive (LHS) and the adaptive
(RHS) control with dynamic friction in the controlled system and the presence of

external disturbances (for the nominal motion: q;: black, q»: blue, q;: green, for the

simulated motion: q;: light blue, q,: red, q;: magenta line in the phase trajectories,
and q;: black, q»: blue, q3: green for the rest); In the 4" row the components of the
disturbance forces and the control variable & are described vs. time
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A.9. Simulation Results for Section “11.3. Application Example: the Use of
Fractional Order Terms in the Control of Integer Order Systems”
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Figure A.9.1. The phase space of subsystem A: non-adaptive integer order (upper left
corner), adaptive integer order (upper right corner), non-adaptive fractional order
(lower left corner), and adaptive fractional order (lower right corner)

Phase Space of System B [beta=1]

10 1[radis] & [m/s]

-10 2 14 26 38 50
10%1[rad] & [m]

Phase Space of System B [beta=0.7]

10 1[radis] & [m/s]

et 8.3 33 150 26.7 383 500
10%1[rad] & [m]

101 [racis] & [rivs]

101 [racis] & [rivs]

Phase Space of System B [beta=1]

13.3

133

200 -83 33 15.0 267 383 50.0
10 1{rad] & [m]

Phase Space of System B [beta=0.7]

@
5
I

133

200 -83 33 15.0 267
10 1{rad] & [m]

Figure A.9.2. The phase space of subsystem B: non-adaptive integer order (upper left
corner), adaptive integer order (upper right corner), non-adaptive fractional order
(lower left corner), and adaptive fractional order (lower right corner)

The phase trajectories obtained for adaptive and non-adaptive, integer and
fractional order derivatives order with #=0.7, T=10 time-step memory in ms units are
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given in Figs. A.9.1. and A.9.2. that well reveal the small degradation in the tracking
accuracy and the smoothing effects in the adaptive control, too. The tracking errors

are detailed in Figs. A.9.3. and A.9.4.

Joint Coordinate Errors Sys A -- Time [beta=1]

Joint Coordinate Errors Sys A -- Time [beta=1]
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ooo 3 éﬁ “ ] 737 10.00 0.00 3 éS E.;G7 1000
Figure A.9.3. The tracking error of subsystem A: non-adaptive integer order (upper
left corner), adaptive integer order (upper right corner), non-adaptive fractional
order (lower left corner), and adaptive fractional order (lower right corner)
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Figure A.9.4. The tracking error of subsystem B: non-adaptive integer order (upper
left corner), adaptive integer order (upper right corner), non-adaptive fractional
order (lower left corner), and adaptive fractional (lower right corner)
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A.10. Geometric Analogies by Fundamental Quadratic Forms

In this paragraph strict analogies between three different geometries
frequently occurring in natural and technical sciences are considered. These are the
Euclidean Geometry, the Minkowski Geometry, and the Symplectic Geometry. Each
of them is defined by a fundamental quadratic expression having different physical
interpretation. The strict analogies are revealed by considering them as different
representatives of the concept of Lie Groups.

A.10.1. The Euclidean Geometry:

The fundamental quadratic expression is the Scalar Product of the vectors a
and b:

a’lb (A.10.1)

that is interpreted by the absolute values of the vectors (more precisely by their
norms as introduced by Frobenius), and the angle ¢ between these vectors as
lal -Ibl-cos¢(a,b). The quadratic matrix defining this quadratic expression in (A.10.1)
is the unit matrix 1. The linear transformations of the vectors as a’=0a, and b’=0b
that leave the form as well as the numerical value of the scalar product for arbitrary
a, b vectors invariant, that is for which

a’Ib’=a0’10b = I=0'10 (A.10.2)

are referred to as the Orthogonal Transformations. These transformations describe
one of the fundamental symmetries of Euclidean Geometry.

A.10.2. The Minkowski Geometry:

A fundamental experimental observation in Electrodynamics (the Michelson-
Morley Experiment) postulated that it is possible to so set the clocks and distance
measures in inertial frames (i.e. bringing about systems of coordinates) in the
measures of which the velocity of the light signals in each direction is c¢. By
introducing the four component vectors describing the separation of two events in
space and time as x=[Ar,Af)", the fundamental quadratic expression of
Electrodynamics can be introduced by the diagonal matrix g:=<1,1,1,-¢*>

x'gx (A.10.3)

that is positive number for events that can be connected by signals having lower
speed of propagation than that of the light signals in vacuum, exactly zero if light
signals can connect the two events, and are negative number if signal of higher speed
than ¢ is needed for connecting these events. The above form can be extended for
different x and y vectors as x'gy that is called as the scalar product of four
dimensional vectors in the Minkowski Geometry. The linear transformations of the
vectors as X’=Aa, and y’=Ay that leave the form as well as the numerical value of the
scalar product for arbitrary X, y vectors invariant, that is for which

xTgy’=xA"gAy = g=A"gA (A.10.4)

are referred to as the Lorentz Transformations. These transformations describe one
of the fundamental symmetries of Minkowski Geometry.
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A.10.3. The Symplectic Geometry:

In the Canonical Equations of Motion of Classical Mechanics [R25] a
quadratic expression occurs in the Poisson Bracket that describes the time-
derivatives of physical quantities depending exceptionally only on the physical state
of the isolated mechanical system. By writing arrays of 2xDOF dimensions
(DOF=Degree of Freedom of the mechanical system) strict analogy of (A.10.1) can
be obtained as

'Sy, 3 ;{ 0 I} (A.10.5)
-1 0
The linear transformations of the vectors as w’=Su, and v’=Sv that leave the form as

well as the numerical value of (A.10.5) for arbitrary u, v “vectors” invariant, that is
Jfor which

w3v’=uS’3Sv = I=S'GS (A.10.6)

are referred to as the Symplectic Transformations. These transformations describe
one of the fundamental symmetries of Classical Mechanics. We note that the
definitions in (A.10.6) and the definition S3S’=3 occurring in Classical Mechanics
are essentially equivalent to each other because from 3%=1 it follows that 3'=37,
therefore if S3S’=3, then I'SIS’=I that means that S'=(3’SI)" or $'=37S"'3,
therefore S’3S=3"S'33S=-37S'1S=83, too.

A.10.4. Analogies on the Basis of Group Theory:

To establish formal analogies at first we note that none of the matrices
defining the fundamental quadratic expressions is singular. This statement is trivial
for I of the Euclidean Geometry, and for the diagonal g in (A.10.3). However, it is
easy to calculate det3 for arbitrary size on the basis of its definition:

det3 = zgil,...,i,, ,i,,H,...,iz,,Sl,i, "'Sn,i,,3n+1,i,,+, "‘SZn,iz,, =
Hoveodit it i
= 8n+1,...,in,l,...,i2nSl,n+1"'Sn,2n3n+l,1"'32n,n+l = . (A107)
— n no__ n n—1 _ _
= €n+1,...,i,,,1,...,i2,,1 (_1) = 51,,_,,,~”,,,+1,,_”,~2n1 (—1) =.=1

In the 2" line it is taken into account that only n ones ad (-1) matrix elements occur
in 8, and the effect of the multiplication factor (-1)" is just compensated by the by
the n number of index swapping in the Levi-Civita symbol to arrive to &, 2,=1.
From the nonsingular value of the defining matrix immediately follows that the
transformation matrices cannot be singular, moreover they may have the determinant
+1 [e.g. det(S'3S)=det3 = detS=*1.

The associativity of the matrix product guarantees that the symmetry
transformations considered satisfy the group properties, e.g.
(0(1)0(2))TI(O(1)0(2))20(2)T0(1)T10(1)0(2)20(2)T(0(1)Tlo(l))0(2)20(2)T10(2):L the unit
matrix I is evidently included in the set of each symmetry transformation, the
existence of the inverse matrices and that the left and right hand side inverses are
identical to each other as well as the membership of the inverses in the group
elements in the group follow from the properties of the matrix product.

Taking into account, that the determinant is continuous function of the matrix
elements and detl=1 only the matrices with the determinant +1 can be continuously
connected with the wunit matrix, therefore only the unimodular symmetry
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transformations form a Lie Group. The generators and the appropriate exponentials
can be calculated as in the case of the Orthogonal Group.

A particularly interesting but not very strict “analogy” between Euclidean and
Symplectic Geometries are the concepts of orthogonal vectors (a is orthogonal to b
in the Euclidean Geometry if a’lb=0) and antiorthogonal vectors (u is
antiorthogonal to v in the Symplectic Geometry if u’Sv=0), the notion of orthogonal
and antiorthogonal linear subspaces [for arbitrary ¢ e 9 if a and b is orthogonal to
c then ca+/b is also orthogonal to ¢ since (aa+/fb) c==ca’c+pb’c=0+0=0; if a and
b is antiorthogonal to ¢ then ca+fb is also antiorthogonal to ¢ since
(0a+b) ' Sc=ca’Sc+Bb"Se=0+0=0]. As in the case of the Euclidean Geometry it is
the simplest and most convenient way to use orthonormal basis vectors (by
definition e(i)TIe(j)=d-J-) for representing various vectors, in the case of the Symplectic
Geometry it is the most expedient choice is the use of symplectic basis vectors (by
definition f(i)TSf(’)=$-j~) since in the first case we normally have to work with scalar
products, while in the second one normally evaluation the Poisson Brackets is
needed, and these expressions can very conveniently be evaluated by using
orthonormal/symplectic basis vectors.

As in the case of the Euclidean Geometry by the use of the Gram-Schmidt
Algorithm it is very easy to create orthonormal basis vectors from arbitrary but
sufficient set of linearly independent vectors, using the concept of antiorthogonal
subspaces it is very easy to create symplectic set, too [for details see Table A.10.1.
below].

The Gram-Schmidt Algorithm The Symplectizing Algorithm

Let {b(i)lizl,...,Zn} a linearly
independent set of basis vectors.

Let {a“li=1,...,n} a linearly independent set of
basis vectors.

Since a’#0 it can be
normed for forming
the first element of the

Since 3 is non-singular, none of the Sb" (j=1,...,.2n) vectors
can be zero. Due to its skew-symmetry b""’Sb" =0, therefore
the remaining set must contain at least one vector, ¢, for

OagPog?fma(‘}) set | which b""’3¢#0. Via permutation of the remaining vectors let

e "=a /llall. the index "n+1" assigned to it. Via the normalization
b’ D:=p ™ Vb VTgb "D the symplectic "mate” of b is
obtained.

Those a” vectors of the remaining set | Those b” vectors of the remaining set

which are not orthogonal to e can be

made orthogonal to it by the
transformation a’?:=a"-e"[e"Ta"]20.

which are not anti-orthogonal to the pair
b" and b*™" can be made anti-
orthogonal to them by the transformation

b’(i):b(j)+b(l)[b(nH)TSb(i)]—b(nH)[b(l)TSbU)].

Due to the completeness and linear | Due to the completeness and linear

independence of the original set of vectors the
transformed remaining set must consist of (n-1)
linearly independent non-zero vectors each of

which is orthogonal to e’

independence of the original set the
remaining set must consist of (2n-
2) non-zero, linearly independent
vectors each of which is anti-

orthogonal to the pair b and
b,(n+1)

The above steps can be repeated within the

linear sub-space orthogonal to e'".

The above steps can be repeated
within the linear sub-space anti-
orthogonal to the pair b’ and b""*".
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The final result is an orthonormal set of basis | The final result is a symplectic set
vectors. of basis vectors.

Table A.10.1. The formal analogy between the Gram-Schmidt Algorithm in Hilbert
Spaces and the Symplectizing Algorithm

A.11. Geometric Interpretation of Real SVD

Though the general theory of Singular Value Decomposition (SVD) has been
elaborated for complex matrices by the use of unitary transformations, for the
purposes of the present work it is satisfactory to restrict ourselves to real matrices
that can be tackled by orthogonal transformations. The geometric interpretation of
SVD is strictly related to spanning the input and the output space of abstract linear
transformations by orthonormal basis vectors. Consider the &=£La linear
transformation in which the dimensions of the input and the output spaces may differ
from each other. Let the orthonormal set {e”’} be defined in the input, and {ﬁ(i)} be
defined in the output spaces. Necessarily

a=Y ae La=Y a.rLe" (A.11.1)

The {a;} coefficients can be obtained by considering scalar products utilizing the
orthonormality of the set {e""}:

Sy

The transformed vector can similarly be computed by using the basis {fi(i)}:

6= bf" =La=Y are, b —Za(l £e1)= ZLM (A.11.3)
Instead of the original basis {¢’} a new basis can also be used the rigid rotation U of
which corresponds to the old one, i.e. {e(’)}:{‘ue’(’)}. Since the rotation around the

origin is a linear transformation [U(oa)=aa and U(a+b)=Ua+Uk] the elements of
the rotated basis can be computed by the linear combination of the elements of the

unrotated basis, that is el ZU e, therefore

b= aU, (", Le?) (A.11.4)

In similar manner a new orthonormal basis can be also introduced in the output space
W =%"v, £" leading to

b= aUV, [V, Le)=Sv L U").q (A.11.5)

i,7,v i,z,v
L,

that simply sets the transformation rule of the matrix elements of the linear operators
when choosing various orthonormal basis sets in the input and the output spaces.
Rotations may not have arbitrary matrix structure. Since the scalar products must be
left invariant (Ue’ @ Ue’ (j))=(e’(i),e’(’))
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)-TUpE )t ane

é},k s, S

S,

that means that the matrices U and V must be orthogonal matrices. So the
transformation rule of the linear operators in (A.11.5) means that L=VL’U” in which
V and U are orthogonal matrices that describe the effect of changing the orthonormal
basis vector sets in the matrix elements.

For a given {¢”} and {ﬁ’(i)} set L may be “complicated”. For better
understanding the properties of the abstract linear operator £ it would be expedient to
choose special basis vectors in which L has the simplest possible form. It is easy to
see that it is possible to find diagonal L if we consider L'L=UL’’L’U" and
LL’=VL’L’"V’ that means that the symmetric, generally positive semidefinite real
matrices as L’’L’ and L’L’" have to be diagonalized by the appropriate orthogonal
matrices. This certainly can be done if we choose the normalized eigenvectors of
these matrices to serve as the columns of these orthogonal matrices (the eigenvectors
belonging to different eigenvalues must be orthogonal to each other, while in the
linear subspace of the eigenvectors belonging to the same eigenvalue orthogonal
ones can be found and chosen). In the diagonal form of L in the main diagonals the
square roots of the appropriate eigenvalues have to stand.

According to [R48] the standard procedure of diagonalizing real, symmetric,
positive semidefinite matrices can be solved by efficient numerical techniques.
Taking into account that any O orthogonal matrix of appropriate size leaves the
eigenvalues of the real matrices invariant det(A-AI)=0 and det(0)=det(0")=t1 =
det(0)det(A-AD)det(0")=det(OAO’-ALOI0")=det(OAO’-AI)=0 at first orthogonal
transformations constructed of properly chosen diadic terms as (I-2uu’) are chosen
to convert the original symmetric real, positive semidefinite matrix into continuant
matrix. Then the eigenvalue and eigenvector problem of such special matrices can
efficiently be solved numerically. Following that the eigenvectors can be properly
transformed since if Aa=Aa, then OAa =OA0’0a=10a.

In our days SVD is a standard service (function) of software designed for the
use in research, as e.g. INRIA’s SCILAB. By using the coordinate representations of
the abstract transformation é=La the diagonalized version takes the form of

D, 0 0 Ju"
b=vDUa=[v" | ..|[v"] i | . la=

=D, vV |- [ D v ] = (A11.7)

= (u(l)T,a)DHv(l) +.ot (u(k)T,a)Dka(")

in which k=min(n,m), and in the central line following Dy in “[...IDyl...]" either
nothing stands or zeros are located. The geometric interpretation of (A.11.7) is
straightforward: characteristic pairs of orthogonal directions are found in the input
and the output spaces to which characteristic stretch/shrink denoted by the singular
values D;;>0 belong.
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