
 

Adaptive Control of Smooth Nonlinear 
Systems Based on Lucid Geometric 

Interpretation 
 
 

By 
 

József K. Tar 
 
 

 
 
 

Óbuda University 
John von Neumann Faculty of Informatics 
Institute of Intelligent Engineering Systems 

 
 

Submitted for the degree of 
“Doctor of the Hungarian Academy of Sciences” 

Category: 
“Technical Science” 

 

2010 

               dc_62_10



2 

Acknowledgments 

I should like to to express my thanks to my very much esteemed teachers who 
gave me impetus in various stages of my studies to develop interests in science.  

I have to express my especial thank to professor János Bitó who is my mentor 
since the middle of the eighties of the past century in the industrial relationships (at 
TUNGSRAM Co. Ltd.) as well as in the academic sphere even in these days, too. I 
must be especially grateful to professor Imre Rudas who was my professional leader 
and in many cases active co-worker in various national and international R&D 
projects. On similar reason I have to express my personal thanks to professor José 
António Tenreiro Machado of Institute of Engineering, Porto, Portugal, and professor 
Krzysztof Kozłowksi of Poznan University of Technology, Poznan, Poland. 

Finally I should like to thank the patience, kindness, and continuous support 
of my already deceased parents who always let me do what I believed to be aesthetic 
and important in my life. 

               dc_62_10



3 

Abstract 

The objective of this dissertation is to give a summary of a research work 
aiming at the use of simple, geometrically well interpretable mathematical means in 

the adaptive control of partially and imperfectly modeled nonlinear systems. Such 
systems may have dynamic coupling with hidden subsystems and may also be under 
a priori unknown external disturbances.  

The novelty in this research consists in the fact that it did not want to proceed 
in the well established ruts of using Lyapunov functions. Lyapunov’s 2nd or “direct” 
method seems to dominate contemporary nonlinear control worldwide. Though the 
fundamentals of this technique have lucid geometric interpretation, finding a proper 
Lyapunov function candidate for a given problem is a kind of “art”. Furthermore, 
guaranteeing its non-positive time-derivative needs intricate mathematical 
manipulations that need great technical skills. Normally, these parts of the proofs 
take whole pages in the papers, and they usually result in special conditions that have 
to be met for the stability of the controllers. As it will be emphasized in this 
dissertation, the so obtained controllers may contain too much more or less arbitrary 
parameters. Furthermore, they do not result in optimal tuning. Certain adaptive 
solutions that try to exactly learn the analytical model of the system under control are 
vulnerable by the effects of unknown external disturbances and hidden, coupled 
subsystems. 

To avoid the difficulties related to the application of Lyapunov’s 2
nd

 method I 

tried to utilize very simple and lucid geometric structures and convergent iterations 

obtained from contractive maps to construct adaptive controllers.  

The basic philosophy of this approach is similar to that of the prevailing soft 
computing techniques. However, it does not apply the typical uniform structures of 
the modern soft computing that are related to Kolmogorov’s approximation theorem 
proved in 1957. Instead approximating continuous functions my approach 

approximates a far better behaving set of smooth functions by utilizing uniform 

structures of small sizes taken from various Lie groups. 
After giving a brief historical review on the advantages of “geometric way of 

thinking” the Computed Torque Control in Robotics and Lyapunov’s 2nd Method in 
general and its illustrative applications in Robotics are critically studied and 
modified. Following that the subject area of soft computing as a special application 
of universal approximators is critically studied. The emphasis is on the sizing and 
scalability problems that generate difficulties in parameter tuning.  

Instead using “universal approximators” various special elements of special 

Lie groups are suggested to the realization of partial, temporal, and situation-

dependent system identification. The first approach is based on the phenomenological 
basis of Classical Mechanics in the control of Classical Mechanical Systems. The 
second one uses these structures at higher level of abstraction. It is shown that these 

structures have limited number of tuneable parameters and they can be used for the 

approximation of the observed behavior of the system under control. 
In the next research phase various parametric Fixed Point Transformations 

were proposed for adaptive control to further release the problem of the complexity 

of system-identification. The geometric interpretation of the Singular Value 
Decomposition (SVD) of real matrices is also utilized in these approaches. In 

contrast to Lyapunov’s 2
nd

 method that normally guarantees global stability of the 

control, in the new approach the convergence of the iteration that is necessary for 

stable control is guaranteed within a local region. However, it is shown that in many 
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cases the basin of convergence is wide enough for practical applicability of the 

proposed novel methods. Furthermore, it is shown that the novel approach using 

“Robust Fixed Point Transformations” can be completed by various parameter 

tuning methods that are able to keep the controller nearby the center of the basin of 

attraction of the necessary iteration. This approach works only with three adaptive 

control parameters of which only one parameter has to be tuned. It also is shown 

that this tuning is not drastically coupled with the dynamics of the tuning-free 

controller. It slightly affects the speed of convergence of the iteration and the 

tracking precision of the tuned adaptive controller. 
It also is shown that by the use of this novel adaptive approach a new branch 

of the “Model Reference Adaptive Controllers” can be developed in the design of 
which the Lyapunov function can be replaced by the simple Robust Fixed Point 
Transformations. 

Finally, a simple parametric numerical approximation of Caputo’s fractional 

order derivatives is presented and applied in nonlinear control for smoothing 

purposes. 
The dissertation contains an “Appendix” that summarizing the most important 

geometric and group theoretical analogies that are utilized in the Thesis. To maintain 
the page limitation formally prescribed for the “core” material certain mathematical 
details and numerical computational results are presented in the Appendix, too.  

The dissertation separately contains the author’s own publications strongly 
related to the results given in the thesis, and the “References” that refer to other 
researchers’ results and own publications that are not so strictly related to results of 
the present Thesis. 
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Preliminary Remarks 

In the present dissertation the results of research efforts of many years are 
summarized. Certain less elaborated and completed achievements are referred to as 
“antecedents”, while the more matured and crystallized ones are included in the 
“theses”. Therefore certain cited works in which I am a co-author myself occur 
amongst the “References” denoted by the “prefix” “R” in the numbered lists. The 
results that more strictly belong to the theses of this dissertation are marked by prefix 
“B” if they are book excerpts, prefix “J” if they are journal publications, and by 
prefix “C” if they were published in conference or workshop proceedings. The 
citations are arranged according to their first appearance in the Thesis. (The so 
obtained sequence considerably differs from the chronological one.) 

The diversity and variety of “ad hoc” notations in the various publications 
related to these results do not justify any effort for developing a unified “system of 
notations” that is valid for the whole dissertation. Instead of that I tried to develop a 
consistent system of notations within each chapter only. 

Since the dissertation partly is built on the use of more or less well known 
mathematical theorems, I give only the proofs of those ones that have significant 
details from the point of view of the present dissertation. The other fundamental 
statements are cited or referred to without their proofs. 

The present subject area of control technology has a huge literature on the 
linear methodologies that are mainly useful for linear systems. Similar considerations 
or even notations frequently occur in control applications developed for nonlinear 

systems, too. It was not my aim to make any survey on these methods. I concentrated 
mainly on smooth nonlinear systems in which certain non-smooth nonlinearities (e.g. 

friction) may also be present. On this reason I mention and analyze in details only 
certain fundamental methods that are relevant for this dissertation, for making 
comparisons only.  

The “comparative analysis” in this context can be understood in a very 
cautious manner. Since as alternatives to Analytical Modeling (AM) Soft Computing 

(SC) approaches based on various universal approximators having a huge number of 
parameters came into use in our days any effort for obtaining simple and decisive 
statement as e.g. “method A is superior to method B” seems to lose its sense. For 
instance in the field of Evolutionary Computation (EC) in which attempts are made 
for efficient setting of a huge number of parameters similar conditions prevail: “A 

broad spectrum of representation techniques makes new results in EC almost 

incomparable. Sentences like ‘This experiment was repeated ten times to obtain 

significant results’ or ‘We have proven that algorithm A is better than algorithm B’ 

can still be found in current EC publications. …Evolutionary Computation shares 

these problems with other scientific disciplines such as simulation, artificial 

intelligence, numerical analysis, or industrial optimization.” [R2], [R3]. In 
connection with such statements Eiben and Jelasity listed four typical problems as a) 

the lack of standardized test-functions or benchmark problems, b) the usage of 

different performance measures, c) the impreciseness of results, and therefore no 

clearly specified conclusions, and d) the lack of reproducibility of experiments 
especially when stochastic elements are applied in the methods [R4]. 

I definitely would like to evade such errors so in the comparisons I restrict 
myself only to certain fundamental points as “simplicity”, “lucidity”, “reduced 

computational burden”, and “simple realizability”, “scalability”, “smoothness of the 

results”. I have also been content with giving the relevant mathematical proofs and 
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providing illustrative numerical simulations to exemplify the potential applicability 
of the novel control methods proposed in the dissertation. The particular examples 
used in these “illustrations” can also serve as “typical paradigms” of classes of 
physical systems for the control of which the novel approaches can be proposed. 
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Chapter 1: The Aims of the Dissertation 

The main goal of the research efforts partly summarized in the present 
dissertation was finding simple, geometrically interpreted adaptive methods in the 
control of partially modeled and/or imprecisely known nonlinear physical systems. 
The conditions prevailing in the relatively small segment of control technology that I 
was able to study urged me to step ahead in this direction. More specifically the 
following observations gave the most important impetus: 

• A typical class of control papers tackles the problems on the basis of 
the use of classical analytical models of the physical systems to be 
controlled. The main deficiency of such approaches is that they have 
very limited circle of applications: a detailed analytical model is 
valid only for a particular system. In analytical models quite little 
numerical contributions sometimes can be obtained by huge 
computational efforts. (A typical example is. the increasing order of 
the contributions in perturbation calculus.) In many cases it is very 
difficult or even impossible to identify the parameters of the 
analytical models of the systems as e.g. robots [R5], [R6]. For 
instance, in coding the precise dynamic model of a 6 Degree of 
Freedom (DOF) PUMA robot three persons worked for 5 weeks 
[R7]. In various publications the measured parameters of PUMA 
robot has considerable diversities, too [R8]. Identification of other 
parameters as that of a friction model is not very easy, too [R9], 
[R10].  

• Even adaptive approaches that are based on some analytical model 
utilize very special properties of certain matrices as e.g. Slotine’s 

and Li’s adative robot control [R11], and assume the lack of 
unknown external perturbations and coupled hidden subsystems. 
The model-based approaches (e.g. the Adaptive Inverse Dynamics) 
also assume that the external disturbances are zeros, or at least 
temporal and almost negligible. 

• The great majority of the control papers use Lyapunov’s ingenious 

2
nd

 Method that itself has a lucid geometric interpretation, too. 
However, its application is not too easy, needs lot of invention in 
forming the candidate functions, and frequently leads to the 
introduction of ample number of almost arbitrary control parameters 
(for details see e.g. [C106]). My definite aim was to find far simpler 
methods that can guarantee the stability of the new control methods 
elaborated. 

• Other popular and modern approaches instead of the analytical 
models use various means of Soft Computing that correspond to the 
“hidden application” of universal approximators [R12] being either 
Artificial Neural Networks (ANN) [R13] or Fuzzy Systems (FS) 
[R14]. Essentially the same can be stated for the use of Tensor 

Product Models [R15], [R49]. As it will be discussed later such 
“universal models” may have a huge number of parameters, suffer 
from bad scalability (“curse of dimensionality”) and setting their 
parameters needs considerable computational efforts. 

In spite of the difficulties of the traditional SC approaches their important features 

as “uniformity” of the model structures and the parameter tuning/setting procedures 
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remained an attractive property. It has challenged me to construct similar 

approaches that are free of the scalability problems or the curse of dimensionality.  

A search for the cause of scalability problem revealed that the problem roots 
in the fact that Kolmogorov's approximation theorem [R16] is valid for the very wide 
class of continuous functions that contains even very “extreme” elements at least 
from the point of view of the technical applications. (The first example of a function 
that everywhere is continuous but nowhere is differentiable was given by Weierstraß 
in 1872 [R17] on the inspiration by Riemann who formerly failed with constructing 
such a function [R18].) Intuitively it was expected that restricting our models to the 
far better behaving "everywhere differentiable" functions the problems with the 
dimensionality ab ovo could be evaded or at least reduced. It was also assumed that 
such a problem class is still wide enough for practical technical applications.  

Later it was understood that other resource of complexity was the 
unnecessary effort for developing “complete”, “everlasting”, “everywhere 

applicable” models of the system to be controlled. In principle such efforts are 
correct and can be understood since the so obtained models (being expressed either 
by analytically or by the use of the means of universal approximators) can be 
inserted and used in various control and application environments. However, if we 

restrict ourselves to the use of uniform structures determined by the degree of 

freedom of the “modeled part” of the whole system then simple model structures can 

be obtained that may be satisfactory for developing “partial”, “temporal”, and 

“situation-dependent” models. Such models need continuous maintenance. In this 

manner a significant source of complexity can be eliminated. In this case the cost of 

complexity reduction is the continuous need of observing the behavior of the system 

under control.  
In contrast to the traditional ideas the novel approaches partly use Lie groups 

the size of which is determined by the number of the modeled/directly controlled 
Degrees of Freedom (DOF) of the system. Therefore the number of the independent 
parameters is determined by the linearly independent generators of the Lie group 
chosen. Consequently this number is relatively very small and allows the use of 
simple tuning/setting procedures. 

In the sequel, following the section in which the scientific methods of the 
research are summarized, in connection with the “antecedents” as well as the 
appropriate theses these solutions will be detailed together with the appropriate 
“ancillary” algebraic and group theoretical considerations. 
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Chapter 2: On the Scientific Methods of the Research 

In the field of noninear control two typical methodologies can be chosen.  
A typical possibility is assuming “ideal controllers and sensors” of extremely 

fast response. In this case the equations of motion of the controlled system can 
mathematically be approximated by a set of differential equations. A considerable 
segment of the control literature using Lyapunov’s direct method (e.g. [R11]) 
proceeds along this rut. However, it must be emphasised that the great majority of 

the practical problems results in differential equations that do not have solutions in 

closed analytical form. If we wish to see numerical details on the operation of the 

controllers the stability of which has been mathematically proved we have to develop 

numerical simulations. 
To achieve more realistic results it is expedient to take into account the 

limitations of our digital controllers and sensors of finite time-resolution. In this case 
the system originally described by differential equations must be completed by the 
insertion of event clocks and sample holders that represent the “cyclic” nature of the 
controllers. In this manner the “cycle time of the controller” can be distinguished 
from the time-resolution of the numerical simulations. 

It must be emphasized that besides the discrete time-resolution applied 
various numerical simulators may apply different numerical integration methods and 
also allow setting certain numerical parameters that evidently concern the “results” 
of the numerical simulations. In the lights of the “believabilty considerations” 
expounded in the sequel I applied the following methods.  

As the simplest and fastest approach, by the use of INRIA’s SCILAB 
programming environment I developed numerical programs applying simple Euler 
integration with fixed time resolution. It was found that for stable control rough 
approximate results can be obtained for making the assumed cycle time of the 
controller (1 ms) identical with the time-resolution of the numerical integration. For 
checking consistency this time step was halved and if the results did not show 
significant modification they have been accepted for illustrating the operation of the 
proposed controller. 

A further step towards more reliable results the fixed time-resolution was 
distinguished from the controller’s cycle time and a control cycle was divided into 10 
segments for numerical simulations. For such calculations I used the same simple 
SCILAB program language. 

To make more professional simulations I applied the SCILAB’s numerical 
co-simulator, SCICOS, that gave a convenient graphical interface for calling more 
professional numerical integrators. For simulating the discrete nature of digital 
controllers sample holders and event clocks were built in these simulations. 

Another aspect concerning the methodology of research is the fact that the 
question of “believability of the numerical results” arises in each of the above 
mentioned numerical solutions. Following the pioneering work by Lorenz who made 
numerical computations on simple meteorological model of Earth using the computer 
technology of the sixties it became evident that there are “stable” and “unstable” 
systems in which the consequences of the initial errors remain finite or grow 
exponentially with time, respectively [R24]. Though for certain special systems of 
differential equations there are theoretical results for the proper application of finite 
element methods in general this problem cannot be tackled. In certain cases they can 
be tackled or understood by using the concepts of Riemannian Geometry if the 
solution of the equations corresponds to some geodesic line of a given geometry. 
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Using the concept of “parallel translation of vectors and tensors” two geodesic lines 
starting from neighboring points with identical initial velocity can be considered as it 
was discussed by Arnold [R25].  

In my investigations I assumed that 
• The successful adaptive control corresponds to a stable system; 
• The actual numerical results obtained naturally depend on the time 

resolution applied but only in a slight extent; 
• For a finite duration of motion the stable numerical results were 

declared to be believable if halving the finite time-step in the 
simulation did not lead to observable differences in them. This 
attitude is right since the convergence, or at least the possibility of 

the convergence within a region of attraction were theoretically 

proved before running the simulations that only illustrated but 

proved the stability and usability of the proposed methods. 
• In certain cases I also used the ODE Solver of INRIA’s SCILAB 

and SCICOS software that generally applies various, quite 
sophisticated numerical integration methods, depending on the 
stiffness of the problem considered. (Its use is especially convenient 
when graphical programming can be applied to build up the 
appropriate environment in which the ODE Solver can be called.) It 
also modifies the density of the discrete time-resolution 
automatically to meet the prescribed precision requirements. By 
carefully prescribing the allowable maximal time step and the 
relative and absolute tolerance consistent results were obtained for 
the stable systems to illustrate the operation of the stable controller 

• If the results were divergent their details were not “believed”. Such 
runs only illustrated the possibility of leaving the range of 
convergence of the applied method. 

Another relevant point is the “believability or realistic nature of the models” 
applied in the simulations. While in general it can be accepted that no any given 
model can fully and completely describe the reality, a good model can be regarded at 
least as a “cubist picture” that contains significant features of the reality, therefore it 
can be used as a “paradigm” i.e. as characteristic representative of a whole set or 
class of problems. In this sense the simulation results obtained cannot be regarded 

completely worthless or improper means of illustration, though it has to be admitted 

that any particular practical application of the proposed method needs further 

detailed investigations. 

To technically realize the proposed novel approaches the observation of the 
behavior of the controlled system was necessary. For this purpose the “Expected – 

Realized Response Scheme” was introduced. According to that scheme a 
considerable part of the control tasks could be formulated by using the concepts of 
the appropriate “excitation” Q of the controlled system to which it is expected to 
respond by some prescribed or “desired response” rd. (The physical meaning of the 
appropriate excitation and response depend on the phenomenology of the system 
under consideration. In the case of Classical Mechanical Systems the excitation 
physically can be force and/or torque, while the response can be linear or angular 
acceleration, etc.) The appropriate excitation can be computed by the use of some 
available approximate “inverse dynamic model” as Q=φ(rd). Since normally this 
inverse model is neither complete nor exact, the actual response determined by the 
system's dynamics, ψ, results in a “realized response” rr that differs from the desired 
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one: r
r=ψ(φ(rd))≠r

d. It is worth noting that the functions φ() and ψ() may contain 
various hidden parameters that partly correspond to the dynamic model of the 
system, and partly pertain to unknown external dynamic forces acting on it. Due to 
phenomenological reasons the controller can manipulate or “deform” the input value 
from rd to some r*

d so that rd=ψ(φ(r*
d)). Other possibility is the manipulation of the 

output of the rough model. 
The above structure evidently indicated that using the pairs of the “desired” 

response known and set by the controller and comparing it to the observed “realized” 
response mathematically can be formulated as seeking the solution of a Fixed Point 

Problem. From this point on the main direction of the research was seeking various 
deformations or fixed point transformations that were able to generate appropriate 
sequences of responses that can converge to the fixed point. In this approach in each 
control cycle one iterative step can be done with the actually available updated 
“desired response”, and in the next cycle the deformation applied can be updated on 
the basis of the “observed response”. If the dynamics of the adaptive iteration is 
considerably faster than that of the control task such solution may result in 
practically acceptable tracking. (This idea is in strict analyogy with the use of 
Cellular Neural Networks in picture processing based on the concept of Complete 

Stability [R19].) Similar “dynamic approaches” were also applied in the literature as 
e.g. dynamic inversion of nonlinear maps by Getz, Getz and Marsden [R20], [R21], 
but these considerations extensively used the technique of the Lyapunov Functions. 

In contrast to Lyapunov’s 2
nd

 Method [R22], [R23] that normally can generate 
quadratic expressions with absolute minima in wide environments that can act as 
basins of attraction of convergent solutions, in the novel approach convergence can 
be achieved by applying contractive maps in Banach Spaces. In this manner iterative 
sequences converging to the fixed point of the appropriate map can be obtained. This 
latter solution can be more “fragile”, but in the same time far simpler than the 
application of some Lyapunov function. Furthermore, its realization may need far 
less complicated computations. 
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Chapter 3: Introduction 

In order to substantiate the main aim of the dissertation i.e. the “systematic 

use of geometric way of thinking” in control technology first I would like to give a 
very brief historical survey to show how fruitful and profitable it was in the field of 
the natural sciences. Since the historical background of these methods normally are 
not mentioned (neither in the standard university-education of Mathematics nor in 
the more specific scientific papers), for collecting this information (rigorously only 

for this purpose) I intensively used the materials available on the Web at the pages of 
Wikipedia, the free encyclopedia [R26]. The result of this brief historical research 
was quite surprising and shocking for me because it revealed that Mankind has clear, 
precise, and well generalized concepts of this subject area practically only from the 
middle of the 19th Century.  

3.1. Certain Representative Examples of Uneven Development 

From a historical point of view it can be stated that the main concepts had 
crystallized only “recently” that has the interesting consequences that certain 
fundamental mathematical methods widely used in Technical Sciences obtained 
rigorous mathematical explanation only after their invention. To mention only a few 
significant examples: when Euler invented one of the fundamental equations of Fluid 

Dynamics in 1755 no systematic concepts of vectors, tensors, or other directed 

quantities were available [R27]. When Maxwell published his famous “Treatise on 

Electricity and Magnetism” in 1892 [R28] both Hamilton’s “quaternions” [R29] as 
well as Grassmann’s “vectors” already existed [R30] (he worked on this idea from 
1832), however, the latter concept became widely available only a few years after 
issuing the “Treatise”, therefore Maxwell used quaternions for the quantitative 
description of electromagnetic phenomena. This observation highlights the 
“incidental nature” of the development in sciences. As is well known the later issues 
of the “Treatise” already used the concept of vectors and tensors instead of 
quaternions. It was an interesting and inspiring question to look after what kind of 
Electrodynamics we could have now if the “custom” of using quaternion prevailed. 
For instance, in a common work with Iván Abonyi and János F. Bitó we found that 
the two invariants in Electrodynamics could be more easily explored by using the 
complex extension of Quaternion Algebra than by using tensors. It was also found 
that the significant components of the relativistic tensor formulation of 
Electrodynamics could be also identified in the quaternion representation [R31]. On 
this reason in the next part I present a very brief historical summary of the 
fundamental concepts. 

3.2. Historical Antecedents of Geometric Way of Thinking 

Until the 1st half of the 20th Century the development of Mathematics aimed 
at serving the needs of natural and technical sciences. In the history of the 
"quantitative sciences" geometric way of thinking always played a pioneering role. 

The principles of geometry first were reduced to a small set of axioms by 
Euclid of Alexandria, a Greek mathematician who worked during the reign of 
Ptolemy I (323-283 BC) in Egypt. His method of proving mathematical theorems by 
logical reasoning from accepted first principles remained the backbone of 
mathematics even in our days, and is responsible for that field's characteristic rigor 
[R32]. 
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Following the pioneering work clarifying the phenomenology of Classical 
Mechanics by Galilei and Newton, in his fundamental work entitled "Mécanique 

Analytique" [R33] Joseph-Louis Lagrange (1736-1813) solved various optimization 
problems under constraints, introduced the concept of “Reduced Gradient” and that 
of what we refer to nowadays as “Lagrange Multipliers” [R34]. It has to be noted 
that at that time the concept of "linear vector spaces" was not clarified at all. 

The first mathematical means of describing quantities with direction, i.e. the 
quaternions introduced by Sir William Rowan Hamilton (1805-1865) appeared not 
very long time after Lagrange's death [R29]. In the 19th Century quaternions were 
generally used for such purposes. For instance, in the first edition of Maxwell's 
famous “Treatise on Electricity and Magnetism” quaternions were used for 
describing the "directed" magnetic and electric fields. 

The first known appearance of what are now called “linear algebra” and the 
notion of a “vector space” is related to Hermann Günther Grassmann (1809-1877), 
who started to work on the concept from 1832. In 1844, Grassmann published his 
masterpiece [R30] that commonly is referred to as the "Ausdehnungslehre", ("theory 

of extension" or “theory of extensive magnitudes”). This work was mainly inspired 
by Lagrange's "Mécanique analytique" [R33]. Grassmann showed that once 

geometry is put into the algebraic form he advocated, then the number three has no 

privileged role as the number of spatial dimensions: the number of possible 

dimensions is in fact unbounded [R35].  
The close relationship between geometry and algebra was realized and 

strongly utilized by William Kingdon Clifford (1845-1879) who introduced various 
“associative algebras”, the so called "Clifford Algebras" [R36]. As special cases 
Clifford Algebras contain the algebra of the real, the complex, the dual numbers, the 
quaternion algebra, and the algebra of octonions (biquaternions) [R37]. His 
“Geometric Algebra” is widely used in technical sciences as e.g. in computer 
graphics, robotics, etc. 

Equipped with the concepts of linear vector spaces Marius Sophus Lie (1842-
1899) in his PhD dissertation studied the properties of geometric symmetry 
transformations [R38]. One of his greatest achievements was the discovery that 
continuous transformation groups (now called after him Lie groups) could be better 
understood by studying the properties of the tangent space of the group elements, 
that form linear vector spaces (the vector space of the so-called infinitesimal 
generators), and with the commutator as multiplication also form algebras, the so 
called “Lie Algebras”. 

In the very fertile period of Mathematics, in the 19th Century Georg Friedrich 

Bernhard Riemann (1826-1866) elaborated the geometry of curved spaces in a 
special form that made it possible to study physical quantities as tensors even if the 
geometry of the space differs from the Euclidean Geometry [R39]. This concept was 
very fruitfully used in the General Theory of Relativity. 

David Hilbert (1862-1943) [R40] extended the concept of the Euclidean 

Geometry to linear, normed, complete metric spaces in which the norm originates 

from a scalar product.  
Stefan Banach (1892-1945) [R41] introduced the more general concept, the 

concept of Banach Spaces that are linear, normed, complete metric spaces in which 

the norm not necessarily originates from a scalar product. The great practical 
advantage of Banach's invention is that by adding various norms to the same 
mathematical set various complete, linear, normed metric spaces can be obtained that 
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offer a wide basis for elaborating diverse practical variants and solutions pertaining 
to the essentially same basic idea. 

Vladimir Igorevich Arnold (1937-) [R42] studied the Symplectic Geometry 
and Symplectic Topology that are extremely useful means of studying the behavior of 
various mechanical and other physical systems.  

The geometric way of thinking outlined above appeared in one of the best 
textbooks used for teaching functional analysis, too (the excellent book by László 

Máté [R43]). 
By the middle of the eighties of the past century certain elements of the 

sophisticated geometric concepts were systematically utilized in control technology. 
The first edition of Isidori’s book in 1985 [R44] contained cahpeters as “Geometric 
Theory of State Feedback” and “Geometric Theory of Nonlinear Systems”. An even 
more systematic surveay and application of Group Theory and Differentiable 
Manifolds can be found in Jurdjevic’s book from 1997 [R45]. 

Another, very important mathematical tool that makes it easy to apply 
geometric way of thinking is the Singular Value Decomposition (SVD). The history 
of matrix decomposition goes back to the 1850s. During the last 150 years several 
mathematicians — Eugenio Beltrami (1835–1899), Camille Jordan (1838–1921), 
James Joseph Sylvester (1814–1897), Erhard Schmidt (1876–1959), and Hermann 

Weyl (1885–1955), who were perhaps the most important ones, contributed to 
establishing the existence of the singular value decomposition and developing its 
theory [R46]. Thanks to the pioneering efforts of Gene Golub, there exist efficient, 
stable algorithms to compute the singular value decomposition [R47]. Certain 
realization of SVD is available in Hungarian for a long time in the excellent book by 
Pál Rózsa [R48]. In our days SVD is a standard service (function) of software 
designed for the use in research, as e.g. INRIA’s SCILAB. 

More recently, SVD, and its novel variant, the so called Higher Order 

Singular Value Decomposition (HOSVD) (e.g. [R49], [R50]) started to play an 
important role in several scientific fields as signal processing (e.g. [R51], [R52], 
[R53]), control applications in dealing with system models of Tensor Product (TP) 
form (e.g., the very interesting PhD Thesis by Zoltán Petres [R54] can be referred to 
in this context). The real variant of SVD was extensively used in the present Thesis, 
too.  

My aim with providing this brief historical survey was to show that geometric 
way of thinking is a very useful and fruitful mode of problem-tackling in various 
fields. The use of the inventions by Hamilton, Grassmann, Hilbert, Banach, and 
Clifford in Physics and technical fields makes it possible  

• To apply a “geometric way of thinking” with which we became 
familiar in our childhood in our playing house. Then we daily 
experienced the Euclidean Geometry of the reality around us. 
Selection and use of adequate associations with simple pictures as 
vectors or directed quantities, linear combinations, basis vectors, 
orthogonality, orthogonal subspaces, tangents and tangent space of a 
surface in a given point, the notion of surfaces or hypersurfaces 
embedded in higher dimensional spaces became instinctive, hidden 
practice of our early years; 

• To strengthen the above, almost “instinctive” associations with the 
aid of lucid, simple, aesthetic equations of algebraic relationships. 
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In the sequel its advantages will be shown in the field of nonlinear control. 
For this purpose I try to give a brief survey on the prevailing, from certain point of 
view “classic” approaches. 
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Chapter 4: Brief Survey on the Prevailing Approaches Based on the 

Use and Learning of Exact Analytical Models 

A plausible approach to solving control tasks would be to elaborate and use 
the “exact dynamic model” of the system to be controlled. In the case of the control 
of mechanical systems as robots this approach can be referred to as “Computed 

Torque Control” since in this case the mechanical model establishes mathematical 
relationships between the joint coordinate accelerations and the torques or forces 
acting on the system partly by its own drives and/or by its environment with which 
the system may be in dynamic coupling. In the case of other systems as e.g. chemical 
reactions considered in [R55] the notion of “Globally Linearizing Controllers 

(GLC)” can be mentioned in which certain order time-derivative of the state variable 
of the system to be controlled or that of a well-defined function of the state variables 
can instantaneously be set by the control signal. In the sequel these typical cases are 
considered. I intentionally do not mention the classical “canonical forms” concerning 
controllability and observability issues the use of which already became a standard 
approach for a wide set of systems and also has a huge literature. The same holds for 
the various parameter estimation techniques using some Kalman filters and typical 
assumptions regarding the statistical nature of the noises characteristic to the problem 
under consideration. My aim was to develop and use different techniques for system 
identification. 

4.1. Computed Torque Control (CTC) in Robotics 

Before going into details it has to be noted that involving the model of the 
operation of the drives of a Classical Mechanical System may considerably increase 
the complexity of the problem. However, even modeling the mechanical behavior 
itself is a very complex task. As a result of such efforts the Euler-Lagrange 

Equations of Motion can be obtained for an open kinematic chain as follows: 

 ( ) ( ) QqqhqqH =+ &&& ,  (4.1.1) 

in which H(q) describes the configuration-dependent “inertia matrix” of the system, 
a part of h(q,dq/dt) is quadratic in dq/dt and describes e.g. the Coriolis terms, while 
its other part depending only on q is responsible for the gravitational effects. It is 
worth noting that due to physical reasons H is always symmetric and positive 

definite, though it may be badly conditioned, too. The term Q stands for the 
generalized forces that partly originate from the robot's own drives or from the 
environment. (This equation is valid only if the kinetic energy of the system is given 
with respect to an inertial frame of reference in which case the components of Q can 
be interpreted as forces for the prismatic generalized coordinates, and torques for the 

rotational axes.) In the possession of this "exact" model on the basis purely 
kinematic considerations some desired d

2
q

d/dt
2 can be computed in each control 

cycle to exert the necessary Q
d. This part of the controller is often referred to as 

“feedforward” control. For more precise tracking the “feedforward part” generally 
has to be completed by PID-type feedback terms basec on the tracking error. 

However, an important practical problem related to the application of CTC 
control is the fact that in many cases it is very difficult or even impossible to identify 
the parameters of the analytical models of the systems as e.g. robots [R5], [R6]. In 
the classical example in which Armstrong et al. developed the dynamic model of a 
six degree of freedom PUMA robot arm three persons worked for five weeks [R7]. 
This work involved the measurement of the appropriate data besides coding the 
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model in software blocks. In various publications the measured parameters of PUMA 
robot has considerable diversities, too [R8]. 

Another practical problem in the application of this method is that normally 
there are no sensors available that could exactly measure the external parts of Q. 
Their effects can be observed only as their consequences in the actual motion of the 
system and in general cannot efficiently be compensated by simply prescribing some 
feedback correction in d2

q
d/dt

2. Such kind of feedback correction can work only if 
the unknown external perturbations are  

• generally insignificant, or, if they are significant, 
• they can be only instantaneous but permanent. 

It is worth noting that the kinematic structure of the robot arm itself determines the 
main mathematical “skeleton” of (4.1.1): normally a parameter vector can be 
introduced that contains the unknown dynamical information, while the elements of 
this vector in (4.1.1) are multiplied by known kinematic functions. This fact serves as 
a basis for developing the analytical model based controllerss toward adaptive 
solutions in order to correct the imprecisions in the parameters of the available 
dynamic model. Representative examples are the “Adaptive Inverse Dynamics” or 
the “Adaptive Slotine-Li Controller” approaches. Since these methods are based on 
analytical modeling and the use of Lyapunov functions in the sequel Lyapunov’s 2nd 
Method will be studied. 

4.2. On Lyapunov's 2
nd

 Method in General 

Lyapunov's 2
nd

 Method is a widely used technique in the analysis of the 
stability of the motion of the non-autonomous dynamic systems of equation of 
motion as ( )t,xfx =& . Since in the prevailing literature this method normally is 
referred to, in the sequel, for the purposes of making comparisons between this 
method and the proposed novel one, I would like to pay some attention to its 
background and deeper details.  

The typical stability proofs provided by Lyapunov's original method 
published in 1892 [R22] (and later on e.g. in [R23]) have the great advantage that 

they do not require to solve the equations of motion. Instead of that the uniformly 
continuous nature and non-positive time-derivative of a positive definite Lyapunov-

function V constructed of the tracking errors and the modeling errors of the system's 
parameters are assumed in the t∈[0,∞] domain from which the convergence dV/dt→0 
can be concluded according to Barbalat's lemma [R56]. This lemma states that if the 
integral of a uniformly continuous function (in this case the integral of dV/dt i.e. V) 
in [0,∞) is bounded then this function has to converge to zero [R11]. The uniform 
continuity of dV/dt used to be guaranteed by showing that d2

V/dt
2 is bounded. Due to 

the positive definite nature of V from that it normally follows that the tracking errors 
have to remain bounded, or in certain special cases, have to converge to 0.  

An alternative possibility for utilizing Lyapunov's theorem is the use of the 
so-called special “function class κ” certain elements of which can serve as upper and 
lower bounds of V so evading the direct application of Barbalat's lemma to show 
uniform stability of the system.  

By definition a function [ ) [ )∞→ ,0,0: kκ  is of class κ if κ(0)=0 and κ(t) is 

strictly increasing (normally k<∞ but k=∞ may happen in special cases, now we 
restrict ourselves to the k<∞ case). In the forthcoming considerations x denotes some 
tracking error, therefore the desired stable equilibrium point x=0 is sought for.  

By definition the state x* is an equilibrium state if [ ) ( ) 0xf =∞∈∀ ∗
ttt ,,0 . 
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The x
* state is a stable equilibrium in t=t0 if for 0>∀ρ  there exists 

( ) 0, 0 >tr ρ  such that ( ) ( ) ( ) 000 , ttttrt >∀<−⇒<− ∗∗ ρρ xxxx . 

Uniformly stable states can be defined if in the above definitions in 
( ) 0, 0 >tr ρ  t0 does not play significant role: ( ) 0>ρr .  

The x
* equilibrium state is asymptotically stable at t=t0 if it is stable and 

there exists ( ) 00 >tr  such that ( ) ( ) ( ) ∞→→−⇒<− ∗∗
tforttrt 000 xxxx . 

The x
* equilibrium state is globally asymptotically stable if ( ) ∗→ xtx  as 

( )0txfort ∀∞→  (its basin of attraction is the whole space).  

According to Fig. 4.1., by the use of the above definitions the following 
statements can be done. Let the α(||x||), β(||x||), γ(||x||) functions belong to function 
class κ! 

• If ( ) ( ) ( ) 0,0,0 >≥= xx αtVandtV  and ( ) 0, ≤tV x&  then the 

equilibrium point x=0 is stable. 
 

||x||
0 k

α(||x||)

||x
0
||

V(x
0
,t

0
)

α-1(V(x0,t0))

Forbidden 
region for ||x||

Forbidden 
region for ||x||

Forbidden 
region for V

Forbidden 
region for V

β-1(V(x0,t0))

β(||x||)

α-1[β (x0)]≥||x(t)||

Allowed region 
for / drift of ||x||:

Forbidden 

region for the 
drift of ||x||:

 

Figure 4.1. The geometric interpretation of Lyapunov’s 2
nd

 Method 

 

To prove that it is enough to consider the limit 
( ) ( )( ) 000

1 , ttfortVt >≤ −
xx α  in Fig. 4.1. Here the initial error norm in t0 has 

significance! In this case the allowable range in V and ||x|| is bounded by the graph of 
α(||x||) from the right side, and by the V(x0,t0) line from the top. 
 

• If ( ) ( ) ( ) 0,0,0 >≥= xx αtVandtV  and ( ) 0, ≤tV x& , and 

( ) ( ) 0, >≤ xx βtV  then the equilibrium point x=0 is uniformly 

stable. 
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To prove this statement it is enough to consider Fig. 4.1. again. Evidently 

( )( ) ( ) ( )( ) 000
1

00
1 ,, ttfortVttV >≤≤ −−

xxx αβ  and α-1[β(x0)]≥||x(t)||. This 

estimation is independent of t0! 
• If ( ) ( ) ( ) 0,0,0 >≥= xx αtVandtV , and ( ) 0, ≤tV x& , and 

( ) ( ) 0, >≤ xx βtV , and ( ) 0<−≤ xγV&  then the equilibrium point 

x=0 is uniformly asymptotically stable. 
For proving that consider the Fig. 4.1. again! Evidently V cannot be stopped at finite 
||x||. It can be stopped only in ||x||=0. The allowed range is shrunk to ||x||=0 as the 
level of V sinks down to 0. 

4.3. Globally Linearizing Controllers 

The concept of "Globally Linearizing Controllers" as introduced e.g. by 
Khalil [R57], Goodwine & Stepan [R58], are designed for the following more or less 
"canonical" form of equations of motion: 

 ( ) ( ) ( )xhyuxgxfx =+= ,&  (4.3.1) 

in which x∈ℜn denotes the state variable of the system, y∈ℜm denotes its observable 
output, u∈ℜk means the manipulated input (control signal). By applying the chain 

rule of derivation the time-derivative of y can be obtained from (4.3.1) as 

 ( ) ( ) ( )uhLhLugf
x

h

dt

dy
igif

n

s

k

z

zszs

s

ii +≡







+

∂
∂

=∑ ∑
= =1 1

xx . (4.3.2) 

in which the very condensed notation of the Lie-derivatives is applied as Lfhi, etc. If 
the lucky situation occurs in which Lghi≠0 then dy/dt can simply be expressed as an 

affine function of u. In this case the matrix ( ) ( ) ( )∑
= ∂

∂
=

n

s

sz

s

i
iz g

x

h
M

1

: x
x

x  and the single 

index array ( )∑
= ∂

∂
−=

n

s

s

s

ii
i f

x

h

dt

dy
b

1

: x  can be defined. If on the basis of some kinematic 

considerations we idea on the desired value of dyi/dt, in principle the Mu=b equation 
may be soluble and the necessary control signal can be computed, of course, only in 
the possession of the analytic form of the model coded in functions f and g. If Lgh≡0 
then d2

yi/dt
2 can be expressed by repeating the use of the chain rule, etc. In general if 

we have j>0 so that LgLf
s≡0 if s=0,1,2,...,j-1, but LgLf

j≠0 the dependence of the j
th 

time-derivative of y on u has an affine form as 

 uLLL
j

fg

j

f

j hhy 1)( −+= . (4.3.3) 

In this case j is referred to as the relative degree of the nonlinear system. In the 
possession of the exact system model the appropriate Lie-derivatives in (4.3.3) can 
be computed. Whenever (4.3.3) is able to uniquely determine the appropriate value 
of $u$ that is needed for achieving a desired jth derivative of the observable output 
y

(j)d determined on the basis of some “kinematic” consideration, this formalism can 
evidently be successfully used for the control. The control signal u evidently can be 
fed back in the form of u=p(x)+q(x) y(j)d from which the name of the controller, i.e. 
the notion of “Globally Linearizing Control” originates. It is worth noting that in 
spite of the very “special form” of the suppositions concerning the identically zero 
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values of certain Lie-derivatives in the practice various physical systems meet these 
conditions. In [R55] e.g. the temperature control of a “Jacketed Continuous Stirred 

Tank Rector (JCSTR)” is considered in which the heat released in an exothermic 
reaction has to be extracted by the cooling system in the jacket, while in e.g. [C90] a 
4th order Classical Mechanical system is considered. 

In general it has to be noted that the elegant form of (4.3.3) in the case of a 
higher relative order j covers quite complicated computations due to the repeated 
application of the chain rule. In the case of a complex process this may mean quite 
considerable computational burden while developing the analytical model for the 
control. 

It has to be noted again that even if we are not in the possession of the exact 
model, the analytical form of (4.3.3) still can be a good basis for developing a novel 
type adaptive controllers as e.g. in the case of the control of a polymerization process 
we applied in [C95]. It is also worthy of note that the novel controller can be 
developed even in the cases in which the conditions for developing a GLC do not 
prevail as e.g. in the case of a convoy of coupled vehicles [C99]. In the sequel the 
most sophisticated classical adaptive controllers based on analytical modeling in 
Robotics will be studied and modified. 

4.4. Adaptive Inverse Dynamics Control of Robots 

Before going into any detail we note that in the forthcoming considerations 
we use the Lyapunov function technique in a special case in which the eigenvalues of 
positive definite and negative definite matrices can be used for estimation purposes. 
(More systematic and general analysis of this method will be given later.) This 
approach is based on a more detailed form of (4.1.1) and assumes that at least the 

kinematic model of the system is precisely known. On this basis a parameter vector p 
representing the dynamical parameters and an array built up of well known 
kinematic functions Y(q,dq/dt,d2

q
d/dt

2) can be introduced in the dynamic model as 
follows: 

 ( ) ( ) ( )pqqqYQqqhqqH &&&&&& ,,, ==+  (4.4.1) 

It is also supposed that some approximate model built up of the functions ( )qĤ , 

( )qqh &,ˆ  also is available with the model parameters p̂  on the basis of which the 
generalized forces are calculated and exerted. The exerted forces ab ovo contain 
feedback-correction depending on the tracking error and its derivatives 

qqeqqeqqe &&&&&&&&& −=−=−= NNN : ,: ,:  with symmetric positive definite gain matrices 
K0 and K1 as 

 ( )( ) ( ) ( ) ( )qqhqqHQqqheKeKqqH &&&&&&& ,,ˆˆ
10 +==+++N  (4.4.2) 

It is worth noting that in this method it is a supposition of crucial importance that the 
validity of (4.4.2) is supposed, i.e. it is assumed that Q originates from the drives 

and does not contain unknown external components. On the basis of this assumption 
(4.4.2) can be subtracted from (4.4.1) to obtain 

( ) ( ) ( )( ) ( ) 0,ˆˆ, 10 =−++−+ qqheKeKqqHqqhqqH &&&&&&& N . By subtracting and adding 

( )qqH &&ˆ  at the left hand side and keeping only the modeling errors at this side it is 
obtained that 
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in which one side contains the model data, while the other side contains the modeling 

errors defined by the quantities denoted by the tilde (~) symbol. Via multiplying 
both sides of (4.4.3) with the inverse of the known model and formally introducing 

the array 







=




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
=

e

e
x

e

e
x

&&

&
&

&
:  ,:  an equation of motion can be obtained for the system with 

error-feedback that corresponds to the “standardized form” of that of the non-
autonomous dynamic systems: 
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or 

 pBΦAxx ~=−& , 







=

I

0
B :  (4.4.5) 

Now let us try to construct a Lyapunov function of the tracking error and its 1st time-
derivative and of p~  as pRpPxx ~~: TTV +=  where P and R are constant, symmetric 
positive definite matrices of proper dimensions! Then evidently  

 0~~~~: <+++= pRppRpxPxPxx &&&&& TTTTV .  (4.4.6) 

From (4.4.5) it follows that 

 ( ) 0~~~~~~: <+++++= pRppRppPBΦxPxBΦpxPAPAx &&& TTTTTTTV  (4.4.7) 

Due to the symmetry of matrices P and R (4.4.7) can be simplified as 

 ( ) 0~~2~2: <+++= pRpPxBΦpxPAPAx && TTTTTTV  (4.4.8) 

To guarantee dV/dt<0 for finite x the following restrictions can be prescribed: let U 
be a negative definite symmetric matrix, and let  

 UPAPA =+T  (4.4.9) 

and 

 ( ) PxBΦRppRPxBΦp TTTTT 1~0~~ −−=⇒=+ &&  (4.4.10) 

Equation (4.4.9) is referred to as the “Lyapunov Equation”. Normally an appropriate 
U is prescribed and the task is to find a proper P for this U by solving the Lyapunov 
Equation that equation evidently sets linear functional connection between the 
elements of P and U that may or may not have solution. (For the existence of a 
solution the real part of each eigenvalue of A must be negative.) Since A=const. the 
Lyapunov Equation has to be solved only one times in order to find a proper P for 
the prescribed U. (Each common software package as e.g. INRIA’s SCILAB or 
Wolfram Research’s MATLAB immediately yields the solution of this equation in a 
single command.) To satisfy the second important equation (4.4.10), its right hand 
side has to be expressed from its definition through B and Φ. It is obtained that 
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 [ ]PxI0HYRp0ppp ,ˆˆˆ~ 11 −−−=−=−= &&&&  (4.4.11) 

in which the computational burden mainly consists in the need for inverting the 

model inertia matrix that must have the exact, intricate form determined by the 

particular kinematic model of the given robot arm. 
If the adaptation rule is applied by the controller for the convergence of this 

method the following cases can be imagined.  
• A possibility is the case of ||x||→0 and 0~ >> Fp , i.e. exponential 

trajectory tracking in principle may be achieved without exactly 
learning the system model. That may happen if the nominal and 
realized (controlled) trajectories do not yield satisfactory 
information on the complete dynamic model. 

• ||x||→0 and 0~ →p  i.e. exponential trajectory tracking with exactly 

learned dynamic model may also happen. 
• It is impossible to have ||x||>E>0 for arbitrarily long time because 

dV/dt<0 can be estimated as 

0,0 2

minmin
>≥≥−=< EUUVV EigTEigT xxUxx&&  for finite x, while 

0~~ 2
min

2
min >≥Γ+≥ p

EigTEig
EPEPV pp  that is a contradiction since an 

initially finite positive value V(0) with at least constant speed of 
decrease has to achieve 0 during finite time. 

• Similar observations can be done if we use Barbalat’s lemma for 
dV/dt: since V is a quadratic function of the errors constructed of 
positive definite terms, for finite V these errors must be bounded in 
the future since dV/dt≤0; due to the bounded errors d2

V/dt
2 remains 

bounded that means that dV/dt is uniformly continuous in time; in 
this case its finite integral 0≤V(∞)<∞ means that dV/dt→0 as t→∞, 
i.e. ( ) ( )( ) ( ) 0: =∞+∞=∞ xPAPAx TTV&  since the parameter tuning in 
(4.4.11) always guarantees that the additions to the quadratic term in 
(4.4.8) take zero; since UPAPA =+T  is negative definite it is 
concluded that x(∞)=0. 

To sum up the main features of this method the following criticism can be 
done: 

• The great advantage is that the under the relatively clear conditions 
of applicability it guarantees asymptotically zero error according to 
the above considerations. 

• The details of error relaxation are prescribed by the construction of 
V and (4.4.3), and cannot be further manipulated. 

• Besides that a lot of tedious computations have to be done by the 
direct use of the exact form of the normally quite complicated 
kinematic model, and real-time inversion of a positive definite 
model inertia matrix is needed in a cycle, too. We have to note that 
in spite of its positive definite nature this matrix can be badly 
conditioned as it was pointed out in connection with the adaptive 
control of a cart plus double pendulum system in one of our works 
[C63]. Another consequence of the presence of this inverted matrix 
is the relatively limited acceptable speed of parameter tuning: in a 
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finite element approach too big step in the estimation of ( )qĤ  may 
lead to singularity that can stop the numerical learning algorithm. 

• According to (4.4.2) it is assumed that the generalized force Q is 
fully known and correspond to that exerted by the drives on the 
basis of the available model. Therefore, the external perturbations 

must be only temporal and insignificant otherwise the method tends 
to compensate their effects on the basis of false assumption (by 
modifying the model parameters instead of observing/identifying 
the external perturbations).  

• Furthermore, the present form is exempt of any feedback of the 
integrated tracking error that usually considerably can improve the 
quality of control by making small and slowly varying errors relax, 
too. 

In the sequel two step modifications of the Adaptive Inverse Dynamics Controller 
will be proposed. It will be shown that the slow tuning process of the original 
approach can be replaced by a far more efficient one if we do not insist on the use of 
a single Lyapunov function for deriving the tuning rule. In the next step the original 
method will be completed by the use of an integrated feedback that also allows the 
more conventional parameter tuning via using a Lyapunov function, as well as the 
improved tuning in which the Lyapunov function is dropped. 

4.4.1. Modification of the Tuning Rule of the Adaptive Inverse Dynamics 

Controller 

The proposed modification is based on the observations as follows: 
• Let us exert the driving force/torque values exactly as it was 

proposed in (4.4.2) by using the actual approximate values of the 
model parameters; 

• Consider (4.4.3) in its original form and do not use the inverse of 
the actual estimation of the inertia matrix since this step may be 
critical and may lead to ill-conditioned estimation the inverse of 
which may cause numerical problems:  

 ( )[ ] ( ) { 












−=++
=p

ppqqqYeKeKeqH
~:

10 ˆ,,ˆ &&&&&&  (4.4.12) 

• Since the LHS of (4.4.12) consists of known and measurable terms, 
and the same holds for matrix Y at the RHS, observe that (4.4.12) 

contains all the actual information that is available for the 

parameter estimation error. Instead manipulating with the inverse 
of the estimated inertia for the sake of using some Lyapunov 
function take the following observation: if the parameters are 

already properly estimated, the RHS becomes zero, and since ( )qĤ  
in principle must be positive definite, for precise parameter 
estimation it holds that 0eKeKe =++ &&& 10 . With properly chosen 

feedback parameters from this equation it follows that e→0 as t→0. 
From that it follows that the tracking error can increase only during 
the tuning process while the estimation error at the RHS means 
some perturbation. To estimate the significance of this possible 
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“meandering” of the tracking error consider the following equation 
that utilizes (4.4.3): 

 ( ) PxBΦpxPAPAxPxx TTTTTT

dt

d ~2:

0

++=














 ≥876

. (4.4.13) 

• It is evident that if a symmetric positive definite matrix P is properly 

chosen, i.e. PAPA +T  is negative definite, the LHS of (4.4.13) 
corresponds to the time-derivative of a positive error metrics, the 
dominating quadratic term for large x values at the RHS is negative 
and the disturbance term that is only linear in x yields negligible 
contribution. That means that during the tuning process the tracking 
error is kept at bay even if the tuning itself is not based on the use of 
a Lyapunov function and it is yet imperfect.  

• So we can utilize this possibility by applying the Singular Value 

Decomposition (SVD) for Y
T to obtain information on the 

appropriate orthogonal directions of the parameter estimations that 
significantly influence the actual value at the LHS of (4.4.12). By 
replacing the too small singular values with zero, a proper 
generalized inverse of YT containing the reciprocal of the significant 
singular values can be introduced for a quick exponential tuning 
with a positive γ parameter 

 ( )[ ] peKeKeqHY &&&& ˆˆ
10 −=++− +Tγ . (4.4.14) 

This approach is evidently free of the “critical step” of computing the inverse of the 
model inertia, evidently allows more efficient parameter tuning by properly utilizing 
the actual information available for the parameter estimation error. However, this 
control still does not contain any integrated feedback that practically used to be very 
efficient. In the next step the feedback terms in the original form of the Adaptive 

Inverse Dynamics Controller will be modified in order to introduce the integrated 
error in the feedback. 

4.4.2. Introduction of Integrating Term in the Adaptive Inverse Dynamics 

Controller 

For the seek of simplicity let us have only a single positive definite matrix ΛΛΛΛ 
and consider the time-derivative of the integrated tracking error in the following 
form: 

 

( ) ( )

( ) ( )
}

( )
} }

( ) ( )ttttt
dt

d

dt
t

ξΛξΛξΛξξΛS

eξ

eee

32
3

0

33:

,:

+++=






 +=

= ∫

&&&&&&
&&&

ττ

. (4.4.15) 

The term S is similar to the “error metrics” usually used in the Variable Structure / 

Sliding Mode (VS/SM) controllers, and from S≡0 it follows that ξξξξ→0 as t→∞. So 
modify the exerted force/torque components in (4.4.2) as follows: 
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 ( )( ) ( ) ( ) ( )qqhqqHQqqheΛeΛξΛqqH &&&&&&& ,,ˆ33ˆ 23 +==++++N . (4.4.16) 

Evidently (4.4.16) is a counterpart of (4.4.2) and via similar manipulations it yields 
the counterpart of (4.4.3) as 

 ( )[ ] ( )pqqqYξΛeΛeΛeqH ~,,33ˆ 32 &&&&&& T=+++  (4.4.17) 

that justifies the introduction of the array [ ]TTTT eeξx &
(

,,=  as “state variable” of the 
formal dynamic system in Lyapunov’s theory, and leads to the differential equation 
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that is a strict analogy of (4.4.5). On this basis now a new Lyapunov function similar 

to the original one as pRpxPx ~~: TTV +=
((((

 can be introduced in which the positive 

definite symmetric matrix P
(

 contains much more independent elements than the 
original matrix P. It is evident that exactly the same manipulations can be done with 
the time-derivative of this new function that lead to the “orthodox” tuning rule: 

 xPBΦRp
((& TT1ˆ −−=− . (4.4.19) 

It is evident again that (4.4.17) contains all the available information on the 
parameter estimation error therefore the more “brave” tuning can be applied even in 
this case, too: 

 ( )[ ] pξΛeΛeΛeqHY &&&& ˆ33ˆ 32 −=+++− +Tγ . (4.4.20) 

Again, (4.4.17) guarantees that in the case of proper parameter estimation the 
tracking error and its integral must converge to zero. In similar manner, for the stage 
of imperfect tuning the following equation is valid  

 ( ) xPBΦpxAPPAxxPx
((((((((

876
((( TTTTTT

dt

d ~2:

0

++=














 ≥

 (4.4.21) 

From which it follows that if a symmetric positive definite matrix P
(

 is properly 

chosen, i.e. APPA
((((

+T  is negative definite, the LHS corresponds to the time-
derivative of a positive error metrics, the dominating quadratic term for large x

(
 at 

the RHS is negative and the disturbance term that is only linear in x
(

 yields 
negligible contribution. That means that during the tuning process the tracking error 
is kept at bay even if the tuning itself is not based on the use of a Lyapunov function 
and it is yet imperfect. In general similar observations can be done in connection 
with the original and the adaptive variants of Slotine’s and Li’s control method [R11] 
as it will be analyzed in details in the next section. 

4.5. Adaptive Slotine-Li Controller for Robots 

This controller utilizes subtle details of the equation of motion of the robots 
(more generally Classical Mechanical Systems) that are not observed and used in the 
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Adaptive Inverse Dynamics approach, namely the terms quadratic in the time-
derivatives of the generalized coordinates are not independent of the inertia matrix. 
Really, the Euler-Lagrange equations in details are as follows 
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It can be observed that the since the quadratic term jsqq &&  is symmetric in the indices 

(s,j) those part of its coefficient that is skew-symmetric in this indices does give 
contribution in the sum according to j and s. Therefore, though it is seemingly more 
complicated because containing more terms, it is enough to keep the symmetric part 
of this coefficient the symmetry of which later can be conveniently utilized. Since in 
the symmetrized term the components of jsqq &&  are in equal position, one of them can 

be included in a matrix C that yields the following, generally valid equations of 
motion: 

( )

( )

321444444444 3444444444 21

&&&&&&&&

&& i

j
jij

g

i

qC

js
js

i

sj

js
js

s

ij

js
js

j

is

j
jiji

q

V
qq

q

H
qq

q

H
qq

q

H
qHQ

∂
∂

+

∑

∂

∂
−

∂

∂
+

∂

∂
+= ∑∑∑∑

q

qq,

,,, 2

1

2

1

2

1
. (4.5.2) 

Assuming that neither unknown external disturbances, nor dynamically coupled 
subsystem unknown by the controller exist, in the possession of an approximate 
dynamic model in this control method the following generalized forces can be 
exerted / equations of motion can be obtained for a symmetric positive definite 
matrix KD: 

( ) ( ) gqCqqHeeKgeqCeqqHQ
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in which the Coriolis and the gravitational terms are separately dealt with, qN denotes 
the nominal trajectory, e:=q

N-q denotes the tracking error. It can be observed that the 
term denoted by r corresponds to some error metrics used in the Variable Structure / 
Sliding Mode controllers. In order express the modeling errors and keep the quantity 
v in the equations Hdv/dt, g, KDr and Cv is subtracted from both sides, and it is 
utilized again that the array of the dynamic parameters p can be separated in a 
multiplicative form. The result is 

 ( )
}

( ) ( ) CrrHrKggvCCvHHppvvqqY

p

−−−=−+−+−=















−

=

&&&& Dˆˆˆˆ,,,

~:

 (4.5.4) 

The Lyapunov function chosen by Slotine and Li and its time-derivative is 

 pΓpHrr ~~
2

1

2

1 TT
V +=  (4.5.5) 

 pΓprHrrHr ~~
2

1 TTT
V &&&& ++=  (4.5.6) 
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in which ΓΓΓΓ is symmetric positive definite matrix. From (4.5.4) rH&  can be expressed 
and substituted into (4.5.6). By selecting the quadratic terms in r we obtain that 

 pYpΓprCHrrKr ~~~
2

1
−+







 −+−= TT
D

T
V &&&  (4.5.7) 

in which the 1st term in the LHS is negative, the 2nd one is zero on symmetry reasons 
(for this purpose was symmetrized the term containing the quadratic jsqq &&  products), 

and making the remnant terms zero yields the parameter tuning rule as  

 ( ){ TT YΓppYΓp0 1

0

ˆ~~ −

≠

=⇒−= && . (4.5.8) 

This tuning is much better than that of the Adaptive Inverse Dynamics Controller, 
since it does not require the use of the inverse of the model inertia, and does not 
require a symmetric positive definite matrix P with its large number of arbitrary 
matrix elements. However, it still contains a lot of arbitrary elements in the matrix ΓΓΓΓ, 
and does not contain integrated feedback.  

4.5.1. Modification of the Parameter Tuning Process in the Adaptive Slotine-Li 

Controller 

Regarding the tuning rule it applies the same observations can be done as in 
connection with the Adaptive Inverse Dynamics Controller: 

• Equation (4.5.4) as ( )( ) CrrHrKppvvqqY −−−=− &&& Dˆ,,,  does not 
contain all the actually available information on the actual 
parameter estimation error since the exact matrix H is unknown. 
Therefore, for tuning purposes the use of some ΓΓΓΓ matrix containing 
a lot of arbitrary control parameters is needed on formal reasons in 
the present construction. Its presence is the consequence of insisting 
on the use of some Lyapunov function. 

• To release this difficulty let us go back to (4.5.3), and instead of 

Hdv/dt, g and Cv subtract form both sides qCqH &&& ˆ,ˆ ! This again 
leads to the appearance of the modeling errors and to the appearance 
of a well known matrix ΞΞΞΞ serving as a coefficient of the modeling 
errors as follows: 

 ( ) ( ) ( )( )ppqqqΞggqCCqHHrKrCrH ˆ,,ˆˆˆˆˆ −=−+−+−=++ &&&&&&& D . (4.5.9) 

• Since each term in the LHS of (4.5.9) is either known or 
measurable, and the same holds to the component of ΞΞΞΞ at the RHS, 
by the application of the SVD on ΞΞΞΞ in (4.5.9) fast and efficient 
tuning can be achieved. 

• Regarding the behavior of the tracking errors during the tuning 
process consider the time-derivative of the following quantity that 
can serve as a kind of metrics for the tracking error, independently 
of the fact that H in it is actually unknown: 

 ( ) rHrrHrHrr && TTT

dt

d

2

1
+=  (4.5.10) 

• Since (4.5.4) and (4.5.9) are simultaneously valid quite 
independently of the actual parameter tuning applied, the term rH&  
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can be substituted from (4.5.9) into (4.5.10) yielding 

( ) pYrKrHrr ~−−= D
TT

dt

d
 from which it immediately follows that 

in the case of exact parameter estimation r→0 as t→0 (consequently 
the tracking error also converges to zero), and for improper 
estimation, i.e. during the process of tuning it is kept at bay by the 

quadratic negative term rKr D
T− . This observation does not 

exclude the tuning on the basis of (4.5.9). 
The possibility for the introduction of integrated feedback will be considered 

in the next section. 

4.5.2. Introduction of Integrating Feedback in the Adaptive Slotine-Li Controller 

To obtain only 2nd order time-derivatives consider the following modification 
of the error metrics to be used instead of r:  
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by the use of which the exerted forces force / torque components and the equations of 
motion can be modified as 
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 (4.5.12) 

[strict counterpart of (4.5.3)]. As it was originally done, in order express the 
modeling errors and keep the quantity v

(
 in the equations, vH&( , g, KDS and vC

(
 can 

be subtracted from both sides, and it is utilized again that the array of the dynamic 
parameters p can be separated in a multiplicative form we can obtain that  
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 (4.5.13) 

The modified Lyapunov Function can be constructed as  

 pΓpHSS ~~
2

1

2

1 TT
V +=
(

, (4.5.14) 

its derivative is  

 pΓpSHSSHS ~~
2

1 TTT
V &&&&( ++= , (4.5.15) 

from (4.5.13) SH &  can be substituted to obtain the structure for negative time-
derivative 
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that leds to the “orthodox tuning rule” 

 1~ −= ΓYp
(&T . (4.5.17) 

As it was previously done, the “non-orthodox tuning” can be introduced in the 

following manner: manipulate (4.5.12) by subtracting ( ) gqCqqH ˆˆˆ ++ &&&  from both 
sides leading to 

 ( ) ( ) ( )( )ppqqqΥggqCCqHHSKSCSH ˆ,,ˆˆˆˆˆ −=−+−+−=++ &&&&&&&
D  (4.5.18) 

where the LHS and ΥΥΥΥ is known, therefore this equation contains all the available 
information on the parameter estimation error. Therefore, via using SVD for ΥΥΥΥ, 
replacing the negligible singular values by 0, and computing the “generalized 
inverse” we arrive at the tuning rule  

 ( )[ ] pSKSCSHqqqΥ &&&&& ˆˆˆ,, −=++− +
Dγ . (4.5.19) 

Since (4.5.13) still is valid independently of the parameter tuning, the time-derivative 
of a positive definite error metrics is 
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that for the case of “perfect estimation” (i.e. when 0p =~ ) guarantees the S→0 as 

t→0, and for imperfect estimation the negative, quadratic contribution to the time-
derivative of the positive number, –S

T
KDS keeps at bay the error-metrics since the 

disturbance is only its linear function. 

4.5.3. Simulation Examples for Adaptive Inverse Dynamics Controller and the 

Adaptive Slotine-Li Controller 

To illustrate the operation of the original and modified controllers simulation 
results are detailed in Appendix A.1. for the Adaptive Inverse Dynamics Controller, 
and in Appendix A.2. for the Adaptive Slotine-Li Controller, and their modifications. 

On the basis of the simulation results it can be stated and must be stressed 

that both the original and the modified versions of the above considered adaptive 

controllers mathematically are based on the fundamental assumption that the 

generalized forces are exactly known by the controller, i.e. the controlled system 

cannot be under permanent effects of external perturbations, and cannot contain not 

modeled, dynamically coupled subsystems. Such phenomena as friction mean 
significant difficulties in this context since the friction models normally are strongly 
nonlinear and their parameters cannot be separated into a single array within a matrix 
product structure. Therefore the significant segment of reality does not meet the 
formal requirements needed for the application of these otherwise very sophisticated 
methods. 
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4.6. Thesis 1: Analysis, Criticism, and Improvement of the Classical “Adaptive 

Inverse Dynamics Controller” and “Adaptive Slotine-Li Controller” (Summary 

of the Results of Chapter 4) 

In this Thesis I gave an analysis of the most sophisticated classical model-
based adaptive control approaches as the “Adaptive Inverse Dynamics Controller” 
and the “Adaptive Slotine-Li Controller”. These controllers are designed on the basis 
of appropriate Lyapunov functions and parameter tuning guaranteeing asymptotic 
stability of the control by assuring negative time-derivative of the Lyapunov 
functions. I have shown 

• that both methods can be completed by the inclusion of integrated 
tracking error in their feedback loops; 

• this completion can be treated by essentially similar Lyapunov 
functions and parameter tuning strtategies as that of the original 
methods; (I developed the new Lyapunov functions and the 
appropriate modification of the original parameter tuning rules;) 

• that by dropping the use of the original Lyapunov functions and 
tuning strategies more efficient parameter adaptation can be 
developed; the novel tuning proposed directly utilizes all the 
information available on the actual parameter estimation error by 
using the same feedback terms and equations of motion as the 
original methods; this novel tuning is not deduced from the original 
Lyapunov functions; 

• that the tracking errors have to asymptotically converge to zero 
independently of any Lyapunov function, following the 
accomplishment of the process of parameter identification; 

• that during the novel tuning processes, independently of the details 
of these processes the tracking errors are kept at bay; 

• that in the case of the “Adaptive Inverse Dynamics Controller” the 
critical step, i.e. calculation and use of the inverse of the actual 
estimation of the inertia matrix can be avoided; 

• that both the original and the modified versions are very sensitive to 
unknown external disturbances and dynamic interactions of the 
controlled subsystem with not modeled ones; 

• that the present form of these controllers cannot be applied 
whenever the dynamic parameters cannot be separated into a 
parameter array in a matrix product structure. 

All the above statements were substantiated/illustrated by simulation examples. The 
following publications are related to this Thesis: [J14], [C104], [C106], and [C116]. 
The subject area was concerned in the oral presentation in [C115]. 

The general difficulties in the construction of Lyapunov functions, the 
problems related to the identification of system parameters embedded in nonlinear 
models of various forms made me seek alternative approaches. For this purpose in 
the sequel the Soft Computing based approaches will be briefly analyzed.  
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Chapter 5: Soft Computing as the Use of Universal Approximators 

To be correct in briefly and properly evaluating the method of analytical 

modeling in technical applications one has to take into account historical issues 
regarding the technological background actually available by the researchers. 

Historically analytical modeling is strictly related to Euclid’s Geometry from 
the timed 300 BC [R32]. These early steps in the history of mankind made it 
necessary to study and understand the necessity for introducing the set of Real 

Numbers in order to make certain geometric tasks soluble, and in the same time to 
study the properties of certain particular functions as x

2, x
1/2, the trigonometric 

functions, the exponential and the logarithm functions, etc. The first iterative and 
numerical techniques were elaborated for calculating the values of these special 
functions and the first numerical tables were created for these functions only. 

Together with the need of the physical interpretation (phenomenology) of the 
modeled concept for a very long time analytical modeling was the only practically 
viable way for scientists to create quantitative models of reality. With the 
development of the theory of integrals in the 16th Century it became clear that this set 
of special functions is not satisfactory for describing everything. For instance the 
integrals of several special functions cannot be expressed by closed analytical form 
by using the same set of special functions. In spite of that there was a strict insistence 
on using these functions together with integral tables even for approximate modeling 
purposes purely due to the lack of computing power and other technological 
possibilities for making calculations.  

As theoretical possibility the use of function sequences and series to 
approximate “non-special” functions with “special and well known ones” was a 
possibility extensively used even in early calculations in Quantum Mechanics in the 
1st half of the 20th Century, obtaining precise numerical values was possible only for 
rich institutions having expensive equipment of high computational power. 

Though the mathematical background of using universal approximators for 
continuous functions appeared in the late fifties [R16] and in the sixties [R62] and 
[R61], preliminary stage of computer technology at that time did not allow real 
practical applications. It can be stated that in the beginning of the 21st Century the 
price of a common PC or laptop with considerable computational power together 
with available software achieved the level for which it can generally be stated that 
cheap and efficient computational power became commonly available for everybody 
for making numerical computations.  

The mathematical foundation of the modern Soft Computing (SC) techniques 
goes back to the middle of the 20th Century, namely to the first rebuttal of David 
Hilbert's 13th conjecture [R59] that was delivered by Arnold [R60] (considering 
continuous functions of 3 variables), and Kolmogorov [R16] in 1957. Hilbert 
supposed that there exist such continuous multi-variable functions that cannot be 
decomposed as the finite superposition of continuous functions of fewer variables. 
Kolmogorov provided a constructive proof stating that arbitrary continuous function 
on a compact domain can be approximated with arbitrary accuracy by the 
composition of single-variable continuous functions. Though the construction of 
Kolmogorov's functions as well as that of the later refinements of the essentially 
same idea in the sixties as e.g. by Sprecher [R61], and Lorentz [R62] that are used in 
this theorem is difficult, his theorem later was found to be the mathematical basis of 
the present SC techniques. 
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From the late eighties several authors proved that different types of neural 
networks possessed the universal approximation property [R12], [R13], [R63], 
[R64]. Similar results have been published from the early nineties in fuzzy theory 
claiming that different fuzzy reasoning methods are related to universal 
approximators, too [R14], [R65], [R66]. As it will be highlighted in the sequel, the 
practical applications of these firm theoretical results always have to cope with sizing 
and tuning problems. 

5.1. Observations on Sizing and Scalability Problems of Classic SC 

In spite of these theoretically inspiring and promising conclusions, from the 
point of view of the practical applicability of these methods various theoretical 
doubts emerged. The most significant problem was, and remained important problem 
even in our days, the “curse of dimensionality” that means that the approximating 
models have exponential complexity in terms of the number of components i.e. the 
number of components grows exponentially as the approximation error tends to zero. 
If the number of the components is bounded, the resulting set of models is nowhere 

dense in the space of the approximated functions. These observations frequently 
were formulated in a negatory style, as e.g. in [R67] stating that “Sugeno controllers 

with a bounded number of rules are nowhere dense”, and initiated various 
investigations on the nowhere denseness of certain fuzzy controllers containing pre-
restricted number of rules e.g. in [R68], [R69]. 

In general similar problems arise with the application of the Tensor Product 

(TP) representation of multiple variable continuous functions that were also extended 
to Linear Parameter-Varying (LPV) models [R70]. The TP representation can be 
used for achieving polytopic decomposition of LPV models i.e. obtaining a linear 
combination of Linear Time-Invariant (LTI) models in which the coefficients of the 
linear combination depend on time. The application of the Higher Order Singular 

Value Decomposition (HOSVD) provides this result in an especially convenient form 
[R49], [R50]. Such a preparation or preprocessing of the initial model is very 
attractive from practical point of view since due to it the Lyapunov-functions based 
stability criteria generally used in the control of nonlinear systems can be 
reformulated in the form of Linear Matrix Inequalities (LMI). Due to the pioneering 
work by Gahinet, Apkarian, Chilai [R71], Boyd [R72], and Bokor e.g. [R15], [R73], 
the feasibility problem of Lyapunov-based criteria was reinterpreted as a Convex 

Optimization Problem. J. Bokor and his research group gave a very lucid geometrical 
interpretation of this new representation and methodology that was found to be very 
fruitful in solving optimization problems, too, beyond stability issues. When 
polytopic model decomposition is realized and the appropriate control is designed by 
the use of commercially available software as e.g. MATLAB as in [R74] the 
available finite computational capacity always seems to be a “bottleneck”. Possible 
complexity reduction techniques as e.g. HOSVD have to be applied in order to 
remain within treatable problem sizes. This technique reduces modeling accuracy in 
a “controlled” or at least well interpreted manner [R54]. 

In the case of the use of “traditional” universal approximators various 
approaches were elaborated to cope with the sizing problem. For instance, a 
Feedforward Artificial Neural Network (also referred to as Multilayer Perceptron) 
generally must have only a well defined number of layers (i.e. the input layer, the 
layer hyperplanes halving the input space, the layer of convex objects, the layer of 
concave objects, and some output weighting and output layer), the number of the 
necessary neurons depends on the particular problem under consideration, and can be 
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quite big within the frames of the universal approximators elaborated for 
multivariable continuous functions. Consequently, for a huge number of 
“independent parameters” complicated or computational power consuming tuning 
methods have to be applied.  

The “first phase” of using SC methods, that is identification of the problem 
class and finding the appropriate structure, normally is relatively easy. The following 
phase, i.e. determining the necessary structure-size and fitting it is far less easy. Even 
in the nineties considerable improvements were achieved in the “learning methods”. 
For neural networks certain solutions start from a quite big initial network and apply 
dynamic pruning for getting rid of the “dead” nodes (e.g. Reed in 1993 [R75]). An 
alternative method starts with small network, and the number of nodes is increased 
step by step (see e.g. in Fahlmann & Lebiere 1990 [R76], and Nabhan & Zomaya 
1994 [R77]). Due to the possible existence of “local optima” in “backpropagation 
training” inadequacy of a given number of neurons cannot be concluded simply. 
Alternative learning methods also including stochastic elements were seriously 
improved in the nineties and to some extent released this problem (see e.g. in 
Magoulas et al. 1997 [R78], Chen & Chang 1996 [R79], Kinnenbrock 1994 [R80], 
Kanarachos & Geramanis 1998 [R81]). However, the generally big size of the classic 
universal approximators, i.e. the great number of the parameters necessary for 
accurate modeling generates tuning or learning problems, too, that are briefly 
considered in the next section. 

5.2. Observations on Parameter Tuning Problems in Classic SC 

Classic Soft Computing in my view is based on three essential pillars: on 
certain universal structures representing universal approximators having either 
Artificial Neural Networks or Fuzzy Systems based implementation or their 
combination, and some efficient parameter tuning/setting method that may be based 
on the traditional causal Gradient Descent (often called “Backpropagation” in the 
ANN literature in connection with teaching perceptrons) or its close relatives as the 
Newton, Gauss-Newton and Levenberg-Marquardt Algorithms (this latter was the 
result of two independent researches [R82], [R83]) or Simplex or Complex 

Algorithms, semi-causal and semi-stochastic tuning like Simulated Annealing (SA), 
or Particle Swarm Optimization (PSO) [R84], or any stochastic or semi-stochastic 
Genetic Algorithm (GA), or other Evolutionary Computation (EC) methods.  

It can generally be stated that due to the huge number of parameters to be set 
in the case of any universal approximators based model the tuning task itself needs 
considerable computational burden so these approaches are rather fit to offline 
development of models. The main problem with the gradient descent like methods 
and the simplex or complex algorithms is that they are apt to converge to a local 
optimum depending on the surroundings of the normally stochastically chosen initial 
values. Non-satisfactory operation of this optimum does not automatically mean the 
necessity of modifying/resizing the structure itself. From different initial values 
appropriate solution may be achieved by using the same structure. The old method of 
SA (e.g. [R85]) to some extent solves this problem by adding stochastic noise to the 
gradients so increasing the probability of jumping out of the basin of attraction of 
local optima that are far from the global one(s). For this purpose various cooling 
techniques are in use. 

The concept of the simple GA was invented by Holland and his colleagues in 
the 1960s and 1970s [R86]. It is especially appropriate for searching in the space of a 
huge number of parameters for minimizing a single cost function (e.g. [R87], [R88]) 
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that ab ovo means a stochastic approach in which the “repetitive search” of the 
gradient descent like methods is replaced by dealing with the numerous members of 
great populations. According to [R89] it can be stated that the main problems related 
to the application of GA based methods that is the selection of a proper set of 
parameters as number of generations, population size, crossover probability, 
mutation rate, etc. surprisingly are not the subject of ample systematic research. 
Mainly “rules of thumb” obtained on the basis simulation experience are available 
for this purpose (e.g. [R90], [R91]). Statistics based approaches are relatively rare 
and they are restricted to specific problems as e.g. [R92] in which the effect of 17 GP 
parameters on three binary classification problems were investigated.  

The Multi Objective Genetic Algorithms (MOGA) try to find the limits of the 
set of feasible solutions (the so called Edgeworth-Pareto optimum [R93]) by 
describing this set in the system of coordinates of the non negative cost functions. 
According to this definition a solution is Pareto optimal if no feasible vector of 
decision variables exists that would decrease some criterion without causing a 
simultaneous increase in at least one other criterion. That means that if we wish to 
decrease one of the cost components by moving towards the (desired) zero value 
along an axis, along some other axis we must increase the appropriate cost 
component. According to that the multi objective optimum forms some hypersurface 
in the embedding space (the Pareto front), and its points correspond to various 
compromises between the different goals, therefore the designer can choose an 
appropriate point of this geometric object. The result of the basic algorithm that 
contains dominated (i.e. “optimal”) and non-optimal solutions must be filtered for 
obtaining the elements of the front (e.g. [R94]). The improvement of this filtering 
technique recently obtained considerable attention (e.g. [R95]). The basic algorithm 
suffered various modifications to more evenly cover the Pareto front (e.g. 
Nondominated Sorting Genetic Algorithm (NSGA) [R96], Fast Non-dominated 
Sorting Genetic Algorithm (NSGA-II) [R97], etc.) and now they are implemented in 
the publicly available software package SCILAB 5.1.1. by INRIA.  

In spite of this development for strongly coupled non-linear multivariable 
systems SC still has considerable drawbacks. The number of the necessary fuzzy 
rules, as well as that of the necessary neurons in a neural network strongly increases 
with the degree of freedom and the intricacy of the problem. External dynamic 
interactions on which no satisfactory information is available for the controller 
influences the system's behavior in dynamic manner. The big structure-sizes and the 
huge number of tunable parameters, as well as the time-varying “goal” still mean 
serious problem. These sophisticated approaches need ample computations and do 
not correspond to our main purposes. 

In contrast to these observations SC techniques obtained very wide range of 
real practical applications. As examples implementation of backward identification 
methods [R99], the control of a furnace testing various features of plastic threads by 
Schuster [R100], [R101], sensor data fusion by Hermann [R102], building up control 
mechanisms for Expert Systems by Bucko and Madarász [R103], linearization of 
sensor signals by Kováčová et al. [R104], can be mentioned. The methodology of the 
SC techniques, partly concerning control applications, had fast theoretical 
development in recent years, too. Various operators concerning the operation of the 
fuzzy inference processes were investigated by Tick and Fodor [R105], [R106], 
minimum and maximum fuzziness generalized operators were invented by Rudas 
and Kaynak [R107], and new parametric operator families were introduced by Rudas 
[R108], etc. 
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To resolve the seemingly “antagonistic” contradiction between the successful 
practical applications and the theoretically proved “nowhere denseness properties” of 
SC methods one became apt to arrive at the conclusion that the problem roots in the 
fact that Kolmogorov's approximation theorem is valid for the very wide class of 

continuous functions that contains even very “extreme” elements at least from the 
point of view of the technical applications.  

The “extremities” in the class of continuous functions inspire me to seek the 
possibilities for working with the approximation of models using less “intricate” 
functions. These efforts are summarized in the next chapter. 

               dc_62_10



39 

Chapter 6: Introduction of Uniform Model Structures for Partial, 

Temporal, and Situation-Dependent Identification on 

Phenomenological Basis 

The relationship between the proposed novel method and “Classic Soft 

Computing” is symbolized by Fig. 6.1. It indicates that Classic Soft Computing in my 
view is based on three essential pillars: on certain universal structures representing 
universal approximators having either Artificial Neural Networks or Fuzzy Systems 
based implementation or their combination, and some efficient parameter 
tuning/setting method that can be used for fitting the given structure to the particular 
problem considered. 
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Figure 6.1. The relationships between the proposed novel method and “Classic Soft 

Computing” 

 
To illustrate the “extremity” of the class of continuous functions for which 

the nowhere denseness of uniform SC structures of limited number of components is 
valid may be the first example of a function that everywhere is continuous but 
nowhere is differentiable given by Weierstraß in 1872 [R17].  

As it was already mentioned the important features of the traditional SC 
approaches as “uniformity” of the model structures and the parameter tuning/setting 
procedures sometimes also referred to as “machine learning” remained an attractive 
property that generated a “challenge” to construct similar approaches that are free of 
the scalability problems or the curse of dimensionality. 

The first steps in this direction were done by considering the 
phenomenological and formal mathematical structure of Classical Mechanics (CM). 
It was observed that Classical Mechanics in the present control literature can be 
tackled in essentially two different manners. The direct use of the Euler-Lagrange 
equations is strictly related to the phenomenological foundations of CM: at first a 
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Lagrange function has to be constructed by choosing an inertial frame of coordinates 
and expressing the kinetic energy of the system considered minus the potential 

energy i.e. that part of the interaction between the system’s components and between 
the system components and the external world that can be originated from some 
potential. The kinetic energy can be expressed by using the time-derivatives of the 
Cartesian coordinates of the elementary mass points of the bodies constituting this 
system by using some generalized coordinates. As a consequence, in the time 
derivatives appearing in the Euler-Lagrange equations of motion the second 
derivatives of the Cartesian coordinates occur multiplied with the masses of the 
elementary points. With respect to an inertial frame such quantities can be interpreted 
as forces, therefore the generalized forces of these equations obtain the physical 
interpretation as force or torque quantities for prismatic or rotary axles. This 

phenomenology-close formulation does not have too much mathematical simplicity 

and lucidity because it does not assume direct and simple geometric interpretation.  
A more abstract level of mathematical tackling of CM can be achieved by 

using Legendre Transform due to which in the equations of motion only the first 

time-derivatives of the independent variables appear. The mathematical form of the 
so obtained Canonical Equations of Motion is in close relationship with the 
Symplectic Geometry [R25]. 

Taking into account that due to the phenomenology of the CM systems the 
primary agents immediately determining the second time-derivatives of the 
generalized coordinates according to the Euler-Lagrange equations in general and in 
a more specific case of robots [(4.1.1)] are the generalized forces related to the 
second time-derivatives through the inertia matrix, the positive definite nature of the 

inertia matrix offered a formal possibility to model the CM system by using uniform 
structures instead of the given, particular analytical dynamic model constructed by 
the use of e.g. the Denavit-Hartenberg conventions [R6]. Similar statement is true for 
the used of Symplectic Geometry as alternative source of uniform structures for 
modeling. 

Both kinds of “uniformities” were treatable by the systematic use of 
appropriate mathematical tools (diagonalization of symmetric matrices by orthogonal 
transformations leading to studying the Orthogonal Group), and directly studying the 
properties of the Symplectic Group.  

In the sequel at first the approaches based on the Orthogonal Group and the 
Symplectic Group will be briefly considered. 

6.1. The Orthogonal Group as Source of Uniform Structures in CM 

This approach was based on the observation that the inertia matrix of a 
Classical Mechanical system [H(q) in (4.1.1)] is symmetric positive definite and each 
symmetric positive definite matrix can be diagonalized by an appropriate Orthogonal 

Transformation as  

 ( ) ( ) ( ) ( )qOqDqOqH T=  (6.1.1) 

in which D is a diagonal matrix with positive main diagonal elements, and O is an 
orthogonal matrix. If besides this in (4.1.1) [ ( ) ( ) QqqhqqH =+ &&& , ] we consider that 
the q and the dq/dt quantities only slowly can vary due to the inertia of the system, 
but d2q/dt

2 can abruptly be modified by exerting appropriate generalized force Q by 
the drives of the system, (4.1.1) practically corresponds to an affine function of 
d

2q/dt
2 i.e. it consists of a linear and a constant part in this variable. If we 
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concentrate on the linear part of (4.1.1) (6.1.1) serves a mathematical means to give a 
uniform formulation of H(q) if we apply group theoretical considerations. 

More specifically it is well known that the Orthogonal Matrices of Unit 

Determinant form a Lie group. The elements of any Lie group can conveniently be 
parameterized by using matrix exponential functions (see more generally e.g. in 
[R109]) of the form  

 ( ) ( )GGO ξξ exp=,  (6.1.2) 

in which the matrix G is a generator (i.e. an element of the tangent space of the 
group at the unit matrix also belonging to the group), and ξ is a continuous 
parameter. Since the generators of a Lie group form a linear space (in our case of 
finite dimensions), and in the particular case of the Orthogonal Group the generators 
are the skew symmetric matrices several different variants of (6.1.2) can be invented. 
For instance, in three dimensional case three linearly independent skew symmetric 
generators “mixing” the (1,2), (2,3), and (3,1) dimensions can be invented (in higher 
dimensional cases in similar manner two dimensional subspaces can be chosen for 
“mixing” the components while the remaining sub-spaces of the whole space remain 
invariant during the transformations generated by the appropriate generators) 
generating the elements as 
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It is also evident that the diagonal matrices of positive main diagonal 

elements also form a Lie group and can be expressed with their generators in the 
diagonal form as  

 ( ) ( )
nnξξ expexp 11 L . (6.1.4) 

Furthermore, taking into account, too, that an even more detailed mathematical form 
of (4.1.1) can be obtained on phenomenological considerations of Classical 

Mechanics as  
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that makes it possible to express the parts originating from matrix H of (6.1.5) by 
using the uniform structures in (6.1.3) and (6.1.4). Certain particular forms as e.g.  
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and  

 ∑=
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were introduced e.g. in [C24], in which the appropriate tunable parameters were 
adjusted by the Simplex Algorithm..  

This tuning is a rough analogy of controlling a bowl rolling on the surface of 
a plane in a gravitational field: small variation in tilting the plane can keep the bowl 
on the appropriate trajectory. (In an n dimensional real linear vector space the set of 
n+1 vertices {x(i)|i=0, 1,…,n} forms a simplex if the vectors {x(i)-x(0)|i=1,…,n} are 
linearly independent. The essence of the Simplex Algorithm is finding the worst 
vertex and mirroring it to the center of mass of the remaining n vertices. In this 
manner the whole simplex proceeds towards a local optimum. Stretching the simplex 
can improve the speed of the procedure, shrinking the simplex improves its 
precision. The Complex Algorithm is similar to the Simplex Algorithm: instead of the 
simplex it applies some complex that consists of more vertices than a simplex. While 
in the case of using a simplex only linearly independent “directions” are available, 
the Complex Algorithm is similar to animals having many pieces of hair in their 
whisker, therefore they have very fine direction-resolution.) The number of the free 
parameters was found to be large enough to cope with the problem of environmental 
interactions. The need for small and fast changes in the directly tuned parameters 
made it possible to use a fast, dynamic, “incomplete or partial system identification” 
with time-varying “identified” parameters in (6.1.6).  

The form of (6.1.6) has the following advantages with respect to the 
"traditional" and Artificial Neural Network -based descriptions: 

• The tedious work of constructing a dynamic model on the basis of 
the Denavit-Hartenberg conventions can be avoided. 

• The number, the characteristic range and the proper role of each 
tuned parameter is completely independent of the particular 
dynamic properties of the robot, is clearly set ([-π,π] for the 
rotational ones, and for the exponential terms it is trivial that exp(-
10) is very small and exp(10) is very big). This number is quite 
limited in comparison with the possibly required number of neurons 
in the case of a multilayer perceptron. 

Further ancillary tool to back learning i.e. regression analysis to deal with the 
distinction between the H-dependent and the remaining parts in (6.1.5) was applied 
in [C25] (later extended to [J3]). To make the initial phase of learning more efficient 
an “Additional Generalized Force” term based on a simple approximation assuming 
that for the few previous control steps the change in the joint acceleration must be 
proportional with the change in the observable generalized forces exerted by the 
robot drives: 

 ( ) ( ) ( ) ( )stststst
TT −∆−∆≅−∆−∆
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∑∑ qQqqH
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&&&&&&
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 (6.1.8) 

This led to simple version of Regression Analysis needing the inversion of a 
symmetric matrix at the right hand side. Since this relation is significantly concerned 
by the external dynamic interactions, the matrix H so obtained cannot be considered 
as the estimation of the robot's inertia matrix. It is worth noting that instead 
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calculating the sum of finite number of terms in (6.1.8) computationally it is more 
efficient to apply the sum of infinite number of terms combined with a forgetting 

factor 0<α<1: in this case in the control cycle a buffer's content can be multiplied by 
α and the new term must be added to it. 

 ( ) ( ) ( ) ( )stststst TsTs −∆−∆≅−∆−∆ ∑∑
∞

qQqqH &&&&&&
10

1=s1=s

αα  (6.1.9) 

The basic idea of the above approach was investigated in various contexts 
(e.g. in [C22], [C23], [C26], [C28], [C40]). In the sequel a polishing application is 
considered in details using the results published in [C24] [C23]. Following that an 
alternative approach is detailed that considers the quasi-diagonalization of the inertia 
matrix in an alternative manner. 

6.1.1. Application Example for the Use of the Orthogonal Matrices as Sources of 

Uniform Structures in Classical Mechanics 

 

Surface to be polished

The nominal track is in it.

Center of polishing disk

s0

s_o

s

s_o=FtD/Spr_s

Xs

XN (Nominal point)

XR

(Max. allow. dist. between real point and nominal point)

(Real end point)

(Extended Nom.

Point. for desired

Contact Force)

Spring

nN=nV

Normal unit vector of the

surface

s0-s_o

 

Figure 6.1.1.1. The idea of transforming the force/position/velocity task into pure 

kinematic problem by using a passive compliance and the proposed control 

 
The here presented figures and conclusions are taken from [C23]. In the 

present method a 3 DOF SCARA arm having a translational and two rotary joints 
was completed by a third “link” in the form of a “pipe” parallel with the telescopic 
shaft and rigidly attached to the end of the second rotary link. The pipe contains a 
passive elastic component, a spring of a not very large, a priori known stiffness and 
negligible viscous damping. Consequently, from the purely kinematic data of the 
spring's deformation its force depending on the contact force prescribed for polishing 
as a technology requirement can be determined. By knowing the location of the 
surface to be polished the required contact force can be transformed into the desired 
location of the endpoint of the last rotary link which otherwise may have arbitrary 
velocity with respect to the workshop's system of reference. Via applying a cardan 
link for fixing the polishing disc in the case of mechanical contact the disc will 
always be located in the tangent plane of the surface of the work-piece at the given 
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point. In the case of a relatively precise location of the disk the errors in the 
positioning of the disk will be transformed into a minor error in the contact force 
originally prescribed (see Fig. 6.1.1.1.). 

Due to the flexibility of the cardan shaft in the model of dynamic interaction 
of polishing -used in the simulation only- an even pressure distribution “p” over the 
disc's surface was supposed. The small surface element of the disc “dS” gives the 
following contribution into the torque: 

 r
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M ×
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


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The polishing disc was supposed to have a fast rotation therefore for the great 
majority of the surface of the disk the velocity component originating from the 
rotation far exceeded the translational component vTR. By neglecting the effect of the 
central part of the disk this yields the normal component of 
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in which “F” is the absolute value of the contact force pressing the disc against the 
work-piece, and “µ” denotes the friction coefficient. The net force of friction from 
the small surface element has an expression to (6.1.10) 
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Again, by neglecting the effect of the small central part of the disc the term in the 
parentheses in (6.1.12) corresponds to a rotating unit vector resulting in zero in the 
integral. Therefore the effect of the contact forces was modeled according to 
(6.1.11). 

The directly tuned parameters were the “gijk” parameters defined as 

k

ij

ijk
q

g
∂

∂ξ
≡  in (6.1.6) and in (6.1.7). The estimated inertia was integrated according to 

these ever varying coefficients. In principle such decomposition can describe the 
Coriolis forces and other terms quadratic in the angular velocities in (6.1.5). The 
initial model was a pure diagonal matrix proportional to the identity operator. This 
was improved step by step by tuning the “gijk” parameters according to the Simplex 

Algorithm in which the optimum i.e. the difference between the desired and the 
achieved joint accelerations was minimized. To support this process the following 
ancillary tools were applied: 

• an “Additional Generalized Force” term based on a simple version 
of regression analysis in which the prediction is “qualified” and 
suppressed according to the noisiness of the environment it 
originates from; 

• a tuned PID term described in details e.g. in [C24] (also detailed 
below); 

• a truncation in the angular velocities at a lover limit when 
calculating the inertia matrix according to (6.1.6) to achieve good 
adaptivity for slow motion, too; 
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• a slower external loop simultaneously tuning a “slope” in the 
PID/ST term and a parameter qualifying the “noisiness” of the 
regression correction also optimizing a longer term integral of the 
acceleration error. 

Regarding the details, the initial model was a pure diagonal matrix proportional to 
the identity operator. This model was improved step by step by tuning the “gijk” 
parameters according to the Simplex Algorithm in which a function of the difference 
between the desired (“D”) and the realized (“R”) joint accelerations is minimized: 
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This cost function is proportional to the relative error in the acceleration for “large” 
desired acceleration, and it approximates the absolute error for “small” desired ones 
(terms large and small are to be understood in comparison with a constant KRel). To 
support this process further ancillary tools were applied: 
 

• a ( ) ( ) ( )1,11/ −∈+= xxxsigmoid  function used in stabilization 

against the effect of extreme noises in the terms  
( ) ( )( )πξπξ /sinsin ijij sigmoid×→  

( ) ( )( )πξπξ /coscos ijij sigmoid×→  

( ) ( )( )3.2/3.2expexp iiii sigmoid ξξ ×→  

(for reducing computational complexity this saturated nature is not 
taken into account in the calculation of the partial derivatives of H); 
• an “additional generalized force” term based on a simple version of 

regression analysis in which the prediction is “qualified” and 
suppressed according to the noisiness of the environment it 
originates from [C23]; 

• a PID term in which the coefficients of the proportional, derivative 
and integrated term are tuned as the function of the integrated error 
in order to keep a prescribed pole-structure in the desired damping 
of the coordinate errors fixed (described in details e.g. in [9]); in the 
present version this approach is improved by allowing this feedback 
increase if the overall torques of the drives are smooth functions of 
time, and it is decreased in the more "noisy" phases of the motion; 
here “noisiness” is determined by the forgetting sum 

( ) ( ) ( ) ( )11 intint −−+×=+ tttctc QQα  and a fuzzy membership 

function describing the “smoothness” of the torque signal in 
comparison with a reference value cCoeff. 
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The fraction in ‘c’ can be also interpreted as a fuzzy set describing the 
“smoothness” of the control: for small torque derivatives it approaches 
1, while for too fast changes in the momentum it converges to zero; this 
rigid rule means that for strongly varying momentum it is not 
reasonable to require too strong feedback in order to avoid instabilities 
and overshoots, but in the “stable phase” of the control an increase in 
the feedback may improve accuracy.  
• “external loop parameters” of slow tuning used as reference values 

-built in certain fuzzy membership functions- in the “assessment” of 
several properties of the control; their appropriate value can be set 
roughly “experimentally”; further slow real-time tuning can help in 
finding their optimum value; since the optimum setting can change 
in time, it is expedient to keep them adjusted in real-time. 

All the above ancillary tools required minor computational power and also 
were independent of the particular characteristics of the control problem to be solved. 

6.1.2. Simulation Results for the Use of Diagonalization of the Inertia Matrix  

In the simulations the robot had the task of polishing a strip on a bell-shaped 
surface. The strip was located at constant distance from the telescopic axis of the 
robot. The force with which the polishing disk was requested to press the surface was 
1200 [N], the spring in the elastic component had the stiffness of Spr=400 [N/m]. 
Detailed figures are given in Appendix A.3. 

As a conclusion of this section it can be stated that it was illustrated via 
simulations that the proposed method combining an improved version of the classic 
PID/ST and simple uniform structures with free parameters adjusted by the Simplex 

Algorithm and with the ancillary tool of regression analysis can co-operate 
successfully. The synthesis of the individually quite limited methods leads to an 
efficient control in which the significance of the different components remains 
comparable and changes according to the task to be executed. The method is free 
from scaling problems. It can be regarded as a compromise between the traditional 
Soft Computing and Hard Computing. The introduction of the passive compliant 
element makes was successful for technological operations.  

6.2. The Symplectic Group as Source of Uniform Structures in CM 

The phenomenological foundation of any analytical description in Classical 

Analytical Mechanics is the Lagrangian Model, by the use of which the kinetic 
energy of the mechanical systems can be formulated in an inertial system of 
coordinates in the Newtonian sense. The generalized coordinates and generalized 
forces in the Lagrangian model normally in principle are directly measurable 

(observable) quantities as rotational angles, angular or linear velocities, and force or 
torque components. Via introducing the generalized momentums the Hamiltonian 

Model can be “built up” on the basis of the Lagrangian one for conservative 
mechanical systems by using the Legendre Transformation. This model considers the 

set of the possible physical states of the system to be a differentiable manifold for the 
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description of which different “maps” or abstract systems of coordinates can be 

applied. Nature distinguishes those maps by the use of which the mathematical form 

of the state propagation gains the possible simplest form. The coordinates of these 
special maps are referred to as canonical coordinates, by the use of which the 
equations of motion take the form of  

 Free
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j j

iji Q
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x
~)(

+ℑ=∑
x

x

∂
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







−
≡ℑ
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in which in which H(x) describes the Hamiltonian (that is the full energy) of the 
conservative system as the function of its physical state x. This physical state is 
represented by the canonical coordinates consisting of the generalized coordinates q 
in the first, and the generalized momentums p in the second block of DOF 
dimensions (DOF = Degrees of Freedom) [qT,pT]T, and the block of the generalized 

forces TTFree ],[
~ FreeT Q0Q = . It is important to note that the first DOF components of 

Free
Q
~

 must be zero, this directly follows from the Legendre Transformation and from 

the Euler-Lagrange equations of motion. From physical point of view the nonzero 
components of the generalized forces have force dimension [N] for linear, and torque 
dimensions [Nm] for the rotary joints. They represent the appropriate projections of 

the external free forces exerted by the environment on the robot or by its own drives. 
By applying some different map for describing the same physical system another 
canonical coordinates x'(x) can be introduced leaving the form of the equation of 
motion exactly the same as in (6.2.1). These transformations are defined by the 
restriction that their Jacobian must be Symplectic, that is 
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jtstis
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ij TT
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and lead to the “transformation rule” for the generalized momentums as 

 ∑ ′=′
s

Free

sis

Free

i QTQ
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. (6.2.3) 

As in the case of the Euclidean Geometry the internal symmetry of which is 
described by the Orthogonal Transformations leaving the scalar product of two 
arbitrary vectors unchanged both in form and in numerical value, the Symplectic 

Transformations can also be considered as mathematical tools describing the internal 
symmetry of the Classical Mechanical Systems. They leave both the numerical value 
and the form of the quadratic Symplectic structure ∑ ℑ

ji

jiji vu
,

 invariant. (Here u and 

v are two arbitrary vectors of the tangent space of the system's physical states. The 
geometry based on the Symplectic structure is called the Symplectic Geometry (see 
details in Appendix A.10. for the analogies between various geometries occurring in 
Natural Sciences).  

In close analogy with the idea applied by Lajos Jánossy the Symplectic 

Transformations given in (6.2.2) can be also interpreted in an alternative manner that 
offers the possibility for using them in modeling Classical Mechanical Systems for 
control purposes. Jánossy studied the Lorentz Transformations for the four-
component space-time and other physically important vectors x’(x)=ΛΛΛΛx being the 
internal symmetry of Maxwell’s Electrodynamics (see details in Appendix A.10.) 
and applied the following observation: a given Lorentz transformation may have two 
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kinds of physical interpretation: a) the x’ coordinates serve as new coordinates on 

the same physical system for the description of which the original coordinates x were 

used; b) the x’ coordinates may be interpreted as the coordinates of a different 

physical system (the “deformed” version of the original one) that behaves similar 

manner as the original physical system since it obeys the same symmetry restriction. 
Jánossy called this latter interpretation as the “Deformation Principle”.  

According to the Deformation Principle the Canonical Transformations may 
be also interpreted as deformations of the original mechanical system, and on this 
basis local canonical transformations may be regarded as mathematical possibilities 
for describing adaptive control by modifying the free parameters of these local 
transformations. Geometric, group-theoretic and algorithmic aspects of the method 
were analyzed in details in [J2]. However, for correct phenomenological 

interpretability the restriction guaranteeing the structure TTFree ],[
~ FreeT Q0Q =  in 

(6.2.3) has to be kept in mind, too. 
As it will be discussed in details in paragraph “6.2.2. Complementary Tuning 

Possibilities in the Cumulative Control”, for keeping the first n (n is equal to the 

Degree of Freedom of the mechanical system) components of Free
Q
~

 zero even in the 
case of external perturbations in general block-diagonal symplectic transformations 
are needed. (Though these special block-diagonal transformations do not “mix” the q 
and p components, some coupling between them still remains: if q is 
shrunk/stretched then p has to suffer stretching/shrinking. The dimension of the 
Symplectic transformations not mixing the q and p components is n2.) 

If we apply a very rough approximate dynamic system model, it can be 
characterized by a constant inertia matrix M, a constant gravitational term h, and a 
Lagrangian defined as  

 ( ) qhqMqqq
TT

L +≡ &&&
2

1
,  (6.2.4) 

The appropriate restrictions to be imposed for the purposes of the deformation 
principle are as follows: In the canonical map directly deduced from the Lagrangian 
model the generalized force vectors have only 1×DOF non-zero components. Since a 
general canonical transformation can combine all the 2×DOF components of the 
transformed generalized force vectors, a considerable part of the canonical 
transformations cannot be applied for deformation purposes. Only those solutions 
can be accepted for which the necessarily “truncated”, phenomenologically non-
interpretable components of the generalized force vector are negligible in 
comparison with the interpretable parts. 

On the basis of simple geometric and algebraic considerations (using the 
Symplectizing Algorithm operating with the concept of the Antiorthogonal Subspaces 
detailed in Table A.10.1. of Appendix A.10.) in the first step of the control a 
“drastic” Symplectic transformation can be introduced.  

The effect of this transformation can either be “refined” by applying further 
Symplectic deformations in the consecutive control steps, or it can be started from 
the initial rough model immediately in each step.  

In the first case, due to the group properties of the symplectic matrices the 
expected result is a symplectic matrix expressed as a product of the first matrix and 
many other, near unity symplectic transformations, assuming that the method 
converges. Since the effects of the step by step deformations are “accumulated” in 
this product, this solution is referred to as the “cumulative approach”. The latter one 
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using drastic deformations in each single step is called the “non-cumulative 

approach”. Of course, when the result of the cumulative approach starts to become 
“extreme”, casually the identification can be started the onslaught again. 

Further possibility independent of this cumulative/non-cumulative approach 
is tuning the parameters of the Symplectic Group. For each Lie Group in a manner 
similar to that of the Orthogonal Matrices uniform structures can be introduced for 
describing its elements. In the sequel the use of these two kinds of transformations 
will be discussed. 

6.2.1. Simple Cumulative Control based on the Symplectizing Algorithm 

The essence of this control consists in the difference in the phase currents 
generated by H' and H in the same point of the differentiable manifold. The idea of 
partial system identification is related to this interpretation: starting with a very 
rough initial model of constant M in the Lagrangian and with a constant h the model 
establishes a connection between the exerted local generalized forces and the 
propagation of the state-vector Mody& . In the reality the encoders measure a different 

propagation Modal yy && ≠Re . It is expected that the difference can be eliminated by 

some deformation of the initial model in the form of H'(z)=H(y(z)). According to the 
original canonical formulation, an appropriate Symplectic matrix is to be found for 
which SbxSxa === Modal && Re  is valid. This can be done e.g. in the following way: 
by making two quadratic matrices of the column vectors a and b (A and B, 
respectively) via “putting near them” further linearly independent vectors the matrix 
relation A=SB can be prescribed. Due to the group properties of the Symplectic 
matrices this can be satisfied if both A and B are Symplectic and their first column is 
equal to a and b, respectively. This can be achieved by the use of the symplectizing 
algorithm (Table A.10.1. of Appendix A.10.). The solution is simply S=AB

-1=AℑB
T

ℑT. in connection with it is worth noting that calculating the inverse of the matrices 
belonging to Lie Groups defined by nonsingular fundamental quadratic expressions 
computationally is very cost-efficient: can be solved by two matrix production that is 
far simpler than inverting a general quadratic matrix. In these investigations step by 
step “refining” this drastic initial deformation in a “cumulative” way was applied.  

Regarding stability and convergence issues, for certain conventional control 
methods as e.g. Model Reference Adaptive Control, on the basis of well defined 
mathematical restrictions concerning the model of the system to be controlled 
asymptotic stability can be proved in closed analytical way. In the case of the method 
here presented such elegant step cannot be done due to the following reasons: 

• In general, no any assumption was made regarding the nature of the 
external perturbations influencing the system. 

• Instead such modeling assumptions in each control point the 
controller can find an appropriate Symplectic matrix which deforms 
the actual model according to the observed behavior without trying 
to “explain” the reason of the difference between them. 

• Consequently the behavior of such a control can be tested via 
simulation instead of closed analytical calculations. 

However, insisting on the use of the elements of the Symplectic Group already 
contains inherent “brakes” serving the stability and keeping the errors finite. Each 
Symplectic matrix is unimodular and is invertible via transposition and 
multiplication by other unimodular matrices. Consequently, all the numerical 
operations used by the controller are far away from the possibility of singularities 
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(“inherent brake”). Besides the “inherent brakes” the method gives ample 
possibilities for additional or “built in brakes” for serving stability. Any appropriate 
motion planning guarantees finite error if the desired joint accelerations in it are well 
approximated. In connection with this the following problems may arise. Though 
these matrices can never be singular, it may occur that the unimodularity is 
guaranteed by the occurrence of very big and very small matrix elements. In 
principle this may cause overflow problems in the digital representation of these 
matrices. However, such situations may occur only in special cases which can easily 
be identified by the controller’s “built in brakes”:  

• In the equation A=SB the first column of A or B or both of them is 
close to zero: in this case the Symplectic identification based on the 
Symplectizing Algorithm can be switched off by the controller and a 
simple linear control can be followed; 

• The extra columns in A and B or in both are so chosen that one of 
them is almost parallel with the first vector: this case can be evaded 
by choosing an initially well conditioned, 2×DOF pieces of linearly 
independent Symplectic set of vectors in the columns of the 
matrices, and try to replace the first one with the model and the 
measured data, respectively; this replacement can be preceded by a 
permutation of the columns, so the Symplectizing Algorithm will 
operate without numerical overflow problems;  

• In the cumulative approach certain matrix elements may increase in 
a dangerous manner; this situation can easily be monitored and it 
can be evaded by starting the Symplectic identification from the 
beginning with a new, rough single step; after this step further 
cumulative corrections can be allowed again. 

The Symplectizing Algorithm used in the cumulative control, too, from certain point 
of view may behave as a “drastic”, non-continuous algorithm especially when the 
sequence of choosing the appropriate vector to be transformed for being the 
“Symplectic mate” of the previously chosen vector is concerned. For achieving 
“continuous” tuning the Symplectic Group can be considered as a set parameterized 
by continuous parameters. This mathematical approach and its complementary use 
are considered in the next paragraph. 

6.2.2. Complementary Tuning Possibilities in the Cumulative Control 

From a purely mathematical point of view Symplectic matrices form a Lie 

Group more or less similar to the Orthogonal Group. By the use of special 
generators of this group, each of its elements can be “parameterized” by continuous 
parameters in the form of simple closed analytical expressions describing 
simultaneous exponential stretches and shrinks, conventional and hyperbolic 

rotations in the tangent space [J2]. On the above basis the following model strategy 
can be elaborated. Instead using the original matrix relation A=SB its slight 
modification can be introduced in the form as 

 P*A=SPB (6.2.5) 

in which P* is a special Symplectic matrix leaving the first column of A invariant. In 
similar way, P also is a Symplectic matrix leaving the first column of B invariant. It 
is evident, that (6.2.5) corresponds to the same control requirement as the original 
equation A=SB, but the resulting Symplectic transformation S will differ from the 
original one. The difference between the two controls consists in different dealing 
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with the antiorthogonal subspaces of the 1st columns of A ad B, respectively. Since 
the first columns of the A(n) and B(n) matrices of the nth control step may contain 
components from the antiorthogonal subspaces of the 1st columns of the preceding 
A(n-1) and B(n-1) matrices, slight tuning of the P* and P matrices can improve the 
control quality since it can “reveal” and “trace” tendencies in the variation of the 
control task. 

For constructing appropriate P and P* matrices their exponential series 
expression can be used. For instance, let u correspond to the first column of matrix 
B, and G be one of the generators of the Symplectic Group: 

 uGuGPuu s
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s
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t ∑

∞
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≡==
0 !

)exp( . (6.2.6) 

Evidently, if Gu=0, that is if G maps u to zero, (6.2.6) is fulfilled, therefore it is 
expedient to systematically study the structure of the generators of the Symplectic 

Group.  
For this purpose the standard technique for constructing the generators of a 

Lie Group considering almost unit transformations can conveniently be used: 

 ( ) ( ) ( ) ( ) ℑ=+ℑ++ℑ=+ℑ+ 2ξξξξ OTT
GGGIGI . (6.2.7) 

In the 1st order approximation according to ξ≠0 (6.2.7) satisfied if Gℑℑℑℑ+ℑℑℑℑG
T=0. Since 

ℑℑℑℑT= -ℑℑℑℑ this means that ℑℑℑℑG
T= -ℑℑℑℑT

G
T= -(Gℑℑℑℑ)T, therefore the matrix (Gℑℑℑℑ)=S must be 

symmetric. This immediately reveals the dimension of the linear space of the 
generators: for an n DOF mechanical system S has the dimensions of 2n×2n that may 
have 2n+(4n

2-2n)/2=2n
2+n linearly independent elements. Considering S in a block-

diagonal structure it must consist of the symmetric real A and B matrices, and an 
arbitrary H matrix as 
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in which the minus sign was introduced for later convenience, A and B together have 
2[n+(n2-n)/2]=n

2+n independent elements due to their symmetry, and H has n
2 

independent elements that altogether is 2n
2+n. Since ℑℑℑℑ2= -I, Gℑℑℑℑ2= -G=Sℑℑℑℑ, so from 

(6.2.8) it is obtained that 
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It s worth noting that for achieving block-diagonal transformations not 
mixing the q and p components, in (6.2.9) the condition A=0, B=0 has to be met, and 
we have the n2 linearly independent components of the arbitrary real H. 
A relatively lucid description of the generators can be achieved if we observe that GT 
in (6.2.9) essentially has the same structure as G, therefore if G is generator then GT 
is a generator, too: 
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
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TT
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BH
G . (6.2.10) 

Really, in the upper left block of GT an arbitrary matrix stands, and in the lower right 
block minus one times its transpose can be found. In the upper right and lower left 
corners two independent symmetric matrices can be found, just as in G.  
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Utilizing the fact that the generators form a linear space, symmetric and skew 
symmetric generators can be constructed of (6.2.9) and (6.2.10) as  
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It is worth noting again that for not mixing the q and p components in the 
symmetric generators (6.2.11) we have the n+(n2-n)/2 linearly independent 
symmetric components of H, and in the skew symmetric part (6.2.12) we have the 
(n2-n)/2 linearly independent skew symmetric components of H, that altogether is n2. 

It is very easy to find conveniently applicable basis vectors in the space of the 
generators that consist of 0 and ±1 matrix elements, and lead to simple exponential 
series that can be expressed in closed analytical form.  

Consider at first the symmetric generators! For instance in the case of n=1 the 
generators that have elements only in the main diagonal of the symmetric matrices 
yield as e.g. 
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These generators generate simultaneous stretches and shrinks strictly in the main 

diagonals. In similar manner, if we have nonzero elements in the nondiagonal parts 
we easily obtain that 
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 (6.2.14) 

since the 2nd power of this generator just yields the unit matrix, therefore the proper 
powers of variable t can be recognized in the appropriate matrix elements. So these 
generators generate hyperbolic rotations in the main block diagonals. In close 
analogy with that hyperbolic rotations can be generated between the nondiagonals as 
e.g. by  

               dc_62_10



53 

 

( ) ( )

( ) ( )


















=











































1000

0cosh0sinh

0010

0sinh0cosh

0000

0001

0000

0100

exp
tt

tt

t  (6.2.15) 

since the 3rd power of such generators is just identical with their 1st power therefore it 
is very easy to recognize the appropriate power series of t in the matrix elements. 

Regarding the skew symmetric generators similar considerations can be done. 
Consider the main block diagonals in (6.2.12) for n=1: 
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since the 3rd power of such generators just are equal to minus one times their first 
power. Similar observation can be done for the transformations originating by the 
off-main diagonals as e.g. the example below, in which 
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because the 3rd power of such generators yield their 1st power again, etc. In higher 
dimensional cases just the same considerations can be done with very similar 
generators and their power series. 

Now let us return to the problem in (6.2.6) for finding appropriate generator 
for the condition Gu=0. For convenient utilization of the block structures in (6.2.11) 
and (6.2.12) let us decompose u into two sub-blocks of dimension n as u=[aT,bT]T 
and consider the generally n-2 dimensional orthogonal subspace of a and b. (For 
their specialties the a parallel to b, a=0, b=0, and a=b=0 cases are not considered 
since they are insignificant from the needs of the control as later it will be explained). 
Let the set of orthonormal basis vectors {c

(i)|i=3,4,…,n} in the orthogonal subset of a 
and b! It is very easy to create symmetric blocks for (6.2.11) in the form of 
S

(ij)
kl:=(c(i)

kc
(j)

l+c
(i)

lc
(j)

k)/2 and skew symmetric blocks for (6.2.12) as 
A

(ij)
kl:=(c(i)

kc
(j)

l-c
(i)

lc
(j)

k)/2 making arbitrary linear combinations of these matrices 
according to their upper pair of indices (i,j) since the linear combination of 
symmetric and skew symmetric matrices remain symmetric and skew symmetric, 
respectively. If the appropriate blocks of generator G are built up of such linear 
combinations the Gu=0 restriction automatically and trivially holds. 

The next question is for the goal of elaborating continuous parameterization: 
how can we calculate the power series of such generators in closed analytical form. 
The answer is very easy if the set of n+2 vectors is considered consisting of a and b, 
and of the columns of the n×n dimensional unit matrix as {a, b, e(i)|i=1,2,…,n}, in 
which e(i)

j=δij. Normally this set is linearly dependent. If we apply the Gram-Schmidt 
orthonormalization algorithm detailed in Table A.10.1. of Appendix A.10., n linearly 
independent, orthonormal unit vectors have to be obtained as {c

(i)|i=1,2,…,n}, in 
which c(1) is parallel with a, c(2) is parallel with the component of b that is orthogonal 
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to a, while the remaining {c
(i)|i=3,4,…,n} vectors span the n-2 dimensional subspace 

orthogonal to both a and b. By putting near each other the columns of the 
{c

(i)|i=1,2,…,n} vectors, due to their orthogonality an orthogonal matrix C is 
obtained, that satisfying the relationships with the unit matrix I as C=CI, can be 
interpreted in the following manner: 

 
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( ) ( )[ ]n

nn

CeCeCe

eeeCCIccc

L

LL
21

2121

=

===
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i.e. for obtaining the c(i) vectors the columns of the e(i) vectors have to be rotated by 
the orthogonal matrix C. Since the orthogonal matrices satisfy the simple 
relationship CT

C=I, the appropriate blocks of G can be obtained from the Ce
(i)

e
(j)T

C
T 

matrices. Now consider arbitrary blocks D, E, F, G, K, L, M, N of the dimension 
n×n, and consider the matrix product below 
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from which it follows that e.g. the appropriate blocks of the exponential series of the 
transformed generators can be obtained from the blocks of the exponential series of 
the original generators multiplied by the orthogonal matrix C from the left hand side, 
and by C

T from the right hand side. If the original generators are cleverly chosen 
their exponential series can easily be computed in closed analytical form as it was 
shown in the equations (6.2.13)-(6.2.17). 

Now for the sake of a simple application example apply the above 
considerations for the case of n=3, in which the components of u as a and b allow 
only a single dimensional subspace. Since from a single vector no non-zero skew 
symmetric matrix can be produced, we can produce only the symmetric generators in 
(6.2.11) by using the unit vector e

(3) and C in the form as 
K=Ce

(3)
e

(3)T
C

T=CK0
(3)

C
T=K

T, and this symmetric matrix can be placed either into 
the main diagonals and in the non main diagonals as  
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The first generator evidently yields the power series as 
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Regarding the second one, its 2nd and 3rd powers can directly be considered as 
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therefore even and the odd powers can be separately accumulated as  
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It is evident that (6.2.21) and (6.2.24) well and easily programmable, as well as the 
Gram-Schmidt Algorithm that can be used for a given u to construct C. In the sequel 
an application example will be given for the control of a robot arm the endpoint of 
which is connected to a dashpot producing elastic spring forces and viscous damping 
as external perturbations. 
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6.2.3. Application Example for the Use of Symplectic Transformations as the 

Sources of Uniform Structures in Classical Mechanics 

Detailed simulation results obtained for a possible application example are 
given in Appendix A.4. It can be stated that these results well illustrate and 
substantiate the applicability of the above theoretical considerations. 

6.3. Thesis 2: Introduction of Uniform Model Structures for Partial and 

Temporal, Situation-Dependent Identification on Phenomenological Basis by 

Uniform Procedures (Summary of the Results of Chapter 6) 

Following a brief critical analysis of the Classic Soft Computing based 
approaches I realized that they have mathematical difficulties of general nature. I 
have shown that its main theoretical problem as “bad scalability” (“curse of 

dimensionality” or the “nowhere denseness property” of the uniform structures 
containing only finite number of elements) originate from the fact that these 
“models” are related to Kolmogorov’s Approximation Theorem. According to that 
multiple variable continuous functions are approximated by single variable ones over 
a compact domain. 

Keeping in mind the famous example by Weierstraß from 1872 [R17] I 
realized that the class of “continuous functions” is too wide for the great majority of 
technical applications in which mainly “smooth” functions occur. I also realized that 
this simple fact can explain the historically long observation that in many 
applications Classical Soft Computing works very well in spite of the “nowhere 

denseness property” of the practically useful approximations. 
To utilize the attractive idea of “uniformity of structures and procedures” I 

proposed the introduction of “uniform structures and procedures” that do not suffer 

from the curse of dimensionality. For this purpose I restricted the modeling domain 
to the description of Classical Mechanical Systems that were considered in two 
different levels of abstraction. The first attempt considered the level of the Euler-

Lagrange Equations of Motion directly related to the phenomenological foundations 
of Classical Mechanics. The second attempt considered a higher level of abstraction, 
in the form of the Canonical Equations of Motion. On this basis the following 
modeling structures have been elaborated and investigated via simulations: 

• I have shown that uniform structures can be constructed for the 

mathematical description of the inertia matrices of Classical 

Mechanical Systems independently of the intricate traditional 
procedure (i.e. the use of Homogeneous Matrices and the Denavit-

Hartenberg Conventions to elaborate precise analytical models 

[R6]). For n Degree of Freedom systems n×n dimensional 
Orthogonal Matrices and main diagonal stretches/shrinks of 
tuneable parameters were introduced to diagonalize a rough initial 
model of the inertia matrix. I have shown that for this purpose the 
number of the freely tunable parameters is n+(n2-n)/2. 

• I have illustrated via simulation examples that this technique can 
improve the tracking properties of the control.  

• To improve the capacities of the novel uniform modeling technique 
I analyzed the internal symmetry of the Canonical Equations of 

Motion. I also analyzed the phenomenological aspects related to the 
Symplectic Group that conserves this internal symmetry. I applied 
Lajos Jánossy’s Deformation Principle for developing uniform 
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models and restricted Symplectic Transformations for tuning to be 
used in the adaptive control of Classical Mechanical Devices.  

• I have pointed out that the number of the free parameters of the 
Symplectic Transformations not mixing the q and p components in 
the case of an n DOF system is altogether n

2 that normally is 
considerably more than the n+(n2-n)/2 parameters of the 
transformations diagonalizing the inertia matrix.  

• I have shown that for parameterizing purposes symmetric and skew 

symmetric generators can be introduced for describing the 
Symplectic Group, and elaborated a simple method to express the 
uniform structures in closed analytical form. 

• I have shown that the above Symplectic Transformations can be 
used for realizing a partial and situation-dependent identification of 

the uniform models of the classical mechanical systems. These 
models need continuous maintenance via observing the “realized 

behavior” and mapping it to the “expected behavior” calculated on 
the basis of the actual model.  

• I have shown that this simple approach has the great advantage that 

no any effort it needs to distinguish between the effects of the 

improper system model and that of the external perturbations. Their 

overall effects are taken into account in the construction of a simple 

mapping. This is significant advantage in comparison with the 

Adaptive Inverse Dynamics Control, or with Slotine’s and Li’s 

methods in which either the lack, or at least temporal and 

insignificant nature, or exact knowledge of the external 

perturbations are assumed, and the adaptation is based on 

complicated calculations based on Lyapunov’s 2
nd

 Method.  

• I have shown that the modeling method proposed has the great 

advantage in comparison with the Classic Soft Computing 

approaches that the sizes of the applicable uniform structures and 

the numbers of their tunable parameters essentially are determined 

by the Degrees of Freedom of the systems under consideration. They 

are limited, and independent of the systems’ analytical models. In 

contrast to that, for instance in a Multilayer Perceptron for 

modeling nonlinear mapping only the number of the necessary 

layers is bounded and pre-determined. The number of the free 

parameters to be tuned is determined by the required precision of 

the approximation, and strongly depends on the details of the 

particular problem under consideration. 

• Via discussing the results of simulation examples I illustrated the 
applicability of this proposed method in the case of a 3 Degree of 
Freedom Classical Mechanical System under external perturbation. 

 
The most important publications related to the contents of Thesis 2 are as 

follows:  [B1], [B2], [J1], [J2], [J3], [J4], [J5], [J6], [J7], [J13], [C1], [C2], [C3], 
[C4], [C5], [C6], [C7], [C8], [C9], [C10], [C11], [C12], [C13], [C14], [C15], [C16], 
[C17], [C18], [C19], [C20], [C21], [C22], [C23], [C24], [C25], [C26], [C27], [C28], 
[C29], [C30], [C31], [C40]. Furthermore, the parts of publications conveying some 
“criticism” are also relevant here as [J14], [C102], [C106]. 
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Chapter 7: Adaptive Control of Particular Physical Systems by the 

Abstract Use of Special Elements of Various Lie Groups 

As it was already briefly outlined in “Chapter 6: Introduction of Uniform 
Model Structures for Partial, Temporal, and Situation-Dependent Identification on 
Phenomenological Basis” It seemed to be reasonable to risk the assumption that 
“generality” and “uniformity” of the “traditional SC structures” exclude the 
application of plausible simplifications which may be characteristic to a whole set of 
typical tasks. This made the idea rise that several “simplified” branches of SC could 
be developed for narrower problem classes if more specific features could be 
identified and taken into account in the uniform structures.  

The first steps in this direction were made in the field of Classical 

Mechanical Systems (CMSs) [J2], while further refinements were published in [J4], 
on the basis of principles detailed e.g. in [R25]. This approach used the internal 
symmetry of CMSs, the Symplectic Group (SG) of Symplectic Geometry in the 
tangent space of the physical states of the system. The result of the situation-
dependent system identification was a symplectic matrix mirroring the effects of the 
inaccuracy of the rough dynamic model initially used as well as the external dynamic 
interactions not modeled by the controller.  

By considering the problem from a purely mathematical point of view quite 
independently of the phenomenology of CMSs, it became clear that all the essential 
steps used in the control can be realized by other mathematical means than 
symplectic matrices. The SG can be replaced by other Lie groups defined in a similar 
manner by the use of some “basic quadratic expression” [J5]. In this approach the Lie 
group used in the control does not describe any internal physical symmetry of the 
system to be controlled. In the next paragraph the details of this idea are developed.  

7.1. The Idea of Cumulative Control Using Minimum Operation 

Transformations 

As is well known, a discrete time model of a causal physical system can be 
formulated in the form of a difference equation with an external input {uk} that is 
usually considered to be known (Autoregressive Moving Average Model with 

external input - ARMAX) (e.g. [R113]): 

 ∑∑
=

−
=

−+ +≈
M

w

wkw

N

s

sksk ubyay
00

1  (7.1.1) 

For instance, in the so-called Takagi-Sugeno fuzzy models the consequent parts are 
expressed by analytical expressions similar to (7.1.1) and they use some linear 
combinations of the (7.1.1)-type rules in which the coefficients depend on the 
antecedents. With the help of such Takagi-Sugeno fuzzy IF-THEN rules sufficient 
conditions to check the stability of fuzzy control systems are now available (e.g. 
[R114]).  

From our particular point of view the most important feature of the model 
described by (7.1.1) is that the fading consequences of the past are taken into 

account in it in an additive manner with expectedly vanishing linear coefficients i.e. 
as, bs→0 as s→∞. This additive structure entails significant consequences regarding 
the mathematical form of the various proofs elaborated for describing the behavior of 
such systems or dealing with the problem of the identification of these coefficients. 
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Quite different formal approach can be developed for transformations that 
can be described by the use of Lie groups. For instance, consider the parametric 
matrix transformation of some “initial” array a(t0) in which the transformation g(tn,t0) 
is the element of certain Lie group:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0013221100 ,,,,, ttttttttttttt nnnnnnnn aggggaga L−−−−−==  (7.1.2) 

Equation (7.1.2) is valid because of the group properties and it interprets the 
transformation g(tn,t0) as a sequence of consecutive transformations for an arbitrary 

time-grid [tn,tn-1,…,t1,t0]. If this grid is very fine, the consecutive transformations 
must be in the close vicinity of the identity operator so they must have the 
approximate form as  

 ( ) ( ) nnnnn tttt GIg 11, −− −+≈  (7.1.3) 

in which Gn is a certain generator of this group. Perhaps this simple observation gave 
M.S. Lie an impetus that led him to invent the concept of Group Algebra and to 
elaborate the details of his theory [R38]. It is evident in (7.1.2) that the effects of the 
past a(ti) “states” are accumulated in it as well as in (7.1.1), but instead of the form of 
some sum it appears in the form of a product. If we take into account the 
accumulated past in the matrix g(tn-1,t0), for finding the next step we have to make 
only some estimation for Gn that seems to be far simpler task than identifying some 
hypothetical ARMAX coefficients. This simple idea may be applied for modeling and 
control purposes as it will be detailed in the sequel. 

From purely mathematical point of view several control problems can be 
formulated as follows: there is given some imperfect model of the system on the basis 
of which some excitation is calculated for a desired reaction of the system used as 
the input of the controller i

d as e=ϕϕϕϕ(id). The system has its inverse dynamics 
described by the unknown function ψψψψ resulting in a realized response ir instead of the 
desired one, i

d: i
r=ψψψψ(ϕϕϕϕ(id)):=f(id). (In certain Classical Mechanical Systems these 

values are the desired and the realized joint accelerations, while the external 
disturbance forces and the joint velocities serve as the parameters of this temporarily 
valid and changing function.)  

Normally any information on the behavior of the system can be obtained only 
via observing the actual value of the function f(). In general it can considerably vary 
in time. Furthermore, no any possibility exists to “directly manipulate” the nature of 
this function with the exception of the direct manipulation of its actual input from id 
to certain id* that is referred to as the “deformed input”. The controller’s aim is to 
achieve and maintain the id=f(id*) state. [Only the nature of the model function ϕϕϕϕ(id) 
can directly be determined or manipulated.] According to [C51] the following 
iteration was suggested to find a proper “deformation” of the input argument: 

 ( ) ( ) ISiSiiifSiSiiifSi 00000  →==== ∞→++− nnnnn n111n111  ;; ; ... ; ; ;  (7.1.4) 

in which i0 denotes the initial estimation that can be calculated on the basis of the 
rough model. Really, if the series of these consecutive linear transformations 

converges to the identity operator, no further deformation is needed, and the matrix 

obtained as the matrix product of the consecutively obtained matrices yields the 

necessary solution of the problem. This can be so interpreted that the controller 

“learns” the behavior of the observed system via step-by-step amending and 

maintaining the initial model.  
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Equation (7.1.4) evidently does not yield unambiguous proposition to the 
necessary Sn matrices. Infinitely many matrices can be constructed that map a given 
vector to another given vector. For making the problem mathematically unambiguous 
this task can be transformed into a matrix equation by putting the values of f and i0 
into well-defined blocks of bigger quadratic matrices having linearly independent 
columns as e.g. in the form 
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Via the application of a physically not interpreted constant “dummy parameter” the 
occurrence of the mathematically dubious 0→0, 0→finite, finite→0 transformations 
can be evaded. If the “columns of the arbitrary parameters” are well defined 
continuous functions of the first column and a set of linearly independent initial 
vectors, then the f=i

d case evidently results in Sn=I that cannot cause computational 
problems. Via computing the inverse of the matrix containing f the problem becomes 
mathematically well-defined. For this purpose it is expedient to choose special 
matrices of fast and easy invertibility. The accumulated product of the linear 
transformations in (7.1.4) and the expected matrices converging to the identity 
operator I naturally make the idea arise that this approach can be implemented by the 
use of Lie Groups. This expectation is reasonable since the criterion nnn iSi 11 ++ =  is 

ambiguous and does not determine any unique matrix Sn+1. Therefore it can be hoped 

that by imposing extra criteria the solutions can be so restricted that they really 

belong to certain Lie Group. On this reason, before going into the details of 
convergence issues it is expedient to consider certain algebraic details concerning 
the construction of the appropriate linear transformations.  

The idea of Minimum Operation Transformations means that in each step 

we try to construct matrices that make considerable transformation only in the 2D 

subspace spanned by f and i0 (i.e. the directions for which we have fresh information 

on the behavior of the controlled system), and leave their orthogonal subspaces 

invariant since no fresh information we have on the temporal behavior of the system 

in these directions.  

7.1.1. Introduction of Particular Symplectic Matrices 

There are various algebraic possibilities to meet this requirement. Let G be 
nonsingular, quadratic, otherwise arbitrary constant matrix. The set of the V matrices 
for which 

 GVGVGGVVV TT 11  ,1det −− =⇒==  (7.1.6) 

trivially form Lie groups that contain elements in arbitrary close vicinity of the unit 

matrix. For instance the special cases in which G corresponds to I, 








−
=ℑ

0I

I0
:  , 

and 2,1,...,1 c−=g , result in the Orthogonal, the Symplectic, and the Generalized 

Lorentz Group, respectively (“c”, that is the velocity of light in the Lorentz group 
being the internal symmetry of electromagnetic and relativistic phenomena here can 
be chosen to be equal to 1). The appropriate special sets are the Orthonormal, the 
Symplectic, and the Generalized Lorentzian Matrices. It is very easy to construct 
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certain special versions of these matrices in which the “arbitrary blocks” are properly 
selected [J10], [B3].  

The Minimum Operation Symplectic Transformations introduced for this 
purpose have relatively big size but can be constructed by simple rotations and 
stretches [J5]. They have the structure as follows:  

 






 −−
=

...~~
...

...~~
...

)3()2()1()1()2(

)1()2()3()2()1(

euf0uf

0ufeuf
S  (7.1.7) 
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In (7.1.7) the degree of freedom of the problem considered (DOF), influences 
the dimension of the appropriate submatrices. f

(1) has the dimension of DOF+1 in 
which the last component is a nonzero constant to evade the problems of mapping 
zeros, while the other components are physically interpreted. f

(2) can be obtained 
from f

(1) e.g. via permutation of its components. Generally f
(1) and f

(2) must be 
linearly independent non-zero vectors. The { }DOFjDOFj ,...,3,2|)( =ℜ∈e  

orthonormal set can arbitrarily be chosen in the orthogonal subset of { })2()1( ,ff . For 
realizing this, a full orthonormal set of (DOF+1) vectors can be chosen. The 1st 
vector of this set can be rotated into the direction of f

(1) in a way that leaves the 
orthogonal subspace of these two vectors invariant while rigidly rotating the whole 
set. Then the component of f

(2) orthogonal to f(1) can be determined, and a similar 
rigid rotation of the previously rotated set can be executed in a special manner that 
transforms the 2nd vector of this set into this component of f

(2) and leaves the 
orthogonal subspace of these vectors invariant. (This latter rotation evidently does 
not alter the direction of the previously set 1st vector.) If it is needed by the particular 
application under consideration, for finding two nonzero, linearly independent 
vectors, more than one physically not interpreted constant components can be 
introduced in f(1). The “desired” and the “observed” values can be substituted into the 
1st DOF components of f(1). By using the simple rules for real vectors (arrays) that 
a

T
b=b

T
a, as well as the orthogonality of its special block components, the fact that 

the matrix defined in (7.1.7) trivially can be proved by substituting it into the 
definition S

TℑℑℑℑS=ℑℑℑℑ. Actually, due to the orthogonality relationships of certain 
components only a few terms of this product is not completely trivial. The structure 
of the terms in (7.1.8) is so constructed that the required zeros, ones, and –ones can 
easily be obtained in the not completely trivial terms.  

Though the above construction worked well according to the simulations, the 
relatively complicate structure of the matrix in (7.1.7) gave me impetus to find an 
even simpler structure. The solution came from the simple and trivial observation 
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that the matrix ℑℑℑℑ itself is Symplectic. On this basis I tried to modify a little bit the 
simple structure of this matrix as  
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The structure of the matrix in (7.1.9) is really similar to that of ℑℑℑℑ but in its upper 
right block instead of the pairwisely orthogonal components of the unit matrix 
pairwisely orthogonal vectors of not necessarily unit norm are situated. For instance, 
in the case of a 3 DOF physical system (7.1.9) can contain the following 
components: 
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that evidently can be generalized for higher dimensions as follows: the lower left 
block has DOF+2 components, m(1) and m(2) are trivially orthogonal to each other, 
and they are orthogonal to the pairwisely orthogonal unit vectors of DOF+2 
dimensions { }2)3( ,..., +DOFee . It is not difficult to construct such vectors: one can start 
with the columns of the unit matrix that is an orthonormal set; its columns can rigidly 
be rotated in a special rotation modifying only the 2D subspace spanned by e(1) and 
m

(1) so that e
(1)’ will be parallel to m

(1). Since m
(2) and e

(2)’ are in the orthogonal 
subspace of m(1), a similar rigid rotation can be constructed that makes e(2)’’ parallel 
with m(2). This rotation can leave the orthogonal subspace of e(2)’ and m(2) invariant, 
that means that in the result e(1)’=e

(1)’’. Again, it is very easy to see that the matrix 
defined by (7.1.9) is symplectic. If it is substituted into the definition equation of the 
Symplectic matrices, due to the lot of zeros in the matrices and the orthogonality 
relationships only two non-trivial restrictions remain: 

 222 2 , DsdD T =+≡ qq &&&&  (7.1.11) 

that certainly can be satisfied. This idea was published in [C53], it was called as 
“Special Symplectic Transformations”, and was applied in numerous numerical 
simulation tests. Before showing simulation example for its application, in the sequel 
the construction of other special transformations will be considered. 

7.1.2. Introduction of Other Special Transformations 

As an alternative possibility, the Generalized Lorentz Group can be 
considered. Really, it is very easy to construct special Lorentzian matrices for control 
purposes. For instance, it is easy to prove that the columns of the following matrix 
form a generalized Lorentzian set [C42]:  
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The size of this matrix is determined by the number of the 
modeled/observed/controlled degrees of freedom of the physical system to be 
controlled (DOF). The physically interpreted vector f is accomplished with a 
fictitious (DOF+1)th component, and it is placed into the last column of a generalized 
Lorentzian. The scalar f denotes the absolute value of f (Frobenius norm). [The e(2), 
…, e(DOF) set of pairwisely orthogonal unit vectors within the orthogonal subspace of 
f. They can be obtained by rigidly so rotating a whole set of orthonormal basis 
vectors, e.g. the columns of the unit matrix, that this operation alters only the 2D 
subspace spanned by f and e(1) by rotating e(1) into the direction of f. e(f) denotes the 
unit vector of the direction of f.] It is again trivial to prove that (7.1.12) is Lorentzian: 
it has to be substituted into the quadratic part of the equation of the definition. This 
construction was also used in several simulation tests.  

The “Minimum Operation Symplectic Transformations”, the “Special 

Symplectic Matrices”, and the “Special Generalized Lorentzian Matrices” share the 
common feature that the Frobenius norm of their appropriate block into which the 
physically interpreted arrays have to be placed is not bounded. The Orthogonal 

Group as a plausible and simple Lie group does not have such a property. On this 
reason some attempts were done to introduce the combination of rotations and 
isotropic stretch operation as follows: 

 WT s=  (7.1.13) 

in which W is orthogonal matrix, and s>0 is a positive parameter. These T matrices 
trivially form a Lie group and they can easily be constructed for a pair of non-zero 
vectors a and b so that a=Tb. In this operation simply s=|a|/|b|, and W makes a 
rotation concerning only the two-dimensional sub-space stretched by a and b. It is 
clear that while the calculation of these “Stretched Orthogonal Transformations” is 
very simple, and they immediately yield the solution needed, their stretch factor s 
concerns any sub-spaces. This construction evidently does not correspond to the 
principle of “Minimum Operation Transformations” while “Special Generalized 

Lorentzian Matrices”, the “Minimum Operation Symplectic Matrices”, and the 
“Special Symplectic Transformations” correspond to it because they apply 
stretch/shrink only in well-defined sub-spaces, while the other sub-spaces are rotated 
only. This may explain that the application of the “Stretched Orthogonal Group” 
normally gave considerably weaker results than the other matrices.  

The special transformations introduced above provide us with a convenient 
mathematical framework within which linear transformations converging to the 
identity matrix I can conveniently be constructed. The next question is whether what 
conditions are needed to guarantee this desired convergence. From this point of view 
the properties of the appropriate physical system under consideration as well as that 
of their approximate models used by the controller in the beginning of the control 
process are important factors. In the next subsection we show that the iterative 
learning expressed by (7.1.4) can be convergent for a wide class of physical systems. 

7.2. Proof of Complete Stability for a Wide Class of Physical Systems 

In the realm of Cellular Neural Networks the concept of Complete Stability is 
often used as a criterion [R19]. It means that for a constant input excitation the 
network asymptotically converges to a constant response. If the variation of the input 
is far slower than the network’s dynamics, with a good accuracy, the net provides 
with a continuous response corresponding to some mapping of the time-varying 
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input. The same idea is applied when we seek for series pertaining to a constant 
desired response. 

The ( ) 0iif →n  requirement can be expressed in more or less restricted forms. 

For instance, assume, that there exists 0<K<1 for which 

 ( ) ( ) ( ) 00010 ... iifiifiif −≤≤−≤− −
n

nn KK  (7.2.14) 

This requirement trivially guarantees the desired complete stability with a 
convergence to the desired value. So assume that there is given an unknown, 
differentiable, invertible function f(x) for which there exists an inverse of x

d as 

( ) 0ˆ 1 ≠= − dxfx . Let the Jacobian of f that is ( )
x

f
xf

∂
∂

≡′ ˆ  be positive definite and of a 

norm considerably smaller than 1. Furthermore, let us assume that the actual 
estimation of the deformed input x is quite close to the proper inverse of x

d. 
Consequently two near-identity linear transformations must exist in the chosen group 
for which xxT =ˆ , and ( ) dxxSf = . Following the classical perturbation theory, if 

variable ξ is chosen to be the “small variable” the above operators can be written as 
HISGIT ξξ +=+=  ,  in which G and H must be certain generators of the given 

group used for describing the transformations. Taking into account only the 0th and 
the 1st order terms in ξ we obtain the estimations as 

 
( ) [ ]( )

( ) ( ) ( ) dddd

d

O xHxxG
x

f
xxG

x

f
xHIxSf

xG
x

f
xxGIfxf

=+







++≅








++≅

+≅+≅

2ˆˆ

ˆˆ

ξ
∂
∂

ξ
∂
∂

ξξ

∂
∂

ξξ
 (7.2.15) 

This implies that 
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. (7.2.16) 

The next approximation so is determined as 
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For the convergence we need decreasing error, that is ( ) ( ) dd K xxfxSxf −≤−  

which means that 

 ( ) xG
x

f
xHG

x

f
ˆˆ

∂
∂

ξ
∂
∂

ξ K≤+  or dd
K HxxH

x

f
Hx ≤

∂
∂

− ˆ  (7.2.18) 

For a finite generator H d
HxxH  and ˆ  must be approximately of the same norm and 

same direction that is the angle between them is acute because it was assumed that 
dxx ≅ˆ , and because the matrix multiplication is a continuous operation. Due to the 

positive definite nature of 
x

f
f

∂
∂

=:'  multiplication with it also can result in an acute 

angle between Hx
d and xH

x

f
ˆ

∂
∂

− . Therefore (7.2.17) has the following geometric 

interpretation [Fig. 7.2.1.]: 
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Figure 7.2.1. Geometric interpretation of the convergence criteria 

 
On the basis of Fig. 7.2.1. it is evident that under quite general conditions the 
algorithm can converge to the desired solution. For instance, in the Euler-Lagrange 
equations of a Classical Mechanical System the inertia matrix can be roughly 
approximated by a small scalar inertia plus a big additive „vector“ term. The 
positive definite nature of the inverse of the actual inertia matrix of the system can 
guarantee convergence for this problem class.  

To keep the desired value in the vicinity of the actual one, which also is a 
necessary criterion of convergence, instead of the joint accelerations its 
“interpolated” version is taken into account, that is a “regulated correction” is applied 
as: 
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For large relative difference the “regulating factor” λ→ε2 (a small value moderating 
the norm of the transformation matrices to be applied), while for small difference it 
approaches (1+ε1), with a mall positive ε1 meaning a kind of slight extrapolation of 
the tendency. The υ>0 variable has the function of a shape-parameter. 

7.3. Simulation Example for Potential Application of the Special Symplectic 

Matrices 

In the forthcoming simulations the Special Symplectic Matrices defined in 
(7.1.10) are applied. An important aspect in connection with incomplete modeling is 
the existence of two possible alternative approaches: application of a single, complex 
rough initial model containing each modeled degree of freedom, or tackling the 
problem in a “distributed” manner in which certain subsystems are controlled by 
independent controllers modeling and controlling only certain degrees of freedom of 
the subsystem in their care. In this case, for the local, decentralized controllers, any 
dynamic coupling between the locally controlled subsystems appears as external 
perturbation influencing the behavior of the subsystem under their control. This 
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problem was discussed in details e.g. in a plenary speech by D’Andrea in connection 
with the dynamic coupling of wings located in each other’s vicinity in flowing air 
[R120]. Since the above discussed approach offers simple and convenient 
implementation for both “centralized” and “distributed” approach to control the 
incompletely modeled system, in Appendix A.5. its operation was investigated via 
simulation. It can be stated that the simulation results well illustrated the applicability 
of the proposed ideas. 

7.4. Thesis 3: Adaptive Control of Particular Physical Systems by the Abstract 

Use of Special Elements of Various Lie Groups (Summary of the Results of 

Chapter 7) 

This Thesis concentrates on the potential application of the formal 

mathematical properties of particular Lie groups. The elements of these groups occur 
in multiplicative terms realizing a cumulative control by multiplying near-identity 
matrices in the realization of the situation-dependent, temporal, and partial system 

identification. I have elaborated various particular matrices of very simple structure. 
Instead parameter tuning I introduced “Minimum Operation Transformations” that 
map the “expected” and “observed” behavior of the controlled systems to each other. 
These mappings are so constructed that essential modification happens only in the 
freshest available information in the direction of the recently observed subspaces of 
the systems’ behavior. This means a restriction on the arbitrary parameters of the 
possible mappings. The controller utilizes the inverses of certain matrices. Since 
these matrices belong to special Lie Groups the computation of their inverse is very 
cost effective (the maximum effort is the calculation of two matrix products). More 
specifically: 

• For application purposes I invented two kinds of particular symplectic 

matrices, invented special generalized Lorentzian matrices, and 
introduced the stretched orthogonal transformations. 

• I have provided a proof that shows that the so constructed adaptive 
control can be convergent for a wide class of physical systems. The 
proof is based on considerations similar to those that are in use in 
“perturbation approximations” (Perturbation Calculus); 

• I have invented ancillary methods as the application of the 
“regulating” and “weighting” factors that can keep the control 
convergent in the initial phase when the appropriate transformation 
matrices are very far from the identity transformation, so in this stage 
of the control the use of the Perturbation Calculus would not be 
justified; 

• I have demonstrated the potential use of these approaches in various 
simulation tasks, among others in the control of partially and 
imprecisely modeled, dynamically coupled subsystems in a 
centralized and in a distributed implementation. 

In general it can be stated that the present approach uses far simpler uniform 
structures and procedures than any conventional soft computing approach, does not 
apply any parameter tuning, and does not require the construction of a complicated 
Lyapunov function. Its deficiency is that it can guarantee complete stability on the 
basis of local (i.e. not global) basis. The convergence of the so constructed control 
can be lost outside of a local basin of attraction. 

The most important publications strictly related to the contents of Thesis 3 
are as follows: [B3], [B6], [J5], [J6], [J7], [J8], [J9], [J10], [C32], [C33], [C34], 
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[C35], [C36], [C37], [C38], [C39], [C40], [C41], [C42], [C43], [C44], [C45], [C46], 
[C47], [C48], [C49], [C50], [C51], [C52], [C53], [C54], [C56], [C57], [C58], [C59], 
[C60], [C61], [C62], [C63], [C64], [C65], [C67], [C68], [C74]. Other related 
publications are as follows: [C80], [C83], [C84], [C93], [C96]. 

               dc_62_10



68 

Chapter 8: Introduction of Various Parametric Fixed Point 

Transformations for the Adaptive Control of Special SISO and 

MIMO Systems 

In this chapter an even more simple possible control effort is considered than 
that detailed in the previous chapters. While the above approaches invested some 
energy into the task of “identifying” some temporal and situation-dependent “system 
model of uniform structure and limited size” via uniformized algorithms or 
procedures of strongly reduced number of operations, in the present chapter we 

investigate the possibility of developing adaptive control without any particular 

identification effort. The convergence of this approach can be guaranteed only by 

certain simple, qualitative properties of the system to be controlled. These 
“qualitative” features known in advance mean the “speciality” of these systems. As it 
will be shown in the sequel the proposed solutions can be embedded into the general 
mathematical framework of convergent sequences generated by contractive 

mappings defined over Banach Spaces. Their convergence can be proved by using 
simple geometric analogies. The first attempts were made for Single Input – Single 

Output (SISO) systems, and then later the idea was generalized to Multiple Input – 

Multiple Output (MIMO) systems by using various norms in the appropriate Banach 

Spaces and norms for the operators defined over these spaces. Another important fact 
is the introduction of the “robust variant” of these transformations applying strongly 
saturated sigmoids for the generation of a local basin of attraction for these 
sequences. 

Precise

Realization

Precise

Realization

 

Figure 8. A rough sketch concerning the idea of applying local deformations for 

convergent adaptive control 

 
In contrast to the Lyapunov function based techniques that normally try to guarantee 
“Global Stability” i.e. forming an unbounded basin of attraction for the initial errors, 
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the present approach is satisfied by creating some local basin of attraction as it is 
intuitively outlined in Fig. 8.  

8.1. Fixed Point Transformations with a Few Parameters for “Increasing” and 

“Decreasing” SISO Systems 

As in the case of “Chapter 7.1. The Idea of Cumulative Control Using 

Minimum Operation Transformations” the (in this case SISO) system is considered 
according to the “expected and realized response scheme”. As it is indicated by the 
forthcoming pictures it is possible to create properly and improperly convergent 
sequences by considering the geometric similarity of various simple triangles for 
learning sequences as 
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Figure 8.1.1. Properly and improperly convergent sequences for “increasing 

system” 

 
As it is clear from Fig. 8.1.1. by simple manipulations involving the “origin”, on the 
basis of some qualitative and certain approximate quantitative information 
concerning the behavior of the controlled system. In similar manner, by the 
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application of some “mirroring” technique similar propositions can be done for 
“decreasing systems” (Fig. A.6.2. in the Appendix). 

It is evident that the above ideas can be more systematically applied if the 
“special role” of the origin is evaded by translating the appropriate vertex of the 
geometrically similar triangles. In this manner a systematic set of transformations 
using only two parameters for the adaptive control of SISO systems was introduced 
as follows: a) for increasing systems [Fig. A.6.4.], and b) for decreasing systems 
[Fig. A.6.6.]. These figures indicate the combinations of two special functions in the 
role of function G of Fig. 8. with two parameters as follows: 
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and 
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 (8.1.2) 

in which ( ) dxxf =∗ . It is evident that by properly manipulating the parameters m∆ , 

±∆ , and −D  it is possible to obtain contractive mapping in the vicinity of the 

solution, ∗x , therefore either for “decreasing” or “increasing” systems properly 
convergent sequences can be obtained.  

Regarding the question of “designing the parameters” of the adaptive control 
at first the qualitative properties of the system to be controlled has to be studied. At 
first information has to be obtained on the expected sign of f’ in the vicinity of the 
estimated solution. Following that, according to (8.1.1) and (8.1.2) a properly big 

absolute value has to be given to m∆  or ±∆  to meet the conditions m∆<<dx  or 

±∆<<dx . In the final step proper sign and absolute value has to be given to −D  to 

guarantee the small absolute value of the factors ( ) ( )±−∗ ∆−−′ dxDxf  or 

( ) ( )( )m∆−−′ ∗−∗ xfDxf . In this manner small negative correction can be given to 
the value 1 in h’ and g’ to guarantee contractive mapping and convergence. For this 
purpose some qualitative and rough quantitative information in many cases is quite 
enough. 
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In the next section some application case will be studied for a 4th order 
physical system in which the appropriate system response to be manipulated is the 4th 
time-derivative of the coordinate values. 

8.1.1. A Higher Order Application Example for Fixed Point Transformations of a 

Few Parameters 

The physical paradigm considered for the investigations is outlined in 
Fig. A.6.1.1. of Appendix A.6. also containing the equations of motion of the system. 
The results are convincing and well illustrate the applicability of the proposed 
adaptive control method. 

As it was indicated by the “ball-beam paradigm” the simple adaptive control 
based on the idea of geometrically similar triangles can work well. However, one of 
its deficiencies may be the fact that the size of the appropriate triangles influenced by 
the parameters m∆ , ±∆ , and −D  may be varied depending on the “steepness” of the 
almost unknown response function f. With other words, this solution for creating 
local deformations and basin of attraction for the process of iterative learning is not 
very much robust as far as the variation of f is concerned. In the next section, in order 
to tackle this deficiency “robust fixed point transformations” will be introduced, at 
first for SISO systems. As it will be also shown, this latter variant will be easily 
extended to MIMO systems in two possible ways, too. 

8.2. Robust Fixed Point Transformations for SISO Systems 

In the above suggested fixed point transformations in (8.1.1) and (8.1.2) the 
response error occurs either in the numerator or the denominator of a fractional term. 
That means that the “wideness” of the basin of attraction cannot very efficiently be 
manipulated in this solution. With other words, this solution is not very “robust”. To 
address the problem of “robustness” of the similar triangles based fixed points 
transformations better ones were proposed in [C105] in the form as  
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It is evident that the transformation defined in (8.2.1) has a “proper” and a “false” 
fixed point, but by properly manipulating the A, B and K control parameters the good 
fixed point can be located within its basin of attraction, and the requirement of 
|G’(x*)|<1 can be guaranteed, too. This means that the iteration can have considerable 
speed of convergence even nearby x*, and the strongly saturated tanh function can 
make it more robust in its vicinity, that is the properties of f(x) have less influence on 
the behavior of G.  

Regarding the convergence issues the following simple formal consideration 

can be applied. Assume that for fixed xd the restriction ( ) 1;: <≤∂∂=′ HxxxGG d  is 

valid for a region. This naturally means that for arbitrary a and b values within this 
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region ( ) ( ) ( ) ( ) baHdxGdxGxbGxaG
b
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ddd −≤′≤′=− ∫∫ ξξξξ ;;;; , that is we have 

a contractive mapping. This entails the consequence for the sequence obtained as 
xn+1:=G(xn;x
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This means that we have a Cauchy Sequence in a complete, linear, normed metric 

space, therefore it must have a limit value ∗x . It is easy to show that this limit value 
converges to the fixed point of G: 
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Regarding the issue of the “design of the control parameters” the following 
simple practice can be carried out: parameter B can be made equal to 1; according to 
the saturated nature of the tanh function, parameter A determines the “sampling 

width” within which the variation of the “response error” f-xd
 can be “monitored”: 

very small A means wide, very big A means very narrow range of monitoring. Via 
making simulations by the use of a simple non-adaptive, e.g. PID-like controller the 
numerical range (order of magnitude) of the occurring responses can be 
determine/estimated. The proper absolute value of parameter K can be a few times of 
the occurring maximum. It is not very difficult to satisfy the condition of |G’(x*)|<1 
in the possession of the above estimations. Furthermore, by properly manipulating 
the signs of A and K, both “increasing” and “decreasing” systems can be tackled in 
this manner, according to the last equation of the group (8.2.1). Before showing any 
application example possible ways of generalizing the transformation (8.2.1) for 
MIMO system will be considered in the next section. 

8.2.1. Possible Generalizations for MIMO Systems 

The generalization of (8.2.1) for Multiple Input – Multiple Output (MIMO) 
systems may be done in different manners. A possibility is the use of the norm for 
the system-response ∑=

i
iff , and a multiple dimensional sigmoid function in the 

role of the tanh function as ( ) nn ℜ→ℜ:fσ  as ( )( )i
i

i fy σ=  in which each function 
( )( )iσ  is a single-dimensional sigmoid. If each of them is contractive, i.e. 

10 <≤∃∀ iMi  so that ( )( ) ( )( ) baMba i
ii −≤− σσ  then it can be stated that  
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that means that this multiple dimensional sigmoid function is contractive in a Banach 
space. In this case it is possible to find the Ai, Bi, and Ki control parameters for each 
component i.  

An alternative possibility is to define the response error and its direction in 

the n
th control step as nnn

d
nn hherrfh /:,)(: =−=  (here the Euclidean or 

Frobenius norm is in use), and apply the following transformation: 

 ( ) ( )nnnnnn ABBKBB hxxexxh σε ==++=> ++ :
~

, else 
~~

1 then  if 11 (8.2.5) 

in which ε is a small positive threshold value for the response error. If the response 
error is quite small, the system already attained the fixed point and no any 
manipulation is needed with the unit vector the computation of which would be near 
singular. In the case of this implementation we have four control parameters, ε, A, B, 
and K, and a single sigmoid function σ(). This realization applies correction in the 
direction of the response error only, and normally leads to more precise tracking than 
the more complicated one using separate control parameters for various directions. In 
the next section a possible application will be discussed. In the sequel typical 
application examples will be discussed. 

8.2.2. Application Example a): Precise Control of an AGV Equipped with 

Omnidirectional Wheels 

As is well known, in contrast to the so called Ackerman Devices, Automatic 

Guided Vehicles (AGVs) using omnidirectional wheels (e.g. [R121]) can precisely 
track arbitrary trajectories at least from kinematic point of view. On this reason for 
our purposes a triangular structure similar to that in [R121] was chosen as a 
paradigm detailed in Appendix A.6.2.  

8.2.3. Application Example b): Precise Control of the Cart-Beam-Hamper System 

Since the more traditional “Adaptive Inverse Dynamics” and “Slotine-Li 

Adaptive Controller” and their modifications as inclusion of integrated feedback 
terms and dropping the use of Lyapunov function for tuning were quantitatively 
analyzed in “4.4. Adaptive Inverse Dynamics Control of Robots” and in “4.5. 

Adaptive Slotine-Li Controller for Robots”, for the purposes of comparison it is 
expedient to give here some simulation results for the “alternative generalization” of 
the “Robust Fixed Point Transformations” as defined in (8.2.5) applied for the same 
physical system as paradigm (Fig. A.1.1.). In the comparison the same nominal 
trajectory was applied with a trajectory tracking prescription 

( ) ( ) ( )tttNDes ξΛξΛξΛqq 3233 +++= &&&&&&&  with ( ) ( )∫=
t

dt
0

: ττeξ  with ΛΛΛΛ=10×I [1/s] and 

besides the friction hectic disturbance force was applied in the linear direction (it was 
generated by 3rd order periodic spline functions). Detailed results are given in 
Appendix A.6.3.  

As a summation of the here presented results and that of many others 

published in other papers it can be stated that on the basis of simple qualitative 

information and some rough quantitative knowledge in many cases quite satisfactory 

adaptive control can be constructed by the use of local deformations guaranteeing 

stability within a reasonably wide region though no “global stability” can be 

guaranteed in this manner. 
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8.3. Convergence Stabilization by Tuning only one Adaptive Control Parameter 

For guaranteeing the stability of the control the motion must be kept within 
the basin of attraction of the fixed point of the iterative sequence. A plausible 
possibility is tuning only A if K and B were already properly estimated. For this 
purpose we have to note that in the vicinity of the fixed point in (8.2.5) 1

~
<<B  and 

( ) hhhhe BAABB ≈= /
~

σ , so er BKB
~~

<< . Therefore, instead of the formerly 

successfully used version e.g. in the examples of Appendix A.6.2. and A.6.3. we 
proposed the following iterative transformations for MIMO Systems, for the (n+1)th 
control cycle: 
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h
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σ  (8.3.1) 

In the vicinity of the fixed point (that is when the difference ||rn+1−rn|| is small, the 
modification of the response error h can be estimated by the use of the 1st order term 
of the Taylor series of f(r) as follows: 
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This means that  
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For normal cases the desired control signal varies only slowly, therefore this second 
term is not significant, and it is expected that for the reduction of the response error 
the first term in the brackets must be properly set. For instance, if it can be known in 
advance that ∂f/∂r is positive definite (this situation can be met in the great majority 
of the fully actuated Classical Mechanical Systems, for small A>0 and B=1 
KBA(∂f/∂r)hn is a small vector of direction approximately opposite to that of hn that 
corresponds to step by step decreasing response error. The same holds if ∂f/∂r is not 
completely symmetric, but its symmetric part is positive definite (for negative 
definite systems the setting B=−1 can be used in similar manner): its skew–
symmetric part yields some contribution that is orthogonal to hn. If the controller 
stores certain past data the necessary modification of A can be estimated if the 
controller computes the quantity in the (n+2)th control cycle: 

 ( )[ ]
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n

d

n

d

nnn
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n
est

hh
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=ε . (8.3.4) 

By assuming positive definite ∂f/∂r the following tuning rule can be suggested: 

 ( )AA goalest εεασ −=&  (8.3.5) 

that tries to stabilize εest about εgoal≈−0.5 to keep the control within the center of the 
basin of attraction of the iteration (α>0). (For avoiding extreme tuning the same 
saturated sigmoid function that was used in the fixed point transformations (8.2.5) is 
applied here, too.)  
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8.3.1. Possible Application:Control of the Cart and Double Pendulum System 

In the sequel a possible application will be shown for a Classical Mechanical 
paradigm, viz. the cart + double pendulum system already depicted in details in 
Fig. A.5.1. with The Euler-Lagrange equations of motion given in (A.5.4). However, 
in these examples it was considered as an underactuated system that means that the 
linear degree of freedom (q3) was left without own drives, i.e. Q3≡0 was assumed. 
The motion in the linear direction was controlled through the dynamic coupling 
between the linear axis and the two rotary ones. With other words it means that the 
reaction forces needed for moving the two “counterweights” m1 and m2 were used for 
generating acceleration along q3.  

Detailed simulation results are given in Appendix A.6.4. obtained by simple 
SCILAB programs with Euler integration and the more sophisticated integrator of 
SCICOS co-simulator. The results well exemplify the consistent behavior of tuning 
and the comparable output of the simple and sophisticated simulators. The 
superiority of the SCICOS-based computation reveals itself in the values of the εest 
estimated values according to (8.3.4). 

8.4. Thesis 4: Introduction of Various Parametric Fixed Point Transformations 

for the Adaptive Control of Special SISO and MIMO Systems (Summary of the 

Results of Chapter 8) 

On the basis of simple geometrical observation I developed a special class of 
situation-dependent, temporal adaptive control for special Single Input – a Single 
Output nonlinear system that practically does not need any partial system 

identification. Instead of that it uses certain “qualitative information” that 
corresponds to the “specialty” of the system to be controlled. The system’s response 
function must be either clearly “increasing” or clearly “decreasing”. The method is 
based on local deformations creating a local basin of attraction for the result of the 
iterative learning process it applies. It can compensate the effects of unknown 
external disturbances that partly may origin from dynamic coupling with unmodeled 
subsystems. For this purpose  

• I introduced four variants of fixed point transformations to be used 
in adaptive control. These transformations have two adaptive 
parameters only. These parameters have simple geometric 
interpretation related to geometrically similar triangles defined in 
the “input – response space” of the system to be controlled; 

• The control produces iterative learning resulting in convergent 
Cauchy sequences in the input space; 

• I have shown that the convergence of the method can simply be 
proved by using the concept of “linear, normed, complete metric 

spaces” (i.e. Banach Spaces) with contractive mappings; 
• I have shown that since this concept allows the use of various norms 

to be applied over the same set, the method is very versatile and 
may have numerous particular variants; 

• I have proposed a very simple design method setting the much 
reduced number of the constant adaptive parameters of this method. 
This is a considerable advantage in comparison with the traditional 
adaptive control methods like “Adaptive Inverse Dynamics” or 
“Adaptive Slotine – Li Control” that have to use very detailed and 
complicated system models, have to tune a lot of model parameters, 
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and have to apply a lot of “adaptive control parameters”; 
Furthermore, numerical details can be obtained only by numerical 
simulations for these classic approximations, too; 

• I have shown that – in contrast to the very sophisticated “Adaptive 

Inverse Dynamics” and “Adaptive Slotine – Li Control” methods – 
the here proposed one separates from each other the phases of 
controller design and prescription of the trajectory tracking. The 
desired trajectory tracking can arbitrarily be formed using only 
purely kinematic terms. In this manner the here proposed method is 
very flexible.  

• I have shown that in contrast to the “Adaptive Inverse Dynamics” 
and “Adaptive Slotine – Li Control” the here proposed method is 
able to simultaneously compensate the effects of unknown external 
perturbations and that of the existence of unknown and not 
controlled subsystems in dynamic coupling with the controlled one; 

• I have elaborated a “more robust version” of this control applying 
saturated sigmoidal functions. This form has three parameters of 
which practically two parameters must be set, the third one normally 
may be taken equal to ±1; I have interpreted its operation on 
geometrical basis; 

• I have elaborated two kinds of generalization of this method for 
special Multiple Input – Multiple Output (MIMO) systems in the 
case of which the “increasing” or “decreasing” nature can be 
generalized by using the concepts of “vectors approximately of the 

same direction” in real Hilbert spaces; 
• In order to test the potential applicability of the proposed method I 

made investigations for 2nd, 3rd, 4th, and fractional order systems (in 
this latter case the system’s response function may be a fractional 
order derivative of the state variable) including holonomic and 
non-holonomic mechanical and electromechanical systems, 
underactuated classical mechanical systems, electrostatic 
microactuator, and the model of a chemical reaction describing a 
polymerization process. I also made comparisons regarding the 
results of the present approach and that of “ad hoc” solutions using 
similar qualitative information.  

• To extend the applicability of the method based on iterations of 
local basin of attraction I introduced a tuning procedure for one of 
the three adaptive control parameters of the Robust Fixed Point 
Transformations; I have shown mathematically and illustrated via 
SILAB and SCICOS based simulations that this complementary 
tuning stabilizes the controller near the fixed point that is the 
solution of the controller’s task. In this manner the proposed method 
can be competitive with the traditional ones offering global stability. 

The most important publications strictly related to the contents of Thesis 4 
are as follows: [B7], [B8], [J5], [J15], [J16], [J18], [J19], [J20], [C77], [C85], [C86], 
[C87], [C97], [C100], [C101], [C103], [C105], [C107], [C108], [C109], [C110], 
[C111], [C113], [C114], [C116], [C117], [C122]. Other related publications are as 
follows: [C89], [C91], [C96].  
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9. Novel Approach in Model Reference Adaptive Control: 

Replacement of Lyapunov’s Direct Method with Robust Fixed Point 

Transformations 

Adaptive control of physical systems having uncertain, time-varying, directly 
neither observable nor controllable, dynamically coupled subsystems still is an 
interesting challenge. The classical “parameter adaptive” approaches as “Adaptive 

Inverse Dynamics” or “Adaptive Slotine-Li Controllers” e.g. in Robotics try to 
exactly learn the dynamic parameters of the systems under control. They commence 
their operation with initial approximate model parameters that they tune until 
reaching their exact values. These approaches naturally have to cope with either the 
lack or infinite complexity of the appropriate analytical system models in a wider 
scope. A typical example is a not completely full tank containing some wobbling 
fluid that dynamically interacts with the tank's wall. Development and real-time 
identification of any fluid model would evidently be a hopeless for precisely 
controlling the motion of the tank.  

The so called “signal adaptive” controllers have far simpler construction than 
the above mentioned ones. They do not wish to compensate the observed 

discrepancies in the system's behavior by tuning the parameters of any analytical 

model. Instead of that they quickly manipulate certain additive and/or gain 
parameters for error compensation. To this class belongs the idea of the “Model 

Reference Adaptive Control (MRAC)”. The MRAC technique is a popular and 
efficient approach in the adaptive control of nonlinear systems e.g. in robotics. A 
great manifold of appropriate papers can be found for the application of MRAC from 
the early nineties (e.g. [R135]) to our days (e.g.[R138]). One of its early applications 
was a breakthrough in adaptive control. In [R136] C. Nguyen presented the 
implementation of a joint-space adaptive control scheme that was used for the 
control of a non-compliant motion of a Stewart platform-based manipulator that was 
used in the Hardware Real-Time Emulator developed at Goddard Space Flight 
Center to emulate space operations.  

The essence of the idea of MRAC is the transformation of the actual system 

under control into a well behaving reference system (reference model) for which 
simple controllers can be designed. In the practice the reference model used to be 
stable linear system of constant coefficients. In particular cases the reference models 

can also be the nonlinear analytical models of the systems built up of their nominal 

parameters. The controllers normally are constructed by the use of the Lyapunov 
function technique, too. Recently it became clear that the “Robust Fixed Point 
Transformations” [C105] can be also used for developing novel simple versions of 
MRAC controllers without using Lyapunov's complicated technique (e.g. in [C118], 
[C119]). In these early papers simultaneous compensation of the effects of modeling 
imprecision and external disturbances were considered. 

Assume that on purely kinematical basis we prescribe a trajectory tracking 
policy that needs a desired acceleration of the mechanical system as (d2

q/dt
2)D. From 

the behavior of the reference model for that acceleration we can calculate the 
physical agent that could result in the response (d2

q/dt
2)D for the reference model (in 

our case the generalized force components are denoted by UD). The direct application 
of this UD for the actual system could result in different response since its physical 
behavior differs from that of the reference model. Therefore it can be “deformed” 
into a “required” U

Req value that directly can be applied to the actual system. Via 
substituting the realized response of the actual system d

2
q/dt

2 into the reference 

               dc_62_10



78 

model the “realized control action” UR can be obtained instead of the “desired one” 
U

D. Our aim is to find the proper deformation by the application of which UR well 
approaches U

D, that is at which the controlled system seems to behave as the 

reference system. The proper deformation may be found by the application of an 
iteration as follows. Consider the iteration generated by some function G as 
U

Req
n+1=G(UReq

n,U
R

n,U
D

n+1) in which n is the index of the control cycle. For slowly 
varying desired value UD can be considered to be constant. In this case the iteration 
is reduced to UReq

n+1=G(UReq
n,U

R
n,U

D) that must be made convergent to UReq
*.  

It is evident that the same function G and the same considerations can be 
applied in this case as that detailed in Section 8.2. with the same extension to MIMO 
systems as in Subsection 8.2.1. Furthermore, the same convergence stabilization by 
tuning as applied is Section 8.3. can be in this case, too. The comparison of the 
“traditional” and the “novel” schemes is given in Fig. 9.1. 
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Figure 9.1. The “traditional” MRAC scheme operated by some Lyapunov function 

based parameter tuning, and the novel one based on “Robust Fixed Point 

Transformations” 

 
The scheme in Fig. 9.1. does not need any further sophisticated mathematical 
analysis. If it works it evidently has to result in precise trajectory, velocity, and 
acceleration tracking, and also determines the appropriate deformation of the force / 
torque signal calculated to the reference model to achieve appropriate acceleration of 
the actual system under control. Therefore in the sequel potential application 
examples are given. 

9.1. Application Examples 

In this section the results of a comparative analysis with that of the more 
“traditional” MRAC strategies will be given. The “traditional MRAC philosophy” is 
a wide framework that can be filled in with various particular solutions. For 
comparison we choose a relatively simple implementation containing integrated 
feedback in the tracking error. Let the tracking error be denoted as qqe −= N:  and 

let ( ) ( )∫=
t

dt
0

: ττeξ  (qN denotes the nominal, q is the actual trajectory). The 

kinematically prescribed trajectory tracking can be defined by the positive definite 

matrix ΛΛΛΛ and the „error metrics” of the VS/SM controllers as ( ) 0:
3

=






 += t
dt

d
ξΛS  
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leading to eΛeΛξΛqq &&&&& 33 23 +++= ND  as the desired joint acceleration. Let the 
reference model consist of two symmetric positive definite constant matrices as 

RefRefRef QqBqM =+ &&&  where Q
Ref corresponds to its force/torque need for the actual 

qq &&& ,  values. Let ( ) ( ) QqqhqqH =+ &&& ,  be the actual system’s equation of motion. By 
„copying” the idea of the Adaptive Inverse Dynamics Controller let the exerted 
force/torque be ( ) ( ) QqqhqqHDqBqM =+=++ &&&&&& ,RefRef D  in which D corresponds to an 

additive force to be determined by the MRAC controller. Via subtracting qM &&Ref  from 
both sides we can express the known difference of the desired and actual joint 
accelerations as ( )( ) ( )[ ]DqBqqhqMqHMqq −−+−=− − &&&&&&&& RefRef1Ref ,D . By the introduction 

of the arrays [ ]TTTT eeξx &,,:=  and [ ]TTTT eeex &&&& ,,:=  the following equation of motion 
holds: 
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. (9.1.1) 

With a positive definite matrix P the Lyapunov function V=x
T
Px can be introduced 

with the desired negative time-derivative ( ) 02 <++= PΦxxPAPAx TTT
V& . By solving 

the Lyapunov equation the term quadratic in x can be made negative, therefore it is 
sufficient to guarantee the non-positive nature of the remaining one. Since qq &&&& −D  is 
known the remaining part consists of the sum of known and unknown terms as 

 ( )

( ){ } 0];;[-];;[

];;[

1RefRef1Ref <−+−=

=−=

−− DM00PxqBhqΜHM00Px

qq00PxPΦx

w 444 8444 764444444 84444444 76
&&&

444 8444 76

&&&&
T

meas

TTT

u

TTT

z

TDTTTT

 (9.1.2) 

in which zmeas and w are known quantities, and u is not known. Let us seek D in the 
form of α(t)w! Then the condition zmeas=u -α(t)wT

w<0 should be achieved. Since 
w

T
w≥0, in the possession of zmeas we have idea if α(t) must be increased or decreased. 

Let us apply a tuning rule with κ>0 as follows: ( )[ ] measmeas zzsgn1+= κα& . With 

properly great κ and P this tuning can soon lead to decreasing Lyapunov function, 
i.e. to stable control. This tuning leaves the negative terms unchanged but decreases 
the positive ones. 

The novel MRAC approach was simulated according to Fig. 9.1.  
Two interesting application examples are presented in this Thesis. 

Comparison of the operation of the “traditional” and “novel” is given for the Cart + 
Beam + Hamper system as depicted in Fig. A.1.1. using simple SCILAB programs.  

The other application is a pendulum of uncertain mass center point for which 
only the novel approach was investigated by the professional numerical integrator of 
SCILAB-SCICOS co-simulator. 
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9.1.1. Possible Applications: a) MRAC Control of the Cart + Beam + Hamper 

System 

The comparative simulations were made for the paradigm depicted in 
Fig. A.1.1. The system’s parameters were M=30 kg, m=10 kg, L=2 m, Θ=20 kg×m2, 
and g=10 m/s2 (gravitational acceleration). The „reference model” was defined by 
M

Ref=20×I, B
Ref

=3×I. In both cases a strong feedback gain was chosen for trajectory 
tracking as ΛΛΛΛ=10×I. In the „traditional case” κ=15; and IPAPA ×−=+ 600T  was 
chosen.  

The adaptive control parameters of the “adaptive control parameters” 
(without tuning parameter A) were: K=7000, B=-1, A=10-5. Detailed results are given 
in Appendix A.7.1. Fig. A.7.1.3. well illustrate that the torque need of the reference 
model is in close vicinity of the “recalculated” values, that is the MRAC idea is well 
realized by the novel approach. The appropriate results of Figs. A.7.1.4. and 
Fig. A.7.1.5. that were made for the lack of external disturbances are even more 
convincing: the “non-adaptive” part of the controller has the “illusion” that it 
calculates the torque / force needs of the reference model and obtains appropriate 2nd 
time-derivatives of the generalized coordinates accordingly. 

9.1.2. Possible Applications: b) Novel MRAC Control of a Pendulum of Uncertain 

Mass Center Point 

In this example the controller calculates with a rigid pendulum of 1 DOF 
while the actual system has 2 DOFs: inside the jig of the pendulum a ball of 
significant mass positioned by a spring of limited stiffness is located. As the 
pendulum rotates the ball can considerably be translated in the radial direction. In 
this case we have dynamic coupling with a not modeled subsystem. The simulation 
investigations revealed that in this case very aggressive tuning was necessary to the 
adaptive control parameter A (it is detailed in Appendix A.7.2.). Since the controller 
assumed an 1 DOF system the here applied estimation a little bit differed from that 
we used for the MIMO systems in Section 8.3. In the earlier investigations it was 
found that the use of constant adaptive control parameters once estimated were 
satisfactory during the whole control session. However, for rd considerably varying 

in time the following estimation can be done in the vicinity of the fixed point when 
|rn-rn-1| is small: rn+1-rn=G(rn,r

d
n)-G(rn-1,r

d
n-1)≈[∂G(rn-1,r

d
n-1)/∂r](rn-rn-1)+ 

[∂G(rn-1,r
d

n-1)/∂r
d](rd

n-r
d
n-1). Since from the analytical form of σ(x) [∂G(rn-1.r

d
n-1)/∂r

d] 
is known, and the past “desired” inputs as well as the arguments of function G are 
also known, this equation can be used for real-time estimation of [∂G(rn-1,r

d
n-1)/∂r] 

therefore for calculating the estimated actual value in ∂G(r,rd)/∂r=1- εest: 

 
( ) [ ]( )( )

1
1

101 −
−

−−′++−
≈

−

++

nn

d

n

d

n

d

nnnnn
est

rr

rrrfABAKrrr σ
ε  (9.1.2.1) 

[σ’(x) denotes the derivative of σ(x)].  
For the novel MRAC control of this pendulum detailed simulation results are 

given in Appendix A.7.2. These results are quite convincing, too. 

9.2. Thesis 5: Replacement of Lyapunov’s Direct Method with Robust Fixed 

Point Transformations in Model Reference Adaptive Control (Summary of the 

Results of Chapter 9) 

I have realized that the “Robust Fixed Point Transformations” with the 
convergence stabilizer parameter tuning and the “Expected – Realized Response 
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Scheme” can replace Lyapunov’s direct method in “Model Reference Adaptive 

Control”.  
• I have shown that for this purpose in the role of the “expected 

response” the generalized force components calculated from the 
reference model (nominal system) and a kinematically prescribed 
joint coordinate acceleration, and in the place of the “realized 

response” the reference model’s torque needs calculated from the 
observed accelerations of the controlled system have to stand; 

• By the use of simulation investigations I have shown that the “novel” 
approach precisely can realize the main idea of MRAC: it provides the 
model based controller with the illusion that the controlled system 
behaves like the reference model, i.e. it responses to the same 
generalized force with the same joint accelerations like the reference 
model; 

• The design of the novel controller is far simpler task than the 
application of the technique that uses Lyapunov functions. 

Publications related this Thesis are as follows: [C118], [C119], and [C121]. 
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10. Adaptive Control for MIMO Systems by the Use of Approximate 

SVD of the Available Approximate Model 

In this section a further step ahead is discussed concerning the novel 
approach to develop adaptive nonlinear control for non-special MIMO systems. This 
means a kind of generalization of the solutions elaborated for SISO systems in 
section 8.1. The previously applied parametric transformations were tailored to 
systems in which such concepts as “increasing”, “decreasing”, “greater/smaller than 

…” had definite meaning. However, in the state space of multiple dimensional 
systems uncountable manifold of the possible directions exists, so the above concepts 
cannot directly be applied for them. The idea behind the here proposed generalization 
is very simple. By utilizing the fact that in any Real Hilbert Space the scalar product 

of the elements, therefore the angles between two vectors can be defined, it can be 
said that if two vectors define an acute angle this means that these vectors have 
“approximately the same direction”, while if they define an obtuse angle the 
situation can be interpreted that these vectors have “approximately opposite 

directions”. Therefore instead of “quantities that increase in a given step”, we can 
speak of “vectors that vary approximately in the direction of the original vector”. In 
similar manner, instead of “quantities that decrease in a given step”, we can speak of 
“vectors that vary approximately in the direction opposite to that of the original 

one”. 
The only problem is that in the case of such systems no any a priori 

information we have on the relationship connecting the directions of the modification 
of the control agent and the modification in the response caused by it. The nature of 
this connection can vary in time during the motion (state propagation) of the 
controlled system. Fortunately enough, if some approximate analytical model of the 
system under control is available together with the very rough model used for control 
purposes, by the use of the method of SVD this relationship can roughly be 
estimated, and on this basis some adaptive controller can be designed or at least 
outlined. (We have similar situation in the case of the sophisticated traditional 
adaptive controllers, i.e. in the case of the “Adaptive Inverse Dynamics” and the 
“Adaptive Slotine - Li Controllers” that assume that the exact analytical form of the 

model of the system to be controlled is available, and we have imprecision only in 

the values of the dynamical parameters.) 
In the sequel it will be shown in details that this idea can be utilized by using 

the means of Singular Value Decomposition (SVD) of real matrices for the purposes 
of developing adaptive control for MIMO dynamical systems. At first we consider 
the geometric interpretation of SVD as is given in Appendix A.11. by Eq. (A.11.7) as 

 

( ) ( )[ ]
( )

( )

( ) ( )[ ]
( )( )

( )( )
( )( ) ( ) ( )( ) ( )k

kk

TkT

Tm

T

k

kk

Tm

T

nm

nT

DD

DD

D

D

vauvau

au

au

vv

a

u

u

vvaVDUb

,...,

,

,

00

00

1
11

1

1

1
11

1
11

1

++=

=
















=

=
































==

LLL

LMOML

 (A.11.7) 

               dc_62_10



83 

in which k=min(n,m), and in the central line following the matrix element Dkk in 
“[…|Dkk|…]” either nothing stands or zeros are located. The geometric interpretation 
of (A.11.7) is straightforward: characteristic pairs of orthogonal directions are found 
in the input and the output spaces to which characteristic stretch/shrink denoted by 
the singular values Dii≥0 belong. To zero singular values special directions pertain 

that do not take part in the mapping realized by the linear operator under 

consideration. By using this geometric interpretation we can create appropriate, 
convergent Cauchy Sequences as solutions of the control problem in the case of 
MIMO systems almost exactly in the same manner as it was done by the parametric 
fixed point transformations we applied for the SISO systems. 

10.1. Mathematical Formulation 

Consider the following task: it is given an initial x0 value, a smooth f:ℜn
→ℜn 

function, an xd “desired value”, and the appropriate solution x* is sought for which 
x

d=f(x*). We should like to achieve a first order correction in the value of f(x) that 
moves f in the direction of xd, that is a positive number α>0 can be introduced as 

 ( )[ ]xfxx
x

f
f −=∆

∂
∂

=∆ dα  (10.1.1) 

If the Jacobian of f can be inverted the following sequence of points can be defined 
by (10.1.1): 
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1 α  (10.1.2) 

To estimate the approximation error belonging to xn+1 the first order Taylor series 
expansion of f can be used as 
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 (10.1.3) 

This error in absolute value evidently can be decreased if approximately 0<α<2. 
Normally (10.1.3) cannot exactly be realized since ∂f/∂x is not exactly known. To 
obtain better idea on the possibilities for reducing the approximation error, imagine 

the application of the SVD for ∂f/∂x as T
UDV

x

f
=






∂
∂

, TUVD
x

f 1
1

−
−

=






∂
∂

 that leads 

to the step ∆x in the above outlined iteration as ( )[ ]xfxUVDx −=∆ − dT1α . Now 
apply the form (A.11.7) by expressing the actual error used for calculating the next 
step with the components of the orthogonal matrix U. In the ideal case 
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For guaranteeing convergence small ∆x is needed. Since the SVD for an invertible 
quadratic matrix yields D11≥D22≥...≥Dnn it can be said that 0<D

−1
11≤...≤D

−1
nn so 

||∆x||≤(√n) α maxn
l=1{|cl|}D

−1
nn. For introducing the quantity K expressing the 

maximum allowable step length in the x space the proper value of the proposed 
maximum of α can be estimated as  

 
{ }( ) nCc

KD

cutl

n

l

nn

,max max 1

max

=

≈α  (10.1.5) 

in which the parameter Ccut has the function of limiting α in the case of small cl 
coefficients in (10.1.4). 

The geometric way of thinking here can be utilized as follows: it is not 
necessary to exactly move in the x space as it is defined in (10.1.1): it is just enough 
to make a small step “approximately in the same direction”. Therefore, if we have 
some approximate model of the Jacobian of f of our system, only one times executing 
SVD on this approximation may be satisfactory to approximate the U, D, and V 
matrices that can be used for estimating the factor α, and the system can be directed 
to the direction of the decreasing error even if not exactly the direction of the 
“steepest descent” according to (10.1.4) is achieved. In the sequel this idea will be 
applied in the adaptive control of the cart plus double pendulum system. 

10.2. Application Example: Adaptive Control of the Cart plus Double Pendulum 

System 

Certain excerpts of the consideration obtained here have been published in 
[C102]. The structure of the paradigm for the control of which the proposed method 
was proved is described in Fig. A.5.1. and with the equations of motion (A.5.4) of 
the Appendix and also discussed in details in [C63]. However, the dynamic 
parameters of the system were different in this case. The cart the mass of M=5 [kg], 
the pendulums assembled on the cart by parallel shafts and arms having negligible 
masses and lengths L1=2 and L2=3 [m], respectively. At the end of each arm balls of 
negligible sizes and considerable masses of m1=6 and m2=4 [kg] are attached, 
respectively, and the gravitational acceleration was g=9.81 [m/s

2]. Detailed 
simulation results are provided in Appendix A.8. These results well exemplify the 
applicability of the proposed method. 

10.3. Thesis 6: Adaptive Control for MIMO Systems by the Use of Approximate 

SVD of the Available Approximate Model (Summary of the Results of Chapter 

10) 

Based on the simple geometric interpretation of the Singular Value 

Decomposition (SVD) for real matrices I proposed a novel adaptive controller for 
non-special, nonlinear dynamical systems the approximate analytical model of which 

is available. This control has the following main features: 
• It is a kind of generalization of the fixed point transformations using 

only two parameters, but in contrast to them, it is not restricted to 
either “increasing” or “decreasing” systems; 

• The controlled system may have varying “increasing” and 
“decreasing” nature, the role of the rough analytical model and the 
SVD is to approximately “track” the variation of this nature in the 
state space of the controlled system; 
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• The proposed method does not require the real time application of 
SVD within the control cycles. Proper information on this nature of 
the system can be observed in the grid points of a mesh before 
exerting any control effort, and the result of these observations can 
be applied in the control process by the use of some interpolation 
technique, e.g. by applying Support Vector Machine applying radial 
basis functions. 

• The operation of the proposed control was demonstrated via 
numerical simulations for an appropriate nonlinear paradigm.  

The publications strictly related to this Thesis are as follows: [J14], [C102], 
[C104], [C106]. 
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11. Approximation and Application of Fractional Order Derivatives 

in the Time Domain 

In various physical, chemical, economic, etc. processes typical momentum is 
the existence of a great number of dynamically coupled degrees of freedom. 
Normally we can concentrate on modeling and control only of a few of them while 
no detailed information is available on the state of the other, not modeled and 
directly not controlled variables. Within the framework of Classical Physics, if x 
denotes those variables of the coupled system that are in the centre of our attention, 
the formal state propagation equation of type ( )uxfx ,=&  containing the controller’s 
action in variable u will not be valid due to the presence of the not modeled coupled 
subsystems. A plausible way of modeling approximation is to assume that the 
coupled subsystems also are excited by the control action u, and the state 
propagation of these subsystems may reveal itself in a kind of memory of the system 
that depends on the relaxation properties of the excited subsystems. A formal 
possibility to introduce “memory” into the model is the replacement of the d/dt 
differential operator with another operator that conveys some memory. For this 
purport the concept of the so-called “fractional derivatives” were found to be 
excellent tools. 

Though the formal mathematical idea of introducing non-integer order 
derivatives can be traced from the 17th century in a letter by L'Hospital in which he 
asked Leibniz what would be the meaning of Dn

y if n = ½ in 1695 [R122], it was 
better outlined in the 19th century [R123]-[R125]. Due to the lack of their physical 
interpretation their first applications in Physics appeared only later, in the 20th 
century, in connection with visco-elastic phenomena [R126]-[R127]. The topic later 
obtained quite general interests [R128]-[R130], and also obtained new applications in 
material science [R131], analysis of earth-quake signals [R132], control of robots 
[R133], and in the description of diffusion [R134].  

The concept of fractional derivatives has many, only more or less equivalent 
definitions, e.g. by Riemann-Liouville, Caputo, Grünwald-Letnikov, Hadamard, 
Marchaud, Riesz, etc. For our purposes, for its lucidity and simplicity, we use the 
discrete time resolution approximation of the form invented by Caputo that also was 
used in a fractional order controller developed for integer order system e.g. in [C94]. 
It will be shown that this approximation is applicable for modeling the dynamic 
behavior stable dissipative and unstable physical systems damped/excited by 
dynamical coupling to unmodeled internal degrees of freedom. Furthermore, it will 
be shown that an adaptive control method originally elaborated for integer order 
systems can be extended to the control of systems of fractional order dynamics. 

11.1. Numerical Approximation of Caputo’s Fractional Order Derivatives 

The definition given by Caputo for the β∈(0,1) order derivative of a function 
u(t) for a≤t is given as 

 ( ) ( )( )
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in which the parameter a is in the role of some initial condition. If we wish to apply 
this concept for describing physical systems no any special time-instant can be in 
some “distinguished” position. Instead of that it is more reasonable to assume that 
this operator has to describe the “memory properties” of the physical system that 
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normally can be modeled by some “finite length of memory” L. According to that 
(11.1.1) can be applied in the form as 
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that has the interesting property that for du/dt≡const. it also yields u(β,T)=const. since 
by substitution ξ:=t-τ, dξ= -dτ, ξ∈[L,0], it is obtained that 
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The expression in (11.1.3) immediately suggest the following approximation for non 
constant classical first derivative: let us divide the [t-L,t] interval into small sub-
intervals as [t-Tδt, t-(T-1)δt], [t-(T-1)δt, t-(T-2)δt], [t-(T-2)δt, t-(T-3)δt], …, [t-δt, t] 
(L=Tδt), and let us suppose that du/dt≈const. within these small intervals. In this 
manner (11.1.2) can be approximated as a sequence of discrete u(s) values as 
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If the interval δt is small enough, in (11.1.4) finite element approximation can be 
applied for the estimation of the first order derivative as 
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In similar manner, for higher order fractional derivatives (11.1.1) can be generalized 
for β∈(0,1) as 
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that in strict analogy with the above considerations yields the following 
approximation 
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It is worth noting that for β∈(0,1) Gs>0, and Gs+1<Gs. By applying one of the usual 
finite order approximation of the higher integer order derivatives similar time-
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sequences can be obtained. In the sequel we restrict ourselves for n=2 for which the 
following sequences can be obtained: 

 

( ) ( )

,,
2

,...,2,
2

,
2

,

222
1

1

2
11

2
01

12
0

0

0

)1(

t

G
J

t

GG
J

Ti
t

GGG
J

t

GG
J

t

G
J

tstuJtu

T
T

TT
T

iii
i

T

s

s

δδ

δ

δδ

δβ

=
−

=

=
+−

=

−
==

−≈

+
−

+

+−

=

+ ∑

. (11.1.9) 

In the next step the behavior and modeling capabilities of this approximation is 
investigated. 

11.2. The Behavior of the Proposed Numerical Approximation of Caputo’s 

Fractional Order Derivatives 

Consider the behavior of a hypothetical physical system that satisfies the 
“fractional order differential equation” in the form of the above finite approximation 
as 

 ( ) ( ) ( )tgtutu tT +−= αδβ ),,( . (11.2.1) 

that in the case of β≈1 must be similar to an exponentially damped system driven by 
the “driving force” g(t). Applying the approximation (11.1.5), and considering the 
time t as a discrete variable from this point on for the simplicity, the following 
sequence is obtained for the u(t) signals: 
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It is evident, that in this case the “initial values” {u(t-i)| i=1,2,…,T+1} that altogether 
can also be referred to as the “preceding history” uniquely determine the u(t), u(t+1), 
etc. future values so we obtained a causal system. In contrast to the integer order 
systems the number of the possible independent values defining the “preceding 
history” is independent from the order of differentiation. For studying the behavior of 
this system various estimations can be applied. The most efficient estimation can be 
based on the matrix form of (11.2.2) for the non-excited case of g≡0: 
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The propagation of the system’s state is evidently described the increasing powers of 
the MH matrix of very special structure. Therefore it is interesting to see the spectrum 
and the eigenvalues of these matrices. In the vicinity of the “classical limit”, i.e. short 
memory (T=2 is the smallest available number) and almost integer order derivative 
(β→1) with some small δt→0. For calculating the eigenvalues of the MH matrix the 
following secular equation has to be solved [due to the simple structure of the matrix 
in (11.2.4) it is not difficult to calculate it in closed analytical form]: 
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According to (11.1.4) if β→1 G0=δt
(1-β)/Γ(2-β)→1, and if i>0 Gi→0, so H0→1/δt, 

H1→-1/δt, H2→0, H3→0 that in the limit case reduces the secular equation to 
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The nonzero eigenvalue works as follows: during time δt the appropriate eigenvector 
is multiplied by λ=1/(1+αδt), so the variation of a quantity x during one cycle is as 
follows: 
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That evidently corresponds to an exponential damping with the exponent -α as it is 
expected in the case of an integer order system. 

For the near-limit case numerical calculations have to be done because in 
general the secular equations do not have solutions of closed analytical form. For 
instance, in the vicinity of the “classical limit”, i.e. short memory (T=2) and almost 
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integer order derivative (β=0.99) with δt=0.01 the following matrix is obtained for 
the case α=1: 
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The eigenvalues of this matrix easily can be calculated by some popular software as 
e.g. SCILAB. They are {0.9898084, - 0.0034984 + 0.0638626i, - 0.0034984 - 
0.0638626i} (each of them is smaller than 1 in its absolute value, while the 
determinant of the matrix V the columns of which are made of the appropriate 
eigenvectors is - 3.903D-17 - 0.0735043i≠0, that is any complex (therefore as special 
case real) initial vector can be calculated as a linear combination of the columns of 
V. The appropriate components of this sum are multiplied by the appropriate 
eigenvalues of the matrix MH in each time step. Since the absolute values of these 
eigenvalues are smaller than 1, the system is stable and its “initial perturbation” 
relaxes to zero. It is worth noting that the real eigenvalue has the biggest absolute 
value, so it corresponds to the slowest relaxation. The absolute values of the two 
complex eigenvalues that describe some damped oscillation are very small, so these 
oscillations are relaxed very quickly. Therefore the components of the “preceding 
history” belonging to the eigenvectors of very fast relaxation die out very quickly, 
and the effect of a single “initial condition” seems to be more or less lasting 
[Fig. 11.2.1.]. 
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Figure 11.2.1. The approximately exponential relaxation of the “preceding history” 

nearby the classical limit 

 
According to the terminology we already used, the “very fractional limit” 

means long memory (e.g. T=100), and small order of differentiation (e.g. β=0.01). In 
this numerical example the eigenvectors form a complete system (the appropriate 
determinant is equal to 0.0129997 - 1.388D-17i≠0), and the absolute value of the 
biggest eigenvector is 0.9931726. However, there are eigenvalues of considerable 
real parts and very small imaginary ones, therefore this system relaxes slowly and the 
structural richness of the “preceding history” does not die out quickly. This situation 
is well demonstrated by Fig. 11.2.2.  
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Figure 11.2.2. The relaxation of the “preceding history” in the “very fractional 

limit” 

 
Quite similar considerations can be done for the fractional order derivatives 

higher than one. According to (11.1.9) the appropriate structure is as follows.  
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In this case the “classical limit” corresponds to T=3 and β→1. The secular equation 
belonging to ((11.2.8)) has quite similar structure as (11.2.4) and the appropriate 
determinant can easily be computed: 
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In the classical limit according to (11.1.9) J0→1/δt
2, J1→-2/δt

2, J2→1/δt
2, J3→0, 

J4→0, J5→0. This reduces (11.2.9) to 
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The nontrivial solution can exactly be obtained by making the 2nd order term in the 
parentheses equal to zero yielding 
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Assuming that |1+αδt
2|<<1 the polar form of these eigenvalues approximately is 

exp(±iδt√α). Since during the time-slot of length δt one matrix multiplication 
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happens this corresponds to the circular frequency αδδϕω =≈ t/ . This evidently 
corresponds to the non-damped harmonic oscillation of the classical limit. As a 
numerical example, T=3, δt=0.01, and β=0.99 can be considered. The appropriate 
eigenvalues of MJ are as follows: {0.9998961 + 0.0101323i, 0.9998961 - 
0.0101323i, 0.0642578 + 0.1318036i, 0.0642578 - 0.1318036i, - 0.1354708} that 
corresponds to a complex conjugate pair of slowly relaxing eigenvalues, while the 
others relax relatively quickly [Fig. 11.2.3.]. The determinant of the matrix of the 
eigenvectors is 0.0000610 - 4.382D-19i, that is this system is nonsingular again.  
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Figure 11.2.3. The approximately exponential relaxation of the “preceding history” 

nearby the classical limit 

Since during δt exactly one multiplication happens with the matrix, that corresponds 
to a circular frequency ω = 0.0101334 /δt=1.01334 rad/s and a period 2π/ω≈6.2 s. 
This well agrees with the period of the signal in the upper chart of Fig. 11.2.3.. (In 
the case of the integer 2nd order derivatives ω would be √1=1.) Similar calculation 
for α=100 yields a period of 0.6222019 s for the slowly damped pair of eigenvalues 
that also is in good agreement with the charts, and with the period of the second 
order system. (For the integer order system 2π/10≈0.6283185 s.) 
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Figure 11.2.4. The relaxation of the “preceding history” in the “very fractional 

limit” 

 
The case “far from the classical limit” is defined by T=100, and β=0.01. (The 

biggest eigenvalue then was 0.9996263.) The results of certain numerical 
calculations are given in Fig. 11.2.4. The determinant of the matrix of the 
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eigenvectors was - 8.327D-17 - 0.1067265i, that is this system was far from being 
singular again. The slowly relaxing pair of eigenvalues of the near classical limit 
have the exponential form 0.9999475 × exp(±i0.0101334). Simulation results for a 
“medium value” are given in Fig. 11.2.5. 
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Figure 11.2.5. The relaxation of the “preceding history” in a “medium” case 

 
It is interesting to see what happens if in the closed analytical formulae 

obtained as the numerical approximation of the Caputo derivatives 2>β>1. Though 
the original integrals cannot be calculated for such cases, the approximations yield 
physically interpretable behavior [Fig. 11.2.6.]. 
 

 

0.0 3.4 6.8 10.2
-30

-20

-10

0

10
Solution of x (̂2.8)=-1 x [10^1] vs Time [s]

 

Figure 11.2.6. 2>β>1 case far from the classical limit: T=100, β=1.8 

 
The approximation from the “lower order side” yields relaxing oscillations, while 
from the higher order side we obtain unstable system with the eigenvalue of maximal 
absolute value 1.004497. 

To sum up it can be stated that this simple discrete approximation of the 
Caputo derivatives seems to be a useful means of modeling fractional order systems 
in the time domain.  

In the sequel potential applications of the proposed approximation are 
discussed. 
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11.3. Application Example: the Use of Fractional Order Terms in the Control of 

Integer Order Systems 

For application example the control of the same physical system already 
considered in section “7.3. Simulation Example for Potential Application of the 
Special Symplectic Matrices”, i.e. the control of two coupled cart+double pendulum 
system [depicted in Fig. A.5.1. and described by (A.5.4) and (A.5.5)] was chosen. 
The same kinematically prescribed tracking strategy was considered as in (A.5.6) 
with the same adaptive control for the “centralized” approach using the special 
symplectic matrices of size 12×12 defined in (7.1.10) but the computation of the 
torque to be exerted happened in different manner. Observing that according to 
(11.1.1), (11.1.2), (11.1.4), (11.1.5) a constant integer order derivative of a function 
du(t)/dt=const. yields constant fractional order derivative u(β)(t), and that the ratio of 
the two constants is very close to 1 if β is close to 1, the rough initial system model 
was utilized to exert the generalized forces. In the simulation the rough initial system 

model for both carts was ( ) TDes
]1,1,1[1010 1 ×+= +βqQ  instead of 

TDes ]1,1,1[1010 ×+= qQ && . It is reasonable to expect for 0<β<1 this degrades the 
tracking accuracy, however, due to the “internal memory” of the fractional order 
derivators it can smooth the fast fluctuation in the torque typically appearing in 
Fig. A.5.2. Detailed computational results are given in Appendix A.9. 

 

11.4. Thesis 7: Numerical Approximation of Fractional Order Derivatives and 

Their Potential Applications (Summary of the Results of Chapter 11) 

I have introduced a discrete approximation of the Fractional Order derivatives 
defined by Caputo.  

• I have shown that the proposed approximation has three parameters 
as follows: the time-step of discretization, the memory length of the 
approximation, and the order of differentiation; 

• Instead of the concept of “initial condition” usually used in the 
literature I proposed to apply the concept of “preceding history” that 
naturally takes into account the memory length of the approximation 
of the operator and makes the distinguished position of the “initial 
time instant” cease; 

• Via considering the numerical solutions of homogeneous, linear, 
fractional order differential equations with constant coefficients I 
have shown that in the limit case the proposed approximation yields 
the common integer order derivatives; For this purpose the 
eigenvalues of special matrices were calculated in analytical form; 

• I have shown that by extending the “order” parameter of the 
derivation to a higher possible set of values than that allowed by the 
original definition given by Caputo both stable dissipative and 
unstable systems can simply be modeled; 

• I have shown that the numerical approximation can well be 
combined with the novel adaptive control approaches I formerly 
introduced; 

• I have shown that the frequency filtering property of the proposed 
approximation can well be used for smoothing the operation of the 
adaptive controller. 
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To the subject area of Thesis 7 the following publications are strictly related: 
[C66], [C69], [C70], [C71], [C72], [C73], [C75], [C76], [C78], [C79], [C81], [C82], 
[C92], [C93], [J13]. 
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Appendix 

A.1. Simulation Results for Section “4.4.1. Modification of the Tuning Rule of 

the Adaptive Inverse Dynamics Controller” 

The appropriate tuning strategies were numerically studied by the use of a 
paradigm sketched in Fig. A.1.1. The exact parameters of the system were M=30 kg, 
m=10 kg, L=2 m, Θ=20 kg×m

2, g=10 m/s
2. The approximate model parameters in the 

dynamic model were M̂ =60 kg, m̂ =20 kg, L̂  =2.5 m, Θ̂ =50 kg×m
2, and ĝ =8 m/s

2. 
 

Paradigm for Simulation Investigations:
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Figure A.1.1. The schematic picture and the equations of motion of the 

cart+beam+hamper system 

 
In Fig. A.1.2. the operation of the “conventional” Adaptive Inverse Dynamics 

Controller is shown for the parameter setting K0= K0×I, K1=2√K0×I, 

A
T
P+PA=10

6
I, R=5I.  

We note that for smaller R value (i.e. faster tuning) the tuning process caused 
numerical overflow. Figure A.1.4. is the counterpart of Fig. A.1.2. with modified 
tuning based on the use of the directly available information and SVD. The 
improvement in the tracking accuracy is quite impressive. It is worthy of note that 
while the original, Lyapunov function based technique, due to the use of matrix R, 
almost unnecessarily modifies each parameters and cannot reach any settling point 
during the simulations, the SVD-based method reveals that only two of the three 
singular values differ significantly from zero, therefore the proper tuning concerns 
only two-dimensional subspaces of the space of the parameter errors. 

Furthermore, in the cases when simultaneously each singular value is small 
but remains within the range for being kept, by the use of a few “brave” steps the 
tuning quickly is settled at good approximation of the dynamical parameters and the 
trajectory tracking becomes precise. 
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Figure A.1.2. The operation of the original “Adaptive Inverse Dynamics Controller” 

for K0=10 s-2
I, K1=2√10×I, AT

P+PA=106
I, R=5I 

 

 

 

 

Figure A.1.3. The operation of the “Adaptive Inverse Dynamics Controller” with 

modified tuning and integrated feedback for ΛΛΛΛ=10×I s-2, γ=50, and the minimal 

singular value kept in the generalized inverse εSVD=10-2; 
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The improvement in tuning is even more illustrative for the variant of 
Adaptive Inverse Dynamics also using integrated feedback and modified tuning 
(Fig. A.1.3.). 

 

 
 

 

 

Figure A.1.4. The operation of the “Adaptive Inverse Dynamics Controller” with 

modified tuning for K0=10 s-2
I, K1=2√10×I, γ=50, and the minimal singular value 

kept in the generalized inverse εSVD=10-2; 

 
It is worth noting that the parameter tuning again happens in two-dimensional 
subspaces of the space of the parameter estimation errors, furthermore, the presence 
of the integrated error-feedback results in more precise tracking from the onslaught. 

In the sequel simulation investigations will show that even relatively 

insignificant external perturbations can considerably degrade the operation of 

these sophisticated controllers trough fobbing/misleading/foolishing their sensitive 
parameter tuning processes. For this purpose it is satisfactory to show the phase 
trajectories of the controlled motion and certain excerpts revealing details of the 
tuning process.  

Figure A.1.5. pertains to the original “Adaptive Inverse Dynamics 

Controller”. The external disturbance was created by fitting a 3rd order periodic 
spline function to 11 randomly selected points within a narrow interval. It was 
applied as addition only to Q3, its “insignificance in comparison with the exerted 
control forces” is well exemplified by the chart in the lower left corner of the figure 
that displays a zoomed excerpt of the chart in the upper right corner (the curve in 
magenta). 

Similar effect can be observed in Fig. A.1.6. for the variant applying 
modified parameter tuning. The “hectic behavior” of the controlled system in the last 
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seconds considered well exemplifies what may happen to a nonlinear system if it is 
kicked out of one its “normal regimes of operation”. It cannot be taken granted that 
the controller can pull its state back to the normal regime. The same conclusion can 
be drawn from Fig. A.1.7. that belongs to the more efficient parameter tuning and 
integrated feedback.  

 

 

 

Figure A.1.5. The operation of the original “Adaptive Inverse Dynamics Controller” 

for K0=10 s-2
I, K1=2√10×I, AT

P+PA=106
I, R=5I under external noises acting as 

addition to Q3 only (the line in magenta in the force/torque diagram) 

 

 

 

Figure A.1.6. The operation of the “Adaptive Inverse Dynamics Controller” with 

modified tuning for K0=10 s-2
I, K1=2√10×I, γ=50, and the minimal singular value 

kept in the generalized inverse εSVD=10-2 under external noises acting as addition to 

Q3 only (the line in magenta in the force/torque diagram) 
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Figure A.1.7. The operation of the “Adaptive Inverse Dynamics Controller” with 

modified tuning and integrated feedback for ΛΛΛΛ=10×I s-2, γ=50, and the minimal 

singular value kept in the generalized inverse εSVD=10-2 under external noises acting 

as addition to Q3 only (the line in magenta in the force/torque diagram) 

 

A.2. Simulation Results for Section “4.5.1. Modification of the Parameter 

Tuning Process in the Adaptive Slotine-Li Controller” 

To illustrate the operation of the original and modified Slotine-Li controllers 
further simulations were made for the same physical system and nominal trajectory. 
Their results are discussed in the sequel. Figure A.2.1. belongs to the original version 
with the control parameters given in the caption of the figure. It can well be seen that 
due to the not very efficient tuning that is the consequence of insisting on the use of 
Lyapunov function, though in the beginning significant variation of the tuned 
parameters happens, within the duration of the simulations the parameters were not 
fairly tuned and the tracking errors remained significant. The introduction of 
integrated feedback [Fig. A.2.2.] allowed faster tuning and resulted in more precise 
tracking in general. 

In Fig. A.2.3. the results describing the operation of “Adaptive Slotine-Li 

Controller” modified by the introduction of integrated feedback term and SVD-based 

tuning are given. The benefits of the modifications are quite similar to that obtained 
in the case of the modification of the “Adaptive Inverse Dynamics Controller”. 
Though for a while a three-dimensional subspace of the five-dimensional parameter-
error space was tuned in the beginning, later on the tuning process was restricted to 
two-dimensional subspaces. (Of course the direction of these subspaces can vary in 
time, therefore it is possible to study the whole five-dimensional space in this 
manner.) 
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Figure A.2.1. The operation of the original “Adaptive Slotine-Li Controller” for 

ΛΛΛΛ=10×I s-1, KD=100, ΓΓΓΓ=0.05×I (for smaller ΓΓΓΓ i.e. for faster tuning numerical 

overflow happened) 

 

 

 

Figure A.2.2. The operation of the “Adaptive Slotine-Li Controller” modified by the 

introduction of integrated feedback for ΛΛΛΛ=10×I s-1, KD=100, ΓΓΓΓ=0.01×I 
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Figure A.2.3. The operation of the “Adaptive Slotine-Li Controller” modified by the 

introduction of integrated feedback and SVD-based tuning for ΛΛΛΛ=10×I s-1, KD=100, 
γ=50×I 

The next simulations belong to the presence of external noises. The original 
version of the “Adaptive Slotine-Li Controller” suffered the smallest catastrophe 
though its precision was very bad, too [Fig. A.2.4.]. 

 

 

 

Figure A.2.4. The operation of the original “Adaptive Slotine-Li Controller” for 

ΛΛΛΛ=10×I s-1, KD=100, ΓΓΓΓ=0.05×I under external noises acting as addition to Q3 only 

(the line in magenta in the force/torque diagram) 

 
Its completion with integrated feedback without speeded up parameter tuning 
remained relatively robust [Fig. A.2.5.]. The more drastic tuning in Fig. A.2.6. 
destroyed the stable behavior of this controller.  
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Figure A.2.5. The operation of the “Adaptive Slotine-Li Controller” modified by the 

introduction of integrated feedback for ΛΛΛΛ=10×I s-1, KD=100, ΓΓΓΓ=0.01×I under 

external noises acting as addition to Q3 only (the line in magenta in the force/torque 

diagram) 

 

 

 

Figure A.2.6. The operation of the “Adaptive Slotine-Li Controller” modified by the 

introduction of integrated feedback and SVD-based tuning for ΛΛΛΛ=10×I s-1, KD=100, 
γ=50×I under external noises acting as addition to Q3 only (the line in magenta in 

the force/torque diagram) 

A.3. Simulation Results for Section “6.1.2. Simulation Results for the Use of 

Diagonalization of the Inertia Matrix ” 

In Fig. A.3.1. the kinematic data of the motion are described, while 
Fig. A.3.2. reveals the error values regarding the trajectory and the contact force 
versus time. 
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Figure A.3.1. The phase trajectory and the trajectory for the required (nominal) and 

the simulated motion ([m/s] vs. [m] and [rad/s] vs. [rad], time: 5 [ms] units). 
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Figure A.3.2. The error in the trajectory and the contact force versus time (in [m] 

and [rad] and [N] and the time in 5 [ms] units, respectively). 
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Figure A.3.3. The full amount of the generalized forces and the regression-based 

addition versus time (in [Nm] [N] and 5 [ms] units, respectively). 

 
The maximum error in the contact force is about 80 [N] which is small enough if 
compared to the requested 1200 [N]. The error of the first rotational link is about 
0.15 [rad], the second one keeps its required constant value with the error of about 
0.05 [rad], while the error of the telescopic axis is about 0.05 [m].  
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Figure A.3.4. The estimated "inertia data” in SI units (the various components of 

matrix H have different physical dimensions). 
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Figure A.3.5. The variation of six directly tuned parameters vs time (in 5 [ms] units). 
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Figure A.3.6. The variation of the integrating term in the PID/ST part and that of one 

of the quadratic terms in the Euler-Lagrange equations vs. time (in 5 [ms] units). 

 
Fig. A.3.3. reveals that the regression-based “addition” is quite significant that is this 
ancillary solution is quite useful in the control. To disclose the other “background 
processes” in Fig. A.3.4. the six independent elements of the estimated “inertia 
matrix” are plotted. The change in these matrix elements is quite considerable that 
means that this part of the control well cooperates with the other parts, too. The same 
can be told of the directly tuned parameters some of which described in Fig. A.3.5., 
and of the integrating term of the PID/ST part also displayed in Fig. A.3.6. It is worth 
noting that the quadratic terms in the Euler-Lagrange equations play a quite 
important role in the control according to Fig. A.3.6., too. Regarding the operation of 
the slower external loop the simulation results did not show considerable drift though 
considerably different initial values were investigated. It seems that the other parts of 
the control almost form a local "optimum" for these parameters at least in the cases 
investigated. 

A.4. Simulation Results for Section “6.2.3. Application Example for the Use of 

Symplectic Transformations as the Sources of Uniform Structures in Classical 

Mechanics” 

In the forthcoming simulation examples the same robot arm structure was 
used as that of Fig. A.4.1. [its Euler-Lagrange equations of motion are given in 
(A.4.1) and (A.4.2)]. 
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Figure A.4.1. The particular paradigm considered 
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The endpoint of the arm was connected to a dashpot producing elastic spring forces 
(with stiffness of 600 [N/m]) and viscous damping (100 [Ns/m]) as external 
perturbations. This manipulator arm consists of a vertical rod of 5 kg moving up and 
down (q1 in m), rotating around itself as a vertical axis (q2 in rad), and a second rod 
joined to it by a wrist tilting around a horizontal axis (q3 in rad). This latter joint also 
was translated by q1 and rotated by q2. The second rod had negligible mass but 
carried a point-like small body of variable mass. It also had constant length 
(R0=3 [m]). The three axes were controlled by drives exerting force for q1 and torque 
for q2 and q3 prescribed by the control strategy. In each case considered the end-point 
of the robot arm was desired to be moved with circular frequency Ω [rad/s] along a 
circle of 0.5 m radius lying in a vertical plane at a distance of 2 m from the vertical 
axis. In each case the "initial rough estimation" of the dynamic model consisted of a 
non-singular, constant inertia matrix and a constant gravitational term. No quadratic 
velocity coupling was taken into account. Making all the further corrections was the 
task of the Symplectizing Algorithm. 

The “canonical coordinates” without system identification were 
[qT,(Mdq/dt)T]T with the estimated model inertia M. Simulations were run for pure 
application of the Symplectizing Algorithm and with complementary tuning only one 
of the Symplectic matrices in (6.2.5), namely matrix B by matrix P. 
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Figure A.4.2. Simulation results for “slow” motion Ω=5 [rad/s] without (LHS) and 

with (RHS) external perturbation without complementary tuning (the first two rows) 

and with complementary tuning of step length 10
-8 [dimensionless] (3

rd
 and 4

th
 rows) 

[q1:black, q2:blue, q3:green lines] 

 
(For the sake of simplicity P*≡I was investigated only with independent tuned 
variables ϕ in (6.2.21) and ψ  in (6.2.24).) In the simulations in the first half of the 
time considered no any Symplectic identification was applied, only the rough initial 
model was in use. In the second half of the time of the investigations the 
[qT,(Mdq/dt)T]T “canonical coordinates” were transformed by Symplectic matrices 
obtained by the Symplectizing Algorithm and the additional tuning if it was applied. 
For trajectory tracking the purely kinematically formulated 
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 ( ) ( )NRNRND cb qqqqqq −−−−= &&&&&&  (A.4.3) 

error relaxation was prescribed with b=30 [1/s], and c=0.8×(b2)/4 [1/s2] that 
guarantees oscillation-free desired tracking (the superscripts “R”, “N” and “D” 
corresponds to the realized, the nominal, and the desired quantities).  

In the calculations Ω=5 [rad/s], Ω=10 [rad/s], Ω=20 [rad/s] and Ω=25 [rad/s] 
nominal motions were considered referred to as “slow”, “normal”, “fast”, and “very 

fast” nominal motions. The controller’s cycle time was supposed to be 1 [ms]. 
The phase trajectories and the tracking errors with and without external 

perturbation (i.e. the dashpot) and with and without complementary tuning for “slow” 
motion are given in Fig. A.4.2. It is clear that in each case turning on the symplectic 
identification considerably improves the tracking accuracy and the phase trajectory, 
too. Due to the essentially exponential nature of the generators of the fine tuning in 
(6.2.21) and (6.2.24) small step length in fine tuning (10-8 [dimensionless]) was 
found to be reasonable. At slow motion no essential improvement by fine tuning was 
achieved.  
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Figure A.4.3. Simulation results for “slow” motion Ω=5 [rad/s] without (LHS) and 

with (RHS) external perturbation using only the Symplectizing Algorithm: the norm 

of the “truncated generalized force components” (1
st
 row) and the generalized forces 

(2
nd

 row) [q1:black, q2:blue, q3:green lines] 

 
Since the main “tool of system identification” is the Symplectizing Algorithm 

in these simulations obtaining precisely and exceptionally “phenomenologically 
correct” block diagonal transformations was not guaranteed. On this reason the 
illegally nonzero components of the transformed generalized forces have been 
simply truncated from the resulting force after executing the multiplication by the 
symplectic matrix. In the sequel this “truncated” part (more precisely its norm 
according to Frobenius) is referred to as “tail” and is described in the charts called 
“Phenomenology Test”.  
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Figure A.4.4. Simulation results for “normal” motion Ω=10 [rad/s], without (LHS) 

and with (RHS) external perturbation without complementary tuning (the first two 

rows) and with complementary tuning of step length 10
-6 [dimensionless] (3

rd
 and 4

th
 

rows) [q1:black, q2:blue, q3:green lines] 

 
In Fig. A.4.3. the norm of the truncated components and the generalized 

forces are described for “slow” motion and the use of the “pure Symplectizing 

Algorithm”. It can be seen that while the generalized forces are in the ≈500 or ≈1000 
[N] or [Nm], the norm of the truncated components is small, about ≈5 ≈8 [N] or [Nm] 
only (with the exception of certain “extreme points” in which they achieve ≈40 [N] 
or [Nm] that is also small in comparison with the full force components). (On this 
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reason was allowed in the fine tuning the use of non-block-diagonal generators, too.) 
The generally increased force component at the right hand side of the figures in Q2 
reveals the significance of the external perturbations. It is worth noting that the fine 
tuning did not essentially influence these charts in Fig. A.4.3., therefore, for saving 
room, these charts are not described here.  

The appropriate counterpart of Fig. A.4.2. for “normal” speed of 
Ω=10 [rad/s] is given in Fig. A.4.4. It can well be seen that in this case the fine 
tuning definitely improved the tracking accuracy. Figure A.4.5. reveals some details 
on the variation of the generalized forces and the tuned parameters versus time. It has 
to be noted that for 10 consecutive steps only parameter ϕ, and following that, for the 
next 10 steps only parameter ψ was tuned by the Simplex Algorithm. 
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Figure A.4.5. Simulation results for “normal” motion Ω=10 [rad/s] without (LHS) 

and with (RHS) external perturbation (1
st
 row) and the variation of the tuned 

parameters (2
nd

 row and 3
rd

 row ) [q1:black, q2:blue, q3:green lines] 

 
Similar observations can be done in the case of “fast” motion of Ω=20 [rad/s] 

when the fine tuning rather “smoothes” the phase trajectories and has less influence 
on the tracking errors (Fig. A.4.6.). 
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In the case of the “very fast” motion (Fig. A.4.7.) it can well be observed that 
the fine tuning keeps the tracking errors “at bay”, i.e. makes their variation less 
chaotic than without fine tuning. 
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Figure A.4.6. Simulation results for “fast” motion Ω=20 [rad/s], without (LHS) and 

with (RHS) external perturbation without complementary tuning (the first two rows) 

and with complementary tuning of step length 5×10
-6 [dimensionless] (3

rd
 and 4

th
 

rows) [q1:black, q2:blue, q3:green lines] 
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Figure A.4.7. Simulation results for “very fast” motion Ω=25 [rad/s], without (LHS) 

and with (RHS) external perturbation without complementary tuning (the first two 

rows) and with complementary tuning of step length 10
-5 [dimensionless] (3

rd
 and 4

th
 

rows) [q1:black, q2:blue, q3:green lines] 

A.5. Simulation Results for Section “7.3. Simulation Example for Potential 

Application of the Special Symplectic Matrices” 

At first the paradigm used for the investigations is described mathematically, 
i.e. two coupled cart plus double pendulum systems.  
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Figure A.5.1. The cart plus double pendulum system 

 
Each cart under consideration consists of a body of considerable mass and wheels of 
negligible masses and momentums. The overall cart-masses are M

A=4 [kg], and 
M

B=4 [kg]. The pendulums are assembled on the cart by parallel shafts and arms of 
negligible masses and lengths L1

A=2 and L2
A=2 [m], L1

B=1.5 and L2
B=1.5 [m], 

respectively. At the end of each arm a ball of negligible size and considerable mass 
(m1

A=10 and m2
A=10, m1

B=8 and m2
B=7) [kg] are attached, respectively [Fig. A.5.1.]. 

The Euler-Lagrange equations of motion of a single cart are given as follows (A.5.4): 
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. (A.5.4) 

In the above formulae g denotes the gravitational acceleration [m/s2], Q1 and Q2 
[N×m] denote the driving torque at shaft 1 and 2, respectively, and Q3 [N] stands for 
the force moving the cart in the horizontal direction. The appropriate rotational 
angles are q1 and q2 [rad], and the linear degree of freedom belongs to q3 [m]. The 1st 

rotational and the linear degrees of freedom were the controlled and actuated ones, 

while the second rotary axis is without observation, control, and actuation that 

means that Q2 takes the constant value zero. Furthermore, two pieces of the above 
described subsystems are coupled along their linear direction of motion by the forces 
Q3

A
 = –Q3

B given in [N] as 

 ( )
( ) ( )2033

2
033

0333
5.05.1 Lqq

A

Lqq

A
LqqkQ

AB
bump

AB
bump

ABA

×−−+
−

×−−+
+−−=

εε

 (A.5.5) 

in which k=104 [N/m] describes a spring stiffness, and L0=3 [m] belongs to the zero 
spring force length. 
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Figure A.5.2. Simulation results for the non-adaptive (LHS) and the “centralized 

adaptive” (RHS) control approaches (the notation “β=1” refers to the occurrence of 

integer order derivatives in the symplectic matrices) 

 
To model the buffers two non-linear terms are applied that are very sharp near the 
0.5×L0 and 1.5×L0 distances, while in the “internal points” they are very flat. They 
are described by two parameters, namely by the “strength” A=1000 [N×m

2], and a 
small parameter εbump=10-3 [m] determining the “nearness” of the singularity of these 
coupling forces. In the simulation the rough initial system model for both carts was 

T]1,1,1[1010 += qQ &&  instead of (A.5.4). A PID-type kinematic trajectory tracking 
strategy was prescribed for the relaxation of the tracking error h=q

N-q according to 
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three oscillation-free (real) time-constants α1=α, α2=0.9×α ,α3=0.8×α with 
α=20 [1/s]: 

( ) 321321133221
0

,++,++, ααααααααααααττ ===−−−= ∫ IDPdIDP
t

Des
hhhh &&& . (A.5.6) 

 

 

 

 

 

Figure A.5.3. Simulation results for the non-adaptive (LHS) and the “centralized 

adaptive” (RHS) control approaches [continued] (the notation “β=1” refers to the 

occurrence of integer order derivatives in the symplectic matrices) 
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In the control the “Regulating Factor” was calculated according to (7.2.19) with 
υ=0.5, ε1=0.2, ε2=10-5. The finite element time-resolution for the control was δt=10-

3 [s], the numerical integration happened according to the Euler formula with step 
length δt/10. For the “centralized” approach the special symplectic matrices of size 
12×12 defined in (7.1.10) were applied with the “dummy parameter” d=80. The first 
column in the upper half of these matrices were defined as 

[ ]TDesBDesBDesADesA
,d,Dq,q,q,q 3131

~~~~
&&&&&&&& , in which the symbol “tilde” denotes “weighted 

contributions” in each control cycle “i” as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )iWii

iwiWii+iiiwiw

TT

TT

DesADesA

DesBDesBDesADesA

/
~

,1,0.92)-(1+10.92=

qq

qqqq

&&&&

&&&&&&&&

=

+=− . (11.5.7) 

The function of this weighting is maintaining a proper relationship between b and the 
norm of the appropriate accelerations: the physically interpreted part of the column 
remains commensurate with b. (The former solutions that applied the accelerations 
without weighting with fixed dummy parameter b were found to be less precise.) 

The simulation results obtained for the non-adaptive and the “centralized 

adaptive” approaches are given in Figs. A.5.2., A.5.3., A.5.4., and A.5.5. It is clear 
that both the trajectory and the phase trajectory tracking accuracy have been 
considerably improved by switching on the adaptive law. Following a sharp transient 
section the driving forces applied at both subsystems have been well stabilized. The 
same statement can be done in connection with the “weighting factor” in the case of 
the adaptive control. Figure A.5.5. also reveals that the variation of the “regulating 

factor” became “canonical”, and that the symplectic matrices applied by the control 
were really in the vicinity of the unit matrix. 

 

Figure A.5.4. Simulation results for the non-adaptive (LHS) and the “centralized 

adaptive” (RHS) control approaches [continued] (the notation “β=1” refers to the 

occurrence of integer order derivatives in the symplectic matrices); (these factors 

are not in use in the non-adaptive case) 

 
The simulation results pertaining to the “distributed approach” are described 

in Figs. A.5.7.-A.5.11. It used two smaller symplectic matrices with the first columns 

in the upper half as [ ]TDesADesA
,d,Dq,q 31

~~
&&&&  and [ ]TDesBDesB

,d,Dq,q 31
~~
&&&& , and also used two 

“regulating factors” and “weighting factors”, too. In this case slower motion was 
considered with α=10 [1/s]. 
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Figure A.5.5. Simulation results for the “centralized adaptive” control approach 

[continued] (the notation “β=1” refers to the occurrence of integer order derivatives 

in the symplectic matrices) 

 
Switching on the adaptive law again considerably improved the precision of the 
trajectory- and phase-trajectory tracking. As in the case of the “centralized 

approach” the existence of a sharp initial transient section can be observed in which 
the appropriate symplectic matrices are not in the close vicinity of the unit matrix. In 
these regimes the use of the “regulating factor” plays important role in guaranteeing 
the convergence of the method. Following this transient phase stable control can be 
observed in which the transformation matrices remain in the close vicinity of the unit 
matrix, the weighting and regulating factors as well as the control forces and torques 
vary “regularly”. 

 

 

Figure A.5.6. Simulation results for the non-adaptive (LHS) and the “distributed 

adaptive” (RHS) control approaches (the notation “β=1” refers to the occurrence of 

integer order derivatives in the symplectic matrices) 
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Figure A.5.7. (continued)Simulation results for the non-adaptive (LHS) and the 

“distributed adaptive” (RHS) control approaches (the notation “β=1” refers to the 

occurrence of integer order derivatives in the symplectic matrices) 

 

 

 

Figure A.5.8. Simulation results for the non-adaptive (LHS) and the “distributed 

adaptive” (RHS) control approaches [continued] (the notation “β=1” refers to the 

occurrence of integer order derivatives in the symplectic matrices) 
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Figure A.5.9. (continued) Simulation results for the non-adaptive (LHS) and the 

“distributed adaptive” (RHS) control approaches [continued] (the notation “β=1” 

refers to the occurrence of integer order derivatives in the symplectic matrices) 

 

 

 

Figure A.5.10. Simulation results for the non-adaptive (LHS) and the “distributed 

adaptive” (RHS) control approaches [continued] (the notation “β=1” refers to the 

occurrence of integer order derivatives in the symplectic matrices); (these factors 

are not in use in the non-adaptive case) 
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Figure A.5.11. Simulation results for the “distributed adaptive” control approach 

[continued] (the notation “β=1” refers to the occurrence of integer order derivatives 

in the symplectic matrices) 

A.6. Illustrative Figures for Section “8.1. Fixed Point Transformations with a 

Few Parameters for “Increasing” and “Decreasing” SISO Systems” 
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Figure A.6.1. Properly and improperly convergent sequences for “decreasing 

system” 
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Figure A.6.2. (contimnued) Properly and improperly convergent sequences for 

“decreasing system” 
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Figure A.6.3. Two parametric transformations for sequences for “increasing 

system” 

               dc_62_10



122 

y=f(x)

xd

D-

 ∆+

x0 x1

f(x0)

( )
−

+

−

+

−
∆−

=
−

∆−
Dx

xf

Dx

x
d

1

0

0

 

Figure A.6.4. (continued) Two parametric transformations for sequences for 

“increasing system” 
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Figure A.6.5. Two parametric transformations for sequences for “decreasing 

system” 
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Figure A.6.6. (continued) Two parametric transformations for sequences for 

“decreasing system” 

A.6.1. Further Details Belonging to Subsection “8.1.1. A Higher Order Application 

Example for Fixed Point Transformations of a Few Parameters” 

In the control of this system a ball or cylinder can roll on the surface of a 
beam the tilting angle of which is driven by some actuator. The motion of the ball 
essentially is determined by the tilting angle and the force of gravitation. This means 
that even if we are in the possession of a very strong actuator, the acceleration of the 
ball along the beam is limited by the above two factors. Since the directly 
controllable quantity is the torque determining the 2nd time-derivative of the angle 
tilting the beam, this system acts as a 4th order one in the sense that the 4th time-
derivative of the ball’s position along the beam is determined by the tilting torque. It 
has the following parameters: the momentum of the beam ΘBeam=2 (kg×m2), the mass 
of the ball mBall=2 (kg), the radius of the ball r=0.05 (m), and the gravitational 
acceleration is g=9.81 (m/s2). Via introducing the quantities A=ΘBeam, and 
B=ΘBall/r

2+mBall, the following equations of motion are obtained as given in 

Fig. A.6.1.1. in which variable ϕ (rad) describes the rotation of the beam counter-
clockwisely with respect to the horizontal position, and x (m) denotes the distance of 
the ball from the center of the beam where it is supported. Variable Q (N×m) 
describes the torque at the axis rotating the beam. This quantity consists of two 
different components: the torque directly exerted by the drive and the contribution by 
the friction forces acting at the surface of the axle. In the present investigations this 
latter component is unknown by the controller, only the consequences of its existence 
in the trajectory tracking can be observed. It is evident that only the 4th time-
derivative of x can be related to the 2nd time-derivative of the tilting angle of the 
beam that is in direct relationship with the rotating torque taking part in tilting this 
angle. For making the model more realistic in the simulations it was assumed that the 
axle of the beam has considerable dynamic friction approximated by the LuGre 
model as follows.  
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Figure A.6.1.1. The Ball-Beam System 

 
Instead of the dubious “velocity limit” normally applied in simulations with static 
friction models (i.e. the limit value at which the relative motion of the contacted 
surfaces is practically zero) to describe the “stick-slip phenomenon” an “internal 

degree of freedom”, z is introduced with the appropriate equations of motion as 
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 (A.6.1.1) 

in which σ0=5000 (Nm/rad), σ1=1000 (Nms/rad), Fv=100 (Nms/rad), FC=10 (Nm), 
FS=20 (Nm), vs=0.05 (rad/s) are the friction model parameters, and v (rad/s) 
describes the rotational speed characteristic to the surfaces in contact at the axle. The 
kinematic tracking requirements were set by (A.6.1.2) with the order of 
differentiation m=4 and λ=10 s-1  

 [ ] 0,0 >=−






 + λλ xx
dt

d Nom
m

 (A.6.1.2) 

from which the desired 4th time-derivative ( )Des
x

4  can be computed. Since normally 
the beam must be in an almost horizontal position for stabilizing purposes it was 
expedient to limit its allowable rotational angle, and angular speed. For this purpose 

potential-like limiting terms were introduced in the calculation of the desired Desϕ&&  
as follows: 
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 (A.6.1.3) 

with 3=Γ=Γ ϕϕ &  and 5=Potβ  that worked well setting limitation to the angle at 1.5 

(rad) and angular velocity of 3 (rad/s). The parameters B
~

 and Ballm~  mean the 

estimated model values. The effects of the rough dynamic model data and the friction 

that were unknown by the controller could manifest themselves in the low accuracy 

of the non-adaptive control. The significance of adaptation can be measured by 

observing the improved tracking accuracy of the adaptive controller. In the control 

approach applied for negative realized ( )4
x  the g(x|xd,D-,∆+) function, for positive 

realized values the h(x|xd,D-,∆-) functions were used. 
 

 

Figure A.6.1.2. The phase space of the tilting angle ϕϕ   vs& : non-adaptive (LHS) and 

adaptive (RHS) solutions 

According to Fig. A.6.1.2. adaptivity considerably “regularizes” the motion of the 
beam. 

 

Figure A.6.1.3. The tilting angle ϕ vs time: non-adaptive (LHS) and adaptive (RHS) 

solutions 
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Figure A.6.1.4. The phase space and time dependence of the displacement of the 

cylinder along the beam: non-adaptive (LHS) and adaptive (RHS) solutions 

 

Figure A.6.1.5. The tracking error vs. time: non-adaptive (LHS) and adaptive (RHS) 

solutions 

Similar can be stated for the displacement of the ball (cylinder) along the beam 
(Fig. A.6.1.4.). Adaptivity drastically improved the tracking accuracy (Fig. A.6.1.5.). 
In both the adaptive and the non-adaptive cases the effort of the feedback exerted for 
the compensation of the friction torque can be traced. In these figures the adaptive 
and the non-adaptive solutions show differences only nuances (Fig. A.6.1.6.), 
however, due to the integration according to time these nuances have significant 
effect on the tracking accuracy. Figure A.6.1.7. well reveals the essence of the 
adaptive method that realizes precise 4th time-derivative of the coordinate x. To study 
the operation of the adaptive control further charts were made (Fig. A.6.1.8.) that 
displays when the functions g or h were used for realizing adaptivity.  
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Figure A.6.1.6. Compensation of the friction torques: non-adaptive (LHS) and 

adaptive (RHS) solutions 

 

 

Figure A.6.1.7. Desired and realized 4
th

 time-derivative of “x”: non-adaptive (LHS) 

and adaptive (RHS) solutions 

 

 

Figure A.6.1.8. The use of functions “g” and “h” versus time, and the “cumulative 

deformation factor” vs. time in the case of the adaptive control 
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According to (8.1.1) and (8.1.2) a “cumulative deformation factor” can be defined 

for functions h and g as follows: ( ) ( )( ) ( )( )( )∏
=

++ ∆−∆−=
k

i
ii

d
k txftxts

0
:  and 

( ) ( )( )( ) ( )( )∏
=

−− ∆−∆−=
k

i
i

d
ik txtxfts

0
:  that somehow are characteristic to the control 

(Fig. A.6.1.8.). 
 

The consequences of the strongly nonlinear nature of the friction model applied can 
well be traced in Fig. A.6.1.8.  

A.6.2. Further Details Belonging to Subsection “8.2.2. Application Example a): 

Precise Control of an AGV Equipped with Omnidirectional Wheels” 

x
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Figure A.6.2.1. The sketch of the triangular cart considered 

 
The cart was supposed to have canonical triangular shape of side length L=2 (m). 
The orientation of the active forces were supposed to be described by the orthogonal 
unit vectors eA, fA, eB, fB, eC, and fC at the wheels A, B, and C in the (x,y) plane in 
which the direction of the appropriate e vectors was identical to that of the straight 
line connecting the geometric center of the triangle to the appropriate vertices. These 
vectors were assumed to rigidly rotate around the axis z with angle q3. Each wheel 
had the common constant vector component in the z direction ez along which the 
contact constraint forces originating from the ground acted. It was assumed that the 
plane of motion was exactly horizontal, so the vector of the gravitational acceleration 
in the reality had a component only in the z direction. At the vertices of the triangle 
three heavy wheels and drive systems were located, each of them had the mass 
M=30 (kg). It was assumed that further 2M mass was located over the geometric 
center of the triangle at the height of hD=0.5 (m). The vehicle was assumed to move 
on the (x,y) plane with prescribed nominal location of the projection of its 
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hypothetical mass center point S(m)N (m) and nominal rotational pose q3
N (rad) around 

the axis z. According to Fig. A.6.2.1. the “not modeled degree of freedom” in this 
system was a mass-point connected to wheel C by an elastic connection, a spring. In 
this case it had the mass of 0.45M attached to the spring of stiffness k=1000 (N/m) 
and zero force length L0=1 (m). It was assumed to move along the (x,y) plane with a 
viscous friction coefficient µ=5 (Ns/m).  

Utilizing the well known fact that the acceleration of the mass center point of 
a rigid body multiplied by its full mass is equal to the sum of the external forces 
acting on that system, and that the time-derivative of momentum of the system 
computed with respect to the actual mass center point is equal to the momentum of 
the external forces (torque) with respect to this point, the required active driving 
force components FAeA, FAfA, FBeB, FBfB, and FCeC, FCfC, as well as the hypothetical 
vertical constraint force components FAz, FBz, and FCz can be calculated. (According 
to Fig.  A.6.2.1., if the small wheels do not have drives in the horizontal e directions 
no any forces can be exerted.) The rough dynamic model available for the controller 
is given as follows: 
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in which ( ) [ ]CBA
m

eeeA ,,= , ( ) [ ]CBA
m

fffB ,,= , ( ) [ ]Tm ]1,1,1[,,00C = , 

( ) ( ) ( ) ( )[ ]m
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m xexexeD ×××= ,, , ( ) ( ) ( ) ( )[ ]m
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m xfxfxfE ×××= ,, , and 

( ) ( ) ( ) ( )[ ]m
Cz

m
Bz

m
Az

m xexexeF ×××= ,, , g=[0,0,-g]T, Fe=[FAeA,FBeB,FCeC]T, 

Ff=[FAfA,FBfB,FCfC]T, and Fz=[FAz,FBz,FCz]
T, and the ( ) ( ) ( )m

C
m

B
m
A xxx ,,  vectors connect 

the assumed mass center point with the appropriate vertices at the wheels A, B, and 

C, while ( )mP  denotes the model value of the momentum of the rotating system. The 
“actual system’s” equation of motion that can be used for calculating the “realized 
accelerations” and “realized contact forces in the z direction” is similar to (A.6.2.1), 
but it contains the acceleration of the actual mass center point S and the actual 
momentum calculated with respect to that (P). Fortunately S

(m) and S have simple 
geometric connection. Beside that it contains the xA, xB, and xC vectors that connect 
the actual mass center point with the appropriate vertices at the wheels A, B, and C. 
Furthermore, the equation has to be rearranged since in it in the “input side” we have 
Fe and Ff , and the unknown quantities are Fz, S&&  and 3q&& . By expressing P&  with 

333 ,, qqq &&&  it is obtained that 
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 (A.6.2.2) 

in which P&  contains certain elements of the actual inertia matrix ΘΘΘΘ, and the array  
H=[ez×xA,ez×xB, ez×xC, −Θ(3); 1,1,1,0]. From the fact that certain kinematic data can 
be exactly known it concludes that A=A

(m), B=B
(m), and C=C

(m). In the calculations it 
was taken into account that the full momentum of the gravitational forces with 
respect to the actual mass center point is zero, and that no acceleration component 
may exist in the z direction (supposing that the vehicle does not turn over). So the 
appropriate component of the gravitational forces must be compensated by the 
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contact forces in the direction z. In the solution of the “actual system’s equations” it 
can be utilized that they are decoupled to some extent: S&  has only x and y 
components, as well as the arrays A and B, while the array C does not have 1st and 
2nd components. On this reason the two nontrivial nonzero components of S&&  can be 
determined independently of the Fz values, while its zero 3rd component yields some 
restriction for the sum of the components of Fz. This can be associated with the three 
equations pertaining to P& , therefore we obtain 4 equations for 4 unknown quantities 
in (A.6.2.3): 
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Figure A.6.2.2. The sketch of the omnidirectional wheel 

 
It is worth noting that according to Fig. A.6.2.2. the omnidirectional wheels normally 
are driven to rotate around the axle of the “big wheel”, and normally can freely roll 
in the direction of this axle due to the “small wheels”. In Fig. A.6.2.1. the axles of the 
big wheels were denoted by the vectors eA, eB, and eC, therefore in (A.6.2.1) Fe=0, 
that means that the arrays A(m) and D(m) do not play role in this equation. Horizontal 
driving forces can be exerted only in the actual directions of the vectors fA, fB, and fC. 
Equations (A.6.2.1) and (A.6.2.3) do not contain the model of the connected 
subsystem the existence of which can be taken into account by calculating the 
contact forces (and their momentum) that appear due to the dynamic coupling of 
these subsystems. (The equations of motion of the mass point were solved 
separately.) 

In the simulations the trajectory tracking strategy was prescribed on purely 
kinematical basis as a PID-type control to obtain the “desired accelerations” as  
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Figure A.6.2.3. The location of the “hypothetical mass center point” on the (x,y) 

plane (upper row, in [m] units), and the rotational orientation of the cart (lower row 

in 10
-1

 [rad] units)vs. time (in [s] units) for the non-adaptive control (LHS) and the 

adaptive one (RHS) [Nominal trajectory: black solid line, simulated trajectory: blue 

dashed line] 

 

 

 

Figure A.6.2.4. The trajectory tracking error vs. time (upper row): for the non-

adaptive control in 10
-1

 [m] units [LHS], and for the adaptive control in 10
-2

 [m] 

units [RHS] (black solid line: for “x”, blue dashed line: for “y”), and the orientation 

tracking error vs. time (lower row) for the non-adaptive control in 10
-1

 [rad] units 

[LHS], and for the adaptive control in 10
-2

 [rad] units [RHS], time is given in [s] 

units 
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( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )∫ −+−+−+=
t

NNNNDes
dIttDttPtt

0

ττξτξξξξξξξ ααα
&&&&&&  (A.6.2.4) 

in which Pα, Dα, and Iα are appropriate positive constants [actually Pα=50 (s-2) 
Dα=10 (s-1) and Iα=5 (s-3)]. The superscript N refers to the nominal accelerations 
determined by the trajectory to be traced. Simulation results are presented in the 
sequel. The adaptive parameters were: Kctrl= -4000, Bctrl=1, Actrl=1×10-4. 

In Figs. A.6.2.3. and A.6.2.4. the trajectory and orientation tracking is 
displayed for the non-adaptive and the adaptive controls. They reveal that the 
proposed adaptivity well compensates the simultaneously occurring modeling errors 
and the dynamic interaction with the unmodeled sub-system.  

 

 

 

Figure A.6.2.5. The linear acceleration (upper row in 10 [m/s
2
] units, black solid: 

for desired “x”, blue dashed for desired “y”, green dense dashes for simulated “x”, 

light blue dash-dot for “y”), and the rotational acceleration (lower row in [rad/s
2
] 

units, black solid: desired values, blue dashed: simulated values) vs time (in [s]) for 

the non-adaptive control [LHS], and the adaptive one [RHS] 

 
In Fig. A.6.2.5. the linear and rotational accelerations are described. It well reveals 
that the adaptive law far better approximates the “desired” acceleration values than 
the non-adaptive one, that is the essence of the control idea is well realized. By the 
help of Fig. A.6.2.6. it can be seen that the unmodeled dynamics of the coupled sub-
system completely “destroys” the “canonical” form of the velocity pattern that is 
well saved by the adaptive version.  

Figure A.6.2.7. indicates that the “high frequency” of the force pattern mainly 
originates from the “chaotic” motion of the directly uncontrolled, unmodeled coupled 
subsystem. 
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Figure A.6.2.6. The velocities at the wheels (A: black solid, B: blue dashed, C: green 

dense dashes) vs. time (in [s] units) for the non-adaptive controller (LHS in [m/s] 

units), and the adaptive one (RHS in 10
-1

 [m/s] units) 

 

 

 

Figure A.6.2.7. The active driving force components in the direction of the 

appropriate f vectors at the wheels (A: black solid, B: blue dashed, C: green dense 

dashes in 10
3
 [N] units) vs. time (in [s] units) for the non-adaptive controller (LHS in 

[m/s] units), and the adaptive one (RHS in 10
-1

 [m/s] units) (upper row); The 

location of the coupled burden in the (x,y) plane in [m] units for the non-adaptive 

controller [LHS] and the adaptive one (lower row) 

A.6.3. Further Details Belonging to Subsection “8.2.3. Application Example b): 

Precise Control of the Cart-Beam-Hamper System” 

The adaptive control parameters (naturally only in the adaptive case) took the 
following constant values: Kctrl= -32000, Bctrl=1, Actrl=2×10-6. The simulation results 
are presented in Fig. A.6.3.1. revealing how efficient this simple approach is in 
comparison with the more sophisticated but more restricted methods (Figs. A.1.2.-
A.2.6.). For demonstrating the robustness of the adaptive method two of the most 
significant control parameters Kctrl and Actrl were tuned in real-time using the 
SCILAB’s real-time package and the figure handling properties. The acceleration 
error was plotted as a function of the actual parameter values (Fig. A.6.3.2.). Other 
details were published in [C116]. 
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Figure A.6.3.1. Comparison of the non-adaptive (LHS) and the adaptive (RHS) 

controllers’ operations for the cart-beam-hamper system with friction and external 

disturbance forces for ΛΛΛΛ=10×I [1/s], Kctrl=-32000, Bctrl=1, Actrl=2×10
-6

. 

 

 

 

Figure A.6.3.1. (continued) Comparison of the non-adaptive (LHS) and the adaptive 

(RHS) controllers’ operations for the cart-beam-hamper system with friction and 

external disturbance forces for ΛΛΛΛ=10×I [1/s], Kctrl=-32000, Bctrl=1, Actrl=2×10
-6

. 
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Figure A.6.3.2. Real-time modification of the adaptive control parameters Actrl and 

Kctrl reveals the very robust environment around Actrl=4×10
-6

 and Kctrl= -60×10
3
  

A.6.4. Simulation Results Belonging to Subsection “8.3.1. Possible 

Application:Control of the Cart and Double Pendulum System” 

In these examples the cart plus double pendulum system of Fig. A.5.1. and 
equations of motion (A.5.4) was considered as an underactuated system that means 
the the linear degree of freedom (q3) was left without own drives, i.e. Q3≡0 was 
assumed. The motion in the linear direction was controlled through the dynamic 
coupling between the linear axis and the two rotary ones. That is the reaction forces 
needed for moving the two “counterweights” m1 and m2 were used for generating 
acceleration along q3. 

So let us assume that we prescribe two “desired” second time derivatives as 
Desq3
&&  according to the trajectory along which we wish to move the cart, and an 

“ancillary acceleration”, Desq1
&& . Via substituting these values into the 3rd equation of 

the set (A.5.4) the necessary Desq2
&&  can be determined. Following that, by substituting 

these components of Desq&&  into the 1st and 2nd equations of (A.5.4) Q1 and Q2 can be 
determined. For this calculation we can use the available approximate values of the 
dynamic parameters Mmm ˆ,ˆ,ˆ

21  (it can be assumed that the gravitational acceleration 
is precisely known as well as the lengths of the arms of the cart, that is 

ggLLLL === ˆ,ˆ,ˆ
3211 ). The so calculated generalized forces then can be exerted to the 

actual system, and cause the “realized accelerations” [ ]T
qqq 321 ,, &&&&&&  according to (A.5.4). 

Then by observing the response error, viz. the differences between [ ]TDesDes qq 31 , &&&&  and 

[ ]T
qq 31, &&&&  the adaptive can be applied to achieve precise tuning. (In this approach the 

realization of the appropriate Desq2
&&  is out of any interest.) 

While implementing the above program the following difficulties arise: for 
determining 2q&&  we have to make a division with its coefficient in the last row of 
(A.5.4) which is 222 sinˆ qLm . It evidently is singular around q2=±π, 0. Similar problems 
arise around q1=±π, 0, too. To avoid this situation we can combine the reaction forces 
of the masses m1 and m2 in the following manner: a) both angles are started from the 
“best position”, i.e. from π/2; if q1 is within a “safe region” (i.e. q1∈[π/4, 3π/4]) then 
the particular value of 1q&&  is not important, but q2 can be forced to move into the 
direction of π/2 by the control law ( ) 22

2

2 2/ qCqCq Des &&& −−−= π  (C>0), and Desq1
&&  can be 

determined accordingly; if q1 is outside of the safe region then 
( ) 11

2

1 2/ qCqCq Des &&& −−−= π  can be prescribed and Desq2
&&  can be determined accordingly. 

(More sophisticated compromises can be invented according to the ideas used e.g. in 
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optimal control or by a fuzzy-type mixing of the above “crisp”, if … then type 
application of the acceleration of the counterweights.) The prescribed tracking error 

relaxation used the following PID setting: ( ) ( ) ( ) ( ) ( )∫Λ+Λ+Λ+=
t

t

NDes
detetetqtq

0

32

33 33 ξξ&&&&& , in 

which ( ) ( ) ( )tqtqte N

33: −=  denotes the trajectory tracking error, Λ>0 is the reciprocal of 

a time constant. Actually Λ=12/s, C=10/s, kgMkgmkgm 20,8,8 21 === , 

kgMkgmkgm 18ˆ,6ˆ,4ˆ
21 === , L1=L2=2 m, g=9.81 m/s2 were used in the simulations 

detailed in the next section that also contains information on the adaptive control 
parameters. The nominal trajectory was a 3rd order spline function of time consisting 
of consecutive intervals of linear variation of the 2nd time derivative. 

For simulation purposes the SCILAB 5.1.1 version and its SCICOS ver. 4.2 
co simulator package were applied that can freely be used for research purposes. For 
the simple SCILAB program representative results are given in Figs. A.6.3.1. and 
A.6.3.2. and A.6.3.3. 

 

  

 

  

 

  

 

Figure A.6.3.1. Simulation results obtained by the simple SCILAB program: nominal 

(green line) and simulated (red line) trajectories [10
-1

 m] (upper chart), phase 

trajectories i.e. dq
N

3/dt [10
-1

 m/s] vs. q
N

3 [10
-1

 m] (green, “canonical” line) and 

dq3/dt [10
-1

 m/s] vs. q3 [10
-1

 m] (red, “less canonical” line), and trajectory tracking 

error [10
-1

 m] vs. time [LHS: simple non-adaptive PID controllers, RHS: adaptive 

controller tuning parameter A according to (8.3.5) with α=6/s];  
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Figure A.6.3.2. Simulation results obtained by the simple SCILAB program: 

variation of the ancillary axes [10
-1

 rad] (upper chart, q1 green “upper in the 

beginning” line, q2 red line), the exerted generalized forces (chart in the middle, Q1 

black “upper in the beginning” line, Q2 green “lower in the beginning” line [10
2
 

N×m], Q3≡0 [10
2
 N] red “middle in the beginning” line), and the second time 

derivatives for q3 [10
-1

 m/s
2
] (lower chart, nominal: black “canonical” line, desired: 

green “slowly varying” line , realized: red “more hectic” line) [LHS: simple non-

adaptive PID controllers, RHS: adaptive controller tuning parameter A according to 

(8.3.5) with α=6/s];  

 

 

 

Figure A.6.3.3. Simulation results obtained by the simple SCILAB program for the 

adaptive controller tuning parameter A according to (8.3.5) with α=6/s: parameter A 

vs. time  
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To investigate the “reality” of this “ideal” SCILAB-based solution the built in 
integrator of the SCICOS simulator was used. It was assumed that we had a digital 
controller of discrete time-resolution ∆cycle=1 ms. This means that the controller 
yields constant torque/force command signals for a duration of ∆cycle, and the drive 
system has so fast response (i.e. small time-constant) that Q can well be 
approximated as a step function. In similar manner, it can be assumed that the 
system's response is observed in discrete steps and the controller is provided with 
constant observed quantities within the steps of duration ∆cycle. For this purpose small 
buffers and sample holders can be used as typical electronic / software components. 
In principle the sample holders should be set to ∆delay=∆cycle. However, in this 
construction the sampling practically would be indefinite (i.e. depending on the 
accuracy of the electronic components) in the steps of the command and observed 
quantities. To make the situation definite the ∆delay=0.999∆cycle choice was used. In 
this case in the beginning of a new control cycle for a very short duration the values 
just preceding the previous values are sampled. The SCICOS numerical co-simulator 
had the following parameter settings: “Integrator absolute tolerance = 0.0001”, 
“Integrator relative tolerance = 0.000001”, “Tolerance on time = 1.000D-10”, 
“Maximum step size in integration = 0.0001 s”. 

  

 

Figure A.6.3.4. Simulation results obtained by the SCICOS program: the nominal 

trajectory (upper chart), the simulated trajectories (chart in the middle, q1 green 

“upper in the beginning” line, q2 red “middle in the beginning” line, q3 yellow 

“lower” line), and the control parameter A (lower chart) [LHS: simple non-adaptive 

PID controllers, RHS: adaptive controller tuning parameter A according to (8.3.5) 

with α=6/s];  

 
Representative simulation results are given for the SCICOS program in Figs. 
A.6.3.4., A.6.3.2., and A.6.3.3. It can well be seen that the common SCILAB 
programs with the simplest Euler integration and the far more sophisticated SCICOS 
simulations provided comparable results and that the main qualitative/quantitative 
features are reliable in the case of the simple SCILAB programs, too. [Also consider 
Fig. A.6.3.7.] For Fig. A.6.3.7. it can be noted in the simulations the function 
σ(x):=x/(1+|x|) was used, so the region of convergence is σ∈[σ(0),σ(-1)]=[0,-0.5]. 
For the ideal case σ(εgoal)=σ(-0.5)= -0.333….. The SCICOS-based program also took 
it into account that following a tuning act for α the controller must wait 3×∆cycle time 
in order to obtain quite relevant data for tuning since it is based on past information. 
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Figure A.6.3.5. Simulation results obtained by the SCICOS program: the 2
nd

 time 

derivatives of the controlled axis: nominal (black “canonical” line), desired (green 

“slowly varying” line), and simulated (red “more hectic” line) [LHS: simple non-

adaptive PID controllers, RHS: adaptive controller tuning parameter A according to 

(8.3.5) with α=6/s];  

 

  

 

Figure A.6.3.6. Simulation results obtained by the SCICOS program for the adaptive 

controller tuning parameter A according to (8.3.5) with α=6/s: the trajectory 

tracking error (LHS upper chart), the nominal and simulated trajectories (LHS lower 

chart, green and red lines), and the nominal and simulated phase trajectories (RHS);  

 

  

 

Figure A.6.3.7. Variation of σ(εest) obtained by the simple SCILAB (LHS) and the 

SCICOS (RHS) programs for the adaptive controller tuning parameter A according 

to (8.3.5) with α=6/s 
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A.7.1. Simulation Results Belonging to Subsection “9.1.1. Possible Applications: 

a) MRAC Control of the Cart + Beam + Hamper System” 

 

 

 

Figure A.7.1.1. The operation of the “traditional” (LHS) and the “novel” (RHS) 

MRAC controllers: tracking for a nominal trajectory generated by a 3rd order spline 

function: trajectory tracking (1st row), phase trajectory tracking (2nd row); 2
nd

 

derivetives (3rd row), color coding: q
N

1=black, q
N

2=blue, q
N

3=green (for the 

nominal values), q
D

1=bright blue, q
D

2=red, q
D

3=magenta (for the “desired” values), 

and q1=yellow, q2=dark blue, q3=light blue (for the realized values) 

 
The main results of the comparative analysis are given in Fig. A.7.1.1. The 

figures reveal that both methods resulted in acceptable control. However, the novel 
controller resulted in far more precise “acceleration tracking” than the traditional 
one, in spite of the drastic disturbance forces applied. The zoomed excerpts in 
Fig. A.7.1.3. reveals that the nominal, desired, and realized joint coordinate 
accelerations are in each other’s vicinity. Really, the black, bright blue and yellow 
lines belonging to q1, the blue, red, and dark blue lines belonging to q2, and the 
green, magenta, and light blue lines belonging to q3 keep together in the three 
groups. Actually the desired and the realized values fluctuate around the nominal 
values (straight lines in the case of 3rd order spline trajectories). The fluctuation is 
caused by the external disturbance forces.  
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Figure A.7.1.2. Other characteristics of the “traditional” MRAC controller: tracking 

for a nominal trajectory generated by a 3rd order spline function: zoomed excerpt of 

the 2
nd

 derivatives (color coding as in Fig. A.7.1.1.) [LHS, 1
st
 line], exerted 

generalized forces Q1 [Nm] (black), Q2 [Nm] (blue), Q3 [N] (green), and disturbance 

components Q1
Dist

 [Nm] (bright blue), Q2
Dist

 [Nm] (red), Q3
Dist

 [N] (magenta) [RHS, 

1
st
 line]; The additive adaptive component D: D1 [Nm] (black), D2 [Nm] (blue), D3 

[N] (green) [LHS, 2
nd

 line]; the tuned parameter α vs. time [RHS, 2
nd

 line] 

 
Furthermore, the desired 2nd derivatives only slightly differ from the nominal 

ones, that in the case of a purely kinematically designed trajectory tracking policy 
means that only small PID corrections were necessary. The desired ant the realized 
accelerations are in each other’s vicinity, too, that proves the operation of the 
adaptation. The situation is far less elegant in the case of the traditional solution 
using a Lyapunov function (Fig. A.7.1.2.).  

 
  

 

Figure A.7.1.3. Other characteristics of the “novel” MRAC controller: tracking for a 

nominal trajectory generated by a 3
rd

 order spline function: zoomed excerpt of the 

2
nd

 derivatives (color coding as in Fig. A.7.1.1.) [LHS], ], exerted generalized forces 

Q1 [Nm] (black), Q2 [Nm] (blue), Q3 [N] (green), the “desired” Q1
Des

[Nm] (bright 

blue), Q2
Des

[Nm] (red), Q3
Des

[N] (magenta), and the “recalculated” torque/force 

components Q1
Recalc

[Nm] (yellow), Q2
Recalc

[Nm] (dark blue), Q3
Recalc

[N] (light blue) 

[RHS] 
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Figure A.7.1.4. Comparison of the “traditional” [LHS] and “novel” [RHS] MRAC 

controllers without external disturbances: zoomed excerpt of the 2
nd

 derivatives 

(color coding as in Fig. A.7.1.1.) [1
st
 row], exerted generalized forces Q1 [Nm] 

(black), Q2 [Nm] (blue), Q3 [N] (green), and disturbance components Q1
Dist

 [Nm] 

(bright blue), Q2
Dist

 [Nm] (red), Q3
Dist

 [N] (magenta) [2
nd

 row] 

 

 

 

Figure A.7.1.5. The additive adaptive component of the “traditional” MRAC without 

external disturbances D: D1 [Nm] (black), D2 [Nm] (blue), D3 [N] (green) [LHS]; 

The generalized forces of the “novel” MRAC without external disturbances: the 

“exerted” Q1 [Nm] (black), Q2 [Nm] (blue), Q3 [N] (green), the “desired” 

Q1
Des

[Nm] (bright blue), Q2
Des

[Nm] (red), Q3
Des

[N] (magenta), and the 

“recalculated” torque/force components Q1
Recalc

[Nm] (yellow), Q2
Recalc

[Nm] (dark 

blue), Q3
Recalc

[N] (light blue) [RHS] 

 
The superiority of the novel approach is even more evident in the case when no 
external disturbances were present. The 1st row of Fig. A.7.1.4. reveals that the 
nominal, desired, and realized 2nd time-derivatives are almost identical to each other. 
Furthermore, according to Fig. A.7.1.5. the desired torque components deduced from 
the reference model very precisely agree with the recalculated values. 
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A.7.2. Simulation Results Belonging to Subsection “9.1.2. Possible Applications: 

b) Novel MRAC Control of a Pendulum of Uncertain Mass Center Point” 

The Dynamic Model of the Paradigm
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Figure A.7.2.1. The dynamic model of the pendulum of uncertain mass center point 

 
The dynamic model of the pendulum of mass center point of uncertain 

location is given in Fig. A.7.2.1. It has an extra degree of freedom that behaves as a 
not controllable axis completely hidden for the controller. It is a mass-point that can 
move along the rod of the pendulum against viscous friction and elastic bounding 

forces. In the case of the presence of viscous friction along the linear axis the model 
given in Fig. A.7.2.1. has to be completed by the friction force as 22 qQ &µ−= . The 

precise parameters of the dynamic model were: Θ=30 kg×m2, C=50 kg, m=50 kg, 
k=3000N/m, g=9.81 m/s2, µ=5 Ns/m, and L0=2 m. The appropriate approximate 
values used by the controller were as follows (in the same measuring units, 
respectively): Θm=50, C

m=70, m
m=20, g

m=10, µm=0.01, and L
m

0=L0. (The model 
value of the spring stiffness k and the viscous friction coefficient did not play any 
role, the controller assumed that no 2nd axis exists in the system.)  

In the sequel simulation results will be provided for the novel MRAC control 
of this system. The adaptive control parameters initially were set as K= -2×105, B=1, 
A0=10-5. In this case parameter A had an aggressive, agile tuning quite different to 
that used in the case of the cart + double pendulum system in (8.3.5). This tuning has 
some “exponential nature” and can be described as follows: 

• let us start with a roughly estimated initial value A0; 
• the estimated value of the partial derivative of the actual εest is 

calculated according to equation (9.1.2.1); 
• from its present value it can be determined whether A must be 

increased or decreased; 
• since for the estimation various delayed (“past”) values are used, for 

proper modification of A we have appropriate information in 3∆cycle 
time steps; 
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• let us prescribe a “quasi-exponential” variation for decreasing A in a 
discrete approximation by using a parameter 0<γ<1 as An+1=γAn; if the 
discrete time step is of duration ∆cycle this corresponds to the 
derivative dAn/dt≈[An+1-An]/(3∆cycle)=[(γ-1)/(3∆cycle)]An that roughly 
corresponds to the exponent τ=(γ-1)/(3∆cycle) of an exponential 
function A(t)=A0exp(τt) leading to the estimation γ=τ∆cycle+1; 

• for increasing A the An+1=An/γ operation can be applied; 
• for decreasing A the An+1=γAn/cfactor operation can be applied; 
• to avoid numerically achieving 0 by decreasing A that could result in 

constant A≡0, if An+1 becomes smaller than A0/1000, we restart the 
tuning from An+1=A0; 

• also, for critically small denominator |rn-rn-1|<=%eps (%eps means the 
“small value” in the SCILAB program) we again use the initial 
An+1=A0 estimation. 

Simulation examples are presented in Figs. A.7.2.2.-A.7.2.6. that reveal that the 
MRAC idea works well in this case, too. The tuned parameter suffers from drastic 
variation. 
 

  

Figure A.7.2.2. The results for the non-adaptive simple PID controller (LHS) and the 

adaptive one (RHS): the nominal trajectory of the rotary joint (joint #1) [rad] vs time 

[s] (1st chart); the simulated trajectory of the rotary joint #1 (green line) [rad] and 

the swinging of the not controlled linear joint (#2) (red line) [m] vs time [s] (2nd 

chart); the tuned control parameter A [s
2
/rad] vs. time [s] (3rd chart, purple line) 

 

 

Figure A.7.2.3. The results for the non-adaptive (LHS) and the adaptive (RHS) 

controllers: the nominal and simulated phase trajectories of the rotary joint (joint 

#1) dq1/dt [rad/s] vs. q1 [rad] 
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Figure A.7.2.4. The results for the non-adaptive simple PID (LHS) and the adaptive 

(RHS) controllers: the trajectory tracking error of the controlled rotary joint (joint 

#1) [rad] vs. time [s] (1st chart); the nominal (green line) and simulated (red line) 

trajectories of the controlled rotary joint (2nd chart) 

 

 

Figure A.7.2.5. The results for the non-adaptive (LHS) and the adaptive (RHS) 

controllers: the Q components to be exerted according to the reference model at the 

rotary joint (joint #1) [Nm] (black line) and the zero force for the not controlled 

linear joint (green line) vs. time [s] (upper graph), the exerted torque at (joint #1) 

(red line, central graph), and the Q components of the reference model recalculated 

from the actual system's response (purple line, lower graph) 

 

  

Figure A.7.2.6. The results for the non-adaptive (LHS) and the adaptive (RHS) 

controllers: the realized acceleration of the rotary joint (joint #1) [rad/s
2
] vs. time 

[s] (black line), the desired acceleration computed from the PID block (green line), 

and the nominal acceleration (red line) 
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A.8. Simulation Results for Section “10.2. Application Example: Adaptive 

Control of the Cart plus Double Pendulum System” 

The determinant of the inertia matrix in (A.5.4) has the form of 

 ( )2
2

21
2

121
2
22

2
11 sinsindet qmqmmmMLmLm −−++=M  (A.8.1) 

It can well be seen from (A.8.1) that the minimum value of this determinant is equal 
to  

 ( ) MLmLm 2
22

2
11detmin =M  (A.8.2) 

and this situation happens whenever 2/   , 21 π±=qq  simultaneously. If 

21,  mmM <<  these points correspond to near singular or badly conditioned inertia 
matrix that may cause problems in the control and simulation. On the basis of (A.5.4) 
it is easy to express the inverse dynamical equations of motion in closed analytical 
form used for simulation purposes. For making the simulation tests more realistic the 
purely conservative mechanical model in (A.5.4) was completed by dissipative 
Dynamic Friction terms yielding an additional contribution to the array Q. (This term 
was used only in the equations applied for representing the results of real time 
measurement, but is was “unknown” by the controller.) For numerical description a 
variant of the Lund-Grenoble (LuGre) Model was used in which the deformation of 
the bristles of some “brushes” are applied to describe the deformation of the surfaces 
in dynamic contact, so friction is described as a dynamic coupling between two 
subsystems having their own equations of motion as 

 ( ) v
dt

dz
zF

vvFF

zv
v

dt

dz

sSC

µσσ
σ

++=
−+

−= 10
0 ,

/exp
 (A.8.3) 

for which the proper direction of F has to be set in the applications, µ describes the 
usual viscous friction coefficient that dominates at “higher velocity” of the relative 
motion of the surfaces in contact “v” (this term is to be understood as a comparison 
between |v| and vs.>0 since vs. represents the limit of the low velocity region), σ0 
corresponds to some elastic deformation of the surfaces in contact, “z” is the hidden 
internal degree of freedom, and σ1 is a new parameter pertaining to the effect of the 
bending bristles. To clarify the role of the positive FS and FC parameters observe that 
the 1st equation in (A.8.3) pulls z in the direction of v if |z| is small (in this case the 1st 
term dominates in the right hand side of the equation). For big |z| values the 
dominating term is the 2nd term that tries exponentially damp z. The z variable stops 
varying when the limit for it ( ) ( )[ ] 0lim //expsgn: σsSC vvFFvz −+=  is achieved that 

corresponds to the contribution of ( ) ( )[ ]
sSC vvFFvz /expsgnlim0 −+=σ . From it 

follows that for near zero velocities and stabilized z values big contribution (FC+FS) 
is obtained (the so called “sticking” phenomenon), while for “big” velocities it is 
reduced to FC, therefore this model is able to describe the “slipping” phenomenon, 
too. This model is physically complete in the sense that no any velocity limit of 
dubious interpretation must be introduced for its use, in contrast to the static friction 
models that cannot yield definite friction force for v=0, and also leave the question 
open how to use this equation in numerical simulations. The behavior of the whole 
system is described by the dynamic coupling between the hidden internal and the 
observed degrees of freedom. Though the appropriate quantities in (A.8.3) were 
developed for linear motion and forces, it easily can be generalized for rotary motion 
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in which torques appear in the role of the forces, and rotational velocities are present 
instead of the linear motion’s velocity. 

For control purposes the “very rough model“ used instead of (A.5.4) was 
defined as 
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, (A.8.4) 

and the approximate model exact in its form but imprecise in its parameters (just as 
in the case of the Adaptive Inverse Dynamics Control or the Adaptive Slotine-Li 

Control) had the same form as (A.5.4) with the appropriate model parameters 
M

M=0.7×M, L1
M=0.9×L1 and L2

M=0.8× L2, m1
M= 0.6×m1 and m2

M=0.5×m2. 
Regarding the friction parameters, the appropriate values defined in (A.8.3) were 
chosen for each axis as follows: σ10=10, σ11=156, µ1=1, FC1=100, FS1=200, vs1=0.1 
for the 1st axis, σ20=20, σ21=300, µ2=2, FC2=200, FS2=400, vs2=0.2 for the 2nd axis, 
and σ30=30, σ31=450, µ3=3, FC3=300, FS3=300, vs3=0.3 for the 3rd one (each in 
appropriate physical dimensions). For better testing the control method additional 
disturbance force components were added that had the same numerical value and had 
the dimension of torque for Q1 and Q2, and force for Q3. 

The parameters of the adaptive controller in (10.1.5) were K=200, n=3 (this 
paradigm has 3 DOF), Ccut=0.5, and the kinematically prescribed trajectory tracking 
resulted in the desired 2nd time-derivatives of the generalized coordinates as follows:  
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2
33 τττ&&&&&& , (A.8.5) 

that corresponds to some PID-type controller resulting in the convergence of the 
tracking error to zero if it is precisely implemented. (superscript N refers to the 
nominal motion). This convergence is roughly exponential with the exponent of -Λ. 
In the simulations Λ=15/s value was used. As further refinement of the control 
instead of the desired accelerations prescribed by (A.8.5) a reduced desired 

acceleration was applied as 
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121  (A.8.6) 

where δt corresponds to the assumed cycle time of the control (10-3 s in the 
simulations) with small positive ε1, ε2, and some positive ashape parameters. Equation 
(A.8.6) corresponds to some linear interpolation between the actual desired and the 
past realized accelerations in which the parameters ξ and ashape measure the 
significance of their difference. These parameters can be set according to the order of 
magnitude of the signals occurring in the particular application. For zero ξ it 
practically corresponds to insignificant modification, for ξ>>1/ashape it results in λ=ε2 
that means drastic reduction. In the simulations we had ε1=0.2, ε2=10-5, and 
ashape=0.5. The control signal was supposed to be constant during δt, and the 
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integration of the equations of motion happened with the time-resolution of δt/10 
with the simple method proposed by Euler. Since the simulations revealed that the 
direct application of (10.1.5) still resulted in very small fluctuation of the value of 
αmax, instead of it a smoothed value was used as 

 ( ) ( ) ( ) ( )









 −−−
=

K

tttt
tt

d δδ
αα

qq &&&&
tanhmax  (A.8.7) 

That reduced the relative significance of the fluctuation in α for small values. 
Finally, the torque / force components that should have been exerted according to 
α(t), (A.8.6) and (A.8.4) (i.e. the actual proposal) was smoothed according to its past 
proposed values by a forgetting filter  
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tlt
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δβ Q

Q  (A.8.8) 

that can be realized very easily by multiplying the content of a buffer by 0<β<1 and 
adding to it the new contribution (the normalizing factor can be computed in closed 
form). In the simulations β=0.5 was applied.  

It is worthy of note that the SVD was not executed within the control cycle. 
Instead of that, by the use of the very rough and the approximate model it was 
calculated in advance over a grid of dimensions 5×5 in the  
[-π,+π]×[-π,+π] grid in advance, and the appropriate diagonal and the orthogonal 
matrices were stored in memory. During the calculations these grid points served as 
the supports of a Support Vector Machine (SVM) of cylindrical function with 
Gaussian shape, and within the cycle only a simple interpolation happened by 
calculating “distance dependent averages” with the “distance functions” 

( ) ( )2
exp: qqq −−= kkd γ  with γ=0.2 in which q denotes the actual state, and qk 

means the kth grid point.  
In the 1st series of simulations the effect of the modeling errors (without 

friction and external disturbances) were studied in the case of the non-adaptive and 
the adaptive controller, respectively.  
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Non-adaptive

No Friction

No Disturbances

Adaptive

No Friction

No Disturbances

 

Non-adaptiveNo Friction

No Disturbances

Adaptive

No Friction
No Disturbances

 

Non-adaptive No Friction

No Disturbances

Adaptive No Friction
No Disturbances

 

Figure A.8.1. The phase trajectories (1
st
 row), the tracking error (2

nd
 row), and the 

exerted generalized forces (3
rd

 row) for the non-adaptive (LHS) and the adaptive 

(RHS) control (for the nominal motion: q1: black, q2: blue, q3: green, for the 

simulated motion: q1: light blue, q2: red, q3: magenta line in the phase trajectories, 

and q1: black, q2: blue, q3: green for the rest) 

 

Adaptive
No Friction

No Disturbances

Adaptive

No Friction
No Disturbances

 

Figure A.8.2. The variation of the adaptive factors α and λ versus time  

               dc_62_10



150 

No Friction
No Disturbances

Non-adaptive

Adaptive

No Friction
No Disturbances  

No Friction

No Disturbances
Non-adaptive

Adaptive

No Friction
No Disturbances

 

No Friction

No DisturbancesNon-adaptive

Adaptive

No Friction
No Disturbances

 

Figure A.8.3. The phase trajectories (1
st
 row), the tracking error (2

nd
 row), and the 

exerted generalized forces (3
rd

 row) for the non-adaptive (LHS) and the adaptive 

(RHS) control for balls moving in the opposite directions [counterpart of Fig. A.8.1.] 

(for the nominal motion: q1: black, q2: blue, q3: green, for the simulated motion: q1: 

light blue, q2: red, q3: magenta line in the phase trajectories, and q1: black, q2: blue, 

q3: green) 

 
The appropriate phase trajectories and the tracking errors (Fig. A.8.1.) well 

exemplify the superiority of the adaptive control. The difference in the variation of 
the generalized forces exerted by the controller is significant and informative, too. 
Fig. A.8.2. reveals the fast variation of the adaptive variables α and λ versus time. It 
is worthy of note that the initial velocities considerably differ from the nominal ones, 
therefore in the beginning a “shock” was defied by the controller thank to the 
detailed interpolation and smoothing techniques. To demonstrate that the method 
worked at different regions of the state space the counterparts of Figs. A.8.1. and 
A.8.2. were calculated for a different nominal motion in which balls were moving in 
opposite directions (Figs. A.8.3. and A.8.4.).  

In the next series of the investigations the dynamic friction forces unknown 
by the controller were switched on (Figs. A.8.5. A.8.6.and A.8.7.).  
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Adaptive
No Friction

No Disturbances

Adaptive

No Friction

No Disturbances

 

Figure A.8.4. The variation of the adaptive factors α and λ versus time for balls 

moving in the opposite directions [counterpart of Fig. A.8.2.] 

 

Non-adaptive

Friction

No Disturbances

Adaptive

Friction

No Disturbances

 

Non-adaptive

Friction

No Disturbances

Adaptive

Friction
No Disturbances

 

Non-adaptive Friction

No Disturbances

AdaptiveFriction
No Disturbances

 

Figure A.8.5. The phase trajectories (1
st
 row), the tracking error (2

nd
 row), and the 

exerted generalized forces (3
rd

 row) for the non-adaptive (LHS) and the adaptive 

(RHS) control with dynamic friction in the controlled system (for the nominal 

motion: q1: black, q2: blue, q3: green, for the simulated motion: q1: light blue, q2: 

red, q3: magenta line in the phase trajectories, and q1: black, q2: blue, q3: green for 

the rest) 
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Adaptive
Friction

No Disturbances

Adaptive

Friction
No Disturbances

 

Figure A.8.6. The variation of the adaptive factors α and λ versus time in the case of 

dynamic friction in the controlled system 

 

Non-adaptiveFriction
No Disturbances

Adaptive
Friction

No Disturbances

 

Figure A.8.7. The variation of the friction forces versus time in the case of dynamic 

friction in the controlled system (for q1: black, q2: blue, q3: green line) 

 
Figures A.8.5. and A.8.6. again reveal the superiority of the proposed adaptive 
control. In Fig. A.8.7. the friction forces are described that are quite significant and 
they considerably destroy the tracking quality of the non-adaptive controller.  

To make the control task even more difficult, besides that of the internal 
friction, the effects of additional external disturbance forces were studied in the last 
series of simulations. The appropriate results are described by Fig. A.8.8. that reveals 
that while the non-adaptive controller is very considerably disturbed, the adaptive 
version quite efficiently resists.  

As a summary of the simulation investigations it can be stated that in this 
section the generalization of certain parametric fixed point transformations was 
presented from SISO to MIMO systems for control technical purposes. The 
theoretically expected adaptive behavior was also illustrated by simulation results for 
a very wide range of motion velocities. The method is based on the properties of the 
SVD of an approximation of the Jacobian of the system’s response.  

In the presented example the matrices of the decomposed models were stored 
within certain typical regions of the generalized coordinates q (in the case 
numerically investigated the rigid translation in the direction of q3 is internal 
symmetry of the system, therefore it is satisfactory to consider the part of the q space 
determined by the coordinates q1 and q2). In combination with the adaptive approach 
this idea is the counterpart of storing fuzzy rules over the whole domain of interest. 

               dc_62_10



153 

Friction

Disturbances

Non-adaptive

Adaptive

Friction

Disturbances

 

Friction

Disturbances

Non-adaptive Adaptive

Friction

Disturbances

 

Friction
Disturbances

Non-adaptive Adaptive
Friction

Disturbances

 

AdaptiveFriction

Disturbances

 

Figure A.8.8. The phase trajectories (1
st
 row), the tracking error (2

nd
 row), and the 

exerted generalized forces (3
rd

 row) for the non-adaptive (LHS) and the adaptive 

(RHS) control with dynamic friction in the controlled system and the presence of 

external disturbances (for the nominal motion: q1: black, q2: blue, q3: green, for the 

simulated motion: q1: light blue, q2: red, q3: magenta line in the phase trajectories, 

and q1: black, q2: blue, q3: green for the rest); In the 4
th

 row the components of the 

disturbance forces and the control variable α are described vs. time 

 

               dc_62_10



154 

A.9. Simulation Results for Section “11.3. Application Example: the Use of 

Fractional Order Terms in the Control of Integer Order Systems” 

 

 

Figure A.9.1. The phase space of subsystem A: non-adaptive integer order (upper left 

corner), adaptive integer order (upper right corner), non-adaptive fractional order 

(lower left corner), and adaptive fractional order (lower right corner) 

 

 

Figure A.9.2. The phase space of subsystem B: non-adaptive integer order (upper left 

corner), adaptive integer order (upper right corner), non-adaptive fractional order 

(lower left corner), and adaptive fractional order (lower right corner) 

 
The phase trajectories obtained for adaptive and non-adaptive, integer and 

fractional order derivatives order with β=0.7, T=10 time-step memory in ms units are 
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given in Figs. A.9.1. and A.9.2. that well reveal the small degradation in the tracking 
accuracy and the smoothing effects in the adaptive control, too. The tracking errors 
are detailed in Figs. A.9.3. and A.9.4. 

 

 

 

Figure A.9.3. The tracking error of subsystem A: non-adaptive integer order (upper 

left corner), adaptive integer order (upper right corner), non-adaptive fractional 

order (lower left corner), and adaptive fractional order (lower right corner) 

 
 

 

 

Figure A.9.4. The tracking error of subsystem B: non-adaptive integer order (upper 

left corner), adaptive integer order (upper right corner), non-adaptive fractional 

order (lower left corner), and adaptive fractional (lower right corner) 
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A.10. Geometric Analogies by Fundamental Quadratic Forms 

In this paragraph strict analogies between three different geometries 
frequently occurring in natural and technical sciences are considered. These are the 
Euclidean Geometry, the Minkowski Geometry, and the Symplectic Geometry. Each 
of them is defined by a fundamental quadratic expression having different physical 
interpretation. The strict analogies are revealed by considering them as different 
representatives of the concept of Lie Groups.  

A.10.1. The Euclidean Geometry: 

The fundamental quadratic expression is the Scalar Product of the vectors a 
and b: 

 a
T
Ib (A.10.1) 

that is interpreted by the absolute values of the vectors (more precisely by their 
norms as introduced by Frobenius), and the angle ϕ between these vectors as 
|a| ⋅|b|⋅cosϕ(a,b). The quadratic matrix defining this quadratic expression in (A.10.1) 
is the unit matrix I. The linear transformations of the vectors as a’=Oa, and b’=Ob 
that leave the form as well as the numerical value of the scalar product for arbitrary 

a, b vectors invariant, that is for which 

 a’
T
Ib’=aO

T
IOb ⇒ I=O

T
IO (A.10.2) 

are referred to as the Orthogonal Transformations. These transformations describe 

one of the fundamental symmetries of Euclidean Geometry. 
 

A.10.2. The Minkowski Geometry: 

A fundamental experimental observation in Electrodynamics (the Michelson-
Morley Experiment) postulated that it is possible to so set the clocks and distance 
measures in inertial frames (i.e. bringing about systems of coordinates) in the 
measures of which the velocity of the light signals in each direction is c. By 
introducing the four component vectors describing the separation of two events in 

space and time as x=[∆r,∆t]T, the fundamental quadratic expression of 

Electrodynamics can be introduced by the diagonal matrix g:=<1,1,1,-c2> 

 x
T
gx (A.10.3) 

that is positive number for events that can be connected by signals having lower 
speed of propagation than that of the light signals in vacuum, exactly zero if light 
signals can connect the two events, and are negative number if signal of higher speed 
than c is needed for connecting these events. The above form can be extended for 
different x and y vectors as x

T
gy that is called as the scalar product of four 

dimensional vectors in the Minkowski Geometry. The linear transformations of the 

vectors as x’=ΛΛΛΛa, and y’=ΛΛΛΛy that leave the form as well as the numerical value of the 

scalar product for arbitrary x, y vectors invariant, that is for which 

 x’
T
gy’=xΛΛΛΛT

gΛΛΛΛy ⇒ g=ΛΛΛΛT
gΛΛΛΛ (A.10.4) 

are referred to as the Lorentz Transformations. These transformations describe one 

of the fundamental symmetries of Minkowski Geometry. 
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A.10.3. The Symplectic Geometry: 

In the Canonical Equations of Motion of Classical Mechanics [R25] a 
quadratic expression occurs in the Poisson Bracket that describes the time-
derivatives of physical quantities depending exceptionally only on the physical state 
of the isolated mechanical system. By writing arrays of 2×DOF dimensions 
(DOF=Degree of Freedom of the mechanical system) strict analogy of (A.10.1) can 
be obtained as 

 u
Tℑℑℑℑv, 









−
=ℑ

0I

I0
:  (A.10.5) 

The linear transformations of the vectors as u’=Su, and v’=Sv that leave the form as 

well as the numerical value of (A.10.5) for arbitrary u, v “vectors” invariant, that is 

for which 

 u’
Tℑℑℑℑv’=uS

TℑℑℑℑSv ⇒ ℑℑℑℑ=S
TℑℑℑℑS (A.10.6) 

are referred to as the Symplectic Transformations. These transformations describe 

one of the fundamental symmetries of Classical Mechanics. We note that the 
definitions in (A.10.6) and the definition SℑℑℑℑS

T=ℑℑℑℑ occurring in Classical Mechanics 
are essentially equivalent to each other because from ℑℑℑℑ2=-I it follows that ℑℑℑℑ-1=ℑℑℑℑT, 
therefore if SℑℑℑℑS

T=ℑℑℑℑ, then ℑℑℑℑT
SℑℑℑℑS

T=I that means that S
T=(ℑℑℑℑT

Sℑℑℑℑ)-1 or S
T=ℑℑℑℑT

S
-1ℑℑℑℑ, 

therefore STℑℑℑℑS=ℑℑℑℑT
S

-1ℑℑℑℑℑℑℑℑS=-ℑℑℑℑT
S

-1
IS=ℑℑℑℑ, too. 

A.10.4. Analogies on the Basis of Group Theory: 

To establish formal analogies at first we note that none of the matrices 
defining the fundamental quadratic expressions is singular. This statement is trivial 
for I of the Euclidean Geometry, and for the diagonal g in (A.10.3). However, it is 
easy to calculate detℑℑℑℑ for arbitrary size on the basis of its definition: 
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. (A.10.7) 

In the 2nd line it is taken into account that only n ones ad (-1) matrix elements occur 
in ℑℑℑℑ, and the effect of the multiplication factor (-1)n is just compensated by the by 
the n number of index swapping in the Levi-Cività symbol to arrive to ε1,2,…,2n=1. 
From the nonsingular value of the defining matrix immediately follows that the 
transformation matrices cannot be singular, moreover they may have the determinant 
±1 [e.g. det(STℑℑℑℑS)=detℑℑℑℑ ⇒ detS=±1.  

The associativity of the matrix product guarantees that the symmetry 
transformations considered satisfy the group properties, e.g. 
(O(1)

O
(2))T

I(O(1)
O

(2))=O
(2)T

O
(1)T

IO
(1)

O
(2)=O

(2)T(O(1)T
IO

(1))O(2)=O
(2)T

IO
(2)=I, the unit 

matrix I is evidently included in the set of each symmetry transformation, the 
existence of the inverse matrices and that the left and right hand side inverses are 
identical to each other as well as the membership of the inverses in the group 
elements in the group follow from the properties of the matrix product. 

Taking into account, that the determinant is continuous function of the matrix 
elements and detI=1 only the matrices with the determinant +1 can be continuously 
connected with the unit matrix, therefore only the unimodular symmetry 
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transformations form a Lie Group. The generators and the appropriate exponentials 
can be calculated as in the case of the Orthogonal Group.  

A particularly interesting but not very strict “analogy” between Euclidean and 
Symplectic Geometries are the concepts of orthogonal vectors (a is orthogonal to b 
in the Euclidean Geometry if a

T
Ib=0) and antiorthogonal vectors (u is 

antiorthogonal to v in the Symplectic Geometry if uTℑℑℑℑv=0), the notion of orthogonal 
and antiorthogonal linear subspaces [for arbitrary α, β∈ℜ if a and b is orthogonal to 
c then αa+βb is also orthogonal to c since (αa+βb)T

c==αa
T
c+βb

T
c=0+0=0; if a and 

b is antiorthogonal to c then αa+βb is also antiorthogonal to c since 
(αa+βb)Tℑℑℑℑc=αa

Tℑℑℑℑc+βb
Tℑℑℑℑc=0+0=0]. As in the case of the Euclidean Geometry it is 

the simplest and most convenient way to use orthonormal basis vectors (by 
definition e(i)T

Ie
(j)=δij) for representing various vectors, in the case of the Symplectic 

Geometry it is the most expedient choice is the use of symplectic basis vectors (by 
definition f(i)Tℑℑℑℑf

(j)=ℑij) since in the first case we normally have to work with scalar 
products, while in the second one normally evaluation the Poisson Brackets is 
needed, and these expressions can very conveniently be evaluated by using 
orthonormal/symplectic basis vectors.  

As in the case of the Euclidean Geometry by the use of the Gram-Schmidt 
Algorithm it is very easy to create orthonormal basis vectors from arbitrary but 
sufficient set of linearly independent vectors, using the concept of antiorthogonal 
subspaces it is very easy to create symplectic set, too [for details see Table A.10.1. 
below]. 
 

The Gram-Schmidt Algorithm The Symplectizing Algorithm 

Let {a
(i)|i=1,...,n} a linearly independent set of 

basis vectors. 
Let {b

(i)|i=1,...,2n} a linearly 
independent set of basis vectors. 

Since a
(1)
≠0 it can be 

normed for forming 
the first element of the 
orthonormal set 
e

(1):=a
(1)/||a(1)||. 

Since ℑℑℑℑ is non-singular, none of the ℑℑℑℑb
(j) (j=1,...,2n) vectors 

can be zero. Due to its skew-symmetry b(1)Tℑℑℑℑb
(j) =0, therefore 

the remaining set must contain at least one vector, c, for 
which b(1)Tℑℑℑℑc≠0. Via permutation of the remaining vectors let 
the index "n+1" assigned to it. Via the normalization 
b’

(n+1):=b
(n+1)/[b(1)Tℑℑℑℑb

(n+1)], the symplectic "mate" of b
(1) is 

obtained. 
Those a

(j) vectors of the remaining set 
which are not orthogonal to e

(1) can be 
made orthogonal to it by the 
transformation a’

(j):=a
(j)-e(1)[e(1)T

a
(j)]≠0. 

Those b
(j) vectors of the remaining set 

which are not anti-orthogonal to the pair 
b

(1) and b’
(n+1) can be made anti-

orthogonal to them by the transformation 
b’

(j)=b
(j)+b

(1)[b(n+1)Tℑℑℑℑb
(j)]-b(n+1)[b(1)Tℑℑℑℑb

(j)]. 
Due to the completeness and linear 
independence of the original set of vectors the 
transformed remaining set must consist of (n-1) 
linearly independent non-zero vectors each of 
which is orthogonal to e(1)

. 

Due to the completeness and linear 
independence of the original set the 
remaining set must consist of (2n-
2) non-zero, linearly independent 
vectors each of which is anti-
orthogonal to the pair b

(1) and 
b’

(n+1). 
The above steps can be repeated within the 
linear sub-space orthogonal to e(1)

. 
The above steps can be repeated 
within the linear sub-space anti-
orthogonal to the pair b(1) and b'(n+1)

. 

               dc_62_10



159 

The final result is an orthonormal set of basis 

vectors. 

The final result is a symplectic set 

of basis vectors. 

Table A.10.1. The formal analogy between the Gram-Schmidt Algorithm in Hilbert 

Spaces and the Symplectizing Algorithm 

A.11. Geometric Interpretation of Real SVD 

Though the general theory of Singular Value Decomposition (SVD) has been 
elaborated for complex matrices by the use of unitary transformations, for the 
purposes of the present work it is satisfactory to restrict ourselves to real matrices 
that can be tackled by orthogonal transformations. The geometric interpretation of 
SVD is strictly related to spanning the input and the output space of abstract linear 

transformations by orthonormal basis vectors. Consider the b=La linear 
transformation in which the dimensions of the input and the output spaces may differ 
from each other. Let the orthonormal set {e(i)} be defined in the input, and {f(i)} be 
defined in the output spaces. Necessarily 

 ( ) ( )∑∑ ==
i

i

i

i

i

i aa LeLaea ,  (A.11.1) 

The {ai} coefficients can be obtained by considering scalar products utilizing the 
orthonormality of the set {e(i)}: 
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The transformed vector can similarly be computed by using the basis {f(i)}: 
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Instead of the original basis {e(i)} a new basis can also be used the rigid rotation U of 
which corresponds to the old one, i.e. {e(i)}={Ue’(i)}. Since the rotation around the 
origin is a linear transformation [U(αa)=αUa and U(a+b)=Ua+Ub] the elements of 
the rotated basis can be computed by the linear combination of the elements of the 
unrotated basis, that is ( ) ( )∑=

z

z

iz

i 'U ee , therefore  

 ( ) ( )( )∑=
zi

zk

izik ',Uab
,

Lef  (A.11.4) 

In similar manner a new orthonormal basis can be also introduced in the output space 
as ( ) ( )∑=

v

v

kv

k 'V ff  leading to  
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'

'
43421
Lef'  (A.11.5) 

that simply sets the transformation rule of the matrix elements of the linear operators 
when choosing various orthonormal basis sets in the input and the output spaces. 
Rotations may not have arbitrary matrix structure. Since the scalar products must be 
left invariant (Ue’(i),Ue’(j))=(e’(i),e’(j)) 
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that means that the matrices U and V must be orthogonal matrices. So the 
transformation rule of the linear operators in (A.11.5) means that L=VL’U

T in which 
V and U are orthogonal matrices that describe the effect of changing the orthonormal 
basis vector sets in the matrix elements.  

For a given {e’(i)} and {f’(i)} set L’ may be “complicated”. For better 
understanding the properties of the abstract linear operator L it would be expedient to 
choose special basis vectors in which L has the simplest possible form. It is easy to 
see that it is possible to find diagonal L if we consider L

T
L=UL’

T
L’U

T and 
LL

T=VL’L’
T
V

T that means that the symmetric, generally positive semidefinite real 
matrices as L’

T
L’ and L’L’

T have to be diagonalized by the appropriate orthogonal 
matrices. This certainly can be done if we choose the normalized eigenvectors of 
these matrices to serve as the columns of these orthogonal matrices (the eigenvectors 
belonging to different eigenvalues must be orthogonal to each other, while in the 
linear subspace of the eigenvectors belonging to the same eigenvalue orthogonal 
ones can be found and chosen). In the diagonal form of L in the main diagonals the 

square roots of the appropriate eigenvalues have to stand.  
According to [R48] the standard procedure of diagonalizing real, symmetric, 

positive semidefinite matrices can be solved by efficient numerical techniques. 

Taking into account that any O orthogonal matrix of appropriate size leaves the 
eigenvalues of the real matrices invariant det(A-λI)=0 and det(O)=det(OT)=±1 ⇒  
det(O)det(A-λI)det(OT)=det(OAO

T-λOIO
T)=det(OAO

T-λI)=0 at first orthogonal 

transformations constructed of properly chosen diadic terms as (I-2uu
T) are chosen 

to convert the original symmetric real, positive semidefinite matrix into continuant 
matrix. Then the eigenvalue and eigenvector problem of such special matrices can 
efficiently be solved numerically. Following that the eigenvectors can be properly 
transformed since if Aa=λa, then OAa =OAO

T
Oa=λOa.  

In our days SVD is a standard service (function) of software designed for the 
use in research, as e.g. INRIA’s SCILAB. By using the coordinate representations of 
the abstract transformation b=La the diagonalized version takes the form of 
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 (A.11.7) 

in which k=min(n,m), and in the central line following Dkk in “[…|Dkk|…]” either 
nothing stands or zeros are located. The geometric interpretation of (A.11.7) is 
straightforward: characteristic pairs of orthogonal directions are found in the input 
and the output spaces to which characteristic stretch/shrink denoted by the singular 

values Dii≥0 belong.  
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