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Notations
Generally used notations

R the set of real numbers
Z the set of integer numbers
R

n n-dimensional Euclidean space
R

n
+ n-dimensional positive orthant

R
n

+ n-dimensional nonnegative orthant
vj jth element of a vector v
Wij or Wi,j (i, j)th element of a matrix W (indexing order: row, column)
Wi,· ith column of a matrix W
W·,j jth column of a matrix W
ẋ or d

dt
x time derivative of x

Notations for quasi-polynomial and Lotka-Volterra systems

y quasi-polynomial (QP) state variable
z Lotka-Volterra (LV) state variable
y∗ equilibrium point of the QP system
z∗ equilibrium point of the LV system
x centered state variable of the LV system (i.e. x = z − z∗)
A n×m coefficient matrix of the QP system
B m× n exponent matrix of the QP system
M m×m coefficient matrix of the LV system (M = BA)

V entropy-like Lyapunov function: V (z) =
∑m

i=1 ci

(

zi − z∗i − z
∗
i ln

zi
z∗i

)

C m×m diagonal matrix containing the coefficients of V :
C = diag(ci), i = 1 . . . , m

Ω n× 1 row vector containing the parameters of time-rescaling

Ã n× (m+ 1) coefficient matrix of the time-rescaled QP system

B̃ (m+ 1)× n exponent matrix of the time-rescaled QP system

M̃ (m+ 1)× (m+ 1) LV coefficient matrix of the time-rescaled system

Notations for kinetic systems

X n-dimensional vector of species
C m-dimensional vector of chemical complexes
[Xi] concentration of specie Xi

x n-dimensional vector of specie concentrations (state variable, x = [X ])
x∗ equilibrium concentration vector
α, β positive stoichiometric coefficients
Ci → Cj reaction involving reactant (source) complex Ci and product complex Cj

S the set of species
C the set of complexes
R the set of reactions
kj reaction rate coefficient corresponding to the jth reaction
kij reaction rate coefficient corresponding to reaction Ci → Cj

ρj rate of the jth reaction
ρij rate of the reaction corresponding to reaction Ci → Cj

Y n×m complex composition matrix
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Ak m×m Kirchhoff (or kinetics) matrix

ψ ∈ R
n 7→ R

m monomial function of the kinetic system: ψj(x) =
∏n

i=1 x
Yij

i

S stoichiometric subspace of a reaction network
Σ = (S, C,R) kinetic system characterized by the triplet (S, C,R)
Σ = (Y,Ak) kinetic system characterized by the pair (Y,Ak)
N n× r stoichiometric matrix of a reversible reaction network
y continuous optimization variables
δ integer optimization variables
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Chapter 1

Introduction

Although models are ”really nothing more than an imitation of reality” [75], their
widespread utilization not only in research and development but also in the everyday
life of developed societies is clearly indispensable. Due to the (sometimes unnecessary)
complexity of system components and their possible interactions, without building,
analyzing and simulating appropriate models, we could not predict the outcome of
common events like a regular parlamentary election, not to mention the safe operation
and maintenance of such involved systems like a modern passanger car or a power
plant. When we are interested in the evolution of certain quantities usually in time
and/or space, we use dynamic models. The deep understanding and the targeted ma-
nipulation of such models’ behaviour are in the focus of systems and control theory
that now provides us with really powerful methods for model analysis and controller
synthesis in numerous classical application fields such as electrical, mechanical and
process engineering. [87, 144], [B1]. The key importance of dynamics in the expla-
nation of complex phenomena occurring in living systems is now also a commonly
accepted view [137, 2]. Besides the sufficient maturity of systems and control theory,
the accumulation of biological knowledge mainly in the form of reliable models and
the recent fast development in computer and computing sciences converged to the
birth of a new discipline called systems biology, that can hopefully address important
challenges in the field of life sciences in the near future [152].

The aim of this thesis is to summarize and present analysis results for certain classes
of dynamical systems that are primarily applied in the description of biochemical
processes and are given in the form of nonlinear ordinary differential equations (ODEs).
The purpose of the present introductory chapter is to briefly outline the state of the
art in the fields related to the topic of the thesis without mathematical formulas, and
to give the most important motivations of the performed work based thereon.

1.1 Background and motivation

1.1.1 Nonnegative systems

Nonnegative systems are characterized by the property that all state variables re-
main nonnegative if the trajectories start in the nonnegative orthant. (If strict pos-
itivity of the state elements is required then these models are often referred to as
positive systems.) Thus, nonnegative systems play an important role in fields such
as (bio)chemistry, economy, population dynamics or even in transportation modeling
where the state variables of the models are often physically constrained to be non-
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1. Introduction

negative [44, 74]. Interesting examples of nonnegative systems from the authors’ own
experience are the control-oriented simplified model of the primary circuit of the Paks
Nuclear Power Plant [J23, J22, J24] and its important subsystem, the pressurizer [J27].

It is important to remark that many non-positive systems can be transformed
to the nonnegative (or positive) system class through appropriate coordinates-trans-
formations. The most common way of this is the following. First, the coordinates are
shifted into the positive orthant such that the state variables belonging to the studied
operation domain (with the possible initial conditions) remain positive. Then there are
several possibilities to ensure the nonnegativity of the system. One popular solution is
the approach of Samardzija [135] where the distortion of the phase-space can be kept
under control in the region of interest. Another possibility is a state-dependent time-
rescaling of the model [54], [J3]. Naturally, when using such transformations, it has
to be always checked that the transformed system preserves the required qualitative
properties of the original one.

1.1.2 Quasi-polynomial systems

Quasi-polynomial (QP) systems form a wide class of smooth nonnegative systems and
they clearly play an increasingly important role in the modeling of dynamical processes.
The QP system class was introduced and first analyzed by Prof. Leon Brenig and his
group [16, 17]. In [16] it was shown that majority of smooth ODE models can be
algorithmically embedded into the QP form, and the so-called quasi-monomial (QM)
transformation was defined under which the QP-model form is invariant. Further-
more, the QM transformation splits the family of QP systems into equivalence-classes,
and in each class two simple canonical forms were defined in [17]. QP systems are
also called Generalized Lotka-Volterra (GLV) systems, because the monomials of a
QP system form a classical Lotka-Volterra (LV) system in a transformed state space
which is often of higher dimension than that of the original QP system [77, 54]. Thus,
numerous properties of QP models like integrability, stability, persistence or the exis-
tence of invariants can be examined using the corresponding LV system, the qualitative
properties of which have been intensively studied for a long time [146]. Based on the
above, we can say that LV models ”have the status of canonical format”within smooth
nonlinear dynamical systems [56]. Moreover, the simple matrix structure character-
izing QP models allows us to perform important model analysis tasks using efficient
numerical algorithms. In [80], the QP formalism was first extended to the discrete-
time case demonstrating that the LV system representation plays a central role in that
case, too. The conditions for transforming neural network models to QP form are con-
sidered in [117] where the most important conclusion is that generalized LV systems
are universal approximators of certain dynamical systems, just as are continuous-time
neural networks.

Finding constants of motion has been an important and intensively studied area
of the analysis of dynamical systems for a long time. If the given dynamical system
is not integrable, then its first integrals (if they exist) give us very useful information
about the properties of the solutions and about possibly physically meaningful con-
served quantities. Several different approaches have been proposed in the literature
for the determination of invariants under various conditions (see e.g. [1, 103, 138]).
Furthermore, first integrals play a great role in modern systems and control theory
e.g. in the field of canonical representations, controllability and observability analysis
[87] and stabilization of nonlinear systems [149, 104]. The theoretical background of
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the existence of quasi-polynomial invariants is well-founded. In [52] algebraic tools are
applied to find semi-invariants and invariants in quasi-polynomial systems. In [53] it is
shown that any QP invariant of a QP system can be transformed into a QP invariant
of a homogeneous quadratic LV model and that the existence of polynomial-type semi-
invariants in the corresponding LV systems is a necessary condition for the existence
of QP invariants. A general method is given in the same paper for the symbolical
checking of this necessary condition with numerous valuable examples. Moreover, a
computer-algebraic software package called QPSI has been implemented for the de-
termination of quasi-polynomial invariants and the corresponding model parameter
relations [55].

The stability and boundednes of the solutions of QP systems is also a widely
studied subject with practically well-usable results. In [54], the authors give sufficient
conditions for the existence of a logarithmic (often called ’entropy-like’) Lyapunov
function for QP systems. Additional important conditions are given in the same paper
that the solutions remain bounded inside the strictly positive orthant. These stability
conditions are formulated as purely algebraic ones in [65], and they are shown to
be equivalent to the diagonal stabilizability problem that has been known for long
in control theory with many applications [93]. For the determination of Lyapunov
function coefficients, an effective numerical procedure is proposed in [66] that is based
on a series of linear programming steps. The methods for stability analysis of QP
systems were further developed in [77, 79], while a possible Hamiltonian structure in
Lotka-Volterra models was studied in [78]. As it was shown in [54], by introducing
additional parameters, an appropriate time-rescaling transformation can significantly
extend the possibilities to find a Lyapunov function for the investigated QP system to
prove its global (asymptotic) stability.

Although it was visible from the available theoretical results that the QP class is
general enough to approprietly describe the dynamics of many physical and technolog-
ical systems, its utilization in the analysis or controller design for engineering models
was not wide-spread in the first half of the 2000’s.

1.1.3 Mass-action type deterministic models of chemical re-

action networks

An important subset of nonnegative nonlinear dynamical systems (and also of QP
systems) is the class of chemical reaction network (CRN) models obeying the mass-
action law [83]. Such networks can be used to describe pure chemical reactions, but
they are also widely used to model the dynamics of intracellular processes, metabolic
or cell signalling pathways [73]. Thus, CRNs are able to describe key mechanisms
both in industrial processes and living systems. Being able to produce all the im-
portant qualitative dynamical properties like stable and unstable equilibria, multiple
equilibria, bifurcation phenomena, oscillatory and even chaotic behaviour [42], CRNs
”have become a prototype of nonlinear science” [155]. Many of these phenomena have
been actually observed in real chemical experiments where the practical constraints are
much more severe than in the case of mathematical models [122, 112]. This ‘dynamical
richness’ of the model class explains that CRNs have attracted significant attention
not only among chemists but in numerous other fields such as physics, or even pure
and applied mathematics where nonlinear dynamical systems are considered. The in-
creasing interest towards reaction networks among mathematicians and engineers is
also shown by recent tutorial and survey papers in the nonlinear control community
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[143, 5, 22]. From now on, only deterministic mass-action type models are meant by
CRNs in this thesis, although it is well-known that in many applications, reaction rates
different from mass-action type and/or stochastic models are required.

Chemical reaction network theory (CRNT) is originated in the 1970’s by the pio-
neering works of Horn, Jackson and Feinberg [83, 49]. Since then, many strong results
have been published in the field on the relation between network structure and quali-
tative dynamical properties. One of the most significant results in the study of the dy-
namical properties of chemical reaction systems is described in [49, 50], where (among
other important results) the notion of ‘deficiency’ is introduced. The deficiency of a
CRN is a nonnegative integer number that only depends on the stoichiometry and the
graph structure of a CRN but not on the reaction rate coefficients. In the same paper,
the stability of CRNs with zero deficiency is proved with a given Lyapunov function
that is independent of the system parameters and therefore suggests a robust stability
property with respect to parameter changes. These concepts were revisited, extended
and put into a control theoretic framework in [143]. Conditions for the local control-
lability and observability of chemical systems were given in [45] and [46], respectively.
In [32] it is shown that the absence of a certain kind of autocatalysis, autoinhibition
and cooperativity implies the existence of a unique, asymptotically stable, positive
equilibrium point in the dynamics. Moreover, a method was given for the construction
of oscillatory reactions. The relationship between the chemical network structure and
the possibility of multiple equilibria is investigated in [26] from and algebraic and in
[27, 29] from a graph-theoretic point of view.

Several authors studied the possibilities of dimension reduction for large chemical
networks. In [47], the characterization of nonnegative linear lumping schemes is given
that preserves the kinetic structure of the original system. Important conditions for
the existence of nonlinear lumping functions were established in [105], and methods
for the construction of such functions were proposed in [106]. The effect of lumping
on the qualitative properties of the solutions of kinetic systems was studied in [148].
The method of invariant manifold (MIM) is proposed in [68] and [69] for the reduced
description of kinetic equations.

Weakly reversible networks (characterized by the property that each node in their
reaction graphs lies on at least one directed cycle) is a particularly important class of
reaction networks because strong properties are known about their dynamics. Under
a supplemental condition, which is easily derived from the reaction graph alone, it is
known that there is a unique positive equilibrium concentration within each invari-
ant manifold of the network, and that equilibrium concentration is at least locally
asymptotically stable [48, 82, 83].

It is known from the so-called ”fundamental dogma of chemical kinetics” that dif-
ferent reaction networks can produce exactly the same kinetic differential equations
[101, 83]. CRNs with different parametrization (that often implies structural difference
as well) will be called dynamically equivalent if they give rise to the same ODEs. A
possible CRN (with a certain structure and parametrization) having a given dynamics
will be called a realization of that dynamics. Naturally, the phenomenon of dynamical
equivalence has an important impact on the identifiability of reaction rate constants:
if a kinetic dynamics have different dynamically equivalent CRN realizations, then the
model, where the parameter set to be estimated consists of all reaction rate coefficients,
cannot be structurally identifiable [28]. The so-called inverse problem of reaction ki-
netics (i.e. the characterization of those polynomial differential equations which are
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kinetic) was first addressed and solved in [86]. Here, in a constructive proof, a realiza-
tion algorithm was given that produces a possible CRN realization of a given kinetic
polynomial ODE system. This is certainly a fundamental result of kinetic realization
theory and the numerical algorithms in chapter 5 will use it frequently.

Since many important conditions on the qualitative properties CRN dynamics are
realization-dependent (see also subsection 2.5.8 in the following chapter), it is worth
examining whether there exists a dynamically equivalent (or sufficiently ‘similar’) re-
alization that guarantees certain properties of the corresponding dynamics that are
not directly recognizable from the initial CRN or from the corresponding differen-
tial equations. Such an approach, if successful, would certainly extend the scope of
many existing strong CRNT results. Moreover, the kinetic representation of even
non-chemically originated models may give us additional useful information about the
systems’s behaviour [135]. In spite of this, beyond the examples of dynamical equiv-
alence showed e.g in [83, 155], to the best of the author’s knowledge, there was no
systematic computational approach for the determination of preferred dynamically
equivalent CRN realizations.

1.1.4 The Hamiltonian view on dynamical systems

In recent decades, motivated by mechanical systems where this kind of description
arises naturally [6], much effort has been made in the field of Lagrangian and Hamil-
tonian modeling of electrical, fluid, thermodynamical or mixed physical systems [124].
Technically speaking, when searching for a Hamiltonian representation, after possible
coordinates transformations, one typically tries to factorize the system’s ODE model
as a product of a state-dependent matrix (often called the structure matrix) and the
(transposed) gradient of a scalar-valued function mapping from the state space, that
is usually called the Hamiltonian function. Although there exist some algorithmic
approaches to construct a Hamitonian structure for nonlinear systems [115, 150, 85],
Hamiltonian descriptions of real models have particular value when they have clear
physical meaning. In these cases, the state dependent structure matrix typically re-
flects the interconnection structure of the system, while the Hamiltonian function is
a generalized energy function that can often serve also as a Lyapunov function if it
fulfills additional geometric conditions [149].

If the nonincreasing nature (in time) of the Hamiltonian function can be proved
globally through the negative definiteness of the structure matrix, the corresponding
system is called a dissipative-Hamiltonian model. It is straightforward to write any
stable linear time-invariant (LTI) system in dissipative-Hamiltonian form [128]. How-
ever, in the nonlinear case the dissipativity property can be local, if it applies only to
a neighborhood of the equilibrium point or reference trajectory. If there are no con-
straints on the local or global definiteness of the structure matrix, then the description
is called pseudo-Hamiltonian realization [23]. Similarly to feedback linearization [87], a
nonlinear state-feedback (if applicable) is often useful in transforming an initial model
to a Hamiltonian one [84].

Finding physically meaningful Hamiltonian structures in linear and nonlinear elec-
trical circuits is a thoroughly studied area [142, 24]. First, the pure LC case was fully
solved, where the Hamiltonian function is the total electrical energy of the system [114].
The RLC case is much more complex than that, and according to the latest results, an
extension of the state-space is required for the Hamiltonian description [88, 41]. For
thermodynamical systems, the most general Hamiltonian system factorization is given
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in the so-called ”Generic” structure [156]. However, the ”Generic” structure cannot
be applied in a straightforward way for many particular models driven by the laws of
thermodynamics. The Hamiltonian description of process system models was consid-
ered in [J1, B1], where the passive mass-convection network was treated separately,
and conditions were given for the allowed form of the nonlinear source terms in the
system model.

The energy oriented framework of Hamiltonian description provides a particularly
good ground for the so-called passivity based control techniques that have a chance to
construct theoretically well-founded robust feedback loops for even complex nonlinear
systems [149]. The significance and usefulness of this approach is expressed briefly in
[89] as: ”... energy can serve as a lingua franca to facilitate communications among
scientists and engineers from different fields.” In the field of chemical thermodynamics,
entropy is playing a similarly important role to energy [18]. This suggests that the
family of entropy-like Lyapunov functions often appearing in thermodynamical (and
nonnegative) models, can be a possible choice for the integrated treatment of nonlinear
dynamical systems.

1.1.5 Background of the applied optimization techniques and
their application in chemical and process systems

As an effective decision support and design tool, optimization can give us invaluable
help in selecting those solutions from a set of candidates that are the most advantageous
from a certain point of view, and possibly satisfy given constraints [15, 133]. Due to the
enormous recent development both in theory and in the underlying hardware/software
environment, optimization is now an ubiquitous instrument in many industries (man-
ufacturing, chemical, electrical, transportation etc.) where really large-scale problems
are solved routinely.

The basic idea of linear programming (LP) is attributed to Leonid Kantorovich
around 1939 for solving military resource distribution problems, then it was reinvented
and first published in a significantly extended form by George B. Dantzig [33, 34, 35].
Today’s best LP solvers are highly efficient and reliable, and they can cope with the
solution of problems containing approximately up to a million constraints and several
million variables. The two most significant approaches for the numerical solution of
LP problems are the simplex-type algorithms [113] and the interior point methods
[134]. If some of the variables are constrained to be integer in an LP problem, then
it is called a mixed integer linear programming (MILP) problem [119, 59]. MILP
problems are generally NP-hard, but there exist efficient solvers for their treatment up
to a limited problem size. Mixed Integer Nonlinear Programs (MINLPs) are the most
general constrained optimization problems with a single objective. These problems
can contain continuous and integer decision variables without any limitations to the
form and complexity of the objective function or the constraints. As it is expected,
the solution of these problems is rather challenging [58].

Linear matrix inequalities (LMIs) gained increasing popularity in the systems and
control community from the 1990’s, since many tasks related to stability or perfor-
mance analysis and (robust) controller design for linear time invariant (LTI) and lin-
ear parameter varying (LPV) systems can be expressed in LMI form [14, 8, 136].
Although the LMI structure itself was known and small LMI problems were solved by
hand around 1940, the real breakthrough in this field began by the observation in the
1980’s that many practically important LMIs can be formulated as convex optimiza-
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tion problems. Slightly later, the development of interior-point algorithms [15] allowed
of the safe numerical solution of relatively large LMI problems.

The application of different optimization techniques in (bio)chemical and process
engineering is wide-spread [57, 70, 10], therefore only a short subjective list of the most
relevant results related to structure design or analysis of process and reaction systems
is presented here. In the chemical and biochemical fields, efficient combinatorial opti-
mization algorithms are widely applied e.g. in permanental polynomial computation
[107], metabolic pathway construction, control analysis or metabolic network recon-
struction [10]. Process network synthesis (PNS) aims at designing the structure of
process plants satisfying given constraints and often optimizing an objective function
related to the costs, quality measure, efficiency etc. of the operation [60]. It was
shown in several publications that MILP techniques can be successfully used in solv-
ing PNS problems [71, 125, 126, 127]. For the representation of process structure, a
special bipartite graph called P-graph (Process graph) was introduced and analyzed in
[61]. In [62], a polynomial-time algorithm was given for the generation of the maximal
superstructure corresponding to a process network synthesis problem using P-graphs.
From this superstructure, all possible solutions can be extracted by applying additional
constraints. Building and analyzing a similar superstructure can lead to truly globally
optimal solutions in separation network synthesis [100]. The P-graph methodology was
successfully used for modeling and synthesizing complex reaction structures [43, 108],
too.

MILP techniques were successfully used for decomposing complex reaction systems
into chemically feasible steps [99]. The integration of logical expressions into mixed
integer programming problems is an essential and powerful achievement in system
modeling and control [153, 131, 130, 132, 12] that will be utilized heavily in chapter
5. According to these results, a propositional logic problem, where a given statement
must be proved to be true given a set of compound statements containing literals, can
be solved by means of a linear integer program. For this, logical variables must be
introduced and associated with the literals. Then the original compound statements
can be translated to linear inequalities involving the logical variables. It is also noted
that the evolutionary method as an approach for global optimization can also be suc-
cessful in solving complex chemically originated problems (see, e.g. [92]), but similar
techniques are out of the scope of this thesis.

Probably the most important motivation for the application of optimization meth-
ods in the computation of CRN structures was that by using a properly constructed
optimization framework, there is a chance of deciding feasibility and determine feasible
solutions even if the underlying problem is algebraically hard to treat. Finally, it is
emphasized that no new results in the theory or practice of optimization is proposed
in this thesis, but certain presented results are based on the application of standard
optimization methods.

1.2 Aims of the work

Based on the above short review of the state-of-the-art, the original aims of the per-
formed work presented in this thesis can be summarized as:

1. Analysis and control of QP and LV systems. Since the QPmodels were first
introduced and analyzed in the mathematical physics community, no connections
with systems and control theory were introduced. Moreover, despite the simple
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matrix structure of the models, very few computational results were available
about this system class. These facts naturally raised the following questions.
How this system class can be utilized in the modeling and analysis of physical
systems appearing in engineering? Can we develop computational model analysis
or controller design methods that make use of the structure of QP systems?

2. Analysis of mass-action chemical reaction networks. Although the phe-
nomenon of dynamical equivalence was known and it was also clear that several
basic model properties are realization-dependent, there were practically no con-
structive computation results about finding CRN realizations with prescribed
properties. Therefore, it was expected that the development of such methods
can be of significant interest. Moreover, it seemed to be exploitable that mass-
action type deterministic CRN models form a special subset of QP systems.

3. Hamiltonian representation of the studied systems. Seeing the signifi-
cance of Hamiltonian representation of dynamical systems, it was also challeng-
ing, how this kind of description can be applied to QP, LV and reaction kinetic
systems and how it can be used for system analysis.

1.3 Structure and organization of the thesis
The structure of the thesis is the following. The basic notions and results previously
known from literature and necessary to follow the forthcoming chapters are summa-
rized in chapter 2. Chapters 3-7 contain the contributions of the author (with the
exception of section 4.1 which introduces some further structures that are only used in
that chapter). Chapter 3 presents analysis results in the fields of Hamiltonian descrip-
tion and the time-rescaling of QP and LV systems. Chapter 4 deals with a possible
locally dissipative Hamiltonian structure in a certain CRN class. New results in the
optimization-based computation of dynamically equivalent or linearly conjugate CRN
structures are shown in chapters 5 and 6, while chapter 7 summarizes the most im-
portant new scientific contributions of the thesis. The operation of presented methods
and algorithms will be illustrated by numerical examples, some of which can be found
in the Appendix.
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Chapter 2

Preliminaries

This chapter summarizes the basic notions and tools necessary to understand the
results and methods described in chapters 3-6. For more information, the reader is
referred to the cited textbooks and basic references.

2.1 Applied computation structures and methods

2.1.1 Linear and bilinear matrix inequalities

A (nonstrict) linear matrix inequality (LMI) is an inequality of the form

F (x) = F0 +
m∑

i=1

xiFi ≥ 0, (2.1)

where x ∈ R
m is the variable and Fi ∈ R

n×n, i = 0, . . . , m are given symmetric
matrices. The inequality symbol in (2.1) stands for the positive semidefiniteness of
F (x).

One of the most important properties of LMIs is the fact, that they form a convex
constraint on the variables i.e. the set {x | F (x) ≥ 0} is convex. LMIs have been
playing an increasingly important role in the field of optimization and control theory
since a wide variety of different problems (linear and convex quadratic inequalities,
matrix norm inequalities, convex constraints etc.) can be written as LMIs and there
are computationally stable and effective (polynomial time) algorithms for their solution
[14], [136].

A bilinear matrix inequality (BMI) is a diagonal block composed of q matrix in-
equalities of the following form

Gi
0 +

p
∑

k=1

xkG
i
k +

p
∑

k=1

p
∑

j=1

xkxjK
i
kj ≤ 0, i = 1, . . . , q (2.2)

where x ∈ R
p is the decision variable to be determined and Gi

k, k = 0, . . . , p, i =
1, . . . , q and Ki

kj, k, j = 1, . . . , p, i = 1, . . . , q are symmetric, quadratic matrices.

The main properties of BMIs are that they are non-convex in x (which makes their
solution numerically much more complicated than that of linear matrix inequalities),
and their solution is NP-hard [90]. However, there exist practically applicable and
effective algorithms for BMI solution [97, 147].
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2.1.2 Linear programming

Linear programming (LP) is an optimization technique, where a linear objective func-
tion is minimized/maximized subject to linear equality and inequality constraints
[34, 35]. Beside numerous other fields, LP has been widely used in chemistry and
chemical engineering in the areas of system analysis [11, 94], simulation [67] and de-
sign [96]. The standard form of linear programming problems that will be used in this
thesis is the following

minimize cTy (2.3)

subject to:

Ay = b (2.4)

y ≥ 0 (2.5)

where y ∈ R
n is the vector of decision variables, c ∈ R

n A ∈ R
p×n, b ∈ R

p are known
vectors and matrices, and ’≥’ in (2.5) means elementwise nonstrict inequality.

The feasibility of the simple LP problem (2.3)-(2.5) can be checked e.g. using the
following necessary and sufficient condition.

Theorem 2.1.1. [34] Consider the auxiliary LP problem

minimize

p
∑

i=1

zi (2.6)

subject to:

Ax+ z = b (2.7)

y ≥ 0, z ≥ 0 (2.8)

where z ∈ R
p is a vector of auxiliary variables. There exists a feasible solution for the

LP problem (2.3)-(2.5) if and only if the auxiliary LP problem (2.6)-(2.8) has optimal
value 0 with zi = 0 for i = 1, . . . , p.

It is easy to see that x = 0, z = b is always a feasible solution for (2.6)-(2.8). The
above theorem will be useful for establishing that no feasible solution for a pure LP
problem exists.

2.1.3 Mixed integer linear programming and propositional
logic

Amixed integer linear program is the maximization or minimization of a linear function
subject to linear constraints. A mixed integer linear program with k variables (denoted
by y ∈ R

k) and p constraints can be written as [119]:

minimize cTy

subject to:

A1y = b1

A2y ≤ b2 (2.9)

li ≤ yi ≤ ui for i = 1, . . . , k

yj is integer for j ∈ I, I ⊆ {1, . . . , k}
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where c ∈ R
k, A1 ∈ R

p1×k, A2 ∈ R
p2×k, and p1 + p2 = p.

If all the variables can be real, then (2.9) is a simple linear programming problem
that can be solved in polynomial time. However, if any of the variables is integer,
then the problem generally becomes NP-hard. In spite of this, there exist a number of
free (e.g. YALMIP [110] or the GNU Linear Programming Kit [111]) and commercial
(such as CPLEX or TOMLAB [81]) solvers that can efficiently handle many practical
problems.

As it has been mentioned in the Introduction, statements in propositional calculus
can be transformed into linear inequalities. The notations of the following summary
are mostly from [12]. A statement, such as x ≤ 0 that can have a truth value of ”T”
(true) or ”F” false is called a literal and will be denoted by Si. In Boolean algebra,
literals can be combined into compound statements using the following connectives :
”∧” (and), ”∨” (or), ”∼” (not), ”→” (implies), ”↔” (if and only if), ”⊕” (exclusive or).
The truth table for the previously listed connectives is given in Table 2.1.

A propositional logic problem, where a statement S1 must be proved to be true
given a set of compound statements containing literals S1, . . . , Sn, can be solved by
means of a linear integer program. For this, logical variables denoted by δi (δi ∈ {0, 1})
must be associated with the literals Si. Then the original compound statements can be
translated to linear inequalities involving the logical variables δi. A list of equivalent
compound statements and linear equalities or inequalities taken from [153] is shown
in Table 2.2.

S1 S2 ∼ S1 S1 ∨ S2 S1 ∧ S2 S1 → S2 S1 ↔ S2 S1 ⊕ S2

T T F T T T T F
T F F T F F F T
F T T T F T F T
F F T F F T T F

Table 2.1: Truth table

compound statement equivalent linear equality/inequality
S1 ∨ S2 δ1 + δ2 ≥ 1
S1 ∧ S2 δ1 = 1, δ2 = 1
∼ S1 δ1 = 0
S1 → S2 δ1 − δ2 ≤ 0
S1 ↔ S2 δ1 − δ2 = 0
S1 ⊕ S2 δ1 + δ2 = 1

Table 2.2: Equivalent compound statements and linear equalities/inequalities

2.2 Positive (nonnegative) systems

The concepts and basic results in this short section are mostly taken from [22]. A
function f = [f1 . . . fn]

T : [0,∞)n → R
n is called essentially nonnegative if, for all

i = 1, . . . , n, fi(x) ≥ 0 for all x ∈ [0,∞)n, whenever xi = 0. In the linear case,
when f(x) = Ax, the necessary and sufficient condition for essential nonnegativity
is that the off-diagonal entries of A are nonnegative (such a matrix is often called a
Metzler-matrix ).
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Consider an autonomous nonlinear system

ẋ = f(x), x(0) = x0 (2.10)

where f : X → R
n is locally Lipschitz, X is an open subset of Rn and x0 ∈ X . Suppose

that the nonnegative orthant [0,∞)n = R
n

+ ⊂ X . Then the nonnegative orthant is
invariant for the dynamics (2.10) if and only if f is essentially nonnegative.

Quasi-polynomial and Lotka-Volterra models (section 2.3), and deterministic bio-
chemical reaction networks (section 2.5) are well-known examples of essentially non-
negative systems.

2.3 Quasi-polynomial (QP) systems

2.3.1 Model form

Quasi-polynomial systems are systems of ODEs of the following form

ẏi = yi

(

li +
m∑

j=1

Aij

n∏

k=1

y
Bjk

k

)

, i = 1, . . . , n, (2.11)

where y ∈ int(Rn
+), A ∈ R

n×m, B ∈ R
m×n, li ∈ R, i = 1, . . . , n. Furthermore,

L = [l1 . . . ln]
T . Without the loss of generality we can assume that Rank(B) = n and

m ≥ n (see [79]).
Let us denote the monomials of (2.11) as

zj =

n∏

k=1

y
Bjk

k , j = 1, . . . , m. (2.12)

It can be easily calculated that the time derivatives of the monomials form a Lotka-
Volterra system i.e.

żi = zi(λi +

m∑

j=1

Mijzj), i = 1, . . . , m, (2.13)

where M = B · A ∈ R
m×m, λ = (B · L) ∈ R

m×1, and zi > 0, i=1,. . . , m.

2.3.2 Transforming non-QP models into QP form

A wide class of nonlinear autonomous systems with smooth nonlinearities can be em-
bedded into QP-form if they satisfy two requirements [76].

1. The set of nonlinear ODEs should be in the form:

ẏs =
∑

is1,...,isn,js

ais1...isnjsy
is1
1 . . . yisnn f(y)js, (2.14)

ys(t0) = y0s , s = 1, . . . , n

where f(y) is some scalar valued function, which is not reducible to quasi-

monomial form containing terms in the form of
∏n

k=1 y
Γjk

k , j = 1, . . . , m with Γ
being a real matrix.
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2. Furthermore, we require that the partial derivatives of the model (2.14) fulfill:

∂f

∂ys
=

∑

es1,..,esn,es

bes1..esnesy
es1
1 . . . yesnn f(y)es.

The embedding is performed by introducing a new auxiliary variable

η = f q
n∏

s=1

ypss , q 6= 0. (2.15)

Then, instead of the non-quasi-polynomial nonlinearity f we can write the original set
of equations (2.14) into QP-form:

ẏs =

(

ys
∑

is1,...,isn,js

(

ais1...isnjsη
js/q

n∏

k=1

y
isk−δsk−jspk/q
k

))

, s = 1, . . . , n, (2.16)

where δsk = 1 if s = k and 0 otherwise. In addition, a new quasi-polynomial ODE
appears for the new variable η:

η̇ = η

[ n∑

s=1

(

psy
−1
s ẏs +

∑

isα,js
esα,es

aisα,jsbesα,esqη
(es+js−1)/q ·

n∏

k=1

y
isk+esk+(1−es−js)pk/q
k

)]

,

α = 1, . . . , n. (2.17)

It is important to observe that the above embedding is not unique, because we can
choose the parameters ps and q in (2.15) in many different ways: the simplest solution
is to choose (ps = 0, s = 1, ..., n; q = 1). Since the embedded QP system includes
the original differential variables yi, i = 1, . . . , n, it is clear that the stability of the
embedded system (2.16)-(2.17) implies the stability of the original system (2.14).

2.3.3 Diagonal stabilizability and global stability of QP mod-

els

By the global stability of QP systems, we mean stability with respect to the positive
orthant. Let us assume that the model (2.13) has at least one equilibrium point y∗ in
the strictly positive orthant, and let us denote the corresponding equilibrium in the
monomial space by

z∗ = [z∗1 z∗2 . . . z∗m]
T .

The following Lyapunov function candidate is often used when studying the global
stability properties of (2.13) and (2.11) [146].

V (z) =
m∑

i=1

ci

(

zi − z
∗
i − z

∗
i ln

zi
z∗i

)

, (2.18)

where ci > 0, i = 1, . . . , m.
It can be calculated that the time derivative of V satisfies

V̇ (z) =
1

2
(z − z∗)T (MTC + CM)(z − z∗), (2.19)
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where C = diag(c1, . . . , cm). This means that if the linear matrix inequality

MTC + CM ≤ 0 (2.20)

can be solved for a positive definite diagonal matrix C, then any solution of (2.11)
starting in the positive orthant is bounded and componentwise bounded away from zero
[54], since V satisfies the requirements for being a Lyapunov function in the state-space
of the original QP system (2.11), too. Naturally, in such a case z∗ is a globally stable
equilibrium point of (2.13) with Lyapunov function (2.18), and this implies the global
stability of y∗. In this case, we call M a diagonally stabilizable matrix. Furthermore,
if the inequality (2.20) is strict, then the stability of z∗ and y∗ is asymptotic (M is
diagonally asymptotically stabilizable). Moreover, it is shown it [54] that we can apply
even milder conditions: if we assume (by appropriate ordering of the monomials) that
the first n rows of B are linearly independent, then ci > 0 for i = 1, . . . , n and cj ≥ 0
for j = n + 1, . . . , m still guarantees the global stability of y∗.

Necessary and sufficient algebraic conditions of diagonal stabilizability are only
available for 2 × 2 and 3 × 3 matrices [93], but it is true that a quadratic matrix M
is diagonally stabilizable if and only if the LMI (2.20) has a positive definite diagonal
solution, i.e the LMI

−(MTC + CM) ≥ 0, C > 0 (2.21)

is feasible [14].
We remark that the diagonal stabilizability of a quadratic matrix is an important

problem in different fields such as linear systems theory and also in other areas [95,
64, 93].

2.4 Generalized dissipative-Hamiltonian systems
The form of generalized dissipative Hamiltonian systems we will use is defined in [149].
In the autonomous case, this system class is given by the differential equations

ẋ = (J(x)−R(x))HT
x (x), (2.22)

where x ∈ R
n, H : R

n 7→ R is the Hamiltonian function, J(x) is an n × n skew
symmetric matrix (i.e. JT (x) = −J(x)), the energy conserving part of the system,
and R(x) = RT (x) is the so called dissipation matrix. Hx denotes the gradient of H
(row vector).

The time derivative of the Hamiltonian function is

Ḣ = Hx(x)(J(x)−R(x))H
T
x (x) =

Hx(x)J(x)H
T
x (x)

︸ ︷︷ ︸

0

−Hx(x)R(x)H
T
x (x). (2.23)

In many cases, the J matrix satisfies the Jacobi equations

n∑

l=1

[

Jlj(x)
∂Jik
∂xl

(x) + Jli(x)
∂Jkj
∂xl

(x) + Jlk(x)
∂Jji
∂xl

(x)

]

= 0, (2.24)

i, j, k = 1, . . . , n

In this case, by Darboux’s theorem, around any point x0 where the rank of J(x) is
constant it’s possible to find local coordinates

x̄ =
[
q1 . . . qk p1 . . . pk s1 . . . sl

]T
(2.25)
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such that J in the new coordinates has the form

J(x̄) =





0 Ik 0
−Ik 0 0
0 0 0



 (2.26)

where Ik is a unit matrix of dimension k × k, rank(J) = 2k, and n = 2k + l (see,
e.g. [151]). J(x̄) in (2.26) is clearly symplectic if rank(J(x)) = n, n is even, and the
integrability conditions in (2.24) are satisfied. We note that even if the conditions of
the local coordinates transformation (2.25) are not fulfilled, the skew symmetricity of J
still implies that yTJ(x)y = 0, ∀x, y ∈ R

n, which means that H is a conserved quantity
(first integral) of the system if R = 0. These facts motivate us to use the notion
of generalized Hamiltonian systems and clearly show that this broader system class
properly includes the class of classical Hamiltonian systems with symplectic structure.

It is visible from (2.23) that if yTR(x)y ≥ 0, ∀x, y ∈ R
n (i.e. R is positive semidefi-

nite), then the Hamiltonian function is nonincreasing. In this case, the model (2.22) is
called a (globally) dissipative-Hamiltonian system. Of course, this property might be
satisfied not globally, but only in some neighborhood of the equilibrium point (locally
dissipative-Hamiltonian description). If there are no constraints about the local or
global definiteness of R, the model is called a pseudo-Hamiltonian system [23]. It is
important to note that in physical system models, the matrices J(x) and R(x) often
reflect the physical structure or topology of the system [149].

2.5 Chemical reaction networks

2.5.1 Basic description of mass action reaction networks

The original physical picture underlying the reaction kinetic system class is a closed
thermodynamic system with constant physico-chemical properties under isothermal
and isobaric conditions, where chemical species Xi, i = 1, ..., n take part in r chemical
reactions. The system is assumed to be perfectly stirred, i.e. concentrated parameter
in the simplest case. The specie concentrations xi = [Xi], i = 1, ..., n form the state
vector, the elements of which are non-negative by nature.

The origin of mass action law lies in the molecular collision picture of chemical
reactions. Here the reaction occurs when either two reactant molecules collide, or
a reactant molecule collides with an inactive (e.g. solvent) molecule. Clearly, the
probability of having a reaction is proportional to the probability of collisions, that is
proportional to the concentration of the reactant(s).

A straightforward generalization of the above molecular collision picture is when
we allow to have multi-molecule collisions to obtain elementary reaction steps in the
following form [83, 155]:

n∑

i=1

αijXi →
n∑

i=1

βijXi, j = 1, ..., r, (2.27)

where the nonnegative integers αij , βij are the so-called stoichiometric coefficients of
component Xi in the jth reaction. The linear combinations of the species in eq. (2.27),
namely

∑n
i=1 αijXi and

∑n
i=1 βijXi for j = 1, . . . , r are called the complexes and are

denoted by C1, C2, . . . , Cm. According to the extended molecular picture, the reaction
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rate of the above reactions can be described as

ρj = kj

n∏

i=1

[Xi]
αij = kj

n∏

i=1

x
αij

i , j = 1, ..., r, (2.28)

where kj > 0 is the reaction rate constant (or reaction rate coefficient) of the jth
reaction.

To further formalize the above description, following [49] and several other related
works, we will also characterize CRNs with the following three sets.

1. S = {X1, . . . , Xn} is the set of species or chemical substances.

2. C = {C1, . . . , Cm} is the set of complexes. As it has been mentioned before, the
complexes are represented as linear combinations of the species with nonnegative
integer coefficients (see, eq. (2.27)).

3. R = {(Ci, Cj) | Ci, Cj ∈ C, and Ci is transformed to Cj in the CRN} is the set
of reactions. The relation (Ci, Cj) ∈ R will be denoted as Ci → Cj . In this
case, Ci is called the reactant or source complex, and Cj is the product complex.
The nonnegative reaction rate coefficient is assigned to each reaction. When it is
more convenient, we will index the reaction rate coefficients with a double index,
i.e. kij denotes the rate coefficient of the reaction Ci → Cj.

During the numerical computations, the reaction rate coefficients of all possible reac-
tions are often stored in matrices. In such a case, kij = 0 means that the reaction
Ci → Cj is actually not taking place in the reaction network (i.e. (Ci, Cj) /∈ R), and
the corresponding directed edge (with zero weight) is naturally not drawn in the reac-
tion graph. If the reactions Ci → Cj and Cj → Ci are present at the same time in a
reaction network for some i, j then this pair of reactions is called a reversible reaction
(but it will be treated as two separate elementary reactions in most of the forthcoming
computations).

2.5.2 Graph representation of mass-action systems

The above description naturally gives rise to the following weighted directed graph
structure [49] assigned to the CRN (2.27). The weighted directed graph D = (Vd, Ed)
of a reaction network (simply called the reaction graph) consists of a finite nonempty
set Vd of vertices and a finite set Ed of ordered pairs of distinct vertices called directed
edges. The vertices correspond to the complexes, i.e. Vd = {C1, C2, . . . Cm}, while the
directed edges represent the reactions, i.e. (Ci, Cj) ∈ Ed if complex Ci is transformed
to Cj in the reaction network. The reaction rates kj for j = 1, . . . , r in (2.28) are
assigned as positive weights to the corresponding directed edges in the graph. A walk
in the reaction graph is an alternating sequence W = C1E1C2E2 . . . Ck−1Ek−1CkEk

where Ci ∈ Vd, Ei ∈ Ed for i = 1, . . . , k. W is a directed path if all the vertices in it
are distinct. P is called a directed cycle if the vertices C1, C2, . . . , Ck−1 are distinct,
k ≥ 3 and C1 = Ck.

A set of complexes {C1, C2, . . . , Ck} is a linkage class of a reaction network if the
complexes of the set are linked to each other in the reaction graph but not to any other
complex [50] (i.e. the individual linkage classes form the connected components of the
directed graphD). Two different complexes are said to be strongly linked if there exists
a directed path from one complex to the other, and a directed path from the second
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complex back to the first. Moreover, each complex is defined to be strongly linked to
itself. A strong linkage class is a set of complexes with the following properties: each
pair of complexes in the set is strongly linked, and no complex in the set is strongly
linked to a complex that is not in the set. A terminal strong linkage class is a strong
linkage class that contains no complex that reacts to a complex in a different strong
linkage class (i.e. there is no ”exit” from a terminal strong linkage class through a
directed edge).

A reaction network is called reversible, if whenever the reaction Ci → Cj exists,
then the reverse reaction Cj → Ci is also present in the network. A reaction network
is called weakly reversible, if each complex in the reaction graph lies on at least one
directed cycle (i.e. if complex Cj is reachable from complex Ci on a directed path in the
reaction graph, then Ci is reachable from Cj on a directed path). If the corresponding
forward and backward reaction pairs form a cycle in the directed graph of a reversible
CRN, then this cycle of reversible edge-pairs will be called a circuit to distinguish it
from a directed cycle. E.g. the CRN in Fig. 2.3 d) contains a circuit of length 3, while
the CRNs in Figs. 2.3 a), b) and c) do not contain any circuit. By the structure of a
CRN we simply mean the unweighted directed graph of a reaction network.

2.5.3 Differential equations of mass-action systems

There are several possibilities to represent the dynamic equations of mass action sys-
tems (see, e.g. [49, 69, 28]. The most advantageous form for our purposes is the one
that is used e.g. in Lecture 4 of [49], i.e.

ẋ = Y · Ak · ψ(x), (2.29)

where x ∈ R
n is the concentration vector of the species, Y ∈ R

n×m called the complex
composition matrix stores the stoichiometric coefficients of the complexes, Ak ∈ R

m×m

contains the information corresponding to the weighted directed graph of the reaction
network, and ψ : Rn 7→ R

m is a monomial-type vector mapping defined by

ψj(x) =
n∏

i=1

x
Yij

i , j = 1, . . . , m. (2.30)

The exact structure of Y and Ak is the following. The ith column of Y contains the
composition of complex Ci, i.e. Yji is the stoichiometric coefficient of Ci corresponding
to the specie Xj. Ak is a column conservation matrix (i.e. the sum of the elements in
each column is zero) defined as

[Ak]ij =

{
−
∑m

l=1,l 6=i kil, if i = j

kji, if i 6= j.
(2.31)

Using the notions of the reaction graph, the diagonal elements [Ak]ii contain the neg-
ative sum of the weights of the edges starting from the node Ci, while the off-diagonal
elements [Ak]ij, i 6= j contain the weights of the directed edges (Cj , Ci) coming into
Ci. Based on the above properties, it is appropriate to call Ak the Kirchhoff matrix
or kinetics matrix of a reaction network.

To handle the exchange of materials between the environment and the reaction
network, the so-called ”zero-complex” can be introduced and used which is a special
complex with all the stoichiometric coefficients zero i.e., it is represented by a zero
vector in the Y matrix (for the details, see, e.g. [49] or [26]).
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We can associate an n-dimensional vector with each reaction in the following way.
For the reaction Ci → Cj, the corresponding reaction vector denoted by ek is given by

ek = [Y ]·,j − [Y ]·,i, k = 1, . . . , r, (2.32)

where [Y ]·,i denotes the ith column of Y . Any convention can be used for the numbering
of the reaction vectors (e.g. the indices i and j in (2.32) can be treated as digits in a
decimal system). The rank of a reaction network denoted by s is defined as the rank of
the vector set H = {e1, e2 . . . , er} where r is the number of reactions. The elements of
H span the so-called stoichiometric subspace, denoted by S, i.e. S = span{e1, . . . , er}.
The positive stoichiometric compatibility class containing a concentration x0 is the
following set [50]:

(x0 + S) ∩ R
n
+,

where R
n
+ denotes the positive orthant in R

n. The deficiency d of a reaction network
is defined as [49, 50]

d = m− l − s, (2.33)

where m is the number of complexes in the network, l is the number of linkage classes
and s is the rank of the reaction network. The deficiency is a very useful tool for
studying the dynamical properties of reaction networks and for establishing parameter-
independent global stability conditions (see subsection 2.5.6 below).

Using the notation

M = Y · Ak, (2.34)

equation (2.29) can be written in the form

ẋ =M · ψ(x), (2.35)

where M contains the coefficients of the monomials in the polynomial ODE (2.29)
describing the time-evolution of the concentrations. Using the notation Σ for a given
CRN, it is clear from the above description that the system’s reaction graph and the
corresponding dynamics can be characterized either by the triplet (S, C,R) or equiva-
lently by the matrix pair (Y,Ak), therefore we can use the notations Σ = (S, C,R) or
Σ = (Y,Ak). The following example illustrates the introduced basic notions on CRNs.

Example 2.5.1. Consider the reaction network the graph of which is shown in Fig.
2.1 with the parameters:

k1 = 1, k2 = 1.1, k3 = 1, k4 = 1, k5 = 1.1, k6 = 0.1, k7 = 3, k8 = 1.

Figure 2.1: Simple reaction network of Example 2.5.1
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Let us number the complexes as

C1 = X1 +X2, C2 = X1 + 2X2, C3 = 2X2, C4 = 2X1 + 3X2.

Then the matrices of the description (2.29) are the following:

Y =

[
1 1 0 2
1 2 2 3

]

, Ak =







−2 1.1 0 0
1 −2.3 3 1
1 0.1 −3 1
0 1.1 0 −2







(2.36)

M = Y Ak =

[
−1 1 3 −3
2 0 0 −2

]

. (2.37)

2.5.4 Simple algebraic condition for weak reversibility

We recall the following classical result about weakly reversible networks, which is
adapted from Theorem 3.1 of [63] and Proposition 4.1 of [49]:

Theorem 2.5.1. Let ℓ be the number of linkage classes in a CRN, Ak be a kinetics
matrix and let Λi, i = 1, . . . , ℓ, denote the support of the ith linkage class (i.e. the
index j ∈ Λi if and only if the complex Cj belongs to the ith linkage class). Then the
reaction graph corresponding to Ak is weakly reversible if and only if there is a basis
of ker(Ak),

{
b(1), . . . , b(ℓ)

}
, such that, for i = 1, . . . , ℓ,

b(i) =

{

b
(i)
j > 0, j ∈ Λi

b
(i)
j = 0, j 6∈ Λi.

An immediate consequence of Theorem 2.5.1 is that there is a vector b ∈ R
m
>0 ∩ ker(Ak)

if and only if the reaction graph corresponding to Ak is weakly reversible.

2.5.5 Kinetic realizability of nonnegative systems

An autonomous polynomial nonlinear system of the form (2.10) is called kinetically
realizable or simply kinetic, if a mass action reaction mechanism given by eq. (2.29)
can be associated to it that exactly realizes its dynamics, i.e. f(x) = Y · Ak · ψ(x)
where ψ contains the monomials, the columns of matrix Y contain the exponents of the
monomials, and Ak is a valid Kirchhoff matrix (see subsection 2.5.3 for its properties).
In such a case, the pair (Y,Ak) will be called a realization of the system (2.35). As it
is expected from linear algebra, the same kinetic polynomial system may have many
parametrically and/or structurally different realizations, and this is particularly true
for kinetic systems coming from application domains other than chemistry.

The problem of kinetic realizability of polynomial vector fields was first examined
and solved in [86] where the constructive proof contains a realization algorithm that
produces the weighted directed graph of a possible associated mass action mechanism
(called the canonic mechanism). According to [86], the necessary and sufficient condi-
tion for kinetic realizability of a polynomial vector field is that all coordinates functions
of f in (2.10) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (2.38)

where gi and hi are polynomials with nonnegative coefficients.
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The very short description of the realization algorithm presented in [86] is the
following. Let us write the polynomial coordinate functions of the right hand side of
a kinetic system (2.10) as

fi(x) =

ri∑

j=1

mij

n∏

k=1

xbjk , (2.39)

where ri is the number of monomial terms in fi. Let us denote the transpose of the
ith standard basis vector in R

n as ei and let Bj = [bj1 . . . bjn].

Algorithm 1 for constructing the canonic mechanism [86]
For each i = 1, . . . , n and for each j = 1, . . . , ri do:

1. Cj = Bj + sign(mij) · ei

2. Add the following reaction to
the graph of the realization

n∑

k=1

bjkXk −→
n∑

k=1

cjkXk

with reaction rate coefficient
|mij|, where Cj = [cj1 . . . cjn].

Roughly speaking, condition (2.38) means that kinetic systems cannot contain negative
cross-effects. From this, it is easy to see that all nonnegative linear systems are ki-
netic, since a linear system characterized by a Metzler matrix where only the diagonal
elements can have negative coefficients is obviously in the form of (2.38). Moreover,
classical Lotka-Volterra systems with the equations (2.13) are always kinetic according
to the condition (2.38). However, there are many essentially nonnegative polynomial
systems that are not directly kinetic, since some of the monomials in fi that do not
contain xi have negative coefficients. Such an example is shown in the following equa-
tions

ẋ1 = −x1x2 + x22 − 4x2 + 4 (2.40)

ẋ2 = x22 + x21 − 2x1 + 2

To circumvent this problem, one possible way is to embed the QP system (2.40) into
the LV class shown in (2.13), that can be done algorithmically (see section 2.3 and
[76]). However, this solution usually results in the significant dimension increase of
the state space (i.e. in the increase of species in the corresponding kinetic realization).
If the equations and the possible initial conditions guarantee that all state variables
remain strictly positive throughout the solutions, then a generally more advantageous
method is a simple state-dependent time-rescaling (see, e.g [J3]) of the equations in
the following way

dt =
n∏

i=1

χixidt
′ (2.41)
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where χi ∈ {0, 1} for i = 1, . . . , n can always be chosen such that the rescaled system
is kinetic. Applying (2.41) with χ1 = χ2 = 1, the equations of the original system
(2.40) are written as

x′1 = −x
2
1x

2
2 + x1x

3
2 − 4x1x

2
2 + 4x1x2 (2.42)

x′2 = x1x
3
2 + x31x2 − 2x21x2 + 2x1x2

where x′i = dxi

dt′
. It is easy to see that eq. (2.42) is kinetic. The reaction network

obtained by using Algorithm 1 can be seen in Fig. 2.2 where the reaction rate
coefficients are written close to the arrows representing reactions. It is important to
emphasize that as a result of the time-rescaling, the number of state variables (species)
and that of the monomials (complexes) remain the same as in the original system.
Moreover, such a time-rescaling preserves many important qualitative properties of
the system and the solutions, since t′ is a strictly monotonously increasing continuous
and invertible function of t. (But generally it does not preserve e.g. the eigenvalues
of the state matrix of the linearized system as it is shown in subsection 3.2.2. This
means that it depends on the particular application and problem class whether such
a time-rescaling can be allowed or not.

As we can see later in certain examples of chapter 6, the canonic mechanism pro-
duced by Algorithm 1 has usually more reactions and/or complexes than the minimal
number needed for the kinetic representation of the studied polynomial system. There-
fore, optimization will be applied in chapters 5 and 6 to select preferred structures from
the possible reaction graphs. The main significance of Algorithm 1 from our point of
view is that it is able to generate a feasible set of complexes for the CRN representation
of a kinetic polynomial system.

Figure 2.2: Canonic reaction network realizing eq. (2.42)

2.5.6 The Deficiency Zero and Deficiency One Theorems

The exact forms of the Deficiency Zero and Deficiency One Theorems are taken from
[50].

Theorem 2.5.2. Deficiency Zero Theorem
For any reaction network of deficiency zero the following statements hold true:

1. If the network is not weakly reversible then, for arbitrary kinetics (not necessarily
mass action), the differential equations for the corresponding reaction system
cannot admit a positive steady state (i.e. a steady state in R

n
+).

2. If the network is not weakly reversible then, for arbitrary kinetics (not necessarily
mass action), the differential equations of the corresponding reaction system can-
not admit a cyclic composition trajectory along which all species concentrations
are positive.
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3. If the network is weakly reversible then, for mass action kinetics (but regardless
of the positive values the reaction rate coefficients take), the differential equa-
tions of the corresponding reaction system have the following properties: There
exists within each positive stoichiometric compatibility class precisely one steady
state; that steady state is asymptotically stable; and there is no nontrivial cyclic
composition trajectory along which all species concentrations are positive.

Theorem 2.5.3. Deficiency One Theorem
Consider a mass action system for which the underlying reaction network has ℓ link-
age classes, each containing just one terminal strong linkage class. Suppose that the
deficiency d of the network and the deficiencies of the individual linkage classes di,
i = 1, . . . , ℓ satisfy the following conditions:

1. di ≤ 1, i = 1, . . . , ℓ

2.
∑ℓ

i=1 di = d

Then, no matter what (positive) values the reaction rate coefficients take, the cor-
responding differential equations can admit no more than one steady state within a
positive stoichiometric compatibility class. If the network is weakly reversible, the
differential equations admit precisely one steady state in each positive stoiciometric
compatibility class.

The above theorems establish very strong results about the qualitative dynamical
properties of kinetic systems that are also robust with respect to the parameters (i.e.
the reaction rate coefficients) and depend on the structure and on the stoichiometry
of the system.

The logarithmic Lyapunov function for the system in the case of the Deficiency
Zero Theorem is the following:

B(x) =
n∑

i=1

xi

(

ln

(
xi
x∗i

)

− 1

)

+ x∗i , (2.43)

where x∗ denotes the equilibrium point in the given stoichiometric compatibility class.

We add the important fact that the stability of the system in the case of the
Deficiency Zero Theorem is global if the CRN has one linkage class [4], since the
deficiency zero property and weak reversibility implies complex balance (see also the
following subsection).

It is also worth mentioning the following significant control related results on weakly
reversible deficiency zero networks. In [21] the detectability of such systems was studied
and nonlinear observers were proposed for them with proven convergence under mild
conditions. It was shown in [20] that weakly reversible deficiency zero networks are
input-to-state stable if the (non-vanishing) manipulable inputs are the reaction rate
coefficients.

It must be stressed that by distanting ourselves from the original chemical moti-
vations, we consider kinetic models as a general nonlinear system class, and do not
require in general that such models describe a chemically strictly feasible reaction
mechanism. Thus, it is allowed that certain thermodynamical constraints (such as
component mass balance conservation) are not fulfilled in the examined models.
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2.5.7 Detailed balance and complex balance

The original definition of detailed balance and complex balance came from the problem
statement of the thermodynamical compatibility of kinetic system models [83, 82, 18].
However, we will be mainly interested in the stability implications of these important
properties.

Definition 2.5.1. A CRN realization (Y,Ak) is called complex balanced at x∗ ∈ R
n
+,

if

Akψ(x
∗) = 0. (2.44)

Definition 2.5.2. A reversible CRN realization (Y,Ak) is called detailed balanced at
x∗ ∈ R

n
+, if

ρij(x
∗) = ρji(x

∗), ∀i, j such that Ci ⇆ Cj exists, (2.45)

i.e. the forward and reverse reaction rates for each reversible reaction are equal at x∗.

Clearly, if a CRN is complex balanced at x∗, then x∗ is an equilibrium point, i.e.
Y Akψ(x

∗) = 0. Furthermore, it is easy to check that detailed balancing at x∗ implies
complex balancing at x∗ for reversible networks, but the converse is generally not true.

Definition 2.5.3. A reversible CRN realization (Y,Ak) is called complex balanced
(detailed balanced), if it is complex balanced (detailed balanced) at each positive
steady state.

It is important to remark that both the complex balance and detailed balance
properties depend on the structure of the reaction digraph and on the numerical val-
ues of the reaction rate coefficients [25]. In [51], necessary and sufficient conditions
were given for detailed balancing (see also [118] for a clear explanation of conditions)
using the graph theoretical circuit and spanning forest conditions below. The circuit
conditions require that the product of the reaction rate coefficients should be equal
taken in either directions along a circuit. The spanning forest conditions say that

∏

(kij)
γij =

∏

(kji)
γij , (2.46)

where the products are taken for each reaction step in the spanning forest of the
reaction digraph and γ denotes the solutions of the equation

∑

i,j

γijvij = 0, for all i, j such that Ci −→ Cj exists, (2.47)

and vij is the reaction vector of the reaction Ci −→ Cj .
It is worth summarizing the following important properties and relations of detailed

and complex balancing collected from [48, 82, 51, 72, 25, 36].

P1 If there is no circuit in the reaction graph, then the spanning forest condition is
alone necessary and sufficient for detailed balancing.

P2 If the deficiency of the CRN is zero, then the circuit condition is necessary and
sufficient for detailed balancing.
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P3 If the deficiency of the CRN is zero, and there is no circuit in the reaction digraph,
then the reaction is detailed balanced.

P4 If the circuit conditions are satisfied in a reversible CRN containing at least one
circuit, then detailed balancing and complex balancing are equivalent.

P5 If a CRN is complex balanced (detailed balanced) at any positive x∗ then it is
complex balanced (detailed balanced) at all other positive equilibrium points.

P6 If a CRN is complex balanced then it is weakly reversible.

P7 A CRN is complex balanced for any positive values of reaction rate coefficients if
and only if a) it is weakly reversible, and b) the deficiency of the system is zero.

P8 If a CRN is complex balanced then there is precisely one equilibrium point in
each stoichiometric compatibility class. Furthermore, each equilibrium point is
at least locally stable with a known strict Lyapunov function.

2.5.8 Dynamical equivalence: possible structural non-uniqueness

of CRNs

The following simple example is given to help understanding the significance of dy-
namical equivalence in mass action CRNs.

Example 2.5.2. Consider the simple reaction mechanism depicted in Fig. 2.3 a). It
is easy to check that the reaction structures in Figs 2.3 b), c), d) and e) lead to the
same dynamical description as the original structure a), namely

ẋ1 = 3k1x
3
2 − k2x

3
1

ẋ2 = −3k1x
3
2 + k2x

3
1, (2.48)

for any k1, k2 > 0, l0 > 0, l1 <
3k1
2
, l2 < k2 and l3 > 0 (i.e. the CRNs in Fig. 2.3 are

dynamically equivalent). It is worth having a look at the structural properties of the
different realizations of eq. (2.48) shown in the subfigures. The realizations in Figs.
2.3.a) and b) are irreversible, the structure in Fig. 2.3.c) is weakly reversible, while the
networks in Figs. 2.3.d) and e) are fully reversible. The deficiencies of the first four
realizations a)–d) are 1, while the deficiency of realization e) is zero. This means that
both the weaker Deficiency One Theorem and the stronger Deficiency Zero Theorem
can be applied to all realizations a)–e), and this way to the dynamical system described
by eq. (2.48) (see [50]). Shortly speaking, the Deficiency One Theorem for such
weakly reversible networks as c) says that its differential equations admit precisely one
steady state in each positive stoichiometric compatibility class. Moreover, by applying
the Deficiency Zero Theorem to realization e) together with the recent important
results in [4], we obtain the additional valuable fact that for any positive k1 and k2,
each steady state of (2.48) is globally asymptotically stable within the corresponding
positive stoichiometric compatibility class with the Lyapunov function (2.43), where
the term ”globally” refers to the positive orthant.

First of all, the above example shows very transparently that important struc-
tural properties such as deficiency, reversibility or weak reversibility are not encoded
uniquely in the polynomial differential equations of a kinetic system i.e. they are re-
alization properties. (In chapter 5, it will be illustrated that the number of linkage
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Figure 2.3: Dynamically equivalent reaction networks

classes and the detailed/complex balanced properties can also change with different
realizations.) Among the concluding open questions of [86] (where the authors gave
necessary and sufficient conditions for polynomial ODEs to be kinetic together with
a constructive proof) we can read the following: ”We may look for a mechanism in
a class of mechanisms with a given - chemically relevant - property. Such a property
may be conservativity, (weak) reversibility, zero deficiency or just structural stability
as well.”Therefore, it is definitely of interest to develop computational tools to search
for realizations with such properties that are useful in the dynamical analysis of given
kinetic polynomial systems or CRNs.

We will call two reaction networks given by the matrix pairs (Y (1), A
(1)
k ) and

(Y (2), A
(2)
k ) dynamically equivalent, if

Y (1)A
(1)
k ψ(1)(x) = Y (2)A

(2)
k ψ(2)(x) = f(x), ∀x ∈ R

n

+ (2.49)

where for i = 1, 2, Y (i) ∈ R
n×mi have nonnegative integer entries, A

(i)
k are valid Kirch-

hoff matrices, and

ψ
(i)
j (x) =

n∏

k=1

x
[Y (i)]kj
k , i = 1, 2, j = 1, . . . , mi. (2.50)

In this case, (Y (i)A
(i)
k ) for i = 1, 2 are called dynamically equivalent realizations of

the corresponding kinetic vector field f . It is also appropriate to call (Y (1), A
(1)
k ) a

(dynamically equivalent) realization of (Y (2), A
(2)
k ) and vice versa.

2.5.9 Linear conjugacy of reaction networks

In [91] the authors extended the concept of dynamical equivalence to linear conjugacy.
In their framework, two CRNs denoted by Σ and Σ′ are said to be linearly conjugate
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if there is a positive diagonal linear mapping which takes the flow of one network to
the other. Dynamical equivalence is encompassed as a special case of linear conjugacy
taking the transformation to be the identity.

Importantly, linearly conjugate networks share the same qualitative dynamics (e.g.
number and stability of equilibria, persistence/extinction of species, dimensions of
invariant spaces, etc.). Similarly to different realizations of the same kinetics (2.29),
if a network with unknown kinetics is linearly conjugate to a network with known
dynamics, then the qualitative properties of the second network are transferred to the
first. The main result of [91] is the following.

Theorem 2.5.4. [91] Consider two mass-action systems Σ = (S, C,R) and Σ′ =
(S, C′,R′) and let Y be the stoichiometric matrix corresponding to the complexes in
either network. Consider a kinetics matrix Ak corresponding to Σ and suppose that
there is a kinetics matrix Ab with the same structure as Σ′ and a vector c ∈ R

n
>0 such

that
Y · Ak = T · Y · Ab (2.51)

where T =diag{c}. Then Σ is linearly conjugate to Σ′ with kinetics matrix

A′
k = Ab · diag {ψ(c)} . (2.52)

It is useful to summarize the proof below with notations adapted to this thesis.

Proof. Let Φ(x0, t) correspond to the flow of (2.29) associated to the reaction network
N . Consider the linear mapping h(x) = T−1 · x where T =diag{c}. Now define
Φ̃(y0, t) = T−1 · Φ(x0, t) so that Φ(x0, t) = T · Φ̃(y0, t).

Since Φ(x0, t) is a solution of (2.29) we have

d

dt
Φ̃(y0, t) = T−1 ·

d

dt
Φ(x0, t)

= T−1 · Y ·Ak · ψ(Φ(x0, t))

= T−1 · T · Y · Ab · ψ(T · Φ̃(y0, t))

= Y ·Ab · diag {ψ(c)} · ψ(Φ̃(y0, t)).

It is clear that Φ̃(y0, t) is the flow of (2.29) corresponding to the reaction network Σ′

with the kinetics matrix given by (2.52). We have that h(Φ(x0, t)) = Φ̃(h(x0), t) for all
x0 ∈ R

n
>0 and t ≥ 0 where y0 = h(x0) since y0 = Φ̃(y0, 0) = T−1 · Φ(x0, 0) = T−1 · x0.

It follows that the networks Σ and Σ′ are linearly conjugate.

It is important to remark that linear conjugacy is a special case of the general
kinetic transformation (lumping) schemes analyzed e.g. in [105, 148, 47].

2.5.10 Three important conjectures

Chemists and chemical engineers usually accept the following three conjectures by
intuition, although neither of them has been proved completely (except for special
cases) until the time of writing this dissertation. Significant effort has been made in
the last decades for general proofs, but it seems to be technically challenging in all
three cases [25].

The Global Attractor Conjecture says that for any complex balanced CRN and
any initial condition x(0) ∈ R

n
+, the equilibrium point x∗ is a global attractor in the

corresponding positive stoichiometric compatibility class.
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A nonnegative dynamical system is called persistent, if no trajectory that starts in
the positive orthant has an ω-limit point on the boundary of Rn

+. Chemically, persis-
tence means that no species ”die out” during the operation of the system. According
to the Persistency Conjecture, any weakly reversible mass-action system is persistent.
(Sometimes a weaker version of this conjecture is given with the additional assumption
that the weakly reversible system has bounded trajectories.)

The Boundedness Conjecture says that any weakly reversible reaction network with
mass-action kinetics has bounded trajectories. The Deficiency Zero and Deficiency One
Theorems (see subsection 2.5.6) together with the Boundedness Conjecture underline
the importance of weak reversibility. Seeing this, it is understandable why the following
is written in [91]: ”The development of algorithms and computer software which can
efficiently check for viable weakly reversible target networks . . . is a primary interest”.
In sections 6.3 and 6.4, two different numerical solutions for this problem will be given.

There are important relations between the notions related to the above mentioned
conjectures. Firstly, it is known that complex balance implies weak reversibility [83].
Moreover, each trajectory of a complex balanced system remains bounded. Most
importantly, it follows from the results in [141] that if the Persistency Conjecture were
true, it would imply the Global Attractor Conjecture. Very recent results are that both
the Global Attractor Conjecture and the Boundedness conjecture were successfully
proved for one linkage class reaction networks by the same author [4, 3].

The above outlined results further support the motivation and significance of find-
ing CRN realizations with required properties which is the topic of chapters 5 and 6.
In particular, the finding of dynamically equivalent or ”dynamically similar” complex
balanced or weakly reversible structures is of significant interest.
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Chapter 3

Analysis results for
quasi-polynomial systems

This chapter presents new results in the field of the dynamic analysis of QP systems.
Section 3.1 describes an interesting connection between the global stability and the
existence of a Hamiltonian structure in QP systems. In section 3.2, a frequently used
time-rescaling transformation is studied from a computational point of view. Section
3.3 shortly summarizes additional related results that could not be fit into the thesis
in full detail due to length constraints. The main motivating factors of the work are
described in chapter 1, while the basic notions corresponding to QP systems can be
found in section 2.3.

3.1 Global stability and quadratic Hamiltonian struc-

ture in Lotka-Volterra sytems

For the dissipative-Hamiltonian description of LV systems, the definitions and nota-
tions of sections 2.3 and 2.4 will be used.

3.1.1 Dissipative Hamiltonian description of LV systems with
a quadratic Hamiltonian function

Similarly to subsection 2.3.3, let us assume again that the LV model (2.13) has an
equilibrium point in the strictly positive orthant and denote the equilibrium point
of interest with z∗. For the forthcoming calculations, it is comfortable to apply a
coordinates shift to place the equilibrium into the origin in the new coordinates, i.e.
let us define the vector of new variables as

x = z − z∗. (3.1)
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With this transformation, the model (2.13) in the new coordinates reads

ẋi = (xi + z∗i )

(

λi +
m∑

j=1

Mij(xj + z∗j )

)

=

(xi + z∗i )









λi +
m∑

j=1

Mijz
∗
j

︸ ︷︷ ︸

0

+
m∑

j=1

Mijxj









= (3.2)

(xi + z∗i )

m∑

j=1

Mijxj, i = 1, . . . , m.

Consider a quadratic Hamiltonian function candidate

H(x) =
1

2
(h1x

2
1 + h2x

2
2 + · · ·+ hmx

2
m), (3.3)

where hi ∈ R, i = 1, . . . , m. The gradient of H is then

Hx(x) = [h1x1 h2x2 . . . hmxm]. (3.4)

Then the system model (3.2) can be written as

ẋ = Γ(x)MH−1HT
x (x), (3.5)

where

M =








M11 M12 . . . M1m

M21 M22 . . . M2m
...

...
Mm1 Mm2 . . . Mmm







, (3.6)

Γ(x) = diag(xi + z∗i ) =








(x1 + z∗1) 0 . . . 0
0 (x1 + z∗2) . . . 0
...

...
...

...
0 . . . 0 (xm + z∗m)








(3.7)

and
H = diag(h1, . . . , hm). (3.8)

Let us use the notation S(x) = Γ(x)MH−1. Now we decompose S(x) to a skew
symmetric and a symmetric part in the following way

S(x) =
1

2



S(x)− ST (x)
︸ ︷︷ ︸

skew symm.

+S(x) + ST (x)
︸ ︷︷ ︸

symm.



 . (3.9)

Therefore R(x) = −1
2
(S(x) + ST (x)) in our model. This means that the dissipative

Hamiltonian structure can be investigated through studying the definiteness of S(x)+
ST (x).

We note that also in this special case, the Jacobi equations (2.24) are not necessarily
fulfilled for J(x) = (S(x)−ST (x))/2, but the skew symmetric property of J is enough
for the derivation of the forthcoming results.
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It is useful to further decompose Γ(x) as

Γ(x) = X + Z∗, (3.10)

where X = diag(xi), Z
∗ = diag(z∗i ), i = 1, . . . , m. Then we can write

S(x) + ST (x) = Γ(x)MH−1 +H−1MTΓT (x) = (3.11)

XMH−1 +H−1MTX + Z∗MH−1 +H−1MTZ∗. (3.12)

Since X and Z∗ are diagonal (and therefore symmetric), the positive semidefiniteness
of R(x) in (2.22) leads to the following matrix inequality

XMH−1 +H−1MTX ≤ −(Z∗MH−1 +H−1MTZ∗). (3.13)

There are in principle two sets of unknowns in the above matrix inequality: the coef-
ficients of the Hamiltonian function in H−1 and the state variables in the matrix X .
In these two sets, (3.13) is clearly a bilinear matrix inequality.

Since we are interested in the local dissipative-Hamiltonian description of the sys-
tem around the equilibrium point, first we solve (3.13) for a positive definite diagonal
H−1 with X = 0. Having determined the reciprocials of the coefficients in the Hamil-
tonian function (i.e. H−1), the dissipativity region can be approximated by searching
for a convex set in the state-space which satisfies (3.13).

The question might arise why a uniform weighting of H in (3.3) (i.e. hi = 1,
i = 1, . . . , m) is not necessarily enough for our purpose. From (3.13) it can be seen
that the parametrization of the Hamiltonian function in the form of eq. (3.3) is needed,
because if MTZ∗ +Z∗M is itself indefinite, but MTZ∗ is diagonally stabilizable, then
there is a convex neighborhood of the origin where Γ(x)MH−1 + H−1MTΓT (x) is
positive (semi)definite, but there is no such neighborhood where Γ(x)M +MTΓT (x)
is positive (semi)definite.

Themethod of searching for a locally dissipative generalized Hamiltonian
description of (2.13) can be summarized as follows:

1. Determine the equilibrium point of interest (Z∗) and center the coordinates ac-
cording to (3.1).

2. Try to solve the LMI

Z∗MH−1 +H−1MTZ∗ ≤ 0 (3.14)

for a positive definite diagonal H−1. If the LMI is feasible, then

3. Define the Hamiltonian function with the reciprocials of the diagonal elements
in H−1 as coefficients, i.e.

H(x) =
n∑

i=1

hix
2
i . (3.15)

4. Find an appropriate convex set around x = 0, for which (3.13) is valid.
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3.1. Global stability and quadratic Hamiltonian structure in Lotka-Volterra sytems

3.1.2 Equivalence to global stability with the logarithmic Lya-
punov function

Now we show that the diagonal stabilizability of M is equivalent to the solvability of
(3.14) i.e. to the local dissipativity of R(x). For this, we use the following well-known
fact from matrix algebra.

Lemma 3.1.1. [13] An n×n symmetric matrix W is positive semidefinite if and only
if Q ·W ·QT is positive semidefinite for an arbitrary nonsingular quadratic matrix Q
of dimension n× n.

Using the above lemma, we can state the following theorem.

Theorem 3.1.1. For given Z∗ > 0 and M , the LMI

Z∗MH−1 +H−1MTZ∗ ≤ 0 (3.16)

is solvable for a diagonal H−1 if and only if M is diagonally stabilizable i.e. there
exists a diagonal C > 0 such that

MTC + CM ≤ 0. (3.17)

Proof

1. Assume that (3.16) holds for a diagonal H−1 > 0. Then by Lemma 3.1.1

H(Z∗MH−1 +H−1MTZ∗)H = HZ∗M +MTZ∗H ≤ 0, (3.18)

and therefore the positive definite diagonal C in (3.17) can be chosen as HZ∗ =
Z∗H , so M is diagonally stabilizable.

2. Assume that M is diagonally stabilizable i.e. (3.17) holds for a diagonal C > 0.
Then we can write C as a product of Z∗ and another positive definite diagonal
matrix H i.e. C = HZ∗ = Z∗H . Now (3.17) can be written as HZ∗M +
MTZ∗H ≤ 0, and again by Lemma 3.1.1

H−1(HZ∗M +MTZ∗H)H−1 = Z∗MH−1 +H−1MTZ∗ ≤ 0. (3.19)

3.1.3 Examples

Example 3.1.1. Let the parameters of the LV system (2.13) be given as

M =

[
−1 0.3
7 −5

]

, λ =
[
3.5 −10

]T
. (3.20)

Using the above parameters it can be checked that an equilibrium point is at z∗ =
[5 5]T . Solving the LMI (2.21) we get that M is diagonally stabilizable e.g. with the
positive definite diagonal matrix

C =

[
10 0
0 1

]

. (3.21)

One can check that the eigenvalues of MTC + CM are λ1 = −26.1803 and λ2 =
−3.8197. This means that the LV system with the parameters above admits a local
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dissipative Hamiltonian description with a quadratic Hamiltonian function in a neigh-
borhood of z∗. Based on Theorem 3.1.1, the Hamiltonian function in the centered
coordinates can be computed as

H(x) = 2x21 + 0.2x22. (3.22)

A very rough estimate of the neighborhood of the equilibirum point where R is positive
definite can be obtained by using a simple interval-halving algorithm for finding four
corner points along the axes of the coordinates system. With a tolerance level of 10−6,
the four corner points in z-coordinates are the following

zc1 = [1.5790 5]T , zc2 = [86.1987 5]T (3.23)

zc3 = [5 0.2900]T , zc4 = [5 15.8324]T (3.24)

Naturally, the corresponding estimate of the quadratic stability region is the largest
level set (ellipsoid) of (3.22) that is inside the polygon defined by the above corner
points.

It can be checked that the Jacobi-identites (2.24) are satisfied for J(x), ∀x ∈ R
2 in

this example.

Example 3.1.2. As another illustrative example, consider a 3 dimensional LV-system
with the following parameters

M =





−0.15 0.004 0.01
0.06 −0.5 0.2
0.9 0.3 −1



 , λ =





0.132
0.74
−0.5



 (3.25)

The equilibrium point of the system is then at z∗ = [1 2 1]T . Solving the LMI (3.14)
gives that the Hamiltonian function

H(x) = 10x21 + 0.5x22 + 0.3x23 (3.26)

is decreasing in a neighborhood of the origin (the corner points of the dissipativity
region of R can be computed exactly the same way as in the previous case). However,
one can check that the Jacobi identities (2.24) are not satisfied for J in the cases of
e.g. i = 1, j = 2, k = 3 or i = 2, j = 3, k = 1.

We note that often the best geometry of the level sets of the Hamiltonian function
(which are ellipsoids) can be achieved by finding H with minimal condition number,
and this problem is also easily solvable numerically [14].

It is remarked that QP description and the above described method was successfully
applied to get an estimate of the stability region of the zero dynamics of a nonlinear
gas turbine model that had been identified from real measurement data [C2, J16].

3.2 Computing a state dependent time-rescaling

transformation for QP systems

3.2.1 Definition of the time-rescaling transformation

The generic case

Let Ω = [Ω1 . . . Ωn]
T ∈ R

n. It is shown e.g. in [54] that the following reparametriza-
tion of time

dt =
n∏

k=1

yΩk

k dt′ (3.27)
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transforms the original QP system (2.11) into the following (also QP) form

dyi
dt′

= yi

m+1∑

j=1

[Ã]i,j

n∏

k=1

y
[B̃]j,k
k , i = 1, . . . , n, (3.28)

where Ã ∈ R
n×(m+1), B̃ ∈ R

(m+1)×n and

[Ã]i,j = [A]i,j, i = 1, . . . , n; j = 1, . . . , m (3.29)

[Ã]i,m+1 = Li, i = 1, . . . , n (3.30)

and

[B̃]i,j = [B]i,j + Ωj , i = 1, . . . , m; j = 1, . . . , n (3.31)

[B̃]m+1,j = Ωj , j = 1, . . . , n. (3.32)

It can be seen that the number of monomials is increased by one and vector L̃ is zero
in the transformed system.

A special (non-generic) case

A special case of the time-reparametrization or new time transformation occurs when
the following relation holds:

ΩT = −bj , 1 ≤ j ≤ m, (3.33)

where bj is an arbitrary row of the B matrix of the original system (2.11). From eqs.
(3.31)-(3.32) we can see that in this case the j-th row of B̃ is a zero vector. This
means that the number of monomials in the transformed system (3.28) remains the
same as in the original QP system (2.11) and a nonzero L̃ vector that is equal to the
j-th column of A appears in the transformed system (for an example, see [54]).

In this case, the Ω vector can take only m possible different values (see eq. (3.33)),
therefore the stability analysis of the transformed system reduces to the feasibility
check of m different LMIs of the form (2.20). However, our approach treats the Ω
vector as part of the unknowns to be determined, therefore from now on we will only
consider the generic case defined in eq. (3.27).

3.2.2 Properties of the time-reparametrization transforma-
tion

The most important properties of the time-reparametrization transformation that are
used for analyzing local and global stability are as follows.

Monomials

The set of monomials p1, . . . , pm+1 for the reparametrized system can be written up in
terms of the original monomials:

pj =

n∏

k=1

yΩk

k ·
n∏

k=1

y
[B]j,k
k =

n∏

k=1

y
[B]j,k+Ωk

k , j = 1, . . . , m

and

pm+1 =
n∏

k=1

yΩk

k ,
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or using a shorter notation:

pj = r · zj, j = 1, . . . , m

pm+1 = r

where zj is given in (2.12) and

r =

n∏

k=1

yΩk

k .

Equilibrium points

Since the equations of the reparametrized system (3.28) can be written as

dyi
dt′

= yi(Li +
m∑

j=1

[A]i,j

n∏

k=1

y
[B]j,k
k )

n∏

k=1

yΩk

k , i = 1, . . . , n (3.34)

and we assume that yi > 0, i = 1, . . . , n, it is clear that the equilibrium point y∗ of the
original QP system (2.11) is also an equilibrium point of the reparametrized system
(3.34).

Local stability

Let us denote the Jacobian matrix of the original QP system (2.1) at the equilibrium
point by JQP (y

∗). Then the Jacobian matrix of the time reparametrized QP system
at the equilibrium point can be computed by using the formula described in [40]:

J̃QP (y
∗) = Y ∗ · Ã · Z̃∗ · B̃ · (Y ∗)−1 = r∗ · JQP (y

∗) =

n∏

k=1

y∗ Ωk

k · JQP (y
∗), (3.35)

where

Z̃∗ = diag(p∗1, . . . , p
∗
m, p

∗
m+1) , Y ∗ = diag(y∗1, . . . , y

∗
n)

are the quasi-monomials of the time-reparametrized system and the state variables at
the equilibrium point, respectively. From eq. (3.35) one can see that (as we natu-
rally expect) local stability is not affected by the time-reparametrization, because this
transformation just multiplies the eigenvalues of the Jacobian by a positive constant
r∗.

Global stability

Rewriting (3.27) gives

dt

dt′
=

n∏

k=1

(yk(t
′))Ωk (3.36)

from which we can see that t is a strictly monotonously increasing continuous and
invertible function of t′ if the state variables are strictly positive. This means that
global stability of any strictly positive equilibrium point in the original time scale in
this case is equivalent to the global stability of the same equilibrium in rescaled time.
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3.2.3 The time-reparametrization problem as a bilinear ma-
trix inequality

We denote an n × m matrix containing zero elements by 0n×m. Let us define two
auxiliary matrices by extending A with a zero column and B with a zero row, i.e.

Ā =
[
A 0n×1

]
∈ R

n×(m+1), (3.37)

and

B̄ =





B

01×n



 ∈ R
(m+1)×n. (3.38)

Then Ã and B̃ can be written as

Ã = [A|L] = Ā+ [0n×m|L], (3.39)

and

B̃ =










b1 + ΩT

b2 + ΩT

...
bm + ΩT

ΩT










= B̄ + S · Ω∗, (3.40)

where
Ω∗ = diag(Ω) ∈ R

n×n, (3.41)

and

S =








1 1 . . . 1
1 1 . . . 1
...
1 1 . . . 1







∈ R

(m+1)×n. (3.42)

It can be seen from eqs. (3.39) and (3.40) that the invariant matrix of the reparametrized
system is

M̃ = B̃ · Ã = (B̄ + S · Ω∗) · Ã. (3.43)

Therefore the matrix inequality for examining the global stability of the reparametrized
system is the following

−C < 0 (3.44)

M̃T · C + C · M̃ ≤ 0 (3.45)

i.e.

−C < 0 (3.46)

ÃT (B̄T + Ω∗ST )C + C(B̄ + SΩ∗)Ã ≤ 0 (3.47)

which clearly has the same form as (2.2) with the following set of unknowns:

x =














x1
x2
...

xm+1

xm+2
...

xm+n+1














=














c1
c2
...

cm+1

Ω1
...
Ωn














(3.48)
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Now we are ready to construct the matrices in the BMI (2.2) starting with

G1
0 = G2

0 = 0(m+1)×(m+1), (3.49)

[G1
k]i,j =

{
−1, i = j = k
0, otherwise

(3.50)

i, j, k = 1, . . . , m+ 1,

G1
k = 0(m+1)×(m+1), k = m+ 2, . . . , m+ n+ 1 (3.51)

and
K1

kl = 0(m+1)×(m+1), k, l = 1, . . . , m+ n+ 1. (3.52)

Furthermore, let us introduce the following notations

Pk ∈ R
(m+1)×(m+1),

[Pk]i,j =

{
[B̄ · Ã]i,j, i = k
0, i 6= k

, (3.53)

i, j, k = 1, . . . , m+ 1

and

Qkl ∈ R
(m+1)×(m+1),

[Qkl]i,j =

{
[Ã]l−m−1,j, i = k
0, i 6= k

, (3.54)

i, j, k = 1, . . . , m+ 1, l = m+ 2, . . . , m+ n+ 1.

Then

G2
k =

{
Pk + P T

k , k = 1, . . . , m+ 1
0(m+1)×(m+1), k = m+ 2, . . . , m+ n + 1,

, (3.55)

and

Kkl =

{
Qkl +QT

kl, k = 1, . . . , m+ 1, l = m+ 2, . . . , m+ n+ 1
0(m+1)×(m+1), otherwise

(3.56)

k, l = 1, . . . , m+ n+ 1.

We note that in certain cases the feasibility of a BMI can be traced back to the
feasibility of equivalent LMIs (see [14] or [136]), but in our case it is not possible
because of the structural (diagonality) constraint on both of the unknown matrices Ω∗

and C in (3.47).

3.2.4 Example

In order to illustrate the above proposed method of finding time-reparametrization
transformations for global stability analysis, a simple example is presented.

Example 3.2.1. Example with a full rank M matrix. Consider a QP system
with the following matrices

A =

[
2
3
−8

3
2
3
−7

3

]

≈

[
0.6667 −2.6667
0.6667 −2.3333

]

, (3.57)
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B =

[
2
3
−1

3

−8
3

16
3

]

≈

[
0.6667 −0.3333
−2.6667 5.3333

]

, (3.58)

L =

[
2
5
3

]

≈

[
2

1.6667

]

. (3.59)

Its equilibrium point of interest is:

y∗ = [1 1]T . (3.60)

The Jacobian matrix of the locally linearized system in y∗ has the following eigenvalues:
-0.1187, -4.9924. This shows that the investigated equilibrium point is at least locally
asymptotically stable.

Using an appropriate LMI solver (e.g. Matlab’s LMI Control Toolbox) it can be
checked that the LMI (2.20) cannot be solved for a diagonal C ifM = B ·A. However,
using the algorithm [97] for solving the corresponding BMI we find that a feasible
solution of (3.47) is e.g.

C =





1 0 0
0 1 0
0 0 1



 , Ω =
[

2
3
−5

3

]T
. (3.61)

The eigenvalues of M̃T · C + C · M̃ are

λ1 = 0, λ2 ≈ −0.2374, λ3 ≈ −9.9848, (3.62)

which shows that the examined equilibrium point of the system is globally stable.

Example A.1.1 in the Appendix demonstrates the use of time-rescaling in designing
a simple globally stabilizing static nonlinear feedback for an open generalized mass
action kinetic system.

3.3 Short summary of further related results
As it turned out from the previous results, the simple algebraic structure of QP systems
makes them especially suitable to apply matrix-based computation methods. The
following two related methods (that are only briefly summarized due to the page
constraints) are also based on this property.

3.3.1 An algorithm for finding invariants in QP systems

In this subsection, we use slightly different notations for QP systems from the ones
defined in section 2.3 because of practical reasons. These notations are introduced
below. We will represent an (n + 1) dimensional QP system in the following general
form:

ẏi = yi

(

λi +

m−1∑

j=1

Āi,jUj

)

, Uj =

n+1∏

k=1

y
B̄j,k

k , i = 1, . . . , n+ 1 (3.63)

where Ā ∈ R
(n+1)×(m−1), B̄ ∈ R

(m−1)×(n+1), λi ∈ R, i = 1, . . . , n + 1. Furthermore,
λ = [λ1 . . . λn+1]

T . Without the loss of generality we can assume that m−1 ≥ n+ 1,
and that the matrices Ā and B̄ are of full rank i.e. Rank(Ā) = Rank(B̄) = n+ 1 [79].
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If λi 6= 0 for some i, then it is useful to introduce a so-called unit monomial
Um =

∏n+1
k=1 y

0
k = 1. This way, the general equations (3.63) can be written in a

homogeneous form (see e.g. [17]) as

ẏi = yi

(
m∑

j=1

Ai,jUj

)

, Uj =

n+1∏

k=1

y
Bj,k

k , i = 1, . . . , n+ 1 (3.64)

where the matrices A ∈ R
(n+1)×m and B ∈ R

m×(n+1) are the following:

Ai,j = Āi,j, i = 1, . . . , n+ 1; j = 1, . . . , m− 1

Ai,m = λi, i = 1, . . . , n+ 1

and

Bi,j = B̄i,j, i = 1, . . . , m− 1; j = 1, . . . , n+ 1

Bm,j = 0, j = 1, . . . , n + 1

i.e. λ is inserted as a column vector after the last column of Ā, and a zero row
vector is inserted after the last row of B̄. The facts that Ā and B̄ contain n + 1
linearly independent rows and columns, respectively, and the row and column ranks
of a matrix are equal, imply that the rank of both A and B remains n + 1. Then, it
follows from the relation n + 1 < m that A and B are also of full rank, which is a
necessary condition for the applicability of the described algorithm.

The examined class of invariants

A function I : Rn+1 7→ R is called an invariant of (3.64) if

d

dt
I =

∂I

∂y
· ẏ = 0. (3.65)

We consider quasi-polynomial invariants in (3.64) that can be written in the following
special form:

I = F (y)− y
1
β

i , β ∈ R (3.66)

where

F (y) =

p
∑

k=1

ck

n+1∏

j=1,j 6=i

y
αkj

j , ck, αkj ∈ R (3.67)

It’s clear that (3.66) can be rewritten as

y
1
β

i = F (y) + c0, c0 ∈ R (3.68)

This is a narrower class of invariants than the one examined in [52] since it contains
those first integrals from where at least one of the variables can be expressed explicitly.
However, many types of first integrals (e.g. conserved mechanical, thermodynamical
or electrical energy) in physical system models belong to this class.
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The underlying principle of the algorithm

Consider a set of (n+1) QP differential equations in the homogeneous form of (3.64).
Let us assume without loss of generality that i = n+1 in (3.68) (because the QP form
of the equations is obviously preserved under permutation of the differential variables)
i.e. the following algebraic dependence is present in (3.64)

y
1
β

n+1 = c0 +

L∑

ℓ=1

cℓVℓ (3.69)

where β, cℓ ∈ R, ℓ = 0, . . . , L, β 6= 0, and

Vℓ =

n∏

k=1

yαℓk

k , αℓk ∈ R, ℓ = 1, . . . , L, k = 1, . . . , n (3.70)

It is clear that (3.69) is equivalent to the existence of a first integral of the form
(3.66)-(3.67).

Taking the time derivative of (3.69) we obtain

ẏn+1 = β

(

c0 +
L∑

ℓ=1

cℓVℓ

)β−1

·
L∑

ℓ=1

cℓV̇ℓ (3.71)

Using (3.69) and the fact that the monomials Vℓ, ℓ = 1, . . . , L do not depend on yn+1

we can further write

ẏn+1 = βy
β−1
β

n+1

L∑

ℓ=1

cℓ ·
n∑

i=1

∂Vℓ
∂yi

ẏi (3.72)

Finally, we can rewrite (3.72) to the standard QP form as

ẏn+1 = yn+1

(
L∑

ℓ=1

n∑

i=1

β · cℓ · αℓi · Vℓ · y
− 1

β

n+1

m∑

j=1

Ai,jUj

)

(3.73)

It is easy to see that the monomials in (3.73) (denoted by Rℓj) are the following

Rℓj = Vℓ · Uj · y
− 1

β

n+1 = y
αℓ1+Bj1

1 · y
αℓ2+Bj2

2 · · · · · yαℓn+Bjn
n · y

− 1
β

n+1 (3.74)

j = 1, . . . , m, ℓ = 1, . . . , L (3.75)

while the coefficients of the monomials are

γℓj =

n∑

i=1

βcℓαℓiAi,j (3.76)

i = 1, . . . , n, j = 1, . . . , m, ℓ = 1, . . . , L (3.77)

where the subscript i refers to that the partial differentiation in (3.72) has been per-
formed by xi.

Now, the aim of our algorithm is to determine β, the coefficients cℓ and the ex-
ponents αℓi, ℓ = 1, . . . , L, i = 1, . . . n in (3.69)–(3.70) using the special form of the
equation (3.73) and that of the monomials in (3.74).
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The input required by the algorithm consists of the matrices A and B of the QP
model in its homogeneous form defined in (3.64).

The operational condition of the algorithm is that, consistently to our preliminary
assumptions, matrices A and B are of full rank.

Without the loss of generality we can assume that the explicit variable of the
possible first integral is the last differential variable yn+1. By a simple permutation
of variables, each variable can be checked whether it is the explicit variable of a first
integral.

The main steps of the algorithm can be summarized as (the details can be found
in [J14])

1. Determination of the monomial candidates
To find a first integral in the form (3.69), one has to use the relationship (3.74)
defined between the monomials Uj , j = 1, . . . , m of the original differential equa-
tions and the monomials Rℓj , ℓ = 1, . . . , L, j = 1, . . . , m of the ODE for the
algebraically dependent variable yn+1.

2. Determination of β
To have a QP-type first integral from which yn+1 can be given explicitly, the
exponents of yn+1 in all of its monomials have to be identical. This step classifies
the exponent row vectors of the monomial candidates of the first integral by their
last element.

3. Determination of the coefficients
The last step to be performed is to search for a first integral with the collected
monomial candidates. Since the exponents of the monomial candidates are al-
ready given, only their coefficients have to be determined. If these coefficients
exist, the first integral exists for the current β, and it is completely determined
by the algorithm.

This algorithm is capable of finding QP type first integrals which are explicit in
(at least) one of their variables, moreover it operates without any heuristic steps. It
can be shown that the time-complexity of the algorithm is polynomial [J14]. It is also
remarked that coordinates transformations like the quasi-monomial transformation
have an important effect on whether a first integral in some coordinates is explicit in
one of its variables or not.

Example 3.3.1. A fed-batch fermentation process. In this example we use the
model of an isotherm fed-batch fermentation process [J12]. The continuous version of
the model is treated in [J13].

The model equations are given by

ẏ1 = Kry1y2 −
y1
y3
F (3.78)

ẏ2 = −
1

Y
Kry1y2 +

SF − y2
y3

F (3.79)

ẏ3 = F (3.80)

The variables of the model and their units in square brackets are
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y1 biomass concentration [g/l]
y2 substrate concentration [g/l]
y3 volume [l]
F feed flow rate [l/h].

The constant parameters and their typical values are the following
Y = 0.5 yield coefficient
Kr = 1 kinetic parameter [g/l]
SF = 10 influent substrate concentration [g/l]

The feed flow-rate F is the physical control input variable and will be treated as a
constant parameter during the retrieval process. The model (3.78-3.80) can be given
as a QP-ODE in its homogeneous form (3.64):

ẏ1 = y1
(
Kry2 − Fy

−1
3

)
(3.81)

ẏ2 = y2
(
−

1

Y
Kry1 + SFFy

−1
2 y−1

3 − Fy
−1
3

)
(3.82)

ẏ3 = y3
(
Fx−1

3

)
(3.83)

The A and B matrices of the QP model are:

A =





Kr −F 0 0
0 −F −Kr

Y
SFF

0 F 0 0



 , B =







0 1 0
0 0 −1
1 0 0
0 −1 −1







Applying the retrieval algorithm, we obtain a first integral in the following form:

x3
( 1

Y
x1 − x2 + SF

)
=
SF

c0
(3.84)

where c0 comes from the initial conditions of the model.
It is remarked that this first integral was computed in [J12] by the total integration

of the reachability distribution thus proving that the modeled fermentation process is
not reachable locally in the nonlinear sense [87] around any point in the state-space.
However, the integration involved the manual solution of partial differential equations,
while in the present case, the proposed first integral retreiving algorithm gave the same
result after the straightforward transformation of the system model into QP form.

3.3.2 Globally stabilizing feedback design for a class of QP
systems

Input-affine QP system models

An input-affine nonlinear system model [87] with state vector y, input vector u and
output vector η

ẏ = f(y) +

p
∑

i=1

gi(y)ui

η = h(y) (3.85)

is in QP-form if all of the functions f , g and h are in QP-form. Then the general form
of the state equation of an input-affine QP system model with p-inputs can be written
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3. Analysis results for quasi-polynomial systems

as:

ẏi = yi

(

L0i +

m∑

j=1

A0ij

n∏

k=1

y
Bjk

k

)

+

p
∑

l=1

yi

(

Lli +

m∑

j=1

Alij

n∏

k=1

y
Bjk

k

)

ul (3.86)

where

i = 1, . . . , n, A0, Al ∈ R
n×m, B ∈ R

m×n,

L0, Ll ∈ R
n, l = 1, . . . , p.

The corresponding input-affine Lotka-Volterra model is in the form

żj = zj

(

N0j +

m∑

k=1

M0jkzk

)

+

p
∑

l=1

zj

(

Nlj +

m∑

k=1

Mljkzk

)

ul (3.87)

where

j = 1, . . . , m, M0,Ml ∈ R
m×m, N0, Nl ∈ R

m, l = 1, . . . , p,

and the parameters can be obtained from the input-affine QP system’s ones in the
following way

M0 = B · A0

N0 = B · L0

Ml = B · Al

Nl = B · Ll
l = 1, . . . , p.

(3.88)

The controller design problem

Globally stabilizing QP state feedback design problem for QP systems can be formulated
as follows. Consider arbitrary quasi-polynomial inputs in the form:

ul =
r∑

i=1

kilq̂i, l = 1 . . . , p, (3.89)

where q̂i = q̂i(y1, . . . , yn), i = 1, ..., r are arbitrary quasi-monomial functions of the
state variables of (3.86) and kil is the constant gain of the quasi-monomial function q̂i
in the l-th input ul. The closed loop system will also be a QP system with matrices

Â = A0 +

p
∑

l=1

r∑

i=1

kilAil, B̂, (3.90)

L̂ = L0 +

p
∑

l=1

r∑

i=1

kilLil. (3.91)

Note that the number of quasi-monomials in the closed-loop system (i.e. the dimension
of the matrices) together with the matrix B̂ may significantly change depending on
the choice of the feedback structure, i.e. on the quasi-monomial functions q̂i.

Furthermore, the closed loop LV coefficient matrix M̂ can also be expressed in the
form:

M̂ = B̂ · Â =M0 +

p
∑

l=1

r∑

i=1

kilMil.
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Then the global stability analysis of the closed loop system with unknown feedback
gains kil leads to the following bilinear matrix inequality

M̂TC + CM̂ =MT
0 C + CM0 +

p
∑

l=1

r∑

i=1

kil
(
MT

il C + CMil

)
≤ 0. (3.92)

The variables of the BMI are the p× r kil feedback gain parameters and the cj , j =
1, .., m parameters of the Lyapunov function. If the BMI above is feasible then there
exists a globally stabilizing feedback with the selected structure.

Approaches for numerical solution

Direct solution of BMIs There are just few software tools available for solving
general bilinear matrix inequalities that is a computationally hard problem. In some
rare cases with a suitable change of variables quadratic matrix inequalities can be
rewritten as linear matrix inequalities (see e.g. [14]), but generally the structure of the
matrix variable of (3.92) does not fall into this fortunate problem class.

In Matlab environment the TomLab/PENBMI solver [98] can be used effectively
to solve bilinear matrix inequalities. Rewriting the above matrix inequality (3.92) in
the form (2.2) one gets the following expression which can be directly solved by [98]
as a BMI feasibility problem:

m∑

j=1

cjM̄0,j +

m∑

j=1

p
∑

l=1

r∑

i=1

cjkilM̄il,j ≤ 0

−C < 0. (3.93)

The two disjoint sets of BMI variables are the cj parameters of the Lyapunov function
and the kil feedback parameters. The parameters of the problem M̄0,j (M̄il,j, respec-
tively) are the symmetric matrices obtained from M0 (Mil, respectively) by adding
the m×m matrix that contains only the j-th column of M0 (Mil, respectively) to its
transpose, i.e.

[M̄ ]s,j =










0 · · · M1j · · · 0
...

...
...

M1j · · · 2Mjj · · · Mmj
...

...
...

0 · · · Mmj · · · 0










, (3.94)

where Mij = [Ms]ij for s ∈ {0, il}.
Note that for low dimensions (i.e. for m < 3) there exist algebraic conditions for

diagonal stablity to avoid BMI solutions [93], but presently these cannot be extended
to the practically important higher dimensional case.

Applying iterative LMI solution Because of the NP-hard nature of the general
BMI solution problem, it is worthwhile to search for an approximate but numerically
efficient alternative way of solution. As shown below, the special structure of the
QP stabilizing feedback design BMI feasibility problem allows us to apply a compu-
tationally feasible method for its solution that solves an LMI in each of its iterative
approximation step. The iterative LMI (ILMI) algorithm used for static output feed-
back stabilization published in [19] is used for this purpose.
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In order to be able to use the ILMI algorithm, it is necessary to write the QP
stabilizing feedback design problem as a static output feedback stabilization problem
for LTI systems. In what follows the globally stabilizing feedback design BMI (3.92)
is used in the form

(M0 +ΘK)TC + C(M0 +ΘK) < 0. (3.95)

where

Θ =





1st
︷ ︸︸ ︷

M1, . . . ,Mp, . . . ,

rth
︷ ︸︸ ︷

M1, . . . ,Mp



 , K =















k11 · Im×m
...

k1p · Im×m
...

kr1 · Im×m
...

krp · Im×m















.

The above problem is structurally equivalent to a standard LTI output feedback sta-
bilization problem

(A+BFC)TP + P (A+BFC) < 0,

withM0 corresponding to the state matrix A, Θ playing the role of the input matrix B,
and K serving as FC and P is the unknown matrix variable of the problem. Now, the
iterative LMI solution method described in [19] can be directly applied for our problem.
A more detailed description of the proposed method with illustrative examples can be
found in [J15].

3.4 Summary
The relation between the global stability and the dissipative Hamiltonian structure of
LV and QP systems was investigated in section 3.1. It was shown that the monomials of
a QP system form a locally dissipative generalized Hamiltonian system with a diagonal
quadratic Hamiltonian function if and only if the LV (and QP) system is globally stable
with the Lyapunov function (2.18). Furthermore, a systematic method was presented
for finding the quadratic Hamiltonian function through the solution of linear matrix
inequalities. The local dissipativity region in the monomial space can also be estimated
by using LMIs. The generalized Hamiltonian description and the estimation of the
dissipativity neighborhood was illustrated by two numerical examples.

In section 3.2 it was shown that the solvability of a class of time-reparametrization
problem used in global stability analysis of QP systems is equivalent to the feasibility of
a bilinear matrix inequality, where the unknowns to be determined are the coefficients
of the Lyapunov function candidate and the parameters of the time-reparametrization
transformation. Using the proposed method, it is possible to decide whether an appro-
priate time-reparametrization exists and to determine the time-reparametrizing trans-
formation and the Lyapunov function together, using the same algorithm. Although
the solution of BMIs is known to be an NP-hard problem, there exist effective numer-
ical algorithms for handling them. A simple example was given, where global stability
could not be proven in the original time-scale but after solving the corresponding BMI
and finding the right time-reparametrization parameters, it turned out that the system
is globally stable.

Finally, in section 3.3 an algorithm for finding invariants in QP systems, and a
globally stabilizing feedback design method were briefly presented.
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Chapter 4

Hamiltonian structure in reversible
reaction networks with mass action
kinetics

In this section, a possible locally dissipative-Hamiltonian structure for a class of re-
versible deficiency zero CRNs will be presented.

4.1 Some further notions: the structure of reversible

reaction networks
In describing the underlying dynamic structure of reaction networks, we adopt the
notation employed in [69] for the dissipative reaction network kinetics.

Let us consider the isolated and homogeneous isotherm systems where n chemical
species participate on a r-step reaction network, represented by the following reversible
stoichiometric mechanism obeying the mass action law:

n∑

i=1

αijXi ⇄

n∑

i=1

βijXi for j = 1, . . . , r (4.1)

with αij , βij being the constant stoichiometric coefficients for specie Xi in the reaction
step j. The linear combinations of the species in eq. (4.1), namely

∑n
i=1 αijXi and∑n

i=1 βijXi for j = 1, . . . , r are the complexes. The overall reaction rates are given by
[49]:

Wj(x) = k+j

n∏

i=1

x
αij

i − k−j

n∏

i=1

x
βij

i , j = 1, . . . , r (4.2)

where k+j and k−j are the constants of the forward and reverse rates of the j-th
reaction step, respectively, and xi ≥ 0 represents the concentration of the specie Xi.
Each concentration evolves in time according to the ordinary differential equation:

ẋi =

r∑

j=1

νijWj(x), i = 1, . . . , n, (4.3)

where νij = αij − βij is positive or negative depending on whether the specie i is a
product or a reactant in the reaction j. The dynamic evolution of the network can
then be represented by a set of ordinary differential equations which in compact matrix
form is written as:

ẋ = N ·W (x), (4.4)
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where N = [νij ] is the n× r coefficient matrix the columns of which are the so-called
stoichiometric vectors ν·j = β·j − α·j , and W (x) ∈ R

r denotes the vector of reaction
rates. The following simple example illustrates the above notions.

Example 4.1.1. Let the set of species be given by X1,X2,X3, and X4, while the set
of complexes is X1, X2 +X3, and X4. The reactions are

X1

k+1−→←−
k−1

X2 +X3

k+2−→←−
k−2

X4. (4.5)

The α and β matrices are given by

α =







1 0
0 1
0 1
0 0






, β =







0 0
1 0
1 0
0 1






, (4.6)

from which N can be calculated as

N = β − α =







−1 0
1 −1
1 −1
0 1






. (4.7)

The reaction rates are given by

W1(x) = k+1 x1 − k
−
1 x2x3 (4.8)

W2(x) = k+2 x2x3 − k
−
2 x4 (4.9)

Now, let us modify the structure of (4.5) in such a way that there is a further reaction
step between X1 and X4:

X1

k+1−→←−
k−1

X2 +X3

k+2−→←−
k−2

X4

k+3−→←−
k−3

X1 (4.10)

Now, the modified stoichiometric matrix is

N ′ =







−1 0 1
1 −1 0
1 −1 0
0 1 −1







(4.11)

and the third reaction rate (in addition to (4.8) and (4.9)) reads

W3(x) = k+3 x4 − k
−
3 x1 (4.12)

Observe that the columns of the original N are linearly independent which means that
N is of maximal rank. In this case, we say that the elementary reaction-pairs (or the
corresponding stoichiometric vectors) are independent. It is also visible, that the rank
of the modified N ′ is only two, because the structure of the modified reaction is such
that the third column of N ′ is a linear combination of the columns of N .

46

               dc_263_11



4.2. Local Hamiltonian structure of reaction networks

From now, we assume that r ≤ n and the the columns ofN are linearly independent
i.e., the rank of N is exactly r. With this assumption, we only deal with a proper
subclass of closed reversible reaction networks, since many reaction networks occurring
in natural or technological systems contain linearly dependent column vectors in N .

The reaction polyhedron. It is easy to see from (4.4) that any vector ck ∈ R
n,

k = 1, . . . , n− r belonging to the kernel of N T defines a linear first integral:

cTk x(t) = cTk x(0) =: C0k , ∀t ≥ 0, k = 1, . . . , n− r, (4.13)

since cTk ẋ = 0. For a given initial condition x(0), equation (4.13) defines a simple
invariant manifold denoted by Mx0. The intersection of the positive orthant with
Mx0 is called the reaction polyhedron denoted by Ω(x0):

Ω(x0) =
{
x ∈ R

+
n | c

T
k (x− x0) = 0, k = 1, ..., n− r

}
, (4.14)

that is also invariant for the system dynamics.
The equilibrium manifold. From the assumption r ≤ n and from the rank condition

on N it follows that ẋ = 0 if and only if W (x) = 0, which determines the set of
equilibrium points of the closed system. It is easy to check that the assumptions
described above imply the deficiency zero property of the studied network class: the
rank of the network is exactly r, and it is known from graph theory that the number
of edges in a forest with no isolated vertices is the difference between the number of
vertices and the number of connected components in a graph [9]. Then it follows
from the Deficiency Zero Theorem that within each reaction polyhedron, there is
exactly one equlibrium point which is stable in the space of positive concentrations
(i.e., Rn

+). Therefore, assuming that the value of x(0) is known, it is common to study
the dynamics of (4.4) restricted to Ω(x0) using the linear equations (4.13) [143]. The
equilibrium point of interest will be denoted by x∗ throughout the chapter.

4.2 Local Hamiltonian structure of reaction net-

works
In this section, a possible Hamiltonian structure for the studied class of reaction net-
works will be given using the generalized dissipative-Hamiltonian framework described
in section 2.4.

4.2.1 Coordinates change and the resulting Hamiltonian struc-

ture

Let us denote the forward and backward parts of the reaction rates in the following
way

pj(x) = k+j

n∏

i=1

x
αij

i , qj(x) = k−j

n∏

i=1

x
βij

i , j = 1, . . . , r (4.15)

We define the reaction space as follows (the x arguments are suppressed in p and q):

zj = ln pj − ln qj, j = 1, . . . , r (4.16)

Note that the product RTzj (with R being the gas constant and T the temperature)
is the chemical affinity corresponding to the reaction step j [37].

47

               dc_263_11



4. Hamiltonian structure in reversible reaction networks with mass action kinetics

In order to construct an invertible mapping between x and z, let us extend (4.16)
with the conserved quantities as additional coordinate functions in the following way

z̄ = Ψ(x), (4.17)

where

z̄j = zj = ln

(

k+j
k−j

n∏

i=1

x
νij
i

)

, j = 1, . . . , r (4.18)

z̄k = cTk−r · x, k = r + 1, . . . , n (4.19)

We assume that we know the value of x at any time instant, therefore z̄k in (4.19) are
known and constant. Furthermore, it is assumed that the inverse x = Ψ−1(z) exists in
the whole positive orthant.

The time-derivative of zj is given by

żj =
1

pj
ṗj −

1

qj
q̇j =

1

pj

∂pj
∂x

ẋ−
1

qj

∂qj
∂x

ẋ =

=

[
1

x1
(α1j − β1j)

1

x2
(α2j − β2j) . . .

1

xn
(αnj − βnj)

]

ẋ. (4.20)

Using (4.4) and (4.20), the time derivative of the vector z can be written as

ż = −N TΓ(x) · ẋ = −N TΓ(x)N ·W (x), (4.21)

where

Γ(x) = diag

(
1

x1
,
1

x2
, . . . ,

1

xn

)

. (4.22)

The rank of N is always r and xi > 0 for i = 1, . . . , n, therefore the matrix N TΓ(x)N
is nonsingular and positive definite at any fixed x, since it can be written as P TP ,
where

P = (Γ(x))1/2N . (4.23)

This means, that the system (4.21) is at equilibrium if and only if W (x) = 0 i.e. the
unique equilibrium point in the z-coordinates is at zi = 0, i = 1, . . . , r.

Furthermore, from eqs. (4.2), (4.15) and (4.16) the reaction rates can be expressed
as

Wj = pj − qj = exp(zj)qj − qj = qj [exp(zj)− 1] . (4.24)

Let us use the following notation:

F (x) = diag(q1(x), . . . , qr(x)). (4.25)

Let the Hamiltonian function H be defined as

H(z) =
r∑

j=1

q∗j [exp(zj)− zj − 1] , (4.26)

where q∗i denotes the value of qi at the equilibrium point x∗. It is easy to show that
H is globally convex and bounded from below, therefore it can be used as a Lyapunov
function candidate.
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Using Eqs. (4.21), (4.24) and (4.26) we can write

ż = −N TΓ(x)N · F (q) · (F (q∗))−1 · HT
z (z), (4.27)

or shortly
ż = −G(x) · HT

z (z), (4.28)

where
G(x) = N TΓ(x)N · F (q) · (F (q∗))−1, (4.29)

andHT
z denotes the gradient transpose ofH. Using the assumption that Ψ is invertible,

(4.28) can be written as
ż = −G(Ψ−1(z̄)) · HT

z (z) (4.30)

It is easy to see, that G+GT is positive definite in a neighborhood of the equilibrium
point, since it is smooth with respect to x in the positive orthant and

G(x∗) = N TΓ(x∗)N · F (q∗) · (F (q∗))−1 = N TΓ(x∗)N . (4.31)

However, it cannot be guaranteed for an arbitrary reaction network that G + GT is
positive definite in the whole concentration space. Therefore we can state the following
proposition

Proposition 4.2.1. For any closed reaction kinetic system of the form (4.4) with in-
dependent elementary reaction-pairs, there exists a neighborhood U around the equi-
librium point z∗ = 0, where the system admits a dissipative-Hamiltonian description
with Hamiltonian function (4.26).

4.2.2 Physical interpretation

The G matrix in the Hamiltonian description reflects the connectivity properties of the
reaction network (since N together with the chemical composition of the complexes
defines the graph structure of the system). It is also visible that G(x∗) is symmetric
and G generally loses its symmetry outside the equilibrium point. The Hamiltonian
function H contains the scaled chemical affinities, but it is rather an abstract con-
struction and not the total energy of the system as in the case of many mechanical
and electrical systems.

In a thermodynamic sense, the local definiteness of G + GT is related to the so-
called entropy production function given by the product of thermodynamic fluxes and
forces:

Ḃ = −zT ·W = −
r∑

j=1

ln
pj
qj

(pj − qj) (4.32)

where the transformed entropy function B in the space of the chemical concentrations
is defined as

B(x) =

n∑

i=1

xi

(

ln

(
xi
x∗i

)

− 1

)

+ x∗i . (4.33)

It is known that B (which is a measure of the inner dissipation of the system) is
globally convex in the positive orthant and it is nonincreasing in time (see, e.g. [69]).
Therefore Ḃ is globally negative semidefinite but it is only locally concave (as a function
of the concentrations) in a neighborhood of the equilibrium point determined by the
topology of the reaction network and the kinetic constants. Ḃ loses its concavity
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4. Hamiltonian structure in reversible reaction networks with mass action kinetics

in the so called far from equilibrium region of the concentration space [121]. This
property can be a source of complex nonlinear behavior (e.g. multiple steady states
or nonlinear oscillations) when the system is opened and the exchange of material
with its environment is permitted that can be modeled as external manipulable (or
disturbance) inputs [J4].

4.2.3 Comparison to the GENERIC structure

In this subsection, the general dissipative Hamiltonian structure described in section
2.4 and the so-called GENERIC structure proposed in [156] will be compared.

The general equation for the time-evolution of beyond-equilibrium systems is for-
malized in the GENERIC structure that accounts for the reversible and irreversible
contributions of the total energy E(x) and the entropy P (x):

ẋ = L(x) · ET
x (x) +M(x) · P T

x (x), (4.34)

where x is a set of independent variables required for a complete description of the
system (e.g. energies, velocities, etc.) and Ex and Px denote the gradients of E
and P , respectively. In addition, the skew-symmetric matrix L(x) and the positive
semi-definite M(x) satisfy the so called degeneracy properties:

L · P T
x (x) = 0 (4.35)

M · ET
x (x) = 0, (4.36)

and the impositions of the First and Second Laws of Thermodynamics:

dE

dt
= 0 (4.37)

dP

dt
≥ 0. (4.38)

It is visible that taking into consideration eqs. (4.35)-(4.36), the algebraic structure
of (2.22) matches the GENERIC structure (4.34) with L = J , M = R, E = H, and
P = −H. However, the restrictive relations (4.35)-(4.36) and (4.37)-(4.38) are clearly
generally not fulfilled for the local dissipative-Hamiltonian description.

4.3 Examples
Example 4.3.1. Global dissipative Hamiltonian description. Let the reaction
system with six species X1, . . . , X6 (together with the corresponding concentrations
x1, . . . , x6, respectively) and four complexes X1 +X2, X3, X4 +X5 and X6 be given
in the following form.

X1 +X2

k+1−→←−
k−1

X3 (4.39)

X4 +X5

k+2−→←−
k−2

X6. (4.40)

The matrices characterizing the reaction network are given by

N T =

[
−1 −1 1 0 0 0
0 0 0 −1 −1 1

]

(4.41)
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Γ(x) = diag

(
1

x1
, . . . ,

1

x6

)

, F (x) = diag(q1(x), q2(x)), (4.42)

and

G(x) =





(x−1
1 +x−1

2 +x−1
3 )x3

x∗

3
0

0
(x−1

4 +x−1
5 +x−1

6 )x6

x∗

6



 . (4.43)

We can see that G is globally positive definite in the whole positive orthant, which
means that the reaction system admits a global dissipative Hamiltonian structure.
Based on the above calculations, it is easy to see that any set of independent reactions
of the type

αi∑

j=1

cijXij

k+i−→←−
k−i

ni∑

l=αi+1

cilXil, αi < ni, i = 1, . . . , r (4.44)

defines a global dissipative Hamiltonian structure.

Example 4.3.2. Local dissipative Hamiltonian description.

Model of the reaction network Consider the following simple reaction network
with three species (X1, X2, X3) and four complexes X1 +X2, X3, X2 +X3 and 2X3:

X1 +X2

k+1−→←−
k−1

X3 (4.45)

X2 +X3

k+2−→←−
k−2

2X3. (4.46)

The matrix N of the system is written as

N =





−1 0
−1 −1
1 1



 . (4.47)

The forward and backward reaction rates are

p1 = k+1 x1x2, q1 = k−1 x3 (4.48)

p2 = k+2 x2x3, q2 = k−2 x
2
3. (4.49)

From the above equations, the components of the vector W are calculated as

W1 = p1 − q1 = k+1 x1x2 − k
−
1 x3 (4.50)

W2 = p2 − q2 = k+2 x2x3 − k
−
2 x

2
3. (4.51)

Using N and W , the equations of the reaction system are the following

ẋ1 = k−1 x3 − k
+
1 x1x2 (4.52)

ẋ2 = k−1 x3 − k
+
1 x1x2 + k−2 x

2
3 − k

+
2 x2x3 (4.53)

ẋ3 = k+1 x1x2 − k
−
1 x3 + k+2 x2x3 − k

−
2 x

2
3 (4.54)
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4. Hamiltonian structure in reversible reaction networks with mass action kinetics

Dissipative Hamiltonian structure of the closed system. The coordinates-
transformation Ψ is given by

z̄1 = ln

(
p1
q1

)

= ln

(
k+1
k−1
x1x2x

−1
3

)

(4.55)

z̄2 = ln

(
p2
q2

)

= ln

(
k+2
k−2
x2x

−1
3

)

(4.56)

z̄3 = x2 + x3. (4.57)

Then the inverse transformation Ψ−1 can be calculated as

x1 =
k+2 k

−
1

k−2 k
+
1

exp(z̄1 − z̄2) (4.58)

x2 =
k−2 z3 exp(z̄2)

k−2 exp(z̄2) + k+2
(4.59)

x3 =
k+2 z̄3

k−2 exp(z̄2) + k+2
. (4.60)

We can see from eqs. (4.55)-(4.60) that Ψ and Ψ−1 are globally defined in the positive
orthant of the space of concentrations.

The dissipative Hamiltonian structure (4.28) for the model (4.52)-(4.54) is com-
puted as

[
ż1
ż2

]

= −

[ 1
x1

+ 1
x2

+ 1
x3

1
x2

+ 1
x3

1
x2

+ 1
x3

1
x2

+ 1
x3

]

·

[
x3

x∗

3
0

0
x2
3

(x∗

3)
2

]

· HT
z (z), (4.61)

where
Hz =

[
k−1 x

∗
3(exp(z1)− 1) k−2 (x

∗
3)

2(exp(z2)− 1)
]
. (4.62)

For the forthcoming calculations, the values of the reaction rate constants k+1 , k
−
1 ,

k+2 , k
−
2 were chosen to be uniformly 1. The dissipativity region (i.e. the region inside

which the matrix G+GT is positive definite) and the level sets of H for x∗ = [1 5 5]T

in the (x1, x2) and (z1, z2) planes can be seen in Figs 4.1 and 4.2, respectively. It is
visible that the dissipative Hamiltonian description is valid in a wide neighborhood of
the equilibrium point for the selected reaction polyhedron.

4.4 Summary
It has been shown in this chapter that closed reversible reaction networks with in-
dependent elementary reaction-pairs admit a global pseudo Hamiltonian and a local
dissipative Hamiltonian structure around any positive equilibrium point. The Hamil-
tonian structure has been described in a transformed coordinates system called the
reaction space which is generally of lower dimension than the concentration space.
The structure matrix which is a smooth function of the concentrations depends on
the topology of the reaction network and the coefficients of the Hamiltonian func-
tion depend on the reaction polyhedron on which the system dynamics evolve. The
theoretical results have been illustrated by two examples.
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Figure 4.1: Dissipativity region and level sets of the Hamiltonian function in the
(x1, x2) plane
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Figure 4.2: Dissipativity region and level sets of the Hamiltonian function in the
(z1, z2) plane
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Chapter 5

Dense and sparse realizations of
kinetic systems

The second part of the thesis deals with the optimization-based computation of dynam-
ically equivalent and linearly conjugate reaction network topologies. In this chapter,
the emphasis will be put on the so-called dense and sparse realizations containing the
maximal or minimal number of nonzero reaction rate coefficients, respectively.

5.1 Additional motivations of the work

As it has been mentioned in the Introduction, one of the very few rigorous works before
2009 studying dynamical equivalence of reaction networks is [28], where the authors
examine the distinguishability of chemical reaction networks with mass action kinetics.
In [28], two reaction networks are called confoundable ”if they produce the same mass-
action differential equations for some choice of the rate constants”. Valuable results
are presented in the paper, in particular, a necessary and sufficient condition is given
for the unique identifiability of rate constants in reaction networks that is very easy to
check. However, the authors did not take into consideration a special case in Theorem
4.4, when the monomials corresponding to certain source complexes are cancelled out
in the differential equations of the reaction network. In [28], Theorem 4.4 says:

”Under the mass-action kinetics assumption, two chemical reaction networks (S,
C′, R′) and (S, C′′, R′′) are confoundable if and only if they have the same source
complexes and ConeR′(y) ∩ ConeR′′(y) is nonempty for every source complex y.”

The possibility of the above mentioned monomial cancellation is illustrated in the
following example published originally in [J6].

Example 5.1.1. Consider the reaction network denoted by R shown in Fig. 5.1(a)
with the following parameters:

ki = 1, i = 1, 2, 3, 4.

The differential equations of R can be computed as

[
ẋ1
ẋ2

]

= k1x
2
1

[
−2
1

]

+ k2x
2
1

[
−1
1

]

+ k3x
2
1

[
1
0

]

+ k4x
2
1

[
0
1

]

=

[
−2x21
3x21

]

. (5.1)
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Now, take the reaction system R′ depicted in Fig 5.1(b) with the parameters:

k′1 = 1, k′2 = k′3 = k′5 = k′6 = 0.1, k′4 = 1.9.

The equations of R′ are
[
ẋ1
ẋ2

]

= 1 · x21

[
−2
1

]

+ 0.1x21

[
−1
1

]

+ 0.1x21

[
1
0

]

+ 1.9x21

[
0
1

]

+ 0.1x1x2

[
−1
0

]

+ 0.1x1x2

[
1
0

]

=

[
−2x21
3x21

]

. (5.2)

It is clear from Eqs. (5.1)-(5.2) that R and R′ are confoundable in the sense of the
original definition given in [28]. However, the source complexes in the two networks
are not identical, since X1 +X2 is a source complex in R′ but not in R.

Figure 5.1: (a) Reaction network R, (b) Reaction network R′

The consequences of the defect in Theorem 4.4 in [28] are even more transparent
from Example 2.5.2 in subsection 2.5.8 that is also a counterexample. If we accepted
Theorem 4.4, then we could deduce that the CRN in Fig. 2.3(a) has no weakly re-
versible dynamically equivalent realization with complexes 3X2, 3X1 and 2X1 + X2,
since 2X1 +X2 is not a source complex. However, it is clearly shown (see Figs. 2.3(c)
and (d)) that for any positive values of k1 and k2 there are more than one possible
dynamically equivalent weakly reversible structures involving all three complexes, that
also gives essential qualitative information about the dynamics, since the Deficiency
One Theorem is immediately applicable to the system. Moreover, the example also
shows that by adding appropriately selected new complexes to a given CRN (in this
case, 2X1 +X2 to the network in Fig. 2.3(e)), there might be chance to obtain addi-
tional information about the dynamics. However, we will not elaborate on new complex
selection and it will be assumed throughout the presented computation methods that
the set of complexes (i.e. the stoichiometric matrix Y ) is fixed and known before the
computations. Of course, this does not mean that all the complexes in Y have to take
part in a reaction if an initial network is given, so Y can be considered to contain a
”maximal allowable” set of complexes. In this case, the condition (2.49) for dynamical
equivalence can be written as

Y · A(1)
k = Y · A(2)

k =:M, (5.3)
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where A
(1)
k and A

(2)
k are valid Kirchhoff matrices and M is the invariant matrix con-

taining the coefficients of the monomials on the right hand side of the polynomial
ODEs. It is clear that if for a given set of complexes Y a CRN has two different dy-
namically equivalent realizations characterized by A

(1)
k and A

(2)
k , then it has infinitely

many, since e.g. A
(3)
k =

A
(1)
k

+A
(2)
k

2
also defines a valid realization with Y . Therefore,

after examining the so-called dense and sparse realizations in this chapter, chapter 6
will focus on computing CRN realizations with additional given properties.

5.2 The notion of dense and sparse realizations

Among the dynamically equivalent CRN realizations, we will define the following char-
acteristic ones. Assuming that the set of complexes (i.e. the stoichiometric matrix Y )
is given, a sparse realization contains the minimal number of reactions that is needed
for the exact description of the corresponding dynamics (2.29). A dense realization
contains the maximal number of reactions among dynamically equivalent realizations
with a fixed complex set.

The starting point for the forthcoming calculations is that a reaction network is
given with its reaction graph or equivalently with any of its realizations (Y,Ak), and
we want to compute its sparse or dense realization denoted by (Y s, As

k) and (Y d, Ad
k),

respectively. In agreement with our initial assumptions, Y in the initial realization
contains the maximal possible set of complexes that we want to work with. This
means that Ak may contain zero rows and columns if we allow such complexes in Y
that do not react in the initial CRN realization and are therefore isolated nodes in its
reaction graph. We remark that obviously, the sparse or dense realizations may not
be unique parametrically for a given dynamics, but here our intital goal is to find one
possible solution.

5.3 Representation of mass action kinetics as linear

equality constraints

For the computations, let us represent the Kirchhoff matrix of a reaction network
containing m complexes as

Ak =








−a11 a12 . . . a1m
a21 −a22 . . . a2m
...

...
am1 am2 . . . −amm







. (5.4)

Keeping in mind the properties of Ak, the negative sign in (5.4) for the diagonal
elements aii for i = 1, . . . , m will allow us to set a uniform nonnegativity (or identically
tractable lower and upper bound) constraint for all aij in the later computations.

Let us denote the ith row and ith column of a matrix W by [W ]i,· and [W ]·,i,
respectively. Using (5.4), the individual linear equations of the matrix equation (2.34)
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can be written as

−y11a11 + y12a21 + · · ·+ y1mam1 = [M ]11 (5.5)

...

−yn1a11 + yn2a21 + · · ·+ ynmam1 = [M ]n1 (5.6)

y11a12 − y12a22 + · · ·+ y1mam2 = [M ]12 (5.7)

...

yn1a12 − yn2a22 + · · ·+ ynmam2 = [M ]n2 (5.8)

...

y11a1m + y12a2m + · · · − y1mamm = [M ]1m (5.9)

...

yn1a1m + yn2a2m + · · · − ynmamm = [M ]nm . (5.10)

The property that Ak is a column conservation matrix can also be expressed in the
form of linear equations:

−a11 + a21 + a31 + a41 = 0 (5.11)

a12 − a22 + a32 + a42 = 0 (5.12)

...

a1m + a2m + · · · − amm = 0. (5.13)

Equations (5.5)-(5.13) can be written in the following more compact form:








Ȳ 1 0 0 . . . 0
0 Ȳ 2 0 . . . 0
...
0 0 0 . . . Ȳ m















[Ak]·,1
[Ak]·,2

...
[Ak]·,m







=








[
M̄
]

·,1[
M̄
]

·,2
...

[
M̄
]

·,m







, (5.14)

where the zeros denote zero matrix blocks of size (n+ 1)×m and

Ȳ i =

[
[Y ]·,1 [Y ]·,2 . . . [Y ]·,i−1 − [Y ]·,i [Y ]·,i+1 . . . [Y ]·,m
1 1 . . . 1 −1 1 . . . 1

]

∈ R
(n+1)×m,

(5.15)

M̄ =

[
M

0 . . . 0

]

∈ R
(n+1)×m (5.16)

5.4 Constructing the optimization problem

It is visible from (5.14) that the optimization variable will contain the reaction rate
coefficients, i.e. the elements of Ak as the matrix Y is known and fixed by the problem
statement. For the sake of simplicity, let us use the notation

z =








z(1)

z(2)

...
z(m)







=








[Ak]·,1
[Ak]·,2

...
[Ak]·,m







, (5.17)
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where obviously, z(i) ∈ R
m, i = 1, . . . , m.

When we seek the sparse realization of the original reaction network (Ak, Y ) then we
are searching for the sparsest solution of (5.14), i.e. the one containing the maximal
number of zeros (or the minimal number of zeros, if the dense realization is to be

computed). For this, let us associate logical variables δ
(i)
j with the continuous variables

z
(i)
j for i, j = 1, . . . , m. Then the optimization variable previously denoted by y is

y =

[
z
δ

]

. (5.18)

Following from the problem statement and construction, the lower bound for the con-
tinuous variables is zero. For the solvability of the MILP problem, also an upper bound
is introduced for the elements of z, i.e.

0 ≤ zi ≤ ui, ui > 0, i = 1, . . . , m2. (5.19)

To minimize (or maximize) the number of nonzeros in the continuous solution part z,
the following compound statement has to be translated to linear inequalities

δi = 1↔ zi > 0, i = 1, . . . , m2. (5.20)

To be able to numerically distinguish between practically zero and nonzero solutions,
(5.20) is modified to

δi = 1↔ zi > ǫ, i = 1, . . . , m2, (5.21)

where ǫ is a sufficiently small positive value (i.e. solutions below ǫ are treated as zero).
Taking into consideration (5.19), the linear inequalities corresponding to (5.21) are

0 ≤ zi − ǫδi, i = 1, . . . , m2 (5.22)

0 ≤ −zi + uiδi, i = 1, . . . , m2. (5.23)

Now, the MILP problem for finding a possible sparse realization can be constructed
as

minimize

2m2
∑

m2+1

yi (5.24)

subject to:







Ȳ 1 0 0 . . . 0
0 Ȳ 2 0 . . . 0
...
0 0 0 . . . Ȳ m















y1
y2
...
ym2







=








[
M̄
]

·,1[
M̄
]

·,2
...

[
M̄
]

·,m








(5.25)

0 ≤ yi ≤ ui for i = 1, . . . , m2 (5.26)

0 ≤ yi − ǫyi+m2 , i = 1, . . . , m2 (5.27)

0 ≤ −yi + uiyi+m2 , i = 1, . . . , m2 (5.28)

yj is integer for j = m2 + 1, . . . , 2m2. (5.29)
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In the case when a dense realization is searched for, the optimization task (5.24) is
simply changed to

minimize

(

−
2m2
∑

m2+1

yi

)

. (5.30)

The following remarks contain important additional information about the solved prob-
lem.

Remark 1. By setting the lower and upper bounds for yi differently from what is
given in (5.26), the presence or omission of certain reactions can be forced during the
optimization.

Remark 2. The block-diagonal structure of the coefficient matrix in (5.25) and the
independence of the inequalities (5.26)-(5.28) allow us to partition the optimization
variable y to m partitions and thus to solve the m resulting MILP subproblems paral-
lely (i.e. columnwise) which is a significant advantage from a computational point of
view [7].

Remark 3. The block-diagonal structure mentioned in the previous remark makes it
possible to combine different objective functions for different source complexes (since
column i of Ak contains the rate coefficients corresponding to the reactions starting
from complex Ci). E.g., the number of reactions starting from certain complexes can
be minimized while it can be maximized for other complexes.

Remark 4. We note that the sparsest solution of certain sets of underdetermined
linear equations can be obtained in polynomial time using linear programming (LP)
[39, 38]. However, the applicability conditions of this LP solution are not fulfilled for
most reaction networks.

Remark 5. Using the dense realization, an upper bound for the rank of the possible
dynamically equivalent realizations (see subsection 2.5.3) and a lower bound for the
number of linkage classes can be obtained immediately.

5.5 Properties of dense realizations and their conse-

quences

The main result of this section is that the dense realization of a CRN is structurally
unique if the set of possible complexes is fixed. Firstly, we state the following result.

Theorem 5.5.1. Let Σ = (Y,Ak) be a kinetic system and M = Y Ak. Furthermore,
let Σd = (Y,Ad

k) and Σs = (Y,As
k) denote a dynamically equivalent dense and sparse

realization of Σ, respectively. Then for any dynamically equivalent realization of Σ of
the form Σ′ = (Y,A′

k) the following hold.

P1 The unweighted reaction graph of Σ′ is the subgraph of the unweighted reaction
graph of Σd.

P2 The unweighted reaction graph of Σd is unique.

P3 The unweighted reaction graph of a kinetic system with a given set of complexes
is unique if and only if the graph structures of its sparse and dense realizations
are identical.
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5. Dense and sparse realizations of kinetic systems

Proof. P1, P2. (indirect) Assume that the Kirchhoff matrix Ak is a dense solution
of Y Ak = M , i.e. it contains the maximal number of nonzero off-diagonal elements.
Furthermore, assume for a Kirchhoff matrix A′

k that Y A′
k = M and ∃ i, j, i 6= j such

that [Ak]ij = 0 but [A′
k]ij > 0. Then A′′

k =
1
2
(Ak +A

′
k) is a Kirchhoff matrix of another

dynamically equivalent realization to Σ but A′′
k contains more nonzero off-diagonal

elements than Ak which is a contradiction.
P3. This fact is easy to see: If the structures (i.e. the unweighted reaction graphs) of
the dense and sparse realizations are identical, then it directly follows that the graph
structures of all dynamically equivalent CRNs are the same, since the only possible
unique structure is determined by the dense realization (that is the sparse realization
at the same time). In other words, any realization of the CRN can contain neither more
nor less reactions than the dense realization does, the structure of which is unique. If
the graph structure of the CRN is unique, then it trivially implies that the structures
of the dense and sparse realizations are identical.

The following remarks contain some important immediate consequences and addi-
tions to Theorem 5.5.1.

R1 According to Theorem 5.5.1, dense realizations give a unique ”superstructure”
for a CRN in the sense that the reactions of any realization of a CRN must form
a subset of the reactions of the dense realization if the set of possible complexes
is given. In other words, reactions that are not present in the dense realization
cannot appear in any other realization.

R2 Obviously, dense realizations are parametrically not unique. There may exist sev-
eral dense realizations for a CRN with different reaction rate constants (weights)
but always with the same graph structure.

R3 The dense realization of a CRN is not only a theoretical construction but it can
be practically determined using well-formulated numerical procedures that are
treatable even in the case of several hundred complexes and species (see, e.g.
[59, 132]).

R4 Sparse realizations of CRNs are structurally not unique, there may exist several
sparse realizations for a given CRN with different graph structures (see Example
A.2.1).

5.6 Examples

The following examples were computed using the MILP solver of the YALMIP toolbox
[110] under the MATLAB® computational environment.

Example 5.6.1. Consider again the simple reaction network of Example 2.5.1. The
computed dense and sparse realizations are shown in Figs 5.2 and 5.3, respectively.
The Kirchhoff-matrix of the computed sparse realization is

As
k =







−2 1 0 0
1 −2 3 1
1 0 −3 1
0 1 0 −2






, (5.31)
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while the dense realization is characterized by

Ad
k =







−1.7 1.1 0.966 0.3
0.1 −2.3 0.1 0.1
1.3 0.1 −2.033 1.3
0.3 1.1 0.966 −1.7






, (5.32)

Furthermore, Y s = Y d = Y . It is easy to check that Y s · As
k = Y d · Ad

k = M . The
deficiency of all three networks is 1, since m = 4, l = 1 and s = 2 in all cases. Fur-
thermore, both the sparse and dense realizations have the weak reversibility property.

Figure 5.2: Dense realization of the reaction network of Example 2.5.1

Figure 5.3: Sparse realization of the reaction network of Example 2.5.1

Example 5.6.2. This example shows that the number of linkage classes can also
be different in dynamically equivalent CRN realizations. Fig. 5.4(a) shows a simple
reaction network with two linkage classes. Let the reaction rate coefficients be 1 for
each reaction again. The deficiency of the network is 4 (m = 8, l = 2, s = 2). The Y
and Ak matrices of the network are

Y =

[
1 0 1 3 2 1 0 1
0 1 1 1 1 2 3 3

]

(5.33)

Ak =















−1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 −3 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0















(5.34)
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5. Dense and sparse realizations of kinetic systems

(a) (b)

Figure 5.4: (a) Reaction network of Example 5.6.2. All the rate coefficients are chosen
to be 1. (b) Sparse realization of the reaction network of Example 5.6.2

Both sparse and dense realizations have been computed for this network. Fig. 5.4(b)
shows a sparse realization containing only 6 complexes and 4 reactions with the Kirch-
hoff matrix

As
k =















−1 0 0 0 0 0 0 0
1 −1.33 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1.33 0 0 0 0 0 0
0 0 0 0 −2.5 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1.5 0 0 0
0 0 0 0 1 0 0 0















. (5.35)

The deficiency of the sparse realization is 2 (m = 6, l = 2, s = 2).
The computed dense realization is depicted in Fig. 5.5. It is visible that in contrast

to the previous two cases, the dense realization consists of only one linkage class. In
this case, the number of complexes is 8, the number of reactions is 29 and the Kirchhoff
matrix is given by

Ad
k =















−1 0.5 0.5 0 0.1 0.1 0 0
1 −2 0.2 0 0.1 0.1 0 0
0 0.1 −1.2 0 0.1 0.1 0 0
0 1 0.1 0 0.1 0.1 0 0
0 0.1 0.1 0 −3 0.1 0 0
0 0.1 0.1 0 0.1 −1.1 0 0
0 0.1 0.1 0 1.1 0.2 0 0
0 0.1 0.1 0 1.4 0.4 0 0















(5.36)

The deficiency of the dense realization is 5 (m = 8, l = 1, s = 2). It is straightforward
to check that

M = Y Ak = Y As
k = Y Ad

k =

[
−1 4 0 0 −4 0 0 0
1 0 0 0 5 0 0 0

]

. (5.37)
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Figure 5.5: Dense realization of the reaction network of Example 5.6.2. Only those
reaction rate coefficients are indicated that are different from 0.1.

The structural non-uniqueness of sparse realizations is illustrated by Example A.2.1
in the Appendix.

5.7 Summary
An optimization-based method has been proposed in this chapter for the computation
of sparse and dense realizations of reaction networks obeying the mass-action law.
Starting from an appropriate form (2.29) of the kinetic equations, the mass-action
kinetics can be expressed as linear constraints with a block-diagonal structure. The
computation of the dense and sparse realizations is traced back to a MILP problem
where the optimization variables are the reaction rate coefficients and the correspond-
ing integer auxiliary variables. The proposed method can be used e.g. for finding
the ”most identifiable” parametrization of a complex reaction network (i.e. the one
that has the minimal number of rate coefficients as parameters to be estimated). It
has been shown that the structure of a so-called dense realization of a given CRN is
unique, and that the structure of any other realization is the subgraph of the dense
realization if the set of complexes is given. By computing a possible sparse realization,
it is also possible to test numerically, whether the structure of a CRN is unique or not.

The theoretical findings have been illustrated on examples. The results clearly show
the power of linear programming combined with propositional logic. In the author’s
opinion, the presented examples raise interesting problems worth further studying,
especially about which important properties of reaction networks can be determined
directly from their kinetic differential equations.
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Chapter 6

Computing dynamically equivalent
realizations of kinetic systems with
preferred properties

Using a similar optimization approach that was described in the previous chapter,
additional problems of interest will be solved here for the computation of dynamically
equivalent CRN structures with given properties. Moreover, the notion of dynamical
equivalence will be slightly extended using the concept of linear conjugacy.

6.1 Additional structural constraints represented

in the form of linear inequalities

This section presents some further answers to the open problems originally set in [86]
from a numerical aspect. To state the results, we give the constraint set characterizing
mass action dynamics described in a shorter and more convenient form. Without
reversing the sign of the diagonal elements in Ak, (5.14) can be written as

Y · Ak =M (6.1)
m∑

i=1

[Ak]ij = 0, j = 1, . . . , m (6.2)

[Ak]ij ≥ 0, i, j = 1, . . . , m, i 6= j (6.3)

[Ak]ii ≤ 0, i = 1, . . . , m, (6.4)

where the decision variables are the off-diagonal elements of Ak. The additional bounds
for these elements (originally described in (5.19)) are given as

[Ak]ij ≤ lij, i, j = 1, . . . , m, i 6= j (6.5)

lii ≤ [Ak]ii, i = 1, . . . , m. (6.6)

Then, the compound statements given in eq. (5.21) corresponding to the nonzero
property of the individual reaction rate coefficients can now be written as

δij = 1↔ [Ak]ij > ǫ, i, j = 1, . . . , m, i 6= j. (6.7)
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6.1. Additional structural constraints represented in the form of linear inequalities

The linear inequalities corresponding to (6.7) can be translated to the following linear
inequalities (see, eqs. (5.22)-(5.23))

0 ≤ [Ak]ij − ǫδij , i, j = 1, . . . , m, i 6= j (6.8)

0 ≤ −[Ak]ij + lijδij , i, j = 1, . . . , m, i 6= j. (6.9)

Finally, the objective function to be minimized/maximized to compute sparse and
dense realizations is given by

C1(δ) =
m∑

i, j = 1
i 6= j

δij (6.10)

6.1.1 Computing realizations with the minimal/maximal num-

ber of complexes

In this section, the detailed MILP formalism will be presented for computing CRN
realizations that contain the minimal/maximal number of complexes from a predefined
complex set.

The constraints written in eqs. (6.1)-(6.6) corresponding to the characteristics of
mass-action dynamics are used here again without change. Then, the minimization or
maximization of the number of non-isolated complexes in the reaction graph is based
on the following simple observation. A complex can be omitted from the reaction
network’s graph, if both the corresponding column and row in Ak contain only zeros.
This means that no directed edges start from or point to this complex in the graph
and therefore it becomes an isolated vertex.

For the optimization, m boolean variables denoted by δi, i = 1, . . . , m are intro-
duced. Using these boolean variables, the following compound statements are intro-
duced:

δi = 1↔
m∑

j1=1

j1 6=i

[Ak]i,j1 +
m∑

j2=1

j2 6=i

[Ak]j2,i > 0, i = 1 . . . , m. (6.11)

Eq. (6.11) means that the value of δi is 1 if and only if there is at least one incoming
or outgoing directed edge in the reaction graph to/from the ith complex. For practical
computations, the statement (6.11) is modified as follows:

δi = 1↔
m∑

j1=1

j1 6=i

[Ak]i,j1 +
m∑

j2=1

j2 6=i

[Ak]j2,i > ǫ, i = 1 . . . , m (6.12)

where again ǫ is a sufficiently small positive number. Using the bound constraints
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(6.5)-(6.6), the linear inequalities corresponding to (6.12) are the following

0 ≤
m∑

j1=1

j1 6=i

[Ak]i,j1 +

m∑

j2=1

j2 6=i

[Ak]j2,i − ǫδi, i = 1, . . . ,m (6.13)

0 ≤ −
m∑

j1=1

j1 6=i

[Ak]i,j1 −
m∑

j2=1

j2 6=i

[Ak]j2,i + ǫ+











m∑

j1=1

j1 6=i

lij1 +

m∑

j2=1

j2 6=i

lj2i − ǫ











· δi, i = 1, . . . ,m

(6.14)

Now, the objective function to be minimized or maximized can be written as

C2(δ) =

m∑

i=1

δi (6.15)

In contrast to the algorithm for computing dense and sparse realization, minimiz-
ing/maximizing the number of non-isolated complexes is not straightforward to paral-
lelize (see also [J7]). However, the number of integer variables in this case is only m,
compared to m2 −m when minimizing/maximizing the number of reactions.

6.1.2 Computing reversible realizations

Here, the basic constraints (6.1)-(6.6) expressing the properties of mass action dynam-
ics and lower and upper bounds for the reaction rate coefficients will be used again for
the optimization. To distinguish between zero and nonzero reaction rate coefficients,
a small positive scalar ǫ is applied again, similarly to the previous cases.

The additional constraint for the full reversibility of the CRN structure is not
difficult to formulate as

[Ak]i,j > ǫ2 ↔ [Ak]j,i > ǫ2, ∀i > j. (6.16)

where ǫ2 is a small positive threshold value such that ǫ < ǫ2. The linear inequalities
equivalent to (6.16) can be written as

0 ≤ (ǫ2 − ǫ)− [Ak]ij + (lij − ǫ2) · δ
(1)
ij , ∀i > j (6.17)

0 ≤ (ǫ2 − ǫ)− [Ak]ji + (lji − ǫ2) · δ
(1)
ij , ∀i > j (6.18)

0 ≤ [Ak]ij − ǫ2 · δ
(1)
ij , ∀i > j (6.19)

0 ≤ [Ak]ji − ǫ2 · δ
(1)
ij , ∀i > j, (6.20)

where lij is the upper bound for [Ak]ij as it is introduced in eq. (6.5). Furthermore,
m(m−1)

2
integer variables are introduced for the representation of the reversibility con-

straint that are denoted by δ
(1)
ij , ∀i > j.

In order to obtain a numerically stable solution via the exclusion of reaction rate
coefficients between ǫ and ǫ2, the following additional constraints in the form of a
compound statement are introduced

[Ak]ij < ǫ OR [Ak]ij > ǫ2 + γ, (6.21)

66

               dc_263_11



6.1. Additional structural constraints represented in the form of linear inequalities

where γ is a small positive threshold value that is in the same order of magnitude as
ǫ2. The set of inequalities equivalent to (6.21) is given by

0 ≤ δ
(2)
ij , i 6= j (6.22)

0 ≤ lij − [Ak]ij − (lij − ǫ) · δ
(3)
ij , i 6= j (6.23)

0 ≤ [Ak]ij − (ǫ2 + γ) · δ(4)ij , i 6= j (6.24)

0 ≤ −δ(2)ij + δ
(3)
ij + δ

(4)
ij , i 6= j (6.25)

0 ≤ δ
(2)
ij − δ

(3)
ij , i 6= j (6.26)

0 ≤ δ
(2)
ij − δ

(4)
ij , i 6= j (6.27)

where δ(2), δ(3) and δ(4) represent altogether 3(m2 −m) integer variables.

It is remarked that the inequalities (6.17) – (6.20) and (6.22) – (6.27) express only
constraints and no objective function is associated to reversibility in itself. However,
the reversibility constraints can be easily combined with the minimization/maximization
of either the number of reactions or that of the non-isolated complexes, still in the
framework of mixed integer linear programming. Moreover, the strict reversibility
constraint can be modified to the minimization/maximization of reversible reaction
pairs in a straightforward way. It is emphasized finally, that the constraints presented
in this subsection together with an appropriate MILP solver are suitable for practically
deciding whether a reversible realization exists for a given CRN or not (of course for
such problem sizes that can be safely handled by the applied solver).

6.1.3 Examples

Example 6.1.1. Motivating example continued. Consider again the reaction net-
work shown in Fig. 2.3(a) with parameters k1 = 1, k2 = 2. The matrices characterizing
the CRN realization are the following.

Y =

[
0 3 2
3 0 1

]

, Ak =





−1 0 0
1 −2 0
0 2 0



 (6.28)

M = Y · Ak =

[
3 −2 0
−3 2 0

]

. (6.29)

Computing a realization with the minimal number of complexes Finding a
realization with the minimal number of complexes with parameters lij = 100 ∀i, j and
ǫ = 10−8 gives the following result:

A
(2)
k =





−1 0.6667 0
1 −0.6667 0
0 0 0



 . (6.30)

It’s straightforward to check thatM = Y ·A(2)
k . Here, A

(2)
k gives a deficiency 0 structure

that is shown in Fig. 2.3(e).
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Computing a dense reversible realization If we search for a reversible realiza-
tion given by eq. 6.29 that contains the maximal number of nonzero reaction rate
coefficients (i.e. a dense reversible realization), we have to combine constraints (6.1)-
(6.6), (6.17)-(6.20), (6.22)-(6.27) and (6.8)-(6.9), and maximize the objective function
(6.10). Using the parameters ǫ = 10−8, ǫ2 = 0.05, γ = 0.01 we obtain a fully reversible
structure given by the following Kirchhoff matrix

A
(3)
k =





−1.0200 0.6467 33.3333
0.9600 −0.7067 66.6667
0.0600 0.0600 −100.0000



 , (6.31)

which gives a deficiency 1 structure shown in Fig. 2.3(d). Again, it’s clear that

Y · Ak = Y · A(3)
k .

Example 6.1.2. Computing a reversible realization for an oscillating kinetic
system. Consider the reversible variant of the well-known Brusselator model [120]
shown in Fig. 6.1. The equations describing the dynamics of the closed system can be

Figure 6.1: Reversible Brusselator reaction scheme

written as

ẋ1 =− k12x1 + k21x2 (6.32)

ẋ2 =k12x1 − (k21 + k23)x2 + k32x3 + k45x
2
2x4 − k54x

3
2 − k67x2x5 + k76x4x6 (6.33)

ẋ3 =k23x2 − k32x3 (6.34)

ẋ4 =− k45x
2
2x4 + k54x

3
2 + k67x2x5 − k76x4x6 (6.35)

ẋ5 =− k67x2x5 + k76x4x6 (6.36)

ẋ6 =k67x2x5 − k76x4x6. (6.37)

It can be easily computed that the deficiency is zero for the above model. It follows
from the Deficiency Zero Theorem, that it can produce no complex dynamical phenom-
ena like oscillations for any positive values of the rate coefficients in its original closed
form. For the forthcoming computations, the following parameter values were used:
kij = 1, ∀i, j. To obtain oscillatory behaviour, the following steady state assumptions
have to be made:

xi = x∗i , for i = 1, 3, 5, 6. (6.38)

We note that these assumptions require some kind of control of concentrations in an
experimental setup and thus the opening of the originally closed system towards the
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environment. The following steady states were used: x∗1 = 1, x∗3 = 1, x∗5 = 16, x∗6 = 0.5,
that are known to cause oscillatory behaviour [120]. The remaining dynamics of the
system is then given by

ẋ2 = (k12x
∗
1 + k32x

∗
3) + (−k21 − k23 − k67x

∗
5)x2 − k54x

3
2 + k45x

2
2x4 + (k76x

∗
6)x4 (6.39)

ẋ4 = −k45x
2
2x4 + k54x

3
2 + k67x

∗
5x2 − k76x

∗
6x4. (6.40)

It is immediately visible that equations (6.39) - (6.39) are kinetic, therefore we can run
Algorithm 1 (see subsection 2.5.5) to compute a canonic CRN realization which is
shown in figure 6.2. It can be seen from the figure that this realization of deficiency 4
contains 8 reactions and none of the two linkage classes is (at least weakly) reversible.

However, an attempt to compute a fully reversible realization is successful in this
case and gives the CRN that is depicted in figure 6.3. We remark that this CRN is
also a sparse realization of the dynamics (6.39) - (6.40), since the corresponding MILP
optimization method tells us that the minimal number of reactions needed to realize
that dynamics is 6. The deficiency of the obtained reversible network is 1. The stable
limit cycle produced by the CRN started from the initial state x(0) = [2 2.5]T can be
seen in figure 6.4. We mention that the existence of reversible oscillating CRNs was
listed as an open problem in [140] in 2008. Although it is very hard to precisely check
this claim, the above system might be one of the first such examples. In e.g. [31],
three simple network structures with proven limit cycle behaviour are proposed one of
which is weakly reversible, but none of them is fully reversible.

Figure 6.2: Canonic reaction network produced by Algorithm 1 corresponding to the
kinetic system (6.39) - (6.40)

Figure 6.3: Sparse reversible realization corresponding to the kinetic system (6.39) -
(6.40)

Another example for the dynamically equivalent reversible realization of an origi-
nally irreversible network is given in Example A.2.2 in the Appendix.

6.2 Finding detailed balanced and complex balanced

CRN realizations using linear programming

In this section, we assume again that an initial CRN realization (Y (1), A
(1)
k ) or a kinetic

polynomial system is given together with an arbitrary positive steady state x∗ that
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Figure 6.4: Time-domain behaviour of the kinetic system (6.39) - (6.40)

has been determined analytically or simply through simulations. Our purpose is to
decide whether the system has a detailed balanced or complex balanced dynamically
equivalent realization and to give some solution (possibly with additional properties)
if the feasibility is fulfilled. The notions of detailed and complex balance were defined
in subsection 2.5.7. If we start from a kinetic polynomial system, we use Algorithm 1
described in subsection 2.5.5 for generating an initial (canonic) realization (Y (1), A

(1)
k ).

In any case, M (1) = Y (1) ·A(1)
k . Let us denote ψ(x∗) simply by ψ∗.

The decision variables denoted by y will be the elements of the Kirchhoff matrix and
we use the linear constraint set (5.14) again for characterizing dynamical equivalence
and the properties of the Kirchhoff matrix. Note that in this case no integer variables
are needed for solving the problems, therefore all the elements of y will be continuous
variables.

6.2.1 Additional constraints for complex balancing

Using the definition of a complex balanced steady state, the equality constraints for
complex balancing are

−a11ψ
∗
1 + a12ψ

∗
2 + · · ·+ a1mψ

∗
m = 0 (6.41)

a21ψ
∗
1 − a22ψ

∗
2 + · · ·+ a2mψ

∗
m = 0 (6.42)

...

am1ψ
∗
1 + · · ·+ am(m−1)ψ

∗
m−1 − ammψ

∗
m = 0. (6.43)

Clearly, these constraints can be written as

Ae2 · y = Be2, (6.44)

where

Ae2 =








−ψ∗
1 0m−1 ψ∗

2 0m−1 . . . ψ∗
m 0m−1

0 ψ∗
1 0m−1 −ψ∗

2 . . . ψ∗
m 0m−2

...
0m−1 ψ∗

1 0m−1 ψ∗
2 . . . 0m−1 −ψ∗

m







, Be2 = 0 ∈ R

m, (6.45)

and 0k denotes a 1× k row vector of zeros.
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6.2.2 Further constraints for detailed balancing

The most suitable form of detailed balancing constraints is taken from [154]. According
to this, a given steady state x∗ is detailed balancing if and only if

G · AT
k = Ak ·G (6.46)

where G = diag(ψ∗). It is easy to see that (6.46), if satisfied, implies reversibility of

the obtained reaction network. Eq. (6.46) encodes a maximum of m(m−1)
2

independent
equations that can be written into the linear programming problem as

ψ∗
i y(i−1)m+j − ψ

∗
j y(j−1)m+i = 0, ∀i > j, (6.47)

since [Ak]ij = y(j−1)m+i for i 6= j according to eq. (5.17).

6.2.3 The choice of the objective function

In principle, the objective function of the form (2.3) can be any linear function of y.
In section 6.2.4, we will minimize or maximize the sum of reaction rate coefficients.
The minimization of the sum corresponds to the choice of c = 1

2
[1 . . . 1]T in the

standard LP-problem (2.3)-(2.5), while the maximization is obtained by selecting c =
−1

2
[1 . . . 1]T . Note that the minimum of the sum of reaction rate coefficients is

bounded if the LP constraints are feasible, but the maximum is not necessarily, and
this must be kept in mind.

6.2.4 Examples

Example 6.2.1. Multiple detailed balanced realizations of a simple irre-
versible network.

Consider again the simple reaction network shown in Fig. 2.3(a) with parameters
k1 = 1, k2 = 1.5. The M matrix characterizing the polynomial ODEs of the system is

M = Y ·Ak =

[
3 −1.5 0
−3 1.5 0

]

. (6.48)

Thus, the ODE model is given by

ẋ1 = 3x32 − 1.5x31 (6.49)

ẋ2 = −3x
3
2 + 1.5x31. (6.50)

It’s easy to compute that e.g. x∗ = [1.6725 1.3275]T is a steady state for the sys-
tem (6.49)-(6.50). The corresponding values of the monomials are ψ∗ = ψ(x∗) =
[2.3393 4.6786 3.7134]T . Clearly, the realization shown in Fig. 2.3(a) cannot be
complex balanced or detailed balanced, since it is not weakly reversible.

In the first step, let us define the objective function as

h(y) =
1

2

9∑

i=1

yi (6.51)

which is the L1-norm of the reaction rate coefficient vector (note that the diagonal
elements of Ak with a negative sign contain the sum of the reaction rate coefficients
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in the corresponding column). Minimizing the objective function h in (6.51) subject
to the conditions (5.14) and (6.47) gives the detailed balance solution

yopt =
[
1 1 0 0.5 0.5 0 0 0 0

]T
, (6.52)

that corresponds to the following realization

Y ′ = Y, A′
k =





−1 0.5 0
1 −0.5 0
0 0 0



 . (6.53)

The detailed balance condition at the steady state can be checked as

1 · (x∗2)
3 = 0.5 · (x∗1)

3 = 2.3393. (6.54)

Since the obtained realization is a weakly reversible deficiency zero one, we can ap-
ply the Deficiency Zero Theorem and the latest developments about the stability of
complex balanced systems [4] and deduce that the positive equilibrium points of the
dynamics of the initial irreversible network are also globally stable with a known Lya-
punov function of the form (2.43).

In the second step, let us maximize h in (6.51). The obtained realization is now
given by

Y ′′ = Y, A′′
k =





−1.5 0 0.9449
0 −1.5 1.8899
1.5 1.5 −2.8348



 . (6.55)

The deficiency of the network in this case is 1. The detailed balance property is fulfilled
in this case as

1.5 · (x∗2)
3 = 0.9449 · (x∗1)

2x∗2 = 3.5088, (6.56)

1.5 · (x∗1)
3 = 1.8899 · (x∗1)

2x∗2 = 7.0179. (6.57)

The reaction digraphs of the above computed detailed balanced realizations can be
seen in Figs. 6.5 a) and b), respectively.

The motivation for trying to minimize and maximize the L1 norm of the reaction
rate coefficients to get potentially different detailed balanced realizations came from
[39] and [38]. We remark that the exact conditions under which the sparsest solution
of an underdetermined set of linear equations is the minimal L1 norm solution are not
fulfilled in our case, but the two obtained solutions are structurally different, and our
purpose here was only to illustrate that different detailed balanced realizations of the
same (very simple) kinetic system may exist.

It’s worth mentioning that the detailed balancing constraints described in section
6.2.2 can easily be combined with the computation of dense and sparse realizations (see
chapter 5). However, the problem in this case becomes NP-hard. A dense detailed
balanced realization can be seen in Fig. 6.5 c) that is determined by the following
matrices:

Y ′′′ = Y, A′′′
k =





−1.0333 0.4667 0.0630
0.9333 −0.5667 0.1260
0.1000 0.1000 −0.1890



 (6.58)
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Figure 6.5: Dynamically equivalent detailed balanced realizations of the CRN in ex-
ample 6.2.1. a) deficiency zero realization; b), c) deficiency one realizations

The detailed balancing condition is met in this case, too, since

0.9333 · (x∗2)
3 = 0.4667 · (x∗1)

3 = 2.1833 (6.59)

0.1 · (x∗2)
3 = 0.063 · (x∗1)

2x∗2 = 0.2339 (6.60)

0.1 · (x∗1)
3 = 0.126 · (x∗1)

2x∗2 = 0.4679 (6.61)

The average running time of the LP based methods (using the linprog command) was
0.06 second, while the MILP based algorithm (using the freely available GLPK solver)
found the dense realization in 1.04 second in the MATLAB computation environment
on a notebook computer with an 1.66 GHz Intel Atom N280 Processor.

Example 6.2.2. Finding complex balanced realization of a kinetic polyno-
mial system. The following polynomial system is given:

ẋ1 = x23 − x1x2 + x3x4 − 2x1x
2
2x3

ẋ2 = x23 − x1x2 + 2x3x4 − 4x1x
2
2x3

ẋ3 = −2x
2
3 + x1x2 − x1x

2
2x3 + 2x34 (6.62)

ẋ4 = x1x2 − x3x4 + 4x1x
2
2x3 − 3x34

It can be seen that (6.62) is essentially nonnegative and kinetic. After running Al-
gorithm 1, we obtain an initial canonic structure with 19 complexes and 16 reactions
that is visible in Fig. 6.6, where the numbering of complexes (in rectangles) is the
following:

1 : 2X3, 2 : X3 +X4, 3 : X1 + 2X3, 4 : X2 + 2X3,

5 : X3, 6 : X1 +X3 +X4, 7 : X2 +X3 +X4,

8 : X1 +X2, 9 : X1 + 2X2 +X3, 10 : X1, 11 : X2,

12 : X1 +X2 +X4, 13 : X1 +X2 +X3, 14 : 2X2 +X3,

15 : X1 + 2X2, 16 : X1 + 2X2 +X3 +X4,

17 : 3X4, 18 : X3 + 3X4, 19 : 2X4 (6.63)

In this case, we were searching for a complex balanced realization as it was described
in subsection 6.2.1. The objective function that was minimized was also the sum of
reaction rate coefficients, i.e.

h(y) =
1

2

361∑

i=1

yi (6.64)
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Figure 6.6: Reaction network realizing eq. (6.62) obtained using Algorithm 1. Only
those reaction rate coefficients are indicated that are different from 1.

The joint running time of Algorithm 1 and the solution of the LP problem with 361
variables was 0.45 second on the same hardware/software environment as in the pre-
vious example. The obtained complex balanced and thus weakly reversible realization
of the initial CRN is visible in Fig. 6.7. The isolated complexes (i.e. the ones with no
incoming and no outgoing directed edges) are naturally omitted from the realization
and not drawn in the figure. It can be checked that the deficiency of the complex bal-
anced realization is 0 (in sharp contrast with the deficiency of 12 of the initial network
in Fig. 6.6). Therefore, the autonomous system (6.62) has well-characterizable equi-
librium points in the positive orthant that are globally stable with a known Lyapunov
function.

An attempt to find a detailed balanced realization using the constraints described
in subsection 6.2.2 is unsuccessful in this case. After checking the feasibility condition
given in Theorem 2.1.1, we can deduce that such detailed balanced realization does
not exist with the complex set listed in eq. (6.63).

Figure 6.7: Complex balanced realization of the CRN shown in Fig. 6.6. All reaction
rate coefficients are 1.

6.3 Computing weakly reversible dynamically equiv-

alent CRN realizations
Although complex balance implies weak reversibility, the opposite is generally not
true. Therefore, it is worth examining the possibility of finding dynamically equivalent
weakly reversible networks with a completely different strategy from the one that was
followed in the previous subsection. Based on the fact that with a given Y , all possible
reactions are contained in the structurally unique dense realization, a straightforward
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idea is to try to find a dynamically equivalent weakly reversible mechanism starting
from this superstructure. For this, some additional notions will be introduced.

6.3.1 Constrained dense and sparse realizations

The simple constraint set denoted by K will be used for the exclusion of selected
reactions from the CRN, i.e. it is of the form:

K = {[Ak]i1,j1 = 0, . . . , [Ak]is,js = 0}, (6.65)

where s is the number of individual constraints, and ik 6= jk for k = 1, . . . , s. Now
we can introduce the following definitions. A dynamically equivalent K-constrained
realization of a CRN (Y,Ak) is a reaction network (Y,A′

k) such that Y ·Ak = Y ·A′
k and

the prescribed constraints K in the form of eq. (6.65) are fulfilled forA′
k. A dynamically

equivalent K-constrained dense realization of a chemical reaction network (Y,Ak) is a
K-constrained realization that contains the maximal number of nonzero elements in
A′

k. Similarly, a K-constrained sparse realization is a K-constrained realization with
the minimal number of nonzeros in A′

k. To characterize constrained dense/sparse
realizations, the results of subsection 5.5 can be extended in a straightforward way as
follows.

Theorem 6.3.1. Consider a CRN Σ = (Y,Ak) and let K be a constraint set of the
form (6.65) such that there exists a K-constrained CRN realization that is dynamically
equivalent to Σ. Let Σd

K = (Y,Ad
k) be a dynamically equivalent K-constrained dense

realization, and Σs
K = (Y,As

k) a dynamically equivalent K-constrained sparse realiza-
tion of Σ. Then for any dynamically equivalent K-constrained realization of Σ of the
form ΣK = (Y,A′

k), the following hold:

P1 The unweighted reaction graph of ΣK is the subgraph of the unweighted reaction
graph of Σd

K.

P2 The unweighted reaction graph (i.e. the CRN structure) of Σd
K is unique.

P3 The unweighted reaction graphs of all ΣK-s are identical (i.e. the graph structure
of the CRN with given constraint set K and complex set Y is unique) if and only
if the unweighted directed graphs of Σd

K and Σs
K are identical.

Proof. The theorem is clearly a special case of Theorem 5.5.1, when certain elements
of Ak are constrained to be zero. However, we can also give an alternative proof based
on elementary linear algebra.
P1, P2. The matrix equation Y ·Ak =M (see eqs. (2.29) and (5.3)) obviously defines
m sets of linear equations of the form

Y · [Ak]·,i = [M ]·,i, i = 1, . . . , m. (6.66)

Let us choose any i indexing the sets of equations in (6.66). For simplicity, let p =
[Ak]·,i, b = [M ]·,i. Let us assume that there are z elements of the constraint set (6.65)
where jk = i for k = 1, . . . , s. These constraints can be expressed by further linear
equations of the form:

[Ak]h,i = 0, h = 1, . . . , z. (6.67)
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The equation sets (6.66) and (6.67) can be written into a single set of equations as

Ȳ · p = b̄, (6.68)

where Ȳ ∈ R
(n+z)×m and b̄ ∈ R

n+z.

The first case is when b̄ = 0 (i.e. we have a homogeneous set of equations). Assume
that p is a dense solution of (6.68). If p has no zero elements then we are done. So
assume that p′ is a solution of (6.68), too, such that ∃ j for which p′j 6= 0 but pj = 0.
Then p′′ = p + λp′ for λ ∈ R is also a solution for (6.68) with b̄ = 0, and λ can
always be chosen such that there are more nonzero elements in p′′ than in p, which is
a contradiction.

If b̄ 6= 0 then the proof can be based on the following well known fact of linear
algebra. Consider an inhomogenous set of linear equations:

Ax = b, (6.69)

where A ∈ R
m×m, and x, b ∈ R

m. If x = xp is any particular solution of (6.69) then
the entire solution set for (6.69) can be characterized as

{xp + v | v is any solution of Ax = 0}. (6.70)

Let us assume now that p is a dense solution for (6.68), i.e. it contains the maximal
possible number of nonzero elements. If p has no zero elements, then the result to be
proven is trivially satisfied. Therefore, without the loss of generality we can assume
that the first l < m elements of p are nonzero, while the rest are zero, i.e. pj 6= 0
for j = 1, . . . , l, and pj = 0 for j = l + 1, . . . , m. This can always be achieved by
the appropriate reordering of the elements of p. Assume now that p′ ∈ R

m is also a
solution for (6.68), but p′c 6= 0 for some c ∈ Z, l + 1 ≤ c ≤ m. Then p′ = p + v for
some v, where Ȳ · v = 0, and vc 6= 0. In this case, p′′ = p + λ · v is also a solution for
(6.68) for any λ ∈ R and λ can always be chosen so that p′′j 6= 0 for j = 1, . . . , l, and
there is at least one index l + 1 ≤ c ≤ m for which p′′c 6= 0. However, this contradicts
to the assumption that p is a dense solution for (6.68).

P3. If the graph structure of the constrained realization is unique, then it trivially
imples that the structures of the constrained dense and sparse realizations are identical,
since there exists only one possible constrained reaction structure. If the structures of
the constrained dense and sparse realizations are identical, then the number of nonzero
reaction rates is the same in any constrained realizations including the constrained
dense ones. Then it follows from P1 that the constrained reaction structure is unique.

6.3.2 Basic principle of the algorithm

Very shortly, the underlying principle of the presented algorithm is that it only removes
(if possible) from the dense realization

(i) edges that cannot be parts of any weakly reversible realization,

(ii) edges the removal of which is necessarily implied by the deletion of edges belong-
ing to set (i),
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while maintaining dynamical equivalence. Besides Theorem 6.3.1, the correct opera-
tion of the algorithm is based on the following well-known result from graph theory:
If each strongly connected component of a directed graph G is contracted to a single
vertex, the resulting directed graph is a directed acyclic graph [9]. (A directed graph
is called acyclic if it has no nontrivial strongly connected subgraphs.) This implies
that for obtaining a CRN superstructure including all possible structures, a dense real-
ization must be computed. Directed edges between different strong components must
be removed because they cannot lie on a directed cycle in any dynamically equivalent
realization. If this is not possible, then there is no weakly reversible realization of
the CRN. However, if the deletion is possible, it may imply the removal of additional
reactions because of the linear kinetic constraints (see eqs. (6.1)-(6.4)). In general,
this may impair the weak reversibility of the obtained network. In such a case, a new
dense realization must be computed excluding the unnecessary edges identified in the
previous step, and the procedure must be repeated until either a weakly reversible
realization is found, or the deletion of undesired edges is no longer possible. In the
latter case, no weakly reversible realization of the initial CRN exists with the given
stoichiometric matrix Y .

6.3.3 Definition of input data structure and the necessary

additional procedures

We will assume that an initial CRN realization is given with the matrices (Y (0), A
(0)
k ),

and M = Y (0) · A(0)
k . The constraint set containing directed edges to be eliminated

from the current realization is denoted as

K = {(p1, q1), . . . , (ps, qs)}, s < r. (6.71)

where pi and qi denote the indices of the initial and terminal vertices of the ith edge,
respectively, and r is the number of reactions in the CRN.

Now, the following simple procedure will be defined for later use.

L = FindCrossComponentEdges(Ain
k ) (6.72)

The input of the procedure is the Kirchhoff matrix Ain
k of a CRN, and the output is a

set L containing the directed edges linking different strong components of the reaction
graph. The strongly connected components of a directed graph can be determined in
linear time using e.g. Kosaraju’s, Tarjan’s or Gabow’s algorithm [9, 123]. Moreover,
the examined CRN is weakly reversible if and only if it contains at least 2 reactions,
and the output L of FindCrossComponentEdges is empty.

In the following part of this subsection, appropriate modifications of the algorithm
described in chapter 5 are given, adapted to the current problem.

Constraints corresponding to mass action dynamics

We will use the simple form of linear constraints given by (6.1)-(6.4) in section 6.1.

Checking whether a set of reactions is removable from a CRN realization

We call a set of reactions K removable from a CRN realization, if there exists a
dynamically equivalent CRN realization that does not contain the directed edges in
K. To check this, it is worth separately defining the following LP-based and thus
polynomial-time procedure to avoid unnecessary MILP computations that are known
to be NP-hard.
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The constraints (6.1)-(6.4) are completed with the following ones

[Ak]qi,pi = 0 for i = 1, . . . , s (6.73)

where (pi, qi) ∈ K as it is written in eq. (6.71). The feasibility of the linear constraints
(6.1)-(6.4) and (6.73) can be checked by adding e.g. the following linear objective
function to be minimized:

GLP (Ak) =

m∑

i, j = 1
i 6= j, (j, i) /∈ K

[Ak]ij . (6.74)

Clearly, eqs. (6.1)-(6.4), (6.73)-(6.74) form a standard linear programming problem.

Based on the above, we will define the procedure to check whether a set K of
directed edges is removable from a CRN realization or not in the following way:

Fout = IsRemovable(Y (i), A
(i)
k ,K), (6.75)

where the input data are as follows: (Y (i), A
(i)
k ) is a CRN realization, and K is a

constraint set of the form (6.71) containing the tail and head index pairs of the directed

edges to be removed from (Y (i), A
(i)
k ). The output Fout is a boolean variable: its value

is true if there exists a dynamically equivalent realization to (Y (i), A
(i)
k ) not containing

the edges listed in K, and it is false if there does not exist such realization.

Computing the dense realization excluding given directed edges

If the procedure IsRemovable returns a true value, the dense realization of the CRN
can be computed subject to the constraint that the edges listed in K are excluded
from it. To define the corresponding MILP problem, first we add exactly the same
linear constraints contained in eqs. (6.1)-(6.4), (6.73) as in the previous case. To make
the forthcoming problem computationally tractable, we also introduce the following
bounds for the decision variables

[Ak]ij ≤ uij , uij > 0, i, j = 1, . . . , m, i 6= j, (j, i) /∈ K (6.76)

[Ak]ii ≥ li, li < 0, i = 1, . . . , m (6.77)

Here we are searching for such Ak that contains the maximal number of nonzero off-
diagonal elements. For this, logical variables denoted by δ are introduced and the
following compound statements are constructed

δij = 1↔ [Ak]ij > ǫ, i, j = 1, . . . , m, i 6= j, (j, i) /∈ K, (6.78)

where the symbol ”↔”denotes ”if and only if”, and ǫ is a sufficiently small positive value
(i.e. elements of Ak below ǫ are treated as zero). Considering also (6.76), statement
(6.78) can be translated to the following linear inequalities

0 ≤ [Ak]ij − ǫδij , i, j = 1, . . . , m, i 6= j, (j, i) /∈ K (6.79)

0 ≤ −[Ak]ij + uijδij , i, j = 1, . . . , m, i 6= j (j, i) /∈ K. (6.80)
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Now it is possible to compute the realization containing the maximal number of reac-
tions by maximizing the objective function

GMILP (δ) =
m∑

i, j = 1
i 6= j, (j, i) /∈ K

δij . (6.81)

Finally, the following procedure is defined based on the MILP problem given by eqs.
(6.1)-(6.4), (6.73), (6.76)-(6.77), and (6.79)-(6.81).

Ad
k = FindConstrDenseRealization(Y (i), A

(i)
k ,K), (6.82)

where the input data set is the same as in the case of the procedure IsRemovable (see
eq. (6.75) and the corresponding description). The output Ad

k is a dense realization
that does not contain the directed edges listed in the set K. If the set K is empty, then
the procedure is the same that computes dense realizations and that was described in
chapter 5.

6.3.4 Formal description of the algorithm

Now we can give the formal description of the procedure for determining weakly re-
versible CRN realizations. The input data of the procedure is an initial CRN realiza-
tion (Y (0),A

(0)
k ). The output is an m ×m matrix that is the Kirchhoff matrix of the

weakly reversible realization if there exists such, or a zero matrix if the procedure found
no weakly reversible realizations. In the algorithm pseudocode, the auxiliary variable
ExitCondition is a boolean storing the exit condition from the main loop. The com-
plete pseudocode of the procedure called FindWeaklyReversibleRealization with
common notations and keywords can be found in Table 6.1.

6.3.5 Main properties of the algorithm

The above described algorithm always finds a dynamically equivalent weakly reversible
realization, if it exists. This clearly follows from Theorem 6.3.1 and the basic principles
of the algorithm described in subsection 6.3.2. From these facts it also follows that
the algorithm finds the dense weakly reversible realization that structurally contains
any other weakly reversible realizations (for illustration, see the results in subsection
6.3.1). We remark that the immediate deletion of the columns/rows corresponding to
the isolated complexes from matrices Y and Ak after calling the procedure FindCon-

strDenseRealization is also possible, but this requires the renumbering of complexes.
This is a technical detail of implementation and does not affect the principle or final
output of the algorithm. (However, decreasing the number of optimization variables
and constraints in each step in such a way might be required especially in the case of
larger networks.)

6.3.6 Examples

The following examples were implemented in the MATLAB R13 computation envi-
ronment using the YALMIP and the Multi-Parametric Toolboxes [110, 102]. The
examples were run on a desktop PC with dual Intel Xeon 1.8GHz CPU and 2 Giga-
bytes of RAM. The implementation of dense realization computation was not parallel,
therefore all the decision variables and constraints were put into a single optimization
problem in procedure FindConstrDenseRealization. The strong components of the
reaction graphs were identified using Kosaraju’s algorithm [139].
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Aout
k =FindWeaklyReversibleRealization(Y (0),A

(0)
k )

1 Aout
k :=0 ∈ R

m×m; ExitCondition:=false;

2 Y := Y (0); Ak := A
(0)
k ; Fout:=true; K := {}; L := {};

3 while (ExitCondition=false) do
4 begin

5 if (K 6= {}) then Fout:=IsRemovable(Y ,Ak,K);
6 if (Fout =true) then
7 begin

8 Ak:=FindConstrDenseRealization(Y ,Ak,K);
9 L:=FindCrossComponentEdges(Ak);
10 if (L = {}) then ExitCondition:=true; Aout

k :=Ak;
11 else K := K ∪ L;
12 end

13 else ExitCondition:=true;
14 end

15 return Aout
k ;

Table 6.1: Pseudocode of the algorithm for finding weakly reversible realizations

Example 6.3.1. Weakly reversible realizations of a simple irreversible net-
work. The simple network that can be seen in Fig. 6.8 a) was taken from [91]

Figure 6.8: a) Simple irreversible network from [91], b) Structure of one of its possible
weakly reversible realizations determined in [91]

(Example 3). In [91], it is shown that for any positive ǫ, the network has a possible
weakly reversible realization with the structure shown in Fig. 6.8 b). (The computa-
tion and analysis of the parameters of the CRN in Fig. 6.8 b) can be found in [91].)
The complex composition matrix of the network is

Y =

[
1 1 2 0 1 1 3
2 0 1 3 3 1 1

]

. (6.83)

The nonzero elements of the Kirchhoff matrix Ak ∈ R
7×7 with ǫ = 1.5 are

[Ak]2,1 = 1.5, [Ak]4,3 = 1, [Ak]6,5 = 1, [Ak]7,6 = 1. (6.84)
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For this network, the algorithm described in section 6.3.4 and Table 6.1 works as
follows. After the initialization steps, the dense realization containing all possible
reactions with an empty constraint set K is computed (line 8 of the pseudocode). The
Kirchhoff matrix of the dense realization is given by

A
(1)
k =













−1.25 0 0.1 0 0.1 0.1 0
0.55 0 0.1 0 0.4333 0.5 0
0.1 0 −1.4 0 0.1 0.1 0
0.3 0 0.8 0 0.3 0.1 0
0.1 0 0.2 0 −1.1333 0.1 0
0.1 0 0.1 0 0.1 −1.9 0
0.1 0 0.1 0 0.1 1 0













(6.85)

The structure of the dense realization is shown in Fig. 6.9. The following steps can

Figure 6.9: Structure of the dense realization of the reaction network shown in Fig.
6.8 a)

be followed using Fig. 6.10. The dense realization is not weakly reversible because
there are edges between different strong components (line 9). The complexes of the
single nontrivial strong component are indicated by boldface labels in Fig. 6.10. It is
clear from the figure that the edges adjacent to the complexes X1, 3X2, 3X1 +X2 are
to be removed. These edges are drawn with dotted arrows in the figure. Thus, the
constraint list is

K = {(1, 2), (1, 4), (1, 7), (3, 2), (3, 4), (3, 7), (5, 2), (5, 4), (5, 7), (6, 2), (6, 4), (6, 7)}.

The next iteration of the algorithm (line 5) gives that these edges can be removed
from the realization. Now a new dense realization is computed excluding edges in
K (line 8). The reactions of this dense realization are indicated by thick arrows in
Fig. 6.10. Note that the constraint of excluding the reactions in K from the network
resulted in the removal of directed edges X1 +X2 → X1 + 2X2, X1 + 2X2 → 2X1 +
X2, X1 + 3X2 → 2X1 + X2, and X1 + X2 → X1 + 3X2, too, that were within the
nontrivial strong component of the previous step. In this case, the resulting network
remained weakly reversible (lines 9-10), so the algorithm can stop with success and
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return the determined dynamically equivalent weakly reversible CRN. The structure
of the resulting network is shown in Fig. 6.11(a). The Kirchhoff matrix of the obtained
realization is the following

A
(2)
k =













−3.2 0 1.8 0 0.1 0 0
0 0 0 0 0 0 0
0 0 −2 0 0 2 0
0 0 0 0 0 0 0
0.1 0 0.1 0 −1.05 0 0
3.1 0 0.1 0 0.95 −2 0
0 0 0 0 0 0 0













(6.86)

The running time of the algorithm was 11s using the software environment described
in the beginning of section 5.6.

It is interesting to note that the obtained weakly reversible realization is not com-
plex balanced. However, using the polynomial-time algorithm described in section 6.2,
we can compute a complex balanced realization with 6 reactions in just 0.1s, that is
shown in Fig. 6.11(b). It is easy to see that the unweighted directed graphs of Figs.
6.8 b) and Fig. 6.11(b) are indeed the proper subgraphs of the structure visible in Fig.
6.11(a).

Figure 6.10: Illustration of the operation of the algorithm on the example given in
section 6.3.1

Example 6.3.2. Weakly reversible realization of a kinetic polynomial system.
Let us consider the kinetic polynomial system of Example 6.2.2 with equations (6.62).
We again start from the canonic scheme given by Algorithm 1 but with the following
complex numbering that is different from (6.63):

C1 = 2X3, C2 = X1 + 2X3, C3 = X1 +X2, C4 = X2, C5 = X3 +X4, C6 = X1 +X3 +X4,

C7 = X1 + 2X2 +X3, C8 = 2X2 +X3, C9 = X2 + 2X3, C10 = X1, C11 = X2 +X3 +X4,

C12 = X1 +X2 +X3, C13 = X3, C14 = X1 + 2X2, C15 = 3X4, (6.87)

C16 = X3 + 3X4, C17 = X1 +X2 +X4, C18 = X1 + 2X2 +X3 +X4, C19 = 2X4.
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(a) (b)

Figure 6.11: (a) The structure of the obtained dynamically equivalent weakly reversible
CRN, (b) Complex balanced realization of the CRN described in section 6.3.1

The dense realization of the network contains 80 reactions, therefore it is not shown
in a figure. Let us number the vertices of the reaction graph according to the complex
numbering, i.e. vertex i corresponds to complex Ci for i = 1, . . . , 19. For the sake
of completeness, the list of the reactions (i.e. weighted directed edges) of the dense
realization in the form (source vertex number, destination vertex number, weight (i.e.
rate coefficient)) is given below:
(5, 1, 0.5), (7, 1, 0.1), (11, 1, 0.1), (15, 1, 0.8), (1, 2, 0.1), (3, 2, 0.1), (5, 2, 0.1), (7, 2,
0.1), (12, 2, 0.3), (1, 3, 0.1), (5, 3, 0.1), (7, 3, 0.1), (12, 3, 0.1), (1, 4, 0.1), (3, 4, 0.4),
(5, 4, 0.1), (7, 4, 0.1), (11, 4, 0.1), (3, 5, 0.1), (7, 5, 0.1), (11, 5, 0.1), (15, 5, 0.1), (3,
6, 0.1), (5, 6, 0.1), (7, 6, 0.1), (1, 7, 0.1), (3, 7, 0.1), (5, 7, 0.2), (12, 7, 0.3), (1, 8, 0.1),
(3, 8, 0.1), (5, 8, 0.3), (7, 8, 0.3), (11, 8, 1.2), (1, 9, 0.1), (5, 9, 0.1), (7, 9, 0.1), (11, 9,
0.2), (1, 10, 0.5), (3, 10, 0.8), (5, 10, 0.1), (7, 10, 0.1), (12, 10, 0.1), (3, 11, 0.1), (5, 11,
0.1), (7, 11, 0.1), (1, 12, 0.1), (3, 12, 0.1), (5, 12, 0.1), (7, 12, 0.1), (1, 13, 0.1), (3, 13,
0.1), (5, 13, 0.1), (7, 13, 0.1), (11, 13, 0.1), (15, 13, 0.1), (1, 14, 0.1), (3, 14, 0.1), (5,
14, 0.1), (7, 14, 0.1), (12, 14, 0.1), (3, 15, 0.1), (5, 15, 0.1), (7, 15, 0.7), (11, 15, 0.1),
(5, 16, 0.25), (7, 16, 0.3), (11, 16, 0.7), (15, 16, 0.2), (3, 17, 0.1), (5, 17, 0.1), (7, 17,
0.1), (3, 18, 0.1), (5, 18, 0.1), (7, 18, 0.4), (3, 19, 0.1), (5, 19, 0.1), (7, 19, 0.1), (11,
19, 0.1), (15, 19, 0.1).

The dense realization has 13 strong components. Out of these, there is only one
nontrivial strongly connected component containing the vertices 1, 3, 5, 7, 11, 12,
and 15. After identifying all directed edges linking different strong components, we
obtain that the following 53 edges given in the form (source vertex number, destination
vertex number) should be deleted from the dense realization in the next step of the
algorithm:
(1,2), (3,2), (5,2), (7,2), (12,2), (1,4), (3,4), (5,4), (7,4), (11,4), (3,6), (5,6), (7,6),
(1,8), (3,8), (5,8), (7,8), (11,8), (1,9), (5,9), (7,9), (11,9), (1,10), (3,10), (5,10), (7,10),
(12,10), (1,13), (3,13), (5,13), (7,13), (11,13), (15,13), (1,14), (3,14), (5,14), (7,14),
(12,14), (5,16), (7,16), (11,16), (15,16), (3,17), (5,17), (7,17), (3,18), (5,18), (7,18),
(3,19), (5,19), (7,19), (11,19), (15,19).

All the above listed edges were possible to remove from the dense realization (their
removal implied the deletion of 12 additonal reactions), and the resulting constrained
dense realization is shown in Fig.6.12(a). It is clear from the figure that edges adjacent
to vertices no. 11 and 12 have to be removed in the following step. This final step is
illustrated in Fig. 6.12(b), where the meaning of the line types is the same as in the
case of Fig. 6.10. With the removal of edges (5,11), (5,12), (7,11), (7,12), the directed
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edges (5,1), (7,1), (7,3), (5,3), (7,5) and (5,15) were also deleted, and the resulting
weakly reversible realization (of deficiency 0) is shown in Fig. 6.13. The total running
time of the algorithm was 80.5s. It can be checked that the obtained network is exactly
the same as in Fig. 6.7. However, in this case the complex balanced property is not a
condition for the correct operation of the algorithm.

(a) (b)

Figure 6.12: (a) Constrained dense CRN realization of Example 6.3.2 containing the
vertices of the only nontrivial strong component of the dense realization, after re-
moving 65 reactions, (b) Illustration of the final step of the algorithm on the CRN
corresponding to Example 6.3.2

Figure 6.13: The obtained weakly reversible realization in Example 6.3.2
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6.4 Including the the linear conjugacy concept into

the optimization framework
According to Theorem 2.5.1, we can guarantee weak reversibility by imposing the
condition

Ak · b = 0 (6.88)

for some b ∈ R
m
>0. This is clearly a nonlinear constraint in the reaction rate coefficients

and the elements of b. In order to make it linear, we consider the matrix Ãk with entries

[Ãk]ij = [Ak]ij · bj . (6.89)

It is clear from (6.89) that Ãk is also a Kirchhoff matrix and that 1 ∈ R
m (the m-

dimensional vector containing only ones) lies in ker(Ãk). Moreover, it is easy to see
that Ãk encodes a weakly reversible network if and only if Ak corresponds to a weakly
reversible network. We can therefore check weak reversibility of the chemical reaction
network corresponding to Ak with the linear conditions

(WR’)







m∑

i=1

[Ãk]ij = 0, j = 1, . . . , m

m∑

i=1

[Ãk]ji = 0, j = 1, . . . , m

[Ãk]ij ≥ 0, i, j = 1, . . . , m, i 6= j

[Ãk]ii ≤ 0, i = 1, . . . , m.

(6.90)

By solving for the diagonal elements of Ãk, the set of constraints (6.90) can be simpli-
fied to

(WR)







m∑

i=1,i 6=j

[Ãk]ij =
m∑

i=1,i 6=j

[Ãk]ji, j = 1, . . . , m

[Ãk]ij ≥ 0, i, j = 1, . . . , m, i 6= j.

(6.91)

Naturally, the above constraints are used together with (6.1)-(6.4) and (6.5)-(6.6) that
ensure dynamical equivalence.

No condition comparable to Y · Ak = M exists for the matrix Ãk so that we are
left to optimization with respect to the internal entries of both Ak and Ãk. Given
appropriate choices of 0 < ǫ≪ 1 and uij > 0, i, j = 1, . . . , m, i 6= j, we can impose

(WR-S)

{
0 ≤ [Ãk]ij − ǫδij , i, j = 1, . . . , m, i 6= j

0 ≤ −[Ãk]ij + uijδij , i, j = 1, . . . , m, i 6= j
(6.92)

as well as (6.79)-(6.80) to ensure that both Ak and Ãk contain zero and non-zero entries
in the same places so that they correspond to reaction graphs with the same structure.

6.4.1 Computing weakly reversible linearly conjugate networks

While the results of [91] give conditions for two networks to be linearly conjugate, and
therefore exhibit the same qualitative dynamics, no general methodology is provided
for determining linearly conjugate networks when only a single network is provided.

In cases where the dynamics of a network is suspected to behave like a weakly
reversible network, it is beneficial to extend the optimization algorithm outlined in
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section 2.5.1 to linearly conjugate networks. This can be accomplished by modifying
the set of constraints (6.1-6.4) to

(LC)







Y · Ab = T−1 ·M
m∑

i=1

[Ab]ij = 0, j = 1, . . . , m

[Ab]ij ≥ 0, i, j = 1, . . . , m, i 6= j
[Ab]ii ≤ 0, i = 1, . . . , m
ǫ ≤ cj ≤ 1/ǫ, j = 1, . . . , n

(6.93)

where M = Y ·Ak, T =diag{c1, . . . , cn}, 0 < ǫ≪ 1, and replacing the set of translated
constraints (6.8)-(6.9) by

(LC-S)







0 ≤ [Ab]ij − ǫδij , i, j = 1, . . . , m, i 6= j
0 ≤ −[Ab]ij + uijδij, i, j = 1, . . . , m, i 6= j
δij ∈ {0, 1} , i, j = 1, . . . , m, i 6= j,

(6.94)

where uij > 0 for i, j = 1, . . . , m, i 6= j.
Ab has the same structure as the kinetics matrix A′

k corresponding to the conjugate
network, and this matrix has the same structure as the matrix Ãk given by (6.89)
(replacing Ak by A′

k). Consequently, the problem of determining a sparse or dense
weakly reversible network which is linearly conjugate to a given kinetics can be given
by minimizing or maximizing the sum of the integer variables δij over the constraint
sets (6.93), (6.94), (6.91), and (6.92). The kinetics matrix A′

k for the linearly conjugate
network is then given by (2.52).

6.4.2 Examples

In this subsection we will consider two examples from the literature which demonstrate
how the MILP optimization algorithm outlined in this section is capable of efficiently
finding sparse and dense weakly reversible networks which are linearly conjugate to a
given network. We also consider one new example which illustrates how the algorithm
is capable of finding networks with linearly conjugate dynamics for which no trivial
linear conjugacy exists.

Example 6.4.1. Consider the initial CRN of Example 6.3.1 that is shown in Fig.
6.8(a). We recall that this network was first considered in [91] where the authors
showed that it was linearly conjugate to a specified weakly reversible network for all
values of ǫ > 0. It was further analysed with the value ǫ = 1.5 in Example 6.3.1 where
a dense weakly reversible realization was found through successive MILP optmizations.
This result will be reproduced here using the one-step MILP algorithm described in
this section.

We have

Y =

[
1 1 2 0 1 1 3
2 0 1 3 3 1 1

]

and

M =

[
0 0 −2 0 0 2 0
−3 0 2 0 −2 0 0

]

.

and set ǫ = 1/α = 2/3 and uij = 20, i, j = 1, . . . , 7, i 6= j. The MILP problem
for a dense weakly reversible linearly conjugate network, possibly accounting for a
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non-trivial linear conjugacy mapping, is

minimize
7∑

i,j=1

−δij

over the constraint set

Y ·Ab = T−1 ·M
m∑

i=1

[Ab]ij = 0, j = 1, . . . , m

m∑

i=1,i 6=j

[Ãk]ij =
m∑

i=1,i 6=j

[Ãk]ji, j = 1, . . . , m

0 ≤ [Ab]ij − ǫ · δij , i, j = 1, . . . , 7, i 6= j

0 ≤ −[Ab]ij + uij · δij, i, j = 1, . . . , 7, i 6= j

0 ≤ [Ãk]ij − ǫ · δij , i, j = 1, . . . , 7, i 6= j

0 ≤ −[Ãk]ij + uij · δij , i, j = 1, . . . , 7, i 6= j,

where T =diag{c1, . . . , cn}, and the decision variables

[Ab]ij ≥ 0, [Ãk]ij ≥ 0, for i, j = 1, . . . , 7, i 6= j

[Ab]ii ≤ 0, for i = 1, . . . , 7

ǫ ≤ ci ≤ 1/ǫ, for i = 1, 2

δij ∈ {0, 1} , for i, j = 1, . . . , 7, i 6= j.

Solving for Ab with GLPK and applying (2.52) gives the kinetics matrix

Ak =













−13
3

0 2
3

0 2
3

0 0
0 0 0 0 0 0 0
0 0 −2 0 0 2 0
0 0 0 0 0 0 0
2
3

0 2
3

0 −4
3

0 0
11
3

0 2
3

0 2
3
−2 0

0 0 0 0 0 0 0













and values c1 = 1, c2 = 1 (i.e. the linear transformation is the identity). The network
structure is given graphically in Fig. 6.14(a). Although the rate constants differ due
to differing bounds, this has the same network structure as the dense weakly reversible
network obtained in Example 6.3.1.

A sparse weakly reversible network is generated by optimizing

minimize

7∑

i,j=1

δij

over the same constraint set. Solving for Ab with GLPK with the bound ǫ = 0.1 and
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applying (2.52) gives the kinetic matrix

Ak =













−150 0 0 0 500 0 0
0 0 0 0 0 0 0
0 0 −100 0 0 10 0
0 0 0 0 0 0 0
0 0 100 0 −500 0 0
150 0 0 0 0 −10 0
0 0 0 0 0 0 0













and values c1 = 10 and c2 = 5. This is therefore an example of a network with a
non-trivial linear conjugacy and corresponds to the weakly reversible network given in
Fig. 6.14(b).

Figure 6.14: Dense (a) and sparse (b) weakly reversible networks which are linearly
conjugate to the initial CRN

Example 6.4.2. Let us consider again the kinetics scheme of Examples 6.2.2 and 6.3.2
with equations (6.62) and complex numbering given by (6.63).

In Example 6.3.2 the determination of a dense weakly reversible realization for the
same system required three MILP optimizations, three searches for strongly connected
components, and took 80.5s to complete. Carrying out the MILP optimization al-
gorithm described in this section for a dense and then for a sparse weakly reversible
network, with bounds ǫ = 0.1 and uij = 10, i, j = 1, . . . , 19, we arrive at the same
solution

k̃18 = k̃29 = k̃82 = 0.1, k̃92 = k̃9(17) = 0.001, k̃(17)1 = 0.01,

c1 = c2 = c3 = c4 = 0.1,

and the rest of the entries zero (the transformation is a scaling of the identity). This
corresponds to the network given in Figure 6.15 which has the same network structure
as the network obtained in Example 6.3.2. The presented one-step algorithm was able
to obtain the answer in a single MILP optimization step and took less than a tenth
of a second to compute. (The difference of rate constants from the results of Example
6.3.2 occurs as a result of the scaling of concentration variables permitted by linear
conjugacy.)

Example 6.4.3. Consider the kinetics scheme

ẋ1 = x1x
2
2 − 2x21 + x1x

2
3

ẋ2 = −x
2
1x

2
2 + x1x

2
3

ẋ3 = x21 − 3x1x
2
3.

(6.95)
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Figure 6.15: Weakly reversible realization of the kinetic system of Example 6.4.2. This
realization is both dense and sparse.

The complexes corresponding to the canonic realization are

C1 = X1 + 2X2, C2 = 2X1 + 2X2, C3 = 2X1 +X2,

C4 = 2X1, C5 = X1, C6 = 2X1 +X3, C7 = X1 + 2X3

C8 = 2X1 + 2X3, C9 = X1 +X2 + 2X3, C10 = X1 +X3.

(6.96)

With this fixed complex set, we can carry out the MILP optimization procedure
to find sparse and dense weakly reversible networks which are linearly conjugate to a
network with kinetics (6.95). We have

Y =





1 2 2 2 1 2 1 2 1 1
2 2 1 0 0 0 0 0 1 0
0 0 0 0 0 1 2 2 2 1





and

M =





1 0 0 −2 0 0 1 0 0 0
0 −1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 −3 0 0 0



 .

With the bounds ǫ = 1/20 and uij = 20 for i, j = 1, . . . , 10, i 6= j, the algorithm
gives us the sparse network given in Figure 6.16(a) (conjugacy constants c1 = 20,
c2 = 2, and c3 = 5) and the dense network given in Figure 6.16(b) (conjugacy constants
c1 = 20/3, c2 = 20/33, and c3 = 5/3). It is interesting to note that the sparse and dense
networks utilize different complexes and that the conjugacy constants differ between
the sparse and dense networks. It is also important to emphasize finally, that it can be
shown that there are no weakly reversible dynamically equivalent realizations of the
dynamics (6.95) with the complex set (6.96), but the computation results show that
the dynamics is linearly conjugate to several weakly reversible deficiency 0 structures.

Figure 6.16: Weakly reversible networks which are linearly conjugate to a network with
the kinetics (6.95). The network in (a) is sparse while the network in (b) is dense.
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6.5 Further related results and extensions
In this section, some further additions to the previously presented results will be
described shortly.

6.5.1 Realizations of deficiency zero CRNs with one terminal
strong linkage class are unique

The result shown in this subsection has been published in [J18]. The main result here is
that deficiency zero CRNs with one terminal strong linkage class cannot have multiple
different realizations, if the set of complexes is fixed. For this, we will use the following
standard notations. The dimension of a vector space V is denoted by dim(V ). For an
arbitrary matrix M , its rank, image and kernel is denoted by rank(M), Im M , and
Ker M , respectively. Furthermore, let us denote the ith column of a matrix M with
[M ].,i.

Additionally, the following relations known from linear algebra and CRN theory
will be used. (For R1-R4, the reader is referred to e.g. [129], while R5, R6 can be
found in [49] and [72], respectively)

R1 For any two matricesA, B for which AB exists rank(AB) ≤ min(rank(A), rank(B)).

R2 (Rank-nullity theorem) For any k× l matrix M , dim(Im M) + dim(Ker M) = l.

R3 For any matrices A, B such that the product BA exists

dim(Im A ∩Ker B) = dim(Im A)− dim(Im(BA)) = dim(Ker(BA))− dim(Ker A)

R4 The maximal rank of a set V = {v(1), . . . , v(k)} of n-dimensional vectors for which
∑n

i=1 v
(j)
i = 0, for j = 1, . . . , k and k >= n, is n− 1. To see this, let us form the

following matrix from the vectors v(1), . . . , v(k)

M = [v(1) v(2) . . . v(k)] (6.97)

The maximal row rank of M is clearly n − 1, since the zero vector can be con-
structed as a nontrivial linear combination (i.e. a simple addition) of the rows
of V . The row and column ranks of any matrix are always equal, therefore the
maximal number of linearly independent vectors in V is n− 1.

R5 If a CRN with the Kirchhoff matrix Ak ∈ R
m×m has one terminal strong linkage

class, then dim(Im Ak) = m− 1.

R6 If each linkage class of a CRN given by (Y,Ak) contains precisely one terminal
strong linkage class, then the deficiency d of the network is d = dim(Im Ak ∩
Ker Y ).

Taking into consideration the preliminary facts R1-R6, we can now state the
following result.

Theorem 6.5.1. Any deficiency zero CRN given by (Y,Ak) with one terminal strong
linkage class is parametrically and therefore structurally unique, if the set of complexes
is fixed, i.e. there is no Kirchhoff matrix A′

k different from Ak such that Y ·Ak = Y ·A′
k.
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Proof. (Indirect) Let us assume that there exists a Kirchhoff matrix A′
k 6= Ak such

that Y Ak = Y A′
k. Then Y (Ak − A′

k) = 0. Let Âk = Ak − A′
k. It is clear that Âk is

also a column conservation matrix (not necessarily Kirchhoff), and that the columns
of Âk belong to the kernel of Y , i.e. [Âk].,i ∈ Ker Y for i = 1, . . . , m. From this it

follows that dim(Ker Y ) ≥ 1 since Âk is nonzero.

From R5 we know that dim(Im Ak) = m − 1. From R3 and R6 it follows that
dim(Im Ak) = dim(Im(Y Ak)), i.e. dim(Im(Y Ak)) = m − 1. Using R1 we get that
dim(Im Y ) ≥ m − 1 that implies dim(Ker Y ) ≤ 1. From the two estimations on
the dimension of Ker Y we obtain that dim(Ker Y ) = 1, and (by using R2) that
dim(Im Y ) = m− 1.

Since Âk is a column conservation matrix, for any v ∈ Ker Y it is true that
∑m

i=1 vi = 0. Then, according to R4, Ker Y ⊂ Im Ak, and therefore dim(Im Ak ∩
Ker Y ) cannot be zero, which is a contradiction.

Deficiency zero weakly reversible networks with one linkage class form an important
subset of the CRNs for which Theorem 6.5.1 is valid. Theorem 6.5.1 is naturally
valid for CRNs composed of multiple linkage classes each of which has precisely one
terminal linkage class, if the sets of species belonging to the individual linkage classes
are mutually disjoint. In this case, the linkage classes can be treated as separate
independent CRNs. However, if there are common species between the linkage classes,
then zero deficiency and even (weak) reversibility of the linkage classes are not sufficient
for the uniqueness of the realization, as the following example will show.

Example 6.5.1. Consider the reaction network the graph of which is shown in Fig.
6.17(a). Let us number the complexes as

C1 = X1, C2 = 2X1 +X2, C3 = 2X2, C4 = 3X1 +X2.

Then the matrices of the description (2.29) are the following:

Y =

[
1 2 0 3
0 1 2 1

]

, Ak =







−1 2 0 0
1 −2 0 0
0 0 −3 2
0 0 3 −2






, (6.98)

M = Y Ak =

[
1 −2 9 −6
1 −2 −3 2

]

. (6.99)

Let us consider the following Kirchhoff matrix:

A′
k =







−1 3 0 0
1 −7 0 0
0 1 −3 2
0 3 3 −2






. (6.100)

It can be checked that M = Y Ak = Y A′
k. It is noticable from Fig. 6.17(b) that the

deficiency of the second realization with A′
k is 1, because it contains only one linkage

class.
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(a) (b)

Figure 6.17: (a) Simple reaction network of Example 6.5.1, (b) Dynamically equivalent
one linkage class realization of the CRN

6.5.2 Dense realizations can be found in polynomial time

Computing dense realizations is treated originally in a MILP-framework in chapter
5. However, using the structural uniqueness of such realizations it is easy to give a
polynomial-time algorithm based on a finite series of linear programming (LP) opti-
mization steps. The idea of the improved algorithm is simple: the reaction Cp → Cq be-
longs to the dense realization if and only if there exists any dynamically equivalent real-
ization where [Ak]qp > 0. This result directly follows from the fact that the unweighted
reaction graphs of constrained dense realizations give a unique super-structure. The
corresponding condition can be effectively checked for each non-diagonal element of
Ak with the solution of the following standard linear programming (LP) problem:

for p, q = 1, . . . , m, q 6= p

maximize fqp = [Ak]qp

subject to :

Y ·Ak =M
m∑

i=1

[Ak]ij = 0, j = 1, . . . , m (6.101)

[Ak]ij ≥ 0, i, j = 1, . . . , m, i 6= j,

[Ak]ii ≤ 0, i = 1, . . . , m

Let us denote the obtained objective function value corresponding to (p, q) by γpq. (If
the objective function value happens to be unbounded in (6.101) then an appropriate
positive value for γpq should be selected which is an acceptable positive upper bound for
the corresponding rate coefficient.) Then, in the final step, a sufficiently small lower
bound (denoted by ǫij) for the identified reactions with nonzero objective function
value should be given to determine a possible dense realization by the solution of the
following LP feasibility problem:

Y · Ak =M
m∑

i=1

[Ak]ij = 0, j = 1, . . . , m

[Ak]ij = 0, if γij = 0 (6.102)

[Ak]ij ≥ ǫij , if γij > 0

[Ak]ii ≤ 0, i = 1, . . . , m
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A feasible solution of the above constraint set is a possible dense realization. Thus,
the solution of the problem requires m(m − 1) + 1 LP steps, where m is the num-
ber of complexes in the network. This method naturally works for constrained dense
realizations, too, if the corresponding further constraints are added to the optimiza-
tion. A significant analogous result worth to be mentioned here is that although many
problems in process network synthesis are computationally hard because of structural
complexity, using the notion of P-graphs the generation of a so-called maximal su-
perstructure containing all feasible process networks performing a given task can be
solved in polynomial time [62].

With this modification, the algorithm given in section 6.3 for computing weakly
reversible realizations will be polynomial-time, too. Only the procedure for finding con-
strained dense realizations (called FindConstrDenseRealization) has to be changed
in the method.

For comparison, the polynomial-time variant of the method finds the weakly re-
versible realization of the kinetic system in Example 6.3.2 in 10.3s instead of the 80.5s
measured with the MILP-based solution.

6.5.3 Definition and computation of core reactions

We will call a reaction a core reaction, if it is present in any dynamically equivalent
realization of a CRN with a given complex set (and possibly an additional constraint
set). Other reactions, the rate coefficient of which can be zero in certain realizations,
are called non-core reactions. It clearly follows from the definition, but is remarked
separately that the set of core reactions is generally not identical to the set of reactions
of a sparse realization.

The outline of the computation method for determining core reactions is the fol-
lowing. Firstly, a dense realization of the network has to be computed to get all the
mathematically possible reactions. Then, for each reaction Cp → Cq in the dense
realization, the feasibility of the following constraint set has to be checked:

Y · Ak =M
m∑

i=1

[Ak]ij = 0, j = 1, . . . , m

[Ak]ij ≥ 0, i, j = 1, . . . , m, i 6= j, (i, j) 6= (q, p) (6.103)

[Ak]ii ≤ 0, i = 1, . . . , m

[Ak]qp = 0

where the off-diagonal elements of matrix Ak are the decision variables, and the known
matrices are Y and M . It is clearly visible that this task is an LP feasibility problem.
Then, reaction Cp → Cq is a core-reaction if and only if the set defined by (6.103) is
empty (i.e. the corresponding LP problem is infeasible), because in this case there is
no such dynamically equivalent CRN realization where Cp → Cq is not present.

The previous computation of core reactions can effectively speed up the algorithm
for finding weakly reversible realizations (section 6.3), since core reactions are not re-
movable from any dynamically equivalent realization. This means that if two different
strong components in the reaction graph are linked by a core reaction, then there is
no dynamically equivalent weakly reversible realization of the network. The notion of
core reactions is illustrated on a biological model in Example A.2.3 in the Appendix.
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Finally, we briefly remark the following related results. Firstly, the notion of ”core”
and ”non-core complexes” can be defined analogously to the reactions and they can be
determined through the solution of LP problems, too, using the results of subsection
6.1.1. Secondly, the parametric uniqueness of a given CRN with a given complex
set can be numerically checked by first solving (6.101) and then by solving the same
constraint set with the modified objective function f ′

qp = −[Ak]qp.

6.5.4 The unweighted reaction graph of dense linearly conju-
gate networks also defines a super-structure

Luckily, the main result of section 5.5 can be extended to linearly conjugate networks
as follows.

Theorem 6.5.2. Consider a CRN given by the pair (Y,Ak) and assume that A′
k is

such a Kirchhoff matrix that contains the maximal number of nonzero off-diagonal
elements for which there exists a positive definite diagonal T matrix such that

Y · Ak = T · Y · A′
k. (6.104)

Then the directed unweighted reaction graph corresponding to any Kirchhoff matrix
A′′

k for which there exists a positive definite diagonal T ′′ such that Y ·Ak = T ′′ · Y ·A′′
k

is the subgraph of the reaction graph defined by A′
k.

Proof. Using indirect reasoning, we will construct a linearly conjugate network that
leads to contradiction. For this, assume that A′′

k is such that

Y · Ak = T ′′ · Y · A′′
k, (6.105)

where T ′′ is a positive definite diagonal matrix, A′′
k is Kirchhoff matrix, and ∃(i, j),

i 6= j for which [A′′
k]ij > 0, but [A′

k]ij = 0. Then T ′′ = Q · T for a positive diagonal Q
matrix with Q = T ′′ · T−1, and using (6.104) we can write:

T ′′ · Y · A′
k = Q · T · Y · A′

k = Q · Y ·Ak. (6.106)

Now we proceed with the calculations as:

T ′′ · Y · A′
k + T ′′ · Y · A′′

k = T ′′ · Y · (A′
k + A′′

k) = T ′′ · Y · Āk, (6.107)

where Āk = A′
k + A′′

k is clearly a valid Kirchhoff matrix. On the other hand, from
(6.105) and (6.106) we have:

T ′′ · Y · A′
k + T ′′ · Y ·A′′

k = Q · Y · Ak + Y · Ak = (Q+ I) · Y ·Ak, (6.108)

where I denotes the identity matrix of appropriate dimension. From (6.107) and
(6.108) it follows that

T ′′ · Y · Āk = (Q+ I) · Y · Ak, (6.109)

and thus
Y · Ak = (Q+ I)−1 · T ′′ · Y · Āk. (6.110)

It is visible from (6.110) that we constructed a linearly conjugate network to (Y,Ak)
with a kinetics matrix that contains more nonzero off-diagonal elements than A′

k has,
which is a contradiction.
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6.6 Summary
Additional problems of determining certain dynamical equivalent or linearly conjugate
CRN structures were solved in this chapter. MILP-based numerical procedures were
given for the determination of dynamically equivalent CRN realizations that contain
the minimal/maximal number of complexes or which are fully reversible. It was shown
that the computation of dynamically equivalent detailed balanced and complex bal-
anced CRN realizations can be traced back to simple LP problems where the values of
any possible equilibrium point of the system are also used as parameters. A numerical
method was given for the computation of dynamically equivalent weakly reversible
CRN realizations that is based on a finite series of MILP optimization steps. Then
the optimization framework for determining dynamically equivalent CRN realizations
was extended to include the linear conjugacy of reaction networks. The parameters
of the linear conjugacy transformation are additional unknowns in the optimization.
Using this extension, a one-step MILP procedure was developed for the computation
of linearly conjugate weakly reversible reaction networks that is numerically much
more efficient than the previous approach in section 6.3. However, it was shown later
that the MILP step can be avoided from the graph-theoretical approach of section 6.3
making the algorithm polynomial time, while it is not possible (at least in a straight-
forward way) to eliminate the MILP step from the method described in subsection
6.4.1. It was also shown that deficiency zero CRNs with one strong terminal linkage
class are parametrically unique and that dense realizations of CRNs can be determined
in polynomial time. Moreover, the so-called core reactions of CRNs were defined that
are obligatory components of any equivalent realizations with a given complex set.
Finally, it was shown that the unweighted reaction graph of dense linearly conjugate
networks defines a super-structure, similarly to the case of dynamical equivalence.
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Chapter 7

Conclusions

7.1 New scientific results

The new scientific contributions of the thesis are summarized in the following thesis
points.1 Thesis points 1, 2, 3 and 4 are related to chapters 3, 4, 5 and 6 of the
dissertation, respectively. The corresponding publications are listed at the end of each
thesis point.

1. Analysis of quasi-polynomial systems
New results and computational methods were developed for the dynamical anal-
ysis of quasi-polynomial systems.

(a) It was shown that a given positive equilibrium point of a Lotka-Volterra
model is globally stable in the positive orthant with a certain logarithmic (or
entropy-like) Lyapunov function if and only if there exists a local dissipative-
Hamiltonian description in the neighborhood of its equilibrium point, where
the Hamiltonian function is a diagonal quadratic form.

(b) It was shown that the computation of a state-dependent time-rescaling
transformation that is frequently applied for proving global stability of
quasi-polynomial systems, can be traced back to the solution of a bilinear
matrix inequality where the unknowns are the coefficients of the Lyapunov
function and the parameters of the time-rescaling transformation.

Related publications: [C1], [C2], [J2], [C3], [J3], [C4].

2. Hamiltonian description of reversible chemical reaction networks with
mass-action kinetics
It was shown that mass-action type chemical reaction networks with linearly
independent reversible reaction-pairs possess a global pseudo-Hamiltonian and
around the equilibrium point a local dissipative-Hamiltonian description in an
appropriately transformed state-space.

Related publications: [C5], [C6], [BC1], [C7], [J4], [J5].

1I strived to include only those results in the thesis points where my contribution was essential.
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3. Computation and properties of dense and sparse realizations of kinetic
systems
Assuming a given complex set, dense and sparse dynamically equivalent realiza-
tions of kinetic systems were defined and analysed that contain the maximal and
minimal number of nonzero reaction rate coefficients, respectively. Important
properties of dense CRN realizations were determined and proved.

(a) A numerical procedure was given for the determination of dynamically
equivalent dense and sparse realizations of reaction networks. The problem
was solved as a mixed integer linear programming (MILP) problem where
the continuous decision variables are the nonnegative reaction rate coeffi-
cients while objective function to be minimized/maximized is the sum of
the associated binary variables. The characteristics of mass action kinetics
were taken into consideration as constraints in the optimization problem.

(b) The following properties of dense and sparse realizations of a given chemical
reaction network were proved. (i) The graph structure of the dense realiza-
tions is unique. (ii) The unweighted reaction graph (i.e. the structure) of
any dynamically equivalent realization of a kinetic system is the subgraph
of the unweighted reaction graph of the dense realization. (iii) The reaction
graph structure of a kinetic system is unique if and only if the structures of
its dense and sparse realizations are identical.

The above results were extended to the case of dynamically equivalent con-
strained realizations where a subset of possible reactions is excluded from the
network.

Related publications: [C8], [J6], [J7], [BC2], [C9], [J8].

4. Computation of dynamically equivalent and linearly conjugate reac-
tion network structures with preferred properties
New optimization-based numerical methods were developed for the computation
of chemical reaction network structures that are dynamically equivalent or lin-
early conjugate to a given reaction network or kinetic dynamical system, and
possess certain prescribed properties. The possible set of chemical complexes
was assumed to be a’priori given.

(a) A MILP-based numerical procedure was given for the determination of dy-
namically equivalent CRN realizations containing the minimal and maximal
number of complexes.

(b) A MILP-based numerical algorithm was proposed for the computation of
fully reversible dynamically equivalent CRN realizations.

(c) It was shown that the computation of dynamically equivalent detailed bal-
anced and complex balanced CRN realizations can be traced back to linear
programming where the values of any possible equilibrium point of the sys-
tem are also used as parameters.

(d) A numerical method was given for the computation of dynamically equiv-
alent weakly reversible CRN realizations. The method is based on a finite
series of MILP optimization steps. It was shown that the algorithm can be
improved to have polynomial time-complexity.
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(e) The optimization framework for determining dynamically equivalent CRN
realizations was extended to include the linear conjugacy of reaction net-
works. The parameters of the linear conjugacy transformation are addi-
tional unknowns in the optimization. Using the extension, a one-step MILP
procedure was developed for the computation of linearly conjugate weakly
reversible reaction networks.

Related publications: [BC2], [J20], [J9], [J10], [J8], [C10], [J11].

7.2 Utilization of the results and possible future

work
As it was shortly summarized in section 3.3, starting from the stability analysis of QP
and LV models, a method was given for the construction of a globally stabilizing feed-
back that was applied to process models [C3, J15]. Moreover, we gave a computation
algorithm for determining invariants of QP systems that are explicit in at least one
variable. With this method, we computed new, previously not published invariants for
some systems that are frequently studied in literature. The same algorithm was also
suitable for showing the lack of reachability of certain fermentation process models for
which previously it was necessary to totally integrate the nonlinear reachability distri-
bution [J12]. We successfully studied the stability of the zero dynamics of a nonlinear
gas-turbine model identified previously from real measurement data by embedding the
model into QP form [C2, J16]. Similarly, transforming the dynamics to polynomial
form allowed us to study the identifiability of GnRH neuron models and to work out
effective new parameter estimation methods for them [J17, J19, C11, C12, C13].

Using the Hamiltonian description presented in chapter 4, we proposed passivity-
based controllers for kinetic systems [C4, C5, J4]. The group of methods for computing
different dynamically equivalent realizations of reaction networks gave a computational
solution to important problems raised long ago. They certainly form an important
improvement in the realization practice of kinetic systems, since we can decide the
existence of possible structures with important properties. With this, the scope of
classical CRNT results has been clearly extended as it was originally intended. This is
hopefully a useful step towards a thermodynamical view on nonnegative systems, even
on such models that are not coming from (bio)chemistry. Moreover, the optimization
approach for the analysis of different CRN structures can give the basic building blocks
of a possible solution of the synthesis problem, i.e. when we want to realize a given
polynomial dynamics with a (realistic) reaction network. This emphasizes again the
significance of Algorithm 1 for producing the canonic mechanism. It is also important
to mention that the methods presented in (sub)sections 5.4, 6.3, 6.5.2 and 6.5.3 are
parallel in their original forms and therefore they can be effectively implemented in a
grid or multi-core hardware environment.

Of course, numerous important and interesting problems remained open. From the
analysis of GnRH neuron models mentioned above, and from other related literature
results it is expected that the QP system class can be successfully used in the solution
of parameter estimation problems for dynamical systems. The methods in chapters
5 and 6 assumed that the set of complexes is a’priori given and fixed. Therefore the
possibility of the targeted selection of new complexes in order to obtain additional
information about the studied kinetic system is also of interest. Two important prob-
lems are also open in this topic, namely the computation of a realization with minimal
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deficiency and the existence/computation of a deficiency zero weakly reversible real-
ization. Starting from the dense realization might also be of some help in these cases,
too, similarly to the algorithm shown in section 6.3. Based on the preliminary results
of initial discussions and computations, it seems that some of the methods computing
dynamically equivalent CRN realizations can be extended to handle a range of pa-
rameters using interval techniques (see, e.g. [109, 30]). Similarly, it is expected that
more interesting computation problems can be formulated using the concept of linear
conjugacy. As it is suggested by Example 6.1.2 where it was possible to manually find
a general solution based on the numerical results, the symbolic extension of some of
the methods in chapters 5 and 6 may be possible. The solution of any of the following
control theoretic problems would be a significant improvement, too: feedback equiv-
alence to a kinetic, complex balanced or weakly reversible deficiency zero system, or
the design of static/dynamic kinetic controllers using the stability results of CRNT.
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Appendix A

Further examples

This appendix contains additional examples that could not be fit into the main text
because of space limitations.

A.1 Time-rescaling of QP models
Example A.1.1. Example with a rank deficient M matrix. Consider the fol-
lowing open generalized mass-action law system

ẏ1 = 0.5y1 − y2.251 − 0.5y1.51 y0.252 + u1
ẏ2 = y2 − 0.5y1.752 + u2

(A.1)

where y1 and y2 are the concentrations of chemical species A1 and A2 ([moles
m3 ]), while

u1 and u2 (the manipulable inputs) are their volume-specific component mass inflow
rates ([moles

m3sec
]). The above two differential equations originate from the component

mass conservation equations constructed for a perfectly stirred balance volume [75]
under the following modelling assumptions:

1. constant temperature and overall mass,

2. constant physico-chemical properties (e.g. density),

3. presence of an inert solvent in a great excess,

4. presence of the following reaction network:� autocatalytic generation of the species A1 and A2 (e.g. by polymer degra-
dation when they are the monomers and the polymers are present in a great
excess) giving rise to the reaction rates 0.5y1 and y2 (the first terms in the
right-hand sides) respectively,� a self-degradation of these species described by the reaction rates −y2.251

and −0.5y1.752 (the second terms on the right-hand sides) respectively,� a catalytic degradation of the specie A1 catalyzed by specie A2 that corre-
sponds to −0.5y1.51 y0.252 in the first equation only (the third term).

The control aim is to drive the system to a positive equilibrium

y∗1 = 2.4082
moles

m3
, y∗2 = 16.3181

moles

m3
.
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This goal can be achieved e.g. by the following nonlinear feedback:

u1 = 0.5y1y
0.75
2

u2 = 0.5y1.251 y2 + 0.5y0.51 y1.252 .
(A.2)

The above inputs being the component mass flow rates fed to the system (they are
both positive) are needed for compensating for the degradation of the specie A1 and
A2.

By substituting eq. (A.2) into eq. (A.1), we obtain the controlled system that is a
QP system with the following matrices

A =

[
−1 0.5 −0.5
0.5 −0.5 0.5

]

(A.3)

B =





1.25 0
0 0.75
0.5 0.25



 , L =

[
0.5
1

]

(A.4)

The eigenvalues of the Jacobian matrix of the system at the equilibrium point are
−6.4076 and −0.7768.

Since the rank of M = B · A in this case is only 2, we can use the algorithm
described in [66] to prove that the LMI (2.20) is not feasible in this case.

However, by solving (3.47) applying the algorithm described in [97] we find that
we can use the following time-reparametrization:

Ω =
[
−0.25 −0.5

]T
, (A.5)

and the diagonal matrix containing the coefficients of the Lyapunov function is:

C = diag([1 2 2 2]). (A.6)

The eigenvalues of M̃T · C + C · M̃ in this case are

λ1 = 0, λ2 = 0, λ3 = −4.5, λ4 = −2.5, (A.7)

which again proves the global stability of the studied equilibrium point.
The above example shows that time-reparametrization can be used (through adding

more degrees of freedom to the problem) in the design of feedbacks for nonlinear
systems. We mention that a similar principle is utilized in [145].

A.2 Computation of CRN structures
Example A.2.1. This example illustrates the structural non-uniqueness of sparse
realizations. The starting point is the reaction network described in [28] as Fig. 6 in
section 6. The network is replotted in Fig. A.1(a). For the sake of simplicity, let us
choose all the reaction rate coefficients to be 1 in the network. The Y and Ak matrices
of the original reaction system are

Y =







0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 2 1
0 0 1 0 0 0 1 2 1 0 0
0 0 0 1 0 2 1 0 0 0 1






, (A.8)
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Ak =






















−4 1 1 1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 −7 1 0 1 0 1 0
0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 0 0






















(A.9)

The first column of zeros in Y denotes the zero complex. Four different dynamically
equivalent sparse realizations are shown in Fig. A.1(b)-(e). The Kirchhoff matrix of
the network in Fig. A.1(b) is

As
k =






















−3 1 1 1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 −7 1 0 1 0 1 0
0 0 0 0 0 −1 0 0 0 0 0
1 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0






















(A.10)

The coefficient matrix of the differential equations is given by

M = Y Ak = Y As
k =







1 0 0 0 −7 1 0 1 0 1 0
1 −1 0 0 4 0 0 0 0 −2 0
1 0 −1 0 4 0 0 −2 0 0 0
1 0 0 −1 4 −2 0 0 0 0 0







(A.11)

It is visible that the computed sparse realizations contain 12 reactions. The number of
non-isolated complexes in the sparse structures is 9 or 10, while the original network
contains 11 reacting complexes. It is easy to compute that the deficiencies of the
original structure in Fig. A.1(a) and that of the sparsest realization in Fig. A.1(b)
are d1 = 6 (m1 = 11, l1 = 1, s1 = 4) and d2 = 4 (m2 = 9, l2 = 1, s2 = 4),
respectively. The deficiency of each network shown in Figs. A.1(c)-(e) is 5. These
results show that additional constraints in the optimization procedure may be used
to select the required sparse realization from the set of possible alternatives. It is
interesting to compare that the equivalent simplified realization on the right hand side
of Fig. 6. in the original publication [28] contains 8 complexes but 14 reactions, and
has a deficiency of 3. This shows the not surprising fact that the minimization of the
number of reactions (although it reduces the number of reacting complexes in many
cases) does not necessarily lead to lower deficiency.

Example A.2.2. Equivalent reversible realization of an irreversible reaction
network. Let us start from the reaction network that is depicted in Fig. A.2. This
network contains 9 complexes, 2 linkage classes and 8 irreversible reaction steps. The
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Figure A.1: (a) Initial reaction network of Example A.2.1. (b)-(e) Different sparse
realizations of the initial network. (Only reaction rates different from 1 are indicated
separately.)

rank of the stoichiometric subspace is 3, therefore the deficiency of the network is 4.
The matrices characterizing the network are given by

Y =





2 1 1 2 0 1 0 1 0
0 0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1 0



 , (A.12)

Ak =

















−2 0 0 0 0 0 0 0 0
1 0 3.5 0 0 0 0 0 0
0 0 −5.5 0 0 0 0 0 0
1 0 0.5 0 0 0 0 0 0
0 0 0 0 −1.5 0 0 0 0
0 0 0 0 0.5 0 0 0 0
0 0 0 0 0.5 0 0 0 0
0 01.5 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0

















. (A.13)

Running the algorithm described in section 6.1.2 with parameters ǫ = 10−8, ǫ2 = 0.05,
γ = 0.01, where the objective function to be minimized was the number of nonzero
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Figure A.2: Irreversible reaction network with a deficiency of 4

reaction rate coefficients, gave the following Kirchhoff matrix:

A′
k =

















−1 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 −3.5 0 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1.5 0 −0.5 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

















. (A.14)

It is again easy to verify that

Y · Ak = Y ·A′
k =





−1 0 0.5 0 0.5 0 0 0 0
1 0 −3.5 0 0.5 0 0 0 0
0 0 1.5 0 −0.5 0 0 0 0



 . (A.15)

The above result implies that the Deficiency Zero Theorem can be applied to the
dynamics of the original irreversible reaction network shown in Fig. A.2. Moreover,
due to the existence of a deficiency 0 reversible realization with linearly independent
reaction-pairs, the dynamics of the reaction networks exhibit a dissipative Hamiltonian
structure as it was shown in chapter 4.

Figure A.3: Zero deficiency reversible reaction network dynamically equivalent to the
one shown in Fig. A.2

Example A.2.3. A positive feedback motif. In this example we will show that
there exists multiple dynamically equivalent realizations for a well-known basic build-
ing block in systems biology. The examined system is a positive feedback motif shown
in Fig. A.4(a) and taken from [116] containing 5 species, 11 complexes and 9 reac-
tions. This basic motif is also discussed in [2]. The network contains a gene that
promotes its own transcription and translation after dimerization. In the model, X1

and X2 denote the concentrations of protein monomers and dimers, respectively. X3

and X4 are the concentrations of unoccupied and occupied promoters, respectively,
and X5 corresponds to the mRNA. The degradation of dimers is ignored. The roles
of the reaction rate coefficients are the following: k1 and k2 are the dimerization and
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re-dimerization rates, respectively. k3 and k4 are the binding and dissociation rates of
the dimer to the promoter, while k5 and k6 denote the activated and basal transcrip-
tion rates, respectively. k7 is the degradation rate of the mRNA, k8 is the degradation
rate of the monomer, and k9 denotes the translation rate. The time-evolution of the
species-concentrations is described by the following ODEs:

ẋ1 = −2k1x
2
1 + 2k2x2 + k9x5 − k8x1 (A.16)

ẋ2 = k1x
2
1 − k2x2 − k3x2x3 + k4x4 (A.17)

ẋ3 = −k3x2x3 + k4x4 (A.18)

ẋ4 = k3x2x3 − k4x4 (A.19)

ẋ5 = k5x4 + k6x3 − k7x5 (A.20)

Our starting point is that we have a dynamic model of the process in the standard
polynomial form of (A.16)-(A.20), the parameters of which are known from the results
of identification and/or from literature. As we will see below, without well-defined
constraints on the possible set of complexes and reactions, exactly the same dynamics
can be realized in principle by a wide range of mechanisms.

The matrices characterizing the stoichiometry and graph structure of the system
are the following (indicating only the nonzero non-diagonal elements of Ak):

Y =









2 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 1 0 1 0 1 0









, (A.21)

Ak(2, 1) = k1, Ak(1, 2) = k2, Ak(4, 3) = k3, Ak(3, 4) = k4, Ak(5, 4) = k5,

Ak(7, 6) = k6, Ak(9, 8) = k7, Ak(9, 10) = k8, Ak(11, 8) = k9. (A.22)

We used the following parameter values that were taken from the Appendix of [116].

k1 = k2 = k3 = k4 = 107, k5 = 1.7, k6 = 0.025, k7 = 0.1, k8 = 0.05, k9 = 0.5, (A.23)

where the units of measure are [M−1] for k1, . . . , k4, and [min−1] for k5, . . . , k9. The
dynamically equivalent dense realization of the network is shown in Fig. A.4(b), where
the 8 core and 4 non-core reactions are indicated separately. The three different sparse
structures are shown in the subplots of Fig. A.5 The first subplot is identical to the
original structure shown in Fig. A.4(a). This means that the mechanism cannot be
described exactly with less than 9 reactions. It turns out from the second and third
subplots that (at least mathematically), the degradation of mRNA is dynamically
not a necessary element of the model. However, the biological plausibility of the
mathematically possible structures and reactions always has to be carefully examined.

As it is expected, the possible structures of sparse/dense realizations and the cor-
responding core and non-core reactions can change with the modification of parameter
values. This is illustrated in Fig. A.6(a), where the following randomly generated
parameter values were used:

k1 = 18.9, k2 = 7.1, k3 = 15.4, k4 = 12.7, k5 = 10.6, k6 = 3.5,

k7 = 11.3, k8 = 9.1, k9 = 4.0. (A.24)
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It is visible that the structure of the dense realization is the same as in Fig. A.4(b) but
the core reactions are different from the ones shown there. Here the degradation of
mRNA is described by a core reaction but interestingly, the reaction corresponding to
translation is not a core one. Naturally, this implies that the possible sparse realization
structures with the second parametrization are different from the ones shown in Fig.
A.5. Note that here the only goal was to illustrate the possible change of core and
non-core reactions, and therefore the biological relevance of the parameter values in
eq. (A.24) is not assumed in this case.

In the next step, let us assume that another complex, namely X2+X4 is allowed in
the model (again not necessarily assuming biological meaningfullness in this particular
case). With the addition of this new complex, the stoichiometric matrix of the system
can be written as

Y ′ =









2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0









. (A.25)

The dense CRN realization of the dynamics (A.16)-(A.20) with the updated Y ′ matrix
given in eq. (A.25) using the original parameters described in (A.23) is shown in Fig.
A.6(b), where the core and non-core reactions are again indicated. It is apparent
that now there are only 5 core reactions, and none of the remaining 12 reactions are
essential to realize the dynamics (A.16)-(A.20). This means that the introduction of a
new complex increased the flexibility of the network (i.e. mathematically, the majority
of the reactions can be substituted by other ones and the network still maintains
its original dynamics). Of course, not any combination of the non-core reactions
can be omitted from the network, because the sparse realizations show that at least
9 reactions are needed to keep dynamical equivalence. It can be computed easily
that the theoretical maximum number of sparse realizations with different structures
is
(

12
17−9

)
= 495. However, as the numerical experiments show, majority of these

structures do not give a practically feasible dynamically equivalent realization.
The above results clearly show that certain mechanisms may remain undetectable

(or they are falsely detected) even if we have complete species concentration measure-
ments and full information about possible complex formation, that are not very realistic
assumptions. Moreover, the sparsest dynamically equivalent structure of mass-action
models is not unique, therefore sparsity enforcing approaches for determining ”true”
reaction structures are not enough in themselves without the necessary amount of prior
information given in the form of additional constraints.
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Figure A.4: Positive feedback motif: original reaction graph and dense realization
structure. (a) This subfigure shows the reaction graph of a gene regulation network
model with positive feedback used in Example A.2.3. (b) This subfigure shows all the
mathematically possible reactions that can result in the same dynamical behaviour as
the original biologically meaningful network shown in subfigure (a). The core-reactions
in the dense realization are shown with solid arrows, while the non-core reactions are
indicated with dashed arrows.

Figure A.5: Sparse realization structures for the positive feedback motif. Three dif-
ferent dynamically equivalent structures can be given for the positive feedback motif
with the minimal number of reactions. The core and non-core reactions are indicated
in the same way as in Fig. A.4(b).
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Figure A.6: The effect of modifying the complex set and the parameters. (a) The core
and non-core reactions of the dense realization of the positive feedback motif are shown
in this subfigure with a randomly selected parametrization that is different from the
initial one. (b) The core and non-core reactions of the dense realization of the positive
feedback motif can be seen in this subfigure when an additional complex X2 +X4 is
involved into the model.
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[J2] G. Szederkényi and K.M. Hangos. Global stability and quadratic Hamiltonian
structure in Lotka-Volterra and quasi-polynomial systems. Physics Letters A,
324:437–445, 2004. IF: 1.454.
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[J5] I. Otero-Muras, G. Szederkényi, A.A. Alonso, and K.M. Hangos. Local dis-
sipative Hamiltonian description of reversible reaction networks. Systems and
Control Letters, 57:554–560, 2008. IF: 2.073.
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[J18] D. Csercsik, G. Szederkényi, and K. M. Hangos. Parametric uniqueness of defi-
ciency zero reaction networks. Journal of Mathematical Chemistry, accepted:to
appear, 2011. DOI: 10.1007/s10910-011-9902-8, IF: 1.259 (2010).

[J19] D. Csercsik, K. M. Hangos, and G. Szederkényi. Identifiability analysis and pa-
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[C3] A. Magyar, G. Szederkényi, and K.M. Hangos. Quasi-polynomial system rep-
resentation for the analysis and control of nonlinear systems. In P. Horacek,
M. Simandl, and P. Zitek, editors, Proc. of the 16th IFAC World Congress,
pages 1–6, paper ID: Tu–A22–TO/5, Prague, Czech Republic, 2005.
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[C10] G. Szederkényi. Dynamically equivalent reaction networks: a computational
point of view. In 8th European Conference on Mathematical and Theoretical
Biology, and Annual Meeting of The Society for Mathematical Biology, Kraków,
Poland, Kraków, Poland, 2011. (invited lecture with abstract).
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[J22] Cs. Fazekas, G. Szederkényi, and K.M. Hangos. Parameter estimation of a simple

primary circuit model of a VVER plant. IEEE Transactions on Nuclear Science,
55(5):2643–2653, 2008. IF: 1.518.
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