
Class Numbers and Automorphic Forms

András Biró
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1. Introduction

1.1. History and motivation

This dissertation deals with class number problems for quadratic number fields and with

summation formulas for automorphic forms. Both subjects are important areas of number

theory.

1.1.1. The class numbers of quadratic number fields were studied already by Gauss (he

considered these questions in the language of quadratic forms though). Let K = Q(
√

d),

where Q is the rational field, and d is a fundamental discriminant. In the case of an

imaginary quadratic field (i.e. d < 0) Gauss conjectured that if we denote by h(d) the class

number of K, we have h (d) → ∞ as |d| → ∞. This fact was first proved by Heilbronn

in [Hei]. However, Heilbronn’s solution was ineffective: the problem of determining all

imaginary quadratic fields with class number 1 remained open for a long time. As it is

well-known, it was first solved by Heegner ([Hee]), but his proof was not accepted at that

time, and then it was also solved independently by Baker ([Ba]), and by Stark ([St]).

Baker’s solution was an immediate consequence of his famous theorem on logarithms of

algebraic numbers, using earlier work of Gelfond and Linnik ([G-L]).

The situation is completely different for a general real quadratic field (d > 0): Gauss

conjectured for this case that there are infinitely many d with class number 1. This

problem is still unsolved.

However, for some special families of real quadratic fields (where the fundamental unit is

very small), e.g. when d = p2 + 4 with some integer p, the situation is analogous to the

imaginary case: it was known for a long time that there are only finitely many fields with

class number one in such a family, but the effective determination of these finitely many

fields constitutes a separate problem. Chapter 2 of the present dissertation discusses the

solution of Yokoi’s conjecture: this conjecture stated that h
(
p2 + 4

)
> 1 for p > 17.

1.1.2. In general, as it is mentioned on p. 65 of [I-K], an identity connecting one series of

an arithmetic function (weighted by a test function of certain class) with another is called

a summation formula. The most well-known summation formulas used in analytic number
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theory are the Poisson formula and the Voronoi formula. We will consider such summation

formulas where the arithmetic functions are related to automorphic forms.

Automorphic forms play a central role in modern number theory. They are important both

in analytic and algebraic number theory, but they are related also to many other fields

of mathematics, including representation theory, ergodic theory, combinatorics, algebraic

geometry.

In the analytic theory of automorphic forms several summation formulas are very impor-

tant. We just mention generalizations of the classical Voronoi formula, the Selberg trace

formula and the Kuznetsov formula.

In Chapter 3 of our dissertation we will present such a summation formula which is formally

very similar to the classical Poisson formula, but contains triple products of automorphic

forms. Roughly speaking, a triple product is the integral of a product of three automorphic

forms over a fundamental domain. Such triple products are subjects of intensive research

in several directions: it is enough to mention the famous Quantum Unique Ergodicity

Conjecture, solved recently by Lindenstrauss and Soundararajan in the nonholomorphic

case ([Li] and [So]) and by Holowinsky and Soundararajan in the holomorphic case ([H-

S]), or the representation theoretic work [B-R) of Bernstein and Reznikov giving nontrivial

upper bounds for triple products.

1.1.3. My interest in both subjects originates from my PhD thesis, which contained more

or less the material of my papers [Bi1] and [Bi2].

The connection is more direct in the case of Chapter 3, since [Bi1] and [Bi2] dealt with

automorphic forms, in particular, in [Bi1] I proved a summation formula including auto-

morphic quantities: a generalization of the Selberg trace formula.

However, the subject of Chapter 2 is also related to automorphic forms. To see this

connection in the most simple way, we note that one side of the Selberg trace formula

contains a summation over conjugacy classes of a discrete subgroup Γ of SL(2,R), see

Chapter 10 of [I1]. If we choose Γ = SL(2,Z), then these conjugacy classes are related to
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class numbers of a family of real quadratic fields with very small fundamental unit. Indeed,

the subset of Γ = SL(2,Z) with a given trace t, i.e.

Γt =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1, a + d = t

}
,

is obviously a union of conjugacy classes. It can be shown that there is a one-to-one

correspondence between the conjugacy classes contained in Γt and the SL(2,Z)-equivalence

classes of the integer quadratic forms with discriminant d = t2 − 4. Hence for a given

integer t > 2 the set Γt is a union of h
(
t2 − 4

)
conjugacy classes, and the fields Q(

√
d)

with d = t2 − 4 have very small fundamental unit.

Moreover, the very first version of my proof of Yokoi’s conjecture used automorphic forms:

for the proof of the very important Lemma 2.1 (see Chapter 2) I expressed the function

ζP (K)(s, χ) there by integrals of Eisenstein series over certain closed geodesics of the Rie-

mann surface obtained by factorizing the open upper half-plane by SL(2,Z). Then, when

I gave my first talk on the proof of Yokoi’s conjecture in Oberwolfach in September 2001,

the paper [Sh1] of Shintani was drawn to my attention by S. Egami. Using Shintani’s

paper I could simplify my original proof of Lemma 2.1, and the new proof (presented also

here in Chapter 2) have not used already automorphic forms.

1.2. Class number problems for special real quadratic fields

Today we know that the fact (mentioned already in Subsection 1.1.1) that there are only

finitely many imaginary quadratic fields with class number one is an immediate conse-

quence of Dirichlet’s class number formula and Siegel’s theorem. To see this, and to ana-

lyze also the real case, we first state Dirichlet’s class number formula (using [W], Chapter

3 and p. 37).

Let K = Q(
√

d), where d is a (positive or negative) fundamental discriminant, let h(d) be

the class number of K, and let χd be the real primitive character associated to K. Then

for d < 0 we have

h(d) =
w |d|1/2

2π
L(1, χd), (1.2.1)
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where w is the number of roots of unity in K; for d > 0 we have

h(d) log εd = d1/2L(1, χd), (1.2.2)

where εd > 1 is the fundamental unit in K. Using Siegel’s theorem for the value at 1 of a

Dirichlet L-function:

L(1, χd) Àε |d|−ε

(which is an ineffective estimate), we see that (1.2.1) implies indeed that there are only

finitely many solutions of the imaginary class number one problem. However, for d > 0,

we can not separate the class number and the fundamental unit. But, if we assume that

the fundamental unit is small, e.g.

log d ¿ log εd ¿ log d, (1.2.3)

then (1.2.2) implies that h(d) > 1 for large d. But since we used Siegel’s theorem, the

estimate obtained is ineffective, we cannot determine in this way all fields with class number

one in a given family satisfying (1.2.3), e.g. in the family of Yokoi’s discriminants d = p2+4.

In Chapter 2 we prove Yokoi’s conjecture (formulated in [Y], and mentioned already in

Subsection 1.1.1). More precisely we prove the following

THEOREM 1.1 ([Bi3]). If d is squarefree, h(d) = 1 and d = p2 + 4 with some integer

p, then d is a square for at least one of the following moduli: q = 5, 7, 41, 61, 1861 (that

is, (d/q) = 0 or 1 for at least one of the listed values of q).

Combining this with the well-known fact that if h(d) = 1 then d is a quadratic nonresidue

modulo any prime r with 2 < r < p (for the sake of completeness, we will prove it, see our

Fact B stated in Section 2.2), we obtain the main result of Chapter 2:

COROLLARY 1.1 ([Bi3]). If d is squarefree, and d = p2+4 with some integer p > 1861,

then h(d) > 1.

It is easy to prove on the basis of the above-mentioned Fact B that h(d) > 1 if 17 <

p ≤ 1861, see the last part of Section 2.2 (this statement follows also from [Mi]), so we

have a full solution of Yokoi’s conjecture. Note that there are six exceptional fields where

h(d) = 1, belonging to p = 1, 3, 5, 7, 13, 17.
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The same proof with minor modifications works for Chowla’s conjecture, which is a similar

class number one problem (this was formulated in [C-F]). We presented that proof in the

paper [Bi4]. The method was applied later to several similar cases, see e.g. [B-K-L] and

[Le].

But it seems that in Yokoi’s case the present proof works only for the class number one

problem, the class number 2 problem (for example) remains open. But, of course, the

harder problem of giving an effective lower bound tending to infinity for h(p2 + 4) (the

similar statement in the imaginary case was proved by Goldfeld, Gross, Zagier, see [Go]

and [G-Z]) is also open. We mentioned above that the fundamental unit is small (hence

Siegel’s theorem is applicable), however, its logarithm is as large as log p, so it is large

enough to cause a problem if one wants to apply the Goldfeld-Gross-Zagier method.

The starting point of our proof is an idea of the paper [Be] of J. Beck. In that paper

he excluded some residue classes for p, i.e. he gave effective upper bounds for p in the

class number 1 case provided p belongs to certain residue classes. He combined elementary

number theory with formulas for special values of zetafunctions related to K and certain

quadratic Dirichlet characters. In our proof, we use zetafunctions related to nonquadratic

Dirichlet characters; this leads us to elementary algebraic number theory. Using also new

elementary ingredients, we are able to exclude all residue classes modulo a given concrete

modulus, hence to prove the conjecture.

Up until this proof, only quadratic characters have been used in the proof as ”parameters”.

I mean that in the quoted paper of Beck, and also in the classical work of Gelfond-Linnik-

Baker in the imaginary case, besides the quadratic Dirichlet character belonging to the

given quadratic field K, there are other Dirichlet characters, and one can consider them

as parameters, since one tries to choose them in a way which is most useful for the proof.

Now, in the present proof these parameter characters are not quadratic. This provides a

lot of new possibilities for excluding residue classes for p. The use of such characters was

made possible by proving our Lemma 2.1 (see Section 2.2 for its statement), which gives

a useful expression for the value at 0 of some zetafunctions. We will give a more detailed

sketch of the proof in Section 2.2.
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The proof requires also computer work. We emphasize that the results of the computations

made by the computer program given in Section 2.5 are important for the proof of Theorem

1.1 (which is a theoretical result). So we think that this computer program belongs to the

proof, consequently, for the sake of completeness it is necessary to give its details. However,

if one is willing to accept the results of the computer work, one can skip Section 2.5.

As it was pointed out in [Bi5], the proof of Yokoi’s conjecture can be considered to be an

analogue of the Gelfond-Linnik-Baker solution of the imaginary class number one problem.

But at first sight they seem to be very different, since Baker’s theorem on logarithms is

replaced here by elementary algebraic number theory. We return to this question in Section

2.2.

1.3. A Poisson-type formula including automorphic quantities

1.3.1. In this section we will discuss the result of Chapter 3. In order to be able to describe

our formula it is unavoidable to introduce first a few notations concerning automorphic

forms. Then, before actually describing the formula, we will give such an interpretation of

the classical Poisson formula which will help us to show that our formula is analogous to

the Poisson formula.

1.3.2. Notations. We denote by H the open upper half plane. We write

Γ0(4) =
{(

a b
c d

)
∈ SL(2,Z) : c ≡ 0 (mod 4)

}
.

let D4 be a fundamental domain of Γ0(4) on H, let

dµz =
dxdy

y2

(this is the SL(2,R)-invariant measure on H), and introduce the notation

(f1, f2) =
∫

D4

f1(z)f2(z)dµz.

Introduce the hyperbolic Laplace operator of weight l:

∆l := y2

(
∂2

∂x2
+

∂2

∂y2

)
− ily

∂

∂x
.
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For a complex number z 6= 0 we set its argument in (−π, π], and write log z = log |z| +
i arg z,where log |z| is real. We define the power zs for any s ∈ C by zs = es log z. We write

e(x) = e2πix and (w)n = Γ(w+n)
Γ(w) , as usual.

For z ∈ H we write θ (z) =
∑∞

m=−∞ e(m2z), and we define

B0(z) := (Imz)
1
4 θ (z) . (1.3.1)

If ν is the well-known multiplier system (see e.g. [Du], (2.1) for its explicit form), we have

B0(γz) = ν(γ)
(

jγ(z)
|jγ(z)|

)1/2

B0(z) for γ ∈ Γ0(4),

where for γ =
(

a b
c d

)
∈ SL(2,R) we write jγ(z) = cz + d. Note that ν4 = 1.

Let l = 1
2 + 2n or l = 2n with some integer n. We say that a function f on H is an

automorphic form of weight l for Γ = SL(2,Z) or Γ0(4) (but, if l = 1
2 + 2n, we can take

only Γ = Γ0(4)), if it satisfies, for every z ∈ H and γ ∈ Γ, the transformation formula

f(γz) =
(

jγ(z)
|jγ(z)|

)l

f(z)

in the case l = 2n,

f(γz) = ν(γ)
(

jγ(z)
|jγ(z)|

)l

f(z)

in the case l = 1
2 + 2n, and f has at most polynomial growth in cusps. The operator ∆l

acts on smooth automorphic forms of weight l. We say that f is a Maass form of weight

l for Γ, if f is an automorphic form, it is a smooth function, and it is an eigenfunction

on H of the operator ∆l. If a Maass form f has exponential decay at cusps, it is called a

(Maass) cusp form.

Denote by L2
l (D4) the space of automorphic forms of weight l for Γ0(4) for which we have

(f, f) < ∞.

Take u0,1/2 = c0B0, where c0 is chosen such that (u0,1/2, u0,1/2) = 1. It is not hard to

prove (using [Sa], p. 290) that the only Maass form (up to a constant factor) of weight
1
2 for Γ0(4) with ∆1/2-eigenvalue − 3

16 is B0, and the other eigenvalues are smaller. Let
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uj,1/2 (j ≥ 0) be a Maass form orthonormal basis of the subspace of L2
1/2(D4) generated

by Maass forms, write

∆1/2uj,1/2 = Λjuj,1/2, Λj = Sj(Sj − 1), Sj =
1
2

+ iTj ,

then Λ0 = − 3
16 , Λj < − 3

16 for j ≥ 1, and Λj → −∞.

For the cusps a = 0,∞ denote by Ea

(
z, s, 1

2

)
the Eisenstein series of weight 1

2 for the

group Γ0(4) at the cusp a (for precise definition see Section 2). As a function of z, it is

an eigenfunction of ∆1/2 of eigenvalue s(s− 1). If f is an automorphic form of weight 1/2

and the following integral is absolutely convergent, introduce the notation

ζa(f, r) :=
∫

D4

f(z)Ea

(
z,

1
2

+ ir,
1
2

)
dµz.

If l ≥ 1 is an integer, let Sl+ 1
2

be the space of holomorphic cusp forms of weight l + 1
2 with

the multiplier system ν1+2l for the group Γ0(4) (sse [I2], Section 2.7). Note that ν1+2l = ν

if and only if l is even.

We will be mainly concerned with the case when l is even. If k ≥ 1, let fk,1, fk,2, ..., fk,sk

be an orthonormal basis of S2k+ 1
2
, and write gk,j(z) =(Imz)

1
4+k

fk,j(z). We note that gk,j

is a Maass cusp form of weight 2k + 1
2 , and ∆2k+ 1

2
gk,j =

(
k + 1

4

) (
k − 3

4

)
gk,j (see [F],

formulas (4) and (7)).

We also introduce the Maass operators

Kk := (z − z)
∂

∂z
+ k = iy

∂

∂x
+ y

∂

∂y
+ k,

Lk := (z − z)
∂

∂z
− k = −iy

∂

∂x
+ y

∂

∂y
− k.

For basic properties of these operators see [F], pp. 145-146. We just mention now that if

f is a Maass form of weight k, then Kk/2f and Lk/2f are Maass forms of weight k +2 and

k − 2, respectively.

1.3.3. Poisson’s summation and our formula. Now, to state the Poisson formula,

consider the space of smooth, 1-periodic functions on the real line R, and let D = d
dx

be the derivation operator. Then the eigenfunctions of D in this space are the functions
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e2πinx, the eigenvalues are 2πin, and these eigenfunctions form an orthonormal basis of

the Hilbert space L2 (Z \R). We parametrize the eigenvalues with the numbers n, these

parameters are contained in the set R, and the Poisson formula states that if F is a ”nice”

function on R and we write w(n) = 1 for every n, then the expression

∞∑
n=−∞

w(n)F (n)

remains unchanged if we replace F by G, where G is the Fourier transform of F . We

inserted the notation w(n) for the identically 1 function to emphasize the analogy, since

in our case we will indeed have nontrivial weights.

In our case, instead of the smooth, 1-periodic functions on R, consider all the smooth

automorphic forms on H of any weight 1
2 + 2k, where k ≥ 0 is any integer. Instead

of the eigenfunctions of D, we will consider the eigenfunctions of the operators ∆2k+ 1
2
,

k ≥ 0. In fact, if k ≥ 0 is fixed, the eigenfunctions of ∆2k+ 1
2

are almost in a one-to-one

correspondence with the eigenfunctions of ∆2(k+1)+ 1
2

through the Maass operators, except

that the eigenfunctions of weight 2(k + 1) + 1
2 corresponding to holomorphic forms are

annihilated by L(k+1)+ 1
4
. Hence, the essentially different eigenfunctions of the operators

∆2k+ 1
2

(playing a role in the spectral expansion of functions in the spaces L2
2k+ 1

2
(D4)) are

the following:

uj,1/2 (j ≥ 0), Ea

(
∗, 1

2
+ ir,

1
2

)
(a = 0,∞, r ∈ R), gk,j (k ≥ 1, 1 ≤ j ≤ sk).

If u is one of these functions, we will parametrize its Laplace eigenvalue by a number T

such that

∆2k+ 1
2
u =

(
1
2 + iT

) (− 1
2 + iT

)
u

with the suitable k. In particular, this parameter will be

Tj in case of uj,1/2 , r in case of Ea

(
∗, 1

2
+ ir,

1
2

)
, i

(
1
4
− k

)
in case of gk,j .

9
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These numbers correspond to the numbers n in Poisson’s formula. In our case these pa-

rameters are contained (at least with finitely many possible exceptions: call j exceptional,

if Tj /∈ R) in the set R ∪D+, where

D+ =
{

i

(
1
4
− k

)
: k ≥ 1 is an integer

}
. (1.3.2)

Now, in fact we prove not just one summation formula, but many formulas: to every pair

u1,u2 of Maass cusp forms of weight 0 there will correspond a summation formula. So

let us fix two such cusp forms. Our formula states that there are some weights wu1,u2(j),

wu1,u2(a, r) and wu1,u2(k, j) such that if F is a ”nice” function on R∪D+, even on R (note

that ”nice” will mean, in particular, that the continuous part of F , i.e. the restriction of

F to R, extends as a holomorphic function to a relatively large strip containing R, so we

can speak about F (Tj) even for the exceptional js), then the expression

∞∑

j=0

wu1,u2(j)F (Tj) +
∑

a=0,∞

∫ ∞

−∞
wu1,u2(a, r)F (r) dr +

∞∑

k=1

sk∑

j=1

wu1,u2(k, j)F
(

i

(
1
4
− k

))

remains unchanged if we write u2 in place of u1, u1 in place of u2, and we replace F by G,

where G is obtained from F by applying a certain integral transform which maps functions

on R∪D+, even on R again to such functions: this integral transform is a so-called Wilson

function transform of type II, which was introduced quite recently by Groenevelt in [G1].

This integral transform plays the role what the Fourier transform played in the case of

Poisson’s formula. We will speak in more detail about the Wilson function transform of

type II in Subsection 1.3.5 below. We just mention here that it shares some nice properties

of the Fourier transform: it is an isometry on a suitably defined Hilbert space, and it is

its own inverse (this last property is true at least on the even functions in the case of the

Fourier transform).

The weights wu1,u2 in the above formula contain very interesting automorphic quantities.

We give now only wu1,u2(j), since the other weights will be analogous, and everything will

be given precisely in the theorem. So we will have for j ≥ 0 that wu1,u2(j) equals

Γ
(

3
4

+ iTj

)
Γ

(
3
4
− iTj

) ∫

D4

B0 (z)u1 (4z) uj, 1
2

(z)dµz

∫

D4

B0 (z)u2 (4z) uj, 1
2

(z)dµz.

10
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1.3.4. Remarks on relations to other works and on possible future work. We have

shown above that there is a strong formal analogy between our summation formula and

the Poisson summation formula. I guess that this analogy may be deeper, perhaps there is

a common generalization of the two formulas. I think that the explanation of this analogy

and the proof of further generalization (perhaps even for groups of higher rank) may come

from representation theory. Such an approach could be useful also for the understanding

of the appearance of the Wilson function transform of type II in the formula, which is

rather mysterious at the moment. A representation theoretic interpretation of this integral

transform was given by Groenevelt himself in [G2], but it does not seem to help in the

explanation of our formula. However, it is possible that the general method of [R] for

proving spectral identities may be useful in better understanding of our formula.

Spectral identities having similarities to our result were proved by several authors. We

mention e.g. the concrete identities proved in the above-mentioned paper [R] (as an appli-

cation of the general method there), and the paper [B-M], whose method of proof based

directly on the spectral structure of the space L2(SL(2,Z)\SL(2,R)) may be also impor-

tant in the context of our formula.

But, as far as I see, the nearest relative of our result is an identity suggested by Kuznetsov

in [K] and proved by Motohashi in [Mo]. The weights are different there than in our

case, but the structure of the two formulas are very similar. Indeed, on the one hand, the

summation is over Laplace-eigenvalues and integers in both cases. On the other hand, in

the case of both identities we have the same type of weights on both sides of the given

identity. That formula has been successfully applied already to analytic problems (see [Iv],

[J]), so perhaps our formula also may be applied along similar lines for the estimation of

the weights wu1,u2 , hence the estimation of triple products, especially in view of the fact

that in the case u1 = u2 the weights are nonnegative.

We mention finally that the weights wu1,u2 (j) (or rather their absolute values squared)

given at the end of Subsection 1.3.3 are (at least in some cases, and at least conjecturally)

closely related to central values of L-functions. Indeed, let us assume that uj,1/2 is an

eigenfunction of the Hecke operator Tp2 (of weight 1/2) for every prime p 6= 2, and that

uj,1/2 is an eigenfunction of the operator L of eigenvalue 1 (see [K-S] for the definitions of
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the operators Tp2 and L). Assume also that the first Fourier coefficient at ∞ of uj,1/2 is

nonzero. Then Shimuj,1/2 (the Shimura lift of uj,1/2) is defined in [K-S], pp 196-197. It is

a Maass cusp form of weight 0 which is a simultaneous Hecke eigenform. If u1 and u2 are

also simultaneous Hecke eigenforms, then by the Theorem of [Bi6] we see that wu1,u2 (j)

is closely related to

∫

SL(2,Z)\H
|u1(z)|2 (

Shimuj,1/2

)
(z) dµz

∫

SL(2,Z)\H
|u2(z)|2 (

Shimuj,1/2

)
(z) dµz,

at least if we accept the unproved but likely statement that the sum in (1.4) of [Bi6] is

a one-element sum (see Remark 2 of [Bi6] and Remark (a) on p 197 of [K-S]). Using the

formula of Watson (see [Wat]) we finally get that |wu1,u2 (j)|2 is closely related to

L

(
1
2
, u1 × u1 × Shimuj,1/2

)
L

(
1
2
, u2 × u2 × Shimuj,1/2

)
.

1.3.5. Wilson function transform of type II. For the statement of our result the

Wilson function transform of type II (introduced in [G1]) is needed. This transform will

be discussed in more detail in Subsection 3.3.1, here we just give the most basic properties.

Let t1 and t2 be two given nonzero real numbers (these numbers will come from the

Laplace-eigenvalues of two cusp forms, see Theorem 1.2 below). We will define explicitly

in terms of t1 and t2 a positive number C and a positive even function H(x) on the real

line in (3.3.2) and (3.3.1). Let D+ as in (1.3.2), and for functions F on R ∪D+, even on

R write

∫
F (x)dh(x) :=

C

2π

∫ ∞

0

F (x)H(x)dx + iC
∑

x∈D+

F (x)Resz=xH(z).

The numbers

Rk = Resz=i( 1
4−k)H (z)

will be given explicitly in (3.3.3), and it will turn out that iRk is positive for every k.

For any complex numbers λ and x the Wilson function

φλ (x) = φλ (x; a, b, c, d)
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is defined in [G1], formula (3.2). We will use parameters a, b, c, d depending only on t1 and

t2, and we will give them explicitly in Subsection 3.3.1. We define the Hilbert space H
to be the space consisting of functions on R ∪D+, even on R that have finite norm with

respect to the inner product

(f, g)H =
∫

f(x)g(x)dh(x).

Then the Wilson function transform of type II is defined in [G1] as

(GF ) (λ) =
∫

F (x)φλ (x) dh(x).

It is defined first (as in the case of the classical Fourier transform) on the dense subspace

of H where this is absolutely convergent. Then it extends to H, and the following nice

theorem is proved in [G1], Theorem 5.10 (it will be explained in Subsection 3.3.1 that in

our case Theorem 5.10 of [G1] has this form):

The operator G : H → H is unitary, and G is its own inverse.

The second statement will be important for us, i.e. that G is its own inverse.

Since we will work separately with the continuous and discrete part of a function F on

R ∪D+, even on R, we introduce notations for them:

f(x) := F (x) (x ∈ R), an := F

(
i

(
1
4
− n

))
(n ≥ 1).

So instead of F , we will speak about a pair consisting of an even function f on R and a

sequence {an}n≥1. In this language, the Wilson function transform of type II of the pair

f , {an}n≥1 is the pair of the function g and the sequence {bn}n≥1 defined by

g(λ) =
C

2π

∫ ∞

0

f(x)φλ (x) H(x)dx + iC

∞∑

k=1

akφλ

(
i

(
1
4
− k

))
Rk (1.3.3)

and

bn =
C

2π

∫ ∞

0

f(x)φi( 1
4−n) (x)H(x)dx + iC

∞∑

k=1

akφi( 1
4−n)

(
i

(
1
4
− k

))
Rk (1.3.4)

for n ≥ 1.
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1.3.6. The formula. We now state precisely the summation formula. We use the

notation Γ (X ± Y ) = Γ (X + Y ) Γ (X − Y ). If u is a cusp form of weight 0 for SL(2,Z)

with ∆0u = s(s− 1)u, for n ≥ 0 define a cusp form κn(u) of weight 2n for the group Γ0(4)

by

(κn(u)) (z) =
(Kn−1Kn−2 . . .K1K0u) (4z)

(s)n (1− s)n

.

THEOREM 1.2 ([Bi7]). Let u1(z) and u2(z) be two Maass cusp forms of weight 0 for

SL(2,Z) with Laplace-eigenvalues sj(sj − 1), where sj = 1
2 + itj and tj > 0 (j = 1, 2).

There is a positive constant K depending only on u1 and u2 such that proerty P (f, {an})
below is true, if f(x) is an even holomorphic function for |Imx| < K satisfying that

∣∣∣f(x)e−2π|x| (1 + |x|)K
∣∣∣

is bounded on the domain |Imx| < K, and {an}n≥1 is a sequence satisfying that
∣∣∣∣∣∣
nK+ 3

2


an − (−1)n

n3/2

∑

0≤m<K

cm

nm




∣∣∣∣∣∣

is bounded for n ≥ 1 with some constants cm (m runs over integers with 0 ≤ m < K).

Property P (f, {an}). By g and bn defined in (1.3.3) and (1.3.4) the sum of the following

three lines:

∞∑

j=1

f (Tj) Γ
(

3
4
± iTj

) (
B0κ0 (u1) , uj, 1

2

) (
B0κ0 (u2) , uj, 1

2

)
, (1.3.5)

1
4π

∑
a=0,∞

∫ ∞

−∞
f (r) Γ

(
3
4
± ir

)
ζa (B0κ0 (u1) , r) ζa (B0κ0 (u2) , r)dr, (1.3.6)

∞∑
n=1

anΓ
(

2n +
1
2

) sn∑

j=1

(B0κn (u1) , gn,j) (B0κn (u2) , gn,j) (1.3.7)

equals the sum of the following three lines:

∞∑

j=1

g (Tj) Γ
(

3
4
± iTj

) (
B0κ0 (u2) , uj, 1

2

) (
B0κ0 (u1) , uj, 1

2

)
, (1.3.8)

1
4π

∑
a=0,∞

∫ ∞

−∞
g (r) Γ

(
3
4
± ir

)
ζa (B0κ0 (u2) , r) ζa (B0κ0 (u1) , r)dr, (1.3.9)
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∞∑
n=1

bnΓ
(

2n +
1
2

) sn∑

j=1

(B0κn (u2) , gn,j) (B0κn (u1) , gn,j). (1.3.10)

The sums and integrals in (1.3.3) and (1.3.4) are absolutely convergent for |Imλ| < 3
4 and

n ≥ 1, and every sum and integral in (1.3.5)-(1.3.10) is absolutely convergent.

The class of functions appearing in the theorem seems to be sufficiently general, but it

may happen that the statement can be extended further for some other functions.

1.4. An expansion theorem for Wilson functions

For the proof of Theorem 1.2 it is necessary to know some properties of Wilson functions.

But we prove these results only in the Appendix (i.e. in Chapter 4), since they are

completely independent of automorphic forms, they belong to the area of special functions.

However, we think that one of these results is interesting enough to be stated here, in the

Introduction.

Let t1, t2, H(x) and φλ (x) have the same meaning as in Subsection 1.3.5 above. So t1 and

t2 are fixed, hence every variable and every O-constant may depend on t1 and t2, even if

we do not denote this dependence.

The next theorem shows that a nice enough even function on R satisfying a vanishing

property can be written as a linear combination of the functions φi( 1
4−N) (x) (N ≥ 1).

THEOREM 1.3 ([Bi8]). Assume that K is a positive number, and f(x) is an even

holomorphic function for |Imx| < K satisfying

∫ ∞

−∞
f (τ) H(τ)

1
Γ

(
3
4 ± iτ

)dτ = 0 (1.4.1)

and that ∣∣∣f(x)e−2π|x| (1 + |x|)K
∣∣∣

is bounded on the domain |Imx| < K. If k is a positive integer and K is large enough in

terms of k, then we have a sequence dn satisfying

dn =
(−1)n

n5/2




k∑

j=0

ej

nj
+ O

(
1

nk+1

)
 (1.4.2)
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with some constants ej and

f(x) =
∞∑

n=1

dnφi( 1
4−n) (x) (1.4.3)

for every |Imx| < 3
4 , and the sum on the right-hand side of (1.4.3) is absolutely convergent

for every such x.
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2. Yokoi’s Conjecture

2.1. Structure of the chapter

In this chapter we prove Theorem 1.1. In Section 2.2 we give the plan of the proof, in

Section 2.3 we prove the important Lemma 2.1 and Fact B mentioned already in the

Introduction, in Section 2.4 we fix the numerical parameters, in Section 2.5 we give a

BASIC program. Finally, in Section 2.6 we give the results of this computer program and

conclude the proof of Theorem 1.1. This chapter is based mostly on [Bi3], but uses also

[Bi5].

2.2. Outline of the proof

We use the notations of Section 1.2 and we introduce some new notations. Let R be the

ring of algebraic integers of K, denote by I(K) the set of nonzero ideals of R and by P (K)

the set of nonzero principal ideals of R. Let N(a) be the norm of an a ∈ I(K), i.e. its

index in R. Let q > 2 be an integer with (q, d) = 1 (remember that d = p2 + 4), and let χ

be an odd (i.e we assume χ(−1) = −1) primitive character with conductor q. (This will

be the parameter character.) For <s > 1 define

ζK(s) =
∑

a∈I(K)

1
N(a)s

, ζK(s, χ) =
∑

a∈I(K)

χ(N(a))
N(a)s

,

and

ζP (K)(s, χ) =
∑

a∈P (K)

χ(N(a))
N(a)s

.

It is well-known (see e.g. [W], Theorems 4.3 and 3.11) that

ζK(s) = ζ(s)L(s, χd), (2.2.1)

where

χd(n) =
(n

d

)
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is a Jacobi symbol; moreover, if h(d) = 1, then d is a prime (see Fact B below), so this is

a Legendre symbol. It follows easily that

ζK(s, χ) = L(s, χ)L(s, χχd).

It is also well-known (see e.g. [W], Theorem 4.2 and [Da], Chapter 9) that for a primitive

character ψ with ψ(−1) = −1 and with conductor f one has

L(0, ψ) = − 1
f

f∑
a=1

aψ(a) 6= 0.

Consequently, since χχd is a primitive character with conductor qd by our conditions, and

χd(−1) = 1 because d is congruent to 1 modulo 4, so

ζK(0, χ) =
1

q2d

(
q∑

a=1

aχ(a)

)(
qd∑

b=1

bχ(b)χd(b)

)
. (2.2.2)

Now, if h(d) = 1, then

ζK(s, χ) = ζP (K)(s, χ) (2.2.3)

by definition. In the next section we will prove

LEMMA 2.1. If d = p2 + 4 is squarefree, q > 2 is an integer with (q, d) = 1, and χ is a

primitive character modulo q with χ(−1) = −1 , then ζP (K)(s, χ) extends meromorphically

in s to the whole complex plane and

ζP (K)(0, χ) =
1
q
Aχ(p),

where dte is the least integer not smaller than t, and for any integer a we write

Aχ(a) =
∑

0≤C,D≤q−1

χ(D2 − C2 − aCD)d(aC −D)/qe(C − q).

Note that qd divides the sum

Σ =
d−1∑
x=0

(l + xq)χd(l + xq)
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for any fixed 1 ≤ l ≤ q. Indeed, the numbers l + xq give a complete system of residues

modulo d, so

Σ ≡ l
∑

y mod d

χd(y) = 0 (mod q), Σ ≡
∑

y mod d

yχd(y) = 0 (mod d),

since χd is an even nonprincipal character modulo d. Now,

qd∑

b=1

bχ(b)χd(b) =
q∑

l=1

χ(l)
d−1∑
x=0

(l + xq)χd(l + xq),

so using (2.2.2), (2.2.3), Lemma 2.1 and the last remark, we obtain the following

FACT A. If d = p2 + 4 is squarefree, h(d) = 1, q is an integer with q > 2, (q, d) = 1, and

χ is a primitive character modulo q with χ(−1) = −1, then, writing

mχ =
q∑

a=1

aχ(a),

we have that mχ 6= 0, and

Aχ(p)m−1
χ

is an algebraic integer.

We will prove that Theorem 1.1 follows from Fact A.

First we introduce the following notation. If m is an odd positive integer, we denote by

Um the set of rational integers a satisfying that
(

a2 + 4
r

)
= −1

for every prime divisor r of m. Observe that Um is a union of certain residue classes

modulo m.

We assume that h(d) = 1. We will use Fact A in the following way. Denote by Lχ the field

generated over Q by the values χ(a) (1 ≤ a ≤ q), and take a prime ideal I of Lχ such that

mχ ∈ I. (2.2.4)

Let

p = Pq + p0 with 0 ≤ p0 < q, (2.2.5)
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then it is easy to see that

Aχ(p) = PBχ(p0) + Aχ(p0), (2.2.6)

where for any integer a we write

Bχ(a) =
∑

0≤C,D≤q−1

χ(D2 − C2 − aCD)C(C − q). (2.2.7)

We then obtain by (2.2.4), (2.2.6) and Fact A that

PBχ(p0) + Aχ(p0) ≡ 0 (mod I). (2.2.8)

Assume that q is odd, and that p ∈ Uq (equivalently p0 ∈ Uq). Observe that this already

determines the ideal generated by Bχ(p0). Indeed, if a1, a2 ∈ Uq, then

(Bχ(a1)) = (Bχ(a2)), (2.2.9)

i.e. Bχ(a1) and Bχ(a2) generate the same ideal in the ring of integers of Lχ. We will show

this statement at the end of this section. (Note that (2.2.9) is not important for the proof,

but we think it is worth remarking.) Assume also that the positive integers q and r satisfy

the following condition:

Condition (∗). The integer q is odd, r is an odd prime, and there is an odd primitive

character χ with conductor q and there is a prime ideal I of Lχ lying above r such that

mχ ∈ I, but I does not divide the ideal generated by Bχ(a) in the ring of integers of Lχ,

if a is any rational integer with a ∈ Uq.

Then, since p0 ∈ Uq, we obtain by (2.2.8) that

P ≡ −Aχ(p0)
Bχ(p0)

(mod I),

where we divide in the residue field of I. Combining it with (2.2.5), we see that

p ≡ p0 − q
Aχ(p0)
Bχ(p0)

(mod I). (2.2.10)

Let q and p0 be fixed. Note that in principle it may happen, if the residue field of I

is not the prime field (in our concrete applications, the residue field will always be the
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prime field), that there is no rational integer p satisfying (2.2.10); but anyway, if there

are solutions, then all the solutions belong to a unique residue class modulo r, since I lies

above r. This implies that if we know q and p0, then we can specify a congruence class

modulo r such that p must belong to this class.

Summing up: let h(d) = 1, and let q and r satisfy Condition (∗). Then, if p is in a given

congruence class modulo q such that p ∈ Uq, this forces p to be in a certain residue class

modulo r; then we can test whether p ∈ Ur or not. This is our key new elementary tool,

and Theorem 1.1 follows by several applications of this tool. The technicalities of this are

very roughly as follows.

Denote by q → r that q and r satisfy Condition (∗) above. We could say that we defined

a directed graph (with the positive integers as vertices) in this way. We will use a certain

triangle in this graph. To be concrete, we will use the arrows (more precisely, the special

cases belonging to these arrows of the above-mentioned tool):

175 → 61, 175 → 1861, 61 → 1861.

There are 40 residue classes modulo 175 = 52 ·7 contained in U175, so we may assume that

p belongs to one of these classes. For 20 of these classes, the arrow 175 → 61 forces p into

a residue class modulo 61 which is not contained in U61. The arrow 175 → 1861 similarly

eliminates 10 of the remaining residue classes, so 10 possible residue classes remain for p

modulo 175.

Next we apply also the arrow 61 → 1861, and we find that for eight of the remaining

residue classes modulo 175, different residue classes modulo 1861 are prescribed for p by

consecutive application of the two arrows

175 → 61, 61 → 1861,

and by the arrow 175 → 1861. This contradiction eliminates these classes. We are left

with

p ≡ ±13 (mod 175 · 61 · 1861).

We then use a new arrow

61 → 41,
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and this finally forces p to residue classes modulo 41 which are not contained in U41. This

will prove Theorem 1.1.

We explain briefly how we found the triangle 61,175,1861. It is clear that if q and r satisfy

Condition (∗), then there is an odd primitive character χ with conductor q such that r

divides the norm of mχ (this is a necessary, but not sufficient condition for (∗)). Now,

such divisibility relations can be found by the table on pp. 353-360. of [W]: this table lists

relative class numbers of cyclotomic fields, and in view of Theorem 4.17 of [W], relative

class numbers are closely related to the norms of such numbers mχ.

To deduce Corollary 1.1 we use the following

FACT B. If d = p2 + 4 is squarefree and h(d) = 1, then d is a prime, and if 2 < r < p is

also a prime, then (
d

r

)
= −1

(Legendre symbol).

We prove it in the next section.

The small values of p, i.e. the cases 1 ≤ p ≤ 1861, are easily handled by Fact B. In

fact, it can be checked by an easy calculation that if 1 ≤ p ≤ 1861 is an odd integer and

p 6= 1, 3, 5, 7, 13, 17, then there is a prime 3 ≤ r ≤ 31 such that r < p and

(
p2 + 4

r

)
6= −1.

Hence Yokoi’s conjecture is proved.

Examining the proof, we see that Yokoi’s conjecture follows from Facts A and B by ele-

mentary algebraic number theory and a finite amount of computation. I think that the

present way is not the only one to prove the conjecture on the basis of these two facts.

We also see that in order to get the linear congruence (2.2.8), it was very important that

once χ, its conductor q and the residue of p modulo q are fixed, then ζP (K)(0, χ) depends

linearly on p (see Lemma 2.1, (2.2.5) and (2.2.6)). In the case of quadratic characters χ,

this linear dependence was proved by Beck in [Be].

We now try to explain why the proof of Yokoi’s conjecture can be considered to be an

analogue of the Gelfond-Linnik-Baker solution of the imaginary class number one problem,
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in spite of applying so different tools (elementary algebraic number theory is used here in

place of Baker’s theorem). Again, let d be a fundamental discriminant, and let χd(n) =
(

n
d

)
. The equation

ζK(s, χ) = L(s, χ)L(s, χχd)

was the basis of the Gelfond-Linnik-Baker solution of the imaginary class number one

problem, and this is used also here. Gelfond and Linnik considered the s = 1 case in the

above equation (but this is equivalent to the substitution s = 0 because of the functional

equation). If ψ is a primitive Dirichlet character modulo q, then the arithmetic nature

of L(1, ψ) depends on the parity of ψ: it is π times an algebraic number for odd ψ, and

it is a linear combination of logarithms of algebraic numbers, if ψ is even. It is known

that if d < 0, then χd is odd, and if d > 0, then χd is even. This implies that in the

imaginary case (d < 0) it is sure, by any choice of the parameter character χ, that one of

the characters χ and χχd is odd and the other one is even. Therefore, one of L(1, χ) and

L(1, χχd) is a linear form of logarithms of algebraic numbers, and we are led to Baker’s

theorem. However, if d > 0, and we choose an odd χ, then both of χ and χχd are odd,

L(1, χ)/π and L(1, χχd)/π are algebraic numbers, and this leads to elementary algebraic

number theory.

Finally, we prove formula (2.2.9). By (2.2.7), we have

χ(4)
χ(a2

1 + 4)
Bχ(a1) =

∑

0≤C,D≤q−1

χ(
(2D − a1C)2

a2
1 + 4

− C2)C(C − q), (2.2.11)

where dividing by a2
1 + 4 means multiplying by its inverse modulo q (which exists by the

assumption that a1 ∈ Uq). Now, if C is fixed, then (2D − a1C) runs over a complete

residue system modulo q. A similar formula is valid for a2 in place of a1. Since

(a2
2 + 4)(a2

1 + 4)−1

is the square of a reduced residue class modulo q, if a1, a2 ∈ Uq, so the right-hand side of

(2.2.11) remains unchanged if we replace a1 by a2, hence (2.2.9) is proved. In fact one can

say more about the numbers Bχ(a), especially if q is a prime, but we do not need it, so we

do not analyze it any further.
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2.3. Proof of Lemma 2.1 and Fact B

Before proving these two important results stated in Section 2.2, we introduce some further

notations.

Let α be the positive root of the equation x2 + px = 1. It is easily seen that 1, α−1 is

an integral basis of R, and 1, α is also an integral basis. On the other hand, α−1 is the

fundamental unit of K, this is true because the fundamental solution of X2− (p2 +4)Y 2 =

−4 is (X, Y ) = (p, 1). Hence the units of R are ±αj with integer j. For β ∈ R, denote by

β the algebraic conjugate of β, and let

Q(C, D) = D2 − C2 − pCD.

It is easy to verify that for

β = C + Dα−1

with integers C,D one has

ββ = −Q(C, D). (2.3.1)

Proof of Lemma 2.1. Suppose that (γ) is a principal ideal of R. If γ < 0, then replace γ

by −γ. If, then, γ < 0, replace γ by γα−1, which is positive, and its conjugate, γ(α)−1, is

also positive. Therefore, without loss of generality, we may assume that γ > 0 and γ > 0.

The units of R which are positive and whose conjugate are also positive are (α2)j with

integer j. So there is a unique β ∈ R such that (γ) = (β) and

β > 0, β > 0, 1 ≤ β

β
< α−4.

Since α−2 is irrational, we can write any element of K as a Q-linear combination of 1 and

α−2. Say

β = X + Y α−2.

Now

1 ≤ β

β
⇔ β ≤ β ⇔ Y (α−2 − α2) ≥ 0 ⇔ Y ≥ 0.

Similarly
β

β
< α−4 ⇔ β < βα−4 ⇔ X(α−4 − 1) > 0 ⇔ X > 0.
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We deduce that every principal ideal of R can be written in a unique way in the form (β),

where

β ∈ R, β = X + Y α−2 with some rationals X > 0, Y ≥ 0.

Next write X = qx + qn1 and Y = qy + qn2 for some nonnegative integers n1 and n2 and

real numbers 0 < x ≤ 1, 0 ≤ y < 1 which can be done in a unique way. Then β ∈ R if and

only if

q(x + yα−2) ∈ R,

since, evidently, q(n1 + n2α
−2) ∈ qR.

Now, since C + Dα−1 with integers 0 ≤ C, D ≤ q− 1 form a complete system of represen-

tatives of R/qR, we can uniquely select an integer pair 0 ≤ C, D ≤ q − 1 such that

q(x + yα−2) ∈ C + Dα−1 + qR.

Therefore

x + yα−2 − C + Dα−1

q
∈ R. (2.3.2)

Tracing this back gives

X + Y α−2 ≡ C + Dα−1 (mod qR),

and since for the principal ideal a generated by (X + Y α−2) we have

N(a) = (X + Y α−2)(X + Y α−2)

because X > 0, Y ≥ 0, so

N(a) ≡ (C + Dα−1)(C + Dα−1) = −Q(C,D) (mod q),

where we used (2.3.1). Therefore, using also (2.3.2), if we partition the β ∈ R according

to the associated values for C and D we obtain the following formula of Shintani (p. 595.

of [Sh2]):

ζP (K)(s, χ) =
−1
q2s

q−1∑

C,D=0

χ(Q(C,D))
∑

(x,y)∈R(C,D)

ζ

(
s,

(
1 α−2

1 α2

)
, (x, y)

)
(2.3.3)
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with the following notations: R(C, D) denotes the set

{
(x, y) ∈ Q2 : 0 < x ≤ 1, 0 ≤ y < 1, x + yα−2 − C + Dα−1

q
∈ R

}
,

and for a matrix
(

a b
c d

)
with positive entries and x > 0, y ≥ 0 we write

ζ

(
s,

(
a b
c d

)
, (x, y)

)

for the function

∞∑
n1,n2=0

(a(n1 + x) + b(n2 + y))−s (c(n1 + x) + d(n2 + y))−s
.

The key result we need to quote is easily deduced from the Corollary to Proposition 1 of

[Sh1]:

Proposition (Shintani). For any a, b, c, d, x > 0 and y ≥ 0 the function

ζ

(
s,

(
a b
c d

)
, (x, y)

)
,

which is absolutely convergent for <s > 1, extends meromorphically in s to the whole

complex plane and the special value

ζ

(
0,

(
a b
c d

)
, (x, y)

)

equals

B1(x)B1(y) +
1
4

(
B2(x)

( c

d
+

a

b

)
+ B2(y)

(
d

c
+

b

a

))
,

where B1 and B2 are the Bernoulli polynomials

B1(z) = z − 1
2
, B2(z) = z2 − z +

1
6
.

We thus can substitute the result of this proposition into (2.3.3) to evaluate ζP (K)(0, χ).

Using that

α−2 + α2 = p2 + 2,
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we obtain

ζP (K)(0, χ) = −
∑

0≤C,D≤q−1

χ(Q(C,D))ΣC,D, (2.3.4)

where ΣC,D denotes the sum

∑

(x,y)∈R(C,D)

(
−p2

2
xy − p2 + 4

4
(x + y) +

p2 + 2
4

(x + y)2 +
p2 + 5

12

)
.

To investigate ΣC,D for a fixed pair 0 ≤ C, D ≤ q − 1, we observe that for any m,n we

have
mα−1 + n

q
=

(n− m
p ) + m

p α−2

q
,

and so it is easy to see that the possibilities for (m,n) having (x, y) ∈ R(C, D) with

(x, y) =
(

1
q
(n− m

p
),

1
q

m

p

)

are

mj = D + jq, nj = C + q

[
1 +

j

p
− (pC −D)/q

p

]

with any integer 0 ≤ j ≤ p− 1. This is so because the possible values of m are obviously

these p values, and once m is fixed, n is unique.

One has

0 < 1 +
j

p
− (pC −D)/q

p
< 2,

so

nj = C for 0 ≤ j < A

and

nj = C + q for A ≤ j < p,

where we put

A = d(pC −D)/qe,

and clearly 0 ≤ A ≤ p.

So we have

ΣC,D =
p−1∑

j=0

(
− p2

2q2
(nj − mj

p
)
mj

p
− p2 + 4

4q
nj +

p2 + 2
4q2

n2
j +

p2 + 5
12

)
.
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By the description of nj and mj above, considering separately the cases 0 ≤ j < A and

A ≤ j < p, using the summation formulas for
∑N

j=0 j and
∑N

j=0 j2 (for any integer N ≥ 0),

straightforward (but tedious) calculations give

ΣC,D = A(1− C

q
) +

p

4q2
Σ(1)

C,D − 1
4q

Σ(2)
C,D, (2.3.5)

where

Σ(1)
C,D = 2C2 + D2 + (D − pC + qA)2,

and

Σ(2)
C,D = 2pC + (p− 2)D + (p + 2)(D − pC + qA).

Remember that A depends on C and D, but for brevity we do not denote it.

We show that ∑

0≤C,D≤q−1

χ(Q(C, D))Σ(j)
C,D = 0

for j = 1, 2. To this end we introduce the transformation

T ((C,D)) = (Ĉ, D̂)

with

Ĉ = D − pC − q [(D − pC)/q] , D̂ = C

(here we used lower integer part). We will also use the notation

T 2 ((C,D)) = ( ˆ̂
C,

ˆ̂
D).

Note that Ĉ (similarly to ˆ̂
C, D̂ and ˆ̂

D) depends on the pair (C, D). The transformation

T is a permutation of the set of the pairs (C,D) with 0 ≤ C, D ≤ q − 1.

Now, observe that

qA = pC −D + Ĉ.

Using this relation, and

C = D̂, Ĉ = ˆ̂
D,
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we obtain the identities

Σ(1)
C,D =

(
D2 +

(
D̂

)2
)

+
((

D̂
)2

+
( ˆ̂
D

)2
)

and

Σ(2)
C,D = (p− 2)

(
D + D̂

)
+ (p + 2)

(
D̂ + ˆ̂

D
)

.

It is easy to verify that

Q(Ĉ, D̂) ≡ −Q(C, D) (mod q),

hence

χ
(
Q(Ĉ, D̂)

)
= −χ (Q(C, D)) ,

since χ is odd. Consequently, any orbit of T (where χ is not 0) has an even number of

elements, and the value of χ (Q(C,D)) changes to its negative at each step by T . Our last

identities then show that in fact, when we substitute (2.3.5) into (2.3.4), the terms

Σ(1)
C,D, Σ(2)

C,D

give 0 after the summation over C, D (since they give 0 on each orbit). Lemma 2.1 is

proved.

For the proof of Fact B, we need the following lemma.

LEMMA 2.2. If 0 6= β ∈ R, and |ββ| < p, then β is associated in R to a rational integer.

Proof. Let β = cα − d with integers c and d. We may assume that α ≤|β| ≤ 1 and c > 0

(since for c = 0 we are done). Then

|β| = |c 1
α

+ d| = |c(α +
1
α

)− β| ≥ c(α +
1
α

)− 1,

hence

p > |ββ| ≥ c− α.

The right-hand side is greater than p−1 for c ≥ p, so we have 1 ≤ c < p. Then 0 < cα < 1,

and by |β| ≤ 1 we can assume d = 1, because in the case d = 0 the proof is complete.

Then

p > |ββ| = 1− c2 + pc,
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which is impossible for c in the given range, and the lemma is proved.

Proof of Fact B. Assume that d is not a prime (but, by our assumptions, it is odd and

squarefree). Let t be the least prime divisor of d. Since (p, d) = 1, and (p + 1)2 is greater

than d, we have 2 < t < p. The discriminant of K is d, hence the prime t is ramified in

K, so the ideal generated by t in R is a square of an ideal, say (t) = a2. The class number

is 1, so a = (β) with some 0 6= β ∈ R, and this implies that

|ββ| = N(a) = t,

hence |ββ| < p and |ββ| is not a square, which is a contradiction by Lemma 2.2.

So we know that d is a prime, it is obviously congruent to 1 modulo 4, and by quadratic

reciprocity it is enough to prove that
(

r
d

)
= −1. Assume that

(
r
d

)
= 1. It is well-known

(and we can see from (2.2.1)) that the ideal (r) is then a product of two prime ideals in

R; both prime ideals must have norm r. Since the class number is 1, it follows that there

is a 0 6= β ∈ R such that |ββ| = r, and since r < p and r is not a square, this contradicts

Lemma 2.2, just as above. Fact B is proved.

2.4. Fixing the parameters

We will use the notations introduced in Section 2.2.

We will use Fact A for three concrete characters χ, denote them by χ1, χ2 and χ3. The

character χ1 has conductor 175 = 52 · 7, while χ2 and χ3 have conductor 61.

Since 2 is a primitive root modulo 25, and 3 is a primitive root modulo 7, the character

χ1 is well defined by

χ1 = χ
(25)
1 χ

(7)
1 ,

where χ
(25)
1 is a character modulo 25, χ

(7)
1 is a character modulo 7, and

χ
(25)
1 (2) = iξ, χ

(7)
1 (3) = ω,

where ξ is a primitive fifth root of unity, i is the usual primitive fourth root of unity, and ω

is a primitive third root of unity. It is easily seen that χ1 is a primitive character modulo

175 and χ1(−1) = −1.
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Since 2 is a primitive root modulo 61, the characters χ2 and χ3 are well defined by

χ2(2) = iωξ, χ3(2) = iξ.

These are obviously primitive characters modulo 61, and

χ2(−1) = χ3(−1) = −1.

Clearly

Lχ = Q(ξ60) for χ = χ1 and χ = χ2,

and

Lχ = Q(ξ20) for χ = χ3,

where ξn denotes a primitive nth root of unity.

Before giving the concrete examples we will work with, we quote a well-known general fact

on the factorization of rational primes in cyclotomic fields. Let r be a rational prime and

assume that

r ≡ 1 (mod n). (2.4.1)

Then, in the ring of algebraic integers of Q(ξn) the ideal (r) is a product of φ(n) distinct

prime ideals, and these prime ideals have the form

(r, ξn − a), (2.4.2)

where a runs over the rational integers 1 ≤ a ≤ r with

or(a) = n, (2.4.3)

and or(a) denotes the order of a modulo r. (See [W], pp. 14-15.) What we actually need

is the fact that in the case of (2.4.1), the ideal (2.4.2) is a prime ideal for every rational

integer a satisfying (2.4.3).

We now give our four examples. These examples correspond to the four arrows

175 → 61, 175 → 1861, 61 → 1861, 61 → 41,
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respectively, mentioned in Section 2.2.

Example 1. Here

q = 175, r = 61, χ = χ1, Lχ = Q(ξ60),

and we choose

I = (61, iωξ − 10).

Since o61(10) = 60, this is a prime ideal. We then have

χ
(25)
1 (2) = (iωξ)21 ≡ 1021 ≡ 8 (mod I),

and

χ
(7)
1 (3) = (iωξ)40 ≡ 1040 ≡ 47 (mod I).

Consequently, for rational integers a,

if a ≡ 2s (mod 25), then χ
(25)
1 (a) ≡ 8s (mod I), (2.4.4)

if a ≡ 3t (mod 7), then χ
(7)
1 (a) ≡ 47t (mod I). (2.4.5)

Example 2. Here

q = 175, r = 1861, χ = χ1, Lχ = Q(ξ60),

and we choose

I = (1861, iωξ − 173).

Since o1861(173) = 60, this is a prime ideal. We then have, just as above,

χ
(25)
1 (2) ≡ 17321 ≡ 380 (mod I), and χ

(7)
1 (3) ≡ 17340 ≡ 1406 (mod I).

Consequently, for rational integers a,

if a ≡ 2s (mod 25), then χ
(25)
1 (a) ≡ 380s (mod I), (2.4.6)

if a ≡ 3t (mod 7), then χ
(7)
1 (a) ≡ 1406t (mod I). (2.4.7)

Example 3. Here

q = 61, r = 1861, χ = χ2, Lχ = Q(ξ60),
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and we choose

I = (1861, iωξ − 1833).

Since o1861(1833) = 60, this is a prime ideal. We then have, for rational integers a:

if a ≡ 2s (mod 61), then χ(a) ≡ 1833s (mod I). (2.4.8)

Example 4. Here

q = 61, r = 41, χ = χ3, Lχ = Q(ξ20),

and we choose

I = (41, iξ − 33).

Since o41(33) = 20, this is a prime ideal. We then have, for rational integers a:

if a ≡ 2s (mod 61), then χ(a) ≡ 33s (mod I). (2.4.9)

It is clear that using formulas (2.4.4) − (2.4.9), we can verify whether Condition (∗) (see

Section 2.2) is valid for these four (q, r) pairs or not (with the given χ and I). We will use

for this the computer program of the next section, and we will find that the condition is

satisfied in each case. Then we will have a possibility to apply the arguments of Section

2.2, in particular, formula (2.2.10).

2.5. The computer program

The aim of the computer program of this section is to compute mχ modulo I, and also

Aχ(p0), Bχ(p0) modulo I for every relevant residue class p0 modulo q (see Section 2.2 for

these notations). We will compute these quantities with the concrete parameters of the

examples of Section 2.4, i.e. we compute them in four separate cases. Since I lies above

r, and |R/I| = r, the computation modulo I is in practice a computation with rational

integers modulo r.

Before giving the BASIC program itself, we say a few words about it.

We will apply the program for the four examples given in the previous section. We have to

give the value of q, and then the value of r. These two values already identify the example,

and the program then works with the other data (i.e. χ and I) of that example.
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The program uses data from a file depending on (q, r). Each data file contains 20 numbers,

we write the interesting values of p0 followed by zeros, if there are less than 20 interesting

values. See the contents of the data files below. It will turn out in Section 2.6 that indeed

these are the interesting values of p0. Firstly, the program computes the values of our

characters modulo the ideal I, based on equations (3.4.4)-(3.4.9). If q = 175, we have

d(n, 0) ≡ χ
(25)
1 (n) (mod I), d(n, 1) ≡ χ

(7)
1 (n) (mod I).

If q = 61, we have

d(n, 2) ≡ χ(n) (mod I).

We use two subroutines. The first one (at line 20) is used only if q = 175. If 1 ≤ g ≤ 3

is fixed, and the integers J , Z and s(g) are given, this subroutine adds χ(J)Z to s(g)

(modulo the ideal I, of course). The second subroutine (at line 30) is the same as the

previous one, but it is used when q = 61.

After computing the values of the characters, the program computes mχ (we get it in

result1.txt), then Aχ(p0) (we get in result2.txt) and Bχ(p0) (result3.txt) modulo I for

every interesting value of p0.

We now give the data files. In the first line we write the contents of data0.txt, the second

line is data1.txt, the third line is data2.txt, while the fourth one is data3.txt:

3, 8, 13, 17, 18, 22, 27, 32, 38, 43, 48, 52, 53, 57, 62, 67, 73, 78, 83, 87;

8, 13, 18, 22, 32, 38, 43, 53, 67, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

6, 10, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

Here is the QBasic program:

DEFDBL A−Z
IF q = 175 AND r = 61 THEN OPEN ”data0.txt” FOR INPUT AS #1
IF q = 175 AND r = 1861 THEN OPEN ”data1.txt” FOR INPUT AS #1
IF q = 61 AND r = 1861 THEN OPEN ”data2.txt” FOR INPUT AS #1
IF q = 61 AND r = 41 THEN OPEN ”data3.txt” FOR INPUT AS #1
OPEN ”result1.txt” FOR OUTPUT AS #2
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OPEN ”result2.txt” FOR OUTPUT AS #3
OPEN ”result3.txt” FOR OUTPUT AS #4
DIM d(60, 2): DIM s(3)
REM ======= WE COMPUTE THE VALUES OF THE CHARACTERS
p = 1: d(1, 0) = 1: FOR J = 1 TO 19
v = p: p = (2 ∗ p) MOD 25
IF r = 61 THEN d(p, 0) = (8 ∗ d(v, 0)) MOD r
IF r = 1861 THEN d(p, 0) = (380 ∗ d(v, 0)) MOD r
NEXT J
p = 1: d(1, 1) = 1: FOR J = 1 TO 5
v = p: p = (3 ∗ p) MOD 7
IF r = 61 THEN d(p, 1) = (47 ∗ d(v, 1)) MOD r
IF r = 1861 THEN d(p, 1) = (1406 ∗ d(v, 1)) MOD r
NEXT J
p = 1: d(1, 2) = 1: FOR J = 1 TO 59
v = p: p = (2 ∗ p) MOD 61
IF r = 1861 THEN d(p, 2) = (1833 ∗ d(v, 2)) MOD r
IF r = 41 THEN d(p, 2) = (33 ∗ d(v, 2)) MOD r
NEXT J
GOTO 40
REM ======= IF q = 175, THIS SUBROUTINE ADDS χ(J)Z 20 IF J
MOD 5 = 0 OR J MOD 7 = 0 THEN GOTO 25
s = d(((J MOD 25) + 25) MOD 25, 0): L = d(((J MOD 7) + 7) MOD 7, 1)
w = (s ∗ L) MOD r
s(g) = (((s(g) + w ∗ Z) MOD r) + r) MOD r
25 RETURN
REM ======= IF q = 61, THIS SUBROUTINE ADDS χ(J)Z
30 IF J MOD 61 = 0 THEN GOTO 35
s = d(((J MOD 61) + 61) MOD 61, 2)
s(g) = (((s(g) + s ∗ Z) MOD r) + r) MOD r
35 RETURN
REM ======= WE COMPUTE mχ (AS s(1)) 40 g = 1: FOR J = 1
TO q − 1
Z = J: IF q = 175 THEN GOSUB 20
IF q = 61 THEN GOSUB 30
NEXT J
REM ======= p(a) ARE THE POSSIBLE VALUES OF p0

DIM p(20): FOR a = 1 TO 20: INPUT #1, p(a)
IF p(a) = 0 THEN GOTO 70
REM ======= WE COMPUTE Aχ(p0) (AS s(2)) AND
REM ======= Bχ(p0) (AS s(3))
FOR c = 0 TO q − 1: FOR d = 0 TO q − 1
J = d ∗ d − c ∗ c − p(a) ∗ c ∗ d
g = 2: Z = (q − c) ∗ INT((d − p(a) ∗ c) / q)
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IF q = 175 THEN GOSUB 20
IF q = 61 THEN GOSUB 30
g = 3: Z = (c − q) ∗ c
IF q = 175 THEN GOSUB 20
IF q = 61 THEN GOSUB 30
NEXT d: NEXT c
REM ======= WE PRINT THE RESULTS
FOR g = 1 TO 3: IF a > 1 AND g = 1 THEN GOTO 60
IF g > 1 THEN PRINT #(g + 1), ”for ”; p(a); ” we get ”; s(g)
IF g = 1 THEN PRINT #(g + 1), ” we get ”; s(g)
s(g) = 0
60 NEXT g 70 NEXT a
CLOSE #1: CLOSE #2: CLOSE #3: CLOSE #4

2.6. Concluding the proof

Firstly, we show that a residue class and its negative always behave in the same way during

our proof. We can spare half of the computations by this observation.

Recall the definitions of Aχ(j) and Bχ(j) from Section 2.2.

LEMMA 2.3. Let q be a positive integer, χ a character modulo q and j an integer with

(j, q) = 1. Then

(i) Bχ(q − j) = Bχ(j);

(ii) Aχ(q − j) + Aχ(j) =Bχ(j).

Proof. Let (t)q denote the least nonnegative residue of t modulo q. Then, replacing

D by (q − D)q in the definition of Bχ(q − j), we get (i). The same reasoning gives that

the left-hand side of (ii) equals

q−1∑

C,D=0

χ(D2 − C2 − jCD)
(⌈

(q − j)C − (q −D)q

q

⌉
+

⌈
jC −D

q

⌉)
(C − q).

If D 6= 0, then

⌈
(q − j)C − (q −D)q

q

⌉
+

⌈
jC −D

q

⌉
=





C − 1, if D ≡ jC (mod q)

C otherwise
,
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since the sum of the arguments of the upper integer parts is C−1. If D = 0, then the sum

is 1 larger. Thus, using (j, q) = 1, the left-hand side of (ii) equals

Bχ(j)−
∑

1≤C,D≤q−1, D≡jC

χ(−C2)(C − q) +
∑

1≤C≤q−1, D=0

χ(−C2)(C − q)

(the congruence in the first sum is meant modulo q), which proves (ii).

Proof of Theorem 1.1. Since our program in Section 2.5 applied for the four (q, r) pairs

given in the examples of Section 2.4 gives 0 for mχ (modI), but gives nonzero results for

Bχ(p0) (mod I) (i.e. the results are rational integers not divisible by r) for certain values

of p0 ∈ Uq (hence for all p0 ∈ Uq, see (2.2.9)), we get that these four (q, r) pairs satisfy

Condition (∗). Hence we can apply (2.2.10), and we can follow the steps outlined in Section

2.2. Note that if two rational integers are congruent modulo I, then they are congruent

modulo r, so (2.2.10) gives us the value of p modulo r.

By Lemma 2.3, we have

j − q
Aχ(j)
Bχ(j)

≡ −
(

(q − j)− q
Aχ(q − j)
Bχ(q − j)

)
(2.6.1)

modulo I for every (j, q) = 1, so (see (2.2.10)) a residue class contained in Uq and its

negative determine residue classes modulo r which are again negatives of each other.

We first consider Example 1 from Section 2.4. In the first column of Table 1 we list the 20

values of p0 (see (2.2.5) for its meaning) for which

0 < p0 <
175
2

, p0 ≡ ±2 (mod 5) and p0 ≡ ±1,±3 (mod 7).

These are the elements of U175 in the given range (for p0 6∈ U175 we are done, p2 + 4 is a

square modulo 5 or 7). In the second and third columns we give Aχ(p0) and Bχ(p0) modulo

I, respectively (obtained by the program); the fourth column gives p modulo 61, and it is

computed from the first three columns, using (2.2.10). The fifth column is determined by

the fourth column: if p2 +4 is a square modulo 61, then we write a number n into the fifth

column such that

n2 ≡ p2 + 4 (mod 61);
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otherwise we leave the fifth column empty.

For the 10 values of p0 where the fifth column of Table 1 is empty, we apply the program

with the parameters of Example 2 (in particular, q = 175 and r = 1861). The results are

summarized in Table 2, which is completely analogous to Table 1.

We know from (2.6.1) that if we replace a particular p0 by 175− p0 in the first column of

Table 1 or Table 2, then in the fourth column we obtain the negative of the residue class

belonging to p0 in the fourth column. Consequently, p2 + 4 modulo 61 (or modulo 1861 in

the case of Table 2) is unchanged. Hence, if the fifth column is nonempty at the row of a

p0 in Table 1 or in Table 2, then p0 and 175− p0 are excluded in the sense that for

p ≡ ±p0 (mod 175)

p2 + 4 is a square modulo 61 or modulo 1861. The remaining possibilities are summarized

in Table 3, where we mean that either the plus or the minus sign is valid inside a row, and

one of the rows must be valid for our p.

For p ≡ 6, 10 or 24 modulo 61 we apply the program with the parameters of Example 3.

The result is Table 4, which is completely analogous to Tables 1 and 2, but we do not need

the fifth column, so we omit it. Since

612 6≡ ±1058, 881 6≡ ±1107, 881 6≡ ±1062 and 460 6≡ ±1634

modulo 1861, so, using (2.6.1), we see by Tables 3 and 4 that the only possible values for p

modulo 61 are ±13 (since otherwise p would belong to two different residue classes modulo

1861, which is a contradiction). Hence, if we consider Example 4 (q = 61, r = 41), the

only possibilities for p0 are 13 and 61 − 13 = 48. For p0= 13 we apply the program and

we obtain

Aχ(p0) ≡ 0 (mod I) and Bχ(p0) ≡ 13 (mod I).

Hence (2.2.10) gives

p ≡ 13 (mod 41).

By (2.6.1), we know that then p0 = 48 gives

p ≡ −13 (mod 41).
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In both cases, we have

p2 + 4 ≡ 173 ≡ 32 (mod 41),

so Theorem 1.1 is proved.

TABLE 1.

We use the parameters of Example 1, in particular q=175, r = 61.

The second and third columns are meant modulo I.

p0 Aχ(p0) Bχ(p0) p mod r
√

p2 + 4 mod r

3 0 51 3 14

8 0 33 8

13 0 24 13

17 0 26 17 7

18 34 44 2

22 34 53 49

27 24 50 4 9

32 1 44 10

38 40 30 8

43 46 23 59

48 20 50 39 0

52 14 32 25 18

53 13 51 6

57 54 23 36 18

62 42 24 15 30

67 28 26 24

73 6 32 44 7

78 27 53 51

83 32 33 39 0

87 19 30 27 1
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TABLE 2.

We use the parameters of Example 2, in particular q=175, r = 1861.

The second and third columns are meant modulo I.

p0 Aχ(p0) Bχ(p0) p mod r
√

p2 + 4 mod r

8 0 1121 8 505

13 0 1498 13

18 1254 1060 285 385

22 60 1588 1492 263

32 135 1060 1107

38 1633 1397 321 760

43 1294 1102 1685 748

53 1275 1389 1058

67 1773 1720 1634

78 344 1588 1062

TABLE 3.

p mod 175 p mod 61 p mod 1861

±13 ±13 ±13

±32 ±10 ±1107

±53 ±6 ±1058

±67 ±24 ±1634

±78 ±51 ±1062

TABLE 4.

We use the parameters of Example 3, in particular q=61, r = 1861.

The second and third columns are meant modulo I.

p0 Aχ(p0) Bχ(p0) p mod r

6 957 1000 612

10 1150 616 881

24 173 663 460
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3. A Poisson-type summation formula

3.1. Structure of the chapter and a convention

In this chapter we prove Theorem 1.2. In Section 3.2 we give a sketch of the proof,

in Section 3.3 we introduce some more notations and gather together some well-known

preliminary facts. In Section 3.4 we prove our most important lemmas, then we prove a

special case (the special case (3.2.1), see below) of Theorem 1.2 in Section 3.5, and the

general case in Section 3.6. Some remaining lemmas on automorphic functions are proved

only in Section 3.7 (but the results of Section 3.7, i.e. Lemmas 3.9-3.14 are used already in

earlier sections). In this chapter we use some facts (for example Theorem 1.3, but we will

quote also some other results of Chapter 4) related to the function φλ (x), but these facts

will be proved only in the Appendix (i.e. in Chapter 4). The present chapter is based on

[Bi7].

CONVENTION. In what follows, u1 and u2 (hence t1 and t2) will be fixed (see the

statement of Theorem 1.2 for these notations). So every variable and every constant

(including the constants implied in the ¿ and O symbols) may depend on u1 and u2, even

if we do not denote this dependence.

3.2. Sketch of the proof of Theorem 1.2

In this sketch we ignore problems related to convergence, we just give a formal argument.

Assume first that the following special case of Theorem 1.2 is already proved:

f(x) = 0 (x ∈ R), an = 0 (n 6= N), aN = 1 (3.2.1)

with a fixed positive integer N . Using Groenevelt’s result that the Wilson function trans-

form of type II is its own inverse (see Subsection 1.3.5), we can see that this special case

(reading it ”in the other direction”, and making the changes u1 → u2, u2 → u1) proves

another case of Theorem 1.2:

f(x) = φi( 1
4−N) (x) (x ∈ R), an = φi( 1

4−N)

(
i

(
1
4
− n

))
(3.2.2)

41

               dc_344_11



with a fixed positive integer N .

There is a special case of Theorem 1.2 which is easily seen to be true:

f(x) =
1

Γ
(

3
4 ± ix

) (x ∈ R), an = 0 (n ≥ 1). (3.2.3)

This special case will follow trivially from the spectral theorem for weight 1/2.

It turns out that the general statement can be proved using these three special cases

by purely analytical means. This will follow from Theorem 1.3 which implies that a nice

enough even function on R can be written as a linear combination of the functions 1

Γ( 3
4±ix)

and φi( 1
4−N) (x) (N ≥ 1). This will mean that if f is a given nice even function on R, then

by (3.2.2) (using it for every integer N ≥ 1) and (3.2.3) we can prove that Theorem 1.2 is

true for this f and for some sequence {an}n≥1. But then, using (3.2.1) for every integer

N ≥ 1, we can achieve any sequence {an}n≥1 without changing f . This will complete the

proof of Theorem 1.2.

Hence, it is enough to prove the special case (3.2.1). We now give a sketch of the proof of

this special case.

Observe that we have to give an expression for

sN∑

j=1

(B0κN (u1) , gN,j) (B0κN (u2) , gN,j), (3.2.4)

which is the inner product of the projection of B0κN (u1) and the projection of B0κN (u2) to

the space (Imz)
1
4+N

S2N+ 1
2
. This is in fact the space of Maass cusp forms of weight 2N + 1

2

and ∆2N+ 1
2
-eigenvalue

(
N + 1

4

) (
N − 3

4

)
. We will show that this projection operator can

be written as an integral operator: if U is a cusp form of weight 2N for Γ0(4), then the

projection of B0U to the above-mentioned space is

∫

H

B0(z)U(z)mN (z, w)dµz

with a suitable kernel function mN . We can apply a theorem of Fay (see our Lemma 3.4)

to determine the Fourier expansions of B0 and U on noneuclidean circles around w. Since
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the behavior of mN (z, w) on such circles is well understood, we can compute this integral

using geodesic polar coordinates around w, and we get that the projection equals
∞∑

l=0

CU,lBl(w) (U)−l (w),

where the coefficients CU,l are explicitly known, and

(U)−l =
1
l!

LN−l+1 . . . LN−1LNU, Bl =
1
l!

K(l−1)+ 1
4

. . . K 5
4
K 1

4
B0.

Hence, applying it with U = κN (u1) and also with U = κN (u2) we see that for the

computation of (3.2.4) we have to compute integrals of the form
∫

D4

Bl1(w) (κN (u1))−l1
(w)Bl2(w) (κN (u2))−l2

(w)dµw.

We will consider this integral as the inner product of Bl1(κN (u2))−l2
and Bl2(κN (u1))−l1

.

These are automorphic forms of weight 1
2 +2(l1 + l2−N), and we will compute their inner

product using the spectral theorem for this weight (in the form of Corollaries 3.1 or 3.2

below). This leads us to a sum of products of triple products of the form
(
Bl1(κN (u2))−l2

, F
) (

Bl2(κN (u1))−l1
, F

)
,

where F is a Maass form of weight 1
2 + 2(l1 + l2 − N). Using partial integration (in the

form of Lemmas 3.1 and 3.2) it turns out in Lemma 3.7 that these triple products can be

written as linear combinations of such triple products which are present in Theorem 1.2.

This reasoning shows relatively easily that we can get some expression for (3.2.4) with

the products of inner products which are present in Theorem 1.2. However, I cannot give

a good explanation of the actual form of the relation, i.e. the occurrence of the Wilson

function φλ (x), besides the fact that this will be the result of the computation.

3.3. Further notations and preliminaries

3.3.1. Some details on the Wilson function transform of type II. We first give

explicitly the quantities C, H(x) and iRk mentioned in Subsection 1.3.5: we use the

notations Γ (X ± Y ) = Γ (X + Y ) Γ (X − Y ) and

Γ (X ± Y ± Z) = Γ (X + Y + Z) Γ (X + Y − Z) Γ (X − Y + Z) Γ (X − Y − Z) ,
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and define

H(x) =
Γ

(
1
4 ± it1 ± ix

)
Γ

(
1
4 ± it2 ± ix

)
Γ

(
1
4 ± ix

)
Γ

(
3
4 ± ix

)

π2Γ (±2ix)
, (3.3.1)

C =
π2

Γ
(

1
2 ± it1

)
Γ

(
1
2 ± it2

) , (3.3.2)

and (writing sj = 1
2 + itj for j = 1, 2, as in Theorem 1.2)

iRk =
2k − 1

2

π2

|Γ (k + it1)|2 |Γ (k + it2)|2
|(s1)k|2 |(s2)k|2

Γ
(

1
2
± it1

)
Γ

(
1
2
± it2

)
. (3.3.3)

(Note that there is a mistake in the concrete expression for this residue in Section 5.1 of

[G1], the formula there should be multiplied by 4t2, which is 1
4 in our case.)

As it was promised in Subsection 1.3.5, we now give explicitly the parameters of the Wilson

function φλ (x) introduced there. Indeed, let

a =
1
4

+ it1, b =
1
4

+ it2, c =
1
4
− it2, d =

3
4

+ it1. (3.3.4)

Then this set of parameters is self-dual, i.e. for the dual parameters ã, b̃, c̃, d̃ defined in

formula (2.6) of [G1] we have

ã = a, b̃ = b, c̃ = c, d̃ = d.

For the definition of the Wilson function transform of type II in Section 5.1 of [G1] one

more parameter is needed, we denote it by t. We choose t = 1
4 there, and then in the

beginning of Section 5.1 of [G1] we see also that t̃ = t. Then the definition of H(x) in

(3.3.1) above is in accordance with [G1], and since our parameters are self-dual, we quoted

correctly Theorem 5.10 of [G1] in our Subsection 1.3.5.

We mention two more important facts what will be needed. The first one is φλ (x) = φx (λ),

see (3.4) of [G1] and remember that our parameters are self-dual. The second one is that

φλ (x; a, b, c, d) is symmetric in a, b, c, 1−d (see Remark 4.5 of [G1]), hence that our Wilson

function transform is symmetric in t1 and t2.
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3.3.2. Other notations. Let D1 be the closure of the standard fundamental domain of

SL(2,Z), hence

D1 =
{

z ∈ H : −1
2
≤ Rez ≤ 1

2
, |z| ≥ 1

}
.

Then, it is easy to check that the following set is a closure of a fundamental domain of

Γ0(4):

D4 =
5⋃

j=0

γjD1,

where

γj =
(

0 −1
1 j

)
(0 ≤ j ≤ 3),

and

γ4 =
(

1 0
0 1

)
, γ5 =

(
1 0
−2 1

)
.

In the sequel D4 will always denote this fixed fundamental domain of Γ0(4).

The three cusps for Γ0(4) are ∞, 0 and − 1
2 . If a denotes one of these cusps, we take a

scaling matrix σa ∈ SL(2,R) as it is explained on p. 42 of [I1]. We can easily see that one

can take

σ∞ =
(

1 0
0 1

)
, σ0 =

(
0 −1

2
2 0

)
, σ− 1

2
=

(−1 −1
2

2 0

)
.

The only cusp for SL(2,Z) is ∞, and, of course, we take the identity matrix σ∞ for scaling

matrix also in this case.

Let Lα
n and F (α, β, γ; z) be the usual notations for Laguerre polynomials and Gauss’

hypergeometric functions, respectively, see [G-R], p. 990 and p. 995.

If a is a cusp for Γ0(4), we define χa by

ν

(
σa

(
1 1
0 1

)
σ−1

a

)
= e(−χa), 0 ≤ χa < 1.

It is easy to check that χ∞ = χ0 = 0, and χ− 1
2

= 3
4 . So the cusps 0 and ∞ are said to be

singular, and −1/2 is said to be nonsingular.

If f is a Maass form of weight l, ∆lf = s(s− 1)f with some Res ≥ 1
2 , s = 1

2 + it, and a is

a cusp of Γ, then f(σaz)
(

jσa (z)
|jσa (z)|

)−l

has the Fourier expansion

cf,a(y) +
∑

m ∈ Z
m− χa 6= 0

ρf,a(m)W l
2 sgn(m− χa),it

(4π |m− χa| y) e ((m− χa)x)
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for z = x + iy ∈ H where Wα,β is the Whittaker function (see [G-R], p. 1014), and

cf,a(y) = 0 if χa 6= 0, while it is a linear combination of ys and y1−s for s 6= 1
2 and of y1/2

and y1/2log y for s = 1
2 , if χa = 0.

Let Pl(D4) be the space of such smooth automorphic forms of weight l for Γ0(4) for which

we have that for any integers B, C ≥ 0 there is an integer A = A(B, C) such that

(
max

a
Imσ−1

a z
)−A

∣∣∣∣
(

∂B

∂xB

∂C

∂yC
f

)
(z)

∣∣∣∣

is bounded on D4 (i.e. every partial derivative grows at most polynomially near each cusp

on the fixed fundamental domain D4). We denote by Rl(D4) the space of such smooth

automorphic forms of weight l for Γ0(4) for which we have that for any integers A, B,C ≥ 0

the function (
max

a
Imσ−1

a z
)A

∣∣∣∣
(

∂B

∂xB

∂C

∂yC
f

)
(z)

∣∣∣∣

is bounded on D4 (i.e. every partial derivative decays faster than polynomially near each

cusp on the fixed fundamental domain D4).

Let

Γ∞ = {γ ∈ SL(2,Z) : γ∞ = ∞} .

For z, w ∈ H let

H(z, w) = i
1
2

( |z − w|
(z − w)

) 1
2

=
(

z − w

w − z

)− 1
4

(3.3.5)

(the last equality holds because the fourth powers are the same, and the arguments of both

sides lie in (−π
4 , π

4 )), as on p. 349 of [Hej]. It is easy to see that for any T ∈ SL(2,R) we

have
H2(Tz, Tw)

H2(z, w)
=

(
jT (z)
|jT (z)|

)(
jT (w)
|jT (w)|

)−1

,

so
H(Tz, Tw)

H(z, w)
=

(
jT (z)
|jT (z)|

) 1
2

(
jT (w)
|jT (w)|

)− 1
2

, (3.3.6)

since both sides lie in the right half-plane. Observe also that

H(w, z) = H(z, w). (3.3.7)
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If z ∈ H is arbitrary, let Tz ∈ PSL(2,R) be such that Tz is an upper triangular matrix and

Tzi = z. It is clear that Tz is uniquely determined by z, for z = x + iy we have explicitly

Tz =
(

y
1
2 xy

−1
2

0 y
−1
2

)
.

If z ∈ H is fixed, the function (Imz)
1
4 θ

(
Tz

(
i 1+L
1−L

))
(1− L)−

1
2 is holomorphic for |L| < 1,

so it has a Taylor expansion

(Imz)
1
4 θ

(
Tz

(
i 1+L
1−L

))
(1− L)−

1
2 =

∞∑
n=0

Bn(z)Ln. (3.3.8)

We defined in this way a function Bn(z) (z ∈ H) for every n ≥ 0. For n = 0 this is in

accordance with (1.3.1).

For γ1, γ2 ∈ SL(2,R), we define

w(γ1, γ2) = jγ1(γ2z)1/2jγ2(z)1/2jγ1γ2(z)−1/2,

the right-hand side is indeed independent of z ∈ H. Clearly w = ±1.

For a = 0,∞, Res > 1, z ∈ H and any integer n define (Γa denotes the stability group of

a in Γ0(4))

Ea

(
z, s,

1
2

+ 2n

)
=

∑

γ∈Γa\Γ0(4)

ν(γ)w
(
σ−1

a , γ
)
(Imσ−1

a γz)s


 jσ−1

a γ(z)∣∣∣jσ−1
a γ(z)

∣∣∣



− 1

2−2n

.

It follows from [F], formula (5) on p. 145 that for n ≥ 0 we have

Ea

(
z, s,

1
2

+ 2n

)
= cn (s)Kn− 3

4
. . .K 5

4
K 1

4
Ea

(
z, s,

1
2

)
,

for n ≤ 0 we have

Ea

(
z, s,

1
2

+ 2n

)
= cn (s) L 5

4+n . . . L− 3
4
L 1

4
Ea

(
z, s,

1
2

)
,

(of course s is fixed and we apply the operators in z), where

cn (s) =
n−1∏

l=0

1
s + 1

4 + l
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for n ≥ 0, and

cn (s) =
−n−1∏

l=0

1
s− 1

4 + l

for n ≤ 0.

It is known that for every z the function Ea

(
z, s, 1

2

)
has a meromorphic continuation in s

to the whole plane, and this function is regular at every point s with Res = 1
2 .

If j ≥ 0 and n ≥ 0 are integers, define

uj, 1
2+2n(z) = cj,n

(
Kn− 3

4
. . . K 5

4
K 1

4
uj, 1

2

)
(z);

if j ≥ 1 and n < 0, define

uj, 1
2+2n(z) = cj,n

(
L 5

4+n . . . L− 3
4
L 1

4
uj, 1

2

)
(z),

where the numbers cj,n are chosen in such a way that
(
uj, 1

2+2n, uj, 1
2+2n

)
= 1, and, of

course, cj,0 = 1 for every j ≥ 0. We see by [F], pp. 145-146 that this is possible, we have

∆ 1
2+2nuj, 1

2+2n = Sj(Sj − 1)uj, 1
2+2n, and for a fixed n the functions uj, 1

2+2n (j ≥ 0 for

n ≥ 0, and j ≥ 1 for n < 0) form an orthonormal system in L2
1
2+2n

(D4). We also see by

(11) of [F] that

|cj,n|2 =
1(

Sj + 1
4

)
n

(
5
4 − Sj

)
n

(3.3.9)

for n ≥ 0, and

|cj,n|2 =
1(

Sj − 1
4

)
−n

(
3
4 − Sj

)
−n

(3.3.10)

for n ≤ 0. In this case we used also the general identity

Kkg = L−kg, (3.3.11)

and we will use frequently (and sometimes tacitly) this identity throughout this chapter.

For n ≥ k ≥ 1 and 1 ≤ j ≤ sk, let

gk,j,n = ck,j,nKn− 3
4

. . .Kk+ 5
4
Kk+ 1

4
gk,j ,
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where ck,j,n is chosen such that (gk,j,n, gk,j,n) = 1. By [F], pp. 145-146 this is possible,

∆2n+ 1
2
gk,j,n =

(
k + 1

4

) (
k − 3

4

)
gk,j,n, and for a fixed n > 0 the functions

{
uj, 1

2+2n : j ≥ 0
}
∪ {gk,j,n : 1 ≤ k ≤ n, 1 ≤ j ≤ sk}

form an orthonormal system in L2
1
2+2n

(D4). We also see by (11) of [F] that

|ck,j,n|2 =
1(

2k + 1
2

)
n−k

(n− k)!
(3.3.12)

for n ≥ k ≥ 1 and 1 ≤ j ≤ sk.

We will make several times a transition to geodesic polar coordinates: if z0 ∈ H is fixed,

then for every z ∈ H we can uniquely write

z − z0

z − z0
= tanh(

r

2
)eiφ (3.3.13)

with r > 0 and 0 ≤ φ < 2π. The invariant measure is expressed in these new coordinates

as dµz = sinh rdrdφ.

3.4. Basic lemmas

3.4.1. Partial integration. We prove here two simple lemmas, but they will play an

important role in the proof of Theorem 1.2, as it is mentioned in Section 3.2.

LEMMA 3.1. Let f1 ∈ P2m1(D4) and f2 ∈ P2m2(D4) with m1 + m2 = 3
4 , and assume

that at least one of f1 ∈ R2m1(D4) and f2 ∈ R2m2(D4) is true. Then we have
∫

D4

B0(z) (Lm1f1) (z)f2(z)dµz = −
∫

D4

B0(z)f1(z) (Lm2f2) (z)dµz.

Proof. By (9) of [F] (we use a slight extension of that formula, because our functions are

not of compact support, but the rapid decay at cusps is sufficient) and (3.3.11) we have
∫

D4

B0(z)
(
L 3

4
(f1f2)

)
(z)dµz = −

∫

D4

(
L 1

4
B0

)
(z) (f1f2) (z)dµz.

The right-hand side here is 0, since L 1
4
B0 = 0 by (4) of [F]. On the other hand,

(Lm1+m2(f1f2)) (z) = (Lm1f1) (z)f2(z) + f1(z) (Lm2f2) (z)
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by the definitions, and this proves the lemma.

In the next lemma we deal with the functions Bn defined in (3.3.8), the basic properties

of these functions are given in Lemma 3.9 in Section 3.7.

LEMMA 3.2. Let l ≥ 0 be an integer, let f ∈ P2m(D4) and g ∈ P2n(D4) with m + n =

− 1
4 − l, and assume that at least one of f ∈ R2m(D4) and g ∈ R2n(D4) is true. Then

∫

D4

Bl(z)f(z)g(z)dµz

equals

(−1)l

l!

l∑

L=0

(
l
L

) ∫

D4

B0(z) (Km+L−1 . . .Km+1Kmf) (z) (Kn+l−L−1 . . . Kn+1Kng) (z)dµz.

Proof. Using (3.7.2), and formula (9) of [F] (a slight extension of that formula again), we

easily get that

∫

D4

Bl(z)f(z)g(z)dµz =
(−1)l

l!

∫

D4

B0(z)
(
K− 5

4
. . . K−l+ 3

4
K−l− 1

4
(fg)

)
(z)dµz.

Using the general identity

(Km1+m2(f1f2)) (z) = (Km1f1) (z)f2(z) + f1(z) (Km2f2) (z)

several times, we get the lemma.

3.4.2. Inner product of two automorphic forms of weight 1
2 + 2n. Here n is any

integer. First we give the spectral decomposition of an f ∈ R 1
2+2n(D4) in Lemma 3.3: in

the case n ≥ 0 we give a complete spectral decomposition (Lemma 3.3 (i)), in the case

n < 0 a bit less complete statement will be enough for our purposes (Lemma 3.3 (ii)).

We then give two corollaries describing the inner product of two forms. We again give a

complete statement in the case n ≥ 0 (Corollary 3.1); in the case n < 0 (Corollary 3.2)

the vanishing property (3.4.3) will suffice instead of a detailed spectral expression for the

inner product.

Every statement here is more or less standard, therefore we just give brief indications of

the proofs.
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LEMMA 3.3. Let n be an integer, and f ∈ R 1
2+2n(D4). Write

ζa(f, r) :=
∫

D4

f(z)Ea

(
∗, 1

2
+ ir,

1
2

+ 2n

)
dµz

for a = 0,∞ and real r. Define

gf = f −
∞∑

j=j0

(f, uj, 1
2+2n)uj, 1

2+2n −
1
4π

∑
a=0,∞

∫ ∞

−∞
ζa(f, r)Ea

(
∗, 1

2
+ ir,

1
2

+ 2n

)
dr,

where j0 = 0 for n ≥ 0, and j0 = 1 for n < 0.

(i) If n ≥ 0, we have

gf =
n∑

k=1

sk∑

j=1

(f, gk,j,n)gk,j,n. (3.4.1)

(ii) If n < 0, w have

gf =
−n∑

k=1

K−n− 5
4

. . .Kk+ 3
4
Kk− 1

4
Gk,n, (3.4.2)

where Gk,n(z) =(Imz)−
1
4+k

Hk,n(z) with some Hk,n ∈ S2k− 1
2
.

Remarks on the proof. The case n = 0 (where the statement in (3.4.1) is gf = 0) is well-

known, and follows e.g. from [P], formula (27). For larger |n| we can prove the statements

by induction, applying the suitable operator L for the left-hand side of (3.4.1) and (3.4.2),

and applying [F], formula (4).

COROLLARY 3.1. If f1, f2 ∈ R 1
2+2n(D4), then for n ≥ 0 we have that (f1, f2) equals

the sum of
∞∑

j=0

(f1, uj, 1
2+2n)(f2, uj, 1

2+2n) +
n∑

k=1

sk∑

j=1

(f1, gk,j,n)(f2, gk,j,n)

and
1
4π

∑
a=0,∞

∫ ∞

−∞
ζa(f1, r)ζa(f2, r)dr.

Moreover, we have that the sum of

∞∑

j=0

∣∣∣(f1, uj, 1
2+2n)(f2, uj, 1

2+2n)
∣∣∣ +

n∑

k=1

sk∑

j=1

∣∣∣(f1, gk,j,n)(f2, gk,j,n)
∣∣∣
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and
1
4π

∑
a=0,∞

∫ ∞

−∞

∣∣∣ζa(f1, r)ζa(f2, r)
∣∣∣ dr

is ≤
(∫

D4
|f1(z)|2 dµz

) 1
2

(∫
D4
|f2(z)|2 dµz

) 1
2

.

Remarks on the proof. The expression for (f1, f2) follows at once from Lemma 3.3 (i). The

inequality of the lemma follows by Cauchy’s inequality.

COROLLARY 3.2. If n < 0 and f ∈ R 1
2+2n(D4), then we have (gf is defined in Lemma

3.3)

K− 3
4

. . . Kn+ 5
4−rKn+ 1

4−rLn+ 5
4−r . . . L− 3

4+nL 1
4+ngf = 0 (3.4.3)

for every integer r ≥ 0. If h is another element of R 1
2+2n(D4), then (f, h) equals

(gf , h) +
∞∑

j=1

(f, uj, 1
2+2n)(h, uj, 1

2+2n) +
1
4π

∑
a=0,∞

∫ ∞

−∞
ζa(f, r)ζa(h, r)dr, (3.4.4)

and

|(gf , h)|+
∞∑

j=1

∣∣∣(f, uj, 1
2+2n)(h, uj, 1

2+2n)
∣∣∣ +

1
4π

∑
a=0,∞

∫ ∞

−∞

∣∣∣ζa(f, r)ζa(h, r)
∣∣∣ dr

is ≤
(∫

D4
|f(z)|2 dµz

) 1
2

(∫
D4
|h(z)|2 dµz

) 1
2

.

Remarks on the proof. We see by (3.3.11) and Lemma 3.3 (ii) that for the proof of (3.4.3)

it is enough to show that

L 3
4

. . . Lk− 1
4

(
Lk+ 3

4
. . . L−n− 1

4+rK−n− 5
4+r . . . Kk− 1

4
Gk,n

)
= 0

for every 1 ≤ k ≤ −n. This is true by (8) and (4) of [F], so (3.4.3) follows. Formula (3.4.4)

follows at once from the definition of gf . Lemma 3.3 (ii) easily implies

(gf , h) = (gf , gh),

and then the inequality follows from (3.4.4) and Cauchy’s inequality.

3.4.3. Fourier expansion of Laplace-eigenforms on noneuclidean circles. We

reproduce here an important theorem of Fay, which will be applied several times in the

sequel.
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LEMMA 3.4. Let k ∈ R, s ∈ C, and let f be a smooth function on H satisfying

∆2kf = s (s− 1) f . If z0 ∈ H is given, then for every z ∈ H we have the absolutely

convergent expansion

f(z)
(

z − z0

z0 − z

)k

=
∞∑

n=−∞
(f)n (z0)Pn

s,k(z, z0)einφ, (3.4.5)

where r = r (z, z0) > 0 and 0 ≤ φ = φ (z, z0) < 2π are determined from z by (3.3.13), and

Pn
s,k(z, z0) =

(
tanh(

r

2
)
)|n| (

1− tanh2(
r

2
)
)kn

F (s− kn, 1− s− kn, 1 + |n| ,−y) (3.4.6)

with y = tanh2( r
2 )

1−tanh2( r
2 )

, kn = k n
|n| for n 6= 0, k0 = ±k,

n! (f)n (z0) = (Kk+n−1 . . . Kk+1Kkf) (z0) for n ≥ 0,

(−n)! (f)n (z0) =
(
K−k−n−1 . . . K−k+1K−kf

)
(z0) = (Lk+n+1 . . . Lk−1Lkf) (z0) for n ≤ 0.

(3.4.7)

Proof. This follows from Theorems 1.1 and 1.2 of [F]. Formula (3.4.6) is formally different

from (13) of [F], but the right-hand side of (3.4.6) equals
(
tanh(

r

2
)
)|n| (

1− tanh2(
r

2
)
)s

F
(
s− kn, s + |n|+ kn, 1 + |n| , tanh2(

r

2
)
)

by [G-R], p. 998, 9.131.1. For the second equality in (3.4.7) we use again (3.3.11). We

remark that for a fixed r > 0 the left-hand side of (3.4.5) is a smooth 2π-periodic function

of φ ∈ R (z is determined from φ by (3.3.13)), and the right-hand side is its Fourier

expansion, hence it is absolutely convergent. The lemma is proved.

3.5. Proof of the theorem in a special case

Let N ≥ 1 be an integer. Our aim in this section is to prove the following special case.

See Theorem 1.2 for property P (f, {an}).
LEMMA 3.5. Property P (f, {an}) is true if f is identically zero, an = 0 for n 6= N , and

aN = 1. We have the estimates
∞∑

j=1

∣∣∣∣φTj

(
i

(
1
4
−N

))
Γ

(
3
4
± iTj

) (
B0κ0 (u2) , uj, 1

2

) (
B0κ0 (u1) , uj, 1

2

)∣∣∣∣ ≤ CND,

(3.5.1)
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∑
a=0,∞

∫ ∞

−∞

∣∣∣∣φr

(
i

(
1
4
−N

))
Γ

(
3
4
± ir

)
ζa (B0κ0 (u2) , r) ζa (B0κ0 (u1) , r)dr

∣∣∣∣ ≤ CND,

(3.5.2)
∞∑

k=1

sk∑

j=1

∣∣∣∣φi( 1
4−k)

(
i

(
1
4
−N

))
Γ

(
2k +

1
2

)
(B0κk (u2) , gk,j) (B0κk (u1) , gk,j)

∣∣∣∣ ≤ CND

(3.5.3)

with positive constants C and D depending only on u1, u2.

In the proof of the general case of the theorem the upper bounds (3.5.1)-(3.5.3) will be

important.

3.5.1. Projection to the space S2N+ 1
2
. We first construct a kernel function, then we

show that the integral operator with this kernel function maps B0U (if U is a cusp form of

weight 2N for Γ0(4)) into S2N+ 1
2
, finally we expand this image of B0U in our given basis

of S2N+ 1
2
.

Write

kN (y) = (1 + y)−N− 1
4 , HN (z, w) = H(z, w)4N+1,

where H(z, w) is defined in (3.3.5), and for z, w ∈ H define

kN (z, w) = kN

(
|z − w|2
4ImzImw

)
HN (z, w)

and

KN (z, w) =
∑

γ∈Γ0(4)

kN (γz, w)ν(γ)
(

jγ(z)
|jγ(z)|

)− 1
2−2N

,

this sum can be seen to be absolutely convergent. It is not hard to check that if w ∈ H is

fixed, then for every δ ∈ Γ0(4) and z ∈ H we have

KN (δz, w) = ν(δ)
(

jδ(z)
|jδ(z)|

) 1
2+2N

KN (z, w). (3.5.4)

Let U be a cusp form of weight 2N for Γ0(4) with ∆2NU= s(s−1)U . Then we may define

FU (w) = (Imw)−N− 1
4

∫

D4

B0(z)U(z)KN (z, w)dµz (3.5.5)
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for w ∈ H. We claim that FU ∈ S2N+ 1
2
. We remark first that it is not hard to check using

(3.3.6) and (3.3.7) that

KN (w, z) = KN (z, w). (3.5.6)

So the required transformation property of FU follows at once from (3.5.4). It is not hard

to check that (Imw)−N− 1
4 kN (w, z) is holomorphic in w for every z, using the identity

4ImzImw + |z − w|2 = |z − w|2 , (3.5.7)

and then the same is true for (Imw)−N− 1
4 KN (w, z), using

Imw

|jγ(w)|2 = Imγw. (3.5.8)

Hence FU (w) is holomorphic. It remains to check the behavior at cusps, i.e. that

∣∣∣FU (σaw) (jσa(w))−2N− 1
2

∣∣∣ → 0

as Imw→∞ for each of the three cusps (in the case of a = − 1
2 much less would be enough

in fact, but it can be proved easily). To see this, we use the trivial estimate

|KN (z, w)| ≤
∑

γ∈Γ0(4)

kN

(
|γz − w|2
4ImγzImw

)
,

and the fact that |B0(z)U(z)| is bounded in z. These bounds together and the definition of

kN (y) imply that the integral in (3.5.5) is bounded in w, and then the factor (Imw)−N− 1
4

assures the required estimate (taking into account (3.5.8)). Hence indeed, FU ∈ S2N+ 1
2
.

Consider the inner product

∫

D4

(Imw)2N+ 1
2 FU (w)fN,j(w)dµw (3.5.9)

for some 1 ≤ j ≤ sN . This is easily seen to be absolutely convergent as a double integral

(see (3.5.5)). Using (3.5.6) we see by unfolding for any z ∈ D4 that

∫

D4

KN (z, w)fN,j(w) (Imw)N+ 1
4 dµw = 2

∫

H

kN (w, z)fN,j(w) (Imw)N+ 1
4 dµw. (3.5.10)
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We use geodesic polar coordinates around z:

w − z

w − z
= tanh(

r

2
)eiφ,

and since (using (3.5.7) and the definition of kN (y)) we have

1
1− tanh2( r

2 )
=

|w − z|2
4ImzImw

and kN

(
|z − w|2
4ImzImw

)
=

(
|z − w|2
4ImzImw

)−N− 1
4

,

so (taking into account the definition of kN (w, z) and HN (w, z)) we see that (3.5.10) equals

2i
1
2+2N

(
1

4Imz

) 1
4+N

∫ ∞

0

(
1− tanh2(

r

2
)
)2N+ 1

2
(∫ 2π

0

Fr(φ)dφ

)
sinh rdr,

where we write

Fr(φ) = (w − z)
1
2+2N

fN,j(w)

using the explicit expression for w in terms of r and φ:

w =
z − z tanh( r

2 )Z
1− tanh( r

2 )Z
with Z := eiφ.

For fixed 0 < r < ∞ and z ∈ D4 this last expression is a regular function of Z (with values

in H) in a domain containing the unit circle, hence by Cauchy‘s formula the inner integral

is 2π (z − z)
1
2+2N

fN,j(z), so (3.5.10) equals (recall gN,j(z) = (Imz)N+ 1
4 fN,j(z))

4πgN,j(z)
∫ ∞

0

(
1− tanh2(

r

2
)
)2N+ 1

2
sinh rdr.

The integral can be computed, its value is 4
4N−1 , and so by (3.5.5) we get that (3.5.9)

equals
16π

4N − 1

∫

D4

B0(z)U(z)gN,j(z)dµz.

Since the functions fN,j form an orthonormal basis of S2N+ 1
2
, this implies for any w ∈ H

that

FU (w) (Imw)N+ 1
4 =

16π

4N − 1

sN∑

j=1

(∫

D4

B0(z)U(z)gN,j(z)dµz

)
gN,j(w). (3.5.11)
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3.5.2. Computation in geodesic polar coordinates. We now compute the left-hand

side of (3.5.11) in another way: by unfolding the right-hand side of (3.5.5). Up to some

point, we continue working with a general cusp form U of weight 2N for Γ0(4), but then

we will specialize to U = κN (u), where u is a cusp form of weight 0 for SL(2,Z).

By unfolding we see that

∫

D4

B0(z)U(z)KN (z, w)dµz = 2
∫

H

B0(z)U(z)kN (z, w)dµz (3.5.12)

for any fixed w ∈ H. The integrand here can be written as (see (3.3.5))

(
B0(z)

(
z − w

w − z

) 1
4
)(

U(z)
(

z − w

w − z

)N
)

kN

(
|z − w|2
4ImzImw

)
.

We now use geodesic polar coordinates around w:

z − w

z − w
= tanh(

r

2
)eiφ,

and using the substitution y = tanh2( r
2 )

1−tanh2( r
2 )

we get that (3.5.12) equals

4
∫ ∞

0

kN (y)

(∫ 2π

0

(
B0(z)

(
z − w

w − z

) 1
4
)(

U(z)
(

z − w

w − z

)N
)

dφ

)
dy, (3.5.13)

where 0 < r = r(y) < ∞ and z = z(y, φ) ∈ H are determined from y and φ by the relations

above.

For every fixed y we will now compute the inner integral by the Fourier expansions of the

two functions there, and then we will integrate in y. To justify this computation remark

that if

B0(z)
(

z − w

w − z

) 1
4

=
∞∑

l=−∞
al(y)eilφ and U(z)

(
z − w

w − z

)N

=
∞∑

l=−∞
bl(y)eilφ,

then for any y by Cauchy’s inequality in l and Parseval’s formula in φ we have that (the

implied constant in ¿ is absolute)

∞∑

l=−∞
|al(y)b−l(y)| ¿

(∫ 2π

0

|B0(z)|2 dφ

) 1
2

(∫ 2π

0

|U(z)|2 dφ

) 1
2

,
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hence by Cauchy’s inequality in y we get that

∫ ∞

0

kN (y)
∞∑

l=−∞
|al(y)b−l(y)| dy

is

¿
(∫ ∞

0

kN (y)
∫ 2π

0

|B0(z)|2 dφdy

) 1
2

(∫ ∞

0

kN (y)
∫ 2π

0

|U(z)|2 dφdy

) 1
2

,

which is (making backwards the steps leading from (3.5.12) to (3.5.13))

¿ MU (w) :=
(∫

D4

K∗
N (z, w) |B0(z)|2 dµz

) 1
2

(∫

D4

K∗
N (z, w) |U(z)|2 dµz

) 1
2

with implied absolute constant, where

K∗
N (z, w) =

∑

γ∈Γ0(4)

kN

(
|γz − w|2
4ImγzImw

)
.

We get an upper bound for this by extending the summation for γ ∈ SL(2,Z), and then

we can see by Lemma 3.11 (using (3.7.9) and (3.7.10) for fixed z1) and the concrete form

of kN that K∗
N (z, w) is bounded in z, so MU (w) is a finite number for every fixed w, hence

we can compute (3.5.13) as we described above.

We now compute (3.5.13) explicitly for a given w. By Lemma 3.4 and (3.7.2), taking into

account that L1/4B0 = 0, we get

B0(z)
(

z − w

w − z

) 1
4

=
∞∑

l=0

(
tanh(

r

2
)
)l (

1− tanh2(
r

2
)
) 1

4
Bl(w)eilφ,

and again by Lemma 3.4 we have

U(z)
(

z − w

w − z

)N

=
∞∑

m=−∞
(U)m (w)Pm

s,N (z, w)eimφ

with the functions (U)m defined in Lemma 3.4, we will determine them explicitly later.

Using (3.4.6) we get for any l ≥ 0 that (recall y = tanh2( r
2 )

1−tanh2( r
2 )

)

∫ ∞

0

kN (y)
(
tanh(

r

2
)
)l (

1− tanh2(
r

2
)
) 1

4
P−l

s,N (z, w)dy

58

               dc_344_11



equals ∫ ∞

0

yl (1 + y)−
1
2−l

F (s + N, 1− s + N, 1 + l,−y) dy,

and by [G-R], p. 807, 7.512.10 the value of this integral is

Γ (1 + l) Γ
(
s− 1

2 + N
)
Γ

(−s + 1
2 + N

)

Γ
(

1
2 + l

)
Γ

(
1
2 + 2N

) .

So FU (w) (Imw)N+ 1
4 equals (using (3.5.5), (3.5.12) and (3.5.13))

8π
Γ

(
s− 1

2 + N
)
Γ

(−s + 1
2 + N

)

Γ
(

1
2 + 2N

)
∞∑

l=0

Γ (1 + l)
Γ

(
1
2 + l

)Bl(w) (U)−l (w). (3.5.14)

It remains to determine (U)−l (w). By (3.4.7) for every l ≥ 0 we have

(U)−l (w) =
1
l!

(
K−N+l−1 . . .K−N+1K−N

(
U

))
(w) . (3.5.15)

We now assume that U = κN (u), where u is a cusp form of weight 0 for SL(2,Z) with

∆0u= s(s− 1)u, s = 1
2 + it and t ≥ 0. Using (3.5.15), the definition of κn(u), (3.3.11) and

[F], p. 145, formula (8), we get that

(U)−l (w) =
(−1)l

l!
(κN−l(u)) (w) for 0 ≤ l ≤ N, (3.5.16)

and then it follows by induction on the basis of (3.5.15) that

(U)−l (w) =
(−1)N

l!
(K−N+l−1 . . .K1K0 (u)) (4w) for l ≥ N. (3.5.17)

We remark a consequence of (3.5.16) and (3.5.17), which will be useful later: by the

definition of κn(u) and by [F], formula (11) we can check for every l ≥ 0 with v = u or

v = u that

∣∣(U)−l (w)
∣∣ =

∣∣∣∣∣
(s−N)l

l! (s)N

(
1

(s)|l−N |
K|l−N |−1 . . .K1K0 (v)

)
(4w)

∣∣∣∣∣ . (3.5.18)

3.5.3. The inner product of two projections. We now consider two cusp forms of

weight 2N for Γ0(4), and we substitute the results of the previous two subsections. For

proving convergence, we need an upper bound lemma.
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Let Uj(z) = (κN (uj)) (z) for j = 1, 2, where u1, u2 are as in Theorem 1.2. Then U1 and

U2 are two cusp forms of weight 2N for Γ0(4) with ∆2NUj= sj(sj − 1)Uj (j = 1, 2), and

we have by (3.5.11), applying it for U = U1 and also for U = U2 that

sN∑

j=1

∫

D4

B0(z)U1(z)gN,j(z)dµz

∫

D4

B0(z)U2(z)gN,j(z)dµz (3.5.19)

equals (
4N − 1

16π

)2 ∫

D4

FU1(w) (Imw)N+ 1
4 FU2(w) (Imw)N+ 1

4 dµw.

Using (3.5.14) twice in this last expression, we then see that (3.5.19) equals

∏2
i=1

(
Γ

(
si − 1

2 + N
)
Γ

(−si + 1
2 + N

))

Γ2
(− 1

2 + 2N
)

∞∑

l1,l2=0

Γ (1 + l1)
Γ

(
1
2 + l1

) Γ (1 + l2)
Γ

(
1
2 + l2

)Il1,l2 , (3.5.20)

where Il1,l2 is defined by

Il1,l2 =
∫

D4

(
Bl1(w)(U2)−l2

(w)
) (

Bl2(w)(U1)−l1
(w)

)
dµw (3.5.21)

(this depends also on U1 and U2, of course, but we do not denote it), this computation is

justified by the next lemma, which will be used also later.

LEMMA 3.6. We have

J :=
∞∑

l1,l2=0

Γ (1 + l1)
Γ

(
1
2 + l1

) Γ (1 + l2)
Γ

(
1
2 + l2

)Jl1,l2 ≤
1

Γ2
(

1
2 + N

)D1N
D222N

with some positive constants D1, D2 depending only on u1 and u2, where

Jl1,l2 :=
(∫

D4

∣∣Bl1(w) (U2)−l2
(w)

∣∣2 dµw

) 1
2

(∫

D4

∣∣Bl2(w) (U1)−l1
(w)

∣∣2 dµw

) 1
2

.

Proof. Let 1 < K < 3/2 be fixed. Clearly Jl1,l2 is at most

(1 + l2)
K

(1 + l1)
K

∫

D4

∣∣Bl1(w) (U2)−l2
(w)

∣∣2 dµw +
(1 + l1)

K

(1 + l2)
K

∫

D4

∣∣Bl2(w) (U1)−l1
(w)

∣∣2 dµw.

Hence, by Lemma 3.12 and (3.5.18) we have, using K > 1, that

J ¿u1,u2

2∑

i=1

∣∣∣∣
1

(si)N

∣∣∣∣
2 ∞∑

l=0

(1 + l)
1
2+K

∣∣∣∣
(si −N)l

l!

∣∣∣∣
2

log2 (2 + |l −N |) .
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Using N ≥ 1, K < 3/2, by simple estimates (using e.g. also the summation formula for

F (α, β, γ; 1), see [G-R], p. 998, 9.122.1.) and Stirling’s formula we obtain the lemma.

3.5.4. Inner products
(
Bl1(U2)−l2

, F
)
. For the computation of Il1,l2 (see (3.5.21)) using

Corollaries 3.1 and 3.2, we give expressions for such inner products, mostly with Maass

forms F (see (i), (ii) and (iii) of Lemma 3.7 below), but because of Corollary 3.2 we need

such inner products also for some automorphic F which are not Laplace eigenfunctions

(see (iv) of Lemma 3.7).

Let U2 be as in Subsection 3.5.3. The definition of the constants cj,r and ck,j,r can be found

above formulas (3.3.9) and (3.3.12), respectively. During the proof we will use several times

tacitly (3.3.11) and the general fact that if ∆lg = s(s− 1)g, then ∆−lg = s(s− 1)g.

LEMMA 3.7. Let l1, l2 ≥ 0, and m = 1
4 + (l1 + l2 −N). Introduce the notation

AL1 (S) = Γ
(

1
4

+ S

)
(−1)L1+l2

l2!
Γ (s2 −N + l2 + L1)
Γ (s2 + N − l2 − L1)

(S −m)l1−L1

Γ (S + m− l1 + L1)
.

Let F ∈ P2m(D4) satisfy the conditions of (i), (ii), (iii) or (iv) below. Then

∫

D4

Bl1(w)(U2)−l2
(w)F (w)dµw =

(−1)l1

l1!

l1∑

L1=0

(
l1
L1

)
JL1 (F ) , (3.5.22)

where JL1 (F ) is given in the various cases as follows.

(i) If F = uj,2m, where j ≥ 0 for m > 0, and j ≥ 1 for m < 0, then for every 0 ≤ L1 ≤ l1

we have that JL1 (F ) equals

AL1 (Sj) cj,l1+l2−N

(
Sj +

1
4
sgn

(
m− 1

4

))

|m− 1
4 |

∫

D4

B0(w)u2 (4w)uj, 1
2

(w)dµw.

(ii) If F = Ea (∗, s, 2m) with a = 0 or ∞, Res = 1
2 , then for every 0 ≤ L1 ≤ l1 we have

that

JL1 (F ) = AL1 (s)
∫

D4

B0(w)u2 (4w)Ea

(
w, s,

1
2

)
dµw.

(iii) If F = gk,j,l1+l2−N with some 1 ≤ k ≤ l1 + l2 − N , 1 ≤ j ≤ sk, then for every

0 ≤ L1 ≤ l1 we have that

JL1 (F ) = AL1

(
k +

1
4

)
ck,j,l1+l2−N

(
k +

1
2

)

m− 1
4

∫

D4

B0(w) (κk (u2)) (w)gk,j(w)dµw.
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(iv) If m < 0, and F ∈ P2m(D4) is such that

K− 3
4

. . . Km−r+1Km−rLm+1−r . . . Lm−1LmF = 0

for every integer r ≥ 0, then for every 0 ≤ L1 ≤ l1 we have that JL1 (F ) = 0.

Proof. First we assume only F ∈ P2m(D4). By Lemma 3.2 we see that (3.5.22) holds with

JL1 (F ) =
(
B0,

(
LN−l2−L1+1 . . . LN−l2−1LN−l2 (U2)−l2

)
(Lm−l1+L1+1 . . . Lm−1LmF )

)
,

(3.5.23)

(the right-hand side denotes an inner product on D4). It is clear by (3.5.15) that

LN−l2−L1+1 . . . LN−l2−1LN−l2 (U2)−l2
=

(l2 + L1)!
l2!

(U2)−l2−L1
. (3.5.24)

For the computation of JL1 (F ) we now distinguish between two cases.

Case I. We assume l2 + L1 ≤ N . Then we see by (3.5.24) and (3.5.16) that

(
LN−l2−L1+1 . . . LN−l2−1LN−l2 (U2)−l2

)
(w)

equals
(−1)N

l2!
Γ (s2 −N + l2 + L1)
Γ (s2 + N − l2 − L1)

(L1−N+l2+L1 . . . L−1L0u2) (4w) .

Hence, using Lemma 3.1, we see that if l2 + L1 ≤ N , then JL1 (F ) equals

(−1)l2+L1

l2!
Γ (s2 −N + l2 + L1)
Γ (s2 + N − l2 − L1)

∫

D4

B0(w)(u2) (4w)Fl1,L1(w)dµw, (3.5.25)

where we write

Fl1,L1 := L 3
4

. . . L−m+l1−L1−1L−m+l1−L1

(
Lm−l1+L1+1 . . . Lm−1LmF

)
. (3.5.26)

By (3.5.25) and (3.5.26) we get (iv) of the lemma at once (since if m < 0, then we are in

Case I for every L1 ≤ l1).

Assume that F is a Maass form, and ∆2mF = S(S − 1)F . Then, applying (8) of [F], we

see that if l1 + l2 ≥ N ≥ l2 + L1, then

Fl1,L1 =
Γ

(
S + 1

4

)
Γ (S −m + l1 − L1)

Γ
(
S − 1

4

)
Γ (S + m− l1 + L1)

L 5
4

. . . Lm−1LmF ; (3.5.27)
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if l1 + l2 < N , then

Fl1,L1 =
Γ (S + m)Γ (S −m + l1 − L1)
Γ (S −m)Γ (S + m− l1 + L1)

L 3
4

. . . L−m−1L−m

(
F

)
. (3.5.28)

And, using (8) and (4) of [F], by (3.5.25), (3.5.27) and (3.5.28) we get, checking every case,

that (i), (ii) and (iii) are true for the case l2 + L1 ≤ N . (In case (iii) we have that (3.5.27)

is 0, and also AL1

(
k + 1

4

)
= 0.)

Case II. Assume now that l2 + L1 > N . In this case, we need to consider F only of the

following form: F = Km−1Km−2 . . .K 5
4+tK 1

4+tF0 with an integer 0 ≤ t ≤ l1 + l2 −N and

a Maass form F0 of weight 1
2 + 2t for Γ0(4), such that we have t = 0 or L 1

4+tF0 = 0. Let

∆ 1
2+2tF0 = S(S − 1)F0. It is clear, using (4) and (8) of [F] that if l2 + L1 −N < t (hence

m− l1 + L1 + 1 ≤ 1
4 + t ≤ m and t > 0), then

Lm−l1+L1+1 . . . Lm−1LmF = 0. (3.5.29)

If l2 + L1 −N ≥ t, then Lm−l1+L1+1 . . . Lm−1LmF equals (by (8) of [F])

Γ
(
S − 1

4 − l2 − L1 + N
)
Γ (S + m)

Γ
(
S + 1

4 + l2 + L1 −N
)
Γ (S −m)

K− 3
4+l2+L1−N . . . K 5

4+tK 1
4+tF0,

and so, by (3.5.23), Lemma 3.1 and (3.5.24), JL1 (F ) equals

(−1)l2+L1−N−t Γ
(
S − 1

4 − l2 − L1 + N
)
Γ (S + m)

Γ
(
S + 1

4 + l2 + L1 −N
)
Γ (S −m)

∫

D4

B0(w)Vl2,L1(w)F0(w)dµw,

(3.5.30)

where we write

Vl2,L1 :=
(l2 + L1)!

l2!
Lt+1 . . . L−N+l2+L1−1L−N+l2+L1

(
(U2)−l2−L1

)
.

Since l2 + L1 > N , so by (3.5.17) we get

(U2)−l2−L1
(w) =

(−1)N

(l2 + L1)!
(K−N+l2+L1−1 . . .K1K0 (u2)) (4w),

hence, again by (8) of [F], for l2 + L1 −N ≥ t we get

Vl2,L1(w) =
(−1)N

l2!
Γ (s2 − t)Γ (s2 −N + l2 + L1)
Γ (s2 + t)Γ (s2 + N − l2 − L1)

(Kt−1 . . .K1K0 (u2)) (4w). (3.5.31)
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By (3.5.23), (3.5.29), (3.5.30) and (3.5.31), checking every case, we get that (i), (ii) and

(iii) are true also for l2 + L1 > N . (In case (iii) and l2 + L1−N < k we have that (3.5.29)

is 0, and also AL1

(
k + 1

4

)
= 0.) The lemma is proved.

3.5.5. Expression for the sum in (3.5.20). We first compute Il1,l2 (see (3.5.21)) on

the basis of the previous subsection, using Corollary 3.1 for the case l1 + l2 ≥ N , and

Corollary 3.2 for l1 + l2 < N . Then we substitute the obtained expressions into (3.5.20).

We first note that ∫

D4

Bl2(w)(U1)−l1
(w)F (w)dµw (3.5.32)

is the same as the left-hand side of (3.5.22), if we use the substitutions l1 ↔ l2, U1 ↔ U2.

Hence we can compute also (3.5.32) using Lemma 3.7.

As in Lemma 3.7, write

m =
1
4

+ l1 + l2 −N.

In fact we should write m = ml1,l2 to indicate the dependence on l1 and l2 (note that N

is fixed), but for simplicity we use just the notation m.

In the case l1 + l2 ≥ N , by Corollary 3.1 and (i), (ii) and (iii) of Lemma 3.7, using also

(3.3.9) and (3.3.12) we get that Il1,l2 equals the sum of

∞∑

j=0

Cl1,l2,j(v2, uj, 1
2
)(v1, uj, 1

2
) +

l1+l2−N∑

k=1

sk∑

j=1

Cl1,l2(k, j)(v2,k, gk,j)(v1,k, gk,j)

and
1
4π

∑
a=0,∞

∫ ∞

−∞
Cl1,l2(r)ζa(v2, r)ζa(v1, r)dr,

where we write

vi = vi,0, vi,k = B0κk (ui) (i = 1, 2 and k = 0, 1, 2, ...),

and the coefficients are defined as follows:

Cl1,l2,j = Dl1,l2,0(Sj), (3.5.33)

Cl1,l2(k, j) = Dl1,l2,k

(
k +

1
4

)
, (3.5.34)
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Cl1,l2(r) = Dl1,l2,0

(
1
2

+ ir

)
(3.5.35)

with the notations (for general S)

Dl1,l2,k(S) =
Γ

(
S + 1

4 + k
)
Γ

(
5
4 − S + k

)

(l1!)
2 (l2!)

2

Γ (S + m)
Γ (1− S + m)

Σl1,l2(S), (3.5.36)

Σl1,l2(S) =
l1∑

L1=0

l2∑

L2=0

(−1)L1+L2

(
l1
L1

)(
l2
L2

)
G(S, l1, l2, L1, L2), (3.5.37)

where G(S, l1, l2, L1, L2) denotes

Γ (s2 −N + l2 + L1)
Γ (s2 + N − l2 − L1)

Γ (s1 −N + l1 + L2)
Γ (s1 + N − l1 − L2)

(S −m)l1−L1

Γ (S + m− l1 + L1)

(S −m)l2−L2

Γ (S + m− l2 + L2)
.

(3.5.38)

In the case l1 + l2 < N , we apply Corollary 3.2 for the choices f(w) = Bl2(w)(U1)−l1
(w),

h(w) = Bl1(w)(U2)−l2
(w). Applying (iv) of Lemma 3.7 and (3.4.3) we obtain that

∫

D4

Bl1(w)(U2)−l2
(w)gf (w)dµw = 0.

Then using (i) and (ii) of Lemma 3.7, after some calculations we obtain from Corollary 3.2

(using also (3.3.10) and the fact that ReSj = 1
2 or Sj is real) that Il1,l2 equals

∞∑

j=1

Cl1,l2,j(v2, uj, 1
2
)(v1, uj, 1

2
) +

1
4π

∑
a=0,∞

∫ ∞

−∞
Cl1,l2(r)ζa(v2, r)ζa(v1, r)dr

for l1 + l2 < N , with the above notations.

Then, using that (v1, u0, 1
2
) = 0 by Lemma 3.14, combining the cases l1 + l2 ≥ N and

l1 + l2 < N , we get that
∞∑

l1,l2=0

Γ (1 + l1)
Γ

(
1
2 + l1

) Γ (1 + l2)
Γ

(
1
2 + l2

)Il1,l2 (3.5.39)

equals the sum of

∞∑

j=1

Cj(v2, uj, 1
2
)(v1, uj, 1

2
) +

∞∑

k=1

sk∑

j=1

C(k, j)(v2,k, gk,j)(v1,k, gk,j) (3.5.40)

and
1
4π

∑
a=0,∞

∫ ∞

−∞
C(r)ζa(v2, r)ζa(v1, r)dr, (3.5.41)
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where

Cj =
∞∑

l1,l2=0

Γ (1 + l1)
Γ

(
1
2 + l1

) Γ (1 + l2)
Γ

(
1
2 + l2

)Cl1,l2,j , (3.5.42)

C(k, j) =
∞∑

l1,l2=0

Γ (1 + l1)
Γ

(
1
2 + l1

) Γ (1 + l2)
Γ

(
1
2 + l2

)Cl1,l2(k, j), (3.5.43)

C(r) =
∞∑

l1,l2=0

Γ (1 + l1)
Γ

(
1
2 + l1

) Γ (1 + l2)
Γ

(
1
2 + l2

)Cl1,l2(r) (3.5.44)

(in the case of C(k, j) we used that the factor 1
Γ(1−S+m) in (3.5.34) is 0, if k > l1 + l2−N ,

since S = k + 1
4 ). The reordering of the sum is justified by Lemma 3.6 and the inequalities

in Corollaries 3.1 and 3.2, and we also see by these statements that if

C∗j =
∞∑

l1,l2=0

Γ (1 + l1)
Γ

(
1
2 + l1

) Γ (1 + l2)
Γ

(
1
2 + l2

) |Cl1,l2,j | ,

C(k, j)∗ =
∞∑

l1,l2=0

Γ (1 + l1)
Γ

(
1
2 + l1

) Γ (1 + l2)
Γ

(
1
2 + l2

) |Cl1,l2(k, j)| ,

C(r)∗ =
∞∑

l1,l2=0

Γ (1 + l1)
Γ

(
1
2 + l1

) Γ (1 + l2)
Γ

(
1
2 + l2

) |Cl1,l2(r)| ,

then with a constant D2 depending only on u1, u2 we have

∞∑

j=1

C∗j
∣∣∣(v2, uj, 1

2
)(v1, uj, 1

2
)
∣∣∣ +

∞∑

k=1

sk∑

j=1

C(k, j)∗
∣∣∣(v2,k, gk,j)(v1,k, gk,j)

∣∣∣ ¿u1,u2

ND222N

Γ2
(

1
2 + N

)

(3.5.45)

and
1
4π

∑
a=0,∞

∫ ∞

−∞
C(r)∗

∣∣∣ζa(v2, r)ζa(v1, r)
∣∣∣ dr ¿u1,u2

ND222N

Γ2
(

1
2 + N

) . (3.5.46)

We can compute Cj , C(k, j) and C(r) by formulas (3.5.36)-(3.5.38) and Theorem 4.2

(proved in Chapter 4), using (3.5.42) and (3.5.33) in the case of Cj , (3.5.43) and (3.5.34)

in the case of C(k, j), finally (3.5.44) and (3.5.35) in the case of C(r). Then, on the

one hand, by (3.5.19), (3.5.20), (3.5.39)-(3.5.41) and (3.3.2), (3.3.3) we get the property

P (f, {an}) required in Lemma 3.5; on the other hand, by (3.5.45) and (3.5.46) we obtain

also the upper bounds (3.5.1)-(3.5.3), so Lemma 3.5 is proved.
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3.6. Proof of the general case of the theorem

3.6.1. Some upper bounds. Formula (4.5.9) (see Chapter 4) and formula (3.5.3) with

N = 1 imply that

∞∑

k=1

1
k3/2

Γ
(

2k +
1
2

) sk∑

j=1

∣∣∣(B0κk (u2) , gk,j) (B0κk (u1) , gk,j)
∣∣∣ < ∞. (3.6.1)

We now prove that there is a constant A > 0 depending only on u1 and u2 such that

∞∑

j=1

eπ|Tj | (1 + |Tj |)−A

∣∣∣∣
(
B0κ0 (u2) , uj, 1

2

) (
B0κ0 (u1) , uj, 1

2

)∣∣∣∣ < ∞, (3.6.2)

∑
a=0,∞

∫ ∞

−∞

∣∣∣eπ|r| (1 + |r|)−A
ζa (B0κ0 (u2) , r) ζa (B0κ0 (u1) , r)

∣∣∣ dr < ∞. (3.6.3)

To prove this, let k be a large positive integer. It follows from Theorem 1.3 and elementary

linear algebra that if M > 0 is large enough in terms of k, then there is a nonzero vector

(am)M≤m≤2M such that for

f(x) :=
2M∑

m=M

am

Γ2 (m± ix)

formula (1.4.1) is true and the coefficients ej in (1.4.2) are 0, so we have

f(x) =
∞∑

N=1

dNφi( 1
4−N) (x)

with some coefficients dN = O
(
N−k

)
. If k is large enough in terms of the constant D in

(3.5.1), we get combining (3.5.1) for different integers N with coefficients dN that

∞∑

j=1

∣∣∣∣f (Tj) Γ
(

3
4
± iTj

) (
B0κ0 (u2) , uj, 1

2

) (
B0κ0 (u1) , uj, 1

2

)∣∣∣∣ < ∞,

and similarly for Eisenstein series on the basis of (3.5.2). By the definition of f and

Stirling’s formula this proves the estimates (3.6.2) and (3.6.3).

3.6.2. A consequence of Lemma 3.5. It is clear, in view of the upper bounds (3.5.1)-

(3.5.3), that if {CN}N≥1 is a rapidly decreasing sequence, then we can take the linear

combination of the cases of Lemma 3.5 with these coefficients, since everything is absolutely
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convergent. We will now show that we can take such a linear combination even in some

cases when {CN}N≥1 is not so rapidly decreasing.

LEMMA 3.8. For every A with ReA ≥ 5
2 we have that

∞∑
n=1

(−1)n
(1−A)n−1

Γ (n)
|(s1)n|2 |(s2)n|2 Γ

(
2n− 1

2

)

|Γ (n + it1)|2 |Γ (n + it2)|2
sn∑

j=1

(B0κn (u1) , gn,j) (B0κn (u2) , gn,j)

(3.6.4)

equals the sum of the following three lines (see Theorem 4.3 in Chapter 4 for the definition

of Mλ(A)):

∞∑

j=1

MTj (A)Γ
(

3
4
± iTj

) (
B0κ0 (u2) , uj, 1

2

) (
B0κ0 (u1) , uj, 1

2

)
, (3.6.5)

1
4π

∑
a=0,∞

∫ ∞

−∞
Mr(A)Γ

(
3
4
± ir

)
ζa (B0κ0 (u2) , r) ζa (B0κ0 (u1) , r)dr, (3.6.6)

∞∑

k=1

Mi( 1
4−k)(A)Γ

(
2k +

1
2

) sk∑

j=1

(B0κk (u2) , gk,j) (B0κk (u1) , gk,j), (3.6.7)

and every sum and integral is absolutely convergent here for every such number A.

Proof. By formulas (3.3.2), (3.3.3) and (1.3.3)-(1.3.10) we see that the identity of this

lemma is obtained formally by taking a linear combination of the identities of Lemma 3.5

with coefficients (−1)N (1−A)N−1
iCRNΓ(N) . It follows from (3.3.2), (3.3.3) and Lemma 3.5 that if

ReA is large enough (depending on u1 and u2), then the statement of the present lemma is

true (note, in particular, that (3.6.5) and (3.6.6) are absolutely convergent if ReA is large

enough). We extend this result to ReA ≥ 5/2 by analytic continuation and continuity.

It follows from (3.6.1) (applying it with u1 in place of u2, and u2 in place of u1, which is

possible, these are also fixed cusp forms) that (3.6.4) extends regularly to ReA > 5
2 and

extends continuously to ReA ≥ 5
2 . The same assertions are true for (3.6.7) using Theorem

4.3 (ii) and (3.6.1).

We claim that the same assertions are true for (3.6.5) and (3.6.6) too, but the proof in this

case is more complicated. Take any compact subset L of the half-plane ReA ≥ 5
2 , and let

K be a large but fixed integer. Take the integer t > 0, complex numbers A1, A2, . . . , At
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and polynomials Q1, Q2, . . . , Qt as in Theorem 4.3 (iii). Define for ReA ≥ 5
2 and |Imλ| < 3

4

(taking into account Theorem 4.3 (i))

Sλ(A) = Mλ(A)−
t∑

i=1

2A−AiQi (A)Mλ(Ai). (3.6.8)

We see by (3.6.2) and Theorem 4.3 (iii) that if K is large enough depending on u1 and u2,

and we write STj
(A) in place of MTj

(A) in (3.6.5), then the sum in Tj will be uniformly

absolutely convergent for A ∈ L, and the resulting function of A will be regular on every

open subset of L. The same is true for (3.6.6) if we write Sr(A) in place of Mr(A) there.

We have seen in the first paragraph of the proof of the present lemma that (3.6.5) and

(3.6.6) are absolutely convergent if we write any Ai in place of A (since K is large enough

depending on u1 and u2 and ReAi> K). Hence, expressing MTj (A) and Mr(A) from

(3.6.8), we finally proved that (3.6.5) and (3.6.6) are uniformly absolutely convergent for

A ∈ L, and the resulting functions are regular on every open subset of L.

By analytic continuation and continuity, these considerations prove the lemma.

3.6.3. Conclusion. We now finish the proof of Theorem 1.2, combining Lemmas 3.5, 3.8

and Theorem 1.3.

We remark first that we have to show that the statement of Theorem 1.2 is true if we fix

the constant K to be large enough. We will choose K to be larger and larger several times

during the proof.

The statement about the absolute convergence in (1.3.3) and (1.3.4) follows easily from

the absolute convergence of the left-hand side of (4.5.11), (4.5.10) (see Corollary 4.1 in

Chapter 4), (3.3.3) and Prop. 4.4 of [G1].

When f is identically 0, the statement follows at once from Lemma 3.5 and from the cases

A = 5
2 , 7

2 , 9
2 , ... of Lemma 3.8 (a finite number of them suffice). Indeed, by subtracting

a suitable finite linear combination of these cases of Lemma 3.8, we can achieve that

an = O
(
n−R

)
for any given R > 0 (we use for this Stirling’s formula in the form [G-R], p.

889, 8.344), and then we can apply Lemma 3.5.
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In the case when f(x) = 1

Γ( 3
4±ix) and an = 0 for every n, we have g(x) ≡ f(x) and bn ≡ 0

by the formula in the proof of Theorem 6.5 of [G1] with n = 0 and g = 1/4 there. Then

by Corollary 3.1 and Lemma 3.14 we see that both sides equal

∫

D4

|B0 (z)|2 u1 (4z)u2 (4z)dµz.

Hence the statement is true for this case, and so we may assume that f satisfies (1.4.1) by

subtracting a suitable constant multiple of 1

Γ( 3
4±ix) .

Let f be a function satisfying (1.4.1) and the conditions of Theorem 1.2, then we can apply

Theorem 1.3. Define now sequences bn and an (n ≥ 1) in the following way: iCbnRn = dn,

i.e.

f(x) = iC

∞∑

k=1

bkφx

(
i

(
1
4
− k

))
Rk

for |Imx| < 3
4 on the basis of (1.4.3), and

an := iC

∞∑

k=1

bkφi( 1
4−n)

(
i

(
1
4
− k

))
Rk.

Observe that the pair f , {an} is the Wilson function transform of type II of the pair g,

{bn}, where g ≡ 0. The sequences an and bn satisfy the condition given for an in Theorem

1.2 (the constant K there may be different than the original K, but it is still large), for bn

it follows from (1.4.2) and (3.3.3), and for an it follows from (4.5.11). We claim that with

this bn, an and f formula (1.3.10) equals the sum of (1.3.5), (1.3.6) and (1.3.7). Indeed,

this follows from an already proved special case of Theorem 1.2, the P (g, {bn}) case (this

is really proved already, since g ≡ 0), writing in this special case u1 in place of u2, u2 in

place of u1, and taking into account that φλ (x; a, b, c, d) is symmetric in a, b, c, 1−d, hence

that our Wilson function transform is symmetric in t1 and t2.

Since our Wilson function transform is its own inverse by Theorem 5.10 of [G1] (note that

our functions are square integrable with respect to the measure dh of [G1]), we get that

(1.3.3) and (1.3.4) are true with g ≡ 0 and with bn, an and f above. Hence the fact (proved

above) that (1.3.10) equals the sum of (1.3.5), (1.3.6) and (1.3.7) implies that our theorem

is true with the given f and with this sequence an.
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Since we proved the f ≡ 0 case already, Theorem 1.2 is proved.

3.7. Lemmas on automorphic functions

3.7.1. The functions Bn. We prove in Lemmas 3.9 and 3.10 basic identities and estimates

for the functions Bn defined in (3.3.8). Lemma 3.11 is needed for Lemma 3.10 but it is

used also at another point in this chapter. Recall that Lα
n denotes Laguerre polynomials.

Lemma 3.9. We have

Bn(z) = y
1
4

∞∑
m=−∞

L
− 1

2
n

(
4πm2y

)
e
(
m2z

)
(3.7.1)

for every n ≥ 0 and z = x + iy ∈ H, and

1
n!

K(n−1)+ 1
4

. . . K 5
4
K 1

4
B0 = Bn (3.7.2)

for every n ≥ 1. We also have the following relations for every n ≥ 0:

∆2n+ 1
2
Bn =

1
4

(
1
4
− 1

)
Bn, (3.7.3)

Bn(γz) = ν(γ)
(

jγ(z)
|jγ(z)|

)2n+ 1
2

Bn(z) (3.7.4)

for every γ ∈ Γ0(4),

Bn

(−1
4z

)
= e

(−1
8

)(
z

|z|
)2n+ 1

2

Bn(z), (3.7.5)

and finally, for every z = x+iy ∈ H and n ≥ 0 we have that Bn(σ− 1
2
z)

(
jσ−1/2 (z)∣∣jσ−1/2 (z)

∣∣
)− 1

2−2n

equals

e(−1
8
)y

1
4

∞∑
m=−∞

L
− 1

2
n

(
4π

(
m +

1
2

)2

y

)
e

((
m +

1
2

)2

z

)
. (3.7.6)

Proof. Using [G-R], p. 992, formula 8.975.1, we have

∞∑
n=0

L
− 1

2
n

(
4πm2y

)
Ln = (1− L)−

1
2 e

4πm2yL
L−1
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for y > 0 and |L| < 1, from which it follows for z = x + iy ∈ H and |L| < 1 that

∞∑
n=0

( ∞∑
m=−∞

L
− 1

2
n

(
4πm2y

)
e
(
m2z

)
)

Ln = θ

(
Tz

(
i
1 + L

1− L

))
(1− L)−

1
2 ,

which, together with (3.3.8), proves (3.7.1). To prove (3.7.2), it is enough to show that

1
n + 1

Kn+ 1
4
Bn = Bn+1 (3.7.7)

for every n ≥ 0. By the definition of the operators K and by (3.7.1) we have that(
Kn+ 1

4
Bn

)
(z) equals (here

(
L
− 1

2
n

)(1)

denotes the derivative of L
− 1

2
n )

y
1
4

∞∑
m=−∞

((
−4πm2y + n +

1
2

)
L
− 1

2
n

(
4πm2y

)
+ 4πm2y

(
L
− 1

2
n

)(1) (
4πm2y

))
e
(
m2z

)
,

and applying [G-R], p. 991, 8.971.3 we get (3.7.2). Formula (3.7.3) can be checked directly

for n = 0, and then it follows for larger n from (3.7.2) and [F], p. 145, formula (6).

Similarly, (3.7.4) and (3.7.5) are well-known for n = 0, and they follow for larger n from

(3.7.2) and [F], p. 145, formula (5). The case n = 0 of (3.7.6) is known (and not hard

to prove), and the general case follows by induction, using again (3.7.2), [G-R], p. 991,

8.971.3 and [F], formula (5). The lemma is proved.

LEMMA 3.10. Let z ∈ D4, and let 0 ≤ j ≤ 5 be such that γ−1
j z ∈ D1.

(i) There is an absolute constant A > 0 such that if n ≥ 0 is an integer and Im
(
γ−1

j z
) ≥

An, then

|Bn(z)| ≤ A
(
Im

(
γ−1

j z
)) 1

4 (n + 1)−
1
2 .

(ii) If N ≥ 0 is an integer and Im
(
γ−1

j z
) ¿ N + 1 with implied absolute constant, then

for any ε > 0 we have
2N∑

n=N

|Bn(z)|2 ¿ε (N + 1)
1
2+ε

.

Proof. Part (i) follows easily from (3.7.1), (3.7.5), (3.7.6) and [G-R], p.990, formula 8.970.1,

since L
− 1

2
n (0) ¿ (n + 1)−

1
2 .

For the proof of (ii) let n ≥ 0, and write hz(L) = (Imz)
1
4 θ

(
Tz

(
i 1+L
1−L

))
(1− L)−

1
2 , then

Bn(z) =
1

2πi

∫

|L|=r

hz(L)
Ln+1

dL (3.7.8)
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for any 0 < r < 1. Now,

Im
(

Tz

(
i
1 + L

1− L

))
= (Imz)

1− |L|2
|1− L|2 ,

so

hz(L) = B0

(
Tz

(
i
1 + L

1− L

)) (
1− |L|2

)− 1
4 |1− L| 12

(1− L)
1
2
.

Hence, using Parseval‘s identity and (3.7.8) for a fixed r, and then averaging over 1− 2
N+2 ≤

r ≤ 1− 1
N+2 , we get

2N∑

n=N

|Bn(z)|2 ¿ (N + 1)−
1
2

∫ 1− 1
N+2

1− 2
N+2

∫ 2π

0

∣∣∣∣B0

(
Tz

(
i
1 + reiφ

1− reiφ

))∣∣∣∣
2

rdφdr

(1− r2)2
,

hence, using a substitution,

2N∑

n=N

|Bn(z)|2 ¿ (N + 1)−
1
2

∫

w∈H,|w−i
w+i |≤1− 1

N+2

|B0 (Tzw)|2 dµw

with implied absolute constant. For simplicity, instead of |B0|2, we take an SL(2,Z)-

invariant majorant, write

F (Z) =
5∑

j=0

|B0 (γjZ)|2 .

Since |w−i
w+i |2

1−|w−i
w+i |2 = |w−i|2

4Imw , hence

2N∑

n=N

|Bn(z)|2 ¿ (N + 1)−
1
2

∫

D1

K (z, w; N + 2) F (w)dµw,

where we write

K (z, w; x) =
∑

γ∈SL(2,Z),
|γz−w|2

4ImγzImw
≤x

1.

Since we have F (w) ¿ (Imw)
1
2 for w ∈ D1 (which follows from the n = 0 case of (i)),

Lemma 3.11 below proves the present lemma.

LEMMA 3.11. Let z1, z2 ∈ D1, write y1 = Imz1, y2 = Imz2, and let x ≥ 2. Then for

every ε > 0 we have

K (z1, z2; x) ¿ε x1+ε + (xy1y2)
1
2 , (3.7.9)
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and if E is a large enough absolute constant and y2 ≥ Exy1, then

K (z1, z2; x) = 0. (3.7.10)

Proof. It is easy to see by (1.2), (1.3) of [I1], and by the triangle inequality (for the

hyperbolic distance function on H) that if γ ∈
(

a b
c d

)
∈ SL(2,Z) and

|γz1 − z2|2
4Im(γz1)Imz2

≤ x,

then
|γ (iy1)− iy2|2
4Im (γ (iy1)) y2

≤ Cx

with some absolute constant C > 0. The left-hand side here is

(ay1 − dy2)
2 + (b + cy1y2)

2

4y1y2
,

hence we need

a2y2
1 + d2y2

2 + b2 + c2y2
1y2

2 ≤ (4Cx + 2) y1y2. (3.7.11)

This implies

|b| ≤ ((4Cx + 2) y1y2)
1
2 , |c| ≤

(
4Cx + 2

y1y2

) 1
2

. (3.7.12)

If y1y2 ≤ 4Cx+2, then the number of possible (b,c) pairs is ¿ x. If b and c are given and

bc 6= −1, then ad = 1 + bc is also given, and 0 6= |ad| ¿ x, hence the number of possible

(a,d) pairs is ¿ε xε. If bc = −1, then the number of possible (b,c) pairs is ¿ 1, and a = 0

or d = 0, and we also see by (3.7.11) and the relations y1y2 ≤ 4Cx + 2 and y1, y2 À 1 that

a2 + d2 ¿ x2. This proves (3.7.9) for the case y1y2 ≤ 4Cx + 2.

If y1y2 > 4Cx + 2, then (3.7.12) implies c = 0, hence the number of possible (a,d) pairs

is ¿ 1, and the number of possible numbers b is ¿ (xy1y2)
1
2 . The inequality (3.7.9) is

proved. Since d2 + c2y2
1 À 1, so (3.7.11) implies (3.7.10).

3.7.2. An upper bound for an integral of Maass forms.

74

               dc_344_11



LEMMA 3.12. Let C > 1/2, and let u be a cusp form of weight 0 for SL(2,Z) with

∆0u= s(s − 1)u, where s = 1
2 + it and t > 0. Then for integers n ≥ 0 we have, by the

notation

u(n)(z) =

(
n−1∏

l=0

1
s + l

)
(Kn−1Kn−2 . . .K1K0u) (z),

the inequality

∫

D4

( ∞∑

l=0

(1 + l)−C |Bl(z)|2
)

∣∣u(n) (4z)
∣∣2 dµz ¿u,C log2 (n + 2) .

Proof. We use the substitution z → − 1
4z , which normalizes Γ0(4). By (3.7.5) we see that

∣∣∣∣Bl

(
− 1

4z

)∣∣∣∣
2

= |Bl(z)|2 ,

and u(n)

(
4

(− 1
4z

))
= u(n) (z) by the SL(2,Z)-invariance of u. For z ∈ D1 we have

5∑

j=0

∞∑

l=0

(1 + l)−C |Bl(γjz)|2 ¿C (Imz)1/2

by Lemma 3.10, so it is enough to prove that
∫

D1

(Imz)1/2 ∣∣u(n) (z)
∣∣2 dµz ¿u log2 (n + 2) .

We will give an upper bound by extending the integration to Imz ≥ √
3/2, |Rez| ≤ 1/2,

and using Parseval’s formula. Consider the Fourier expansion

u(n)(z) =
∑

m 6=0

bu,n(m)W
nsgn(m),it

(4π |m| y)e(mx).

It is well-known (see [Du], formulas (2.4) and (2.6), and take into account our formula

(3.3.11)) that for m > 0 we have

bu,n(m) = (−1)n

(
n−1∏

l=0

1
s + l

)
bu,0(m),

and for m < 0 we have

bu,n(m) = (−1)n

(
n∏

l=1

(s− l)

)
bu,0(m).
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By [G-R], p. 814, 7.611.4 and p. 893, 8.362.1 we see for real t 6= 0 and any integer m (note

that Wm,it(y) is real) that

∫ ∞

0

∣∣∣∣Wm,it(y)Γ
(

1
2
−m + it

)∣∣∣∣
2

dy

y
=

π

sin 2πt

∞∑

k=0

(
1

1
2 − it−m + k

− 1
1
2 + it−m + k

)
,

which is ¿t log (|m|+ 2). By these relations, Lemma 3.13 below and formulas (8.17) and

(8.5) of [I1] we easily get the lemma.

LEMMA 3.13. There are positive absolute constants C1, C2, C3 such that if n ∈ Z,

t ≥ 0, then
∣∣∣∣Wn,it(y)Γ

(
1
2
− n + it

)∣∣∣∣ ≤ C1e
−C2y for y ≥ C3 max (1 + t, n) . (3.7.13)

Proof. By [G-R], p.1015, formula 9.223 we have for y > 0 and t ≥ 0 that

Wn,it(y)Γ
(

1
2
− n + it

)
− e−

y
2

2πi

∫

(1/4)

Γ (u− n) Γ
(

1
2 − u− it

)
Γ

(
1
2 − u + it

)

Γ
(

1
2 − n− it

) yudu

is ¿ than

e−
y
2

n∑

j=1

∣∣∣∣∣Resu=j

Γ (u− n) Γ
(

1
2 − u− it

)
Γ

(
1
2 − u + it

)

Γ
(

1
2 − n− it

) yu

∣∣∣∣∣

(this is of course 0 for n ≤ 0). We use the well-known statement that if σ is a real number

which is not a nonpositive integer, then maxτ∈R |Γ (σ + iτ)| = |Γ (σ)|. We apply this

statement to estimate Γ (u− n) if Reu = 1/4, and Γ
(

1
2 − u− it

)
if u = j. Then Stirling’s

formula easily implies (3.7.13), the lemma is proved.

3.7.3. An orthogonality relation.

LEMMA 3.14. If u is a cusp form of weight 0 for SL(2,Z), then

∫

D4

|B0(z)|2 u(4z)dµz = 0. (3.7.14)

Proof. By the substitution z → − 1
4z and by (3.7.5) with n = 0 we get (as in the proof of

Lemma 3.12) that the left-hand side of (3.7.14) equals

∫

D4

|B0(z)|2 u(z)dµz =
∫

D1




5∑

j=0

|B0(γjz)|2

 u(z)dµz. (3.7.15)
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We now determine the Fourier expansion of F (z) :=
∑5

j=0 |B0(γjz)|2. We use that

(
0 −1
1 j

)
=

(
0 −1/2
2 0

)(
1/2 j/2
0 2

)
,

(
1 0
−2 1

)
=

(−1 −1/2
2 0

)(−1 1/2
0 −1

)
.

It is also not hard to see for any integer n and y > 0 that

∫ 1

0




3∑

j=0

∣∣∣∣B0

(
x + iy + j

4

)∣∣∣∣
2

 e(−nx)dx = 4

∫ 1

0

∣∣∣∣B0

(
x +

iy

4

)∣∣∣∣
2

e(−4nx)dx,

hence, using (3.7.5) and (3.7.6), we get that
∫ 1

0
F (x + iy) e(−nx)dx equals

y
1
2

∑

m1,m2 ∈ 1
2Z

m2
1 −m2

2 = n

e−2π(m2
1+m2

2)y + 2y
1
2

∑

m1, m2 ∈ Z
m2

1 −m2
2 = 4n

e−2π(m2
1+m2

2) y
4 .

One easily checks that the two sums above have the same value, and, writing a = m1−m2,

d = m1 + m2 in the first sum, we finally get for any y > 0 and integer n that
∫ 1

0

F (x + iy) e(−nx)dx = 3y
1
2

∑

a, d ∈ Z
ad = n

e−π(a2+d2)y. (3.7.16)

We now show that a certain incomplete Eisenstein series has the same Fourier coefficients.

Indeed, for z ∈ H let

G(z) := E(z, ψ) =
∑

γ∈Γ∞\SL2(Z)

ψ (Im(γz)) ,

where

ψ (y) =
∞∑

m=1

e−π m2
y .

Then by [I1], (3.17) we have for y > 0 and n 6= 0 that

∫ 1

0

G (x + iy) e(−nx)dx =
∞∑

c=1

S(0, n, c)
∫ ∞

−∞
ψ

(
yc−2

t2 + y2

)
e(−nt)dt,

where S(0, n, c) is given by [I1], (2.26). We can compute easily that

∫ ∞

−∞
ψ

(
yc−2

t2 + y2

)
e(−nt)dt = d

√
y

∞∑
m=1

1
cm

e
−πy

(
m2c2+ n2

m2c2

)

77

               dc_344_11



with a nonzero absolute constant d. Since for any positive integer a we have

∑

c|a
S(0, n, c) =





a, if a |n,

0 otherwise,

so we get finally for any y > 0 and nonzero integer n that

∫ 1

0

G (x + iy) e(−nx)dx = d
√

y
∑

a|n
e
−πy

(
a2+ n2

a2

)
.

This and (3.7.16) imply that there is a nonzero absolute constant D such that F (z)−DG(z)

depends only on Imz. Since F (z)−DG(z) is SL(2,Z)-invariant, so it is a constant. This

implies that (3.7.15) is 0 (since cusp forms are orthogonal to incomplete Eisenstein series

and constants), the lemma is proved.
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4. Appendix: some properties of Wilson functions

4.1. Statement of the results

In this chapter we prove some results applied in Chapter 3. These results are independent

of automophic forms, we deal only with special functions here.

We first give the necessary notations. Let t1 and t2 be two nonzero real numbers and let

s1 = 1
2 + it1, s2 = 1

2 + it2. As before, we write (w)n = Γ (w + n) /Γ (w), Γ (X ± Y ) =

Γ (X + Y ) Γ (X − Y ), and

Γ (X ± Y ± Z) = Γ (X + Y + Z) Γ (X + Y − Z) Γ (X − Y + Z) Γ (X − Y − Z) .

We will use the notations (3.3.1), (3.3.2), (3.3.4). We use the Wilson function

φλ (x) = φλ (x; a, b, c, d)

as in Chapter 3, i.e. with the parameters given in (3.3.4).

See [S] for the definition of the generalized hypergeometric functions FA,B . Sometimes we

will write F (α, β, γ; z) in place of F2,1 (α, β, γ; z). Introduce the notation

FN (x) =
1

−N
(
N − 1

2

)
F5,4

( −N, N − 1
2 , 1

4 + ix, 1
4 − ix, 1

1
2 + it1,

1
2 − it1,

1
2 + it2,

1
2 − it2

; 1
)
− 1

Γ
(

3
4 ± ix

)

for integers N ≥ 1. We make a similar convention as in Chapter 3.

CONVENTION. In what follows, t1 and t2 will be fixed. So every variable and every

constant (including the constants implied in the ¿ and O symbols) may depend on t1 and

t2, even if we do not denote this dependence.

We can now state our three theorems. Theorem 4.1 is a more precise form of Theorem

1.3 (i.e. it is enough to prove Theorem 4.1 for the proof of Theorem 1.3). Theorem 4.2

shows that the result of a complicated summation is a Wilson function. Theorem 4.3 gives

estimates for a certain series of Wilson functions.
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THEOREM 4.1 ([Bi8]). Assume that K is a positive number, and f(x) is an even

holomorphic function for |Imx| < K satisfying

∫ ∞

−∞
f (τ) H(τ)

1
Γ

(
3
4 ± iτ

)dτ = 0 (4.1.1)

and that ∣∣∣f(x)e−2π|x| (1 + |x|)K
∣∣∣

is bounded on the domain |Imx| < K. If k is a positive integer and K is large enough in

terms of k, then

∫ ∞

0

f (x) FN (x) H(x)dx =
k∑

j=4

cf,j

N j
+ O

(
1

Nk+1

)
(4.1.2)

with some constants cf,j as N → ∞. If K is large enough (depending only on t1 ad t2),

we have

f(x) =
C

2π

∞∑

N=1

Γ
(

1
2 + 2N

)

(1−N)N−1

(
N + 1

2

)
N−1

(∫ ∞

0

f (ξ) FN (ξ) H(ξ)dξ

)
φi( 1

4−N) (x) (4.1.3)

for every |Imx| < 3
4 , and the sum on the right-hand side of (4.1.3) is absolutely convergent

for every such x.

THEOREM 4.2 ([Bi8]). Let n be a fixed positive integer, and write

ml1,l2 =
1
4

+ l1 + l2 − n.

For nonnegative integers l1, l2 and complex S define

Σl1,l2(S) =
l1∑

L1=0

l2∑

L2=0

(−1)L1+L2

(
l1
L1

)(
l2
L2

)
G(S, l1, l2, L1, L2),

where G(S, l1, l2, L1, L2) denotes

Γ (s2 − n + l2 + L1)
Γ (s2 + n− l2 − L1)

Γ (s1 − n + l1 + L2)
Γ (s1 + n− l1 − L2)

(S −ml1,l2)l1−L1

Γ (S + ml1,l2 − l1 + L1)

(S −ml1,l2)l2−L2

Γ (S + ml1,l2 − l2 + L2)
.

Note that since n is given. we have not denoted the dependence on n in ml1,l2 , Σl1,l2(S)

and G(S, l1, l2, L1, L2).
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Then, if S = 1
2 + iτ , where τ is either real or purely imaginary, we have that the sum

∞∑

l1,l2=0

Γ (S + ml1,l2)
Γ (1− S + ml1,l2)

Σl1,l2(S)
Γ

(
1
2 + l1

)
Γ (1 + l1) Γ

(
1
2 + l2

)
Γ (1 + l2)

is absolutely convergent, and equals

|Γ (s1)|2 |Γ (s2)|2 Γ
(− 1

2 + 2n
)

|Γ (s1 + n)|2 |Γ (s2 + n)|2 φτ

(
i

(
1
4
− n

))
.

THEOREM 4.3 ([Bi8]). Write

Mλ(A) =
1

Γ (1−A)

∞∑

k=1

(−1)k Γ (k −A)
Γ (k)

φλ

(
i

(
1
4
− k

))
.

(i) Mλ(A) is absolutely convergent if ReA > 1 + 2 |Imλ|, or if λ = i
(

1
4 − k

)
with a positive

integer k and ReA ≥ 2.

(ii) If a compact set L on the complex plane is given such that 2 ≤ ReA for every A ∈ L,

then

Mi( 1
4−k)(A) = OL

(
k−3/2

)

for any A ∈ L and positive integer k. The left-hand side here is regular in A on every open

subset of L for every fixed positive integer k.

(iii) If a compact set L on the complex plane and an integer K ≥ 2 are given such that 2 ≤
ReA for every A ∈ L, then we can find an integer t > 0, complex numbers A1, A2, . . . , At

with ReAi > K (i = 1, 2, . . . , t) and polynomials Q1, Q2, . . . , Qt such that

Mλ(A)−
t∑

i=1

2A−AiQi (A)Mλ(Ai) = OL,K

(
e2π|λ| (1 + |λ|)−K

)

for any A ∈ L and real λ. The left-hand side here is regular in A on every open subset of

L for every fixed real λ.

REMARK. In Chapter 3 we applied the following results on Wilson functions: Theorem

1.3, Theorem 4.2, Theorem 4.3, and one more result, namely Corollary 4.1 below. Hence

(since Theorem 1.3 follows from Theorem 4.1), to complete the proof of Theorem 1.2 it

will be enough to prove the three theorems stated above and Corollary 4.1.
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Theorems 4.1., 4.2 and 4.3 are proved in Sections 4.2, 4.3 and 4.4, respectively, using

Lemmas 4.5-4.9 and Corollaries 4.1 and 4.2 proved only in Section 4.5.

4.2. Expansion in Wilson functions

4.2.1. A biorthogonal system. We will consider now the inner product

∫ ∞

0

f1 (x) f2 (x)H(x)dx

for two even functions f1,f2 on R. We will show that the system of functions FN (N ≥ 1)

is biorthogonal to the system φi( 1
4−N) (N ≥ 1) with respect to this inner product. Then

we will consider for a given function f satisfying (4.1.1) and some additional properties

the asymptotic behaviour of the sequence of inner products of f with FN . The reason of

imposing the condition (4.1.1) is that it is true for every f = φi( 1
4−N), as we will show

shortly.

Recall the symmetry property φλ (x) = φx (λ) from (3.4) of [G1] (we use here that our pa-

rameters a, b, c, d are self-dual, see (2.6) of [G1]). By the formula in the proof of Theorem 6.5

of [G1] with n = 0 and g = 1
4+k we have (in general, (X ± Y )n means (X + Y )n (X − Y )n)

C

2π

∫ ∞

0

φλ (x) H(x)

(
1
4 ± ix

)
k

Γ
(

3
4 ± ix

)dx =

(
1
2 ± it1

)
k

(
1
2 ± it2

)
k

Γ
(

3
4 + k ± iλ

) (4.2.1)

for any integer k ≥ 0 and any λ (see Prop. 4.4 of [G1] to see the absolute convergence).

So for any integer N ≥ 1 we have that

C

2π

∫ ∞

0

φλ (x)H(x)
F5,4

( −N, N − 1
2 , 1

4 + ix, 1
4 − ix, 1

1
2 + it1,

1
2 − it1,

1
2 + it2,

1
2 − it2

; 1
)
− 1

Γ
(

3
4 ± ix

) dx

equals
−N

(
N − 1

2

)

Γ
(

7
4 ± iλ

) F3,2

(
1−N, N + 1

2 , 1
7
4 + iλ, 7

4 − iλ
; 1

)
,

and by [S], (2.3.1.4) this equals

−N
(
N − 1

2

)
(
N − 1

4 + iλ
) (

N − 1
4 − iλ

)
Γ

(
3
4 ± iλ

) = −N

(
N − 1

2

) (
3
4 ± iλ

)
N−1

Γ
(

3
4 ± iλ + N

) .
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This implies that we have for every pair of integers k, N ≥ 1 that

C

2π

∫ ∞

0

φi( 1
4−k) (x)FN (x) H(x)dx = 0 for k 6= N, (4.2.2)

C

2π

∫ ∞

0

φi( 1
4−k) (x)FN (x)H(x)dx =

(1−N)N−1

(
N + 1

2

)
N−1

Γ
(

1
2 + 2N

) for k = N, (4.2.3)

i.e. these two systems (φi( 1
4−N) (x) and FN (x)) are biorthogonal in this sense.

Note that (4.2.1) with k = 0 and λ = i
(

1
4 −N

)
implies indeed that (4.2.1) holds for any

N ≥ 1 with f = φi( 1
4−N).

In the proof of the next lemma we will use Lemma 4.6 which will be proved later. For

the function f we impose the condition of Lemma 4.6. Some of these conditions will be

released later.

LEMMA 4.1. Let f be a function satisfying (4.2.1) and the conditions of Lemma 4.6. If

k is a positive integer and K in Lemma 4.6 is large enough in terms of k, then we have

∫ ∞

0

f (x) FN (x) H(x)dx =
k∑

j=4

cf,j

N j
+ O

(
1

Nk+1

)

with some constants cf,j as N →∞.

Proof. By shifting the path of integration to the right, we see that if − 1
4 < α < 0, τ is real

and m ≥ 0 is an integer, then

1
2πi

∫

(α)

Γ (−A± iτ) Γ
(

1
4 + A± it1

)
Γ

(
1
4 + A + m

)

Γ
(

1
4 ±A

)
Γ

(
3
4 ±A

)
Γ

(
3
4 + A + m

) dA (4.2.4)

equals the sum of
Γ (−2iτ) Γ

(
1
4 + iτ ± it1

)
Γ

(
1
4 + iτ + m

)

Γ
(

1
4 ± iτ

)
Γ

(
3
4 ± iτ

)
Γ

(
3
4 + iτ + m

) F+
3,2

and
Γ (2iτ) Γ

(
1
4 − iτ ± it1

)
Γ

(
1
4 − iτ + m

)

Γ
(

1
4 ± iτ

)
Γ

(
3
4 ± iτ

)
Γ

(
3
4 − iτ + m

) F−3,2,

where

F+
3,2 = F3,2

(
1
4 + iτ + it1,

1
4 + iτ − it1,

1
4 + iτ + m

1 + 2iτ, 3
4 + iτ + m

; 1
)

,
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and F−3,2 is obtained from F+
3,2 by writing −τ in place of τ . Using [S], (2.4.4.4) we then get

that (4.2.4) equals

Γ
(

1
4 ± iτ ± it1

)
Γ

(
1
4 ± iτ + m

)

Γ
(

1
2

)
Γ

(
1
4 ± iτ

)
Γ

(
3
4 ± iτ

)
Γ

(
1
2 ± it1 + m

) . (4.2.5)

This implies that if − 1
4 < α < 0 and τ is real, then for every integer N ≥ 1 we have that

1
2πi

∫

(α)

Γ (−A± iτ) Γ
(

1
4 + A± it1

)

Γ
(

1
4 −A

)
Γ

(
3
4 −A

)
Γ2

(
3
4 + A

)
(

F4,3

( −N, N − 1
2 , 1

4 + A, 1
1
2 + it2,

1
2 − it2,

3
4 + A

; 1
)
− 1

)
dA

(4.2.6)

equals

Γ
(

1
4 ± iτ ± it1

)

Γ
(

1
2

)
Γ

(
3
4 ± iτ

)
Γ

(
1
2 ± it1

)
(

F5,4

( −N, N − 1
2 , 1

4 + iτ, 1
4 − iτ, 1

1
2 + it1,

1
2 − it1,

1
2 + it2,

1
2 − it2

; 1
)
− 1

)
. (4.2.7)

We claim that if N ≥ 1 is an integer and ReA > − 5
4 , then

F4,3

(
1−N,N + 1

2 , 5
4 + A, 1

3
2 + it2,

3
2 − it2,

7
4 + A

; 1
)

=
Γ

(
7
4 + A

)
Γ

(
3
2 − it2

)

Γ
(

5
4 + A

)
Γ (1− it2)

I (4.2.8)

with

I =
∫ 1

0

z−
1
2 (1− z)−it2 F2,1

(
1−N,N + 1

2
3
2 + it2

; z
)

F2,1

(
3
4 + A, 1

2
1− it2

;
z − 1

z

)
dz. (4.2.9)

Indeed, this follows by writing the first F2,1 function as a polynomial in z, then applying

(6.6) of [G1] (note that there is a misprint there, y
1−y should be replaced by −y

1−y ) after the

substitution y = 1 − z. This proves the equality of (4.2.8) and (4.2.9). We remark also

that (by [G-R], p. 998, 9.131.1) the second F2,1 function in (4.2.9) equals

z
1
2 F2,1

(
1
4 −A− it2,

1
2

1− it2
; 1− z

)
. (4.2.10)

It follows then that if f is a function satisfying the conditions of Lemma 4.6, then for every

integer N ≥ 1 we have that
∫ ∞

−∞
f (τ)FN (τ)

Γ
(

1
4 ± it1 ± iτ

)
Γ

(
1
4 ± it2 ± iτ

)
Γ

(
1
4 ± iτ

)
Γ

(
3
4 ± iτ

)

Γ (±2iτ)
dτ (4.2.11)

equals

c

∫ 1

0

(1− z)−it2 F2,1

(
1−N,N + 1

2
3
2 + it2

; z
)

K(z)dz (4.2.12)
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with a constant c 6= 0 (c may depend on t1 and t2, since these are fixed numbers), where

(for G(A) see Lemma 4.6)

K(z) =
1

2πi

∫

(α)

Γ
(

1
4 + A± it1

)
G(A)

Γ
(

1
4 ±A

)
Γ

(
3
4 ±A

) F2,1

(
1
4 −A− it2,

1
2

1− it2
; 1− z

)
dA (4.2.13)

with − 1
4 < α < 0. Indeed, by Lemma 4.6 and [G-R], p 995, 9.111 we see that the double

integral in A, z is absolutely convergent here, we first compute the integral in z by (4.2.8),

(4.2.9), (4.2.10), then we insert the definition (4.5.12) of G(A), the resulting integral in A

and τ is again absolutely convergent, and we compute the integral in A by the equality of

(4.2.6) and (4.2.7), we obtain in this way the equality of (4.2.11) and (4.2.12). We also see

by Lemma 4.6 and [G-R], p 995, 9.111 that if k is a positive integer and the number K

in Lemma 4.6 is large enough in terms of k, then the function
(

d
dz

)j
K is bounded on the

closed interval [ 12 , 1] for every 0 ≤ j ≤ k. For the estimation of K and its derivatives on

[0, 1
2 ] we use that the F2,1 function in (4.2.13) equals, by [G-R], p. 998, 9.131.2, the sum

of
Γ (1− it2) Γ

(
1
4 + A

)

Γ
(

1
2 − it2

)
Γ

(
3
4 + A

)F2,1

(
1
4 −A− it2,

1
2

3
4 −A

; z
)

(4.2.14)

and

z
1
4+A Γ (1− it2) Γ

(− 1
4 −A

)

Γ
(

1
4 −A− it2

)
Γ

(
1
2

) F2,1

(
1
2 − it2,

3
4 + A

5
4 + A

; z
)

. (4.2.15)

We estimate here the F2,1 functions by their power series expansions. Observe first that

the zeroth term of the F2,1 function in (4.2.14) gives 0 in (4.2.13), since (4.1.1) holds. This

follows from the definition of G(A) in (4.5.12) and from the equality of (4.2.4) and (4.2.5)

for m = 0, see also (3.3.1). Now, using Lemma 4.6 and shifting the line of A-integration

to the right in (4.2.13) when we substitute (4.2.15) we see that, if the number K is large

enough in terms of k, then on the closed interval [0, 1
2 ] we have

K(z) =
k∑

j=1

ajz
j + z

1
2+it2L(z) (4.2.16)

with some constants aj and a function L such that
(

d
dz

)j
L is bounded on the closed interval

[0, 1
2 ] for every 0 ≤ j ≤ k. By our investigation above on the behavior of K on [ 12 , 1], we
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finally see that in fact (4.2.16) is valid and
(

d
dz

)j
L is bounded on the whole interval [0, 1]

for every 0 ≤ j ≤ k.

Observe that by [G-R], p 990, 8.962.1 we have (P (α,β)
n is Jacobi’s polynomial)

F2,1

(
1−N,N + 1

2
3
2 + it2

; z
)

=
(−1)N−1(N − 1)!(

3
2 + it2

)
N−1

P
(−it2, 1

2+it2)
N−1 (2z − 1) ,

so ∫ 1

0

(1− z)−it2 F2,1

(
1−N, N + 1

2
3
2 + it2

; z
)

z
1
2+it2L(z)dz (4.2.17)

equals d (−1)N−1(N−1)!

( 3
2+it2)

N−1

times

∫ 1

−1

(1− x)−it2 (1 + x)
1
2+it2 P

(−it2, 1
2+it2)

N−1 (x)L

(
1 + x

2

)
dx (4.2.18)

with a nonzero constant d. By [G-R], p 989, 8.960.1 we see that

(1− x)−it2 (1 + x)
1
2+it2 P

(−it2, 1
2+it2)

N−1 (x)

equals

(−1)k(N − k − 1)!
2k(N − 1)!

(
d

dx

)k (
(1− x)−it2+k (1 + x)

1
2+it2+k

P
(−it2+k, 1

2+it2+k)
N−1−k (x)

)
,

hence by repeated partial integration we see by the property of L that (4.2.18) is ¿ than

N−k

∫ 1

−1

∣∣∣∣(1− x)−it2+k (1 + x)
1
2+it2+k

P
(−it2+k, 1

2+it2+k)
N−1−k (x)

∣∣∣∣ dx.

In order to get a Jacobi polynomial with real parameters, remark that by [G-R], p. 807,

7.512.12 we have that

F2,1

(
1 + k −N, N + k + 1

2
3
2 + it2 + k

;
1 + x

2

)

equals

Γ
(

3
2 + it2 + k

)

Γ (1 + it2) Γ
(
k + 1

2

)
∫ 1

0

yk− 1
2 (1− y)it2 F2,1

(
1 + k −N, N + k + 1

2
1
2 + k

; y
1 + x

2

)
dy.
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This, together with [G-R], p 990, 8.962.1 (we use this formula twice) and substituting

a = y(1 + x)− 1 in place of y, implies that (4.2.18) is ¿ than

N1−k

∫ 1

−1

∣∣∣∣(1 + a)k− 1
2 P

(1+k,k− 1
2 )

N−1−k (a)
∣∣∣∣
∫ 1

a

(1− x)k
dxda.

Computing the inner integral, and using Cauchy’s inequality and [G-R], p 800, 7.391.1 we

finally see that (4.2.18) is ¿ than N1−k, so the same is true for (4.2.17).

Noting that by [G-R], p. 807, 7.512.12

∫ 1

0

(1− z)−it2 F2,1

(
1−N, N + 1

2
3
2 + it2

; z
)

zjdz = fjF3,2

(
1−N, N + 1

2 , j + 1
3
2 + it2, j − it2 + 2 ; 1

)

with a constant fj , and this equals

gj

Γ (−j + it2 −N) Γ
(− 1

2 − j + it2 + N
)

Γ (1 + it2 −N) Γ
(

1
2 + it2 + N

)

with a constant gj by [S], (2.3.1.4), so by (3.3.1), (4.2.11), (4.2.12), (4.2.16) and the above

estimate for (4.2.17) we proved the lemma.

4.2.2. A nonvanishing result. In order to eliminate some conditions imposed on f in

Lemma 4.1 (namely the vanishing of the integral for 0 ≤ j ≤ K − 10 in the statement of

Lemma 4.6), we prove the next lemma.

LEMMA 4.2. If P is a nonzero polynomial, then there is an integer n ≥ 1 such that

∫ ∞

−∞

Γ
(

1
4 ± ix

)
Γ

(
3
4 ± ix

)
Γ

(
1
4 ± it1 ± ix

)

Γ (±2ix)
P

(
x2

)
φi( 1

4−n) (x) dx 6= 0.

Proof. If k ≥ 0 and n ≥ 1 are integers, define

In,k =
∫ ∞

−∞

Γ
(

1
4 ± ix

)
Γ

(
3
4 ± ix

)
Γ

(
1
4 ± it1 ± ix

)

Γ (±2ix)

(
x2 +

(
1
4

+ it1

)2
)k

φi( 1
4−n) (x) dx.

We first prove that

In,0 = (D + o(1)) n (4.2.19)

with a nonzero constant D.
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By Proposition 4.4 of [G1] we see that In,0 equals the sum of

Γ
(

1
2 − 2n

)

Γ
(

1
2 ± it1 − n

)
Γ

(
1
2 ± it2 − n

)
∞∑

m1=0

(n± it1)m1
(n± it2)m1

m1!
(

1
2 + 2n

)
m1

J

(
1
4

+ n + m1

)
(4.2.20)

and

Γ
(
2n− 1

2

)

Γ (n± it1) Γ (n± it2)

∞∑
m2=0

(
1
2 ± it1 − n

)
m2

(
1
2 ± it2 − n

)
m2

m2!
(

3
2 − 2n

)
m2

J

(
3
4
− n + m2

)
(4.2.21)

with the abbreviation

J(a) =
∫ ∞

−∞

Γ
(

1
4 ± ix

)
Γ

(
3
4 ± ix

)
Γ

(
1
4 ± it1 ± ix

)

Γ (±2ix) Γ (a± ix)
dx.

Using that for m1 ≥ 0 and real x we have

1
Γ

(
1
4 + n + m1 ± ix

) ¿ 1
Γ

(
1
4 ± ix

) 1
Γ2

(
1
4 + n + m1

) ,

and for m2 ≥ n and real x we have

1
Γ

(
3
4 − n + m2 ± ix

) ¿ 1
Γ

(
3
4 ± ix

) 1
Γ2

(
3
4 − n + m2

) ,

it is not hard to see (estimating every term separately) that for any fixed ε > 0 the whole

sum (4.2.20) and the m2 > n part of (4.2.21) give o(n). (To see this estimate it helps to

consider separately the cases m1, m2 ≥ n2−ε and m1,m2 ≤ n2−ε.) We thus see that the

difference of In,0 and the 0 ≤ m2 ≤ n part of (4.2.21) is o (n). In this case we have

J

(
3
4
− n + m2

)
= cΓ

(
1
2

+ n−m2 ± it1

)

by (3.6.1) of [A-A-R] with a nonzero constant c. So we proved that

In,0 = o(n) + c∗n2 (1 + o(1))
n∑

m=0

Γ
(

1
2 − n + m± it2

)

m!Γ
(

3
2 − 2n + m

) . (4.2.22)

with a nonzero constant c∗. By the relations

∑

n+1≤m≤n2−ε

∣∣∣∣∣
Γ

(
1
2 − n + m± it2

)

m!Γ
(

3
2 − 2n + m

)
∣∣∣∣∣ = o

(
1
n

)
,
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∑

m>n2−ε

∣∣∣∣∣
Γ

(
1
2 − n + m± it2

)

m!Γ
(

3
2 − 2n + m

) − Γ (−n + m± it2)
Γ

(
m + 1

2

)
Γ (1− 2n + m)

∣∣∣∣∣ = o

(
1
n

)
,

∑

2n≤m≤n2−ε

∣∣∣∣∣
Γ (−n + m± it2)

Γ
(
m + 1

2

)
Γ (1− 2n + m)

∣∣∣∣∣ = o

(
1
n

)
,

∞∑
m=2n

Γ (−n + m± it2)
Γ

(
m + 1

2

)
Γ (1− 2n + m)

=
Γ (n± it2) Γ

(
1
2

)

Γ
(
n + 1

2 ± it2
) ,

∞∑
m=0

Γ
(

1
2 − n + m± it2

)

m!Γ
(

3
2 − 2n + m

) =
Γ

(
1
2 − n± it2

)
Γ

(
1
2

)

Γ (1− n± it2)

we get (the last two relations follow from [S], (1.7.6)) that

n∑
m=0

Γ
(

1
2 − n + m± it2

)

m!Γ
(

3
2 − 2n + m

) =
Γ

(
1
2 − n± it2

)
Γ

(
1
2

)

Γ (1− n± it2)
− Γ (n± it2) Γ

(
1
2

)

Γ
(
n + 1

2 ± it2
) + o

(
1
n

)
.

Since
Γ2

(
1
2 ± it2

)

Γ (1± it2) Γ (±it2)
6= 1,

hence, together with (4.2.22) this implies (4.2.19).

By Proposition 3.1 and (3.4) of [G1] we have the recursion relation (a = 1
4 + it1)

(
x2 + a2

)
φi( 1

4−n) (x) = anφi( 1
4−(n−1)) (x) + bnφi( 1

4−n) (x) + cnφi( 1
4−(n+1)) (x)

with (for the functions A and B see [G1])

an = B

(
−i

(
1
4
− n

))
, bn = A

(
i

(
1
4
− n

))
+A

(
−i

(
1
4
− n

))
, cn = B

(
i

(
1
4
− n

))
,

and since

A

(
±i

(
1
4
− n

))
=

n2

4
(1 + o(1)) , B

(
±i

(
1
4
− n

))
=

n2

4
(1 + o(1)) ,

we get by induction on the basis of (4.2.19) that for any fixed integer k ≥ 0 we have

In,k = (Dk + o(1)) n1+2k

as n →∞ with a nonzero constant Dk. This proves the lemma.
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4.2.3. Proof of Theorem 4.1. The first statement in Theorem 4.1 is a strengthening

of Lemma 4.1, since we prove the same conclusion from weaker conditions. The second

statement is the promised theorem on the expression of a general function in the system

φi( 1
4−N).

It follows from Lemma 4.2 (applying it writing t2 in place of t1, which is possible, since

φλ (x) is symmetric in t1 and t2, see Remark 4.5 (iii) of [G1]) by elementary linear algebra

that there is a finite linear combination

g(x) :=
N0∑

n=1

dnφi( 1
4−n) (x)

such that for h(x) := f(x)− g(x) we have that

∫ ∞

−∞
h (x)

Γ
(

1
4 ± ix

)
Γ

(
3
4 ± ix

)
Γ

(
1
4 ± it2 ± ix

)

Γ (±2ix)
xjdx = 0

for every integer 0 ≤ j ≤ K− 10. We see by (4.2.1) with k = 0 that (4.1.1) is still satisfied

if we write h in place of f there. Since g is an entire function and satisfies a much better

upper bound by Proposition 4.4 of [G1] than the one needed here, we finally see that the

conditions of Lemma 4.1 are satisfied by writing h in place of f there. Since

∫ ∞

0

g (x) FN (x) H(x)dx = 0

for N > N0 by (4.2.2), so Lemma 4.1 applied for h implies (4.1.2).

Denote by d(x) the difference of the left-hand side and the right-hand side of (4.1.3). By

analytic continuation, using (4.1.2) and (4.5.7) we see the statement about the absolute

convergence and that it is enough to prove that d(x) = 0 for every real x. By (4.1.2),

(4.5.6), (4.2.2), (4.2.3), (4.1.1) and (4.2.1) (with k = 0 and λ = i
(

1
4 −N

)
) we see that

d(x) is an even continuous function on the real line satisfying

d(x) ¿ e2πx (1 + |x|)2

and ∫ ∞

0

d (x)FN (x) H(x)dx = 0,

∫ ∞

−∞
d (x)

1
Γ

(
3
4 ± ix

)H(x)dx = 0
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for every N ≥ 1. Hence ∫ ∞

−∞
d (x)

H(x)
Γ

(
3
4 ± ix

)P (x)dx = 0

for every polynomial P . In view of the definition of H and these properties of d, applying

[A-A-R], Theorem 6.5.2 we get that d is identically 0. This proves (4.1.3), hence Theorem

4.1.

4.3. An expression for the Wilson function

4.3.1. Transforming the double sum into a double integral. We first construct a

function PZ(S) such that when ReS = 1
2 or S is real, then

∞∑

l1,l2=0

Γ (S + ml1,l2)
Γ (1− S + ml1,l2)

Σl1,l2(S)
Γ

(
1
2 + l1

)
Γ (1 + l1) Γ

(
1
2 + l2

)
Γ (1 + l2)

= P1 (S) , (4.3.1)

and PZ(S) has the properties that for fixed |Z| ≤ 1 it is entire in S, and for a fixed S it

is holomorphic on |Z| < 1 and continuous on |Z| ≤ 1. Hence it is enough to determine

P1(S), and by analyticity in S it is enough to consider ReS = 1
2 . And for a fixed ReS = 1

2 ,

for |Z| < 1/3 we can apply the lemmas of Subsection 4.5.3 to get an expression for PZ(S),

which will then be extended also to Z = 1.

For simplicity, we write m = ml1l2 in the sequel. Now, it is not hard to see for any S that

Γ (S + m)
Γ (1− S + m)

l1∑

L1=0

(−1)L1

(
l1
L1

)
Γ (s2 − n + l2 + L1)
Γ (s2 + n− l2 − L1)

(S −m)l1−L1

Γ (S + m− l1 + L1)

equals

(−1)l1Γ (s2 − n + l1 + l2)
Γ (s2 + n− l1 − l2)Γ (1− S + m)

F3,2

( −l1, S −m, 1− S −m
s2 + n− l1 − l2, 1− s2 + n− l1 − l2

; 1
)

. (4.3.2)

If ReS = 1
2 or S is real, then (using that {S, 1− S} ={S, 1− S}) this equals

(−1)l1Γ (s2 − n + l1 + l2)
Γ (s2 + n− l1 − l2)Γ (1− S + m)

F3,2

( −l1, S −m, 1− S −m
s2 + n− l1 − l2, 1− s2 + n− l1 − l2

; 1
)

. (4.3.3)

Again for any S, we have that

l2∑

L2=0

(−1)L2

(
l2
L2

)
Γ (s1 − n + l1 + L2)
Γ (s1 + n− l1 − L2)

(S −m)l2−L2

Γ (S + m− l2 + L2)

91

               dc_344_11



equals

(−1)l2Γ (s1 − n + l1 + l2)
Γ (s1 + n− l1 − l2) Γ (S + m)

F3,2

( −l2, S −m, 1− S −m
s1 + n− l1 − l2, 1− s1 + n− l1 − l2

; 1
)

. (4.3.4)

For any complex S, denote the product of (4.3.3) and (4.3.4) by Pl1,l2(S). We just proved

that
Γ (S + m)

Γ (1− S + m)
Σl1,l2(S) = Pl1,l2(S), (4.3.5)

if ReS = 1
2 or S is real.

Let Z be a fixed complex number with |Z| ≤ 1. We can see using Lemma 4.7 (ii) (by

writing S = 1
2 + iτ , a = n − l1 − l2 = 1

4 −m, and estimating trivially, term by term the

new F3,2 functions) that the series

PZ(S) :=
∞∑

l1,l2=0

Zl1+l2

Γ
(

1
2 + l1

)
Γ (1 + l1) Γ

(
1
2 + l2

)
Γ (1 + l2)

Pl1,l2(S) (4.3.6)

is locally uniformly absolutely convergent on the whole plane. Hence, for any given |Z| ≤ 1

the function PZ(S) is an entire function. We also see by the same estimates that for a

given complex S the function PZ(S) is holomorphic on the open disc |Z| < 1 and extends

continuously to |Z| ≤ 1. We also see by (4.3.5) and (4.3.6) that (4.3.1) is valid if ReS = 1
2

or S is real. Hence for the proof of Theorem 4.2 it is enough to show for every complex S

that

P1 (S) =
|Γ (s1)|2 |Γ (s2)|2 Γ

(− 1
2 + 2n

)

|Γ (s1 + n)|2 |Γ (s2 + n)|2 φτ

(
i

(
1
4
− n

))
, (4.3.7)

if we write S = 1
2 + iτ .

For any complex S, denote the product of (4.3.2), (4.3.4) and Γ(1−S+m)

Γ(S+m)
by Rl1,l2(S). Let

Z be a fixed complex number with |Z| < 1, and write

RZ(S) :=
∞∑

l1,l2=0

Zl1+l2

Γ
(

1
2 + l1

)
Γ (1 + l1) Γ

(
1
2 + l2

)
Γ (1 + l2)

Rl1,l2(S).

Observe that for ReS = 1
2 we have

RZ(S) = PZ(S). (4.3.8)
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Applying Corollary 4.2 and Lemma 4.9 we see that this series is locally uniformly absolutely

convergent for 1
2 ≤ReS< 3

4 , hence RZ(S) is a continuous function of S there (remark that

it is not holomorphic).

And by Lemma 4.7 (i) for 1
2 <ReS< 3

4 , if S = 1
2 + iτ , we see that Rl1,l2(S) equals the

product of

24ReS − 2(−1)l1+l2 l1!l2! |Γ (s1)|2 |Γ (s2)|2
4π2Γ

(
1
4 + it2 ± iτ

)
Γ

(
1
4 + it1 ± iτ

)
Γ

(
1
2 + n− l2 − it2

)
Γ

(
1
2 + n− l1 − it1

) ,

∫ ∞

0

y
5
4+it2−iτ
1 L

− 1
2

l1
(y1) J (n− l1 − l2, y1, τ) e−

y1
2

dy1

y2
1

and ∫ ∞

0

y
5
4+it1−iτ
2 L

− 1
2

l2
(y2)J (n− l1 − l2, y2, τ) e−

y2
2

dy2

y2
2

,

where we write

J (a, y, τ) =
∫ ∞

−∞

(
1 + T 2

)− 1
2−iτ

(
1 + iT

1− iT

) 1
4−a

e−y iT
2 dT.

For 1
2 <ReS< 3

4 and |Z| < 1
3 we then get, using also Lemma 4.8 that RZ(S) equals the

product of

24ReS − 3
2+i(t1−t2+τ−τ) |Γ (s1)|2 |Γ (s2)|2

4π3Γ
(

1
4 − it2 − iτ

)
Γ

(
1
4 + it1 + iτ

)
Γ

(
1
2 + n + it2

)
Γ

(
1
2 + n− it1

) (4.3.9)

and ∫ ∞

−∞

∫ ∞

−∞
F (T1, T2) GZ (T1, T2)HZ (T1, T2) dT1dT2, (4.3.10)

where F (T1, T2) denotes

(1 + iT1)
− 3

4+n+iτ (1− iT1)
− 1

2−n+it2 (1 + iT2)
− 1

2−n−it1 (1− iT2)
− 3

4+n−iτ
,

GZ (T1, T2) denotes

(
1 + Z

1 + iT2

1− iT2

)− 1
2+n−it1

F

(
1
2
− n + it1,

1
4

+ it2 − iτ ,
1
2
;
2Z 1+iT2

(1+iT1)(1−iT2)

1 + Z 1+iT2
1−iT2

)
,
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and HZ (T1, T2) denotes

(
1 + Z

1− iT1

1 + iT1

)− 1
2+n+it2

F

(
1
2
− n− it2,

1
4
− it1 + iτ,

1
2
;
2Z 1−iT1

(1+iT1)(1−iT2)

1 + Z 1−iT1
1+iT1

)
.

By continuity of RZ(S) in S this is also valid for |Z| < 1
3 and ReS = 1

2 . By (4.3.8) we

then see that PZ(S) equals the product of (4.3.9) and (4.3.10), if |Z| < 1
3 , S = 1

2 + iτ and

τ is real. But since by using [S], (1.8.1.11) (for the case when the absolute value of the

argument of the hypergeometric function is greater than 1) it can be checked that for a

fixed S with ReS = 1
2 the product of (4.3.9) and (4.3.10) is holomorphic on the open disc

|Z| < 1 and tends to the same expression with Z = 1 when Z tends to 1, we finally get

that if S = 1
2 + iτ and τ is real, then

P1(S) =
22n− 1

2 |Γ (s1)|2 |Γ (s2)|2
4π3Γ

(
1
4 − it2 − iτ

)
Γ

(
1
4 + it1 + iτ

)
Γ

(
1
2 + n + it2

)
Γ

(
1
2 + n− it1

)M (n)

(4.3.11)

with the definition

M (ν) =
∫ ∞

−∞

∫ ∞

−∞
M (T1, T2, ν) dT1dT2,

where M (T1, T2, ν) denotes the product of

(1 + iT1)
− 1

4−it2+iτ (1− iT1)
− 1

2−ν+it2 (1 + iT2)
− 1

2−ν−it1 (1− iT2)
− 1

4+it1−iτ

and

F

(
1
2
− ν + it1,

1
4

+ it2 − iτ,
1
2
;
1 + iT2

1 + iT1

)
F

(
1
2
− ν − it2,

1
4
− it1 + iτ,

1
2
;
1− iT1

1− iT2

)
.

4.3.2. Identifying M (ν) with a Wilson function. In the above formula (4.3.11) for

P1(S) we have only the value M (n), but we will determine it by analytic continuation in

ν.

It can be checked (using again [S], (1.8.1.11)) that M(ν) is a holomorphic function for

Reν > 1
4 , and in the case 1

4 < Reν < 1
2 we can deform the path of integration in the

following way. For a fixed T2 instead of the line segment [-R,R] (where R is a large positive

number) we integrate in T1 on the following route:

[−R, a] ∪ [a, b] ∪ [b, c] ∪ [c, d] ∪ [d, R],
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where

a = − 1
R
− iR, b = − 1

R
− i +

i

R
, c =

1
R
− i +

i

R
, d =

1
R
− iR.

Letting R → ∞, the integral on [−R, a], [b, c] and [d,R] tends to 0, and we are left with

two integrals: 1 − iT1 runs once on the ”upper side” and once on the ”lower side” of the

negative real axis. Writing x = iT1−1
2 we get in this way that

∫ ∞

−∞
M (T1, T2, ν) dT1

equals

4 sin
(

π

(
1
2

+ ν − it2

))
(1 + iT2)

− 1
2−ν−it1 (1− iT2)

− 1
4+it1−iτ

∫ ∞

0

M∗ (x, T2, ν) dx,

where M∗ (x, T2, ν) denotes the product of

(2x + 2)−
1
4−it2+iτ (2x)−

1
2−ν+it2

and

F

(
1
2
− ν + it1,

1
4

+ it2 − iτ,
1
2
;

1 + iT2

2(1 + x)

)
F

(
1
2
− ν − it2,

1
4
− it1 + iτ,

1
2
;
−2x

1− iT2

)
.

Then for a given x we compute the integral in T2 in the same way, but this time 1 + iT2

goes to the negative real axis, and we write y = −iT2−1
2 . We finally obtain in this way in

the case 1
4 < Reν < 1

2 that

M(ν) = 16 sin
(

π

(
1
2

+ ν + it1

))
sin

(
π

(
1
2

+ ν − it2

)) ∫ ∞

0

∫ ∞

0

M∗∗ (x, y, ν) dxdy,

where M∗∗ (x, y, ν) denotes the product of

(2 + 2x)−
1
4−it2+iτ (2x)−

1
2−ν+it2 (2y)−

1
2−ν−it1 (2 + 2y)−

1
4+it1−iτ

and

F

(
1
2
− ν + it1,

1
4

+ it2 − iτ,
1
2
;
−y

1 + x

)
F

(
1
2
− ν − it2,

1
4
− it1 + iτ,

1
2
;
−x

1 + y

)
.
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We apply now [S], (1.6.1.6) for both hypergeometric functions, and we compute the result-

ing integral in x and in y by [G-R], p 312, 3.191.2. We get in this way for 1
4 < Reν < 1

2

that M(ν) equals for any Reν − 1
2 < σ < 0 the product of

16
2−

3
2−2ν sin

(
π

(
1
2 + ν + it1

))
sin

(
π

(
1
2 + ν − it2

))
Γ2

(
1
2

)

Γ
(

1
2 − ν + it1

)
Γ

(
1
2 − ν − it2

)
Γ

(
1
4 + it2 − iτ

)
Γ

(
1
4 − it1 + iτ

)

and
1

(2πi)2

∫

(σ)

∫

(σ)

f (S1) g (S2)h (S1, S2) dS1dS2,

where

f (S1) =
Γ

(
1
2 − ν + it1 + S1

)
Γ

(
1
2 − ν − it1 + S1

)
Γ (−S1)

Γ
(

1
2 + S1

) ,

g (S2) =
Γ

(
1
2 − ν + it2 + S2

)
Γ

(
1
2 − ν − it2 + S2

)
Γ (−S2)

Γ
(

1
2 + S2

) ,

h (S1, S2) = Γ
(
−1

4
+ ν + iτ + S2 − S1

)
Γ

(
−1

4
+ ν − iτ − S2 + S1

)
.

For any fixed S2 we have by the Second Barnes Lemma ([S], (4.2.2.2)) that

1
2πi

∫

(σ)

f (S1)h (S1, S2) dS1 =
Γ

(
1
2 − ν + it1

)
Γ

(
1
2 − ν − it1

)
Γ

(− 1
2 + 2ν

)

Γ (ν − it1) Γ (ν + it1)
G (S2)

with

G(S2) =
Γ

(− 1
4 + ν − iτ − S2

)
Γ

(
1
4 + iτ + S2 + it1

)
Γ

(
1
4 + iτ + S2 − it1

)

Γ
(

3
4 − ν + iτ + S2

) .

By shifting the line of integration to the right, we have that

1
2πi

∫

(σ)

g (S2)G (S2) dS2

equals the sum of

Γ
(

1
2 − ν + it2

)
Γ

(
1
2 − ν − it2

)
Γ

(− 1
4 + ν − iτ

)
Γ

(
1
4 + iτ + it1

)
Γ

(
1
4 + iτ − it1

)

Γ
(

1
2

)
Γ

(
3
4 − ν + iτ

) F1

and
Γ (ν + it1) Γ (ν − it1) Γ

(
1
4 − ν + iτ

)
Γ

(
1
4 − iτ + it2

)
Γ

(
1
4 − iτ − it2

)

Γ
(

1
2

)
Γ

(
1
4 + ν − iτ

) F2
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with

F1 = F4,3

(
1
2 − ν + it2,

1
2 − ν − it2,

1
4 + iτ + it1,

1
4 + iτ − it1

1
2 , 3

4 − ν + iτ, 5
4 − ν + iτ

; 1
)

,

F2 = F4,3

(
ν + it1, ν − it1,

1
4 − iτ + it2,

1
4 − iτ − it2

1
2 , 1

4 + ν − iτ, 3
4 + ν − iτ

; 1
)

.

By formula (3.3) of [G1] this sum equals the product of

Γ
(

1
2
− ν ± it2

)
Γ

(
1
4

+ iτ ± it1

)
Γ (ν ± it1) Γ

(
1
4
− iτ ± it2

)

and

φt1

(
t2;

1
2
− ν, ν,

1
4

+ iτ,
3
4

+ iτ

)
. (4.3.12)

By [G2], Lemma 5.3 (i) and (ii) we see that (4.3.12) equals

φτ

(
i

(
1
4
− ν

)
;
1
4

+ it1,
1
4

+ it2,
1
4
− it2,

3
4

+ it1

)
. (4.3.13)

Finally, we get for 1
4 < Reν < 1

2 that M(ν) equals the product of

2−
3
2−2ν16π3 Γ

(
1
4 − iτ − it2

)
Γ

(
1
4 + iτ + it1

)
Γ

(− 1
2 + 2ν

)

Γ
(

1
2 + ν + it1

)
Γ

(
1
2 + ν − it2

)

and (4.3.13).

We now use the fact that the Wilson function φλ(x) is analytic in both variables, which

is mentioned in [G1], and can be seen at once from (3.3) of [G1]. Then, by (4.3.11) and

analytic continuation in ν, if S = 1
2 + iτ and τ is real, we see that P1(S) equals the product

of
|Γ (s1)|2 |Γ (s2)|2 Γ

(− 1
2 + 2n

)

|Γ (s1 + n)|2 |Γ (s2 + n)|2 (4.3.14)

and

φτ

(
i

(
1
4
− n

)
;
1
4

+ it1,
1
4

+ it2,
1
4
− it2,

3
4

+ it1

)
. (4.3.15)

By analytic continuation this is valid for every complex S. Hence we proved (4.3.7), so the

proof of Theorem 4.2 is complete.
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4.4. Proof of Theorem 4.3

4.4.1. The easy statements. We will apply Lemma 4.5 several times. Note that we

have

Mλ (A) =
Σλ(A)

Γ (1−A)
,

where Mλ is defined in Theorem 4.3, and Σλ is defined in Lemma 4.5.

Theorem 4.3 (i) follows from Lemma 4.5 (i) and (ii). Theorem 4.3 (ii) follows from Lemma

4.5 (ii), taking there λ = i
(

1
4 − k

)
and shifting the integration in formula (4.5.1) there to

σ = 5
4 + ε with a small ε > 0.

It remains to prove Theorem 4.3 (iii). This will follow from Lemma 4.4 below and formula

(4.5.2).

4.4.2. Estimation of a Fourier transform. Our aim is to prove that taking a suitable

linear combination of functions GA (see (4.5.3)) for different A, the Fourier transform in

(4.5.2) will be rapidly decreasing, see Lemma 4.4. We first need an elementary claim.

LEMMA 4.3. If a positive integer K is given, then we can find an integer t > 0, complex

(non-integer) numbers A1, A2, . . . , At with ReAi > K (i = 1, 2, . . . , t) and polynomials

Q1, Q2, . . . , Qt with the following property. If a compact set L on the complex plane and

a real σ are given such that

1
2

< σ +
K

2
,

1
2

< σ +
ReA

2

for every A ∈ L, then

Γ
(
S + A−1

2

)
Γ

(
S + A

2

)

Γ
(
S − 3

4

)
Γ

(
S + 1

4 + A
) −

t∑

i=1

Qi (A)
Γ

(
S + Ai−1

2

)
Γ

(
S + Ai

2

)

Γ
(
S − 3

4

)
Γ

(
S + 1

4 + Ai

) = O

(
1

(1 + |S|)K

)

if A ∈ L and ReS ≥ σ.

Proof. Let us remark that since

Γ
(
S + A−1

2

)
Γ

(
S + A

2

)

Γ
(
S − 3

4

)
Γ

(
S + 1

4 + A
) = F

(
−1

4
− A

2
,
3
4

+
A

2
, S +

A

2
; 1

)
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for 1
2 < ReS+ReA

2 by [S], (1.7.6), so there are polynomials P0, P1, . . . , PK−1 such that

Γ
(
S + A−1

2

)
Γ

(
S + A

2

)

Γ
(
S − 3

4

)
Γ

(
S + 1

4 + A
) =

K−1∑

k=0

Pk (A)
Sk

+ O

(
1

(1 + |S|)K

)

if σ is a fixed real number, and A is in a fixed compact set such that 1
2 < σ+ReA

2 for every

element A of this compact set, and ReS ≥ σ.

It is clear that P0 is identically 1. Let t > 0 be maximal with the property that there are

integers 0 ≤ k1 < k2 < . . . < kt ≤ K − 1 such that the t-variable polynomial

det (Pki (Xj))1≤i,j≤t

is not identically 0, and fix such integers ki. Then it is clear that we can find non-integer

numbers A1, A2, . . . , At with arbitrarily large real part such that the number

det (Pki (Aj))1≤i,j≤t

is nonzero, fix such numbers A1, A2, . . . , At. Then we see by Cramer’s rule that there are

polynomials Q1, Q2, . . . , Qt such that

t∑

j=1

Pk (Aj)Qj (A) = Pk (A)

for every k = ki (1 ≤ i ≤ t), but it follows easily by the maximality property above that

it is true also for every 0 ≤ k ≤ K − 1. The lemma is proved.

LEMMA 4.4. If a compact set L on the complex plane and an integer K ≥ 2 are

given such that 1 < ReA for every A ∈ L, then we can find an integer t > 0, complex

(non-integer) numbers A1, A2, . . . , At with ReAi > K (i = 1, 2, . . . , t) and polynomials

Q1, Q2, . . . , Qt such that (see (4.5.3) for the definition of the function GA(x))

∫ ∞

−∞
eiλx

(
GA (x)−

t∑

i=1

2A−AiQi (A)GAi (x)

)
dx = O

(
1

(1 + |λ|)K

)

for any A ∈ L and real λ. The left-hand side here is regular in A on every open subset of

L for every fixed real λ.
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Proof. We choose t, A1, A2, . . . , At and Q1, Q2, . . . , Qt for this K as in Lemma 4.3, and

choose a fixed − 1
4 < σ < 0 in (4.5.3) such that 1

2 < σ + ReA
2 for every A ∈ L. Using the

identity

Γ (2S + A− 1) =
1

2
√

π
22S+A−1Γ

(
S +

A− 1
2

)
Γ

(
S +

A

2

)

the claim follows by repeated partial integration. Indeed, because of the rapid decay in

|S| (assured by Lemma 4.3), we can compute for x > 0 and also for x < 0 the first few

derivatives in x of

GA (x)−
t∑

i=1

2A−AiQi (A)GAi
(x) (4.4.1)

by taking the derivatives of
(
e

x
2 + e−

x
2
)2S in x (in the integral representation of (4.4.1)

derived from (4.5.3), using the above σ there), and we can see that these derivatives of

(4.4.1) are continuous at 0 (we see this fact by shifting the S-integration to the right

using again Lemma 4.3, since Γ (−2S)
(
e2πiS − e−2πiS

)
is regular everywhere). The last

statement is obvious by (4.5.3), the lemma is proved.

In view of our remarks at the beginning of this section, this completes the proof of Theorem

4.3.

4.5. Remaining lemmas

4.5.1. Basic properties of the functions φλ

(
i
(

1
4 − k

))
.

LEMMA 4.5. Write

Σλ(A) =
∞∑

k=1

(−1)k Γ (k −A)
Γ (k)

φλ

(
i

(
1
4
− k

))
.

(i) Σλ(A) is absolutely convergent, if ReA > 1 + 2 |Imλ|, and A is not an integer.

(ii) If ReA is large enough (ReA ≥ 2, say), A is not an integer, and λ is either a real

number or λ = i
(

1
4 − n

)
with a positive integer n, then Σλ(A) is absolutely convergent and

equals the product of

− Γ (1−A)
Γ

(
1
4 ± it1 ± iλ

)
Γ

(
1
4 ± it2 ± iλ

)

100

               dc_344_11



and

1
2πi

∫

(σ)

Γ (±iλ− S) Γ
(

1
4 + S ± it1

)
Γ

(
1
4 + S ± it2

)
Γ (2S + A− 1)

Γ
(
S − 1

4

)
Γ

(
S + 1

4 + A
)
Γ (2S)

dS (4.5.1)

with − 1
4 < σ < 0. In the case λ > 0 we have that

Σλ(A) = − Γ (1−A) e−2πλ

Γ
(

1
4 ± it1 ± iλ

)
Γ

(
1
4 ± it2 ± iλ

)
∫ ∞

−∞
eiλxGA (x) dx, (4.5.2)

where GA (x) denotes

1
2πi

∫

(σ)

Γ (−2S) Γ
(

1
4 + S ± it1

)
Γ

(
1
4 + S ± it2

)
Γ (2S + A− 1)

Γ
(
S − 1

4

)
Γ

(
S + 1

4 + A
)
Γ (2S)

γ (x, S) dS (4.5.3)

with − 1
4 < σ < 0 and

γ (x, S) =
(
e

x
2 + e−

x
2
)2S

e2πiS x
|x| .

(iii) If k is a positive integer and λ is any complex number such that 1
4 ± it1 ± iλ and

1
4 ± it2 ± iλ are not integers, then φλ

(
i
(

1
4 − k

))
equals the product of

1
Γ

(
1
4 ± it1 ± iλ

)
Γ

(
1
4 ± it2 ± iλ

)

and
1

2πi

∫
Γ (±iλ− S) Γ

(
1
4 + S ± it1

)
Γ

(
1
4 + S ± it2

)

Γ
(

1
2 + S ± (

1
4 − k

)) dS (4.5.4)

with an integration route from −i∞ to i∞ such that the poles of Γ
(

1
4 + S ± it1

)
and

Γ
(

1
4 + S ± it2

)
are on the left of the route, and the poles of Γ (±iλ− S) are on the right

of it. In the case λ > 0 we have that (4.5.4) equals

e−2πλ

∫ ∞

−∞
eiλx

(
1

2πi

∫

(σ)

Γ (−2S) Γ
(

1
4 + S ± it1

)
Γ

(
1
4 + S ± it2

)

Γ
(

1
2 + S ± (

1
4 − k

)) γ (x, S) dS

)
dx (4.5.5)

with γ (x, S) as above and − 1
4 < σ < 0.

(iv) If k is a positive integer and λ is real, then for any ε > 0 we have that

∣∣∣∣φλ

(
i

(
1
4
− k

))∣∣∣∣ ¿ε e2π|λ| (1 + |λ|)2 kε. (4.5.6)
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For any given compact set L on the complex plane and any ε > 0 we have
∣∣∣∣φλ

(
i

(
1
4
− k

))∣∣∣∣ ¿ε,L kε+2|Imλ| (4.5.7)

for positive integers k and λ ∈ L.

Proof. Note first that (i) will follow from (4.5.7). Note also that by continuity we may

assume λ 6= 0 in (ii).

By Proposition 5.3 of [G1] we see that if ReA ≥ 2 and A is not an integer, and λ is either

a nonzero real number or λ = i
(

1
4 − n

)
with a positive integer n, then Σλ(A) equals

Γ (−2iλ)
Γ

(
1
4 ± it1 − iλ

)
Γ

(
1
4 ± it2 − iλ

)S(λ) +
Γ (2iλ)

Γ
(

1
4 ± it1 + iλ

)
Γ

(
1
4 ± it2 + iλ

)S(−λ),

where S (L) denotes

∞∑
m=0

(
1
4 ± it1 + iL

)
m

(
1
4 ± it2 + iL

)
m

m! (1 + 2iL)m

∞∑

k=1

(−1)k Γ (k −A)
Γ (k) Γ

(
1
2 + iL + m± (

1
4 − k

)) .

By the given conditions the double sum here is absolutely convergent for L = ±λ. To

see this, we first remark that if iL = 1
4 − n with some positive integer n, then we have

a factor 1
Γ(1+m−n−k) , hence we can take m > n, since the other terms are 0. It is not

hard to check then that we have Re (iL + m) ≥ 0 in every case, and this implies that

the sequence
∣∣∣∣ 1

Γ( 1
2+iL+m±( 1

4−k))

∣∣∣∣ is monotonically decreasing for k ≥ 1. This proves the

absolute convergence of the double sum. Hence Σλ(A) is absolutely convergent, and the

inner sum in S (L) equals

− Γ (1−A) Γ (2iL + 2m + A− 1)
Γ

(− 1
4 + iL + m

)
Γ

(
1
4 + iL + m + A

)
Γ (2iL + 2m)

,

which follows from [S], (1.7.6) in the case when L is real or L = i
(

1
4 − n

)
with a positive

integer n, and follows from [S], (1.7.7) in the case when L = i
(
n− 1

4

)
with a positive

integer n. The expression for Σλ(A) involving (4.5.1) in (ii) then follows easily by shifting

the line of integration to the right in (4.5.1).

Let us now assume that λ is a nonzero real number. Since for ReS < 0 we have

Γ (±iλ− S) = Γ (−2S)
∫ ∞

−∞
eiλx

(
e

x
2 + e−

x
2
)2S

dx (4.5.8)
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by [G-R], p. 332, 3.313.2, hence we see in this case that

Σλ(A) = − Γ (1−A)
Γ

(
1
4 ± it1 ± iλ

)
Γ

(
1
4 ± it2 ± iλ

)
∫ ∞

−∞
eiλxgA (x) dx,

where gA (x) denotes (− 1
4 < σ < 0)

1
2πi

∫

(σ)

Γ (−2S) Γ
(

1
4 + S ± it1

)
Γ

(
1
4 + S ± it2

)
Γ (2S + A− 1)

Γ
(
S − 1

4

)
Γ

(
S + 1

4 + A
)
Γ (2S)

(
e

x
2 + e−

x
2
)2S

dS.

We now extend analytically the function gA (x). To this end, let

D = {z ∈ C : 0 < Imz < 2π, z /∈ [πi, 2πi)},

and observe that log
(
e

z
2 + e−

z
2
)

can be defined holomorphically on the domain D in such

a way that this function is real on (0, iπ). Denote this unique holomorphic function by

h(z). It is easy to see that

|Imh (z)| < π

for z ∈ D, hence (− 1
4 < σ < 0)

gA(z) :=
1

2πi

∫

(σ)

Γ (−2S) Γ
(

1
4 + S ± it1

)
Γ

(
1
4 + S ± it2

)
Γ (2S + A− 1)

Γ
(
S − 1

4

)
Γ

(
S + 1

4 + A
)
Γ (2S)

e2Sh(z)dS

is a holomorphic function on D. We claim that gA(z) extends holomorphically to the open

strip 0 < Imz < 2π. Indeed, if ε > 0 is fixed, then we can take a small open neighborhood

G of the closed line segment [iε, i(2π − ε)] such that

∣∣e z
2 + e−

z
2
∣∣ < 2

for z ∈ G. Then we can compute gA(z) for z ∈ G by shifting the path of integration to

the right, and since 2S is a nonnegative integer at the poles, we get in this way that gA(z)

extends holomorphically to G, hence to the whole strip 0 < Imz < 2π. Then we can see

that ∫ ∞

−∞
eiλ(x+ih)gA (x + ih) dx

is independent of 0 < h< 2π, and taking the limits as h → 0 + 0 and h → 2π − 0, using

the dominated convergence theorem, we finally complete the proof of (ii).
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Completely similarly as in the case of Σλ(A) in (ii), we can prove the statements of (iii).

Since we can take σ arbitrarily close to 0 in (4.5.5), and φλ

(
i
(

1
4 − k

))
is even in λ, we easily

get (4.5.6) from (iii). Formula (4.5.7) can be seen from (4.5.4) using that φλ

(
i
(

1
4 − k

))
is

entire in λ. The lemma is proved.

COROLLARY 4.1. (i) We have

φ− 3
4 i

(
i

(
1
4
− k

))
= c

(−1)k

k3/2
(1 + o(1)) (4.5.9)

with a nonzero constant c as k →∞.

(ii) For any given compact set L on the complex plane and any ε > 0 we have

∣∣∣∣φλ

(
i

(
1
4
− k

))∣∣∣∣ ¿ε,L kε+2|Imλ| (4.5.10)

for positive integers k and λ ∈ L.

(iii) If an (n ≥ 1) is any given sequence satisfying an = O
(
nd

)
with a number d < 1

2 , then

for any positive integer M there are constant coefficients bm such that

∞∑
n=1

anφi( 1
4−n)

(
i

(
1
4
− k

))
=

(−1)k

k3/2

(
M−1∑
m=0

bm

km
+ O

(
k−M

)
)

(4.5.11)

as k → ∞ over positive integers, and the left-hand side here is absolutely convergent for

every integer k ≥ 1.

Proof. Part (i) follows from (4.5.4). Indeed, we shift the route of integration to the right

of ReS = 3
4 in (4.5.4), and we get the first pole at S = 3

4 . In the same way (but this time

shifting the route of integration a bit further, to a large but fixed ReS) we get part (iii).

Part (ii) is contained in Lemma 4.5 (iv).

4.5.2. Properties of a function transform. The next lemma is used in the proof of

Lemma 4.1.

LEMMA 4.6. Assume that K is a positive number, and f(τ) is an even holomorphic

function for |Imτ | < K, it satisfies that

∣∣∣f(τ)e−2π|τ | (1 + |τ |)K
∣∣∣
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is bounded on the domain |Imτ | < K, and

∫ ∞

−∞
f (τ)

Γ
(

1
4 ± iτ

)
Γ

(
3
4 ± iτ

)
Γ

(
1
4 ± it2 ± iτ

)

Γ (±2iτ)
τ jdτ = 0

for every integer 0 ≤ j ≤ K − 10 (say). For ReA < 0 define

G(A) =
∫ ∞

−∞
f (τ)

Γ
(

1
4 ± iτ

)
Γ

(
3
4 ± iτ

)
Γ

(
1
4 ± it2 ± iτ

)

Γ (±2iτ)
Γ (−A± iτ) dτ. (4.5.12)

Then, if k is a positive integer and K is large enough in terms of k, then G(A) extends

meromorphically to the domain ReA< k with possible singularities only at the points

1
4

+ j,
3
4

+ j,
1
4

+ it2 + j,
1
4
− it2 + j

with integers 0 ≤ j ≤ k − 1, it has at most simple poles at these points, and

∣∣∣G(A)eπ|A| (1 + |A|)k
∣∣∣

is bounded on the set − 1
4 ≤ ReA<k, |ImA| > 1 + |t2|.

Proof. We see by (4.5.8) that for ReA < 0 we have

G(A) = Γ (−2A)
∫ ∞

−∞
F (x)

(
e

x
2 + e−

x
2
)2A

dx (4.5.13)

with the definition

F (x) =
∫ ∞

−∞
f (τ)

Γ
(

1
4 ± iτ

)
Γ

(
3
4 ± iτ

)
Γ

(
1
4 ± it2 ± iτ

)

Γ (±2iτ)
eiτxdτ.

It is not hard to see that if k is a positive integer, and K is large enough in terms of

k, then, on the one hand, F is k times continuously differentiable on the real line and((
d
dx

)l
F

)
(0) = 0 for every 0 ≤ l ≤ 2k, on the other hand

(
d
dx

)l
F is even for even l and

odd for odd l, and (shifting the line of τ -integration upwards, using that t2 6= 0)

((
d

dx

)l

F

)
(x) =

k−1∑

j=0

e−( 1
4+j)x

(
Aj,l + Bj,le

− x
2 + Cj,le

−it2x + Dj,le
it2x

)
+ O

(
e−kx

)

as x → +∞ with some constant coefficients for every 0 ≤ l ≤ k.
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Define now F0 = F , and

Fj+1(x) = −
(

d

dx

(
2Fj(x)

e
x
2 − e−

x
2

))
(x)

for j ≥ 0. It is not hard to see that for any 0 ≤ j ≤ k the function Fj(x) is continuous at

0, and the behaviour of the function

Fj (x)
(
e

x
2 + e−

x
2
)j

as x → +∞ is the same as we saw above for the derivatives of F . Then by repeated partial

integration, we get from (4.5.13) for − 1
4 ≤ ReA<0 that

G(A) = Γ (−2A)
1

(2A + 1)k

∫ ∞

−∞
Fk (x)

(
e

x
2 + e−

x
2
)2A+k

dx.

By the above-mentioned properties of F k this almost proves the lemma, using also the

easy fact that if w is a given complex number and M > 0 is an integer, then there are

constants γw,1,γw,2,...,γw,M−1 such that

ewx =
(
e

x
2 − e−

x
2
) M−1∑

m=0

γw,m

(
e

x
2 + e−

x
2
)2(w− 1

2−m) + O
(
e(w−M)x

)

for real x as x →∞.

The only fact which still requires a proof is that G(A) is regular at the poles of Γ (−2A).

For the proof of this fact we return to (4.5.12).

Let b be a large positive integer (we will fix it later). Since we have

Γ (z)
Γ (z + b)

=
b−1∑
a=0

ca,b (z + a)−1

with some constants ca,b, so, applying it for z = −A± iτ , we see that

Γ (−A± iτ) = Γ (−A± iτ + b)
∑

0≤a1,a2≤b−1

ca1,bca2,b

(−A + iτ + a1) (−A− iτ + a2)
.

We use the identity

−2iτ + a2 − a1

(−A + iτ + a1) (−A− iτ + a2)
=

1
−A + iτ + a1

− 1
−A− iτ + a2

, (4.5.14)
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and because of the presence of the factor 1
Γ(±2iτ) , shifting the line of integration in (4.5.12)

in the case ReA < 0 to Imτ = ± b
2 (the minus sign is used in the case of the first term on

the right-hand side of (4.5.14), and the plus sign is used in the case of the second term),

since b can be arbitrarily large, we get such an expression for G(A) which proves that it is

regular at the poles of Γ (−2A). The lemma is proved.

4.5.3. Lemmas needed for Theorem 4.2

LEMMA 4.7. Let n ≥ 0 be an integer, and let t and a be real numbers. Then we have

that

(i) if − 1
4 < Imτ < 0, then

2πΓ
(

1
4 + it± iτ

)
Γ

(
1
2 + a− it + n

)

22iτn!Γ
(

1
2 + a± it

)
Γ

(
3
4 − a + iτ

) F3,2

(−n, 1
4 + iτ + a, 1

4 − iτ + a
1
2 + it + a, 1

2 − it + a
; 1

)
(4.5.15)

equals

∫ ∞

−∞

(
1 + T 2

)− 1
2−iτ

(
1 + iT

1− iT

) 1
4−a (∫ ∞

0

y
5
4+it−iτL

− 1
2

n (y) e−y 1+iT
2

dy

y2

)
dT ; (4.5.16)

(ii) for any τ , (4.5.15) equals

2πΓ
(

1
4 + it± iτ

) (
1
2

)
n

22iτn!Γ
(

1
2 + a + it

)
Γ

(
3
4 − a + iτ

)F3,2

(−n, 1
4 + iτ + it, 1

4 − iτ + it
1
2 + it + a, 1

2

; 1
)

. (4.5.17)

Proof. By Corollary 3.3.5 of [A-A-R] we see (ii). Since for k ≥ 0 and real T we have

∫ ∞

0

y
5
4+it−iτ+ke−y 1+iT

2
dy

y2
=

(
1 + iT

2

)−( 1
4+it−iτ+k)

Γ
(

1
4

+ it− iτ + k

)

by [G-R], p 884, 8.312.2, hence by [G-R], p 990, 8.970.1 and p 899, 8.381.1 we get that

(4.5.16) equals (4.5.17) for − 1
4 < Imτ < 0, the lemma is proved.

COROLLARY 4.2. Let n ≥ 0 be an integer, let t and a be real numbers, and let

− 1
4 < Imτ ≤ 0. Then we have that (4.5.15) equals

∫ ∞

0

y
5
4+it−iτL

− 1
2

n (y) I (a, y, τ) e−
y
2
dy

y2
,

where I (a, y, τ) denotes the sum of

I1 (a, y, τ) =
∫ Ta,y

−Ta,y

(
1 + T 2

)− 1
2−iτ

(
1 + iT

1− iT

) 1
4−a

e−y iT
2 dT,
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I2 (a, y, τ) = −2i

y

∫

T>|Ta,y|

∂

∂T

(
(
1 + T 2

)− 1
2−iτ

(
1 + iT

1− iT

) 1
4−a

)
e−y iT

2 dT,

and

2i

y

(
1 + T 2

a,y

)− 1
2−iτ

((
1− iTa,y

1 + iTa,y

) 1
4−a

ey
iTa,y

2 −
(

1 + iTa,y

1− iTa,y

) 1
4−a

e−y
iTa,y

2

)
,

and here Ta,y =
(
y + 1

y + |a|
)10

.

Proof. For − 1
4 < Imτ < 0 this follows at once from Lemma 4.7 (i) by partial integration

in T . Since everything is absolutely convergent in this new expression even for Imτ = 0,

by continuity we get the result.

LEMMA 4.8. If y > 0 and z, w are complex numbers, write

Sy,z(w) =
∞∑

l=0

(−1)l

(
1
2

)
l
Γ (z − l)

L
− 1

2
l (y)wl.

If Reb > 0, Res >
∣∣∣ w
w−1

∣∣∣ and |w| < 1
2 , then

∫ ∞

0

e−syyb−1Sy,z(w)dy =
Γ (b)

(
1− w + w

s

)z−1
s−b

Γ (z)
F ( 1− z, 1

2 − b, 1
2 ; w

s+w−sw ) .

Proof. By [G-R], p 990, 8.970.1, for |w| < 1
2 we have for any y > 0 that Sy,z(w) equals

∞∑

k=0

yk

k!
(

1
2

)
k

∞∑

l=k

(−1)l−k

(l − k)!Γ (z − l)
wl

(for |w| < 1
2 the double sum is absolutely convergent, since

∣∣∣ (−l)k

k!

∣∣∣ ≤ 2l). By the binomial

theorem, the inner sum here is wk (1−w)z−k−1

Γ(z−k) . For a given k the y-integral can be computed

by [G-R], p 884, 8.381.1, and since

F

(
1− z, b,

1
2
;

w

s(w − 1)

)
= F

(
1− z,

1
2
− b,

1
2
;

w

s + w − sw

)(
1 +

w

s(1− w)

)z−1

by [G-R], p. 998, 9.131.1, we get the lemma.

LEMMA 4.9. (i) Let n ≥ 0 be an integer, and y > 0. If y ≥ 100n, then

∣∣∣L−
1
2

n (y)
∣∣∣ ≤ Ce

y
4
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with some absolute constant C.

(ii) If N ≥ 0 is an integer and y > 0, then

2N∑

n=N

∣∣∣L−
1
2

n (y) e−
y
2

∣∣∣
2

≤ C log (N + 2)

with some absolute constant C.

Proof. It is easy to see that (
n− 1

2
t

)
≤ C2n

for 0 ≤ t ≤ n with some absolute constant C, so by [G-R], p 990, 8.970.1 we have for any

M ≥ 1 that ∣∣∣L−
1
2

n (y)
∣∣∣ ≤ C2nMn

n∑
m=0

(
y
M

)m

m!
≤ C (2M)n

e
y
M .

Taking M = 100 we get (i).

For the proof of (ii), remark that by [G-R], p 992, 8.975.1 we have for any 0 < r < 1 that

L
− 1

2
n (y) e−

y
2 =

1
2πi

∫

|z|=r

(1− z)−
1
2 ey( z

z−1− 1
2 ) dz

zn+1
.

Since Re
(

z
z−1 − 1

2

)
≤ 0 for |z| < 1, hence taking r = 1− 1

N+2 , from Parseval’s identity we

obtain (ii).
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