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1. Bevezetés

A biolodgiai rendszerekben a struktira és a funkcid szerves egységet alkot. A
szovetek, szervek struktirdjanak meghatarozdsdban dontd szerepe van az
extracellularis matrixnak, ezen belill is a bazalis membrannak, mely kompartmentekre
osztja fel a szoveteket, szerveket és a parenchimadlis sejtek differencidlt allapotanak
fenntartasaért is felelds (1). Ugyan a morfologiai vizsgald eszkdzok hasznalata
Oonmagaban is hozzajarulhat a biologiai folyamatok jobb megértéséhez, a morfologiai
vizsgalatok lényege, hogy az egyes molekularis elemeket képes hozzarendelni a
strukturédlis elemekhez. A fizioldgias és patoldgias folyamatok megismeréséhez
elengedhetetlen a strukturalis elemek és a hozzdjuk rendelt molekuldk valtozdsanak
nyomon kovetése. A molekularis bioldgiai moddszerek eldretorésével azonban a
morfologiai vizsgalatok érdemteleniil a hattérbe szorultak. Kiterjedt morfoldgiai
vizsgalatok hidnyaban azonban a tulzott altalanositasok csapdajaba eshetiink, mely a
nagy raforditdssal kidolgozott molekuldris terdpidk hatékonysdgit jelentdsen
csOkkentheti. Ennek a szemléletnek a példai az angiogenezis kutatas témakorébdl azok
a nézetek, melyek szerint az érképzédés dominalod formaja minden szovetben, szervben
a bimbo6zd (,,sprouting”) angiogenezis, illetve hogy a daganat ereinek strukturéja
alapvetéen kiilonbozik a normal erek strukturajatol (2,3). Ezek az egyszeriisitések
Osszefliggésben lehetnek az anti-angiogenezis terapidk nem megfeleld hatékonysagaval
(4-6). Mint az alabbiakban majd lathatjuk, a kép sokkal arnyaltabb, igazan hatékony
terapidk kidolgozasdhoz elkeriilhetetlen lesz az egyes célszervek és az azokban
novekvo kiilonbozé daganatokban lezajlo folyamatok részletes morfoldgiai vizsgalata.

Az aladbbiakban két eltérd teriileten (méjregeneracid és daganatos attétképzés)
tett megfigyeléseink alapjan szeretnénk ramutatni a morfologiai vizsgalatok
fontossagara.

A m4j kitlind regeneracids képessége régota jol ismert (7). A klasszikus és
alaposan tanulmanyozott, patkdnyokon kialakitott modellben a m4j; 2/3-4nak
eltavolitasa utan a majtomeg 7-10 nap alatt teljesen regeneralédik. Ez az egyik
legtobbet tanulmanyozott in vivo, intenziv sejtproliferacioval jar6 nem daganatos
novekedési reakcido. A regenerdcio a megmaradt lebenyek sejtjeinek, dontden a
hepatocitaknak a kompenzatorikus hiperpldzidja révén valosul meg, tehat az eltavolitott

lebenyek nem nének vissza.
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Az elmult két évtizedben a majregeneracié alternativ, ,tartalék”
mechanizmusaira deriilt fény. Ha a majsejtek proliferacidja gatolt, akkor j majsejtek
az Ossejtek aktivalasaval és az ugynevezett ovalis sejtek kozbeiktatasaval keletkeznek.
Az utobbi években a kutatds homlokterébe keriilt a hemopoetikus dssejtek segitségével
lezajlo szdvetregeneraci6. Bar szamos kozlemény igazolni latszik, hogy a
hemopoetikus 0Ossejtek transzdifferencidlodhatnak kozvetleniil, vagy ovalis sejtek
kozbeiktatasaval majsejtekké, a folyamat hatasfoka nagyon alacsonynak bizonyult.
Magit a transzdifferenciaci6 folyamatat is tobb szerzd kétségbe vonja, hiszen
kimutattdk, hogy a legtobb esetben csak sejtfiziordl van sz6 (8,9). A hemopoetikus
Ossejtek segitségével lezajlo regeneracio jelentosége azért is megkérddjelezhetd, mivel
mint fentebb lathattuk, maga a m4;j is tobb regeneraciés mechanizmussal rendelkezik,
melyek a koriilményektdl fliggden aktivalddnak (8).

A fentiek alapjan lathatd, hogy a m4j dssejtjeinek lokalizacidja €s fenotipusa
nem ismert, tehat ezeknek a meghatdrozasa nagyon fontos lenne ezen sejtpopulécio
késdbbi terdpias hasznosithatésaga szempontjabol.

A malignus tumorok legjellemzObb tulajdonsaga, hogy ndvekedésiik soran
tavoli attéteket képeznek. (10,11). Legtobb esetben ez vezet a kiilonbdzé malignus
betegségben szenvedd beteg haldldhoz. A metasztazisképzés folyamatat tobb,
egymastol tobbé-kevésbé elkiilonithetd, de egyenként igen bonyolult [épésre
oszthatjuk.

1/ Tumor ndvekedés, tumorsejt leszakadas, szovetinvadzio

2/ Angiogenezis

3/ Intravazacid

4/ Kolesonhatés a vér alakos elemeivel €s oldott alkotorészeivel

5/ Mechanikus vagy specifikus elakadas/kitapadas a célszerv érrendszerében.
6/ Extravazacio

A metasztazisképzés folyamata tobbszor is ismétlodhet, igy masodlagos illetve
harmadlagos metasztazisok is kialakulhatnak. Ezért, bar a tumorok klinikai
felismerésekor mar legtobbszor mikrometasztasisok vannak jelen, ezen Iépések
nagyobb részének gatlasa megakadalyozhatja ijabb metasztazisok kialakulasat.

A masodlagos és harmadlagos metasztazisok kialakuldsa nagyrészt ugynevezett

generalizacids helyeken keresztiil torténik, melyek féleg nyirokcsomok, maj és tiidd
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lehetnek. A generalizacids helyeket altalaban az anatémiai viszonyok hatdrozzak meg,
mely legtobbszor a vénas illetve nyirokelfolydsnak felel meg. Tumorsejtek azonban
atjuthatnak a szervek kapillarishaloézatdn anélkiil, hogy ott elakadnanak és attéteket
hoznanak 1étre. A két folyamat eredményeképpen johet 1étre a metasztazisok bizonyos
tumorokra jellemzd szerveloszlasa, melynek kialakuldsat két egymasnak ellentmondo,
bar egymast nem kizard elmélet probalja magyardzni. Az egyik a "mechanikus" elmélet,
mely szerint a primer tumorbol elszabadult tumorsejtek az elsd elért szerv
kapillarishdlozataban hoznak Iétre attéteket, mig a "mag-talaj" tedria szerint a
tumorsejtek és a célszerv specifikus tulajdonsdgai hatarozzak meg a metasztazisok
kialakulasat és ez fliggetlen az anatdmiai viszonyoktol. Mindkét hipotézist szamos
human és allati tumor vizsgalatabol szarmazd adat tdmasztja ala (12,13)

A tumor indukalt angiogenezis kettds szerepet jatszik a tumorok
progressziodjaban. Az ujonnan képzodott erek egyrészt tdpanyaggal latjak el a tumort,
masrészt novelik a hematogén uton képzddott metasztazisok kialakuldsanak
valoszinliségét. Az utobbi évek kutatdsi eredményei bizonyitottak a nyirokér
angiogenezis 1étét is, valamint az Gjabban elérhetd specifikus nyirokér markerek
segitségével Osszefiiggést talaltak a nyirokérdenzitas és a tumorok metasztatizald
képessége kozott (14). Az Gjonnan képzdédott erek nagyon vonzod terapids célpontot
kinalnak, hiszen az erek genetikailag stabil sejtekbdl épiilnek fel, szemben a
tumorokkal (béar Gjabb eredmények a proliferalé endotélsejtek genetikai instabilitdsara
utalnak), azonban a szdmos probalkozas ellenére az anti-angiogén terdpidk nem
valtottak be a hozzajuk fiizott reményeket (4-6).

A metasztazisképzés sordn, elsdsorban az epitelidlis tumorok esetében ahhoz,
hogy a tumorsejtek megtelepedhessenek a célszervben, harom bazalis membranon kell
athatolniuk (epitelidlis bazalis membran, vaszkularis bazalis membran az intravazacio
€s extravazacid soran), melyet a tumorterjedés legfébb gatjanak tekintenek. A
tumorsejtek bazalis membranon torténd athatoldsanak mechanizmusara még mindig a
Liotta és mtsai. altal kordbban felallitott haromlépéses hipotézis a legelfogadottabb
(15). Eszerint a tumorsejtek specifikus a bazalis membran komponenseit felismerd,
foleg integrin tipusu receptorokkal tapadnak a bazalis membranhoz. Ezutan torténik
meg a bazalis membran emésztése proteolitikus enzimek kaszkadrendszerének

segitségével, melyet a tumorsejtek migracidja kovet.
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2. Célkitizések

Vizsgalataink két nagy kérdéskort oOlelnek fel, a majregeneraciot illetve a
metasztazisképzést. A legfontosabb megvalaszolandd kérdéseket az alabbiakban
foglalhatjuk dssze.

1. M4jregeneraciod

Milyen a patkany illetve huméan m4;j interlobuldris epeuthdlozatanak szerkezete
¢s immunfenotipusa?

Hogyan zajlik le a m4j szerkezetének helyreéllitasa majregeneracio soran?

Hol helyezkedhetnek el a majregeneracidoban résztvevo Ossejtek?

2. Metasztazisképzés

2a. Tumor indukalt angiogenezis

Milyen alapvetd angiogenezis formdak figyelhetdk meg primer tumorok
kornyezetében?

Van-e celtérés az angiogenezis folyamataban kiilonb6zé szervekben,
szovetekben? Befolyésolja-e az angiogenezis folyamatat a tumorok differencidcios
foka, a célszerv (bazalis membran) szerkezete?

Hogyan jatszodik le a kisérletes majmetasztazisok arterializalodésa?

2b. Tumorsejt motilitas és szervpreferencia

Hogyan valtoznak a tumorsejtek mozgasa soran a sejtadhézios helyek és azok
komponenseinek eloszlasa?

Befolyéssal van-e a célszerv kapillarisainak szerkezete és extracellularis matrix

Osszetétele az extravazacio folyamatara illetve a szervpreferenciara?



dc_301 11

3. Anyag és modszer

3.1. Allatkisérletek

A mdj epeutrendszerét normal kiilonb6zd kort patkany illetve humén majakon
modellben vizsgaltuk. Az ovalis sejtek szerepét a majregeneracioban egy, a Solt-
Farber- féle karcinogenezis modell (patkdny) modositott valtozataban vizsgaltuk, mely
2 hetes acetilaminofluorén (AAF) kezelésbdl és a kezelés kozepén elvégzett parcialis
hepatektomiabdl all.

Az angiogenezis ¢és metasztazis vizsgalatokhoz kiilonb6z6 humdan in vitro,
valamint egér in vivo fenntartott tumorvonalakat hasznaltunk. Primer tumorokban
lezajlé angiogenezist a tumorsejtek (B16 melanoma, C38 kolon karcindma illetve
HT25 human kolon karcinéma) intrakutan vagy szubkutan oltasat kovetden vizsgaltuk.

Agy metasztazisokban lezajlé angiogenezist a tumorsejtek karotiszba (3LL-HH
karcinoma, B16, A2058, WM983 melanomédk, 293 veserdk), vagy direkt az
agyszovetbe torténd oltdsat kovetden vizsgaltuk (ZR-75-1 emlérdk, HT25 kolon
karcindéma, H1650 tiid6 adenokarcindma, HT1080 fibroszarkoma).

Madjmetasztazisok vaszkularizaciojat a tumorsejtek Iépbe (C38 kolon
karcinéma,) torténd oltasat kdvetden vizsgaltuk. Az arterializacié folyamatat korr6zios
készitmények segitségével vizsgaltuk (A2058 melanéma, Lewis Lung karcindma, C38
kolon karcinoma).

e

oltottunk farokvéndba, sziv bal kamraba, és Iépbe.

3.2. Morfolégiai médszerek

Megfigyeléseink dontd tobbsége fagyasztott metszeteken illetve sejtkultirakon
elvégzett, immunfluoreszcens vizsgalatokon alapul. A mintdk analizisét legtobbszor
konfokalis mikroszkoppal végeztik el, mely lehetdséget adott a detektalt jelek
haromdimenzids rekonstrukciojara is. A kapott eredményeket normal illetve immun-
elektronmikroszkopos vizsgalatokkal egészitettik ki. 3D rekonstrukciot félvékony
sorozatmetszetek felhaszndldsaval is végeztiink. A korrézios készitményeket sztereo-

illetve szkenning elektron mikroszkop segitségével vizsgaltuk.
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Vinkulin eloszlasat a sejtmigracio soran ¢€l0 sejtekben GFP-vinkulin
konstrukcio transzfekciojat kovetden vizsgaltuk.

Az ovalis sejtek sorsanak kovetését retrovirus jeloléssel végeztiik el.
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4. Eredmények és megbeszélés

4.1. Majregeneracio

4.1.1. A mdj epeutrendszerének szerkezete és immunfenotipusa (I,11).

Miel6tt ratérnénk a méjregeneracio targyalasara vessiink egy pillantast a patkany
€s human m4j interlobuléris epeutrendszerének szerkezetére €s fenotipusara, mert mint
latni fogjuk ez a rendszer jelentOs szerepet jatszik majd a maj dssejteket is mobilizald
regeneracidja soran.

A Hering csatorndk, az epeutrendszer legtavolabbi szakaszai, melyek
Osszekottetést biztositanak az epeutak €s a hepatocitak alkotta epekanalikusok kozott.
Elnevezésiiket leirojukrol kaptak, aki eldszor figyelt meg olyan rovid, 2-3 sejtsor
hosszlisagu duktulusokat a méjban, melyek alkotasaban epeuthdmsejtek és hepatocitak
egyarant részt vesznek. Egyértelmli azonositasuk csak elektronmikroszkopos
vizsgalattal lehetséges.

Patkdnymajban ezek a strukturdk a ,limiting plate”-en kiviil periportalisan
helyezkednek el, tehat sosem hatolnak be a parenchimaba. Vizsgélataink kimutattak,
hogy ezek a strukturdk a CK19+/CK7- immunfenotipust hordozzak. Ugyanakkor a
nagyobb interlobularis epeutak CKI19+/CK7+ fenotipustak. CK19+/CK7-
immunfenotipusu epeutak azonban nem talalhatok huméan majakban, ebben az esetben
minden epeut CK19 illetve CK7 pozitiv. A CK7 negativ epeutak sajatos entitasat
igazolja, hogy mig a CK7 pozitiv epeutak mérete a maj hilusa felé fokozatosan
novekszik, addig a CK7 negativaké allandonak adddott, majbeli helyzetiiktdl
fiiggetlentil. A CK7 negativ epeutak tobb szdz mikrométer hosszii kanyarulatos
struktarak, melyek tobb helyen kapcsolodhatnak a majsejtekhez. Bar a Hering kanalisok
alapjan ez a struktira az epeultrendszernek egy morfologiai €s funkcionalis egységét
alkotja (I).

Ep, huméan majakban is jellemeztiik az epeitrendszer legdisztalisabb szakaszat
(II). A CK7 immunreakci6é alkalmas volt az epeutak és a hepatocitdk egyértelmi
elkiilonitésére. A CK7-tel jelolt metszetek konfokalis mikroszkoppal torténd vizsgalata,
illetve sorozatmetszetekbdl szamitogép segitségével végzett 3D rekonstrukcios
vizsgalatok segitségével megallapitottuk, hogy az ép emberi majakban az epeutak a

periportalis kotdszovetbdl kilépve latszolag beterjednek a majparenchimaba. Az



dc_301 11

infiltracid azonban csak latszélagos, mert az emberi majban is kezdetleges formaban
jelen vannak a néhany mas allatfajban fellelhetd jol fejlett interlobularis vaszkularis
(kotészovetes) szeptumok, amelynek mentén az epeutak terjednek, azaz
intraparenchimdlisak, de mégsem Iépnek be a lebenykék allomanydba. Az epeutak
kozelében NG2 pozitiv strukturdk is megfigyelhetok voltak, amely arteriolak jelenlétére
utal. A tradicionalis, eredetileg leirt Hering csatornak csak ezen epeutak terminalis
szegmentumanak felelnek meg. Ezeknek a hosszii duktulusoknak az egységes, ¢és
nagyobb epeutaktol eltérd (EMA-/CD56+/CD133+) immunfenotipusa arra utal, hogy
sajatos funkcionalis egységet alkotnak.

Kiilonboz6 életkortt human ¢és patkany majakbol szarmazé mintak vizsgalataval
megallapitottuk, hogy ez az elrendezddés és immunfenotipus az Ujsziildttek majaban
még nem alakul ki, hanem posztnatalisan jon létre.

Osszefoglalva tehat alapvetd kiilonbség van a patkdny és a human maj
szerkezetében. Mig patkany méjban az epeutak a ,limiting plate”-en végzddnek, human
majban az epeutak a lebenyke palastja mentén futnak. Ez a kiilonbség hatdssal van az
arterias rendszer szerkezetére is. Miutan az artérids rendszer a majban foleg az epeutak
vérellatasaért felelés, a human majban a szertedgazo és a parenchimaba is beterjedd
eputrendszert egy ugyanolyan felépitési artérids rendszer is koveti, mely végil a
szinuszoidokba 0mlik. Ezzel szemben patkdny majban az epeutak nem hagyjak el a
portalis teret, ezért az artérias rendszer elvezetése féleg a portalis rendszerrel alkotott
anasztomozisokon keresztiil valosul meg. Az artérids rendszer hasonld szerkezetli egér
majban is, melynek részletesebb ismertetésére alabb keriil sor. Mind patkdny, mind

human majban a kis epeutak morfoldgiai és funkciondlis egységet alkotnak

4.1.2 Mdjregenerdcio hepatektomidat kovetoen (111).

A majszdvet legaltalanosabban elfogadott morfologiai alapegysége a lebenyke
(lobulus). Az egyes majlebenyek regenerativ ndvekedése elvileg haromféleképpen
torténhet meg: a/ a majlebenykék méretének nodvekedése, b/ 1) maéjlebenykék
képzddése, c/ a két folyamat kombinalddasa révén. Meglepd modon napjainkig sem volt
tisztazva, hogy a fenti harom lehetdség koziil melyik torténik meg a majregeneraciod
soran. Ennek magyardzata, hogy a maj lebenykéinek mérete meglehetésen nehezen

vizsgalhato. A méjlebenykék egy bonyolult hierarchikus rendszert alkotva épitik fel a

10
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majszovetet. Ezen a hierarchidn beliill a lebenykék mérete valtozik a hilustol vald
tavolsag alapjan, tovabba a kiilonb6zo lebenykék tengelye sem parhuzamos. Ebbol
adodik, hogy hagyoményos szovettani metszeteken a lebenykék méretérdl szinte semmi
felvilagositds nem nyerhetd. Munkacsoportunk kidolgozott egy 1j moddszert mely
lehetévé teszi a majlebenykék méretének objektiv vizsgalatat. Azokat a korabbi
megfigyeléseket hasznaltuk ki, hogy a/ a majtok alatti lebenykék az emlitett
hierarchiaban azonos helyet foglalnak el b/ tengelyiik, mely lényegében azonos a
centralis véndk legperiféridsabb dgaval, merdleges a m4j felszinére. Ezért ha a hepatikus
vénakon keresztiil fluoreszcens miigyantaval retrograd modon feltoltjiikk a centralis
vénak agrendszerét és rajtuk keresztiil a szinuszoidokat, a maj felszinén megbizhatéan
kirajzolodnak a lebenykék hatdrai. A méj felszinérdl készitett felvételeken a lebenykék
tetszOleges paraméterei objektiven meghatdrozhatok. Modszeriink természetesen csak a
felszini lebenykék méretérdl nyajt egyértelmi felvilagositast, de az emlitett hierarchikus
elrendezddés miatt ez legaldbbis tendencidjaban tiikrozi a mélyben zajlé folyamatokat
is.

A fenti modszert alkalmazva Gsszehasonlitottuk a mdj posztnatalis, fizioldgias
novekedését a sebészi parcialis hepatektomiat kovetd regeneracioval. Megallapitottuk,
hogy az egyedfejlodés sziiletést kovetd fazisaban a maj tomegének gyarapodasadhoz 1j
lebenykék képzddése és a lebenykék fokozatos ndvekedése is hozzdjarul, ez utobbi
folyamatban pedig szerepe van a hepatocitdk megnagyobbodasanak is. A regenerativ
novekedés sordn viszont kizardlag a mar meglévd lebenykék mérete novekszik, 1j
lebenykék nem képzddnek és a hepatocitdk sem képesek tovabbi megnagyobbodasra. A
regeneracid eredményeként megnagyobbodott lebenykék viszont bonyolultabb
szerkezetliek. Ez tiikkrozodik az egy centrdlis vénat koriilvevd portalis vénadgak
szdmanak megnovekedésében, tovabba abban, hogy kiilonb6z0 zondlis megoszlast
mutaté enzimek (pl. CYP450IIEl, glutamin szintetdz) a szokasos koncentrikus
elrendezddés helyett karéjozott mintazatot mutatnak. Feltételezésiink szerint ezen utobbi
szerkezeti valtozasok oka, hogy az idealis porto-centralis tavolsag ne ndvekedjen

jelentds mértékben a lebenykék megnagyobbodasa kovetkeztében.
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4.1.3. Mdjregenerdcio a mdj dssejtjeinek részvételével (1, IV-VII).

Az Ossejtek részvételével lezajlo majregeneraciét az ugynevezett AAF/Ph
modellben vizsgaltuk, melynek lényege, hogy AAF kezelés hatdsara a hepatocitdk
osztoddsa gatolt, aminek kovetkeztében a parcidlis hepatektomiaval kivaltott
proliferaciés stimulus hatasara Ossejtek aktivalodasaval zajlik le a regeneracio.
Proliferald ovalis/progenitor sejtek - az Ossejtek leszarmazottjai - szaporodnak fel a
majban ¢és késObb majsejtekké differencidlodnak. Az dssejtek lokalizacidja a majban,
fenotipus markeriik nem 1évén, pontosan nem ismert. A legtobb adat arra utal, hogy az
Ossejtek az epeutak és a hepatocitdk kozott elhelyezkedd specialis képletek a fentebb
jellemzett Hering csatorndk sejtjei kozott talalhatok. Mas elképzelések szerint az
epeutrendszer Osszes sejtje rendelkezik dssejt tulajdonsaggal. Novikoff és mtsai. (16)
szerint szintén a terminalis epeutakban talalhato, de a bazalis membranhoz nem
kitapadt primitiv sejtek lennének a m4j dssejtjei. Ezekkel szemben olyan elképzelések
is napvildgot lattak, hogy az ovalis sejtek a periportalis térben elhelyezkedd nem
jellemezett sejtek, illetve csontvel6bdl szdrmazd Ossejtek leszarmazottjai lennének
(17).

A kovetkezOkben az Ossejtek lokalizacidjanak meghatarozasara vonatkozo
vizsgalatainkat ismertetjiik. Azt mar korabban tapasztaltadk, hogy bar az ovalis sejtek
portalis térbdl torténd kivandorlasa csak a hepatektomiat kovetden kezdddik meg, a
sejtproliferacié a portalis térben mar két AAF kezelést kovetéen megindul. A
proliferald sejtek pontos lokalizacidja azonban nem volt ismert. Vizsgélatainkban
immun-elektronmikroszkopia segitségével allapitottuk meg a bromdezoxiuridint
(BrdU) inkorporalé sejtek pontos elhelyezkedését.  Osszehasonlitasképpen
epeutlekdtésen atesett allatok majat is vizsgaltuk, mivel ebben az esetben a lezajlo
epeut proliferacié nem jar ovalis sejtek megjelenésével, tehat dssejt aktivacidval sem.
Megallapitottuk, hogy két AAF kezelést kovetden a legnagyobb ardnyban a Hering
kanalisok sejtjei proliferaltak szemben az epeut lekotéssel, ahol a nagyobb epeutak
sejtjei voltak tobbségben a proliferald sejtek kozott (IV). Ez a megfigyelés azt
tamasztotta ala, hogy az dssejtek a Hering kanalisok sejtjei kozott helyezkednek el. A
Hering kanalisok azonban a definicié szerint, minddssze a majsejtekhez kapcsolodo és

bazélis membran altal félkor alakban koriilvett néhdny sejtbdl alld struktardk, melyek

c ey
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sziikséges. A fentebb ismertetett (CK19+/CK7-) epetut kompartment azonban, mely
megfelel a legkisebb terminalis epeutaknak és magaban foglalja a Hering kanalisokat
is, elegendd Ossejtet tartalmazhat a maj regenerdldsdhoz. Ezen epeutak sejtjei is
nagyobb proliferacios aktivitast mutattak két AAF dozist kovetden, mint a nagyobb
CK7+ epeutak (I). Véleménylink szerint ezek tartalmazzdk a legnagyobb
valosziniiséggel a maj Ossejtjeit. Sajnos ez a fenotipus nem volt stabil, tehat nem
hasznalhato az dssejtek leszarmazottjainak kdvetésére, hiszen a proliferald ovalis sejtek
expresszaljak a CK 7-et. Figyelemremélt6 az is, hogy a regeneracio teljes lezajlasat
kovetéen az ovalis sejt-csovek maradvanyait reprezentdldé bazalis membrannal
kortlvett kis epeutakat lehet megfigyelni a patkanyok majaban, melyek ujra az eredeti
fenotipust mutatjak. Ez arra utal, hogy a CK7+/CK19+ fenotipus (nagyobb mechanikai
stabilitds?) megjelenése a novekvd, illetve regeneralodd méj kis epetitjaiban az epeutak
intenziv novekedésével illetve a sejtproliferacidval jar egyiitt.

Mint fentebb emlitettiik, ovalis sejtek megjelenésére a parenchimdban, melyek
bizonyitottan a periportalisan proliferalé sejtek leszarmazottai csak az AAF kezelés
kozepén elvégzett hepatektomiat kdvetden keriil sor. Bar azt mar kordbban kimutattak,
hogy az ovalis sejtek a mdj epeltrendszerével folytonossagot mutatd,
elektronmikroszkopos vizsgalatok alapjan nem folytonos bazalis membrannal koriilvett
csOrendszert alkotnak, ezen strukturdk pontos viszonya a portalis térhez illetve maj
parenchimdjahoz ismeretlen volt. Olyan elképzelések is napvilagot lattak, hogy az
ovalis sejtek egyesével vagy kisebb csoportokban a Disse térben migralnak, majd
beépiilnek a hepatocitak kozé. Mi konfokalis mikroszkop segitségével vizsgaltuk az
ovalis sejtek és a bazalis membran viszonyat a parcialis hepatektomiat kdvetden azon
id6ponttol kezdve, amikor az ovalis sejtek mar attorték a ,limiting plate”-et.
Megfigyeltilk, hogy a néhany sejt hossziusdgi csovek koriil a bazdlis membran
ugyanolyan ,,U” formaban helyezkedik el, mint a Hering kanalisok koriil, amely azt
mutatja, hogy az ovalis sejt-csovek a Hering kanalisok meghosszabbitasai. A csovek az
1d6 eldérehaladtaval egyre hosszabbak és kanyargosabbak lettek, de végiik mindig
hepatocitakhoz kapcsolddott, igy dsszekottetésben maradt majsejtek kdzotti elemi epeut
rendszerrel (IV). Ez a tény nagy jelentéséggel bir, hiszen azt mutatja, hogy az
epeelvezetés és igy a szerv funkcidja a regeneracio soran végig biztositott. Ez kiegésziil

azzal a megfigyeléssel is, hogy az ovalis sejt-csovek a szinuszoidok kozott helyezkedtek
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el arra utalva, hogy novekedésiik soran a karosodott hepatocita lemez helyét foglaljak
el, ezzel a szerv vérkeringésének zavartalansaga is biztositott. Soha nem figyeltiink meg
bazalis membran nélkiili CK19-et expresszalo, a kotdszovetben vagy a Disse térben
elhelyezkedd sejteket, mely azt jelzi, hogy az ovalis sejtek altal alkotott csovek
novekedése szabalyozottan, a sejtek polarizalt allapotat megtartva torténik. Ezt a tényt
szem el6tt tartva hasonloképpen nem tartjuk elképzelhetonek, hogy a maj Ossejtjei az
epeutrendszeren kiviil helyezkedjenek el a portalis térben, melyet alatdmaszt az a
megfigyelésiink, hogy nem talaltunk citokeratin illetve AFP pozitiv sejteket a bazalis
membranon kiviil, sem pusztan az AAF kezelést kdvetden sem az ovalis sejt-csovek
novekedése soran. Ezzel Osszhangban nem figyeltink meg bazélis membranon
atmigralo sejteket sem. Taldltunk ugyan a Novikoff éltal leirt bazalis sejtekhez hasonlo
primitiv hemopoetikus sejtekre emlékeztetd sejteket a ndvekvo ovalis sejt csovekben, de
osztddod alakokat nem talaltunk kozottik. Ilyen sejtek nem voltak jelen a Hering
kandlisokban illetve a kis epeutakban a két AAF kezelést kovetéen sem (IV).
Hemopoetikus sejtekhez hasonld sejtek jelenléte az ovalis sejt csovekben felveti annak
lehetéségét, hogy ezek a sejtek csontveldi eredetliek ¢és ovalis sejtekké
transzdifferencialodnak, mint ahogy azt Petersen és munkatérsai leirtdk (17). Ezt a
nagyon vonzé lehetOséget alatamasztja az is, hogy az ovalis sejtek hemopoetikus
Ossejtek fenotipus jegyeit viselik (c-kit, CD34). Hemopoetikus sejtek ovalis sejtekké
torténd transzdifferencidlodasat azonban tobben kétségbe vonjak (6). Az ovalis sejtek
csontveldi eredetét sajat eredményeink is cafoljak (V), hiszen kimutattuk, hogy a
csontveldi Ossejtek markereként ismert Thy-1 molekulat nem az ovalis sejtek - mint
ahogy azt Petersen ¢és munkatarsai leirtdk-, hanem a bazalis membranon kiviil
elhelyezkedd SMA pozitiv miofibroblaszt populacid expresszalja, mig a dezmin pozitiv
aktivalt ,,stellate” sejtek elenyészé mértékben mutattak Thy-1 pozitivitast. Kollagenaz
perfuziot kovetden izolalt ovalis sejtekbdl illetve szovettani metszetekbdl
mikrodisszekalt ovalis sejtekbdl izolalt RNS-ben valds ideji RT-PCR modszerrel nem
volt kimutathatdé a Thy-1 mRNS, ami viszont jelen volt a miofibroblasztokat is
tartalmaz6 frakciobol izolalt RNS-ben, igazolva, hogy a Thy-1 molekula RNS szinten
sem termelddik az ovalis sejtekben. A Thy-1-et expresszald sejtek szorosan kdvetik a

novekvd ovalis sejt csoveket, és a feltételezések szerint novekedési faktorok

crer
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sejt- csovek novekedéséhez sziikséges extracellularis matrix illetve bazalis membran
termelésében is, hiszen kimutattak példaul, hogy a tiidofibrozis kialakuldsa soran a
fibroblasztok altal expresszalt Thy-1 ,,shedding”-je kovetkezik be (18).

Osszefoglalva tehat vizsgdlataink eredményeit azt mondhatjuk, hogy a maj
Ossejtek a Hering kanalisokat is magukba foglal6 termindlis epeutakban helyezkednek
el és hasonléan mas szervek Ossejtjeihez (bél, bdr, agy), a bazilis membranon
nyugszanak (19). Utddsejtjeik (ovalis sejtek) polarizalt sejtek melyek duktusokat
alkotnak ¢és migraciojuk illetve szaporodasuk soran folytonos bazéalis membrant
¢épitenek fel.

Az Gssejtek részvételével megvalosuld majregeneracid utolsod 1épése az ovalis
ismertetjlik az alabbiakban.

Korabbi vizsgalatokbol kideriilt, hogy az altalunk hasznalt modellben az ovalis

.....

------

koncentracidja gyors majsejt irdanyt differenciaciét eredményezett. Alaposabban
megvizsgalva ezt a jelenséget két kiilonbozo tipusu differenciaciot figyeltiink meg az
AAF dozisatol fiiggben (VI). Kis dozisu AAF kezelés az ovalis sejtek szinte egyidejii
differencidlodo sejtek csak késdbb (11-13. nap a hepatektomiat kovetden) jelentek meg
a majban fokuszokat alkotva és az ovalis sejtek nagy tobbsége nem alakult &t
majsejtekké nagy dozisu kezelést kdvetden. Itt fontos megjegyezni, hogy a portalis
térbdl kiinduld ovalis sejtes reakcid nagysaga is fliggott az AAF dozisatol, jelezve,
hogy a hepatocita karosodas méretének megfelelden valtozik az ovalis sejtek altal
l1étrehozott csovek hossza, vagyis a regeneracidhoz sziikséges sejtek szdma. Nem
tudunk magyarazatot adni arra, hogy a nagy doézisi AAF kezelés esetében miért nem
differencidlodott az 0sszes ovalis sejt majsejtté. Egy lehetséges magyarazat, hogy nagy
dozisu AAF valdban gitolja a differenciaciot, és az AAF koncentracid csokkenésével
bizonyos ovalis sejtek gyorsan differencidlodnak és tovabb szaporodnak, mely a tobbi
ovalis sejt atalakulasat mar feleslegessé teszi. Felmeriilhet az AAF mutagén hatésa is,
mely a feltehetden klonalis proliferaciohoz vezet, de ennek ellentmond, hogy az AAF

ezen dézisa nem bizonyult karcinogénnek, valamint, hogy ez a folyamat is funkcionalis
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regeneralt majat eredményezett. Ezek utdin nem meglepd, hogy az ovalis sejtek
mindkét esetben kis hepatocitdk megjelenése volt. A kis dozis esetében a kis
hepatocitdk elrendezOdése megegyezett az ovalis sejtek elrendezOdésével, vagyis
duktusokat alkottak, melyek a portalis terek koriil sugar irdnyban helyezkedtek el.
Nagy dozis esetében a kis hepatocitak fokuszokba rendezddtek, de ezen beliil ebben az
esetben is duktusokat formaltak. Mindkét esetben a kis hepatocitak altal formalt
duktusok 0Osszekottetésben maradtak a ma4j epeutrendszerével. A differencidlodas
legmarkéansabb jele a bazalis membran eltiinése volt az ovalis sejt-csovek koriil,
amellyel teljesen parhuzamosan tortént a HNF-4a-nak, a m4jsejtek termindlis
Osszefliggés azonban valdszinlileg nincs a bazalis membran lebomldsa és a HNF-4a
megjelenése kozott, hiszen a bazélis membran lebomldsdnak elmaradéasa és a HNF-4a
megjelenése a nagydozisu kezelés soran gyakran megfigyelt intesztinalis
metaplazidhoz vezet. HNF-4a kondicionalis muténs egerek vizsgalata azt mutatta, hogy
a HNF-4a rendkiviil sok fehérje expresszidjanak regulacidja mellett kdzvetleniil felelds
a hepatocita funkci6 ellatasat alapvetéen meghatarozo sejtkapcsolo struktirak, koztiik a
connexinek kifejezodéséért (20). Sajat vizsgalataink is azt mutattdk, hogy a kis
majsejtek megjelenése egyiitt jar az epeut specifikus connexin 43 eltiinésével, illetve a
majsejtspecifikus connexin 32 megjelenésével. A kis dozisu differencidlodéas esetében
lehetett a legjobban megfigyelni a duktusok disztalis részén ultrastukturalisan a bazalis
membran fragmentalddasat, illetve teljes lebomléasat, valamint a majsejtekre jellemzo
sejtorganellumok megjelenését. A bazalis membran eltiinésével parhuzamosan az a6
integrin alegység expressziodja is csokkent, amely fehérje a kizérolagosan laminint k6td
integrinek alegysége ¢€s jelen van a m4j epeltrendszerének minden szegmensében.
Ezzel szemben a duktularis struktirakat alkotd kis hepatocitdk bazalis és lateralis
részén megjelenik a al integrin amely elsdsorban kollagént kot és a normal hepatocitak
jellemzd adhézids molekuldja (VI). Megfigyeléseinket alatamasztjadk  Sell
munkacsoportjdnak eredményei (21) is miszerint izolalt progenitor sejteket bazalis
membran matrixon tenyésztve azok epeut iranyu differencidciot mutattak. A bazalis
membran lebomldsa nem jar egyiitt a duktuldris szerkezet azonnali felbomlasaval és

egyelére nem tudjuk, hogy a normdl m4jsejt gerendak hogyan alakulnak ki. Annyi
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azonban bizonyos, hogy a bazalis membran lebomlasat kovetden rogton megkezdddik
az elemi epeutak kialakuldsa a kis majsejtek kozott, amit az igen sajatos csillagszerii
elrendezddést mutato CD26 expresszid jelez. A differencialodas soran képzddd elemi
epeutak kozvetlen kapcsolatban maradnak az elvezetd nagyobb epeutak lumenével,
melyet az epeutrendszer fluoreszcens lektinnel vald retrograd feltoltésével sikertilt
igazolnunk.

Osszefoglalva a normdl és az &ssejtek segitségével torténd majregeneraciora
vonatkoz6 vizsgalatainkat azt mondhatjuk, hogy a regenerdcid6 a maj eredeti
szerkezetének felhasznalasaval zajlik le, 0j szoveti strukturak nem keletkeznek.

Az tgynevezett primer hepatocita mitogének elézetes majkarosodéas nélkiil is
jelentds hepatocita hiperplaziat képesek eldidézni. Ha a nagydozisu AAF/Ph protokollal
kezelt allatokat primer mitogénekkel kezeliink, (trijodtironin (T3) vagy 6lomnitrat) a
majsejtek proliferacidja elmarad. Ehelyett az ovalis sejtek mitotikus aktivitdsanak
fokozodasat lehetett megfigyelni, melyet nagyon gyorsan, a kezelést kdvetd 48 oran
beliil az ovalis sejtek jelentds részének hepatocita iranyt differencidlodasa kovetett
(VID). A differencidlodas folyamata teljesen megegyezett a fentebb leirt alacsony dozist
differencidlodéas folyamataval. A hormonkezelt allatok szérumaban a bilirubin szint
szignifikans csokkenését, illetve a maj szintetikus funkcidjat tiikr6z6 protrombin szint
emelkedését is meg lehetett figyelni, jelezve, hogy a differencidlodasnak szervezet
szintjén is észlelhetd majfunkcio javulas volt a kdvetkezménye. Annak igazolasara,
hogy a m4jban hirtelen megjelend ,kis” hepatocitak valdoban az ovalis sejtekbol
szarmaznak, az ovalis sejteket a hormonkezelés el6tt retrovirussal ,,jeloltiik meg”, mely
jelzés késébb a kis hepatocitakban volt fellelheto.

Eredményeink azt bizonyitjdk, hogy a mdj Jssejtek részvételével zajlod
regeneracidja felgyorsithato. Ez a megtfigyelés elvi hattériil szolgalhat a klinikai
gyakorlatban példdul fulminans majelégtelenségben a regeneracid felgyorsitasara

iranyul6 probalkozasokhoz.
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4.2. Tumor indukalt angiogenezis (VIII, IX)

Mint a bevezetében emlitettiik az anti-angiogenezis terapidk csak részben
valtottak be a hozzdjuk f6zott reményeket. Ennek egyik oka lehet, hogy a terapidk
tervezésekor figyelmen kiviil hagytdk azt a lehetdséget, hogy a tumorok
vaszkularizacidja eltér6 mechanizmussal jatszodhat le kiilonb6z6 szervekben,
szovetekben. (VIII, IX).

Az elsé angiogenezis modellt Folkman és mtsai. dolgoztak ki a 70-es évek
végén. Megallapitottdk, hogy a tumorok angiogenezis fiiggdek, azaz nem képesek
novekedni egy bizonyos (1-2 mm) méreten tul, a tdpanyagellatast biztositdo 1) erek
képzddése nélkiil (22). Vizsgalataikban féleg az Gjonnan, bimbdzéssal (,,sprouting”)
képzddott erekre koncentraltak, melyekrdl feltételezték, hogy azok a tumorsejtek
novekedéshez sziikséges tapanyagellatast biztositd érhaldzatot. A tumorsejt invazio és
az angiogenezis kozotti hasonlosag abban all, hogy az angiogenezis elsé 1épésében is a
bazalis membran degradacidja kovetkezik be, melyet a polarizacidjukat vesztett
endotélsejteknek a kotdszovetbe torténd migracidja kovet. Az 0j erek lumenének
kialakuldsara ez a modell semmilyen magyarazatot nem tudott adni. Ezzel szemben mi
korabban egy ettdl eltéré angiogenezis modellt irtunk le, mely szerint az endotélsejtek
megtartjak polarizalt allapotukat (a sejtkapcsold strukturdk nem bomlanak fel az
lokalis degradacidja utan az endotélsejtek egymassal parhuzamosan migralnak, igy az
endotélsejtek kozott azonnal egy résszerii lumen keletkezik, amely folytonos az eredeti
ér lumenével. Az éretlen kapillaris ndvekedése sordn folyamatosan torténik a bazalis
membran szintézise €s depozicidja. (VIIL, IX).

Itt érdemes egy kis kitérét tenniink, hogy Osszehasonlitsuk az altalunk leirt
sprouting tipusu angiogenezis valamint majregeneracio soran megfigyelt eseményeket.
A legfontosabb hasonldsag a két folyamat kozott hogy a kapillarisok €s az ovalis sejtek
kovetkezik be (véleménylink szerint ez a jelenség szOvetregeneracid soran lezajlo
bioldgiai folyamatok egy alapvetd torvénye lehet), amiben kulcsszerepet jatszik a
bazalis membrannak a migrald sejtek altal torténd folyamatos felépitése. A bazalis

membran azonban, mint arra tobb adat is utal nem a polarizaltsag kialakulasaban,
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hanem f6leg a differencialt allapot fenntartasaban jatszik szerepet (1). Ezt alatimasztja,
hogy az angiogenezis soran a ndvekvd kapillaris csticsan migralé endotélsejtek is
polarizaltak maradnak, feltehetden az intakt sejtkapcsold strukturdknak kdszonhetden,
mikdzben kozvetlen kapcsolatban vannak a kotdszoveti kollagénekkel. Eltérés van
azonban a két folyamat kozott abban, hogy a majregeneracié soran a novekvo ovalis
sejt-csovek csticsan elhelyezkedo sejtek sejtkapcsolokkal kotédnek majsejtekhez (ami
ebben az esetben is meghatdrozza a polaritést), tehat a duktusok ndvekedési irdnya a
majgerendak altal tobbé-kevésbé meghatarozott. (Ebben az esetben nem is volt
megfigyelheté bazéalis membran mentes rész a duktusok madjsejtekhez kapcsolodo
részén, bar meg kell jegyezni, hogy ez a teriilet kapillarisok esetében is csak
maximalisan egy sejt hosszisagu volt). Ezzel szemben a kapillarisndvekedés soran, a
csucson elhelyezkedd sejtek a kemotaktikus szignalok érzékelésében jatszhatnak
kulcsszerepet. Fontos eltérés a két folyamat kozott az is, hogy mig a majregeneracio
esetében a duktusok lumene ndvekedés soran is funkciondlis marad, addig az
angiogenezis folyamata soran a lumen kitdguldsa és a vérkeringés meginduldsa csak
egy késobbi stadiumban, a pericitdk megjelenése utan kovetkezik be. Ennek f6 oka
lehet, hogy ezen angiogenezis tipusban az erek novekedése intersticidlis kollagéneket
tartalmazd kotészovetben folyik, igy a réslumen kialakuldsa a szovet mechanikai
ellenallasanak minimalisra csokkentését szolgalja.

A malignus tumorok vérellatdsaért tobb, egymadstdl eltérd mechanizmus is
felelos lehet. Ezek koziil a talan legjelentdsebbnek tarthatd érbimbozéas (sprouting)
fentebb ismertetett két angiogenezis modellje azonban csak azon, fOként primer
tumorok (melandoma, emld, vastagbélrak) kiindulasi helyeként szerepld szovetek
esetében érvényes, melyek nagy aranyu kotdszoveti kollagént tartalmaznak, ami teret
biztosit 0j kapillarisok novekedéséhez. Az érdenzitds ndvekedését a fenti tumorok
estében egy masik mechanizmus, az ugynevezett ,,intusszuszceptiv’ angiogenezis is
biztosithatja, mely valdjaban a venulak osztodasat jelenti, lefolydsanak mechanizmusa

azonban vitatott.
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4.2.1.Angiogenezis primer tumorokban

4.2.1.1. Melanomak vaszkularizacioja (X).

Mint fentebb emlitettiik a melanomék vaszkularizacidja esetében a bimbdzo
angiogenezis jatszhatja a f6 szerepet. Human melanomaék esetében a vaszkularizaltsag
¢€s a prognodzis kozott osszefiiggést keresd tanulmanyokban mar korabban leirtak, hogy
a tumor sz¢élén az érdenzitds mindig sokkal magasabb, mint a tumorok belsejében. Sajat
vizsgalataink hasonlé eredményt hoztak kiegészitve azzal a fontos megfigyeléssel,
hogy a vastagabb tumorok belsejében az erek keriilete szignifikdns emelkedést mutatott
a peritumoralis szovethez képest. Frdekes modon a metasztazisok kialakuldsa és a
tulélés az intratumoralis érdenzitdssal mutatott szoros Osszefliggést. Ez a megfigyelés
megkérddjelezi az tgynevezett ,.hot spot”-ok (23) (kiilonb6zd tumorok érdenzitdsanak
meghatarozdsdra  alkalmazott  moddszer, melyek  sordan  kivéalasztjdk a
legvaszkularizaltabb régiot a tumorban és azon belill hatdrozzak meg a latotérre esd
erek szdmat) hasznalhatosagat, legalabbis melandmak esetében, a progndzis és az
érdenzitas kozotti Osszefliggés vizsgalatara. A huméan melanomékban megfigyelt
éreloszlas 1étrejottének részletesebb vizsgédlatira, egy a humdan viszonyokat hiien
visszaadd egér modellt alakitottunk ki, mely soran a tumorsejteket intrakutan
(ortotopikusan) oltottuk. Az egér melandéma ndvekedése soran is kialakult a tumor
alapjan a huméan tumorokban megfigyelt denz érhalozat, melynek strlisége a tumor
belseje felé csokkent. Az egyes régiok érdenzitasanak idébeni valtozasat vizsgalva azt
tapasztaltuk, hogy a tumor periféridjan az érdenzitds sokkal gyorsabban ndvekszik,
mint a peritumoralis régidban, azt jelezve, hogy a ndvekvd tumor a bér eredetileg is
meglévé ereit az Ujonnan képzddott kapillarisokkal egylitt inkorporalja. Ezt a
kovetkeztetést alatdmasztotta a tumor-stroma hataron levd érhaldzat szerkezetének
haromdimenzids analizise is, ami kimutatta, hogy mind a human mind az egér
melandémak esetében a kapillarishdlozat a daganat felszinével parhuzamos lefutasu,
stirin egymas mellett elhelyezkedd kapillarisok kotegeibdl épiil fel. A tény, hogy a
daganatok érstrukturdjanak vizsgalatakor radidlis lefutasti, a tumor centruma felé
mutatd kapillarisokat nem észleltiink, mar dnmagaban bizonyitja, hogy a melandémak
elsésorban a peritumoralis kapillarisfonat bekebelezésével tesznek szert a

vérellatasukat biztositd érhalozatra.
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Az érdenzitasnak a tumor belseje felé megfigyelt csokkenése elsdésorban annak
a kovetkezménye, hogy a tumor a ndvekedése soran ,felhigitja” az inkorporalt
a tumor belsejében az endotél proliferacid kisebb, mint peritumoralisan, ami szintén
alatdmasztja az érdenzitds ebben a régioban megfigyelt csokkenését. Az érdenzités
csokkenésének egy masik nagyon fontos oka lehet, hogy a tumorban megsziinik az erek
bimbozasa, ennek kovetkeztében az alacsony szintli endotél proliferacié az erek
méretének novekedését eredményezi. Az érbimbdzas megsziinésének egyik oka, hogy a
tumorban (melanémak) nem 4ll rendelkezésre megfelelé extracellularis matrix
(kollagén 1) a kapillarisok novekedéséhez, illetve a tumorba keriilt erek bazalis
membran szerkezetének megvaltozdsa sem teszi lehetdvé a bimbozast. Ez utdbbi
lehetéségre utalnak azok a megfigyeléseink, melyek szerint a tumor belsejében levd
erek tumorsejtek altali folyamatos invazidja zajlik, ami az erek koriili koncentrikusan
elhelyezked6 bazalis membran rétegek kialakulasahoz vezet, feltehetden meggatolva
ezzel a bimbozast. A bazdlis membran invazidja azonban szerepet jatszhat az erek
keriiletének megfigyelt novekedésében.

Altalanosan elfogadott nézet, hogy az Gjonnan képz6dott kapillarisok érési
folyamatanak fontos eleme a pericitdk megjelenése az erek koriil (24). Pericita boritas
nélkiil az ujonnan képzodott kapillarisok regresszidja figyelhetdé meg VEGF illetve
PDGF megvonasat kovetden (25). Megfigyeléseink szerint intrakutdn ndvekvo
melandmak esetében mind a peritumoralis mind az intratumoralis erek pericita boritasa
komplett volt. Ez azt jelenti, hogy a borben lezajlé angiogenezis soran, szemben a
szubkutan tumorok esetében megfigyelt angiogenezissel, a pericitdk rogton
megjelennek a bimb6zo kapillariskezdemények kortil, igy érett kapillarisok kertilnek
inkorporédciora. Bar az daltaldnosan elfogadott, hogy a tumorokban taldlhat6 erek
szerkezete nagymértékben eltér a normal erekétdl, amit a tumorinvaziot elésegitd
tényezonek tartanak (26), eredményeink alapjan azonban melandémak esetében ez a
jelenség nem lehet az intratumordlis érdenzitds ¢és metasztazisképzés kozotti

Osszefiiggés oka.
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4.2.1.2 Az intusszuszceptiv angiogenezis egy uj mechanizmusa (XI)

Megfigyeléseink szerint egerekben nové szubkutan oltott kolonrdkok esetében
az angiogenezis f0 formdja az intusszuszceptiv angiogenezis (érosztddds), mig a
sprouting (bimboz6) tipus alig fordul eld. Ezen daganatok vaszkularizacidjanak
vizsgalata sordn érdekes jelenséget figyeltiink meg. Venuldk lumenében ugynevezett
oszlopok (,pillar”) voltak jelen, amelyek erre az angiogenezis tipusra jellemzo
struktirdk (27). Eltéréen azonban az elfogadott pillar szerkezettdl, kezdeti stadiumban
ezek az oszlopok nem tartalmaztak kotdszoveti sejteket illetve pericitdkat, hanem
kizarolag egy kollagén kotegbdl alltak, melyet endotélsejtek boritottak. Az
intusszuszceptiv angiogenezis elfogadott mechanizmusa szerint a pillar képzddés elsé
Iépése az érlumen szemkozti falainak benyomoddasa, mely az endotélsejtek
érintkezéséhez, illetve késdbb a sejtkapcsold strukturak reorganizacidjdhoz vezet. Arra
azonban nincs kielégité magyarazat, hogy mi szolgaltatja az er6t ehhez a folyamathoz.
Az elfogadott magyarazat erre a jelenségre, hogy perivaszkularis sejtek nyomjak be az
erek falat, ami er6sen megkérddjelezhetd, hiszen sejtek csak elenyészd mértékben
képesek nyomoerd kifejtésére. Ezzel szemben tobb szdzszor akkora huzoerdt képesek
kifejteni. Megfigyeléseink szerint azokon a teriileteken ahol intenziv intusszuszceptiv
angiogenezis zajlott, mindig megfigyelhetd volt az ugynevezett ,,bridging” is, vagyis
endotél hidak voltak jelen az érlumenben. Elképzelésiink szerint ezek az endotél hidak
képesek a kotdszoveti kollagén kotegeket az érlumenen athuzni. Ezt alatdmasztja, hogy
az oszlopokban taldlhaté kollagén kotegek mérete szinte teljesen megegyezik a
kotdszovetben talalhatd kotegek méretével. Ezenkiviil szamos vinkulint tartalmazo
adhézios pont taldlhaté a kollagén kotegek mentén, valamint az oszlopot felépitd
endotélsejtek nagy mennyiségben tartalmaznak mikrofilamentumokat, mely struktarak
Osszehuzo erd kifejtésére utalnak. Megfigyelhetok voltak olyan kollagén kotegek is,
melyek nem teljesen értek végig az oszlopon, egy résziik viszont a kotdszovetben
helyezkedett el, ami szintén arra utal, hogy a kotegek a kotdszovetbdl kerililnek az
oszlop belsejébe, nem ott szintetizalddnak. Ultrastrukturalis vizsgalatok nem mutattak
ki bazélis membrant az endotélsejtek és a kollagén koteg kozott, az endotélsejtek
kozvetleniil tapadtak a kollagén rostokhoz. Az adhézids helyek szerkezete kiilonlegesen
érdekes volt, mivel az egyes kollagén rostok mentén szabalyosan szdmos elektrondenz

adhézios pont (~50nm) helyezkedett el, melyeket mikrofilamentumok kotottek Ossze.

22



dc_301 11

Az oszlopok érése soran kotdszoveti sejtek és pericitak migralnak be az oszlopokba,
amit 1) kollagén tartalmu matrix depozicidja, ezaltal az oszlop méretének novekedése

kovet, mely folyamat végiil az ér osztodasahoz vezet.

4.2.2. Angiogenezis metasztazisokban

4.2.2.1. Glomeruloid testek kialakulasa kisérletes agymetasztizisokban (XII)

A glomeruloid testek kapillarisokbol felépiild, jellegzetes érstrukturdk, amelyek
nevilkket a vese glomerulusaihoz valo latszolagos hasonlosaguk alapjan kaptak.
Leggyakrabban a kozponti idegrendszer primer daganataiban és metasztazisaiban
figyelheték meg. Eléfordulnak azonban mas szdvetek tumoraiban is (tiid-, prosztata-,
emloérdk, melanéma), jelenlétiiket pedig Osszefiiggésbe hoztdk a rossz prognozissal
(28). Kialakul4dsuk pontos mechanizmusa nem ismert, de az erek dilatacidja, majd az
ezt kovetd endotél proliferacio, valamint hidképzddés, az intusszuszceptiv
angiogenezishez hasonld folyamatra enged kovetkeztetni. Legrészletesebben Dvorak és
mtsai. foglalkoztak a VEGF-A hatasara kialakulé glomeruloid testek vizsgalataval
szubkutan- és agyszovetben tumormentes kornyezetben (29). Ok az értagulatot és
érfalban mely kés6bb a sejtszaporulat érlumenbe vald expanzidjahoz vezetett. Ebben a
fejlédési stadiumban ugyan megfigyeltek néhany kapillaris lument az eredeti ér
lumenén beliil, de modelljiik végiil is arra alapozodik, hogy az endotélsejtek elvesztik
eredeti polaritasukat és a felszaporodott bazalis membran matrixban tovabb osztodva, a
késdbbiekben nagyszamu 11j lument képeznek, melyeket pericitdk vesznek koriil.

Mi a glomeruloid testek kialakuldsdnak egy tovabbi, nagyon egyszerti formajat
irtuk le agymetasztazisokban (XII). Erdekes, hogy a szamos felhasznalt kiilonb6z6
eredetli human és ragcsalo tumor (tiidérdk, melandoma, veserak) megegyezd strukturaja
glomeruloid testeket hozott 1étre. Vizsgalataink kimutattdk, hogy a tumorsejtek az
extravazaciot kovetden az agykapillarisok bazéalis membranjahoz tapadtak és azon
kiteriiltek. Mar egyes sejtek estében is megfigyelheté volt az a jelenség, hogy a
tumorsejtek altal befedett kapillaris szegmenseken eldszor egy, majd tobb egyszer(i
csavarulat keletkezett. A tumorsejtek szaporodasuk kozben nem tavolodtak el a
kapillarisoktol, hanem annak mentén terjedtek, illetve tobb rétegben helyezkedtek el a

kapillarisok koriil. A mikrometasztazisok novekedése soran, a kapillarisokon képz6dott
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hurkok egyre bonyolultabbak lettek és végiil kaotikus, a tumorsejt fészkek belsejében
elhelyezked6 érgombolyagok alakultak ki. A folyamat magyarazata lehet, hogy a
kapillarisok bazalis membranjdhoz o6 integrin segitségével tapadd és azon kitertilt
tumorsejtek aktin citoszkeletonja a kapillarishurkok kialakuldsdhoz vezetd huzoerdt fejt
ki. Ezt aldtdmasztja az a megfigyelésiink, hogy a szomszédos tumorsejt fészkek kozott
levé kapillaris szakaszok sokszor elvékonyodtak, s6t néhany esetben el is szakadtak. A
folyamatban nagy szerepet jatszhat, hogy az agyszovetben nincs kotészoveti tipust
extracellularis matrix, igy az agyszdvet mechanikai stabilitasa kicsi, lehetové téve a
kapillarisok elmozduldsat. Tovabbi érdekessége a folyamatnak, hogy az endotélsejtek
proliferacids indexe nem emelkedik, jelezve, hogy sem bimbo6zd sem egyéb mas
endotél proliferaciot igénylé angiogén folyamat nem zajlik (erre az erek morfoldgidja
sem utalt), az érdenzitds ndvekedése a tumorban kizardlag az agyszovet meglévo

¢érhalozatanak atrendezddésével jott létre.

4.2.2.2. Angiogenezis vizsgalata kisérletes agymetasztazisokban (XIII)

A fentiekben ismertettiik a glomeruloid testek egy lehetséges keletkezési
mechanizmusét, amihez a tumorsejteket az allatok karotiszaba oltottuk. A modszer
hatranya, hogy nagyszdmu mikrometasztazist eredményez, ami gyorsan az dallatok
pusztulasahoz vezet. Ezért egy masik kisérletsorozatban a tumorsejteket kdzvetleniil az
agyszovetbe oltottuk, hogy a tumorok elérjék az angiogenezis megindulasahoz
sziikséges méretet (,,angiogenic switch”, 1-2 mm 4atméré) (22). Morfometriai
vizsgalatok azt mutattdk, hogy angiogenezis nem zajlik a peritumordlis teriileteken.
Ezzel 6sszhangban angiogenezis egyszerli sebzést kovetden sem volt megfigyelhetd az
agyszovetben. A tumorok csupan a meglévo erek bekebelezése altal tettek szert sajat
érrendszerre. Ezek a megfigyelések szoges ellentétben allnak az elfogadott nézettel,
miszerint agytumorokban €és metasztazisokban valamint érelzarddast kovetden intenziv
angiogenezis tapasztalhatdo a sériilés hatarteriiletén. Mindegyik tumor esetében az
érdenzitds alacsonyabb, emellett az ératmérd, illetve az ereket alkotd sejtek
proliferacidja magasabb volt intratumoralisan, mint peritumoralisan. Ez a mar fentebb
emlitett jelenségre utal miszerint a tumorok novekedésiik kovetkeztében az inkorporalt
érhalozatot folyamatosan ,kihigitjak”. Negativ 0sszefliggést talaltunk a bekebelezett

erek szama, valamint az ereket alkotd sejtek proliferacidja kozott, aminek hatterében az

24



dc_301 11

allhat, hogy az alacsony érdenzitasu tumorokban az egyes erek feliiletének nagyfoku
novelésével jon létre a tumor novekedéséhez sziikséges érfeliilet. A differencialtabb
tumorokban, melyek un. ,,pushing” tipust ndvekedési mintazatot mutattak, alacsonyabb
volt az érdenzitds, magasabb az erek sejtjeinek proliferacidja, szemben az invaziv
novekedési mintdzati tumorokkal. A tumor differenciacios foka tehat hatassal van a
vaszkularizacié mintdzatara, azaz nyilvanvald hogy a kompakt szerkezeti (differencialt)
tumorok inkorporaciés képessége alacsonyabb, mint a lazdbb szerkezetli
differencidlatlanabb tumoroké. A bekebelezett erek amellett, hogy a tumorsejtek
eltavolitottak roluk az asztrocitdkat, megtartottdk normal struktirajukat. Az ér bazalis
A tumor szélén a parenchimiban mintegy ,,0sz0” izolalt sejtek az erek bazélis
membranjaval vald kolcsonhatast kovetden mirigyszerli struktarakba szervezddtek
apikalis felsziniikkon klaudin 3-t és EMA-t expresszaltak, mig bazalis felsziniikdn
laminin5-6t tartalmazd extracelluldris matrixot szekretaltak, ami az agykapillarisok
bazalis membranjanak felszinéhez kotddott.

Az intusszuszceptiv angiogenezishez rendkiviil hasonl6 folyamat volt
megfigyelhetd a fibroszarkéma sejtvonal agymetasztazisaiban. A tumorsejtek érfalhoz
tapadasa ismeretlen modon az érlumen kettéosztasat eredményezte, és az igy kialakult
troket tumorsejtek toltotték meg. Az érhalozat ilyen forméaban torténd atrendezddése
azonban nem tekinthetd igazi angiogenezisnek, mivel a folyamat a tumorsejtek
aktivitasatol fiigg. Erdekes modon sem a sejtvonalak fehérje szintii VEGF expresszioja,
sem az intratumoralis VEGF mRNS szintje nem mutatott korrelaciét az intratumoralis

crer

szintek (VEGFRI1, PDGFRp, Tie-2) kapcsolatban 4allhatnak az erek sejtjeinek
megnodvekedett proliferacigjaval, illetve a bekebelezett erek struktirdjanak
stabilizaciojaval.

Ezek az adatok arra utalnak, hogy kisérletes koriilmények kozott az

agymetasztazisok novekedéséhez nem sziikséges bimboz6 (sprouting) angiogenezis.
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4.2.2.3. Majmetasztazisok vaszkularizacioja (XIV)

A maj a metasztazisképzés egyik leggyakoribb célszerve. Vermeulen és mtsai.
harom kiilonb6z6 kolorektalis karcindma metasztazis tipust irtak le: ,,replacement”,
»pushing” és ,,desmoplastic” (30). Az elsd metasztazis tipusnal a tumor novekedése
soran a mdj szinuszoidalis szerkezete tobbé-kevésbé megtartott, de a méajsejtek helyét
tumorsejtek foglaljak el. A masodik és harmadik tipust metasztazis novekedése soran
a mdj szerkezete torzul, a tumorsejtek komprimdljdk a madjszdvetet, illetve nagy
mennyiségll kotdszovet halmozddik fel a metasztazisok periféridjan.

A ,,pushing” tipusi metasztazisok vaszkularizacidjara egy j mechanizmust
irtunk le a C38 egér kolonrdk tumorvonal esetében (XIV). A majszinuszoidokba
bejuttatott tumorsejtek szolid fészkeket képeztek, mely strukturdk avaszkuldrisak
maradtak, amig méretiik el nem érte az 500-600 um-t. A tumorok felszinén azonban
mar ekkor megjelentek simaizom aktint kifejezd sejtek, és megkezdddott a
szinuszoidok kapillarizacioja (fenesztraciok szamanak csokkenése, o6 integrin
megjelenése, emelkedett laminin depozicid). A simaizom aktint kifejezd sejtek
megjelenésével parhuzamosan a madjsejtek eltiintek a tumor felszinével szomszédos
lehetett megfigyelni. Ez a folyamat egy forditott intusszuszceptiv angiogenezisnek is
tekinthetd. KésObb a simaizom aktint expresszalo sejtek teljesen korbevették a
fuzionalt szinuszoidokat. Ezek a sejtek azonban nem tekinthetok pericitdknak mivel
nem voltak kozvetlen kapcsolatban az endotélsejtekkel és bazalis membran sem volt
megfigyelhetd koriilottiik.

Felmeriil annak a lehetdsége is, hogy a kontraktilis sejtek megjelenésének oka a
novekvd metasztazisok altal okozott nyomasndvekedés lenne. Ezt aldtdmasztja azon
megfigyelésiink is, hogy epeutlekotést kovetden két nappal is hasonld sejtek jelennek
meg a proliferalo epeutak koriil. A simaizom aktin pozitiv sejtek egyrészt elhataroljak
a metasztazist a kornyezd majszovettdl, masrészt biztositjadk, hogy a keletkezett
,,sériilés” mérete a leheté legkisebb maradjon. Erdekes, hogy a tumor felszinének
kozelében sem apoptotizalt sem nekrotizalt majsejteket nem tudtunk megfigyelni, ami
arra utal, hogy a majsejtek feltehetéen a tumor nyomasa valamint a simaizom aktint
kifejezd és intersticialis kollagént szintetizald sejtek felszaporoddsa kovetkeztében

szorultak ki errdl a tertletr6l.
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A tumor szferoidoknak csak a felszini 100 pm-es rétegében voltak ¢élo
tumorsejtek. Az egyre novekvé méretii centralis nekrozis feltehetéen megakadalyozta,
hogy a tumor tovabbra is gdmb formaban ndvekedjék, amely végiil azt eredményezte,
hogy a tumorban jellegzetes szerkezetli invaginaciok keletkeztek. Az invaginacidkat
kiviilrél a tumor bazalis membranja hatérolta, ennek kozvetlen kézelében a simaizom
aktint expresszalo sejtekbe dgyazott fuziondlt szinuszoidok helyezkedtek el, legbeliil
pedig majsejtek voltak talalhatok. Erdekes, hogy ezen majsejtek kozott szinuszoidok
nem voltak megfigyelhetdk, ami tovabb erdsiti annak lehetdségét, hogy a majsejtek
kimigraltak a szinuszoidok koziil és az invaginaciok kozepén torlddtak fel. Kezdetben
annak a lehetdségét is felvetettik, hogy a madjsejtek epitelidlis-mezenchimalis
atalakuldsa kovetkezik be, és ez vezet a majsejtek eltiinéséhez, valamint a simaizom
aktint expresszald sejtek megjelenéséhez a tumor periféridgjan. Szamos kozlemény
bizonyitja ugyanis, hogy példaul vese- illetve tiidofibrozis esetében ez az atalakulési
folyamat lezajlik. Tiidé esetében in vitro és in vivo is kimutattdk, hogy II. tipusa
pneumocitdkban egyszerre lehet jelen az epitelidlis eredetre utalé TTF-1 magi
transzkripcids faktor és a mezenchimalis atalakulasra utald simaizom aktin (31). Mi
nem tudtunk azonositani olyan sejteket, amelyek egyszerre expresszaltak volna egy
majsejtspecifikus transzkripcios faktort (HNF-4) illetve a mezenchimalis eredetre utalo
simaizom aktint, ezért inkdbb azon egyszerlibb magyarazatot fogadtuk el, hogy a
simaizom aktint expresszalo sejtek vagy a maj miofibroblasztjainak vagy aktivalt Ito
sejteknek felelnek meg, mig a majsejtek eltlinését mas okok (,,hatralépés”)
magyarazhatjak.

Az invaginacidknak a tumor centruma felé esé részén azonban mar csak ritkan
voltak majsejtek megfigyelhetdk, itt a kapillarisok centralis pozicidt foglaltak el. Az
invaginaciok mélyiilésével parhuzamosan feltehetden a tumor altal kifejtett nyomads is
nétt, féleg az invagindciok alapjara, ami végiil ahhoz vezetett, hogy az invaginaciok
belso része részlegesen elvalt a kornyezé majszovettdl. A folyamat végiil kdtdszovetes
oszlopok kialakulasahoz vezetett a tumorszdvetben. Ezen oszlopokban, melyeket a
tumor bazalis membrédnja hatarol, simaizom aktint kifejezd sejtek, nagy mennyiségi
Ujonnan szintetizalt kotdszoveti kollagén, valamint egy centralisan elhelyezkedd

kapillaris talalhat6. Kialakulasukhoz azonban sziikség volt a tumor bazalis

s
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karcinomdk esetében irtak le el6szor (32). A  képz6dott oszlopok azonban
tengelyiranyban Osszekottetésben maradtak a ma4j szinuszoidalis rendszerével, ami a
vérkeringés fennmaradasara utal. Ez a jelenség azt is sejteti, hogy a metasztazisok
vérellatasa szinuszoidalis, tehat foleg vénas eredetii.

Hasonléan a korabban Lewis lung karcinoma esetében leirtakhoz (IX), a C38
kolonrak esetében sem figyeltiink meg a tumorok kozvetlen kozelében elhelyezkedd
szinuszoidokban emelkedett endotél proliferaciot, ami kizérja, hogy érbimbozés folyna
ebben a régioban. Tekintve azonban a mdj szinte maximadlis vaszkularizaltsadgat,
megfelel tér sem 4ll rendelkezésre az ilyen tipust angiogenezishez. Erdekes azonban,
hogy mindkét tumor esetében megindult az endotélsejtek proliferacidja az
inkorporéciot kovetden, bar a kialakult érszerkezet teljesen eltérd volt. A kolon
karcinomdban taldlhaté oszlopokban felhalmozddott kotdszovet mar elég teret
biztositott a ,,sprouting” tipusu angiogenezis beindulasahoz is.

Vizsgalataink arra utalnak, hogy a tumor differenciacids foka hatassal lehet a
majmetasztazisok  vaszkularizacidjara. Alacsonyan  differencialt  tumorok
»replacement” tipusi novekedést mutatnak. Erre jo példa a Lewis lung karcindma
altalunk kordbban leirt szinuszoidalis tipusti metasztazisainak vaszkularizacioja,
melynek sordn a tumorsejtek a szinuszoidalis bazalis membranok mentén, a Disse
térben migralnak és levalasztjadk az endotélsejteket sajat bazalis membranjukrol,
aminek kovetkeztében kanyarulatos érrendszer alakul ki a metasztdzisokban (IX).
Differencialtabb tumorok ,pushing” tipusi novekedést mutatnak. Az ¢érhalozat
kialakulasdban mindkét tipustt ndvekedés soran nagy szerepet jatszik a modosult
(fiziondlt) majszinuszoidok inkorporacidja, mely a primer melanomak ¢és az
agymetasztazisok esetében megfigyelt jelenségekkel egylitt arra utal, hogy a
gazdaszovet meglévd ereinek inkorporacidja, fliggetleniil a gazdaszovettdl, alapvetd
szerepet jatszik a tumorok vaszkularizaciojaban.

Véleménylink szerint a kolon karcinoma esetében lezajléo vaszkularizacio egy
altalanos érvényli, minden a mdjban ndvekvd differencidlt tumorra alkalmazhato
modell lehet, az oszlopokat felépitd és a kotdszoveti kollagént szintetizalé simaizom
aktint és fibronektin receptort expresszalé sejtek jelenthetnek egy j terapias célpontot.
A kolon karcindmaban talalhatoé oszlopokat felépité simaizom aktint expresszalo sejtek

nem tekintheték pericitdknak, valamint a Lewis lung karcindma metasztazisainak
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érhaldzata is pericita sOt bazdlis membran mentes volt, aminek terdpias vonzata is
lehet, hiszen kimutattdk, hogy a pericita boritas nélkiili éretlen erek érzékenyebbek a

kiilonb6z6 angiogenezis ellenes terapiakra (25).

4.2.2.4. Mdjmetasztazisok vérellatasanak vizsgalata (XV, XVI)

A méajmetasztazisok kezelésének napjainkban is elfogadott modszerei (intra-
arterialis kemoterdpia, emboliz4cio) azon az elven alapulnak, hogy vérellatasuk artérids
eredetli (33). Olyan kdézlemények is napvilagot lattak azonban, melyek a portalis véna
szerepét hangstlyozzdk a majmetasztizisok vérellatasaban (34). Korabban leirtuk a
vaszkularizacié egy lehetséges folyamatat Lewis lung karcindma esetében (IX) ami a
fentebb ismertetett ,,pushing” tipusi metasztazisok vaszkularizdcidja soran tett
megfigyeléseinkkel egyiitt azt mutatta, hogy a metasztdzisokban taldlhat6 erek
kozvetlen kapcsolatban vannak a szinuszoidokkal. Ez a jelenség azt sugallja, hogy a
metasztazisok vérellatdsa szinuszoidalis eredetii tehat a tumorok dontd tobbségiikben
kevert vért kapnak. Ezen megfigyelések lehetséges hatasat a méjmetasztazisok
kezelésére egy levélben Osszegeztiik, hangsulyozva a portalis rendszer szerepét a
kemoterapids szerek majmetasztazisokba torténd eljuttatdsaban, mely kozlésére sor is
keriilt, de a leirtak nagyobb visszhangot nem kaptak (XV).

Harom tumorvonal esetében végeztik el a majmetasztazisok vérellatasanak
vizsgalatat (XVI). (Lewis lung karcindéma, C38 kolon karcindéma, A2058 human
melanéma). Miutan a harom tumor kiilonb6z6 nodvekedési mintdzatot mutatott
kisérleteink soran arra is valaszt kaptunk, hogy a tumor invazivitdsa milyen mdédon
befolyasolja a metasztazisok vérellatasat.

Normal egér mikrovaszkulatirajanak vizsgédlata megmutatta, hogy nagyszdmu
anasztomozis talalhat6 az artérias €és a vénas rendszer kozott, valamint hogy az artérias
rendszernek minden lebenykéhez altalaban egy csatlakozopontja van, mely a lebenyke
aljan helyezkedik el. Ezek a csatlakozopontok megtalalhatok mind a nagy portalis agak
mentén, mind a periférian elhelyezkedd lebenykék esetében. A  korrdzios
készitményeken az artéridkbol a szinuszoidokba 6mlé vér piramis formaja struktiradk
alakjaban jelenik meg, melyeknek cstucsa a centralis véna felé mutat. Hasonlo
struktarakat irtak le korabban a portalis rendszer feltdltése soran, amelyeket

mikrocirkulacios alegységeknek neveztek el (HMS, Hepatic Microcirculatory Subunit)
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(35). Ennek alapjan, a megfigyelt struktirakat arterialis mikrocirkulacids alegységnek
neveztiik el (aHMS). Az arteridlis HMS azonban egy virtualis alegység, nem szabad
tehat figyelmen kiviil hagyni azt, hogy bar ezek a strukturak az arterialis rendszernek
szinuszoidokkal valo kozvetlen kapcsolata révén jonnek létre, ezek is kevert vért
tartalmaznak. Elhelyezkedésiik azt mutatja, hogy lebenykének csak egy "szelete" kap
vér szerepének jelentdségét majsejtek ellatdsaban, masrészt arra is utal, hogy ezek a
struktirdk csak az epeutak altal elhasznalt vér vénas rendszerbe torténd eljuttatidsara
szolgalnak.

A méjmetasztazisokat vizsgalva azt tapasztaltuk, hogy a metasztazisok
folyamatot az el6z6 fejezetben ismertettiink), és ezek inkorporacidja sordn alakul ki a
tumorok ¢érhaldzata, fiiggetleniil attél, hogy a tumor milyen ndvekedési mintazatot
mutat. A folyamat soran az arteridlis HMS-ek szinuszoidjainak fuzidja is bekovetkezik,
ami végiil az artérids rendszert hatarold struktirdk destrukcidjahoz és a metasztazisok
arterializalodasahoz vezet. A metasztazisok elméletileg tehat egy lebenykének
megfeleld méret elérése utan mar arterializalodnak. Adataink szerint azonban a
metasztazisok 95%-a csak a 2mm-es méret elérése utan arterializalédik, de ebben
eltérések mutatkoznak a tumorok nodvekedési mintazatdnak ¢és a ndvekedési
sebességének megfelelden. Differencidlt és/vagy lassan ndvekvd tumorok késébb
arterializalodnak, de 2,5mm-es méret felett minden metasztazis elsddlegesen artéris
ellatdsu. Az artérias ellatds kialakuldsa egyiitt jar a tumorba vezetd artéridk
kitagulasaval. Erdekes, hogy az 1,8 mm atmérénél kisebb metasztazisok 85-95%-at
egyetlen artéria latja el és ezek az artéridk nagyrészt a metasztazis centrumaban
helyezkednek el. Ennek a jelenségnek a hatterében feltehetéen az all, hogy a novekvd
tumorok nem képesek, szemben a portalis €s centralis rendszer agaival, a nagynyomasu
artérialis agakat komprimalni illetve a tumor periféridjara szoritani. A metasztazis tagult
véredényrendszere, amelyben feltehetden az arteridlis nyomashoz kozeli nyomas
uralkodik (prekapillaris zéar6éizom szinuszoid fuzi6 soran torténd destrukcidja)
tulajdonképpen egy sontdt képez az artérias és vénas (centralis) rendszer kozott.

A fenti eredmények azt mutatjak, hogy korabbi nézetiinket feliilvizsgalni sziikséges,

mert annak ellenére, hogy a m4j szinuszoidalis rendszere €s a tumor vaszkulatirija
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kozott kdzvetlen kapcsolat van, a metasztazisok nem portalis (szinuszoidalis) ellatastiak.
A szinuszoidok fuzidjuk kovetkeztében csak a metasztazis véredényrendszerének
kialakitasaban jatszanak szerepet az arteridlis HMS-ek invazidja elengedhetetleniil méar
nagyon kordn a metasztazisok arterializacidjdhoz vezet. A metasztdzis centrumaban
elhelyezkedo artéria kdvetkeztében a vér feltehetéen a metasztazisbol kifelé a centralis
véndk felé aramlik. Az intra-arteridlis kemoterapidk 1étjogosultsaga tehat
megkérddjelezhetetlen.

Osszefoglalva, tumor indukdlt angiogenezis tanulményozisa sordn tett
megfigyeléseinket, azt mondhatjuk, hogy hatasos anti-angiogenezis vagy anti-
vaszkuléris terapiak csak akkor lesznek kialakithatok, ha minden fontos célszerv

esetében sikeriil feltérképezni az alapvetd erezodési tipusokat.
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4.3. Metasztazisképzés

4.3.1. Sejtmigracio (XVII)

A tumorsejtek motilitasi képessége alapvetd szerepet jatszik a metasztazisok
kialakuldsdban (36). A tumorsejteknek jelentds tavolsagot kell lekiizdeniiik, mig a
primer tumorbdl eljutnak az elsd vér- vagy nyirokérig, ahol aztan at kell hatolniuk az
érfalon (intravazacio). A célszervbe eljutva a kitapadds utdn jabb migraci6, a
kapillaris falon wvald 4thatolds torténik meg (extravazacid), végil a tumorsejt
megtelepszik a célszerv kotdszovetében. Mint a bevezetdben emlitettiik a bazalis
membranok nagyon fontos szerepet jatszanak ezekben a folyamatokban. Szamos in
Ezekben a modellekben azonban legtobbszor nagyon vastag bazalis membran
komponensekbdl felépitett matrixot haszndlnak, mely jelentdsen eltér a bazalis
membran fizioldgias, gyakorlatilag kétdimenzios szerkezetétdl. Tekintve a bazaélis
membran vastagsaga €s a tumorsejtek mérete kozotti jelentds eltérést, in vivo a bazalis
befolyasolni fogjak a tumorsejtek viselkedését. A bazalis membranok felszine mentén
torténd migracio kevesebb figyelmet kapott, pedig a jelenség fontos szerepet jatszik a
szovetinvazidban és vaszkularizacidoban.

A sejtek kitapaddsa az extracellularis matrixhoz foképpen integrinek
segitségével torténik. In vitro ezeket a kitapadasi helyeket fokalis adhézidknak nevezik,
melyek az integrinek erdteljes aggregicidoja kovetkeztében jonnek létre. A membran
citoplazma fel6li oldalan taldlhatok a fokalis adhézidk azon komponensei (valamint
szamos mas szignaltranszdukcids elem), melyek az integrinek és az aktin citoszkeleton
kozotti 6sszekdttetést biztositjdk (37). A ma elfogadott és a tumorsejtek kétdimenzids
iranyaval. Ez a modell azonban szdmos jelenséget nem tud magyarazni. 1. Tekintve a
mozgo sejtek in vitro altalanosan megfigyelt legyezé formajat, nem vilagos, hogy mi
lesz a sorsa azon nagyszamu adhézionak, melyek a vezetd lamella élén keletkeznek, és
mint ismeretes stacionariusak maradnak a szubsztrathoz képest, mikozben a sejt elhalad
felettiik, hiszen a mozg6 sejtek hatso részén altaldban csak néhany adhézio talalhato. 2.
A sejtek kontraktilitasat aktin kotegek biztositjak, melyek polarizaltan a fokalis

adhéziokban végzddnek. A migracid soran tehat a sejtnek teljesesen at kellene rendezni
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a citoszkeletonjat ahhoz, hogy a sejt elején keletkezett adhéziokhoz tapadd aktin
kotegek ellentétes iranyultsaggal tapadjanak ugyanezekhez az adhézidkhoz, amikor a
sejt mar elhaladt felettiik. 3. A mozgd sejtekben gyakran figyelhetdk meg aktin
kotegek, melyek a sejt teljes hosszat athidaljak. Az adhézidknak a sejt hatuljan torténd
megsziinésekor a vezetd €len talalhatd adhézio is sziikségszertien megsziinik, hiszen az
adhéziok létének feltétele, hogy a hozzajuk tapadd aktin kotegek fesziiltség alatt
legyenek. Ez a jelenség jelentdsen csokkentené a vezetd lamella stabilitasat.

Létezik azonban egy madsik sejtmigraciés modell, melyet hal keratocitdk
migracid iranyara merdlegesek, de a mérések szerint a sejt mozgasaért kisebb kozel
sugariranyu erdk feleldsek. Ezek a sejtek a mozgasuk soran félkor alakot vesznek fel
melyet hosszabb idejli migracio soran is fenn tudnak tartani. A mozgasukra kidolgozott
kinematikai modell szerint (Graded Radial Extension, GRE modell) ahhoz, hogy a
sejtek a mozgas soran félkor alakjukat megtarthassak, minden, a félkoron talalhatod
pontnak az érintére merdleges iranyban kell elmozdulnia (38). Mivel ez az elmozdulés
a sejt csticsatol az atmérd felé haladva a szubsztrathoz képest egyre kisebb, a vezetd ¢l
minden pontja egy gorbe vonalat ir le, mig a sejthez viszonyitva a pontok a sejt
csucsatol a sejt egyenlitdje felé mozognak.

Humén fibroszarkéma sejtek mozgasat vizsgalva bazélis membran matrix
(Matrigél) felszinén egy érdekes jelenségre figyeltiink fel (XVII). Meglepd modon a
kiteriilést kovetden a tumorsejtek a hal epidermisz sejtekhez hasonléan mozogtak.
Mozg6 sejtek fokalis adhézidit tanulmanyozva azt figyeltiikk meg, hogy adhézidk csak a
vezetd élen, egy-két sorban, félkor alakban, az sejt peremére merdlegesen helyezkedtek
el. Ezek az adhéziok tartalmaztak minden, a fokalis adhézidkra jellemzd komponenst,
(vinkulin, talin, FAK, a6 integrin), ami nem tdmasztja ald az adhézidk korabban
feltételezett érési folyamatat a sejtmigracié soran.

GFP-vinkulint kifejez6 humdan fibroszarkoma sejtek fluoreszcens video
mikroszkdpidval torténd vizsgdlata azt mutatta, hogy az adhéziok a sejtmigracid sordn
a GRE modellnek megfelelden eldre és oldalra haladnak, majd elérve a sejt egyenlitoi
sejtben. Ezzel szemben az adhézidk a vezetd élen diszkrét pontok forméjaban

keletkeztek né¢hany mikrométerre a mar meglévd adhéziosor eldtt. A mozgd sejtek
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aktin citoszkeletonjat vizsgalva azt figyeltilk meg, hogy a nagyobb aktin kotegek a
mozgasirdnyra merdlegesek, de enyhén ivelt formdajhak voltak. (homora oldaluk
mutatott a mozgas irdnyaba). Miutan az aktin kotegek a sejt szélén elhelyezkedd fokalis
adhéziokhoz tapadnak, és azokon keresztiil fejtenek ki erdt a szubsztratra, a megfigyelt
ivek 0Osszehizodasa nagyon hatékonyan képes elére mozgatni a sejttestet, amihez
hozzéjarul az is, hogy adhéziok nem voltak megfigyelhetdk a sejttest alatt. A mozgas
soran az aktin kotegek ivelt forméja a sejtmag tehetetlenségébdl eredd ellenerd
kovetkeztében alakulhat ki. A modelliink szerint a sejt csticsan mindig ujabb adhézidk
¢és aktin kotegek képzddnek, mely utobbiak folyamatosan ndnek, ahogy a sejt eldre
halad. Az aktin kotegek elrendezddése arra utal, hogy a szubsztratra kifejtett erd
kozelitdleg sugar irdnyu a vezetd ¢élen €s ezen erdk ereddje felelds a sejt mozgaséaért.
Modelliink egyszeriien képes magyardzni a fibroblasztok mozgasara kidolgozott
modell altal felvetett problémakat. 1. Az adhéziok a vezetd ¢élen allanddan
ujraképzédve, GRE modell altal megadott utat kovetve jutnak el a sejt két széléig. 2.
Az aktin kotegek iranyultsaganak hirtelen nagymértékii megvaltozasara nincs sziikség,
hiszen az adhézidk folyamatosan ujraképzddnek a vezetd élen mikdzben orientacidjuk
feltehetden az aktin ivek altal kifejtett egyre novekvd erd hatisara folyamatosan
valtozik (0-90 fok). 3. Az adhézidk egyszerre bomlanak le egy-egy aktin koteg végén
(melyek mar elérték a sejt egyenlitdi vonalat), melynek kovetkeztében az egész aktin
kotegének stabilitasara.

A GRE modell, valamint az altalunk kidolgozott sejtmozgas modell
segitségével Osszefiiggést taldlhatunk a sejtmozgas és a sejtek kiteriilésének
(,,spreading”) folyamata kozott. A kiteriilés sordn a sejtek kor alaktak (adhézidk csak a
sejt szélén figyelhetdk meg), az altaluk elfoglalt teriilet nd, tehat a sejt keriiletének
minden pontja az érintére merdlegesen mozdul el, ugyanakkor ez az elmozdulas a
sejtmozgassal szemben minden irdnyban egyforma. A kiteriilt sejtekben is hasonlo ivelt
aktin kotegeket figyelhetliink meg mint a mozg6 sejtekben, azonban ebben az esetben
az ivek tobb iranyba mutatnak. Az aktin kotegek ivelt formaja a tobbi aktin koteg
erejének hatdsara alakul ki, hasonldan egy kifeszitett tlizoltoponyvahoz. Az 0sszes iv
altal kifejtett erd egyensulyban van, ami rogziti a sejtmagot és a tobbi sejtalkotot. A

migracid meginduldsakor a sejtadhézidk megsziinnek a mozgas irdnyaval ellentétes
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oldalon, ami az erdegyensuly megbomlasahoz és a migracié azonnali megindulédsdhoz
vezet.

Természetesen ez a modell csak a sejtek kétdimenzids mozgasat irja le, ami
ebben a forméban nem alkalmazhato kozvetleniil a sejtek haromdimenzios szdvetben
torténd mozgasara, egyrészt a sejtek geometridjanak masrészt a szubsztrat fizikai
tulajdonsaganak megvaltozasa miatt. Ezzel dsszefliggésben Yamada munkacsoportja
kimutatta, hogy az adhézidok Osszetétele kiilonbozik a szubsztrat képlékenységétol
figgben (39). Merev szubsztratokon stacionarius sejtekben a sejtek periféridjan
elhelyezked6 fokalis adhézidkban nincs jelen a5 integrin, mely ezen a szubsztraton a
sejttest alatt talalhato fibrillaris adhéziok komponense, ahol a sejt a fibronektin
filamentumokhoz kapcsolodik. Ezzel szemben haromdimenzids gélekben megfigyelt
adhéziokban az elébb leirt adhézidk Osszes komponense jelen van. Miutan mindkét
adhézidhoz tapadnak a sejtek mozgasaért felelds aktin filamentumok modelliink
érvényességét csak az adhéziok, illetve az aktin filamentumok eloszlasanak illetve
szerkezetének haromdimenzids gélekben torténd meghatdrozésa tudna eldonteni. A
fibroszarkoma sejtek haromdimenzids, merev szubsztraton torténd mozgasara
vonatkoz6 eldzetes vizsgalataink soran azt tapasztaltuk, hogy ebben az esetben is csak
egy adhéziosor talalhatd a sejtek elején, ami azt sejteti, hogy a modell érvényes lehet

haromdimenzids mozgasra is.

4.3.2. Extravazdacio és szervpreferencia (XVIII, XIX)

A szervpreferencia probléméjanak vizsgalatara mar a 80-as évek elejétdl kezdve
probaltak olyan sejt- €s tumorvonalakat kialakitani melyek szervpreferenciat, illetve
magas metasztatizald képességet mutattak. Ezek segitségével szamos tényezot
(sejtadhéziot, migraciot illetve proliferaciot befolyasold faktorok) sikeriilt ugyan
azonositani, de csak néhany olyan fehérjét illetve gént sikeriilt izolalni, melyek szerepet
jatszanak a szervpreferencia kialakulasaban. A teriileten végzett kutatdsoknak wjabb
lendiiletet adhat Ruoslahti és munkacsoportjanak kutatdsi stratégidja, melyben fag
konyvtarakban expresszalt peptidek kiillonb6zd szervek endotélsejtjeihez vald
kitapadasat vizsgaljak in vivo. Ennek a mddszernek a segitségével sikeriilt izolalni egy
emloraksejtek  felszinén taldlhaté proteint, a metadherint, mely felelds a

tiidOmetasztazisok kialakuldsaért (40). Sajnos az endotélsejtek felszinén talalhato
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ligandjat még nem sikeriilt izolalni. Egyéb, a tiidé- és csontmetasztazisok kialakulasat
meghatdroz6 receptor-ligand parokat is azonositottak mar, melyek koziil a tiido
endotélsejtjeinek felszinén taldlhato CD26-nak (a molekula enzimatikus aktivitasatol
fiiggetlentil koti a tumorsejtek felszinén taldlhat6d fibronektint), CLCA-1-nek (klor
csatorna fehérje, mely a tumor sejtek felszinén taldlhatdé o4 integrint koti) illetve a
CXCR4 kemokin receptor ligandjanak a SDF-1-nek a szerepét sikeriilt bizonyitani a
metasztazisképzés folyamatdban (41-43). Utobbi ugyan egy a fehérvérsejtek
kemotaxisat befolyasold faktor, de mar kordbban kimutattdk, hogy a kemokinek altal
kivaltott endotélsejtekhez torténd specifikus kitapaddst nem a kemokin gradiense,
hanem az endotélsejtek altal prezentalt szolid fazisu kemokin hatarozza meg (45).

azok a limfocitdkhoz hasonl6an, tekintet nélkiil a célszerv endotélsejtjeinek szerkezetére
egy lépésben hatolnak at az endotélsejteken €s a bazalis membranon. A helyzet azonban
ennél sokkal 6sszetettebb, hiszen mar a neutrofil leukocitak is, mint késébb latni fogjuk,
ettdl eltér6 modon extravazalnak. A tumorsejtek esetében a helyzet pedig még
arnyaltabb, hiszen az irodalomban taldlhaté adatok szerint kiilonb6z6 tumorvonalak
kotészovetbe vald kijutasanak még legalabb haromféle moddja ismeretes. Ezek a
kovetkezok: 1/ a tumorsejtek intravaszkularis szaporodasa, amely folyamat végiil az ér
destrukcidjdhoz vezet, 2/ az endotélsejtek retrakciojat kdvetden a tumorsejttel érintkezd
bazalis membran szdmos tumorsejt nyulvany altal torténé fragmentacioja, amely szintén
a kapillaris destrukcidjahoz vezet, 3/ a tumorsejtek endotelizacioja (endotélsejtekkel
torténo befedése) és az azt kovetd athatolas a bazalis membranon.

amelynek soran kimutattuk, hogy kiilonb6z6 szervekben (m4j, tiidé, mellékvese, vese,
agy) a tumorsejtek extravazacidja eltéré modon (szervspecifikusan) zajlik le (XVIII). A
tumorsejtek endotelizacidja torténik meg tiidében, majban és részben vesében, mig a
tumorsejtek egyszerre hatolnak 4t az endotéliumon ¢és a bazalis membranon a
mellékvesében és az agyban. Az endotelizacié folyamatanak kezdeti l1épésében az
endotélsejtek az apikalis felsziniikrdl nytlvanyokat bocsatanak ki, melyek a tumorsejtek
felszinéhez tapadnak. Ezt kovetéen a nyulvanyok ndvekedése valamint az endotélsejtek

retrakcioja kovetkezik be, mely folyamat a tumorsejtek endotélsejtekkel torténd teljes
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befedés¢hez vezet. Ekkor azonban mar az endotélsejtek bazalis felszine érintkezik a
tumorsejtekkel, jelezve, hogy a nyulvany novekedése soran a tumorsejtekkel
kapcsolatban levd plazmamembran polaritas valtasa torténik meg (apikélis-bazalis). Az
endotelizacidé fentebb ismertetett folyamata arra utal, hogy az endotélsejtek sokkal
aktivabb szerepet jatszanak az extravazacid folyamatdban, mint korabban gondoltuk.

A nyolcvanas évek elején Liotta és munkatarsai foglalkoztak a tumorsejtek
felszinén taldlhaté extracellularis matrix molekuldk metasztdzisképzésben jatszott
szerepével (46). Azt tapasztaltak, hogy intravénds oltas el6tt a tumorsejteket lamininnal
inkubélva a tlidémetasztazisok szama megemelkedett. Ultrastrukturalis vizsgalatokat
nem végeztek, igy nem ismert, hogy az exogén laminin milyen mechanizmus szerint
késébb kimutattuk, hogy a vizsgalatokhoz hasznalt B16 melandéma egy masik
variansanak sejtjei endotelizalédnak az extravazacié soran (47). Erdekes, hogy az
idézett munkacsoport vizsgalatait ez iranyban nem folytatta, igy eredményeik kés6bb
feledésbe meriiltek. Azonban mint fentebb lathattuk a tumorsejtek altal termelt
extracellularis matrix molekulak Gjabb vizsgalatok szerint is fontos szerepet jatszhatnak
a metasztazisképzésben hiszen fibronektin és  kollagén-I medialhatja a
tidometasztazisok kialakuldsat az endotélsejtek felszinén taldlhato CD26-hoz
kapcsolodva. Hogy e folyamat soran a tumorsejtek endotelizacioja lezajlik-e nem
ismert, de ujabban kimutattdk, hogy neutrofil leukocitdk is képesek laminin termelésre
hogy ezen sejtek is endotelizalodhatnak a bazélis membran attérése elott (49). Sajat,
még nem publikélt adataink szerint az LLT-HH valamint a B16 tumorsejtek jelentds
mennyiségli laminint expresszalnak a sejtfelszinen, amely mind az LLT-HH mind a B16
tumorsejtek tiidoben kordbban megfigyelt endotelizacigjaért felelds lehet. Lamininnel
bevont mikrogdmbok intravénas beoltasat kovetden azt tapasztaltuk, hogy a
mikrogdmbok endotélsejtekkel torténd befedése a tumorsejtekhez hasonld iddbeni
lefutdst mutat tiidoben, bar a mikrogdbmbok nem keriilnek kapcsolatba a bazélis
membrannal. Ez a jelenség arra utalhat. hogy bizonyos szervekben a tumorsejtek
extralumindlis helyzetbe torténd kertiléséhez elegendd az extracellularis matrix
molekulak jelenléte a sejtfelszinen. E feltétel teljesiilése annal is valosziniibb, hiszen jol

ismert, hogy epitelidlis eredetli tumorok esetében a bazalis membran folytonossdganak
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hianya nemcsak az emelkedett degradacio illetve csokkent szintézis eredménye, hanem
a helytelen depozicié is, amely magaban foglalja annak lehetdségét, hogy a tumorsejtek
felsziniikon bazalis membran komponenseket hordozzanak invaziojuk soran és az
intravazacidt kovetden. Ezzel szemben laminin szerepét a tumorsejtek kitapadasaban
Mushel és munkacsoportja abban latja, hogy a tumorsejtek a tiidé endotéliumaban
normalis koriilmények kozott is eléfordulod résekhez tapadnak a laminin 5 koté a3p1
integrin segitségével (50). Mi nagyszamu tumorsejtet vizsgaltunk ultrastrukturalisan
tobb sejtvonal esetében, de a tumorsejtek kezdeti kitapaddsa mindig intakt endotél
réteghez tortént.

Az LLT-HH tumorsejtek endotelizaciojat kovetden a tiiddben a bazalis membran
lokéalis degradacidja kovetkezett be. A tumorsejtek a keletkezett 1-2 pm méretd résen
keresztiil a kotészovetbe migraltak. A maj szinuszoidjaiban nem talalhat6 jol strukturalt
bazalis membran, egyes komponensek amorf formaban vannak jelen a mdjsejtek
mikrovillusai kozott (Disse tér). Itt nem is figyeltiikk meg a tiid6, a mellékvese és az agy
tumorsejteket. Ehelyett itt a tumorsejtek az endotelizacid utan alakvaltoztatas nélkiil
mintegy belesiillyedtek a majsejtekbe (XVIII).

Az extravazacid intravitdlis ¢és ultrastrukturdlis vizsgéalatdbol szarmazé
megfigyelések legnagyobb része arra utal, hogy a tumorsejtek tobbsége a célszervbe
vald bejutast kovetden a kapillarisokban mechanikusan, a kapillaris és a tumorsejt
méretébdl adodo kiilonbség miatt akad el. Ez a mechanikai stressz a tumorsejtek
nagymértékii pusztuldsahoz vezet, ami egyik f0 oka a metasztdzisképzés megfigyelt
alacsony hatékonysaganak. Erdekes, hogy ezt a széles korben elfogadott elméletet
korabban megkérddjelezte Chambers ¢és munkacsoportja, akik szerint minden a
célszervbe bejutott sejt extravazal, és életképes marad (alvéd tumorsejtek) (51). Mi nem
osztjuk ezt a nézetet, és bar részletes kvantitativ analizist nem végeztiink, tobb
fellelhetd tumorsejtek szama az id6 eldrehaladtaval egyértelmiilen csokken. A
tumorsejtek a célszerv kapillarisaiban torténd mechanikus elakaddsat tobb
munkacsoport is megkérddjelezte, sét eredményeik szerint a tumorsejtek a tiidoben a
mar nagyobb arterioldkban kitapadnak az érfalhoz és nem extravazalnak, ehelyett a

metasztazisok a tumorsejtek intravaszkularis novekedése utjan alakulnak ki (52). Ez az
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elképzelés ellentétben all a mi megfigyeléseinkkel, hiszen az LLT-HH és négy tovabbi
tumorvonal sorsanak a tiidoben tortént ultrastrukturalis vizsgalata azt mutatta, hogy a
tiidokapillarisokban tuléld tumorsejtek az oltast kdvetd egy napon beliil extravazalnak.
Az LLT-HH tumorvonal esetében azt tapasztaltuk, hogy a tumorsejtek szinte kizarolag
kapillarisokban akadtak el jelezve, hogy ezen tumorvonal esetében, a leukocitdk
»rolling”, nem jatszik jelentds szerepet az endotélsejtekhez torténd kitapadasban.
Korabbi B16 melandma sejtekkel végzett vizsgalataink azt mutattak, hogy ezek a sejtek
képesek voltak kitapadni arteriolakban, de ennek soran a tumorsejtek kezdetben nem
keriiltek kapcsolatba az endotélsejtekkel, mivel a tumorsejtek trombusok belsejében
helyezkedtek el, tehat a kitapaddst nem a tumorsejtek, hanem a trombus alkotdelemei
medialtdk (47). A nagyobb erekben valo kitapadési hajlam mogott feltehetden, a B16
tumorvonal erdsebb véralvadast indukald képessége rejlik. Meg kell azonban jegyezni,
hogy tobb tumorvonal esetében is megfigyeltiik, hogy az oltast kdvetden nagy szdmban
keletkeznek olyan trombusok melyek nem tartalmaznak tumorsejteket. Ezek és a
tumorsejteket is tartalmazd trombusok endotelizacidja (mely folyamat a trombus
szerviilésének elsd 1épése) hasonloképpen zajlott le, a trombusok sokszor tobb
endotélsejt részvételével feltehetden a trombus alkotoelemeinek (fibrin, fibronektin)
hatasara, mintegy fagocitalodtak. Feltehetd, hogy az endotelizacio jelensége a tiid6 és a
maj esetében egy olyan védekezési mechanizmus része, amely minden szilard fazisu
anyagnak a keringésbdl torténd eltdvolitdsara szolgdl, és amelyet a tumorsejtek
felhasznalnak a keringésbdl torténd minél gyorsabb kikeriilésre.

Korabban kimutattuk az intézetiinkben izolalt magas metasztatizald képességi
Lewis lung tumorvonal ugynevezett ,,latens” majpreferenciajat (53). A kifejezés arra
utal, hogy a szervpreferencia csak az arterialis rendszerbe torténd oltast kdvetden
nyilvanult meg. A metasztazisok latszolag ebben az esetben is a mechanikus elméletnek
megfeleléen az elsd elért szerv(ek)ben képzddnek, azonban kiilondsen a majban, de a
mellékvesékben is, a l0kettérfogati ardnyokat messze meghaladé gyakorisaggal
alakultak ki metasztdzisok. Ezzel szemben, a tumorvonal agy, de izom, bél, bor
esetében is negativ preferenciat mutatott. Mint fentebb emlitettilk a metasztazisképzés
hatékonysdga nagyon alacsony, amelynek f6 oka a tumorsejtek mechanikus ¢és

immunologiai hatdsokra bekdvetkezd pusztuldsa lehet, igy dontd jelentdséggel birhat,
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hogy a tumorsejtek mennyi id6t toltenek el ellenséges kdrnyezetben az extravazaciot
megeldzden. Vizsgalataink azt mutattdk, hogy az extravazacio a leghamarabb a majban
¢s a mellékvesékben zajlik le (6 6ra) mely szervekre pozitiv preferencia mutatkozik,
mig a leghosszabb i1d6t a kapillarisokban a tumorsejtek az agyban toltik, mely szervre a
tumorvonal negativ preferenciat mutat. Miutan az extravazacié médja (endotelizacid vs.
direkt athatolas az endotélsejteken €s a bazalis membranon) és a szervpreferencia kozott
nem volt Osszefiiggés azt mondhatjuk, hogy a szervpreferencia kialakuldsdban az
extravazacio sebessége lehet az egyik meghatarozo tényez6 (XVIII).

A szervpreferencia lehetséges okait vizsgalva, ellentétben szamos mas korabbi
vizsgalattal, nem talaltunk Osszefiiggést a tumorvonal szervkolonizaciés képessége és a
kiilonb6z6 szervekbdl szarmazd kemotaktikus faktorok altal kivaltott migracid kozott.
Hasonloképpen nem volt Osszefiiggés a tumorvonal fagyasztott metszetekhez vald
adhézios képessége ¢és a majpreferencia kozott. Megfigyeltik azonban, hogy a
tumorsejtek a kiilondsen majbol szarmazd fagyasztott metszetek esetében eldszeretettel
tapadtak az erekhez. A metszetek részletes elektronmikroszkopos vizsgalata kimutatta,
hogy a tumorsejtek a portalis venuldk és szinuszoidok bazalis membranjdhoz tapadtak
(XIX). Ez a jelenség felvetette annak lehetdségét, hogy az erek bazalis membranja
szerepet jatszhat a szervpreferencia kialakulasaban. Ennek részletesebb vizsgalatara
kiilonb6z6 bazalis membran komponensek elleni antitestekkel (perlekan, laminin,
fibronektin) kezeltiink egereket intravéndsan, majd a sziv bal kamrijaba oltottuk a
majpreferenciat mutaté LLT-HH tumorsejt vonalat. Azt tapasztaltuk, hogy bar
mindharom antitest csOkkentette a vese, illetve a laminin és fibronektin elleni antitestek
a tiid6é kolonizaciojat is, a majmetasztazisok kialakuldsat csak a perlekéan elleni antitest
volt képes jelentdsen gatolni. Tovabb vizsgédlva a kérdést megallapitottuk, hogy az
egerek majabol izolalt nagy molekulasulya proteoglikdn frakci6 nem fejt ki
kemotaktikus hatdst a tumorsejtekre. Ezzel szemben perlekan elleni antitest gatolta a

crer

azt mutattdk, hogy a szinuszoidokban elakadt tumorsejtek az endotélsejtek

crer

perlekan talalhato (XVIII). Ezt nem koveti ugyan a tumorsejtek migracidja, de a
jelenség szerepet jatszhat a tumorsejtek specifikus kitapaddsaban vagy specifikus

novekedési szignalok kozvetitésében. Utobbi megvalosulhat kiilonb6zé ndvekedési
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faktorok prezentalasdban a tumorsejtek szdmara, illetve a méj bazalis membranjaban
jelenlévo perlekan laminin koté képességén keresztiil. Meg kell azonban jegyezni, hogy
a perlekdn mellett mas molekuldk is szerepet jatszhatnak a majpreferencia
kialakuldsdban, hiszen csak a m4j esetében figyeltiink meg specifikus elektrondenz
sejtkapcsolo struktirdkat a tumor és endotélsejtek kozott (XVIII), melyek molekuléris

Osszetétele egyeldre ismeretlen.
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5. Uj eredmények.

1. A patkdnymdj epett rendszerének egy 0j, CK7-/CK19+ kompartmentjét irtuk
le, mely magaba foglalja a Hering kandlisokat is, és a legnagyobb valdszinliséggel
tartalmazza a maj 6ssejtjeit. Human majban ezek a strukturak CK7 pozitivak, benyulnak
a vaszkularis szeptumba, ahol arteriolak kisérik oket. Fenotipusuk: EMA-, CD56+,
CD133+.

2. Az ovalis sejtek altal képzett struktarak a Hering kanalisok
meghosszabbitasanak tekinthet6k. Az ovalis sejtek proliferaciojuk és migracidjuk soran
folyamatosan bazalis membrant szintetizdlnak és megtartjak polarizalt allapotukat. Az
altaluk alkotott csorendszert funkcionalis kapcsolatot biztosit a hepatocitdk €s az epeut

rendszer portalis térben elhelyezkedd elemei kdzott.

3. Az ovalis sejtek nem fejezik ki a Thy-1 (CD90) hemopoetikus dssejt markert,
tehat megjelenésiikben transzdifferenciacidé nem jatszik szerepet. Thy-1-t a mjj

miofibroblasztjai expresszaljak.

4. Az ovalis sejtek majsejtekké torténd differencidlodasa két, hisztologiailag
jelentésen eltérd modon mehet végbe, a sejtszintli események - melyek legfontosabb
jellemzdje a bazalis membran eltinése illetve a HNF4, majsejtspecifikus transzkripcios
faktor megjelenése- azonban megegyeznek a két folyamat soran. Az ovalis sejtek

differencialodéasa primer hepatocita mitogén kezeléssel eldsegithetd.

5. Kimutattuk, hogy a human és kisérletes melanomak beerezddése a tumor
felszinén képzodott kapillarishalozat  bekebelezésével megy végbe, ami a
kapillarisdenzitas csokkenéséhez és az erek méretének novekedéséhez vezet a tumor
centrum irdnydban. Human melanémak esetében az intratumordlis érdenzitds bir

prognosztikus jelentdséggel.
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6. Az intusszuszceptiv angiogenezis egy Uj forméajat irtuk le, melynek soran a
»pillar” képzddés elsé 1épése endotélsejt hidak kialakulasa az ér lumenében majd
kotdszoveti kollagén kotegek transzportja az érlumenen keresztiil az endotélsejtek

segitségével.

7. A glomeruloid test képzddés egy 11j forméajat irtuk le agyi mikrometasztazisok
esetében. A folyamat sordn érdenzitds novekedés a tumorban jelentdsebb endotélsejt
proliferacid nélkiil, az agy meglévd kapillarisrendszerének a tumorsejtek altal elidézett

atrendezddésével megy végbe.

8. Kimutattuk, hogy kisérletes agymetasztdzisok kornyezetében nem zajlik

crer

hozzak létre.

9. A vaszkularizacid egy 1) forméajat irtuk le jol differencialt kisérletes kolonrak
majmetasztazisainak esetében. A folyamat Iényege a tumor felszinén keletkezd fuzionalt

szinuszoidok inkorporacioja.

10. Kimutattuk, hogy a kisérletes majmetasztazisok artérids vérellatasra tesznek

szert 2mm-es tumor méret felett. Az arterializalodéas folyamata a majlebenykék arterialis

crer

crer

11. A sejtmozgés egy 0j mechanizmusat irtuk le in vitro. A sejt folyamatos
mozgasat a vezetd ¢len folytonosan megijuld, de a mozgas soran iv forméaban halado

adhézids pontokhoz kapcsolodo konkav aktin kotegek biztositjak.

12. Kimutattuk, hogy az extravazicid6 folyamata szervfiiggd Ilehet. Az

extravazacid sebessége, nem modja fiigg Ossze a szervpreferencidval.
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13. Kimutattuk, hogy a Lewis lung karcindbma madjpreferencidja mogott
legnagyobb  valoszinliséggel a  tumorsejtek  szinuszoidok  heparanszulfat

proteoglikanjahoz torténd specifikus adhézioja all.
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Immunohistochemical Analysis of Cytokeratin 7
Expression in Resting and Proliferating Biliary
Structures of Rat Liver

Sandor Paku,' Katalin Dezs6,? Laszlo Kopper,? and Peter Nagy?

Cytokeratins are the largest subfamily of intermediate filament proteins and include more
than 20 different gene products, which are expressed in an epithelial tissue-specific manner.
We studied by immunohistochemistry and confocal microscopy the distribution of cytoker-
atin subtypes in the biliary system of adult rat liver. A cytokeratin (CK)19+/7— cholangio-
cyte population was observed in the smaller branches of the biliary tree including the canals
of Hering. They proliferated after 2-acetaminofluorene (AAF) administration, although later
the typical oval cells expressed CK7. This observation suggests that cholangiocytes with this
cytokeratin phenotype may harbor adult hepatic stem cells. The CK19+/7— cholangiocytes
were not present in the rat liver at birth, but developed postnatally. Similar cell populations
were not observed in human livers. In conclusion, we propose that the CK19+/7— pheno-
type may be characteristic for adult hepatic stem cells in rat liver and that these cells are
generated de novo after birth. Supplementary material for this article can be found on the
HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index.

html). (HEPATOLOGY 2005;42:863-870.)

he canals of Hering or terminal ductules are tran-

sitional structures between the hepatocytes and

bile ducts. The cells of these structures are the
primary candidates for the liver-residing adult hepatic
stem cell. This explains the tremendously increased inter-
est for these ductules. Unfortunately, identifying them
unequivocally is not always easy. Several markers exist for
the cholangiocytes, such as OV-1, OV-6 antibodies, and
the histochemical reaction for gamma glutamyltrans-
ferase,' but these reactions decorate all segments of the
biliary tree equally. Therefore, the canals of Hering can be
reliably recognized from their position only by electron-
or confocal microscopy.* Because the compositions of cy-

Abbreviations: AAF, 2-acetaminofluorene; PH, partial hepatectomy; CK, cyto-
keratin.

From the ! Department of Molecular Pathology, Joint Research Organization of
the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hun-
gary; and the *First Department of Pathology and Experimental Cancer Research,
Semmelweis University, Budapest, Hungary.

Received January 26, 2005; accepted July 3, 2005.

Supported by The Hungarian Scientific Research Fund (OTKA) T 42674 and
TS 04887.

Address reprint requests to: Peter Nagy, First Department of Pathology and
Experimental Cancer Research, Semmelweis University, Ulloi #it 26, Budapest
H-1086, Hungary. E-mail: nagy@korb1.sote.hu; fax: (36) 1-317-1074.

Copyright © 2005 by the American Association for the Study of Liver Diseases.

Published online in Wiley InterScience (www.interscience.wiley.com).

DOI 10.1002/hep.20858

Potential conflict of interest: Nothing to report.

tokeratin subtypes are characteristic for cell types, we de-
cided to analyze the distribution of different cytokeratin
filaments in the liver. Hepatocytes have long been known
to contain CK8 and 18, whereas CK7 and 19 occurs in
the biliary epithelium in addition to 8/18.5¢ A detailed
examination showed a slightly different situation. All the
biliary structures in the adult rat liver contained CK19.
However, CK7 was present only in the larger biliary
ducts, whereas the smaller branches, including the canals
of Hering, were consistently negative. Thus, the stem cell
population of the adult rat liver may be recognized from
the CK19+/7— cytokeratin expression. This suggestion
is supported by the preferential proliferation of
CK19+/7— cholangiocytes after 2-acetaminofluorene
(AAF) administration.

Materials and Methods

Animal Experiments. Male F-344 rats (160-180 g)
were used for all experiments and were kept under stan-
dard conditions. At least 4 animals were used for each
experimental time point (unless otherwise marked). The
animal study protocols were conducted according to Na-
tional Institutes of Health guidelines for animal care.

AAF/Partial Hepatectomy Experiment. AAF (2
mg/mL suspended in 1% dimethylcellulose) 5 mg/kg was
administered to rats daily for 4 consecutive days by ga-
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Table 1. Primary Antibodies Used for the
Immunohistochemical Studies

Antibody Species Manufacturer Catalog Number Dilution
Pan cytokeratin Dako FO859 1:20
FITC labeled
Laminin Rabbit Dako 20097 1:300
polyclonal
BrdU Mouse Becton 347580 1:50
monoclonal Dickinson
CK7 Mouse Biogenex MU 255-UC 1:50
monoclonal
CK7 Mouse Dako N7018 1:50
monoclonal
CK19 Mouse Novocastra NCL-CK19 1:50
monoclonal

vage. Traditional two-thirds partial hepatectomy (PH)
was performed” on the 5th day, which was followed by 5
additional AAF treatments. Animals were killed at various
times as indicated in the text.

Bile Duct Ligation. The common bile duct was li-
gated, and the animals were killed 2 days after the opera-
tion.

Young Rats. The rats were killed at birth and at 14
and 28 days of age.

Human Samples. Three morphologically normal hu-
man liver specimens were taken from the non-tumorous
part of the liver removed for colorectal tumor metastases.
The experimental procedure was approved by the ethical
committee of our University under the code TUKEB
156/2003.

Morphological Analysis. Frozen sections (10-20 pwm)
were fixed in methanol and were incubated overnight
with a mixture of the primary antibodies (Table 1) and
with appropriate secondary antibodies afterward (Jackson
Immunoresearch, West Grove, PA). All samples were an-
alyzed by confocal laser-scanning microscopy using Bio-
Rad MRC-1024 system (Bio-Rad, Richmond, CA).

BrdU Incorporation. BrdU incorporation was ana-
lyzed on serial sections. Portal tracts were selected on the
CK7 and pancytokeratin stained sections. The same por-
tal tracts were identified on pancytokeratin-, BrdU-, and
4',6-diamidine-2-phenylindole (DAPI)-stained sections.
BrdU pulse (100 mg/kg) was given 24 hours after the last
AAF dose and 1 hour before killing. The labeling index of
the CK7 negative and positive biliary cells were deter-
mined after 2 days of AAF treatment, using 4 animals and
counting 217 to 555 cells in the CK7-negative and 170 to
396 cells in the CK7-positive compartment. BrdU reac-
tion was performed as described.

Morphometry. Frozen sections from 3 control rats
(15 wm) were stained for CK7, laminin, and pancytok-
eratin. The combination of pancytokeratin and CK7
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staining was chosen for these experiments because the
pancytokeratin antibody decorated all the biliary
duct(ule)s and hepatocytes to let us study the connection
between these 2 cell compartments. The portal tracts were
divided into 3 categories according to their CK7 staining:

1. Portal tracts containing no CK7-positive bile
ducts

2. Portal tracts containing ducts stained partially by
CK7 (majority of cells stained positively for CK7 but
negative cells were also present in the duct) beside the
CK7-negative ductules

3. Portal tracts containing large bile ducts stained
completely by CK7 in addition to the structures of the
previous categories. Cells of the large ducts of category 3
stained more brightly for CK7 than the cells of the CK7-
positive ducts in category 2

The smallest diameter of all bile duct(ule)s and portal
veins, present on a given cryosection, was determined,
using the Bio-Rad Lasersharp software.

The total area of the cryosections were determined us-
ing the Olympus Vanox Cue 2 software.

To determine the length of the CK7-negative bile
ductules, series of 15-um thick (15-40 sections) were
cut. A canal of Hering was selected based on its char-
acteristic U-shaped laminin staining. This structure
was followed through the serial sections until it reached
its end, then in the opposite Z direction the bile
ductule was tracked down until it opened into a CK7-
positive bile duct. The length of the ductule was calcu-
lated by multiplying the number of sections in Z
direction by the thickness of the sections and by adding
the extension of the duct in the XY dimensions. Only
those ductules were counted in which both ends could
be identified with certainty.

Results

Cytokeratin Expression in the Adult Rat Liver.
Because all commercially available cytokeratin subtype
specific antibodies are monoclonal, their colocalization
can be analyzed only on serial sections. The cytokeratin
antibodies were usually co-stained with a polyclonal lami-
nin antibody, which outlined the blood vessels, bile ducts,
and made orientation on the section easier. The canals of
Hering can be identified as biliary structures circum-
scribed only partially by laminin-positive basement mem-
brane.

A pancytokeratin antibody reacted with all the cholan-
giocytes as well as hepatocytes, but the staining pattern
was completely different between the 2 cell types (Fig.
1A). The hepatocytes showed faint reticular staining,
whereas there was a strong cytoplasmic reaction in the
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Fig. 1. Portal area of a normal adult rat liver; panels A and B are serial sections (10-um distance). Section A was triple labeled for pancytokeratin
(green), CK7 (red), and laminin (blue). For clarity, the localization of pancytokeratin, laminin and CK7, laminin are shown in panels A and A’,
respectively. Section B was double labeled for CK19 (green) and laminin (red). Pancytokeratin (A) and CK19 (B) stains equally the small, including
canals of Hering (arrows), and large bile duct(ule)s, whereas CK7 (A’) stains only the larger ones. Note that the lower large duct is stained only
partially by CK7 and the upper large bile duct is stained more brightly than the lower one. (Type 3 portal area). Scale bar: 50 wm.

cholangiocytes and they were surrounded by continuous
basement membrane. All the biliary structures labeled by
the pancytokeratin antibody were CK19 positive on a
parallel section (Fig. 1B). However, small biliary struc-
tures remained unstained with 2 different CK7 antibod-
ies, whereas the large bile ducts showed a bright positive
reaction with these antibodies (Fig. 1A"). The canals of
Hering, recognized from the U-shaped laminin staining,*
were consistently negative for CK7 albeit they were
stained by CK19 (Fig. 1 A’,B). We were curious whether
there are CK7-negative biliary structures in addition to
the canals of Hering and followed 45 CK7-negative
ductules through serial sections derived from 3 different
animals (Table 2). Three main types of these ductules
could be observed (Fig. 2A-F and online Supplementary
Materials for Fig. 2A,C-D):

1. Simple ductules, showing no ramifications with a
single attachment to hepatocytes (Fig. 2A-B),

2. Ductules divided into generally 2 to 4 branches
(each branch had contact with hepatocyte(s) (Fig. 2C-D),

3. Ductules with attachments to 2 to 4 hepatocytes of
the limiting plate (Fig. 2C-E). Occasionally there were
branching ductules with attachments to more than 1
hepatocyte.(Fig. 2C-D).

The 3 types were represented roughly equally. These
structures never entered into the liver lobule through the
limiting plate. Where there was no contact with the liver
plate, the ductules were covered completely with contin-
uous basement membrane. When these small ductules
joined to larger bile ducts, a clearly recognizable border
was usually present between the CK7-negative ductular
and CK7-positive ductal cells. (Figs. 2B, 3).

Table 2. Morphometric Characteristics of CK7-Negative Bile Ductules

Type of Portal Area

CK7 Negative Bile
Ductules Only

CK7 Negative. Completely
(and Partially) CK7
Positive Bile Duct(ule)s

CK7 Negative and Partially
CK7 Positive Bile Duct(ule)s

Total area
Number of portal areas 111
Diameter of CK7-ductules, mean = SE 7.9 £ 0.8 um

Range (n: SD) 4-18 pum (193:6.7)

Diameter of CK7+ ducts NA
Range (n: SD) NA
Number of duct(ule)s/portal area 1.74
Diameter of portal vein 179 = 1.4 um

Length of CK7-ductules, mean * SD
Range (n)

293.4 mm2
306 53
7.4+ 0.7 um 82 + 0.4 um
4-17 um (537:6.4) 4-17 pm (171:7.9)
132 =22 pm 235+ 3.4 pum
5-33 um (368:11.9) 7-70 pm (90: 34.8)
2.96 4,92
259 +2.9 um 62.6 + 9.3 um
104 + 66 um

18-315 pum (45)
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Fig. 2. (A-B) Short bile ductule (type A) having single contact site with the limiting plate (small arrow). The section was triple labeled for
pancytokeratin (green), CK7 (red), and laminin (blue). (A) Single horizontal view of the pancytokeratin staining (37 optical sections taken at 0.4-um
distance). (B) Single optical sections of the CK7 and laminin staining, demonstrating that the ductule is covered by basement membrane as it leaves
the limiting plate, and enters into a CK7 positive duct (large arrow). (C-D) Single horizontal view of pancytokeratin-stained sections. Both views contain
40 optical sections taken 0.4 wm apart. (C) Branching (type B) bile ductule. Large arrowheads indicate the branching points. Note the bile canaliculi
(small arrowheads) running toward and entering into the canals of Hering (arrows). (D) Bile ductule (type C) running along the limiting plate ( small
arrowheads). The ductule is connected to hepatocytes at 3 different points (large arrowheads). Before it enters the large duct, it meets another short
ductule, which has only 1 attachment site (arrow). (E) Type C bile ductule connected to the limiting plate at 3 different locations (arrows). The section
is stained for pancytokeratin (green) and laminin (blue). Note that laminin is present only at the connective tissue side of the ductule, where it is
connected to the hepatocytes. It is delineated on both sides by basement membrane (arrowheads) between the attachments. (F) Schematic
representation of the 3 main types of the CK7-negative ductules. On the left, type A ductule with a single attachment to the limiting plate. At the
center, type B ductule with 2 branches each connected to a hepatocyte. On the right, type C ductule has segmental contact with hepatocytes. Types

B and C ductules are interrelated, depending on the length of the branches. Scale bar: 20 um.

We also analyzed the size (diameter, length) of the bile
duct(ule)s. The examined portal areas were divided into 3
groups based on the CK7 staining pattern of biliary struc-
tures (Table 2). The portal areas containing only CK7-
negative ductules had the narrowest portal veins. The
diameter of the portal veins was larger alongside the par-
tially CK7-positive ductules and increased further in the
portal tracts with completely CK7-positive bile ducts.
The diameter of the partially and completely positive
ducts correlated with that of the actual portal veins. In-
terestingly, the size of the small CK19+/7— biliary
ductules was almost independent of the above parameters
of the portal tract. The standard diameter throughout the
liver and the unique cytokeratin composition may indi-
cate that these structures constitute a well-defined entity
in the biliary system.

Cytokeratin Staining in the Postnatal Developing
Liver. Many bile duct(ule)s were arranged at the periph-
ery of the portal spaces in the newborn rat liver at birth.
All these ducts were surrounded by laminin-positive base-

ment membrane, and the cells were stained by CK19 as
well as by CK7 antibodies (Fig. 4A-B). We could not
identify any CK7-negative biliary structure. The number
of the bile ducts decreased by 14 days of age, but their
cytokeratin composition did not change (Fig. 4C-D).
However, CK19+/7— biliary ductules were observed in
the liver of 28-day-old rats (Fig. 4E-F).

Cytokeratin Staining of Proliferating Biliary Cells.
The AAF/PH experiment is an established protocol to
induce oval cell proliferation.® AAF treatment itself is able
to induce the proliferation of the biliary cells, although
they remain in the periportal space.® Later, after PH, these
ductularly arranged cells invade the liver lobule and form
the typical oval cell ducts.

Two AAF treatments did not change the cytokeratin
expression compared with the normal liver (Fig. 5A-B),
but the CK7-negative biliary ductules showed more than
3-fold higher proliferative activity than the positive ones
(Table 3). When the oval cells invaded the liver lobule,
after PH, they gained weak CK7 positivity (Fig. 5C-F),
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Fig. 3. Serial sections follow a CK7-negative ductule (arrows) as it enters into a CK7-positive interlobular bile duct. The sections were cut at 15-um
distances and triple-labeled for pancytokeratin (green), CK7 (red), and laminin (blue). For clarity, the localization of pancytokeratin and laminin is
shown on pictures 1-8, and CK7 and laminin is shown on pictures 1'-8". The ductule is confined throughout its pass to the periportal space. At its
origin, it is partially surrounded by laminin (traditional canals of Hering) (pictures 1-2). It enters into another CK7-negative ductule (picture 2), which
separates into 2 branches as it passes around a vessel leaving the portal vein (pictures 4-6). Under the vessel (picture 7), the branches are joined
and the ductule takes a sharp turn (picture 8), thereby running in the plane of the section, and enters the CK7-positive duct. During its path, the
ductule remains CK7 negative until it reaches an interlobular bile duct (picture 8). Scale bar: 100 wm.

but the staining intensity was obviously weaker than in
the large bile ducts.

Three months after PH, the oval cells disappeared, but
numerous bile duct-like tubules crossing the lobules re-
mained in the liver. These ducts inside the liver lobule
were CK7 negative but reacted with CK19 antibody and
were surrounded by laminin (Fig.5G-H).

Biliary cell proliferation also can be induced by the
ligation of the common bile duct, which results in the
development of tortuous interlobular bile ducts. This re-
action is frequently referred to as “bile duct proliferation.”
All of these well-differentiated bile ducts were CK19/
CK7 positive (Fig. 6). Essentially all of the CK7-negative
ductules disappeared from the livers 48 hours after the
ligation of the common bile duct.

Cytokeratin Staining in the Normal Human Liver.
Three histologically normal adult human liver specimens
were stained for the cytokeratin subtypes. All the biliary

structures were positive for pancytokeratin as well as for
CK7 (Fig. 7) and CK19 (not shown). As opposed to the
rat liver, no CK7-negative biliary cells were observed.

Discussion

Here we report the existence of a CK19+/7— biliary
cell population in the adult rat liver. The small biliary
branches including the canals of Hering are composed of
CK7-negative cholangiocytes. These CK7-negative cells
are the precursors of the oval cells, but they are able to
differentiate into CK19+/7+ biliary cells as well. They
are not present in the liver at birth but are generated de
novo in the postnatal period.

The cholangiocytes are morphologically and function-
ally heterogeneous along the intrahepatic biliary tree.'%!!
The canals of Hering are the most distal part of this sys-
tem. Unfortunately, they have no specific immunophe-
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Fig. 4. Portal field of a newborn (A-B), 14- (C-D), and 28-day (E-F)-old rat liver. Serial sections were double labeled for CK7 (red), laminin (blue)
(A,C,E), and for CK19 (green) and laminin (red) (B,D,F). All the bile ducts and ductules are CK7 and CK19 positive in newborn (A-B) and 14-day-old
(C-D) rat livers regardless of their size. The bile ductules (arrows) of the 28-day-old rat liver (E-F) express CK19 but not CK7. Scale bar: 50 um.

notypic or other morphological marker. They can be
identified only from their position as an interface between
the hepatocytes and bile ducts.#!? In all cases, in our
hands these positively identified structures are negative
for CK7. When the CK7-negative ductules are followed
through serial sections, they do not have continuous con-
tact with the hepatocytes. That is, if we apply strictly the
definition of the canal of Hering, not all segments fulfill
the criteria. These CK7-negative ductules form a func-
tional and anatomical unit, however. Contrary to the tra-
ditional view of the canals of Hering, the CK7-negative
ductules can be long, winding, dividing but uniform-
sized tubules, which have contact segmentally with hepa-
tocytes of the limiting plate collecting the bile from the
canalicular system. Based on this arrangement, we pro-
pose that the CK7-negative biliary ductules, including the
traditional canals of Hering, constitute a special morpho-
logical and functional segment of the biliary system in the
rat liver.

Cytokeratin molecules are extremely labile unless they
can find a partner for the assembly of the filaments. Usu-
ally CK7 and 19 are partners in the cholangiocytes. CK7
protein disappears spontaneously in CK18 null mice,'
and CK19 in this case can be a partner of CK8. That is,
the lack of CK7 does not result in the instability of CK19
in the ductules.

We have previously shown that AAF treatment induces
biliary proliferation in rat and these proliferating cells are
the precursors of later oval cells.” Because oval cells are
considered the progenies and amplifying compartment of
the hepatic stem cells, the AAF administration can be
regarded as a functional assay for hepatic stem cell activa-

tion. In our experiment, AAF induces the preferential
proliferation of CK7-negative biliary cells. Therefore, we
suggest that the CK19+/7— cholangiocytes may harbor
the adult hepatic stem cells in rat. Several “oval” or hepatic
“stem cell” markers exist, such as OV1, OV6, A-6,13 c-
kit,’> but they react with all the cholangiocytes. The
CK19+/7— phenotype distinguishes a special segment of
the biliary tree. As far as we know, this cytokeratin com-
position is the most stringent immunophenotypic con-
the adult

compartment. Stem cells in other organs also have unique

finement of liver-residing stem  cell
cytokeratin composition.!®!7 Marceau'® postulated that
the hepatic stem cells should be CK7 negative and CK14
positive, but we could not reveal any CK14 positivity in
our experimental models (data not shown).

The ligation of the common bile duct induces the pro-
liferation of biliary cells.'® All these bile ducts stain posi-
tively with the CK7 antibody, as well as CKI9.
Interestingly, the CK7-negative biliary ductules almost
completely disappear from these livers. Thus, we can con-
clude that BDL induces CK7 upregulation associated
with biliary differentiation of the stem cell population.

The early proliferative ductules were completely nega-
tive in the AAF/PH experimental system. However, the
classical oval cells, after PH, stained weakly. Why the
CKZ7 protein becomes visible at this step, before it disap-
pears again, is not clear. The CK7 positivity appears when
the bile ducts are rapidly elongating (ontogenic liver de-
velopment, expansion of oval cells, bile duct ligation) and
disappears when their growth is arrested (adult liver, rem-
nants of oval cells). The CK7 negativity is not stable on
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Fig. 5. Distribution of cytokeratins (CK7, CK19) in the AAF/PH exper-
iment. (A-B) Sections of a rat liver treated by 2 doses of AAF (no partial

hepatectomy). (C-H) Sections of rat livers that underwent the AAF
treatment and partial hepatectomy. (C-D) 2 days, (E-F) 6 days, and
(G-H) 3 months after partial hepatectomy. Serial sections were double-
labeled for CK7 (red), laminin (blue) (A,C,E,G), and for CK19 (green) and
laminin (red) (B,D,F,H). Most of the CK19-positive ductules remain CK7
negative after 2 AAF treatments (A-B). Two and 6 days after PH, the oval
cells penetrate the limiting plate and become CK7 positive, although the
expression is weaker than in the interlobular bile duct (arrows) (C-F).
CK19-positive ducts surrounded by laminin staining are inside the lobule
3 months after the beginning of the experiment, but the CK7 staining
disappears (G-H). Scale bar: 50 um.

manipulation; thus, it is not suitable for tracing progenies
of stem cells.

The generation of the adult stem cells is a relatively
neglected field of stem cell biology. Two options exist:

Table 3. Proliferation of CK7 Negative and Positive
Compartments of the Biliary Tree After 2 Days of AAF
Administration

CK7 Negative Cells CK7 Positive Cells

Total number of cell nuclei 1,384 1,050
examined
Labeling index (%) 6.9+ 18 2.1 £0.7*

*P < .05.
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Fig. 6. Rat liver 2 days after the ligation of the common bile duct (A).
Serial sections were double labeled for CK7 (red), laminin (blue) (A), and
for CK19 (green) and laminin (red) (B). All “proliferating” bile ducts are
positive for CK7 and CK19. Scale bar: 50 um.

either the stem cells are leftover undifferentiated cells
from embriogenesis or they develop de novo. Initial data
favor the second hypothesis.?0-2! CK7 is the last cytoker-
atin subtype upregulated during the development of the
biliary system.?223 Therefore, the CK7-negative cholan-
giocytes might have been left-over, not terminally differ-
entiated cholangiocytes. However, our data, that the
CK19+/7— cells are not present at birth but appear in
the liver 4 weeks later, indicate that the adult hepatic stem
cell compartment is generated postnatally. We do not
know whether the presence of CK7 molecules has any
influence on the “stemness” of this cell population, but
experimental data demonstrate the different behavior of
the cholangiocytes at 3 weeks of age.?* By all means the
disappearance of CK7 might be an indicator for the de-
velopment of stem cell population.

In conclusion, Thiese et al.'> described elongated
CK19+ canals of Hering in the human liver (CK7 ex-
pression was not studied). We could not find CK19+/
CK7— biliary structures in human liver. There is an
additional basic difference between the rat and human
liver. In the normal rat liver, we could never observe the
spreading of the canals of Hering into the hepatic lobule
through the limiting plate. Nonetheless, this was com-
mon in the human specimens studied by Thiese et al.!>
We saw similar structures in the rat liver 3 months after

Fig. 7. Human liver (A,A"). The section was triple labeled for pancy-
tokeratin (green), CK7 (red), and laminin (blue). For clarity, the local-
ization of pancytokeratin, laminin and CK7, laminin are shown on A and
A’, respectively. No CK7 negative ductules are present in the normal,
human liver tissue. Scale bar: 50 um
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the AAF/PH experiment in otherwise normal liver tissue
and thought them the remnants of oval cells, which lost
CK7 expression again. Because Thiese et al. used livers
containing metastatic cancer, the entrance of the small
ductules into the liver lobule may not represent the nor-

mal situation.
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The canals of Hering or biliary ductules have been described to connect the bile canaliculi with the interlobular
bile ducts, and thus forming the distal part of the biliary tree. Studies in the last two decades suggested that the
cells constructing these ductules could behave as hepatic progenitor cells. The canals of Hering are confined
to the periportal space in the rat, while they have been reported to spread beyond the limiting plate in human
liver. The distribution of the distal biliary ductules in normal human hepatic tissue has been investigated in our
recent experiments. We could demonstrate the presence of interlobular connective tissue septa in a rudimentary
form in healthy livers. The canals of Hering run in these septa in line with the terminal branches of the portal
vein and hepatic arteries. This arrangement develops in the postnatal period but regresses after early childhood.
The canals of Hering can be identified by the unique epithelial membrane antigen (EMA)—/CD56+/CD133+
immunophenotype. The canals of Hering leave the periportal space and spread into the liver parenchyma along
rudimentary interlobular septa outlining the hepatic lobules. Our observations refine the original architectural
description of the intraparenchymal portion of the canals of Hering in the human liver. The distinct immuno-

phenotype supports their unique biological function.

Introduction

HE EXISTENCE OF A progenitor cell population in the liver

has become generally accepted [1,2], and the clinical
application of these cells have been of tremendous interest
[3,4]. Today, liver transplantation is the only available cura-
tive treatment for liver failure, either in cirrhosis or in fulmi-
nant liver necrosis. However, the number of available donor
livers sets the limit for the application of this procedure and
alternative treatments are being sought. Transdifferentiation
of bone marrow cells into hepatocytes does not seem to be
efficient enough for clinical application [5-7]. Conversely,
efficient hepatic regeneration has been recorded from the
endogenous liver progenitor cells in human [89].

Most data refer to the canals of Hering as the site of the
hepatic progenitor cell compartment [1,2,10]. This structure
was described by Hering as “hepatic capillaries” [11], which
maintained the link between bile ducts and the hepato-
cyte canalicular system. Later, it had been proposed to be
the niche for hepatic progenitor cells [12,13]. The niche is a
special microenvironment, which has a major impact on
the maintenance and activation of the stem/progenitor cell
compartment [14]. Therefore, the exact identification and

characterization of this structure is necessary to understand
its behavior under normal and pathological conditions.

The canals of Hering are usually shown as short, straight
ductules at the border of the periportal connective tissue and
liver parenchyma, but probably this conformation is oversim-
plified. We have recently characterized the hepatic progenitor
cell niche in rat liver by laser scanning confocal microscopy
[15]. Long, branching ductules have been observed, strictly
inside the periportal connective tissue. They had contact with
the bile canalicular system at the limiting plate. Their unique
CK19+/CK7— immunophenotype has made their identifi-
cation within the biliary tree easier. However, no CK7— bil-
iary structures could be observed in human liver specimens.
Furthermore, the canals of Hering have been described to
spread into the hepatic lobule in the normal human liver [16].
These observations suggest that the organization of the canals
of Hering in human liver is different from the traditional sim-
ple view as well as from the architecture we saw in rat liver.

In our present study, we set out to collect normal human
liver tissue from individuals of various ages and analyzed
the architecture and immunophenotype of the biliary
ductules by confocal microscopy.

First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
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Materials and Methods

Normal human liver specimens were collected from
cadavers of spontaneous premature birth neonates with-
out developmental abnormalities and individuals who died
suddenly in accidents without morphological signs and
anamnestic data of any liver disease. (Age and gender of the
patients: 3 males, 23rd week of pregnancy; 4 females, 23rd
week of pregnancy; 1 male, 39th week of pregnancy; 2 males,
3 years; 1 female, 3 years; 1 female, 13 years; 1 male, 20 years;
1 male, 26 years old.) All autopsies were performed within
24 h following death. The liver samples were thoroughly
examined on formalin-fixed, paraffin-embedded liver sec-
tions with H&E, diastase PAS, Prussian blue, orcein and
Masson’s trichrome stainings; no fibrosis, ductular reaction,
or other pathological alterations were observed. Snap frozen
liver samples were stored at —80°C.

Frozen sections (10-20 um) were fixed in methanol and
were incubated at room temperature (1 h) with a mixture of
primary antibodies (Supplementary Table 1; Supplementary
materials are available online at http://www.liebertpub.com/)
followed by the appropriate fluorescent secondary antibodies
(Jackson Immunoresearch, West Grove, PA). All samples were
analyzed by confocal laser scanning microscopy using Bio-
Rad MRC-1024 system (Bio-Rad, Richmond CA).

The procedure has been approved by the ethical commit-
tee of Semmelweis University.

Quantitative analysis of immunohistochemical staining

The livers of two 3-year-old children and the 20-, 26-year-
old adults were used for quantitation. Consecutive frozen
sections were co-stained for CK7/EMA, CK7/CD56,and CK7/
CD133. The number of CK7-stained structures was deter-
mined. The double-stained structures were counted and the
results were given as percent of the CK7+ structures.

Results

Distribution of hepatic ductules in the liver
parenchyma

When sections from the livers of 3-year-old healthy chil-
dren were stained for panCK, CK7, and laminin, hepatic
ductules surrounded by basement membrane could be
observed in the parenchyma far from the portal spaces
(Fig. 1A and 1B). Low power examination revealed that these
ductules were not randomly arranged. They outlined dimly
polygonal structures with terminal veins in the centers
and portal triads at the corners, that is, the classical hepatic
lobules. When micrographs of 40 serial sections stained
for cytokeratin-7 were digitally aligned and merged (Fig.
1C), this kind of perilobular arrangement of the ductules
was even more obvious. Two other characteristics could
be observed on this composite image: (i) no CK7+ biliary
ductules were present inside the hepatic lobules; (ii) the
ductules at the interlobular border spread until the half of
the porto-portal distances, which resulted in watershed-like
empty gaps in the middle of these stretches.

High power examination of individual biliary ductules
showed that these narrow tubules did really extend beyond
the limiting plate. The ductules spread in virtual “empty”
spaces among hepatocytes on cytokeratin antibody stained
sections (Fig. 1D), where only the epithelial elements of the
hepatic tissue were decorated. When the ductules terminated
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on hepatocytes, they were surrounded by typical U-shaped
basement membrane (Fig. 2B inset), and the hepatocytes did
not participate in the composition of the ductules beyond
these connections. The “empty” space around the ductules
was filled by collagenous matrix (Fig. 2A) and contained
CD31+ small blood vessels (Fig. 2B), some of which were
also labeled by the arterial marker NG-2 [17] (Fig. 2C). Taken
together, confocal analysis of normal human liver revealed
the deposition of small amounts of extracellular matrix
between hepatic lobules, with expanding biliary ductules
and blood vessels. This kind of arrangement of the blood
vessels was described earlier as the vascular septum [18,19].
The small amount of matrix could not be visualized on tra-
ditional histological sections by special stainings on any of
our liver samples.

Alterations of the hepatic ductules with age

The maturation of the biliary system continues in post-
natal life in humans [20,21], and major changes are also
observed in rats [15,22]. Therefore, we decided to examine
the distribution of the canals of Hering in healthy livers of
individuals of various ages.

FIG. 1. Confocal images of normal human liver from a
3-year-old child. (A and B) Triple labeling for CK7 (red),
laminin (blue), and pan CK (green). (A) CK7 (red) and lami-
nin (blue) staining. (B) Merged image. Comparing the two
images, the perilobular arrangement of the laminin-framed
ductules is clearly discernible. (C) CK7 (green)-stained bil-
iary ductules sharply outline the hepatic lobule when 40
thick serial sections are merged. Note the “gaps” (arrows)
halfway of the porto-portal distances. (D) Horizontal view
of 42 optical sections stained for panCK. Note the numerous
connections of the bile ductules with the liver parenchyma
(arrowheads). The collecting bile ductule is running in an
“empty” space toward the portal area. Scale bars for A and
B = 500 um; C = 100 uym; and D = 50 um.
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FIG. 2. Confocal images of normal human livers from a
(A and B) 3- and a (C) 13-year-old child. (D-F) hepatic lobules
in (D) 23- and (E) 39-week-old fetuses and (F) in a 26-year-old
adult liver. (A) Double staining for CK7 and collagen I. CK7
(green)-stained perilobular ductules are embedded in rudi-
mentary collagenous matrix (red) in the portal spaces and
in the interlobular septa. The inset shows the vascular sep-
tum at a higher magnification on a different section. (B and
C) High power view of the “vascular septum.” (B) Laminin
(blue) surrounded CK7+ (green) ductules are accompanied
by CD31 (red)-decorated blood vessels (arterioles). The larger
vessel (arrow) probably represents a terminal branch of the
portal vein. The inset shows the connection of a ductule on
the hepatic plate (cannot be seen with this staining); note the
sharp ending of the U-shaped basement membrane at the
ducto-parenchymal border (arrowheads). (C) Note the prox-
imity of NG-2+ (red) arterioles to the CK7 (green)-stained
ductules. The empty laminin (blue) circles (arrows) proba-
bly represent portal vein branches. (D) The portal tracts are
“closed”; laminin (red) surrounded CK7+ (green) ductules
are confined to the border of the portal space. Note the
high number of ductules marking the ductogenesis from
the ductal plate. (E) Thy-1 (red)-stained myofibroblasts ini-
tiate the formation of the interlobular septa with a few CK7+
(green) ductules (arrows). The CYP450 (blue) staining shows
the zonality of the hepatic lobule with a Thy-1-positive ter-
minal vein in the center. (F) Laminin (red) and CK7 (green)
marked ductules outline the hepatic lobule in the adult liver,
but they are rarer in the septa than in children (compare with
Fig. 1C, 1D). Scale bar for A, D, E, and F = 100 pm; and B and
C =50 pm.

The portal areas in the liver of immature neonates born
on the 23rd week of pregnancy were “closed.” There were
numerous bile ducts in the periportal connective tissue,
especially at the periphery, as the remnants of the ductal
plate. However, no signs of vascular septa were seen; no
matrix deposition, blood vessels, or biliary ductules could
be observed outside the limiting plate in any of the exam-
ined specimens (Fig. 2D).

Early signs of vascular septum formation could already
be recognized in a liver sample derived from a fetus of the
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FIG. 3. Immunophenotypical characterization of the hep-
atic ductules in (A-C) adult and (D-F) 3-year-old livers. (A
and B) There is a sharp apical epithelial membrane antigen
(EMA) (red) staining in CK7 (green) and laminin (blue)
marked bile ducts (arrows) inside the portal space, while
EMA staining is absent in the small ductules (arrowheads)
at the periphery. For better visibility of the EMA staining, B
shows only the red and blue channels. (C) There is an api-
cal CD133 (red) staining in a CK7 (green) marked ductule
(arrowhead), while this marker is not present in an interlobu-
lar bile duct (arrow). The inset shows the apical CD133 posi-
tivity of ductules. (D) CD56 (red) stains only the small nerves
(arrowheads) in the portal space, the CK7 (green) and laminin
(blue) labeled bile duct is negative (arrow). (E) High magni-
fication of a CK7 (green) and laminin (blue) stained ductule
within the septum reveals membranous CD56 (red) positiv-
ity (arrowheads). (F) CD56+ (green) bile ductules (arrowheads)
are attached to hepatocytes (not highlighted by this stain-
ing), are surrounded by laminin-positive (red) U-shaped
basement membrane (small arrows). The laminin (red)-posi-
tive “empty” structure surrounded by basement membrane
(large arrow) represents a blood vessel. Scale bar = 50 pm.

39th week of pregnancy. It was mostly outlined by Thy-1-
positive myofibroblasts, but a few CK7+ ductules were also
present in these septum fundaments outside the portal fields
(Fig. 2E).

The vascular septa and all of its components were mostly
developed in the livers of young children of the age of 3
years (Fig. 1A and 1B). The only available liver specimen
from a 13-year-old girl contained relatively regressed vas-
cular septa, and although all the elements described earlier
were present in the livers of young adults (20 and 26 years),
they were more scarce (Fig. 2F).
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Immunophenotypic characterization of bile ductules

There are several proposed markers for hepatic progen-
itor cells in human liver (1,2), but most of them did not dis-
tinguish hepatic ductules of the vascular septa from larger
interlobular bile ducts in our hands. Some of the markers
(AFP, chromogranin, synaptophysin, DMBT, DLK, CEA,
CK20, CK14) did notlabel any biliary structures, while others
(EpCAM, E-cadherin, CK7, CK19) stained the complete bili-
ary tree (data not shown). Only three markers reacted differ-
entially with bile ducts and ductules. Epithelial membrane
antigen (EMA) resulted in a very sharp characteristic linear
apical staining in the interlobular bile ducts. Conversely, it
was absent in the ductules even on cross sections (Fig. 3A
and 3B). The staining pattern of CD133 (Fig. 3C) and CD56
(Fig. 3D, 3E, and 3F) was opposite. In specimens up to the age
of 3 years, there was a consistent apical CD133 staining in all
segments of the biliary tree. However, in samples from older
individuals the staining was strictly confined to the small
ductules of the vascular septa. The distribution of CD56 in
all specimens was similar to this latter case: it labeled exclu-
sively the small ductules.

Quantitative evaluation of the immunohistochemical
reactions (Table 1) showed that only a small portion of the
biliary structures were stained for EMA, and this staining
was restricted to the periportal area. No such preferen-
tial distribution was noticed with the two other markers.
Almost all ducts/ductules were decorated by CD133 in the
livers of the children, while in adulthood the ratio of CD56+
and CD133+ ductules were similar. The CK7 antibody
reacted sometimes with very small bile ductules occasion-
ally appearing as single cells especially along the vascular
septa. Since the CD56 and CD133 reaction was not as strong
and diffuse as the CK7, the number of the CD56 and CD133
ductules was probably underestimated.

Discussion

We have analyzed the architecture of biliary ductules in
normal human livers and observed them to circumscribe
the classical hepatic lobules by participating in the forma-
tion of the so-called vascular septa (Fig. 4). This arrangement
develops in postnatal life and can be most obviously seen in
early childhood. The hepatic ductules are characterized by a
unique EMA—/CD56+/CD133+ immunophenotype.

There are several candidates for the liver stem/progeni-
tor cell niche. Kuwahara et al. [10] proposed four structures
to harbor such cells: the canals of Hering, intralobular bile
ducts, periductal “null” mononuclear cells, and peribiliary
hepatocytes. After all, stemness has been proposed to be not
anentity but function [23] and—depending on the situation—
different cell populations can behave as hepatic progenitor

TaBLE 1. IMMUNOPHENOTYPE OF BILIARY STRUCTURES
IN NORMAL LIVER
Sample CK7+ EMA+ CD56+ CD133+
3 years 100% (1,112) 4.8% 62.9% 96.3%
Adult 100% (1,125) 6.7% 54.4% 59%

Abbreviation: EMA, epithelial membrane antigen.
() Total number of counted bile ducts.
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cells. Insofar, most evidence shows that the canals of Hering
have the highest potential to behave as hepatic progenitor
cells [1,2,6,13]. Therefore, the accurate architecture of these
structures is a key issue to understand their behavior under
normal and pathological conditions.

The canals of Hering were originally described [11] as
short straight ducts at the limiting plate, which connect
the bile canaliculi to the interlobular bile ducts. However,
Theise et al. [16] demonstrated the extension of hepatic
ductules through the limiting plate into the hepatic lobule.
Our results confirm the presence of these structures deep
in the hepatic parenchyma; moreover, a clear orientation of
the ductules could be observed on our confocal images. The
ductules spread into the parenchyma along the porto-portal
axis. The hexagonal structures outlined by hepatic ductules
correspond to the classical hepatic lobules. High power
examination of individual ductules revealed their close cor-
relation with bile canaliculi enabling their drainage.

In addition to former observations [19,24] that venular
branches are present in vascular septa, we noticed NG-2-
stained arterioles running in line with the ductules. There
have been speculations about bile ductule escorting hepatic
arterioles [18,19,25,26,27] but no convincing evidence has
been published so far. Gouw et al. [19] and van der Heuvel
et al. [28] emphasize the importance of the microvascu-
lar compartment for the efficient regeneration of ductules.
Since—contrary to several other species—no arterio-portal
anastomoses exist in the human liver, the presence of arterial

[ CD133, CD56
Il EMA
[ CK7

FIG.4. Schematic representation of hepatic lobule (brown),
with bile ducts/ductules (green) and accompanying arteri-
oles (red). Note that these structures extend only halfway
into the porto-portal distances; however, they cover the
whole “lateral” surface of the lobule. For simplicity, the por-
tal vein branches are not shown.
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blood would be advantageous for the regenerative function
of the ductules. The proximity of the blood vessels to the
bile ductules corresponds very well to the close correlation
between the development of biliary and vascular structures
[29]. This architecture of the intraparenchymal ductules and
the escorting vessels is in full agreement with the proposed
model of Matsumoto [18] based on 3D reconstruction of the
human liver from thousands of serial sections.

According to the original description [18], the “vascu-
lar septum” is not a fibrous septum but a vascular surface
from which sinusoids originate. However, we observed a
collagenous matrix in this location. Since all the studied
liver samples were normal and no fibrosis could be seen
by traditional connective tissue staining, we suggest that a
minimal amount of matrix material in the vascular septum,
which can be visualized only by careful immunohistochem-
ical analysis, is a component of the normal human hepatic
tissue. Hepatic lobules are separated by well-defined con-
nective tissue septa in several species [30], and the vascular
septum of the human liver with its matrix components can
be regarded as a rudimentary interlobular septum.

We have observed a peculiar age dependence of the vas-
cular septa. Obviously, a more detailed age-related analysis
of these structures is required. The interlobular bile ducts
develop from the ductal plate [21], but ductal plates disap-
pear shortly after birth and new bile ducts/ductules arise
from pre-existent ducts by branching and elongation [31].
This “cholangiogenesis” could follow the primitive septa we
observed in the liver of the 39-week-old fetus. The postnatal
maturation of the biliary tree is well documented in humans
[21] and rats [22] as well. Furthermore, the interlobular sep-
tum also develops postnatally in pigs [30].

The progressing scarcity of the ductular system with age
should also be analyzed in more detail. We do not know if
this process is absolute due to the apoptosis of biliary cells or
just relative. The size of the hepatic lobules increases during
ontogeny [32], and if the growth of the ductules is arrested
earlier, it may be responsible for their relative regression.

We were curious if the biliary ductules could be char-
acterized by a special immunophenotype. Three different
antibodies were able to distinguish reliably the canals of
Hering from larger bile ducts: the canals of Hering were
EMA—-/CD56+/CD133+; whereas, interlobular bile ducts
were EMA+/CD56—/CD133—. All of these markers have
already been mentioned in connection with the hepatic pro-
genitor cell compartment. Atypical ductular reactions have
been reported EMA—/CD56+, while the typical ones, which
are similar to the interlobular bile ducts, are EMA+/CD56—
[33]. CD56 has been demonstrated in proliferating ductules,
while it could not be observed in normal canals of Hering
[34,35], but recent studies found CD56 mRNA and protein
in ductules of normal human livers [36,37]. CD133 has orig-
inally been described as a hematopoietic stem cell marker,
and its mRNA has been detected in the liver by Northern
hybridization, but no immunostaining was identified in par-
affin sections by Miraglia et al. [38]. However, the protein
could be detected by immunohistochemistry in the canals
of Hering of normal human liver [39] and in regenerating
ductules related to fulminant liver failure [40]. In our present
experiments, the distribution of this marker showed an age-
dependent change. This is similar to our results on rat liver,
where the immunophenotype of the canals of Hering devel-
oped postnatally [15]. Interestingly, CD133+ cells isolated
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from HCC proved to be highly tumorigenic and have been
reported as tumor stem cells [41]. Increased expression of
CD133 has also been reported in a subset of cholangiocel-
lular carcinomas, which were claimed to have a progenitor
cell origin [42].

The combined application of these three antibodies pro-
vides an efficient tool for the identification of the canals of
Hering in the normal human liver. Furthermore, the distinct
immunophenotype of the hepatic ductules supports their
different biological potential.

In conclusion, we present a refinement for the widely
cited architectural description [16,2743] of the intraparen-
chymal biliary ductules in normal human liver. The canals
of Hering with escorting vessels are situated in the vascular
septum and are components of a rudimentary interlobular
septum. They can be distinguished from larger bile ducts
by a unique immunophenotype. Better comprehension of
canals of Hering’s architecture in normal human liver may
promote our understanding of their behavior in various
pathological/biological reactions.
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Architectural Changes During Regenerative and
Ontogenic Liver Growth in the Rat
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Although liver architecture has a major impact on function, morphological aspects of liver growth are relatively neglected. In our
recent experiments, the architectural changes of the rat liver were compared during 2 basic processes: ontogeny and
regenerative liver growth. The hepatic tissue is constructed as structural/functional units, and probably the most established
and well-defined such unit is the classic lobule. The extent and orientation of the lobules are variable in the liver, and this
renders their accurate size determination more difficult. The filling of the liver vasculature by a colored resin nicely outlined the
surface lobules, enabling an analysis of the alterations of these structures during liver growth. There are 3 structural
components of postnatal physiological liver development: enlargement of the hepatocytes and expansion and multiplication of
the liver lobules. However, the enlargement of the lobules is exclusively responsible for the regenerative liver growth following
partial hepatectomy. The number of hepatic lobules does not change during this latter reaction, but they gain a more complex,

irregular structure. Liver Transpl 15:177-183, 2009. o 2009 AASLD.
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Partial hepatectomy (Phx) along with the subsequent
regenerative response is one of the most studied non-
tumorous growth processes in mammalians. There are
several excellent reviews summarizing the available in-
formation about the regulation of this well-synchro-
nized hyperplastic process.’™ The dynamics of cell
proliferation/apoptosis are also well documented;
therefore, that was not the object of this study. Unfor-
tunately, our knowledge is much more limited regard-
ing the structural changes,? so this aspect of the growth
was analyzed in this work. Although this process is
mostly called liver regeneration, in a biological sense it
should be referred to as compensatory hyperplasia be-
cause the resected lobes do not grow back. Instead, the
remaining lobes enlarge as a result of hepatocyte pro-
liferation. The liver size also increases several-fold dur-
ing postnatal life. This growth process has been studied
in several species,®® but it has not been compared with
compensatory hyperplasia. The liver has a modular ar-
chitecture.®*° Although the liver lobules may not be the
true functional units, they are well-defined compart-
ments that build up the liver. Therefore, hepatic growth

can be achieved by an increase in the size and/or num-
ber of lobules. This question was addressed in our re-
cent experiment in rats. The filling of the hepatic and
portal venous system outlined the lobules on the liver
surface very nicely. Morphometric analysis of the right
lateral liver lobe revealed that the number of liver lob-
ules did not change, but their size increased during
compensatory growth. Conversely, during the studied
postnatal period, the liver grew by enlargement and
multiplication of the lobules. In summary, the adult
liver lobes seem to be constructed with a standard
number of lobules, and the fully developed liver is not
able to form new lobules upon a further proliferative
trigger.

MATERIALS AND METHODS
Experimental Design

Several parameters of the hepatic lobules were mea-
sured in 4-week-old (50 g), 8-week-old (160 g), and
12-week-old (250 g) male F344 rats; in rats 4 weeks

DOI 10.1002/1t.21665
Published online in Wiley InterScience (www.interscience.wiley.com).

Abbreviations: CTR, control; nd, not determined; Phx, partial hepatectomy; RLL, right lateral lobe.
This study was supported by the Hungarian National Science Foundation (K67697) and the Hungarian Ministry of Health (32/2006).
Address reprint requests to Peter Nagy, First Department of Pathology and Experimental Cancer Research, Semmelweis University, Ull6i Ut 26,
Budapest H-1085, Hungary. Telephone: 36-1-266 1638; FAX: 36-1-317 1074; E-mail: nagy @korb1.sote.hu

© 2009 American Association for the Study of Liver Diseases.



178 PAPP ET AL.

dc_301 11

C(3)
H(3)

P(4)
l N{4) N(3)
IS(3] 5(4)5(3) S(4) 5(3) S(4) 5(3)

Phx

Il i I I I I I
T T T L L} LI L) T

time after Phx 1 1d 2d 44 1w 2w 3w 4w

€E)
H(3)
P(5)
N(4)
H(3) $6) HE)  HE)
N(5) ;
Sl'v(-') 5(3) 5(3) i 5(3) 5(3)
l!w : -l-‘w Slw I I slw I I;hv I 1I2w age
20g S0z 100g 160z 200g 250g  bodyweight

(250 g) after Phx at 8 weeks of age (160 g); and at certain
interim experimental points. The schema of the mea-
surements and the number of the investigated rats are
shown on Fig. 1. The animal study protocols were con-
ducted according to the National Institutes of Health
guidelines for animal care.

Liver Regeneration

Traditional, two-thirds Phx'' was performed on rats
weighing 160 g under ether anesthesia. The size of the
liver lobules was measured 1, 2, and 4 days and 1, 2, 3,
and 4 weeks after the operation. The surface lobules of
the right lateral lobe were counted on control rats
(160-g bodyweight) and 2 and 4 weeks after Phx. The
size of the hepatocytes was determined 4 weeks after
the operation.

Physiological Liver Growth

The size of the surface lobules was measured in normal
rats with the following bodyweights: 20, 50, 100, 160,
200, and 250 g. The number of surface lobules was
counted on the right lateral lobe of rats with a body-
weight of 50 or 160 g. The average size of the hepato-
cytes was also measured for rats with a total body-
weight of 50, 160, 200, or 250 g.

Determination of the Size of the Lobules

For outlining the surface liver lobules, a cannula,
washed with heparin, was inserted into the inferior
vena cava. The blood was washed out from the liver with
phosphate-buffered saline through the left ventricle of
the heart. When the flush fluid became colorless, the
vena cava was ligated above the level of the hepatic
veins, and the portal vein was opened. The hepatic
veins and the sinusoids were filled up through the vena
cava cannula by a fluorescent dye containing polystirol
resin and were monitored by eye with a stereomicro-
scope. The filling was stopped when the resin filled up
the central veins and partially filled the hepatic sinu-
soids on the surface of the liver. At this stage, the
negatives of the interlobular borders were outlined by

C(3) C{3)
Figure 1. Schematic represen-
tation of the experimental de-
sign. The upper line illustrates
+ 1 ' } " } the time points of experiments
Sw 12w after partial hepatectomy; the

lower illustrates those during
ontogeny. Numbers in parenthe-
ses represent the number of in-
vestigated rats. Abbreviations:
C, CYP450 II E1 expression; H,
hepatocyte size determination;
N, total number of hepatic lob-
ules on the convex surface of the
right lateral lobe; P, portal vein
number around the central vein;
S, size determination (surface
area and circumference) of he-
patic lobules.

the resin. The right lateral liver lobe was removed from
the rats, its weight was recorded, and all further mea-
surements were performed on this lobe.

The lobe was placed onto a wet slide and examined
with a Nikon TE200 inverted microscope. The surface
image of the lobe was captured with a Bio-Rad (Rich-
mond, CA) MRC1024 confocal system (Ex488/
Emb520 * 16 nm). The periportal zone appeared on the
pictures as black areas. Interlobular borders were high-
lighted by a line drawn halfway between the central
veins (along the vascular septa). The approximate cen-
ter of the black areas determined the corners of the
polygon representing the lobules. In cases of neighbor-
ing overfilled central veins, the border was determined
by an analysis of the direction of the sinusoids. At the
border zone, the sinusoids changed their direction from
running toward one another other to running along the
border. The circumference and surface area of the lob-
ules were determined with the Image J program.

Counting of the Surface Liver Lobules

In another set of rats, the portal venous system was
filled with a blue-stained resin in addition to the red
resin-outlined hepatic veins. The blood was removed
from the liver as described previously. The portal vein
was filled with blue resin until it just entered the sinu-
soids, and this was followed by filling of the central
veins. This method could not be applied to the determi-
nation of the size of lobules because of the slight en-
largement of the liver. These animals were used to
count the absolute number of liver lobules on the con-
vex surface of the right lateral lobe. Counting of the
lobules was performed by the placement of a mark on
each lobule with an Indian ink pen with a 0.2-mm line
width. The number of portal vein branches around a
central vein was also counted on these specimens.

Hepatocyte Size Determination

Frozen sections from the liver were stained with fluo-
rescein isothiocyanate-labeled pancytokeratin anti-
body (catalog number F0859, Dako, Glostrup, Den-
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mark; dilution, 1:10), which outlined the cell
membranes of the hepatocytes. The nuclei were stained
with propidium iodide. The circumference and surface
of 50 pericentral hepatocytes were measured in each
liver lobule on 3 randomly selected fields. The size of
hepatocytes is dependent on their zonal position,'? so
data from different animals are more comparable if they
are referring to a confined compartment, such as the
pericentral zone. Furthermore, the radial orientation of
the pericentral sinusoids makes possible a more exact
determination of the outline of the hepatocyte borders
versus the more irregular arrangement of the periportal
hepatocytes.

Zonality of the Liver Lobules

The right lateral liver lobe was frozen under slight pres-
sure to produce a flat surface for cutting. Frozen sec-
tions were made from the livers of control rats and the
livers of rats 4, 8, and 12 weeks after Phx in a plane
parallel with the surface. The section was fixed in meth-
anol (—20°C) and stained for CYP450 II E1 (catalog
number BV-3084-3, MBL, Woburn, MA; dilution,
1:100) for an hour at room temperature, and the reac-
tion was visualized by a fluorescein isothiocyanate-
labeled secondary antibody (30 minutes at room tem-
perature). The sections were counterstained with pro-
pidium iodide.

Statistical Analysis

Statistical analysis was performed with the Student t
test.

RESULTS

Morphometric Analysis of the Surface Liver
Lobules During Liver Regeneration

The partial filling of the central veins and liver sinusoids
through the hepatic veins outlined the lobules on the
liver surface. This image was captured with a micro-
scope, and the lobule borders were drawn on the digi-
talized image (Fig. 2A-C). Phx was performed on young,
adult rats (8 weeks old, 160-g bodyweight), which are
optimal for this procedure. All the investigated param-
eters of the livers were compared to the values mea-
sured on the right lateral lobe of unoperated rats (con-
trols, 160 g). Both the circumference and surface area
of the lobules grew gradually during the regenerative
growth of the right lateral liver lobe. Both parameters
increased rapidly in the first 7 days, and this was fol-
lowed by a slight but not significant increase in the
upcoming 3 weeks. Finally, the average lobular circum-
ference increased 1.51-fold and the surface area in-
creased 2.3-fold during our observation period. The
weight of the studied lobe was also recorded, and it
grew 3.29-fold (Fig. 3A). The number of liver lobules on
the convex surface of the right lateral lobe was also
counted in 160-g unoperated control rats and at 2 se-
lected time points during regeneration. It did not show
any significant alterations (Table 1). In brief, the liver

Figure 2. Retrograde filling of the hepatic sinusoids through
the terminal (central) veins with green fluorescent resin: (A-C)
2, 4, and 28 days after partial hepatectomy and (D-F) livers of
rats with bodyweights of 50, 160, and 250 g. The lobular
borders (red lines) are shown in parts B and E. Note the en-
largement of the lobules with increasing time (after partial
hepatectomy) and age. Scale bar: 1 mm.

grew by the enlargement of the liver lobules, whereas
their number did not change.

However, the architecture of the enlarged lobules
showed some characteristic changes. The images of the
central veins on the liver surface became elongated and
more branched. The shape of the lobules became more
variable and polygonal. This observation was supported
by the increased number of portal vein branches
around the central veins (Fig. 4A-D and Table 1). The
CYP II E1 enzyme showed a typical zonal distribution in
the liver lobule.'® It was preferentially expressed by the
pericentral and midzonal hepatocytes. The positive
cells were surrounded by an evenly broad band of the
negative cells in the control liver. The immunostaining
of this enzyme showed a peculiar, arborescent distribu-
tion in the regenerated liver throughout our 3-month
observation period, demonstrating the permanent
functional modification of the lobular structure (Fig.
4E,F).

Structural Characterization of Postnatal Liver
Growth

In order to compare the regenerative/hyperplastic
growth response of the liver lobules with the physiolog-
ical, ontogenic liver growth, similar measurements were
performed on the livers of rats of various ages. All these
studies were also confined to the right lateral liver lobe.
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Figure 3. The numerical dimensions of the growing liver dur-
ing regeneration following (A) Phx and (B) ontogeny: (CJ) the
circumference and (/) the surface of the hepatic lobules. The
bars represent the standard error. Abbreviations: CTR, con-
trol; Phx, partial hepatectomy; RLL, right lateral lobe.

Similarly to the regenerative growth, the enlargement of
the hepatic lobules was recorded with age (Fig. 2D-F).
Although the bodyweight of the rats increased from 20
to 250 g (12.5-fold), the weight of the studied lobe in-
creased 11.27-fold. The average surface area of the lob-
ules increased 5.16-fold, and the circumference in-
creased 2.68-fold. Additionally, the number of surface
lobules also increased by approximately 30% (Table 1)
while the bodyweight changed from 50 to 160 g (Fig.
3B). It is important to emphasize that the absolute
values of these parameters are not comparable to those
of the hepatectomized rats because the studied lobe
represents a much smaller portion of the whole liver
than that in the other experimental model.

Alteration of Hepatocyte Size During Liver
Growth

Expansion of the lobules can be a result of hepatocyte
enlargement. Therefore, the size of these cells was also
measured. Indeed, obvious hepatocyte enlargement
could be observed in the rats while the bodyweight

increased from 50 to 160 g (Fig. 5). The average hepa-
tocyte surface area grew 1.66-fold, and the circumfer-
ence grew 1.29-fold. The weight of the investigated lobe
increased 2.9-fold during this period. The size of the
hepatocytes slightly but statistically not significantly
increased further during ontogeny. Although the inves-
tigated lobe grew more than 3-fold during the regener-
ation, the size increase of the hepatocytes did not reach
a significant level (Figs. 5 and 6) in that model either.

DISCUSSION

We have investigated the size of the surface liver lobules
in 2 different liver growth models: during the regener-
ative response following Phx and during physiological
postnatal liver growth. The liver grew exclusively by
enlargement of the hepatic lobules during regeneration.
Conversely, an increase in the number and size of the
lobules contributed to the postnatal liver growth of on-
togeny.

The liver tissue has a modular architecture.®'° There
is relatively little information available about the behav-
ior of these modules during hepatic growth. There are
still ongoing debates about the real functional unit of
the liver.'* This issue was not addressed by these ex-
periments. We chose to study the classic liver lob-
ule'®'¢ because it is widely used and can be defined
even in species (eg, in rat) in which it is not surrounded
by interlobular connective tissue septa. However, the
examination of these lobules is not an easy task, and
this may be the explanation for the fact that the model
of liver regeneration was described almost a century
ago, but what happens with the lobules during this
process is still not known.! There are observations in-
dicating the enlargement of the hepatic lobules during
regeneration,'”-'® but this process has not been ana-
lyzed in detail. The 3-dimensional construction of the
rat liver was carefully analyzed by Teutsch et al.® Ac-
cording to this study, the size and shape of Teutsch et
al.’s primary hepatic units (which correspond to the
classic liver lobule) are variable. They are arranged in
cone-shaped secondary units. The size of the primary
units decreases toward the top of the secondary unit
(the liver surface). Such morphogenetic plasticity ex-
plains why a traditional histological section does not
provide reliable and comparable information regarding
the size of the lobules: it will cut lobules at different
positions in the hierarchy at different angles. In our
present work, we took advantage of the fact that super-
ficial lobules (in contact with the Glisson capsule) have
a uniform apicobasal arrangement (perpendicular to
the liver surface) and occupy an identical position in the
liver hierarchy,® contrary to the variable orientation,
size, and situation of the lobules that are located deep
in the parenchyma and are visible on a traditional his-
tological section. The terminal branch of the hepatic
vein is in the center of these lobules, generally oriented
perpendicularly to and opening at the surface. Because
the terminal portal venules terminate about 0.2 mm
below the liver surface,® only filling the liver retro-
gradely through the hepatic vein allowed us to deter-
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TABLE 1. Number and Complexity of Surface Lobules in the Right Lateral Lobe of Growing Livers

Control (Body Weight)

Days After Phx

around the central vein

50 g 160 g 14 28
Number 586 = 10.29 794.5 = 37.1* 730.75 * 54.15 719.33 * 31.18
Number of portal vein branches nd 6.04 £ 0.2 nd 8.13 = 0.38#

*P < 0.05 between the 160-g control and the 50-g control.
#P < 0.05 between 28 days after Phx and the 160-g control.

Abbreviations: nd, not determined; Phx, partial hepatectomy.

Figure 4. Architectural changes of the liver lobules during
regeneration. (A-D) Double filling of the liver vasculature by
blue (portal veins) and red (central veins) resins: (A,B) control
liver and (C,D) 28 days after partial hepatectomy. Note the
enlargement of the hepatic lobules and the more complex
branching pattern of the central veins in the regenerated liv-
ers. (E,F) Inmunohistochemical staining for CYP450 II E1
(green) on (E) a control liver and (F) a regenerated liver 28 days
after partial hepatectomy. Note the arborescent distribution
of CYP450 II E1 on the regenerated liver. Nuclei were stained
with propidium iodide. Scale bar: 1 mm.

mine the size of the surface lobules precisely. Thus,
when sinuses of the surface lobules were filled up ret-
rogradely through the hepatic veins, the outlines of the
lobules provided reliable information about the 2-di-
mensional extension of these structural units. Enlarge-
ment of the liver lobules during the regenerative growth
could be clearly demonstrated in this way. Because the
number of subcapsular liver lobules did not change, the
enlargement of the lobules was alone responsible for
restoration of the liver mass. The measurements were
confined to the 2-dimensional extension of the subcap-

sular hepatic lobules, and so they do not provide direct
information about the changes deep in the liver tissue.
However, considering the strictly defined cone shape of
the primary and secondary units in Teutsch et al.’s
model, we must assume an increase in the axial dimen-
sion of the subcapsular lobules as well as similar alter-
ations of the deep hepatic lobules. Furthermore, Wa-
genaar et al.'® measured increased portocentral
distances on traditional histological sections in regen-
erating livers and concluded that the lobules were en-
larged; this experiment provided rough data about the
deep lobules.

Teutsch et al.’s model® '© also maintains that rat and
human livers are constructed of several layers of lob-
ules. The weight/volume of the right lateral liver lobe
expanded more than 3-fold during regeneration. This
could have been accomplished, according to Teutsch et
al.’s model, either by enlargement of the lobules or by
the formation of an additional layer of lobules on the
liver surface. Our results clearly support the first op-
tion. Highly developed mammalian organisms have a
quite limited capacity for regeneration of complex
structures.'® Therefore, it is reasonable that the lost
liver parenchyma is regenerated exclusively by the en-
largement of the preexisting lobules.

The enlarged liver lobules had a more complex struc-
ture throughout our observation period. The projection
of the central vein on the liver surface was elongated
and frequently divided. The number of portal vein
branches at the periphery of the lobules also increased.
This more complex structure of the lobules was re-
flected very well in the arborescent shape of the zonally
distributed CYP II E1 expression, which was the result
of the adaptive changes of hepatocytes.?° The distribu-
tion of 2 other zonally expressed enzymes (glutamine
synthase and carbamoyl phosphate synthase) showed
similar alterations (data not shown). This modified ex-
pression pattern was present throughout our observa-
tion period (3 months), indicating a permanent or at
least long-lasting architectural change. The cause of
the altered lobular structure is not clear, but it probably
helps to maintain or approach the normal portocentral
distance.

Although the size of the lobules grew during the in-
vestigated postnatal period of ontogeny, their number
also increased. This is in agreement with previous ob-
servations. It is well known that the maturation of the
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Figure 6. Immunohistochemical staining for cytokeratin
(green) outlines the cell membranes of the hepatocytes; the
nuclei are decorated by propidium iodide (red). Representa-
tive images of pericentral hepatocytes in the livers of rats with
different bodyweights are shown: (A) 50 g, (B) 160 g, (C) 250 g,
and (D) 28 days after Phx. Note the increasing cell size from
part A to part C. (D) The examined liver lobe grew further
during regeneration without a change in the size of the hepa-
tocytes. Scale bar: 50 pm.

biliary system and thus that of the lobular arrangement
are completed only postnatally.?’ The hilar-peripheral
orientation of this process has been clearly demon-
strated by the characterization of the liver of Alagille’s
patients.?? That is, a new layer of lobules might be
formed postnatally. Ekataksin also reported the elon-
gation of the portocentral distance''® and multiplica-
tion of the liver lobules in the developing human liver.
The size of lobular units increasing with age has been
described in the rat liver.” Studies of pigs have also
shown that the average diameter, as well as the num-
bers of lobules, increases during normal growth of the
liver.® This growth involves an increase in the number
and size of the hepatocytes. In fact, we have also ob-
served the enlargement of the hepatocytes during the
earlier period of the postnatal liver growth, as reported
before.?® The periphery of the hepatocytes increased
1.29-fold during this period, and this predicted growth
in the liver volume of 1.292 (2.15-fold). However, the
liver weight (which is related to the liver volume) in-
creased 2.9-fold, and this indicated that an increase in

(L1

bars represent the standard er-

Fhx 28
I ror.

the cell number also contributed to liver growth. Later,
during ontogeny and liver regeneration, the size of the
hepatocytes did not grow significantly, probably be-
cause they approached the limit beyond which they
could not function properly.

In conclusion, we observed 3 different structural
mechanisms—enlargement of hepatocytes and multi-
plication and expansion of the hepatic lobules—con-
tributing to postnatal liver growth during ontogeny. It
seems that 2 of these parameters, the size of the hepa-
tocytes and the number of lobules in a given liver lobe,
are fixed by adulthood, and the liver is able to adapt by
changing the size of the lobules. Under extreme condi-
tions, the hepatocytes are able to further enlarge,?* but
this state of the liver is not stable. The potential func-
tional consequences and limitations of lobular enlarge-
ment remain to be studied.
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We have analyzed the histological changes in rat liver
after 2-acetylaminofluorene (AAF) administration.
The data demonstrate that AAF-induced oval cells
were preferentially generated by proliferation of the
terminal biliary ductules that we suggest constitute
the primary hepatic stem cell niche. The oval cells
formed ductular structures, representing an exten-
sion of the canals of Hering. This histological organi-
zation provides continuous bile drainage of the hepa-
tocytes and uninterrupted blood flow in the
sinusoids. The oval cell ductules are surrounded by a
continuous basement membrane that is intermit-
tently disrupted by processes of stellate cells that
form direct cell-cell contact with the oval cells. Al-
though both AAF treatment and bile duct ligation re-
sults in proliferation of biliary epithelial cells, the
mechanism(s) responsible for the proliferation of the
biliary epithelium seems to differ in the two models.
In contrast to the biliary proliferation stimulated by
bile ligation, AAF-induced oval cell proliferation as
well as the capacity of these cells to differentiate into
hepatocytes, bile epithelial cells and possibly other
cell lineages can be blocked by administration of
dexamethasone. (Am J Pathol 2001, 158:1313—-1323)

Although a substantial amount of knowledge has been
accumulated throughout the last 2 decades about liver
stem cells,"? numerous aspects of this intriguing cell
compartment remain undefined. Indeed, there are con-
flicting data on the exact location of liver stem cells and
even the growth pattern of these cells is not completely
understood. The proliferating oval cells—the progeny of
the stem cells—always expand into liver parenchyme
from the portal area. Furthermore, selective damage of
the periportal zone reduces oval cell proliferation.® These
observations support the notion that the stem cells must

reside somewhere in the periportal region. The pheno-
typic resemblance between the oval cells and biliary
epithelium suggests that they derive from the biliary tree,
and terminal hepatic ductules (canals of Hering) that
connect the most distal hepatocyte of the hepatic plate to
the interlobular bile ducts are thought to harbor the he-
patic stem cells.*~” However, there is no general agree-
ment on this issue. In fact, potential candidates for the
stem cells outside the biliary system have been pro-
posed.®

In the absence of a specific marker for the hepatic
stem cells, several investigators using different models
have attempted to identify the stem cells by labeling the
dividing cells in the early phase of oval cell expan-
sion.*8~1° However, most of the experimental protocols
for the activation of the hepatic stem cell compartment
require a relatively long time and this may explain the
divergent results. The 2-acetylaminofluorene (AAF)/par-
tial hepatectomy (PH) model of oval cell proliferation/
differentiation has been extensively used to analyze the
hepatic stem cell compartment during the last few
years."’"'3 We have recently modified the classical
AAF/PH model' and demonstrated that after a single
dose of AAF administration a notable cell proliferation
takes place in the periportal zone and at least some of
these proliferating cells are the precursors of oval cells.
Therefore AAF administration provides a uniquely fast
and synchronized activation of the oval cell precursors
without any major disruption of the hepatic structure. We
could identify dividing cells in the interlobular bile ducts
after AAF treatment, whereas the exact nature of the rest
of the thymidine-labeled cells could not be unambigu-
ously defined by traditional light microscopy.'

Biliary cell proliferation can also be induced in rats by
the ligation of the common bile duct (BDL).'™'® This
reaction is, however, morphologically and phenotypically
very different from the oval cell proliferation. After BDL,
proliferating biliary cells do not show any signs of differ-
entiation into other cell types. Another difference between
BDL- and AAF-induced biliary cell proliferation is illus-
trated by selective inhibition of oval cell proliferation by
dexamethasone.”
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In the present work we have characterized the early
cellular events in the liver during the proliferative re-
sponse induced by AAF or BDL. To obtain a more de-
tailed morphological assessment, the samples were an-
alyzed by, in addition to traditional light microscopy, both
confocal and electron microscopy. Both AAF and BDL
induced an intense biliary cell proliferation. The fre-
quency of dividing cells after AAF treatment was signifi-
cantly higher in the terminal hepatic ductules. Morpho-
logical analysis revealed that the early oval cells are
strictly confined to ductular structures surrounded by
basement membrane, representing an extension of the
canals of Hering.

Materials and Methods

Animal Experiments

Male F-344 rats (180 to 200 g) were used for all experi-
ments and kept under standard conditions. The animal
study protocols were conducted according to NIH guide-
lines for animal care.

AAF/PH Experiment

AAF (1.5 mg) suspended in dimethyl-cellulose was
given to the rats on 4 consecutive days by gavage.
Traditional 70% PH'® was performed on the fifth day,
which was followed by five additional AAF treatments.
Animals were sacrificed at the described time points (at
least three at each time point).

BDL

BDL was done according to Cameron and Oakley.'®
The rats were sacrificed 48 hours after the operation.

Electron Microscopy

Preparation of liver tissue for electron microscopy was
done by perfusing the livers under anesthesia (35 mg/kg,
Nembutal; Serva, Heidelberg, Germany) via the portal
vein with phosphate-buffered saline (PBS) for 10 minutes
and with 2.5% glutaraldehyde in 0.05 mol/L Na-cacody-
late (pH 7.2) for 15 minutes at room temperature. Livers
were cut into 1 X 3 mm pieces and immersed in 2.5%
glutaraldehyde for 2 hours. The pieces were postfixed
in 1% 0Os04, 0.05% K-ferrocyanide in 0.05 mol/L Na-
cacodylate for 1 hour, dehydrated in a graded series of
alcohol, contrasted en bloc with 2% uranylacetate, and
embedded in Spurr’'s mixture. Ultrathin sections were
stained with lead citrate and examined on a Philips
CM10 electron microscope.

Ultrastructural Analysis of 5-Bromo-2'-Deoxy-
Uridine (BrdU)-Labeled Periportal Cell

BrdU (100 mg/kg) was injected intraperitoneally after two
doses of AAF, 24 hours after the second treatment or 2
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days after BDL. One hour after the injection, the animals
were anesthetized and perfused via the portal vein with
PBS for 10 minutes, followed by 4% paraformaldehyde
for 20 minutes. Livers were removed, cut into 5-mm thick
slices and postfixed for 24 hours. The fixed tissues were
washed in PBS and immersed in 15% sucrose for 24
hours followed by 30% sucrose for another 24 hours.
Specimens were frozen in isopentane cooled by liquid
nitrogen.

Cryosections (15 um thick) were mounted on micro-
scope slides coated with parlodion. The cryosections
were rinsed in PBS and incubated for 20 minutes in 3 N
HCI at room temperature. After washing in PBS, the sec-
tions were incubated with monoclonal anti-BrdU antibody
(diluted 1:100; Becton-Dickinson, Mountain View, CA) for
3 hours and later with biotinylated anti-mouse antibody
(Vector Laboratories, Burlingame, CA) for 2 hours. The
reaction was developed by an ABC reaction (Elite ABC
Kit, Vector Laboratories) using diaminobenzidine as
chromogen. The sections were osmificated (1% OsO4 in
PBS), dehydrated in graded series of ethanol, and em-
bedded in Epon 812. Blocks were removed by immersing
the slides in liquid nitrogen. Semithin sections were
slightly stained by 0.5% toluidine blue (pH 8.5), portal
areas containing BrdU-labeled cells were trimmed out
and unstained ultrathin sections were analyzed on a Phil-
ips CM 10 electron microscope. Labeled cells were
divided into three categories based on their localiza-
tion: 1) cells residing outside the basement mem-
branes in the periportal connective tissue; 2) cells
confined within the basement membrane, as part of
bile ducts; and 3) cells of the canals of Hering. The
cells comprising the canals of Hering were in direct
contact with a hepatocyte or were separated from a
hepatocyte by only one biliary cell.

Immunofluorescent Analysis

Double Labeling for Laminin-Cytokeratin and
Laminin-Desmin

Cryostat sections (6 um) were fixed in acetone (—20°C
for 20 minutes) and incubated overnight with a mixture of
rabbit polyclonal anti-laminin antibody (diluted 1:50,
Z0097; DAKO, Glostrup, Denmark) and fluorescein iso-
thiocyanate-conjugated mouse monoclonal antibody di-
rected against human cytokeratin 5, -6, -8, -17, and -19
(diluted 1:10, M0859; DAKO) or anti-laminin and mouse
monoclonal anti-desmin (diluted 1:50, M0724; DAKO),
respectively. After washing with PBS the sections were
incubated for 60 minutes with tetramethylrhodamine B
isothiocyanate-conjugated anti-rabbit IgG (diluted 1:20,
R0156; DAKO) for the laminin-cytokeratin double labeling
or with the combination of the same tetramethylrhodam-
ine B isothiocyanate-conjugated anti-rabbit IgG and flu-
orescein isothiocyanate-conjugated anti-mouse 1gG (di-
luted 1:50, F5262; Sigma) for the simultaneous detection
of laminin and desmin.
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Figure 1. A: Distribution of BrdU-labeled cells, between bile ducts and canals of Hering, analyzed by immunoelectronmicroscopy. The first two columns represent
the distribution after two treatments with AAF, and the second two 48 hours after BDL. Total number of labeled cells analyzed was 141 in the AAF-treated group
and 143 in the BDL group. B: Immunoelectron micrograph 2 days after AAF treatment showing a canal of Hering consisting of four cells. Three of them are labeled
by BrdU. Two cells of the canals are attached to the hepatocytes (H) (arrowheads). The fourth labeled cell (asterisk) is located in the periportal connective
tissue outside the basement membrane of the terminal hepatic ductule. Scale bar, 2 wm. C: Activated cell in the canal of Hering (He) 2 days after AAF treatment.
The nucleus is enlarged and contains euchromatin and a prominent nucleolus (small arrow). Continuous basement membrane is visible on the connective tissue
side of the cell (arrowheads). The bile ductule lumen is sealed by intercellular junctions (large arrows) (H, hepatocyte). Scale bar, 1 um.

Double Labeling for Laminin and «-Fetoprotein (AFP)

Liver samples were fixed in 10% formaldehyde, em-
bedded, and cut. After deparaffinization and hydration,
the sections were microwaved for 15 minutes in ethyl-
enediaminetetraacetic acid buffer (pH 8.0), followed by
incubation in 0.1% Triton X-100 in PBS for 20 minutes,
and digested with Proteinase K (2 pg/ml, 15 minutes,
37°C). The sections were washed with PBS and incu-
bated overnight with a mixture of rabbit polyclonal anti-
laminin (diluted 1:20, Z0097; DAKQO) and goat anti-rat
AFP no. 89 antibody (diluted 1:100; generous gift from Dr.
Stewart Sell, Department of Pathology and Laboratory
Medicine, Albany Medical College, Albany, NY). Tetram-
ethylrhodamine B isothiocyanate-conjugated anti-rabbit
IgG (as described above), and in a second step, fluores-
cein isothiocyanate-conjugated anti-goat IgG (diluted
1:400, F7367; Sigma), were used as secondary antibod-
ies. All samples were analyzed by confocal laser-scan-

ning microscopy using the Bio-Rad MRC-1024 system
(Bio-Rad, Richmond, CA).

Results

BrdU Labeling of Dividing Cells after BDL and
AAF Administration

The ligation of the common bile duct resulted in a very
intensive biliary cell proliferation. The cells were labeled
with BrdU 48 hours after the ligation. In agreement with
previous results,?® most of the labeled cells were in the
interlobular bile ducts. Immunoelectron-microscopic analy-
sis of the localization of labeled cells revealed <6% of the
BrdU-positive biliary epithelial cells in the canals of Hering
(Figure 1A). Additionally, dividing inflammatory and fibro-
blastic cells could be found in the periportal connective
tissue and a few labeled hepatocytes were also present.
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Similarly to our earlier observations,’* a single dose of
AAF resulted in cell proliferation in the periportal region.
However, because the number of the BrdU-labeled cells
was higher after two doses of AAF, without any apparent
adverse effects, we selected the 48-hour time point for
the quantitative electron-microscopic analysis. Approxi-
mately 80% of the labeled biliary cells were inside the
well-defined interlobular bile ducts. However, 22% of the
BrdU-positive epithelial cells were located in the canals
of Hering (Figure 1A). Only those biliary cells having
direct connection with a hepatocyte or separated by only
one interposed biliary cell from the hepatocyte were
counted as lining cells of the canals of Hering (Figure
1B). It is possible that by using these strict criteria we
underestimated the number of labeled cells in the canals
of Hering. However, the observation that 22% of the
labeled biliary cells were in these structures can be taken
as preferential labeling, considering that the overwhelm-
ing majority of the biliary epithelial cells belong to the
interlobular and larger bile ducts.

After AAF treatment the terminal hepatic ductules were
surrounded, by an almost continuous basement mem-
brane that terminated on a hepatocyte of the limiting plate
(Figure 1C). In addition, administration of AAF also in-
duced proliferation outside the biliary system. Mostly sin-
gle cells residing in the periportal extracellular matrix
were labeled. Although the exact nature of these cells
could not be established by electron microscopy they
most likely represent mesenchymal cells.

Immunohistochemical Analysis of the Liver 2
Days after AAF Administration

The cell density increased in the periportal space after
one or two doses of AAF, but the proliferating ductules
did not infiltrate the liver lobules. To determine the char-
acteristics of the proliferating cells in the periportal
space, double labeling for laminin/cytokeratin, laminin/
desmin, and laminin/AFP was performed. Immunofluores-
cent-stained liver sections were analyzed by confocal
microscopy. The cytokeratin antibody gave a weak mem-
brane and reticular cytoplasmic staining in the hepato-
cytes, whereas producing a strong cytoplasmic reaction
in the biliary epithelial cells. Therefore, the two cell pop-
ulations could be easily distinguished. The laminin anti-
body, a well-established marker of the basement mem-
brane, sharply circumscribed the bile ducts and the
blood vessels, whereas the liver acini were completely
negative. The terminal hepatic ductules were intensely
decorated by the laminin/cytokeratin double labeling. In
the appropriate plane of the section, the basement mem-
brane stained with laminin surrounded the bile ductules
and terminated on hepatocytes at the limiting plate (Fig-
ure 2A). The basement membrane extended without in-
terruption along the biliary ducts and ductules. If the
nuclei were stained by propidium iodide in combination
with the double-immunofluorescent reaction, increased
cell density was revealed periportally after AAF treatment
(Figure 2, A and B). However, we did not observe cyto-
keratin-labeled cells outside the basement membrane in
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the periportal space. Combined laminin/AFP immunohis-
tochemistry showed that basement membrane sur-
rounded a few AFP-positive biliary cells after two doses of
AAF (Figure 2C). Similar to the cytokeratin reaction, no
AFP-stained cells were observed outside the basement
membrane. Immunostaining with a desmin antibody re-
vealed an increased number of activated stellate cells
outside the basement membrane. These cells and their
processes showed a very intimate connection with the
proliferating ductules (Figure 2D).

Morphological Alterations after PH in
AAF-treated Rats

To study later events during stem cell activation, we used
the AAF/PH model and the structural alterations were
analyzed 3 days after the partial hepatectomy. By this
time the oval cells had extensively infiltrated the liver
lobules. Electron microscopic examination revealed that
the oval cells always formed ductules (Figure 3A). These
growing ductules reached the sinusoids and passed
along or between them. During this process the sinusoids
were left intact, preserving their normal function. The
basic structure of these oval cell ductules was not differ-
ent from the normal canals of Hering except for the elon-
gation. The ductules grew by the continuous proliferation
of the ductular epithelial cells (Figure 3B), whereas the
sides of these tubules were continuously sealed by des-
mosomes. Also, the ductules always terminated at a he-
patocyte (Figure 3C). This hepatocyte was probably the
one connected with the original canal of Hering. In this
way the original connection between the bile canaliculi
and the bile duct system was preserved throughout the
regenerative process. The growing tubules were sur-
rounded mostly by basement membrane that terminated
on the hepatocyte. However, there were segments along
these growing ductules where no structured basement
membrane could be seen by electron microscope. Again
no cells penetrating through the basement membrane
could be observed. There were, however, plenty of pro-
liferating cells outside the basement membrane without
characteristic ultrastructural features. These cells did not
show epithelial phenotype or form desmosomes, yet
had a very close contact with the expanding ductular
epithelial cells. Higher magnification showed that small
processes of these nonepithelial cells appeared to
have direct cell-cell contact with the epithelial cells
(Figure 3D).

Immunohistochemical observations confirmed the
electron-microscopic data. The cytokeratin-stained oval
cells formed ductules that were elongations of the portally
located canals of Hering. The tubular structure of these
ductules with a central lumen was much more obvious in
the pictures generated by confocal microscopy. The ma-
jor difference between the two methods was that, al-
though the basement membrane could not be continu-
ously followed along these ductules ultrastructurally, the
immunohistochemistry showed consistent laminin positiv-
ity around them (Figure 4A). The cylinder formed by the
basement membrane had an open end plugged by a
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Figure 2. A: Portal area of a control liver stained for cytokeratin (green) and laminin (red). The section was additionally stained with propidium iodide to localize
nuclei. Basement membrane of portal vein (V), capillaries (small arrowheads), bile duct (small arrow), and a canal of Hering (large arrow) are stained by
the anti-laminin antibody. Nuclei of two connective tissue cells can be detected (large arrowheads) in the periportal area. The bile duct and canal of Hering
lining cells show a stronger cytoplasmic staining for cytokeratin than the hepatocytes. Scale bar, 10 wm. B: Portal area stained for cytokeratin and laminin 2 days
after AAF treatment. Localization of basement membranes are similar to that of control liver. Note the presence of numerous cytokeratin-negative cells in the
periportal connective tissue (arrowheads), but there are no cytokeratin-positive cells in the periportal space outside the basement membrane. The canal of
Hering (arrow) shows normal structure. Scale bar, 10 um. C: Two days after AAF treatment AFP-positive (green) bile ductule cells are present strictly within
basement membrane (red). Scale bar, 10 wm. D: Portal area 2 days after AAF treatment, stained for laminin (red) and desmin (green). The section was additionally
stained with propidium iodide to localize nuclei, as shown in A and B. Numerous cells in the connective tissue, which proved to be negative for cytokeratin (B),
stain positively for desmin. Some of the desmin-positive cells positioned closely to the basement membrane of the bile ducts (B) (arrows). A, arteriole; V, venule.

Scale bar, 10 pm.

hepatocyte, and desmin-positive stellate cells accompa-
nied the ductular structures outside the basement mem-
brane (Figure 4B).

Ten days after the partial hepatectomy the cytokeratin-
laminin immunohistochemistry did not reveal any basic
change in the structure of advancing ductules, demon-
strating that the oval cells still formed ductular structures
extensively infiltrating into the liver parenchyma and
maintained contact with hepatocytes at their origin
(Figure 5, A and B). The oval cells still could be easily
distinguished from the hepatocytes by the strong

cytoplasmic cytokeratin staining. The proliferating oval
cells were heterogeneously decorated by the AFP antibody.
Similar to earlier time points, these cells were always sur-
rounded by basement membrane and no AFP-positive cells
were seen outside the laminin staining (Figure 5C). At this
stage, oval cells were neither identified outside the ductular
structures nor interposed between hepatocytes. The
desmin reaction verified that activated stellate cells sur-
rounded the advancing ductules and formed processes
that penetrated and caused focal discontinuity of the base-
ment membrane (Figure 5D).
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Figure 3. Ultrastructure of a portal area 3 days after PH in an AAF-treated rat. A: Oval cells forming a ductule (arrowheads; L, ductule lumen), squeeze between
sinusoids (S). The ductule terminates on hepatocytes (H, arrows). One cell of the ductule is in mitosis (asterisk). Several stellate-like cells (I) are located closely
to the advancing ductule. Scale bar, 5 um. B: Higher magnification of the mitotic oval cell shown in A in a different sectioning plane. The cell is connected to
the other cells forming the ductule by desmosomes (arrowheads). A small amount of basement membrane-like material (arrows) is visible under the process
of a ductule cell. Scale bar, 1 um. C: Detail of the ductule shown in A. Terminal cell of the growing ductule D1 is connected to the hepatocyte (H) by desmosomes
(arrowhead) and tight junctions (small arrowheads). Desmosome (large arrow) is also discernible between the two ductule cells (D1, D2). Well-defined
basement membrane (small arrows) with small gaps can be observed under the ductule cells. Scale bar, 1 um. D: Ito-like cell (D) is in direct contact with the
ductule cell (D), through the small gaps (arrowheads) of the basement membrane (arrows). Scale bar, 1 um.
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Figure 4. A: Portal area stained for cytokeratin (green) and laminin (red) 3 days after PH in an AAF-treated rat. The bifurcating ductule (D) strongly positive for
cytokeratin, is surrounded by continuous basement membrane. Minute discontinuities (arrows) can be observed only at the vicinity of hepatocytes (H). Scale
bar, 10 wm. B: Portal area containing a bifurcating ductule (D) stained for laminin (red) and desmin (green). The basement membrane is continuous, except
minute gaps where it is penetrated by desmin-positive Ito cell processes (arrowhead). Numerous other desmin-positive cells are spread along the basement

membrane (arrows). Scale bar, 50 wm.

Discussion

We have compared the BDL- and AAF-induced ductular
cell proliferation in the rat liver by electron microscopy
and immunohistochemistry. Both treatments resulted in
the proliferation of the biliary epithelial cells. However, the
distribution of the dividing biliary cells was different. The
percentage of BrdU-labeled cells in the canals of Hering
was significantly higher after AAF administration. Analy-
sis of morphological changes in the AAF/PH model re-
vealed that proliferating oval cells always formed
ductules that were elongated and tortuous extensions of
the pre-existing canals of Hering. These oval cell
ductules were always surrounded by laminin and termi-
nated at hepatocytes located at the limiting plate. These
ductular structures were always accompanied by acti-
vated and proliferating stellate cells.

Studies similar to our own have been done by several
investigators® 1321724 ysing the AAF-induced oval cell
reaction. The difference between these studies and ours
is that we examined earlier time points of the model to
observe the first proliferating cells under conditions in
which the original histological structure of the liver is
minimally affected. Our results support the notion of oval
cells being derived from the biliary epithelium, strongly
indicating that liver stem cells are located in the biliary
system.

Among other candidates for liver stem cells are the
so-called “nondescript” periductular cells. Sell and Sal-
man® observed that the first proliferating cells after AAF
feeding in rats maintained on a choline-deficient diet are
periductal and the ductular cells follow them 1 or 2 days
later. These periductal cells are located outside the base-
ment membrane and contained no ultrastructural fea-
tures that identified them. Interestingly, the increase in
the number of thymidine-labeled periductular cells was

equal to or greater than the labeled ductal cells. Studying
a similar model to that of Sell and colleagues®' (but
without the choline-deficient diet), we have also observed
periductal proliferating cells. Cytokeratin, however, dec-
orated strictly laminin-surrounded cells in the periportal
area, ie, no epithelial cells were seen outside the base-
ment membrane. AFP is an extensively used marker of
the oval cells in the rat liver®®2° and the presence of AFP
also indicates a hepatocytic directed commitment of the
cells. AFP staining in some of the biliary epithelial cells
after two doses of AAF supports the hypothesis that these
cells are the precursors of the oval cells. In addition, the
persistent lack of AFP staining outside the basement
membrane throughout the experimental period strongly
argues against the potential periductal origin of the oval
cells. According to studies in other stem cell systems,?’
in which a high cell production rate is required, the stem
cells fulfill this task via a dividing transit or amplification
cell population. The cells of this compartment constitute
an intermediary or transition population between the stem
cells and the mature functional compartment, and they
usually acquire one or more differentiation markers. Tra-
ditionally the oval cells are thought to represent this am-
plification compartment in this experimental model.” If the
nondescript periductal cells studied by Sell and col-
leagues?! were the stem cells, we would not expect them
to proliferate at the same rate as the dividing transit
compartment represented by the oval cells. Another pos-
sibility might be that the periductal cells are (alone or
together with the ductular cells) the amplification com-
partment. These cells are, however, cytokeratin- and
AFP-negative, and do not show any phenotypic or mor-
phological (even at the ultrastructural level) sign of differ-
entiation. Furthermore, the nondescript periductal cells
would be expected to penetrate the basement mem-
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Figure 5. Immunohistochemistry of the liver 10 S

cytokeratin (green) and laminin (red). Numerous ductules surrounded by laminin are infiltrating the liver parenchyme toward the centra

] ped laminin-stained with open endpoints toward the ¢ vein (arrows), can be seen at the border of the oval cell infilt

Scale bar, 100 wm. B: High magnification of a ductule (D) at the infiltration border. Oval cells are attached to a hepatocyte (H). Lami staining encloses o

the ductule, and it does not extend over the hepatocyte (H). Scale bar, 10 um. C: Tortuous oval cell built ductules in the liver lobule stained for laminin (red)

and AFP (green). The ductules are surrounded by laminin and able only e the basement membrane. Scale bar, 10 um. D: Similar ductules
d for laminin (red) and desmin (green). Numerous desmi ells are spreading along the basement membrane (arrowheads). At s al places

processes of these cells puncture the basement membrane (arrows), but these processes never extend over the basement membrane. Scale bar, 10 um.

brane in great numbers during the process of differenti- plenty of desmin-positive stellate cells actively proliferat-
ation, but neither Sell and Salman® nor we observed any ing around the ductules in the AAF/PH model. Although
sign of this. Therefore, our data do not support the stem we have not precisely quantitated the number of stellate
cell nature of the periductal cells. There are, however, cells, it seems to be approximately equal to that of oval
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cells. It is therefore possible that at least some of the
periductal proliferating cells described by Sell and Sal-
man® might be stellate cells.

Several studies have supported possibilities of the
stem cells being located in the biliary system. These
include terminal hepatic ductules;*>2228 gl biliary epi-
thelial cells,**22 and a very primitive looking cell, re-
ferred to as a “basal cell” inside the bile duct.?*?* The
basal cells proliferated 2 to 3 days after the partial hep-
atectomy in the livers of rats treated according to Solt and
colleagues®® carcinogenesis schedule. We also saw
these small, intraepithelial cells in our sections, but they
never incorporated BrdU or showed morphological signs
of proliferation. The reason for this difference is not alto-
gether clear. Novikoff and colleagues®® and Novikoff and
Yam®* used the DEN-initiated Solt-Farber model,
whereas we avoided DEN administration. Although the
oval cell reaction is similar, the histological changes are
more complex in the Solt-Farber model according to our
experience. Anilkumar and colleagues®* also described
divergent histological reactions in the two models. It is
however evident that oval cell proliferation can be in-
duced without the participation of the basal cells in our
experimental model. Therefore, the biliary epithelial cells
can function as facultative liver stem cells in the AAF/PH
experimental model. We can, of course, not exclude the
possibility that the basal cells represent an even more
ancient stem cell population that is activated by a more
drastic, carcinogenic protocol and may be responsible,
eg, for the frequently observed metaplastic hemopoiesis
in hepatocarcinogenesis experiments.®53¢ Recently Pe-
tersen and colleagues®” and Theise and colleagues®®
have provided evidence that hemopoietic stem cells can
give rise to oval cells and hepatocytes. The basal cells
may perhaps represent a common precursor for the two
systems. Although these observations have a dramatic
impact on our view of stem cell biology, there is a general
agreement that under most circumstances the liver re-
generates from cell populations confined to the liver.
These cells are the focus of this study and the participa-
tion of hemopoietic cells in liver regeneration is not ad-
dressed here.

The notion of which segment(s) of the biliary tree har-
bors the stem cells is still controversial. Although a sub-
stantial amount of data indicate that the liver stem cells
are confined to the terminal hepatic ductules, arguments
have been made suggesting that any component of the
biliary tree can give rise to oval cells.?* 32 We have
previously shown that chronic dexamethasone treatment
is able to prevent the oval cell proliferation triggered by
the AAF/PH protocol while not at all inhibiting the BDL-
induced proliferation of the larger, mostly interlobular bile
ducts.” The preferential BrdU labeling of cells in the
canals of Hering after AAF administration, suggested that
selective inhibition of cell proliferation in these cells might
be achieved by dexamethasone. Contrary to expecta-
tions dexamethasone completely inhibited the AAF-in-
duced biliary cell proliferation regardless of their loca-
tion.' These results fail to provide a functional
confirmation that the terminal ductules are the exclusive
sources of the oval cells. Furthermore, the proliferations
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of morphologically and topologically identical biliary cells
were differently regulated by dexamethasone. These
data suggest that there are at least two different mecha-
nisms regulating proliferation of the biliary epithelium,
each providing functionally different progeny. Although
the dexamethasone-sensitive pathway provides cells
with stem cell potential, the dexamethasone-resistant
pathway produces only biliary epithelial cells. These re-
sults may, at least in part, be analogous to the regulation
of hepatocyte cell cycle induced by the partial hepatec-
tomy and primary mitogens.®® It is well established that
these proliferative models have different biological poten-
tials; eg, hepatocyte proliferation induced by partial hep-
atectomy has carcinogenic promoting capacity whereas
the other one induced by direct mitogens has none.*°
There are already observations indicating the differential
regulation of these two biliary reactions. Mice harboring
congenitally defective SCF/c-kit system retain an intact
proliferative response after BDL,*" whereas the oval cell
proliferation is remarkably suppressed in rats with defi-
cient c-kit kinase activity.*?

The fact that hepatocytic differentiation occurs in the
pancreas*>#* and extrahepatic bile ducts*® also argues
against the restricted occurrence of multipotential stem
cells in the canals of Hering. Our observation that AAF
targets preferentially the cholangioles while BDL targets
the larger bile ducts can be explained by topological
factors. The primary stimulus for biliary proliferation after
BDL is the increased intraductal pressure.'® The pres-
sure is probably higher in the interlobular bile ducts, than
in the ductules. Differential expression of drug metabo-
lizing enzymes by different segments of the biliary tree*®
may provide an alternative or additional explanation for
the differential response to AAF. Potten?” described a
hierarchy of the stem cells in the small intestine glands.
Depending on the severity of injury, more and more re-
sistant cells participate in the repair. Additionally, this
hierarchy is related to the topography of the cells. A
similar arrangement cannot be excluded in the biliary
system. This notion is supported by the well-known het-
erogeneity of cholangiocytes.*84°

Experiments using injection of pigmented gelatin me-
dium and related substances into the biliary tree have
demonstrated that the majority of oval cells are part of a
ductular reaction.’® '35 However, together with these
observations, occurrence of isolated oval cells, some-
times located between pre-existent fully mature hepato-
cytes, have been described.’ There is also conflicting
assessments on the continuity of the basement mem-
brane around the ductules.?**° To address this problem
we studied earlier time points and complemented the
electron microscopy with confocal laser microscopy. The
confocal microscopy provided a much better overview of
the histological reaction in addition to allowing simulta-
neous use of more than one marker. The laminin/cytoker-
atin double staining decorated very clearly the biliary
ductules that would otherwise be difficult to recognize.
There was a distinct continuous laminin staining around
the canals of Hering that terminated at hepatocytes lo-
cated at the limiting plate.



1322 Paku et al
AJP April 2001, Vol. 158, No. 4

The traditional light microscopic view of the oval cell
reaction is very complicated. The confocal microscopy,
however, clearly revealed that the oval cells always form
ductules surrounded by basement membrane that origi-
nate from the canals of Hering and terminate on a hepa-
tocyte. As these oval cell ductules grow, they become
tortuous, but they appear not to lose contact with their
terminating hepatocyte, as was described by Betto and
colleagues®' in Long-Evans rats. To accomplish this task,
it seems that the canal of Hering is ideally situated and
therefore may provide the stem cell niche in the liver.
Furthermore, this arrangement allows for continuous bile
drainage throughout this complex reaction. The preser-
vation of the original contact between the liver plate and
the extending biliary ductule, which is composed of oval
cells, may be extremely important for the maintenance of
the liver architecture. We hypothesize that the disruption
of the contact between the ductules and hepatocytes
may occur in chronic interface hepatitis resulting in aim-
less ductular proliferation, followed by fibrosis, and finally
reorganization of the liver structure resulting in cirrhosis.

The basement membranes frequently play an impor-
tant role in the regenerative process. In certain tissues
(eg, kidney tubules) the integrity of the basement mem-
brane is required for the regeneration because it pro-
vides a track for the dividing epithelial cells.®® The situa-
tion is probably different in the liver. There is no
structured basement membrane along the liver plates.
The fact that the regular basement membrane is some-
times missing ultrastructurally around the ductules, while
they are always surrounded by laminin according to our
immunohistochemical data, may indicate that it is in sta-
tum nascendi, providing a substrate for proliferation and
migration. This process is similar to that observed during
angiogenesis.®® Activated stellate cells are always inti-
mately associated with these ductules. Sometimes the
processes of the stellate cells brake through the base-
ment membrane and form direct cell-cell contact with the
ductular epithelial cells. This connection that has not
been described before may form the structural basis for
the intensive cross talk between these two cell types.

In conclusion, although it has been known that most of
the oval cells are organized into ductular structures
sprouting from pre-existing bile ductules, this was not
generalized to every oval cell and the development of
these ductules was obscure. We suggest that the oval
cell-formed ducts are simply extensions of the biliary
ductules. The connection between the last ductular bili-
ary cell and the corresponding hepatocyte is maintained
for an extended period of time. The oval cells are prefer-
entially generated by proliferation of the terminal biliary
ductules that we suggest constitute the primary hepatic
stem cell niche. However, the stem cell potential of the
larger biliary ducts cannot be excluded. In fact, there
seems to be two independently activated and regulated
mechanisms for the proliferation of the biliary epithelium.
One of these that can be blocked by dexamethasone
results in progenies with the capacity for both differenti-
ating into hepatocytes and possibly other cell lineages.
The ductules are composed of oval cells and surrounded
by continuous basement membrane that is intermittently
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disrupted by processes of stellate cells that form direct
cell-cell contact with the oval cells.
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Thy-1 Is Expressed in Hepatic Myofibroblasts
and Not Oval Cells in Stem Cell-Mediated Liver

Regeneration

Katalin Dezs6,* Peter Jelnes, Viktéria Laszl6,*
Kornélia Baghy,* Csaba Bddoér,” Sandor Paku,*
Niels Tygstrup,* Hanne Cathrine Bisgaard,’
and Peter Nagy*
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Cancer Research,* Semmelweis University, Budapest, Hungary;
the Department of Cellular and Molecular Medicine," The Danish
Stem Cell Research Centre, The Panum Institute, University of
Copenhagen, Copenhagen, Denmark; and the Department of
Hepatology,* Rigshospitalet, Copenhagen University Hospital,
Copenhagen, Denmark

Thy-1, a marker of hematopoietic stem cells, has been
reported to be expressed by oval cells proliferating
during stem cell-mediated regeneration in rat liver,
suggesting a relationship between the two cell popu-
lations. Consequently, Thy-1 has become an accepted
cell surface marker to sort hepatic oval cells. In the
present study we used the well-characterized
2-acetylaminfluorene/partial hepatectomy model to
induce transit-amplification of hepatic oval cells in
the regenerating liver and characterized Thy-1 ex-
pression using Northern hybridization, quantitative
reverse transcriptase-polymerase chain reaction anal-
ysis, immunofluorescence confocal microscopy, and
immunoelectronmicroscopy. We found that Thy-1 ex-
pression was induced during transit-amplification of
the oval cell population, but Thy-1 mRNA was not
present in the a-fetoprotein-expressing oval cells.
Thy-1 protein was consistently present outside the
basement membrane surrounding the oval cells. It
overlapped frequently with smooth muscle actin
staining. A similar cellular localization of the Thy-1
protein was found on human liver specimens with
ductular reactions obtained from patients with fulmi-
nant liver failure. Furthermore, Thy-1 was expressed by
myofibroblasts in experimental liver fibrosis models with-
out oval cell proliferation. We conclude that Thy-1 is not
a marker of oval cells but is present on a subpopula-

tion of myofibroblasts/stellate cells. (4AmJ Patbol 2007,
171:1529-1537; DOI: 10.2353/ajpath.2007.070273)

Thy-1 (CD-90) is a rather promiscuous molecule. It is
expressed by several different cell types, and, among
others, it is present on the surface of the bone marrow
stem cells. It was also reported to be present in the rat
liver on the oval/progenitor cells in stem cell-mediated
liver regeneration.'* Later, a precursor-product relation-
ship was described between bone marrow cells and oval
cells/hepatocytes in several experimental models™35¢
as well as in humans,” raising the very exiting possibility
of liver cells being derived from hematopoietic cells. Sev-
eral groups confirmed the Thy-1 expression in ova
cells,"* resulting in the extensive use of Thy-1 as a cell
surface marker to sort out liver progenitor cells. How-
ever, the issue of stem cell transdifferentiation has
subsequently been one of the most debated issues in
hepatic pathobiology, and most of these observations
can now be explained by cell fusion and not transdif-
ferentiation. The most comprehensive review of this
topic recently concluded that although “data are suffi-
cient to indicate that mesodermal hematopoietic cells
can generate hepatocytes at a very low frequency, this
is not an effective pathway under most conditions.”® At
the same time, others described cells coexpressing
Thy-1 and smooth muscle actin (SMA) in similar exper-
imental settings,® questioning the identity of the Thy-1-
expressing cells in the liver. To resolve this contradic-
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tion we performed detailed morphological expression
analysis to identify the location of Thy-1 in the normal
liver and in damaged liver with and without oval cell
proliferation.

Materials and Methods

Animal Experiments

Male F-344 rats (160 to 180 g) were used for all experi-
ments and were kept under standard conditions. Animal
protocols were approved by the Danish Council for Su-
pervision with Experimental Animals.

AAF/PHXx Experiment

The animals received 2-acetylaminofluorene (AAF) (sus-
pended in 1% dimethylcellulose) at 4.5, 9, 12, or 18
mg/kg/day administered daily for 4 consecutive days by
gavage. Traditional two-thirds partial hepatectomy
(PHXx)'® was performed on the 5th day, followed by four
additional AAF treatments. Groups of three animals were
sacrificed 1, 5, 9, 14, and 21 days after PHx. Controls
included untreated animals and rats subjected to a PHx
or a sham laparotomy only. After resection of the liver,
samples were taken for histological examinations and the
rest snap-frozen in liquid nitrogen for RNA extraction.

Bile Duct Ligation

Ligation of the common bile duct was done according to
Cameron and Oakley.'" The rats were sacrificed 2 weeks
after the operation.

CCl, Fibrosis

Twenty percent CCl, (0.5 ml/kg, dissolved in vegetable
oil) was administered by gavage to rats twice a week
while the animals were kept on 0.05% phenobarbital in
the drinking water. The experiment was terminated after
8 weeks.'?

Human Tissue

Snap-frozen human liver specimens for immunohisto-
chemical examination were obtained from two patients
who underwent orthotopic liver transplantation because
of fulminant liver failure of unknown etiology. The proce-
dure was approved by the ethical committee of the Sem-
melweis University.

Isolation of Oval Cells for Northern Blot Analysis

Isolation of oval cells was performed using control liver,
and animals were treated according to the AAF/PHXx pro-
tocol (18 mg/kg/day) and sacrificed at day 9 after PHXx.
The isolation and enrichment procedure has been de-
scribed in detail.'® In brief, liver cells were released by a
three-step perfusion procedure in situ. Viable nonparen-
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chymal cell populations were purified by centrifugation
through a two-step Percoll gradient. Kupffer cells were
removed by selective adherence to plastic tissue culture
dishes. Removal of macrophages, endothelial cells, and
red blood cells was achieved by selective panning using
the mouse monoclonal antibody OX43 (catalog no.
MCA276; Serotec, Oxford, UK). Cell preparations were
snap-frozen in liquid nitrogen and stored at —70°C until
processed for total RNA isolation and Northern blot
analysis.

Northern Blot Analysis

Northern blotting with cDNA probes was performed as
previously described.' The cDNA for rat Thy-1 encom-
passed nucleotides 46 to 531 (GenBank accession no.
NM_012673), and for a-fetoprotein (AFP), nucleotides
101 to 329 (GenBank accession no. X02361). The filters
were hybridized with rat S18 to assess the integrity and
ensure equal loading of the RNA.

Quantitative Real-Time Reverse
Transcriptase-Polymerase Chain Reaction Analysis

Frozen sections (8 um) were fixed in acetone, dried at
room temperature, and stained with RNase-free hema-
toxylin. Laser microdissection of oval cells was per-
formed by using the PALM MicroBeam system, and 500
to 1000 cells were collected in RNA-Later. For whole liver
quantitative real-time reverse transcriptase-polymerase
chain reaction (gRT-PCR) analysis, frozen sections from
normal and AAF/PHx-treated liver were collected in lysis
buffer.

Total RNA was isolated by RNAqueous micro kit (catalog
no. AM 1931; Ambion, Austin, TX). A high capacity cDNA
reverse transcription kit (catalog no. 4368814; ABI) was
used for cDNA synthesis as recommended by the supplier.
PCR was performed by the ABI Prism 7300 sequence de-
tection system (Applied Biosystems, Weiterstadt, Ger-
many), using ABI TagMan gene expression assays for AFP
(assay ID: Rn00560661_m1), SMA (assay ID: Rn01759928_
g1), and Thy-1 (assay ID: Rn00562048_m1) according to
the manufacturer’s instructions. Glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) was used as endogenous
control. All samples were run in triplicate, in a 20-ul reaction
volume. Results were obtained as threshold cycle (Cy) val-
ues. Expression levels were calculated using the AC;
method. The values were calculated as the mean values of
three independent measurements, and the expression lev-
els of mRNA in all samples were defined as a ratio to
GAPDH expression.

Morphological Analysis

Frozen sections (10 to 20 um) were fixed in methanol and
were incubated at room temperature (1 hour) with a mix-
ture of the primary antibodies (Table 1) and with appropriate
secondary antibodies afterward (Jackson ImmunoResearch,
West Grove, PA). All samples were analyzed by confocal
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Table 1. Primary Antibodies Used for the Immunohistochemical Studies

Antibody Species Manufacturer* Catalog number Dilution
Laminin Rabbit polyclonal DAKO Z0097 1:200
Anti-rat Thy-1 Mouse monoclonal BD Pharmingen 554895 1:100
FITC-labeled anti-rat Thy-1 Mouse monoclonal BD Pharmingen 554897 1:50
Anti-human Thy-1 Mouse monoclonal BD Pharmingen 550402 1:100
FITC-labeled anti-human Thy-1 Mouse monoclonal BD Pharmingen 555595 1:50
GFAP Mouse monoclonal BD Pharmingen 556330 1:100
Anti-human cytokeratin-19 Mouse monoclonal BioGenex MU246-UC 1:50
Anti-rat cytokeratin-19 Mouse monoclonal Novocastra NCL-CK19 1:50
OV-6 Mouse monoclonal R&D Systems MAB2020 1:100
FITC-labeled cytokeratin Mouse monoclonal DAKO F0859 1:10
Desmin Rabbit polyclonal Neomarkers RB-9014-P1 1:100
Smooth muscle actin Mouse monoclonal DAKO M0851 1:100
OX-62 Mouse monoclonal Serotec MCA1029G 1:100
Mononuclear phagocyte (rMPh/ED-1) Mouse monoclonal BD Pharmingen 554954 1:100
Lyve-1 Rabbit polyclonal Reliatech 102-PA505 1:100
CD45 Mouse monoclonal BD Pharmingen 550566 1:100

DAKO, Glostrup, Denmark; BD Pharmingen, San Jose, CA; Biogenex, San Ramon, CA; Novocastra, Newcastle upon Tyne, UK; R & D System,

Minneapolis, MN; Neomarkers, Fremont, CA; Serotec, Oxford, UK; Reliatech, Bvaunschweig, Germany.

laser-scanning microscopy using the Bio-Rad MRC-1024
system (Bio-Rad, Richmond, CA). Negative controls were
performed by replacing the primary antibodies with preim-
mune sera (data not shown).

Co-localization analysis was performed using the Im-
age J program (National Institutes of Health, Bethesda,
MD). The red (channel 1) and green (channel 2) images
were acquired separately and sequentially to avoid
bleed-through. The area fraction (%) occupied by red
and green fields was determined by manual threshold-
ing. Analysis of co-localized points (%) was determined
using the co-localization plug-in.

Preparation of liver tissue for immunoelectronmicros-
copy was described by Paku and colleagues.'® Cryosec-
tions were rinsed in phosphate-buffered saline and incu-
bated with the primary antibody Thy-1 (dilution 1:100, 3
hours), followed by peroxidase-conjugated anti-mouse
antibody (dilution 1:500, catalog no. 715-035-1500; Jack-
son ImmunoResearch). Semithin sections were slightly
stained by 0.5% toluidine blue (pH 8.5), and unstained
ultrathin sections were analyzed on a Philips CM 10 elec-
tron microscope (Philips, Eindhoven, The Netherlands).

A B
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Figure 1. Northern blot analysis for the expression of Thy-1, AFP, and S18.
A: RNA was isolated from whole liver of normal, sham-operated (sham),
partially hepatectomized (PHx), and AAF/PHx-treated animals. The numbers
refer to the daily dose of AAF. Animals were sacrificed at 1, 5, and 9 days after
PHx. B: RNA was isolated from the oval cell fraction from control and
AAF/PHX (AAF dose, 18 mg/kg/day)-treated rats. The strong AFP band in the
second lane confirms the presence of oval cells in the enriched cell popu-
lation. Notice the lack of Thy-1 expression in this cell population.

Results

Thy-1 Expression in the Normal Liver

Transcripts for Thy-1 were not detected by Northern blot
analysis in mMRNA preparations from whole normal liver
(Figure 1A) and were undetectable in preparations of
nonparenchymal cells isolated from normal liver and en-
riched with a protocol for oval cells (Figure 1B). Likewise,
gRT-PCR analysis detected low AFP, Thy-1, and SMA
expression in normal liver (Figure 2).

Thy-1 expression by immunohistochemistry was detect-
able and confined to the periportal region (Figure 3, A, B, C,
and E; and Supplemental Figure 1A available at http://ajp.
amjpathol.org). There was some faint cloudy staining around
the major interlobular bile ducts (Figure 3A, and Supple-
mental Figure 1A available at http://ajp.amjpathol.org).

200
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5 83 ° o 2 8
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AFP Thy-1 SMA

Normal liver AAFIPHX liver Oval cells

Figure 2. qRT-PCR analysis of AFP, Thy-1, and SMA mRNA in whole liver of
normal and AAF/PHx (9 days after PHx)-treated animals and in microdis-
sected oval cell populations. The relative expression levels of AFP, Thy-1,
and SMA were determined by comparing with that of GAPDH expression
level (100%).
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Thy-1 antibody decorated more intensely and sharply the (data not shown). Scattered undefined cells inside the
cross sections of peripheral nerves (Figure 3A, and Sup- portal areas also expressed Thy-1 (Figure 3, C and E).

plemental Figure 1A available at http://ajp.amjpathol. Desmin antibody reacted with nonparenchymal cells in
org). These nerves were also positive for synaptophysin the liver lobule in addition to the muscular wall of the
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blood vessels and scattered single cells in the periportal
connective tissue (Figure 3, C and D). Conversely, no
SMA-positive cells were seen inside the liver lobule; only
the vessel walls were stained (Figure 3, D and E). Glial
fibrillary acidic protein (GFAP), an established marker of
hepatic stellate cells, decorated scattered single cells in
the liver lobules. There was no overlap between the GFAP
and Thy-1 reaction (Figure 3B).

Thy-1 Expression in the Stem Cell-Mediated
Liver Regeneration

In rat liver treated according to the AAF/PHx protocol,
oval cells formed ductules invading the liver lobules dur-
ing the first 7 to 10 days. These ductules are surrounded
by continuous basement membrane, and there are nu-
merous stellate cells/myofibroblasts around them.™® The
number of transit-amplifying oval cells depends on the
dose of AAF as demonstrated by the levels of AFP tran-
scripts—the most widely used marker for rat oval cells
(Figure 1A). A similar expression pattern was found in
whole liver for Thy-1, confirming that Thy-1 expression is
induced during oval cell-mediated liver regeneration
(Figure 1A). However, when isolated oval cells from AAF/
PHx-treated animals were examined, no expression of
Thy-1 was detectable despite increased levels of AFP
transcripts (Figure 1B). gRT-PCR also failed to detect
Thy-1 (and SMA) expression in RNA isolated from micro-
dissected oval cells, while AFP RNA was present. How-
ever, Thy-1 and SMA expression could be demonstrated
by gRT-PCR from whole liver sections. Therefore, we
performed a thorough immunohistochemical analysis of
the Thy-1 expression.

The staining pattern with the different antibodies was
identical in all studied time points. The laminin-containing
basement membrane surrounded the CK-19-positive
oval cell ductules. The Thy-1 reaction was observed con-
sistently outside the basement membrane (Figure 3, F
and G; and Supplemental Figure 1, B and C, available at
http.//ajp.amjpathol.org). The antibody sometimes labeled
round, cellular body-like elements, but frequently only
stripes or cell processes were positive. Thy-1 immunore-
actions were easily abolished by detergent pretreatment.
If sections were pretreated for 5 minutes in 0.05% Triton
X-100, the staining was faint whereas pretreatment for 10
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minutes resulted in complete disappearance of the reac-
tion (data not shown). Thy-1 antibody also decorated
cellular elements and long processes outside the base-
ment membrane in human livers with extensive ductular
reactions because of fulminant liver failure (Figure 3H).

The pattern of Thy-1 reaction was reminiscent of stellate
cell/myofibroblast architecture, which also could be found
outside the basement membrane. Therefore, in the rat liver
we performed co-staining of Thy-1 and SMA or desmin, the
two most widely used stellate cell/myofibroblast markers.
SMA-positive cells appeared very early in the experiment at
the limiting plate and spread along the ductules formed by
oval cells into the parenchyma. The desmin antibody re-
acted with scattered nonparenchymal cells throughout the
liver lobule from the beginning of the experiment, but they
became more frequent in the zone of the oval cells. In the
co-staining experiments, Thy-1 showed frequent co-local-
ization with SMA (Figure 4, A-C). Of the Thy-1-positive
areas 80.3 * 9.6% stained with SMA, but only 58 * 9.3% of
the SMA-positive field was decorated by Thy-1.

Thy-1 positivity hardly overlapped with desmin; the value
of co-localization index was 6.8 = 2.3% (Figure 4D and
Supplemental Movie 1 available at http.//ajp.amjpathol.org).
This was surprising because SMA and desmin have been
used to identify stellate cells/myofibroblasts. The co-local-
ization index of these two markers was also negligible
(7.16 £ 1.2%) (Figure 4E).

To investigate Thy-1 co-localization with other marker
antigens, we performed further double-staining experi-
ments. Lyve-1, a new marker for the endothelial cells of
lymphatic vessels and hepatic sinusoids,'®"” did not show
any co-staining with Thy-1 in the neighborhood of the oval
cells (Figure 4F), a result that was similar to OX 62 and rMPh
markers of hepatic dendritic’® and Kupffer cells (data not
shown). In addition, CD45, a general leukocyte marker, did
not stain the Thy-1-positive structures (Figure 4G).

Immunoelectron microscopic examination of Thy-1 ex-
pression also revealed long cell processes running
clearly outside the basement membrane. Because of
immunoelectronmicroscopic processing of the samples,
the ultrastructure of labeled cells could not be examined
in detail. However, our morphological evaluation sug-
gested that the marked cells displayed features of stel-
late cells/myofibroblasts (Figure 5, A and B).

Figure 3. Thy-1 expression examined by confocal microscopy. A—E: Normal rat liver. F and G: Rat liver from an AAF/PHx experiment, 14 and 21 days after PHx.
H: A human liver with ductular reaction. C-E: Serial sections of an interlobular bile duct and its neighborhood. A: The section is triple labeled for Thy-1 (green),
cytokeratin-19 (red), and laminin (blue). The portal vein, the hepatic artery branch, and the major interlobular bile duct are surrounded by laminin-positive (blue)
basement membrane. Thy-1-positive nerve fibers (arrowheads) are present around the vessels. There is a fine Thy-1 staining around the larger interlobular bile
ducts (large arrow), but it cannot be observed around the small bile duct branches (small arrows). B: The section is triple labeled for Thy1 (green), GFAP (red),
and laminin (blue). GFAP-positive stellate cells are present only in the liver parenchyma. Thy-1 and GFAP staining show separate structures in normal liver. C:
The sections are stained for Thy-1 (green) and desmin (red). Desmin positivity can be observed in the wall of hepatic artery branches and in the capillaries of
peribiliary plexus. Note the co-localization of desmin and Thy-1 in the wall of peribiliary vascular plexus (arrowheads). Desmin-positive cells can also be
discerned within the portal area and in the liver parenchyma. There are scattered Thy-1-positive cells in the portal area (arrow). The nuclei are stained with toto-3
(blue). D: The section is stained for SMA (green) and desmin (red). SMA and desmin co-localize in hepatic artery branches and in the wall of capillaries of the
peribiliary plexus (arrowheads). SMA-positive cells cannot be found in the liver parenchyma. The nuclei are stained with toto-3 (blue). E: The section is stained
for Thy1 (green) and SMA (red). Note the co-localization of SMA and Thy-1 in the wall of peribiliary vascular plexus (arrowheads). Scattered Thy-1-positive cells
are present in the portal area (arrows). F: AAF/PHx experiment, 14 days after PHx. Triple staining for Thy-1 (green), CK-19 (red), and laminin (blue). The
CK-19-positive (red) oval cell-formed ductules (arrows) are surrounded by laminin-positive (blue) basement membrane. The oval cells are not labeled by the
Thy-1 antibody. Thy-1-positive cells were situated exclusively among the ductules, strictly outside the basement membrane. G: AAF/PHx experiment, 22 days after
PHx. Thy-1-positive (green) cells are clearly localized outside the basement membrane (laminin-positive, blue) of CK-19-positive (red) oval cell ductules
(asterisks). H: Thy-1-positive (green) cells are outside the laminin-containing basement membrane (laminin, blue) surrounding the proliferating ductules (CK-19,
red) in human liver. Scale bars: 20 um (A-E, H); 200 um (F); and 10 um (G).
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Figure 4. Confoc: ic 7 of Tl ressi "ombined with stellate cell/myofibroblast markers SMA and desmin. Su i
Llu(ndmw to the AAF/P ays after . A and B: Double labeling for SMA (red) and Th\'l (orccn) ast (A) and
i ng th oval cell ductules (asterisks). C: The white areas on the m . and Thy-1.
reen) and desmin (red). The overwhelming majority of the green ul rcd. 1ining ma 3 structures (arrows).
7 spots showing yellow signal (arrowheads), suggesting occasional co-localization of the two antibodies. E: Double-immunofluorescent
n) and desmin (red) l;lb&.lh different structures (arrows). F: Double labeling for Thy S .yve-1 (red) in the area of proliferating
ductules Lyve-1-positive endothelium does not express Thy-1; it is localized outside the vessels. G: The CD45 (red) stz lining ; does not ov erlap with Thy-1 (green).

Scale bar = 50 um.




Figure 5. Ultrastructural localization of Thy-1 in a rat liver treated according
to the AAF/PHx protocol, 9 days after PHx. A: Black reaction product labels
the surface of a periductal cell (asterisk). Numerous long cytoplasmic
processes showing positive reaction for Thy-1 (arrowheads) can be ob-
served close to the basal surface of the oval cell ductule (D). H, Hepatocyte;
V, vessel lumen. B: Detail of A. Thy-1-positive cytoplasmic process (arrow-
head) is localized outside the basement membrane (arrows) of the ductule
(D). Scale bars: 2 um (A); 1 um (B).

Thy-1 Expression in Rat Liver Fibrosis Model

Thy-1 also decorated the myofibroblasts in two liver fibro-
sis models (bile duct ligation-induced cholangiofibrosis
and CCl,/phenobarbital-induced cirrhosis), which were
not characterized by oval cell proliferation (Figure 6).

Discussion

We have investigated Thy-1 expression in rat livers re-
generating by the recruitment of oval/progenitor cells.
The oval cells were not labeled by the Thy-1 antibody, but
we observed a strong periductal reaction outside the
basement membrane. There was a partial overlap be-
tween the Thy-1 and SMA staining, but no co-staining of
Thy-1 and desmin could be observed. Furthermore,
Thy-1 also marked myofibroblasts in two liver fibrosis
models without oval cell reactions.

Thy-1 is a highly conserved protein anchored by a
phosphatidylinositol to the cell membrane. Its exact func-
tion is unknown, but it has been proposed to be involved
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in cell recognition, adhesion, and lymphocyte activation.
It is expressed in a wide variety of different tissues.’ 9723
Its expression has been extensively studied in the liver.
Petersen and colleagues reported that hepatic oval cells
expressed the hematopoietic stem cell marker Thy-1 in
the rat. This observation led to further experiments sug-
gesting that bone marrow cells can be the precursors of
oval cells/hepatocytes. Hepatic progenitor cells in human
fetal liver also have been reported to be Thy-1-positive.”
However, Hoppo and colleagues® found in mouse that
Thy-1-positive mesenchymal cells promoted the maturation
of Thy-1-negative hepatic progenitor cells. A subpopulation
of the Thy-1-positive cells also expressed SMA.

Our results in the rat are similar to this latter group’s
observation. In our case the CK-19-positive, laminin-sur-
rounded oval/progenitor cells were not decorated by the
Thy-1 antibody. CK-19 is an established marker of oval
cells. It is also generally accepted that the oval cells are
surrounded by continuous basement membrane, which
can be visualized by laminin immunohistochemistry. The
co-staining of these three antigens on the same section
combined by confocal microscopic analysis is a very reli-
able morphological examination. Thy-1-positive cells were
also outside the proliferating ductules in human liver, con-
firming the observation of Crosby and colleagues.®* Fur-
thermore, immunoelectronmicroscopy confirmed that the
Thy-1-positive cells are outside the basement membrane.
On traditional histological sections, it is very difficult to
distinguish conclusively between the oval and the closely
associated stellate cells/myofibroblasts. Serial sections
stained by an oval cell marker, which was used by Pe-
tersen and colleagues,’ do not provide much help. Indi-
vidual cells cannot be analyzed on serial sections, and
the histological arrangement of the two cell populations is
similar (spreading outward from the periportal region).
Our Northern hybridization and gRT-PCR analysis also
strongly support the morphological observations.

The Thy-1 molecule is bound weakly to the cell mem-
brane.?>?° Triton X-100 pretreatment in our study also
deleted the Thy-1 signal from the sections. Soluble Thy-I

Figure 6. Thy-1 expression in other rat hepatic fibrosis models. A: Bile duct ligation-induced cholangiofibrosis. B: CCl,/phenobarbital cirrhosis model. A:
Thy-1-positive (green) cells surrounding the large proliferating bile ducts. The nuclei are stained with toto-3 (blue); the basement membrane is marked by laminin (red).
B: Thy-1-positive (green) cells are situated on the edge of the laminin-positive (red) cirrhotic septum. The nuclei are stained with toto-3 (blue). Scale bar = 20 wm.
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has been also described in the serum.?” Enzymatic di-
gestion during the cell isolation procedures may cause
detachment of the Thy-1 molecule, which might associate
later to other cells causing misleading results in cell
suspension.

To identify the Thy-1-expressing cells, we co-stained
Thy-1 with several other marker antibodies. The negative
results with OX-62, rMPh, and Lyve-1 excluded hepatic
dendritic, Kupffer, and sinusoidal endothelial cells as the
sources of Thy-1 expression. The position and shape of
the Thy-1-positive cells refers strongly to the so-called
stellate cells/myofibroblasts, which are well known to
have close spatial relationship with the oval cells in all
oval cell proliferation models. The partial co-staining with
SMA supports this option, as well as the Thy-1 positivity of
myofibroblasts in two hepatic fibrosis models. Thy-1-pos-
itive myofibroblasts were described in other tissues, and
the ratio of the Thy-1"/~ populations was a function of
their activation stage.?®3"

Surprisingly, co-staining of Thy-1 with desmin, another
marker of stellate cells, could not be demonstrated.
Desmin and SMA are alternatively used markers for stel-
late cells.®? These antibodies stain comparably located
and shaped cell populations, but according to our result,
the two reactions do not overlap. The origin and pheno-
type of hepatic stellate cells/myofibroblasts is one of the
most controversial issues of liver pathobiology. It is not
known if there are different differentiation/activation stages
of the same cell population, or as Ramadori and Saile®?
propose, there are two (or more) cell types with partially
overlapping phenotype. Our observations on the normal
liver and during the progression of oval cell proliferation in
the rat are in support of the view of Ramadori and Saile.®?
Scattered desmin/GFAP-positive cells were observed in the
parenchyma of the normal liver, which might correspond to
the (classical, perisinusoidal, vitamin A-storing) stellate
cells. SMA-decorated cells were confined to the vessel
walls in the normal liver, but they appeared in the periportal
region very early after treatment with AAF alone (data not
shown) and later spread along the oval cell ductules. This
would imply that the SMA-positive cells would be myofibro-
blasts, derived from the periportal fibroblasts, as proposed
by Ramadori and Saile®? and Beaussier and colleagues.®®
As far as we know, co-staining for SMA and desmin has not
been published in oval cell proliferation experiments. Con-
sidering the above data, the Thy-1-positive cells in the zone
of the oval cells show the closest association with the myo-
fibroblasts. The increased expression of Thy-1 in two liver
fibrosis models also supports the myofibroblastic origin of
this marker molecule.

The appearance of Thy-1-positive cells in the liver
parenchyma can be explained if some of the myofibro-
blasts acquire the Thy-1 expression during the invasion
of the liver lobule. Alternatively, it has been found that the
mesenchymal stem cells in the bone marrow are Thy-1-
positive and that this cell compartment can contribute to
wound-healing processes®* including the fibrogenesis of
the liver.3® It cannot be excluded that the Thy-1 antibody
recognizes bone marrow-derived mesenchymal cells,
which may participate in oval cell-mediated liver regen-
eration. At present, we cannot distinguish between these
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two possibilities, but transplantation experiments are un-
der way to study the presence of bone marrow-originated
cells among the stellate cells/myofibroblasts. Recently,
Kisseleva and colleagues®® have described a unique
CD45™ fibrocyte population in the liver. However, in ac-
cordance with our results, Kamo and colleagues®’ could
not demonstrate co-expression of Thy-1 and CD45.

In conclusion, we did not find Thy-1 expression in the
hepatic oval/progenitor cell population in stem cell-medi-
ated rat liver regeneration or in human ductular reactions.
Instead, Thy-1 was localized to a subpopulation of stel-
late cells/myofibroblasts. Therefore, the use of Thy-1 as a
cell surface marker for isolation of oval/progenitor cells
from the liver is not recommended. The exact origin and
function of Thy-1-expressing cells remains to be studied.
Our results are in complete agreement with the recently
published study of Dudas and colleagues.®®
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2-Acetylaminofluorene Dose-Dependent Differentiation
of Rat Oval Cells into Hepatocytes: Confocal and

Electron Microscopic Studies

Sandor Paku,' Peter Nagy,” Laszl6 Kopper,? and Snorri S. Thorgeirsson?

The 2-acetylaminofluorene (AAF)/partial hepatectomy (PH) model is one of the most extensively
studied experimental systems for oval cell proliferation and differentiation. We have previously
described the oval cells as forming ductular structures surrounded by basement membrane,
representing extensions of the canals of Hering. Herein we analyze the differentiation of oval cells
into hepatocytes after varying degrees of liver damage induced by AAF. At a low dose of AAF,
most oval cells synchronously differentiate into small hepatocytes by 6 days after the PH, result-
ing in complete restoration of the liver structure in 10 days. Higher doses of AAF delay the
differentiation process and the new hepatocytes form foci, in contrast to what is observed at the
low dose. Qualitatively, the differentiation process seems to be identical at the cellular level under
both conditions. The transition from the expanding oval cell population into hepatocytes was
correlated with the upregulation of hepatocyte nuclear factor 4 and the disappearance of the
basement membrane. Also, the differentiation of oval cells into hepatocytes coincided with the
loss of alpha-fetoprotein and OV-6 staining, and the replacement of the biliary cell-specific 6
integrin and connexin 43 with the hepatocyte-specific a1 integrin and connexin 32. In addition,
bile canaliculi form between the new hepatocytes. In conclusion, these results indicate the rate of
oval cell differentiation into hepatocytes is context dependent and suggest that, under favorable
conditions, oval cells can complete this process much faster than previously appreciated.

(HEPATOLOGY 2004;39:1353-1361.)

he liver has an enormous regenerative capacity best
illustrated by the fact that in rodents a two-thirds
loss of liver mass can be replaced in a few days by the
compensatory hyperplasia of the surviving hepatocytes.’: In
addition, two stem cell-fed back-up regenerative systems
also exist in the liver.>-¢ The activation of these dormant
stem cell systems for liver regeneration takes place when re-
sidual hepatocytes are functionally compromised, are unable
to divide, or both. We and other investigators have provided

Abbreviations: AAF, 2-Acetylaminofluorene; PH, partial hepatectomy; HNF,
hepatocyte nuclear factor; AFP, a-fetoprotein.
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evidence that epithelial cells of the canals of Hering are the
most probable candidates for the resident adult liver stem
cells.!” In case of stem cellfed liver regeneration in rat liver,
progeny of the stem cells multiply in an amplification com-
partment composed of the so-called oval cells.® Oval cells
form ductular structures surrounded by a continuous base-
ment membrane,! forming elongations of the canals of Her-
ing, and attached their distal end to a hepatocyte of the liver
plate.

Recent studies suggest bone marrow cells may be able
to transdifferentiate into hepatocytes.>¢ It is not yet clear
if the bone marrow stem cells form hepatocytes via the
oval cells. Petersen et al.? described bone marrow—derived
oval cells, but other investigators have detected only the
end product, the hepatocyte.'®!! Regardless of their ori-
gin, oval cells express a phenotype that is transitional be-
tween the biliary cells and hepatocytes. Although oval
cells display several phenotypic characteristics of the ma-
ture hepatocytes (e.g., liver-enriched transcriptional fac-
tors,'? albumin production'?), they differ structurally and
functionally from mature hepatocytes.

The final step of the stem cell-fed regenerative process,
that is, the differentiation of the oval cells into hepato-
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Table 1. Antibodies Used for the Inmunohistochemical Studies

Antibody Species Manufacturer Catalog Number Dilution
AFP Nordic Immunological Labs ShARa/AFP 1:500
Desmin Mouse monoclonal Dako M0724 1:100
Pan Cytokeratin FITC labeled Dako FO859 1:20
ove Mouse monoclonal Gift from Dr. Hixson 1:100
Laminin Rabbit polyclonal Dako Z0097 1:300
Connexin 43 Rabbit polyclonal Zymed 71-0700 1:100
Connexin 32 Mouse monoclonal Santa Cruz SC-7258 1:100
HNF-4 Goat polyclonal Santa Cruz Sc-6556 1:100
Integrin a1 Mouse monoclonal Serotec MCA 1791 1:100
Integrin a6 Mouse monoclonal Serotec MCA 2034 1:100
CD26 Mouse monoclonal Serotec MCA 924 1:20

Abbreviations: AFP, alpha-fetoprotein; FITC, fluorescein isothicyanate; HNF-4, hepatocyte nuclear factor-4.

cytes, is the focus of the present study, in which we use the
well-characterized acetylaminofluorene  (AAF)/partial
hepatectomy (PH) experimental model to induce oval
cells in the rat liver. Earlier, we observed that differentia-
tion of oval cells into hepatocytes depends on the dose of
AAF." For example, a high dose of AAF caused a delay in
the differentiation of oval cells into hepatocytes.'> Similar
results also were obtained by Alison et al.’®!7 We revisited
the issue of AAF dose dependency on oval cell differenti-
ation. In particular, we asked how the dose of AAF mod-
ifies oval cell differentiation. Herein, we demonstrate two
patterns of oval cell differentiation. At a low dose of AAF
(i.e., when the hepatocyte damage is mild), the oval cells
rapidly and synchronously differentiate into small hepa-
tocytes. In contrast, at a higher dose of AAF (i.e., more
extensive damage to hepatocytes), differentiation of oval
cells into hepatocytes is delayed and proceeds via an in-
termediate stage in which small basophilic hepatocytes
accumulate in focal nodules. However, hepatocyte differ-
entiation is eventually identical at the cellular level at both
low and high AAF doses, that is, it is correlated with
sudden upregulation of hepatocyte nuclear factor 4
(HNF-4) and the disappearance of laminin (basement-
membrane) staining. Subsequently, oval cells lost their
phenotypic characteristics (alpha-fetoprotein  (AFP),
OV-6 staining, a6 integrin, connexin 43) and gained
hepatocytic features (a1 integrin, connexin 32, bile can-
alicular formation) as the differentiation process ad-
vanced.

Materials and Methods

Animal Experiments. Male F-344 rats (160-180 g)
were used for all experiments and were kept under stan-
dard conditions. The animal study protocols were con-
ducted according to National Institutes of Health
guidelines for animal care.

AAF/PH Experiment. AAF 2 mg/mL suspended in
1% dimethylcellulose (low dose, 2.5 mg/kg daily; high

dose, 5 mg/kg daily) was given to the rats on 6 consecutive
days by gavage. Traditional two-thirds PH was per-
formed'® on the seventh day, which was followed by six
additional AAF treatments. Animals were killed at several
time points in pilot experiments to determine the times at
which hepatocytes differentiated in the two AAF doses.
All of the histological analyses described in the present
paper were carried out on livers 6 days after PH in the
low-dose model and 12 days after the PH in the high-dose
model.

Morphological Analysis. Cryostat sections (15-20
pm) were fixed in methanol and were incubated over-
night with a mixture of the primary antibodies (Table 1);
appropriate secondary antibodies were used (Jackson Im-
munoresearch, West Grove, PA). All samples were ana-
lyzed by confocal laser-scanning microscopy using Bio-
Rad MRC-1024 system (Bio-Rad, Richmond, CA).
Alpha-fetoprotein reaction was visualized by ABC perox-
idase method using DAB as chromogen (Elite kit; Vector
Laboratories, Burlingame CA). Electron microscopy was
performed as described previously.!

Retrograde Cholangiography and Analysis of the
Bile Duct Structure. The rats were anesthetized with
Nembutal. A 30-gauge needle was inserted into the common
bile duct, and 1 mL of the 1:10 dilution of fluorescein iso-
thiocyanate-labeled lycopersicon esculentum lectin (Vector
Laboratories) was injected slowly. After 15 minutes, the liver
was removed and frozen. One hundred-micrometer frozen
sections were cut and fixed in 4% paraformaldehyde. Stacks
of optical sections (up to 40) were taken at 0.5 to 1-um
intervals. Horizontal views of the images were made and

analyzed using the Bio-Rad Laser Sharp software.
Results

Differentiation of Oval Cells After a High Dose of
AAF. Small foci composed of small hepatocytelike cells
(Fig. 1A) appear in the liver 10 to 12 days after the partial
hepatectomy when 5 mg/kg AAF was administered daily
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Fig. 1. (A) High-dose model. Basophilic focus composed of small
hepatocytes 12 days after partial hepatectomy (PH). Numerous oval cell
cords emanate radially form the portal area. (B) Low-dose model. Small
basophilic hepatocytes can be observed around the portal tract 6 days
after PH. No typical oval cells can be seen. Arrowheads point at small
hepatocytes arranged in ductular fashion. (C) High-dose model. HNF-4 -
positive (green) small hepatocytes within a focus (arrowheads). Note the
high density of the nuclei and the almost complete absence of laminin
staining within the focus. Oval cell ductules near the focus are laminin
positive. (D) Low-dose model. The differentiating small hepatocytes are
HNF-4 positive (small green nuclei). OV6-positive (red) and laminin-
positive (blue) oval cell ductules close to the portal area are not stained
for HNF-4. The nuclei of interlobular bile ducts (lower left corner) are also
negative for HNF-4. (E) High-dose model. There is no OV6 (green)
staining in the focus except several entrapped oval cell ductules (arrow-
heads). The numerous oval cells surrounding the focus are strongly
stained for OV6 and laminin (red). Scraps of laminin are present in the
focus outlining the tubular architecture of the small hepatocytes (arrows).
(F) Low-dose model. Differentiating oval cell ductule close to a portal
tract. The proximal part of the ductule has continuous laminin (red)
staining, whereas distally the basement membrane is fragmented or
absent (small arrows). The old hepatocytes show fine reticular cytoplas-
mic staining for pan cytokeratin (green; arrowheads). Although a strong
membranouslike reaction is present in the proximal oval cells, the
cytoplasm of the differentiating cells over the fragmented basement
membrane already has reticular cytokeratin staining (large arrowheads).
Scale bars: (A, C, E), 100 wm; (B, D), 50 wm; (F), 10 pm.

to the rats. The cells have all the ultrastructural character-
istics of hepatocytes: abundant round nuclei, cytoplasm
rich in rough endoplasmic reticulum, mitochondria, oc-
casionally peroxisomes, and glycogen particles are ob-
served. These features are not present in the oval cells. The
foci are not composed of randomly arranged individual
hepatocytes, but tightly packed cells that form tubular
structures (Figs. 1E and 2A). The foci are relatively well

dc_301 11

PAKU ET AL. 1355

circumscribed and the small basophilic hepatocytelike
cells can be distinguished easily from the larger surround-
ing “old” hepatocytes (Fig. 1A). Oval cells are still numer-
ous in the liver at this stage and are found commonly in
contact with the randomly distributed foci.
Differentiation of Oval Cells After a Low Dose of
AAF. When 2.5 mg/kg AAF was administered daily,
fewer oval cells developed, and the oval cells did not infil-
trate the hepatic lobule to the same extent as seen after the
high dose was administered. The basic difference between
the two doses becomes obvious 5 to 6 days after the PH
when oval cells rapidly differentiate into small hepato-
cytes. The structural configuration of the new hepatocytes
was completely different from the foci seen after the high
dose of AAF: they were arranged in more-or-less straight
ducts (Fig. 1B). However on the cellular level, these dif-
ferentiated ductular cells were similar to the cells of the

Fig. 2. Ultrastructure of the focus in the high-dose model. (A) Electron
micrograph of the periphery of a focus. Small hepatocytes containing
numerous low-density mitochondria and rough endoplasmic reticulum
form a tubular structure. From the central lumen (L) bile canaliculi
originate (arrows). The basal side of the cells face sinusoids (S). An old
hepatocyte with dense mitochondria is visible on the bottom. A large
arrow points at the area visible at higher magnification on Fig. 2D. (B) A
fragmented basement membrane (arrowheads) is visible at the basal
surface of a small hepatocyte lacking microvilli. S, sinusoid. (C) The
basement membrane is completely absent at the basal surface of the
small hepatocytes (E, endothelial cell). (D) Detail of Fig. 2A. Bile
canaliculi sealed by desmosomes can be observed between the small
hepatocytes. Numerous microvilli project into the lumen of the canaliculi.
Scale bars: (A), 10 um; (B-D), 2 um.
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Fig. 3. Ultrastructure of a differentiating ductule in the low-dose
model. (A) A short, differentiating ductule near a portal tract in the
low-dose model. Two of the ductular cells (D1, D2) are attached to an
old hepatocyte, which contains numerous dense mitochondria. One
ductular cell (D3) closely resembles to hepatocytes. It has a round
nucleus with prominent nucleolus, numerous mitochondria, and organiz-
ing rough endoplasmic reticulum. (B) Detail of Fig. 3A. The basement
membrane cannot be observed at the basal side of the small hepatocyte
(D3), while it is still present (arrowheads) around the nondifferentiated
ductular cell (D4). Scale bars: (A), 10 um; (B), 2 um.

foci: small polygonal cells with basophilic cytoplasm and
ultrastructural features of hepatocytes (Fig. 3A). Hepato-
cytic differentiation seemed to occur synchronously in the
overwhelming majority of the oval cells. The few un-
changed oval cells were located at the proximal end of the
ducts, whereas the distal part of the same duct was com-
posed of differentiated small hepatocytes (Fig. 1F). The
liver structure was almost normal 10 to 12 days after PH
in the low-dose model, whereas it took 23 to 25 days after
the high-dose treatment.

Differentiation of Oval Cells Into Hepatocytes

HNF-4 is Upregulated in the Differentiating Cells.
HNF-4 is a liver-enriched transcriptional factor that is
expressed in the hepatocytes but not in the biliary cells of
the normal liver.!? Oval cells were not decorated by the
HNF-4 antibody. However, nuclear staining with the
HNF-4 antibody was seen in hepatocytes that formed foci
in the high-dose model and in hepatocytes in ductlike
structures in the low-dose model (Fig. 1C, D). Newly
differentiated hepatocytes were recognized after both low
and high doses of AAF by the smaller nuclei and higher
cell densities compared with the old hepatocytes. Cells
faintly HNF-4 positive also were observed occasionally at
the distal ends of the oval cell ductules in the low-dose
model (Fig. 4C).

The Basement Membrane Disappears During the
Process of Differentiation. Laminin-containing base-
ment membrane surrounds the undifferentiated oval
cells, which also have relatively strong cytoplasmic and
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membranous cytokeratin staining, unlike the weak retic-
ular staining of the hepatocytes (Fig. 1F).

Differentiating oval cells enlarge and acquire a hepato-
cytelike reticular pattern of cytoplasmic cytokeratin stain-
ing.  Simultaneously, the
disintegrates, starting at the distal end of the oval cell
ducts in the low-dose model (Fig. 1F). This observation
was confirmed by electron microscopy (Figs. 2B, C and
3B). The paucity or complete lack of laminin staining was
characteristic of foci (Fig. 1C,E), but occasional en-
trapped oval cell ducts were surrounded by basement
membrane (Fig. 1E). Also, numerous undifferentiated
oval cells located outside foci were still outlined brightly
by laminin staining (Fig. 1C, E) in the high-dose model.

Changes in Integrin Expression Correlate With
Loss of Basement Membrane. \We analyzed the expres-
sion of the biliary integrin a6 as well as of integrin al,
which is present on hepatocytes and sinusoidal endothe-
lial cells in the normal liver.'® The a1 integrin was absent
from the oval cell ducts, but it is clearly present on the
small hepatocytes located in the foci (Fig. 4A). The den-
sity of a1 integrin on small hepatocytes is lower than in
the surrounding parenchyma, but the sinusoidal-type ar-
rangement already could be recognized. a1 integrin also
was expressed on the small hepatocytes (Fig. 4C) in the
low-dose model.

Opposite results were obtained with the a6 integrin.
Surfaces of the oval cells facing the basement membrane
stained positively, whereas the small hepatocytes in the
foci (Fig. 4B) and in the ducts of the low-dose model (Fig.
4D) were negative.

basement membrane

Characteristic Changes in Differentiation Markers

OV-6, AFP Staining, and Desmin-Positive Stellate
Cells Disappear During Differentiation. OV-6>° and
AFP'3 are among the most frequently used antibodies to
identify oval cell rat liver. OV-6, which is a monoclonal
antibody recognizing cytokeratin (CK) 14 and 19,2! did
not react with the differentiated hepatocytes either in the
high-dose (Fig. 1E) or low-dose AAF models (Fig. 1D).
AFP staining was lost (data not shown) from the differen-
tiated hepatocytes located in the foci or in differentiated
ducts, and desmin-positive stellate cells disappeared si-
multaneously (Fig. 4E, F).

Changes in Connexin Expression. Hepatocytes ex-
press connexin 32 in normal liver, whereas cells of the
biliary system express connexin 43.22 Oval cells were pos-
itive for connexin 43, but this protein was not present in
the newly differentiated small hepatocytes (Fig. 5B). Con-
nexin 32 was entirely lacking in oval cells (Fig. 5A), but it
highlighted very clearly the new hepatocytes in both mod-
els (Fig. 5A). (The low-dose data are not shown.)
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Fig. 4. (A) High-dose model. Focus (arrowheads), 12 days after
partial hepatectomy. Sinusoids of the liver parenchyma and the focus
staining positively for a1 integrin (green). Note the lower density of
sinusoids within the focus. The oval cell ductules bordering the focus are
stained red (laminin), demonstrating the lack of colocalization of the two
signals. (B) High-dose model. The same focus (arrowheads) as on Fig. 4A
in a different sectioning plane stained for a6 integrin. The focus and the
liver parenchyma are not reacting with this antibody. Yellowish color of
the oval cell ductules bordering the focus shows that a6 integrin (green)
overlaps with the positive (red) basement membrane. (C) Low-dose
model. HNF-4 positive (small red nuclei) small hepatocytes express a1
integrin (green) mainly at their basal side (arrowheads). Weak «l
integrin positivity also can be observed at the lateral side of these cells
in some locations (small arrows). Laminin positivity (blue) cannot be
observed around the small hepatocytes. Laminin-positive oval cell
ductules are negative for this integrin and HNF-4. However, note a weak
HNF-4 nuclear staining in a differentiating cell (large arrowhead). (D)
Low-dose model. The periportal area, stained for HNF-4 (red), a6 integrin
(green), and laminin (blue). Bile and oval cell ductules are positive for
this type of integrin and laminin, whereas the small hepatocytes (small
red nuclei) are not stained. (E) High-dose model. There are numerous
laminin-positive (red) oval cell ductules, also stained positively for
desmin (green). The focus (lower left comer) is negative for desmin
except some oval cell ductules enclosed into the focus (arrows). (F)
Low-dose model. Only a few desmin-positive (red) stellate cells are
visible (arrows) around the HNF-4 -positive (green) and laminin-negative
(blue) small hepatocytes still forming a ductule (arrowheads). Scale bars:
(A, C, E), 100 um; (C, D, F), 50 pm.

Bile Canaliculus Formation by the Differentiating
Cells. Oval cells, which extend from the canals of Hering,
form ducts that are continuous with bile canaliculi in
hepatic plates. We studied the structure of the bile drain-
age system by CD26 staining and by retrograde infusion
of a fluorescein isothiocyanate—labeled lectin into the bil-
fary system via the common bile duct.
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CD26 or dipeptidylpeptidase IV23 was expressed at the
apical surface or biliary pole on the hepatocytes and on the
apical domain of the biliary and oval cells (Fig. 5C). In the
low-dose model, the pattern of CD26 staining changed
sharply where laminin staining disappeared and the oval
cells differentiated. Luminal branching to form starlike

Fig. 5. (A) High-dose model. Connexin 32 (green) is expressed by the
small hepatocytes of the focus (arrowheads). The surrounding liver
parenchyma express connexin 32 at a very low level, whereas the
laminin-positive (red) oval cell ductules are negative. (B) Low-dose
model. Oval cell ductules are stained positively for connexin 43 (red) and
OV6 (blue). The small hepatocytes marked by HNF-4 (small green nuclei)
do not express this connexin and OV-6. (C) High-dose model. Numerous
CD26-positive (green) starlike structures are discernible within the focus.
CD26 staining reveals the polygonal organization of the bile canaliculi in
the normal liver. This antigen shows a linear arrangement (arrowheads)
in the oval cell ductules surrounded by basement membrane (laminin,
red). (D) High-dose model. Higher magnification of a focus. Development
of bile canaliculi (CD26 staining, green) between the small hepatocytes
takes place only where regular basement membrane (laminin, red) is not
present. (E) Low-dose model. A differentiating oval cell tube near a portal
tract. Basement membrane (laminin, red) cannot be observed around the
starlike structure (CD26, green) representing bile canaliculi development.
(F) High-dose model. Advanced stage of the bile canaliculi development
within a focus. Beside the starlike arrangement of the CD26 staining
(green), two polygonal structures (arrows) can be seen, showing close
similarity to the bile canaliculi network of the normal liver. Some rem-
nants of the basement membrane can also be observed (laminin, red).
(G) High-dose model. Peripheral zone of a focus filled partially with
fluorescein isothiocyanate labeled lycopersicon esculentum lectin. The
border of the focus is marked by arrowheads. The wide lumen of an oval
cell ductule is continuous with the narrow bile canaliculi of the focus.
Starlike (large arrowhead) and polygonal (small arrows) structures can be
recognized within the focus. Scale bars: (A, C), 100 wm; (B), 50 um;
(D-G), 10 wm.
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8-10 days

11-13 days

Fig. 6. Schematic representation of the two differentiation models. Low-dose model: oval cell ductules penetrate into the liver lobule and
differentiate simultaneously into small hepatocytes. High-dose model: oval cells penetrate deep into the liver lobule and most of them do not change
during the observation period. The differentiating cells arranged in tortuous and branching ductules, which form the foci. The lumen of these ductules
is continuous with the larger oval cell ductules. The developing bile canaliculi between the small hepatocytes invaginate from the central lumen of

these ductules in both models. (The days mean the time after the partial hepatectomy).

structures was observed in this area, representing the
formation of bile canaliculi and the polarization of the
new hepatocytes (Fig. 5E). The situation was very sim-
ilar in the high-dose model, where numerous starlike
lumens were detected among differentiating hepato-
cytes within foci (Fig. 5C, D). Electron microscopy of
the foci clearly showed the formation of bile canaliculi
from a central lumen between the differentiated small
hepatocytes (Fig. 2A, D). Occasionally, polygonal can-
alicular structures were outlined inside the foci by
CD26 staining (Fig. 5F), similar to the pattern of bile
canaliculi in the normal liver.

Cholangiography supported the results of CD26
staining. Broad lectin-filled ducts led to foci, where the
ducts divided into smaller branches that formed polyg-
onal canalicular structures (Fig. 5G). The newly
formed bile canaliculi also could be filled between the
small hepatocytes in the low-dose model (data not
shown).

Discussion

We report two distinct patterns for the differentiation
of oval cells into hepatocytes in the AAF/PH model (Fig.
6). When a low dose of AAF was used, most of the oval
cells differentiated synchronously and rapidly into small
hepatocytes, even while AAF was being administered.
Newly formed hepatocytes maintained a ductular ar-
rangement during the early phase of the differentiation
process. In contrast, when a high dose of AAF was used,
hepatocyte differentiation was delayed by 7 to 10 days,
and even at this later time point, most of the oval cells did
not differentiate into hepatocytes. Newly formed hepato-
cytes formed foci scattered throughout the liver with the
high dose of AAF. However, the differentiation process
seemed to be identical in the two models at the cellular
level. The small basophilic cells were very similar to the
adult hepatocytes by light microscopic and electron mi-
croscopic examination. New hepatocytes lost several phe-
notypic characteristics of oval cells, for example, AFP and
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OV-6 expression. Upregulation of albumin'® and
CYP3A1'¢ in the newly formed cells indicated their func-
tional maturation.

The disappearance of the basement membrane that
surrounds the oval cell ductules is closely associated with
initiation of the differentiation process. Oval cells always
sit on a well-structured basement membrane! that is al-
most completely missing from the foci. Gradual disinte-
gration of the basement membrane was observed even
better in the low-dose model. It is well known that the
connection with the basement membrane influences the
differentiation state of the cell. The close contact with the
basement membrane is absolutely required for the main-
tenance of differentiated tubules in the kidney.? In the
skin, however, the loss of contact is a stimulus for differ-
entiation for the keratinocytes.?> The hepatocytes have no
contact with laminin containing structured basement
membrane. Yin et al.?¢ reported that isolated hepatic stem
cells expressed biliary or hepatocytic phenotypes in cul-
ture, depending on the presence or absence of basement
membrane matrix (Matrigel). Matrigel also was found to
play an important role in maintaining the biliary pheno-
type in tissue culture in other experimental systems.?7-28
These observations are in good agreement with our 77 vive
results.

Integrins are heterodimeric glycoproteins, consisting
of a and B subunits, that enable cells to recognize adhe-
sive substrates in the extracellular matrix. The a6 integrin
subunit binds laminins exclusively. The expression of the
a6 integrin and laminin seem to influence each other.
The induction of a6-containing integrins at the surface of
developing epithelial cells is strongly correlated with the
deposition of laminin.?*3° The downregulation of the
laminin receptor was described in differentiating HBC-3
hepatic stem cells in culture.3' The disappearance of the
a6 integrin from differentiating oval cells is in good agree-
ment with the disintegration of the basement membrane.
In the normal liver, a6 and a1 integrins are expressed on
biliary cells and hepatocytes, respectively.’® Therefore,
the a6-ac1 switch is another indicator of the hepatocytic
differentiation. The opposite change was described when
the hepatoblasts differentiated into biliary cells.?? The a1
integrin is present on the basal surface of endothelial cells
and on the basolateral surface of small hepatocytes. This
polarized expression may promote the establishment of
connections with collagenous components of the perisi-
nusoidal space, an important step in the reconstruction of
the normal trabecular liver structure.

The upregulation of HNF-4 expression may play a
central role in the induction of hepatocytic differentiation
of the oval cells. HNF-4 is not present in oval cells, but it
clearly decorates the nuclei of small hepatocytes in both
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models, and a faint staining was sometimes observed in
the transitional cells in the low-dose model. In an earlier
work, we failed to detect HNF-4 mRNA in oval cells,
although other liver enriched transcriptional factors were
present.'> However, HNF-4 mRNA was upregulated in
foci of small basophilic hepatocytes, suggesting a critical
role for this transcription factor in the oval cell differen-
tiation.'? The lack of expression of a functional HNF-4
gene results in embryonic lethality in mice before devel-
opment of the liver as a result of defects in visceral
endoderm function.?> However, HNF-4 null mouse em-
bryos can be rescued until E12.0 by extraembryonic
endoderm complementation.?#35 Livers from these
endoderm-complimented embryos were morphologically
and histologically indistinguishable from wild-type em-
bryos. When the mRNA level of hepatocyte-specific genes
was compared between wild-type and HNF-4 null livers,
it was found that the expression of these genes were either
downregulated or undetectable in the genetically manip-
ulated mice. Similar results were found in adult hepato-
cytes that lack HNF-4.3¢ These data suggest that HNF-4
is not required during ontogenesis for the competency of
hepatic precursor cells or for their specification, but it
must be present during the final step of hepatocyte differ-
entiation to establish the hepatocytic gene expression pat-
tern. This observation is consistent with our current
results that indicate the critical role of HNF-4 in the
transition of oval cells into hepatocytes.

HNF-4 also is expressed in the intestinal glands,” and
intestinal metaplasia is another option for the oval cells.
One of the major differences between the intestinal glands
and hepatocytes is that the enterocytes reside on a lami-
nin-containing basement membrane. It is possible that
the upregulation of HNF-4 without the disintegration of
the basement membrane may be responsible for the “ab-
normal” differentiation of oval cells into intestinal epithe-
lium.

Connexins form special membrane structures, the gap
junctions (connexons), which play crucial role in the in-
tercellular communication. Connexin 32 is expressed on
hepatocytes, and connexin 43 is expressed on the biliary
epithelial cells in the normal rat liver.?* Zhang and Thor-
geirsson® reported that the mRNA for connexin 43 is
expressed in the oval cells and connexin 32 in the small
hepatocytes of the foci. Here we confirm this observation
at the protein level. The switch from connexin 43 to con-
nexin 32 can be observed in both the low-dose and high-
dose models of oval cell differentiation. Because connexin
32 and connexin 43 hemichannels do not form hetero-
topic patent channels,*! the described switch is required
for the newly formed hepatocytes to be integrated into the
preexisting liver plates and to communicate with the pre-
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existing hepatocytes. It also may be of importance that the
stellate cells also express connexin 43.42 The expression of
identical connexins on the oval cells and stellate cells may
be important in the establishment of the close communi-
cation between these two cell types. The loss of connexin
43 from the oval cells coincides with the disappearance of
stellate cells. It is well documented that the stellate cells
provide a battery of growth factors that support the pro-
liferation of oval cells.*> The inductive role of mesenchy-
mal cells during the specification of hepatic lineage also is
well known.# Stellate cells may provide support for the
growth of oval cells, as does the portal mesenchyme dur-
ing embryogenesis. This notion is supported by the sug-
gestion that the stellate cells may be derived from the
embryonic septum transversum. 4

We observed the development of biliary canaliculi
among the newly formed hepatocytes in both models by
infusing the biliary system with fluorescein isothiocya-
nate—labeled lectin via the common bile duct. The pen-
tagonal and hexagonal bile canalicular patterns in the foci
are similar to the arrangement present in the normal liver.
This structural similarity indicates the architectural re-
modeling in the foci toward the normal hepatic structure.
The CD26 epitope is present on the canalicular surface of
the normal hepatocytes.?> The similar CD26 staining pat-
tern on the newly formed small hepatocytes marks the
functional polarization of these cells.

The morphological and immunophenotypical charac-
teristics clearly show that oval cells differentiate into hepa-
tocytes at both low and high doses of AAF. Although both
the rate of differentiation and timing of the process differ
with AAF dose, the differentiation process at the cellular
level seems to be identical. Furthermore in both models,
the differentiating small hepatocytes can regenerate the
liver after two-thirds PH, because the old hepatocytes do
not show mitotic activity. At this point, we can only spec-
ulate about the cause of focus formation, when a high
dose of AAF was applied. A plausible explanation may be
that the high dose of AAF inhibits the low dose—type
differentiation of the oval cells, as suggested by Alison et
al.'’® However, the inhibitory effect of the high dose of
AAF primarily may affect the later stages of oval cell dif-
ferentiation into hepatocytes, and this in turn can atten-
uate the necessary remodeling needed to rebuild the liver
structure. It is possible that this or a similar scenario can
contribute to the focus formation seen after administra-
tion of the high dose of AAF. Whether this process in-
volves genetic or adaptive epigenetic mechanisms, or
both, is not clear. However, we have not observed liver
tumors in the rats subjected to the high AAF doses used
here, suggesting that if a mutation(s) is involved in the
process, it may not be carcinogenic. Nevertheless, the fo-
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cus formation pattern of oval cell differentiation after
high doses of AAF identifies, independent of the precise
mechanism(s), an efficient differentiation process that is
functional under adverse conditions. Therefore, further
characterization of the high-dose model may be very use-
ful to delineate the factors that can be used to enhance the
differentiation efficiency of the hepatic stem cells. This
issue may have important implications for the clinical
application of adult liver stem cells. Also, the fact that oval
cells can, under favorable conditions (e.g., in the low-dose
AAF model), rapidly differentiate in new hepatocytes that
effectively integrate into liver plates raises the intriguing
possibility that adult liver stem cells may contribute to
liver regeneration and repair more often than previously
anticipated. Finally, this study provides no evidence that
hematopoietic bone marrow stem cells are involved in the
generation of new hepatocytes through oval cells, which
seem to be totally derived from epithelial cells of the ca-
nals of Hering.
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Abstract The 2-acetaminofluorene/partial hepatectomy
(AAF/Phx) model is widely used to induce oval/progenitor
cell proliferation in the rat liver. We have used this model
to study the impact of a primary hepatocyte mitogen, tri-
iodothyronine (T3) on the liver regenerating by the
recruitment of oval/progenitor cells. Administration of T3
transiently accelerates the proliferation of the oval cells,
which is followed by rapid differentiation into small hepa-
tocytes. The oval cell origin of the small hepatocytes has
been proven by tracing retrovirally transduced and BrdU
marked oval cells. The differentiating oval cells become
positive for hepatocyte nuclear factor-4 and start to express
hepatocyte specific connexin 32, ol integrin, Prox1, cyto-
chrom P450s, and form CD 26 positive bile canaliculi. At
the same time oval cell specific OV-6 and alpha-fetoprotein
expression is lost. The upregulation of hepatocyte specific
mRNAs: albumin, tyrosine aminotransferase and trypto-
phan 2,3-dioxygenase detected by real-time PCR also
proves hepatocytic maturation. The hepatocytic conversion
of oval cells occurs on the seventh day after the Phx in this
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model while the first small hepatocytes appear 5 days later
without T3 treatment. The administration of the primary
hepatocyte mitogen T3 accelerates the differentiation of
hepatic progenitor cells into hepatocytes in vivo, and that
may have therapeutic potential.

Keywords Oval cell - Maturation - Regeneration -
Retroviral transduction - Primary mitogen

Abbreviations
AAF  2-Acetaminofluorene
BrdU Bromodeoxyuridine

HNF-4 Hepatocyte nuclear factor 4
Phx Partial hepatectomy
T3 Triiodothyronine

AFP Alpha-fetoprotein

TAT  Tyrosine aminotransferase
TO2 Tryptophan 2,3-dioxygenase
Cx Connexin

Introduction

The “oval cell” proliferation in the rat liver represents a stem
cell derived regenerative process (Alison 2003; Grisham and
Thorgeirsson 1997; Batusic et al. 2005). The stem cell com-
partment is activated when hepatocytes are compromised
(e.g., viral infection, chemical toxicity) and not able to
respond to proliferative stimuli needed for liver regenera-
tion. The oval cells constitute the transit amplifying or pro-
genitor cell compartment in the liver, and form a branching
ductular network which is the extension of the canals of
Hering (Paku et al. 2001). It has been reported that bone
marrow derived oval cells may contribute to the regenerative
process (Petersen etal. 1999) but this transdifferentiation
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process is very inefficient if it occurs at all (Wagers et al.
2002; Thorgeirsson and Grisham 2006). However, it is
generally agreed that the oval cells are able to differentiate
into cholangiocytes and hepatocytes replacing the lost liver
parenchyme (Alison 2003; Grisham and Thorgeirsson 1997;
Fausto 2004; Paku et al. 2004). The growth regulation of
these cells has been characterized. There are several growth
factor/receptor systems, which are active during this process
and are responsible for the expansion of the oval cell popu-
lation (Grisham and Thorgeirsson 1997; Fausto 2004). The
differentiation of the oval cells can be induced by different
compounds in vitro (Kaplanski et al. 2000; Kamiya et al.
2002; Heng et al. 2005), but there are hardly any data about
the in vivo modulation of the differentiation.

The primary hepatocyte mitogens are able to induce hepa-
tocyte proliferation even without preceding liver damage
(Columbano and Shinozuka 1996). Their biological effect has
been studied in several experimental models, but the influ-
ence of primary hepatocyte mitogens on oval cells has not
been investigated. One of the primary mitogens, triiodothyro-
nine (T3), has been reported (Malik et al. 2003) to enhance
the regenerative capacity of the liver following Phx. Another
one, WY 14,643 induced the differentiation of oval cells
(Kaplanski et al. 2000) in vitro. Here we investigated, if T3
can influence the stem cell driven liver regeneration. Oval/
progenitor cell proliferation was generated by the widely used
AAF/Phx model (Tetamatsu et al. 1984). We found that a sin-
gle dose of the primary hepatocyte mitogen T3 (Francavilla
et al. 1994) accelerated the proliferation and differentiation of
oval cells into hepatocytes. The hepatocytic differentiation of
the oval cells was confirmed by morphological, immuno-
phenotypical and mRNA expression characterization.

Materials and methods
Animal experiments

Male F-344 rats (160—180 g) were used for all experiments
and were kept under standard conditions. At least four ani-
mals were used for each experimental time points (unless
otherwise marked). The animal study protocols were con-
ducted according to National Institutes of Health guidelines
for animal care.

AAF/Phx experiment

2-Acetaminofluorene (AAF) (2 mg/ml suspended in 1%
dimethylcellulose) in a dose of 5 mg/kg was administered
to rats daily for four consecutive days by gavage. Tradi-
tional two-thirds partial hepatectomy (Phx) was performed
(Higgins and Anderson 1931) on the fifth day, which was
followed by four additional AAF treatments (Fig. 1a).
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Treatment by triiodothyronine

AAF/Phx experiment was performed as described above. T3
(400 pg/kg i.p.) was injected into the rats on the fifth day fol-
lowing the Phx (Fig. 1b).The rats were sacrificed 48 h after
the mitogen treatment. Tissue samples were taken for histo-
logy, blood was drawn from the right ventricle of the heart
for laboratory examinations. The control animals were
treated by the AAF/Phx protocol but at the time of the mito-
gen treatment were administered only by the solvent.

Additional control groups

Additional preliminary control experiments were per-
formed: AAF/sham operation + T3; Phx + T3; normal
rat + T3. Neither of these protocols resulted in oval cells,
therefore these data were not shown.

For pulse, labeling 100 mg/kg BrdU (Paku et al. 2001)
was given to the rats at 18, 24, 48 and 96 h after the mito-
gen treatment and they were sacrificed 1 h later.

For pulse chase experiment 200 mg/kg BrdU was
injected into the rats 2 h before the T3 treatment. The pulse
animals were sacrificed 1 h later (without mitogen treat-
ment). The chase animals were sacrificed 48 h after the
mitogen treatment.

Apoptotic cell death has been scored histologically
based on the detection of condensed and fragmented nuclei
and cells (Wyllie et al. 1980).

Morphological analysis

Frozen sections (10-20 um) were fixed in methanol
(4% paraformaldehyde for beta galactosidase) and were
incubated at room temperature (1 h) with a mixture of
different primary antibodies (Table 1) and with appropriate
secondary antibodies afterwards (Jackson Immunoresearch).

A Phx
11.

N days

coooeoeoeoe@®[l
B Phx T3

7.

O O T S U U0 O O days
i e coveoe [ E N
&) Oval cell

El Small hepatocyte

Fig. 1 Schematic representation of the experimental protocols. The first
hepatocytes appeared on the eleventh day in the control group (a),
whereas they showed up on the seventh day in the T3 treated animals (b)
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Table 1 Pn.m ary antl.bodles . Antibody Species Manufacturer Catalog Dilution

used for the immunohistochemi-

. number

cal studies
Laminin Rabbit polyclonal Dako 70097 1:200
HNF-4 Goat polyclonal Santa Cruz Biotechnology SC-6556 1:100
BrdU Mouse monoclonal Becton-Dickinson 347580 1:100
Connexin 32 Goat polyclonal Santa Cruz Biotechnology SC-7258 1:100
CD 26 Mouse monoclonal Serotec MCA924 1:20
OV-6 Mouse monoclonal R&D Systems MAB 2020 1:100
Cytochrome P450 Rabbit polyclonal MBL BV-3084-3 1:100
AFP Mouse monoclonal Nordic Immunological ShARa/AFP 1:50

Laboratories
ol integrin Mouse monoclonal Serotec MCA 1791 1:100
Thyroid hormone Mouse monoclonal Affinity Bioreagents MAI1-216 1:10
receptor beta-1
E. coli beta Goat polyclonal Serotec 4600-1409 1:1000
galactosidase

Prox 1 Rabbit polyclonal Reliatech 102-PA30 1:20
Dlk-1 Goat polyclonal R&D AF1144 1:100

All samples were analyzed by confocal laser scanning
microscopy using Bio-Rad MRC-1024 system (Bio-
Rad, Richmond CA). For the BrdU staining the sections
were pretreated with HCI as described before (Paku et al.
2004).

Determination of labeling index of oval cells and small
hepatocytes

Labeling indexes were determined by using 3—4 animals at
each time point. About 500-1,000 nuclei were counted per
animal.

Oval cells

Oval cells basement membrane was highlighted by incubating
frozen sections with anti-laminin primary antibody followed
by biotinylated secondary antibody and TRITC conjugated
streptavidin (red fluorescence). The same sections were
treated with 2 N HCI, followed by BrdU staining (green
fluorescence) (Paku et al. 2001). Nuclei were stained by
DAPI. Areas around portal tracts were randomly selected
using a 100x objective. The number of labeled and the
total number nuclei surrounded by continuous basement
membrane were determined.

Small hepatocytes

Small hepatocytes frozen sections were stained by HNF-4
antibody (green fluorescence) followed by HCI treatment
and BrdU staining (red fluorescence). Nuclei of small hepa-
tocytes were identified according to their size and density
(small hepatocytes have a considerable smaller nucleus

than the old hepatocytes and are arranged frequently as
small groups with high density). BrdU labeled and total
number of HNF-4 positive nuclei of small hepatocytes was
determined.

Real-time PCR

Frozen sections (10 pm) were fixed in acetone, dried at
room temperature and stained with RNase-free hematoxy-
lin. Laser microdissection of tissue sections was performed
by using PALM MicroBeam system. About 500-1,000
cells were collected in lysis buffer and total RNA was iso-
lated by RNeasy Mini Kit (Qiagen, Hilden, Germany).
MMLYV Reverse Transcriptase (Invitrogen, Carlsbad, CA)
was used for cDNA synthesis as recommended by the sup-
plier. PCR was performed by ABI Prism 7000 Sequence
Detection System Applied Biosystems, Foster City, CA),
using ABI TagMan assays for albumin (Assay ID:
Rn00592480_m1), AFP (Assay ID: Rn0056061_m1), tryp-
tophan 2,3-dioxygenase (Assay ID: Rn00574499_ml),
tyrosine aminotransferase (Assay ID: Rn00562011_ml),
according to the manufacturer’s instructions. Beta-actin
was used as endogenous control. Relative gene expressions
were calculated by the 2[-Delta Delta C(T)] method (Livak
and Schmittgen 2001).

Retroviral transduction

We used the amphotropic retroviral vector (kindly provided
by Nicholas Ferry, France) containing the E. coli f-galacto-
sidase gene coupled to the nuclear localization signal
from a SV 40 large T antigen, produced by the TEL-
CeB6 producing cell line (Avril et al. 2004). To increase
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the concentration of retroviral particles the supernatant was
centrifuged at 20,000g for 4 h, as described by Yang et al.
(2002). Retroviral titer was determined by infecting NIH
3T3 cells in 24-well dishes with 500 pl of serial dilutions of
the retrovirus containing supernatant. The cells were
stained 48 h later with X-gal and the titer was defined. After
concentration, the titer routinely reached 5 x 10° per milli-
liter. The viruses were injected into the liver of the AAF/
Phx treated animals 2 days after the Phx through the com-
mon bile duct. The first sets of rats were sacrificed 3 days
later without T3 treatment (pulse). The second sets of rats
were injected by T3 on the fifth day following the Phx and
sacrificed 2 days later (chase).

Results

T3 enhances the oval cell proliferation and accelerates
liver regeneration

A single dose of the thyroid hormone was given on the fifth
day after the partial hepatectomy for the rats treated accord-
ing to the AAF/Phx experimental protocol. Following the
treatment the relative liver weight (liver/body weight) of
the T3 treated rats increased in 48 h compared to the con-
trol (solvent treated) rats (Table 2).

The histological structure of the livers changed dramati-
cally in the T3 treated animals. The majority of the oval
cells disappeared. Small, sometimes trabecularly arranged
polygonal cells emerged in the periportal zone. They had
round nuclei and looked like small hepatocytes (Fig. 2a, b).

The rate of DNA synthesis was measured by BrdU pulse
labeling (Table 3.). Practically there was no labeling in the
hepatocytes in any of the studied timepoints. BrdU incorpo-
ration was significantly higher in the oval cells of the rats at
18 h after administration of T3 compared to the solvent
treated rats. The BrdU was also taken-up late by the newly
formed polygonal cells, although the labeling index was
lower than in the oval cells of the control rat livers. Later at
96 h, the proliferation rate of the remaining oval cells
returned to the control level. The oval cells carry the thy-
roid hormone receptor that is they may be influenced by
this hormone (Fig. 2c¢).

Table 2 Effect of T3 treatment on liver weight and functional activity
of the liver

Relative Serum billirubin Plasma

liver weight concentration prothrombin

(%) (pumol/l) level (%)
Control 2£0.25 17.6 £ 16.9 21.3 £18.5
T3 2.6 £041% 54 +4.9% 49.2 £ 25.5%
* P <0.05
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The T3 treatment induced hepatocyte hyperplasia is fol-
lowed by a wave of apoptosis (Francavilla et al. 1994) in
the normal liver. Practically no such apoptosis response
was observed in the AAF/Phx treated animals after the
mitogenic treatment (2.25 £ 1.26 apoptosis per 5,000 cells
vs. 19.66 &£ 3.21 apoptosis per 5,000 cells in the controls,
normal untreated rats 4 days after T3 administration,
P <0.01).

The small polygonal cells derive from the oval cells

Although the dynamics of histomorphological changes
indicated the oval cell origin of the newly formed small
polygonal cells, this relationship was verified by two inde-
pendent pulse chase experiments.

1. BrdU was given to the rats 2 h before the T3 treatment.
The first set of animals was killed 1h later that is
before the T3 administration. BrdU was incorporated,
in addition to the non-parenchymal cells, into the
nuclei of the oval cells, no staining was present in the
“old” hepatocytes (Fig. 2d). The oval cells could be
identified by laminin staining, the basement membrane
surrounded tubular arrangement (Paku et al. 2004) is
highly characteristic for these cells in the AAF/Phx
model. DIk-1, another oval cell marker (Jensen et al.
2004; Tanimizu et al. 2004) also decorates a subset of
oval cells, a portion of the BrdU positive cells are also
DIk-1 positive (Fig. 2e). The second set of rats was
sacrificed at 48 h following the T3 treatment. BrdU
decorated the nuclei of the small, hepatocyte like cells
which were also positive for HNF-4 and CYP 450. The
BrdU staining was present in small dots indicating the
dilution of the pyrimidine analogue since the adminis-
tration (Fig. 2f, g). The “old” hepatocytes remained
negative at the 48 h time-point as well.

2. The proliferating OV-6 positive oval cells were also
exclusively marked in another experiment by beta-
galactosidase expressing retroviruses 2 days after the
Phx that is 3 days before the T3 administration
(Fig. 3a). When the labeled oval cells were traced
2 days after the T3 treatment, groups of the small
polygonal cells, expressing CYP 450 were found with
beta-galactosidase positive nuclei (Fig. 3b) without any
labeling in “old” hepatocytes.

The oval cells differentiate rapidly into small basophilic
hepatocytes following triiodothyronine treatment

We have performed several studies to demonstrate that the
oval cell derived small polygonal cells are functional hepa-
tocytes indeed. The upregulation of HNF-4 (Fig. 2f, 4a, b)
in the small cells already supports this notion (Hakoda et al.



1009

X3

OB F S
de J“ __' 29 i ol ‘,9"5?;3'
S E »vq&’_.?y ;}“fﬂﬁ

2

i S O
ST 3

Fig. 2 a, b AAF/Phx experiment, H&E staining, seventh day follow-
ing Phx. Control rat (a), T3 treated animal (b), T3 was given on the
fifth day after Phx. Note the appearance of small basophilic hepato-
cytes, oval cells can be hardly seen. ¢ The reaction with thyroid hor-
mone receptor antibody (green) resulted in nuclear staining in the
hepatocytes as well as in the laminin (blue) surrounded oval cells.
(AAF/Phx experiment, 5 days after Phx) d—g Pulse-chase experiment,
with BrdU of AAF/Phx treated rats. d Fifth day after Phx, 1 h after
BrdU administration (“before” T3 treatment). BrdU (red) is incorpo-
rated into the nuclei of laminin (blue) surrounded oval cells (arrows)
and scattered non parenchymal cells. Note the HNF-4 positive (green)

2003; Parviz et al. 2003). The disappearance of the oval cell
specific OV-6 (Dunsford and Sell 1989), AFP (Petropoulos
et al. 1985) and laminin reaction (Fig. 4c) indicates severe
phenotypic changes. CD 26 staining demonstrated the
formation of the bile canaliculi among the small polygonal
cells (Fig. 4d). At the same time immunohistochemistry
indicated the rapid gain of hepatocyte specific Cx32, al

nuclei of the hepatocytes do not contain BrdU. e The same animal as
on “D”. DIk-1 (red) stains a subpopulation of oval cells. Note the par-
tial costaining of BrdU (green) and DIk-1 (arrows). f Two days after
T3 treatment. Colocalization of small BrdU (red) dots and HNF-4
(green) in nuclei. Note that the HNF4 and BrdU positive nuclei of the
“new” hepatocytes (arrows) are smaller, than those of the “old” hepa-
tocytes (arrowheads). g The same liver as on “E”. Note the presence of
BrdU in CYP 450 expressing cells. Two days after T3 treatment a
group of small hepatocytes (arrows) shows weaker reaction intensity
for cytochrome P 450 (green) than the surrounding old hepatocytes.
Scale bar for a, b: 25 um; ¢, d, e, f, g: 50 um

integrin (Fig. 4e, f) and cytochrome P450 IIE1 expression
(Fig. 2g, 3b and 4a), all these antigens are completely
missing from the oval cells. A recently described marker of
hepatocytic differentiation, Prox1 (Dudas et al. 2006) was
also present in the differentiating oval cells and small hepa-
tocytes following the T3 treatment (Fig. 4b). Interestingly a
few OV —6+ cells was already Prox1+ but HNF4—. This is
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Table 3 Labeling index of oval cells and small hepatocytes following T3 treatment
18h 24h 48 h 96 h
Control Oval cells 17+1.7 189 +2.1 149+0.3 11.54+2.9
T3 Oval cells 30.2 £0.7* 17.6 £ 3.8 11.5 £+ 1.8%* 82+0.6
Small hepatocytes - - 87+£25 11.3+2.7

* P < (.05 between 18 h control and T3
#* P < (.05 between 18 and 48 h T3

Fig. 3 Pulse-chase experiment, with beta-galactosidase expressing
retroviruses of AAF/Phx treated rats. The virus was injected into the
liver 2 days after the Phx, 3 days later the rat was treated by T3 (pulse
animals were sacrificed “before” T3 treatment) and sacrificed after 2
more days (chase). a Inmunohistochemical detection of beta-galacto-
sidase (green) in a “pulse” animal. The viruses transduced OV-6 posi-
tive (red) oval cells (arrows) and a few non-parenchymal cells

in good agreement with Dudas et al’s original description,
this observation may indicate the heterogeneity of the
differentiation reaction or that Prox1 is an earlier marker of
the hepatocytic comittment of oval cells, than HNF4.

The changes of gene expression were studied by real-
time RT-PCR. Oval cells were microdissected from the
liver of T3 treated animals 48 h after the T3 treatment as
well as from control (solvent treated AAF/Phx) rats. Newly
formed small hepatocytes 48 h after the T3 treatment and
hepatocytes from normal, healthy untreated rats were also
dissected. The gene expression was compared in normal
hepatocytes and small polygonal cells appearing at 48 h
after the T3 treatment (Fig. 5). The expression of albumin,
TAT and TO2 was significantly upregulated in the newly
formed hepatocytes compared to the oval cells, while the
AFP expression sharply dropped. There were some changes
between the T3 treated and untreated oval cells but the
change were more dramatic in the small hepatocytes indi-
cating qualitative alterations.

The functional capacity of the newly formed hepatocytes
was revealed by blood chemistry tests. The decrease of the
serum bilirubin level and increase of prothrombin level
2 days after the T3 treatment indicated better liver functions
(Table 2).
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(arrowheads). b Immunohistochemical detection of beta-galactosidase
(green) in a “chase” animal. There is nuclear staining in groups of
small, CYP 450 (red) expressing hepatocytes indicating that they are
the progenies of the oval cells. Unlabeled small hepatocytes with less
intense CYP 450 staining are also present (arrowheads). Scale bar:
50 um

Discussion

T3 is a well known mitogen for hepatocytes. A single dose
of this hormone induces a massive hyperplastic reaction of
the hepatocytes and hepatomegaly in normal rat (Franca-
villa etal. 1994). T3 has been reported to enhance the
regenerative capacity of the liver following Phx (Malik
et al. 2003). Here we tested if T3 treatment can influence
oval cell dependent liver regeneration. A single dose of the
thyroid hormone was given on the fifth day after the partial
hepatectomy for the rats treated according to the AAF/
Phx experimental protocol. This treatment resulted in
augmented relative liver weight in 48 h. The enhanced
liver growth was most probably the consequence of the
accelerated oval cell proliferation and differentiation. The
differentiation process was verified by the establishment of
hepatocytic morphological, immunophenotypical markers
and transcription of hepatocyte specific genes (TAT, TO2,
CYP 450) in the progenies of the oval cells. The blood
chemistry data indicated improving liver function.
Although it must be mentioned, that the mitogen was
administered 24 h after the last AAF treatment and the
small hepatocytes showed up after subsequent 48 h. There-
fore, the decreasing mitoinhibitory effect of AAF on the
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Fig. 4 Immunohistochemical characterization of the differentiated
“small” hepatocytes 2 days after T3 treatment. a A small island
(arrows) of new hepatocytes is characterized by pale Cyp 450 (green) and
positive nuclear HNF4 (red) staining. b The nuclei in another group of
small hepatocytes (arrows) are also positive for HNF4 (red) and Prox-
1 (green), the double staining results in mostly yellow nuclei. Note the
lack of Prox-1 reaction in the OV6 (blue) positive oval cells (right low-
er corner). A few Prox1 and OV6 positive but HNF4 negative (arrow-
head) differentiating cells are also present near the focus as described
by Dudas et al. (2007). ¢ AFP (green) positive oval cell are present
within the ductules surrounded by laminin positive basement mem-
brane material (red). AFP positivity can not be observed over the
differentiating hepatocytes (arrows). Nuclei are stained by TOTO-3
(blue). d Star like CD26 positive structures (green, arrows) represent

“old” hepatocytes and the contribution of the mitogenic
response of these cells can not be excluded unanimously.
Lead nitrate was also able to accelerate the differentia-
tion of the oval cells (data not shown). WY 14,643 another
primary hepatocyte mitogen induced the differentiation of
oval cells (Kaplanski et al. 2000) in vitro. That is other pri-
mary hepatocyte mitogens might also be able to promote

the developing bile canalicules between the differentiating hepato-
cytes. All hepatocytes express HNF4 in their nuclei (red). e Connexin
32 (green) positive gap junctions are represented by small dot like sig-
nals between the young hepatocytes (arrows), which can be recognized
from their small nuclei (red, propidium iodide). No signal is present in
the left over laminin (blue) surrounded oval cell ductules. Hexagonally
arranged Cx 32 staining can be seen on the “old” hepatocytes. f a1 inte-
grin positivity (green) is present at the basal side of the small hepato-
cytes (right side of the picture). Note the ductular arrangement of the
nuclei of the small hepatocytes (arrows). Normal liver structure can be
observed on the left side of the picture. All hepatocytes express
HNF4 in their nuclei (red). Scale bar for a: 100 um; b, d, e, f: 50 pm;
c: 25 um

this form of liver regeneration. The molecular mechanism
of the rapid differentiation induced by the mitogens is not
known yet, but it appears to be coupled to cell proliferation.
The DNA replication increases transiently in the oval cells
after T3 treatment. It is well documented in the final phase
of liver ontogeny that the terminal differentiation is accom-
panied with the rapid growth of the liver (Duncan 2003).
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Fig. 5 Real-time RT-PCR analysis of gene expression in microdis-
sected cell populations. The gene expression of control oval cells
(AAF/Phx experiment seventh day after Phx), oval cells after T3 treat-
ment (AAF/Phx experiment, T3 was given on the fifth day after Phx,
the rats were sacrificed on the seventh day) and small hepatocytes
(AAF/Phx experiment, T3 was given on the fifth day after Phx, the rat
was sacrificed on the seventh day) were compared with the expression
level of hepatocytes from normal liver. The expression level of albu-
min, TAT and TO2 was compared to normal, untreated hepatocytes
(100%). Since AFP mRNA could not be detected in the normal hepa-
tocytes, the expression level of control oval cells was taken as 100%
with this probe

The so-called focus formation in several oval cell prolifera-
tion models is also an indication of the intense cell prolifer-
ation at the onset of differentiation (Paku et al. 2004; Sell
et al. 1987; Factor et al. 1994). Finally, HGF, a well-known
mitogen for the liver, has been also reported to accelerate
oval cell proliferation and to promote their differentiation
(Hasuike etal. 2005). The thyroid hormone has been
recently described to increase the NF-xB and STATS3
activity in the liver (Ferndndez et al. 2007). These tran-
scriptional factors play role in the growth regulation of
the oval cells (Sanchez et al. 2004), therefore, alterations of
these nuclear factors also might participate in the rapid
differentiation.

T3 was able to reduce the formation of hepatocellular
carcinomas in a rat chemical hepatocarcinogenesis model
(Ledda-Columbano et al. 1999, 2000). The exact mecha-
nism of this inhibition was not clear. Considering our
observation one can not exclude the possibility that the thy-
roid hormone induced the differentiation of the tumor pre-
cursor cells.

Gordon et al. (2000) described the existence of the small
hepatocyte-like progenitor cells (SHPC) in the liver as a
novel liver progenitor cell population. However, the two
pulse chase experiments in our case clearly excluded the
participation of this cell population in the presently studied
experiment. BrdU and the retroviruses marked the dividing
cell population in the pulse phase of the lineage tracing
experiments. This included, in addition to the oval cells,
endothelial and stellate/myofibroblast cells (but no hepato-
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cytes). Therefore, theoretically the mesenchymal origin of
the small hepatocytes can not be excluded, but this option is
highly unlikely. Our previous (Paku et al. 2001, 2004) and
recent tracing observations indicate the small hepatocytes
are most likely the progenies of the oval cells. The presence
of the thyroid hormone receptor in the oval cells supports,
that they can be influenced by this hormone.

The sequence of differentiation events following the T3
treatment, is almost identical with the steps we described
(Paku et al. 2004) during the spontaneous differentiation of
oval cells in the AAF/Phx experiment. However, the first
new hepatocytes appear 11-12 days following the Phx in
the traditional (noT3) experiment (Fig. 1a), they are already
present on the seventh day when T3 was administered to
the rats (Fig. 1b). That is, the thyroid hormone accelerated
the differentiation process. In our recent study, the
increased expression of several hepatocyte specific
enzymes (TAT, TO2, CYP450) indicates the real functional
differentiation of the hepatocytes. The biological signifi-
cance of the maturation process is confirmed by the blood
chemistry data. The decrease of the serum bilirubin level
and increase of prothrombin level 2 days after the T3 treat-
ment indicated better synthetic functions (Table 2). The
prolonged prothrombin time is an excellent marker of liver
failure and strong independent prognostic sign in patients
(Bosch et al. 2003). The serum bilirubin and prothrombin
time are two of the three laboratory parameters which are
used to calculate the widely accepted MELD score (Model
for End-stage Liver Disease), the best predictor of survival
among different populations of patients with advanced liver
disease (Kamath and Kim 2007). No changes were
observed in the serum level of the transaminases and albu-
min (data not shown); this can be explained by the lack of
hepatocyte injury and the long half-life of albumin
(~20 days).

The T3 induced liver hyperplasia in normal rat is fol-
lowed by a rapid wave of apoptosis. This compensatory
reaction has not occurred in our model, therefore this
accelerated regeneration process secures permanently liver
function.

Hepatic progenitor cells are commonly observed in a
wide variety of human liver diseases (Roskams et al. 2003,
2004). The efficiency of this alternative regenerative pro-
cess is unclear. There are reported cases in which these
endogenous progenitor cells are able to reconstitute the
liver tissue and function (Fujita etal. 2000). However,
ductularly arranged progenitor cells are frequently seen in
failed livers at autopsy and in livers removed at transplanta-
tion indicating that the stem cell compartment is activated
but has failed re-establish liver functions in these cases.
Therefore, improving the efficiency of the regenerative
response of liver progenitor cells might have a substantial
clinical impact.
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In conclusion, we observed accelerated differentiation of
liver progenitor cells in vivo after the administration of the
primary hepatocyte mitogen, T3. In addition to the morpho-
logical alterations, functional signs of maturation were also
demonstrated. The “drug” induced accelerated differentia-
tion of hepatic progenitor cells might serve as a possible
treatment modality for several liver diseases.
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Although cancer cells are not generally controlled by
normal regulatory mechanisms, tumor growth is
highly dependent on the supply of oxygen, nutrients,
and host-derived regulators. It is now established that
tumor vasculature is not necessarily derived from en-
dothelial cell sprouting; instead, cancer tissue can
acquire its vasculature by co-option of pre-existing
vessels, intussusceptive microvascular growth, post-
natal vasculogenesis, glomeruloid angiogenesis, or
vasculogenic mimicry. The best-known molecular
pathway driving tumor vascularization is the hypox-
ia-adaptation mechanism. However, a broad and di-
verse spectrum of genetic aberrations is associated
with the development of the “angiogenic phenotype.”
Based on this knowledge, novel forms of antivascular
modalities have been developed in the past decade.
When applying these targeted therapies, the stage
of tumor progression, the type of vascularization of
the given cancer tissue, and the molecular machin-
ery behind the vascularization process all need to
be considered. A further challenge is finding the
most appropriate combinations of antivascular
therapies and standard radio- and chemotherapies.
This review intends to integrate our recent knowl-
edge in this field into a rational strategy that could
be the basis for developing effective clinical modal-
ities using antivascular therapy for cancer. (4m J
Patbol 2007, 170:1-15; DOI: 10.2353/ajpath.2007.060302)

Until recently, vascularization of malignant tumors was
considered the exclusive result of directed capillary
ingrowth (endothelial sprouting). However, recent ad-
vances have been made in identifying the processes
involved in angiogenesis and vascular remodeling.
Consequently, the simplistic model of an invading cap-
illary sprout has been deemed insufficient to describe
the entire spectrum of morphogenic and molecular
events required to form a neovascular network. Before
discussing the different ways a tumor is vascularized,
we should emphasize that these mechanisms are not
mutually exclusive; in fact, in most cases they are
interlinked, participating concurrently in physiological
as well as in pathological angiogenesis. Although the
various types of cancer vascularization share some
molecular features and may be controlled in part by
similar sets of regulatory factors, a considerable vari-
ety of differences also exists. Although the molecular
regulation of endothelial sprouting has been exten-
sively studied and reviewed in the literature, the mor-
phogenic and molecular events associated with alter-
native cancer vascularization mechanisms are less
understood. Therefore, this review focuses on the
pathogenesis of the different forms of “nonsprouting
angiogenesis” and, more specifically, on the possibil-
ities and the potential use of novel antiangiogenic and
vascular targeting strategies against alternative tumor
vascularization mechanisms.

Supported by grants from the Ministry of Economy GVOP-KMA-0040-
2004 (J.Ti.) and KFIIF-00063/2005 (B.D.); Ministry of Health ETT-410/2006
(B.D.), ETT-383/2006 (S.P.); National Science TS49887, D048519,
F046501 (J.T6.); Ministry of Education NKFP1a-0024-05 (J.Ti.); and Na-
tional Institutes of Health/National Cancer Institute grants CA59702 and
CA80318 (M.J.C.H.).

The authors indicate no potential conflicts of interest.
Accepted for publication September 19, 2006.

Address reprint requests to Jézsef Timar, M.D., Ph.D., Department of
Tumor Progression, National Institute of Oncology, Rath Gy.7-9, Buda-
pest, H-1122 Hungary. E-mail: jtimar@oncol.hu.



2 Dome et al
AJP January 2007, Vol. 170, No. 1

Figure 1. Endothelial sprouting. Schematic representation of the EC sprout-
ing models suggested by Ausprunk and Folkman (Alt. 1') and by Paku and
Paweletz (Alt. 2). Red cells represent endothelial cells; brown cells are
pericytes. Yellow cells are mural cells of other origin (fibroblasts or bone
marrow-derived cells). See Vascularization Mechanisms in Cancer for details.

Vascularization Mechanisms in Cancer

Endothelial Sprouting

The best-known mechanism by which tumors promote
their own vascularization is inducing new capillary buds
from pre-existing host tissue capillaries. The first descrip-
tion of this process dates back to the 1970s, when Aus-
prunk and Folkman' suggested the following sequence
for tumor-induced capillary sprouting (Figure 1, Alt. 1). 1)
The basement membrane is locally degraded on the side
of the dilated peritumoral postcapillary venule situated
closest to the angiogenic stimulus, interendothelial con-
tacts are weakened, and endothelial cells (ECs) emigrate
into the connective tissue, toward the angiogenic stimuli.
2) There is formation of a solid cord by ECs succeeding
one another in a bipolar fashion. 3) Lumen formation
occurs by cell-body curving of a single EC or by partic-
ipation of more ECs in parallel with the synthesis of the
new basement membrane and the recruitment of peri-
cytes/mural cells. The main disadvantages of this model
are its inability to identify the nature and origin of the
stimulus necessary for lumen formation and the assump-
tion that dedifferentiation and redifferentiation take place
during the same process, manifest in the loss and regain-
ing of luminal-basal EC polarity. Furthermore, although it
has been well established that the stimulus necessary for
lumen formation comes from the developing basement

dc_301 11

membrane, according to this model, basement mem-
brane deposition occurs after lumen formation. In the
early 1990s, a different sprouting model was described®
(Figure 1, Alt. 2). This model suggests a three-stage
sequence to explain ultrastructural changes during tu-
mor-induced endothelial sprouting. 1) There is structural
alteration of the basement membrane characterized by
the loss of electron density (gel-sol transition) over the
entire circumference of the dilated “mother vessel” (al-
though basement membrane components such as lami-
nin and collagen IV can still be detected by immunohis-
tochemistry). Partial and regulated degradation of the
altered basement membrane occur only at places where
EC processes (connected by intercellular junctions) are
projecting into the connecting tissue. 2) Further migration
of ECs, which are arranged in parallel, maintaining their
basal-luminal polarity and forming a slit-like lumen, takes
place continuously with the lumen of the mother vessel
and sealed by intact interendothelial junctions. Basement
membrane of low electron density is deposited continu-
ously by the polarized ECs while only the very tip of the
growing capillary bud is free of basement membrane
material. 3) Proliferating pericytes of the mother vessel
migrate along the basement membrane of the capillary
bud, resulting in complete pericyte coverage of the new
vessel. In parallel, the appearance of electron-dense
basement membrane around the maturing capillary buds
(sol-gel transition) can be observed. According to the
above model, no stimulus is necessary for the induction
of lumen formation, because ECs do not lose their polarity
during the process.

The molecular background of capillary sprouting has
been extensively studied and reviewed in the literature.®
During the process, vessels initially dilate and become
leaky in response to vascular permeability factor/vascular
endothelial growth factor (VPF/VEGF).* This is mediated
by the up-regulation of nitric oxide, the development of
fenestrations and vesiculo-vacuolar organelles, and by
the redistribution of CD31/PECAM-1 and vascular endo-
thelial (VE)-cadherin. The so-called gel-sol transition of
the basement membrane, probably mediated by matrix
metalloproteases (MMPs), gelatinases, and the urokinase
plasminogen activator system, could be partly responsi-
ble for the initiation of EC proliferation and migration.
Ang-2 (Angiopoetin-2, a mediator of Tie-2 signaling) is
involved in the detachment of pericytes and loosening of
the matrix. A vast number of molecules stimulate endo-
thelial proliferation and migration, including transforming
growth factor (TGF)-B1, tumor necrosis factor (TNF)-q,
members of the chemokine system and the VEGF, fibro-
blast growth factor, and platelet-derived growth factor
(PDGF) families.® It could be argued that integrins repre-
sent the most important adhesion receptors in migrating
ECs.® A wide variety of integrins have been shown to be
expressed during sprouting, including a,B4, a,B+, azB,
asBy, a,Bs, and a,Bs. Perhaps the most important among
them is «,B5, which mediates the migration of ECs in the
fibrin-containing cancer stroma and maintains the sol
state of the basement membrane because of its ability to
bind to MMP-2. During maturation of nascent vessels,
PDGF-BB recruits pericytes and smooth muscle cells,
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whereas TGF-B1 and Ang-1/Tie-2 stabilize the interaction
between endothelial and mural cells.® All in all, sprouting
is controlled by a tightly regulated balance of proangio-
genic factors and inhibitors: an angiogenic cytokine pro-
motes EC proliferation, migration, or lumen formation,
whereas an inhibitor interferes with these steps and mod-
ulates the proliferation or migration activity of ECs. How-
ever, individual tumor types use various combinations of
proangiogenic and inhibitory cytokines.>

Vessel Co-Option

When tumors arise in or metastasize to a pre-existing,
usually well-vascularized, tissue, their growth not only
depends on expansion, like a balloon, more typical of
slow-growing benign tumors, but also on the invasion of
host tissue, allowing the cancer cells close contact with
the surface of blood vessels. Therefore, malignant cells
may initially associate with and grow preferentially along
pre-existing microvessels. Until recently, however, no
studies have focused on the role played by the host
vasculature in the process of tumor vascularization. Al-
though in 1987 Thompson® had already proposed that
tumors acquire their vasculature by incorporation of host
tissue capillaries, the first study suggesting the existence
of vessel co-option was not published until 1999 by Ho-
lash et al.” In their model, Holash and colleagues found
that co-option is limited to the initial phases of tumorigen-
esis.” However, additional morphological evidence in hu-
man malignancies suggests that co-option of pre-existing
blood vessels might persist during the entire period of
primary or metastatic tumor growth. In cutaneous mela-
noma, we found that during tumor growth, there are no
signs of directed vessel ingrowth; instead, these tumors
appear to grow by co-opting the massive vascular plexus
present in the peritumoral connective tissue.® In non-
small cell lung cancer, a putatively nonangiogenic growth
pattern was observed.® In this “alveolar type” of growth,
cancer cells filled the alveoli, entrapping but not destroy-
ing the co-opted alveolar capillaries. In liver metastases
of human colorectal carcinomas, different growth pat-
terns (replacement, pushing, and desmoplastic) were
observed, depending on the degree of differentiation. In
replacement growth type, the architecture of the liver was
preserved, and the ECs of sinusoids showed low mitotic
activity. However, pushing and desmoplastic tumor types
destroyed the liver architecture.® According to our pre-
vious results in experimental hepatic metastases, during
growth of sinusoidal-type metastases, invading cancer
cells advance between the basement membrane and the
endothelial lining of the sinusoids and evoke proliferation
of ECs. This process resulted in the development of large
tortuous vessels without basement membrane inside the
tumor nodules. Conversely, sprouting-type angiogenesis
was observed in portal-type metastases. The replace-
ment growth pattern corresponded to sinusoidal-type
metastases of undifferentiated tumors, whereas desmo-
plastic tumors showed similarities to portal-type metasta-
ses.' In the pushing-type growth pattern, we recently
described a mechanism for the development of blood
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supply and supportive connective tissue'?® (Figure 2).
This process includes the proliferation of smooth muscle
actin-positive stellate, but not endothelial, cells on the
surface of the tumor spheroid accompanied by capillar-
ization of the sinusoids in this region. Because of the
pressure of the tumor and the proliferating stellate cells,
the hepatocytes disappear from the closest vicinity of the
tumor, leading to the fusion of the sinusoids and the
appearance of vascular lakes at the surface of the tumor.
Together with the collagen-producing cells, these vascu-
lar lakes are incorporated into the tumor, resulting in the
development of vessel-containing connective tissue col-
umns that traverse the tumor. These columns represent
the main structural and functional unit, providing blood
supply for the inner part of the growing metastasis. Thus,
the presence of the above mechanisms further supports
earlier observations that vascularization of metastases in
the liver is a heterogeneous process, depending on the
degree of tumor differentiation or localization of the me-
tastases within the liver.'®

Although sprouting capillaries are more vulnerable to
apoptosis than their quiescent counterparts,’ mainte-
nance of incorporated mature microvessels depends on
the survival of ECs as well. The continued survival of
co-opted ECs is intimately tied to their local microenvi-
ronment and, in particular, to the presence of pericytes,
survival-promoting cytokines, and extracellular matrix
proteins. Thus, the molecular repertoire that ECs may use
to survive during vessel co-option is diverse and may
vary for a given tumor type or host environment. The
major players that control this process are angiopoetins
and VEGF.” Based on the model of vessel co-option
described by Holash et al” and in other recent studies,'®
Ang-1 activates Tie-2 and induces subsequent signal
transduction pathways favoring EC survival, endothelial
quiescence, and tumor-vessel maintenance. Conversely,
Ang-2 is thought to act as a nonsignaling Tie-2 ligand that
binds to endothelial Tie-2 and thereby negatively inter-
feres with agonistic Ang-1/Tie-2 signals. In co-opted
blood vessels, the up-regulation of Ang-2 disrupts the
interaction between Tie-2 and Ang-1, which in turn
causes the destabilization of capillary walls (ie, the de-
tachment of pericytes from the endothelial tube).'® Once
ECs are separated from pericytes, they become particu-
larly vulnerable. In the presence of VEGF, EC survival and
new vessel growth are promoted; however, the lack of
stimulatory factors results in the regression of destabi-
lized vessels."”

VEGF was first described as a survival factor for retinal
ECs and has now been shown to promote survival in
different EC models. This antiapoptotic and survival func-
tion of VEGF seems to depend on an interaction between
vascular endothelial growth factor receptor (VEGFR)-2,
B-catenin, and VE-cadherin.'® However, targeting of
VEGF has been shown to result in apoptosis only in newly
formed tumor vessels and in the developing vasculature
of the neonatal mouse but not that of adult mice or of
quiescent tumor vascular networks.'” In summary, al-
though cytokines responsible for EC survival could be the
key molecules, their precise role in initiation and mainte-
nance of vessel co-option still requires investigation.
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Figure 2. Examples for vessel co-option. A-D: Pushing-type angiogenesis in liver metastases of colorectal cancer. A: Cross-section of a compressed invagination.
SMA-expressing cells (blue fluorescence) facing the tumor tissue, hepatocytes are crowded in the middle of the invagination (pan-cytokeratin, green
fluorescence). Continuous CD31 staining (red fluorescence), representing fused sinusoids (arrows), is visible in contact with the SMA-positive cells. Note the
paucity of sinusoids between the hepatocytes. B: Laminin (blue fluorescence) co-localizes with a6 integrin within the columns. The column tightly packed with
SMA-positive cells (red fluorescence). C: a6 integrin (green fluorescence) is present at the periphery of the column and around the central vessel. D: Schematic
representation of the development of vasculature in pushing-type liver metastases. For better visibility of the vessels, hepatocytes are depicted only in the upper
part of the drawings. At the early stage of the tumor development, the tumor faces normal liver architecture. As the compression of the tumor grows, the
hepatocytes “step back,” and fusion of the sinusoids takes place. The fused vessel, together with the newly synthesized connective tissue, is incorporated into the
tumor. The pressure of the tumor results in the separation of the vessel from the liver parenchyma. The vessel in the direction of the axis of the column remains

connected to the sinusoidal system of the liver. Column formation is finished by the back-to-back fusion of the basement membranes of the tumor bulges. Green,
tumor; brown, hepatocytes; red, sinusoids and central vessel.

density of the tumor microvessel network already built by
sprouting, independent of EC proliferation. In addition,
IMG can provide more surface area for further sprouting.
Its molecular regulation, however, is poorly understood
since IMG was first described only a few years ago.
Nevertheless, the role of some players is gradually be-
coming clearer. We know that local stimuli, such as intra-
vascular shear stress, might induce a cascade of phys-

Intussusceptive Microvascular Growth (IMG)

IMG refers to vessel network formation by insertion of
connective tissue columns, called tissue pillars, into the
vessel lumen and to subsequent growth of these pillars,
resulting in partitioning of the vessel lumen (Figure 3).
This type of angiogenesis, which has been observed in a
wide variety of normal and malignant tissues, is faster
and more economical than sprouting, occurs within hours

or even minutes and does not primarily depend on EC
proliferation, basement membrane degradation, and in-
vasion of the connective tissue.'® However, in contrast to
sprouting, IMG can work only on existing vessel net-
works. The most important feature of IMG, therefore,
seems to be its ability to increase the complexity and

iological or pathological reactions in ECs, and new
capillary development by tissue pillar formation could be
one of them.2° Furthermore, intussusception is certainly
synchronized by several cytokines. Major candidates are
those capable of mediating information between ECs or
from ECs to mural cells, such as PDGF-BB, angiopoi-
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Figure 3. Intussusceptive microvascular growth. Schematic representation of
intussusceptive microvessel growth. The first step of the process is the
development of the transluminal endothelial bridge. This is followed by the
reorganization of the endothelial lining, a process that is largely unknown.
The division of the vessel is completed by the development of a connective
tissue pillar through the vessel lumen. Red cells are endothelial cells; brown
cells are pericytes. Gray, basement membrane.

etins, and their Tie receptors, TGF-B, monocyte chemo-
tactic protein-1, and ephrins and Eph-B receptors.™

After the initial stage of immature capillary network
formation by sprouting, additional vascular growth and
development of complex vascular beds, including their
continuous remodeling and adaptation, may occur by
intussusception in cancers. The absence of intense EC
proliferation in IMG implies that neovascularization by this
mechanism would be resistant to angiosuppressive treat-
ment in itself.

Glomeruloid Angiogenesis

Glomeruloid bodies (GBs) are best known in high-grade
glial malignancies, where they are one of the diagnostic
histopathological features of glioblastoma multiforme.
However, these complex vascular aggregates have also
been described in a wide variety of other malignancies.?’
They are composed of several closely associated mi-
crovessels surrounded by a variably thickened basement
membrane within which a limited number of pericytes are
embedded. In recent studies, the presence of GBs was
associated with markers of aggressive tumor behavior
and significantly reduced survival in cancer patients.?? In
the first animal model,®® GBs developed in mother ves-
sels from recruitment and proliferation of ECs and peri-
cytes (in the absence of tumor cells), and VEGF was
essential for their induction and maintenance. In contrast
to this model and based on our previous results in the first
experimental tumor model of glomeruloid angiogene-
sis,®* we believe that GB formation starts immediately
after tumor cell extravasation, much earlier than necrosis
appears within the metastases. We found that the prolif-
erating and migrating tumor cells are able to pull the
capillaries and the adjacent capillary branching points
into the tumor cell nests. This process leads to the ap-
pearance of simple coiled vascular structures that later
develop into GBs with multiple narrowed afferent and
efferent capillaries (Figure 4). Despite the absence of
sprouting angiogenesis, necrosis was scarce in these
lesions, suggesting that the blood supply from the pre-
existent vascular bed is sufficient to provide the tumor
cells with oxygen and nutrients. This type of GB formation
cannot be termed as true angiogenesis; it rather repre-
sents a remodeling of the existing vasculature of the host
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tissue. Whether GBs represent an accelerated form of
angiogenesis or a dysfunctional, possibly abortive, form
remains an open question. However, it cannot be ex-
cluded that “active” and “passive” types of glomeruloid
angiogenesis can operate concurrently in various cancer

types.

Postnatal VVasculogenesis: The Role of
Endothelial Progenitor Cells

Vasculogenesis (defined as the in situ differentiation of
vascular ECs from primitive precursor cells) has long
been thought to occur only in the early phases of vascular
development. Recent studies, however, have demon-
strated that circulating bone marrow-derived endothelial
progenitor cells (EPCs) home to sites of physiological
and pathological neovascularization and differentiate into
ECs (Figure 5). EPCs may be mobilized by tumor tissue-
derived cytokines from the bone marrow by a mechanism
recently described by Asahara et al.?®> Best character-
ized among these cytokines is VEGF. During tumor pro-
gression, the level of circulating VEGF has been shown to
rise, and this level was found to correlate with the number
of EPCs in the circulation. Furthermore, PDGF-CC pro-
moted vascularization in part by stimulating outgrowth of
EPCs. In contrast, Ang-1 was shown to reduce EPC mo-
bilization from bone marrow (reviewed in Ref. 26).

After homing, ie, after adhesion and insertion of EPCs
into the monolayer of surrounding mature vascular ECs,
additional local stimuli may promote the activation of local
endothelium to express adhesion molecules to recruit
EPCs. This process may be completed by mechanisms
not yet elucidated. In addition to the physical contribution
of EPCs to newly formed microvessels, the angiogenic
cytokine release of EPCs may be a supportive mecha-
nism to improve neovascularization as well.?” It is also
important to note that Lyden et al recently identified
VEGFR-1" hematopoietic progenitor cells that multiply
in the bone marrow, mobilize to the peripheral blood
along with VEGFR-2* EPCs, and incorporate into peri-
capillary connective tissue, thus stabilizing tumor vas-
culature.®® More interestingly, these cells seem to
home in before the tumor cells arrive, promoting met-
astatic growth by forming niches where cancer cells
can locate and proliferate.?®

Although EPCs obviously participate in the vascular-
ization process of malignant tumors, it is still unclear
whether they are essential for these processes or what
the relative contribution of EPCs is compared with that of
in situ proliferating ECs. Moreover, it has yet to be deter-
mined whether EPCs can be targeted to treat certain
types of malignancies, or alternatively—as they are en-
dowed with the capacity to home to the tumor vascula-
ture—can be used to deliver toxins or vascular-targeting
agents.

Vasculogenic Mimicry

“Vasculogenic mimicry” is defined by the unique ability of
aggressive melanoma cells to express an EC phenotype
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Figure 4. Glomeruloid angiogenesis. A: Experimental brain metastases stained for laminin (green fluorescence) and CD31 (blue fluorescence), 28 days following
intracarotid inoculation of the A2058 human melanoma cell line. Glomeruloid bodies are connected to each other by a capillary that is very small in diameter
(arrows). The outlines of the metastases are clearly visible because of the strong laminin positivity of the tumor cells (arrowheads). B: Schematic representation
of glomeruloid body formation. Following extravasation, the tumor cells (green) adhere firmly to the abluminal surface of the capillary basement membrane
(gray). In the first step, because of the contractile force of the tumor cell a loop develops on the capillary. Proliferating tumor cells pull the capillary inward,
resulting in the development of further loops and reduction of the diameter of the capillary segment lying outside the glomeruloid body. The last drawing shows
the cross-section of a fully developed glomeruloid body built by ECs (red), pericytes (brown), and tumor cells (green). Extreme large cytoplasmic projections of

the tumor cells adhere to different segments of the capillary.

and to form vessel-like networks in three-dimensional
culture, “mimicking” the pattern of embryonic vascular
networks and recapitulating the patterned networks seen
in patients’ aggressive tumors correlating with a poor
prognosis.®® Comparative global gene analyses of ag-
gressive and poorly aggressive human cutaneous and
uveal melanoma cell lines unexpectedly revealed the
ability of aggressive tumor cells to express genes (and
proteins) associated with multiple cellular phenotypes
and their respective precursor stem cells, including en-
dothelial, epithelial, pericyte, fibroblast, and several other

cell types.®'22 These new and intriguing findings sup-
port the premise that aggressive melanoma cells acquire
a multipotent, plastic phenotypea concept that chal-
lenges our current thinking on how to target tumor cells
that can possibly masquerade as other cell types, par-
ticularly with embryonic stem cell-like properties. The
etiology of the melanoma vasculogenic phenotype re-
mains unclear; however, it seems to involve dysregulation
of the lineage-specific phenotype and the concomitant
transdifferentiation of aggressive cancer cells into other
cell types—such as endothelial-like cells. Vasculogenic
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Figure 5. Endothelial progenitor cells. Schematic representation of postnatal
vasculogenesis. The term “EPC” encompasses a group of cells existing in a
variety of stages ranging from common hemangioblasts to fully differentiated
ECs. Although their putative precursors and the exact differentiation lineage
of EPCs remain to be determined, to date it is widely accepted that early EPCs
(localized in the bone marrow or immediately after migration into the
circulation) are AC133"/CD34"/VEGFR-2" cells, whereas circulating EPCs
are positive for CD34 and VEGFR-2, lose AC133, and begin to express cell
surface markers typical of mature ECs such as CD31, VE-cadherin, and von
Willebrand Factor (vWF).

mimicry has been confirmed in breast, prostate, ovarian,
chorio-, and lung carcinomas; synovial-, rhabdomyo-,
and Ewing sarcomas; and phaeochromocytoma.3* Ex-
pression profiling studies revealed that the most signifi-
cantly up-regulated genes by aggressive melanoma cells
include those that are involved in angiogenesis and vas-
culogenesis, such as the genes encoding VE-cadherin,
erythropoietin-producing hepatocellular carcinoma-A2
(EphA2), MMPs, and laminin 5y2 chain (LAMCZ2). These
molecules, with their binding partners, are a few of the
factors required for the formation and maintenance of
blood vessels and also for vasculogenic mimicry in mel-
anomas. Perhaps equally significant is the down-regula-
tion of the gene MART-7 (melanoma antigen recognized
by T cell 1, also called Melan-A), a classic marker for
melanocytes and melanoma, by aggressive melanoma
cells. The concept of vasculogenic mimicry was devel-
oped further to include the existence of a fluid-conduct-
ing, laminin-containing extracellular matrix meshwork,
providing a site for nutritional exchange for aggressive
tumors, and therefore possibly preventing necrosis (Fig-
ure 6).2*3° Functional studies revealed the close associ-
ation of tumor-cell-lined networks with angiogenic mouse
vessels at the human-mouse interface and the coopera-
tion between the two systems.®®3” The molecular dissec-
tion of the physiological mechanisms critical to the func-
tion of the fluid-conducting meshwork revealed the
biological relevance of the up-regulated expression of
tissue factor pathway-associated genes—essential for
the anticoagulation properties of the intratumoral, extra-
cellular matrix-rich extravascular fluid-conducting path-

TUMOUR GELL-LINED
FLUID CONDUCTING

ENDOTHELIAL-LINED

PAS/LAMININ
NETWORKS (GREY)

Figure 6. Vasculogenic mimicry. This diagram represents the current inter-
pretation of data generated from several studies involving the use of tracers
and perfusion analyses of mice containing aggressive melanoma cells
(green) during tumor development. The endothelial-lined vasculature is
closely apposed to the tumor cell-formed fluid conducting meshwork, and
hypothetically, it is presumed that as the tumor remodels, the vasculature
becomes leaky, resulting in the extravascular conduction of plasma. There is
also evidence of a physiological connection between the endothelial-lined
vasculature and the extravascular melanoma meshwork.

way. Gene profiling, protein detection, and immunohisto-
chemistry validation demonstrated up-regulation of tissue
factor (TF), TF pathway inhibitor 1 (TFPI-1), and TFPI-2—
critical genes that initiate and regulate the coagulation
pathways—in aggressive, as opposed to poorly aggres-
sive, melanoma. It was found that TFPI-2 contributes to
vasculogenic mimicry and endothelial transdifferentiation
by melanoma cells, whereas TFPI-1 has anticoagulant
functions for perfusion of fluid-conduction meshworks
formed by TF-expressing melanoma cells. Additional
studies have focused on the signal transduction path-
ways that regulate blood vessel formation and stabiliza-
tion during vasculogenesis and angiogenesis, address-
ing critical signaling events that regulate melanoma
vasculogenic mimicry and their endothelia-like pheno-
type.®® 49 It was demonstrated that VE-cadherin and
EphA2 were co-localized in cell-cell junctions and VE-
cadherin can regulate the expression of EphA2 at the cell
membrane by mediating its ability to become phosphor-
ylated through interactions with its membrane-bound li-
gand, ephrin-A1. These studies illuminate a novel signal-
ing pathway that could be potentially exploited for
therapeutic intervention. Additional investigation uncov-
ered the role of phosphoinositide 3-kinase (PI3K) as a
critical regulator of vasculogenic mimicry, specifically af-
fecting membrane type-1 MMP (MT1-MMP) and MMP-2
activity. Both MMPs are essential for the process of vas-
culogenic network formation by aggressive melanoma
tumor cells, and the downstream effect on the cleavage
of laminin 5y2 chain into the y2' and y2x promigratory
fragments.®®3° Furthermore, these results showed that
blocking PI3K resulted in abrogation of vasculogenic
mimicry. Most recent studies have identified focal adhe-
sion kinase (FAK)-mediated signal transduction path-
ways to promote not only the aggressive phenotype but
also vasculogenic mimicry of melanoma cells as well.*°
In addition, expression of a negative regulator of FAK
signaling, the FAK-related non-kinase in aggressive mel-
anoma cells, resulted in an inhibition of melanoma vas-
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culogenic mimicry concomitant with a decrease in mela-
noma cell invasion and migration. This biological effect
was mediated in part through an extracellular signal-
regulated kinase 1/2 signaling pathway that resulted in a
down-regulation of urokinase and MMP-2/MT1-MMP ac-
tivity.*° These results suggest that FAK may serve as a
new target for therapeutic intervention in treating aggres-
sive melanomas with capabilities for vasculogenic
mimicry.

Antivascular Therapy of Cancer

It has been over 30 years since Judah Folkman hypoth-
esized that tumor growth is angiogenesis dependent.*’
Subsequent research has led to the identification of
several regulators of angiogenesis, some of which rep-
resent therapeutic targets. However, although antivas-
cular agents are often highly active in preclinical stud-
ies, recent clinical trials including these agents have
been both encouraging and disappointing. Because of
the predominant role of capillary sprouting and its main
molecular mediator VEGF in tumor vascularization, in-
hibition of VEGF seems to be necessary but is probably
insufficient to halt tumor progression permanently in
many cancer types. Due to the existence of multiple
vascularization mechanisms and angiogenic signaling
pathways, inhibition of just a single pathway will pre-
sumably trigger alternative vascularization mecha-
nisms and additional growth factor pathways. Conse-
quently, application of antivascular therapy in cancer
patients requires the identification of the individual vas-
cularization profile and the molecular machinery be-
hind the vascularization process and, furthermore, the
individualization of antivascular therapy to realize any
potential benefits.**43 In the second part of this re-
view, we will briefly summarize the antivascular thera-
pies that are currently being tested in the clinic. Sub-
sequently, we will give an overview of how these
classes of agents can be incorporated in the current
multimodality of anticancer strategies. Finally, we will
discuss potential novel approaches that enforce tumor
regression by exploiting the emerging basic knowl-
edge of tumor vascularization.

Antivascular Strategies in Cancer Therapy:
Current Status of the Clinical Development

Any classification of antivascular strategies is difficult,
with overlap in several features. However, the main
categories of these approaches that have been devel-
oped are angiosuppressive (anti-angiogenic agents)
and vascular-targeting therapies (vascular-disrupting
agents).** Although metronomic chemotherapy (MCT)
uses conventional cytotoxic drugs, the main targets of
this strategy are the tumor ECs. This is the reason that
Browder et al*® coined the term “anti-angiogenic che-
motherapy” to describe this treatment and why MCT is
discussed here.
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It is beyond the scope of this review to discuss all
drugs that affect tumor capillaries. Therefore, we concen-
trate here on the agents that are at a more advanced
stage of clinical development.

Angiosuppressive Therapy (Antiangiogenic
Agents)

This approach is motivated by the fact that neoangiogen-
esis in cancer requires the induction of EC proliferation
by specific or nonspecific mitogens. These agents target
the production of endothelial mitogens, the mitogens
themselves, their endothelial receptors, the associated
signaling pathways, the endothelial integrins and the
MMPs“® (Table 1). Consequently, it is most probable that
angiosuppressive therapy can only be applied when can-
cer vascularization involves EC sprouting and/or postna-
tal vasculogenesis (Table 2).

Despite the promising preclinical results with these
agents, in the early clinical trials positive responses in
patients were rarely seen. The clinical breakthrough for
angiosuppressive therapy came from a phase Il trial
demonstrating a significantly prolonged survival when
bevacizumab, an anti-VEGF antibody, was used with
chemotherapy in metastatic colorectal cancer patients.*”
Based on these results, bevacizumab became the first
antiangiogenic agent to be approved by the United
States Food and Drug Administration (FDA) for cancer
treatment. In subsequent phase Il trials, bevacizumab in
combination with standard chemotherapy improved over-
all survival in lung cancer patients and progression-free
survival in breast cancer patients.*® In addition, it has
been reported to be active in patients with metastatic
renal-cell cancer as monotherapy (benefit in progression-
free survival but not in overall survival).*®

Further clinical success was obtained recently with
broad-spectrum multitargeted agents that target VEGF
receptors and other tyrosine kinases present in endothe-
lial and cancer cells (Table 1). Phase Il trials have dem-
onstrated the efficacy of SU11248/sunitinib [targeting
VEGFR-1, -2; platelet-derived growth factor receptor
(PDGFR), FLT3, and c-Kit] and BAY-43-9006/sorafenib
(targeting VEGFR-2, -3; PDGFR, RET, c-Kit, and Raf) in
the treatment of patients with renal cancer.*® Based on
these results, sunitinib and sorafenib are now approved
by the FDA as monotherapies for kidney cancer. Prom-
ising results have also been found with the combination
of ZD6474 [targeting VEGFR2, epidermal growth factor
receptor (EGFR), and RET] and chemotherapy in non-
small cell lung cancer patients. Interestingly, replacing
bevacizumab with similar tyrosine kinase (TK) inhibitors,
such as PTK787/zZK 222584/vatalanib (targeting
VEGFR-1, -2, -3; PDGFR-B, and c-Kit), in the combined
regimen did not result in similar efficacy in chemothera-
py-naive or previously treated colorectal cancer pa-
tients.*® However, the clinical success of bevacizumab,
sunitinib, and sorafenib as novel medicines for the treat-
ment of cancer patients has confirmed the relevance of
angiogenesis research and has stimulated the search for
novel and more effective antiangiogenic approaches. Ac-
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Examples of Antivascular Agents in Clinical Development

Agent

Target/mechanism of action Phase

Angiosuppressive and anti-HIF-1 agents
Anti-VEGF agents

Bevacizumab

VEGF-trap

VEGF-AS

VEGFR and other TK receptor targeting agents
IMC-1C11

ZD6474

PTK787/2K222584 (vatalanib)

BAY 43-9006 (sorafenib)

SU11248 (sunitinib)
AG-013736

Angiozyme

Integrin signaling

EMD 121974 (Cilengitide)

MEDI-522 (Vitaxin)

Miscellaneous

Thalidomide

AE-941
Marimastat
Bay-12-9566
AG3340
Endostatin
ABT-627

Nonselective inhibitors of HIF-1

Topotecan and other camptothecin analogues,
DX-2-1, GL331

2-Methoxyestradiol

YC-1

PX-478

17-AAG, geldanamycin, radicicol, KF58333

VDAs

Ligand-directed VDAs

L19 single chain Fv

mAb against endoglin linked to ricin-A

Anti-VCAM-1 AB linked to coagulation inducing
protein TF

Anti-TES-23 linked to neocarzinostatin

Naked AB against phosphatidylserine

«, B35 targeting ligand delivering EC apoptosis
inducing ATP*-Raf

Small molecule VDAs

CA4-prodrug; AVEB062 and Oxi45083 (synthetic
analogues of combretastatin)

ZD6126

ABT-751

DMXAA (analogue of flavone acetic acid)

mAb against VEGF-A

VEGF-A, PIGF, VEGF-B binding
VEGF-A, VEGF-C, VEGF-D

mAb against VEGFR2

VEGFR-2, EGFR, RET

VEGFR-1, -2, -3; PDGFR-B, c-Kit
VEGFR-2, -3; PDGFR, RET, c-Kit, Raf

VEGFR-1, -2; PDGFR, FLT3, c-Kit

VEGFR-1, -2, -3; PDGFR-B, c-Kit
VEGFR-1 mRNA-destroying ribozyme

Mimicking the RGD ligand recognition peptidic
domain common to «, integrin ligands
mAb against a5

Multiple inhibitory effect on bFGF, VEGF, and
TNF-a-induced EC sprouting

Inhibitor of MMP-2, -9, -12, and VEGFR-2

MMP2/9

MMP2/9

MMP2/9

Integrin asfB4

Endothelin receptor

Topoisomerase /Il

Microtubules

Soluble guanyl cyclase
Translation/deubiquitination
HSP-90

ED-B domain of fibronectin
Endoglin
VCAM-1

CD44-related EC marker
Phosphatidylserine
Targeted ATP*-Raf gene

Actin polymerization, filament stabilization via
Rho signaling pathway

Inhibition of EC microtubule polymerization

B-Tubulin

TNF-a release, induction of nuclear factor-«f

III; FDA-approved in
colorectal cancer

|

|

|

I/

/11

IIl; FDA-approved in
renal cancer

IIl; FDA-approved in
renal cancer

I/

1711

I/
I/
I/

I/
I
1
I
1/
l/n

Preclinical; phase |
|
Preclinical

Preclinical
Preclinical

Preclinical
Preclinical
Preclinical
Preclinical
Preclinical
Preclinical
I/

|

|
I/

mAb, monoclonal antibody; PIGF, placenta growth factor; bFGF, basic fibroblast growth factor; 17-AAG, 17-N-allylamino-17-demethoxygeldan-

amycin; VCAM-1, vascular cell adhesion molecule-1; CA4, combrestatin-A4.

cordingly, various angiosuppressive strategies are being
actively investigated, most of which are registered with
the clinical trials database of the National Cancer Institute
(http://www.nci.nih.gov/clinicaltrials).

Vascular Targeting Therapy (Vascular Disrupting
Agents; VDAS)
Vascular targeting therapy (including anti-EC antibod-

ies and ligand based and small molecule VDAs; Table
1) recognizes the fact that clinical diagnosis of cancer

frequently occurs when the tumor tissue has already
established its vasculature.**“® This strategy relies on
ability of VDAs to distinguish the ECs of tumor capil-
laries from normal ones based on their different phe-
notype, increased proliferative potential and perme-
ability, and inherent dependence on the tubulin
cytoskeleton. VDAs cause selective and rapid shut-
down of the established tumor capillaries, resulting in
extensive cancer cell death in the central areas of
tumors, although they leave the perfusion in peripheral
tumor regions relatively intact.**%° It is evident from
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Table 2.
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Mechanisms of Vascularization
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Theoretical Strategy of Antivascular Therapy of Cancer According to the Stage of Tumor Progression and to the

Type of vascularization

Individual cancer cells
in host tissue

Microscopic tumor
pre-angiogenic phase

Microscopic tumor
angiogenic phase

Macroscopic tumor

Sprouting Antiangiogenic agents; Antiangiogenic agents;
metronomic metronomic
chemotherapy chemotherapy

Intussusceptive N.A. N.A.

microvascular growth

Vessel co-option N.A. N.A.

Glomeruloid angiogenesis N.A. N.A.

Vasculogenic mimicry N.A. N.A.

Postnatal vasculogenesis N.A. N.A.

(endothelial progenitors)

Antiangiogenic agents;

metronomic
chemotherapy

Vascular targeting
therapy; metronomic
chemotherapy

Vascular targeting
therapy

Vascular targeting
therapy

Vascular targeting
therapy; metronomic
chemotherapy

Antiangiogenic agents;
vascular targeting
therapy; metronomic
chemotherapy

Antiangiogenic agents;
“vascular targeting”
therapy; metronomic
chemotherapy

Vascular targeting
therapy; metronomic
chemotherapy

Vascular targeting
therapy

Vascular targeting
therapy

Vascular targeting
therapy; metronomic
chemotherapy

Antiangiogenic agents;
vascular targeting
therapy; metronomic
chemotherapy

N.A., not applicable.

the mechanism of VDAs that the effects of these drugs
do not depend on the type of vascularization occurring
in a given cancer. Based on promising preclinical de-
velopments, several VDAs have entered clinical
development.®’

MCT and Its Antivascular Effects

Among the different antivascular strategies, MCT merits
particular mention. MCT refers to the close, even daily,
administration of chemotherapeutic drugs in doses below
the maximum tolerated dose, over prolonged periods,
and with no extended drug-free breaks. Phase Il trials of
MCT, sometimes applied in combination with antiangio-
genic drugs, have yielded promising results in adult pa-
tients with advanced cancer.52°® Furthermore, pediatric
oncologists successfully use a metronomic-like modality
of chemotherapies called “maintenance chemotherapy”
to treat various pediatric malignancies such as acute
lymphoblastic leukemia, neuroblastoma, or Wilms’ tumor;
however, the anti-angiogenic background of mainte-
nance chemotherapy is poorly described.>*

Although cytotoxic effects of MCT in the tumor paren-
chyma could still contribute to the observed efficacy of
metronomic regimens, preclinical studies suggest that
the primary targets of MCT are the tumoral ECs. Low-
dose chemotherapy affects tumor capillaries directly
(growth arrest and apoptosis of activated ECs) but also
induces the production of an angiogenesis inhibitor
thrombospondin-1 and suppresses the mobilization of
EPCs.%2

As mentioned above, several phase | and Il studies
were performed involving low, continuous doses of cyto-
toxic drugs, with encouraging results.®® However, the
clinical benefits of MCT remain to be validated in ran-
domized prospective phase Il trials. There is also a need
for surrogate markers to help define the optimal dose of
this approach. Circulating ECs®® and EPCs®® have been

used successfully as markers in preclinical and early
clinical studies but have not yet been validated clinically.
Further challenges are the definition of valid clinical end-
points, the confirmation of long-term safety of MCT, and
the identification of suitable antiangiogenic agents and
VDAs to be combined with MCT. Finally, it will be impor-
tant to determine the types of vascularization that might
be the most responsive to this therapy. MCT is probably
more effective in EC sprouting, postnatal vasculogenesis,
IMG, and vasculogenic mimicry (Table 2). However, de-
tailed clinicopathologic analysis is needed to confirm this
hypothesis.

Considerations for Combination Treatment
Strategies

Because antivascular agents and traditional anticancer
strategies have distinctive target cells and mechanisms
of action, it should be possible to achieve an increase in
therapeutic efficacy with little or no increase in toxicity.
In fact, although some antivascular agents have dem-
onstrated activity as monotherapies, most human trials
to date indicate that they are most effective when
combined with conventional antitumor strategies, es-
pecially chemotherapy. 4243

Combination of Angiosuppressive and Chemo-
and/or Radiation Therapy

Angiosuppressive therapy reduces cancer growth by
suspending the blood supply, resulting in hypoxia. Be-
cause hypoxia itself is a major cause of ineffective
chemo-irradiation therapy,®” one would expect that a
further decrease in intratumoral oxygen levels would de-
teriorate the efficacy of a cytotoxic regime, but experi-
mental and clinical data do not support this scenario. In
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several preclinical models, a combination of cytotoxic
drugs (taxanes, cisplatin, or 5-fluorouracil) with angio-
genesis inhibitors (TNP470, endostatin, SU11248) pro-
duced at least additive but in certain cases synergistic
antitumoral effects.*® Thalidomide, a still ill-defined an-
giogenesis inhibitor, has also been shown successful
preclinically in combination with standard anticancer re-
gimes in solid tumors.®® In addition to experimental data,
there are now clinical examples of the improved efficacy
of chemotherapy in combination with an angiosuppres-
sive agent. As mentioned above, bevacizumab in com-
bination with chemotherapy improved overall survival in
colorectal and lung cancer patients and progression-free
survival in breast cancer patients (see review*?). In ad-
dition, the combination of bevacizumab and chemother-
apy was found to be active in pancreatic®® and ovarian®
cancer patients.

There are several explanations for the improved effi-
cacy. An obvious effect of angiogenesis inhibitors is the
decrease in interstitial pressure in cancer tissue improv-
ing the delivery of cytotoxic agents. Furthermore, a hy-
pothesis called “normalization of tumor vasculature” was
put forth by Jain and colleagues recently to explain the
clinical effects of antiangiogenic agents.*® According to
this theory, tumor vasculature is structurally insufficient to
provide maximal blood supply for cancer cells as a result
of capillary leakiness and tortuosity. Because the key
regulator cytokine family of tumoral vessels is the VEGF/
VEGFR system, targeting it could potentially help in the
“normalization” of tumor vasculature and in the improve-
ment of the delivery of chemotherapeutic agents.*? Ac-
cordingly, recent experimental data indicate that anti-
VEGF therapy induces rapid alterations in tumor
vasculature. Within a few hours, EC proliferation is halted,
luminal stability vanishes, and circulation ceases in tumor
capillaries. Some ECs undergo apoptosis and disappear.
Remaining capillaries lack endothelial fenestrations and
have reduced VEGFR-2 and VEGFR-3 expression.®’
Thus, inhibition of VEGF signaling devastates some tumor
capillaries and transforms others into a more normal
phenotype.*?

Further mechanisms for the additional benefits experi-
enced for combined chemo- and angiosuppressive ther-
apy might be the direct killing of proliferating ECs and/or
the inhibition of the mobilization/viability of EPCs by cy-
totoxic drugs. Results of preclinical studies support this
hypothesis. On the other hand, VEGF inhibition might
have direct cytotoxic effects on tumor cells that aber-
rantly express VEGF receptors and depend to some ex-
tent on VEGF for their survival. Finally, it has also been
suggested recently that antiangiogenic agents prevent
rapid cancer cell repopulation during the break periods
between courses of chemotherapy (see review*).

Experimental studies indicate that antiangiogenic ther-
apy in combination with irradiation is an encouraging
concept for the improvement of the radiation response of
tumors.®? In addition, recent discoveries show that the
EC layer of the tumor vessels is one key target of radio-
therapy.®® In fact, the antivascular effect of radiotherapy
predicts its anti-cancer effect.®* Thus far, although early
phase human trials have also yielded promising results,
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there are no large phase lll trials known in which such
combinations were successfully applied. Nevertheless,
the discovery of the “normalization window” of angiosup-
pressive agents when combined with radiotherapy in
preclinical models®® suggests that it would be as difficult
to design a successful combination strategy with radia-
tion as with chemotherapy.

In this normalization window (the time period during
which the vasculature normalizes and hypoxia de-
creases), the antiangiogenic drugs improve the efficacy
of chemoradiotherapy.® Although these studies were
performed in experimental tumor systems, one may ex-
pect a similar effect on the human tumor vasculature and
oxygenation. However, intratumoral hypoxia, responsible
for chemo- and radiotherapy resistance and triggering
molecular pathways that promote cancer progression, is
due not only to the inefficient blood supply by the abnor-
mal tumor vessels but to the systemic anemia of the host
as well.®¢ Unfortunately, although the oxygen tension of
experimental tumors tends to rise with increasing Hb
levels®” and treatment with recombinant human erythro-
poietin (rHuEpo) significantly reduces the risk for red
blood cell transfusions in cancer patients, correction of
anemia with rHuEpo does not necessarily improve sur-
vival of cancer patients.®® The issue of Epo/EpoR co-
expression in tumor cells and EpoR expression in ECs is
critical in this perspective. The expression of EpoR in
tumor cells has raised the possibility that exogenous
rHUEPO may directly influence cancer cell proliferation,
apoptosis, or sensitivity to chemoradiation therapy. In
addition, the EpoR expression in ECs has suggested
potential effects of Epo on the tumor capillaries, such as
the stimulation of angiogenesis.®® However, as it has
been suggested by experimental studies, the overall di-
rect effect of Epo-EpoR signaling on tumor progression and
therapy is not a straightforward one. For instance, rHUEpo
administration has recently been shown to be associated
with decreased intratumoral VEGF expression, remodeling
of tumor capillaries, and increased chemosensitivity to 5-flu-
orouracil treatment of human tumor xenografts.®® In a pre-
clinical myeloma model, rHuEpo induced tumor regression
and antitumor immune responses.”® In addition, human
kidney carcinoma and myelomonocytic leukemia cell lines
treated with rHUEpo exhibited an increase in apoptosis in
response to chemotherapy.”! Overall, these findings war-
rant additional experimental and clinical research of rHuEpo
to clarify further the risks of its use as well as optimize its
known or potential benefits.

Combination of VDAs and Chemo- and/or
Radiation Therapy

VDAs work best in the poorly perfused hypoxic central
tumor areas, leaving a viable rim of well-perfused cancer
tissue at the periphery, which rapidly regrows.®® Conse-
quently, responses of tumors to VDAs given as single
agents have been poor; however, combination therapy
with chemoradiotherapy, which targets cancer cells at
the tumor periphery, has produced promising responses
in preclinical models. Nevertheless, the timing and se-
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quencing of VDAs and chemo-irradiation therapies are
important in such treatments. By far the greatest en-
hancement was observed when the VDA was adminis-
tered within a few hours after chemo- and/or irradiation
therapy. Based on these experimental results, the
VDA compounds 5,6-dimethylxantlenone-4-acetic acid
(DMXAA) and combretastatin A4 phosphate (CA4P) are
being evaluated in human phase Il trials in combination
with conventional anticancer therapies.®’

Combination of Angiosuppressive and Vascular
Disrupting Agents

Because both angiogenesis and the integrity of the ex-
isting vasculature are critical to tumor progression and
survival, dual targeting of the tumor vasculature would
seem to have considerable promise. Preclinical results
demonstrated that this strategy could significantly enhance
therapeutic response beyond that achieved with either an-
tivascular agent alone.®' One example of this strategy is the
combination of the inhibitor of VEGFR2-associated TK
ZD6474 with the microtubulin-disrupting VDA ZD6126.72
Further combinations that are under preclinical testing in-
clude the combination of OXi-4503, CA4P, and DMXAA with
bevacizumab. Clinical testing of combined antivascular
therapy has started with the recent initiation of a phase |
human trial combining CA4P with bevacizumab.>"

Theoretical Considerations for Designing
Antivascular Therapy of Cancer

From the discussion above it is clear that the combination
of either angiosuppressive or the vascular disrupting
therapies with conventional chemoradiotherapy of can-
cer is highly problematic and must be carefully designed
in cases where the sequence of the multiple types of
agents might be critical. The molecular machinery behind
the vascularization process and type of tumor vascular-
ization are further issues that have to be taken into ac-
count. Thus, an efficient antivascular cancer therapy
could be designed based on the identification of the
molecular targets of the angiogenic geno-/phenotype
(molecular pathway-based approach) or on the vascular-
ization mechanism (vascular mechanism-based ap-
proach). However, it is most probable that the two ap-
proaches would have to be combined. We propose
below a rationale for the design of antivascular strategies
with the aim that such consideration may help to improve
the clinical efficacy of these novel therapies.

Molecular Pathway-Based Antivascular Therapy
of Cancer

Because of its pivotal role in neovascularization, the
VEGF/VEGFR axis has been a major target of basic and
clinical research. It is, therefore, not surprising that most
of the antivascular strategies currently in clinical devel-
opment focus on inhibition of VEGF signaling.*®"® How-
ever, the development of the angiogenic phenotype of
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cancer is characterized by several interconnected path-
ways. One of the major triggers of this phenotype is tissue
hypoxia, which is responsible for the activation of gene
expression of angiogenic cytokines through up-regula-
tion of the transcription factor hypoxia inducible factor-1a
(HIF1-a). Nevertheless, HIF-1 may already be active in
particular cancers due to hyperactive growth factor sig-
naling or genetic alteration of the HIF1a gene itself or its
regulators [ie, von Hippel-Lindau (VHL) and p53].”* Be-
cause HIF-1 plays such a central role in triggering nu-
merous pathways responsible for cancer progression,
disruption of the HIF-1-mediated pathways is expected to
cause cancer cell death due to a combination of meta-
bolic dysregulation and reduced microvessel growth.
The aim of anti-HIF-1 therapy (used as an antivascular
modality) therefore might be to cause the angiogenic
phenotype of cancer to revert to a less angiogenic one,
thereby preventing the production of the major angio-
genic cytokines.”® HIF1a can be inhibited by guanyl cy-
clase or HSP9O inhibitors and even by the targeting of
topoisomerase-1, and several of such agents are in clin-
ical trials (Table 1). However, none of the currently avail-
able inhibitors seems to disrupt the HIF-1 pathway as
their exclusive target.”® If the additional targets of non-
selective HIF-1 inhibitors are also involved in cancer pro-
gression, these agents could be therapeutically benefi-
cial, but inhibition of the pathways involved in normal
cellular homeostasis could result in an unacceptable tox-
icity profile. Therefore, the design of more specific HIF-1
targeting agents is the focus of current research efforts.
However, it is also important to note that HIF-1 targeting
alone may not be enough to halt angiogenesis and tumor
progression, as HIF-independent pathways may bypass
or overcome HIF inhibition. Consequently, a combination
of anti-HIF agents with conventional anticancer modali-
ties or other molecular-targeted drugs may be required.

VEGF expression is not only associated with hypoxia or
VHL mutations but also is influenced by a broad spec-
trum of onco- and tumor suppressor genes. A growing
body of evidence suggests that inactivation of tumor
suppressor genes such as p53 and PTEN and activation
of oncogenes such as Ras, c-Src, EGFR, human epider-
mal growth factor receptor 2 (HER-2), FBJ murine osteo-
sarcoma viral oncogene homolog (FOS), neurotrophic
receptor tyrosine kinase B (trkB), V-p3K, and Bcl-2 are
connected to the up-regulation of VEGF. Consequently,
molecular targeting of these regulators is also a potential
strategy for indirectly modulating the VEGF/VEGFR axis.”®
For example, based on the results of recent clinical trials,
cetuximab (a monoclonal antibody that binds to EGFR with
high specificity) induces a significant decrease in circulat-
ing VEGF levels in colon cancer patients,”® or likewise,
imatinib mesylate (a specific inhibitor of Ber/Abl protein TK
activity) reduces VEGF plasma concentration’” and bone
marrow microvessel densities”® in patients with chronic my-
eloid leukemia. However, preclinical and early phase clini-
cal data demonstrate that the addition of anti-VEGF therapy
to anti-EGFR therapies generates further beneficial effects
on angiogenesis inhibition and tumor reduction.*? This sug-
gests that inhibiting upstream signaling of VEGF does not
necessarily provide the same benefit as the direct targeting



dc_301 11

of it and, more importantly, that the dual targeting of cancer
and endothelial cells might become a successful practice in
clinical oncology.

Mechanism-Based Antivascular Therapy of
Cancer

A proposal for the application of antivascular therapies
according to the alternative vascularization mechanisms
in cancer is summarized in Table 2. Probably the most
important aspect of mechanism-based antivascular ther-
apy is its strict dependence on the stage of tumor pro-
gression. Interestingly, antivascular therapy may have an
effect at the very early stages of tumor growth. This idea
was put forward by Li et al,”® who analyzed the earliest
events that take place during the onset of tumor neovas-
cularization and found that individual tumor cells exhib-
ited a chemotaxis-like growth pattern toward the host
vasculature. When the tumor cell population reached
approximately 60 to 80 cells, clear evidence of perivas-
cular tumor cell migration (ie, vessel co-option), and host
vessel dilation was observed. Moreover, in a mouse
model of glomeruloid angiogenesis, our group found that
even single tumor cells can induce radical changes in the
host tissue vasculature®* (Figure 4). These observations
are important in two ways. First, they suggest that anti-
invasive agents (which are not yet available clinically)
may have a therapeutic effect on the interaction between
cancer and endothelial cells and, consequently, on the
processes of vessel co-option and glomeruloid angio-
genesis. Second, the finding that single tumor cells can
induce increased capillary permeability/tortuosity high-
lights the need for application of angiosuppressive/anti-
angiogenic therapy at the very early stages of cancer
progression. These considerations may be true for the
next step of tumorigenesis (pre-angiogenic phase) as
well.

After the onset of “angiogenic switch,” elevated serum
levels of angiogenic growth factors in cancer patients
may activate and mobilize EPCs to support local mi-
crovessel growth.2 If we accept this assumption, then, in
addition to angiogenesis inhibitors and metronomic che-
motherapy,®? ligand-based, EPC-specific VDAs may also
be useful in eliminating circulating EPCs throughout the
further stages of tumor progression (Table 2). Further-
more, because IMG can be effective only in tumor cap-
illary networks already built by other vascularization
mechanisms (mainly sprouting and vessel co-option),
steps should be taken to impede the additional increase
in the density of the tumor tissue capillary bed following
the angiogenic switch. This could be achieved by the use
of VDAs and/or “metronomic chemotherapy,” which both
target the cytoskeleton of ECs responsible for the remod-
eling of capillary walls.

Because ischemic milieu is what forces aggressive
tumor cells to express endothelial genes and form vas-
cular channels,®8° the initiation of this mechanism is
most likely simultaneous with the angiogenic switch.
Therefore, when vasculogenic mimicry plays a role in the
nutrient supply in cancer, besides the use of ligand-
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based VDAs against cancer cells with endothelial phe-
notype, targeting those pathways responsible for the de-
velopment of this mechanism such as Eph2A, PI3K, or
FAK seems to be an appropriate strategy. On the other
hand, metronomic scheduling of chemotherapy®? may
also effectively target cancer cells with vasculogenic
geno/phenotype when both physiological angiogenesis
inhibitors and angiosuppressive drugs are unable to
modify this vascularization mechanism.®°

The next stage of malignant progression is when
tumor tissue reaches macroscopic size detectable by
simple or sophisticated imaging techniques. As we
know, for cancer survival “the edge is the future and
the center is history,”®' because active tumor vascu-
larization processes, resulting in vascular networks
built by defective new capillaries, occur mainly, though
not exclusively, at the tumor periphery. Consequently,
at this stage the main target of antivascular therapies is
the invading front of the cancer tissue. However, since
in addition to causing chemo- and radiotherapy resis-
tance, reduction of vascularity in the center of tumors
can lead to the appearance of more aggressive/highly
metastatic hypoxia-resistant cancer cells and to the
induction of vasculogenic mimicry, when designing
antivascular strategies central tumor areas cannot be
neglected. We should emphasize, therefore, that in the
case of clinically detectable tumors the whole range of
antivascular weapons should be used theoretically.
Although antiangiogenic agents targeting proliferating
ECs could possibly be the key drugs at the tumor
boundary, established tumor vasculature might well be
attacked by VDAs and/or metronomic chemotherapy in
the central tumor areas. Altogether, it seems feasible
that antivascular therapy in tumors can only be suc-
cessful if the entire vascular network and all of the
possible vascularization mechanisms are targeted
and, furthermore, if the phenotypic analysis of tumor
capillaries/vascular channels is adequately performed.

Conclusion

Although tumors, as other tissues, require a vessel net-
work supplying them with blood, tumor vasculature is not
necessarily derived by EC proliferation and sprouting of
new capillaries. In addition to alternative vascularization
mechanisms, the novel antivascular strategies must be
harmonized with the stage of tumor progression and with
the molecular mechanism responsible for the angiogenic
phenotype. A further challenge is to combine antivascu-
lar strategies with the existing therapeutic regimes in at
least an additive manner. We have provided here pro-
posals for a rational application of antivascular agents
with the notion that these therapies have to be individually
tailored in a given cancer type. Better understanding of
the different vascularization mechanisms of the various
cancer types will certainly help to fine-tune these novel
anti-cancer strategies.
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Current Concepts of Tumor-Induced Angiogenesis
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Tumor induced angiogenesis is responsible for the
nutrition of the growing tumor and can also
increase the probability of hematogenous tumor
dissemination. Data obtained from morphological
analysis of tumor angiogenesis can contribute to
the development of new anti-angiogenic therapies.
Based on in vitro and in vivo observations several
models of angiogenesis were introduced, explain-
ing the mechanism of lumen formation and the
timing of basement membrane depositon. (1)
Lumen is formed either by cell body curving or by
fusion of intracellular vacuoles of nonpolarized
endothelial cells. New basement membrane is
deposited after lumen formation. (2) Slit-like
lumen is immediately formed by migrating polar-
ized endothelial cells. Basement membrane is con-
tinuously deposited during endothelial cell migra-
tion, only cellular processes of the endothelial cell
migrating on the tip of the growing capillary are
free of deposited basement membrane material. (3)
Development of transluminal bridges in larger ves-
sels — a process called intussusceptive growth —

Key words. tamor, metastasis, angiogenesis, morphology

leads to the division of the vessels. These models,
however, describe angiogenesis in tissues rich in
connective tissue. Different processes of angiogen-
esis take place in organs - such as liver, lungs,
adrenals, which are the most frequent sites of
metastasis — having high vessel density without
sufficient space for capillary sprouting. In the case
of liver metastases of Lewis lung carcinoma the
proliferation of endothelial cells was elicited only
by direct contact between tumor and endothelial
cells, leading to the development of large convolut-
ed vessels inside the metastases. These vessels
were continuous with the sinusoidal system, sug-
gesting that these metastases have dual blood sup-
ply. This observation, among others, is in contrast
to the generally accepted view that liver tumors
have arterial blood supply. The increasing number
of data demonstrating the dual or venous blood
supply of liver metastases should be taken into
consideration in the therapy of liver metastasis.
{Pathology Oncology Research Vol 4, No 1, 62-75,
1998)

Introduction

Two, morphologically different processes take part in
the development of new vessels. During angiogenesis new
vessels arise from preexisting ones, contrary to vasculoge-
nesis, which occurs at early embryonic development, when
vessels are organized from primordial endothelial cells.

Tumor induced angiogenesis has two effects on malig-
nancy. On the one hand the developing vasculature feeds

Received: Nov 20, 1997; accepted: Jan 5, 1998

Correspondence: Sindor PAKU, Ph.D., First Institute of Pathology
and Experimental Cancer Research, Semmelweis University of
Medicine, UN&i Gt 26, 1085 Budapest, Hungary. Tel (36)(1) 266-
1638; fax: (36)(1) 117-1074; e-mail paku@korb1.sote.hu

© 1998 W B. Saunders & Company Ltd on behalf of the Aranyi Lajos Foundation

the tumor, on the other hand it increases the probability of
tumor dissemination via the vascular system. Although
tumors generally lack lymphatic vessels and lymphangio-
genesis has not been observed during tumor progression,*
recent results have shown that VEGF-C transgenic mice
develop a hyperplastic lymphatic capillary system in the
skin, raising the possibility of lymphangiogenesis also in
the case of tumors.’

It is generally accepted that tumors cannot grow beyond
the size of 2 mm in diameter without eliciting angiogenic
response. In case of tumor cells lodged in distant organs,
the temporary lack of the angiogenesis inducing ability,
can lead to the development of dormant metastases.'”

There are ample data showing inverse correlation
between tumor vascularity and patient survival.® Opposite

1219-4956/98/010062+14 $ 12.00/0
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results suggest, however, that simple vessel counting
(determination of vessel number in places of highest ves-
sel density, so called hot spots) does not represent the
more complex relationship between tumor vascularity and
metastasis.” Instead, the detection of disseminated tumor
cells at the invasion front, or determination of blood or
lymph vessel invasion appear to be parameters that —
although more difficult to determine — are more closely
related to the metastatic process.*’

Tumor vasculature has two important further effects on
the therapy of tumors. It can itself be a target for therapy
(anti-angiogenic therapy), and it is responsible for deliver-
ing therapeutic agents to tumor cells.'™"' Morphological
analysis of in vivo angiogenesis as well as determination
of the spatial distribution of cell-cell, cell-matrix adhesion
molecules, extracellular matrix components, matrix
remodelling enzymes and angiogenesis factors during the
process can lead to development of new anti-angiogenic
strategies.

Tumor angiogenesis is initiated by disturbing the bal-
ance between angiogenesis activators and inhibitors,
already in the stage of dysplasia or in situ carcinoma
before the progression to invasive tumor stage.'” Positive
mediators of this process are the angiogenic factors pro-
duced directly by tumor cells, or by host cells recruited to
the peritumoral space. Numerous polypeptide and small
molecular weight angiogenic factors has been identified,
recently reviewed by Bouck et al.'' Similarly, extracellular
matrix molecules and their degradation products has been
shown to induce angiogenesis alone, or in combination
with the above factors. "

Angiogenesis in vitro

The effect of angiogenesis factors and extracellular
matrix components on endothelial cell behaviour has been
extensively studied using in vitro cultured endothelial cells
of different origin. Endothelial cells can undergo a process
called in vitro angiogenesis cultured on different matrices.
Tubular structures consisting of several endothelial cells
were found to develop on surfaces coated with gelatin or
fibronectin in overconfluent cultures.'*'® Similar struc-
tures were seen to arise rapidly, after seeding endothelial
cells on a gel consisting of basement membrane compo-
nents (Matrigel).'”'® Although the cords on the surface of
the extracellular matrix were formed by numerous elon-
gated endothelial cells, and in cross section the cells
enclosed a primitive lumen sealed by intercellular junc-
tions,"*'® the lumen often contained extracellular matrix
material or cellular debris and the basal-apical polarization
of the endothelial ceils was not demonstrated.''" Tube
formation proved not to be an exclusive characteristic of
endothelial cells, because many other cell types were able
to form cords and networks on basement membrane matrix

Vol 4, No 1, 1998

gel.” With decreasing melleability of the gel the cord for-
mation diminished, suggesting that cord fomation is more
dependent on the mechanical properties of the matrix than
on the cell type."” This manner of endothelial cell organi-
zation is more resemblant to the process of vasculogene-
sis, since angiogenesis is characterized by migration of
endothelial cells into the matrix (a process called sprout-
ing) from a polarized layer of endothelial cells. To exam-
ine angiogenesis in vitro, it is more relevant to study the
in vitro model systems using endothelial cells cultured to
confluency on the top of collagen I gel or human amniot-
ic membrane or aortic rings explanted into fibrin gel***
In the former case the treatment of such cultures with FGF
or PMA resulted in invasion of the gel, or the basement
membrane by the endothelial cells which process depend-
ed on the production of collagenase I'V and plasminogen
activator.””** Tube-like structures appeared in the collagen
matrix, which showed a lumen delineated by endothelial
cells, connected by intercellular junctions.”*' More
importantly, polarized deposition of the basement mem-
brane was observed in these structures.”® Similar polarized
deposition of fibronectin, laminin, and collagen IV was
observed around the developing capillaries in the case of
aortic rings explanted into fibrin gel.”

Angiogenesis in vivo
Angiogenesis in primary tumors

Fibrin and collagen T are the components of the provi-
sorial extracellular matrix during tumor development and
wound healing in vivo.” Fibrin gel was shown to induce
angiogenesis when implanted subcutaneously.’® The
development of the fibrin containing stroma in and around
the tumor is controversial. Numerous ultrastructural stud-
ies on the angiogenic vasculature of tumors and healing
wounds have suggested that leakiness of the vessels is
caused by open interendothelial junctions.”™ It is well
known that tumor vessels usually show abnormal struc-
ture, such as fragmented or ultrastructurally not detectable
basement membrane and the absence of pericytes.”* The
lumen of the tumor vessels is often covered by extremely
thin fragile endothelial cclls showing fenestrations, or
vascular spaces are present delineated by tumor cells. Tt is
not clear, however, whether these alterations are charac-
teristic to the angiogenic process or are caused by the
invasive activities of the tumor cells. The possibility that
tumor invasive activities play role in the enhanced leaki-
ness of tumor vessels is supported by the observation —
made on corrosion casting specimens of colon tumors —
that resin leakage was observed only in carcinomas and
not in adenomas.” Examination of the angiogenic vascu-
lature under normal condition demonstrated that angio-
genic vessels are not permeable for molecules larger than
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20 kD.* Other ultrastructural reports have also shown the
absence of open interendothelial junctions during tumor
angiogenesis, although tumor vasculature showed leaki-
ness for larger 70-150 kD molecules.” The leakiness of
tumor vessels, as suggested by Dvorak’s group, is mediat-
ed by vesiculo-vacuolar organelles (VVO) present in
endothelial ceils of the neovasculature induced by
VEGE?® However, recent results revealed that the
endothelial cells in the vasculature of VEGF transfected
tumor are fenestrated and contain open interendothelial
junctions.”’

The developing tumor matrix also contains other extra-
cellular matrix proteins, such as fibronectin, vitronectin
and thrombospondin. The former two proteins have a pos-
itive effect on tumor angiogenesis by inducing chemo-
taxis of endothelial cells. The role of thrombospondin is
more complicated, since its ability to induce angiogenesis
indirectly in vitro as well as elevated mRNA level and
deposition around breast carcinomas*'*? seems 1o contra-
dict its pronounced ability to inhibit angiogenesis in vitro
and in vivo."

The morphology of in vivo angiogenesis has been stud-
ied most frequently in subcutaneous tissue, rabbit cornea
and chick chorioallantoic membrane, in normal and patho-
logical conditions such as inflammation, wound healing
and tumor development,¥231434

The main pitfall in studying angiogenesis is the
misidentification of vesscl structures as tips or distal parts
of growing capillaries. To avoid this, serial scctioning
must be performed. The situation is less complicated in
case of avascular tissues where the growing new vessels
are not mingled with preexisting or older vessels, but ser-
ial sectioning cannot be avoided when examining, for
example, tumor angiogenesis in subcutaneous tissuc. As
shown in Figure 1A-F. sections of a small capillary loop
can easily be misidentified as a Lip. In contrast, a real tip
as shown on Figure 2A-F is only discernible in serial
sections.

According to ultrastructural studies, the most common-
ly used description of the angiogenic process (which is
considered to be valid also in case of tumor induced angio-
genesis) can be summarized as follows (Figure 14A,B): a.
dilatation of postcapillary venules situated around the
tumor; 5. local degradation of the basement membrane on
the side of the vessel located more closely to the angio-
genic stimulus; ¢. weakened intercellular contacts between

Figure 1. A-E. Serial sections of a short loop of a capillary
(arrowheads). This loop does not show an opened lumen and
returns to the original vessel. X 280.

Figure 2. A-F. Serial sections of a short newly formed capillary
(arrowheads). Arrows in Figure 2A and 2F points to regions,
which show that the capillary does not continue into the con-
nective tissue. X 280.
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Figure 3. Part of a dilated venule near the tumor. Beneath the
endothelial cell there is no basement membrane. X 9000.

endothelial cells and the start of emigration into the con-
nective tissue, toward the angiogenic stimulus; d. the for-
mation of a solid cord by endothelial cells following each
other arranged in bipolar fashion, with mitotic endothelial
cells observed in the middle of the sprout; e. formation of
the lumen, occuring either by fusion of intracellular vac-
uoles, or by cell body curving of a single endothelial cell,
/f. loop formation by fusion of different sprouts; g. appear-
ance of pericytes along the sprout and the synthesis of a
new basement membrane.

The main disadvantage of this model is its inability to
identify the nature and origin of the stimulus necessary for
lumen formation. It also assumes that dedifferentiation
and redifferentiation take place during the process, mani-
fest in the loss and regaining of luminal-basal polarity. A
large number of publications dealing with the effcct of
Matrigel on the behavior of endothelial cells suggest that
stimulus necessary for lumen formation derives [rom the
developing basement membrane.'™'® According to this
model the importance of the basement membrane in the

Figure 4. Similar vessels as shown on Figure 3. Basement
membrane material reacting positively for laminin can be
detected beneath the endothelial cell. X 9000

process of lumen formation is rather questionable, because
basement membrane deposition occurs after lumen forma-
tion, which presumes the existence of basal-luminal polar-
ity. If basement membrane synthesis occurs before lumen
formation it must proceed around the whole circumference
of a nonpolarized cell, excluding that lumen formation
occurs later by cell body curving. Lumen formation by
fusion of intracellular vacuoles allows basement mem-
brane deposition around the cell, but to increase lumen
size in such capillaries the cells must undergo transversal
division, implicating a change in cell polarity. Seamless
type endothelial cells have very rarely been found in vivo,
and it has been suggested thal they are present only where
growing capillaries meet preexisting vessels during loop
formation.*

A different model was suggested based on data
obtained [rom ultrastructural examination of angiogenesis,
using a rat nonmetastatic pancreatic adenocarcinoma cell
line growing subcutaneously (Figure 14C).*” The first step
in this type of angiogenesis was the alteration of the base-

Figure 5A. In the wall of the extended venule three endothelial cells (F1,E2,£3) are seen in different stages of emigration into the

connective tissue (arrowheads). X 1400.

Vol 4, No 1, 1998



dc_301 11

66 PAKU

ment membrane over the entire circumference of venules,
characterized by loss of electron density (Figure 3), but
basement membrane components (laminin, collagen [V)
could bhe detected by immunoclectronmicroscopy (Figure
4}. Interestingly, fibronectin was also detectable in these

basement membranes. This so called gel-sol transition of

the basement membrane, probably mediated by matrix
metalloproteinases or plasminogen activator, can be part-
ly responsible for the initiation of cell division and migra-
tion (Figure SAB).™ Conversely migrating endothclial
cells express elevated level of uPA.* It has been shown
that gelatinase A can be activated by membrane type met-
alloproteinase and also by uPA/plasmin,"™ and bFGF,
VEGEF and TNF can increase the expression of uPA and its
receptor.™ Partial and regulated protcolysis of the base-

Figure 5B. Detail of the region shown in Figure 5A at another
plane of sectioning. The emigrating endothelial cell (E1) is
dividing, the nucleus is reconstitued. The endothelial cell is in
connection with another endothelial cell (E) via interendothe-
lial junction (arrow). Around the leading process of the
endothielial cell and beneath the other endothelial cell (E) no
basement membrane can be observed. X 6900.

Figure 6. The process (arrow) of the endolhelial cell (E) pro-
jecting into the connective tissue is free of deposited basement
membrane material. Other parts of the subendothelium  stains
posttively for laminin. X 9000.

ment membrane can lead to exposition of  different
domains of laminin, for example SIKVAV. which has becn
shown to induce endothelial cell proliferation and angio-
genesis, and has also been able to enhance the production

Figure 7. Cross section of a newly formed capillary. The slit-
Iike Iumen (avrow heads) is sealed by intercellular juntions
{arrows). Basement membrane cannot be identified around the
endothelial cells. X 11000.
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Figure 8. Longitudinal sections of a long newly formed capillary. Dilated lunien and pericites cannot be observed. Basement mem-
prane material staining positively for laminin is deposited around the capillary. X 2400

of proteases.™ bFGF can also be deliberated from the
endothelial basement membrane during this process.” The
regulated manner of basement membrane degradation is
further supported by the observation that small vesscls
express high levels of TIMP-1 mRNA.* Loosening of
intercellular contacts was not observed, suggesting that
loss of contact inhibition is not responsible for initiation of
cell division and migration (Figure 5B). Immunoelectron-
microscopy showed complete degradation of bascment
membrane only at places where cellular processes were
projecting into the connective tissue (Figure 6). During
further migration, endothelial cells were arranged in par-
allel maintaining their polarity (basal-luminal), conse-
quently a slit-like lumen was immediately formed between
the endothelial cells (Figs. 7-9). This lumen was continu-
ous with the lumen of the original vessel and was sealed
by intact interendothelial junctions (Figure 7). This type
of premature capillaries reached several hundred microns

Figure 9. Detail of a capillary with slit-like lumen (arrow).
Amorphous laminin positive material can be observed around
the capillary. Note the laminin positive material in the endo-
plasmic reticulum cisternae of the endothelial cell (arrow
heads). X 11000,
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in length (Figure 8). Similar structures containing slit-like
lumen were observed by others suggesting that this type
of angiogenesis also occurs in normal and other patholog-
ical conditions.”** The development of a slit-like lumen
makes it easier to overcome the resistance of the connec-
tive tissue during tip advancing. Immunocytochemical
analysis of the distribution of PECAM-1 during angiogen-
esis showed that this cell adhesion molecule is evenly dis-
tributed along the basal and luminal surfaces of endothe-
lial cells in normal vessels, but is relocalized to intercel-
lular junctions and to the apposed surface of the endothe-
lial cells.™ These results are in accordance with the obser-
vation that intact intercellular junctions arc necessary for
polarized migration of endothelial cells, at the same time,
they also raise the possibility that during capillary growth
the slit-like lumen is at least partially sealed (PECAM-1
homotypic interaction), preventing the dilatation of the
lumen.

Bascment membrane was found deposited immediately
by the polarized endothelial cells and only cellular process-
es of cells migrating on the very tip of the growing capil-
lary were seen to be free of basement membrane material.
According to this model no stimulus is necessary for induc-
tion of lumen formation and the retained polarity of
endothelial cells allows the continuous deposition of the
basement membrane. Interstitial collagens were shown to
enhance proliferation of endothelial cclls, whereas other
results suggested an increased deposition of collagen I by
differentiating capillary tubes during in vitro angiogene-
sis.”’ In this model, endothelial cells are separated from
interstitial collagens by basement membrane during capil-
lary growth, which phenomenon questions the importance
of these molecules in the growth and differentiation of
endothelial cells. The role of gelatinases has been exten-
sively studied during angiogenesis, however, in the former
model its role was restricted to the initial degradation, con-
trary to this model where it can contribute to the main-
tainance of the sol state of the basement membrane. As it
has been shown, only processes of endothelial cells locat-
ed at the tip of growing capillary are in contact with inter-
stitial collagens. This phenomenon suggests an important
role for interstitial collagenases during tip advancing.
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Figure 10. Immunoclectronmicroscopy of a young capillary
composed of three endothelial cell. Amorphous fibronectin-pos-
itive material is deposited around the capillary. There is no
positive material in the endoplasmic reticulum cisternae of the
cells. Material staining positively for fibronectin can be
observed in the connective tissue {arrows). X 8100.

Supportive of this is the observation that VEGF can induce
interstitial collagenase expression in endothelial cells.™ As
mentioned above the extracellular matrix surrounding the
tumor frequently contains fibrin, fibronectin, vitronectin
and thrombospondin. The wide substrate specificity of the
plasminogen activalor/plasmin system implicates an
important role for these enzymes in angiogenesis. It has
also been shown that uPA can enhance cellular migration
independent of its proteolytic activity * and recently it has
been demonstrated that uPAR is a receptor for vitronectin,®
which is present in the peritumoral matrix and probable in
the immature basement membrane of the growing capillar-
ies. The importance of uPA in tumor angiogenesis has fur-
ther been supported by the observation that anti-uPA anti-
body was able to inhibit network development in vitro and
mote importantly, uPA antagonist or mutant uPA expres-
sion was able to inhibit tumor growth.®

Vast number of data suggest that integrins play a pivotal
role in cell migration, differentiation and apoptosis.®**
Recently it was demonstrated that specific integrins are

expressed in the newly developed growing capillaries. The
most important among them is the orvB3 integrin which, as
it was suggested, mediates the migration of endothelial
cells in the fibrin containing tumor matrix.** This sugges-
tion is in concert with the [irst model, but does not dis-
agree with the second model either, where it was shown
that the synthesized new basement membrane contains
fibronectin (Figure 10). Since fibronectin immunoreactiv-
ity could not be observed in the endoplasmic reticulum of
endothelial cells (Figure 10), in contrast to laminin and
collagen 1V (Figure 9), it is probable that this molecule is
not synthesized by endothelial cells, but rather incorporat-
ed into basement membrane from the tumor matrix
(Figure 10), providing a ligand for avB3 integrin. Beside
mediating migration of endothelial cells on the developing
basement membrane, ovB3 can also play a role in the
maintenance of the sol state of the bascment membrane as
a consequence of its ability to bind the matrix metallopro-
teinase MMP-2.° Interference with the ligand binding
activity of this integrin by antibodies or RGD peptides was
able to induce apoptosis of endothelial cells in growing
capillaries,” and inhibit wound healing and tumor
growth.® Some discrepancy exists, however, between the

Figure 11. Newly formed capillary still showing slit-like lumen
(arrow heads) but well defined basement membrane (arrows)
and pericyte (P) can be observed around the capillary. X 11000.
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second model and the proposed role of avB3 integrin,
since it was shown that Marrigel down regulates the
expression of this integrin.”” The selectivity of therapies
based on the exclusive expression of av(3 on newly grow-
ing capillaries is somewhat questioned by a recent obser-
vation detecting ovf33 integrin on parent vessels as well.™
Other integrins may also be a target for anti-angiogenic
therapies such as the laminin binding a6f4 integrin,
detected on the entire length of the capillary sprout, and
also in the parent vesscls.”' In contrast to these results
reduced staining for o6 integrin was observed in growing
capillaries in vivo, which is in agreement with the well
known notion that cell migration needs reduced adhesivi-
ty.” The positive effect of the reduction of adhesion on
angiogenesis is supported by the observation that anti-inte-
grin antibodics, enhanced, instead of reduction, the forma-
tion of tubules in vitre.” Interesting results pointed out the
important role of the tumor derived extracellular matrix in
angiogenesis. Tumor cells deficient in fibronectin receptor
or B1 integrin developed a defective vasculature, charac-
terized by small irregular leaky vessels, which phenome-

Vol 4, No 1, 1998

Figure 12A-E. Serial sections of a venule in the first steps of
dividing. Endothelial cell (arrow) is attached to an endothelial
cell on the other side of the venule. X 280.

non resulted in reduced tumor growth as well.”*™ One pos-
sible explanation for this could be, the defective anchorage
of the basement membrane deposited by the endothelial
cells to the surrounding extracellular matrix. This is fur-
ther supported by carlier observations that inhibition of
crosslinks between collagen molecules caused regression
of newly growing capillaries.”

Regular basement membrane and pericytes appeared at
later stage of capillary maturation (Figure /7). Increasing
deposition of collagen 1V, the sol-gel transition of the
basement membrane and the appearance of pericytes may
all contribute to the cessation of endothelial cell prolifera-
tion and migration. It has been shown that latent TGF-B is
activated by uPA in cocultures of endothelial cells and per-
icytes,” where the former down regulates the VEGF
receptor on endothelial cell.™

Numerous data suggest that the growth of capillary
sprouts is not oriented towards the tumor, instead the
process yields a high density anastomosing network of
capillaries at the tumor periphery, a process leading to the
observed phenomenon that vessel density is higher
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Figure 13. Numerous large caliber vessels (arrow heads) are
stained positively for laminin outside the capillary sprouting
area. T: Tumor. X 110,

around the tumor than inside of it. A possible explanation
is that the continuously growing tumor incorporates the
vessels at the tumor periphery, thereby thinning out the
network, whereas a new network develops at the advanc-
ing tumor border.”

A third type of angiogenesis involving larger vessels
has been described recently. This process is called intus-
susceptive growth of vessels, culminating in the division
of vessels (Figure 14D).*** The process is not complete-
ly known, but it starts with the projection of an endothelial
cell into the lumen of the vessel and the attachment to
endothelial cells on the other side (Figure 12A-E). Finally
transluminal connective bridges develop, dividing the ves-
sel into two or more parts. The process -which yields a
high number of large caliber vessels situated outside the
area of the active capillary growth (Figure 13) — probably
does not contribute to the nutrition of the tumor signifi-
cantly, but rather provides more sites for sprouting.

Angiogenesis in metastases

The above described models of angiogenesis are based
on observations made in tissues that contain high
amounts of connective tissue fibers, and can also be valid
in case of tumors such as melanomas, skin-, breast-,
colon cancer. The connective tissue has two important

roles in angiogenesis: it allows the build-up of a gradient
of the angiogenic factor and provides space for vessel
sprouting. The question arises, what kind of angiogenesis
takes place in highly vascularised organs such as liver,
lungs or adrenals, which in humans are the most frequent
sites of metastasis ?

(=@

Figure 14A-D. Schematic representation of the different mod-
els of angiogenesis.
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Figure 16. Cryosection of a liver melastasis stained for
laminin. The walls of the large convoluted vessels stain nega-
tively for laminin {arrow heads). X 75.

A process of angiogenesis, was described in case of
liver metastases of Lewis lung carcinoma, showing
remarkable differences to the models described above.™
Neither dilatation, or incrcase in the number of the vessels,
nor enhanced proliferation of endothelial cells could be
observed around the metastases, suggesting the absence of
sprouting activity in this region. This indicates that the
angiogenic stimulus could not reach the endothelial cells
around the tumor, which can be explained by the high vas-
cularity of the liver being responsible for diluting or flush-
ing out the factor. The sparse connective tissuc cannot pro-
vide sufficient space for diffusion of the angiogenic fac-
tor, and aiso impedes the migration of endothelial cells,
thereby the development of new capillaries. Initiation of
endothelial cell proliferation was caused by direct contact

Figure 15A-D. Serial sections of a liver melastasis of the 3LL-
HH tumor. Large convoluted (V) and smaller vessels (asterisks)
can be seen in the metastasis. Two sinusoids of the liver are con-
tinuous twith these vessels (arrows). X 90.
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between tumor cells and endothelial cells (Figure 18).
Invading tumor cells migrated along the basement mem-
brane of sinusoids and larger vessels, detaching the
endothelial cells from their own basement membrane
(Figures 18, 19). Interestingly the basement membrane
was not degraded and remained on the surface of hepato-
cytes, even when these cells became enclosed into the
tumor (Figure 20). The observation that proliferative
activity is restricted to endothelial cells situated inside the
metastases can be explained by results demonstrating that
mRNAs of VEGF receptors (KDR, flt-1) were more
strongly expressed in metastases of colorectal tumors than
in the surrounding liver tissue.”

The proliferating endothelial cells formed large convo-
luted vessels deeply penetrating into the metastases
(Figures 15B, 16). These vessels were even lacking an
immunohistochemically detectable basement membrane
(Figures 16, 17). This observation is rather unusual

P9
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Figure 17. Immunoelectronmicroscopy of a part of a convolut-
ed vessel inside a metastasis. Under the endothelial cells (E)
laminin positve material can be observed only in small spots
(arrow heads). Similar material is deposited in some areas by
the tumor cells (arrows). X 1.000.

Figure 18. 3LL-HH tumor cells (T) migrating between the .
endothelial cells (E) and hepatocytes (H) in a sinusoid at the
periphery of a metastasis. The endothelial cell (E1) in the vicin-
ity of the tumar cells shows chromatin condensation. X 3.000.

although luck of electron density is commonly observed
in case of liver sinusoids, lymphatic capillaries or tumor
vessels. Complete loss of basement membrane (loss of
anchorage) — as was mentioned earlier — leads to apoptosis
and vessel regression. It must be noted, however, that in
3LL tumors — although having a very poorly developed
stroma — the tumor cells deposited some laminin contain-
ing material, which could serve as substrate for attachment
of endothelial cells in these new vessels. This attachment
took place only at some spots on the surface of tumor cells,
resulting weak anchorage which can be responsible for the
high fragility of these vessels (Figure 17). In serial sec-
tions thesc vessels were continuous with the sinusoidal
system of the liver consequently supplied mainly by the
portal vein (Figure 15A-D).

Another less frequently observed type of 3LL-HH liver
metastases showed a different pattern of vasculature.
These metastases contained small vessels with detectable
basement membranes, and were located in the viccinity of
portal tracts. Their vasculature probably raised by sprout-
ing from the peribiliary plexus, in the periportal connec-
tive tissue, suggesting that blood supply was originating
mainly trom the hepatic artery.
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Figure 19. Invading tumor cell (T) in a sinusoid detaches the
endothelial cell (E) from the basement membrane (arrow heads).
The laminin positive material remains associated with the hepa-
tocyte (H). X 10.000.

) ".'l"-'.
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Figure 20. The surface of a hepatocyte (H) enclosed into the
metastasis still stains positively for laminin. E; Endothelium,
V; Vessel lumen. X 1.300.

Vol 4, No 1, 1998

Therapeutic considerations

The above results strongly suggest that the type of vas-
culature and blood supply can be dependent on the local-
ization of metastases in organs having both arterial and
venous blood supply. Accordingly, these and other obser-
vations support the possibility that the tissue architecture of
organs, in which angiogenesis is taking place, has an impor-
tant impact on the process of angiogenesis and consequent-
ly on the structure of the developing neovasculature. On the
other hand the properties of tumor cells can also determine
the outcome of the angiogenic response. For example the
previously described process of angiogenesis in liver metas-
tases can be valid in case of anaplastic tumors having high
invasive ability and poorly developed tumor stroma. Well
differentiated tumors, however, showing the same tissue
architecture in primary tumors as in metastases, probably
elicit a different type of angiogenesis. The widely used
methods in the therapy of primary and secondary liver
tumors (hepatic artery infusion, hepatic artery ligation and
chemoembolization) are based on the notion that most
tumors in the liver have an arterial blood supply.** In con-
trast to this, it is generally accepted that during angiogene-
sis, new vessels originate mainly from postcapillary
venules.”” Several authors suggest, however, that new cap-
illaries can originate from arterioles or large veins, contain-
ing elastic laminae and smooth muscle cells, demonstrating
the fact that such structures cannot prevent the emigration
of endothelial cells.*** A number of data suggest that a con-
siderable portion of human and experimental liver metas-
tases have portal blood supply,™”' and even vessels, origi-
nating from hepatic sinusoids can contribute to the nutrition
of the entire metastatic nodule, not only to the supply of the
tumor periphery.” According to these facts, more attention
should be paid in the future to the portal blood supply of
liver metastases in the design of locoregional therapy.
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Abstract

This study was undertaken to determine the role and the fate of the peritumoural vascular plexus
during the vascularization of human malignant melanoma (hMM) and in an appropriate murine
melanoma model system. The prognostic significance of the vascularity of different tumour areas
was also evaluated. Despite morphometry revealing several-fold higher microvessel densities
(MVDs) in the peritumoural tissue than at the centre of the tumour, the development of visceral
metastases of hMM was exclusively correlated with the MVD of the tumour centre. Furthermore,
the 5-year survival of the patient group with low tumour centre MVD (<30/mm?, n=29) was
100%, compared to 1/16 patients alive with high tumour centre MVD (>30/mm?, n=16).
Morphometric analysis and three-dimensional reconstruction of vessel networks of both human
and murine melanomas showed clearly that the peritumoural vascular plexus present at the
melanoma base is continuously being incorporated into the growing tumour mass. Once vessels
become incorporated, sprouting ceases and the proliferating endothelial cells (EC) take part only
in vessel dilatation. Moreover, the immunohistochemical and ultrastructural characterization of
microvessels demonstrated that the pericyte coverage of endothelial tubes was complete in all of
the investigated areas, in both human and murine melanomas. Copyright © 2002 John Wiley &
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Introduction

In the past decade, systematic studies have provided
ample evidence that tumour progression correlates
with tumour-induced angiogenesis [1], but this issue
has remained controversial in the case of human
malignant melanoma (hMM) of the skin [2-13]. Most
of these studies used the principle of selecting the
vascular ‘hot spots’ as a basic approach [1,14], but it
should be kept in mind that the site of tumour cell
intravasation does not necessarily correspond to the
area of the highest MVD, especially when the ‘hot
spot’ is located outside the tumour mass. Neo-
angiogenesis has been considered as synonymous with
directed vessel ingrowth in almost all of these studies,
although alternative mechanisms seem to exist, both
experimentally and in human tumours [15,16]. It has
been reported recently that non-small cell lung carci-
noma grows without inducing neo-angiogenesis [17],
and the growing glioma and mouse adenocarcinoma
can co-opt (i.e. incorporate) host vessels [18,19].
However, the mechanisms of vessel ingrowth and
incorporation probably operate in different propor-
tions in various tumour types.

It has long been speculated [20-22] that tumour
vasculature is characterized by a distinct maturation

Copyright © 2002 John Wiley & Sons, Ltd.

defect, namely the absence of pericytes, that is thought
to be at least partially responsible for the irregular,
tortuous and leaky blood vessels found within
tumours. If we accept the concept of vessel co-option,
the level of coverage by pericytes in different micro-
vascular beds must be relevant; the nascent, unstable
and vulnerable intratumoural vessels, which have not
had enough time to differentiate, might therefore
dictate the clinical course to a greater extent than the
more mature incorporated vessels.

Despite the high vascularity at the tumour base (hot
spots) observed several times in hMM [5,9,23,24], this
phenomenon has remained experimentally unex-
plained, probably because of the difficulty of modelling
the primary hMM. In experimental models, the rapid
growth kinetics of melanoma make the observation of
progression and angiogenesis difficult in the very early
stages, corresponding to human tumours in radial
growth phase. If the process of vascularization of these
rapidly growing mouse tumours is very different from
hMM, then these models may be less useful for
therapeutic studies, particularly when anti-angiogenic
drugs are investigated.

To clarify the role of the peritumoural vascular
plexus in the process of vascularization of hMM, we
decided to follow up the development and fate of this
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peritumoural vessel network in a suitable mouse
tumour model system. For this purpose we performed
morphometry and 3D reconstruction of the vascula-
ture in hMM samples and studied the growth, mech-
anism of vascularization and EC proliferation in B16
mouse melanoma after intradermal inoculation. To
analyse microvessel maturation, we also investigated
the distribution of pericytes in human and mouse
melanomas.

Materials and methods

Clinical data

This study used 45 primary hMM cases with a mini-
mum follow-up period of 5 years, four non-tumourous
skin biopsy samples and three naevi. The two sexes
were represented equally. Tumours had no detectable
metastases at the time of diagnosis and were cate-
gorized according to thickness (thin <1.5 mm, n=13;
medium thick 1.5-4.0 mm, n»=17; and thick >4.0 mm,
n=15; Table 1A) and to the actual type of progression
(non-metastatic, n=15; lymph node-metastatic, n=14;
and organ-metastatic, n=16; Table 1B).

Animal model

Inbred C57BI/6 mice were anaesthetized and 10* B16
cells in 1 pl Hanks’ solution were inoculated intrader-
mally, next to the epidermal-dermal junction, under a

dissecting microscope by using a precision syringe
(0.15 mm diameter, Hamilton). To prove the proper
localization of the injection sites, tumour cells were
labelled with membrane permeant reactive fluorescent
tracer (CellTracker Green, Molecular Probes Inc.,
5 um) and were injected intradermally into six mice,
which were sacrificed by anaesthesia immediately or
24 h after injection.

Morphometry of human and mouse tumours

Three different tumoural and peritumoural regions
were assessed separately for each section. These were:
(I) the tumour centre; (II) the tumour periphery—
a 100 pm wide band of tumour immediately adjacent
to the invasive edge; and (IIT) the peritumoural host
tissue—a 200 pm wide band of host connective tissue
immediately adjacent to the tumour periphery. MVD
and microvessel perimeter were determined by double
labelling of blood vessels for CD31 (anti-human CD31;
Dako, 1:40 or anti-mouse CD31, 1:100, Pharmingen;
DAB) and laminin (anti-laminin, Dako, 1:50; Fast-
Blue). Two sections per hMM and three sections from
each mouse (5-10 fields of 20 x , 40 x objective/section/
region) were analysed using CUE-2 software as
described previously [25]. In parallel, MVD was also
determined by applying the vascular hot spot tech-
nique, as recommended [14]. The diameter of the
tumours was determined with a 2 x objective.

Table |. Comparison of vascular parameters of the human malignant melanoma of the skin according to the thickness

(A) and to the to the clinical course (B)

A
Tumour centre Tumour periphery Peritumoural host tissue
Tumour
thickness MVD (nlmmz) Perimeter (um) MVD (nlmmz) Perimeter (um) MVD (nlmmz) Perimeter (um)
<1.5mm
n=13 224463 734251 7834282 714199 41 +66.7 724+ 10.1
[.5-4 mm
n=17 325+ 10 80.8+27.3 9894277 757+ 164 1374553 753417
>4 mm
n=15 313+£79 104+31.7%° 96.8+22.8 9484212 149+41.8 843487
B
Tumour centre Tumour periphery Peritumoural host tissue
Metastasis MVD (n/mm?) Perimeter (um) MVD (n/mm?) Perimeter (um) MVD (n/mm?) Perimeter (um)
None
n=15 21451 7734242 772427.1 70.6+21.1 1404652 708+ 138
Lymph node
n=14 259454 824+303 98.7+283 769+ 172 1202 +54.3 7724127
Organ
n=16 39.84+6.7¢ 98.1+£29.7 98.1+233 944192 13284443 840+123

Data are expressed as mean +SD. Statistical analysis was performed by ANOVA single factor method.

*p<0.05 (vs. peritumoural host tissue);
b5 <0.05 (vs. thin tumour group);
“p<0.05 (vs. non-metastatic group).

Copyright © 2002 John Wiley & Sons, Ltd.
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Assessment of EC labelling index with
bromodeoxyuridine (BrdU)

Two hours before the mice were sacrificed, 200 mg/kg
BrdU in saline was injected intraperitoneally. Sections
were fixed in methanol and reacted sequentially with
anti-mouse CD31, rhodamine-conjugated anti-rat
IgG (1:50, Jackson Immunoresearch Inc.), 2n HCI
(10 min, 20°C), anti-BrdU antibody (1:100, Becton-
Dickinson), biotinylated anti-mouse IgG (1:100,
Vector), streptavidin—FITC (1:100, Amersham), and
with TOTO-3 (MolecularProbes Inc., 5pum). Slices
were viewed by confocal microscopy (Bio-Rad
MRC1024). The labelling index of ECs was determined
by counting the labelled as well as all the EC nuclei
(100/studied area) along the vessel walls.

Transmission electron microscopy

Animals were perfused via the left ventricle with
phosphate-buffered saline for 10 min and with 2.5%
glutaraldehyde in 0.05wm Na-cacodylate (pH 7.2) for
15min at room temperature. Tumour pieces were
processed as described previously [25] and analysed
on a Philips CM10 electron microscope.

3D visualization of tumour vasculature

Sections (100 um) were cut and transferred to 24-
microwell plates containing methanol. Blood vessels
were identified by immunostaining with anti-CD31
antibodies as described above. To avoid compression,
small pieces of cover slip of 150 um thickness were
inserted on both sides of the mounted slice. For 3D
reconstruction, up to 80 serial optical sections at
0.5-2 um intervals were used. Digitized image stacks
were further processed using Bio-Rad-LaserSharp
software.

Characterization of vessel phenotype by
immunohistochemical double and triple labelling

On 5 um cryosections, different combinations of pri-
mary antibodies (anti-CD31 antibodies; anti-laminin;
anti-SMA, 1:100, Dako) were used simultaneously.
After washing, slices were incubated simultaneously
with the appropriate secondary antibodies (Cy5-
conjugated anti-mouse IgG; FITC-conjugated anti-rat
IgG; rhodamine-conjugated anti-rabbit IgG; all from
Jackson Immunoresearch Inc., 1:50) with or without
nuclear staining with TOTO-3.

Statistical analysis

Experimental data were evaluated using either
ANOVA single factor analysis, Mantel-Cox general-
ized salvage analysis or two-tailed z-test. A p-value less
than 0.05 was required for significance.

Copyright © 2002 John Wiley & Sons, Ltd.

Results

Microvessel density of (MM

In all the applied categories (Table 1), MVD was
highest in the peritumoural host tissue and the
tumour periphery was significantly more vascular
than the tumour centre. Comparison of the MVD of
tumour periphery and peritumoural host tissue of
hMM, characterized by various categories of thickness
and clinical progression, did not reveal any significant
differences. The MVDs of the tumour centre showed
only a slight but non-significant elevation with increas-
ing tumour thickness (Table 1A) and there was no
correlation between tumour centre MVD and growth
phase (data not shown).

The comparison of tumour centre MVDs according
the type of clinical progression of the disease indicated
a significant 90% increase in the organ-metastatic
compared to the non-metastatic tumours (Table 1B,
p<0.05). Tumour centre MVD was not statistically
significantly different in tumours characterized by
lymphatic progression, nor did peritumoural MVDs
differ in these clinical categories.

Out of the 45 patients, 15 were lost within 60 months
and the tumour centre MVD of these patients was
significantly higher than in who survived (40.12+5.07
vs. 23.78 £5.04, p<0.025). Next, tumour centre MVD
ranges were established (<10, <20, <30, <40 and
<50/mm?) and compared to disease outcome (5-year
survival). We found that 100% of patients whose
tumours were categorized by a central MVD less than
30/mm? were alive at 60 months, compared to one out
of 16 patients alive with tumours having a central
MVD higher than 30/mm? (p<0.025, Figure 1).
Collectively, we have concluded that both the visceral
progression as well as the 5-year survival of human
skin melanoma patients were associated exclusively
with the MVD of the tumour centre.

MVDs in the peritumoural areas by the ‘hot spot

100 #====— - * MVD<30 (n=29)*

-g- MVD>30 (n=15)

©

o

L L
12
—'d

)
1
1
&~

% 5 year survival
[3)]
o
P

0 T T T
0 12 24 36 48 60

months

Figure I. Survival analysis of primary malignant melanoma
patients. 100% of the patients whose tumours were categorized
by tumour centre MVD less than 30/mm?” were alive after a
5-year follow-up period, compared to one survivor out of 16
patients whose tumours had a central MVD higher than 30/mm?.
Statistical analysis was performed using the Mantel-Cox general-

ized salvage analysis. *p <0.025

J Pathol 2002; 197: 355-362.



358

B. Dome et al.

dc_301 11

technique’ were 164+48, 144+50 and 171492 in
non-metastatic, lymph node-metastatic and organ-
metastatic cases, respectively. MVD in non-tumourous
skin was similar to the MVD of benign melanocytic
tumours (68 +37.1 and 55+7.5, respectively).

Vessel perimeters of hMM

Vessel perimeters were highest in the tumour centre
and there was no difference in this respect between the
various categories (Table 1). The vessel perimeter in
the tumour centre was highest in the group of thick
(>4 mm) tumours (p<0.05 vs. peritumoural host
tissue), and was moderate in the group of medium
thick (1.54mm), organ-metastatic, lymph node-
metastatic and non-metastatic tumours. There was no
increase in the group of thin (<1.5mm) tumours.

Tumour diameter (microns)
8000

7000
6000 -
5000
4000
3000
2000

1000 *

10 15 20 25

t [days]

250 Vessel perimeter (microns)

200

—— Peritumoral tissue
—s— Tumour periphery
—— Tumour centre
Normal skin

150

100

25

t [days]

Peritumoural host tissue and tumour periphery micro-
vessel perimeters were more similar to each other than
to tumour centre microvessel perimeters in all the
applied thickness and progression categories. The
tendency to an increased microvessel perimeter at the
tumour centre was correlated with clinical progression
and growing thickness, but only the latter proved to be
statistically significant (p <0.05).

Murine skin melanoma model

To analyse angiogenesis from an early stage, we
followed vessel network development during tumour
growth, from the intradermal inoculation of 10* B16
cells until the tumours reached 4-5mm in diameter
(Figure 2A), which corresponds to a thick hMM. Cells
were deposited into the papillary dermis, next to the

MVD (n/mm2)

200
180 !

160

—+— Peritumoral tissue
—a— Tumour periphery
—— Tumour centre
Normal skin

10 15 25

t [days]

20

EC labelling index

—+— Peritumoral tissue
—s— Tumour periphery
—+«— Tumour centre
Normal skin

25

10

15 20

t [days]

Figure 2. Tumour diameters (A) and alterations of vascular parameters (B, C, D) of BI6 murine melanoma. Groups of three mice
were sacrificed by anaesthesia at |, 3, 5, 7, |1, 14 and 21 days. Data are means +SEM. The decrease of MVD and vessel perimeter

between days | and 3 can be explained by the regression of th

e existing host vessels of the dermis, following the injection of the

tumour cell suspension. The mean MVD, vessel perimeter and EC labelling index in normal mouse skin were 80.7+7, 51.5+2.5 and

0.33+0.15, respectively (mean+SD, n=3).

(B) Microvessel density (n/mm?)

p <0.05 peritumoural tissue vs. tumour periphery on days 3, 5,
peritumoural tissue vs. tumour centre on days 3-2I
tumour periphery vs. tumour centre on days 7-21

(C) Microvessel perimeter (um)

p <0.05 peritumoural tissue vs. tumour periphery on days 3, ||
peritumoural tissue vs. tumour centre on days 3, 5, |1,
tumour periphery vs. tumour centre on days 5, 14, 21

(D) EC labelling index

p <0.05 peritumoural tissue vs. tumour periphery on days 3, 5,
peritumoural tissue vs. tumour centre on days 3-21
tumour periphery vs. tumour centre on days 521

Copyright © 2002 John Wiley & Sons, Ltd.

7, 14, 21

, 14, 21

14, 21

7,21

J Pathol 2002; 197: 355-362.



Angiogenesis of malignant melanoma

359

dc_301 11

epidermal-dermal junction. The tumour tissue showed
a solid, nodular growth pattern, without forming a
meshwork of septa, and it was not circumscribed with
a fibrous capsule, which is a common feature of sub-
cutaneously inoculated or xenotransplanted tumours.
Three weeks after intradermal tumour implantation,
regional lymph node and lung metastases were found.

MVD of Bl6 melanoma (Figure 2B)

In all the investigated areas, the increasing MVDs
reached a plateau at different time points after tumour
inoculation. In the centre of the tumour, a plateau was
reached around 20/mm? on day 7, followed by the
tumour periphery, with a plateau value around 100/mm?
on day 14. Peritumoural host tissue MVD increased up
to a level around 150/mm?, which was reached in the
middle of the third week. It is also important to note
that peritumoural host tissue MVD was highest,
tumour centre MVD was lowest and tumour periphery
MVD was intermediate, at all time points.

Microvessel perimeters of B16 melanoma
(Figure 2C)

Vessel perimeters increased with time to a different
extent in the different areas of the tumour: vessel
dilatation was slight in the peritumoural areas (from
59 um to 105 um), considerable in the tumour peri-
phery (from 55 um to 126 pm), and the highest in the
tumour centre (from 53 pm to 177 um). Similarly to
MVD, vessel dilatation also showed a tendency to
reach a plateau at different time points (day 11 in the
case of peritumoural host tissue and tumour periphery,
and day 14 in the case of tumour centre). Additionally,
the increase of perimeter followed the direction from
peritumoural host tissue towards tumour centre,
independently of tumour age and size.

EC proliferation of Bl16 melanoma (Figure 2D)

The EC labelling index showed the highest increase in
the peritumoural host tissue (from 2% to 21%), the
lowest increase in the tumour centre (from 0 to 12%)
and a moderate increase at the tumour periphery (from
0 to 17%). Furthermore, the EC labelling index was
always the highest peritumourally and was always
lower in the tumour centre than in the periphery. EC
proliferation reached a plateau at day 14 in the three
studied areas.

Phenotype of human and murine melanoma
microvessels

CD31 antibodies marked the vasculature intensively.
Pericytes, which are o smooth muscle actin-positive,
completely covered the microvessel walls in the differ-
ent intra- and peritumoural areas (Figure 3) and were
embedded within the basement membrane (BM) sur-
rounding the endothelial tube (Figure 6). At the tumour
boundary, the BM of microvessels was single layered,
while in the tumour centre it was multilaminated. The

Copyright © 2002 John Wiley & Sons, Ltd.

3

Figure 3. Pericyte recruitment of melanoma vessels. Capillary
of an | I-day-old BI6 tumour stained for CD3I (red fluores-
cence) and SMA (green fluorescence) shows the complete
pericyte coverage of the endothelial tube. Nuclear staining was
applied with TOTO-3 (blue fluorescence). Scale bar 25 um

space between these concentric layers was filled with
melanoma cells (Figure 4). The number of layers
increased towards the centre of the tumour, and also
with time. The presence of multilaminated BM around
the microvessels is the result of the invasive activity of
tumour cells (Figure 6), but this phenomenon did not
have an influence on the presence and distribution of
pericytes around the endothelial tube.

3D visualization of human and murine melanoma
vasculature (Figure 5)

3D reconstruction of confocal data made clear the
presence of the peritumoural vascular envelopes with
high MVDs. At the tumour boundary, the vessels were
arranged parallel to the surface of the tumour, with

4

Figure 4. Concentric BM layers (laminin, red fluorescence)
around the endothelial tube (CD3I, green fluorescence) of a
capillary in the centre of a 4 mm thick human melanoma nodule.
The invading tumour cells are apparently detaching the ECs from
their basal lamina (arrowheads). Nuclear staining was applied
with TOTO-3 (blue fluorescence). Scale bar 50 um

J Pathol 2002; 197: 355-362.
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Figure 5. The horizontal view of a stack of confocal images
shows the 3D architecture of the prominent vascular plexus
(stained by CD31-Mab) present at the tumour boundary in a
3.75 mm thick human melanoma (80 optical sections at | um
intervals). Vessels are running parallel to the surface of the
tumour spheroid. Note the delicate staining of interendothelial
junctions. The tumour is present at the upper left. Scale bar
100 um

numerous lateral connections and blind ends. Direct
offshoots occurred with dichotomous and multiple
branching. There appeared to be no vessels present
which intruded centripetally into the tumour nodule.
The intratumoural capillaries were less densely
arranged than the peritumoural ones; they took an
arched course and exhibited dilatation towards the
centre of the tumour.

Discussion

In this study we present the novel finding that during
angiogenesis in the human and murine melanoma,
there is no morphological evidence of directed vessel
ingrowth; instead, these tumours appear to grow by
incorporating the massive, tumour-induced vascular
plexus present in the peritumoural connective tissue.
In studies comparing melanoma vascularity with
prognosis, increased vascularity at the tumour base is a

Figure 6. Electron micrograph of a tumour cell (T) migrating
into the space between the well-defined concentric BM layer
(arrowheads) and the BM of the microvessel (arrows). Another
tumour cell (T1) is lying on the surface of the BM. e, endothelial
cell; p, pericyte; Tp, tumour cell process. Scale bar | um x 4600

Copyright © 2002 John Wiley & Sons, Ltd.

common observation [5,9,23,24]. Similarly, in our
hMM cases MVDs were several-fold higher in the
peritumoural tissue and in the tumour periphery than
in the centre of the tumour, and this difference
increased with tumour thickness. Until now, however,
no studies have focused on the role played by this
prominent peritumoural vascular plexus in the process
of melanoma vascularization. The observation of a
similar microvessel distribution in mouse mammary
adenocarcinoma has led Thompson to make the
following statement: ‘the growing tumour infiltrates
out and expands between the surrounding newly
formed vessels and thus the density of vessels is
progressively diluted’ [19]. In order to test the hypoth-
esis that hMM incorporates its peritumoural vascular
plexus, we used intradermally inoculated B16 tumours
as a relevant mouse melanoma model system. The
following observations, taken together, imply to us
that the growing melanoma engulfs its peritumoural
vasculature.

Firstly, morphometry of murine melanoma vascula-
ture indicated that tumour periphery MVD increased
dramatically, approaching peritumoural host tissue
MVD, while tumour centre MVD increased to a rela-
tively lower level. Since the increase of tumour
periphery MVD was almost twice as high as the
increase of peritumoural host tissue MVD in the
period of the first 11 days, it can be concluded that
the majority of the vessels in the tumour periphery
were derived from the pre-existing dermal and the
newly developed peritumoural capillaries. Secondly,
3D reconstruction of vessel networks using serial
optical sections revealed that the peritumoural vascular
plexus is composed of vessels running parallel to the
tumour surface, without signs of radial orientated
growth. This fact alone is sufficient to support the idea
that the vessel network at the melanoma base is
continuously becoming incorporated into and thinned
out by the growing tumour. Furthermore, it becomes
clear that the vascular architecture of human mela-
noma is comparable to that of the intradermally
inoculated murine melanoma.

The parallel increase of the tumour diameter and the
MVD of the peritumoural tissue and the tumour
periphery (between day 7 and day 11) clearly shows
the decisive role in tumour growth of the newly formed
and pre-existing vessels.

Various studies in different systems have been done
by others on the cytokinetics of ECs [26-28]. It is
important to note that in contrast to the observation of
Denekamp, who found endothelial mitoses only at the
tumour edge [28], our measurement did not give such
an extreme result: we found an increased proliferation
rate of ECs in the vessels of the peritumoural dermis,
compared to the lower proliferative activity of the ECs
in the tumour centre. This observation corresponds to
the mathematical framework described by Ramanujan
[29]. According to this model, central regions of the
tumours experience anti-angiogenic effects. Towards
the periphery of the tumour, the behaviour reverses

J Pathol 2002; 197: 355-362.



Angiogenesis of malignant melanoma

361

dc_301 11

and angiogenic factors predominate, with a peak of
angiogenesis at the tumour boundary.

The observation that vessel perimeters increased and
MVD decreased towards the tumour centre lets us
conclude that within the tumour the newly formed ECs
participate in vessel dilatation, instead of providing a
source of new vessel production.

At the tumour periphery and in the peritumoural
dermis, the BM adjacent to the ECs was single layered,
while in the tumour centre it becomes multilaminated.
The space between these concentric BM layers was
filled with melanoma cells. This phenomenon suggests
that the BM of the intratumoural vessels are constantly
invaded by tumour cells, during which process the ECs
and pericytes become detached from their own BM
and are forced to produce a new layer. Since the ECs
are proliferating, the disruption of the BM allows
vessel expansion, followed by new BM deposition. The
old subendothelial BM layers are pushed outwards
(away from the vessel) by the invading tumour cells.
The absence of sprouting activity of the intratumoural
vessels can be explained in two ways. The increasing
number of BM layers may impede the branching of
endothelial tubes (the increase of MVD); alternatively,
the lack of support by an appropriate extracellular
matrix within the tumour may prevent the sprouting of
new capillaries [30].

Although in all thickness and clinical progression
categories the peritumoural dermis was more vascular-
ized than the investigated tumour areas, morphometry
demonstrated significant increase in tumour centre
MVD in the case of visceral metastatic tumours,
suggesting that intratumoural vessels might be the site
of intravasation. This is consistent with a previous
study in which vascular invasion was observed within
the melanoma nodules, but not peritumourally [31].
This idea was further corroborated by the fact that all
29 patients whose tumour was characterized by central
MVD of less than 30/mm?® were alive after 5 years,
while all but one died in whom the central tumour
MVD was higher than 30/mm? The fact that the
MVDs of the tumour centre did not relate to thickness
or growth phase, taken along with the above observa-
tions, suggests that the tumour centre MVD may be an
independent prognostic factor in hMM.

Previous studies suggest that the recruitment of
pericytes can be used as a hallmark of blood vessel
maturation in malignancies [20-22]. We assumed that
in addition to the increase of tumour centre vessel peri-
meter, the vulnerable and immature intratumoural
vessels being in intimate contact with tumour cells
might also influence the prognosis of hMM in an
unfavourable way. We therefore examined the distribu-
tion of pericytes in vessel walls of different intra- and
peritumoural areas. On the basis of both immunohis-
tochemical and electron microscopic analysis, we
found that the pericyte coverage of vessel walls was
complete in the three different areas, both in human
and murine melanomas. This suggests that the pericyte
coat most probably does not act as a passive shield

Copyright © 2002 John Wiley & Sons, Ltd.

against the intravasation of tumour cells. Accordingly,
an active role for pericytes in the process of intravasa-
tion cannot be excluded.

The fact that the BM of the intratumoural vessels
was constantly invaded by tumour cells, implying a
higher intravasation rate of tumour cells in this area,
suggests that the intratumoural vessels of hMM are
more important in the metastatic process than the
peritumoural vascular plexus, which corresponds to the
‘hot spots’. This assumption, however, would need
further experimental and clinical support.
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One of the hallmarks of intussusceptive angiogenesis
is the development of intraluminal connective tissue
pillars. The exact mechanism of pillar formation has
not yet been elucidated. By using electron and confo-
cal microscopy, we observed intraluminal nascent
pillars that contain a collagen bundle covered by en-
dothelial cells (ECs) in the vasculature of experimen-
tal tumors. We proposed a new mechanism for the
development of these pillars. First, intraluminal en-
dothelial bridges are formed. Second, localized disso-
lution of the basement membrane occurs and a bridg-
ing EC attaches to a collagen bundle in the underlying
connective tissue. A pulling force is then exerted by
the actin cytoskeleton of the ECs via specific attach-
ment points, which contain vinculin, to the collagen
bundle, resulting in suction and subsequent transport
of the collagen bundle into and through the vessel
lumen. Third, the pillar matures through the immi-
gration of connective tissue cells and the deposition
of new collagenous connective tissue. The proposed
simple mechanism generates a connection between the
processes of endothelial bridging and intussusceptive
angiogenesis and identifies the source of the force be-
hind pillar formation. Moreover, it ensures the rapid
formation of pillars from pre-existing building blocks
and the maintenance of EC polarity. To describe it, we

coined the term inverse sprouting. (Am J Pathol 2011,
179:1573-1585; DOI: 10.1016/j.ajpath.2011.05.033)

Angiogenesis is the formation of new blood vessels from
pre-existing ones. Several different forms exist,” but so
far endothelial sprouting®® and intussusceptive angio-
genesis®~® have been investigated the most intensively.

Endothelial sprouting is characterized by the parallel
migration of capillary bud endothelial cells (ECs). During
this process, proliferating ECs maintain their basal-lumi-
nal polarity and form a slit-like lumen that is continuous
with the lumen of the so-called mother vessel. Basement
membrane material is deposited continuously by the
sprout ECs, whereas only the tip of the growing bud is in
contact with the collagenous connective tissue matrix. As
the final step, proliferating pericytes of the mother vessel
migrate along the basement membrane of the sprout,
resulting in the maturation of the new vessel.?

In contrast to endothelial sprouting, the other major
angiogenic mechanism, intussusceptive microvascular
growth, or intussusceptive angiogenesis, which has been
described in a wide variety of normal and pathological
conditions, is faster and does not depend primarily on EC
proliferation. The most characteristic feature of intussus-
ceptive angiogenesis is the insertion of connective tissue
columns, called tissue pillars, into the lumen and the
subsequent growth of these pillars, resulting in partition-
ing of the vessel lumen and the consequent increase in
the density of the given capillary network. According to
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the current view, the development of tissue pillars is pre-
ceded by the formation of vessel wall folds or the protru-
sions of the opposite points of the vessel wall into the
lumen.*~® However, the origin of the force generating
these invaginations has not yet been clarified. Although it
is believed that perivascular cells or pericytes may play a
role in this initial step by exerting a pushing force on the
vessel wall, this concept is questionable because the
structure of the cellular cytoskeleton allows only pulling
forces at high strength, whereas pushing forces are sev-
eral hundredfold lower in magnitude.®'°

Another phenomenon thought to be different from intus-
susceptive angiogenesis, but also leading to vascular divi-
sion, was described as well. This process is characterized
by the development of intraluminal bridges formed by ECs,
followed by the development of connective tissue by an
unknown mechanism within these bridges.'' "2

Based on our observation of the vascularization of s.c.
growing tumors in mice, we present herein the detailed
mechanism of intraluminal pillar formation, which offers a
rationale for the puzzles previously discussed and incor-
porates the previous two concepts.

Materials and Methods

Animals and Tumor Lines

The C38 mouse colorectal carcinoma line was main-
tained by serial s.c. transplantations in C57BI/6 mice, as
previously described.’*'® Tumor tissue was cut into
cubes measuring 5 X 5 X 5 mm. Animals were anesthe-
tized with ketamine, 80 mg/kg, and xylazine, 12 mg/kg
(Sigma Chemical Co, St Louis, MO); one piece of tumor
tissue was transplanted into the back of each mouse.
Animals were sacrificed 3 weeks after tumor inoculation.
For analysis of immunofluorescence labeling with mono-
clonal antibodies, the tumors were transplanted into mice
with severe combined immunodeficiency to reduce non-
specific staining.

HT25 human colon carcinoma cells were cultured in
RPMI 1640 medium supplemented with 10% fetal bovine
serum (Sigma Chemical Co). The s.c. tumors were pro-
duced by injecting 2 X 10° tumor cells into the back of
anesthetized male mice with severe combined immuno-
deficiency, as previously described.’® Animals were sac-
rificed 4 weeks after tumor inoculation.

Electron Microscopy and 3D Reconstruction of
Semithin Sections

Preparation of tumor samples for electron microscopy
was performed as previously described.' In brief, the
anesthetized animals (three mice for each tumor line)
were perfused via the left ventricle with PBS for 10 min-
utes and with 4% paraformaldehyde and 1% glutaralde-
hyde in PBS (pH 7.2) for 15 minutes at room temperature.
The s.c. tumors were removed, cut into 1 X 2-mm pieces,
and immersed in the same fixative for an additional 2 hours.
The pieces were post-fixed in 1% OsO,, 0.5% K-ferrocya-
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nide in PBS for 2 hours, dehydrated in a graded series of
acetone, and embedded in Spurr’s mixture.

A total of 8 to 10 serial semithin sections were cut,
stained by 0.5% toluidine blue (pH 8.5), and analyzed for
the presence of pillars. The structures identified on the
last semithin section were followed backward to ensure
that they represented pillars and were not simply vessel
bifurcations or other structures. Areas of interest were
trimmed out by comparing the structures on the cut sur-
face of the tissue blocks with the semithin sections and
then serially sectioned by an RMC MT-7 ultramicrotome
(Research and Manufacturing Co, Tucson, AZ). The sec-
tions were placed on thin bar grids, stained with 2%
uranyl acetate and lead citrate, and analyzed using a
Philips CM10 electron microscope (Eindhoven, The
Netherlands). Pillars cut lengthwise were also examined
during analysis of serial ultrathin sections. In this case,
the entire thickness of the pillar was available for analysis
at the ultrastructural level.

Serial semithin sections were captured by an Olympus
DP50 camera (Olympus, Tokyo, Japan). Digitized images
were transferred to the Biovis3D software program
(BioVis3D, Montevideo, Uruguay). Three-dimensional
(3D) reconstructions were performed using color con-
touring to highlight the recreated structures.

Immunofluorescence Analysis

Frozen sections (15-um thick) were fixed in methanol and
were incubated at room temperature (for 1 hour) with a
mixture of the following primary antibodies: monoclonal
anti-mouse CD31 (dilution, 1:100; catalogue no. 01951D;
Pharmingen, San Diego, CA), polyclonal anti-collagen |
(dilution, 1:100; catalogue no. AB765P; Chemicon, Bil-
lerica, MA), monoclonal anti-vinculin (dilution, 1:100; cat-
alogue no. V4505; Sigma Chemical Co), monoclonal anti-
integrin -1 (dilution, 1:20; catalogue no. 555001; BD
Pharmingen, San Jose, CA), polyclonal anti-integrin a-1
(dilution, 1:50; catalogue no. sc-10728; Santa-Cruz Bio-
technology, Santa-Cruz, CA), monoclonal anti-integrin
a-2 (dilution, 1:100; catalogue no. 108901; Biolegend,
San Diego), polyclonal anti-integrin «-2 (dilution, 1:200;
catalogue no. AB1936; Millipore, Billerica, MA), poly-
clonal anti-integrin a-11 (dilution, 1:100; catalogue no.
sc-98740; Santa-Cruz Biotechnology), and monoclonal
anti-mouse CD29 (dilution, 1:100; catalogue no. 550531;
Pharmingen). After washing, appropriate secondary an-
tibodies conjugated with fluorescein isothiocyanate, tetra
rhodamine isothiocyanate, or Cy5 were used (all from
Jackson Immunoresearch Inc., Suffolk, UK). The vinculin
and integrin a-2 signals were amplified by using an ap-
propriate biotinylated secondary antibody (dilution,
1:200; Vector Laboratories, Burlingame, CA), followed by
streptavidin fluorescein isothiocyanate (Jackson Immu-
noresearch Inc.). To analyze the localization of actin fila-
ments within the pillars, the sections were reacted with
phalloidin—tetra rhodamine isothiocyanate (dilution,
1:500; catalogue no. P1951; Sigma Chemical Co).
Sections were scanned by eye for the presence of
pillars using a X100 objective. Only pillars running par-
allel and lying completely within the sectioning plane



dc_301 11

were analyzed by a Bio-Rad MRC 1024 confocal micro-
scope (Bio-Rad, Richmond, CA). For 3D reconstructions,
30 to 40 optical sections were generated.

Determination of the Size of Collagen Bundles

The size of the collagen bundles was determined at the
ultrastructural level in the peritumoral connective tissue and
within the pillars. Measurements were made on digitalized
electron micrographs (original magnification, X1500 to
X7000) taken from s.c. tumors of both cancer cell lines
using Olympus Quick Photo Micro software (Olympus). In
the peritumoral connective tissue, collagen bundles tightly
packed with collagen fibers were chosen randomly (>250).
In cross sections, the smallest diameter of the bundle was
measured. After their identification in semithin sections, >50
pillars were analyzed at the ultrastructural level. Only pillars
exclusively containing collagen fibers, but no pillars with
connective tissue cells, were chosen. The total thickness of
the pillars (including ECs) was also measured.

In Vivo Treatments

To study the effects of angiogenesis-modulating agents
on tumor vascularization and pillar formation, groups of
six mice bearing C38 tumors received recombinant hu-
man erythropoietin « (rHUEPO, epoetinum «; Jannsen-
Cilag, Shaffhausen, Switzerland),'® PTK787/ZK22854
(vatalanib; Novartis/Schering AG, Berlin, Germany)'”
(obtained from Selleck Chemicals LLC, Houston, TX), or
the vehicle as a control. In mice treated with vatalanib,
tumors were allowed to grow for 12 days before treat-
ment. Then, mice were treated orally with 100 mg/kg vata-
lanib (PTK787/2K222584, dissolved in water containing 5%
dimethyl sulfoxide and 1% Tween-80) for 4 days, as in a
previous study.'® Mice treated with rHUEPO were given 150
IU/kg in physiological salt solution three times per week i.p.
from day 1 after tumor inoculation, as previously de-
scribed.’® The mice in all groups were sacrificed on day 17,
and tumors were removed, weighed, and frozen.

CD31-labeled frozen sections were scanned by eye
using a X100 objective to determine the number of pillars
within the entire section. The total area of the sections
was determined using Olympus Quick Photo Micro soft-
ware. To determine the area fraction of CD31-positive
blood vessels in tumor sections, two to three confocal
images were taken from each tumor section using a X4
objective (area, 11.3 mm?). The micrographs were ana-
lyzed using Imaged software (NIH, Bethesda, MD). Re-
sults are expressed as the number of pillars per squared
millimeter of tumor tissue or microvessel area.

Analysis of Skin Wounds

Animals were anesthetized and shaved. A 1-cm-long full-
thickness incision was made in the dorsal skin of C57
black mice. The wounds were partially closed by a single
nylon suture. The mice were euthanized on days 3, 5, 7,
and 10 after wounding. Two mice were sacrificed at each
time point. The wounds and the surrounding intact skin,
measuring 2 X 2 mm, were removed and cut further into
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1 X 2-mm pieces, with the long axis running perpendic-
ular to the wound. These pieces were fixed and embed-
ded for electron microscopy, as previously described.
Eighty-six tissue blocks were semithin sectioned and an-
alyzed (total area, approximately 250 mm?) for the pres-
ence of pillars using a X63 objective.

Statistical Analysis

Statistical analysis was performed using the Student’s
t-test.

Results

Development of Intraluminal Connective Tissue
Pillars

Intussusceptive angiogenesis was observed in s.c. tu-
mors of both cancer cell lines. This type of angiogenesis
was the main means of new vessel formation. Endothelial
sprouting with characteristic slit-like lumen-containing
capillaries® was scarcely detected. Intussusception was
mainly detected in angiogenic hot spots peritumorally,
but it also occurred within the tumor mass. The first step
of intussusception is thought to be the development of
protrusions or infoldings of the vessel wall within the
lumen.® We analyzed 89 infolds sharply intruding into the
vessel lumens in >172 serially sectioned areas (semithin
sections) altogether. None of these structures projected
into the lumen by themselves. By tracing them over sev-
eral serial sections, we found that each capillary infold
was connected to a different part of the vessel lumen (on
the opposite or the same side). These infolds proved to
be pillars, part of blind-ending lumens or simple vessel
ramifications (Figure 1; see also Supplemental Figure S1
at http://ajp.amjpathol.org). In areas of intensive intussus-
ception, proliferating ECs (Figure 1, H and L; see also
Supplemental Figure S1H at http://ajp.amjpathol.org) and
intraluminal endothelial bridges were frequently ob-
served (Figure 1, H-M and K-O; and Figure 2, A-E).
These bridges either were simple EC processes project-
ing into the vessel lumen and attaching to the endothelial
tube in a different position (Figure 2F) or were formed by
the participation of cellular processes of different ECs
(Figure 2G). However, the most characteristic phenome-
non of this type of tumor-induced intussusceptive angio-
genesis was the development of transluminal pillars con-
taining tightly packed collagen fibers covered by ECs
(Figure 2H). The pillars either spanned the vessel lumen
or originated and terminated on the same side of the
vessel (Figures 1 and 3). The diameters of these collagen
bundles did not differ significantly from those within the
peritumoral connective tissue (Table 1). The overall di-
ameter (including the EC layer) of the pillars corre-
sponded well with those observed earlier in other studies
(2.5 um).* The fibers were oriented parallel to the axis of
the pillars (Figure 3, B-D) and were covered by several
ECs. However, the basement membrane under these
cells was generally absent (Figures 2H and 3G). More-
over, neither pericytes nor other cells were present in
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Figure 1. Light microscopic appearance and 3D reconstruction of endothelial bridges and pillars. A-O: 0.5-um thick serial semithin sections were cut over a
distance of 10 wm in an area of intensive intussusceptive angiogenesis. Serial sections >10 wm. Two pillars are visible. One starts in A (section 2, large arrow),
runs through the lumen, and joins the vessel wall in H (section 13). There is a sharp protrusion of the vessel wall in I (large arrow, section 15). The other pillar
(small arrow) starts in C (section 6), reaches the other side of the lumen in L (section 19), makes a turn, and joins the same side of the vessel in N (section 21).
Two endothelial bridges are also visible. One (large arrowhead) is positioned between the opposite sides of the vessel lumen (J—0); the other smaller one (small
arrowhead) starts and ends on the same side of the vessel (H-M). There is a proliferating EC (asterisk) in H and L. Scale bar = 20 wm. P and Q: 3D reconstruction
of 25 semithin sections represented in A—O. The vessel wall and the surrounding tissue are indicated in red, pillars separated from the vessel wall and containing
collagen bundles are indicated in green, and endothelial bridges are indicated in yellow. P and Q are different views from above to show the localization of both
endothelial bridges.

these small nascent pillars. Along the pillars, cut par- fluorescence analysis revealed vinculin-containing ad-
allel to their axis, high electron density areas could be hesion spots along the pillars (Figure 4, A-D). However,
observed in the membrane of the ECs, suggesting although immunolabeling with antibodies against integrin
specific adhesion between the ECs and the collagen a-1, a-2, or a-11 demonstrated high a-2 and a-11 ex-

bundle. In accordance with this observation, immuno- pression levels in the pericapillary connective tissue,
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Figure 2. 3D and ultrastructure of endothelial bridges and transcapillary pillars. A-D: Serial semithin sections of an endothelial bridge. The bridge (arrows) is
present only in two consecutive sections. The light blue staining (collagen core) within the bridge is absent. Scale bar = 20 wm. E: 3D reconstruction of 13 semithin
sections. The endothelial bridge and the nuclear area of the ECs are highlighted in yellow, and the vessel wall and the surrounding tissue are shown in red. F:
An endothelial bridge formed by a single cellular process (arrow). The process is attached to the EC itself (arrowhead). Scale bar = 1 um. G: Endothelial bridges
formed by cellular processes of several ECs. Arrows point at intercellular junctions. The collagen bundle is located close to the vessel (arrowhead). Scale
bar = 5 um. H: Cross section of a transluminal pillar. The pillar is formed by a collagen bundle tightly packed with fibers and by two covering ECs. Arrows point
at interendothelial junctions. Some basement membrane material is visible below the ECs at the upper part of the pillar (arrowhead). Scale bar = 1 pm.

these collagen-binding integrin subunits were either oc-
casionally present as small dots at a low density at the
abluminal surface of pillar-forming ECs (as in the case of
a-2 labeling; see Supplemental Figure S2, A and B, at
http://ajp.amjpathol.org) or totally absent (as in the case of
a-1 or a-11 labeling; see Supplemental Figure S2, E and
F, at http.//ajp.amjpathol.org). Nevertheless, in more de-
veloped pillars, we could detect large integrin a-2—con-
taining adhesion spots (see Supplemental Figure S2, C
and D, at http://ajp.amjpathol.org). Staining for integrin
B-1 showed no specific localization of this subunit that
was distributed evenly under the ECs of the vessel and
pillars (data not shown).

The part of the cell body of the ECs that formed the
pillars frequently contained a high density of microfila-
ments, excluding all other cellular organelles (Figure 3, G
and H). These microfilaments were generally not in a
parallel arrangement; rather, they formed a mesh. The
presence of polymerized actin within the ECs of the pil-
lars was also confirmed by phalloidin staining (Figure 4, E
and F). The microfilaments were attached to the mem-
brane through specific structures that appeared as dots
(approximately 50 nm, Figure 5A) when the plane of the
section ran parallel to the membrane and as tiny rods
(<200 nm, Figure 5B) when the plane of the section was
perpendicular to it. The adhesion spots were arranged in
a regular manner along individual collagen fibers (Fig-
ures 3G and 5A) and were connected to each other by

microfilaments (Figure 5B). In these attachment regions,
the collagen fibers were in close contact with the plasma
membrane of the EC (Figure 5C). Confocal and electron
microscopic analysis of serial sections of the pillars and
extensive light revealed that, in a small portion of the
pillars, the collagen bundles did not span the whole
length of the pillar. In these cases, as in the intraluminal
endothelial bridges previously described, the rest of the
pillar was composed only of ECs (Figures 6 and 7, A and
B; see also Supplemental Figure S3 at http://ajp.amj-
pathol.org). Collagen bundles situated in the nascent pil-
lars extended into the connective tissue (Figure 7, C and
D). Maturing pillars, into which cellular processes ex-
tended, or larger pillars containing pericytes and other
connective tissue cells were also present in the vessel
lumens (Figure 7, E and F).

Effects of Angiogenesis-Modulating Agents
on Tumor Capillary Parameters and Pillar
Formation

In the next set of experiments, we also studied whether
rHUEPO (which recently induced intussusceptive an-
giogenesis in the chick embryo chorioallantoic mem-
brane assay)'® or the anti-angiogenic drug vatalanib
(an oral small-molecule multitargeted tyrosine kinase
inhibitor that blocks all known vascular endothelial
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growth factor receptors, with additional activity against
platelet-derived growth factor receptor and c-kit)'”
could affect pillar formation in our C38 colon carci-
noma model system.

In C38 tumors treated with rHUEPO, pillar densities of
tumor sections were significantly increased compared

Figure 3. Ultrastructure of the pillar. A-E: Serial ultrathin sec-
tions (approximately 100 nm) of a nascent pillar (A, section 3;
B, section 14; C, section 20; D, section 22; E, section 36). The
pillar was present in 22 sections. The collagen bundle is densely
packed with fibers and oriented parallel to the axis of the pillar
(B-D). A-E: The collagen bundle does not extend into the
connective tissue (up). E: In contrast, the collagen bundle is still
visible (arrow) and runs with a sharp change in direction along
the circumference of the vessel (down). This suggests that the
putative direction of the collagen bundle transport is from right
to left. Apparently, the bundle just reached the left side of the
vessel. In A, an arrow points at a small process of the EC,
indicating the location of the pillar. The body patrts of the ECs in
contact with the collagen bundle show homogeneous staining
because of the high microfilament content (arrowheads in B).
Scale bar = 2 um. F-H: High-power micrographs showing
details of the pillar region (F, section 1; G, section 14; G inset,
section 10; H, section 36). F represents the first section that
suggests the presence of a pillar. The small cellular process
(arrow) is densely packed within a meshwork of microfila-
ments. Microfilaments are also present under the plasma mem-
brane in the left part of the cell. The large arrowhead points
at an area containing intermediate filaments, whereas small
arrowheads point at microtubules. Scale bar = 0.5 um (F). G:
Details of B. The cell body above the collagen bundle contains
many microfilaments but no other organelles. The high electron
density of the plasma membrane is cut at a low angle. Adhesion
spots are also visible (small arrowheads). A basement mem-
brane is lacking in the area where the EC faces the collagen
bundle (small arrows). However, it is present in other areas of
the vessel wall (large arrow). Inset: An adhesion area where
the plasma membrane is cut at a low angle. The adhesion spots
are situated exactly and regularly above the collagen fibers
(small arrowheads). Scale bar = 0.5 um (G and inset). H:
The collagen bundle (cut perpendicularly) of the pillar extends
outside into the connective tissue and runs around the circum-
ference of the vessel. Although adhesion spots are not visible,
a basement membrane is not present at the area where the EC
faces the collage bundle. Many microfilaments are present in
this body part (arrowheads) of the EC. An intact basement
membrane is present under the other parts of the EC (arrows).
Scale bar = 1 um.

with untreated controls (Table 2). In accordance with our
previous findings,'® a tendency toward an increased tu-
mor microvessel surface in mice treated with rHUEPO
was also observed. However, when pillar density was
calculated for the area of tumor microvessels, the differ-
ence in pillar densities between tumors in the rHUEPO-

Table 1. Collagen Bundle Diameters in the Peritumoral Connective Tissue and in Transcapillary Pillars
Diameter (um)
Collagen bundles within the peritumoral Collagen bundles within the Pillars (including endothelium)
Value connective tissue (n = 260) pillars (n = 55) (n = 55)
Mean = SD 1.61+0.9 1.72 £ 1.0* 25+1.1
Range 0.3-5.9 0.4-5.0 0.8-5.8

*The diameters of the collagen bundles of the connective tissue and the pillars did not differ significantly (P = 0.4).
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Figure 4. Immunofluorescent labeling of pillars. A-D: Vessel with pillar (arrow) stained for CD31 (A, red), vinculin (B, green), and collagen I (C, blue). The
pictures show horizontal views of 35 optical sections. CD31 and vinculin are present mainly on the two sides of the pillar, whereas collagen is positioned in the
middle. D shows the merged picture. Inset: One optical section showing that vinculin is present in small spots along the periphery of the pillar (green). There
is a high density of adhesions in the connective tissue. Black areas (except for the vessel lumen) correspond to tumor tissue. Scale bar = 20 um (A-D). E and
F: Vessel with pillar (arrow) stained for CD31 (green) and phalloidin (red). Phalloidin staining, representing filamentous actin, colocalizes with CD31 staining
at the sides of the pillar. Myofibroblasts outside of the vessel are also stained by phalloidin—tetra rhodamine isothiocyanate. Scale bar = 20 um (E and F).

treated and control groups remained statistically nonsig-
nificant (Table 2).

In mice treated with vatalanib, significantly decreased
tumor burdens and a tendency toward reduced mi-
crovessel areas were observed. Moreover, tumor sam-
ples in the vatalanib group had significantly more pillars/
tumor microvessel areas than those in the control group
(Table 2).

Vascularization of Skin Wounds

To elucidate the process of pillar formation in conditions
other than tumor-induced angiogenesis, we also ana-
lyzed full-thickness cutaneous incision wounds (3, 5, 7,
and 10 days after wounding) for the presence of pillars.
However, endothelial sprouting was the characteristic
mechanism of angiogenesis in the healing wounds

(mostly 5 and 7 days after wounding); we failed to detect
any signs of pillar formation (data not shown).

Discussion

Although the formation of transluminal pillars*~2 is con-
sidered the most characteristic feature of intussusceptive
microvascular growth, the exact mechanism of this pro-
cess has yet to be completely clarified. By investigating
the vascularization of experimental tumors growing in
mice, we present herein the putative sequence of steps
of transluminal pillar development during intussusceptive
angiogenesis (Figure 8). First, transluminal endothelial
bridges are formed. Second, collagen bundles adjacent
to the vessel are seized by the abluminal side of a bridge-
forming EC. The force exerted by the actin cytoskeleton
of the EC through specific vinculin-containing attachment
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Figure 5. The ultrastructure of the adhesion region. A and B: Serial sections of an adhesion region. A: Adhesions (appearing as dots, arrowheads) are arranged
into rows and spaced regularly (the sectioning plane is parallel to the plasma membrane of the EC). There is a high density of microfilaments in this region. B:
When the sectioning plane is perpendicular to the plasma membrane of the EC, the same adhesions appear as rods (arrowheads). Microfilaments connect the
rods to each other (arrows). Scale bar = 0.5 um (A and B). C: Cross section of a pillar at an adhesion region. The collagen fibers are in close contact with the
plasma membrane of the EC. Only one rod is visible (arrowhead), which faces a collagen fiber. The plasma membrane is thickened. Scale bar = 0.5 wm.

points on the collagen bundle pulls the pillar into and
through the vessel lumen. Finally, maturation of these
nascent pillars occurs via the migration of pericytes and
myofibroblasts into the collagen core of the pillar and the
deposition of additional collagenous connective tissue by
these cells.

The sequence of events during intussusceptive angio-
genesis was analyzed in detail in the chicken chorioallan-
toic membrane and in developing lung tissue, and it was
concluded that the appearance of collagen bundles is
the last step of pillar formation.*® In these models, pro-
trusion of the vascular wall into the lumen, interendothelial
adherence, and perforation of the endothelial bilayer by
reorganization of the interendothelial junctions were the
first events. These events were promptly followed by the
appearance of perivascular cells within the pillar. Inter-
estingly, although transluminal pillars were formed under
different conditions in our study (ie, during tumor vascu-
larization because there were no signs of pillar formation
in healing cutaneous wounds), the initial size of pillars
(approximately 2.5 uwm) was remarkably similar to that
observed in nontumorous conditions (<2.5 wm).*®

Intussusceptive angiogenesis, which results in high
local vascular density, is initiated by rapid nascent pillar
formation, followed by slow pillar enlargement (a nonin-
vasive process for which extensive connective tissue
synthesis is required). Therefore, one reason for the lack
of intussusceptive angiogenesis in skin wounds could be
that neither pillar development nor the intussusceptive
angiogenesis itself is an invasive process; thus, both are
not suitable to vascularize initially avascular spaces
(such as a fibrin clot). Also, during intussusception in
nontumorous tissues, the area covered by the vascula-
ture can be increased solely by the collagenous matrix
deposited by the connective tissue cells immigrating into
the pillars. In tumor tissues, the invading tumor mass
incorporates and occupies the newly formed vasculature
(including the developing pillars). Tumor cells are able to
both incorporate into the pillars and contribute to their
growth; therefore, they help to dilute the newly formed
capillary network. In contrast, during wound healing, the
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fibrin clot (an existing avascular extracellular matrix) is
invaded/occupied by sprouting vessels. This can occur
rapidly (within days) and is necessary to supply the in-
coming collagen-synthesizing cells with nutriments. An-
other reason for the difference in the presence of intus-
susceptive angiogenesis between skin wounds and
tumors could be that a sustained angiogenic stimuli elic-
ited by tumors (often referred to as never-healing
wounds)'? is necessary to induce/maintain intussuscep-
tive angiogenesis.

In the mechanism proposed herein, the formation of
transluminal endothelial bridges is immediately followed
by the appearance of a collagen bundle within the pillar.
This collagen bundle may serve as a highway for later
immigration of other cells (eg, pericytes and myofibro-
blasts) into the pillar. The deposition of an additional
extracellular matrix by these cells can result in the en-
largement of the pillar.

The driving force behind the formation of the protrusion
in the vessel lumen during intussusceptive microvascular
growth remains elusive. Although it is believed to be
exerted by perivascular cells, such as pericytes or myo-
fibroblasts,*~® a cell’s pushing force (which can be ex-
erted only through filopodia or lamellipodia) is only in the
10 to 100 pN range.® In contrast, contractile forces gen-
erated by cells lie in the several hundred nanonormal
range. ' According to our model, no extraluminal force is
necessary for the formation of the pillar. Slender EC pro-
cesses floating in the lumen can contact other parts of the
endothelial tube (probably to the same side initially). Ad-
ditional growth of cytoplasmic processes of ECs can
result in the repositioning of this initial contact to reach
farther parts of the lumen. This may be followed by the
formation of endothelial bridges consisting of several
ECs. The contractile force exerted by the microfilaments
present at a high density within the ECs forming the
bridge may be strong enough to pull a collagen bundle
into and through the lumen. The highly edematous and
loosely organized peritumoral connective tissue might
allow this process. However, the presence of adhesions
at a high density on the myofibroblasts of the pericapillary
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Figure 6. Pillar development. A-H: Developing pillar partially filled with a collagen bundle. Small arrows mark the part of the pillar consisting only of ECs. The
bridge is attached to the vessel wall at two positions (A and C). The collagen core of the pillar (light blue staining) is discernible first on D (small arrowhead).
The pillar increases in thickness during its further run before it joins the vessel wall (small arrowheads). Large arrows mark a twin pillar that joins the vessel
wall on D. The large arrowhead points to a mature connective tissue post that joins the vessel wall on C and blends into it on the following sections. Scale
bar = 20 um (A-D. I: 3D reconstruction of 30 semithin sections represented in A-H. The vessel wall and the surrounding tissue are shown in red, pillars separated
from the vessel wall and containing a collagen bundle are shown in green, and the endothelial bridges are shown in yellow. The structure marked by the small
arrow and arrowhead in yellow and green, respectively, indicates that the collagen bundle does not fill the whole length of the pillar. J-M: Serial ultrathin
sections of a pillar partially filled with a collagen bundle. The sections represent the transitional area where the pillar continues in a short endothelial bridge. The
tiny collagen bundle (arrows in J and K) contains only approximately 20 individual collagen fibers. The pillar is sealed by endothelial junctions (arrowheads
on J). The body part of the ECs in the vicinity of the collagen bundles (J) contains microfilaments at a high density. The collagen bundle is absent in L and M.
Numerous interendothelial junctions are visible in L (arrowheads), suggesting that more ECs of the bridge have joined each other in this region. These junctions
are absent in M, suggesting that the bridge terminates in a single EC. This implies that the other ECs of the bridge have not yet reached this side of the vessel.
Scale bar = 1 um (J-M).

connective tissue suggests that the collagen matrix is
under tension, through either indirect (ie, fibronectin fi-
brils) or direct attachment of these cells to the collagen
bundles. These attachments may counteract the move-
ment of the collagen bundles. Although we do not have
direct evidence for the movement of the collagen bun-
dles, the observed similarity between the diameter of the
collagen bundles within the pillar and within the connec-
tive tissue, and, moreover, the discovery of collagen bun-
dles extending only halfway into the lumen (while their
other end extended into the connective tissue) have led
us to conclude that pre-existing collagen bundles are

transferred by these ECs through the lumen. The obser-
vation that collagen bundles are transferred in a hand-
over-hand cycle in the case of fibroblasts in vitro supports
this hypothesis. This process was dependent on integrin
a-2/B-1-mediated adhesion and on the contractile activ-
ity of the actomyosin cytoskeleton.?® However, in our
case, the adhesion receptor responsible for the binding
of collagen | in the pillar remains unknown. We could not
detect integrin a-1 or a-11 expression levels, and integrin
a-2 was present only occasionally at a low density, which
did not correlate with the number of adhesion spots con-
taining vinculin within the pillar. This calls into question
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Figure 7. Pillar development and maturation. A and B: Horizontal view of 33 optical sections. Double labeling for CD31 (green) and collagen I (red). A: Collagen
labeling. B: Merged red and green channels. The collagen bundle extends only halfway into the vessel lumen within the developing pillar (arrow). Another pillar
(arrowhead) is completely filled with collagen. Scale bar = 20 um (B). C and D: Horizontal view of 32 optical sections. Double labeling for CD31 (red) and
collagen (blue). C: Collagen labeling. D: Merged red and blue channels. The collagen bundle originating from the pericapillary connective tissue spans the entire
length of the pillar (arrow). Scale bar = 20 wm (D). E: Base of a maturing pillar. A connective tissue cell extends a process (arrow) toward the original collagen
core of the pillar (arrowhead). Scale bar = 1 uwm. F: Mature pillar containing numerous cells and collagen bundles. The basement membrane is visible on the
right side of the pillar under the endothelium (arrow). Flat cells under the ECs (arrowheads) are presumably pericytes, although they are not covered by a

basement membrane. Scale bar = 1 pum.

the role of these integrin subunits in the transport of the
collagen bundle. Nevertheless, the presence of adhesion
spots containing large -2 subunits may be the conse-
quence of the maturation process during which myofibro-
blasts migrate into the pillar. In these cells, integrin a-2 was
observed at a high density in the connective tissue sur-
rounding the vessels. Despite the lack of collagen I-b-
inding a subunits within the pillar, integrin B-1 was evenly
distributed along the vessel and the pillars, suggesting

that this integrin is paired with laminin-binding « subunits
at the basal surface of the ECs.

Electron-dense adhesion sites containing vinculin
were observed along the pillars, indicating that the ECs
are attached firmly to the collagen bundle. The adhesion
spots were unique in structure because they were placed
regularly along individual collagen fibers, extended >100
nm from the membrane into the cytoplasm, and were
connected to microfilaments. Recently, a strikingly similar
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Table 2. Effect of Angiogenesis-Modulating Agents on Tumor Growth and Pillar Densities

Treatments
Variable Control rHUEPO Vatalanib
C38 colon carcinoma s.c. tumor weight (g) 273 +0.72 277 112 1.46 £ 0.82¢
Relative vessel area (%vessel/tumor area) 1.47 =£0.32 1.75+0.28 1.21+0.14
No. of pillars/vessel area (no./mm?) 21+3 25+5 32 + 6"
No. of pillars/tumor area (no./mm?) 0.31 £ 0.04 0.43 = 0.06* 0.38 = 0.08

Results are expressed as mean + SD.
*P < 0.05.

structure was discovered during the analysis of the ultra-
structural architecture of focal adhesions in in vitro cul-
tured cells. Patla et al®" found that the membrane-cyto-
skeleton interaction within focal adhesions is mediated
through vinculin-containing particles located at the cell
membrane and attached to actin fibers. Their observation
strongly supports our idea that the transluminal transport
of the collagen bundle is mediated by the force exerted
by the actin cytoskeleton via the adhesion spots (ie, par-
ticles).

The finding that collagen fibers touch the plasma mem-
brane of the ECs suggests that ECs adhere directly to the
collagen bundle rather than attach to other extracellular
matrix elements, such as the basement membrane or
fibronectin fibrils. This latter extracellular matrix compo-
nent is involved in the formation of fibronexus junctions,

A B

which are thought to be responsible for force transmis-
sion by myofibroblasts and ECs.?222

In a recent study,?* the tyrosine kinase inhibitor vata-
lanib (PTK787/2ZK22854) delayed the intussusceptive-de-
pendent maturation of the vascular network in the devel-
oping chicken chorioallantoic membrane. In contrast,
other researchers'® reported that rHUEPO can induce
intussusceptive angiogenesis in the same angiogenesis
assay. Therefore, we also decided to study whether these
angiogenesis-modulating molecules have an effect on
pillar formation in our C38 tumor model. We found that
rHUEPO treatment resulted in a significant increase in
intratumoral pillar numbers. However, possibly because
of the concomitant increase in intratumoral capillary sur-
face (a phenomenon that corresponds with our previous
observations on rHUEPO’s effects on tumor capillaries),'®

Figure 8. Schematic representation of the puta-
tive process of pillar formation. A: Simple endo-
thelial bridges are formed. B: Bridges can reposi-
tion themselves, and more ECs may be involved in
bridge formation. On the abluminal side of the ECs
that form the bridge, the basement membrane is
locally disrupted. An EC from the bridge adheres to
a nearby collagen bundle. C and D: The collagen
bundle, seized firmly through specific adhesion
sites, is transferred through the lumen by the
bridge-forming ECs as they exert a pulling force
on it. Arrows indicate the direction of this force.
E: The collagen bundle reaches the other side of
the lumen. The interendothelial junctions are
reorganized, ensuring that the luminal and basal
polarity of the ECs is maintained during the pro-
cess. F: The collagen bundle is transferred into
the connective tissue on the other side of the
vessel. A nascent pillar, consisting only of a col-
lagen bundle and the covering ECs, is estab-
lished. Pillar maturation and enlargement occur
through the immigration of fibroblasts/myofi-
broblasts and pericytes into the pillar and
through the subsequent extracellular matrix de-
position performed by these cells.
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this difference remained nonsignificant when pillar den-
sities were calculated for intratumoral microvessel areas.
Thus, these results do not unequivocally indicate that
rHUEPO induces pillar formation; they may only suggest
that more capillary surface was provided for pillar forma-
tion. However, in our experiments with vatalanib, we
found a significant increase in pillar densities defined for
the microvessel areas in C38 tumors, suggesting an ac-
tivity for this drug similar to that reported in another earlier
study by the previously mentioned researchers.® In this
study, their group observed a switch from endothelial
sprouting to intussusceptive angiogenesis after treatment
of mammary carcinoma allografts with vatalanib. Alto-
gether, both our results and theirs support the general
notion that inhibition of just a single tumor vascularization
mechanism can trigger alternative ones. This can help
tumors to develop resistance to anti-angiogenic treat-
ments.”2°

The main limitation of this study is the lack of direct in
vivo evidence for collagen bundle movement. However,
each of the available real-time imaging techniques has
serious shortcomings/confounding factors that could
hamper its use in studying in vivo pillar formation in tu-
morous conditions. Red blood cell flow makes it impos-
sible to detect an unstained transluminal collagen bundle
using common phase-contrast microscopy (S. Paku, un-
published data). The obscuring effect of the blood stream
would also exist when using confocal reflection imag-
ing.2® The only way to overcome this problem would be to
detect harmonic signals generated during multiphoton
excitation. However, although this method highlights un-
stained fibrillar collagen,?”?® the penetration depth of the
second harmonic signal is limited by the light-scattering
effect of turbid media (to approximately 200 um),?® such
as the peritumoral s.c. tissue. An additional key problem
with in vivo pillar imaging is that the equipment should be
focused on an object that does not exist at the beginning
of the observation period (ie, the probability that a colla-
gen bundle will move in front of a high-power objective is
extremely low). Nevertheless, the confocal and ultrastruc-
tural evidence we have presented strongly suggests that
the observed collagen bundles are transferred through
the lumen by the bridge-forming ECs. The evidence in-
cludes the following: i) the adhesion sites along the pil-
lars, ii) the dense actin filament network within the pillars,
i) the similarity between pillar and connective tissue
collagen bundle diameters, and iv) collagen bundles ex-
tending only halfway into the lumen with their other end
extended into the connective tissue.

In summary, this study reports the detailed mechanism
of connective tissue pillar formation during tumor-in-
duced intussusceptive angiogenesis. This new mecha-
nism of pillar formation can also be termed inverse
sprouting. During the normal sprouting process, ECs
maintain their polarity, migrate surrounded by connective
tissue, and form a slit-like lumen.? During pillar formation,
ECs are surrounded by the vessel lumen and the con-
nective tissue is situated inside the sprout. As in normal
sprouting, ECs involved in inverse sprouting also main-
tain their polarity. Meanwhile, the complete EC coverage
of the collagen bundle ensures that the collagen core of
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the pillar is not in contact with blood elements during the
process. These results provide a better understanding of
this type of angiogenesis and may also represent a new
piece to the puzzle of cancer therapy via angiogenesis
inhibition.
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A Novel Concept of Glomeruloid Body Formation in Experimental Cerebral Metastases

BALAzs DOME, MD, Jozser TiMAR, MD, PHD, AND SANDOR PakU, PHD

Abstract. Glomeruloid bodies (GBs), tumor-associated vascular structures with a superficial resemblance to renal glomeruli,
are important histopathologica features of glioblastoma multiforme, but have also been described in other types of tumors
and in cerebral metastases. The purpose of this study was to elucidate the pathogenesis of these lesions in an appropriate
murine model of experimental brain metastases. To do so, we injected cells from 5 different tumor lines into the internal
carotid artery of mice and investigated the development, composition, and fate of GBs growing within tumor nodules.
Immunohistochemical analyses and 3-dimensional reconstruction of the cerebral vasculature showed clearly that the prolif-
erating and migrating tumor cells pull the capillaries (and the adjacent capillary branching points) into the tumor cell nest.
Initialy, this process lead to the appearance of simple coiled vascular structures, which later developed into chaotic and
tortuous vascular aggregates with multiple narrowed afferent and efferent microvessels. Despite the absence of sprouting
angiogenesis, the very low level of endothelial cell proliferation index and the ruptures of the stretched and narrowed capillary
segments observed frequently between the metastatic tumor nodules, necrosis was scarce in these lesions, implying that the
blood supply from the multiple afferent microvessels and from the preexistent vascular bed sufficed to provide the tumor

cells with oxygen and nutrients.

Key Words:

INTRODUCTION

The appearance of cerebral metastases is often asso-
ciated with the terminal stage of cancer. Despite devel-
opments of both diagnostic modalities and new therapeu-
tic strategies, the median survival of patients with brain
metastases is less than 6 months, which has not substan-
tially changed during the past 2 decades (1).

In contrast to the widely accepted view that most tu-
mors and metastases begin to grow as avascular spher-
oids, there is also evidence that a subset of tumorsinstead
initially grows by the use of preexistent vessels, a process
referred to as co-option (2—4). Indeed, the perivascular
migration of tumor cells is a common observation, es-
pecialy in the central nervous system (5-10). It has also
been hypothesized recently that in the highly vascularized
brain, metastases of tumor cells grow without the increase
of intratumoral microvessel density and the induction of
sprouting angiogenesis (11), even if these cells are en-
gineered to express recombinant VEGF-A , (12). The
formation of complex multilumen vascular channels has
been considered to be the result of nonsprouting (i.e. in-
tussusceptive) angiogenesis in these studies, although the
presence of glomeruloid bodies (GBs) in primary and
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metastatic cerebral cancersis well known (13-16). How-
ever, there is only 1 detailed description of this type of
‘“angiogenesis’ in an animal model in which the authors
found that the injection of an adenoviral vector engi-
neered to express VEGF induced the development of GBs
in normal ear skin of athymic mice (17).

The purpose of the present study was to determine the
steps of GB formation in experimental brain metastases
by human and mouse cancer cells. We report the novel
finding here that the co-opted brain capillaries have a
passive role in GB pathogenesis with a relatively low
level of endothelial cell (EC) proliferation and without
morphological evidence of sprouting activity. The tumor
cells adhering and proliferating on the surface of base-
ment membranes (BM) of cerebral microvessels pull the
capillaries into the tumor nodules, looping and coiling
them up, leading to the appearance of florid microvas-
cular structures with a superficial resemblance to renal
glomeruli.

MATERIALS AND METHODS
Animals, Tumor Cell Lines, and Injections

Inbred C57BI/6 and SCID mice were anesthetized and 2.5-5 X
10° tumor cellsin 0.2 ml Hanks' solution were injected into the
right internal carotid artery as described previously (18). The
highly metastatic 3LL-HH tumor line was maintained in C57BI/
6 mice by serial intrasplenic transplantation of tumor cells ob-
tained from liver metastasis as described previously (18). The
B16 mouse melanoma and the A2058 and WM 983 human mel-
anoma cells were cultured in RPMI-1640 supplemented with
10% fetal bovine serum and 100 Units/ml penicillin, 0.1 mg/
ml streptomycin (all from Sigma Chemical Co., St. Louis, MO).
The 293 human renal cell carcinoma cells were cultured in Ea-
gle's MEM supplemented with 10% horse serum and 100 Units/
ml penicillin, 0.1 mg/ml streptomycin (Sigma). Before injec-
tions, cells were harvested by trypsinization and washed in
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Fig. 1. A: Lewis lung tumor cell (arrow) located in the cortex of mouse brain 3 days after tumor cell inoculation. Scale bar:
10 wm. B: Electron micrograph of the tumor cell shown in (A). Six capillary lumens (C1-C6) are visible in the vicinity of the
extravascular tumor cell. One process of the tumor cell (T1) is in contact with 5 of the 6 capillaries. Another process of the
tumor cell (T2) adheres to the outer side of capillary 5 (C5). Scale bar: 2 pum. C: Higher magnification of the area between
capillary 1 and 6. A thin cytoplasmic bridge (arrows) can be observed between the capillaries, connecting the process to the
main body of the cell. E; endothelium, Scale bar: 1 pm.

Hanks balanced salt solution (HBSS). Groups of 5 mice were
killed by anesthesia at various time points (3, 5, 7, 11, 14 days
after tumor cell injection in the cases of 3LL-HH and B16; 14,
21, 30 days in the cases of 293, A2058, and WM983). Exper-
iments were carried out in accordance with the animal protec-
tion laws of the Ethic Committee of Semmelweis University.

Transmission Electron Microscopy

Animals were perfused via the left ventricle with phosphate
buffered saline for 10 min and with 2.5% glutaraldehyde in 0.05
M Na-cacodylate (pH 7.2) for 15 min at room temperature.
Brains were removed, cut into 1 X 2-mm pieces and immersed
in 2.5 glutaraldehyde for 2 hours. The pieces were processed
as described previously (19) and analyzed on a Philips CM10
electron microscope.
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3D Visualization of the Vasculature of Brain Metastases

Sections 100 pm in thickness were incubated at room tem-
perature for 6 to 12 hours in a mixture of anti-laminin (rabbit
polyclonal 1:50; DAKO Corp., Carpinteria, CA) antibody for
BM identification plus anti-mouse CD31 (rat monoclonal,
1:100; Pharmingen, San Diego, CA) antibody for EC identifi-
cation or anti-aSMA (mouse monoclonal, 1:100; DAKO Corp.)
or anti-desmin (mouse monoclonal 1:200; DAKO Corp.) anti-
body for pericyte identification. After several rinses with PBS,
specimens were incubated simultaneously for 6 hours at room
temperature with the appropriate secondary antibodies (Cy5-
conjugated anti-mouse 1gG; FITC-conjugated anti-rat 1gG; rho-
damine-conjugated anti-rat 1gG; rhodamine-conjugated anti-
rabbit 1gG; FITC-conjugated anti-rabbit 1gG, all from Jackson
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Fig. 2. Extremely long and thin

process (arrowheads) of a Lewis lung tumor cell (T) adhering and advancing along the
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capillary basement membrane. One of the 3 capillaries (C1) is completely engulfed by the tumor cell. Scale bar: 2 pm. Inset
shows the region between capillary 1 and 2. The thin process of the tumor cell (arrows) adheres to both of the capillary basement

membranes (arrowheads). Scale bar: 1 um

Immunoresearch, West Grove, PA; 1:50) with or without nu-
clear staining with TOTO-3 (Molecular Probes, Eugene, OR; 5
pM) or propidium iodide (0.5 pg/ml, 5 min). For the lectin
staining of brain vasculature, FITC-labeled Lycopersicon es-
culentum lectin (100 pg in 0,1 ml of 0.9% NaCl; Vector Lab-
oratories, Burlingame, CA) was injected into the lateral tail vein
15 min before the animals were killed with Nembutal overdose.
Sections (100 pm) were cut and transferred to 6-well plates
containing methanol (—20°C). To avoid compression, small
pieces of cover slip of 150-pum thickness were inserted on both
sides of the mounted slice. For 3D reconstruction, up to 80
serial optical sections at 0.5- to 1.5-pm intervals were used.
Digitized image stacks were further processed using Bio-Rad
LaserSharp software (Bio-Rad, Hercules, CA).

Assessment of Endothelial Cell Labeling Index with
Bromodeoxyuridine (BrdU)

Two hours before the mice were killed, 200 mg/kg BrdU in
saline was injected intraperitoneally. Sections were fixed in meth-
anol (—20C°) and reacted sequentially with rat anti-mouse CD31,
rhodamine-conjugated anti-rat 1gG (1:50, Jackson Immunore-
search), 2N HCI (10 min, 20°C), anti-BrdU antibody (1:100, Bec-
ton-Dickinson, Franklin Lakes, NJ), biotinylated anti-mouse 1gG
(1:100, Vector), streptavidin-FITC (1:100, Vector), and with
TOTO-3. Slices were viewed by confocal microscopy. The la-
beling index of ECs was determined by counting the labeled as

well as al the EC nuclei (100/studied area) along the vessel
walls.

RESULTS

To elucidate the steps of GB formation from the very
early stages, we followed serially the growth of metas-
tases from individual extravasated cells to tumors reach-
ing 1 to 1.5 mm in diameter and investigated EC prolif-
eration and the distribution of pericytes. All miceinjected
with cells into the internal carotid artery developed ce-
rebral tumors, predominantly in the parenchyma and in
the choroid plexus, with smaller deposits in the meninges.
The growth rate of tumor lesions varied among the dif-
ferent cell lines. The process was most rapid in case of
murine tumors (3LL-HH and B16) and was much slower
in case of human cell lines (293, A2058, and WM 983).
Injection of a higher number of cellsled to a higher num-
ber of metastases; however, the morphology of the indi-
vidual lesions was not affected. Four of the 5 tumor cell
lines produced GBs subsequent to intracarotid artery im-
plantation. Although the growth pattern of the different
tumor lesions was similar (perivascular migration), we
were unable to detect GBs in B16 melanomas.

J Neuropathol Exp Neurol, Vol 62, June, 2003
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Fig. 3. A: Single loop of a cerebral capillary (arrow) induced by a large Lewis lung tumor cell adhering to the capillary
basal membrane (laminin, green) Note the laminin positivity of the cytoplasm of the tumor cell (arrowheads). B: Immunofluo-
rescent staining of microvessels for the endothelial cell marker CD31 (red) and the basal membrane component laminin (green).
Laminin-positive Lewis lung tumor cells are attached to the capillaries (arrowheads). One of the capillaries contains a triple
helical structure (arrows). C: Irregular capillary covered by several tumor cells (small arrowheads). One pronounced loop (arrow)
is observable. The red signal, corresponding to desmin-positive pericytes follows the green signal representing the capillary
basement membrane. A ruptured blind ended capillary is also present (large arrowhead). D: Small glomeruloid body consisting

J Neuropathol Exp Neurol, Vol 62, June, 2003
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The first changes in capillary structure were evident as
early as day 3 in the case of 3LL-HH and day 14 in the
case of human tumors. Electron microscopic analysis
showed numerous capillary lumens in the vicinity of the
extravasated tumor cells, some of them were apparently
situated within the body of the tumor cells (Fig.1). Tumor
cells produced often extremely long cellular processes,
which advanced along the basement membranes and en-
circled the capillaries (Fig. 2). Confocal microscopic
analysis has revealed that the first step in the development
of the multiluminal structures observed in sections was
the appearance of single microvascular helices induced
by the tumor cell firmly adhering to the basement mem-
brane and tugging the capillary (Fig. 3A). As the extrav-
asated tumor cells started to proliferate along the BM of
the capillaries, the number of the loops increased (Fig.
3B). The development of helical structures involved the
whole capillary tube, including pericytes (Fig. 3C).

After 3to 7 daysin the case of 3LL-HH and 14 to 21
days in the cases of 293, A2058, and WM 983, the tumor
cells began to increase in number, preferentially migrat-
ing along preexisting brain vessels while also adhering to
each other, and ultimately organized into metastatic tumor
cell nests. As a result, they further looped and twisted
the capillaries, which led to the development of small
GBs in the micrometastases (Fig. 3D). Electron micro-
scopic examination has not shown damaged endothelial
cells or pericytes within these lesions.

EC labeling index within the foci elevated to a rela-
tively low level (1%—2%) and remained there. Later (7—
10 days for 3LL-HH; 21-30 days for 293, A2058, and
WM983), the continuously proliferating and migrating
tumor cells pulled the capillaries into the metastatic tu-
mor nodules, leading to a tangled and chaotic intratu-
moral vascular network with multiple microvessel |oops
and spirals. This phenomenon led to the dramatic aug-
mentation of microvessel density within the metastatic
lesions, with a slightly higher EC labeling index than in
the normal brain and without morphological evidence of
branching activity. Concomitant with these events, be-
tween the tumor cell nests the diameters of the stretched
capillary segments radically decreased and, sometimes,
the increasing microvessel strain led to the rupture of the
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capillary walls (Fig. 3E). There appeared to be preexist-
ing capillary branching points present, which were in-
corporated into the tumor cell nest. In the GBs supplied
by multiple afferent microvessels, perfusion was often
reduced but not shut down entirely, whereas sometimes
the devolution of GBs supplied by a single afferent mi-
crovessel could be observed. Despite the microvessel
ruptures and the absence of ‘‘neovascularization,”” necro-
sis was scarce in the tumor cell nests, probably because
of the incorporated preexistent vascular bed and the mul-
tiple afferent microvessels supplying the tumor cells (Fig.
3F).

It is aso important to note that we did not detect dif-
ferences between the vasculature within the lesions and
that in the surrounding normal brain tissue with regard
to pericyte coverage and distribution (assessed by desmin
and aSMA immunoreactivity).

DISCUSSION

In the current study we investigated the development,
composition, and fate of GBs in the central nervous sys-
tem of mice. For this purpose, we injected cells from 5
different tumor lines (3LL-HH, B16, 293, A2058, and
WM983) into the internal carotid artery of C57BI/6 and
SCID mice and studied the growth, mechanism of vas-
cularization, and the EC proliferation of cerebral metas-
tases. Although B16 melanomas showed the uniform pat-
tern of growth (migration along preexistent vessels), they
failed to produce glomeruloid lesions. 3D reconstruction
of the vasculature by staining the capillaries with anti-
bodies against different microvessel wall components
(anti-CD31, anti-laminin, anti-desmin, and anti-aSMA)
and with Lycopersicon esculentum lectin demonstrated
that in contrast to the prevailing view, during GB for-
mation there is no morphological evidence of sprouting
or intussusceptive angiogenesis; instead, migrating and
proliferating tumor cells of the metastases pull the brain
capillaries into the tumor spheroid. The pulling force is
generated by the contractile cytoskeleton of the tumor
cells spreading on the surface of the capillary BM and
also adhering to each other. This force induces the
stretching (coupled to the reduction of the capillary di-
ameters) of the capillary segments between the tumor

P

of numerous capillary loops inside of a micrometastasis of the Lewis lung tumor cell line. The diameter of a capillary segment
(large arrow) lying outside the glomeruloid body is significantly reduced. Tumor cells (arrowheads) are attached to the other
very small diameter capillary (small arrow). E: Brain metastases stained for laminin, 28 days following inoculation of the
A2058 human tumor cell line. Glomeruloid bodies inside of the metastases are connected to each other by very small diameter
capillaries. A small discontinuity can be observed in one of these capillaries (arrow). The outline of the metastases are clearly
visible because of the strong laminin positivity of the tumor cells. F: Glomeruloid body inside of a metastasis of the WM983
human tumor cell line, 28 days following tumor cell inoculation. The capillaries of the glomeruloid body are well perfused by
FITC-labeled Lycopersicon esculentum lectin. The pictures are horizontal views of stacks of confocal images (60—80 optical
sections at 1-pm intervals). Nuclear staining was performed using propidium iodide (red) in (A) and (D). Scale bars: A-D =

20 pm; E, F = 50 pm.
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nodules and the parallel appearance of microvessel loops
(i.e. vascular coiling) within the tumor cell nests. The
growing tumor, expanding between the host vessels, in-
corporates the surrounding capillary branching points, re-
sulting in a chaotic and tortuous intratumoral vessel net-
work with multiple afferent and efferent microvessels
supplying the GB.

Various studies have analyzed the exact nature of the
cells comprising these elaborate vascular structures and
elucidated the microvascular morphology in GBs grown
in different types of human tumors and malformations.
These vascular aggregates with a superficial resemblance
to renal glomeruli are one of the diagnostic histological
features of glioblastoma multiforme (14, 20) and have
also been described in gastrointestinal carcinomas (21),
thymomas (22), cutaneous vascular tumors (23), ovarian
teratomas (24), and in brain metastases of lung cancer
(13). They are composed of several closely associated
capillaries surrounded by variably thickened BM within
which a limited number of pericytes is embedded (14).
Until now, however, the pathogenesis of GBs in experi-
mental tumor systems has remained unexplained. In a
previous study based on immunohistochemical and light
microscopic methods, the formation of multilumen vas-
cular structures and transvascular bridges in experimental
cerebral metastases is thought to be a form of nonsprout-
ing (i.e. intussusceptive) angiogenesis (11). Accordingly,
in our experimental system we observed similar struc-
tures by light and electron microscopy, which make pos-
sible only a 2D morphological assessment of the gross
vascular network, but cannot adequately describe the 3D
microvascular architecture. We applied therefore 3D re-
construction of confocal data, which revealed a different
mechanism of GB formation.

The only study dealing with this type of ‘‘angiogene-
sis” (in which the authors describe the steps of GB de-
velopment, stabilization, and regression induced by lo-
caly expressed VEGF) was performed in the ear skin of
nude mice in the absence of neoplastic cells (17). In this
anima model, GBs develop in mother vessels from re-
cruitment and proliferation of ECs and VEGF is essential
for their induction and maintenance. The commentary on
this article by Sundberg et a suggests a 5-stage sequence
to explain vascular changes during brain tumor progres-
sion (25): 1) vessel co-option; 2) angiopoetin-2 mediated
apoptosis of ECs; 3) tumor necrosis; 4) VEGF expression
of hypoxic tumor cells surrounding central necrosis; and
5) GB formation. In contrast to this hypothesis, we have
observed that GB formation starts immediately after tu-
mor cell extravasation, much earlier than necroses appear
within the metastases. Furthermore, our results suggest
that co-opted microvessels most probably act as a passive
string during GB development, and that this type of GB
formation is not related to neoangiogenesis. However, it
cannot be excluded that *‘active” and ‘‘ passive’” type of
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GB formation can operate concurrently in various tumor
types.

The central nervous system is unique in the structure
and function of its mesenchyme. In normal adult brain
the ““stroma’ consists of a dense network of oligoden-
drocytes, astrocytes, and numerous intertwining neuronal
processes (26). The parenchyma of the adult brain is gen-
erally a counter-adhesive and nonpermissive environment
for migration of tumor cells (27). A well-defined extra-
cellular matrix, which can provide a surface for the mi-
grating tumor cells, exists only around the cerebral cap-
illaries and in the glial limitans externa. The presence of
the classical BM proteins, laminin, collagen type 1V, and
fibronectin, is limited to these structures (27, 28). The
absence of a supportive connective tissue in the brain
parenchyma is important in 2 ways. The tumor cells are
forced to proliferate along the preexisting microvessels,
a process referred to as perivascular migration or vessel
co-option (3). Alternatively, the lack of anchorage of the
cerebral microvessel network allows the force exerted by
the tumor cells firmly adhering to the capillary basement
membrane to cause capillary stretching (tug of war be-
tween the adjacent tumor nests) and the appearance of
microvessel loops within the tumor nodules. Although
sprouting activity was completely absent and only a slight
increase of the EC labeling index (1%—2%) was found
within the metastatic foci, 3D reconstruction of the vas-
culature demonstrated that GBs are tufted collections of
vascular channels (including the pericytes and the BM
surrounding the endothelia tube), suggesting that the lo-
cal increase of microvessel density does not necessarily
mean active angiogenesis and EC proliferation. Despite
the fact that the microvessel segments were thinned down
or sometimes ruptured between the GBs, tumor necrosis
was scarce, although we were able to follow the fate of
GBs until the metastases reached 1.5 mm in diameter.

In summary, our results suggest that the development
of vascular aggregates in micrometastases provides sur-
face and blood supply for the proliferating tumor cells,
but this process cannot be termed as true angiogenesis,
rather, it represents a remodeling of the existing vascu-
lature of the brain.
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Abstract

Angiogenesis is believed to be essential for the growth of meta-
static tumors in the brain. We analyzed the vascularization of tumors
formed by 4 epithelial cell lines (C38, ZR75, HT25, and H1650) and
a fibrosarcoma (HT1080) cell line injected into the brains of mice.
No peritumoral angiogenesis was observed. Tumors apparently ac-
quired their vasculature by incorporation of native vessels. Vessel
density was lower, but vessel diameter and vascular cell proliferation
were higher within all tumors versus those in the peritumoral tissue.
There was an inverse correlation between the number of incorporated
vessels and vascular cell proliferation. Epithelial tumors with push-
ing growth patterns had lower vessel density and elevated vascular
cell proliferation compared with invasive tumors. The incorporated
vessels retained their normal structure, with the exception of astro-
cyte foot processes that were replaced by tumor cells. Attachment to
the vascular basement membrane led to the differentiation of the
ZR75 breast cancer cells. In the HT1080 metastases, there was in-
tussusceptive angiogenesis, that is, the fibrosarcoma cells that were
attached to the vessel caused lumen splitting and filled the develop-
ing pillars. Branching angiogenesis was not observed either in the
tumors or in control cerebral wounds. These data suggest that
sprouting angiogenesis is not needed for the incipient growth of
cerebral metastases and that tumor growth in this model is a result
of incorporation of host vessels.

Key Words: Angiogenesis, Astrocyte, Brain, Carcinoma, Endothe-
lial cell, Fibrosarcoma, Metastasis.

INTRODUCTION

It is generally accepted that angiogenesis is necessary
for sustained growth of both primary and secondary brain
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tumors (1-4). The term angiogenesis refers to an increase in
vessel density along with the increase in endothelial cell (EC)
proliferation and is frequently used as a synonym for vessel
sprouting. In addition to incorporating host vessels, tumors
can also acquire their vasculature by inducing intussuscep-
tive microvascular growth or glomeruloid angiogenesis (5).
These vascularization mechanisms can act in concert to pro-
mote tumor growth.

During sprouting, ECs degrade the underlying base-
ment membrane and migrate into the connective tissue while
they maintain their basal-luminal polarity and immediately
form a slit-like lumen, which is continuous with the lumen of
the mother vessel. The polarized ECs continuously synthesize
their own basement membrane, and only the leading process
of the tip cell keeps contact with the interstitial collagen or
with the provisional fibronectin/fibrin-rich extracellular ma-
trix. The connective tissue is essential for basement mem-
brane deposition because it is not deposited on the surface of
other cells under normal conditions (6).

Intussusceptive angiogenesis refers to blood vessel for-
mation by insertion of connective tissue columns, called tissue
pillars, into the vessel lumen; the subsequent growth of these
pillars results in partitioning of the lumen (5). According to
the current view, the first steps of intussusceptive angiogen-
esis are the protrusion of the vascular wall into the lumen and
the development of inter-EC adherence. These are promptly
followed by the perforation of the EC bilayer by reorganiza-
tion of inter-EC junctions. Finally, perivascular cells appear,
and a collagenous matrix is deposited within the pillar (7).
However, our most recent findings suggest an alternative
model, that is, the suction and the subsequent transport of a
preexisting pericapillary collagen bundle through the vessel
lumen by ECs as a first step, followed by the immigration of
connective tissue cells and the deposition of new collagenous
connective tissue (8). Nevertheless, both models require ex-
tracellular matrix material, especially collagen fibers or cells
that are able to produce that material because the pillar, the
most important structure of this type of angiogenesis, contains
collagen fiber(s) (7). Thus, both sprouting and intussusception
require a collagenous matrix containing fibronectin, fibrin, and
collagen 1. Because the brain parenchyma lacks these mole-
cules (with the exception of artery walls), the significance of
these types of angiogenesis during vascularization of brain
metastasis is questionable.

In contrast, in a model of glomeruloid body formation
described earlier by our group in experimental brain metastases,
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the presence of collagenous matrix was not necessary be-
cause loops of the glomeruloid bodies were generated by the
pulling force of tumor cells firmly attached to the basement
membrane of the capillaries. This process includes a simple
reorganization of the original vascular structure of the brain
parenchyma with minimal proliferative activity of the ECs
(9). A different process of glomeruloid body formation occurs
in response to vascular endothelial growth factor (VEGF),
with proliferation of primitive ECs and pericytes in the wall
of mother vessels. Although collagen was detected around the
glomeruloid bodies in the brain (10), the question of whether
the presence of this matrix element is required in the process
is yet to be answered.

Increasing data suggest that vessel incorporation plays
an important role in the vascularization of both primary and
metastatic brain tumors, at least in the initial phase of their
progression (11, 12). Kiisters et al (11) showed that sprouting
angiogenesis is not necessary for vascularization of mela-
noma brain metastases in an experimental mouse model even
in the presence of high level of VEGF; instead, the tumors
they observed grew by vessel incorporation.

Previously, by injecting cancer cells into the carotid
artery of mice, we described a process of glomeruloid body
formation in brain metastases of anaplastic tumors (9). How-
ever, using that method, a very large number of microme-
tastases developed; the large overall tumor burden thereby
killed the animals before the metastases could evolve into
“macrometastases” (1-2 mm in diameter).

To ensure the development of “macrometastases” in
the present study, we injected cells of a human anaplastic
fibrosarcoma cell line and murine and human epithelial tumor
cells of colonic, breast, and lung origin directly into the brain
parenchyma. These cell lines formed differentiated tumors
and did not show the frequently observed pronounced peri-
vascular spread. They therefore proved to be more suitable
to study the consequences of the presumed angiogenic switch.
Our results suggest that an angiogenic switch does not occur
during the growth of these tumors in the brain parenchyma
and that they are supplied by the incorporated host vessels.

MATERIALS AND METHODS

Animals and Tumor Cell Lines

The C38 murine colorectal carcinoma line was main-
tained by serial subcutaneous transplantations in C57BL/6
mice. To produce brain metastases, subcutaneous tumors were
removed and cut into pieces (~2 mm®) with a surgical blade
and were digested in RPMI-1640 medium (catalog no. R8758§;
Sigma-Aldrich, St Louis, MO), supplemented with 0.7 mg/ml
collagenase (37°C for 45 minutes; Sigma-Aldrich). Cells were
filtered through 4-fold sterile gauze and centrifuged (800 X
rpm, 10 minutes, 4°C). The pellet was resuspended in 10 ml
of medium without any supplement; cells were counted, and
after centrifugation, the supernatant was removed. C57BL/6
mice received 10* cells in a volume of 2 ul.

Zr-75-1 human breast carcinoma (ZR75), HT25 human
colorectal carcinoma, H1650 lung adenocarcinoma, and HT1080
human fibrosarcoma cells were cultured in RPMI-1640 me-
dium supplemented with 10% fetal bovine serum (Sigma). Cells

980

in exponential growth phase were harvested by trypsinization
for 5 minutes at 37°C (trypsin-EDTA; Sigma) and resus-
pended in RPMI-1640 medium. After counting and centrifuga-
tion (800 x rpm, 10 minutes, 4°C), pellets were resuspended
in serum-free RPMI-1640 medium. After centrifugation, the
supernatant was removed, and the pellet was resuspended
(40-60 x 10° cells in a volume of 100—150 pl). Male SCID
mice received 8 to 12 x 10° cells in a volume of 2 p.l.

For tumor inoculation, mice were anesthetized with
intraperitoneal injection of ketamine-xylazine (80:12 mg/kg;
Sigma). A midline incision was made in the scalp and the
right parietal bone was drilled with a 21-gauge needle (Braun,
Melsungen, Germany) 2 mm posterior to the coronal suture
and 1 mm lateral to the sagittal suture. Cells were slowly in-
jected using a 10-p] Hamilton syringe. After inoculation, the
syringe was left in place for 15 to 30 seconds to prevent the
outflow of cells because of pressure changes in the brain.
The overlying skin was then closed. Mice were killed 7 to
10 days after inoculation of the C38 and HT1080 tumor cell
lines and 21 to 28 days after inoculation of the ZR75, H1650,
and HT25 tumor cell lines.

To investigate the general impact of the direct injec-
tion process on brain parenchyma, we examined mouse brains
after needle wounding as a control. The wounding was per-
formed under the same conditions as those applied during
tumor inoculation with the exception of tumor cell injections.
Mice were killed after 2, 3, 4, 5,7, 9, 14, and 21 days.

Immunofluorescence

Primary antibodies and reagents used for immuno-
fluorescence are listed in Table 1. Appropriate secondary
antibodies (Jackson ImmunoResearch, West Grove, PA) were
used. All samples were analyzed by confocal laser scanning
microscopy using the Bio-Rad MRC-1024 system (Bio-Rad,
Richmond, CA).

Assessment of Vascular Cell Proliferation by
Bromodeoxyuridine Incorporation

At 1 hour before mice were killed, 200 mg/kg bromo-
deoxyuridine (BrdU; Sigma) in saline was injected intraperito-
neally. Brains were removed and frozen. Ten-micrometer-thick
cryostat sections were stained with toluidine blue and exam-
ined by light microscope. The sample was selected for im-
munofluorescence analysis when the tumor was localized in
the brain parenchyma without affecting the corpus callo-
sum. Methanol fixed (10 minutes at —20°C) frozen sections
were incubated with 2N HCI (10 minutes at 20°C) and incu-
bated with primary antibodies against BrdU and laminin
(1 hour at 20°C; Table 1). After incubating with appropriate
secondary antibodies, sections were counterstained with
diamino-phenylindole. Sections were analyzed by a Nikon
TE300 fluorescent microscope (Tokyo, Japan) using a 100x
objective with a field diameter of 200 pwm. Blood vessels
within the tumor and within 200 pwm distance from the
periphery of the lesion (tumor or needle wound) were identi-
fied by laminin staining. All nonlabeled and labeled nuclei
lying within the basement membrane (i.e. ECs and pericytes)
were counted (100-500 cells/animal, 3—6 animals/tumor line).

© 2011 American Association of Neuropathologists, Inc.
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TABLE 1. Primary Antibodies and Fluorescent Dyes Used for Immunofluorescence

Antibody Species Manufacturer Catalog No. Dilution
BrdU Mouse monoclonal Becton Dickinson (San Jose, CA) 347580 1:50
CD31 Rat monoclonal BD Pharmingen (San Diego, CA) 550275 1:50
CD49c¢ Mouse monoclonal Novocastra (Newcastle, UK) NCL-CD49¢ 1:100
Claudin 3 Rabbit polyclonal Invitrogen (Carlsbad, CA) 34-1700 1:50
Collagen I Rabbit polyclonal Chemicon (Temecula, CA) AB765P 1:100
Smooth muscle actin Mouse monoclonal DAKO (Carpinteria, CA) MO0851 1:200
Desmin Rabbit polyclonal Lab Vision (Fremont, CA) RB-9014-P 1:200
Epithelial membrane antigen Mouse monoclonal Novocastra NCL-EMA 1:50
Glial fibrillary acidic protein Mouse monoclonal BD Pharmingen 556330 1:100
Laminin Rabbit polyclonal DAKO 70097 1:200
Laminin 5 Rabbit polyclonal Abcam (Cambridge, UK) 14509 1:50
Pan-cytokeratin—FITC Mouse monoclonal Sigma (St Louis, MO) F0397 1:50
Diamino-phenylindole Sigma 32670 1:100
Propidium iodide Invitrogen P3566 1:500
TOTO-3 Invitrogen T3604 1:500

The labeling index (LI) was calculated by dividing the num-
ber of labeled nuclei by the total number of nuclei counted. In
C38-derived tumors, the LI was also determined for the ves-
sels touching the periphery of the tumor.

Morphometry

Tumor size was determined using micrographs captured
with the 4 x objective. The brains were serially sectioned and
the largest extension (area) of the tumor was measured. A
theoretical diameter of the lesion was calculated from these
data. Vessel density (n/mm?), vessel size (diameter), and den-
sity of branching points were determined on micrographs of
CD31- and laminin-immunostained sections captured with
a 10x objective. All vessels (not only capillaries) in the in-
tratumoral and peritumoral region (up to 200 pm from the
tumor margin) were analyzed. Vessel size was determined by
measuring the smallest extension of the objects outlined by
laminin staining.

All parameters were determined using Quick Photo
Micro 2.2 software (Olympus, Tokyo, Japan). During evalu-
ation of branching points, the peritumoral area was used as
reference to avoid biased results owing to the differences in
branching intensity in the different cutting planes. Results are
expressed as fold increase compared with the surrounding
parenchyma. The above parameters, including BrdU labeling,
were determined in the cell-transferred and needle wounding
control brains. Data were evaluated using Student 7-test.

Western Blot Analysis

For the C38 tumor, cells were obtained from primary
cultures and prepared as described above but without colla-
genase digestion. For all analyzed cell lines, cultured cells
were harvested by trypsinization and resuspended in RPMI-
1640 supplemented with 10% fetal bovine serum. After
counting, cells were washed in RPMI-1640 and sterile PBS.
Cells (1 x 107) were resuspended and homogenized in 1 ml
of lysis buffer containing 10 mmol/L Tris, pH 7.5, 1 mmol/L
EDTA, 150 mmol/L NaCl, 1% Triton X-100, 0.5 mmol/L so-
dium orthovanadate, and protease inhibitor cocktail (Sigma).

© 2011 American Association of Neuropathologists, Inc.

After 30 minutes of incubation (4°C), lysates were centrifuged
(15 minutes, 13,000 x rpm, 4°C). Supernatants were stored at
—80°C. To determine total protein concentration, the Bio-Rad
Protein Assay based on the Bradford dye-binding procedure
(Bio-Rad) and BSA standard series were used. Protein sam-
ples were denatured in sodium dodecyl sulfate sample buffer
(95°C for 10 minutes).

About 12.5% polyacrylamide gel was prepared for
PAGE as follows: 80 g of protein sample was loaded per
lane, 1 ladder per gel (2 wl; Precision Plus Dual Color Protein
Standard; Bio-Rad). After running and transfer, the mem-
brane was blocked with 5% dried milk in PBS (overnight at
4°C). The membrane was incubated with anti-VEGF antibody
(1:1000) (Abcam, Cambridge, UK), biotinylated secondary
antibody, and finally with an ABC kit (Vector Laboratories,
Burlingame, CA). The membranes were developed by ECL
(catalog no. 34077; Thermo Scientific, Hampton, NH) or
DAB (Vector).

Quantitative Real-Time Reverse
Transcription—Polymerase Chain Reaction
Analysis of Cell Lines and Microdissected Tissues

Vascular endothelial growth factor A, platelet-derived
growth factor B (PDGF-3), and angiopoeitin 1 (Ang-1) ex-
pressions were analyzed in cell cultures. Total RNA was
extracted from cells using TRIzol (Invitrogen). The expres-
sions of angiogenic factors and their receptors were ana-
lyzed using 12-pm-thick frozen brain sections. The sections
were fixed in methanol (—20°C for 10 minutes) and were
stained with RNase-free hematoxylin. Intratumoral and peri-
tumoral (within 200 pm distance from the periphery of the
lesion) regions were microdissected (180-250 wm?/animal,
2 animals/tumor cell line) using the PALM MicroBeam sys-
tem (Carl Zeiss Microlmaging, Jena, Germany). Total RNA
was isolated using RNAqueous-Micro Kit (Applied Biosys-
tems, Weiterstadt, Germany).

High-capacity complementary DNA (cDNA) reverse
transcription kit (Applied Biosystems) was used for cDNA
synthesis as recommended by the supplier. Pooled cDNA
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TABLE 2. TagMan Assays Used for Quantitative RT-PCR
Analysis

Cell Lines: C38 HT25, H1650, ZR75, HT1080
VEGF-A (Mm01281449) VEGF-A (Hs00173626)
PDGFB (Mm01298578) PDGFB (Hs00234042)
ANG-1 (Mm01129232) ANG-1 (Hs00162807)
VEGFR-2 (Mm00440099) VEGFR-2 (Mm00440099)
PDGFRp (Mm01262489) PDGFRp (Mm01262489)
TIE-2 (Mm00443242) TIE-2 (Mm00443242)

ANG-1, angiopoeitin-1; PDGF, platelet-derived growth factor; PDGFR, platelet-
derived growth factor receptor; TIE-2, receptor tyrosine kinase for ANG-1; VEGF,
vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.

samples of 2 animals were used for polymerase chain reac-
tion (PCR) analysis. Quantitative RT-PCR was performed by
the ABI Prism 7300 Sequence Detection System, using ABI
TaqMan gene expression assays (Table 2). B-actin (part no.
4352935E, Assay ID: Mm00607939) was used as an endog-
enous control. All samples were run in triplicate in a 20-pl
reaction volume. Results were obtained as threshold cycle
(CT) values. Expression levels were calculated using the
ACT method. The values were calculated as a ratio to B-actin
expression. The expression levels of the human angiogenic
factors were determined using human-specific 3-actin primers
in the intratumoral samples. Because the RNA of the intra-
tumoral growth factor receptors was of murine origin in the
case of the human tumors, low intratumoral murine B-actin
levels could lead to distortion of the data resulting in ex-
tremely high relative receptor RNA levels as compared with
peritumoral brain tissue. Therefore, the intratumoral values
were related to the peritumoral murine B-actin levels. The data
were also corrected by the vessel content (vessel number x
vessel size = vessel surface) of the given tissue. For a good
comparison, the same procedure was applied for the C38
murine colon carcinoma tumor line.

RESULTS

We studied the process of vascularization in 5 tumor
cell lines (C38 murine colon carcinoma, HT25 colon, H1650
lung and ZR75 mammary carcinomas and HT1080 fibro-
sarcoma) injected directly into the brain parenchyma of mice.
The largest area occupied by the tumor was determined for
each case (Table 3). From these data, a theoretical diameter
of the lesion was calculated. The average of diameters in each
tumor type reached the postulated size of tumors (1-2 mm
diameter) at which angiogenic switch should occur.

Of the 5 tumors, the 2 colon carcinomas (Figs. 1A and
2A, B) and the anaplastic fibrosarcoma (Fig. 2E) showed
pushing-like growth patterns (13, 14). The H1650 lung and
ZR75 mammary carcinoma cell lines showed more invasive
characteristics; the lung adenocarcinoma cells remained cohe-
sive (Figs. 1B and 2C), but the brain parenchyma adjacent to
the mammary carcinoma contained scattered round single tu-
mor cells (Figs. 1C and 2D).

We determined the vessel density inside and within a
200-pm distance from the periphery of the tumors (Table 3).
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FIGURE 1. Hematoxylin and eosin—stained sections of representative tumors showing invasive growth patterns. (A) The pushing-
type HT25 colon carcinoma has a smooth surface. (B) Cohesive cell islands of the H1650 lung carcinoma extend into the brain
parenchyma. (C) Scattered single cells and small tumor nests infiltrate at the border of the ZR75 breast carcinoma. Scale bar =

50 um (A-C).

All tumors had decreased vessel density compared with sur-
rounding brain parenchyma. In addition, there was no signifi-
cant change in the vessel density around the tumors compared
with control animals and no sprouting vessels were observed.
Moreover, although vessel dilatation is characteristic of mother
vessel formation preceding sprouting angiogenesis (6), this
phenomenon was not observable in the peritumoral brain pa-
renchyma (Table 3 and Fig. 2). An exception was the C38
murine colon carcinoma where the vessels in touch with the
surface of the tumor were considerably dilated compared with
control vessels (Table 3 and Figs. 2A, F). The diameters of in-
tratumoral vessels were significantly increased in all tumors
compared with the vessels in the surrounding parenchyma,
but this can be considered biologically significant only in the
2 colon carcinomas. Supporting this theory, the LIs of the
vascular cells (ECs cells and pericytes) were considerably in-
creased only within the pushing growth type tumors. In the
2 more invasive tumors (ZR75 and H1650), the LI of the vas-
cular cells within the tumor remained at a moderate low level.
Characteristically, the proliferation rate of the peritumoral vas-
cular cells was negligibly low in the case of all tumor types
(Table 3).

In the HT 1080 tumor (which also showed a pushing-
type growth pattern), a high vascular cell proliferation rate
was not accompanied by marked dilatation of the vessels.
This can be explained by our observation that, in this tumor, a
process reminiscent of intussusceptive angiogenesis takes
place (Fig. 3A). Transluminal pillars (hallmarks of this type
of angiogenesis [7]) inserting into the vessels contained no
collagen bundles; instead, they were filled with tumor cells
(Fig. 3B). In accordance with the intussusceptive angiogenesis-
like process taking place in the HT1080 tumor, the number

© 2011 American Association of Neuropathologists, Inc.

of vessel ramifications (branching points) was significantly
higher than in the other tumors (Table 3).

In connection with the proliferation activity (LI) of the
intratumoral and peritumoral vascular elements, we analyzed
VEGF, PDGF-B, and Ang-1 expressions by quantitative real-
time RT-PCR in the 5 tumor cell lines and in microdissected
intratumoral areas of their brain metastases (Fig. 4). Mes-
senger RNA (mRNA) expression levels of these angiogenic
factors in the cell lines and in the tumor samples correlated
well (Figs. 4A, B). Interestingly, the C38 murine colon car-
cinoma and the HT1080 fibrosarcoma lines (i.e. those with the
two highest intratumoral vascular cell LI) showed the lowest
intratumoral angiogenic factor levels. Microdissected intra-
tumoral HT25 samples showed the highest VEGF and Ang-1
mRNA expression levels (Fig. 4B). With respect to PDGF-§3,
examination of microdissected intratumoral areas revealed that
brain metastases of the ZR75 cell line exhibited the highest
mRNA expression of this angiogenic factor (Fig. 4B).

The expressions of VEGFR-2 (VEGF receptor 2),
PDGFR-B (PDGF receptor ), and Tie-2 (an angiopoietin re-
ceptor involved in blood vessel remodeling and stabilization)
were also determined in microdissected intratumoral and
peritumoral areas of brain metastases. Messenger RNA ex-
pression of these receptors was always higher in the tumor
areas than in the peritumoral brain tissue (Fig. 5). To inves-
tigate the potential role of the key angiogenic molecule VEGF
in the growth of experimental cerebral metastases further, we
carried out Western blot analysis of the 5 cell lines. Although
quantitative RT-PCR analysis showed large differences in
VEGF expression levels among the cell lines (Fig. 4A), only
small variations were observed in protein expression levels
(Fig. 4C). Neither the intratumoral angiogenic factor mRNA
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levels (VEGF, PDGF-B, and Ang-1) nor the intratumoral nificant correlation between VEGF protein levels and the LI
mRNA expression of their receptors (VEGFR-2, PDGFR-(3, of intratumoral blood vessels.

and Tie-2) correlated with the proliferation rate (i.e. LI) of the In the pushing-type tumor growth pattern, the brain pa-
intratumoral vascular cells. Furthermore, there was no sig- renchyma was displaced and the vessels incorporated into the

© 2011 American Association of Neuropathologists, Inc.
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FIGURE 3. (A) Structure of intratumoral vessels of the HT1080 fibrosarcoma. The section is stained for laminin. Horizontal view of
32 optical sections. Numerous loops (intraluminal pillars) (asterisks) were formed during the intussusceptive angiogenesis-like
process. (B) Vessel loop within the HT1080 tumor. The section is stained for laminin and by propidium iodide to highlight the cell
nuclei. Numerous tumor nuclei are visible in the intraluminal pillar. The black hole labeled “X” is not a pillar; it represents the lumen
of a vessel originating from this area. Scale bar = 25 um (A, B).

tumors (Figs. 2A, B, F). Astrocytes were detached from the
vessels in all tumor types but, with the exception of the ZR75
mammary carcinoma (Figs. 6A-D), only small numbers of
these cells were incorporated into the tumors. In contrast, desmin-
positive pericytes covered by basement membrane remained
attached to the vessels and became incorporated (Figs. 6B, D).
The intratumoral vessels showed remarkable changes. For ex-
ample, their pericytes started to express smooth muscle actin
(SMA) (Figs. 6E, F), but collagen I-containing extracellular
matrix material around the intratumoral vessel was not depos-
ited in any of the tumors (data not shown). In the C38 colon
carcinoma tumors, even vessels just touching the periphery of
the tumor were covered with SMA-positive pericytes. Human
tumor cells were attached to the basement membrane of the
vessels and deposited their own basement membrane on the

surface of the vascular basement membrane (Fig. 7A). This
newly synthesized basement membrane contained laminin 5;
the tumor cells attached it using the az-integrin (Figs. 7B, C).
The consequence of this attachment process was most intri-
guing in the mammary carcinoma cell line. Scattered, round
tumor cells in the parenchyma eventually became invasive,
detached the astrocytes from the basal surface of the capil-
laries, and came into contact with the basement membrane.
This close proximity apparently induced these tumor cells to
differentiate, that is, they became polarized with claudin 3 and
EMA expression at their apical and as-integrin at their basal
surface (Figs. 7D-H).

As a control, we also analyzed the effects on vessel
density, size, vascular cell proliferation, and extracellular ma-
trix deposition from day 1 to day 21 after needle wounding

FIGURE 2. Overview of brain metastases of tumors of different origin. Similar micrographs were used to determine the morpho-
metric parameters of the peritumoral and intratumoral vessels. Note the normal appearance and distribution of the peritumoral
vessels. (A) C38 colon carcinoma 7 days after inoculation. The section is stained for CD31 (green) and laminin (red). The tumor
(upper part of the micrograph) contains dilated vessels. (B) HT25 colon carcinoma 28 days after tumor inoculation. The section is
stained for pan-cytokeratin (green), smooth muscle actin (SMA; red), and laminin (blue). Anti-human pan-cytokeratin highlights
the smooth surface of the tumor, which is characteristic feature of the pushing type of tumor growth. The intratumoral vessels are
moderately dilated and are frequently stained positively for SMA. (€) H1650 lung carcinoma 28 days after tumor inoculation. The
section is stained for as-integrin (green) and laminin (red). The anti-human integrin staining highlights the tumor. The border of
the tumor shows invading tumor cell groups that remain cohesive and are in contact with the main body of the tumor. The vessel
density is lower within the tumor than in the surrounding parenchyma but the vessels are not noticeably dilated. (D) ZR75
mammary carcinoma 21 days after tumor inoculation. The section is stained for pan-cytokeratin (green) and laminin (red). Anti-
human pan-cytokeratin staining highlights the tumor. Note the compact structure of the tumor in the center and the scattered
single tumor cells in the parenchyma at the periphery of the tumor. Vessels inside the tumor are not markedly dilated. (E) HT1080
fibrosarcoma 8 days after tumor inoculation. The section is stained for CD31 (green) and laminin (red). Laminin synthesized by the
tumor cells highlights the tumor. As in the case of HT25 colon carcinoma, the smooth tumor-parenchyma interface indicates a
pushing-like growth pattern. Note the numerous branching of the vessels within the tumor. (F) High-power micrograph of the
periphery of the C38 colon carcinoma stained for CD31 (green) and laminin (red). Laminin is localized at the tumor (upper right
part of the picture)-parenchyma interface. The tumor “flows” around the vessels (arrows), thereby incorporating them into the
tumor. Arrowhead indicates an incorporated vessel. Scale bars = 200 pm (A-E); 50 um (F).
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FIGURE 4. (A) Analysis of vascular endothelial growth factor (VEGF), platelet-derived growth factor-g (PDGF-B), and angiopoeitin-1
(Ang-1) expression in cultured tumor cell lines by quantitative RT-PCR. (B) Analysis of VEGF, PDGF-B, and Ang-1 expressions in micro-
dissected intratumoral samples by quantitative RT-PCR. (C) Analysis of VEGF expression in cultured tumor cell lines by Western blot.
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FIGURE 5. Comparison of vascular endothelial growth factor
receptor-2 (VEGFR-2) (A), platelet-derived growth factor-3
(PDGF-B) (B), and Tie-2 (C) expression in microdissected peri-
tumoral brain (a 200-pm-wide band of brain tissue immediately
adjacent to the surface of the metastatic nodule; gray columns)
to those of microdissected intratumoral samples (black columns).

(Figs. 8A, B). We did not detect an increase in vessel density
inside or around the wound at any time point. In contrast,
vessel numbers were significantly lower up to day 9, and the
vessel diameters did not change. Proliferating vascular cells
were detected between days 2 and 5, with a peak at day 3, but
the LI remained negligibly low (Fig. 8B). No deposition of

© 2011 American Association of Neuropathologists, Inc.

collagenous extracellular matrix material within or around the
wound could be detected up to day 21 after wounding.

DISCUSSION

It is widely believed that under pathologic conditions
angiogenesis (sprouting) occurs in the brain. Increased vessel
density compared with the normal brain was observed in
brain tumors or metastases and after medial cerebral artery
occlusion or needle wounding (1, 15-20). In contrast, others
have reported decreased vascular density within metastases
(21, 22) and that tumors in the brain can grow by vessel co-
option without inducing sprouting angiogenesis (11, 12).
These authors found that antiangiogenic therapy for exper-
imental brain metastases can trigger alternative vascularization
mechanisms (e.g. vessel co-option) and thus might promote
increased metastatic potential (11, 12). Similarly, proinvasive
effects of antiangiogenic drugs have been observed in a num-
ber of preclinical glioblastoma studies (23-25). Thus, primary
and metastatic brain tumors targeted with angiogenesis inhib-
itors may evade their incapability to stimulate new vessel
growth by becoming more invasive and/or switching to ves-
sel co-option. Although magnetic resonance imaging (26, 27)
and autopsy tissue (28) findings in glioblastoma patients have
also suggested increased invasion as a mode of escape from
antiangiogenic therapy, there are only limited clinical data to
support the existence of such an adaptive mechanism in sec-
ondary brain tumors. However, antiangiogenic drugs have not
been systematically investigated in cerebral metastases, mainly
owing to concerns about the potential bleeding adverse ef-
fects. Nevertheless, human trials have been launched to study
the clinical effects of these drugs in metastatic brain tumors (29).

On the basis of the results of the present study, we
conclude that in the experimental system used no sprouting
and intussusceptive angiogenesis takes place in the brain pa-
renchyma during tumor growth; this was also observed af-
ter needle wounding. The tumors acquired their vasculature
merely by incorporation of preexisting host vessels. Sprouting
and intussusceptive angiogenesis are always accompanied by
an increase in vessel density compared with the normal tissue
(5, 6), but we did not observe this in the peritumoral brain
parenchyma in which there was only a very low level of vas-
cular cell proliferation that corresponded with a lack of cap-
illary sprouting. The drop in vessel density within the tumor
compared with the peritumoral tissue supports earlier obser-
vations that tumors grow into the peritumoral vessel network
and thereby dilute it (30, 31). We previously made a similar
observation in cases of human and experimental primary
melanomas in which robust sprouting angiogenesis was ob-
served in the peritumoral connective tissue but which ceased
completely as the vessels became incorporated into the tumor
tissue that lacked connective tissue (31).

The lack of sprouting and intussusceptive angiogene-
sis is most probably due to the absence of connective tissue
matrix in the brain parenchyma and within the tumors them-
selves. Collagen III was detected in a series of autopsy cases
in brain metastases of differentiated human tumors (32),
whereas in the present experimental paradigm, there was a
lack of connective tissue. This discrepancy may be due to the
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FIGURE 6. (A) ZR75 tumor cells are attached to a brain capillary (C) but the capillary is not yet completely covered by tumor cells.
The tumor cells are also tightly adhered to each other. Astrocyte foot processes still cover a small area (arrow). In contrast, in
the brain parenchyma, single tumor cells (T) are dispersed. One of these tumor cells is in mitosis (M). (B) Higher magnification
of the capillary shown in A in a different sectioning plane. The tumor cell (T) is adhered directly to the basement membrane of
the capillary (C), similarly to the remaining astrocytes (A). The pericyte (arrow) keeps its original position between its own (small
arrowhead) and the capillary (large arrowhead) basement membrane. E indicates endothelial cell; T, tumor cell. (C€) Intratumoral
area of the H1650 lung carcinoma. The section is stained for CD31 (green), glial fibrillary acidic protein (GFAP, red), and laminin
(blue). The incorporated vessels are completely covered by basement membrane; GFAP-positive cells are rarely incorporated by the
tumor. (D) Section of a HT1080 brain metastasis stained for CD31 (green), GFAP (red), and desmin (blue). The incorporated vessels
are positive for the pericyte marker desmin. GFAP-positive cells are present only at the surface of the metastasis. (E, F) Section of a
HT1080 brain metastasis stained for smooth muscle actin (SMA) (green), laminin (red), and TOTO3 (blue). E corresponds to the
merged picture of the red, green, and blue channels. F shows the SMA staining. TOTO3 staining highlights tumor nuclei. In the
brain parenchyma, only arterioles are positive for SMA (arrowheads). In contrast, most of the intratumoral vessels are positive for
SMA; there is particularly strong staining at the periphery of the metastasis. Scale bars = 5 um (A); 1 um (B).
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FIGURE 7. (A) Sections of H1650 and HT25 (inset) tumors stained for monoclonal anti-human laminin (red) and polyclonal anti-
laminin (blue); the latter reacts with both human and mouse laminin. The tumors are highlighted by anti-human pan-cytokeratin
(green). Note that human laminin is deposited on the surface of the vascular basement membrane. Inset shows a vessel that is
incorporated partially into the tumor (arrowhead). Human laminin is deposited exactly as far as the tumor extends along the
capillary. (B) ZR75 tumor stained for laminin 5 (red). The tumor is highlighted by anti-human pan-cytokeratin (green). Laminin 5 is
deposited inside the tumor on the basal side (which corresponds to the surface of the incorporated vessels) of the polarized tumor
cell nests. Inset shows that a separate basement membrane (large arrow) of the tumor (T) is deposited in the close vicinity of the
vascular basement membrane (small arrow). E indicates endothelial cell. (€) HT25 tumor stained for as-integrin (green) and
laminin (red). Nuclei are stained by TOTO3 (blue). Yellow color indicates colocalization of the integrin and laminin at the outer
surface of the vessels (arrows). The integrin is also present at the lateral but not at the apical surface (arrowheads) of the tumor cells.
(D, E) ZR75 mammary carcinoma stained for CD31 (green), claudin3 (red), and pan-cytokeratin (blue). D shows the triple labeled
tissue; E shows the green and the red signal. Claudin is expressed on the apical surface of the tumor cells, which show a differ-
entiated pattern organized around the vessel. (F) ZR75 tumor stained for epithelial membrane antigen (EMA, green) and laminin
(red). EMA is expressed on the apical surface of the tumor cells, which is organized in a differentiated fashion around the basement
membrane of the vessels. (G, H) ZR75 tumor stained for as-integrin (green) and laminin (red). G shows the double labeling;
H shows the localization of the integrin. Note that the green signal outlines the outer surface of the vessels (arrows). Arrowhead
points at a vessel that is only partially populated by tumor cells. Scale bars = 50 um (A-C, F-H); 25 um (D, E); 1 um (B, inset).
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A Morphometric analysis of vessels following needle wound
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FIGURE 8. (A, B) Morphometric parameters of vessels (A) and
proliferation rate of vascular cells (B) after needle wounding.
There was a significant difference (p < 0.05) between vessel
density of control brain parenchyma (ctr) and vessel density
around the wounds at days 2, 3, 4, 5, 7, and 9. LI indicates
labeling index.

longer existence of metastases in the human brain that might
allow the tumor to contact sites where collagen-producing
cells are located (e.g. the leptomeninges). Another explan-
ation could be the differentiation of pericytes into collagen-
producing cells by detachment and migration away from the
vessels (33). In the present study, there was no suggestion that
this transdifferentiation occurred; pericytes were consistently
localized near the vessels and were covered by intact base-
ment membrane to which the tumor cells attached. In contrast,
in pushing-type metastases of the C38 tumor in the liver,
collagen I—containing connective tissue was always situated
between the vessel and the tumor; extracellular matrix—
producing and SMA-expressing cells appeared very early at
the surface of the growing tumor nodulus and became incor-
porated into the tumor together with the vessels formed by the
fusion of sinusoids (13). Such cells were not observed in the
brain metastases or around needle wounds in the present study.

There was a correlation between the growth pattern and
the vascular structure of the tumors. The 2 epithelial tumors
with pushing growth characteristics (C38 and HT25) incor-
porated fewer vessels that were more dilated compared with
those within the 2 more invasive tumors. Together with the
finding that the proliferation of vascular cells was increased
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within these tumors, this suggests that the newly formed ECs
provide a source for capillary dilatation instead of participat-
ing in new vessel formation.

Vascular cell proliferation rates did not correlate with
VEGF, PDGF-f, or Ang-1 mRNA expression of the tumor
cell lines, either in vitro or in the microdissected tumor sam-
ples. Similarly, there was no obvious association between
in vitro VEGF protein expression of the cell lines and pro-
liferation rates of vascular cells within the metastases. How-
ever, we found an increase in the mRNA levels of their
receptors as we moved from peritumoral brain tissue toward
intratumoral areas, regardless of tumor type in laser-capture
microdissection samples. This might connected either be to an
increase in intratumoral vascular cell proliferation or to the
capillary-stabilizing effects of PDGF- or Ang-1 (34). Nev-
ertheless, the intratumoral vascular cells themselves could
produce both PDGF- and Ang-1 (35).

The data suggest that the low level of vessel incorpo-
ration in the 2 epithelial tumors with pushing growth charac-
teristics was compensated for by an increased surface area
of the intratumoral vessels and, vice versa, the high rate of
vessel incorporation made the increase of individual vessel
surface unnecessary in the H1650 and ZR75 tumors. On the
other hand, the HT1080 tumor showed enhanced prolifera-
tion of vascular cells without an increase in vessel diameters.
This might be explained by the observed intussusceptive
angiogenesis-like process within this tumor. A similar process
was observed during in vivo microscopy in human gliomas
(36, 37). Collagen-containing pillars within the vessel lumen
are the hallmarks of intussusceptive angiogenesis and the
“normal” mode of this angiogenesis type requires the pres-
ence of collagen bundles or cells that are able to synthesize
collagen (7). Although the mechanism of the formation of
these pillars is debated, the mechanism observed here is dif-
ferent because this process is dependent on the activities of
the tumor cells. Within the growing tumor, forces that can
press the opposite sides of the vessels inward may be gen-
erated, leading to the contact of the luminal surfaces of ECs
to each other. This can be followed by the reorganization of
the inter-EC junctions and, subsequently, the formation of a
pore in the vessel wall, as described by Burri et al (7). The
pore increases in size as it is immediately filled by invading
tumor cells. This process is another example (along with the
formation of glomeruloid bodies owing to the pulling force
exerted by tumor cells attached to the basal membrane of the
brain capillaries [9]) of how tumor cells can reorganize the
vessel structure of the brain. In this respect, this process
cannot be termed frue angiogenesis because it is dependent
on the invasive capacity of the tumor cells.

In the brain parenchyma, the lack of connective tissue
(and of cells which are able to produce it) leaves the tumor
cells with only one extracellular matrix element to attach to,
that is, the vascular basement membrane. This attachment
results in a mechanical insult of the vessel (which can lead to
the development of glomeruloid bodies [9]). In response to this
impulse, pericytes of the incorporated vessels start to express
the contractile cytoskeletal element SMA. According to the
observed SMA expression patterns, this mechanical effect
seems to be the highest at the tumor periphery, including the
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vessel incorporation zone. The basement membrane also
promotes the survival, growth of tumor, and differentiation
of tumor cells in the brain (38, 39). Indeed, we observed that
breast cancer cells “floating” in the brain parenchyma showed
undifferentiated morphology, but on attachment to the vascu-
lar basement membrane, they formed differentiated papillary
structures with claudin 3 and EMA expression at the apical
surface and laminin 5 and o;-integrin expression at the basal
surface.

In summary, the distinct structure and composition of
the brain parenchyma (a lack of connective tissue collagen-
producing cells) apparently prevents sprouting and intussus-
ception so that brain metastases acquire their vasculature
exclusively by vessel incorporation in the mouse brain. This
phenomenon may also be valid for small metastases in the
human brain. Although a small therapeutic window would re-
main open in the case of tumors with high intratumoral vas-
cular cell proliferation activity, confirmatory human results
would prompt the need to rethink the use of antiangiogenic
agents under these conditions.
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A mechanism for stroma formation (development of vasculature
and supportive connective tissue) is suggested in an experimental
“pushing-type” colorectal carcinoma liver metastasis model. The
key element is the appearance of smooth muscle actin (SMA)-posi-
tive cells and the sinusoidal lakes at the border of the metastases.
These lakes are the consequence of the disappearance (‘stepping
back’ of hepatocytes from the border zone, resulting in the fusion
of partially capillarized sinusoids. The growing tumor incorpo-
rates SMA-expressing cells and sinusoidal lakes. SMA-positive
cells produce collagenous matrix, whereas the lakes become the
central vessels within the connective tissue columns. Formation of
these columns within the tumor is a consequence of the compres-
sion atrophy of the base of the incorporated liver tissue, leading to
partial separation of the innermost part of the invagination con-
taining functional vessel(s) from the surrounding liver.

© 2005 Wiley-Liss, Inc.
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Several different mechanisms of anglogenesm exist in primary
tumors and metastases, e.g., capillary sprouting,' intussusceptive
anglogenesm 23 vessel mcorporatlon4 and glomeruloid body for-
mation.>® Tumor-induced ang10genes1s depends on both tumor
type and site of tumor growth.” Sprouting-type angiogenesis
occurs in tlssues contammg large amounts of collagenous matrix
(e.g., skin).* In contrast, in organs containing a vast number of
microvessels and a low amount of connective tissue (e.g., lungs
and liver, the main targets for metastasis), formation of new capil-
laries is less important In this “soil”, tumors can grow without
neoanglogenesls by simply incorporating the preexisting vascula-
ture.® The incorporation of new and preex1st1ng host vessels is also
a basic option for tumor vascularization in primary malignant
melanomas.*

Three different growth patterns (replacement, pushing and des-
moplastic) for liver meta%tasm of colorectal and breast cancers
have been described.”'® During replacement growth, the architec-
ture of the liver is preserved and the endothelial cells of sinusoids
show low proliferative activity. However, pushing and desmoplas-
tic types of growth disturb the liver architecture. In the pushing
growth pattern, severely compressed liver parenchyma is present
at the surface metastases, whereas a fibrous capsule develops at
the tumor-liver parenchyma interface in the desmoplastic growth
pattern.

Earlier, we described 2 angiogenesis patterns, depending on the
localization of the metastases of the anaplastic 3LL-HH tumor
within the liver.” During growth of sinusoidal-type metastases,
invading tumor cells advanced between the basement membrane
and the endothelial lining of the sinusoids, evoking proliferation
of endothelial cells. This process resulted in the development of
large tortuous vessels without basement membrane inside the
tumor nodules. Conversely, sprouting-type angiogenesis was
observed in portal-type metastases. The replacement growth pat-
tern corresponds to sinusoidal-type metastases of undifferentiated
tumors, while the desmoplastic one shows similarities to portal-
type metastases.

However, no mechanism of angiogenesis is known for pushing-
type liver metastases.

Eﬁﬁ\ - Publication of the International Union Against Cancer
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In the present report, we describe a mechanism for the develop-
ment of vasculature and supportive connective tissue in pushing-
type liver metastases of an experimental colorectal cancer. The
process includes the proliferation of smooth muscle actin (SMA)-
positive hepatic stellate cells on the surface of the tumor spheroid
accompanied by fusion of the sinusoids, forming vascular lakes in
this region. Together with the proliferating and collagen-produc-
ing stellate cells, these vascular lakes are incorporated into the
tumor mass. The entrapped sinusoidal lakes are partially separated
from the liver tissue by the invading tumor mass, resulting in the
development of vessel-containing connective tissue columns,
which traverse the tumor.

Material and methods
Animals and tumor line

The C38 colorectal carcinoma line was maintained by serial s.c.
transplantations in C57B1/6 mice. (Inbred C57B1/6 mice from our
institute were used throughout the studies.) Tumor tissue was cut
into small pieces in serum-free RPMI-1640 medium and digested
by collagenase I (Sigma, St. Louis, MO; 7 mg collagenase/10 ml
medium) at 37°C for 30 min; the suspension was filtered through
4-fold gauze. After centrifugation and washing, the viability of the
tumor cells was determined by the trypan blue excluswn test.
Liver metastases were produced by injecting 2 x 10% tumor cells
into the spleen of mice anesthetized by sodium pentobarbital
(Nembutal, 70 mg/kg). Animals were killed 9, 13 or 20 days fol-
lowing tumor cell inoculation.

Electron microscopy

Anesthetized animals (2 at each time point) were perfused via
the left ventricle with PBS for 10 min and with 4% paraformalde-
hyde and 1% glutaraldehyde in PBS (pH 7.2) for 15 min at room
temperature. Livers were removed, cut into 1 X 2 mm pieces and
immersed in the same fixative for an additional 2 hr. Pieces were
postfixed in 1% OsO, and 0.5% K-ferrocyanide in 0.05 M
Na-cacodylate for 2 hr, dehydrated in a graded series of acetone,
contrasted en bloc with 2% uranylacetate and embedded in Spurr’s
mixture. More than 40 different metastases were analyzed on
semithin sections stained by 0.5% toluidine blue (pH 8.5), of
which 15 were processed for electron microscopic analysis. Areas
of interest were trimmed out by comparing the structures on the
cut surface of the tissue blocks with the semithin sections. Ultra-
thin sections were cut by an RMC MT-7 ultramicrotome, stained
with lead citrate and analyzed using a Philips (Hamburg,
Germany) CM10 electron microscope.
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TABLE I - MORPHOMETRIC ANALYSIS OF VASCULARIZATION OF C38 COLON CARCINOMA METASTASES

Days after tumor inoculation

9 13 20
Number of metastases analyzed 181 112 81
% avascular metastases 80.1 2.7 0
Total area of metastases 27.1 116.1 554.1
analyzed (mm?)
Mean * SD of radius of cross 206 = 71 544 + 186 1,313 + 687
sections of metastases (Lm)
Range (um) 90-478 187-1,230 444-3,395
Total length of 13,933 142,662 595,868
invaginations ({m) .
Mean * SD of length of 452 + 284 1,170 = 210 1,161 = 417

invaginations/unit area
of metastases ( um/mmz)

We used 6, 8 and 8 mice at 9, 13 and 20 days after tumor inoculation, respectively. *p < 0.05 (vs.

9th day).

Immunofluorescence analysis

For immunofluorescence studies, 3, 5 and 4 mice were used at
9, 13 and 20 days after tumor inoculation, respectively.

Livers were removed and frozen in isopentane chilled with
liquid nitrogen. Cryostat sections (15-20 pm) were fixed in metha-
nol (—20°C) and incubated at room temperature (1 hr) with a mix-
ture of the following primary antibodies: polyclonal antibodies,
antilaminin (dilution 1:100, catalogue Z0097; Dako, Carpinteria,
CA), antifibronectin receptor (dilution 1:100; GIBCO, Grand
Island, NY), antifibronectin (dilution 1:100, catalogue F3648;
Sigma-Aldrich, St. Louis, MO); MAbs, antimouse CD31 (dilution
1:100, catalogue 01951D), anti-og integrin (dilution 1:100, cata-
logue 33771A; both from Pharmingen, San Diego, CA), anti-
aSMA (dilution 1:100, catalogue M0851), antidesmin (dilution
1:100, catalogue M0724) and FITC-conjugated anticytokeratin
(dilution 1:100, catalogue F0859; all from Dako).

After washing, appropriate secondary antibodies conjugated
with FITC, TRITC or CY5 were used (all from Jackson Immunor-
esearch, West Grove, PA).

Bromodeoxyuridine (BrdU) labeling of proliferating cells
was performed as follows. One hour before mice were killed,
200 mg/kg BrdU in saline were injected i.p. Cryostat sections
fixed in methanol were reacted with 2 N HCI (15 min, 20°C),
anti-BrdU antibody (dilution 1:100, catalogue 347580; Becton
Dickinson, Mountain View, CA) and fluorescent secondary anti-
body. Apoptotic cells were detected using the TACS in situ fluo-
rescent apoptosis detection kit (R&D Systems, Abingdon, UK).

FITC-labeled Lycopersicon esculentum lectin (100 pg in 0.1 ml
of 0.9% NaCl, catalogue FL1171; Vector, Burlingame, CA) was
injected into the lateral tail vein 15 min before killing, for supravi-
tal staining of the vasculature of the liver and metastases.

Specimens were analyzed by confocal laser-scanning micro-
scopy using the MRC-1024 system (Bio-Rad, Richmond, CA).

Morphometry

For quantitative analysis 6, 8 and 8 mice were used at 9, 13 and
20 days after tumor inoculation, respectively. To ensure that sepa-
rate metastases were studied, mice were injected with different
numbers of tumor cells (9 days, 2 x 10°; 13 days, 5 x 10%
20 days, 2 x 10%). Cross sectional areas of metastases were deter-
mined on toluidine blue—stained cryosections using Olympus-
Vanox Cue2 image analysis software (x2 objective lens; Olym-
pus, Tokyo, Japan). Cross sections which contained no central
necrotic areas, representing tips of metastases, were excluded from
the study. Vascularization of the metastases was analyzed on par-
allel cryosections stained for CD31 and laminin (x4 objective
lens). Metastases were considered vascularized when within them
invaginations >100 um containing CD31 staining, lined by lami-
nin staining and surrounded by viable tumor cells were observed.

Invagination lengths or, in the case of columns, the length of the
columns’ large axis were determined using Bio-Rad LaserSharp
software. Data were analyzed using Student’s 7-test.

Results
Day 9 after inoculation of tumor cells

Most of the metastases were avascular (Table I), showing cen-
tral necrosis. However, all metastases >600 pum in diameter were
vascularized. Nonvascularized metastases were circular in cross
section and composed of polarized tumor cells residing on an
incomplete basement membrane according to electron micro-
scopy. Immunohistochemistry, however, showed almost continu-
ous laminin staining around tumor spheroids (Fig. 1a). CD31 and
o integrin were expressed on the hepatic sinusoids in the vicinity
of the metastases (Fig. 1a,b). Laminin immunostaining was strong
around these sinusoids. SMA-expressing stellate cells accumu-
lated at the surface of metastases and around the sinusoids facing
the tumor (Fig. 1¢).

Day 13 after inoculation of tumor cells

Four days later, CD31 was expressed throughout the liver on
the endothelial cells. On the contrary, o integrin expression

FiGure 1 — (a) Border zone of a tumor spheroid (T) 9 days after
tumor inoculation. The tumor is covered by almost continuous laminin
staining (red). Sinusoids of the liver (L) close to the tumor express
CD31 (green). Sinusoids close to the basement membrane of the tumor
are yellow. (b,c) Border zone of a tumor spheroid (T). Triple labeling
for oy integrin, laminin and SMA. For clarity, the localization of a
integrin is shown in (b). (b) o, integrin is present at the periphery of
the tumor and on sinusoids facing the tumor (arrowheads). (¢) SMA-
positive cells (red) are accumulated mainly between the sinusoid and
the tumor. The sinusoid (positive for o integrin) shows strong laminin
staining (blue, arrowheads). (d) Localization of fluorescent Lycopersi-
con esculentum lectin at the periphery of a metastasis. Note the
reduced staining of sinusoids in the vicinity of the tumor (arrowheads).
Tumor cells at the periphery of the metastasis are extensively labeled
by BrdU (red nuclei). N, Necrotic area. (e¢) Electron micrograph of a
sinusoid in the vicinity of the tumor 13 days following tumor inocula-
tion. Connective tissue separates the large sinusoid from the tumor
(upper left corner). On the other side of the sinusoid, hepatocytes are
visible (lower right corner). Bundles of collagen covered by endothe-
lial cells are localized within the sinusoid (arrows). (f) Detail of (e).
The endothelial cell (E) has no fenestration and structured basement
membrane. Collagen bundles are visible beneath the endothelial cell
(arrows). Pericytes are not present around the vessel. Connective tis-
sue cells with dilated endoplasmic reticulum (arrowheads) are located
far from the vessel. (g) Detail of (¢). Collagen bundle covered by
endothelial cells. Arrow points at an intercellular junction between
endothelial cells. Scale bars: (a,d) = 20 pm, (b,c) = 50 pm, (e¢) =5
um, (f) =1 um, (g) = 0.5 um.
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FiGure 1

remained localized to the sinusoids facing the tumor. These sinus-  tumor cells at the periphery of the metastasis (Fig. 1d). Incomplete
oids were strongly compressed but still perfused at low level, as  capillarization of sinusoids was noticeable ultrastructurally
shown by L. esculentum lectin staining and BrdU incorporation of  (Fig. le,f). The number of fenestrations was reduced, and struc-
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tured basement membrane could not be observed. Proliferating
SMA -positive cells (with dilated endoplasmic reticulum) accumu-
lated at the tumor side of the sinusoids, while hepatocytes disap-
peared from this region (Fig. le). On the contrary, neither necrotic
nor apoptotic hepatocytes could be observed. Other vessels facing
the tumor were completely surrounded by SMA-positive cells.
These cells, however, did not show the characteristic localization
of pericytes; they were neither apposed to endothelial cells nor
surrounded by basement membrane. A large amount of collagen
was deposited around them (Fig. 1f). The fusion of capillarized
sinusoids led to the appearance of large sinusoidal lakes on the
tumor surface (Figs. 1e,2). The fusion was evidenced by the pres-
ence of collagen bundles within sinusoids, which were part of the
supportive structure of the liver tissue and remained after the dis-
appearance of hepatocytes (Fig. le,g). Endothelial cell processes

PAKU ET AL.

FIGURE 2 — Serial semithin sec-
tions of C38 colorectal carcinoma
metastases 13 days following tumor
inoculation. Sections were cut at
2 um distances. (a-I) First steps of
sinusoidal lake formation. (b—e) and
(j—1) Small cytoplasmic processes of
endothelial cells (small arrows) and
a hepatocyte (arrowheads) connect
the 2 sides of the lake. (¢) Hepato-
cytes extend only halfway between
the sinusoids, where they face con-
nective tissue cells (large arrow).
(m—o0) Serial tangential sections of
the tip of another metastasis are
visible. (m) Dilated sinusoids are in
contact with the metastasis. These
sinusoids are in continuity with each
other, as shown in (o), forming a
large vascular lake on the surface of
the metastasis. Scale bar = 25 pm.

frequently formed bridges within the sinusoids, representing the
last step of fusion (Fig. 2).

By this time, numerous deep invaginations could be observed
within the metastases (Table I, Fig. 3a), which were produced
when the new tumor masses bulged from the tumor spheroid into
the liver parenchyma. Bulges were often free of basement mem-
brane and SMA-positive cell coverage (Fig. 3a). Incorporated
liver tissue plates had a unique appearance when the sectioning
plane was perpendicular to the surface. SMA-positive cells were
found at the tip and the 2 sides; hepatocytes accumulated in the
middle of invaginations (Fig. 3a—c). Almost continuous CD31
staining (representing incorporated sinusoidal lakes) was observed
between hepatocytes and SMA-positive cells or embedded into
the latter cells (Fig. 3b,c¢). The sinusoidal structure was still nor-
mal at the base of invaginations (Fig. 3b).
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Fi1GURE 3 — (a) Large invagination in a metastasis 13 days following tumor cell inoculation. In the deepest part of the invagination (arrow), hep-
atocytes stained by anticytokeratin antibody (green) are surrounded by SMA-positive cells (red) and laminin staining (blue). Note the absence of
SMA and laminin staining around the small tumor bulge (T). N, Necrotic area. (b) Basal part of an invagination. Continuous CD31 staining (red),
representing a sinusoidal lake (arrowheads), is visible in contact with SMA-positive cells (blue) at the surface of the lower tumor spheroid (T).
Note the regular sinusoidal structure of the liver in the lower right area. Areas of packed hepatocytes (green) without sinusoids are also present
(arrows). (¢) Deeper part of a strongly compressed invagination. Both sides of the invagination are delineated by SMA-positive cells (blue) and
almost continuous CD31 staining (red). Sinusoids are not present between the hepatocytes (green). Scale bars: (a) = 100 um, (b,c) = 50 um.

Day 20 after inoculation of tumor cells

By day 20, beside the deep invaginations another characteristic
structure could frequently be observed within the tumor tissue.
These structures had a circular shape in cross section composed of
an outer basement membrane and usually one central CD31-posi-
tive vessel (Fig. 4a—c). Occasionally, small columns without ves-
sels were also present (Fig. 4a,b). The central vessel consisted of a
single layer of endothelial cells (Fig. 4¢), expressing o, integrin
and surrounded by laminin-positive material (Fig. 4a,b). These
vessels showed partial capillarization similar to the peritumoral
sinusoidal lakes (low number of fenestrations, lack of regular
basement membrane and pericytes; Fig. 4e,f). The space between
the vessel and the outer basement membrane was filled by SMA-
positive cells (Fig. 4c¢), type I collagen (Fig. 4ef) and fibronectin
(not shown). SMA-positive cells strongly expressed fibronectin
receptor, whereas this integrin was expressed only at a low level on
the central vessels (Fig. 4d). Occasionally, hepatocytes were iden-
tified between SMA-positive cells, suggesting a sinusoidal origin
of the central vessel (Fig. 5a). Proliferation of SMA-positive and
endothelial cells also continued at this stage (Fig. 5b). Capillary
sprouts with slit-like lumen were present within the large columns
(Fig. 5c¢,d). Serial sectioning revealed the above structures to be
branching connective tissue columns traversing the metastasis,
with the central vessels being continuous with the sinusoids of the
liver parenchyma (Fig. 6). Proliferating tumor cells were present
around these hardly perfused columns. A considerable proportion
of these columns, however, were not perfused at all, leading to
large necrotic areas in the metastases (Fig. 5e,f). The length of the
invaginations/unit area on day 20 remained unchanged compared
to day 13 (Table I).

Discussion

Here, a model is suggested for the vascularization of “pushing-
type” liver metastases. The key element is the appearance of
SMA-positive cells and sinusoidal lakes at the border of the meta-

stases. Stellate cells support the vessels after being incorporated
into the tumor mass by producing collagenous matrix, whereas the
sinusoidal lakes form vessels located centrally within the connec-
tive tissue columns. These columns represent the main structural
and functional unit, providing blood supply for the inner part of
the growing tumor. The putative process is depicted in Figure 7.

From a mechanical point of view, there are 2 factors that can
contribute to the development of the sinusoidal lakes: the appear-
ance of SMA-positive cells and the pressure of the tumor. These 2
factors may be responsible for the disappearance (“step back”) of
hepatocytes from the border zone of the tumor and the liver tissue.
Similar to Dingemans ef al.,'" we were unable to observe apop-
totic or necrotic hepatocytes in this zone despite the severe distor-
tion of these cells. Therefore, we propose that hepatocytes move

FIGURE 4 — (a,h) Numerous columns are localized within a metasta-
sis 20 days following tumor inoculation. Triple labeling for o, integ-
rin, laminin and SMA. For clarity, the localization of oy integrin is
shown in (a). (a) o integrin is present at the periphery of the column
and around the central vessel. (b) Laminin (blue) colocalizes with o
integrin within the columns. Note the presence of small-diameter col-
umns lacking central vessel (arrows), composed of SMA-positive cells
(red) surrounded by laminin. (¢) Cross section of a column tightly
packed with SMA-positive cells (red). The column contains CD31-
positive vessels (green) and is surrounded by basement membrane of
the tumor (blue). This picture corresponds to panel 14 in Figure 6.
(d) Distribution of the fibronectin receptor within a column. The basal
surface of the tumor cells (arrowheads) and the connective cells of the
column are strongly stained. In contrast, the central vessel (V) shows
weak staining. (e¢) Longitudinal section of a column within the tumor.
Tumor cells are visible on the upper and lower parts of the figure.
Connective tissue cells are oriented parallel to the axis of the column.
Very thin endothelial cells delineate the central vessel. Pericytes are
not present. (f) High-power micrograph of an endothelial cell of a cen-
tral vessel showing fenestrations (arrows). The endothelial cell is par-
tially covered by structured basement membrane (arrowheads). Scale
bars: (a,b) = 50 um, (¢) = 10 pm, (d) = 25 pm, (e¢) = 10 pm, (f) 1 pm.
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out of this zone, leaving space for the formation of sinusoidal
lakes. In an excellent study, Kuruppu et al.'> demonstrated the
presence of sinusoidal lakes at the periphery of experimental col-
orectal carcinoma liver metastases by SEM analysis of corrosion
casts; the significance of these structures in the vascularization of
the metastases was, however, not addressed. Fusion of the sinus-
oids can be considered as a reverse intussusceptive angiogenesis.”

F1GURE 5 — (a) Longitudinal section of a well-developed column
containing a central vessel (red) and distorted hepatocytes (green) sur-
rounded by SMA-positive cells (blue). (b) Twenty-day-old tumor
stained for CD31 (red) and BrdU (green). Numerous proliferating
endothelial (arrowheads) and connective tissue cells (arrows) are
present within the column. Proliferating tumor cells are visible around
the column. (¢) Large column containing SMA-positive cells (blue),
CD31-positive (red), dilated vessels and capillary sprouts (arrow-
heads). (d) Cross section of capillary sprout located in the vicinity of a
central mother vessel. The sprout has a slit-like lumen (arrowheads),
which is sealed by intercellular junctions (arrows). Note the process of
the endothelial cell (large arrow), which extends into the connective
tissue, suggesting active growth of the sprout. E, Endothelial cells of
the mother vessel. (e,f) Section of a 20-day-old liver metastasis of a
mouse injected with FITC-conjugated Lycopersicon esculentum lectin
(green) and stained for CD31 (red) and SMA (blue). For clarity, the
localization of the lectin is shown in (e). Arrows point at well-perfused
vessels within the columns; however, a considerable portion of the
columns are not or are only partially perfused (arrowheads in f and
lack of green color at these areas in ¢). Black areas in (f) represent via-
ble tumor tissue, whereas pink areas represent necrotic tumor tissue
(N). Scale bars: (a—c) = 50 pm, (d) = 1 um, (e,f) = 100 pm.

FIGuRe 6 — Serial section of a
20-day-old liver metastasis stained
for laminin. Sections were cut at 20
pm distances. In panels /-4, 24
and 25, normal liver tissue is also
present (arrowheads), whereas the
other pictures show incorporated
tissue. Note the column (arrows),
which is separated from the liver
tissue in panel 4 and shows con-
tinuity with the invagination again
in panel /7. Scale bar = 300 pm.

o integrin is present exclusively in large portal vessels and
capillaries around the bile ducts in normal liver. In hepatocellular
carcinomas and cirrhosis, this integrin is expressed in sinusoids as
a part of the capillarization process.'>'* In our case, however,
expression of this integrin was confined to the sinusoids facing the
tumor. These sinusoids were always surrounded by stellate cells.
Yet, the capillarization process was not complete since the SMA-
positive cells were not positioned as real pericytes (they had no
basement membrane). The fragile structure of these vessels was
maintained during vascularization of the metastases. The presence
of o integrin in tumor vessels may negatively influence the effi-
ciency of antiangiogenic treatments, based on the observation that
o, and o5 integrins are upregulated during angiogenesis in endo-
thelial cells.'>'® The main cellular elements of the connective tis-
sue columns, the SMA-expressing cells, express a high level of
fibronectin receptor. They could, therefore provide an alternative
target for therapy with this receptor’s antagonist.

It has been shown that the growth pattern of liver metastases is
dependent on the degree of differentiation.'® The replacement
growth pattern was characteristic for tumors showing less glandular
differentiation, whereas differentiated tumors grew by compressing
the liver parenchyma (pushing growth pattern) or eliciting a fibrotic
response (desmoplastic growth pattern) at the border of the meta-
stases. The presence of a fibrous capsule containing myofibroblasts
and collagen I around primary and secondary liver tumors is
common. According to various studies, 20-60% of colorectal
carcinoma liver metastases are encapsulated, which is considered
to be a mechanical barrier against tumor invasion and is associated
with better prognosis.”'®!""!® Different factors can be responsible
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FiGure 7 — Schematic representation of column formation. For better visibility of vessels, hepatocytes are depicted only on the upper part of the
drawings. (a) At the early stage of tumor development, the tumor faces normal liver architecture. (b)) SMA-positive cells accumulating at the
tumor-liver parenchyma interface. Owing to the compression of the tumor, hepatocytes “step back” and fusion of the sinusoids takes place.
(c) The fused vessel, together with SMA-positive cells, is incorporated into the tumor. (d) The pressure of the tumor bulges causes separation of the
central vessel from the liver parenchyma. The vessel in the direction of the axis of the column remains connected to the sinusoidal system of the
liver. Column formation is finished by back-to-back fusion of the basement membranes of the tumor bulges. Column is surrounded by viable tumor
cells. Light gray, tumor; dark gray, hepatocytes; black, sinusoids and central vessel; white, SMA-positive cells and cut surface of endothelial cells.

for the capsule formation, such as transforming growth factor-f3,
hypoxia and simple mechanical pressure.'®?® There is evidence
that the main cellular components of these capsules are activated
SMA-expressing hepatic stellate cells.'” The mechanical pressure
exerted by differentiated carcinomas (pushing growth pattern) can
be a major factor for the activation and accumulation of hepatic
stellate cells around metastases.”® An important role of these con-
tractile cells can be to decrease the size of the “wound” in the liver
caused by the growing tumor. Hepatic stellate cells were not accu-
mulated on the surface of the metastases in sinusoidal metastases
(replacement growth pattern) of the B16 melanoma; instead, they
were scattered in the tumor nodules. They are thought to create a
proangiogenic microenvironment and to be responsible for the
recruitment and survival of endothelial cells. Similarly, Vermeulen
et al® reported the absence of a fibrotic response in colorectal
metastases with the replacement growth pattern. These data and
our earlier observations made on the sinusoidal type of 3LL-HH
tumor metastases’ suggest that undifferentiated highly invasive
tumors do not induce a fibrotic capsule.

The growth of a tumor as an avascular sphere in the liver is lim-
ited because the development of central necrosis weakens the
mechanical stability of the metastases, though the sinusoids at the
periphery would support further growth. In C38 colon carcinoma,
further expansion of the metastases takes place by the bulging of
new tumor masses from the original spheroid into the liver. This
process immediately leads to the development of invaginations,
which consequently results in early vascularization of the metasta-
ses (all metastases >600 pum in diameter are vascularized). During
the growth of the bulge(s), the pressure will increase at the base of
the incorporated liver tissue. However, the innermost part of the
invagination (base of the bulge) is a distinctive place since the
pressure of the tumor is lower here. A similar situation is when a
sheet of paper is folded and the ends are pressed together. As men-
tioned above, the sinusoids at the surface of the tumor are strongly
compressed. (The architecture of these sinusoids could be revealed
only by applying a slightly higher perfusion rate during fixation.)
Following incorporation, these fused sinusoids can land at the
innermost part of the invagination, where these vessels can open
up owing to the lower pressure and start to deliver blood into the
tumor. The appearance of connective tissue columns within the
liver metastases appears to be a unique feature of the C38 tumor.
These structures are produced by the increasing pressure of the
tumor at the base of the invagination, resulting in separation of the
innermost part of the invaginated tissue from the rest of the liver.
This separation is completed by the disappearance of the back-to-

back basement membranes of the tumorous glands, which is a fre-
quent observation in colorectal cancers.?' In the axial direction,
however, the column will remain in continuity with the liver
parenchyma (Fig. 7). This finding strongly suggests that these
metastases are supplied wtith blood originating from the hepatic
sinusoids. As proliferating endothelial and SMA-positive cells are
regular observations within the columns, these structures probably
grow in length and width during tumor development. The tumor
continues to bulge not only into the liver parenchyma but also into
the columns within the tumor, pinching off further pieces from the
column. The vessels of these new columns are in all probability
produced by sprouting-type angiogenesis, observed within these
structures. However, the pinching process can also lead to the
appearance of small columns without vessels. Proliferation of
endothelial and SMA-positive cells as well as the pinching process
should result in an increase in length of the invaginations/unit area
of the metastases. Nonetheless, this parameter remained
unchanged. There are 2 mechanisms to explain this contradiction.
On the one hand, the growing tumor lowers the density of the
invaginations or columns (by dilution). On the other hand, the
pressure of the tumor, as observed frequently, obstructs the perfu-
sion of the columns, leading to necrosis not only of the tumor cells
but also of the columns.

It is conceivable that in well-differentiated tumors the back-to-
back fusion of the tumor glands does not take place, leaving the
invaginations intact, which leads to the absence of column forma-
tion. Nevertheless, also in these tumors, the vessels in the inner-
most part of the invaginations are most probably responsible for
the nutrition of the tumor.

Desmoplastic metastases, far from portal tracts, can also be con-
sidered as pushing-type metastases. The extent of connective tissue
accumulation can depend on the growth rate of the metastases. On
the surface of slow-growing metastases, more connective tissue
can accumulate due to the low incorporation rate. If the sinusoids
are embedded in connective tissue for a longer time at the surface
of the metastases, sprouting-type angiogenesis can take place.
Together with these newly developed vessels, the connective tissue
is incorporated, similarly to primary tumors. It has been shown that
metastases with the pushing growth pattern have a higher endothe-
lial cell proliferation rate than desmoplastic ones, which is in
accordance with the supposed slow growth of these metastases.’

The process for the development of vasculature in liver metasta-
ses of the C38 tumor presented here may represent a general
mechanism for the vascularization of pushing-type liver metasta-
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ses of differentiated tumors of various origins (colon, breast, lung
carcinomas).

Our present study further supports earlier observations that vas-
cularization of metastases in the liver is a heterogeneous process,
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assert but, rather, we referred to the sub-
stantial evidence supporting that theory
[reviewed in (3,4)]. Secondly, while the
specific epidemiologic study (3) that JTa-
cobson et al. cited did identify some
positive associations between some use
of artificial sweeteners (AS) and bladder
cancer in several subgroups, the authors
concluded ¢¢. . . that past AS use has had
a minimal effect, if any, on bladder can-
cer rates. We also conclude that the
positive associations in this study do not
by themselves establish a causal link
between AS use and bladder cancer.””
Moreover, it should be noted that the
authors did not distinguish between sac-
charin and cyclamates in the study (35)
when recording their data on exposure
of subjects to artificial sweeteners.
Thus, the study that Jacobson et al. cite
as being consistent with animal studies
demonstrating the carcinogenicity of
saccharin in fact supports our statement
in the editorial that there is no conclu-
sive epidemiologic data on the effect of
saccharin on human bladder cancer in-
cidence.

In addition to these points of dis-
agreement with the comments of Jacob-
son et al., I would also bring to their
attention that the point of the editorial
was to criticize current dependence on
the use of seemingly inappropriate ani-
mal models and/or invalid experimental
designs in animal studies to identify po-
tential hazards in humans, not to pass
judgment on the role of saccharin as a
human carcinogen. In view of the flaws
in the experimental design of the study
reported by Takayama et al. (2), we
were simply using the case of saccharin
to reinforce the validity of our argument.
To date, animal models have not pro-
vided substantially useful information
on the mechanisms of action of saccha-
rin in humans, and they have not been
successful in proving definitively
whether saccharin is indeed a cancer risk
for humans.

It appears that Jacobson et al. have
missed our point about the need for bet-
ter risk assessment models that rely
more on human data. Rather, they seem
to have misinterpreted the editorial as a
declaration that saccharin is not a car-
cinogen in humans. Furthermore, given
the points of the editorial, it is unclear
how Dr. Squire’s past affiliation with
the International Life Sciences Institute
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or his independent consulting activities
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its content. If the
intent of Jacobson et al. is to protect the
health of the public, their efforts would
be better spent on encouraging the Food
and Drug Administration and the Na-
tional Toxicology Program to expand
their attempts to develop and implement
more reliable testing strategies.
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Blood Supply of Metastatic
Hepatic Tumors: Suggestions
for Improved Delivery of
Chemotherapeutic Agents

On the basis of the results of various
multicenter trials, we have learned that
the regional chemotherapy of liver me-
tastases of colon cancer is much superior
to the systemic chemotherapy (1) and is
currently accepted as an alternative
strategy to control tumor progression.
However, only a limited improvement is
observed so far in hepatic arterial infu-
sion technique to make this route of che-

motherapy even more effective (2). In
the protocols currently in use, the che-
motherapeutic agent(s) (mostly 5-
fluorouracil [5-FU] and its derivatives)
are administered continuously into the
hepatic artery (). This mode of delivery
is based upon early reports suggesting
that liver tumors primarily receive blood
supply via hepatic artery (3). This theory
is now held as a dogma and perhaps, as
we believe, is limiting the efforts to im-
prove the efficiency of the regional che-
motherapy for the treatment of liver me-
tastases.

Extensive experimental evidence is
now available which enables us to re-
evaluate the idea of arterial blood supply
to hepatic metastases. Several groups in
the past two decades, e.g., in Sweden
(4), Germany (5), Hungary (6) and Ja-
pan (7), have provided experimental evi-
dence to suggest that primary as well as
metastatic tumors in the liver receive
blood supply from both the hepatic ar-
tery and the portal vein. The mixed
blood is delivered by deeply invading
vessels originating from hepatic sinu-
soids (6,7). In fact, in certain tumor
types, the portal vein is the predominant
supplier of the blood to the tumor nod-
ule (6). Experimental studies have also
indicated that, after the occlusion of the
hepatic artery, the therapy of recurring
tumor metastases can be developed from
unaffected peripheral area(s) including
the neighboring sinusoids, which pre-
dominantly receive their blood supply
(at least 75%) from the portal vein. Such
results can be expected because it is now
well understood that new wvessels can
originate from venules during angiogen-
esis.

We believe that the time has come for
scientists and clinicians to reconsider
the old dogma and redesign the method-
ology of regional chemotherapy of liver
metastases. The new approach must be
based on a strategy that allows delivery
of the therapeutic agent(s) via both the
hepatic artery and portal vein. The im-
proved design can permit the accumula-
tion of the drug in the tumor irrespective
of the actual route of the blood supply
available to the individual tumor nodule.
The devices and methodology for arte-
rial delivery are already available in the
form of totally implantable pumps, he-
patic arterial catheters, or implantable
percutaneous subclavian arterial cath-
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eters (). Any one of these devices can
be combined with the transjugular intra-
hepatic portal vein catheter technique.
This hypothesis seems to us worthy of
testing in clinical trials.

SANDOR PAKU
GYORGY BODOKY
PETER KUPCSULIK

JOZSEF TIMAR
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. A Ql 1 Dghydrogenase 3

uotbgp 1‘3«11{ Sk of Oral
Cavity and Pharyngeal
Cancers

Recently, Harty et al. (1) reported in
the Journal that alcohol dehydrogenase
type 3 (ADH;), a polymorphic enzyme
that metabolizes ethanol to acetalde-
hyde, modified the risk of development
of oropharyngeal cancers in a cohort of
Puerto Ricans who had high levels of
alcohol consumption.

We investigated whether these find-
ings could be reproduced in another
population, from part of a hospital-
based, case—control study performed in
France among Caucasians (2). In our
study, only case subjects (n = 165) with
histologically confirmed squamous car-
cinoma of the oral cavity and pharynx
were included. Control subjects (n =
234) were individuals without a history
of cancer and were frequency matched
for sex, age, and hospital.

The main conditions diagnosed
among control subjects were rheumato-
logic (n = 74; 32%), infectious and
parasitic (n = 24; 10%), respiratory (n
= 21; 9%), cardiovascular (n = 19;
8%), and digestive (n = 14; 7%) dis-
eases as well as traumatic injuries (n =
12; 5%). Severe liver diseases were ex-
clusion criteria for both case subjects
and control subjects.

ADH; genotypes were determined
with the use of a polymerase chain re-

Table 1. Number of case and control subjects® and odds ratiosT (95% confidence mtervals) of
oropharyngeal cancer according to ADH, genotypes and alcohol consumptiond

action DNA amplification assay (3) for
68 patients with oral cavity cancer, 51
patients with pharyngeal cancer, and
167 control subjects. Genotype determi-
nations were performed by investigators
who were blinded to the source of the
specimens.

Lifetime use of tobacco (cigarettes,
cigars, or pipe) and alcohol consumption
were recorded during a personal inter-
view conducted by seven trained inter-
viewers. Alcohol beverages were con-
verted into grams of pure ethanol, and
the average daily consumption was cal-
culated by dividing the cumulative life-
time consumption by the overall dura-
tion of drinking. Odds ratios (ORs) were
calculated by unconditional logistic re-
gression, including sex, age, and smok-
ing as confounding factors. The interac-
tion between ADH; genotype (ADH;'™!
versus ADH,'™ or ADH,”™) and levels
of daily alcohol consumption was stud-
ied to test the equality of the effect of
ADH; genotypes across the drinking
levels (4). To this end, the average daily
consumption of alcohol was divided ac-
cording to the approximated quartile
distribution observed among the control
subjects.

The risk of oropharyngeal cancer as-
sociated with the ADH;'™! genotype,
compared with the ADH,'™ and the
ADH32_2 genotypes combined, was
slightly, although not significantly, in-
creased (OR = 1.4; 95% confidence in-
terval = 0.8-2.3) (Table 1). The risk of
cancer rose significantly with increased
daily consumption of alcohol (x* two-

Average consumption of ethanol§

ADH; genotype =40 g/day 41-80 g/day 81-120 giday =120 g/day Totald,|
ADH,? and ADH_* 1 (referent) 23(08-7.0) 34(10-109) 58(19-17.6) 1 (referent)
6/26 18/35 13/19 20/22 66/102
ADH, ™! 1.7(055.5) 34(11-109) 53(13-216) 63(1.8-214) 14(08-23)
10/23 14/19 8/7 17/11 49/60
Totalf 1 (referent) 22(1.0-46) 32(13-75) 48(22-10.7)
16/49 32/54 21/26 46/33

*Data on smoking (cigarettes, cigars, pipe) and/or alcohol exposure were missing for four case subjects

and five control subjects.

T0Odds ratios are adjusted for sex, age, and exposure to smoking (cigarettes, cigars, or pipe).

fInteraction test between ADH; genotypes and levels of alcohol consumption: x* two-sided test for
homogeneity = 0.4 for 3 degrees of freedom, P = 0.94.

§Values i columns for each group = top line: odds ratio (95% confidence interval); bottom line:
number of case subjects/number of control subjects.

|Also adjusted for daily consumption of ethanol.

YAlso adjusted for ADH; genotype.
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Development of Arterial Blood Supply in
Experimental Liver Metastases

Katalin Dezsé,” Edina Bugyik,” Veronika Papp,*
Viktoria Laszl6,* Balazs Déme,™ Jozsef Tovari,T
Jozsef Timar,® Péter Nagy,* and Sandor Paku*
From the First Institute of Pathology and Experimental Cancer
Research,* and the 2nd Department of Pathology,’ Semmelweis
University, Budapest, Hungary; the Department of Tumor
Biology," National Koranyi Institute of Pulmonology, Budapest,
Hungary; and the Department of Cardio-Thoracic Surgery,*
Medical University of Vienna, Vienna, Austria

In this study, we present a mechanism for the devel-
opment of arterial blood supply in experimental liver
metastases. To analyze the arterialization process of
experimental liver metastases, we elucidated a few
key questions regarding the blood supply of hepatic
lobules in mice. The microvasculature of the mouse
liver is characterized by numerous arterioportal anas-
tomoses and arterial terminations at the base of the
lobules. These terminations supply one hepatic mi-
crocirculatory subunit per lobule, which we call an
arterial hepatic microcirculatory subunit (aHMS). The
process of arterialization can be divided into the fol-
lowing steps: 1) distortion of the aHMS by metastasis;
2) initial fusion of the sinusoids of the aHMS at the
tumor parenchyma interface; 3) fusion of the sinu-
soids located at the base of the aHMSs, which leads
to the disruption of the vascular sphincter (burst
pipe); 4) incorporation of the dilated artery and the
fused sinusoids into the tumor; and 5) further de-
velopment of the tumor vasculature (arterial tree)
by proliferation, remodeling, and continuous incor-
poration of fused sinusoids at the tumor—parenchyma
interface. This process leads to the inevitable arteri-
alization of liver metastases above the 2000- to
2500-um size, regardless of the origin and growth
pattern of the tumor. (Am J Pathol 2009, 175:835-843;
DOI: 10.2353/ajpath.2009.090095)

It is widely accepted that hepatic metastases and tumors
are predominantly supplied by arterial blood, a notion
that serves as the basis for hepatic arterial chemotherapy
and chemoembolization.'™ The most cited article on this

field dates back to the 1950s." Since then numerous
papers have been published using human and experi-
mental materials and different methods such as corrosion
casting, confocal and electron microscopy, angiography,
radiolabeled microspheres, and in vivo microscopy, have
been used to study the blood supply of liver metasta-
ses.?'® A large proportion of these articles have con-
firmed the original observation of Breedis and Young,'
but no mechanism for the development of the arterial
blood supply in metastases has ever been presented.>”
On the other hand, numerous papers, including ours,
have emphasized the contribution of the portal vein, ei-
ther directly or through the sinusoids in the blood supply
of hepatic metastases.®~'* This apparent contradiction
might result from the observed continuity of the sinusoidal
with the tumor vasculature and the presumption that
blood flows in an “outside-in” direction from the sinusoids
toward the tumor vasculature. Most of the studies dealing
with the blood supply of metastases have neglected the
importance of arterioportal anastomoses and other inter-
species differences in the hepatic microcirculation, which
could lead to seriously biased results. According to the
observations of Yamamoto et al'® there are extensive
arterioportal anastomoses throughout the vascular tree in
rats, whereas a separate arterial and portal tree, without
direct arterioportal communication, can be observed in
hamster and human liver. Opinions about the presence of
arterioportal anastomoses in mice are controversial'®'®;
therefore, we have addressed this question first.

The classic lobule can be divided into several conical
hepatic microcirculatory subunits (HMSs) supplied by a
single inlet portal venule. Hepatic arterioles terminate
either on the inlet venules or directly on sinusoids. The
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number of these terminations within a lobule is species-
dependent. The blood flow through the inlet venules and
terminal arterioles is regulated by sphincters.’” The most
detailed studies on microcirculation of the liver and ves-
sel architecture of liver metastases were performed by
corrosion casting. However, in these studies the livers
were completely filled with uncolored resin, which made
analyzing the three-dimensional organization of the deep
interlobular vessels difficult. 1041

In the present study, we used a two color corrosion
casting technique to analyze the blood supply in liver
metastases of experimental tumors in mice. A special
filling method was used to prevent the mixing of the
“portal and arterial resin” upstream of the hepatic sinu-
soids. This technique enabled us to analyze separately
the contribution of the two vascular systems to the blood
supply of liver metastases and to establish the steps of
the arterialization process.

Materials and Methods

Animals and Tumor Lines

The C38 colorectal carcinoma line was maintained by
serial subcutaneous transplantations in C57BI/6 mice, as
described earlier.'® Liver metastases were produced by
injecting 2 X 10% tumor cells into the spleen of C57BI/6
mice. Vascular casting was performed 15 to 18 days
following tumor cell injection.

The highly metastatic Lewis lung carcinoma (3LL-HH)
tumor line was maintained by serial intrasplenic trans-
plantations of tumor cells obtained from liver metastases.
Single cell suspensions were prepared from 14-day-old
3LL-HH liver metastases, as described earlier.’® 10° tu-
mor cells were injected into the spleen of C57BI/6 mice.
Vascular casting was performed 12 days following tumor
cell injection.

A2058 human melanoma cells were cultured in RPMI-
1640 supplemented with 10% fetal bovine serum (Sigma
Chemical Co., St. Louis, MO). To produce liver metasta-
ses, 2 X 10* cells were injected into the spleen of anes-
thetized male SCID mice. Vascular casting was per-
formed 28 to 33 days following tumor cell injection.
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Figure 1. A: Liver lobes after the casting proce-
dure containing arterial (red) and mixed blood
(white) metastases of the C38 tumor line. The
blue resin fills only the terminal portal venules.
B: The same lobes after corrosion. Arrows point
to the hollow spaces of metastases not having
arterial blood supply. Arrowhead points to a
metastasis of which only the base was filled by
the red resin; therefore its arterial connection
was undetectable on the uncorroded specimen
(arrowhead on A). Scale bar = 3 mm.

Vascular Corrosion Casting

A two-color corrosion casting procedure was used to
analyze the arterialization of liver metastases. Mice were
anesthetized and a ligature was placed onto the vena
cava just above the renal veins to prevent retrograde
filling of the liver. The portal vein was cannulated (22G,
Braun Melsungen AG, Melsungen, Germany) and se-
cured with a tie; the chest was opened and the vascular
system was flushed through the left ventricle with PBS
containing heparin. When the effluent was clear, the tho-
racic aorta was cannulated (22G, Braun Melsungen AG,
Melsungen, Germany). To remove air from this cannula a
ligature was placed onto the aorta above the bifurcation
into the iliac arteries. The aortic cannula was filled retro-
grade with PBS through a 30G needle connected to a
syringe inserted into the abdominal aorta below the liga-
ture. After filling, the ligature was tightened. The ligature
on the vena cave was also tightened. Blue casting me-
dium (Mercox 2-CL, Ladd Research, Williston, VT) was
injected through the portal vein. The injection was moni-
tored under a dissecting microscope and stopped when
the resin reached the sinusoids (~0.2 ml resin) (Figure
1A and B). The blue resin was allowed to become thick
and 1 ml of red casting medium was injected through the
thoracic aorta. The filling of the portal system with resin
was necessary to prevent the flow of the red resin through
arterioportal anastomoses (described in Results) into the
portal system and subsequently into the sinusoids and
metastases resulting in false observations. However, all
routes were left open where the arterial system was in
direct connection with the sinusoids and metastases.

Altogether 53 animals were used for corrosion casting:
10 control, and 16, 15, and 12 mice bearing C38, 3LL-
HH, and A2058 metastases, respectively.

Determination of the Percentage of Arterial
Metastases and the Size of the Metastases

After the injection of the blue and red resins into the portal
and arterial system, the livers were removed and cut in
lobes; then every lobe was photographed from each side
(Olympus SZ61 dissecting microscope, Olympus 7070 or
DP 50 camera, Olympus Japan). Once the resin was
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cured completely the lobes were placed overnight in 35%
KOH at 60°C. The casts were washed in running tap
water and placed in distilled water. Again, every lobe was
photographed under water from each side. Metastases
on the surface of uncorroded specimens were counted
and their diameters were measured (Quick Photo Micro,
Olympus, Japan). Most of the arterial metastases were
completely filled with red resin, but some were only par-
tially filled. In this case, the resin was not always visible
on the surface of the uncorroded specimens. Therefore,
the determination of the origin of the blood supply was
performed by comparing the uncorroded and corroded
specimens (Figure 1, A and B). On the corroded speci-
mens, metastases filled with any amount of the red resin
through an artery directly connected to the metastasis
were designated as “arterial.” Metastases not having an
arterial blood supply appeared on the corroded specimens
as holes. In some cases the red color turned white either
because the color particles were filtered out or the color was
lost during the corrosion procedure. To determine the size
of the metastases and the origin of the blood supply, 484,
907, and 485 metastases were analyzed from the C38,
3LL-HH, and A2058 tumor lines respectively.

Determination of the Diameter of the Arteries
and the Accompanying Portal Veins

Livers from four control animals were used to determine
normal porto-arterial diameter ratio in 167 randomly cho-
sen branch pairs originating from seven different orders
of the vascular tree of the mouse liver. Altogether 729
arterial metastases were isolated (252, 305, 172; C38,
3LL-HH, A2058), under the dissecting microscope using
fine forceps. Each metastasis was photographed under
water, and if metastases were supplied by one arterial
branch, the diameter of the portal vein and the supplying
artery was determined at the entry into the metastases. The
diameter of the portal and arterial branches were measured
~1000 um upstream from the metastasis wherever possi-
ble. The size of the completely filled metastases was easily
determined by measuring the extension of the structure
filled with the red resin. With incompletely filled metastases,
the extension of the hollow space left by the metastases in
the portal tree was measured.

Determination of the Rate of Cell Proliferation in
the Arteries Supplying the Metastases

This procedure was performed only with the C38 tu-
mor, because this tumor line produced a large propor-
tion of metastases with centrally localized (described
below), easily discernible arteries. 5-Bromo-2'-de-
oxyuridine (BrdU) labeling and tissue processing, with
the exception of vascular casting were performed as
described above. Large metastases (>2 mm, eight
pieces) located at the periphery of the liver were chosen
and cut perpendicular to the flat surface of the lobe. The
upper half of the metastasis was cut away. Subsequently,
serial sections were cut until the artery was discernible on
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toluidine blue stained cryosections. Further 6 to 10 serial
sections were cut and double labeling was performed for
BrdU (Becton Dickinson, San Jose, CA) and NG2 proteo-
glycan (Chemicon, Billerica, MA). Nuclei were counter-
stained by 4,6-diamidino-2-phenylindole (Sigma Chemi-
cal Co., St. Louis, MO). BrdU labeled and the total
number of arterial wall cells (endothelial and smooth mus-
cle cells, >2000) was determined, using a x40 or X60
objective (Nikon TE 300 fluorescent microscope).

Determination of the Proliferation Rate of
Tumor Cells in the Arterial and Mixed
Blood Metastases

BrdU labeling of proliferating tumor cells was performed as
follows. One hour before the above described vascular
casting was performed, 200 mg/kg BrdU (Sigma Chemical
Co., St. Louis, MO) was injected intraperitoneally. Following
the casting procedure livers were removed and frozen.
Cryostat sections (10 um) were fixed in methanol (—20°C)
treated with 2 N HCI (15 minutes, 20°C), anti-BrdU antibody
(dilution 1:50, Cat. No: 347580, Becton-Dickinson, San
Jose, CA), and fluorescent secondary antibody (Jackson
Immunoresearch Inc., West Grove, PA). Nuclei were coun-
terstained by TOTO3 (Molecular Probes, Carlsbad, CA) or
4,6-diamidino-2-phenylindole. The number of BrdU-labeled
and total number of tumor cells were determined using
micrographs captured by the Bio-Rad MRC-1024 (Bio-Rad,
Richmond, CA) confocal microscope (four animals for each
tumor, three to five metastases from each animal). Counting
was performed using the morphometry system described
above. Blood supply of the metastases was identified ac-
cording to the autofluorescence of the dye in the resin.
Arterial metastases had a strong red florescence (Ex568/
Em580 =+ 32). In contrast, the mixed blood metastases were
dark, or when filled with blue resin, had weak green fluo-
rescence (Ex488/Emb522 + 32).

Scanning Electron Microscopy

Isolated vascular trees and metastases (over 240 spec-
imens) were glued wet on metal stubs. After drying, the
samples were coated with gold by a HBA 1 high-vacuum
metal evaporator (Carl Zeiss, Jena, Germany). Observa-
tions were made using a Hitachi S-2360 N scanning
electron microscope (Hitachi, Tokio, Japan) at 15-25 KV
accelerating voltage.

Results

Microvascular Architecture of the Normal
Mouse Liver

Arterioportal anastomoses were observed throughout the
hepatic vasculature. The arterial blood entered the portal
veins either directly or through the peribiliary plexus (Fig-
ure 2, A and B). Arteries run in the vicinity of the peribiliary
plexus. From the peribiliary plexus blood was also shed
directly into sinusoids whose inlets were regularly spaced
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between terminal portal venules at the base of the lobules
(Figure 2, C-E). Short arterio-sinusoidal twigs were also
observed in this region. Since the blood was shed from
the peribiliary plexus into the closest lobules, asymmetry
could be observed in the distribution of the arterial blood
around larger portal tracts (Figure 2, C and D). Other
lobules, especially those situated on the opposite side
(according to the artery) of the portal tract, were supplied
by arterioles (marginal branches) running around the
large portal tract ending either at the base of the terminal
portal venules forming arterioportal anastomoses or run-
ning up on the portal venules. These latter arterioles
terminated on sinusoids at the base of lobules (Figure 2,
F and G). Similar terminations were observed at the pe-
ripheral areas of the vascular tree. Usually one or two
terminations were detectable per lobule. Since the sinu-
soids were intentionally not filled through the portal sys-
tem, only that part of the lobule was visible, which was
also fed directly by the arterial system. The resin entering
the lobules through the arterioles formed conical struc-
tures that corresponded to the HMSs."” To distinguish
these HMSs from the others supplied exclusively by por-
tal inlet venules, we called this subunit arterial microcir-
culatory subunit (aHMS). However it should be kept in
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Figure 2. Normal mouse liver. A: Direct arterio-
portal anastomosis (arrow) on a large trunk of
the portal tree. A small amount of the red resin is
spread on the previously hardened blue resin.
Scale bar = 1 mm. B: Detail of A (arrowhead in
A) viewed under the scanning electron micro-
scope. Anastomosis between the peribiliary
plexus and the portal vessel. Numerous capillar-
ies of the peribiliary plexus (arrowhead) joined
into one vessel that enters the large trunk of the
portal vein (arrow). Scale bar = 300 um. C and
D: Detail of a vascular tree of the liver viewed
from opposite directions. The portal vein is filled
with blue resin. Scale bar for C,D = 500 um. C:
Shows the side where the artery (arrowhead) is
running. Note the numerous aHMSs (arrows)
spaced regularly between terminal portal
venules (marked by arrows on D) along the
portal vein. Each space between the terminal
portal venules corresponds to one lobulus. D:
No aHMSs are visible on the other side of the
portal vein. E: Light micrograph of a single aHMS
located above the peribiliary plexus and be-
tween terminal portal venules (arrows) at the
base of the lobule. The space between the ter-
minal portal venules determines the extension of
the lobule. The red resin, which fills the sinu-
soids of the aHMS is in connection (arrow-
heads) with blue resin of the terminal portal
venules, showing that the aHMS is part of the
lobule. Scale bar = 200 uwm. F,G: An arterial HMS
at the periphery of the vascular tree of the liver,
SEM images. F: The arteriole (large arrow-
head) runs up on the portal venule and termi-
nates in an aHMS at the base of the lobule
(small arrow). The lobule is defined by the tree
terminal portal venules (small arrowheads).
Note that the red resin (inset) is present in the
central venule (large arrow). The inset shows
light micrograph of the same area. Scale bar =
200 wm. G: High power micrograph of the aHMS
shown on Figure 2F. The main branch of the
arteriole terminates in the aHMS (arrow).
Smaller branches form direct anastomoses (ar-
rowheads) with the portal venule. Scale bar =
90 wm.

mind that this subunit also drained mixed blood. No
aHMSs were observed at the surface of the liver.

The Arterialization Process of Metastases
The Rate of Arterialization

Three different tumor lines that frequently metastasize
into the liver, and exhibit different growth patterns, were
used for the experiments. The highly invasive 3LL-HH tumor
line is characterized by replacement type growth, whereas
the C38 colon carcinoma shows pushing type of growth
and the A2058 human melanoma line has an intermediate
growth pattern.'> 38 The earliest arterialization of the me-
tastases was observed in the case of the highly invasive
Lewis lung tumor line (Figure 3). Forty percent of the
metastases had well developed arterial blood supply
below the diameter of 800 um. The other two lines, es-
pecially the differentiated colon carcinoma, acquired
their arterial blood supply at a considerably slower rate.
Only half of the metastases of the colon carcinoma were
arterialized at the size of ~1500 um. However, the arte-
rialization process accelerated later and almost all C38
metastases had arterial blood supply at the diameter of
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Figure 3. Percentage of arterial metastases in relation to metastasis size.

2000 um, similar to the fast growing Lewis lung carci-
noma. For the slow growing human melanoma, this value
was about 2500 pm.

Sequential Events of the Arterialization

Small avascular metastases and metastases supplied
with mixed blood through the sinusoids generally ap-
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peared on the corrosion specimens as holes, since the
liver vasculature through the portal system was filled only
to the sinusoids (Figure 1, A and B). However, microme-
tastases which early invaded the area of terminal portal
venules were readily filled through the portal system and
stained blue (Figure 4A and B). The majority of these
metastases were not in contact with aHMSs. The process
of arterialization was deduced mostly by the examination
of the well-organized C38 metastases allowing a clear
view of the intra- and peritumoral vessels. The first step of
the arterialization process was the distortion of the
aHMSs by the metastases (Figure 4C), ie, the spherical
metastasis impressed into the aHMS while the sinusoidal
structure of the aHMS remained intact. This was followed
by initial fusion of the sinusoids of the aHMS owing to the
compression of the tumor (Figure 4, D and E). The pro-
cess of sinusoidal fusion was described earlier in detail
by our group for the C38 tumor line.'® The present cor-
rosion casting studies confirmed these data, and dem-
onstrated sinusoidal fusion at the periphery of the two
other studied tumor types, as well. However, the extent of
the fusion differed among the tumor lines. It was most
pronounced around the differentiated colon tumor fol-

Figure 4. A: A C38 micrometastasis on the surface
of the liver grows close to a terminal portal venule
(small arrowheads). The vascular lake (arrows)
at the surface of the metastasis is filled with blue
resin (inset) injected through the portal vein. An
arteriole (large arrowhead) is visible close to the
ramification of the portal venule, which later rep-
resents the base of the lobule. The metastasis has
not yet reached this region. Scale bar = 500 wm;
500 um (inset). B: Detail of A. The arteriole
branched off (arrows) is close the fork of the
terminal portal venule. The resin hardly entered
the aHMS (arrowheads). Scale bar = 90 um. C:
Impression of a C 38 metastasis in an aHMS (small
arrowheads). The sinusoids of the aHMS are
nearly normal in structure. Inset shows the same
aHMSs filled with red resin (arrow) at the base of
the metastasis and the supplying arteriole (large
arrowhead). Broken line marks the border of the
metastasis. Small arrowheads point at the termi-
nal portal venules entrapped within the metastasis.
Scale bars: 100 wm; 200 wm (inset). D: Com-
pressed aHMS at the base (inset) of a C38 metas-
tasis. Initial fusion of the sinusoids of the HMS is
discernible (arrows). Other sinusoids of the aHMS
are normal in structure (small arrows). On the
inset the arrow points to an arteriole supplying
the HMS. Drops of the resin (red dot on the light
micrograph marked by arrowhead) are present in
the central venule (arrowheads). Scale bars: 90
pm; 300 wm (inset). E: The “nest” of a metastasis
viewed from the top (from the surface of the liver).
The sinusoids of the aHMS at the base of the metas-
tasis are partially fused (arrowheads). Arrow points
at a portal vessel within the metastasis projecting
toward the surface of the liver. Scale bar = 100 wm.
F: Fusion of sinusoids in the metastasis of the 3LL-HH
tumor. Large vascular lakes are not formed at the
surface; instead tortuous vessels appear within the
metastasis (large arrowheads). Note the impres-
sions left by small tissue pillars (arrows) within the
tumor vessels representing the last step of the fusion
(reverse intussusceptive angiogenesis). The low den-
sity tortuous tumor vessels are continuous with the
high density sinusoids of the surrounding liver tissue.
Scale bar = 60 um. G: Small A2058 metastasis. The
centrally located non-dilated artery (arrow) ramifies
into delicate intratumoral vessels. Scale bars: 200 wm;
500 wm (inset).
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lowed by the highly invasive 3LL-HH tumor line (Figure
4F). The sinusoidal fusion was least advanced in the
neighborhood of the metastases of the human melanoma
cell line, which corresponded to the delicate vessel struc-
ture of its metastases (Figure 4G, and supplemental Fig-
ure S1, A and B, at http.//ajp.amjpathol.org). Vasculariza-
tion of the metastases was initiated by the incorporation
of these fused sinusoids. Extensive sinusoidal fusion in
the case of the C38 colon carcinoma led to the develop-
ment of vascular lakes on the surface of the metastases
that were directly connected to the arterial system (Figure
5, A and B). When the fusion reached the base of the
aHMS, the arterialization of the metastasis was just com-
plete (Figure 5, C and D). The fused sinusoids, together
with the supplying artery, were incorporated into the tu-
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Figure 5. A,B: Formation of a vascular lake from
an aHMS at surface of the metastasis of the C38
tumor line. A: The arrow points to the non-
dilated arteriole feeding the severely distorted
and fused aHMS (arrowheads). A broken line is
drawn along two terminal portal venules that are
pushed aside by the growing tumor mass and
thereby outlines the border of the metastasis.
Scale bar = 500 um. B: The area marked by
arrowheads on A is viewed from above by the
scanning electron microscope. Extensive fusion
of the sinusoids leads to vascular lake formation
(arrowheads). The arrow points to the supply-
ing arteriole. Scale bar = 200 um. C: Part of an
arterialized C38 micrometastasis. The supplying
arteriole is severely dilated (arrow) and ramify-
ing into vessels, which delineate the surface (ar-
rowheads) of the metastasis. The arteriole has
not yet been incorporated into the metastasis.
Scale bar = 100 pm. D: Scanning electron mi-
crograph of the same structure shown on (C)
viewed from above. Fused sinusoids (arrows)
and vessels (arrowheads) are organized into
basket-like form. Scale bar = 200 um. E: Arteri-
alized C38 micrometastasis. Dilated arteriole (ar-
row) feeds the metastasis. The area where most
of the branches arise (arrowheads) is just in-
corporated into the tumor but the vessels run on
or close to the surface of the metastasis. The
center of the metastasis is avascular. Scale bar =
200 wm. F: 3LL-HH metastasis supplied by a
strongly dilated artery (arrow). There is an ex-
treme size difference between the artery running
toward the tumor and the artery accompanying
the neighboring portal vein (arrowhead). Note
that the two portal veins are about the same size.
Scale bar = 1 mm.

mor (Figure 5E). As the aHMSs were located at the base
of the lobules, the artery entered the majority of the me-
tastases from the hilar region.

Architecture of the Supplying Arteries

A large proportion of the metastases were supplied by
one arterial branch (Table 1). However, there was a ten-
dency, especially in the case of the A2058 tumor line, for
larger tumors to acquire more supplying arterial branches
(supplementary Table S1, supplementary Figure S1C at
http.//ajp.amjpathol.org). The arteries supplying the metas-
tases became strongly dilated while the neighboring ar-
terial branches originating from this supplying artery were
generally collapsed (Figure 5F). A high proportion of the

Table 1. Percent of Metastases Supplied by the Different Number of Arterial Branches
Percent of metastases
Percent of metastases  Percent of metastases supplied directly by Percent of metastases  Total number of

supplied directly by supplied directly by three or more arterial supplied through the metastases

one arterial branch two arterial branches branches peribiliary plexus analyzed
3LL-HH 68 (n.d.) 16,5 1 14,5 294
C38 82 (50) 9 - 9 252
A2058 63 (9) 22 6 9 172

(), percent of metastases with centrally positioned arterial branch. n.d., not determined.
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arterial “trees” was centrally positioned within the metas-
tases of the C38 colon carcinoma, but this phenomenon
was also observed in the metastases of the other tumor
lines (Table 1, Figure 6, A-C, and supplemental Figure
S1D at http.//ajp.amjpathol.org).

The structure of the supplying artery inside the tumor,
especially in the case of the C38 colon carcinoma, was
unique. The diameter increased toward the center of the
metastasis. No ramification could be observed along the
trunk; all branches originated from a small area of this
artery, which was approximately located in the center of
the metastasis (Figure 6, A-D). The ratio of the diameters
of the portal vein running parallel to the metastasis sup-
plying artery dropped significantly compared with that in
the control liver (supplemental Table S2, at http.//ajp.
amjpathol.org). This ratio decreased with increasing tu-
mor size (Figure 7A). The diameter of the supplying artery
increased linearly with increasing tumor size (Figure 7B).
The extent of dilatation dropped rapidly upstream, but
persisted to some extent up to 1 mm from the metastasis
(supplemental Table S2 at http.//ajp.amjpathol.org). The
BrdU labeling index of the arterial wall cells at the base of
the metastasis was 6.9 = 2.3%, suggesting that cell
proliferation contributed significantly to the dilatation of
the arteries. Ten to fifteen percent of the metastases
were supplied with arterial blood through the peribiliary
plexus (Table 1). The artery accompanying the peribili-
ary plexus was not directly involved in the supply of
these metastases. The portal vessels in the majority of
the metastases were displaced, although a portion
remained central but severely compressed (Figure
6D). Rarely (<5%), the metastases were supplied by
arterial blood through arterioportal anastomoses inside
the tumor.
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Figure 6. A: C38 metastasis with a well devel-
oped central arterial tree (black arrowheads
on the inset). The portal vein was pushed aside
(arrows). No ramifications can be observed on
the SEM micorgraph along the trunk of the arte-
rial tree (white arrowheads). Scale bars: 600
pm; 1 mm (inset). B: Detail of A. Vascular
branches originate from one small area of the
arterial tree (arrow) located in the center of the
metastasis. Scale bar = 300 wm. C: 3LL-HH me-
tastasis. The centrally located artery dilates grad-
ually toward the center of the metastasis where it
ends in tortuous vascular lakes. The metastasis is
not completely filled by the resin its borders are
defined by the portal branches (arrowheads).
Scale bars: 600 um; 500 um (inset). D: C38
metastasis with a strongly dilated funnel-like ar-
tery (arrow). Both the artery and the portal vein
(arrowhead) are located centrally. The portal
vein is extremely compressed obstructing the
resin flow. Note that there are no ramifications
along the trunk of the artery. The branching
point of the artery is located in the center of the
metastasis. Scale bars: 200 wm; 500 wm (inset).

Consequences of the Arterial Blood Supply

We questioned whether the metastases acquired an
arterial blood supply because they had grown bigger or
whether the arterial blood supply provided a growth ad-
vantage to the metastases. There was no difference in the
rate of tumor cell proliferation between metastases sup-
plied arterially or portally (mixed blood) in two of the
mouse cell lines (C38 and 3LL-HH). However, the prolif-
eration rate was slightly but significantly increased in the
arterially supplied metastases of the A2058 human mel-
anoma cell line (Table 2, supplemental Figure S1, E and
F, at http.//ajp.amjpathol.org).

Discussion

Using three different tumor lines, we have shown that
metastases more than 2000 to 2500 wm in diameter in the
mouse liver inevitably become arterialized. Although the
importance of arteries in nourishing metastases has long
been recognized, mechanisms for the evolution of arterial
blood supply have never been presented.'” Here we
describe a mechanism for the arterialization of metastases
in the mouse liver. This process can be divided into the
following steps (Figure 8): 1) distortion of the aHMS by the
metastasis; 2) initial fusion of the sinusoids of the aHMS at
the tumor parenchyma interface; 3) fusion of the sinusoids
located at the base of the HMS, leading to the disruption of
the sphincter (burst pipe); 4) incorporation of the dilated
artery and the fused sinusoids; and 5) further develop-
ment of the tumor vasculature (arterial tree) by prolifera-
tion, remodeling, and continuous incorporation of fused
sinusoids at the surface of the tumor.
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Figure 7. A: Portal vein-artery ratio in relation to metastasis size. B: Diameter of
the supplying artery at the entry to the metastasis in relation to metastasis size.

The key element in the arterialization of the metastases
is the so-called aHMS observed in the mouse liver. The
situation is more complicated in the human liver, where
no direct arterioportal anastomoses are present, but ar-
teries run in the interlobular vascular septa terminating on
sinusoids along the whole circumference of the lob-
ules.’®!” Thereby, all HMSs are connected to arterioles,
(in that sense all HMSs in the human liver are aHMSs)
increasing the probability that an arteriole will be hit by a
metastasis. This strongly suggests that metastases in the
human liver become arterialized even earlier than in the
mouse liver. Thus, arterialization takes place at the level
of liver lobules. The size of a surface lobule in the mouse
liver is approximately 500 X 500 X 600 wm (unpublished
observation). However, the actual size of the arterialized
metastases is considerably larger, which can be ex-
plained by the expansive growth of the tumors resulting in

Table 2. Labeling indexes of metastases supplied
preferentially by arterial or portal blood

Portal (mixed blood)

Arterial metastases metastases
3LL-HH 50,1 = 3,7 50,7 £ 5/4n.s.
C38 552+ 11 55,0 = 4,2n.s.
A2058 383*+25 34,1+ 1,9*

Mean =+ SD; n.s., not significant; *, P < 0.05.
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Figure 8. Schematic representation of the arterialization process in liver
metastases. Step 0: Micrometastasis growing within the liver lobule. The
arterial HMS has normal architecture. Step 1: Distortion of the aHMS by the
metastasis. Step 2: Initial fusion of the sinusoids of the aHMSs at the tumor
parenchyma interface. Step 3: Fusion of the sinusoids located at the base of
the HMSs, leading to the disruption of the sphincter (burst pipe). Step 4:
Incorporation of the dilated artery and the fused sinusoids. Step 5: Further
development of the tumor vasculature (arterial tree) by proliferation, remod-
eling, and continuous incorporation of fused sinusoids at the surface of the
tumor. Blue - mixed portal and arterial blood, Purple - mixed blood in the
arterial HMSs, Red - arterial blood, Green - hepatocytes, Gray - tumor tissue,
Black boxes - arterial sphincters.

certain displacement of bases of the surrounding aHMSs.
This displacement is probably the lowest in the highly
invasive rapidly growing tumor (3LL-HH), which becomes
arterialized at a size closest to that of a lobulus.

Arteries enter the metastases from the hilar direction,
which can explain the failure to detect direct connection
between arteries and metastases in an in vivo micro-
scopic study.’® The authors of the above study sug-
gested that arterial blood entered the metastases through
portal branches. Our observation contradicts this hypoth-
esis, as in the vast majority of metastases, a separate
arterial “tree” is responsible for nourishment of the me-
tastases. The unique structure (no ramification along the
trunk) of the central arterial tree suggests that no sprout-
ing type angiogenesis takes place from this vessel and
the moderate proliferation rate of cells constructing the
arterial wall contributes only to the dilatation of the artery.
The area of extensive ramification probably represents
the original inlet of the artery into the sinusoids, modified
by fusion, cell division, and incorporation.

The preferred growth of the tumors around the arteries
may be related to the pressure difference between the
arterial and portal systems. The low pressure portal and
central veins are pushed aside by the metastasis, while the
tumor grows around the firm standing, dilated, high-pres-
sure artery. The high percentage of metastases supplied by
only one artery can be explained if we view a metastasis as
a burst pipe (reduced resistance owing to the dilated artery
and the fused sinusoids) in the arterial system, which results
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in subsequent drop in the pressure and collapse of the
neighboring arteries. These arteries are then pushed away
by the growing tumor preventing the development of further
supplying artery branches. The observation that the A2058
human melanoma has a larger percentage of metastases
supplied by more arteries may be related to the small cali-
ber intratumoral vessels, which may cause higher resis-
tance to blood flow through the tumor, leaving the neigh-
boring arteries uncollapsed. From these arteries new
supplying branches can develop. Larger metastases could
acquire further arterial blood supply from more distant, large
arterial branches where the effect of the pressure drop
caused by the metastasis is not so pronounced.

The finding that metastases with an arterial blood sup-
ply had no or only slight growth advantage over metas-
tases supplied by mixed blood suggests that metastases
become arterialized as a result of their increased size.
This supports the notion, that the process of arterializa-
tion is purely mechanical in nature, governed by the
pressure relationships in the liver vasculature.

The significant differences in the microvascular architec-
ture between the mouse and human livers can have other
consequences besides the possible earlier arterialization of
the metastases in the human liver. Since arterioles in the
human liver terminate on the whole surface of the lobules, a
growing metastasis can hit more arterioles simultaneously,
resulting in a higher portion of metastases supplied by more
arteries. This phenomenon can also reduce the number of
human liver metastases having their arterial entry from the
hilar direction. It is also important to note, however, that
arterial connections on the surface of the metastasis might
not all be functional (they will not feed the metastasis from
an outside-in direction) if a dilated artery within the metas-
tasis forces these arteries into collapse.

The observation that metastases, during their growth,
develop an arterial blood supply contradicts the sug-
gested role of sinusoids in nourishing liver metastases.
The sinusoidal system is continuous with the vasculature
of the tumor, but according to the frequently observed
central localization of the arteries, and considering that
central veins are always located outside the metastases,
blood should flow in an inside-out direction. In fact, in vivo
microscopic studies have demonstrated that fluorescent
dye or microspheres could not enter the metastases
when injected into the portal system, whereas following
arterial delivery the fluorescence appeared first within the
metastasis, and the blood drained into the surrounding
sinusoids.®'® Sinusoids surrounding the metastasis play
no role in supplying the inner part of the metastases. They
serve only as building blocks during the development of
the tumor vasculature by sinusoid fusion and incorpora-
tion. However, portal vessels and sinusoids could have a
role in the nourishment of the periphery of the metasta-
ses, especially when the arterial flow is blocked.

The rationale for using hepatic arterial infusion is that it
can maximize the exposure of metastatic colorectal cancer
cells in the liver to high target concentrations of chemother-
apeutic agents by their localized infusion.'® Although our
experimental results provide further theoretical background
for this therapeutic approach and hepatic arterial infusion
has demonstrated superior response rates compared with
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systemic chemotherapeutic treatments,'® its impact on the
overall survival of colorectal cancer patients with hepatic
metastasis is still unclear.?°=22 Nevertheless, our results
may also serve as a theoretical basis for further research
into the effects of other anticancer drugs (such as novel
targeted agents) administered intra-arterially.
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Abstract

During motility of fibroblast type cells on planar surfaces, adhesions are formed at the anterior of the protruding lamella, which remain
stationary relative to the substrate and undergo a maturation process as the cell passes over them. Through these adhesions force is exerted,
the orientation of which is parallel to the direction of the movement. Here we show that, during gliding-type motility of human tumor cells,
characterized by a semicircular shape, adhesions were found at the outer rim of the cells, aong the semicircle. Time-lapse microscopy of
GFP-vinculin-expressing cells showed that these adhesions were constantly renewed at the cell edge and followed a curved trajectory
according to the graded radia extension model. Eventually, the adhesions reached the long axis of the cell where they were retracted into
the cell body. Actin cables formed arcs, with the concave face at the anterior of the lamella found to be oriented in the direction of
movement. Since adhesions moved backward with respect to the cell, actin cables connected to these adhesions must continuously grow,
reaching maximal size at the long axis of the cell. Contraction of the arcs is responsible for the forward movement of the cell body.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Human fibrosarcoma; Cell migration; Adhesion dynamics; GFP-vinculin; GRE model

Introduction

There are considerable differences in the motility behav-
ior of different cell types. Fish epidermal keratocytes move
rapidly (10-30 uwm/min), practically gliding over the sub-
strate, showing a semicircular shape, which is maintained
during cell body translocation [1-4]. A kinematic descrip-
tion of locomotion of keratocytes was presented earlier and
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termed the graded radial extension model (GRE model) [1].
This model predicts that every point along the edge of the
semicircular lamella moves perpendicularly to the cell edge
with a decreasing displacement toward the long axis of the
cell. As a result the points of the cell edge move along a
curved path with respect to the substrate.

In contrast to keratocytes, the movement of other cell
types such as fibroblasts and murine tumor cells is slow
(0.5-1 wm/min) and more erratic, but, as a general rule, the
extension of the leading lamella is followed by cell body
translocation and tail retraction [5-7].

The most striking difference between the two cell types
is the direction of the exerted force during motility corre-
sponding to the organization of the cables of the actin
cytoskeleton. Actin cables show perpendicular orientation
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in keratocytes, while they are paralel to the direction of
movement in fibroblasts [2,3,6]. It is not clearly understood
how the generated forces in both cases are able to produce
cell body forward movement, despite the differences in the
organization of the actin cytoskeleton. In the case of ker-
atocytes it was suggested that strong propulsive forces,
present only in the wings of the cell, are canceled by
adhesive traction forces and only pinching forces are de-
tectable [8]. Others have shown that weak centripetal forces
in the lamellipodium cause the cell body to be pulled for-
ward and pinching forces are responsible only for detach-
ment of the adhesions [9,10].

It is generally accepted that adhesions formed at the
anterior of the cell remain stationary relative to the substrate
and undergo a maturation process as the cell passes over
them [11-13]. However, the fate of the numerous adhesions
produced at the anterior of the wide leading lamella is not
clear, considering the triangular form of migrating fibro-
blast-type cells. It has been suggested that focal adhesions
under the cell body play a role only in maintaining the
spread shape of the migrating cell [14]. Recently it was
reported that the majority of these adhesions rapidly dis-
perse in the lamella and only adhesions localized at the
lateral edge will reach the rear of the cell [5]. As polarized
bundles of actin filaments are connected to the adhesions,
the polarization of the actin filaments and adhesions must
change as the cell passes over the adhesions, which would
involve the complete remodeling of the adhesions and the
actin cytoskeleton. To exert force for forward movement of
the cell body and the tail, in the case of fan-shaped migrat-
ing cells, the bipolar actin cables originating from the tail of
the cell must be coupled to the adhesions at the front of the
leading lamella [14]. Considering that the existence of ad-
hesions depends on tension [15], after the release of the
adhesion(s) in the tail, adhesions at the front must also be
disassembled, which would negatively influence the stabil-
ity of the leading lamella.

Here we present a hypothetical model of cell migration,
which is based on the observation that, during movement of
human fibrosarcoma cdlls, adhesions follow a curved path with
respect to the substrate, according to the GRE modd [1]. As
adhesions move clockwise and counterclockwise on the two
sides of the apex of the cell, the connecting actin arcs (oriented
perpendicularly to the direction of the movement), which pro-
duce the force for forward movement, grow in length as they
move backward with respect to the cell. Reaching the long axis
of the cell the adhesions at both end of the cable are released,
resulting in the disassembly of the entire actin cable.

Materials and methods

Time-lapse microscopy

HT1080 human fibrosarcoma cells (10° per well, six-
well tissue culture plate, Greiner, Germany) were seeded in

the presence of serum (10% FCSin RPMI 1640, Sigma, St.
Louis, MO) on coverdlips coated with 50-100 ug/ml Ma-
trigel (Collaborative Research, Bedford, MA). The tumor
cells were alowed to spread for 30—60 min, thereafter the
cells showed rapid movement for 1-2 h. After spreading, a
part of the surface of the coverdlips was cleaned by a rubber
policeman and an identification mark was placed on the
clean area close to the cell front by means of a diamond
pencil. The cells were videotaped for 1 h on an inverted
microscope (Axiovert 35, Zeiss, Germany) equipped with a
heated plate. At the end of the recording the cells were
immediately fixed in 4% paraformaldehyde, and, for the
later identification of moving cells, a videoprint was made
over the recorded area. The coverdlip was processed for
immunofluorescence and the cells actually moving at the
end of the recording were analyzed. The percentage of
moving cellsin a given time point was up to 5%. In this set
of experiments, moving cells were analyzed for the distri-
bution of phosphotyrosine and vinculin.

The distribution of talin, focal adhesion kinase, a6-inte-
grin, myosin, and actin was determined in moving type cells
showing the characteristic semicircular shape.

To determine the average speed of HT1080 cells, cov-
erslips were placed under a confocal microscope (MRC
1024, Bio-Rad, Hercules, CA) equipped with a heated plate
(MP10DM, Kitazato, Japan); phase-contrast pictures then
were taken every 30—60 s using a 20X objective. The net
displacement of a nucleolus of each cell was determined (n
= 31).

The same confocal microscopy system was used to de-
termine the dynamics of adhesions in GFP-vinculin trans-
fected cells. Pictures were taken every 30 s using a 100X
objective. Overlay of adhesions (merged picture of all pic-
tures taken during the observation period) was made using
the Bio-Rad Lasersharp Processing software.

Transfection

HT1080 cells (10°%) were transfected with GFP-vinculin
fusion gene containing plasmid, kindly provided by Dr.
Benjamin Geiger (The Weizmann Ingtitute of Science, Re-
hovot, Isragl), using FUGENE 6 transfection reagent (Roche
Diagnostic, Mannheim, Germany) according to the manu-
facturer's guidelines. The proportion of transfected cells
was 20% maximum and the cultures were used for migra-
tion tests for 3 days. The transfection influenced negatively
the locomoting activity; both the proportion (<1%) and the
speed of the moving cells were found to be decreased.

Immunofluorescence

Cells were fixed in 4% paraformaldehyde for 10 min and
permeabilized with 0.5% Triton X-100 for 5 min. The
following antibodies were used: polyclonal and monoclonal
(PY 20) antibody to phosphotyrosine, monoclonal anti-FAK
(Transduction Labs), anti-myosin (light chain, clone MY 21,



248 S Paku gg: LEQeQTJntaL gel;I'Research 290 (2003) 246-253

Fig. 1. Distribution of adhesion plague components. (a) Merged picture of phase-contrast image and phosphotyrosine immunofluorescence signals. The cell
shows semicircular shapes and immunofluorescence signals are localized predominantly to the outer rim of the cell. (b) Moving-type cell stained for vinculin.
The signals are distributed in a semicircular manner along the cell edge. Similar distribution of talin, focal adhesion kinase, and a6-integrin was observed

(not shown). Bar represents 10 um (a and b).

Sigma), anti-a-actinin (clone BM75.2, Sigma), anti-vincu-
lin (clone VIN-11-5, Sigma), anti-talin (cloneTA 205, No-
vocastra), and anti-a6-integrin (clone GoH3, Pharmingen).
Rhodamine-phalloidin  was obtained from Molecular
Probes.

Cells were incubated with the above antibodies for 60
min, with biotinylated secondary antibody for 30 min, and
then with streptavidin-DTAF (Jackson Immunoresearch)
for 30 min.

Results

During the rapid (gliding) movement on Matrigel, the
semicircular shape of HT 1080 fibrosarcoma cells was main-
tained and the direction of movement was perpendicular to
the long axis of the cell (Fig. 1a Videos 1 and 2). The
average speed of the movement was found to be 1.6 = 0.3
pwm/min (n = 31).

Immunofluorescence analysis of the distribution of phos-
photyrosine-containing proteins (Fig. 1a) and adhesion
plaque components vinculin (Fig. 1b), talin, FAK, and a6
integrin (not shown) indicated that these components were
localized at the outer rim of the cells aong the semicircle.
Adhesions were not observed under the cell body and a few
were found occasionally under the lamella. There were no
differences found in the size of the adhesions and distribu-
tion of the adhesion components among the different re-
gions of the semicircle, all of the above mentioned compo-
nents were present in all adhesion sites. Furthermore, no
significant differences were found among the adhesions at
the level of tyrosine phosphorylation (Fig. 1a). The adhe-
sions were spot-like (0.5 wm), or several microns long,
oriented toward the rim of the cell.

Time-lapse microscopy of GFP-vinculin-expressing
HT1080 cells showed that adhesions at the cell edge were
not formed continuously; new adhesions appeared as dis-
crete spots, with increasing intensity, ahead of the existing
adhesions. Displacement of the adhesions was the largest

close to the apex (25 um), decreasing toward the long axis
of the cell. Adhesions were found to be stationary with
respect to the substrate. The time of the adhesion renewal at
the cell edge was in the range of minutes (Fig. 2a—c, Video
3). In contrast, retraction of the adhesions into the cell body
in the flanks of the cell took place continuously; the adhe-
sions were apparently sliding on the substrate (Fig. 2d—g,
Video 4). The retraction of the adhesions was sequential
(Fig. 2d—g), but occasionally fusion of the adhesions could
also be observed (Fig. 2a-c, Video 3), which produced
larger and brighter adhesions at the rear of the cell. These
adhesions were eventually also retracted and dispersed in
the cell. Because of the discontinuous formation of the
adhesions, the path of individual adhesions could not be
followed, but overlay of the recorded images revealed that
adhesions followed a curved path (Fig. 2h and i). The
adhesions were placed forward and sideways with respect to
the substrate, but moved backward with respect to the cell
aong the cell edge. The path of the adhesions became more
and more curved, as they got closer to the long axis of the
cell, where they were retracted into the cell body. There
were dight differences in the distribution of adhesions be-
tween motile nontransfected and transfected cells. In video-
taped nontransfected cells the adhesions were mostly spot-
like, localized in one row to the cell edge, whereas in
transfected cells adhesions were frequently found in two
rows (Fig. 2h). This could be due to the high concentration
of vinculin in transfected cells that may slow down the
turnover of the adhesions.

Analysis of cytoskeletal elements in moving-type cells
showed that actin cables were present in the form of arcs at
the anterior of the lamella (Fig. 3a). The concave face of the
arcs was oriented toward the direction of the movement;
however, orientation on the dorsal side of the cell reversed
in front of the nucleus. a-Actinin was present in the lamel-
lipodia and showed periodical arrangement in the lamella
cell body transition zone (Fig. 3b). Myosin aggregates were
observed close to the lamellipodium and their density grew
toward the nucleus (Fig. 3c). At higher magnification it was
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Fig. 2. Dynamics of GFP-vinculin-containing adhesions. (a—c) Time-course of adhesion renewal during gliding motility in GFP-vinculin-transfected cells.
The series shows the right wing of the cell, turning slightly to the left. Arrowheads in b point to the devel oping new adhesion row. Arrow in ¢ points toward
the position of the adhesions aready removed. The adhesions marked by three and two small arrows in a are fused into the adhesions marked by the upper
and the lower large arrowheads in b. (d—) Time-course of the sequential retraction of two adhesions in the right wing of a moving cell. Arrowheads point
to the adhesions retracted. (g) Overlay of the images recorded over 3 min, including the images shown in d—f. Arrowheads point to the retracted adhesions.
Arrow points at an adhesion that the cell was not able to retract during the observation period. All three adhesions are sliding on the surface of the substrate.
(handi) Adhesion dynamics during gliding motility of HT1080 cells. (h) Distribution of adhesions at the start of time-lapse microscopy. (i) Overlay of images
recorded over 20-min movement of the cell. The adhesions follow a more and more curved path clockwise and counterclockwise on the two sides of the apex
of the cell. Reaching the long axis of the cell, the adhesions are retracted into the cell body. Bar represents 10 um a-.
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Fig. 3. Distribution of cytoskeletal elements. (a) Distribution of actin cables in locomoting-type cell. Note the concave face of the arcs present in the lamella
oriented toward the semicircle. (b) Confocal image of a-actinin signalsin a moving-type cell. The signals are distributed periodically from the middle part
of the lamella toward the nucleus. (c) Myosin aggregates can be observed close to the cell edge (dashed line), and their density is seen to increase toward
the nucleus. The focal plane was adjusted to the ventral surface of the cell. Note the decreased staining in the nuclear region. Periodical arrangement of myosin
aggregates is discernible in the left wing of the cell. Bar represents 10 um (a—c). (d) Myosin molecules organized into doublets, forming ribbons close to
the cell edge (dashed line). Bar represents 0.5 um. (€) Side view of a 20-um-wide part of the middle of the cell shown on c. The staining for myosin decreases
on both the ventral and the dorsal surfaces from the base of the lamella toward the nuclear region. Bar represents 5 wm.

discernible that myosin molecules were organized into dou-
blets, which were further assembled into ribbons (Fig. 3d).
The orientation of these ribbons was perpendicular to the
actin filaments and showed periodicity. The side view of
moving-type cells stained for myosin indicated that the
concentration of myosin was highest in the lamella and in
the lamella—cell body transition zone where the membrane
starts to rise, decreasing on both the ventral and dorsal side
of the cell toward the nuclear region (Fig. 3e).

Discussion

Based on the observed distribution and dynamics of the
adhesions and on the structure of the actin cytoskeleton, we
propose a hypothetical mechanism of cell migration. This
model differs substantially from the widely accepted loco-
motion model of fibroblast type cells [7].

The observation that adhesions in HT1080 cells were
localized and constantly renewed at the leading edge of the
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cell means that aging, as well as maturation of the adhe-
sions, does not take place along the leading edge of the cell.
This is further supported by the observation that all of the
adhesions contained components such as vinculin and FAK,
the presence of which in adhesionsis considered as a sign of
maturation [13,14]. The rapid turnover of the adhesions
during migration at the cell edge results in the absence of
adhesions under the lamella and the cell body. This obser-
vation is in contrast to earlier ones, made on chick embryo
fibroblasts and keratocytes, in which talin- and vinculin-
containing adhesion sites were found in these regions
[6,11]. However, similar to our observations, recent results
have shown that, during lamella extension, stationary adhe-
sions were present only in the anterior part of the lamella
[5,12]. However, the turnover of these adhesions was some-
what slower than in the case of human fibrosarcoma cells.

As has been shown earlier in the case of keratocytes, to
maintain the semicircular shape during gliding motility, the
points of the semicircle move perpendicularly to the cell
edge, but the displacement decreases from the apex to the
long axis of the cell. This means that each point of the cell
edge will follow a curved path with respect to the substrate
(GRE model) [1]. The observed trajectory of the GFP-
vinculin-containing adhesions in HT1080 cells corresponds
well with this model. This observation and the fact that
neutrophil fragments also locomote according to the above
model [17] suggest that graded radial extension of the lead-
ing lamellamay represent a universal mechanism in cellular
movement.

Since actin filaments are attached to the adhesions along
the semicircle and the adhesions follow the curved path in
the opposite direction on the two sides of the apex of the
cell, the length of the actin cables have to increase, reaching
maximal size at the long axis of the cell (Fig. 4). It is well
established that assembly of the branched network of actin
filaments beneath the plasma membrane is responsible for
the extension of the lamellipodia. The branching takes place
from the side of the preexisting filaments [18]. However,
branched actin filaments cannot assemble into a sliding
actomyosin system, which is necessary to exert force to
propel the cell body forward. Therefore, as it has been
suggested, the majority of the newly synthesized actin fil-
aments have to separate from the sides of their mother
filaments as the cell advances [18]. We hypothesize that
these separated filaments are not depolymerized; instead
they will be incorporated into the dliding actomyosin system
organized by the myosin molecules. This notion is sup-
ported by our observations that myosin aggregates appeared
close to the lamellipodium and organized into doublets,
which were further assembled into ribbons. The orientation
of these ribbons was perpendicular to the actin filaments and
showed periodicity, as observed by others, in the case of
mammalian fibroblasts [19]. This kind of organization of
myosin molecules suggests that a sliding actomyosin system
is working immediately behind the lamellipodium. This is
in contrast to keratocytes, in which the lamellipodia, which

¢ adhesion sites
actin cables to

cell membrane

Fig. 4. Schematic representation of the fate of adhesions and actin cables
in moving cells. Curved arrows show the path of adhesionsin time (t;—t,).
The actin cables connecting the adhesions grow in length as the cell
advances. At t; new adhesions and actin cables are added at the apex of the
cell. Straight arrows (t,) represent the forces exerted by an actin cable (a)
and the substrate (a'). To generate the resultant force, the forces exerted by
the substrate (&) were shifted from the adhesion points to the middle of the
actin cable. The resultant force oriented in the direction of the migration is
responsible for cell body forward movement.

is devoid of myosin molecules, is wide, thereby the con-
tractile zone is localized in front of the nucleus [2,4]. The
periodical arrangement of myosin and «-actinin observed
by us suggests that actin cables containing filaments with
aternating polarity are responsible for force generation in
moving HT1080 cells.

In a portion of moving HT1080 cells, adhesions were
elongated and oriented more or less perpendicularly to the
cell edge. The orientation of the adhesions is determined by
the direction of the force exerted by actomyosin cables
coupled to the adhesions [15]. As HT1080 cells moved
forward, a new row of adhesions was formed in front of the
old one. (To ensure continuous force generation, actin ca-
bles must always be connected to the substrate, which
means that disassembly of the old adhesions should not take
place before assembly of new ones.) Recent results have
shed light on a possible mechanism of actin cable elonga-
tion. It was shown that the Arp2/3 complex transiently
associates with vinculin in adhesions at the leading edge,
implicating that branching of actin filaments can also take
place within these structures[20]. In the case of keratocytes,
the force exerted by the actomyosin system grows toward
the long axis of the cell [8,9]. Considering the resemblance
in distribution and orientation of the main actin cables
between keratocytes and human fibrosarcoma cells, we sup-
pose a similar distribution of forces in the moving HT1080
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cells. The increasing force decreases the concavity of the
actin cables and causes the new adhesions to have a differ-
ent orientation compared to the old ones. During this pro-
cess the orientation of the adhesions becomes more and
more parallel to the long axis of the cell. As the adhesions
during migration of HT1080 cells remain more or less
perpendicularly oriented to the edge, the change in the
orientation corresponds to the predictions of the GRE
model, which includes the lateral flow of the adhesions.

In keratocytes, propulsive (rearward directed) forces
were detected either in the wings of the cell [8] or centrip-
etally oriented in the lamellipodia [9,10]. In the human
fibrosarcoma cells, vinculin-containing adhesion sites were
observed along the semicircular leading edge through which
adhesions, as recent results suggested, force can be exerted
[21]. The distribution of the vinculin-containing adhesions
and the structure of the actomyosin arcs in HT1080 cells
suggest a centripetal orientation of the propulsive forces.

Adhesions and actin cables have to be produced at the
apex of the cell, making a continuous force generation
possible, resulting in the gliding motility of the human
fibrosarcoma cells. The continuous retraction or fusion of
adhesions in the flanks and their production at the apex of
the cell ensure a steady number of adhesions along the
leading edge of the cell.

As adhesions were present only occasionally under the
lamella, the actin cables span the entire width of the cell; the
interconnected actin cytoskeleton acts as a rubber sheet
nailed down at the adhesions. As this system alone deter-
mines the shape of the migrating cell, no adhesions are
needed under the lamella and the cell body.

The actin cables in the lamella formed arcs due to the
dragging force of the cell body, but a the same time the
contractile force of the arcs propel the cell body forward
(Fig. 4). Similar actomyosin arcs—present exclusively in
front of the cell body— have been observed in fish kerato-
cytes and are considered to be responsible for mediating cell
body trandlocation [2,4]. If the actomyosin system is inter-
connected, the dragging force of the cell body is transmitted
to the front of the cell, causing the organizing actin cables
behind the leading lamella to take up the concave shape.
(The actin arcs observed by confocal microcopy can be
rather considered aslocal increase in the density of the actin
filaments of the interconnected actin network.) It must be
noted that, to ensure the gliding-type motility, theoretically
al of the actin cables have to exert force of the same
magnitude in the direction of the movement. Consequently,
the component, which is directed perpendicularly to the
direction of the movement, grows, as the cables become less
concave during backward movement with respect to the cell.
For the most efficient forward movement of the cdl it is a
prerequisite that no adhesions are present under thelamellaand
the cell body, as these would hamper the free contraction of
the arcs, thereby slowing down the movement.

Actomyosin cables were observed on both the ventral
and the dorsal sides of the HT1080 cells. It is important to

note that the actomyosin cables on the dorsal side were aso
connected to the adhesions located at the cell edge, thereby
also able to exert force on the substrate, contributing to the
forward movement of the cell. A proportion of the actomy-
osin cables on the ventral side moved under the nucleus,
while the cables on the dorsal side became stuck at the
lamella—cell body boundary, where the membrane starts to
rise. The latter forms the large actin cable, apparently ex-
erting force in the opposite direction of the movement,
probably responsible for the retraction of adhesions at the
long axis of the cell. However, the force exerted by this
cable could be rather low, as the adhesion at its ends glide
on the surface of the substrate.

The continuous growth of the actin cables in moving
human tumor cells, suggested by us, questions the existence
of treadmilling of actin filaments in the sense that, in the
lamella, there is no simultaneous polymerization and depo-
lymerization of the filaments; there is only filament growth,
until the actin cables reach maximal size.

The release of the adhesions took place simultaneously
in the flanks of the cell, probably leading to the disassembly
of the entire actin cable. The process can be repeated con-
tinuously during movement as the adhesions and actin ca-
bles reach the long axis of the cell. The disassembly of the
actin cables at the rear of the cell has no direct influence on
the tension of the force exerting cables in the front of the
lamella.

Moving fibrosarcoma cells with tails have also been
observed, showing the classical form of locomoting fibro-
blast-type cells [6]. In the leading lamella of these cells,
however, the distribution and dynamics of the adhesions
were identical to the semicircular-shaped cells, except that
at the end of the tail one adhesion site was detectable. Actin
cables originating from this adhesion spanned the entire cell
and were oriented parallel to the direction of movement.
However, other cables forming arcs in the leading lamella
have been oriented perpendicularly to the direction of
movement. These observations strongly suggest that the
lamella alone is responsible for the forward movement of
the human fibrosarcoma cells. According to the model pro-
posed here, the adhesion in the tail or any other adhe-
sions under the cell body, which the cell were not able
to disassemble at the start of the movement, only retard
migration.
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Abstract

The process of extravasation of the high metastatic Lewis lung carcinoma line was examined in different organs. Four of
the five organs (liver, lungs, brain and adrenals) represent the most frequent metastatic sites in humans. In the case of
each organ 150-350 tumor cells were analysed. The interaction of tumor cells with endothelial cells and the basement
membrane showed significant differences between the organs. In the liver and lungs, endothelial cells were found to migrate
onto the surface of the tumor cells, resulting in the removal of tumor cells from the circulation. The process was initiated
by development of cytoplasmic projections on the luminal surface of the endothelial cells. In the liver only half of the
tumor cells showed basement membrane degradation even after 24 h, although 6 h after injection 40% of the tumor cells
were sequestered from the circulation. In the adrenals and brain, tumor cells were not covered by endothelial cells instead,
limited retraction of endothelial cells was followed by penetration of the basement membrane. In the kidney both types
of tumor cell-endothelial cell interactions were observed, but the process of extravasation was not completed, stopping as
the tumor cells reached the basement membrane or the mesangial matrix. The time course of tumor cell extravasation also
showed significant differences between the organs. The process was most rapid in case of the liver and adrenals. By 6 h
40-50% of the tumor cells were in the process of extravasation or were in an extracapillary position. These organs are
preferential metastatic sites of this tumor line. The time of extravasation was much longer in the other organs (lungs 16 h,
brain 48 h), for which this tumor line shows no preference. Conclusions: (1) Type and duration of tumor cell extravasation
differ between the organs. (2) The time needed to reach extraluminal position, but not the type of extravasation correlates
with the organ preference. (3) Endothelial cells of the lungs and liver can play a much more active role in the process of
extravasation than previously suggested. (4) Tumor cells can complete the metastatic process without reaching a complete
extracapillary position; contact with the basement membrane or extracellular matrix seems to be sufficient.

Introduction (4) by intracapillary proliferation of tumor cells leading to

the mechanical destruction of the capillary [12].

Extravasation of tumor cells is an important step in complet-
ing successful metastasis formation. The cause of metastatic
inefficiency is debated, but destruction of tumor cells in the
circulation by mechanical forces or the immune system can
lead to significant reduction of the number of extravasating
tumor cells [1]. Therefore the time spent in the hostile envi-
ronment of the microcirculation can have a decisive role on
the efficiency of the metastatic process and organ preference.

According to in vivo ultrastructural studies, extravasation
in capillaries can take place in several ways: (1) by tumor
cells penetrating the endothelium and basement membrane
similarly to leukocytes [2—6]; (2) by retraction of endothelial
cells followed by fragmentation of the basement membrane
by cellular processes, leading to the destruction of the cap-
illary [7-10]; (3) by endothelial cells covering the tumor
cells before the penetration of the basement membrane [11];
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These observations are based on studies which analyse
the ultrastructure of extravasation of tumor cells of different
origin in the lung and liver. In the lung, the time needed for
penetration of the endothelium to get into contact with the
subendothelial basement membrane and to reach an extra-
capillary position varied significantly among the tumor lines
studied [4, 6-12].

Regarding two other frequent metastatic sites, only two
studies were found dealing with the process of extravasation
in the brain [4, 6] and one report showing the interaction of
hepatoma cells with the capillary endothelium of the adrenal
gland [13].

Based on earlier in vitro studies, it is generally accepted
that the interaction of the tumor cells with the endothe-
lium results in the retraction of endothelial cells, leading
to the attachment of the tumor cells to the subendothe-
lium. Subsequently, the adhered tumor cells migrate under
the endothelium and spread on the subendothelial basement
membrane, followed by reformation of the endothel mono-
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layer integrity [15]. However, this process represents only
elements of the observed diverse interactions between tumor
cells of different origin and the capillary wall in vivo, which
suggest, that during extravasation the properties of the tumor
cells determine the response of the endothelium.

The well known variability in ultrastructure and cell
surface molecules of the endothelium of different organs
[14], is also thought to be responsible for organ preference,
however can also play an important role in the process of
extravasation.

In this paper we test the hypothesis that a given tumor
cell line reaching the capillary bed of different organs, is
able to elicit distinct responses of the endothelium. We also
investigated the correlation between the time needed to reach
extraluminal position in the different organs and organ pref-
erence, using the 3LL-HH Lewis lung carcinoma tumor line
with a well known metastatic pattern.

Materials and methods

Animals, tumor line and injections

Inbred C57B1/6 mice from our Institute were used through-
out the studies. The high metastatic 3LL-HH tumor line was
maintained by serial intrasplenic transplantations of tumor
cells obtained from liver metastases. Single cell suspensions
were prepared from 14-day-old 3LL-HH liver metastases.
Tumor tissue was minced by crossed scalpels and filtered
through 4-fold gauze. After centrifugation and washing in
medium 199, the viability of tumor cells was determined by
a trypan-blue exclusion test (40-50%).

An analysis of extravasation was performed in five or-
gans ( liver, lungs, adrenals, brain and kidney).

For the analysis of extravasation in the liver, tumor cells
were injected into the splenic vein. Mice were anesthetized
and the spleen exposed. The splenic vein was cleaned and
tumor cells (5 x 10°/0, 2 ml) were injected by inserting a
30-gauge needle into the vein. After injection, blood was
allowed to flow for a minute to ensure that all tumor cells
reached the microvasculature of the liver. After removing
the needle a small piece of gelaspon was pressed onto the
vein to prevent excessive bleeding.

In the case of the lungs 5 x 10° tumor cells (0.2 ml) were
injected into the lateral tail vein.

In the case of the adrenals and kidney, tumor cells
(10%/0.2 ml) were injected into the left ventricle of the heart,
as previously described [16].

To analyse the extravasation in the brain, the tumor cells
were injected into the left ventricle or into the carotid artery.
Injection of tumor cells into the left ventricle yielded a lower
cell number in the brain than injection into the carotid artery.
When cells were injected into the left ventricle the number
of tumor cells in the brain 2-3 days after injection, it was not
enough to perform the ultrastructural analysis of extravasa-
tion, therefore the tumor cells were injected into the carotid
artery. For this the mice were anesthetized and carotid artery
prepared for injection under a dissecting microscope. A lig-
ature was placed proximally and the artery was elevated by
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curved tweezers. A 30-gauge needle was inserted into the
artery just above the elevation and a slow injection of 5 x 10°
cells in 0.2 ml was started ensuring free blood flow through-
out the process as well as for another 30 s. The ligature was
then tightened and the skin closed.

Electron microscopy

Animals were sacrificed at various time points after tumor
cell injection. Two mice were used at each time point: (lungs
3, 6, 11, 16, 24 h, liver 1, 3, 6, 16, 24 h; adrenals 1,
3, 6, 16, 24 h; kidney 3, 6, 16, 24 h; brain 3, 24, 48,
72 h). Anesthesized animals were perfused via the left ven-
tricle with phosphate buffered saline for 10 min and with
2.5% glutaraldehyde in 0.05 M Na-cacodylate (pH 7.2) for
15 min at room temperature. Organs were removed, cut into
1 x 2 mm pieces and immersed in 2.5 glutaraldehyde for 2 h.
The pieces were postfixed in 1% OsQg4, 0.5% K-ferrocyanide
in 0.05 M Na-cacodylate for 2 h, dehydrated in graded series
of acetone, contrasted en bloc with 2% uranylacetate and
embedded in Spurr’s mixture. Tumor cells were detected on
semithin sections stained by 0.5% toluidine blue (pH 8.5).
Areas of interest were trimmed out and ultrathin sections
were cut, stained with lead citrate and analysed on Philips
CM10 electron microscope. From each area 3040 ultrathin
sections were cut and lifted onto formvar coated 75 mesh
grids.

Quantitative analysis of tumor cell extravasation

The time necessary for tumor cells to reach an extraluminal
position was determined by analysing the interaction of the
tumor cells with the capillary wall of the organs at different
time points after tumor cell inoculation.

The process of extravasation was divided into the fol-
lowing steps: (1) arrested tumor cells facing intact capillary
endothelium; (2) beneath the tumor cells, retraction of the
endothelial cells is observable, tumor cells are in contact
with the basement membrane; (3a) tumor cells penetrate
the endothelium and the basement membrane with cellu-
lar processes; (3bj) tumor cells are partially covered by
endothelial cells; (3bs) tumor cells, which are completely
covered by endothelial cells, are in contact with the basal
side of the endothelium and/or basement membrane is pen-
etrated by cellular processes; (4) tumor cells are completely
extravascular in contact with connective tissue or parenchy-
mal cells. It must be noted that steps 3a and 3b are parallel
events.

A minimum of 20 cells were analysed at each time point.
To include into a category, each cell on at least 10 ultrathin
sections was analysed to ensure that the most advanced stage
is recorded. Altogether over 1,000 cells were analysed.

Confocal microscopy

Tumor cells isolated as described above, were labeled by
membrane permeant reactive fluorescent tracer, CellTracker
Green (Molecular Probes Inc.) at a concentration of 5 uM
for 20 min. (The treatment had no influence on the metastatic
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potential of the tumor cells). After washing in PBS, the num-
ber of tumor cells was adjusted to 2 x 10%/ml, and 0.2 ml cell
suspension was injected into the splenic vein of four mice,
which were sacrified 6 and 24 h after injection. Livers were
removed, frozen in isopentane chilled with liquid nitrogen
and 5 um cryosections were cut. The sections were fixed
in 4% freshly depolymerized paraformaldehyde for 15 min,
washed in PBS and reacted with polyclonal antibody against
laminin in 1:50 dilution (DAKO) for 60 min. The primary
antibody was detected by rhodamine conjugated goat anti-
rabbit antibody (Jackson ImmunoResearch Lab. Inc.) The
sections were analysed on BIO-RAD MRC1024 confocal
microscopy system.

The integrity of the basement membrane was analysed
around the circumference of 100 cells for each time point.
Since small discontinuities can be detected in the basement
membrane of normal sinusoids, degradation was recorded
only if one-third of the circumference of the cell was free of
any basement membrane label.

Results

Liver (Table 1A)

Tumor cells were arrested mainly in sinusoids close to the
periportal area. One hour after injection small cytoplasmic
processes were observed protruding through the pores of
sinusoidal endothelial cells. (Figure 1). These small projec-
tions persisted up to 3—6 h without any significant changes
in size. Retraction of endothelial cells was observed by this
time, but the endothelial cells were separated at the interen-
dothelial junctions (Figure 2). This event was preceded or
paralleled by the development of cytoplasmic projections
on the luminal surface of endothelial cells, which were at-
tached to the cell surface of the tumor cells (Figure 3). The
attachment points showed increased electron density (Fig-
ure 4). The size of the endothelial cell cytoplasmic processes
increased and by 6 h 33% of the tumor cells were either
partially or completely covered by thin endothelial processes
(Figure 5). During this process the shape of the tumor cells
showed no significant changes and tumor cell processes
projecting under the endothelial cell or spreading on the
subendothelial matrix were not observable. Ten percent of
the tumor cells were found in extrasinusoidal position, but
around the surface of these cells — probably because of the
inappropriate sectioning plane — no endothelial cells were
detected; these cells were surrounded by hepatocytes. By
16 h only one, and by 24 h no cells were found in intrasinu-
soidal position, the tumor cells were completely covered by
endothelial cells or surrounded by hepatocytes. The extra-
luminal tumor cells often invaginated into the hepatocytes,
which event was accompanied by the disappearance of the
cell surface microvilli of hepatocytes (Figure 6).

Since the basement membrane is not detectable in the
liver by electron microscopy, we injected fluorescently la-
beled tumor cells and detected the basement membrane of
liver sinusoids around these cells by confocal microscopy,

483

to determine the degree of basement membrane degradation
during the extravasation process.

Surprisingly, after 6 h of injection 90% of the tumor
cells were still surrounded by intact basement membrane
(Figure 7), although by this time 40% of the cells were
in extraluminal position. Even after 24 h only 50% of the
cells showed partial or complete degradation of the basement
membrane (Figure 8).

Lung (Table 1B)

The majority of tumor cells were trapped in capillaries and
faced intact endothelium for up to 6 h. Even by 11 h follow-
ing injection, the proportion of tumor cells, around which
retracted endothelial cells were present, did not increase sig-
nificantly, instead projections originating from the luminal
surface of the intact endothelial lining, started to cover the
tumor cells (Figures 9 and 10). In contrast to the liver, how-
ever, no specific adhesion points were observed between
the tumor cell surface and the endothelial projections. The
size of these cytoplasmic projections was limited, since no
cells were found completely covered by the endothelium,
while facing the intact endothelial layer of the capillary wall.
Having a certain projection size, the endothelial cells were
separated at their intercellular junction under or near the tu-
mor cell. Subsequently the tumor cells were found to lie on
the surface of the basement membrane and were in contact
with the basal surface of the endothelial cells (Figure 11).
Fibrin and platelets were frequently associated with the free
surface of the tumor cells, but these components were never
found between the tumor cells and the capillary wall (Fig-
ure 10). Although a considerable number of tumor cells were
already completely covered by endothelial cells (17%), the
basement membrane was penetrated by only 4% of the cells.
Extravascular tumor cells were not found by this time (11 h).

After 16 h the majority of the tumor cells were cov-
ered by endothelial cells, which cover consisted of several,
single-layered endothelial cells (Figure 12). Half of the
endothelialized tumor cells penetrated the basement mem-
brane and a considerable proportion of tumor cells were
located extravascularly. Similarly to the liver, during the
sequestration of tumor cells from the circulation by the en-
dothelial cells, no significant changes were found in the
tumor cell shape. The penetration of the basement mem-
brane, however, took place through small holes (2—4 pm)
requiring significant deformation of the tumor cell (Fig-
ure 13). No simultaneous penetration of endothelium and
the basement membrane was observed. Basement membrane
breakthrough always took place in the direction of the con-
nective tissue. Cells moving through the double layered
basement membrane separating the alveolar space from the
capillary lumen were not observable. 24 h after injection the
majority of the tumor cells were situated in the connective
tissue.

Adrenals (Table 1C)

Following intraarterial injection the tumor cells were ar-
rested in adrenal capillaries of the subcapsular region (Fig-
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Figures 1-5. (1) Detail of a tumor cell arrested in a sinusoid 6 h after tumor cell inoculation; x12,000; bar = 1 um. A. Small cytoplasmic processes
(arrows) of the tumor cell (T) penetrate through the fenestrations (arrowheads) of the endothelium (E). H — hepatocyte. B. The same area at a different
section. No interendothelial junctions are visible in this area. (2) Tumor cell in a sinusoid 6 h after inoculation. Retraction of the endothelial cells (E) is
observable. Through the opening (arrowheads) the tumor cell (T) is in contact with the subendothelial matrix. The arrow points at an intercellular junction
at border of the opening. H — hepatocyte; x 12,000; bar = 1 um. (3) Cytoplasmic process originating form the luminal surface of the endothelial cell (E) is
attached to the tumor cell (T) (arrow). Gaps are visible in the endothelial lining (arrowheads), through which the tumor cell is attached to the subendothelial
matrix (open arrowheads). H — hepatocyte; x8,300; bar = 1 um. (4) Cytoplasmic process of a sinusoidal endothelial cell (E) is attached to the surface of
an intraluminal tumor cell (T) Note the increased electron density of the attachment point (arrow). H — hepatocyte; x20,000; bar = 1 pm. (5) Tumor cell
(T) covered partially by an endothelial cell (E) (arrows) 6 h after inoculation. The tumor cell is in contact at a large area with the subendothelial matrix
(arrowheads); x6,400; bar = 2 pum.
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Figures 6—10. (6) Extraluminal tumor cell 24 h following inoculation. The endothelial (E) lining is intact on surface of the tumor cell. The tumor cell
invaginated into the hepatocyte. Arrowheads point in areas where microvilli of the hepatocyte are completely absent. S — sinusoidal lumen; x4,400; bar
=2 pm. (7) Intrasinusoidal tumor cell (green) 6 h following inoculation. The basement membrane (red) is intact around the tumor cell. Bar = 20 pum.
(8) Extravasated tumor cell (green) in the liver 24 h following inoculation. The tumor cells is in contact with two sinusoids but large part of the tumor cell
surface is free from basement membrane label (red fluorescence) Bar = 20 um. (9) Tumor cell (T) arrested in a lung capillary 11 h following inoculation.
Cytoplasmic projection (arrows) originating from the luminal surface of the endothelial cell covers a part of the surface of the tumor cell. The endothelial
lining is intact under the tumor cell (arrowheads). C — capillary lumen; x10,400. Bar = 1 um. (10) Large process (arrows) of the endothelial cell (E)
covers the half of the surface of the tumor cell (T). Retraction of the endothelial cells under the tumor cell is not observable (arrowheads). Tr — thrombus
material; x8,200; bar = 1 pm.
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Figures 11-13. (11) Tumor cell (T) partially covered by an endothelial cell (small arrows) 11 h after inoculation. The basal surface of the endothelial
cell is in contact with the tumor cell, which lies on the basement membrane. Small piece of the endothelial cell is still present under the tumor cell (large
arrow). E — endothelium; C — capillary lumen; A — alveolar space; x8,200; bar = 1 um. (12) Tumor cell (T) completely covered by endothelial cells (small
arrows) 16 h following inoculation. Large arrow point at an intercellular junction. The tumor cell is in contact with the intact basement membrane (arrow
heads). Parts of the endothelium are still present under the tumor cell (open arrowheads). C — capillary lumen; A — alveolar space; x6,200; bar = 1 um.
(13) Tumor cell (T) process (P) completely covered by endothelial cells (E) penetrates the endothelial basement membrane (arrowheads) 16 h following
inoculation. The process is in contact with the basement membrane of the alveolar epithelium (arrow). The large arrow points at an intercellular junction
between the covering endothelial cells. BM — basement membrane; C — capillary lumen; A — alveolar space; x8,200; bar = 1 pum.

ure 14). No tumor cells were found in the medulla. As
early as 3 h after injection tumor cells developed projec-
tions through the endothelium and the basement membrane
(Figure 15). The size of the opening in the capillary wall
was similar to that observed in the lungs (2—4 pum), through
which the tumor cells moved into the connective tissue space
(Figure 16). The endothelial cells were separated similarly
to the liver and lungs, at or near intercellular junctions.

(Figure 17). During the extravasation process extensive re-
traction of endothelial cells was not observed, the size of
the gap in the endothelial lining was always similar to the
one seen in the basement membrane. By 6 h 21% of the
cells were already in extracapillary position and another 17%
were in the process of extravasation. By 16 h a considerable
proportion of the cells were localised intravascularly, but
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Table 1. Relative distribution of tumor cells among the steps of
extravasation in different organs.

A Time after inoculation

lh 3h 6h 16h 24h
Percentage of tumor cells in the
different steps of extravasation

Liver

(1) TC contact with EC 93 65 16
(2) EC retraction 7 35 38 3
(3a) TC process 5
penetrating EC and
BM
(3by) TC partially 24 3
covered by EC (TC in (12)
contact with the
subendothelium)
(3by) TC completely 8 32 57
covered by EC
(4) TC extravascular 11 62 43
No EC visible around
TC
Number of cells examined
Total number of cells 28 31 102 31 47
examined 239
Table 1. Continued.
B Time after inoculation
Lung 3h 6h 11h 16h 24h
Percentage of tumor cells in the
different steps of extravasation
(1) TC contact with EC 97 91 69 15
(2) EC retraction 3 6 3 4
(3a) TC process
penetrating EC and
BM
(3by) TC partially 3 12 1
covered by EC (TC 6)
in contact with BM)
(3by) TC completely 17 65 26
covered by EC (BM 4 3H 17
pierced)
(4) TC extravascular 14 T4
Number of cells examined
Total number of cells 29 32 203 72 23

examined 359

interestingly no cells were found penetrating the capillary
wall.

Brain (Table 1D)

Following intraarterial injection the majority of tumor cells
were surrounded by intact endothelium for up to 24 h. Ex-
travascular cells were first found 48 h following injection of
tumor cells (13%). Endothelial cells were separated at in-
tercellular junctions, but extensive retraction of endothelial

487

Table 1. Continued.

C Time after inoculation
Adrenals lh 3h 6h 16h 24h
Percentage of tumor cells in the
different steps of extravasation
(1) TC contact with EC 97 83 58 19 4
(2) EC retraction 3 4 2 4
(3a) TC process 13 17
penetrating EC and
BM
(3by) TC partially 2
covered by EC
(3by) TC completely
covered by EC
(4) TC extravascular 21 77 96
Number of cells examined
Total number of cells 31 24 48 26 27
examined 156
Table 1. Continued.
D Time after inoculation
Brain 3h 24h 48h 72h
Percentage of tumor cells
in the different steps of
extravasation
(1) TC contact with EC 100 95 77 24
(2) EC retraction 5 7
(3a) TC process 3
penetrating EC and
BM
(3by) TC partially
covered by EC
(3by) TC completely
covered by EC
(4) TC extravascular 13 76
Number of cells examined
Total number of cells 20 21 73 34

examined 148

cells was not observed. (Figure 18). Tumor cells arrested
in capillaries were never covered by endothelial cells. The
penetration of the basement membrane, which was a very
rare event, took place through a small gap as observed in
case of the lungs and adrenals. (Figure 19). 72 h after in-
jection, tumor cells were still found in the microvasculature
of the brain, although 76% of the cells were already in an
extracapillary position. No cells were found in the process
of extravasation at this time.

Kidney (Table 1E)

Tumor cells were found only in glomerular capillaries. En-
dothelial cell retraction was observed as early as 3 h after
injection. The proportion of tumor cells in contact with
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A

Figures 14-17. (14) Three tumor cells (T1, T2, T3) arrested in the subcapsular region of the adrenal gland, 3 h following intra-arterial inoculation. Ca —
adrenal capsule; x1,400; bar = 10 um. (15) Higher magnification of T1 in a different sectioning plane. The larger process of the tumor cell penetrated the
endothelium (arrowheads) and the basement membrane (small arrows). The gap in the endothelium is somewhat larger than the opening in the basement
membrane. The smaller process of the tumor cell penetrated the endothelium and punctured basement membrane (large arrow), x6,000; bar = 1 pum.
(16) Tumor cell in an advanced stage of extravasation 6 h following inoculation. The tumor cell protrudes through a small gap in the capillary wall (arrows)
The body of the tumor cell (TB) locates in the capillary (arrowheads) whereas the large (TP) process extends into the connective tissue, x4,400; bar =
2 pm. (17) Detail of Figure 16. The small gap through which the tumor cell protrudes is bordered by endothelial cells. Inset: The area of the gap in the
capillary wall in a different sectioning plane. An interendothelial junction (arrow) is visible at this area. E — endothelium; BM — basement membrane; TB
— tumor cell body; TP — tumor cell process; x13,000; bar = 1 pm.
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Figures 18-21. Detail of a tumor cell (T) arrested in a capillary of the brain, two days following inoculation. A small gap is visible (arrowheads) between
the endothelial cells, through which the tumor cell is attached to the basement membrane. Arrow points at the intercellular junction; x 14,000; bar = 1 pum.
(19) Tumor cell (T) arrested in a capillary of the brain two days following inoculation. A small process of the tumor cell protrudes into the perivascular
space. The gap (arrows) is bordered by endothelium on the right side (E) whereas on the left side of the gap the endothelium is absent, the tumor cell
is attached to the basement membrane (arrowheads); x14,000; bar = 1 pm. (20) Tumor cell arrested in a glomerular capillary 16 h after inoculation.
The tumor cell is completely covered by the endothelium (arrowheads). Arrows point at the sites where the endothelium is detached from the basement
membrane. C — capillary lumen; E — endothelial cell; x6,300; bar = 1 pum. (21) Tumor cell (T) in the process of extravasation 16 h following inoculation.
The endothelial cells of the glomerular capillary are retracted under the tumor cell (arrowheads). The tumor cells protrudes through a small gap in the
basement membrane (arrows) into the mesangium. P — process of the tumor cell; M — mesangial cell; x4,700; bar = 2 pum.
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Table 1. Continued.

E Time after inoculation

Kidney 3h 6h 16h 24h
Percentage of tumor cells
in the different steps of

extravasation
(1) TC contact with EC 87 46 10 8
(2) EC retraction 13 46 52 43
(3a) TC process 8 12 23
penetrating EC and
BM
(3by) TC partially 14 14
covered by EC
(3by) TC completely 10 13

covered by EC
(4) TC extravascular

Number of cells examined

Total number of cells 23 26 49 64
examined 162

Steps of the extravasation process: (1) tumor cells facing
intact endothelium, (2) retraction of the endothelial cells
is observable, tumor cells are in contact with the base-
ment membrane, (3a) tumor cells penetrate the endothe-
lium and the basement membrane with cellular processes,
(3by) tumor cells are partially covered by endothelial cells
, (Number in parentheses represents the pecentage of tu-
mor cells in contact with the basement membrane or with
the subendothelium), (3by) tumor cells which are com-
pletely covered by endothelial cells, and are in contact
with the basal side of the endothelium. (in Table 1B
number in parentheses represents the percentage of tu-
mor cells penetrating the basement membrane by cellular
processes). Steps 3a and 3b are parallel events. (4) tumor
cells completely extravascular in contact with connective
tissue or parenchymal cells.

A minimum of 20 cells were analysed at each time
point. To include into a category, each cell on at least 10
ultrathin sections was analysed to ensure, that the most
advanced stage is recorded.

the basement membrane increased significantly by 6 h, but
only a small number of tumor cells penetrated the base-
ment membrane. Extracapillary tumor cells were not found
at this time. After 16 h tumor cells appeared, which were
partially or fully covered by endothelial cells (Figure 20),
but the proportion of these cells had not changed for up
to 24 h. The number of tumor cells penetrating the base-
ment membrane by cellular processes increased for up to
24 h, but surprisingly tumor cells in extravascular posi-
tion were still not found. The cellular processes penetrating
the basement membrane were always oriented toward the
mesangium. (Figure 21). Tumor cells penetrating the double
layered basement membrane, which separates the capillary
lumen from the urinary space were not detected.

Discussion
In this study we analysed the ultrastructure of extravasation

of the high metastatic 3LL-HH tumor line in different or-
gans. Four of the five organs chosen (liver, lungs, adrenals,

dc_301 11

S. Paku et al.

brain) are the most frequent target organs in humans. Signifi-
cant differences were found in respect to the time needed for
and to the type of extravasation between the organs. Tumor
cells reached extraluminal position most rapidly in the liver
and adrenals. By 6 h about 20% of the tumor cells were in
extravascular position in case of the adrenals, or sequestered
from the circulation by endothelial cell cover in case of the
liver. Another 20% of the tumor cells were in an advanced
stage of extravasation. Earlier we demonstrated, that this
3LL-HH carcinoma line showed liver specificity and pref-
erence for adrenals, following intraarterial inoculation [16].
No or negative preference was demonstrated in the case of
the lung, kidney and brain, respectively. In accordance with
the negative brain preference of this tumor line, the time
needed for extravasation proved to be the longest in the
brain (>2 days) among the organs examined. This result is
in agreement with the observations obtained from the two
other studies dealing with the extravasation of hepatoma and
Walker carcinosarcoma cells in the brain [4, 6]. Both stud-
ies suggested that extravasation took place 3 days following
injection. The delay in the onset of extravasation in the
brain capillaries is probably caused by the resistance of the
specific intercellular junctions present between endothelial
cells.

In the lung it took approximately 11 h for the tumor
cells to reach extraluminal position, and 16 h were needed
for full extravasation. According to other studies, the time
necessary to complete the process of extravasation varied
significantly among tumor lines (9—48 h), but the majority
of lines needed at least 24 h to break through the capillary
basement membrane [7-11].

In the lung, adrenal gland and brain a proportion of tumor
cells remained in intracapillary position, while the major-
ity of tumor cells were already extravasated with no further
cells found in the process of extravasation. This observation
suggests that the intracapillary cells do not enter the process
of extravasation and will probably be cleared later from the
microcirculation.

Two main types of extravasation were observed. In the
liver and lung, tumor cells became covered by endothelial
cells before penetrating the basement membrane, whereas
in the adrenal gland and brain penetration of the basement
membrane was preceded only by minor retraction of the en-
dothelial cells. In the lung, data suggest that the tumor cells
apparently pause under the endothelial cover before base-
ment membrane invasion and emigration into the connective
tissue.

Endothelialization of tumor cells was observed in the
case of liver and lung whereas retraction of the endothelium
and penetration basement membrane took place in adrenals
and brain. Since organ preference was observed only in the
case of liver and adrenals, in which organs the tumor cells
reached most rapidly extraluminal position, it can it can be
concluded that not the type but the speed of extravasation
correlates with organ preference.

It must be emphasized that in the liver, penetration of the
basement membrane is not necessary (sequestration of the
tumor cells by endothelial cells from the circulation seems to
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be sufficient) for successful metastasis formation, because —
as shown in our study — by 6 h 10%, while by 24 h only
50% of tumor cells showed degradation of the sinusoidal
basement membrane. In organs with well defined basement
membranes (lungs, adrenals, brain) the tumor cells moved
through small gaps in this structure, similarly to leukocytes.
Such a type of movement was not observed in the liver, in-
stead the tumor cells practically sank into the hepatocytes
without major changes in shape, during which process the
microvilli of the hepatocytes disappeared. Since in the liver
the basement membrane is localised between the microvilli
of the hepatocytes, the above process can contribute to the
disappearance of the basement membrane material. This
observation is in contrast with other earlier results, show-
ing large globular cellular processes of lymphosarcoma and
mammary carcinoma cells to protrude into the hepatocytes
[5, 17].

The phenomenon, that in the liver the basement mem-
brane was present around a significant proportion of tumor
cells, is in accordance with our earlier finding, accord-
ing to which angiogenesis in liver metastases of this tumor
line is initiated by the migration of tumor cells on the sur-
face of sinusoidal basement membrane. During this process
the endothelial cells become separated from their basement
membrane, which is thought to initiate the proliferation of
the endothelial cells and of the development of tortuous in-
tratumoral vessels, lacking basement membrane [18]. These
observations question the necessity of basement degradation
following endothelialization of these tumor cells in the liver.

In the kidney, both types of extravasation could be ob-
served. Since tumor cells localised entirely in the mesangial
matrix were not found, the process of extravasation prob-
ably stopped, either when tumor cells became sequestered
by endothelial cells in glomerular capillary loops having no
contact with the mesangium, or when the tumor cells pene-
trated the endothelium and their processes became projected
into the mesangial matrix. Some of the endothelialized tu-
mor cells were found facing entirely the double layered
basement membrane, which they were obviously not able
to penetrate. A similar observation was made in the lungs,
however, in this case the tumor cells were able to pene-
trate the epithelial basement membrane provided they were
already extravasated and localised in the connective tissue.
[19]. In other organs such as lungs, adrenals and brain, the
tumor cells have to cross only a thin layer (100200 nm)
of basement membrane to reach a compartment with differ-
ent matrix composition. The tumor cell processes projecting
into the mesangial matrix cannot sense other matrix compo-
nents than that of the basement membrane (mesangial matrix
contains basement membrane components such as laminin
and collagen IV) [19], which can be a stop signal for mi-
gration. The fate of the tumor cells arrested halfway in the
process of extravasation is not known, but they probably
continue to proliferate, since intravascular mitotic figures
were frequently found in all organs.

In the liver and adrenals, most of the tumor cells were
arrested in zone 1 and in the subcapsular region, respectively,
which observation suggests that tumor cells were trapped
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mechanically by size restriction. In all of the organs, the
arrested cells suffered extreme deformations, which as it
was suggested also by others, excludes rolling of the tu-
mor cells on the surface of endothelial cells [1, 20]. These
observations are in contrast to recent results, obtained by
intact organ microscopy, showing the arrest of tumor cells
in pre-capillary arterioles exceeding the size of the tumor
cells [28].

Earlier in vitro studies have shown that penetration of
endothelial monolayer starts with retraction of endothelial
cells followed by migration of the tumor cells under the en-
dothelial cells and spreading on the subendothelial matrix
[15]. Retraction of endothelial cells proved to be reversible,
leading to the restoration of monolayer integrity above the
tumor cells. Sublethal concentrations of H,O, , 12-S-HETE
and tumor derived retraction factor were shown to mediate
reversible retraction of endothelial cells [21-23]. Endothe-
lial cell injury, which can also be caused by H,O; produced
by tumor cells may also lead to the exposure of subendothe-
lial extracellular matrix facilitating firm attachment of tumor
cells to the capillary wall [24]. Damaged endothelial cells in
contact with the arrested tumor cells were never observed in
our study, not even in case of the brain, where the long stay
of compressed tumor cells in the capillaries caused extreme
flattening of the endothelial cells.

In the adrenals, the tumor cells caused only a very lim-
ited retraction of endothelial cells. The tumor cells moved
through the endothelium and basement membrane simulta-
neously, similarly to leukocytes, except for neutrophils. In
the brain, the retraction of endothelial cells was not closely
coupled to the penetration of the basement membrane, but
was most probably a rapid event, because an extremely
low proportion of tumor cells were found in the process of
extravasation compared to the other organs.

Retraction of endothelial cells took place mainly beneath
the tumor cells, suggesting that a putative retraction factor
cannot be present in a soluble form, but rather it should be
expressed on the surface of the tumor cells.

In the liver and adrenals, shortly after initial arrest, small
processes were found projecting through the fenestrations of
the endothelial cells, but these projections do not seem to
play a role in the process of extravasation, since they did not
grow with time and endothelial cells were later separated at
intercellular junctions. They may, however, have a role in the
firm attachment of the tumor cells to the capillary wall. The
behaviour of endothelial cells in the liver and lung showed
a similarity to that of in vitro observations, but flattening
of the tumor cells was never observed before penetration of
the basement membrane. More importantly, a new feature
was noted in the process of tumor cell sequestration from
the circulation. In the lung, the retraction of endothelial cells
was preceded by the appearance of cytoplasmic projections
originating from the apical surface of the endothelial cells.
The size of these projections was limited, never covering the
entire tumor cell. After dissolution of interendothelial junc-
tions the endothelial cells probably roll their membrane on
the surface of the tumor cell, during which process a switch
takes place in the membrane polarity from apical to basal,
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since the completely covered tumor cells were in contact
exclusively with the basal side of the endothelial cells. This
observation suggests a more active role of the endothelial
cells in the process of extravasation in the liver and lung,
as previously suggested. Similarly, endothelium covers neu-
trophils during extravasation, but the process is different
from that observed by us, since — as it was recently shown
— the openings in the endothelium are within the body of
the endothelial cells (transcellular) [25]. In the liver the dis-
solution of the interendothelial junctions occurred probably
earlier or simultaneously with development of these apical
projections. In this case, however, specific attachment points
with increased electron density were detected between the
tumor and endothelial cell membranes. These structures can
play a role in the rapid sequestration of tumor cells from
the circulation and thereby in the observed liver preference.
The nature of these attachment points, observed only in the
liver is not known , but they may contain adhesion mole-
cules, which were shown to redistribute during tumor cell
attachment to endothelial monolayer in vitro [26].

IL-1 dependent and independent metastasis were de-
tected in organ clusters, during arterial dissemination of B16
melanoma cells [27]. The liver lung and adrenals fall into
the group of IL-1 dependent metastasis. Our ultrastructural
study showed different types of extravasation of tumor cells
in the lungs and adrenals, whereas in the brain, falling into
the IL-1 independent group, extravastion proceeded in a
similar way as in the adrenals. These observations suggest
that IL-1 inducible adhesion molecules cannot mediate the
observed difference in the interaction of tumor cells with
endothelial cells of the organs studied.
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Previous studies have indicated that the predominant sites
of tumor cell extravasation in the liver are the sinusoidal
vessels, where tumor cells contact the sinusoidal endothe-
lium and the subendothelial extracellular matrix containing
the basic components of the basement membrane. We
studied the role of sinusoidal extracellular matrix in metastat-
sis formation by 3LL-HH murine tumor cells selected for
their preferential liver colonization. 3LL-HH tumor cells did
not efficiently adhere to cryosections of the liver, but they
recognized the sinusoids and vessel walls. Pre-treatment of
the mice with polyclonal anti-basement membrane antibod-
ies [anti-laminin, anti-fibronectin and anti-heparan sulfate
proteoglycan (HSPG)] significantly modulated the organ
distribution of tumor cell colonies following intracardial
injection: all 3 antibodies inhibited kidney colonization; anti-
laminin and anti-fibronectin antibodies inhibited lung coloni-
zation; and only anti-HSPG antibody inhibited liver coloniza-
tion. In several organs such as the heart, stomach, pancreas
and bladder, anti-basement membrane antibody treatment
did not alter the process of colonization. Immunofluores-
cence studies showed that anti-HSPG antibody recognized
the basement membranes of sinusoids and blood vessels. Our
data suggest a specific involvement of sinusoidal HSPG in the
liver colonization of 3LL-HH cells. Int. J. Cancer 71:825-831,
1997.
© 1997 Wiley-Liss, Inc.

The metastatic cascade consists of various aspects of tu
cell-matrix interactions including adhesion, digestion and migra-

the sinusoidal basement membrane, the HSPG, plays a critical role
in the formation of liver metastasis.

MATERIAL AND METHODS
Purification of proteoglycans

Liver tissues were homogenized in 3.4 M NaCl, 50 mM Tris HCI
(Merck, Darmstadt, Germany), 10 mM EDTA (Serva, Heidelberg,
Germany), 5 mM N-ethylmaleimid (Merck), 0.5 mM phenylmeth-
anesulphony! fluorid (Serva), 0.001% soy bean trypsin inhibitor
(Sigma, St. Louis, MO), 5% Gordox (Reanal, Budapest), pH 7.4,
and then extracted wit4 M guanidine HCI (Merck), 1% Triton
X-100 (Serva), 50 mM sodium acetate (Merck), 10 mM EDTA and
protease inhibitors as above, pH 5.0, at 4°C for 48 hr. Cell debris
were removed by centrifugation (6@€r 30 min). TCA precipita-
tion of supernatant was carried out as described by Lyon and
Gallagher (1991) to remove the nucleic acids and most liver
proteins. The supernatant containing PGs was dialyzed against 7 M
urea (Serva), 0.05 M Tris HCI, pH 7.0 (containing protease
inhibitors as above). Dialyzed extract was applied on 1 ml DEAE
52 (Whatman, Clifton, NJ) column equilibrated tvit M urea, 0.05
M Tris-HCI, pH 7.0. The column was washed with 10 ml of the
same buffer containing 0.1 and 0.2 M NaCl, and PGs were eluted
by NaCl gradient increasing from 0.2 to 0.8 M.

The protein content of each fractions was determined by a

MW dified Lowry method (Hartreet al.,1972).

tions mediated by cell membrane receptors (Liotta, 1986). Akdhesion assays

though the sequential steps of the metastatic cascade are weftjye micrometer cryosections were prepared from mouse organs
characterized, the mechanism of the organ-specific tumor dissegiq placed on glass slides. Tumor cells#(@®) in medium 199
nation is poorly understood. Tumor dissemination consists of bajfere incubated on cryosections at 37°C in@®nosphere for 1 hr.
random and non-random mechanisms, and organ-specific metagtge non-adherent cells were removed by repeated washings in
sis is characteristic of several tumor types such as lung, breash@édium (<), and the adherent cells were fixed with 4% parafor-

prostate cancers.

maldehyde for 15 min and stained with methylene blue; the cell

Liver metastasis is one of the most frequent complications atimber/unit area was then counted under light microscope using a
tumor dissemination in humans. Therefore, an understanding of @@&x lens.

underlying mechanisms might have clinical significance. Studies|p other tests, 96-well plates were coated overnight at 37°C with
on liver-specific experimental metastasis models have suggestgslated PG fractions in PBS (1 pg protein/well or PBS alone) and
t_hat tumor ce_II_s specifically recognize the liver sinusoidal endothgyrther incubated for another hour with anti-HSPG antibody (1
lium and positively respond to a local factor (Hamadal.,1993; | 1g/well; Tma and Kovalszky, 1995; Gallat al., 1996) or PBS.
Long et al., 1994). Analysis of the liver-specific tumor phenotyperhe control wells contained only PBS and PBSantibody; 10
revealed that heparan sulfate proteoglycans (HSPGs) are overgix--HH cells in medium 199 were added to each well and
pressed in carcinoma and melanoma cells metastatic to the liygfubated for 1 hr at 37°C. After removal of the non-adherent cells,
(Timar et al., 1987, 1992) although the mechanism by which thesfie adherent ones were fixed and counted by phase contrast
PGs influence organ-specific metastasis remains unknown. microscopy.

Morphological analysis of liver dissemination indicated that the, ..
predominant sites of tumor cell extravasation are the liver sinusoi@@t'“ty assay .
(Dingemanset al.,1978; Paku and Lapis, 1993), where tumor cells Chemotaxis was assayed by using 48-well Boyden chamber
interact with the sinusoidal endothelium, with the subendotheliéNeuro Probe, Pleasanton, CA) and 8 pm pore size uncoated
basement membrane (Griffitiet al., 1991) and with hepatocytes Nucleopore filters (NeuroProbe). The PG fractions or the organ-
before initiating local proliferation. Tumor cell-endothelial cell
interaction is a complex process in which early steps are mediated
by Ce"'adhes'on mOIeCU|es.' subsequently followed by endOthe!@mant sponsor: National Science Foundation; Contract grant
cell retraction and establishment of tumor cell-subendotheliglmper: OTKA 13128.
basement membrane contacts (Honn and Tang, 1992). This implies
that to understand the liver-specific metastasis process better,- we———
need more data on the molecular mechanism of tumor cell-*Correspondence to: 1st Institute of Pathology and Experimental Cancer
sinusoidal basement membrane interactions. We have used Hgggearch, nSearpmgW)\(lgl(%GL)J-T}/f{;I_t])_/ogzMedICIne, Budapediti Ut 26.,
3LL-HH lung carcinoma cells, characterized by their preferentia uhgary. Fax. :
liver metastatic properties, as am vivo model throughout our
studies. Ouin vivo andin vitro data suggest that a component of Received 24 September 1996; accepted 31 January 1997
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FIGURE 1 — Interaction of Lewis lung tumor clones with mouse liver tisgagAdhesion of 3LL (open bars) and 3LL-HH (black bars) tumor
cells to cryosections of mouse organsvitro. Tumor cells were incubated with organ sections for 1 hr at 37°C, the non-adherent cells were
removed by repeated washings with fresh medium and the adherent cells were fixed with PFA, stained with methylene blue and counted under the
light microscope using a 20lens. Data are expressed as humber of cells/unitargB®; n= 3. (b) Chemotactic migration of 3LL (open bars) and
3LL-HH (black bars) cells toward mouse organ homogeniateitro. Organs were homogenized, filtered as described in Material and Methods
and used at standard protein concentration (1 pg/ml) in the lower well of a Boyden chamber. Tumor cells were placed into the upper chamber for 4
hr. The filter was fixed, and cells were stained and counted by light microscopy. Data are expressed as mean number of cellszi@@rated (
n = 4). Sp, spleen; L, liver; K, kidney; M, muscle; P, pancreas; Sk, skin; sB, small bowel.

derived proteins (5aPsupernatant of normal homogenized mouseffector cells. Three to 6 replicates were used for each determina-
organs) were added in PBS to the lower wells (1 pg protein/weltjon.

while upper wells were filled with 3LL-HH cells (50,000/well) in . .

medium 199 supplemented with 10% FCS (Serva). The chami¥i-HSPG antibody ELISA

was incubated for 4 hr at 37°C in a 5% ¢@mosphere. Atthe end  Animals were treated with 0.1 ml undiluted polyclonal rabbit
of the assay, filters were removed, fixed in methanol and stainedtibody to HSPG; 30, 60, 90 and 120 min after administration of
Cells that had migrated through the pores to the lower side of ttiee antibody, the serum was isolated from the animals. Purified

filter were counted by light microscopy. extracellular matrix from EHS sarcoma (2 pg/well; Gakial.,
) ) 1996) was dried onto ELISA plates (Greiner; 2tigen, Germany)
Proliferation assay and blocked with 1% BSA (Sigma); the wells were then incubated

Tumor cells were plated on 24-well plates (Costar, Cambridgeith the serum of antibody-treated animals at a dilution of 1:10 for
MA) at a concentration of 5< 10* cells/well in 1 ml RPMI 1 hr, followed by horseradish peroxidase-conjugated anti-rabbit
supplemented with 5% FCS (Serva). GAGs (50-100 pg/ml) welgG (Vectastain, Vector, Burlingame, CA) for another hour and
added to the wells for 48 hr, and viable cell numbers were countdten TMB substrate (Sigma) (5 washings with buffer between each
at the end of the assay after EDTA detachment the using Trypstep). The immunoreaction was measured with an ELISA reader
blue dye exclusion assay and a hemocytometer. Hyaluronic a¢ichbsystems, Shrewsbury, MA).

(m.w. >700 kDa; Sigma), chondroitin 4/6-sulfate (m.w. 55 kDa; )

Sigma), heparin (m.w. 12 kDa; Choay, Paris, France) and hepaf¥tmals and tumor lines

sulfate (m.w. 35 kDa; Bioetica, Lyon, France) were used as GAGs.Inbred C57BI/6 mice from our Institute were used throughout
. . our studies. The high liver metastatic 3LL-HH tumor line was

Antibodies to basement membrane components maintained by serial intrasplenic transplantations of tumor cells

Polyclonal rabbit anti-serum was raised against purified lamingbtained from the liver metastases. Single-cell suspensions were
and fibronectin and was kindly provided by A. Vaheri (Helsinkiprepared from 14-day-old 3LL-HH liver metastases. Tumor tissue
Finland). These antibodies recognized their corresponding protewas minced with crossed scalpels and filtered through 4-fold gauze.
by Western blot at a dilution of 1:5,000. The rabbit polyclonahfter centrifugation (550) and washing in medium 199, the
anti-HSPG antibody was raised against HSPG fraction, isolatei@bility of the tumor cells was determined by the Trypan blue
from EHS sarcoma and shown to react predominantly with a higtxclusion test$50%).

m.w. HSPG having a core protein of 400 kDa corresponding to

perlecan (Tmar and Kovalszky, 1995). In vivo treatments
. . . Animals were injected i.v. with 0.1 ml undiluted polyclonal
Antibody-dependent cell-mediated cytotoxicity rabbit antibody to laminin, fibronectin and HSPG. Two hours after

3LL-HH cells were labeledn vitro with 2 uCi/ml Br[*H]dUrd  administration of the antibodies,»2 10* tumor cells in 0.1 ml PBS
(Amersham, Aylesbury, UK) in RPMI 1640 medium containingvere injected into the left heart ventricle of the mice as described
10% FCS for 24 hr at 37°C, washed 3 times with medium tby Pakuet al. (1989). Animals were sacrificed by a Nembutal
remove the unbound isotope and incubated with anti-HSRéwverdose 11 days after tumor cell inoculation. The numbers of
antibody for 30 min at a 1:100 dilution (control cells wergumor colonies in internal organs were determined, and the relative
incubated with non-immune rabbit antibody). Syngenic splegrercentages of the tumor colonies in organs were calculated.
cells were added to the wells at an effector-target ratio of 100:1 for
24 hr in a total volume of 200 pliwell in 96-well tissue culturedmmunofluorescence
plates (Nunc, Roskilde, Denmark), and the released isotope in thefhe distribution of antibodies within the organs 2 hr after
medium was determined by liquid scintillation counting (Beckinjection was determined by immunofluorescence. From each
mann), measuring 150 pl samples from each well. The totahtibody-treated group one animal was sacrificed by Nembutal
releasable label was determined after treating the target cells witterdose; the kidneys, adrenal glands and liver were then removed
1% SDS. Spontaneous release was measured in the absencandffrozen in isopentane cooled by liquid nitrogen. Five microme-
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Ficure 2 — Distribution of adherent 3LL-HH cells over a cryosection of the mouse I{@rLight microscopy indicates that tumor cells
accumulated over the sinusoids and the portal vessels (arrowheads). Scalel@@rum.(b) Adherent 3LL-HH cells spread along the liver
sinusoids (arrows) and the portal vein (arrowheads). Scale & um.

Ficure 3 — Ultrastructure of 3LL-HH cell-liver interactions. Tumor cells were incubated with cryosections of the mouse liver as in Figure 1,
and were then fixed and processed for electron microscopy. After 1 hr of incubation, interaction of the tumor cell with the subendothelial basement
membrane of a major portal vessel could be observed (arrowheads). T, tumor cell. Scalk |bar.

FIGURE 4 — Localization of anti-HSPG antibody by immunofluorescence in mouse organs 4 days after i.v. injection of the antibody. Rabbit
polyclonal antibody against basement membrane HSPG was injected i.v. into mice (0.1 ml/animal). The animals were sacrificed by Nembutal
overdose on day 4 post-injection, organs were removed and cryosections were made. The anti-HSPG antibody in organs was detected in organ
cryosections by a TRITC-conjugated anti-rabbit IgG and photographed using a fluorescent micr@ddpese kidney. Note the presence of
anti-HSPG antibody along the glomerulus basement membrane. Scate3tapm.(b) Mouse liver. Note the presence of anti-HSPG antibody
along the liver sinusoids and the basement membrane of the portal vessels. SeasOhan.
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ter frozen sections were reacted with rhodamine-conjugated goat TABLE —ANT'-BASEMENTO'\/'FET“{'*%R@C’)\‘g?ANTlBODY PRETREATMENT
anti-rabbit antibody (Jackson ImmunoResearch, West Grove, PA)

The sections were analyzed on an Olympus (Tokyo, Japan) Vanox Control Treatment
epifluorescent microscope. onte a-HSPG LM oFN
Electron microscopy Effect on dissemination of 3LL-HH cella vivo

Cryosections (10 pm) were incubated with tumor cells as Norhg[astases/

described above. After incubation, sections were fixed in 2.5% -

glutaraldehyde for 10 min, rinsed in PBS and post-fixed in 1% Lackag:‘@ffaécts on%ﬁi&gﬁiza%igﬁigzriggs cfré?ns b§/739L{-I1—|0|-?
OsQ,. Dehydrated sections were embedded by placing gelatin™ "~ g5

capsules filled with resin (Spurr, Serva, Heidelberg, Germany) on Heart 22860 26.0+50 182+80 17.0+6.0
the mounted sections. After polymerization (70°C, 16 hr) capsules Stomach 13.86.1 125+7.0 10.3+3.0 11.0+4.0
with sections were removed by immersing the slides in liquid Pancreas 213103 18.7+ 10 25.0+ 10.0 29.0+ 10.0
nitrogen. Semi-thin sections were stained with 0.5% toluidine blue _ Bladder 35:18 49+50 41*x20 50+20

to select the desired areas for ultrathin sectioning. Ultrathin Mice were pretreated with 0.1 ml of rabbit polvclonal antibody/

sections were examined by a Philips (Eindhoven, the Netherlandglmal (tail veiﬁ injection) 2 hr before intracardigl ir)lloculation ok2 Y

CM10 electron microscope. 10* tumor cells. Animals were sacrificed by a Nembutal overdose on

day 11 post inoculation. Organs were examined and counted for tumor

RESULTS colonies using a stereo-microscope. Data are expressed as mean
number of metastases 6D; n= 10). HSPG, heparan sulfate proteo-

3LL-HH tumor cells are characterized by preferential metastatitycan; LM, laminin; FN, fibronectinp < 0.05.
potential to the liver (Pakat al.,1989); we attempted to determine
the key factor(s) that might regulate this phenotype. Interestingly,

adhesion of unselected and selected Lewis lung tumors (3LL aggleq organ distribution of 3LL-HH cells is due to antibody-
3LL-HH) to cryosections of mouse organs did not indicat§enendent cell-mediated cytotoxicity. 3LL-HH cells were shown to
selective recognition of the liver tissue (Fig)1Similarly, proteins 1 o'vaqjstant to the cytotoxic effects of autologous splenocytes in the

isolated from the liver did not exhibij[ selective chemotactic activit resence of polyclonal anti-HSPG antibody (at the same concentra-
for 3LL-HH cells when compared with other organs such as lung b, that was found in the serum of the antibody-treated mice:

kidney (Fig. b), suggesting that the recognition of this organ by .1 oq " gilution) (data not shown) excluding an immunological

the 3LL-HH tumor cells is not mediated by a liver cell-specifignechanism involved in the modulatory effects of anti-basement
factor(s). On the other hand, the distribution of 3LL-HH tumMO,omprane antibodies on organ colonizgtion of 3LL-HH cells.

cells over the liver sections was non-ra_ndom_; it sh(_)wed signiﬁcant_l_he above data suggest that the liver-specific colonization
preference for portal vessels and the sinusoids (Fj.ahd even pattern of 3LL-HH cells depends on the sinusoidal HSPG mol-

tumor cell spreading was observed over these areas (B)g. h .
Ultrastructural analysis indicated that 3LL-HH tumor cells adheregfules: We thus next analyzed the interaction of 3LL-HH tumor
%s with mouse liver-derived HSPG species. Murine liver PGs

t3(;.the basement membranes of blood vessels and the sinusoids ﬁ e been isolated and step-eluted from the DEAE cellulose

We h d polvclonal ibodi duced . column with increasing NaCl concentrations. Further analysis of
e have used polyclonal antibodies produced against majge, pG fractions using HPLC revealed a high molecular mass
basement membrane proteins (laminin, fibronectin and perlec%PG (500 kDa) eluted by 0.4 M NaCl (faa and Kovalszky

HSPG) to study the role of basement membrane in the liver-specifiggs) |mmunoblot analysis indicated that this PG corresponded to

dissemination of 3LL-HH tumor cellin vivo. These antibodies peorecan and reacted with the antibody raised against EHS-derived
have been administered into animals i.v. before the inoculation @‘%e HSPG (Tma and Kovalszky, 1995).

tumor cells to mask the basement membrane protein epitopé
theoretically involved in tumor cell-extracellular matrix interac-,
tions. The injected antibodies accumulated in the basement m

o reveal the function of HSPG in the liver colonization of
L-HH cells, we analyzed 3 aspects of tumor cell-HSPG interac-
; ; : ; ; tions: adhesion, migration and proliferation. The 3LL-HH tumor
branes of various organs such as kidneys (F&g.ahd liver (Fig. ﬁglls adheredh vitro to isolated PG fractions of mouse liver, with

4b), as demonstrated by immunofiuorescence. In the liver, t nificant preference for the fraction eluted by 0.4 M NaCl (Fig
anti-basement membrane antibodies could be detected by |mmu§'a-. The anti-HSPG antibody (1 pg/well) significantly inhibited the

fluorescence in the sinusoids and portal vessels (. Mo b . X X
serious side effects were detected in animals treated with arfinesion of tumor cells to this fraction, suggesting the presence of
high m.w. HSPG (perlecan) (Fig.a)6 The liver-derived

basement membrane antibodies during the 11 day period. EL| oteoglycans were not chemotactic for 3LL-HH tumor cells in

analysis of the serum of anti-HSPG antibody-injected animals.” = > X - =TS,
indicated 80% of the antibody in the circulation at 2 hr and 50% didration assay when compared with the highly chemotactic liver
omogenate itself (Fig.[. Finally, 3LL-HH tumor cells were

the 2nd day, indicating slow clearance (data not shown). ) - .

A th . ti-b t b tibod ¢ t@rfated with basement membrane-derived heparan sulfate, heparin,
maong the various anti-basement membrane anubody pretregiinnqroitin sulfate and hyaluronic adid vitro for 48 hr, and the

ments, only anti-HSPG antibody was successful in inhibiting tlpﬁe : : ;

. _~ het . AN 9N & preferential, dose-dependent stimulation by exogenous heparan
anti-laminin as well as anti-fibronectin antibodies also exhibited &,i¢ate and inhibition by hyaluronic acid on tievitro prolifera-

slight inhibitory potential. In analyzing the number of colonies ifo of 31 | -HH cells (Fig. 7)

various organs, anti-HSPG antibody proved to be effective in the o

case of the liver (Fig. &), all 3 anti-basement membrane antibodies DISCUSSION

were inhibitory in the case of the kidneys (Figc)5and the i . .

anti-laminin antibody was the most effective for the Iung coloniza- T0 understand the mechanism of liver metastasis, we have used a
tion (Fig. ). The antibody pretreatments did not modulate théimor line, the 3LL-HH lung carcinoma, selected for its liver
colonization of 3LL-HH cells to the heart, stomach, pancreag)etastatic potential by sequential intrasplenic injectioris¢Pal.,
muscle and bladder (Table 1), suggesting an organ-specific mech883). This procedure resulted in a significantly increased liver
nism. Since 3LL-HH cells express all 3 basement membragglonization potential as well as resistance to non-specific immune
components at their surface (Lagisal., 1986; Tma et al.,1987) effector cells (Paket al.,1989; Ladayi et al.,1993).

and the injected polyclonal antibodies were detectable in theThe mechanism of organ-specific metastatic potential of malig-
circulation at the time of tumor cell injection, it is possible that th@ant tumor cells is not fully understood. It has been demonstrated
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© a Ficure 5- Effect of anti-basement membrane protein antibody
P pretreatments on organ colonization by 3LL-HH tumor cells. Animals
el ‘_’,_’ were pretreated with rabbit polyclonal antibodies against basement
[ w] 20+ membrane HSPG (black bars), laminin (LM; gray bars) or fibronectin
= * (FN; light gray bars), and then tumor cells were inoculated into the left
c = cardiac ventricle. Animals were sacrificed by Nembutal overdose on
5 0o * day 11 post-inoculation. Organs were removed and tumor colonies
o QO 104 I were counted with a stereo-microscope. Data are expressed as mean
E©° number of tumor colonies SD; n= 10. Control, open barga) Effect
of antibody treatment on liver colonizatiofb) Effect of antibody
treatment on lung colonizatior{c) Effect of antibody treatment on
0 kidney colonization.
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Ficure 6 — Effects of mouse liver proteoglycans (PG) on the 3LL-HH tumor geligtro. Proteoglycans were isolated from mouse liver and
fractionated on a DEAE 52 column by NacCl gradient into 4 fractions (eluted by 0.26 M, 0.32 M, 0.4 M and 0.6 M (éa&hesion of tumor
cells to liver proteoglycans vitro. Tumor cells were incubated on PG-covered microvessels for 1 hr, preincubated with the anti-HSPG antibody
(1 hr), washed with serum-free mediun(Rand counted under a phase contrast microscope. Data are expressed as number of adherent cells/unit
area (using a 28 lens)=* SD; n= 3. Control PG, proteoglycan substrate alone (open bars): B@1SPG Ab, proteoglycan substrate covered by
anti-HSPG antibody (black bargp) Chemotactic effect of liver proteoglycans on 3LL-HH celisvitro. Boyden chamber assay. Tumor cells
were placed on 8 um pore size filters for 4 hr, the isolated proteoglycans were used as chemoattractant and liver homogenate was used as positive
control. Data are expressed as number of cells migrated/unita&a; n= 4. Dotted bar, PG/0.26 M; light gray bar, PG/0.32 M; dark gray bar,
PG/0.40 M; striped bar, PG/0.60 M; black bar, liver-homogenate.

that the microvessel endothelium of the individual organs ex- Our present and previous data indicate that 3LL-HH cells do not
presses an organ-specific membrane phenotype, providing a bapiscifically recognize the liver tissue sections or the liver cells
for organ-specific recognition of vessels by the disseminatéldemselves (Lapist al.,1986), and the liver homogenate does not
intravascular tumor cells (Nicolson, 1988). Furthermore, it hggovide a specific motogenic signal. However, blocking of the
been shown that the basement membrane proteins, as comrasement membrane HSPG epitojpegivo by the pretreatment of
ECM components of organs, are also expressed in an organ-specifice with a polyclonal antibody inhibits the liver and kidney
manner, providing another tool for selective recognition. A thirdolonization by 3LL-HH cells. In the case of the liver, it is the only
aspect of the organ specificity of the metastatization is the lodeisement membrane component that is important, according to our
cytokine milieu, which provides a unique and organ-specifin vivo data. Interestingly, in other organs such as lung or kidney,
paracrine mechanism for the local regulation of metastasigsminin or fibronectin proved to be equally or more important than
associated events, such as tumor cell-extracellular matrix inter&tSPG. The role of a selective antibody-mediated effector cell-
tion and proliferation (Nicolson, 1993). dependent cytotoxicity against 3LL-HH cells vivo is highly
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membranes are not only boundaries between various tissue compart-
ments but also provide a source for local regulatory molecules
involved in tissue differentiation or remodeling (Vlodavsityal.,
1993). Tumor cells are able to proliferate on or migrate along
basement membrane of the target organ during metastasis forma-
tion (Pakuet al., 1990). Since a great majority of cytokines are
characterized by their heparan sulfate binding potential (Ruoslahti
and Yamaguchi, 1991), it is well accepted that basement membrane
HSPG(s) is responsible for such a storage function. In the case of
.30 S~ the liver tissue, local growth factors are hepatocyte growth factor
\\\% (HGF), transforming growth factas-(TGF-«) and basic fibroblast

number of celis
(% of control)

___________ growth factor (bFGF) (Michalopoulos, 1990). HGF is produced by
Ito cells (Ramadoriet al., 1992) localized in the perisinusoidal
-70 area, whereas TG&-is produced by proliferating hepatic cells
concentration {(pg/ml) (Michalopoulos, 1990). Other cytokines such as T@&re mostly
produced by mesenchymal cells (macrophages, fibroblasts and Ito
FIGURE 7 — Effect of glycosaminoglycans (GAG) on the prolifera—ce"S) accumulating in the portal area (Michalopoulos, 1990). It is
tion of 3LL-HH cellsin vitro. Tumor cells were treated with various (8Mpting to speculate that the peri-sinusoidal basement membrane
GAGs for 48 hr in RPMI/5% FCS and the number of viable cells wagay store heparin-binding cytokines, which may affect tumor cell
determined as the end point. Cell number in untreated wells weaxtravasation into the liver parenchyma. Analysis of the putative
considered as control and data are expressed as percent of chdopetion of liver-derived HSPG in the metastatic cascade indicated
compared with control: SD; n = 3. HS, heparan sulfatdl); HP, that this HSPG (perlecan) is a preferred adhesive substrate for
heparin (J); CS, chondroitin sulfatex); HA, hyaluronic acid #). 3LL-HH tumor cells, but it is not chemotactic for them. We also
provided evidence that only heparan sulfate, but not other GAGs, is
mitogenic for 3LL-HH cells, suggesting another possible role for
unlikely, since the 3LL-HH cells are resistant to non-immunéver-derived HS(PG) in tumor metastasis.
effectorsin vitro andin vivo (Ladanyi et al., 1993) and spleen cells  previous studies suggested that liver-metastatic tumor cells,
were not cytotoxic for 3LL-HH cellsn vitro in the presence of the jrrespective of their tissue of origin (carcinoma or melanoma),
anti-HSPG antibody. overexpress heparan sulfate and HSPGs. However, no clear
Our present results call attention to the importance of basemenhnection of this phenotypic marker to the liver metastatic
membrane heparan sulfate PGs in the regulation of liver metastgsigential has been elucidated iffar et al., 1987, 1992). We
formation. Immunofluorescence studies and biochemistry providedggest that local heparan sulfate-binding cytokines of the liver
evidence that perlecan, the major HSPG component of basem@gthGF, TGH, bFGF) may localize in the peri-sinusoidal area
membranes, localizes to sinusoids of the liver lobules besides teenporarily associated with HSPG/perlecan. These molecules
elementary bile ducts and major vessels (Ga#laial., 1996). could be mitogenic and/or motogenic for tumor cells expressing
Perlecan is produced by endothelial and Ito cells (Restaal., appropriate receptors and HSPG at the cell surface. Interference
1993; Gallaiet al.,1996) whereas hepatocytes express syndecanyih the local recognition of perlecan-bound cytokines by anti-
small transmembrane HSPG (Kovalszleg al., 1994). Since HSPG antibody may disrupt the sequence of key events in the
3LL-HH tumor cells extravasate to the liver parenchyma predominetastatic cascade of the liver by decreasing the efficiency of
nantly from liver sinusoids (Paku and Lapis, 1993), interactioextravasation, migration and local proliferation of tumor cells.
with the subendothelial basement membrane must be considered as
the first interaction of tumor cells with the local extracellular
matrix. 3LL-HH cells were shown to recognize the HSPG fraction
of mouse liver in an adhesion assay, and this could be abrogated by
an anti-HSPG antibody, suggesting specificity of the interaction. This work was supported by a grant from the National Science
What could be the significance of such an interaction? Baseméiaundation (OTKA 13128) to J.T.
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