
Budapest University of Technology and Economics (BME)
Faculty of Electrical Engineering and Informatics (VIK)

Department of Telecommunications and Media Informatics (TMIT)
High-Speed Networks Laboratory (HSNLab)
MTA-BME Future Internet Research Group

Reliable Telecommunication Networks

D.Sc. Dissertation

In partial fulfillment of the requirements for the title of
Doctor of the Hungarian Academy of Sciences

Tapolcai János, Ph.D.

Magyar tudósok körútja 2., H-1117 Budapest, Hungary,
E-mail: tapolcai@tmit.bme.hu

Budapest

2012

 dc_498_12

ii

 dc_498_12

Dedication

This thesis is dedicated to my wife Eszter and my son
Misi. Their patience, love and endurance was essential for
finishing this work.

iii

 dc_498_12

iv

 dc_498_12

Acknowledgements

This work was carried out at the High-Speed Networks Laboratory (HSNLab) at the De-
partment of Telecommunications and Media Informatics (TMIT), Budapest University
of Technology and Economics (BME) during the years 2005–2012. I am grateful to Pro-
fessor Gyula Sallai and Henk Tamás, former and current Heads of the Department, for
continuously supporting my research during these years.

My deepest gratitude goes to my closest collaborators, Professor Lajos Rónyai (SzTAKI,
BME) and Professor Pin-Han Ho (University of Waterloo, Canada), for the mentorship,
help, advice and for those many inspiring discussions we had. Lajos’s intellectual prowess
is matched only by his genuinely good nature and down-to-earth humility, and I am
truly fortunate to have had the opportunity to work with him. I admire Pin-Han for his
dynamism, enthusiasm, creative ideas and his attitude towards science.

My warmest thanks are due to my office mates and closest co-authors, Gábor Rétvári
and Péter Babarczi, for those hundreds of hours of discussions and brainstorming we
had in the last five years. I am also grateful to the newly formed Lendület group with
Professor József B́ıró, Attila Körösi, András Gulyás, Zalán Heszberger, Felicián Németh
and Balázs Sonkoly. Grateful thanks go to the Phd students I work with, Éva Hosszu, for
proofreading the dissertation, and to Máté Nagy and Levente Csikor. I am grateful to all
colleagues of the Lab and of the Department for the nice and inspiring atmosphere.

I wish to express my gratitude to my international collaborators Professor Muriel
Medard (MIT, USA), Professor Michal Pióro (Warsaw University of Technology, Poland
and Lund University, Sweden), Dirk Trossen (Cambridge University, UK), Professor
Krishnaiyan Thulasiraman (University of Oklahoma, USA), Bin Wu (UESTC, China),
Professor Jose L. Marzo (University of Girona, Spain) and Gergely Biczók (NTNU, Nor-
way).

I would like to thank my PhD supervisors, Professor András Recski and Tibor Cinkler
for starting my research career. I am indebted to Ferenc Nizsalovszki who was my math
teacher at Fazekas Mihály Secondary School.

Very special thanks go to Ericsson, to MTA Bolyai and Magyary Zoltán Postdoctoral
Scholarship for financially supporting me and my work during my postdoc research.

Last but not least, I wish to thank my wife Eszter and my son Misi for their love,
patience, and endurance to my research-oriented lifestyle. I am grateful to my parents,
László and Irina, for their care, and to my whole family, too. I wish to thank my lovely
friends for all the fun we had together.

v

 dc_498_12

Contents

1 Preface 1
1.1 Reliable Backbone Networks . 1
1.2 Reliable IP Networks . 2

2 Failure Localization via a Central Controller 3
2.1 Introduction . 3

2.1.1 Categorization of Optical Layer Failure Localization Schemes 4
The Types of Failures . 4
The Constraints on the Monitoring Lightpaths 5
Failure Localization Time . 5

2.1.2 Problem Input . 6
Shape Constraints . 6
General Target Function . 7

2.2 Unambiguous Failure Localization (UFL) for Single Failures 8
2.2.1 Problem Definition . 8

An UFL Example . 8
UFL for Single Failure with M-Cycles 8

2.2.2 Lower and Upper Bounds on the Number of (B)M-Trails 8
Ring Networks . 9
Lower Bound on the Number of M-Trails in General Graphs without

any Degree-2 Nodes . 10
Near Optimal Construction for Fully Meshed Networks 12

2.2.3 An Optimal Bm-Trail Solution in Densely Meshed Graphs 14
The Proposed Construction . 16
Correctness of the Constructed BM-Trail Solution 16

2.2.4 An Optimal BM-Trail Solution for Chocolate Bar Graphs 17
Alarm Code Assignment for the Chocolate Bar Graph 17

A Brief Introduction to Galois Fields 18
The Proposed Construction for Chocolate Bar Graphs 19
Correctness of the Constructed Solution 19
The Number of BM-Trails in the Construction 20

2.2.5 An Essentially Optimal BM-Trail Solution for 2D Grid Topologies . 20
The Proposed Construction . 20
Correctness of the Constructed BM-Trail Solution 21
The Number of BM-Trails in the Construction 22
Chocolate Bar Graph as a Benchmark 22

2.2.6 Optimal M-Trail Solution for Circulant graphs 23

vi

 dc_498_12

D.Sc. Dissertation Tapolcai, János vii

The Proposed Construction . 24
Correctness of the Constructed M-Trail Solution 24
Number of M-Trails in the Construction 25

2.2.7 The RCA-RCS Heuristic Approach for UFL 25
M-Trail Formation . 25

Random Code Swapping (RCS) 26
An Example on RCS Algorithm 27

Performance Evaluation of RCA-RCS 28
Quality of Solution . 28
Topology Diversity on M-Trail Solutions 29

2.3 Unambiguous Failure Localization for Multiple Failures 32
2.3.1 Problem Definition . 32
2.3.2 UFL for SRLG Failure with Bm-Trail 32
2.3.3 The CGT-GCS Heuristic Approach for M-Trail Allocation 34

Greedy Code Swapping (GCS) . 34
The Attributes of Links . 35
addBit(i, e) . 36
removeBit(i, e) . 37
add&removeBit(i, e, f) . 37

Computational Complexity Analysis 38
Performance Evaluation of CGT-GCS 40

Number of M-Trails versus Network Size 41
Running Time . 41

3 Distributed Single Failure Localization in All-Optical Mesh Networks 43
3.1 Introduction . 43
3.2 Problem Definition . 44

3.2.1 Local Unambiguous Failure Localization (L-UFL) 44
3.2.2 An L-UFL Example . 44
3.2.3 State of the Art on L-UFL . 45
3.2.4 Network-Wide L-UFL . 45
3.2.5 An NL-UFL Example . 45

3.3 Bounds On Bandwidth Cost . 46
3.3.1 Lower Bound for General Graphs 46
3.3.2 General Lower Bound for CGT . 48
3.3.3 Improved Lower Bound for Sparse Graphs 51
3.3.4 Lower Bound for Dense Graphs . 52
3.3.5 Line Graphs . 53
3.3.6 Stars . 54
3.3.7 Complete Graphs . 55
3.3.8 Circulant Graphs . 56

3.4 The RSTA-GLS Heuristic Approach for NL-UFL 56
3.4.1 Algorithm Description . 57
3.4.2 An Illustrative Example . 59
3.4.3 Performance Verification of RSTA-GLS 59

Performance Comparison . 61
The Impact of Topology Diversity 65

 dc_498_12

viii Tapolcai, János D.Sc. Dissertation

4 An All-Optical Restoration Framework with M-Trails 66
4.1 Introduction . 66
4.2 Restoration Time Analysis . 67
4.3 Signaling-Free Restoration Framework . 69

4.3.1 An Example on the Restoration Process 70
4.4 The Spare Capacity Allocation (SCA) Problem 71

4.4.1 The FDP-SCA Problem Formulation 71
The Restoration Capacity . 72

4.4.2 FDP Restoration Capacity Allocation 73
4.5 The Monitoring Resource Hidden Property 73

4.5.1 Lower Bound on the Spare Capacity 73
4.5.2 Dominance of Monitoring Resources 74

4.6 Performance Evaluation . 75
4.6.1 Comparison of Signaling-Free Protection Methods 75

Capacity Efficiency . 75
Restoration Time . 76
Computation Time . 76
Under Multi-Link SRLGs . 76

4.6.2 Monitoring Resources Hidden . 76

5 IP Fast ReRoute 80
5.1 Introduction . 80
5.2 Loop Free Alternates . 80

5.2.1 An Example on Loop Free Alternates 82
5.2.2 Model . 82
5.2.3 Problem Definition . 83
5.2.4 Bounds on LFA coverage . 83
5.2.5 The LFA Topology Extension Problem 85

LFA Graph Extension: Uniform Link Costs 85
LFA Graph Extension: Weighted Graphs 87

5.3 Protection Routing . 89
5.3.1 Motivation . 90
5.3.2 Problem Formulation . 90

Protection Routing . 90
Completely Independent Spanning Trees 92

5.3.3 Sufficient Conditions for Protectable Graphs 92
Corollaries . 94

6 Summary of New Results 96
6.1 List of Claims . 96

Bibliography 100

Index 109

 dc_498_12

Chapter 1

Preface

Current Internet has reached the level of reliability where Internet (e.g. skype) and cloud
(e.g. web-mail, google docs, dropbox, doodle) services have spread among users. The goal
of my research is to follow this evolution and seek for solutions to reach the next level of
reliability, where Internet will become a permanently operating system for the benefits of
society. Fortunately, Internet was mostly built from trustworthy and intelligent equipment
that could provide much more reliable services. The goal is to run the Internet for several
years without any interruption of the services and slowly win the trust of most of the
potential users.

The dissertation aims to provide long-term visions and some short-term solutions
on the above without modifying the current IP protocol stack and keeping the correctly
operating equipment. The main focus of my work is to develop efficient failure localization
and restoration methods in backbone and metro networks.

1.1 Reliable Backbone Networks

We expect the services in backbone networks to further improve in the following two
aspects: flexibility and reliability. In the near future, establishing a high speed optical
connection will always be feasible within 100ms, and these connections will always operate,
unless there is a catastrophe.

Backbone networks are highly vulnerable due to great physical distances. According to
recent surveys, an average of 250km of optical fiber is cut once per year [1]. Fortunately,
networks are designed to be self-healing against failures. They are implemented with
active protection mechanisms that switch the interrupted traffic to a protection route
after a failure. This switchover should be performed within 100ms to avoid any duplicated
restoration attempt in the upper layers.

Since 1999 I have been dealing with survivable routing in backbone networks with
Professor Pin-Han Ho form University of Waterloo. Our first results were published in
IEEE Trans. on Reliability [2] and IEEE Trans. on Networking [3] which are among
the most cited papers of this topic. As a consequence, recently I was invited to join
the IEEE INFOCOM Technical Program Committee. Our results in the field are mainly
mathematical models and routing algorithms. In IEEE ICC’06 I have received the best
paper award for modeling the service downtime distribution of the well-known survivable
routing mechanisms [4]. From a theoretical point of view, optical layer restoration is the
ideal protection scheme, however, it is extremely difficult to implement in a network with
a fully distributed control plane, mainly because it requires fast failure localization.

1

 dc_498_12

2 Tapolcai, János D.Sc. Dissertation

In optical layer restoration at connection setup, no protection route is pre-configured,
but some spare capacity on the links is reserved. After a failure, first the failed network
elements are localized and protection routes are established accordingly. Restoration is
considered a very advanced protection mechanism due to its simplicity at connection
setup, great adaptation to sparse network topology, and efficient bandwidth utilization.
It can save up to 74% protection bandwidth compared to traditional dedicated protection
for single link failures and 84% for double link failures.

The first part of the dissertation (Chapters 2-4) is on fast failure localization ap-
proaches in optical networks. I started to deal with the topic in 2009 with Pin-Han Ho. I
also work with Dr. Lajos Rónyai (MTA SZTAKI, BME) on related algebraic and graph
theoretic and algorithmic problems. In failure monitoring, we have recently published
more than ten top papers, three appeared in IEEE INFOCOM [5, 6, 7], three in IEEE
T. on Networking [8, 9, 10] and one in IEEE/OSA Journal of Lightwave Technology [11].
Our main results are combinatorial algorithms with proofs on their optimality. In these
proofs we often use jointly combinatorial and algebraic techniques. We are aware that
some of our proofs have been already taught at graduate classes in foreign universities.
Recently I was invited to summarize our results in a keynote at the IEEE RNDM’11
conference. The key idea is to establish monitoring-trails (m-trails) in the network, which
is a supervisory lightpath so the destination node will know if there is any failure along
the m-trail from the interruption of the optical signal. The goal of the corresponding
network design task is to set up the trails in such a way that any single failure can be
unambiguously identified.

1.2 Reliable IP Networks
There are several failures that cannot be protected at the optical layer, for example

the failure of an IP router. Chapter 5 deals with the failure recovery techniques at the
IP layer. Several IP Fast Reroute (IPFRR) mechanisms have been proposed in the last
decade; however, today Loop Free Alternate (LFA) is the only standardized and readily
available IPFRR technology, mainly because LFA can be realized with straightforward
modifications to current protocols, and its deployment is easy, thanks to the fact that it
does not require support from other routers. This simplicity is at the expense of poor
performance in terms of failure coverage. As a solution at IEEE INFOCOM’11 [12, 13]
we have proposed to add new virtual links or virtual nodes to the topology to improve
the quality of LFA protection. The corresponding LFA graph extension is a challenging
combinatorial problem that was further investigated in our latest study. It has won the
paper award at DRCN’11 [14]. Moreover, this concept was included in the Internet
standardization and two recent IETF Internet drafts [15, 16] cite our papers. Our main
results are mathematical models, algorithms and complexity bounds.

 dc_498_12

Chapter 2

Failure Localization via a Central
Controller

2.1 Introduction

In transparent optical networks, failure localization is a very complicated issue that
has been extensively investigated [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

Due to the lack of optoelectronic regenerators the impact of a failure propagates with-
out any electronic boundary and a single failure can trigger a large number of redundant
alarms [27, 28]. With failure recovery protocols at different network layers various failure
management mechanisms with specific built-in failure management functionality could be
adopted. Thus, a failure event at the optical layer (such as a fiber-cut) may also trigger
alarms in other upper protocol layers [29], possibly causing an alarm storm. This not
only increases the management cost of the control plane but also makes failure localiza-
tion difficult. Therefore, isolating failure recovery within the network optical domain is
essential to solve the problem, which will be enabled by an intelligent and cost-effective
failure monitoring and localization mechanism dedicated to the network optical layer.
One of the most commonly adopted approaches is to deploy optical monitors responsible
for generating alarms when a failure is detected. The alarm signals then flood in the
control plane of the optical network such that any routing entity can localize the failure
and perform traffic restoration in a timely manner. Minimizing the number of alarm sig-
nals while achieving unambiguous failure localization (UFL) serves as the major target
in the development of a failure localization scheme. In addition, reducing the bandwidth
consumption for fault monitoring should also be considered.

In general, a link is a conduit of multiple fibers, and each fiber supports one or multiple
wavelengths. Thus, it is intuitive to monitor a link cut event by monitoring a single
wavelength along the link, and for this purpose a monitor is activated at one of the end
nodes that will issue an alarm once a loss of light (LoL) is detected along the wavelength
channel. This is also referred to link-based monitoring, which requires |E| active alarms
(or monitors) to monitor each link independently, where |E| is the number of network
links. In this case, an alarm code with a length |E| is required in order to identify any
single link cut event.

However, it is not considered an efficient approach to dedicatedly allocate a monitor
for each link. To resolve this situation, the studies in [18, 19, 20, 21] intorduced the
monitoring-cycle (m-cycle) concept, which is a pre-configured loop-back lightpath termi-

3

 dc_498_12

4 Tapolcai, János D.Sc. Dissertation

nated by an optical power monitor and launched with supervisory optical signals. When
any link along the cycle is cut, the supervisory lightpath is interrupted, and the failure
will be detected by the optical power monitor, and the monitor will issue an alarm to the
rest of the network.

To ease the limitation on the cycle constraint of the monitoring structure, [27] in-
troduced the concept of Monitoring-Trail (m-trail), where the model is based on an
enumeration-free Integer Linear Program (ILP) approach. M-trail is proved to yield
much better performance by employing monitoring resources in the shape of trails - a
monitoring structure that generalizes all the previously reported counterparts. However,
due to the huge computation complexity in solving the ILP, only network topologies with
small sizes (such as 30 nodes) can be handled. A similar monitoring structure called
”permissible probes” was considered in [30]. The study focused on theoretical proofs and
asymptotic bounds, while the strength and flexibility of using tree structures for launching
probes was little explored in possible practical scenarios. More detailed comparisons and
descriptions of the monitoring structures (e.g. cycles, trails, trees, etc.) can be found in
[31].

In this chapter, we investigate the m-trail design problem for single link and later for
multi-link UFL, and aim at obtaining deeper understanding and insight into the problem.
In particular, our focus is on the impact of topology diversity to the problem solutions.
The chapter first provides a categorization of the current state of the art failure localiza-
tion schemes. Next, it analytically derives the minimum lengths of alarm codes for several
graph topologies, which is followed by an m-trail allocation algorithm developed for gen-
eral topologies, which achieves a much better performance in terms of both computation
time and solution quality than the ILP in [27]. It is verified by extensive simulation on
thousands of randomly generated topologies.

2.1.1 Categorization of Optical Layer Failure Localization Schemes

In an optical layer monitoring scheme, a link failure is detected and localized based
on the on-off status of some ligthpaths. These schemes can be categorized according to
the following three aspects:

• the type of failures they can identify,

• the constraints on the lightpaths used for network status acquisition, and

• the failure localization time.

The Types of Failures

A failure could be either hard or soft [32]. A hard failure involves immediate interrup-
tion due to link and/or node function disorder typically due to fiber cuts or network node
failure, while a soft failure simply degrades the performance of one or multiple wavelength
channels. In this dissertation we deal with hard failures only. The failures can be further
categorized according to their geographic locations. Most previous studies focused on
single-link failures, which nonetheless account for just one third of total failures accord-
ing to the network failure statistics [33]. Node failure events contribute about 20% of
total failures. The rest of the failure events, including operational errors, power outage,
and denial of service (DOS) attack, etc., could hit multiple links/nodes in the network
simultaneously. When modeling these failures, often a list of Shared Risk Link Groups

 dc_498_12

D.Sc. Dissertation Tapolcai, János 5

(SRLGs) is defined by the network operators. An SRLG is a group of network elements
subject to a risk of simultaneous failure. We call it sparse SRLG scenario if the number
of SRLGs in the network is similar to the number of links. In this case each SRLG may
contain single or multiple links and they typically correspond to a failure at a specific
geographic location. For example two links over the same river share the common risk of
failure because of flooding. If every single and double-link failures are part of the list of
SRLGs, we call it multiple failure (dense SRLG) scenario. In this case there is a large
number of highly overlapped and densely distributed SRLGs. Note that in both cases the
SRLGs can be overlapped.

The Constraints on the Monitoring Lightpaths

Network elements can be monitored either via in-band or out-of-band monitoring [34].
The former obtains the network failure status only by monitoring the existing (or op-
erational) lightpaths, while the latter launches supervisory lightpaths for failure status
acquisition. Out-of-band monitoring is favored for its simplicity and data independence,
even at the expense of more capacity consumption. Several monitoring structures, includ-
ing simple/non-simple cycles, paths, non-simple trails, and bi-directional trails, etc., have
been extensively studied [17, 20, 22, 23, 25, 26, 30, 35, 36, 37, 38].

First, the concept of a simple monitoring cycle was proposed in [19]. A simple m-
cycle is a supervisory lightpath starting and terminating at the same node, which passes
through each on-cycle node exactly once. Later the m-cycle concept was extended to non-
simple m-cycles in [22]. In contrast to a simple m-cycle, a non-simple m-cycle is allowed
to pass through a node multiple times.

Afterwards, the concept of monitoring trails (m-trail) was proposed [27, 5]. It differs
from simple and non-simple m-cycles by removing the cycle constraint, and thus an m-trail
can be taken as an acyclic supervisory lightpath with an associated monitor equipped at
the destination node of the m-trail. Physical length limits on m-trails were also considered
in [39].

Finally, the least constrained monitoring structure the bidirectional m-trail (bm-trail)
was introduced in [30], where the only constraint on the set of links traversed by the
lightpath is that they should be interconnected. In this case, we assume bi-directional
optical links in the network, and thus they can be traversed by a directed route using the
depth first search (DFS) order. Note that implementing this route as a single lightpath the
nodes may require loop-back switching the optical signals coming from the transmission
fiber into its reception fiber.

Failure Localization Time

The failure localization speed depends on two factors: the signaling overhead and the
failure detection time for each m-trail. The latter mainly depends on the physical length
of the ligthpath. As for the signaling overhead, there are three frameworks. In the first,
the node where the lightpath terminates generates alarms upon any irregularity. The
generated alarms are collected and used for failure localization at the node. Such alarm
dissemination is at the expense of signaling overhead in the control plane, but also makes
the failure localization mechanism dependent on efforts other than in the optical domain.
In such a framework the goal is to achieve Unambiguous Failure Localization (UFL), which
means any SRLG failure can be precisely and instantly identified via monitoring a set of
supervisory lightpaths.

We define a lightpath to be local to a node if it terminates in the node and, thus its

 dc_498_12

6 Tapolcai, János D.Sc. Dissertation

status can be monitored by the node. The failure localization speed can be increased
if the monitoring ligthpath status information is exchanged among the fewest possible
nodes. Ideally there is a single node in which every monitoring lightpath terminates.
Such a node is called a monitoring location and is said to be capable of achieving Local
Unambiguous Failure Localization (L-UFL). In L-UFL after the failure is localized, the
monitoring location node should broadcast this information in the network, and initiate
the restoration process.

Motivated by the fact that failure localization should be carried out completely in
the optical domain without taking any control plane signaling effort, a new framework
was proposed recently [10, 40, 7]. It allows each node inspecting the on-off status of the
monitoring lightpaths that traverse through the node, which can be done via optical signal
tapping. Thus, all the nodes traversed by the monitoring lightpath can share the on-off
status of the lightpath. Note that a node can only monitor the links/components of a
local lightpath which are upstream to the node. Here the goal is to achieve Network-Wide
Local UFL (NL-UFL) in the network if every node is L-UFL capable.

2.1.2 Problem Input

In a general out-of-band failure localization problem the inputs are the following.

1. The network topology, which is represented by an undirected graph G = (V,E). The
network is assumed to be 2-connected.

2. The set of SRLGs, which is denoted by Z. Each SRLG z ∈ Z contains one, or
multiple links.

3. The required shape of monitoring lightpath (e.g. m-cycle, m-path, m-trail, and
bm-trail).

Shape Constraints

Each link e must be assigned with a binary alarm code ae = [ae,[1], ae,[2], . . . , ae,[b]],
where b is the length of the alarm code. The lth binary digit, denoted by ae,[l], is 1 if the
lth monitoring ligthpath, denoted by Tl, traverses through link e, and 0 otherwise. Note
that Tl has to traverse through all the links e with ae,[l] = 1 while avoiding to take any
link with ae,[l] = 0. Conversely, let Ll denote the lth link set which contains the set of links
with ae,[l] = 1. Depending on the constraints on the shape of the monitoring lightpath we
have the following conditions on Ll:

bm-trail: Ll must be connected;

m-trail: Ll has an Euler trail, which is a connected subgraph where every node must
have an even nodal degree except two: the source and destination node;

m-path: Ll must be an m-trail which passes through each node only once;

m-cycle: Ll must be an m-trail and the source and destination node must be the same
node.

Further problem specific constraints are introduced in the next sections.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 7

Table 2.1: Classification of hard failure localization techniques

Hard failures

single link sparse-SRLG multiple failures

UFL

m-cycle Sec. 2.2.1

m-trail Sec. 2.2.2 and 2.2.7 [9, 38, 41]

bm-trail Sec. 2.2.3 and 2.2.5 [38] Sec. 2.3.2

L-UFL m-cycle/path Sec. 3.2.3 [36]

NL-UFL
bm-trail Sec. 3.2.4

in-band [42, 43] [32, 17]

Table 2.2: Notation list

Notation Description

G = (V,E) undirected graph representation of the topology
|V | the number of nodes in G
|E| the number of links in G
b the number of m-trails

T = {T1, . . . , Tb} a solution with b (b)m-trails
Ti the ith (b)m-trail, which is a set of link in G

|Ti| = ti the length in hops of ith m-trail

‖T ‖ =
∑b

i=1 |Ti| the total cover length
A the alarm code table (ACT)

ae the alarm code of link e ∈ E
ae,[j] the jth bit of the alarm code of link e ∈ E
Lj the set of links with ”1” in the j-th bit position

General Target Function

The cost function in out-of-band monitoring is typically composed of two ingredients:

Monitoring cost, denoted by b, which is the number of monitoring lightpaths, reflects
the fault management complexity. A smaller number of monitoring lightpaths re-
sults in shorter alarm codes, which further affects the number of alarms flooded in
the network when a failure event occurs. In addition to larger fault management
cost, a longer alarm code may cause a longer failure recovery time since a network
entity has to collect all the necessary alarm signals for making a correct failure
localization decision.

Bandwidth cost, denoted by ‖T ‖, which reflects the additional bandwidth consumption
for monitoring. It is also called the cover length which is the sum of the lengths
of each monitoring lightpath in the solution. The length of a monitoring lightpath
is often taken as the number of links traversed by the lightpath. In this case the
bandwidth cost is nothing but the total number of one bits in the alarm codes
assigned to the links.

Table 2.1 indicates the sections dealing with each sub-problem.

 dc_498_12

8 Tapolcai, János D.Sc. Dissertation

T1

T2

T3

0 1

23

(a) Topology and m-trails

SRLG T1 T2 T3

(0, 1) 0 1 0
(1, 2) 0 1 1
(2, 3) 0 0 1
(3, 0) 1 0 0

(b) Alarm code table (ACT)

Figure 2.1: Unambiguous failure localization (UFL) based on m-trails. The solution has
b = 3 and ‖T ‖ = 5.

2.2 Unambiguous Failure Localization (UFL) for Sin-

gle Failures

2.2.1 Problem Definition

The UFL constraint requires every link alarm code to be unique and we also have the
shape constraints described in Section 2.1.2. In most of the previous works [5, 27, 22],
the target was to minimize the weighted sum of the monitoring cost and bandwidth cost,
formally

C = γ × (# of m-trails) + cover length = γb+ ‖T ‖ (2.1)

where C denotes the total cost of the solution.
In more theoretical studies on bm-trails the bandwidth cost is usually ignored, and

only the number of bm-trails is considered. Some studies take out-of-band monitoring
problems a network dimension problem, and take the capital expenditures instead of
operating expenses [37]. In those studies the main cost is the number of transmitters.

An UFL Example

Fig. 2.1 shows an example of an UFL m-trail solution to the network in 2.1(a) for
localizing any single link failure, and its alarm code table (ACT) is shown in Fig. 2.1(b).
The ACT stores the alarm code of each link (e.g., link (1, 2) is assigned the alarm code
011), which further defines how the three m-trails (i.e., T1, T2, and T3) should be routed.
Each row of the ACT should be unique to achieve Unambiguous Failure Localization.
Here, Tj has to traverse through all the links with the jth bit of the alarm code “1” while
avoiding to take any link with the jth bit of its alarm code “0”. By reading the status
of the three m-trails, any link failure can be unambiguously localized. For example, the
darkness of T2 and T3 depicts the failure of link (1, 2).

UFL for Single Failure with M-Cycles

To distinguish the failure of two links adjacent with a degree-2 node v, we need a
monitoring lightpath that terminates in v, which is clearly not possible with m-cycles.
Since network topologies often have degree-2 nodes, most of the recent papers deal with
more relaxed shape constraints. The ILP (Integer Linear Program) for optimal design
was formulated in [19, 22].

2.2.2 Lower and Upper Bounds on the Number of (B)M-Trails

The theoretical lower bound on the number of m-trails is

b ≥ dlog2 (|E|+ 1)e,

 dc_498_12

D.Sc. Dissertation Tapolcai, János 9

since there are |E| single failure states plus the no failure state, and the 2b potential alarm
codes must distinguish these, giving that 2b ≥ |E|+ 1.

Table 2.3 summarizes the best known lower and upper bounds on the number of (b)m-
trails reported in the literature for several special graphs. For ring topologies, the number
of optimal bm-trails is exactly d|E|/2e, which was proved first in [30], and later for m-trails
in [8]. Note that in ring topologies each bm-trail should only be a simple path.

The study [30] developed a construction for any graph which contains two edge disjoint
spanning trees, where an upper bound of 2 · dlog2 |E|e− 1 bm-trails can be achieved. The
key idea of the construction is to categorize the links in the topology into two disjoint
sets E1 and E2 of similar sizes, where E1 ∪ E2 = E, E1 ∩ E2 = ∅, and each set contains
a spanning tree. We shall generate alarm codes of length dlog2 |E1|e+ dlog2 |E2|e for the
links in E. The links in E1 will have unique codes in the first dlog2 |E1|e bits, and similarly
the links in E2 are coded uniquely in the last dlog2 |E2|e bits. At this point every link
has a unique alarm code, irrespective of the values in the bits in the alarm code that has
not yet been specified. These unspecified bits can be used to make the resulting test sets
connected and form bm-trails. Finally, we add one additional bm-trail covering every link
in E1 and none in E2, which can identify if the failed link belongs to E1 or E2. In such a
way, each link has a unique alarm code with a length:

dlog2 |E1|e + dlog2 |E2|e + 1 ≈ dlog2

|E|
2
e + dlog2

|E|
2
e + 1 = 2 · dlog2 |E|e − 1 (2.2)

We refine this idea further in Section 2.2.3.
Nash-Williams and Tutte [44] showed that every 2k-connected graph1 has k link-

disjoint spanning trees. Note that the disjoint spanning trees can be found inO(|V ||E| log |E||V |)

time [45]. As a result, every 4-connected graph has 2 link-disjoint spanning trees, thus
the proof is valid for complete graphs with more than 5 nodes2. For 2-dimensional square
grid lattices, on the other hand, a similar technique was developed in [30] which results
in 2 + 6 · dlog2(n+ 1)e as an upper bound on the number of bm-trails, where the graph
has (n + 1) × (n + 1) nodes. In fact due to |E| = 2n2 + 2n < 2(n + 1)2 in a square grid
lattice, it leads to

2 + 6 · dlog2(n+ 1)e / 2 + 6dlog2

√
|E|
2
e ≈ 3dlog2 |E|e,

which is about 3 times of the theoretical lower bound: dlog2 (|E|+ 1)e.
In Section 2.2.7 an observation made from extensive simulations on thousands of gen-

eral topologies is that, the m-trail solution on a topology without degree-2 nodes can
achieve the theoretical lower bound of 1 + dlog2 (|E|+ 1)e provided sufficient running
time for the construction. This was disproved by an example in Section 2.2.2. In this
section we show a suite of polynomial-time deterministic constructions toward optimal
(or essentially optimal) solutions for the (b)m-trail UFL problem.

Ring Networks

The lower bound on the number of m-trails in ring network is proved as follows [30].
A ring is a network on vertices v1, . . . vn whose edges (links) are (v1, v2), (v2, v3), . . . ,

(vn−1, vn), (vn, v1). Here n is the length of the ring.

1There does not exist a set of 2k-1 edges whose removal disconnects the graph.
2Based on a similar approach, an upper bound (6+dlog2 (|E|+ 1)e) for the m-trail formation problem

is proved in Section 2.2.2.

 dc_498_12

10 Tapolcai, János D.Sc. Dissertation

Topology shape lower bound upper bound
in [30] in the thesis

ring bm-trail d|E|/2e d|E|/2e Thm. 1

graph without
degree-2 nodes

bm-trail |E|
12

, Thm. 2

2D grid bm-trail dlog2 (|E|+ 1)e ≈ 3dlog2 |E|e tight + 3, Thm. 6
well connected bm-trail dlog2 (|E|+ 1)e ≈ 2dlog2 |E|e − 1 tight, Thm. 4

fully connected m-trail dlog2 (|E|+ 1)e ≈ 2dlog2 |E|e − 1 tight + 4, Thm. 3
Chocolate bar m-trail dlog2 (|E|+ 1)e tight + 0.42, Thm. 5
C1,2 circulant m-trail dlog2 (|E|+ 1)e tight, Thm. 7

Table 2.3: The best known lower and upper bounds on the number of (b)m-trails of
different graphs.

Theorem 1. A ring topology of more than 4 nodes needs d|E|/2e m-trails for single link
UFL.

Proof. We divide the proof into two claims: (1) a ring topology needs at least d|E|/2e
m-trails for single link UFL, and (2) a ring topology needs no more than d|E|/2e m-trails
for single link UFL.

[Proof of claim (1)] Let e and f be two links with a common adjacent node v, as
shown on Fig. 2.2. In order to unambiguously identify failure between these two links,
there must be an m-trail that passes through link e but not link f (or vice versa). Since
v has degree two, this can only happen if an m-trail terminates at node v. It is clear that
in a ring topology, a number of |E| adjacent link-pairs can be found, and each m-trail has
two terminating nodes. Therefore, it requires at least d|E|/2e m-trails to achieve that all
the n nodes are endpoints of an m-trail.

v
e

f

(a) M-trail T1 (b) M-trail T2 (c) M-trail T3 (d) M-trail T4

Figure 2.2: Optimal M-trail assignment of an 8-node ring.

[Proof of claim (2)] In a ring topology, every single link failure can be unambiguously
identified in such a way that each m-trail is 3-hop in length and overlaps with its two
neighbor m-trails by one hop, as shown in Fig. 2.2. If the ring has an odd number of
nodes, the last m-trail must be a 2-hop m-trail. Thus, the network needs up to d|E|/2e
m-trails for achieving single link UFL.

Lower Bound on the Number of M-Trails in General Graphs without any
Degree-2 Nodes

Theorem 1 can be extended to the scenario of general Euler graphs in the derivation of
an upper bound on the number of m-trails. Next let us give a lower bound on the number
of m-trails in some ”bad” two-edge-connected graphs. Clearly we have the lower bound

 dc_498_12

D.Sc. Dissertation Tapolcai, János 11

of dlog2(|E| + 1)e due to the binary coding mechanism, which accounts for the fact that
it takes dlog2(|E|+ 1)e bits to unambiguously identify |E| different states (if ”000...0” is
not considered). In the following paragraphs we will demonstrate another lower bound
on the number of m-trails of two-edge-connected topologies that works in parallel with
the lower bound by log2(|E|+ 1).

Assume that we have a set of node-disjoint graphs G1, G2, . . . , Gn. Let the node set
of G be the union of the node sets of Gi for i = 1, . . . n. The edges of G are the edges
of Gi and the connecting links e1, . . . en, where ei connects a node of Gi to a node of
Gi+1 for i = 1, . . . n − 1, and en connects a node of Gn to a node of G1. Clearly G is a
2-edge-connected graph if each Gi is 2-edge-connected. The set of edges Ē = {e1, . . . en}
is called the separating set. The edges from Ē are called separating links. In the example
of Fig. 2.3b we may assume that n = 4, and the grey links are the separating links. We
shall consider m-trails in G. We call a component Gi a boundary of a trail T , if T includes
exactly one of the separating edges incident to Gi.

Theorem 2. At least d |Ē|
2
e = dn

2
e m-trails are needed to establish single link UFL in the

graph G above.

Proof. First we show that any m-trail T has at most two boundary components. Indeed,
contract every component Gi into a single node. This transforms G into a ring, while the
image of T will still be a connected subgraph. Connected subgraphs in a ring have at
most two points of degree one. This implies that T has at most 2 boundary components.

Second, we establish that every component Gi must serve as a boundary for some
m-trail T . Indeed, let e and f be the separating edges incident to Gi. As the collection of
our m-trails provides UFL for single link failures, there must be a trail T which contains
T and does not contain e, or conversely, one which contains e but not f . In both cases
Gi must be a boundary for T .

With the above two claims, we know that each m-trail has at most two boundary
components, and each component must be the boundary of at least a single m-trail.

Therefore, the number of m-trails in the topology is at least |Ē|
2

.

With Theorem 2, the logarithmic relation between the number of m-trails and network
size could be broken due to the presence of Ē. Therefore, we can easily see that an m-trail
solution for a two-edge-connected topology with c+log2(|E|) m-trails may not exist even if
the topology does not contain any degree-2 node, where c is a small positive constant. Let
us define a network topology as logarithmically proper if an m-trail solution for the single
link failure localization problem can be found with c+log2(|E|) m-trails. Obviously, a fully
meshed topology and grid topology are logarithmically proper, which can be covered with
c+ log2(|E|) m-trails (according to the construction in Section 2.2.2 and in Section 2.2.4,
respectively), while a ring topology is not (according to Theorem 1). The topology in
Fig. 2.3b has |Ē| = 4 components although without any degree-2 node, and the structure
of the component as illustrated in Fig. 2.3a.The number of m-trails for the graph of
Fig. 2.3b has following lower bound:

b ≥ |Ē|
2

=
|E|
12

(2.3)

Eq. 2.3 holds because each component (as shown in Fig. 2.3b) along with a separating
link totally has 6 links, which yields |E| = 6 · |Ē|.

 dc_498_12

12 Tapolcai, János D.Sc. Dissertation

vwi

vni

vsi

vei

(a) The i-th component (b) A counter example with |Ē| = 4

Figure 2.3: The structure of each component

p q

Figure 2.4: Subgraph Gp is drawn with solid lines and Gq with broken lines, while G′

contains all the rest of the links of the complete graph.

Near Optimal Construction for Fully Meshed Networks

The subsection introduces a deterministic polynomial time construction of an m-trail
solution for fully meshed topologies (i.e., complete graphs) that employs 4+dlog2 (|E|+ 1)e
m-trails for UFL. Theorem 3 validates the proposed construction. Among the 6 steps in
the construction, Step (1) is for initialization, Step (2) - Step (5) are to ensure the code
uniqueness of each link, and Step (6) is for m-trail formation.

Input: Complete graph G = (E, V)
Result: Solution with 4 + dlog2 (|E|+ 1)e m-trails with |V | ≥ 7

Step (1) Let B = dlog2(|E|+ 1)e be the theoretical lower bound on the number of
m-trails. G = (E, V) is first decomposed into three link-disjoint subgraphs denoted as
G′ = (E ′, V), Gp = (Ep, V), and Gq = (Eq, V), such that p and q are two different nodes
of V while Ep consists of every link adjacent to node p; and similarly Eq consists of every
link adjacent to node q except the link (p, q). All the other links and nodes v ∈ V \{p, q} in
G′ form a complete graph with |V |−2 nodes. Thus, we have |Ep| = |V |−1, |Eq| = |V |−2,
and |E ′| = |E|− 2|V |+ 3. As shown on Fig. 2.4, Gp and Gq both have the shape of a star
with central nodes p and q, where p 6= q.

Step (2) We first allocate two m-trails, denoted as TB+3 and TB+4, to distinguish
whether a link of G belongs to G′, Gp, or Gq. As shown in Fig. 2.5, one example to
achieve the above is to route the m-trail TB+3 through all the links in Gp∪Gq while TB+4

over all the links of Gq (and some links of G′). TB+3 is a valid m-trail (which admits an
Euler trail from p to q) because the nodal degree of each node along TB+3 is always even
except possibly at p and q. Since Gq is a star topology, the routing of TB+4 needs some
links from G′ until the Euler property is met. An example of such a link set is the edge
set in G′ of a perfect matching.

Note that TB+4 is used to distinguish the links in Gp from those in Gq, and TB+3 is
to distinguish links in G′ from those in Gp or in Gq. Therefore with TB+3 and TB+4, the

 dc_498_12

D.Sc. Dissertation Tapolcai, János 13

p q

Figure 2.5: An example TB+3 and TB+4, where TB+3 is drawn with solid lines and TB+4

with broken lines.

overall UFL can be achieved provided that UFL can be achieved separately in each of the
three subgraphs G′, Gp, Gq. This will be done in the following steps.

Step (3) Unique non-zero binary codes of length dB+1
2
e bits are generated for the

links in Ep. This can be done because

2d
B+1

2
e ≥ 2

B+1
2 =

√
2 · 2B ≥

√
2|E| =

√
2
|V |(|V | − 1)

2
>
√

(|V | − 1)2 = |V | − 1. (2.4)

The codes generated here are called core codes for Ep, and each of the codes serves as a
d b+1

2
e bit-long prefix for the alarm code assigned to a link of Ep. The structure of the

codes can be expressed as:

m-trails: T1 . . . TdB+1
2
eTdB+3

2
e . . . TB+2TB+3TB+4

for links in Ep core code x . . . xx 1 0

where x denotes the yet undefined bits.

Step (4) Next unique non-zero binary codes with dB+1
2
e bits are generated for the

links in Eq. The codes generated are called core codes for Eq, and each of the codes serves
as a dB+1

2
e bit-long postfix for the alarm code assigned to each link in Eq. The structure

of the codes can be expressed as:

m-trails: T1 . . . TdB+1
2
eTdB+3

2
e . . . TB+2TB+3TB+4

for links in Eq x . . . xx core code 1 1

Step (5) Unique non-zero codes with B + 1 bits are generated as the core codes for
the links in E ′. Note that this can easily be done since |E| < 2B. The generated unique
codes are assigned to the links in a manipulative manner described as follows. Recall that
E ′ is a complete graph on |V | − 2 ≥ 5 nodes. We identify two link-disjoint Hamiltonian
cycles on the links of E ′ (e.g. by way of Walecki’s construction [46, 47]), denoted by H1

and H2, which cover every node except {p, q}. For each link in H1, ”1” is assigned to each
bit at the bit positions 1, . . . , dB+1

2
e. Note that according to Eq. (2.4), at least |V | − 1

such codes exist. Similarly, for each link of H2, ”1” is assigned to each bit at the bit
positions dB+3

2
e, . . . ,B+ 1. The format of the codes for the links of E ′ is given as follows.

m-trails: T1 . . . TdB+1
2
eTdB+3

2
e . . . TB+1TB+2TB+3TB+4

for links in H1 11 . . . 1 code fragment 0 x
H2 code frag. 11 . . . 1 1 0 x

E ′ \H1 ∪H2 core code in B + 1 bits x 0 x

Step (6) After Step (2) - Step (5), we can identify the link set Lj, ∀1 ≤ j ≤ B + 2,
which contains the links with ”1” in the j-th bit position in G. Let the link set contain

 dc_498_12

14 Tapolcai, János D.Sc. Dissertation

the links with an undefined bit at the j-th bit position be denoted as Lxj . Now our target
in this step is to extend Lj by using some of those links in Lxj such that a valid m-trail
Tj can be formed. This equivalently determines the bits of x in each link.

To ensure that Lj forms an Eulerian trail (either open or closed), we sequentially check
the vertices v ∈ V \ {p, q} to see if the degree of each v is odd or even in the current Lj.
If v has an odd nodal degree, (v, q) is added to Lj if j ≤ dB+1

2
e, and (v, p) is added to Lj

if dB+1
2
e < j ≤ B + 2. Therefore, we can make sure that only p and q may have an odd

degree in Lj.
Then we check Lj to see if it spans a connected graph. If not, then due to the presence

of one of the cycles H1 or H2, (p, q) is in Lj and it must be an isolated edge. In this case
we simply add a link (v, p) into Lj for v ∈ V \{p, q} (or (v, q), respectively). The resulting
graph must have an Euler trail because the odd-degree nodes must be in the set {v, p, q}.

Theorem 3. The proposed construction on a complete graph needs no more than

b = 4 + dlog2 (|E|+ 1)e

m-trails to achieve UFL for |V | ≥ 6.

Proof. The proof of the construction is divided into two parts: (a) the code uniqueness
of each link, and (b) the successful formation of an m-trail for each bit position. As for
the latter, we will show that all the links with the j-th bit position as ”1” are connected
to form a valid m-trail, while disjoint from any link with ”0” at the j-th bit position.

For part (a), the links in each subgraph have unique codes due to the intrinsic nature
of the core code generation in each subgraph, which were presented in Step (3) - Step (5).
Also by Step (2), the (B + 3)-th and (B + 4)-th bit positions are used to distinguish the
links of the three subgraphs G′, Gp, Gq. Therefore, the code uniqueness of each link can
be ensured. For part (b), Step (6) ensures that each link set Lj are all connected with no
more than 2 nodes with an odd nodal degree. Note that

b = B + 2− dB + 1

2
e = B + 1− dB + 1

2
e+ 1 = bB + 1

2
c+ 1 ≥ dB + 1

2
e

hence for 1 ≤ j ≤ dB+1
2
e the edges of Gq, while for dB+3

2
e ≤ j ≤ B + 2 the edges of

Gp can be used. Also note that Lj spans a connected graph on V \ {p, q}, due to the
presence of the Hamiltonian cycles H1 and H2 as described in Step (5). Therefore, each
Lj,∀1 ≤ j ≤ (B + 4), will form a valid m-trail.

With all the above, we proved that the proposed construction has each link coded
with b = (B + 4) bits. This gives (B + 4) valid m-trails for achieving UFL in the fully
meshed (or complete) graph G.

Note that the proposed construction of m-trail solution for fully meshed topologies is
a special case of the problem addressed in [30] by Algorithm 1, and thus it improves the
O(log2 |E|) construction (Theorem 2 of [30]) to O(1) + log2 |E|.

2.2.3 An Optimal Bm-Trail Solution in Densely Meshed Graphs

We shall need a simple inequality.

Lemma 1. The following inequality holds for every positive integer b ≥ 3:

2 · b2
b − 1

b
c ≥ 2b+1 − 1

b+ 1
≥ d2

b − 1

b
e. (2.5)

 dc_498_12

D.Sc. Dissertation Tapolcai, János 15

Proof. For the first inequality one can readily check that it holds for b = 3, 4, 5. Note also
that the inequality fails for b = 2. We have

2 · b2
b − 1

b
c − 2b+1 − 1

b+ 1
≥ 2 ·

(
2b − 1

b
− 1

)
− 2b+1 − 1

b+ 1
. (2.6)

After clearing denominators, the nonnegativity of the above quantity for b ≥ 6 is
equivalent to 2b+1 − (2b2 + 3b+ 2) ≥ 0. But for b ≥ 4 we have 3b+ 2 < 3b+ b = 4b ≤ b2,

hence it suffices to see that 2b+1 − 3b2 ≥ 0, or f(b) := 2b+1

3b2
≥ 1.

We have f(6) = 128
108

> 1. Moreover, for every real b ≥ 3,

f(b+ 1)

f(b)
= 2

(
1− 1

b+ 1

)2

≥ 2

(
1− 1

4

)2

=
18

16
> 1,

It implies that f(b) > 1 whenever b ≥ 6 is an integer. The second inequality holds

because 2b−1
b

is a convex increasing function, and at b = 4 the difference is 25−1
5
− 24−1

4
=

2.45 > 1.

Next let us prove a lemma which is an important building block for the subsequent
description on the proposed construction and its proof.

Lemma 2. The nonzero binary codewords of length b can be distributed into b buckets,
where the ith bucket contains codewords only with 1 for the ith bit, and the size of each
bucket is at least b2b−1

b
c and at most d2b−1

b
e.

Proof. The proof is inductive, and we will give a recursive construction for such a distri-
bution of codewords. See Fig. 2.6 as an illustration of each recursive step.

Clearly, for b = 1, 2 the statement trivially holds. Let us assume that the codewords
of length b are already distributed into b buckets, where the ith bucket has words only
with 1 for the ith bit, and the size of each bucket is at least b2b−1

b
c and at most d2b−1

b
e.

We define such a distribution as an almost uniform distribution of b bits.
Next, we consider the nonzero codewords of length b+1, and prove that the codewords

can follow the almost uniform distribution of b + 1 bits. Clearly we can distribute the
2b−1 codewords with 0 in the (b+1)th bit such that the first b bits are distributed almost
uniformly (according to the given assumption under the inductive proof); namely the first

b buckets are filled up with at least b2b−1
b
c and at most d2b−1

b
e codewords. At the end

these buckets must have at least b2b+1−1
b+1
c and at most d2b+1−1

b+1
e codewords.

Next, let us consider the rest of the codewords. Obviously, any of them can be placed
into the (b + 1)th bucket, because they all have 1 bit at position b + 1. The codeword
which has 1 at the (b + 1)th position and 0 in the rest positions (i.e. 100 . . . 0) must be
placed into the (b + 1)th bucket. The remaining 2b − 1 codewords can be distributed by
the first b bits almost uniformly into the b buckets. In such a way, each bucket has at
least 2 · b2b−1

b
c codewords, which is at least d2b+1−1

b+1
e according to Lemma 1. Some of the

newly added codewords must be moved to the (b+ 1)th bucket, until every bucket has at

least b2b+1−1
b+1
c and at most d2b+1−1

b+1
e. Such an action is always possible. This is argued as

follows: first, codewords are moved from each of the first b buckets to the (b+ 1)th bucket

so that every bucket among the first b has d2b+1−1
b+1
e elements. In case the (b+ 1)th bucket

has less than b2b+1−1
b+1
c codewords, one more codeword from each bucket is further moved

 dc_498_12

16 Tapolcai, János D.Sc. Dissertation

bucket 1 bucket 2 bucket b bucket b+ 1

2b−1
b

2b+1−1
b+1

Figure 2.6: Example of the construction in the proof of Lemma 2.

to the (b+ 1)th bucket until it has b2b+1−1
b+1
c codewords. Such a process will not get stuck

at a position in which one bucket has less than b2b+1−1
b+1
c codewords while all the others

have this number, because the total number of nonzero codewords is 2b+1 − 1. In such a
way, every bucket has at least b2b+1−1

b+1
c and at most d2b+1−1

b+1
e codewords. Thus, we proved

Lemma 2.

Theorem 4. Let G = (V,E) be a 2 · dlog2 (|E|+ 1)e connected graph. G = (E, V) can be
optimally covered with dlog2(|E|+ 1)e bm-trails to achieve single-link UFL.

Proof. Let b = dlog2(|E|+ 1)e. Clearly at least b bm-trails are required for UFL in a
graph with E links. In the following we will show that b is also the upper bound. Our
goal for the proof of the theorem is to come up with a construction that achieves the
theoretical lower bound, and then we will prove the correctness of the construction.

The Proposed Construction

Recall that the goal of the bm-trail formation process is to assign a binary alarm code
to each link so that Ti is a connected subgraph, where i = 1, . . . , b. This can be ensured
if each Ti has a spanning tree as a subgraph. Since every 2k-edge-connected graph has
k edge disjoint spanning trees3 [48, 49], the construction can achieve the desired lower
bound if the graph is 2 · b connected, which is sufficient to yield b = dlog2 (|E|+ 1)e edge
disjoint spanning trees. Let Si denote the ith spanning tree, where i = 1, . . . , b, and the
spanning trees are all disjoint (i.e. Si ∩ Sj ≡ ∅ if i 6= j).

According to Lemma 2, the 2b−1 nonzero codewords of b bits in length can be grouped
into b buckets of size at least b2b−1

b
c, where the ith bucket has alarm codes where the ith

bit is 1. Our construction simply assigns the codes of the i-th bucket to the i-th spanning
tree Si, while the remaining edges which are not in the 1st, . . . , bth spanning trees, namely
E \{S1∪S2∪· · ·∪Sb}, will be assigned the left and unused codes arbitrarily. This finishes
the construction.

Correctness of the Constructed BM-Trail Solution

Since Ti contains Si, each bm-trail must be connected and span the whole graph
G. Besides, each link has a unique alarm code because nonzero unique codewords were
assigned to the links of the graph. To conclude the proof we need to show that each bucket
has at least |V | − 1 codewords. By observing the equation b · (|V | − 1) ≤ |E| ≤ 2b− 1, we

see that each bucket has at least |V | − 1 ≤ b2b−1
b
c elements. Thus, we proved Theorem

4.

3Note, that such disjoint spanning trees can be found in O(|V ||E| log |E||V |) time [45].

 dc_498_12

D.Sc. Dissertation Tapolcai, János 17

v1,0

v0,0

r1

v1,1
r1

v0,1

r1 ⊕ r2

r1

v1,2
r2

v0,2

r2 ⊕ r3

r2

v1,3
r3

v0,3

r3 ⊕ r4

r3

v1,4
r4

v0,4

r4 ⊕ r5

r4

v1,5
r5

v0,5

r5 ⊕ r6

r5

v1,6
r6

v0,6

r6

r6

(a) The graph topology

1 0 0 1 0 1

(b) The links of T1.

0 1 0 1 1 1

(c) The links of T2

0 0 1 0 1 1

(d) The links of T3

(e) The links of TB+1 (f) The links of TB+2

Figure 2.7: An example of a chocolate bar graph and the corresponding optimal solution
for bm-trails. The bit of each bit position is drawn in each 1 × 1 rectangular. The
r1, r2, . . . rn codes assigned to the links are listed in the Table 2.4

The theorem is applicable to complete graphs with at least 18 nodes because they
have 18·17

2
= 153 links that can be uniquely coded in 8 bits. In this case the graph is at

least 16-connected.

2.2.4 An Optimal BM-Trail Solution for Chocolate Bar Graphs

Next we considers general 2D grids denoted by Sm,n, where m and n corresponds to the
number of links in the vertical and horizontal direction, respectively. Harvey, et al. [30]
provided an 3dlog2 |E|e upper bound on the number of bm-trails according to Eq. (2.2)
in the case of m = n.

In the next section, we generalize the study of [30] and investigate the scenario of
2D grid graphs with arbitrary m and n. We give a novel polynomial-time deterministic
construction that requires no more than 3 + dlog2 (|E|+ 1)e bm-trails. We first solve the
bm-trail allocation problem for a special case of Sm,n with either n = 1 or m = 1 (called
as chocolate bar graphs); and then a solution for general 2D grid topologies is developed
based on the chocolate bar solution.

A general chocolate bar graph is denoted as Cn(E, V), which has |V | = 2n + 2 ver-
tices denoted as x1,0, . . . , x1,n (the lower points), and x0,1, . . . , x0,n (the upper points).
Fig. 2.7(a) shows an example of a chocolate bar with n = 6. For link set E, we
have lower horizontal links (x1,i, x1,i+1) ∈ E, upper horizontal links (x0,i, x0,i+1) ∈ E
for i = 0, . . . , n− 1, and the middle vertical links (x0,i, x1,i) ∈ E whenever i = 0, . . . , n.

Theorem 5. For a chocolate bar graph Cn(E, V) b = dlog2(n+ 1)e+ 2 bm-trails achieve
single-link UFL for b > 2, which is at most d0.42 + log2 (|E|+ 2)e bm-trails.

Proof. The proof is developed by way of a polynomial-time deterministic construction
composed of two steps. We will first introduce the construction, and then explain in
detail how the construction can achieve the desired bound on the number of bm-trails.

Alarm Code Assignment for the Chocolate Bar Graph

Let us assign binary alarm codes to the links of Cn in the following way (see also
Fig. 2.7). We first generate n bitvectors r1, r2, . . . rn of length B, where ri+1 is assigned
to a lower horizontal link (x1,i, x1,i+1) ∈ E, where i = 0, . . . , n − 1. The generation of

 dc_498_12

18 Tapolcai, János D.Sc. Dissertation

these codes is provided in Lemma 3. On the other hand, to the higher horizontal link
(x0,i, x0,i+1) ∈ E we assign the bitwise complement of ri+1, denoted by ri+1 = ri+1 ⊕ 1
where ⊕ stands for the bitwise modulo 2 addition (XOR) and 1 is the all 1 vector of
length B. Also to the middle vertical link (x1,i, x0,i) we assign the bitvector ri ⊕ ri+1 for
i = 1, . . . , n− 1. Finally to the link (x1,0, x0,0) bitvector r1⊕1 is assigned, and to the link
(x1,n, x0,n) we attach rn.

In choosing the list of bitvectors ri, for i = 1, . . . , n− 1, we make the following three
assumptions:

(A1) The vectors ri are pairwise different for i = 1, . . . , n.

(A2) The vectors ri ⊕ ri+1 are all nonzero and pairwise different for i = 1, . . . , n− 1.

(A3) The first bits of the vectors r1 and rn are the same.

The following statement provides an approach to construct n ≤ 2B − 1 bitvectors ri

which satisfy the requirements (A1), (A2), (A3).

A Brief Introduction to Galois Fields In the arithmetic of ordinary numbers there
are infinitely many numbers, while the fields F2b have only 2b elements. However, the
operations of addition, subtraction, multiplication and division (except division by zero)
may be performed in a way that satisfies the familiar rules from the arithmetic of ordinary
numbers. Concerning F2b a widely accepted approach is to represent the elements as
polynomials of degree strictly less than b over F2. Operations are then performed modulo
R where R is an irreducible polynomial of degree b over F2. For example the field F8 can
be interpreted as the polynomials modulo 1 + x + x3. This way we can consider F8 as
the set of binary polynomials of degree at most 2 (indeed there are 8 such polynomials).
Addition is the usual binary polynomial addition. For example

(1 + x+ x2) + (1 + x2) = x.

Multiplication is the usual polynomial multiplication, followed by reduction if necessary
(modulo 1 +x+x3). By reduction we mean replacing x3 by x+ 1 as long as it is possible.
For example

(1 + x+ x2)x2 = x2 + x3 + x4 = x2 + (x+ 1) + x(x+ 1) = x2 + x+ 1 + x2 + x = 1.

In this representation x is a primitive element, indeed 7 is the smallest positive integer
exponent m for which xm = 1.

Lemma 3. Let B := dlog2(n + 1)e and B > 2. Then a series of n ≤ 2B − 1 nonzero
codes r1, r2, . . . , rn can be generated in polynomial time to satisfy properties (A1), (A2)
and (A3).

Proof. With B := dlog2(n+1)e, q = 2B is the smallest power of 2 which is greater than n.
Following the widely used technique in classical error correcting codes, our code vectors
will be vectors from a linear space over the two element field F2. We shall consider the
finite (Galois) field Fq with q elements.

According to Theorem 2.5 in [50], Fq always exists and it forms a vector space of
dimension B over its subfield F2. This way we can identify Fq with bit vectors of length
B, where the all zero vector corresponds to the 0 element of Fq. In particular, nonzero

 dc_498_12

D.Sc. Dissertation Tapolcai, János 19

Table 2.4: The nonzero elements of F8 as binary polynomials modulo 1 + x+ x3.
Exponential Polynomial Code

α0 1 r1 = 100
α1 x r2 = 010
α2 x2 r3 = 001
α3 x3 = 1 + x mod 1 + x+ x3 r4 = 110
α4 x+ x2 r5 = 011
α5 x · (x+ x2) = 1 + x+ x2 mod 1 + x+ x3 r6 = 111
α6 x · (1 + x+ x2) = 1 + x2 mod 1 + x+ x3 r7 = 101

vectors correspond to the nonzero elements of the field. Also, according to Theorem 2.8
in [50], Fq contains a primitive element α, which is a nonzero element such that all the
powers α = α1, α2, . . . , αq−1 are pairwise different. See also Table 2.4 where the elements
and the related codes are listed for q = 8 (B = 3).

Finding a primitive element in Fq can be done in polynomial time with exhaustive
search, because any nonzero element α can be verified for being a primitive element by
raising to a power and checking if the power equals to 1 with an exponent less than q− 1.

We now set ri to be the (bit vector of the) element αi−1. Condition (A1) is satisfied
as n ≤ 2B − 1.

Suppose now that (A2) fails. Then there must exist 0 ≤ i < j < n − 1 such that
αi ⊕ αi+1 = αj ⊕ αj+1 holds in Fq. But then we have αi(1⊕ α) = αj(1⊕ α) which (using
that B > 1 and hence that 1⊕α is not 0) would imply that αi = αj, contradicting to the
fact that α is a primitive element.

To establish (A3), we note that (assuming B > 2) α and αn span a subspace of
dimension at most 2 of Fq over F2, hence we can select the basis of Fq so that both
element have 0 coordinates with respect to the first basis vector.

The Proposed Construction for Chocolate Bar Graphs

In the chocolate bar construction, Tj is actually a simple path in Cn from x1,0 to x0,n.
In the rest of the section Cn can also be denoted as Cx1,0,x0,n . As a result, B bm-trails
from x1,0 to x0,n are formed in Cn, each corresponding to one bit position of the vectors.
An example is given with n = 5, where the resultant 5 m-trails by the construction are
shown in Fig. 2.7(b), 2.7(c), 2.7(d).

In addition to the above mentioned bm-trails, we need to add two more bm-trails.
This is exemplified in Fig. 2.7(e) and 2.7(f). Let the two bm-trails correspond to TB+1

and TB+2, respectively, where TB+1 is composed of the links (x1,0, x0,0), (x1,n, x0,n) and
the path consisting of all the links (x1,i, x1,i+1) i = 0, . . . n− 1, while TB+2 is composed of
the links (x1,0, x0,0), (x1,n, x0,n) along with the path consisting of all the links (x0,i, x0,i+1),
i = 0, . . . n − 1. As a result, TB+1 and TB+2 can identify whether a failed link was a
horizontal or vertical link, and whether the link was (x1,0, x0,0) or (x1,n, x0,n).

Corollary 1. Each Tj j = 1, . . . ,B + 2 forms a single bm-trail, and every bm-trail is a
simple path.

The corollary clearly holds according to the construction.

Correctness of the Constructed Solution

We will show in the following paragraphs that the set of bm-trails T1, . . . , TB+2 are
able to localize any single link failure in chocolate bar Cn. Obviously, T1, TB+1 and TB+2

 dc_498_12

20 Tapolcai, János D.Sc. Dissertation

can unambiguously localize any failed link among (x1,0, x0,0) and (x1,n, x0,n) because the
faulty link can be one of (x1,0, x0,0) or (x1,n, x0,n) if and only if both TB+1 and TB+2 are
faulty. If both TB+1 and TB+2 alarm (i.e., report failure), the status of T1 can be used to
determine which of the two links (x1,0, x0,0) or (x1,n, x0,n) is at fault according to (A3).

For the other links, the statuses of TB+1 and TB+2 can be used to determine whether
the faulty link is in the group of lower links, the group of upper links, or the group of
middle links. With (A1), the links in the first two groups are pairwise different, while
with (A2) it implies that the codes in the group of middle links are pairwise different.
Therefore, all the links in each of the 3 groups are distinguishable such that unambiguous
failure localization is possible within each group, and hence in Cn.

The Number of BM-Trails in the Construction

Since the chocolate bar graph has 3n+ 1 links, we have

B = dlog2(
|E| − 1

3
+ 1)e < d−1.58 + log2(|E|+ 2)e.

As a result the construction requires at most b = B + 2 = d0.42 + log2 (|E|+ 2)e bm-
trails.

2.2.5 An Essentially Optimal BM-Trail Solution for 2D Grid
Topologies

In this section, the construction for the chocolate bar graphs is generalized for 2D
rectangular grids. A (m+ 1)-by-(n+ 1) grid graph is denoted as Sm,n, whose vertices are
denoted as xi,j for 0 ≤ i ≤ m and 0 ≤ j ≤ n. The vertical links of Sm,n are (xi,j, xi+1,j)
for 0 ≤ i < m and 0 ≤ j ≤ n. Analogously, the horizontal links of Sm,n are (xi,j, xi,j+1)
for 0 ≤ i ≤ m and 0 ≤ j < n.

Theorem 6. A 2D rectangular grid graph Sm,n(E, V) can be covered with 3+dlog2 (|E|+ 1)e
bm-trails to achieve UFL, for m,n ≥ 1.

Proof. We shall have two monitoring sets of bm-trails. The first set has size b1 =
dlog2(m+ 1)e+ 2, while the second has size b2 = dlog2(n+ 1)e+ 2. Informally speaking,
the first set gives the horizontal position of a failed link, while the other gives the vertical
coordinate. This will be sufficient to locate the failed link unambiguously. In total, we
shall have no more than B = b1 + b2 monitoring bm-trails.

The Proposed Construction

We are going to extend the bm-trails Ti (i = 1, . . . , b1) from the chocolate bar graph
Cn to the whole square grid Sm,n. We do it step by step as follows: first we reflect the
bm-trail Ti with respect to the line connecting x1,0 to x1,n, such that Ti is extended to the
second chocolate bar defined by the vertices x1,j and x2,j, for j = 0, . . . , n. The second
chocolate bar is extended analogously by reflection to the third chocolate bar, defined by
x2,j and x3,j, and so on. This reflection process is repeated until the whole Sm,n is covered,
where the 2D rectangular grid is treated as a series of chocolate bar graphs of Cn. As
shown in Fig. 2.8(a), at every second line the chocolate bar graph is upside down, and the
i-th chocolate bar graph Cn consists of vertices xi,0, . . . , xi,n and xi+1,0, . . . , xi+1,n, where
i = 0, . . . ,m−1. By applying the reflection process for all the bm-trails Ti (i = 1, . . . , b1),
we will obtain b1 bm-trails.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 21

v3,0

v2,0
C5C5

v1,0

C5 C5

v0,0
C5C5

v3,1

v2,1

v1,1

v0,1

v3,2

v2,2

v1,2

v0,2

v3,3

v2,3

v1,3

v0,3

v3,4

v2,4

v1,4

v0,4

v3,5

v2,5

v1,5

v0,5

(a) S3,5 decomposed into chocolate
bars graphs in horizontal way

v3,0

v2,0

v1,0

v0,0

v3,1

v2,1

v1,1

v0,1

C
T3

v3,2

v2,2

v1,2

v0,2

C
T 3

v3,3

v2,3

v1,3

v0,3

C
T3

v3,4

v2,4

v1,4

v0,4

C
T 3

v3,5

v2,5

v1,5

v0,5

C
T3

(b) S3,5 decomposed into chocolate
bars in vertical way

1 0 0 1 0

(c) An example
of Ti for i =
1, . . . , b1 − 2

1

0

1

(d) An example of
Ti for i = b1 +
1, . . . ,B − 2

(e) The links of
Tb1−1

(f) The links of
Tb1

(g) The links of
TB−1

(h) The links of
TB

Figure 2.8: An example of a 2D lattice graph of size 3× 5.

It is clear that the result of the reflection process must be a connected subgraph
without fragmentation, thereby its eligibility as a bm-trail is ensured.

With the whole situation transposed, exactly the same method is applied to specify the
vertical position i of the faulty link e. For the remaining b2 bm-trails of the rectangular
grid Sm,n we start out with the vertically placed chocolate bar CT

m at the left end of
the grid (see Fig. 2.8(b)) and extend the b2 bm-trails of this CT

m to the whole grid with
the mirror-reflection procedure employed before, nonetheless from left to right in order
to extend the bm-trails to all the vertical chocolate bars in the grid. By doing this b2

bm-trails can be obtained.

With the b1 and b2 bm-trails, we complete the construction.

Correctness of the Constructed BM-Trail Solution

In case of a single failure Tb1−1, Tb1 , TB−1, and TB (see also Fig. 2.8(e), 2.8(f), 2.8(g),
and 2.8(h)) can identify whether a horizontal or a vertical link has failed and if the link is
on the left or right border of the rectangular grid (it is on the first or last row/column).
Since the failed link belongs to at least one of the horizontal chocolate bar graph Cn, the

 dc_498_12

22 Tapolcai, János D.Sc. Dissertation

corresponding b1 − 2 bm-trails can identify the column of the failed link. Similarly, the
failed link belongs to at least one of the vertical chocolate bar graph CT

m, the corresponding
b2 − 2 bm-trails can identify the row of the failed link. As a result, it is known if the link
is horizontal or vertical, and its column and row thus can be localized.

The Number of BM-Trails in the Construction

Bm-trails Tb1−1, Tb1 , TB−1, and TB are only used to decide if the link is horizontal or
vertical and if the link is on the boundary of the grid, which indeed can be done with only
two bm-trails instead of four, namely Tb1−1 ∪ Tb1 and TB−1 ∪ TB. Since Sm,n has totally
|E| = 2 ·m · n+ n+m links, the number of bm-trails is:

B = dlog2(m+ 1)e+ dlog2(n+ 1)e+ 2 ≤
d1 + log2(m+ 1) + log2(n+ 1)e+ 2 =

dlog2 2 + log2(m+ 1) + log2(n+ 1)e+ 2 =

dlog2 2 · (m+ 1) · (n+ 1)e+ 2 =

dlog2 2mn+ 2n+ 2m+ 2e+ 2 =

2 + dlog2(2|E| − 2mn+ 2)e <
2 + dlog2(2|E|+ 2)e = 3 + dlog2(|E|+ 1)e (2.7)

for m,n ≥ 1. Note that the first inequality holds because of the general inequality
dAe+ dBe ≤ dA+Be+ 1, while the second follows from m · n > 0.

More generally, a similar construction can be used to cover a cubic graph of any
dimension for single link UFL with O(1) + log2 |E| bm-trails. In this case the alarm code
is divided into three parts, and each of them corresponds to a chocolate bar graph.

Chocolate Bar Graph as a Benchmark

Simulation is conducted on chocolate bar topologies with different number of columns,
aiming to examine the performance by a number of previously reported heuristic algo-
rithms. We will show that the heuristics perform badly in chocolate bar topologies, which
nonetheless can be optimally solved with the proposed construction by a very fast algo-
rithm.

The reported heuristic algorithms for solving the m-trail allocation problem in choco-
late bars are listed in the followings.

1. RCA-RCS heuristic of Section 2.2.7.

2. MTA heuristic by [51], which is a deterministic approach that builds the m-trails in
parallel until UFL is achieved.

3. RNH heuristic by [52] which is a randomized version of the MTA heuristic.

4. Cycle Accumulation (CA): a generic approach by employing Dijkstra’s algorithm to
distinguish each pair of links [35].

We consider the three schemes: RCA-RCS, MTA, and RNH in chocolate bar graphs
C20, C40 and C60. A high-performance server with 3GHz Intel Xeon CPU 5160 was used
in the simulation. The result of the proposed 2D grid construction is calculated first
using the theoretical optimum given in Section 2.2.4: d0.42 + log2 (|E|+ 2)e, which yields

 dc_498_12

D.Sc. Dissertation Tapolcai, János 23

1

10

100

1000

0 5 10 14

ru
n

n
in

g
ti

m
e

[s
ec

]

#m-trail - d0.42 + log2(|E|+ 2)e

RCA-RCS time
MTA
RNH

(a) C20

10

100

1000

10000

0 10 20 30 40 50 60

ru
n

n
in

g
ti

m
e

[s
ec

]

#m-trail - d0.42 + log2(|E|+ 2)e

RCA-RCS time

(b) C60

Figure 2.9: Simulation results on C20 and C60 for the number of bm-trails.

the minimum number of bm-trails for UFL as 7, 7, and 8 for C20, C40 and C60 with
|E| = 61, 121, and 191, respectively. We are interested in the difference between the
result by each considered heuristic and the one obtained via the proposed construction.
It is important to note that RCA-RCS and RNH are both randomized approaches where
longer computation time guarantees better performance (or smaller numbers of bm-trails).
Therefore, we are further interested to see how much long the two schemes can converge
close to the optimal solution, where the computation time describes the efficiency (and
inefficiency) of the two schemes in the considered scenarios.

Fig. 2.9 demonstrates the comparison results. Clearly, both RCA-RCS and RNH show
better solution quality by granting longer running time, while MTA is a deterministic
algorithm that iteratively finds the longest segment as the next m-trail. Since all the
three topologies are very sparse whose diameters are much longer than the average nodal
degree, MTA needs 6 and 15 more bm-trails in C20 and C40 than the optimum (i.e., 7),
respectively, as shown in 2.9(a) and 2.9(b). On the other hand, both RCA-RCS and
RNH are seen to converge very slowly as the network has a larger diameter. As shown in
Fig. 2.9(a), RCA-RCS needs to take over 400 seconds to achieve one more bm-trail away
from the optimal in C20, but over 800 and 1,000 seconds to achieve about 10 bm-trails
from the optimal in C40 and C60, respectively, as shown in 2.9(b) and 2.9(c).

Note that CA requires 93 bm-trails which are not shown in the figures since it is out of
the range. We do not show RNH in 2.9(b) and 2.9(c), and MTA in 2.9(c), because they
were not solvable in the topologies C20 and C40 by running out of 2GB memory (which is
the computation specification for the simulation). This is mainly because both methods
are designed for networks when the average nodal degree is not much smaller than the
diameter of the network. Therefore, the two schemes had a large amount of candidate
segments which drained the memory usage.

2.2.6 Optimal M-Trail Solution for Circulant graphs

A circulant Cn(1, 2) graph has nodes V = {v0, v1, . . . , vn−1} with each node vj adjacent
to [vj+1 mod n] and [vj+2 mod n]. An example of a circulant C9(1, 2) is given in Fig. 2.10.
Circulant graphs are considered to have similar properties to practical carrier topologies.

Theorem 7. Circulant graph G = Cn(1, 2) can be covered with b = dlog2(2n+1)e m-trails
for NL-UFL, where each m-trail is a spanning sub-graph of G, and the bandwidth cost is

 dc_498_12

24 Tapolcai, János D.Sc. Dissertation

v0

v1

v2v3

v4

v5

v6 v7

v8

Figure 2.10: An example of a circulant graph G = C9(1, 2)

‖T ‖ = b · n+ 1.

Proof. To prove the theorem, our approach is via a novel construction that generates a
set of connected subgraphs of G as m-trails, which can be proved to achieve UFL for any
single-link failure.

The Proposed Construction

Let an alarm code of each link in G be b bits in length. The code [11 . . . 1]4 is assigned
to edge (v0, v1), while the other edges (vi, vi+1) are each assigned with an alarm code that
is the binary representation of the value i + 1 for i = 0, . . . , n − 1. Note that, the first
bit of these codes is always 0 and the rest is a nonzero bit vector. Moreover, these can
be accomplished by using b bits only. Indeed, we have 2b ≥ 2n + 1 by assumption. This
implies that 2b ≥ 2n + 2, giving that even the binary code of n bits fits in b − 1 bits.
Edge (vi, vi+2) is assigned with a code which is bitwise complement of the alarm code
of (vi, vi+1) where i 6= 0. Thus, the first bit of these codes for (vi, vi+2) is 1. Besides,
the complementary pair of codes [00 . . . 01] and [11 . . . 10] are not assigned to any edge.
Finally, edge (0, 2) is associated with the bit vector [00 . . . 01].

The set of m-trails is deployed in such a way that Tj traverses through all the edges
with their jth bit value 1 while disjoint from any edge with the jth bit value 0.

Correctness of the Constructed M-Trail Solution

It is clear that such an assignment generates a unique alarm code for each link. In
the rest of the proof we show that for any 1 ≤ j ≤ b, the subgraph Tj corresponding to
links with their jth bit position of alarm codes 1 is connected and spans the whole vertex
set. To make the proof easily presented, let us take each edge in G as directed counter-
clockwise, i.e., edge (vi, vi+1) is directed from vi to vi+1, and similarly (vi, vi+2) from vi to
vi+2. It is sufficient to show that every directed cycle from the edges of Tj passes through
node 0. This is due to the following two facts: (1) the codes of (vi, vi+1) and (vi, vi+2) as
v 6= 0 are bitwise complement to each other, thus Tj must connect from vi to either vi+1

or vi+2, this results every cycle to traverse the circulant graph counter-clockwise through
either node 0 or 1; and (2) when i = 0, edge (v0, v1) is in Tj for every j, since it has a
code [11 . . . 1]. The above two facts make the outdegree in Tj of every node of G at least
15.

4x . . . x denotes a code fragment with x in every bit position
5To be more specific, the outdegree of vi is exactly 1, if i 6= 0, and the outdegree of vertex v0 is larger

or equal to 1.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 25

Number of M-Trails in the Construction

To evaluate the total cost, the alarm codes for the directed edges leaving vertex 0
contain exactly b + 1 values of 1 (i.e., edge (0, 1) has b m-trails to traverse through, and
edge (0, 2) has one). For the other edges (vi, vi+1) and (vi, vi+2) with i 6= 0, each of them
has b values of 1. This implies that the total number of 1s is bn+ 1 as claimed.

The proposed construction is optimal in terms of the number of m-trails as shown by
the information theoretic lower bound b ≥ dlog2(|E|+ 1)e and |E| = 2n.

2.2.7 The RCA-RCS Heuristic Approach for UFL

Surprisingly dlog2 (|E|+ 1)e m-trails are enough in typical network topologies. The
proposed algorithm takes advantage of random code assignment (RCA) and random code
swapping (RCS), aiming to overcome the topology diversity. With RCA, it takes |E|
unique alarm codes which are randomly assigned to each link one after the other at the
beginning and is kept in an alarm code table (ACT). This leads to dlog2 (|E|+ 1)e link
sets. The algorithm then performs m-trail formation by examining the connectivity of
each link set. There could be much more m-trails than dlog2 (|E|+ 1)e formed at the
beginning. To improve the solution quality, RCS is performed to update the ACT for
each link set round by round, where a better structure of a link set is searched according
to the cost function of Eq. (2.1). Note that, RCS is performed independently (or locally)
at each link set, where the codes of two links of different link sets can be swapped only
if the swapping will not alter the connectivity of the other link sets. This is referred to
as the strong locality constraint (SLC), which is an important feature of our design in
making the algorithm simpler and running faster.

Fig. 2.11 shows a flowchart of the proposed algorithm. At the beginning, an alarm
code table (denote by A) is formed by randomly assigning each link with a unique alarm
code as shown in Step (1). In Step (2), the cost of the current A is evaluated by Eq. (2.1)
(which will be further elaborated in subsection 2.2.7). Next, a greedy cycle formed by
Steps (2), (3), (4), (5), and (6) is initiated, where RCS is performed in Step (3) and (5)
(which will be further detailed in subsection 2.2.7). In every cycle, a new ACT (denoted
as A′) is generated and the corresponding cost C ′ is evaluated in Step (2). If the cost of
A′ (denoted as C ′) is smaller than (or equal to) that of the cost of previous A (denoted C)
as in Step (2), the algorithm starts the next greedy cycle by replacing the old ACT with
the new one (i.e., A ← A′) and performing RCS as denoted as A′ ← ΨRCS(A′) in Step
(3). In case the new ACT has a cost larger than that of the old one, the newly derived
ACT is simply disregarded, and the next greedy cycle will perform RCS based on the old
ACT again. Such a greedy cycle is iteratively performed until a given number (100 in the
simulation) of iterations of RCS have been done without getting a smaller cost at Step
(4).

M-Trail Formation

This subsection introduces the basic idea of our m-trail formation mechanism, where
Eq. (2.1) is used to evaluate A in each greedy cycle in Fig. 2.11 such that the greedy cycle
can possibly converge and yield a set of feasible m-trails with high quality.

Fig. 2.12 elaborates Step (2) of Fig. 2.11 through an example by considering a simple
five-link topology. Initially, a 3-bit long alarm code is assigned to each link. The formation
of the jth m-trail has to take all the links e with ae,[j] = 1 (which belong to Lj) as shown in
Fig. 2.12(b-d). The ideal situation is that an A with J bits yields exactly J link sets, which

 dc_498_12

26 Tapolcai, János D.Sc. Dissertation

(1): Initiate alarm code table A
C′ ← ∞, A′ ← A

(2): C ← C′, C′ ← Ψcost eval(A′)

(4):
C ≤ C′

(3): A ← A′;
A′ ← ΨRCS(A′)

(5): A′ ←
ΨRCS(A)

(6):
Improvement
≤ threshold?

(7):
Return A′

yes

no

no

yes

Figure 2.11: The flowchart for the proposed heuristic algorithm.

can form J valid m-trails. A link set forms an m-trail if all the links can be connected
and traversed along a not necessarily simple path. In other words, the link set can have
maximally two nodes with an odd nodal degree according to Euler’s theorem. Checking
this m-trail condition for a link set an m-trail can be done by a breadth-first search (BFS)
algorithm in linear time. A link set could be far from interconnected and could even yield
multiple isolated fragments. If a link set cannot be shaped into a valid m-trail (e.g. link
set 3 of Fig. 2.12(d)), it will possibly be constructed as a union of multiple m-trails or
cycles according to the following Lemma.

Lemma 4. A connected graph can be efficiently decomposed into (1) a single cycle, if
every node has an even nodal degree; or (2) a number of #odd(G)/2 trails, where #odd(G)
denotes the number of odd-degree nodes in the graph.

Proof. The lemma is a consequence of Euler cycle and path theory. In both cases (1) and
case (2), the cycle and the trails can be formed in linear time with Fleury’s algorithm.

The Lemma states that in case the ith isolated fragment of link set of bit j (denoted
as Ci,j) has more than two odd nodes (denoted by #odd(Cij)), then it can be decomposed
into the #odd(Cij)/2 m-trails. This is also exemplified in Step (2.2) of Fig. 2.12.

In case at a specific bit position the links with ”1” bit do not form a trail, we can
always ”separate” those links into several trails. And each trail is going to be a separate
m-trail.

Random Code Swapping (RCS) The initial RCA may yield a unqualified result
that contains many isolated fragments and a large number of odd-degree nodes. This
subsection describes the proposed RCS mechanism for shaping the links of a link set into
one or a number of m-trails while still meeting the overall UFL requirement. The key idea
of the proposed RCS mechanism is the strong locality constraint (SLC) which governs the
swapping mechanism in each link set. It means that the alarm code of a specific link in Lj
can be swapped with that of a link not in Lj if all the other link sets are not affected due
to the swapping. The necessary condition for meeting the SLC is that the alarm codes

 dc_498_12

D.Sc. Dissertation Tapolcai, János 27

001

010

011

100

101

110

(a) Alarm code of
each link

(b) Link set
L1 will be T1

(c) Link set
L2 will be T2

(d) Link set L3

will be T3 and T4

(e) M-Trail T3

(f) M-Trail T4

Figure 2.12: An illustration of the cost evaluation method of an alarm code table of the
4 node line graph.

of two links in Lj are bitwise identical except for a single bit at position j. Such a code
pair is called a code pair of Lj, and the two links corresponding to the code pair form a
bitwise link-pair of Lj. For example, 1011011 and 1010011 form a code pair of L4, and
the corresponding links form a bitwise link-pair of L4. Thus, swapping alarm codes of the
two links meets the SLC due to the local influence on L4. With the SLC, the RCS on
a link set can be performed independently from the others. this mechanism allows easy
implementation and provides high efficiency.

Note that for Lj, some links may not have a bitwise link-pair due to two reasons: (1)
its code pair of Lj is all 0’s, which does not correspond to any failure state. For example,
010000 is a code pair of 000000 of L2, but there is not a link corresponding to the alarm
code 000000. (2) The code pair of Lj of the link was not assigned to any link. In this
case, the unassigned code can be freely used by the link without violating the SLC.

In summary, RCS is performed on each link set by randomly swapping alarm codes
of all bitwise link-pairs of the link set, in order to help interconnecting isolated trail
fragments and reducing the number of odd-degree nodes in the link set iteratively in each
greedy cycle. The prototype of the proposed algorithm can be found in [53].

An Example on RCS Algorithm We provide an example here to show how RCS is
performed. A 26-node network of US cities considered with 42 links. Initially with 6 bit
long unique random codes were assigned to the links. Fig. 2.13(a) shows the link set
assigned to the lowest bit (i.e., the 6th). Except for the link between Denver and Kansas
City that was assigned with an alarm code 0000001, all the other links either have a bitwise
link-pair in L6, or are don’t-care links of L6. Fig. 2.13(a) shows each link-pair at L6 by
an arrow. For example, (Atlanta, Charlotte) and (Indianapolis, Cleveland) are bitwise
link-pairs of L6. It can be easily seen that swapping the two links will interconnect two
isolated fragments and reduce the number of odd-degree nodes by two, which leads to a
saving of an m-trail. Similarly, swapping link (Salt Lake City, Denver) with link (Houston,
New Orleans) will not increase the total cost of the ACT. While in the subsequent greedy
cycle, swapping link (Las Vegas, El Paso) with link (El Paso, Houston) would further

 dc_498_12

28 Tapolcai, János D.Sc. Dissertation

reduce the number of m-trails through the RCS and thus possibly reduce the total cost.
With more greedy steps on those link pairs and don’t-care links of L6, it is possible to form
a single m-trail corresponding to the 6th bit in the ACT while keeping all other link sets
not modified. By iterating the greedy process for each bit in the ACT, the algorithm can
guarantee to obtain an m-trail solution for each bit in the ACT. The solution quality will
depend on the success rate threshold defined in Step (6) in Fig. 2.11. The effectiveness
and efficiency of the proposed algorithm will be further demonstrated in the next section.

This link has no
bitwise link-pair
because its error
code is 000001

(a)

Seattle

San Francisco

Chicago

New York

Los Angeles

Las Vegas

Salt Lake City

Denver Kansas City

Oklahoma City

Cleveland

St. Louis

Washington
D.C.

Boston

Charlotte

Detroit

Toronto

Atlanta

Indianapolis

Houston

Dallas
El Paso

Nashville

Miami

Minneapolis

New Orleans

(b)

Figure 2.13: Link set 6 (a) after random coding (b) after greedy random code swapping
for link set 6 in the ACT.

Performance Evaluation of RCA-RCS

Extensive simulation on thousands of different random topologies was conducted to
verify the proposed algorithm. Specifically, we (1) demonstrated the solution quality of
the proposed algorithm by comparing to the ILP in [27]; and (2) investigate impacts of
topology diversity on m-trail solutions.

Quality of Solution We investigated the quality of m-trail solutions generated by the
proposed algorithm and its relation with the granted computation time. Also, comparison
was made between the results by our algorithm and by the ILP in [27]. A server with
3GHz Intel Xeon CPU 5160 was used on two typical networks: SmallNet (10 nodes, 22
links) and ARPA2 (21 nodes, 25 links). Fig. 2.14 shows the quality of m-trail solutions
in terms of the total cost defined in Eq. 1 versus the granted running time by taking cost
ratio γ = 5. Each little data interval in Fig. 2.14 is 95% confidence interval around the
mean of 30 experiments. The ILP solutions for the two networks under the same condition
were also plotted for comparison.

With the RCS mechanism, the algorithm can achieve better results (i.e., smaller total
cost) when longer computation time was granted in both networks. The simulation results
confirmed our expectation. Interestingly, the proposed algorithm has generated even
better solutions than the ILP, while the running time is shorter by several orders. This
explicitly demonstrates the superiority of the proposed algorithm in terms of both solution
quality and required running time against the ILP. Note that the ILP results in the
example have nonzero gap-to-optimality of 4.17% in SmallNet and 20.41% in ARPA2,
which cannot be erased only with dramatically increased running time. On the other
hand, the proposed algorithm spent about 0.01 seconds and 1 seconds to achieve the

 dc_498_12

D.Sc. Dissertation Tapolcai, János 29

same total cost in the SmallNet and ARPA2, respectively, compared with 1,543 seconds
and 9,573 seconds by the ILP.

T4
T2

T5

T6

T1

T3

T6
T4T1T2

T3

T5
T7

T8

(a)

(b)

70

72

74

0.001 0.01 0.1 1 10 100 1000 10000

T
ot

al
C

o
st

Running Time in [sec]

SmallNet

Heuristic
ILP [27]

(c)

90

100

110

0.01 0.1 1 10 100 1000 10000
Running Time in [sec]

ARPA2

Heuristic
ILP [27]

(d)

Figure 2.14: The best heuristic solutions for SmallNet with cost of 69 and ARPA2 with
cost of 87. In comparisons the ILP resulted 72 with 4.17% gap-to-optimality for and
SmallNet and 98 with 20.41% for ARPA2.

Topology Diversity on M-Trail Solutions This section demonstrates the impact on
m-trail solutions due to topology diversity. A huge number of experiments on thousands
of randomly generated topologies were conducted. Fig. 2.15 shows the minimal number
of m-trails versus network density on topologies with 50 nodes. The network connectivity
was increased starting from a backbone ring with 50 nodes and 50 links to a fully meshed
topology with 50 nodes and 1,225 links, where one or a few links were randomly added
to the topology for each data set. To make it statistically meaningful, every data interval
in Fig. 2.15 is 95% confidence interval around the mean of 20 different topologies each
obtained by randomly adding the same number of links to the backbone ring. We observed
that the normalized length of the alarm code (i.e., from the length of alarm code we
subtracted dlog2 (|E|+ 1)e) dramatically goes down when we add 50 to 100 links, or
increase the nodal degrees from 2 to 3. See Fig. 2.15(a) and Fig. 2.15(b), respectively.
The length of the alarm code approaches the lower bound (i.e., dlog2 (|E|+ 1)e) when γ
is large enough. From Fig. 2.15(a) and (b), we have also observed that when γ is small,
the confidence interval for each data is larger than in the case of larger γ. This indicates
the fact that both monitoring cost and bandwidth cost are more sensitive to different
amounts of degree-2 nodes in the network, possibly due to the interplay between the two
objectives in the cost function of Eq. (2.1).

Fig. 2.15(c) shows the normalized cover ratio (i.e., the sum of cover length of all m-
trails divided by |E|) versus average nodal degree. We have seen that the cover ratio

 dc_498_12

30 Tapolcai, János D.Sc. Dissertation

slightly increases when the average nodal degree is increased from 2 to 9 for all the three
γ values. Particularly, the cases with γ = 5 and 10 have better suppressed the increase
of cover length ratio, which demonstrates the effectiveness in the tradeoffs between the
length of the alarm code and bandwidth cost by manipulating the cost ratio γ.

0

5

10

15

20

25

50 70 90 110 130 150 170 190 210 230

#
m

-t
ra

il
s

-
lo

g
2
|E
|

Number of Edges

γ = 5
γ = 10

γ = 1000

(a) Normalized length of alarm code versus number of links

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9

#
m

-t
ra

il
s

-
lo

g
2
|E
|

Average Nodal Degree

γ = 5
γ = 10

γ = 1000

(b) Normalized length of alarm code versus the
average nodal degree

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

2 3 4 5 6 7 8 9

N
o
rm

.
C

o
v
er

L
en

g
th

Average Nodal Degree

(c) Normalized cover ratio versus average nodal
degree

Figure 2.15: Simulation on random topologies with 50 nodes.

Fig. 2.16 shows the m-trail solutions with different numbers of nodes in the network
topologies. Fig. 2.16(a) and (b) shows the length of the alarm code versus the number of
links. Clearly, when γ = 1000, the length of the alarm code is only affected by the number
of links when it is small, while quickly converges to dlog2(|E|+ 1)e when the number of
added links is increasing, regardless the number of nodes in the topology. Moreover, the
length of alarm code is always dlog2(|E|+ 1)e in case the network does not contain any
node with a nodal degree 2 or smaller, which also verifies the observations. On the other
hand, when γ is small, the convergence becomes slower, and the length of alarm code
deviates more from dlog2(|E|+ 1)e as γ is reduced.

Fig. 2.16(c) shows the results of the experiment, on the relationship between normal-
ized length of the alarm code and total number of degree-2 nodes in the topologies with
20, 30, 40, 50, and 60 nodes, altogether resulting 5,320 different random topologies. γ
was set to 1,000. Each data point was obtained by averaging the results on 20 randomly
generated topologies of the same total number of degree-2 nodes. We observed that all the
topologies with different numbers of nodes require more m-trails for UFL as the number
of degree-2 nodes grows, which meets our expectation. Interestingly, it is observed that
all the topologies have to take similar normalized length of alarm code for UFL given the
same number of degree-2 nodes. This indicates a serious impact on m-trail solutions due

 dc_498_12

D.Sc. Dissertation Tapolcai, János 31

5

10

15

20

25

30

35

20 40 60 80 100 120 140 160 180 200 220 240

N
u

m
b

er
o
f

M
-T

ra
il
s

Number of Edges

(a) γ = 1000

5

10

15

20

25

30

35

20 40 60 80 100 120 140 160 180 200 220 240

N
u

m
b

er
o
f

M
-T

ra
il
s

Number of Edges

(b) γ = 5

-5

0

5

10

15

20

25

30

1 10 20 30 40 50 60

#
m

-t
ra

il
s

-
lo

g
2
|E
|

Total Stub Length

Total degree-2 nodes
2

20 node networks
30 node networks
40 node networks
50 node networks
60 node networks

(c) Normalized length of alarm code versus total degree-2 nodes

Figure 2.16: The length of alarm code versus the number of added links for topologies of
20, 30, 40, 50, and 60 nodes.

 dc_498_12

32 Tapolcai, János D.Sc. Dissertation

to the number of degree-2 nodes in a topology. Based on these experiments the following
relationship can be taken as a rule of thumb for approximating the normalized length of
the alarm code in a random network topology when γ is very large:

b = #m-trail ≈ dlog2(|E|+ 1)e+
#degree-2 nodes

2
(2.8)

Note that the above rule of thumb does not hold for every graph because the con-
struction in Section 2.2.2 is a counterexample.

2.3 Unambiguous Failure Localization for Multiple

Failures

2.3.1 Problem Definition

The alarm code of a multi-link SRLG is the bitwise OR, denoted by ∨, of the alarm
codes of all links in the SRLG. This corresponds to the fact that a monitor alarms if the
corresponding monitoring lightpath traverses through any link in the SRLG that is hit
by the failure event. Thus, each SRLG z can be assigned with an alarm code as follows

Az =
∨
e∈Z

Ae ,

where
∨

denotes the bitwise OR operator. The UFL constraint in this general case
requires every alarm code of each SRLG to be unique.

2.3.2 UFL for SRLG Failure with Bm-Trail

In general, an effective monitoring structure allocation method must satisfy the fol-
lowing two requirements, either in a single step or one after the other:

(R1): Every SRLG should be uniquely coded.

(R2): Each monitoring structure must be an eligible fragment of network topology in
which a lightpath can travel along from the transmitter to the receiver.

Note that in addition to (R1) and (R2), there could be some other constraints due
to specific user design premises, such as the length limitation due to the deployment of
optical generators/retransmitters, the locations of monitoring nodes [35, 40], and use of
working lightpaths (i.e., live connections) for failure state correlation [35, 42].

An integer linear program can be developed that satisfies both (R1) and (R2) in a
single step [22, 27, 38]. In particular, [27] is the first study that suggested to using freely
routed open-loop un-directed supervisory lightpaths (called m-trail) for single-link SRLG
failure localization. All the three studies formulated the supervisory ligthpath allocation
problem into Integer linear programs (ILPs), which is unfortunately subject to intolerably
long computational time even in very small topologies. Thus people have turned to the
design of heuristics in solving the problem. The previously reported solutions can be
divided into two categories according to their design principles. The first one manipulates
an accumulation mechanism such that (R2) is ensured at the beginning, while the goal
of the heuristics is to satisfy (R1) [30, 35, 36]. In the second design category, (R1) is
intrinsically ensured at the beginning while leaving (R2) as a goal [5].

 dc_498_12

D.Sc. Dissertation Tapolcai, János 33

The bm-trail formation problem is a structured variant of the combinatorial group
testing (CGT) process [54, 55]. In [30] the problem was taken as combinatorial group
testing on graphs. The idea of group testing dates back to World War II when millions
of blood samples were analyzed to detect syphilis in US military. In order to reduce the
number of tests it was suggested to pool the blood samples. From algorithmic aspects
there are two significant differences between the tasks of pooling blood samples and mon-
itoring of a group of links in a graph: (1) the blood samples can be pooled arbitrarily,
while the monitored links must be connected and even in a valid shape, (2) the monitors
are always pre-configured, and the probing is performed simultaneously without knowing
the result of other tests (non adaptive CGT).

The primary goal of any CGT algorithm is to identify defective items among a given
set of items through as few tests as possible. In this case the set of items are the links of
a graph, the defective items are the failed links, and the tests are monitoring structures
(e.g., bm-trails). The first general CGT method was given by Hwang and T. Sós [54],
while the shortest real-world problem size non-adaptive CGT codes were developed by
Epstein, Goodrich and Hirschberg [56].

In [30], with the help of non-adaptive combinatorial group testing (CGT) construc-
tions, the authors conducted an indepth theoretical bound analysis on the problem, in
which each link is assigned with multiple codes in a graph with at least d+1 disjoint span-
ning trees. Therefore, the construction in [30] can only be applied to very densely meshed
topologies. For example, the network has to be as densely meshed as (2d+ 2)-connected
in order to accommodate d + 1 disjoint spanning trees, which results in (d + 1) · j bits
assigned to each link for achieving UFL of SRLGs with up to d links, where j is the CGT
code length. Obviously, such a method of assigning each link d + 1 CGT codes can fit
well into theoretical analysis, but it can hardly be applied in most practical scenarios.

The studies in [35, 36] set their goal in minimizing the number of monitoring locations
(MLs). For example, to localize failure of SRLG with up to 2 links (i.e., d = 2), all the
3- and 4-connected subgraphs should be identified, and almost each subgraph needs an
ML at an arbitrarily chosen node in the subgraph. With each ML determined, graph
transformation is performed such that the MLs are merged into a supernode (denoted
as m), and cycles are cumulatively added into the transformed graph one by one via
Suurballe’s [57] algorithm. To distinguish two SRLGs w1 and w2, a cycle must be disjoint
from w2 while passing m and l, where l is a link randomly selected from w1 \ w2. In the
worst case this leads to O(|SRLG|2) of cycles to distinguish all the SRLGs, where |SRLG|
is the number of SRLGs considered in the network. Thus, the worst time complexity is
O(|SRLG|2 · |V |2), where |V | is the number of nodes in network, and the term O(|V |2)
corresponds to the complexity of Suurballe’s algorithm. The computation complexity
becomes O(|E|2d · |V |2) if every multiple failure with up to d links should be localized,
where |E| is the number of links.

The approach taken in [5] (see also Section 2.2.7) is the first study following the
second design principle, where the code uniqueness of each link (as defined in (R1)) is first
guaranteed, while an algorithm was given for the formation of each monitoring structure
in the context of m-trail. A superb performance was witnessed in [5] by employing random
code assignment (RCA) and random code swapping (RCS) for localizing any link failure.
In specific, the RCA algorithm forms the j-th m-trail by randomly swapping a link code
with its bitwise code pair at the j-th position. For example, the codes ”11010110” and
”11000110” form a bitwise code pair at the 4-th position. Note that such a RCS algorithm

 dc_498_12

34 Tapolcai, János D.Sc. Dissertation

in [5] can only work when single-link failures are considered and it simply fails in presence
of the code dependency among overlapped SRLGs, which is the most critical task to be
addressed in this section.

This sections follows the second design category in order to take advantage of the
extremely flexible structure of bm-trails in solving the problem.

2.3.3 The CGT-GCS Heuristic Approach for M-Trail Allocation

The proposed bm-trail allocation method follows the second design principle, where
CGT codes generated by [56, 54] are assigned to each link to ensure (R1). After the ran-
dom code assignment, (R2) is pursued by way of greedy code swapping (GCS). Although
seemingly similar to that in [5], the proposed approach is much different in both stages
of code generation and code swapping.

Fig. 2.17 is a flowchart that summarizes the proposed approach. In Step (1), the CGT
code construction GEN CGT generates a number of k d-separable codes of a length J bits,
denoted as C. The input parameter |E| ensures that the code length J is the smallest

such that k ≥ |E|. Note that the property of d-separability ensures uniqueness of the
bitwise OR of up to d codes in set C, which is required in (R1). In Step (2), an alarm
code table is formed by randomly selecting |E| out of k codes from C, which are further
assigned to all the links. The group of |E| codes taken by the links is denoted as A, while
the group of rest k − |E| unassigned codes is denoted as code set U , where U = C \ A.

With a CGT code of length J at each link, the best situation is that each bit position of
the link can lead to an m-trail, and in this case there are totally J m-trails corresponding
to the code assignment. But this is not likely to happen due to the random assignment
of the codes at the beginning. Our method solves the m-trail formation problem by GCS
starting in Step (3), which ensures (R2).

In Step (3), each link is categorized with one of the four attributes (i.e., isolated,
leaf, bridge, and detour) in each bit position according to A. Next in Step (4), code
pair (ae, Cx), where ae ∈ A and Cx ∈ C, is arbitrarily selected and checked in function
CostREval one by one to see how much cost reduction can be achieved by possibly swap-
ping each code pair. The code pair with the steepest cost reduction after swapping is kept
(i.e., ∆M). If ∆M is no less than γ and at least one bm-trail can be merged or removed,
the two codes are swapped using function SWP, such that A is updated accordingly in Step
(6) and the program then goes back to Step (3). Otherwise, the program returns the best
result (i.e., A with the least bm-trails) and terminates.

Note that an eligible code swapping could be either a swapping between the codes both
in A (i.e., Cx ∈ A) or replacement of the link code with an unused one (i.e., Cx ∈ U).
Steps (3), (4), (5), and (6) form a loop such that the largest cost reduction can be achieved
in each iteration of code swapping.

Greedy Code Swapping (GCS)

To carry out m-trail formation, GCS is devised to greedily swap codes of two links
such that the coverage constraint at each bit position can be satisfied while the resultant
solution quality can be progressively improved according to the cost function Eq. (1).
Such an iterative swapping process continues until a given condition is satisfied.

The cost reduction evaluation for each code swapping serves as an important building
block in the proposed GCS mechanism, which guides the m-trail formation process at
each link set. In swapping each code pair of two links, a set of regulations is necessary,

 dc_498_12

D.Sc. Dissertation Tapolcai, János 35

(1) CGT Code Generation: [C, J, k] ← GEN CGT(|E|)

(2) Randomly assign codes to |E| links to form
an alarm code table A, and U ← C \ A

(3) Link Categorization:
Determine the attribute of each link at all the bit positions

(4) Code Swapping Evaluation:

∆M = max
∀i∈A,∀j∈C

CostREval(i, j)

(5):
∆M ≥ γ

(6) Swapping:
A ← SWP(i, j)

Return A′
yes

no

Figure 2.17: The flowchart for the proposed CGT-GCS heuristic algorithm.

and will be detailed in the following paragraphs.
The flowchart of the proposed GCS is given in Fig. 2.18, which provides all details

of Step (4) in Fig. 2.17. At the beginning, the program picks up a code pair ae and
Cx as shown in Step (4.1), where ae is a code assigned to link e while Cx is randomly
selected from C, respectively. The cost reduction evaluation for a single swapping should
be iterated on each bit position (or, each link set) affected by the swapping. The i-th
bit position (or link set), Li, is not affected by the swapping of ae and Cx if the two
codes have a common i-th bit, i.e., ae,[i] = Cx[i]. If the swapping of ae and Cx has an
affection on the i-th link set, the heuristic goes to either Step (4.5) or (4.6), depending
on whether Cx ∈ A or Cx ∈ U , which is checked in Step (4.4). In the case Cx ∈ U ,
the function addBit(e, i) is called if Cx[i] = 1 and ae,[i] = 0; otherwise removeBit(i, e) is
called if Cx[i] = 0 and ae,[i] = 1. In the former case the i-th bit is flipped from “0” to “1”,
hence a link is added to Li; while in the latter, the i-th bit is changed from “1” to ”0”,
where a link is removed from Li. If Cx ∈ A, let Cx be currently assigned to link f . The
function add&removeBit(i, e, f) is called if Cx[i] = 1 and ae,[i] = 0; otherwise the function
add&removeBit(i, f, e) is called (i.e., Cx[i] = 0 and ae,[i] = 1).

Before addBit(i, e), removeBit(i, e), add&removeBit(i, e, f) are introduced, the at-
tributes of network links should be defined first, which facilitate high computational effi-
ciency in the cost reduction evaluation proces for each link set.

The Attributes of Links A link set may contain one or multiple isolated fragments,
which are called the components of the link set. Each link of link set Lj could be attributed
into either one of the following four categories:

Isolated link is a link not connected to any other link of the link set. Identifying these

 dc_498_12

36 Tapolcai, János D.Sc. Dissertation

(4.1) Given ae ∈ A and Cx ∈ C code pair. i := 1, imp := 0

(4.2) Take the i-th bit until i ≤ J i := i + 1i := i + 1

(4.3)
ae,[i] = Cx,j

(4.4)
Cx ∈ A

(4.5) If ae,[i] = 0
imp+ = addBit(i, e)

else
imp+ = removeBit(i, e)

(4.6) If ae,[i] = 0
imp+ = add&removeBit(i, e, f)

else
imp+ = add&removeBit(i, f, e)
where f :=link assigned to Cx

true

false

false

true

Figure 2.18: Cost reduction evaluation for each code swapping.

links is simple, since their both terminating nodes have degree 1. An example is
given as (x, n) in Fig. 2.19.

Leaf link is a link with exactly one of its terminating nodes of nodal degree 1, as shown
in link (c, r) and (u, z), etc., in Fig. 2.19.

Bridge link has both terminating nodes with a nodal degree larger than 1. Moreover,
if the link is erased, then the component falls apart into two sub-components. To
identify a bridge link, every 2-connected component must be identified first, which
can be done in O(|E|2) time. For these links both terminating nodes of the link
must belong to different 2-connected components. An example is given as (c, e) in
Fig. 2.19.

Detour link is a part of a component,and removal of it does not tear the component
apart. For these links both terminating nodes of the link must belong to the same
2-connected component. An example is given as (o, u) in Fig. 2.19.

Next, similar categorization is applied to each link set Lj, where the isolated links,
leaf links, bridge links, and detour links are identified.

addBit(i, e) returns the cost reduction in case ae,[i] = 0 and Cx[i] = 1. In this case,
because the i-th bit of the two link codes is changed from “0” to”1”, the cover length of
the resultant m-trail solution will be increased by 1, while the number of m-trails could
be increased or reduced or unchanged according to the attribute of link e with respect to
the link set Li. Table 2.5 summarizes the link attribute categorization.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 37

0101

0110

1001

1010

1000

0100

0011

1111

0001

0010

1100

0111

1011

1101
1110

isolated leaf

leaf

leaf

leaf
bridge

bridge

bridge

detour

leaf

leaf

leaf

leaf

c

a

e
r

s

n

z

x

u

o

w

v

leaf leaf

Figure 2.19: An example on link attribute categorization for fast cost reduction evaluation
on code swapping.

Table 2.5: Table lookup of addBit(i, e)
Attribute of e for Li # of m-trails

isolated increased by 1
leaf unchanged

bridge decreased by 1
detour unchanged

removeBit(i, e) returns the cost reduction in case ae,[i] = 1 and Cx[i] = 0. Because the
i-th bit is changed from “1” to “0”, the cover length is decreased by 1, while the number
of bm-trails should be updated according to the attribute of e with respect to Li. This is
summarized in Table 2.6.

Table 2.6: Table Lookup of removeBit(i, e)
Attribute of e for Li # of bm-trails

isolated decreased by 1
leaf unchanged

bridge increased by 1
detour unchanged

add&removeBit(i, e, f) is for the cost reduction evaluation in the event that link e is
added and another link f is removed from Li. After the swapping the cover length is
unchanged while the number of m-trails changes according to the attributes of both links.
This is provided in Table 2.7.

In summary, the proposed GCS swaps a code pair with the steepest cost reduction
larger than a threshold γ based on the proposed link attribute categorization and table
lookup process, which greedily approaches to better performance according to Eq. (2.1).
With GCS, very high computational efficiency can be achieved thanks to the constant time
complexity in evaluating each code pair, which will be detailed in the next subsection.
The prototype of the proposed algorithm can be found in [53].

 dc_498_12

38 Tapolcai, János D.Sc. Dissertation

Table 2.7: Table lookup of add&removeBit(i, e, f)
add e remove f
Attrib. Attrib. # of bm-trails
of Li of Li

isolated

isolated unchanged
leaf increased by 1
bridge increased by 2
detour increased by 1

leaf

isolated decreased by 1 if e and f are not adjacent links, oth-
erwise unchanged

leaf Either unchanged or increased by 1, if e is con-
nected to f . See link (r, n) and (r, c) on Fig. 2.19 as an
example.

bridge increased by 1
detour unchanged

bridge

isolated decreased by 2 if e and f are disjoint, otherwise in-
creased by 1

leaf Either decreased by 1, or unchanged if e is adjacent to
f . See link (o, w) and (o, s) on Fig. 2.19 as an example.

bridge unchanged
detour decreased by 1

Detour

isolated decreased by 1
leaf unchanged
bridge Either decreased by 1 or unchanged if e reconnects

the detached sub-components.
See links (o, u) and (u,w) in Fig. 2.19 as an example.
Lemma 5 provides a method to determine a bridge.

detour unchanged

Computational Complexity Analysis

The cost reduction evaluation is performed in each code swapping, which dominates
the computational complexity of the heuristic algorithm. Next we prove three claims
needed for a lemma that describes the computational complexity of the cost reduction
evaluation process for a single code swapping.

Lemma 5. The complexity of CostREval(i, j) is O(1).

Proof. In the table lookup process for each code swapping, it can be intuitively verified
that every entity in the table can be performed in constant time.

Note that it is not obvious that the execution of add&removeBit(i, e, f) with e and
f as a detour and bridge link, respectively, only takes constant time complexity. It is
achieved via a pre-calculation process performed beside the link attribute categorization
in Step (2).

For link set Lj, we need to determine the relationship between any node and a bridge
link of aj = 1, which can be done in constant time. For example in Fig. 2.19(a), (c, e)
is a bridge link of Lj, and removal of it separates Lj into two isolated components that
form two m-walks with nodes {a, c, r} and {e, s}, respectively. Such a function can be

 dc_498_12

D.Sc. Dissertation Tapolcai, János 39

implemented by storing the reach and leave order of each node in the DFS algorithm.
As shown in Fig. 2.20 as an example, the reach order of the DFS is written on the top
of nodes, while the leave order is below the nodes. Let IR and IR denote the largest
reach and the smallest leave order indices of the bridge. Every node with a reach and
leave index at least IR and at most IL belongs to one side of bridge. As exemplified in
Fig. 2.20, we have IR = 2 and IL = 8, thus {a, r, c} are in one sub-component.

bridgec

a

e
r

s2 1

3

4

6
7

8 12
11

10

Figure 2.20: Leave and reach order of the DFS algorithm. The links of Lj are drawn with
thick lines.

Lemma 6. The complexity of Step (2) is O(|E| log |E|).

Proof. Clearly, a DFS function for detecting the components in each link set is in O(|E|)
time complexity. Since each bridge link connects to two 2-connected components, to
identify a bridge link, we must identify the corresponding two 2-connected components
first, which can be done in O(|E|) time complexity[58]. Also, such a check needs to go
through each bit position, which multiplies the complexity by a factor of log |E|. Thus,
the lemma is proved.

Lemma 7. The complexity of Step (3) is O(|E|2 log |E|).

Proof. For each code and link pair, the proposed method can evaluate the possible cost
reduction with a constant time (O(1)) according to Lemma 5. Since the overall time
complexity is O(|E| · #codes · J), and since #codes = O(|E|), we have the worst case
complexity of Step (3) as O(|E|2 log |E|).

Lemma 8. The computational complexity of a cost reduction evaluation process for a
single swapping is O(|E|2 log |E|).

Proof. It is a direct consequence of the above three lemmas.

It is clear that the number of isolated components (or m-trails) in the initial random
code assignment for each bit position cannot be more than |V |/2. This is because each
isolated component consists of at least a single edge and two nodes, where |V | is the
number of nodes in the network. After each loop (defined in Steps (3), (4), (5), and (6) of
Fig. 3), at least one m-trail is determined and erased from the link set; thus, the maximum

number of code swappings should be upper bounded by |V |
2
·J , where J is the code length

(in bits). Note that J is in the order of O(d · log |E|) according to the CGT construction.
By considering the complexity of each code swapping as O(|E|2 log |E|), the overall worst
case complexity in the proposed method is O(|V ||E|2 · d · log2 |E|). Compared with the
scheme in [35, 36] with a complexity of O(|E|2d · |V |2), the proposed approach can achieve
much better efficiency.

 dc_498_12

40 Tapolcai, János D.Sc. Dissertation

Performance Evaluation of CGT-GCS

Simulations on hundreds of randomly generated planar 2-connected network topolo-
gies were conducted. The network topologies were generated with lgf gen, a random
graph generator of LEMON [59], which randomly generates realistic planar 2-connected
networks. The networks are classified according to the girth of the graph, denoted by g,
which is the length of a shortest cycle contained in the graph. Clearly, a smaller value of g
yields a more densely meshed topology. Fig. 2.21(a) shows the statistics of the randomly
generated topologies. See also Fig. 3.5 for example network topologies with different girth.
It is found that the average nodal degree is 3.0 for dense networks (g = 7) and 4.0 for
sparse networks (g = 4).

In the simulation, the proposed scheme is denoted as CGT-GCS 1, CGT-GCS 2 and
CGT-GCS 3 for failure localization of SRLGs with up to 1, 2, and 3 links, respectively,
where the CGT codes based on d-separable constructions with d = 1, d = 2, and d = 3
are employed. CA1 and CA2 corresponds to the method that each bi-directional m-trail
is allocated one after the other to distinguish each pair of SRLGs using any Dijkstra’s
algorithm based scheme, such that UFL for single-link SRLGs and for both single- and
double-link SRLGs can be achieved, respectively. The method is generic and has been
considered in a number of previously reported studies [35, 60, 26]. We have also imple-
mented the construction in [30] that used disjoint spanning trees, denoted as DSTC. The
construction provides an upper bound for (d+ 1)-connected topologies, but is invalid for
topologies with any node of a smaller nodal degree than (d + 1). The upper bound is
given by (d+ 1) . . . J , where J is the length of the CGT codes employed.

Fig. 2.21(b) shows the lengths of CGT codes (i.e., J) versus the number of links |E|
of the corresponding topology by the CGT code generator GEN CGT in [56], where the
scenarios with d = 2 are presented. It is intuitive that when SRLGs with more links are
considered, longer CGT codes are required for each link.

0

50

100

150

200

250

300

20 50 100

#
li

n
k
s

#nodes

g=3
g=7

(a) Statistics of the random topologies. The dense
networks have girth g = 3, while for the sparse
networks g = 7.

0
20
40
60
80

100
120
140
160

20 200 300

#
b

it
s

#links

CGT 3

CGT 2

(b) The length of CGT code (in bits) versus the
number of links as an input to the CGT code gen-
erator GEN CGT in [56]

Figure 2.21: Statistics on the input data.

The performance metrics employed in the comparison of the six schemes are the mini-
mum number of m-trails required for achieve UFL and the running time. Both metrics are
examined with respect to different network sizes (i.e., the number of nodes) and topology
densities (i.e., g values), which will be presented in the following two subsections. The
simulation has been done on over 800 randomly generated topologies, and each data was
obtained by averaging the results from 10 different topologies with a specific g value and

 dc_498_12

D.Sc. Dissertation Tapolcai, János 41

number of nodes. A bar for each data in the charts is available for showing the range of
data we obtained.

Number of M-Trails versus Network Size The performance in terms of the mini-
mum number of m-trails is first investigated, and the results are shown in Fig. 2.22. First,
we find that the number of m-trails increases when the network size grows, which is ob-
served in all the cases. It clearly shows that the proposed approach achieve much better
scalability, where CGT-GCS 1, CA1, and CA2 have achieved far worse performance than
that by CGT-GCS 1 and CGT-GCS 2, respectively, in both types of network topologies.

The superior performance of the proposed approach in minimizing the number of m-
trails can be explained in two folds. First, the m-trails have the most flexible routing
structure that can fully explore the solution space. This serves as a critical factor in
overcome the vicious effect of topology diversity. It can be attested that our scheme has
less advantage against the other two counterparts when network is sparsely connected (i.e.,
g = 7), because there are less alternatives in allocating the m-trails. Second, because CA1

and CA2 have each monitoring lightpath sequentially allocated into the network using an
shortest path routing algorithm, it lacks intelligence in exploring the design space and
network topology diversity. Third, DSTC [30] tries to ensure the code uniqueness of each
SRLG by useing d + 1 disjoint spanning trees, which is strongly limited by the topology
connectivity. It is clearly shown that the construction can only yield valid solution in very
densely meshed topologies, while failed in most of the sparse topologies considered in the
simulation.

Running Time Fig. 2.23 shows the running time for obtaining the data in Fig. 2.22.
It is observed that the proposed approach achieves much better computational efficiency,
although CA2 can achieve performance closer to CGT-GCS 2 for sparser network topolo-
gies. Also, CGT-GCS 3 takes much longer time than CGT-GCS 2 and any other case due
to a much longer CGT code with d = 3, as shown in Fig. 2.21(b). Recall that the cost
reduction evaluation in each code swapping has to go through all the link sets that are af-
fected by the code swapping. Thus, the longer CGT code of each link yields an immediate
increase of running time in obtaining an m-trail solution.

Note that we tried to implement CA3 but failed due to the extremely long computa-
tional time required for each data in the selected topologies. This clearly demonstrates su-
perior scalability of the proposed approach which can achieve better capability in handling
a huge amount of SRLGs in densely meshed networks compared with its counterparts.

 dc_498_12

42 Tapolcai, János D.Sc. Dissertation

0
10
20
30
40
50
60
70
80
90

20 50 100

#
b

m
-t

ra
il

s

#nodes

CA1

CGT-GCS 1

DSTC1

(a) g = 3 single failure

0
10
20
30
40
50
60
70
80

20 50 100

#
b

m
-t

ra
il

s

#nodes

(b) g = 7 single failure

0

50

100

150

200

250

20 50 100

#
b

m
-t

ra
il

s

#nodes

CA2

CGT-GCS 2

DSTC2

(c) g = 3 double failure

20
40
60
80

100
120
140
160

20 50 100

#
b

m
-t

ra
il

s

#nodes

(d) g = 7 double failure

0

100

200

300

400

500

600

20 50 100

#
b

m
-t

ra
il

s

#nodes

CGT-GCS 3

DSTC3

(e) g = 3 triple failure

50
100
150
200
250
300
350
400

20 50 100

#
b

m
-t

ra
il

s

#nodes

(f) g = 7 triple failure

Figure 2.22: The number of bm-trails versus the number of nodes.

0.01

0.1

1

10

100

1000

10000

20 50 100

ru
n

n
in

g
ti

m
e

[s
ec

]

#nodes

CGT-GCS 3

CGT-GCS 2

CGT-GCS 1

CA2

CA1

(a) Dense networks

0.001

0.01

0.1

1

10

100

1000

10000

20 50 100

ru
n

n
in

g
ti

m
e

[s
ec

]

#nodes

(b) Sparse networks

Figure 2.23: The running time versus the number of nodes.

 dc_498_12

Chapter 3

Distributed Single Failure
Localization in All-Optical Mesh
Networks

3.1 Introduction

Unambiguous Failure Localization (UFL) is defined in all-optical mesh WDM networks
where any link failure can be precisely and instantly identified via monitoring a set of
supervisory lightpaths. Such capability in the network optical layer is highly desired in
order to meet the stringent requirement on service continuity and to support various
failure-dependent restoration mechanisms [61, 62, 63].

Several UFL schemes have been proposed in Chapter 2. Using m-trails with bi-
directional lightpaths in all-optical WDM networks has been proposed [30, 6, 64, 65];
and all these studies set the destination node of each m-trail as the only node that can
detect the status of the m-trail. This results in a fact that alarm dissemination is needed
upon a failure event mostly via flooding and dedicated failure notification based on net-
work layer signaling, such that the alarm code can be formed at a remote site or any
network node in order to localize the failure. Obviously, using electronic signaling in
alarm bit collection incurs additional control complexity, operational overhead, and lower
robustness of the system. The dependency on the upper layer signaling mechanism im-
plies that these approaches leave the optical domain, which may cause problems. Such an
issue was considered in [35], which aimed to minimize the number of monitoring locations
(MLs) in order to reduce the alarm dissemination. Nonetheless, the research in [35] can
hardly be applicable to the scenario where all the nodes are required to perform UFL in
the optical domain, and may yield solutions with multiple MLs in sparse networks, and
in this case the MLs have to exchange their alarm bits via control plane signaling. Most
importantly, the approach in [35] pays no attention to the number of required supervisory
lightpaths which affects seriously the number of transmitters and the total cover length.

Motivated by the fact that UFL should be carried out completely in the optical do-
main and be free from any control plane signaling effort, this section investigates an
advantageous scenario of all-optical failure localization using bi-directional m-trails. Here
we define Local UFL (L-UFL) at a node if the node can individually perform UFL based
on locally available on-off status of the traversing m-trails; and Network-Wide Local UFL
(NL-UFL) in the network if every node is L-UFL capable. By assuming that any node

43

 dc_498_12

44 Tapolcai, János D.Sc. Dissertation

T1 T2 T3

0 1

23

(a) Topology and m-trails

SRLG T1 T2 T3

(0, 1) 0 0 1
(1, 2) 0 0 1
(2, 3) 0 1 1
(3, 0) 1 1 0

(b) Alarm code table (ACT) at node 0

Figure 3.1: Local-unambiguous failure localization (L-UFL) based on m-trails. Node 0 is
the monitoring location. The cover length is ‖T ‖ = 6.

along an m-trail can obtain the on-off status of the m-trail via optical signal tapping, all
the nodes traversed by the m-trail can share the on-off status of the m-trail. The proposed
NL-UFL m-trail allocation problem is to find a set of m-trails such that every node can
perform L-UFL based on the traversing m-trails.

The section first introduces the NL-UFL framework along with its possible application
scenarios, and defines the NL-UFL m-trail allocation problem. To gain an understanding
of the problem, we conduct bound analysis by proving optimal solutions in terms of
minimal cover length in a number of special graphs, such as lines, stars, and complete
graphs, as well as the derivation of lower bounds in general graphs. Inspired by the optimal
solution for complete graphs, we develop a novel heuristic algorithm for solving the NWL-
UFL m-trail allocation problem based on random spanning tree assignment (RSTA) and
greedy link swapping (GLS). Extensive simulation on thousands of randomly generated
topologies is conducted to verify the proposed heuristic approach and examine the derived
lower bounds. The impact of network diversity is also investigated.

3.2 Problem Definition

3.2.1 Local Unambiguous Failure Localization (L-UFL)

L-UFL is an advanced application of m-trail deployment, where the UFL constraint is
stricter while the shape constraint is the same as for UFL described in Section 2.1.2. A
node is said to be L-UFL capable if and only if the node can perform UFL by inspecting
the on-off status of the m-trails locally available. An m-trail is said to be locally available
at node n if it terminates in n. In the L-UFL problem the goal is to find a node with
L-UFL. This node is called monitoring location (ML).

In many cases none of the nodes can serve as an ML, and thus the goal is to find a
smallest set of nodes that altogether have sufficient information for UFL. As a consequence
of Theorem 8, any node can be the single ML in a 2-connected network to achieve L-UFL
with bm-trails for single link failures. The bandwidth cost is also considered in the L-UFL
problem, with significantly smaller weight compared to the number of MLs.

3.2.2 An L-UFL Example

Fig. 3.1 shows an example of L-UFL m-trail solution on the network of 2.1(a) for
localizing any single link failure. Node 0 is chosen for monitoring location, and the local
ACT at node 0 is shown in Fig. 3.1(b). Here, every m-trail should terminate in node 0.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 45

3.2.3 State of the Art on L-UFL

The study in [35] set its goal to minimize the number of MLs, which is determined
by analyzing the connectivity among the 2- and 3-edge-connected components in the
topology. With each ML determined, a graph transformation is performed such that the
MLs are merged into a supernode (denoted by m), and cycles are cumulatively added into
the transformed graph one by one via Suurballe’s algorithm. The method was extended
for sparse SRLG in [36].

3.2.4 Network-Wide L-UFL

In Network-wide L-UFL (NL-UFL) every node has to be L-UFL capable. To achieve
this the L-UFL condition is slightly relaxed by assuming that any node along a monitoring
lightpath can obtain the on-off status of the lightpath via optical signal tapping. Thus, all
the nodes traversed by the lightpath can share the on-off status of the m-trail. It means
a node can locally inspect the on-off status of every traversing monitoring lightpath.

The task is to allocate monitoring lightpaths with minimum total cover length, such
that the shape constraint is fulfilled (see also Section 2.1.2), and the NL-UFL constraint
requires unique alarm code for each SRLG at each node. The alarm code at node v ∈ V
for SRLG z ∈ Z is denoted by avz, where avz = [avz,[1], a

v
z,[2], . . . , a

v
z,[bv]] is a binary vector, bv

is the total number of m-trails traversing node v, and the jth bit of avz, denoted by avz,[j],
is 0 if the j-th m-trail traversing node v is operating after failure z, and 1 otherwise.

Thus for each node v we define an ACT, denoted as Av, which is a |Z|× bv size matrix
with each row as avz, ∀z ∈ Z. Obviously b ≥ bv for each v ∈ V , as it is a sub-matrix of the
global ACT. When any failure occurs and interrupts one or a number of m-trails, node v
will obtain a nonzero alarm code which uniquely identifies the failed SRLG.

The target function of the NL-UFL problem is the total cover length, denoted by
‖T ‖. It is because NL-UFL does not rely on any upper layer signaling effort for alarm
code dissemination and, thus the length of alarm code is not as critical as that in UFL
framework.

The following theorem indicates the feasibility of the approach in any 2-connected
graph. The theorem demonstrates that an m-trail solution for single-link NL-UFL can
always be obtained in a connected graph.

Theorem 8. Given a connected graph, an m-trail solution for NL-UFL can always be
found.

Proof. The necessity of the connectivity of the graph is trivial. For the sufficiency part, we
need to show that every node vs can achieve L-UFL. Formally, we have to prove that the
failure of an arbitrary link (vi, vj) can be unambiguously detected at vs using a suitable
collection of m-trails.

Indeed, after possibly renumbering the vertices we may assume, that vi is not farther
form vs than vj. Then let T1 be a (possibly empty) shortest path from s to vi. Note that
T1 does not contain the link (vi, vj). Also, let T2 = T1 ∪ {(vi, vj)}. Then we have that
(vi, vj) is faulty iff T2 gives an alarm signal and T1 does not. These events are obviously
visible at any vs and can be repeated for every link (vi, vj).

3.2.5 An NL-UFL Example

Fig. 3.2(a) shows an example of NL-UFL for any single-link SRLG using four m-trails
in a topology with 4 nodes. Fig. 3.2(b) shows the routes of the four m-trails T1, T2, T3, and

 dc_498_12

46 Tapolcai, János D.Sc. Dissertation

T1 T2

T3T4

0 1

23

(a) M-trails

Link T1 T2 T3 T4

(0, 1) 1 1 0 0
(1, 2) 0 1 1 0
(2, 3) 0 0 1 1
(3, 0) 1 0 0 1

(b) Route table

Link T1 T2 T3

(0, 1) 1 1 0
(1, 2) 0 1 1
(2, 3) 0 0 1
(3, 0) 1 0 0

(c) ACT at node 1

Figure 3.2: Network-wide Local UFL (NL-UFL) via m-trails. The cover length is ‖T ‖ = 8.

T4. In our case, each of the four nodes can achieve single-link L-UFL by inspecting the
locally available on-off status of the traversing m-trails. For example, node 1 maintains
an ACT as shown in Fig. 3.2(c), where the on-off status of T1, T2, and T3 form an alarm
code of three bits which uniquely maps to each possible link failure event. If node 1 finds
that T1 and T2 become suddenly off while T3 is still on, link (0, 1) is considered down and
can be localized as defined in the first row of the ACT; if T1 and T2 are on while T3 is off
(as shown in the third row of the ACT), link (2, 3) is considered down. Similarly, node 0,
2, and 3 can perform UFL by maintaining their ACTs, each of which keeps the mapping
between all the considered failure states and the on-off status of the traversing m-trails.

3.3 Bounds On Bandwidth Cost
This section presents our bound analysis for cover length in the proposed NL-UFL m-

trail problem. We will first look into a lower bound on general connected graphs, followed
by the optimal solutions for a number of special graph topologies: line, star and complete
graphs.

3.3.1 Lower Bound for General Graphs

Theorem 9. Let T = T1, . . . , Tb be a valid m-trail solution for NL-UFL. We have

‖T ‖ ≥
|V |∑
j=1

|V |∑
µ=1

µ− 1

µ
(dlog2 δj(µ− 1)e − dlog2 δj(µ)e) (3.1)

where δj(µ) denotes the number of links whose shortest distance from node vj is µ.

Proof. Let the reputation of Ti be denoted by r(Ti), which represents the number of nodes
along m-trail Ti that are aware of the on-off status of Ti. A trivial upper bound on r(Ti)
is |Ti|+ 1 if Ti is loopless; or formally

r(Ti) ≤ |Ti|+ 1. (3.2)

Let us define a matrix Ω with b columns and n rows, where

ωi,j =

{
|Ti|
r(Ti)

the i-th m-trail traverses node vj,

0 otherwise.
(3.3)

The length of Ti can be expressed as

|V |∑
j=1

ωi,j =

|V |∑
j=1

|Ti|
r(Ti)

= |Ti|. (3.4)

 dc_498_12

D.Sc. Dissertation Tapolcai, János 47

Thus we have
b∑
i=1

|V |∑
j=1

ωi,j =
b∑
i=1

|Ti| = ‖T ‖ (3.5)

As a lower bound on ωi,j according to Eq. 3.2, we have

ωi,j =
|Ti|
r(Ti)

≥ |Ti|
|Ti|+ 1

≥ 1

2
(3.6)

Let us denote the set of m-trails passing through node vj by T j. Next, we give a lower

bound on
∑b

i=1 ωi,j for each node vj, which is denoted by ωj, formally

ωj =
b∑
i=1

ωi,j =
∑
Ti∈T j

|Ti|
r(Ti)

≥
∑
Ti∈T j

|Ti|
|Ti|+ 1

(3.7)

where Ti ∈ T j means that m-trail Ti passes through node vj. Note that the cover length
is the sum of ωj for all nodes, formally

‖T ‖ =

|V |∑
j=1

ωj, (3.8)

Let us denote the distance between node vj and link e ∈ E by δ(vj, e), which equals
to the length of the shortest path between node vj and the closest adjacent node of e
plus 1. Without loss of generality, the distance can be simply measured in hops. Let
δj(k) denote the number of links whose distance from node vj is at least k. For example,
δj(1) = |E| as every link is at least 0 hop from the node, and δj(2) = |E| − ∆j, where
∆j is the nodal degree of j. Let nj denote the maximum δ distance from node vj, thus
δj(nj + 1) = 0 and δj(nj) > 0. Note that such nj always exist because there are no
links with distance n − 1. Note that δj(µ) is a monotonically non-increasing function of
µ (i.e. δj(1) ≥ . . . ≥ δj(nj) ≥ 1). To localize any single failure at node vj among links
whose distance from vj is at least µ− 1, there must be dlog2 δj(µ)e m-trails with at least
a distance of µ.

From T j we select dlog2 δj(nj)e m-trails whose length is at least nj. By Eq. (3.7) they
contribute to ωj at least

nj − 1

nj
dlog2 δj(nj − 1)e =

nj − 1

nj
(dlog2 δj(nj − 1)e − dlog2 δj(nj)e).

In a similar manner, from the remaining m-trails in T j we may select as many as
dlog2 δj(nj − 2)e − dlog2 δj(nj − 1)e m-trails whose lengths are at least nj − 2. Their
contribution to ωj is at least

nj − 2

nj − 1
(dlog2 δj(nj − 2)e − dlog2 δj(nj − 1)e),

by Eq. (3.7) again. Continuing in this way for µ = nj, . . . , 1 we obtain a collection of
m-trails in T j such that the following inequality follows

ωj ≥
nj∑
µ=1

µ− 1

µ
(dlog2 δj(µ− 1)e − dlog2 δj(µ)e) (3.9)

 dc_498_12

48 Tapolcai, János D.Sc. Dissertation

By summing up ωj for every node according to Eq. (3.8) we get a lower bound on cover
length in Eq. (3.1).

Theorem 9 can be well applied when the average nodal degree is small (e.g., less
than 6). We show in Section 3.4.3 that Theorem 9 can provide a lower bound in a form
‖T ‖ ? ξ|V | log2 (|E|+ 1) where ξ is somewhere in [0.85, 0.95] for random networks with
average nodal degree less than 6.

To further improve the above theorem, next we introduce a related Combinatorial
Group Testing (CGT) problem. We will first consider the lower bound on this generalized
version of Combinatorial Group Testing (CGT) and then apply them to the NL-UFL
requirement at each node, which will give us a lower bound on the coverlength for general
graphs. The key idea is to define a special cost function for the m-trails at each node such
that the lower bound to meet the NL-UFL problem of each node can be summed up to
get a lower bound on the total coverlength.

3.3.2 General Lower Bound for CGT

Let us consider a non-adaptive CGT problem where the goal is to find one faulty item
among a set of items with group tests, where each group test is on a set of items and
has two an outcomes: the test contains a faulty item or not. Note that the NL-UFL
problem at each node n is a special version of CGT, where the tests are the m-trails
passing through n, and the items are the links. We have two additional constraints:

• The links must form a path in the topology, and

• Each of the links must have a non-zero code.

It is clear that a valid NL-UFL solution at node n is a valid CGT solution over links E.
Next, let us formalize the CGT problem with a cost function on each test. The cost

of test Ti depends on its size according to a given cost function ω(). The input of the
CGT problem is a set of items denoted by E = {e1, . . . , em} and a cost function ω, where
m = |E| is the number of items. The goal is to establish a set of b group tests, denoted
by T1, . . . , Tb, where each group test consists of a set of items, such that a single faulty
item can be unambiguously identified according to the outcomes of the group tests. It is
also called separating test collection. Each test has a cost defined as follows

Definition 1. The cost of test Ti with ti = |Ti| is ω(ti), where function ω has the following
properties:

(i) ω(1) = 1, meaning that test with one element has a unit cost.

(ii) ω(x + 1) ≥ ω(x) for every positive integer 1 ≤ x ≤ m − 1. Testing a larger group
cannot decrease the cost.

(iii) ω(x)
x
≥ ω(x+1)

x+1
whenever 1 ≤ x < m.

The goal is to identify the faulty item with minimum cost:

Minimize Ω =
b∑
i=1

ω(ti) (3.10)

Note that much of the prior art focused on the cases with ω(t) = 1, i.e. the cost of a
test does not depend on the number of items, and thus the goal is to reduce the number
of tests.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 49

Theorem 10. Suppose there are m > 1 items and assume (i)-(iii) holds for the cost
function ω. Then for the cost of finding precisely one faulty item with group tests is at
least

Ω ≥ min
1≤x≤m

2

ω(x)
(

log2 x+
m

x
− 1
)

(3.11)

Proof. Let us sort the tests by descending size, so that T1 has the largest number of items
while Tb has the least: we assume that

t1 ≥ t2 ≥ · · · ≥ tb

where ti = |Ti| denotes the number of items in test Ti.
Also, we may assume that ti ≤ m

2
for every i. Indeed, a test set Ti with |Ti| ≥ m

2
can

be replaced by its complementary set E \ Ti. The resulting test collection still remains
separating if the original one was separating.

We build up the b × m matrix by adding the rows one-by-one, and in each step we
count the number of different columns in the matrix. Let fi denote the number of different
columns when the matrix has i rows, i.e. tests T1, . . . , Ti are present, the others are not.
For convenience we set f0 = 1. Adding a row the number of different columns cannot
decrease, thus fi−1 ≤ fi for i = 1, . . . , b. As we have a separating system, all the m
columns will be different when the last row is added, giving that fb = m.

When we add Ti, the number of different columns is at most doubled, hence fi ≤ 2fi−1,
or

log2(fi)− log2(fi−1) ≤ 1 (3.12)

for i = 1, . . . , b.
Similarly, by adding test Ti to the collection T1, . . . , Ti−1 can increase the number of

different columns in the matrix by at most ti, giving fi ≤ fi−1 + ti, or

fi − fi−1

ti
≤ 1 (3.13)

for i = 1, . . . , b.
Now fix an integer k with 1 ≤ k < b. We have

Ω =
b∑
i=1

ω(ti) ≥
k∑
i=1

ω(ti) (log2(fi)− log2(fi−1)) +
b∑

i=k+1

ω(ti)

(
fi − fi−1

ti

)
. (3.14)

We used (3.12) in the first sum, and (3.13) in the second.
The sequence ω(ti) is nonincreasing for i = 1, . . . , b by (i) and our numbering of the

tests, hence

k∑
i=1

ω(ti)(log2(fi)− log2(fi−1)) ≥
k∑
i=1

ω(tk)(log2(fi)− log2(fi−1)) = ω(tk) log2(fk). (3.15)

Similarly, the sequence ω(ti)
ti

is nondecreasing because of (iii) and our numbering of the
tests, giving that

b∑
i=k+1

ω(ti)

(
fi − fi−1

ti

)
≥

b∑
i=k+1

ω(tk+1)

(
fi − fi−1

tk+1

)
=
ω(tk+1)

tk+1

(m− fk). (3.16)

 dc_498_12

50 Tapolcai, János D.Sc. Dissertation

By substituting (3.15) and (3.16) into (3.14), we have

Ω ≥ ω(tk) log2(fk) +
ω(tk+1)

tk+1

(m− fk) ≥ ω(tk)

(
log2(fk) +

m− fk
tk

)
. (3.17)

This inequality is valid for any k with 1 ≤ k < b. Let we set now k to be the first index
j for which tj ≤ fj. Such index clearly exists and k < b because fb−1 ≥ m

2
, while ti ≤ m

2

for every i. We need to consider two cases:
(1) If fk−1 ≤ tk, then we have

Ω ≥ ω(tk)

(
log2(fk) +

m− fk
tk

)
.

Note that tk ≤ fk ≤ 2fk−1 ≤ 2tk, hence for δ defined by fk = tk+δ we have 0 ≤ δ ≤ tk.
Moreover,

Ω ≥ ω(tk)

(
log2(tk + δ) +

m− tk − δ
tk

)
= ω(tk)

(
log2(tk + δ)− δ

tk
+
m

tk
− 1

)
. (3.18)

On the interval 0 ≤ x ≤ 1 we have the inequality x ≤ log2(1 + x). We apply this for
x = δ

tk
. Note that 0 ≤ δ ≤ tk implies that 0 ≤ x ≤ 1. We obtain the following inequality

log2(tk + δ)− δ

tk
≥ log2(tk + δ)− log2

(
1 +

δ

tk

)
=

= log2

(
tk + δ

1 + δ
tk

)
= log2

(
tk + δ
tk+δ
tk

)
= log2(tk). (3.19)

Substituting (3.19) into (3.18) we get

Ω ≥ ω(tk)

(
log2(tk) +

m

tk
− 1

)
.

(2) If tk < fk−1, then k > 1 because f0 = 1 by definition. Thus fk−1 < tk−1 and based on
(3.17) we have

Ω ≥ ω(tk−1) log2(fk−1) +
ω(tk)

tk
(m− fk−1).

Since ω(t)
t

is a nonincreasing function of t, we have

Ω ≥ ω(fk−1) log2(fk−1) +
ω(fk−1)

fk−1

(m−fk−1) ≥ ω(fk−1)

(
log2(fk−1) +

m

fk−1

− 1

)
. (3.20)

In both cases there is an integer x in the interval [1, m
2

] such that

Ω ≥ ω(x)
(

log2(x) +
m

x
− 1
)
.

This is because fk−1 < tk−1 ≤ m
2

and tk ≤ m
2

hold. This proves the theorem.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 51

3.3.3 Improved Lower Bound for Sparse Graphs

First let us prove two lemmas needed for the next theorem.

Lemma 9. Let m ≥ 2 fixed positive real number. Then f(t) = 2t
t+1

(
log2(t) + m−t

t

)
is a

decreasing function of t for 1 ≤ t ≤ m
2

.

Proof. One can verify the lemma directly for m < 16. For m ≥ 16 we have

f ′(t) =
2

(t+ 1)2

(
log2 t+

m− t
t

)
+

2t

t+ 1

(
1

t ln 2
− m

t2

)
,

and

(t+ 1)2

2
f ′(t) = log2 t+

m− t
t

+
t+ 1

ln 2
− m(t+ 1)

t
= log2 t+

t+ 1

ln 2
−m− 1. (3.21)

We have to show that

log2 t+
t+ 1

ln 2
−m− 1 ≤ 0 (3.22)

on [1, m
2

]. As the function of t on the left hand side is increasing on the interval, it is
enough to verify (3.22) for t = m/2. This follows by noting that the function h(m) :=

log2m− 2 + m/2+1
ln 2
−m is decreasing for m > 8, and h(16) < 0.

Lemma 10. Let n,m > 0 be fixed real numbers. Then 2t
n+1

(
log2 t+ m−t

t

)
is an increasing

function of t for on [1,∞].

Proof. Clearly it is enough to show that g(t) = t
(
log2 t+ m−t

t

)
is increasing. We have

d

dt
g(t) = log2 t+

m− t
t

+ t

(
1

t ln 2
− m

t2

)
=

= log2 t+
1

ln 2
− 1 > log2 t+ 0.44 > 0

on [1,∞].

Theorem 11. The total cover length for an NL-UFL solution is at least

‖T ‖ ≥


|V | · |E|
|E|+ 2

log2 |E|, for |V | − 1 ≥ |E|
2

, (3.23a)

|E|+ (|V | − 1) log2

(
|V | − 1

2

)
otherwise. (3.23b)

Proof. Let ω(|Ti|) be a cost function for m-trail Ti as follows

ω(|Ti|) =


2|Ti|

1 + |Ti|
if |Ti| ≤ |V | − 1 , (3.24a)

2|Ti|
|V |

otherwise. (3.24b)

Next we take (3.5) to get

‖T ‖ =
b∑
i=1

|V |∑
v=1

ωv,i =

|V |∑
v=1

(
b∑
i=1

ωv,i

)
=

|V |∑
v=1

∑
i|v∈Ti

ωv,i

 ≥ |V |∑
v=1

 ∑
Ti|v∈Ti

ω(|Ti|)
2

 ≥ |V |Ω
2

(3.25)

 dc_498_12

52 Tapolcai, János D.Sc. Dissertation

where Ω is a lower bound on
∑b

i ω(|Ti|). The first inequality is a consequence of (3.2).
Note that the function ω(t) satisfies the conditions in the Definition 1, because ω(t+1) ≥
ω(t), ω(1) = 1, and ω(t+1)

t+1
≤ ω(t)

t
. Although the problem scenario with m-trails is slightly

different than finding a separating system as in the m-trail problem since none of the
items can have all zero code. However, such a constraint further restricts the problem,
thus the lower bounds derived in Theorem 10 remains valid here as well.

Consider the case (3.23a). Then we have t = |Ti| ≤ |E|
2
≤ |V | − 1, hence the cost

function here is (3.24b). By Theorem 10 we have

Ω ≥ min
1≤t≤ |E|

2

2t

1 + t

(
log2 t+

|E|
t
− 1

)
(3.26)

where inside the min there is an decreasing function of t as proved in Lemma 9. Thus, it
leads to

Ω ≥
2 |
E
|2

|
E
|2 + 1

(
log2

(
|
E
|2
)

+
|E|
|E|
2

− 1

)
=

2|E|
|E|+ 2

(log2 |E| − 1 + 2− 1) =
2|E|
|E|+ 2

log2 |E|.

(3.27)
Putting it together with (3.25) we get (3.23a).
We prove (3.23b) by applying Theorem 10. We obtain

Ω ≥ min
1≤t≤m

2

ω(t)
(

log2 t+
m

t
− 1
)

=

min

{
min

1≤t≤n−1

2t

1 + t

(
log2 t+

m

t
− 1
)
, min
n−1≤t≤m

2

2t

n

(
log2 t+

m

t
− 1
)}

(3.28)

where inside the first min there is a decreasing function of t according to Lemma 9, while
inside the second min there is an increasing function of t according to Lemma 10. The
minimum is attained at t = n− 1. It leads to

Ω ≥ 2(n− 1)

n

(
log2(n− 1) +

m

n− 1
− 1

)
=

2

n

(
(n− 1) log2(

n− 1

2
) +m

)
(3.29)

Putting it together with (3.25) we get (3.23b).

Corollary 2. Let T be a valid m-trail solution for NL-UFL. We have

‖T ‖ ≥ |V |
2

log2 (|E|+ 1).

3.3.4 Lower Bound for Dense Graphs

Theorem 12 provides a lower bound on ‖T ‖ as a linear function of |E|. With a single
link failure to be identified, any link must be traversed by at least one m-trail. A link
is called singular if it is traversed by exactly one m-trail. The following two lemmas are
related to singular links.

Lemma 11. An m-trail Tj of a valid m-trail solution could traverse no more than one
singular link.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 53

Proof. Let links e and e′ be two singular links on Tj in a valid m-trail solution. Since Tj
is the only m-trail traversing the two links, the two links cannot be distinguished when
failure occurs to either one of the links. Thus the m-trail solution is not valid, which
contradicts the assumption.

Lemma 12. If Tj traverses a singular link, then Tj must be a spanning subgraph (i.e.,
connected to all the nodes) with |Tj| ≥ |V | − 1.

Proof. Let Tj be an m-trail of a valid m-trail solution. If e is a singular link of Tj, and v
is a node not in Tj, then the failure of e cannot be detected by v via any m-trail. This
contradicts the fact that the m-trail solution is valid. Since Tj is a spanning subgraph,
we have |Tj| ≥ |V | − 1.

Theorem 12. Let T be a valid m-trail solution for NL-UFL on a connected graph with
|E| links. We have

‖T ‖ ≥ 2|E|
(

1− 1

|V |

)
Proof. Let the number of singular links be denoted as σ. Clearly, there is at least a
number of σ m-trails according to Lemma 11. The cover length of an m-trail solution can
be estimated in terms of σ as follows:

‖T ‖ ≥ 2(|E| − σ) + σ = 2|E| − σ. (3.30)

A direct consequence of the Lemma 11 and 12 is:

‖T ‖ ≥ σ(|V | − 1). (3.31)

In case σ ≥ 2|E|
|V | , according to Eq. (3.31) we have

‖T ‖ ≥ (|V | − 1) · 2|E|
|V |

= 2|E|
(

1− 1

|V |

)
.

While in case σ < 2|E|
|V | , according to Eq. (3.30) we have

‖T ‖ ≥ 2|E| − σ ≥ 2|E|
(

1− 1

|V |

)
.

Thus, for any value of σ the statement holds.

3.3.5 Line Graphs

The line graph Pn has nodes v1, . . . , vn, and the links are (vi, vi+1) for i = 1, . . . , n− 1.

Theorem 13. The optimal cover length for line graph Pn with n nodes and |E| = n− 1
links is |E|2.

Proof. For Pn the m-trails T1,2, . . . , T1,n;T2,n, . . . Tn−1,n form a valid m-trail solution for
NL-UFL, where Ti,j is the subpath form vi to vj.

If (vi, vi+1) is the faulty link, then at v1 we recognize this correctly from the fact that
T1,i is on, while the other T1,i+1 is off. Every node between v1 and vi can tap these m-trails

 dc_498_12

54 Tapolcai, János D.Sc. Dissertation

and thus achieve L-UFL. Ti+1,n and Ti,n can be used similarly at the right side of the line
graph, in particular at vn.

The above m-trail solution is optimal in the sense that if a feasible solution does not
contain T1,i for some i (or an Tj,n for some j) then we cannot have NL-UFL for Pn. If
T1,i is not in the m-trail solution, then at v1 we cannot distinguish the failure of (vi−1, vi)
from the failure of (vi, vi+1), if i < n. If T1,n is not in the m-trail solution then v1 cannot
tell the difference between the errorless state of Pn and the failure of (vn−1, vn). Same
considerations apply to all the paths Tj,n.

The cost of the collection T1,2, . . . , T1,n;T2,n, . . . Tn−1,n is

1+2+ · · ·+n−1+1+2+ · · ·n−2 =
n(n− 1)

2
+

(n− 1)(n− 2)

2
= (n−1)2 = |E|2. (3.32)

3.3.6 Stars

Let the nodes and links of star Sn be denoted by vc, v1, . . . , vn−1, and (vc, vi) for
i = 1, . . . , n− 1, respectively. We note the simple facts that every set of links of Sn spans
a connected subgraph; every link is adjacent to the center vc; and a link set is adjacent to
vi, also referred to as a leaf node, iff it contains the link (vc, vi). These observations imply
that any set of links is a valid m-trail, and thus the problem is simplified to a coding
process for the links without considering whether a set of links can form an m-trail. We
will provide a lower and an upper bound on the cover length, which are exactly the same
in case |E| = 2b

′
where b′ is an integer.

Lemma 13. A feasible m-trail solution on Sn has a lower bound on the total cover lengths:
‖T ‖ ≥ |E|dlog2(|E|+ 1)e.

Proof. For any node in Sn, it needs to be supported by at least dlog2(|E|+ 1)e m-trails
(each providing a bit of information in its alarm code table) to uniquely identify |E|+ 1
possible states in the network. This is according to the binary coding mechanism to
perform UFL in a graph with m links. Since each node vi is adjacent to a single link
for i = 1, . . . , n − 1, the number of m-trails traversing through each link is at least
dlog2(|E|+ 1)e; and the total cover length is ‖T ‖ ≥ |E|dlog2(|E|+ 1)e since there are m
such links. Thus, the lemma is proved.

In the following an m-trail construction is developed which exactly yields a solution
with ‖T ‖ = |E|(dlog2 |E|e+ 1).

Lemma 14. A m-trail allocation construction can be found to achieve NL-UFL in Sn
with cover length ‖T ‖ ≤ |E|(dlog2 |E|e+ 1).

Proof. The proposed m-trail construction is introduced as follows. Let the alarm code ae
be a bit vector of length b assigned to link e, ∀e ∈ E such that the i-th bit is 1 if e ∈ Ti,
and 0 if e 6∈ Ti. The construction is to determine how the alarm code for each link should
be designed, which can exclusively determine the set of m-trails T = {T1, T2, . . . , Tb}.

Let us define b′ = dlog2 |E|e. The construction has each alarm code with a length
b = b′+1. We have the first b′ bits uniquely code the |E| links. Such a link coding process
must be feasible since 2b

′ ≤ |E|. The next b′ bits will be exactly the complements of the
first b′ bits allocated to e. For example, if ae has the first bit as 0, then its (b′ + 1)-th bit

 dc_498_12

D.Sc. Dissertation Tapolcai, János 55

should be 1, and so on. This results in the fact that the m-trail corresponding to the i-th
bit position (denoted as Ti) is the complement graph of m-trail Ti+b′ , ∀1 ≤ i ≤ b′. Finally,
the last bit of ae is 1 for every e. With the 2b′ + 1 m-trails, the construction is complete.

To prove the construction yields a feasible solution, our first step is to argue that every
node in the star can perform L-UFL. Clearly, the number of 1’s in each alarm code is
b′+ 1; in other words, exactly b′+ 1 m-trails are terminated at each leaf node. By further
considering that each link is uniquely coded in the construction (using the first b′ + 1
bits), we can conclude that each leaf node can obtain sufficient information to perform
UFL based on the terminated b′+ 1 m-trails. Similar consideration can be applied to the
proof of L-UFL for the center which is traversed by all the 2b′ + 1 m-trails.

With the construction, the number of 1’s in the alarm codes of all the |E| links is
|E|(b′ + 1) = |E|(dlog2 |E|e + 1), which stands for the total cover length of the m-trail
solution.

Theorem 14. The optimal cover length for star graph with n nodes is

‖T ‖ = |E|(1 + dlog2 |E|e)

if |E| = 2b
′
, where b′ is an integer.

Proof. Based on lemma 13 and lemma 14, we conclude that the construction is optimal
when |E| = 2b

′
because the upper and lower bounds are equal ‖T ‖ = |E|(dlog2(|E|+1)e) =

|E|(b′ + 1).

3.3.7 Complete Graphs

Theorem 15. The minimal cover length for complete graph Kn with n nodes is

‖T ‖ = (|V | − 1)2

.

Proof. We prove the theorem with a construction introduced as follows. Let S(i) denote
the star in Kn centered at vi. S(i) simply consists of n− 1 links adjacent to vi. Now let
us arbitrarily fix a node vw in Kn. The m-trail solution, T , is composed of a set of stars
each centered at ∀vi 6= vw. Clearly, each star in T is a connected subgraph in Kn and is
taken as an m-trail. It is clear that with the construction, T has n−1 stars each covering
n− 1 links adjacent to the center of the star; thus we have ‖T ‖ = (n− 1)2.

Such T is a valid m-trail solution for NL-UFL in Kn. Clearly with the construction,
every link must be traversed by two m-trails except for the links adjacent to vw, and
each star is a spanning graph in Kn such that each node can access the status of all the
m-trails. Thus, the failure on any link, say (vi, vj), can be uniquely identified by any node
in Kn due to either (1) the off status of S(vi) and S(vj) if vi 6= vw and vj 6= vw, or (2) the
off status of S(vi) or S(vj) in case vi = vw or vi = vw, respectively. The validity of the
construction is thus proved.

For optimality, by Theorem 12 we have

‖T ‖ ≥ 2m

(
1− 1

n

)
= n(n− 1)

(
1− 1

n

)
= = n(n− 1)− (n− 1) = (n− 1)2 = (|V |− 1)2.

(3.33)
Thus we proved the theorem.

 dc_498_12

56 Tapolcai, János D.Sc. Dissertation

3.3.8 Circulant Graphs

The construction in Section 2.2.6 is a feasible NL-UFL solution because each m-trail
spans the whole network following the unique alarm code of each link. Next we show
that the proposed construction yields essentially optimal NL-UFL solutions in terms of
the total cost.

Corollary 3. The m-trail construction in Theorem 7 is an essentially optimal NL-UFL
solution.

Proof. The average nodal degree is 4, thus |E| = 2|V |.The total monitoring capacity of
the construction of Theorem 7 is |V |dlog2(2|V |+ 1)e. According to Theorem 11 the total
cost is at least

|E|+ (|V | − 1) log2

(
|V | − 1

2

)
= 2(|V | − 1) + 2 + (|V | − 1) (log2(2|V | − 2)− 2) =

2 + (|V | − 1) (log2(2|V | − 2)) (3.34)

Clearly, the gap is at most 2 log2(|E|).

3.4 The RSTA-GLS Heuristic Approach for NL-UFL
The section presents a novel heuristic algorithm to solve the NL-UFL m-trail allocation

problem in general 2-connected graphs. Inspired by the optimal solution for complete
graphs in the previous section, we have observed the great suitability of using spanning
subgraphs as the m-trails with bi-directional lightpaths. Thus, the proposed approach
uses spanning trees as basic structures of m-trails. To be specific, the proposed approach
is based on two novel mechanisms referred to as random spanning tree assignment (RSTA)
and greedy link swapping (GLS), aiming to take the best advantage of flexible and cost-
effective spanning tree structures, so as to overcome the topology diversity and maximize
sharing of information in solving the m-trail allocation problem for NL-UFL.

With RSTA, b randomly generated spanning trees are launched in the network. The
set of b randomly generated spanning trees, denoted as T ′ = [T1, T2, . . . , Tb], is used to
determine the initial assignment of alarm codes for every link e (denoted as ae) where the
alarm code ae has the j-th bit as 1 if Tj traverses through e, and 0 otherwise. Clearly, ae
is of length b bits. We claim that T ′ can be taken as a valid m-trail solution for NL-UFL
if ae 6= af ,∀e 6= f ∈ E. Note that the global code uniqueness, as well as the spanning
nature of each Tj, sufficiently guarantees the validity of the solution for L-UFL at each
node.

Let us define a collision of two codes if they are identical and used by at least two
links. Let the bitwise pair at the i-th position of ae be denoted as ae,[i], which is the code
with all identical bits as ae except for the i-th bit. For example, 011100 is the bitwise
pair for the third position of 010100.

The GLS aims to remove all possible collisions by swapping collided codes with un-
used ones while maintaining the spanning nature of each m-trail. The GLS is performed
iteratively upon each bit position i = 1, . . . , b one by one, where two tasks are defined in
each iteration. (1) The GLS checks each bit of a link code ae under collision, and swaps
the link code with ae,[j] if it can resolve the code collision. (2) The code swapping in the
first task will turn Ti into a subgraph with either a cycle or two isolated components.
Thus GLS swaps another link code af on the i-th position with af,[j] which is currently
unused such that Ti is retained as a spanning tree.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 57

3.4.1 Algorithm Description

Algorithm 1: M-Trail Design Problem for L-UFL
Input: G = (V,E)
begin

1 Set bini := min{dlog2(|V | − 1)e+ 1, dlog2(|E|+ 1)e}
for b := bini to |V | − 1 do

2 RSTA: Randomly generate b spanning trees
3 Sort the alarm codes in descending order
4 for i := 1 to 500 do

for iterate through the sorted alarm codes do
5 if link e and f have the same code then
6 call GLS(G, e, i)

end
end
if every link has a unique alarm code then

7 return succeed
end

end
end

end

Algorithm 1 shows the pseudo code of the proposed heuristic algorithm. With each
m-trail as a spanning subgraph, the cover length is at least ‖T ‖ ≥ b(|V | − 1); therefore
it is easy to see that a smaller b leads to a smaller total cover length, at the expense
of smaller opportunities for successful GLS due to a smaller number of unused codes
that can be taken for replacement. Two lower bounds on b are identified: the first is
b ≥ dlog2(|E|+ 1)e, which comes from the fact that each link must have a unique nonzero
alarm code; the second is 2b−1 ≥ |V | − 1, which can be argued in the following lemmas.

Lemma 15. 2b−1 ≥ |Tj| ≥ |V | − 1 holds for j = 1, . . . , b.

Proof. Since Tj is a spanning sub-graph, we have |Tj| ≥ |V | − 1. Further, |Tj| is upper
bounded by the number of codes with 1s at the bit position j, which is nonetheless
no more than half of the 2b according to the binary coding mechanism. Thus we have
2b−1 ≥ |Tj| ≥ |V | − 1.

With the two lower bounds, the initial value of b in Step (1) is set as

b = min{dlog2(|V | − 1)e+ 1, dlog2(|E|+ 1)e}.

In case the algorithm has never succeeded with b, the algorithm starts over again by
increasing b, and this iteration continues until either we find a valid solution in Step (7)
or b = |V |. With such initial setting of b, the minimum achievable cover length ||T ∗|| can
be expressed as:

||T ∗|| ≥ (|V | − 1) min{dlog2(|V | − 1)e+ 1, dlog2(|E|+ 1)e} (3.35)

In Step (2), b random spanning trees are generated, and each link is assigned with a
code of length b where the i-th bit is 1 if the link is traversed by Ti. In our implementation
the method of Aldous/Broder [66, 67] is adopted for this purpose. The code assignment in
Step (2) may cause code collision (i.e., a code assigned to two or multiple links); and some
links may not be traversed by any spanning tree (with an all-zero code ”00 . . . 0”). From

 dc_498_12

58 Tapolcai, János D.Sc. Dissertation

Step (3) to (6), the collided codes are identified by sorting all the codes. For each link
pairs with a collided code, the GLS method is called in Step (6) to resolve the collision.
The algorithm stops if the loop in Step (4) is executed over 500 times to avoid infinite
loops.

Algorithm 2: Greedy Link Swapping (GLS)

Input: G = (V,E) link e with collided code and iterator i
begin link e has code ae = {ae,[1], . . . , ae,[b]}

6.1 for i := 1 to b do
if ae,[j] is currently unused and nonzero then

6.2 if ae,[i] = 0 then
After adding e into Ti the m-trail has a cycle. Let L be the path in m-trail Ti
between the adjacent nodes of e

6.3

else ae,[i] = 1
After erasing e in Ti the m-trail falls into two parts. Let L be the set of edges in
G that can be used to reconnect the parts

end
6.4 for every link f ∈ L do

if af,[j] is unused and nonzero then
6.5 flip the bits: ae,[i] = ¬ae,[i] and af,[i] = ¬af,[i]

return succeed
end

end
if i > 250 ∧ sparse(G) ∧ ae,[i] = 0 then

6.6 flip the bits: ae,[i] = ¬ae,[i]; return succeed
end

end
end
return not succeed

end

Algorithm 2 is called when a collision is found at link e, and the goal of the algorithm
is to find an unused non-zero alarm code that can replace the old one and resolve the
collision. In Step (6.1) we inspect each bit position on ae to see if there is a nonzero and
unused bitwise pair. If there is such ae,[j] (i.e., the bitwise pair of ae at the i-th position),
then we check how such swapping of the code pair would impact Ti. In case the swapping
is to flip the bit at the i-th position from 0 to 1 (in Step (6.2)), it means the swapping
simply adds link e to Ti. Since Ti is a spanning tree, adding e to Ti must create a loop for
Ti. Thus, the algorithm tries to remove the loop by inspecting each link along the loop
(denoted as L) except for e, to see if removing any link along L is possible, as shown in
Step (6.4). If there is any link f ∈ L for which af,[j] is unused and nonzero, the pair of
codes are swapped to remove the link from Ti such that Ti is still a spanning tree in Step
(6.5).

In case the swapping is to flip the bit at the i-th bit position from 1 to 0 (in Step
(6.3)), the swapping will remove e from Ti. Since Ti is a spanning tree where each node
pair is at most connected by a single link, removing e from Ti must break Ti into two
isolated components. Then, the GLS needs to reconnect the two components. The links
that can be used to reconnect the two isolated components except for e (denoted as L),
are inspected one after the other, until any link f in L with an unused non-zero af,[j] is
found. If such link f is found successfully, the code pair is swapped in order to retain Ti
as a spanning tree in Step (6.5).

In our implementation, in case the problem cannot be solved in 250 iterations (which
happens when the networks are very sparse), cycles are also allowed. We call a network

 dc_498_12

D.Sc. Dissertation Tapolcai, János 59

sparse, i.e. sparse(G) := true, iff the lower bound by Theorem 9 is sharper than the
bound of Theorem 12. As shown in Step (6.6), ae can be swapped with ae,[j] if ae is
nonzero and unused with 0 at the i-th position.

Note that in case the algorithm fails to find a way to resolve a code collision under
a specific code length b, it breaks the loop and adds one more bit in the alarm code. It
implies that the number of unused nonzero codes is doubled, which significantly helps
the algorithm to resolve any possible code collision. We will show in the simulation that
the proposed heuristic returns a valid NL-UFL solution in all the randomly generated
topologies (over 2000).

3.4.2 An Illustrative Example

First let us illustrate the algorithm through an example using the graph in Fig. 3.3.
Four random spanning trees are generated first (i.e., b = 4), each corresponding to an
m-trail as shown in Fig. 3.3a. Clearly, these m-trails explicitly define an alarm code for
each link as shown on Fig. 3.3a. The four m-trails do not form a valid m-trail solution
due to the collisions a(v3,v4) = a(v0,v1) = 0010 and a(v5,v3) = a(v3,v1) = 1011.

The GLS first tries to swap a(v0,v1) with its bitwise pair of the first bit position, i.e.,
1010, to remove the collision between a(v3,v4) and a(v0,v1). It is feasible since 1010 is
currently unused. But with the swapping T1 will no longer be a spanning tree due to the
cycle L1 = (v0, v1, v3, v2). Thus, a link from L1 should be removed, and the GLS does
this by inspecting each link along L1 except for the link (v0, v1). In our case, the first link
inspected is (v0, v2) with an alarm code 1101. Since a(v0,v2),[1] = 0101 has already been
taken by link (v5, v4), we proceed to the next link (v3, v2) in L1. Luckily, the bitwise pair
a(v3,v2),[1] = 0111 is currently unused by any link. Since both of the tasks in the iteration
are feasible, the GLS then finalizes the swapping attempts for a(v0,v1) and a(v3,v2) with
their unused bitwise code pairs: a(v0,v1),[1] = 1010 and a(v3,v2),[1] = 0111, respectively. As
a result, T1 is reshaped as shown in Fig. 3.3b.

For the collision between a(v5,v3) and a(v3,v1), the GLS first finds the bitwise pair of
a(v5,v3) at the first bit position as 0011 that is currently unused. But by swapping a(v5,v3)

as 0011, T1 breaks into two components: {v0, v1, v2, v3, v4} and {v5}, and the only way
to reconnect them is to swap a(v5,v4) = 0101 by its bitwise pair at the first bit position:
1101, which, unfortunately, has already been used. Therefore, there is no simple solution
at the first bit, and the algorithm turns to find a solution from T2. The bitwise pair of
a(v5,v3) = 1011 at the second bit position is 1111, which is unused. Further, due to the
swapping, a loop L2 = (v2, v3, v5, v4) is formed on T2 and needs to be removed. The GLS
inspects each link on L2 except (v5, v3), where the bitwise pair of a(v5,v4) = 0101 at the
second bit position, 0001 is currently unused. Thus, the GLS concludes the feasibility of
the swapping for a(v5,v3) and a(v5,v4) with their unused bitwise pairs a(v5,v3),[2] = 0011 and
a(v5,v4),[2] = 0001, respectively.

Finally, the GLS completely solved the code collisions, and the final result is shown in
Fig. 3.3c, which is a valid m-trail solution for NL-UFL.

3.4.3 Performance Verification of RSTA-GLS

Simulations on thousands of randomly generated planar 2-connected backbone network
topologies via LEMON [59] were conducted. With LEMON random graph generator,
nodes are firstly allocated into an area of unit square with a uniform distribution, and
links with small physical length are added to keep the graph planar if possible, and to

 dc_498_12

60 Tapolcai, János D.Sc. Dissertation

v0

v2

v4

v5

v3

v1

T1 T2 T3 T4

link code
(v3, v4) 0010
(v0, v1) 0010
(v1, v2) 0100
(v5, v4) 0101
(v5, v3) 1011
(v3, v1) 1011
(v2, v4) 1100
(v0, v2) 1101
(v3, v2) 1111

(a) Four random spanning trees

v0

v2

v4

v5

v3

v1

T1 T2 T3 T4

link code
(v3, v4) 0010
(v1, v2) 0100
(v5, v4) 0101
(v3, v2) 0111
(v0, v1) 1010
(v5, v3) 1011
(v3, v1) 1011
(v2, v4) 1100
(v0, v2) 1101

(b) Swapping a(v0,v1) and a(v3,v2) with their bitwise pairs
at the first position.

v0

v2

v4

v5

v3

v1

T1 T2 T3 T4

link code
(v5, v4) 0001
(v3, v4) 0010
(v1, v2) 0100
(v3, v2) 0111
(v0, v1) 1010
(v3, v1) 1011
(v2, v4) 1100
(v0, v2) 1101
(v5, v3) 1111

(c) A feasible solution by swapping a(v5,v3) and a(v5,v4)

with their bitwise pairs at the second position.

Figure 3.3: Illustrative example of the proposed algorithm.

keep the facets of the planar graph of equal size (see examples on Fig. 3.5). In such a
way thousands of random networks were generated and classified according to their size
in number of edges or nodes and nodal degrees. Finally a series of networks are selected
and stored respectively, according to their (1) number of nodes, (2) number of links, and
(3) nodal degrees. The performance metrics of interest are the total cover length of the
solution and the running time. In addition to the evaluation of the proposed heuristic
with the derived upper bounds and optimal solutions, the impact of topology diversity
to the NL-UFL m-trail problem will be investigated. All three metrics are examined
with respect to different network sizes (i.e., the number of nodes or links) and topology
densities (i.e., nodal degree), which will be presented in the following three subsections.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 61

0

500

1000

1500

2000

2500

3000

3 10 40

C
ov

er
le

n
gt

h
||T
||

Nodal degree

RSTA-GLS

Bounds

Thm. 9

Thm. 12

Thm. 11

(a) Networks with 50 nodes and different number of links.

250

300

350

400

450

500

550

3 4 6 7

C
ov

er
le

n
gt

h
||T
||

Nodal degree

RSTA-GLS

Bound by Theorem 9

Eq. 3.35

Thm. 11

(b) Plot with nodal degree from 2.5 to 7.

Figure 3.4: The cover length versus average nodal degree (900 randomly generated topolo-
gies with 50 nodes).

Performance Comparison

We first examine the proposed scheme by comparing it with the derived bounds as
shown in Fig. 3.4(a) and Fig. 3.4(b) in term of total cover length (i.e., ‖T ‖). Fig. 3.4(a)
shows the cover length when the average nodal degree of the topologies with 50 nodes is
increased from 2.5 to 49, where three curves by the proposed RSTA-GLS, Theorem 11,
Theorem 9, and Theorem 12, are plotted respectively. It is shown that RSTA-GLS yields
an average gap of less than 9.7% to the best bound of the two, which is given by The-
orem 11 when the topology is sparse while by Theorem 12 in denser ones. Fig. 3.4(b)
provides a closer look at the range of nodal degree [2.5, 7] in Fig. 3.4(a), where the bounds
given by Theorem 11, Theorem 9 and Eq. (12) are also plotted. Note that Eq. (12) is
a bound that intrinsically exists due to the initial assignment of b. To summarize, the
proposed RSTA-GLS can yield solutions very close to the lower bounds that we derived,
and the two bounds in Theorem 11 and Theorem 12 can well account for sparse and dense
topologies, respectively. Further, since the bounds derived for general graphs do not con-
sider sufficient topological features, both bounds are not effective when the network nodal
degrees are quite low (e.g., less than 3). Nonetheless, the minimal gap is observed when
the nodal degree ≈ 4.

Three schemes were implemented and compared in the simulation. RSTA-GLS (de-
noted by × on the charts) refers to the proposed heuristic. CAS (denoted by + on the

 dc_498_12

62 Tapolcai, János D.Sc. Dissertation

(a) Avg. nodal degree 2.5 (b) Avg. nodal degree 3 (c) Avg. nodal degree 4 (d) Avg. nodal degree 8

Figure 3.5: Examples of random 100 node backbone networks with different number of
links.

Graph Theorem ‖T ‖ ‖T ‖E #m-trails Time [s]
Network [68] |V | |E| dia-

met
9 11 12 RSTA

+GLS
CAN RSTA

+GLS
CAN RSTA

+GLS
CAN RSTA

+GLS
CAN

Pan-Europe 16 22 6 79 65.6 82 107 241 2.43 5.47 7 24 0.39 0.42

German 17 26 6 84 74 97 128 368 2.46 7.07 8 33 0.51 0.65

ARPA 21 25 7 108 91.4 95 140 354 2.80 7.08 6 33 0.36 0.64

European 22 45 5 127 116 171 231 617 2.56 6.85 11 53 2.10 4.59

USA 26 42 8 155 133 161 229 667 2.72 7.94 9 53 2.16 3.99

Nobel EU 28 41 8 168 142 158 248 689 3.02 8.40 7 50 0.87 3.38

Italian 33 56 9 200 184 217 329 1113 2.93 9.93 10 66 4.83 11.1

Cost 266 37 57 8 225 207 221 343 918 3.00 8.05 8 55 2.04 14.4

North Amer. 39 61 10 241 222 237 378 1020 3.09 8.36 8 50 2.31 15.5

NSFNET 79 108 16 579 520 426 760 2634 3.51 12.2 9 100 6.05 227

Table 3.1: Results by the proposed RSTA-GLS and CAN on some well-known networks.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 63

5

10

15

20

25

2.5 6N
or

m
.

co
ve

r
le

n
gt

h
‖T
‖ E

Nodal degree

RSTA+GLS for NL-UFL
CAN for NL-UFL
CAS for L-UFL

(a) 1560 randomly generated topologies with 100
nodes.

0.01

0.1

1

10

2.5 6

‖T
‖ E

V

Nodal degree

(b) 1560 randomly generated topologies with 100
nodes.

2

4

6

8

10

12

14

20 100N
or

m
.

co
ve

r
le

n
gt

h
‖T
‖ E

nodes

(c) 2400 randomly generated topologies with nodal
degree ≈ 4.

0.01

0.1

1

10

20 100

‖T
‖ E

V

nodes

(d) 2400 randomly generated topologies with
nodal degree ≈ 4.

2
2.5

3
3.5

4
4.5

5
5.5

6

100 1000N
or

m
.

co
ve

r
le

n
g
th
‖T
‖ E

nodes

Lower bound

(e) 240 randomly generated topologies with nodal
degree ≈ 4.

0.01

0.1

1

10

100

1000

100 1000

R
u

n
n

in
g

ti
m

e
in

[s
ec

]

nodes

(f) The running time of 1640 randomly generated
topologies with nodal degree ≈ 4.

Figure 3.6: The normalized cover length and running time by RSTA-GLS (×) and CAS

(+) and CAN (4).

 dc_498_12

64 Tapolcai, János D.Sc. Dissertation

charts) corresponds to the method that each m-trail is allocated one after the other to
distinguish each pair of links using any Dijkstra’s algorithm based scheme, such that L-
UFL can be achieved at an arbitrarily chosen monitoring node (MN). Such a method is
generic and has been considered in a number of previously reported studies [35, 60, 26].
Rather than just for L-UFL at a single MN with CAS, CAN (denoted by 4 on the charts)
achieves NL-UFL by performing CAS sequentially at each node. In our implementation
loopback switching is allowed, thus CAS and CAN algorithms are modified such that an
L-UFL solution for any node can always be found in a connected graph according to
Theorem 8.

The comparison results are shown in Fig. 3.6. We normalize the cover length over
the number of links and both the numbers of links and nodes, denoted as ‖T ‖E and
‖T ‖EV , respectively. ‖T ‖E is a measure on the average number of WLs per edge while
‖T ‖EV is on the average number of WLs per edge per MN, respectively. Clearly we have

‖T ‖E = ‖T ‖
|E| and ‖T ‖EV = ‖T ‖

|V |·|E| .

In Figs. 3.6(a) and (b), we observed that the proposed RSTA-GLS consumes much
smaller ‖T ‖E and ‖T ‖EV , respectively, than that by CAN when the number of network
nodes is 100 and the average nodal degree is increased from 2.5 to 6. It is clearly demon-
strated that RSTA-GLS, which enables all the 100 nodes to individually serve as L-UFL
MNs, can achieve similar cover lengths to that by CAS where only a single L-UFL MN is
supported. This demonstrates the effect of on-off status sharing among the on-trail nodes
of a common m-trail, such that the increase of the number of MNs would lead to little
increase in the total cover length. They also show that ‖T ‖E and ‖T ‖EV decrease when
the nodal degree is increased (or as the number of links is increased) due to the better
connectivity which yields larger design space for allocating the m-trails. Fig. 3.6(c) and
(d) plot ‖T ‖E and ‖T ‖EV against the number of nodes given the nodal degree ≈ 4, which
yield similar comparison results as in Figs. 3.6(a) and (b). Fig. 3.6(e) plots the solutions
by RSTA-GLS and the best lower bound derived in Section 3.3.1. One can verify that the
normalized cover length has a logarithmic relation with the increasing number of nodes
(from 100 to 1,000) when the average nodal degree is kept as a constant (i.e., ≈ 4).

Finally, the computation efficiency of the proposed RSTA-GLS is examined, which
is shown in Fig. 3.6(f). We can clearly see that our scheme yields significantly better
computation efficiency than CAN . Note that CAS takes shorter computation time since
only a single MN is considered, compared with the case where RSTA-GLS enables all the
nodes as MNs each being able to perform L-UFL. With RSTA-GLS, the NL-UFL m-trail
problem on a 1000-node network can be solved within 3 minutes.

Table 3.1 provides results of RSTA-GLS and CAN on some well-known network topolo-
gies taken from [68]. The number of nodes, links and the diameter in hops of every topol-
ogy graph is also shown in the first three columns of the table. The results are similar
to that on randomly generated graphs as in Fig. 3.4 regarding the number of required
m-trails (i.e., ‖T ‖), average WLs per link (i.e., ‖T ‖E), and running time (in seconds)
under various network sizes and topology densities.

To summarize the comparison results above, the proposed RSTA-GLS is witnessed to
achieve desired computation efficiency in handling large networks, and its feasibility in
the operation of future all-optical backbone is proved in terms of resource consumption
for achieving NL-UFL using bi-directional m-trails. For example, an optical network with
288 links and 100 nodes takes averagely 3.4 WLs along each link, and each MN only
consumes approximately 0.034 WLs per link for achieving NL-UFL. Thus, in the case

 dc_498_12

D.Sc. Dissertation Tapolcai, János 65

0

0.1

0.2

0.3

0.4

0.5

2 3 4 6 7 8

‖T
‖ (
|V
|−

1
)2

Nodal degree

Figure 3.7: Plot of ‖T ‖(|V |−1)2 with n = 25(◦), 50(�), 100(�), 200(4) (1280 randomly
generated topologies.

that each fiber has 100 wavelength channels and 10 fibers bundled in a single conduit,
the system needs to spend only 0.68% of the total capacity for achieving NL-UFL of any
single conduit.

The Impact of Topology Diversity

Fig. 3.7 shows the performance of the proposed RSTA-GLS on topologies with |V | =
25, 50, 100, 200 as the increase of the average nodal degree of the topologies. Instead of
plotting ‖T ‖ for each case, we normalize the results on topologies of n nodes by (|V |−1)2

(which is denoted as ‖T ‖(|V |−1)2). Note that a line graph Pn and a complete graph Kn

represent the least and most densely meshed topology with n nodes, respectively. Both
topologies have an optimal solution ‖T ‖ = (|V | − 1)2 as derived in Section 3.3.7, which
is supposed to be the largest possible ‖T ‖ for any topology with n nodes. We expect
that all other topologies should yield solutions less than (|V |−1)2. This is attested in the
figure, where the curves of ‖T ‖(|V |−1)2 is observed as a ”V” shape for each specific n value.
It also shows that ‖T ‖(|V |−1)2 is minimal when the average nodal degree of the topologies
is in the range of [3.5, 4.5] of all the values of |V | investigated. This demonstrates that
the proposed scheme can be the most suitable to work in optical networks with moderate
connectivity.

 dc_498_12

Chapter 4

An All-Optical Restoration
Framework with M-Trails

4.1 Introduction

A general approach to increase availability of each connection is to pre-plan one or
multiple protection lightpaths (P-LPs) for each working lightpath (W-LP). Fortunately,
network failures are rare events thus it is a widely accepted strategy to share the allocated
spare capacity among multiple P-LP(s) that are assumed not to be activated at the same
time. This is also referred to as shared protection. In contrast to dedicated protection, a
shared protection scheme relies on a suite of real-time mechanisms to restore the failed
W-LPs, including failure localization, failure notification, failure correlation, and device
configuration; and these real-time mechanisms for traffic restoration are also known as
fault management defined in Generalized Multi-Protocol Label Switching (GMPLS) based
recovery [69].

Numerous research efforts have been addressed to the design of protection schemes.
Their different flavors include shared backup path protection (SBPP), segment shared pro-
tection (SSP), link protection, failure dependent protection (FDP, or referred to as path
restoration), and pre-configured protection [70, 71, 63, 72, 73, 74]. Two objectives are
widely considered in the design of a protection scheme in optical networks, namely ca-
pacity efficiency and fault management complexity. The former concerns the amount of
consumed spare capacity, which is the capacity in terms of wavelength channels (WLs)
reserved but not necessarily configured for the P-LP(s); while the latter is measured as
restoration time, which equals to the duration from the instant that the traffic is unex-
pectedly interrupted to that the traffic is completely restored.

In the effort of modeling the restoration time of an interrupted W-LP, one needs to
drill into the GMPLS fault management signaling protocols. In general, the failure is
firstly localized at one or multiple nodes adjacent to the failure, and the node(s) send
notifications to the corresponding switching node of each affected W-LP, which concludes
the failure event by correlating the failure notifications, and restore the working traffic
via the corresponding P-LP. When multiple P-LPs are prepared for a W-LP such as in
the case of FDP and SSP, a P-LP specific to the failure event should be chosen, and the
switching node of the P-LP is notified. Then, the switching node has to initiate a P-LP
setup process, mostly via an optical layer resource reservation protocol such as Resource
Reservation Protocol (RSVP) extended for GMPLS. The traffic switchover starts once

66

 dc_498_12

D.Sc. Dissertation Tapolcai, János 67

all the intermediate nodes of the P-LP are well configured, then the failure restoration is
completed. Note that under shared protection, the WLs along the P-LP(s) are reserved
but may not be pre-configured. It is clear that all the abovementioned tasks should be
performed in a sequence, which add up to the total restoration time.

In the spectrum of different flavors of shared protection schemes, there exists a compro-
mise between capacity efficiency and restoration time, in which FDP and pre-configured
protection (such as p-Cycle) are the two extremes. With FDP, each connection is assigned
with multiple P-LPs, and one is activated for the restoration purpose according to the
identified failure event. With stub release, FDP has long been recognized as having the
optimal capacity efficiency and widely taken as the performance benchmark in the design
of shared protection schemes. However, the FDP restoration process is subject to the
highest control and signaling complexity that possibly yields the longest restoration time,
mostly because the switching node has to precisely localize the failure event for real-time
selection of a P-LP.

The other extreme is p-Cycle. Thanks to pre-configured intermediate nodes along P-
LPs, the p-Cycle based schemes achieve very fast restoration due to the fact that the only
after-failure action is the reconfiguration of the two nodes responsible for switching and
merging the affected working traffic. The switching and merging nodes identify and corre-
late the failure via in-band monitoring of the W-LP that is assumed to be bi-directional,
without waiting for any further failure notification. Thus in contrast to any other fla-
vor of shared protection, the p-Cycle based schemes can minimize the fault management
complexity (and the restoration time), and possibly be implemented completely in the op-
tical domain independent from any upper layer control protocol. Such simplicity and fast
restoration speed are nonetheless at the expense of consuming the highest redundancy.

It was open whether there is an efficient approach that can facilitate a general protec-
tion scheme to achieve an all-optical and signaling-free restoration process like p-Cycle
without sacrificing the capacity efficiency of FDP and SSP. In this chapter we intend to
investigate a novel framework of fast restoration in all-optical networks, aiming to enable
any shared protection scheme to achieve true all-optical restoration without any aid from
the upper layer protocol. The proposed new framework incorporates the conventional
restoration process with state-of-the-art failure localization techniques, namely Network
wide Local Unambiguous Failure Localization (NL-UFL) described in Section 3.2.4, which
takes advantage of a set of intelligently deployed supervisory lightpaths, called monitor-
ing trails (m-trails). The on-off status of the m-trails can be converted into network-wide
failure status locally available to each node, such that each node can autonomously re-
spond to any pre-defined failure event and collaboratively work for the recovery of the
interrupted W-LPs. The chapter will detail how the restoration process can be realized,
and will compare the proposed approach with a couple of p-Cycle based schemes via a
case study in terms of restoration time, computation complexity, and capacity efficiency.

4.2 Restoration Time Analysis

Restoration time is an important performance measure of a protection/restoration
scheme, which concerns the data loss and service discontinuity in the occurrence of a
failure event. The best situation is that an optical domain failure can be completely
restored in the optical domain while leaving the upper layer protocols (e.g., Open Shortest
Path First (OSPF) and Transport Control Protocol (TCP)) unaware of, or at least with
minimum impact due to, the event. To achieve this goal, a restoration process with a few

 dc_498_12

68 Tapolcai, János D.Sc. Dissertation

tens of milliseconds of restoration time is desired.
Here we provide an analysis on restoration processes of generic protection schemes

according to the context of GMPLS fault management [69]. GMPLS defines the fault
management phase in the restoration of a failed W-LP as composed of a number of
real-time tasks, namely failure localization, failure notification, failure correlation, path
selection, and device configuration. Formally we have:

tr = tl + tn + tc + tp + td , (4.1)

Each term is explained as follows. tl is for failure localization, which is defined as the
time between the instant that the failure is detected at the nodes nearby, and the instant
that the nodes send alarms to the corresponding switching node of the W-LP. Note that
a failure could cause multiple nodes to alarm.

tn is for failure notification, which is defined as the period between the instant that the
failure event is localized at some nodes, and the instant that the switching node receives
the notification. tn could be significantly reduced if the failure localization is performed
at a node physically close to the switching node. For example, a link/span restoration
scheme localizes a failure exactly at the switching node, which should yield a negligible
tn. On the other hand, a path protection scheme usually takes much larger tn due to
multi-hop signaling, usually supported by a control plane protocol.

tc is the time between the instant that the switching node of the W-LP receives the
failure notification and that it completes the failure correlation. tc is non-trivial when
multiple notifications are received at the switching nodes due to failure propagation,
where the switching node has to spend some time to wait for all possible notifications for
a precise failure identification.

tp is the time for path selection at the switching node when multiple P-LPs are pre-
planned (e.g., FDP). It is considered negligible provided we have a precise identification
of the failure event.

td is defined as the time for setting up the P-LP. The typical time to configure switching
matrix of an OXC is 20ms. By using the GMPLS path setup message, device configuration
is performed sequentially at every node along the P-LP, thus leading to a latency of tens
to hundreds of milliseconds depending on the length and hop counts of the P-LP.

Note that there are certainly other components contributing to the total restoration
time such as that for failure detection and traffic resumption, which are nonetheless not
considered in our model since they are common to all the protection schemes and indif-
ferent to the proposed framework.

An example is given in Fig. 4.1 for a general restoration process. The W-LP goes
through s − a − b − c − d, and a P-LP goes along a − e − f − c. When a failure hits
b − c, node b and c localize the failure by taking a period tl, and send notifications to
the corresponding switching node, i.e., node a, by taking a period tn. Note that the
notification may be sent to s instead of a for decision. No matter which node serves
as the switching node, it needs to wait for tc to make sure only b and c are alarming.
Then the switching node initiates a resource reservation process for device configuration
at nodes a, e, c and f . After being acknowledged, the working traffic is switched at node
a and merges back to the W-LP at node c to complete the restoration.

Based on the model, p-Cycle yields about 40ms of restoration time by having tl ≈ 10ms
for the failure to be localized at the nodes adjacent to the failure, tc as 10ms mainly for
failure correlation, and td = 20ms required at the two nodes for switch fabric configuration.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 69

s a

(2) tn + tc + tp ←

b
(1) tl

c
(5) td

d

e(3) td f (4) td

(0) failureW-LP

P-LP

Figure 4.1: An example of conventional restoration process.

Other protection schemes have to significantly rely on a suite of multi-hop signaling
mechanisms in their restoration processes. In shared link/span protection, tl is similar to
that of p-Cycle, but establishing a P-LP requires an additional few tens of milliseconds
for device configuration. For path protection/restoration schemes such as SBPP, the
restoration time can be up to a hundred milliseconds due to the multi-hop signaling
notification process and longer P-LPs. Further, the restoration process for FDP yields
the longest restoration time due to the following three reasons. (1) Since precise failure
correlation is needed at the switching node, tn + tc is the longest possible. (2) Multiple
P-LPs are in place for each W-LP, yielding non-zero tp. (3) The P-LPs are not pre-
configured, thus a regular P-LP setup process is required.

4.3 Signaling-Free Restoration Framework

The proposed framework is characterized by an integration of the conventional restora-
tion process with a state-of-the-art all-optical failure localization technique, NL-UFL. In a
nutshell, NL-UFL creates an all-optical fault management system by taking all the nodes
as independent MNs. Without relying on any multi-hop signaling protocol, each node can
obtain the on-off status of the traversing m-trail(s) by tapping the optical signals along the
m-trail(s), which further facilitate the formation of a valid alarm code that uniquely maps
to the failure event. Thus, NL-UFL leads to a truly all-optical and signaling-free failure
localization system and is taken as a key functional block in the proposed framework.

Recall the restoration time analysis for the conventional GMPLS based recovery where
the restoration time is mainly due to failure localization (tl), failure notification (tn), fail-
ure correlation (tc), and device configuration (td). On the other hand under the proposed
framework, we show that the four terms can be significantly reduced or removed, and
the resultant restoration process can be implemented completely in the optical domain
without the aid of any network layer control protocol.

Firstly, since the switching node of an interrupted W-LP is aware of the failed SRLG
via the on-off status of the traversing m-trails, the time for failure localization is simply
the propagation delay of the m-trails interrupted by the failure, while the time for failure
notification is completely removed. Since an optical flow is deterministic in terms of its
propagation speed, the time for failure correlation can be the minimum. Further, since
all the intermediate nodes of the P-LPs corresponding to the failure event can localize the
failure event thanks to NL-UFL, they can start configuring their switch fabrics based on
the collected alarm code without waiting for P-LP setup request from any other network
entity. Thus the W-LP setup latency can be minimized as well. This leads to a completely
all-optical and deterministic restoration process.

To be specific, the fault management latency under the proposed restoration process

 dc_498_12

70 Tapolcai, János D.Sc. Dissertation

s a
(1) tr

b c
(1) tr

d

e(1) tr f (1) tr

(0) failureT1

T2

Figure 4.2: The proposed restoration process.

can be modeled as:

tr = tnc + td ,

where tnc and td is the time for failure notification/correlation, and the time for device
configuration for the P-LP setup, respectively. Different from that in the conventional
restoration process, tnc is determined solely by the light propagation delay of the m-trails.
On the other hand, td should be close to the time for OXC configuration at a single node,
since all the intermediate nodes of the P-LP can configure their OXCs almost in parallel.

Following up Fig. 4.1, Fig. 4.2 is an illustration for the proposed restoration process.
Let there be two m-trails T1 : c− b− a− e− f and T2 : b− a− e− f which help nodes
a, b, c, e, and f to localize the failure at link b − c. With this, node a can identify the
failure at b− c by taking time tb−cnc right after the failure of b− c, and node a looks up its
RT and immediately switches over the traffic by taking another latency of td. Meanwhile,
nodes e, f , and c can also identify the failure by taking propagation time tb−a−enc , tb−a−e−fnc ,
and tb−a−e−f−dnc , respectively, and they look up their RTs and immediately configure their
OXCs to realize the P-LP which takes td. Thus, the total consumed time is the longest
of the propagation times plus a single device configuration time.

4.3.1 An Example on the Restoration Process

To achieve NL-UFL, a set of m-trails should be deployed such that each node has an
effective ACT for UFL. An illustrative example is shown on Fig. 4.3(a) with all single link
failures and one double-link SRLG of (0, 1) and (2, 3). In this case, all the four nodes can
individually perform L-UFL for any SRLG in Z by inspecting the locally available on-off
status of the traversing m-trails. For example, node 1 can achieve local UFL by keeping
the ACT as shown in Fig. 4.3(a), in which the on-off status of the traversing m-trails T1,
T2, and T3 can be used to uniquely identify any SRLG failure via the look-up-table of the
ACT. Each row of the ACT corresponds to a failure state. For example, if node 1 finds
that T1 and T2 become suddenly OFF while T3 is still ON, the link (0, 1) is considered
down by matching the first row of ACT; and if T1 and T2 are ON while T3 is OFF as
shown in the third row of the ACT, link (2, 3) is considered down. Similarly, node 0,
2, and 3 can locally perform UFL by maintaining their respective ACT, each of which
keeps the mapping between all the considered failure states and the on-off status of the
traversing m-trails.

With NL-UFL, the proposed failure restoration process can be performed locally in
the optical domain without relying on any multi-hop signaling. To achieve this, each
node should maintain a restoration table (RT) extended from its local ACT as shown
in Fig. 4.3. Compared to ACT, an RT has one more column which keeps the mapping
from every localized failure state (i.e., the obtained alarm code) to the corresponding
reconfiguration on the OXC. The nodes along an P-LP, including the switching node,

 dc_498_12

D.Sc. Dissertation Tapolcai, János 71

T1 T2 T3 T4

0

1

2

3

Restoration Table at node 1

ACT1 T1 T3 T4 OXC Configuration
(0, 1) 1 1 0 W1 is released
(1, 2) 0 0 1 W1 is released,

W2 is switched to P2

(2, 3) 1 0 1 W2 is switched to P2

(3, 0) 1 0 0
(0, 1)&
(2, 3)

1 1 1

Restoration Table at node 2

ACT2 T1 T3 T4 OXC Configuration
(0, 1) 1 1 0 W1 is switched to P1

(1, 2) 0 1 0 W1 is switched to P1,
W2 is released

(2, 3) 1 0 1 W2 is released
(3, 0) 1 0 0

(0, 1)&
(2, 3)

1 1 1

Restoration Table at node 0

ACT0 T1 T3 T4 OXC Configuration
(0, 1) 0 1 1 W1 is switched to P1

(1, 2) 0 0 1 W1 is switched to P1,
P2 is configured

(2, 3) 1 0 1 P2 is configured
(3, 0) 1 0 0

(0, 1)&
(2, 3)

1 1 1

Restoration Table at node 3

ACT3 T1 T3 T4 OXC Configuration
(0, 1) 0 1 1 P1 is configured
(1, 2) 0 0 1 P1 is configured,

W2 is switched to P2

(2, 3) 1 0 1 W2 is switched to P2

(3, 0) 0 1 0
(0, 1)&
(2, 3)

1 1 1

(a) An NL-UFL m-trail solution

P1 W1

0

1

2

3

P2 W2

0

1

2

3

(b) Connections

Figure 4.3: The restoration table (RT) at each node is extended from the ACT by having
the right-most column which demonstrates the required operations corresponding to each
identified alarm code.

intermediate nodes, and the merge node, can start configuring their OXCs to form the
required cross-connect by looking up their RTs once a valid alarm code is obtained. With
this, the P-LP can be formed right after the identification of the failure event without any
further path setup mechanism. In the same example, let two connections, denoted as W1

and W2, be launched in the network, which are protected by P1 and P2 under any single
link failure, respectively, as shown in Fig. 4.3(b). In this case, node 1 should identify
whether link (1, 2) or (0, 1) is failed in order to protect W1, and if so it should switch over
W1 to P1.

Note that the RT of a node should be updated when any connection whose P-LP
traverses through the node is being set up or torn down.

4.4 The Spare Capacity Allocation (SCA) Problem

In this section we define the SCA problem, the interested reader can refer to [75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89] for more description on the heuristic
algorithms solving the SCA problem.

4.4.1 The FDP-SCA Problem Formulation

A key issue to achieve the proposed FDP restoration framework is an approach to
determine how m-trails and P-LPs under FDP are allocated, when we are provided with
the network topology and a set of W-LPs. The spare capacity problem is different from
any previously reported problems since it considers the allocation of both monitoring
resources (for m-trails) and restoration resources (for P-LPs). The input of the problem
is as follows.

1. The network topology, which is represented by an undirected graph G = (V,E). For
the sake of simplicity we assume infinite capacity on each link.

2. The set of SRLGs, which is denoted by Z. Each SRLG z ∈ Z contains one, or at
most two and adjacent links.

 dc_498_12

72 Tapolcai, János D.Sc. Dissertation

3. A set of W-LPs denoted as W = W1,W2, . . . ,Wk, where k is the total number of
W-LPs. Each Wj is a path in G between nodes sj and dj for j = 1, . . . , k.

The SCA problem is to minimize the total spare capacity (denoted by M) while
achieving: (i) a feasible solution for NL-UFL m-trail allocation under multi-link SRLGs,
and (ii) restoration capacity allocation for FDP. Formally

M =
∑
e∈E

ue , (4.2)

where ue denotes the spare capacity along link e ∈ E in terms of the number of wavelength
links (WLs).

An important feature of the proposed approach is that the spare capacity taken by
the m-trails can be reused by any P-LP. This is a reasonable assumption since both spare
capacity by P-LPs and m-trails are not launched with working traffic during normal
operations. Once there is a failure, all monitoring resources for the m-trails can be
released and reused by the P-LPs, thanks to NL-UFL which enables all the nodes to
instantly react upon the identified failure. With this, we have:

ue = max{me, pe},

where me denotes the required monitoring resources for the m-trails as

me =
∑

1≤j≤b

ITj,e (4.3)

where ITj,e is the trail-link indicator (a.k.a global ACT) which is 1 if the jth m-trail passing
through link e, and 0 otherwise. And pe denotes the restoration capacity for FDP on link
e ∈ E that is formalized as follows.

The Restoration Capacity

For each Wj, 1 ≤ j ≤ k, a set of P-LPs denoted as P z
j ,∀z ∈ Zj, is determined such

that they are simple paths with source sj and destination dj while disjoint from each z.
Let Wz ⊆ W be a subset of W-LPs, which are the W-LPs possibly interrupted by failure
z. Let Zj ⊆ Z be a subset of SRLGs traversed by Wj. The amount of reserved working
capacity along link e is denoted as qe, ∀e ∈ E; formally qe =

∑
1≤j≤k I

W
j,e, where IWj,e is a

working path-link indicator which is 1 if Wj passes through link e, and 0 otherwise. Let

IP,zj,e be a protection path-link indicator which is 1 if P z
j traverses e, and 0 otherwise. Let

the restoration capacity along link e in the failure event of z be denoted by pze. We have
the following relation:

pze =
∑

1≤j≤k

IP,zj,e −
∑

Wj∈Wz

IWj,e

where the term
∑

Wj∈Wz IWj,e stands for the free capacity gained by stub release at link e
after the failure event at z which interrupted all Wj ∈ Wz.

The condition for pe to restore every affected W-LP Wj ∈ Wz by failure z is:

pe ≥ max
z∈Zj

pze .

In general, the monitoring resource consumption is determined only by the topology
and SRLGs considered in the problem regardless of the traffic, which serves as a constant

 dc_498_12

D.Sc. Dissertation Tapolcai, János 73

expense; on the other hand, the amount of restoration resources heavily depends on the
amount of working traffic. Thus, when the amount of working capacity increases, more
monitoring resources will be reused due to the increased restoration resource consumption,
and gradually all the monitoring resources are reused. We define the monitoring resources
that are not shared by any P-LP as monitoring overhead, denoted by

re = max{0,me − pe}.

The monitoring resources are expected to be completely hidden by P-LPs, provided that
we have sufficient working capacity in the network, resulting zero monitoring overhead.
This is also referred to as the monitoring resource hidden property where all WLs taken
by m-trails are also reserved by P-LPs.

4.4.2 FDP Restoration Capacity Allocation

The restoration capacity allocation problem for FDP has been extensively investigated
in the past decades, which is formally called Spare Capacity Placement/Allocation for
Path Restoration with stub release. Detailed descriptions can be found in [75, 78, 76], [90,
Chapter 6], [91, Chapter 9.5.2] for both ILP formulations and heuristic approaches. Since
we have positioned our study on a signaling-free FDP-based restoration process via all-
optical failure localization, we do not focus on novel FDP restoration capacity allocation
schemes; instead, we would adopt state-of-the-art FDP spare capacity allocation schemes
for the proof of concept and facilitation of performance analysis. To be specific, the
ILP in [91] and Successive Survivable Routing (SSR) algorithm in [78] are implemented
in Section 4.6 for comparison with other counterparts as well as for understanding the
performance behaviors under the monitoring resource hidden property, respectively.

4.5 The Monitoring Resource Hidden Property

With the SCA problem formulated in the previous section, we are particularly inter-
ested in the monitoring resource hidden property, which defines and quantifies in what
circumstances the monitoring WLs are all reused by the P-LPs. In other words, there
is no additional resource consumed due to the deployment of the m-trails and thus the
spare capacity consumption is the same as that of the conventional FDP which is opti-
mal among all the protection schemes. As a first study into the proposed framework, we
analyze the problem under single-link SRLGs in circulant graphs, aiming to gain deeper
understanding on the performance behaviour of the proposed framework.

4.5.1 Lower Bound on the Spare Capacity

Lemma 16. Let K be a set of links that form a cut in G. The spare capacity along the
links in K is at least

1

|K| − 1

∑
e∈K

qe ≤
∑
e∈K

pe . (4.4)

Proof. In case link e fails, protection routes must be able to circumvent e via the other
links in K, thus the spare capacity along those links is at least qe, formally

qe ≤
∑

f∈K,e6=f

pf . (4.5)

 dc_498_12

74 Tapolcai, János D.Sc. Dissertation

There are |K| such inequalities for 1 ≤ e ≤ |K|. By summing up these inequalities we get∑
e∈K

qe ≤
∑
e∈K

∑
f∈K,e6=f

pf = (|K| − 1) ·
∑
e∈K

pe . (4.6)

Finally, dividing both sides by (|K| − 1) we get Eq. (4.4).

Corollary 4. Let K1, . . . , Kk be a pairwise disjoint cuts. Then

M≥
∑

1≤l≤k

∑
e∈Kl

qe
|K l| − 1

. (4.7)

Corollary 5. Let NG(v) denote the set of links adjacent to node v and ∆v = |NG(v)|

M ≥
∑
v∈V

∑
e∈NG(v)

qe
∆v − 1

. (4.8)

As a rule of thumb, the minimal ratio of spare to working capacity can be estimated
by 1/(∆− 1) [75], where ∆ = 2|E|/|V | is the average nodal degree. It was proved for the
case when the working capacity is the same on every link [75]. This can be also deduced
from Corollary 5 by applying the inequality of arithmetic and harmonic means.

4.5.2 Dominance of Monitoring Resources

With the proposed NL-UFL construction in the Cn(1, 2) topologies, we are interested
in whether and how much monitoring resources can be hidden by restoration resources.
Let the average working capacity per link, the average restoration capacity per link, and
average monitoring capacity per link, be denoted by

q =
1

|E|
∑
e∈E

qe, p =
1

|E|
∑
e∈E

pe, m =
1

|E|
∑
e∈E

me,

respectively. Formally, the dominance of monitoring resources occurs when m ≥ p, which
serves as a sufficient condition that additional monitoring resources are required by FDP
on top of the restoration capacity .

Let θ measure the traffic demand as a percentage of s− d pairs that are loaded with a
W-LP. For example, θ = 100% means each s−d pair (i.e., |V |(|V |−1)/2) is connected by a
W-LP. It is clear that with smaller θ, the dominance of monitoring resources is more likely
to happen. There naturally comes up an interesting question: with a specific topology, for
which values of θ will make the monitoring resources dominant? Is there a lower bound
on θ, say 1%, below which m < p is unconditionally true? In the following theorem we
show that there is no such lower bound on θ in a circulant topology G = Cn(1, 2) under
single-link SRLGs.

Theorem 16. For any positive θ > 0, there exists a FDP-SCA problem (with topology,
SRLG and traffic) where the monitoring resources will never dominate the spare capacity
(i.e., m < p).

Proof. We pick the circulant graphs G = Cn(1, 2) as a topology with unit cost along each
link, and all single link failures for SRLG. Let G = Cn(1, 2) contain a set of nodes denoted
as 0, 1, . . . , n−1, and edges denoted as (v, v+1) and (v, v+2), for v = 0, . . . , n−1, where

 dc_498_12

D.Sc. Dissertation Tapolcai, János 75

the addition is understood modulo n. Let us call the edges (v, v+1) by on-cycle edges and
the rest chordal edges (see also Fig. 2.10). As for the traffic, let G be launched with a set

of shortest-path routed W-LPs denoted asW = W1, . . . ,Wk, such that k ≤ θ · n(n−1)
2

. Let
h = max{5, d1

θ
e} and n = 4h ≥ 20. Nodes s and d are connected with a W-LP along the

shortest path route if s− d ≡ 0 mod h. In this case the number of directed connections
is k = 3

2
n, because each source node s is connected with s+ h, s+ 2h and s+ 3h, where

addition is understood modulo n. Therefore, the total number of directed connections is

θ · n(n− 1)

2
= θ · 4 ·max{5, d1

θ
e}n− 1

2
≥ 2(n− 1) ≥ 3

2
n = k

Next, we define a set of disjoint cuts K1, . . . , Kn/4, where Ki contains 6 links (v −
1, v+1), (v, v+1), (v, v+2) for both v = 2i and v = 2i+n/2. Each cut Ki, i = 1, . . . n/4
separates the graph into two equal-size fragments with n

2
nodes, thus the number of W-

LPs passing through the cut is at least n, because for each source node s the number of
possible destination nodes in the other side of the cut is 2, thus there are at least n for
which s− d ≡ 0 mod h holds.

According to Corollary 4 we haveM≥ 1
5
·n · 6

4
n, where 6

4
n is the total number of links

in the cuts K1, . . . , Kn/4. Since the number of links is |E| = 2n we have p = M
2n

. According
to Theorem 7, the total monitoring capacity of the bm-trails is ndlog2 n + 1e + n. Thus
we have m = 1

2
(dlog2 n+ 1e+ 1). Therefore, m < p holds when dlog2 n+ 1e+ 1 < 3

10
· n

which is always true for n ≥ 20.

It is important to note that although necessary, the dominance of monitoring resources
is not sufficient for nonzero monitoring overhead.

4.6 Performance Evaluation

4.6.1 Comparison of Signaling-Free Protection Methods

First, a case study is showed to examine the proposed framework in terms of (1)
capacity efficiency, (2) restoration time, and (3) computation time. We launched the m-
trails to achieve NL-UFL and implemented a FDP scheme (referred to as ”FDP”) as a
realization of the proposed framework, which is compared with a couple of signaling-free
restoration schcmes, namely Collaborative Failure Protection (referred to as CFP) and
p-Cycle. Both p-cycle and CFP organizes spare capacity into pre-cross-connected cycles
to achieve signaling free protection. CFP can achieve better capacity efficiency by reusing
the released working capacity of the disrupted lightpaths (i.e., stubs). It is achieved in a
cooperative manner among the failure-aware nodes. We computed the optimal solutions
by implementing and solving the ILP for each of the three schemes, specifically the one
in [73], [92] and [91, Chapter 9.5.2] for p-Cycle, CFP, and FDP, respectively, in which
the same link cost and traffic values were adopted to ensure the experiment environments
completely in line with the previous art. We assume the given traffic matrix corresponds
to 1 Erlang; each link has 16 WLs, and the W-LPs are shortest-path routed in each case.
The results were obtained by solving the ILPs using CPLEX v.11, all with a zero gap to
the optimal. Smallnet [92] topology (10 nodes, 22 edges) is adopted.

Capacity Efficiency

Fig. 4.4 compares the capacity efficiency of the three schemes. It clearly shows that
the performance of the proposed FDP is dominated by the monitoring resource consump-

 dc_498_12

76 Tapolcai, János D.Sc. Dissertation

tion by the m-trails when the traffic load is slight, but becomes the most efficient one
when the traffic load is increased because all the monitoring resource consumption can
be hidden by the spare capacity taken by the P-LPs of the FDP scheme. Note that PDF
yields the optimal capacity efficiency among all the protection schemes, and the capacity
consumption by FDP is completely dominated by the PDF spare capacity when the traffic
load is heavy enough to hide all the monitoring resource consumption.

Restoration Time

We assume the average physical length of a link is 200km, which requires 1ms for light
to traverse; thus the failure localization and notification delays under FDP is tnl < 20ms
since the longest m-trail is no longer than 20 hops. By assuming tp + tc = 10 ms and
td = 20ms, this leads to an overall average restoration time of 50ms. For CFP and p-
Cycle, the maximal length of each cycle is 10 hops, which yields tl < 10ms for failure
localization and notification; however we also have td = 20ms required at the two nodes
for switch fabric configuration and tp + tc = 10, which results in 40ms in total. For CFP,
the longest p-Cycle has 7 links, which leads to slightly shorter restoration time than 40
ms. Under the specification of the case study, the three schemes lead to very similar
restoration time.

Computation Time

The computation time was 39, 004sec, 17.22sec, and 3.94sec for CFP, p-Cycle, and
FDP, respectively. The proposed FDP has the best computation efficiency.

Under Multi-Link SRLGs

We have adopted the problem instance in [74] for comparison, which is, to the best of
our knowledge, the only previously reported study that provides an ILP for static multi-
link SRLG p-cycle design. Note that all the other studies for multi-link SRLGs using
p-cycles have focused on reconfiguration, rerouting, and dynamic reconfiguration of spare
capacity, which do not fit into the targeted scenario. The NSF network (14 nodes, 22 links)
topology is used for all single-link and double-link SRLGs. P-cycle requires 965 bandwidth
unit while NL-UFL&FDP 302. This clearly shows that the proposed NL-UFL&FDP
approach can gain even more advantage when multi-link SRLGs are considered. The
average length of m-trails is 20 links, while the maximum is 26 links, which still results sub
50ms restoration time for every single and double failure with NL-UFL&FDP approach.

4.6.2 Monitoring Resources Hidden

We have seen that the proposed approach is outperformed by its counterparts when the
working traffic load is small, but will become much more efficient when the number of W-
LPs increases, and the monitoring resources can be completely hidden by the restoration
capacity for FDP. Therefore, we claim that the proposed approach can achieve the same
capacity efficiency as conventional FDP provided the network is loaded with sufficiently
large working capacity. This subsection provides extensive simulation results in a wide
range of network topologies and SRLG densities, so as to gain deeper understanding on
the monitoring resource hidden property under the proposed restoration framework.

The randomly generated planar graphs are classified according to parameter g, which
is the length of the longest inner face contained in the graph. Clearly, graphs with
smaller values of g are considered more densely meshed; and in the generated graphs,
the average nodal degree of each graph ranges from 5.4 (for g = 3) to 2.76 (for g = 7).

 dc_498_12

D.Sc. Dissertation Tapolcai, János 77

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

W
L

p
er

li
n

k

Erlang

FDP
M-trail
P-cycle

CFP

Figure 4.4: WLs fper link on Smallnet.

0

5

10

15

20

25

0 50 100

A
ve

ra
ge

C
o
st

% of s− d pairs

f = 0
f = 10
f = 30
f = 50
f = 90

(a) COST266 network

0

1

2

3

4

5

6

7

8

0 50 100

A
ve

ra
ge

C
os

t

% of s− d pairs

g = 3
g = 4
g = 5
g = 6
g = 7

(b) Random networks with f = 0

Figure 4.5: Average monitoring overhead.

See also Fig. 3.5 for example network topologies with different g. Besides, the COST266
European reference network (37 nodes, 57 links) is also used [93]. We adopted SRLGs with
single link and double adjacent links, and the SRLG density considered in the problem is
parameterized by a double failure density parameter, denoted by f , which indicates the
fraction f of all double adjacent link SRLGs under consideration.

We evaluate the resource consumption in the proposed framework by increasing the
working traffic, which is defined as the percentage of s− d pairs that are interconnected
by a W-LP (i.e., θ). Let every W-LP and m-trail take a single wavelength of bandwidth
(i.e., a single WL). The ILP in [91] was no longer used here due to the huge computation
complexity; instead, we adopted SSR [78] that sequentially allocates P-LPs for each W-
LP. SSR iteratively launches Dijkstra’s shortest path algorithm to find disjoint backup
paths with each SRLG involved in W-LP one at a time using the latest spare capacity
information.

Fig. 4.5(a) and (b) show the average monitoring overhead, i.e.,

1

|E|
·
∑
e∈E

max{0,me − pe},

as θ is increased from 0% to 100%. It meets our expectation that as the percentage of

 dc_498_12

78 Tapolcai, János D.Sc. Dissertation

0

10

20

30

40

50

60

70

0 50 100

A
v
g

W
L

% of s− d pairs

q
m
p

p+ q
p+m

(a) Single-link SRLGs (f = 0%).

0

10

20
30

40

50

60
70

80

90

0 50 100

A
v
g

W
L

% of s− d pairs

q
m
p

p+ q
p+m

(b) Adjacent double-link SRLGs (f = 90%).

Figure 4.6: Average used capacity on the links in the COST266 reference network, where
working, spare and m-trail capacity is denoted by q, p and m, respectively.

loaded s− d pairs (i.e., θ) is decreased, and/or as the percentage of double-link adjacent
SRLGs (i.e., f) increases, the monitoring overhead increases accordingly. It is interesting
to observe that the topology density does not affect the monitoring overhead as shown
in Fig. 4.5(b), because taking a sparser topology increases the total monitoring capacity
for m-trails, meanwhile increasing the required restoration capacity for FDP, too. As a
rule of thumb, we claim that the monitoring overhead is negligible if at least 50% of the
node-pairs in a network are loaded with a W-LP. Further, with more than 20% of loaded
s−d pairs, the monitoring overhead is 1 WL per link under single-link SRLGs, regardless
the network density.

In Fig. 4.6(a) and (b), the average numbers of WLs per link for W-LPs, P-LPs, and m-
trails are evaluated in the COST266 European reference network [42] (37 nodes, 57 links)
with f = 0 and f = 90% in (a) and (b), respectively. The intersections of the curves for
average restoration capacity per link (i.e., p) and average monitoring capacity per link
(i.e., m) are at θ = 20% and θ = 40% with an SRLG density f = 0% and f = 90%,
respectively. The curve of m shows the contribution adopting in-band information in
the reduction of monitoring resource consumption, which is not obvious in the single-
link SRLG scenario in Fig. 4.6(a). Nonetheless, the effect of taking in-band information
becomes non-trivial when multi-link SRLGs are considered, where m decreases from 21.1
to 13.5 as θ increases from 0% to 100%, as shown in Fig. 4.6(b). Further, the reduction of
m occurs mostly in the light traffic region where the monitoring resources are more likely
to be dominant.

Fig. 4.7(a) and (b) show the relation between the maximum total capacity required
along each link (i.e., q+max{m, p}) and θ by using COST266 European reference network
(37 nodes, 57 links), under various SRLG densities and topology densities, respectively. In
Fig. 4.7(a) when θ = 50%, the required maximum WLs is roughly 80. This provides us a
design guideline that with 80 WLs of total capacity consumed along each link in COST266,
the proposed framework can most likely achieve optimal performance, due to the fact that
θ = 50% is found to be the turning point for reaching zero monitoring overhead under
multi-link SRLGs, as shown in Fig. 4.5(a). Further, as shown in Fig. 4.7(b), 30 − 45
WLs of overall capacity along each link is the threshold for zero monitoring overhead for
single-link failures, because θ = 20% is the turning point of zero monitoring overhead

 dc_498_12

D.Sc. Dissertation Tapolcai, János 79

0

20

40

60

80

100

120

0 25 50

M
a
x

W
L

% of s− d pairs

f=0
f=10
f=30
f=50
f=90

(a) COST266 network

0

20

40

60

80

100

120

0 25 50

M
ax

W
L

% of s− d pairs

g = 3
g = 4
g = 5
g = 6
g = 7

(b) Random networks with f = 0

Figure 4.7: Maximum overall capacity in WLs.

under single-link SRLGs, as shown in Fig. 4.5(b).

 dc_498_12

Chapter 5

IP Fast ReRoute

5.1 Introduction

Transporting delay and loss sensitive traffic in the Internet has become an important
requirement in the last few years. At the moment the IP protocol suite is not yet ready
to fully support multimedia streams due to various reasons, one of which is slow response
to failures. Recovery with current Interior Gateway Protocols (IGPs) is in the order of
hundreds of milliseconds [94], typically beyond what is tolerable to a multimedia stream.
Similar is the case of MPLS networks that rely on LDP for label exchange, as LDP is
dependent on the IGP for routing. Therefore, the IETF defined a framework called IP
Fast ReRoute (IPFRR [95]), for native IP protection in order to reduce failure reaction
time to tens of milliseconds in an intra-domain, unicast setting.

IPFRR is based on two principles: local rerouting and precomputed detours. Local
rerouting means that only routers directly adjacent to a failure are notified of it, which
eliminates one of the most time-consuming steps of IGP-based restoration: global flooding
of failure information. Additionally, IPFRR mechanisms are proactive in that detours
are computed, and installed in the forwarding engine, long before any failure occurs.
Thus, when a failure eventually shows up, routers are able to switch to an alternate path
instantly. Once alternate next-hops are active, traffic flows undisrupted bypassing the
failed component, letting the IGP to converge in the background.

This chapter deals with two specifications for IPFRR, namely the Loop-Free Alternates
(LFA) and Protection Routing (PR). The former is the only standardized and readily
available IPFRR technology, while the latter is a more theoretic framework as it requires
a centralized unit that controls the forwarding table at each router but it still can be
implemented with OpenFlow routers.

5.2 Loop Free Alternates

A basic specification for IPFRR is Loop-Free Alternates (LFA, [96]). When connec-
tivity to some next-hop is lost, all traffic that would have used the unreachable next-hop
is passed on to an alternate next-hop, called a Loop Free Alternate, that still has a path
to the destination that is unaffected by the failure. LFA is simple, it can be realized
with straightforward modifications to current IGPs, and deployment is easy thanks to
the fact that it does not require support from other routers. On the other hand, LFAs
do not always protect both link and node failures at the same time and may also lead to
temporary loops when multiple simultaneous failures show up. But the major problem is

80

 dc_498_12

D.Sc. Dissertation Tapolcai, János 81

that often not all routers have LFAs to all other routers, which means that certain failure
patterns are impossible repair rapidly.

Unfortunately, complete IP-level local protection is difficult due to the IP’s destination-
based forwarding paradigm. As only adjacent routers are aware of a failure, remote
routers do not know whether an arriving packet is traveling on its shortest path or it
is already on a detour and so exceptional forwarding should be applied. Without being
able to differentiate between these two cases, local IP protection can never attain 100%
failure coverage1. Most IPFRR proposals, therefore, either change IP’s destination-based
forwarding [97, 98, 99] or introduce some forms of signaling to indicate that a packet is on
a detour. Some call for out-of-band failure signaling [100], others use invaluable extra bits
in the IP header [101, 102] or add special information to it for in-band signaling [103],
and still others propose to mark detours by tunneling [104, 105, 106]. While modern
routers can handle tunneled packets at wire speed, tunneling needs additional address
management [107, 106] and, if the additional IP header does not fit into the MTU, can
cause packet fragmentation and time-consuming reassembly at the tunnel endpoint. It
seems, therefore, that the price for IP-level local protection, capable to handle all possible
failure cases, is considerable added complexity and management burden, modifications to
the essential IP infrastructure, and the breaking of the incremental deployment path.

It is, therefore, no wonder that today LFA is the only standardized and readily avail-
able IPFRR technology. At least two major router vendors are offering LFA-based IPFRR
support out of the box [108, 109], and other vendors are expected to follow suit. Conse-
quently, operators in need for improving network resilience are now facing the question
whether to deploy LFA, and this decision depends crucially on the extent to which LFA
can protect failures in the particular topology. We intend to assist making this decision.

Even though thorough, simulation-based reports are available [110, 111, 112, 113, 114],
a deep understanding of how certain network characteristics affect LFA failure coverage
is still missing. Thus, in this section our focus is on the graph topological ingredients
needed for good LFA protection. In this regard, our work is a sequel to [115], where
the authors study to what extent IP’s destination-based forwarding permits protection
routing, and [116] presenting a similar study for the O2 scheme. As we find that LFA
failure coverage strongly depends on the topology as well as on the link costs, we study
the effects of both separately.

Existing proposals modify standard IP forwarding in some way to achieve full protec-
tion. Why not choose the other way around? That is, instead of bending IP to provide
full protection in all networks, paying huge price in complexity and deployability, why
not bend the network topology itself so that even LFA can guarantee full protection?
We study this question in the first part of the chapter. We show real networks where
by adding just two or three new links full LFA protection can be attained. This might
be an acceptable price for an operator to take the easy deployment path. In some cases,
however, our analysis reveals that full LFA protection can only be achieved at the cost of a
substantial topology redesign, which is a clear indication to choose alternative protection
schemes [81]. At the least, such an analysis can be instructive in the next regular network
upgrade cycle.

1One can easily prove this claim formally, taking the example of a ring with at least 4 nodes.

 dc_498_12

82 Tapolcai, János D.Sc. Dissertation

a

b

c

d

e

f

g

6

3

3

2

5

8

10

3

6

2

Figure 5.1: A sample weighted network topology.

5.2.1 An Example on Loop Free Alternates

We demonstrate LFA through an example. Consider the network depicted in Fig. 5.1
and suppose that router d wishes to send a packet to router f . The next-hop of d along
the shortest path towards f starts for c. If, however, link (d, c) fails, then d needs to
find an alternative neighbor to pass on the packet. It cannot send the packet to, say, b,
as b’s shortest path to f goes through itself, so b would send the packet back causing a
loop (remember that in IPFRR, routers not immediately adjacent to a failure do not get
notified of it). Instead, it needs to find a neighbor that is closer to the destination than
the length of the route from the neighbor through itself. This relation can be expressed
as follows:

dist(n, d) < dist(n, s) + dist(s, d) , (5.1)

where s is the actual source node, d is the node the packet is destined to, n is a neighbor
of s other than the failed next-hop and dist(x, y) denotes the length of the shortest
x → y path. A neighbor fulfilling (5.1) is called a link-protecting Loop Free Alternate
(LFA). For instance, a is a link-protecting LFA for node d towards node f as dist(a, f) <
dist(a, d) + dist(d, f).

Many alternative LFA types exist. For instance, g is also an LFA for d towards f ,
but it also protects against the failure of node c, so it is a node-protecting LFA. It is
also a downstream neighbor, as it is closer to f than d, as well as a per-link LFA for the
link (d, c) as it protects all the nodes reachable by d through (d, c). For a full taxonomy,
see [96, 113, 114].

5.2.2 Model

We model the network topology by a simple, undirected weighted graph G = (V,E).
Let E denote the complement of the edge set. Let the cost of edge (i, j) be c(i, j). For
simplicity, we assume that (i) edges are bidirectional and point-to-point; (ii) costs are
symmetric; and (iii) each node has a well-defined next-hop towards each destination. This
means that if multiple shortest paths are available to a destination, then one is chosen
arbitrarily.

In this section we limit our attention to single link failures exclusively. As simple
link-protecting LFAs safeguard against just this type of failures and they contain all the
other LFA types as special cases, we do not treat those henceforth. Consequently, we
shall usually assume that the graph describing the network is 2-edge-connected, which is
the minimum topological requirement for being able to repair every possible link failure.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 83

5.2.3 Problem Definition

Definition 2. Consider an undirected, weighted graph G = (V,E). For each d ∈ V ,
define a relation (≺d) on V as follows: let u ≺d v if at least one shortest path from v to d
goes through u. Let u �d v if either u ≺d v or u = v. Finally, put u ≺�d v if u and v are
not ordered by (�d).

In Fig. 5.1, for instance, d �f b but d �b b, and a ≺�f d.
The relation (�d) defines a partial order on V , since it is reflexive, transitive and

antisymmetric. The partially ordered set (V,�d) is called the d-poset. Each d-poset has
exactly one lower bound: d. We say that some u ∈ V is an ancestor (descendant) of some
v ∈ V in the d-poset if u ≺d v (u �d v, respectively). Additionally, a parent (child) is a
neighboring ancestor (descendant). By assumption, if a node has multiple parents, then
one is assigned as next-hop arbitrarily.

Using this model, we redefine (5.1) as follows:

Definition 3. For some s ∈ V and d ∈ V , a neighbor n ∈ V of s that is not the next-hop
is a link-protecting LFA (simply LFA, henceforth) if s �d n.

Simply put, n is an LFA if no shortest path from n to d passes through s. Hence,
no loop will arise if a packet destined to d is handed by s to n instead of its primary
next-hop. Note that the condition s �d n means that either s ≺�d n or s �d n.

From the above discussion, it is clear that in general networks not all nodes have LFA
protection to every other node [110, 111, 112, 113, 114]. To measure the LFA failure
coverage η(G) in a weighted graph G, we adopt the simple metric from [96]:

η(G) =
#LFA protected (s, d) pairs

#all (s, d) pairs

5.2.4 Bounds on LFA coverage

Next, we present simple lower and upper bounds on LFA coverage. Our bounds are
based on the following idea. The shortest path tree to some destination d can contain only
n−1 edges, and all the remaining edges can be used for providing LFAs to their endpoints.
In particular, an out-of-tree edge provides at most 2 LFAs (either node-protecting or link-
protecting or both), and at least 1 link-protecting LFA towards d.

Let ∆ denote the average node degree in G and let ∆max be the maximum degree.
It is immediate that, ∆ ≥ 2(|V |−1)

|V | for any connected graph, since the sparsest connected

graphs are trees for which ∆ = 2(|V |−1)
|V | . A ∆-regular graph is a graph in which all nodes

are of constant degree ∆. An even (odd) ring is a cycle graph with an even (odd) number
of nodes. Rings are the smallest-degree 2-connected regular graphs (in particular, ∆ = 2).

In [12] the following lemma was proved

Lemma 17. For an even ring with |V | > 2 and uniform costs: η(G) = 1
|V |−1

. For an odd

ring with |V | > 2 and uniform costs: η(G) = 2
|V |−1

.

Theorem 17. For any connected simple graph G with |V | > 2:

η(G) ≤ |V |
|V | − 1

(∆− 2) +
2

|V | − 1
.

 dc_498_12

84 Tapolcai, János D.Sc. Dissertation

Proof. We observe that an edge not contained in the shortest path tree rooted at some
d provides at most 2 link-protecting LFAs towards d (when the edge lies between two
branches of the tree), while on-tree edges do not create any LFA. Since the number of
out-of-tree edges is exactly |E| − (|V | − 1), at most 2(|E| − |V |+ 1) = |V |∆− 2|V |+ 2 =
|V |(∆− 2) + 2 nodes can have LFA to d. Taken the sum over all nodes and dividing by
the number of source-destination pairs gives

η(G) ≤ |V |(|V |(∆− 2) + 2)

|V |(|V | − 1)
=
|V |
|V | − 1

(∆− 2) +
2

|V | − 1
.

The Lemma is non-trivial for 2(|V |−1)
|V | ≤ ∆ < 3. For trees, in particular, we obtain

η(G) ≤ 0, which implies that the Lemma is tight for trees over arbitrary link costs. It is
tight for uniform cost odd rings as well, for which we obtain η(G) ≤ 2

|V |−1
according to

Lemma 17.
What the above Lemma in essence says is that in large sparse graphs LFA-coverage

is upper bounded by the average node degree: η(G, c) ≤ ∆ − 2. In the course of our
numerical evaluations, we found that this relation is present in most real-world networks
as well (see later).

The next Lemma gives a lower bound on the LFA coverage. Note, however, that the
result concerns link-protecting LFAs exclusively.

Theorem 18. For any connected simple graph G with |V | > 2:

η(G) ≥ |V |
|V | − 1

∆
2
− 1

∆max − 1
+

1

(|V | − 1)(∆max − 1)
.

Proof. Again, exactly |V | − 1 nodes are contained in the shortest path tree of d, and an
out-of-tree edge (of which we have |E| − |V | + 1) can provide at least one LFA towards
d: (i) if the edge is inside a single branch of the shortest path tree, then it provides LFA
from the upstream to the downstream; (ii) if the edge lies between two branches, it still
creates at least one link-protecting LFA (in fact, it creates two), but it might not create
any node-protecting LFA at all. In consequence, there are |E| − |V |+ 1 out-of-tree edges

that are incident to at least |E|−|V |+1
∆max−1

=
|V |(∆

2
−1)+1

∆max−1
nodes providing a link-protecting LFA

towards d (the term ∆max − 1 is because every node has at least one in-tree edge, so
only the rest count as out-of-tree edges). Taking the sum over all nodes and dividing by
|V |(|V | − 1) gives the required result.

The most important message here is that LFA coverage increases with ∆, that is, the
denser the network the higher the link-protecting LFA coverage.

Corollary 6. For a ∆-regular graph R∆ on |V | nodes:

η(R∆) ≥ 1

2
− 1

2

|V | −∆− 1

(|V | − 1)(∆− 1)
.

This gives η(R2) ≥ 1
|V |−1

and η(R3) ≥ 1
4

+ 3
4

1
|V |−1

> 1
4
. From this, we conclude that

the lower bound of Lemma 18 is tight for even rings. One easily sees that it is tight for
trees as well.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 85

We have seen that LFA coverage fundamentally depends on the average node degree.
This raises the question whether we can find graphs of low degree with 100% LFA coverage.
We found that the 2-connected graph with the smallest possible average degree that can
still be fully protected using LFA is the 3-ring C3. Every other 2-connected graph with
complete LFA coverage has average degree higher than 2. By Lemma 17, η(C3, c) = 1
which is attained when c is uniform, and one easily sees that η(C3, c) is the only 2-
connected graph of average degree ∆ = 2 with this property. Graphs with ∆ < 2 cannot
have full protection because such graphs contain at least one node with degree 1 whose
single outgoing link can never be protected. On the other hand, larger 2-connected graphs
with ∆ = 2 are all ring topologies, and rings can only have full LFA coverage if n = 3
(again, by Lemma 17).

5.2.5 The LFA Topology Extension Problem

The conditions for full LFA coverage turn out to be somewhat restrictive, suggesting
that only special topologies admit full protection. Indeed, practical studies show that in
common networks LFA coverage is usually in the order of 50-90% [110, 111, 112, 113, 114].
There are essentially three approaches to increasing LFA coverage: changing link costs
[14, 117], changing the topology [12, 13], or doing both.

Next we focus on the question how to extend the network with new links (e.g., by leas-
ing additional capacity, provisioning new virtual links, or deploying new fibers) to improve
LFA coverage, and we shall recur to manipulating costs only if improvement cannot be
achieved otherwise. The practical reason behind it is that in many operational networks
edge costs are deliberately optimized for the purposes of load-balancing, reducing delay
and improving resiliency [118], or to obviate equal-cost paths in order to eliminate packet
re-ordering, unwanted packet fragmentation [119], etc. Modifying costs would destroy
carefully engineered shortest paths and this would make deploying LFA less attractive to
operators.

We study the impacts of the graph topology and edge costs separately.

LFA Graph Extension: Uniform Link Costs

In this section, we ask how to add edges to a graph to achieve full LFA coverage,
provided that both the edges originally existing in the graph and the edges we add have
the same cost. Obviously, we want to do this with the fewest new edges possible. Consider
the problem statement:

Definition 4. LFA graph extension problem in the uniform cost case (minLFAu): Given
a simple, undirected graph G = (V,E) with uniform edge costs c on all edges and an
integer l, is there a set F ⊆ E with |F | ≤ l and ∀(u, v) ∈ F : c(u, v) = c so that for
G′ = (V,E ∪ F) we have η(G′) = 1?

Next, we turn to the characterization of networks with perfect LFA coverage. Herein,
we concentrate on the uniform cost case, when shortest path routing boils down to min-
hop routing.

Observation 1. Consider an undirected graph G with uniform edge costs. Now, η(G) = 1,
if and only if each node has an LFA towards each of its neighbors.

Easily, if all neighbors are protected, then all nodes in the graph are protected as well
since these are reached through the neighbors. The other way around: if η(G) = 1 then,

 dc_498_12

86 Tapolcai, János D.Sc. Dissertation

evidently, all neighbors must be protected. We will use the following theorem taken from
[12].

Lemma 18. Consider an undirected, simple graph G = (V,E) with uniform costs. Now,
η(G) = 1, if and only if each edge is contained in at least one triangle (cycle of length 3).

Proof. First, we show that if all (u, v) ∈ E are contained in a triangle, then η(G) = 1.
Let some triangle containing (u, v) be u − v − w. One easily sees that u �v w, as it is
the direct path through edge (w, v) that is the shortest (min-hop) path from w to v, and
w → u → v is strictly longer than that. Thus, w is an LFA for u towards v protecting
edge (u, v), and the claim then follows from Observation 1.

To see the reverse direction, we prove that if η(G) = 1, then every edge is contained
in a triangle. If η(G) = 1, then for each (u, v) ∈ E node u has an LFA towards v. Let
this be w. Easily, (u,w) ∈ E. We only need to show that (w, v) ∈ E as well to have a
triangle. Indirectly, if (w, v) /∈ E, then u �v w, which contradicts the assumption that w
is an LFA.

Lemma 18 implies that complete graphs, chordal graphs and maximal planar graphs
have full LFA coverage in the uniform cost case.

Note that adding uniform cost edges to a uniform cost graph necessarily changes the
shortest paths between some of the nodes. This is because at least the nodes connected
by the new edge will use it to reach each other, instead of whatever shortest path they had
before. Hence, the requirement that shortest paths be invariant to LFA graph extension
cannot be met when solving minLFAu.

Theorem 19. The LFA graph extension problem in the uniform cost case (minLFAu) is
NP-complete.

Definition 5 (SP5, [120]). Minimal set cover problem (minSC): Given a bipartite graph
G′ = (A ∪ B,C) and a positive integer k, is there a set of nodes Bc ⊆ B with |Bc| ≤ k,
such that every node in A has a neighbor in Bc?

We make the following trivial assumptions: (i) each node a ∈ A is connected to at
least two nodes in B (otherwise covering a is trivial); (ii) |B| ≥ 3; and (iii) |A| ≥ 2.

Proof. Instead of solving minLFAu directly, we use Lemma 18. Consider the definition:

Definition 6. Minimal triangular problem (minTR): Given a graph G = (V,E) and a
positive integer l, is it possible to add at most l edges to G so that every edge is contained
in a triangle?

Easily, minTR is solvable for l if and only if minLFAu is also solvable for l. Hence,
proving that minTR is NP-complete will yield the required result. MinTR is in NP,
since a nondeterministic algorithm needs to guess the set of edges F with |F | ≤ l and a
polynomial time algorithm can verify if every edge is part of a triangle. To prove that
minTR is indeed NP-hard, we (Karp-)reduce minSC to minTR: given a minSC instance
with a bipartite graph G′ = (A ∪ B,C) and an integer k, our task is to define an input
graph G = (V,E) for minTR that is solvable with at most k edges, if and only if the
minSC instance is solvable with at most k nodes.

Construct G = (V,E) as follows: let V = A1∪A2∪B∪{s}, |V | = 2|A|+|B|+1. Denote
the nodes in V by a1

i ∈ A1, a2
i ∈ A2, bj ∈ B and s, respectively, where i = 1, . . . , |A| and

j = 1, . . . , |B|. Additionally, let E = E1 ∪ E2 ∪ E3 where:

 dc_498_12

D.Sc. Dissertation Tapolcai, János 87

E1: (a1
i , bj) and (a2

i , bj) if (ai, bj) ∈ C,

E2: (s, a1
i) and (s, a2

i) for i = 1, . . . , |A|,

E3: (bj, bl) for all j = 1, . . . , |B|, l = 1, . . . , |B| and j 6= l.

A minSC instance and its transformation are given in Fig. 5.2.
We say that an edge is protected if it is part of a triangle, unprotected otherwise.

We make the following observations: edges in E1 are protected because of assumption
(i), similarly edges in E3 are also protected because of (ii), while edges in E2 are all
unprotected. The idea is that in order to protect all edges in E2 we need to add (s, bj) :
bj ∈ B edges, called cover edges henceforth. Each such (s, bj) cover edge, when added,
protects the (s, a1

i), (s, a
2
i) ∈ E2 edges for all ai ∈ A nodes adjacent to bj in G′. Thus, we

get a minimal cover of G′ exactly when all edges in E2 become protected.
To conclude the proof we need to show that (a) if G′ can be covered with k nodes from

B, then we can identify k edges to be added to G so that every edge becomes protected;
and (b) if k edges are added to G so that every edge becomes protected, then we can
identify a k node subset of B that covers every node in A.

(a) Let Bc ⊆ B be a cover in G′ with |Bc| ≤ k. Add edges (s, bl) : ∀bl ∈ Bc to E.
Then, since Bc is adjacent to every node in A1 and A2 (due to it being a cover), every
edge in E2 becomes protected. This is because, the edges (s, axi) ∈ E2, (axi , bl) ∈ E1 and
(s, bl) make up a triangle; where axi is adjacent to bl and x = 1, 2.

(b) Suppose that there is a set of cover edges F ′ such that F ′ = (s, bj) : bj ∈ B′ ⊆ B
and B′ is adjacent to every node in A1 and A2. Then, by the above reasoning, F ′ can be
converted to a set cover. Let F ∈ E be a set of edges which, when added to G, protect
all edges. First, we add all cover edges of F to F ′. Now, suppose that some edges in
F are not cover edges. F does not contain edges of the form (bi, bj) : bi, bj ∈ B and
(s, axi) : axi ∈ A1 ∪ A2, since these all exist in E. Edges (axi , bj) : axi ∈ A1 ∪ A2, bj ∈ B
can be dropped from F , as these do not protect any unprotected edge. What remains are
edges of the type (axi , a

z
j) : axi , a

z
j ∈ A1 ∪ A2. Let us call these cross edges. Furthermore,

call a node axi ∈ A1 ∪A2 protected if the edge (s, axi) is protected. We shall convert cross
edges to cover edges before adding to F ′. Clearly, we need to consider only those cross
edges where both a1

i ∈ A1 and a2
i ∈ A2 are protected by a cross edge, otherwise a cover

edge in F ′ already covers both a1
i and a2

i . Let A′1 ⊆ A1 and the “opposite nodes” A′2 ⊆ A2

be the set of these nodes. Since one cross edge can protect at most two nodes, there are at
least |A′1| cross edges protecting A′1 and A′2, and these are trivially substituted by exactly
|A′1| cover edges: for each a1

i ∈ A′1 choose a neighbor bj ∈ B and add the cover edge (s, bj)
to F ′. This will protect a2

i ∈ A′2 too. Finally, all nodes B′ are adjacent to every node in
A1 and A2, which completes the proof.

LFA Graph Extension: Weighted Graphs

In contrast to uniform cost graphs, where we could not solve the LFA graph extension
problem without changing some shortest paths, in weighted graphs we can. If an edge
with sufficiently large cost is added to the graph, then shortest paths remain intact while
LFA coverage may improve. Here, and in the rest of this chapter, “sufficiently large” will
generally mean “larger than the length of the longest shortest path”.

Definition 7. LFA graph extension problem in the weighted case (minLFAw): Given a
simple, undirected, weighted graph G = (V,E) and an integer l, is there a set F ⊆ E with

 dc_498_12

88 Tapolcai, János D.Sc. Dissertation

a1

a2

a3

an

b1

b2

b3

b4

bm

(a) G′

a11

a12

a13

a1n

a21

a22

a23

a2n

b1

b2

b3

b4

bm

s

(b) G

Figure 5.2: A minSC instance (a) and the converted graph (b).

a1

a2

a3

an

s

b1

b2

b3

b4

bm

2

1 3

4

(a) G = (V,E)

1

1

1

1

d

3

3

3

3

3

(b) d = s

d

2

2

2

1

2

2

4

4

4

(c) d ∈ A

2

4

2

4

3

d

3

3

3

3

(d) d ∈ B

Figure 5.3: The converted graph topology and link costs. Fig. (a) depicts the graph and
Fig. (b), (c) and (d) give the shortest paths and distances with different choices of the
destination d.

|F | ≤ l and properly chosen costs, so that for G′(V,E ∪ F) we have η(G′) = 1 and the
shortest paths in G coincide with the shortest paths in G′?

Next we characterize the complexity of minLFAw.

Theorem 20. The LFA graph extension problem for the weighted case (minLFAw) is
NP-complete.

Proof. The minLFAw problem is in NP, since it was formulated as an ILP in Section 5.2.5.
To prove that it is NP-hard, we again reduce minSC to minLFAw (see Definition 5): given
a minSC instance with a bipartite graph G′ = (A∪B,C) and an integer k, our task is to
define an input graph G = (V,E) for minLFAw, so that minLFAw is solvable by adding
at most k edges if and only if minSC is solvable with at most k nodes.

Let us construct G = (V,E) as follows: V = A ∪B ∪ {s} and E = E1 ∪E2 ∪E3 ∪E4

where

E1: (s, ai) with cost 1 for each i = 1, . . . , |A|,

E2: (ai, bj) with cost 2 for each (ai, bj) ∈ C,

E3: (bj, bl) with cost 3 for all j = 1, . . . , |B|, l = 1, . . . , |B| and j 6= l,

E4: (ai, aj) with cost 4 for all i = 1, . . . , |A|, j = 1, . . . , |A| and i 6= j.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 89

Fig. 5.3a shows the converted graph for the same minSC instance we used in the
previous proof (see Fig. 5.2a).

The idea here is that we embed G′ into G and, by carefully choosing the edge costs,
we ensure that achieving perfect LFA coverage in G precisely solves the minSC instance
on G′. More formally, we show that some Bc ⊆ B is a cover, if and only if η(G′′) = 1
where G′′ = (V,E ∪F) for some set of edges F : {(s, b) : b ∈ Bc} of sufficiently large cost.
We discuss the LFA coverage for different destinations separately.

1. d = s: As one easily checks in Fig. 5.3b, each node has an LFA towards destination
s. Nodes in A provide LFA for each other as they are not ordered in the d-poset and
|A| ≥ 2 by assumption (iii). Using (ii), one easily shows that nodes in B also provide
LFA for each other.

2. d ∈ A: All nodes in A \ {d} have an LFA towards d, since they are not ordered
in the d-poset and |A| ≥ 2 due to (iii) (see Fig. 5.3c). Similarly, each b ∈ B has an LFA
from some other node in B. This leaves us with the single node s that does not have an
LFA to d. This is because all of its neighbors are in A, but d is its next-hop so it can not
be used as an LFA and all other nodes in A are its children. Nodes not connected to d can
not provide an LFA to s either, since these are all its descendants. What remains are the
neighbors of d. So, we have to add an edge (s, bj) for some (d, bj) ∈ C with sufficiently
large cost to protect edge (s, d).

3. d ∈ B: First, each b ∈ B is protected due to (ii). Second, each a ∈ A that is
a neighbor of d is protected by some neighbor b ∈ B \ {d}. Such neighbor exists due
to (i). Similarly, each a ∈ A that is not a neighbor of d is protected by some neighbor
b ∈ B \ {d}, which again exists due to (i). Again, node s remains without an LFA to d.
However, at this point there already is at least one edge (s, bj) : bj ∈ B that we added
previously to have an LFA from s to some a ∈ A. This will serve as an LFA for s to d in
this case too. Note that it is guaranteed by (iii) that at least one such (s, bj) edge must
have been added, and it is enough to have just a single edge from s to B to have an LFA
for each d ∈ B.

In summary, in order to have an LFA from s to all nodes in A, we need to add edges
from s to some nodes Bc ⊆ B. Observe that Bc is adjacent to every node in A, otherwise,
we do not have LFA available from s to some of the nodes in A. So Bc is a cover exactly
when we have perfect LFA coverage, which completes the proof.

5.3 Protection Routing
Providing fully distributed, fault tolerant, hop-by-hop routing is one of the key chal-

lenges for intra-domain IP networks. This can be achieved by storing two next-hops for
each destination node in the forwarding table of the routers, and the packets are forwarded
to primary next-hop (PNH), unless PNH is unreachable and secondary next-hop (SNH) is
used instead. We follow the architecture by [115], where the routing tables are configured
in a centralized way, while the forwarding and failure recovery is in a fully distributed way
without relying on any encapsulation and signaling mechanisms for failure notification,
to meet the standard IP forwarding paradigm. A network is protected if no single link or
node failure results in forwarding loops. Kwong, Gao, Guerin and Zhang [115] conjectured
that network node connectivity is not sufficient for a network to be protectable. In the
rest of the chapter we show that this conjecture is in contradiction with a conjuncture
by Hasunuma [121, 122], and show that every four connected maximal planar graph and
every underlying graph of a 2-connected line digraph has feasible protection routing.

 dc_498_12

90 Tapolcai, János D.Sc. Dissertation

d a b c

e

f

g

h

Figure 5.4: A network G with a routing Rd drawn with solid thick arrows.

5.3.1 Motivation

Hop-by-hop routing and IP protocol have become the dominant platform for telecom
services [123, 124]. Commercial applications demand reducing the interruption in packet
forwarding to sub-50ms in case of failures. As a solution for the problem, in [115] an
intra-domain solution was proposed, where a centralized unit pre-computes a primary
and an alternate next-hops for each router, where the traffic is instantly switched to the
secondary next-hop (SNH) if the primary next-hop (PNH) becomes unavailable. There-
fore, forwarding and failure recovery are performed in a fully distributed way relaying on
traditional IP forwarding without any encapsulation and signaling mechanisms for failure
notification, similarly to O2 [125, 126], DIV-R [127], MARA [128], and LFA [96]. The key
challenge is how to avoid forwarding loops in case of failures, when the traffic is forwarded
on SNH at a single node. A network is protected if no single link of node failure results
in forwarding loops. In this section we investigate how dense should a topology be to
become protected.

Kwong, et. al [115] showed that high edge connectivity is not sufficient for a network
to be protected against every single link and node failure, and conjectured that high node
connectivity is not sufficient either. In this section we investigate the latter issue by ap-
plying the results and conjectures of Hasunuma [121, 122] to node connectivity. We show
that the conjecture by Kwong, et. al is in contradiction with a conjecture by Hasunuma,
besides we define a class of four-node-connected graphs with feasible protection routing.

5.3.2 Problem Formulation

We formulate the protection routing problem at the centralized routing entity. We
assume that the network topology information and link bandwidths are available, and the
packet forwarding is destination based (hop-by-hop) without reliance on packet marking
or encapsulation.

Protection Routing

We model the network as an undirected graph G = (V,E), with V the node set, E the
link set. For a destination node d ∈ V let Rd = (V,Ed) be a routing for traffic destined
to d, where Ed ⊆ E. Rd is a directed acyclic graph (DAG) rooted at d and defines a
destination based routing. In Rd every node has at least one outgoing link except for d.
Every outgoing link is called primary link, and the target node of every primary link is
called Primary Next Hop (PNH). See also Fig.5.4 as an example.

The routing Rd towards node d can be modeled by a partial order. Define relation ≺d
such that x ≺d s, x 6= s if there exists a path from node s to node x in Rd (i.e. there is a

 dc_498_12

D.Sc. Dissertation Tapolcai, János 91

possible packet flight from s to d through x). Node s is upstream of node x if x ≺d s, and
conversely, node s is downstream of node x if s ≺d x. Additionally, we denote by x ≺�d s
the case when nodes x and s are not ordered with each other. Besides, the neighboring
nodes of node n is denoted by NG(n). Next let us define link and protection2.

Definition 8. A network G = (V,E) is protected (with respect to node d) against single
link failure f ∈ E, if there exists a routing Rd so that either f /∈ Rd; or f = (x← s) ∈ Rd

and node s has a neighboring link (s, k) 6= f , such that

1. node k is not upstream of node s in Rd (i.e. s 6≺ k).

2. node k and all its downstream nodes (except d) have at least one PNH in Rd \ f .

On Fig. 5.4 every link is protected with the routing. Similarly we define node protec-
tion

Definition 9. The network G = (V,E) is protected (with respect to node d) against
single node failure f ∈ V , if there exists a routing Rd so that every node s ∈ NG(f) having
primary link to f (i.e. (f ← s) ∈ Rd) has a neighboring node k 6= f (i.e. k ∈ NG(s)),
such that

1. Node k is not upstream of node s in Rd (i.e. s 6≺ k).

2. Node k and all its downstream nodes (except d) have at least one PNH in Rd\NG(f).

In both definitions node k is called Secondary Next Hop and denoted by SNH d(s).
On Fig. 5.4 node e is not protected with the routing, because node f shall forward the
packet to node c after the failure of e; however c has a PNH towards the failed node e.

Definition 10. A routing Rd is protection routing in network G = (V,E) with respect
to node d if every node and link failure is protected.

Definition 11. An undirected graph G = (V,E) is protectable if a protection routing
exists for all d ∈ V , otherwise the graph is unprotectable.

Note that G is protectable as it is shown on Fig. 5.6. In 2010 Kwong, et. al has
showed [115], that the graph edge-connectivity is not a sufficient condition for a network
to be protectable. Besides, for node connectivity, 2- and 3-node-connected unprotectable
graphs were constructed, and for networks with higher node-connectivity the following
conjecture was given:

Conjecture 1 ([115, Conjecture 4.1]). For any given k ≥ 4, there exists a k-node-
connected graph that is unprotectable.

In Section 5.3.3. we show that this conjecture is in contradiction with a conjecture by
Hasunuma from 2001.

2In [115] the two definitions were merged into a more general definition on component failures.

 dc_498_12

92 Tapolcai, János D.Sc. Dissertation

Completely Independent Spanning Trees

Next we define the completely independent spanning trees problem and some general
notations. Let T be a spanning tree in graph G. Let T (s, t) denote the path in tree T
between nodes s and t.

Definition 12. Let T 1 and T 2 be two spanning trees of an undirected graph G. We call
them completely independent spanning trees if for any two nodes s and t the paths from
s to d in T 1 and T 2 (i.e. T 1(s, d) and T 2(s, d)) are node-disjoint apart from their end
nodes.

In [121] Hasunuma showed that there are k completely independent spanning trees
in the underlying graph of a k-connected line digraph and in [122] that there are two
completely independent spanning trees in any 4-connected maximal planar graph.

Computing completely independent spanning trees is NP-hard [121]. According to our
experiments for real size IP networks it can be done with ILP in reasonable time.

Completely independent spanning trees are special edge-disjoint spanning trees. On
edge-disjoint spanning trees, Nash-Williams [49] showed that there are k edge-disjoint
spanning trees in any 2k-edge-connected graph. In 2001 [121, 122] Hasunuma gave a
similar conjecture for node-disjoint graphs.

Conjecture 2 ([121], [122, Conjecture 2]). There are k completely independent spanning
trees in any 2k-connected graph.

The main contribution of this section is to show that two completely independent
spanning trees are sufficient for a network to be protected. As a result, both Conjecture 2
and Conjecture 1 cannot be true at the same time.

5.3.3 Sufficient Conditions for Protectable Graphs

In routingRd if a node has multiple outgoing links the traffic is split evenly across them,
which is favoured mainly for load balancing issues. As a result, between certain node-pairs
the traffic is routed along multiple paths, called Equal-Cost Multi-Path (ECMP). In this
section, for the sake of simplicity, we forbid ECMP and consider the case where routing
Rd should be a tree instead of a DAG. Clearly, a d rooted tree is a special DAG, and thus
with this new constraint the protection routing problem becomes harder to solve. In this
case each node n has a single PNH, denoted by PNH d(n), and Rd is a d rooted spanning
tree. An important observation is that when Rd is a spanning tree the second property of
Definition 8 and 9 is not needed. In other words our task is to find a d rooted spanning
tree Rd, such that each node s has a neighbor node k not upstream to the downstream
adjacent node of s, except when the downstream adjacent node is the destination node d.

We call a degree one node of a tree a leaf node; otherwise it is an internal node. In
[121] the following property of two completely independent spanning trees was proven.

Theorem 21 ([121, Theorem 2.1]). Let T1 and T2 be two spanning trees in the graph G.
Then T1 and T2 are completely independent if and only if T1 and T2 are edge-disjoint and
for any vertex v of G there is at most one spanning tree Ti such that node v is an internal
node of Ti.

Fig. 5.5 shows an example of two completely independent spanning trees. According
to Theorem 21 the nodes of the graph can be classified into the following three categories.
Each node n is either

 dc_498_12

D.Sc. Dissertation Tapolcai, János 93

d a b c

e

f

g

h

(a) The circles are leaf nodes of T 1, the boxes are leaf nodes
of T 2, and rounded boxes are leaf nodes in both trees.

d a b c

e

f

g

h

(b) The two sub-trees: T̂ 1 is with solid
thick lines, and T̂ 2 is with dashed lines.

Figure 5.5: Two complete independent spanning trees, where T 1 is with solid thick lines,
and T 2 is with dashed lines.

1. a leaf node in T1, or

2. a leaf node in T2, or

3. a leaf node both in T1 and T2.

Next we erase some leaf links from T 1 and T 2 to obtain two sub-trees, called skeletons.

Definition 13. For each node n ∈ G, we erase a leaf link from either T 1 or T 2. The
resulting trees are called skeletons denoted by T̂ 1 for T 1 and T̂ 2 for T 2.

Note that according to Theorem 21 a node cannot be an internal node in both trees.
Fig. 5.5(b) shows the skeletons T̂ 1 and T̂ 2 of the example on Fig. 5.5(a).

Observation 2. Each skeleton is a connected sub-tree of graph G.

Proof. T̂ i is a sub-tree of T i having every internal node and some leaf nodes.

Observation 3. Each node n ∈ V is a part of a skeleton and adjacent to a node in the
other skeleton.

Proof. Completely independent spanning trees T 1 and T 2 cover every node of the graph
twice, thus by erasing one (leaf) link form T 1 or T 2 each node remains covered by either
T̂ 1 or T̂ 2 but not both. By symmetry let us assume that node n ∈ T̂ 1. Since node n is a
leaf node of T 2, node n is adjacent with an internal node of T 2 which is part of skeleton
T̂ 2.

Theorem 22. A graph with two completely independent spanning trees T 1 and T 2 is
protectable.

Proof. We give a deterministic polynomial construction, which builds up a protection
routing Rd from two completely independent spanning trees T 1 and T 2 respect to an
arbitrary node d. First, we compute the skeletons of the two completely independent
spanning trees T 1 and T 2, denoted by T̂ 1 and T̂ 2 respectively. By symmetry we assume
node d ∈ T̂ 1. Let link e be the leaf link of T 2 adjacent to node d. Note that link e
connects the two skeletons. The protection routing Rd contains the links of T̂ 1 and T̂ 2

 dc_498_12

94 Tapolcai, János D.Sc. Dissertation

d a b c

e

f

g

h

Figure 5.6: Protection routing to node d, where PNH is drawn with solid thick arrows
and SNH with dashed arrows.

and link e, and all the links are directed to node d. Fig. 5.6 shows the resulted protection
routing of example Fig. 5.5.

To complete the proof we need to show that the network is protected by Rd. Clearly,
Rd is a spanning tree because both T̂ 1 and T̂ 2 are connected sub-tree of graph G covering
every node, and edge e connects the two skeletons. In Rd every node u ∈ T̂ 1 is routed to
node d along links of skeleton T̂ 1 only, while each node v ∈ T̂ 2 is routed to node d along
links of skeleton T̂ 2 and finally link e. Therefore, the routing from any node in T̂ 1 and
any node in T̂ 2 are node- and link-disjoint (except for node d). By Observation 3 each
node s 6= d is adjacent with a node n form the other skeleton, which can be chosen as
SNH, and concludes the proof.

Note that the proposed construction is much stronger than needed for protection
routing, because (1) it guarantees that after a packet is sent to SNH it will travel a
fully disjoint route to the destination, compared to its original route. By the definition
of protection routing the two routes may be overlapping, and should be disjoint from
the failed neighboring link or node. Besides, (2) the proposed construction cannot take
advantages of the possible ECMPs.

Corollaries

Corollary 7. Conjecture 2 by Kwong et al. [115] and Conjecture 1 by Hasunuma [122]
is in contradiction.

Proof. According to Conjecture 1 there are two completely independent spanning trees
in any 4-node-connected graph. With two completely independent spanning trees by
Theorem 22 a protection routing can be computed, which is in contradiction with Con-
jecture 2.

Corollary 8. Every 4-connected maximal planar graph is protectable, and the protection
routing can be calculated in linear time O(|E|+ |V |).

Proof. According to [122, Theorem 2] there are two completely independent spanning
trees in any 4-connected maximal planar graph, which can be computed in linear time.
With two completely independent spanning trees T 1 and T 2 by Theorem 22 a protection
routing can be computed, by iterating through the nodes of the graph. Each step takes
linear time.

Corollary 9. Every underlying graph of a 2-connected line digraph is protectable.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 95

Proof. It has been shown in [121] that there are k completely independent spanning trees
in the underlying graph of a k-connected line digraph. With two completely independent
spanning trees according to the construction of Theorem 22 protection routing can be
built.

 dc_498_12

Chapter 6

Summary of New Results

In the dissertation we have provided analytical solutions to practical problems improving
the reliability of Internet for every user. First I identified some key problems to be solved,
and described the formal core to be investigated. To achieve highly reliable Internet
solutions, I focused on the following two sub-problems:

Claims 1-2 Optical layer failure localization and restoration. We provided solutions in
the backbone networks that could provide much more reliable and flexible service
for IP networks. The approach is related to combinatorial group testing.

Claim 3 IP Fast Reroute (IPFRR). IPFRR is designed for fast failure restoration in
IP networks. My focus was to improve the performance of Loop Free Alternate
(LFA), which is the only commercially available IPFRR in the routers. The related
problems are connected to trees and connectivity in graphs, and complexity theory.

6.1 List of Claims
Claim 1. Failure Localization via a Central Controller

Claim 1.1. There is a polynomial time near optimal construction on complete graphs
with b = 4+dlog2 (|E|+ 1)e m-trails to achieve UFL for single link failures, when |V | ≥ 6
[5, 8, Theorem 3].

Claim 1.2. There is a polynomial time optimal construction on 2 · dlog2 (|E|+ 1)e con-
nected graphs with b = dlog2 (|E|+ 1)e bm-trails to achieve UFL for single link failures,
when [129, Theorem 4].

The theorem is applicable to complete graphs with at least 18 nodes. It improves the
b ≈ 2dlog2 |E|e construction by Harvey at. el. [30].

Claim 1.3. There is a polynomial time near optimal construction on 2D rectangular grid
graphs Sm,n(E, V) with b = 3 + dlog2 (|E|+ 1)e bm-trails to achieve UFL for single link
failures, when m,n ≥ 1 [6, 129, Theorems 6 and 5].

It improves the b ≈ 3dlog2 |E|e construction by Harvey at. el. [30]. These construc-
tions are excellent benchmarks as shown in Section 2.2.5.

A circulant Cn(1, 2) graph has nodes V = {v0, v1, . . . , vn−1} with each node vj adjacent
to [vj+1 mod n] and [vj+2 mod n].

96

 dc_498_12

D.Sc. Dissertation Tapolcai, János 97

Claim 1.4. There is a polynomial time optimal construction on circulant graph G =
Cn(1, 2) with b = dlog2 (|E|+ 1)e m-trails to achieve UFL for single link failures. Each
m-trail is a spanning sub-graph of G thus it is a near optimal NL-UFL solution with
bandwidth cost ‖T ‖ = b · n+ 1 [10, Theorem 7 and 11, and Corollary 3].

Claim 1.5. To obtain fast and high-quality m-trail solutions, a novel algorithm based
on random code assignment (RCA) and random code swapping (RCS) was developed.
Through extensive simulations we show that the proposed algorithm can achieve signifi-
cantly better performance compared to the prior art. The new algorithm uses 3-4 order
less computation time without losing solution quality [5, 8] (see also Section 2.2.7).

Since the appearance of [5] several heuristic algorithms have been developed to solve
the same problem. They can achieve slightly better performance however with a signifi-
cantly longer running time (see also Fig. 2.9).

Claim 1.6. To obtain m-trail solutions for multiple failures, a novel algorithm based on
combinatorial group testing (CGT) and greedy code swapping (GCS) was developed [11].
I have proved that each GCS requires O(|E|2 log |E|) steps (see also Section 2.3.2).

Claim 2. Distributed Single Failure Localization and Restoration in All-Optical Mesh
Networks

Claim 2.1. Let T = T1, . . . , Tb be a valid m-trail solution for NL-UFL for single failure.
We have the following lower bounds on the bandwidth cost. For sparse networks

‖T ‖ ≥ ξ|V | log2 (|E|+ 1),

where ξ depends on the diameter and sparsity of graph [10] (see the details in Theorem 9).
And for dense networks

‖T ‖ ≥ 2|E|
(

1− 1

|V |

)
[10, Theorem 12].

In our experiments ξ is somewhere in [0.85, 0.95] for random networks with average
nodal degree less than 6. We further improve the lower bound for sparse networks in
Theorem 11 for almost ξ ≈ 1.0. A more general results is proved. Let us consider a
generalized combinatorial group testing problem where the cost of a group test T depends
on its cardinality |T | according to a given cost function ω(|T |). Function ω has the
following properties:

(i) ω(1) = 1, meaning that a test with one element has a unit cost.

(ii) ω(x + 1) ≥ ω(x) for every positive integer 1 ≤ x ≤ m − 1. Testing a larger group
cannot decrease the cost.

(iii) ω(x)
x
≥ ω(x+1)

x+1
whenever 1 ≤ x < m.

Claim 2.2. The total cost of localizing a single faulty item among m items with group
tests T1, . . . , Tb is [7, Theorem 10]

b∑
i=1

ω(|Ti|) ≥ min
1≤x≤m

2

ω(x)
(

log2 x+
m

x
− 1
)
.

 dc_498_12

98 Tapolcai, János D.Sc. Dissertation

Claim 2.3. There is an optimal NL-UFL construction for single failure on line, complete
and star graphs [10, Theorem 13, 14 and 15].

Inspired by the design of the optimal construction for circulant and complete graphs
(Thesis 1.4 and 2.3)a new heuristic algorithm is proposed, which employs spanning tree
as the structure for m-trails.

Claim 2.4. To obtain NL-UFL solutions with bm-trails for single failures, a novel algo-
rithm based on random spanning tree assignment (RSTA) and greedy link swapping (GLS)
was developed. The randomly generated spanning trees are deployed into the network at
the beginning. Next, to ensure global code uniqueness of each link, GLS resolves possible
collisions among preliminarily assigned link codes [10] (see also Section 3.4).

Extensive simulation on thousands of randomly generated topologies was conducted
to verify the proposed heuristic algorithm, where we experienced an average gap of less
than 9.7% to the best lower bound.

By integrating NL-UFL failure localization scheme with failure dependent protection
(FDP), a novel restoration framework is introduced, which aims to achieve the following
three desired features of optical layer protection in all-optical mesh networks:

1. a signaling-free and completely all-optical restoration process;

2. 100% restorability for any multi-link SRLG failure event; and

3. optimal capacity efficiency as FDP.

The key idea is to allow the spare capacity be reused for failure monitoring. Clearly, spare
capacity depends on the amount of traffic, while monitoring resources on the topology.
Let θ measure the traffic demand as a percentage of s − d pairs that are loaded with a
working path.

Claim 2.5. For any positive θ > 0, there a FDP-SCA problem (with topology, SRLG
and traffic) where the monitoring resources will never dominate the spare capacity [The-
orem 16].

Through extensive simulation we showed that the proposed approach achieves zero
monitoring overhead over the sparse capacity.

Claim 3. IP Fast ReRoute

The main focus was Loop Free Alternates (LFA) which is the only standardized and
readily available IPFRR technology. At least two major router vendors are offering LFA-
based IPFRR support out of the box [108, 109].

Claim 3.1. The LFA coverage for |V | ≥ 2 is at most

η(G) ≤ |V |
|V | − 1

(∆− 2) +
2

|V | − 1
,

where ∆ denotes the average nodal degree, and at least

η(G) ≥ |V |
|V | − 1

∆
2
− 1

∆max − 1
+

1

(|V | − 1)(∆max − 1)
.

where ∆max denotes the maximal nodal degree [14, 117, Theorems 17 and 18].

 dc_498_12

D.Sc. Dissertation Tapolcai, János 99

The bounds are for sparse networks. Next, we ask how to add edges to a graph to
achieve full LFA coverage.

Claim 3.2. The LFA graph extension problem for both the uniform cost and weighted
graph cases are NP-complete [12] (See also the formal problem definitions at Definition 4
and 7, and for the proof Theorems 19 and 20).

The proofs reduce these problems to minimal set cover through reversible transforma-
tions. Thus the heuristic approaches developed for minimal set cover can solve the LFA
graph extension problem as well. Moreover, it is an efficient approach in the practice
[12, 130].

We also focus on Protection Routing (PR), which requires a centralized unit that
controls the forwarding table at each router but it still can be implemented with OpenFlow
routers. Kwong, et. al [115] investigated the relationship between graph connectivity and
100% network failure protection Protection Routing. The next thesis is related to their
Conjecture 4.1 [115]. We call two spanning trees completely independent if the paths in
the two trees between any node pair is node-disjoint, apart from their end nodes [121]
(see also Definition 12).

Claim 3.3. A graph with two completely independent spanning trees is protectable with
Protection Routing [131, Theorem 22].

 dc_498_12

Bibliography

[1] S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, and M. Jaeger, “General
availability model for multilayer transport networks,” in Proc. IEEE DRCN, Lacco
Ameno, Italy, Oct. 16-19, 2005.

[2] P.-H. Ho, J. Tapolcai, and H. T. Mouftah, “On optimal diverse routing for shared
protection in mesh WDM networks,” IEEE Trans. Reliability, vol. 53, no. 6, pp.
2216–225, Jun. 2004.

[3] P.-H. Ho, J. Tapolcai, and T. Cinkler, “Segment shared protection in mesh commu-
nication networks with bandwidth guaranteed tunnels,” IEEE/ACM Trans. Net-
working, vol. 12, no. 6, pp. 1105–1118, December 2004.

[4] J. Tapolcai, P. Cho lda, T. Cinkler, K. Wajda, A. Jajszczyk, and D. Verchere,
“Quantification of resilience and quality of service,” in Proc. IEEE International
Conference on Communications (ICC), Istanbul, Turkey, Jun. 2006, pp. 477–482.

[5] J. Tapolcai, B. Wu, and P.-H. Ho, “On monitoring and failure localization in mesh
all-optical networks,” in Proc. IEEE INFOCOM, Rio de Janero, Brasil, 2009, pp.
1008–1016.

[6] J. Tapolcai, L. Rónyai, and P.-H. Ho, “Optimal solutions for single fault localization
in two dimensional lattice networks,” in IEEE INFOCOM Mini-Symposium, San
Diego, CA, USA, 2010.

[7] J. Tapolcai, P.-H. Ho, P. Babarczi, and L. Rónyai, “On achieving All-Optical fail-
ure restoration via monitoring trails,” in Proc. IEEE INFOCOM Mini-Symposium,
Turin, Italy, USA, Apr. 2013.

[8] J. Tapolcai, B. Wu, P.-H. Ho, and L. Rónyai, “A novel approach for failure localiza-
tion in all-optical mesh networks,” IEEE/ACM Trans. Networking, vol. 19, no. 1,
pp. 275 –285, feb 2011.

[9] P. Babarczi, J. Tapolcai, and P.-H. Ho, “Adjacent link failure localization with
monitoring trails in all-optical mesh networks,” IEEE/ACM Transactions on Net-
working, vol. 19, no. 3, pp. 907 – 920, June 2011.

[10] J. Tapolcai, P.-H. Ho, L. Rónyai, and B. Wu, “Network-wide local unambiguous
failure localization (NWL-UFL) via monitoring trails,” IEEE/ACM Transactions
on Networking, 2012.

100

 dc_498_12

D.Sc. Dissertation Tapolcai, János 101

[11] J. Tapolcai, P.-H. Ho, L. Rónyai, P. Babarczi, and B. Wu, “Failure localization
for shared risk link groups in all-optical mesh networks using monitoring trails,”
IEEE/OSA J. Lightwave Technol., vol. 29, no. 10, pp. 1597 –1606, may 2011.

[12] G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, “IP fast ReRoute: loop free
alternates revisited,” in Proc. IEEE INFOCOM, Shanghai, P.R. China, 4 2011.

[13] J. Tapolcai and G. Rétvári, “Router virtualization for improving IP-level resilience,”
in Proc. IEEE INFOCOM, Turin, Italy, USA, Apr. 2013.

[14] G. Rétvári, L. Csikor, J. Tapolcai, G. Enyedi, and A. Császár, “Optimizing IGP link
costs for improving IP-level resilience,” in Proc. International Workshop on Design
Of Reliable Communication Networks (DRCN), Krakow, Poland, 2011, pp. 62–69.

[15] A. Atlas, R. Kebler, M. Konstantynowicz, G. Enyedi, A. Csaszar, R. White, and
M. Shand, An Architecture for IP/LDP Fast-Reroute Using Maximally Redundant
Trees, Internet-Draft, Standards Track status Std., 2011.

[16] Csaszar, G. Enyedi, J. Tantsura, S. Kini, J. Sucec, and S. Das, IP Fast Re-Route
with Fast Notification, Internet-Draft, Standards Track status Std., 2011.

[17] C. Mas, I. Tomkos, and O. Tonguz, “Failure location algorithm for transparent
optical networks,” IEEE J. Select. Areas Commun., vol. 23, no. 8, pp. 1508–1519,
2005.

[18] H. Zeng and C. Huang, “Fault detection and path performance monitoring in
meshed all-optical networks,” in Proc. IEEE GLOBECOM, vol. 3, 2004, pp. 2014–
2018.

[19] H. Zeng, C. Huang, and A. Vukovic, “A Novel Fault Detection and Localization
Scheme for Mesh All-optical Networks Based on Monitoring-cycles,” Photonic Net-
work Communications, vol. 11, no. 3, pp. 277–286, 2006.

[20] H. Zeng and A. Vukovic, “The variant cycle-cover problem in fault detection and
localization for mesh all-optical networks,” Photonic Network Communications,
vol. 14, no. 2, pp. 111–122, 2007.

[21] B. Wu, K. Yeung, B. Hu, and P. H. Ho, “M2-CYCLE: an Optical Layer Algorithm
for Fast Link Failure Detection in All-Optical Mesh Networks,” Elservier Computer
Networks, vol. 55, no. 3, pp. 748 – 758, 2011.

[22] B. Wu, K. Yeung, and P.-H. Ho, “Monitoring cycle design for fast link failure
localization in all-optical networks,” IEEE/OSA J. Lightwave Technol., vol. 27,
no. 10, pp. 1392–1401, 2009.

[23] C. Li, R. Ramaswami, I. Center, and Y. Heights, “Automatic fault detection, iso-
lation, and recovery in transparentall-optical networks,” IEEE/OSA J. Lightwave
Technol., vol. 15, no. 10, pp. 1784–1793, 1997.

[24] S. Stanic, S. Subramaniam, H. Choi, G. Sahin, and H. Choi, “On monitoring
transparent optical networks,” in Int. Conference on Parallel Processing Workshops
(ICPPW ’02), 2002, pp. 217–223.

 dc_498_12

102 Tapolcai, János D.Sc. Dissertation

[25] Y. Wen, V. Chan, and L. Zheng, “Efficient fault-diagnosis algorithms for all-optical
WDM networks with probabilistic link failures,” IEEE/OSA J. Lightwave Technol.,
vol. 23, pp. 3358–3371, 2005.

[26] C. Assi, Y. Ye, A. Shami, S. Dixit, and M. Ali, “A hybrid distributed fault-
management protocol for combating single-fiber failures in mesh based DWDM
optical networks,” in Proc. IEEE GLOBECOM, 2002, pp. 2676–2680.

[27] B. Wu, P.-H. Ho, and K. Yeung, “Monitoring trail: On fast link failure localization
in all-optical WDM mesh networks,” IEEE/OSA J. Lightwave Technol., vol. 27,
no. 18, pp. 4175–4185, 2009.

[28] M. Maeda, “Management and control of transparent optical networks,” IEEE J.
Select. Areas Commun., vol. 16, no. 7, pp. 1008–1023, 1998.

[29] P. Demeester, M. Gryseels, A. Autenrieth, C. Brianza, L. Castagna, G. Signorelli
et al., “Resilience in multilayer networks,” IEEE Commun. Mag., vol. 37, no. 8, pp.
70–76, 1999.

[30] N. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V. Chan, “Non-Adaptive Fault
Diagnosis for All-Optical Networks via Combinatorial Group Testing on Graphs,”
in Proc. IEEE INFOCOM, 2007, pp. 697–705.

[31] B. Wu, P.-H. Ho, K. Yeung, J. Tapolcai, and H. Mouftah, “Optical Layer Moni-
toring Schemes for Fast Link Failure Localization in All-Optical Networks,” IEEE
Communications Surveys & Tutorials, vol. 13, no. 1, pp. 114 –125, quarter 2011.

[32] C. Mas and P. Thiran, “An efficient algorithm for locating soft and hard failures in
WDM networks,” IEEE J. Select. Areas Commun., vol. 18, no. 10, pp. 1900–1911,
2002.

[33] J. Maisonneuve, “Nonstop routing in highly available networks,” in Proc. IEEE
DRCN, Banff, Canada, Oct. 2003, pp. 228–235.

[34] A. Haddad, E. Doumith, and M. Gagnaire, “A fast and accurate meta-heuristic
for failure localization based on the monitoring trail concept,” Telecommunication
Systems, pp. 1–12, 2011.

[35] S. Ahuja, S. Ramasubramanian, and M. Krunz, “Single link failure detection in
all-optical networks using monitoring cycles and paths,” IEEE/ACM Trans. Net-
working, vol. 17, no. 4, pp. 1080–1093, 2009.

[36] ——, “SRLG failure localization in optical networks,” IEEE/ACM Trans. Network-
ing, vol. 19, no. 4, pp. 989–999, 2011.

[37] E. A. Doumith, S. A. Zahr, and M. Gagnaire, “Monitoring-tree: An innovative
technique for failure localization in WDM translucent networks,” in Proc. IEEE
GLOBECOM, 2010, pp. 1–6.

[38] B. Wu, P.-H. Ho, J. Tapolcai, and P. Babarczi, “Optimal allocation of monitoring
trails for fast SRLG failure localization in all-optical networks,” in Proc. IEEE
GLOBECOM, 2010.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 103

[39] E. Moghaddam, J. Tapolcai, D. Mazroa, and . Hosszu, “Physical impairment of
monitoring trails in all optical transparent networks,” in Int. Congress on Ultra
Modern Telecommunications and Control Systems and Workshops (ICUMT), 2011.

[40] B. Wu, P.-H. Ho, J. Tapolcai, and X. Jiang, “A novel framework of fast and unam-
biguous link failure localization via monitoring trails,” in IEEE INFOCOM WIP,
San Diego, 2010.

[41] P. Babarczi, J. Tapolcai, and P.-H. Ho, “SRLG failure localization with monitoring
trails in all-optical mesh networks,” in Proc. International Workshop on Design Of
Reliable Communication Networks (DRCN), Krakow, Poland, 2011, pp. 188–195.

[42] S. Stanic, S. Subramaniam, G. Sahin, H. Choi, and H. A. Choi, “Active monitoring
and alarm management for fault localization in transparent all-optical networks,”
IEEE Trans. on Network and Service Management, vol. 7, no. 2, pp. 118–131, 2010.

[43] C. Machuca and M. Kiese, “Optimal placement of monitoring equipment in trans-
parent optical networks,” in Proc. IEEE DRCN, 2009, pp. 1–6.

[44] R. Diestel, Graph theory. Springer New York, 2000.

[45] H. N. Gabow and H. H. Westermann, “Forests, frames, and games: Algorithms for
matroid sums and applications,” Algorithmica, vol. 7, no. 1, pp. 465–497, 1992.

[46] E. Lucas, Recreations Mathematiques. Gauthier-Villars, Paris, 1893.

[47] B. Alspach, “The wonderful walecki construction,” Bull. Inst. Combin. Appl, vol. 52,
pp. 7–20, 2008.

[48] W. Tutte, “On the problem of decomposing a graph into n connected factors,”
Journal of the London Mathematical Society, vol. 1, no. 1, pp. 221–230, 1961.

[49] C. Nash-Williams, “Edge-disjoint spanning trees of finite graphs,” Journal of the
London Mathematical Society, vol. 1, no. 1, pp. 445–450, 1961.

[50] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cam-
bridge University Press, 1994.

[51] Y. Zhao, S. Xu, X. Wang, and S. Wang, “A new heuristic for monitoring trail
allocation in all-optical WDM networks,” in Proc. IEEE GLOBECOM, dec. 2010,
pp. 1 –5.

[52] Y. Zhao, S. Xu, B. Wu, X. Wang, and S. Wang, “Monitoring trail allocation in
all-optical networks with the random next hop policy,” in IEEE High Performance
Switching and Routing (HPSR), 2012, pp. 192–197.

[53] J. Tapolcai, “Web page on m-trail/tree design: simulation environments, examples
and technical reports,” http://opti.tmit.bme.hu/∼tapolcai/mtrail.

[54] F. K. Hwang and V. T. Sós, “Non-adaptive hypergeometric group testing,” Studia
Sci. Math. Hungar, vol. 22, pp. 257–263, 1987.

 dc_498_12

104 Tapolcai, János D.Sc. Dissertation

[55] D. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications. World
Scientific, 2000.

[56] D. Eppstein, M. Goodrich, and D. Hirschberg, “Improved combinatorial group test-
ing for real-world problem sizes,” in Workshop on Algorithms And Data Structures
(WADS). Waterloo, ON, Canada: Springer, Aug. 2005, pp. 86–98.

[57] J. W. Suurballe, “Disjoint Paths in a Network,” Networks, vol. 4, pp. 125–145, 1974.

[58] A. Schrijver, Combinatorial optimization: polyhedra and efficiency. Springer, 2003.

[59] “LEMON: A C++ Library for Efficient Modeling and Optimization in Networks,”
http://lemon.cs.elte.hu.

[60] H. Zeng, C. Huang, and A. Vukovic, “A novel fault detection and localization scheme
for mesh all-optical networks based on monitoring-cycles,” Photonic Communication
Networking, pp. 277–286, 2006.

[61] D. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE Network,
vol. 14, no. 6, pp. 16–23, 2000.

[62] K. Lee and E. Modiano, “Cross-layer survivability in wdm-based networks,” in Proc.
IEEE INFOCOM, 2009, pp. 1017–1025.

[63] M. Médard, R. Barry, S. Finn, W. He, and S. Lumetta, “Generalized loop-back
recovery in optical mesh networks,” IEEE/ACM Trans. Networking, vol. 10, no. 1,
p. 164, 2002.

[64] N. Ogino and H. Nakamura, “All-optical monitoring path computation based on
lower bounds of required number of paths,” in IEEE ICC, 2011.

[65] M. Mao and K. Yeung, “Super Monitor Design for Fast Link Failure Localization
in All-Optical Networks,” in IEEE ICC, 2010.

[66] D. Aldous, “The random walk construction of uniform spanning trees and uniform
labelled trees,” SIAM Journal on Discrete Mathematics, vol. 3, no. 4, pp. 450–465,
1990.

[67] A. Broder, “Generating random spanning trees,” in Annual Symposium on Foun-
dations of Computer Science. IEEE Computer Society, 1989, pp. 442–447.

[68] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–Survivable
Network Design Library,” in Proc. Int. Network Optimization Conference (INOC),
April 2007.

[69] D. Papadimitriou and E. Mannie, “Analysis of generalized multi-protocol label
switching GMPLS-based recovery mechanisms (including protection and restora-
tion),” RFC 4428, March, Tech. Rep., 2006.

[70] S. S. Lumetta, M. Médard, and Y.-C. Tseng, “Capacity versus robustness: A trade-
off for link restoration in mesh networks,” IEEE/OSA J. Lightwave Technol., vol. 18,
no. 12, pp. 1765–1775, December 2000.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 105

[71] W. D. Grover, “The protected working capacity envelope concept: An alternate
paradigm for automated service provisioning,” IEEE Commun. Mag., vol. 42, no. 1,
pp. 62–69, january 2004.

[72] D. A. Schupke, W. D. Grover, and M. Clouqueur, “Strategies for enhanced dual
failure restorability with static or reconfigurable p-cycle networks,” in Proc. IEEE
ICC, Paris, France, Jun. 2004, pp. 1628–1633.

[73] B. Wu, K. Yeung, and P.-H. Ho, “Ilp formulations for p-cycle design without candi-
date cycle enumeration,” IEEE/ACM Trans. Networking, vol. 18, no. 1, pp. 284–295,
2010.

[74] S. Sebbah and B. Jaumard, “P-cycle based dual failure recovery in WDM mesh net-
works,” in Proc. IFIP Working Conference on Optical Network Design & Modelling
(ONDM), 2009.

[75] R. R. Iraschko, M. MacGregor, and W. D. Grover, “Optimal capacity placement for
path restoration in STM or ATM mesh survivable networks,” IEEE/ACM Trans.
Networking, pp. 325–336, June 1998.

[76] Y. Xiong and L. Mason, “Restoration strategies and spare capacity requirements
in self-healing atm networks,” IEEE/ACM Trans. Networking, vol. 7, no. 1, pp.
98–110, Oct. 1999.

[77] H. Choi, S. Subramaniam, and H. Choi, “Loopback recovery from double-link fail-
ures in optical mesh networks,” IEEE/ACM Trans. Networking, vol. 12, no. 6, pp.
1119–1130, 2004.

[78] Y. Liu, D. Tipper, and P. Siripongwutikorn, “Approximating optimal spare capacity
allocation by successive survivable routing,” IEEE/ACM Trans. Networking, vol. 13,
no. 1, pp. 198–211, Feb. 2005.

[79] S. Ramasubramanian and A. Harjani, “Comparison of failure dependent protection
strategies in optical networks,” Photonic Network Communications, vol. 12, no. 2,
pp. 195–210, 2006.

[80] D. Wang and G. Li, “Efficient distributed bandwidth management for mpls fast
reroute,” IEEE/ACM Trans. Networking, vol. 16, no. 2, pp. 486–495, 2008.

[81] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to rsvp-te for lsp tun-
nels,” IETF RFC 4090, May 2001.

[82] J. Doucette and W. D. Grover, “Comparison of mesh protection and restoration
schemes and the dependency on graph connectivity,” in Proc. IEEE DRCN, Oct.
2001, pp. 121–128.

[83] Y. Liu and D. Tipper, “Spare capacity allocation for non-linear link cost and failure-
dependent path restoration,” in Proc. IEEE DRCN, 2001.

[84] R. R. Iraschko and W. D. Grover, “A highly efficient path-restoration protocol for
management of optical network transport integrity,” IEEE J. Select. Areas Com-
mun., vol. 18, no. 5, pp. 779–794, May 2000.

 dc_498_12

106 Tapolcai, János D.Sc. Dissertation

[85] W. Grover, J. Doucette, M. Clouqueur, D. Leung, and D. Stamatelakis, “New op-
tions and insights for survivable transport networks,” IEEE Commun. Mag., vol. 40,
no. 1, pp. 34–41, Jan. 2002.

[86] R. Martin, M. Menth, and K. Canbolat, “Capacity requirements for the one-to-one
backup option in mpls fast reroute,” in Proc. BroadNets, San Jose,CA, Oct. 2006.

[87] M. Frederick, P. Datta, and A. Somani, “Sub-graph routing: a generalized fault-
tolerant strategy for link failures in wdm optical networks,” Computer Networks,
vol. 50, no. 2, pp. 181–199, 2006.

[88] S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh networks, part ii -
restoration,” in Proc. IEEE ICC, 1999, pp. 2023–2030.

[89] H. Wang, E. Modiano, and M. Médard, “Partial path protection for wdm networks:
End-to-end recovery using local failure information,” in Proc. IEEE Symposium on
Computers and Communications (ISCC), 2002, pp. 719–725.

[90] W. D. Grover, Mesh-based Survivable Networks: Options and Strategies for Optical,
MPLS, SONET and ATM Networking. Upper Saddle River, New Jersey: Prentice
Hall PTR, 2003.

[91] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in Communication
and Computer Networks. The Morgan Kaufmann Series in Networking, 2004.

[92] B. Wu, P.-H. Ho, K. Yeung, J. Tapolcai, and H. Mouftah, “CFP: Cooperative fast
protection,” IEEE/OSA J. Lightwave Technol., vol. 28, no. 7, pp. 1102 –1113, apr.
2010.

[93] S. Maesschalck, D. Colle, I. Lievens, M. Pickavet, P. Demeester, C. Mauz, M. Jaeger,
R. Inkret, B. Mikac, and J. Derkacz, “Pan-European optical transport networks: an
availability-based comparison,” Photonic Network Communications, vol. 5, no. 3,
pp. 203–225, 2003.

[94] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-second IGP
convergence in large IP networks,” SIGCOMM Comput. Commun. Rev., vol. 35,
no. 3, pp. 35–44, 2005.

[95] M. Shand and S. Bryant, “IP Fast Reroute framework,” RFC 5714, Jan 2010.

[96] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-Free Alter-
nates,” RFC 5286, 2008.

[97] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah, “Proactive vs reactive
approaches to failure resilient routing,” in INFOCOM, 2004.

[98] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah, “Failure in-
ferencing based fast rerouting for handling transient link and node failures,” in
INFOCOM, 2005.

[99] G. Enyedi, G. Rétvári, and T. Cinkler, “A novel loop-free IP fast reroute algorithm,”
in EUNICE, 2007.

 dc_498_12

D.Sc. Dissertation Tapolcai, János 107

[100] I. Hokelek, M. Fecko, P. Gurung, S. Samtani, S. Cevher, and J. Sucec, “Loop-free
IP Fast Reroute using local and remote LFAPs,” Internet Draft, Feb 2008.

[101] A. Kvalbein, A. F. Hansen, T. Čičic, S. Gjessing, and O. Lysne, “Multiple routing
configurations for fast IP network recovery,” IEEE/ACM Trans. Netw., vol. 17,
no. 2, pp. 473–486, 2009.

[102] T. Čičic, A. F. Hansen, and O. K. Apeland, “Redundant trees for fast IP recovery,”
in Broadnets, 2007, pp. 152–159.

[103] A. Li, X. Yang, and D. Wetherall, “SafeGuard: safe forwarding during route
changes,” in ACM CoNEXT, 2009, pp. 301–312.

[104] S. Bryant, C. Filsfils, S. Previdi, and M. Shand, “IP Fast Reroute using tunnels,”
Internet Draft, Nov 2007.

[105] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using Not-via addresses,”
Internet Draft, March 2010.

[106] G. Enyedi, P. Szilágyi, G. Rétvári, and A. Császár, “IP Fast ReRoute: lightweight
Not-Via without additional addresses,” in INFOCOM Mini-conf, 2009.

[107] A. Li, P. Francois, and X. Yang, “On improving the efficiency and manageability of
NotVia,” in ACM CoNEXT, 2007.

[108] Cisco Systems, “Cisco ios xr routing configuration guide, release 3.7,” 2008.

[109] Juniper Networks, “Junos 9.6 routing protocols configuration guide,” 2009.

[110] P. Francois and O. Bonaventure, “An evaluation of IP-based fast reroute tech-
niques,” in ACM CoNEXT, 2005, pp. 244–245.

[111] S. Previdi, “IP fast reroute technologies,” APRICOT, 2006.

[112] M. Gjoka, V. Ram, and X. Yang, “Evaluation of IP fast reroute proposals,” in IEEE
Comsware, 2007.

[113] M. Menth, M. Hartmann, R. Martin, T. Čičić, and A. Kvalbein, “Loop-free alter-
nates and not-via addresses: A proper combination for IP fast reroute?” Comput.
Netw., vol. 54, no. 8, pp. 1300–1315, 2010.

[114] C. Filsfils et al., “LFA applicability in SP networks,” Internet Draft, March 2010.

[115] K.-W. Kwong, L. Gao, R. Guerin, and Z.-L. Zhang, “On the feasibility and efficacy
of protection routing in IP networks,” Networking, IEEE/ACM Transactions on,
vol. 19, no. 5, pp. 1543 –1556, oct. 2011.

[116] C. Reichert and T. Magedanz, “Topology requirements for resilient IP networks,”
in MMB, 2004, pp. 379–388.

[117] L.Csikor, G. Rétvári, and J. Tapolcai, “Optimizing igp link costs for improving
ip-level resilience with loop-free alternates,” Computer Communications Journal,
2012.

 dc_498_12

108 Tapolcai, János D.Sc. Dissertation

[118] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP rout-
ing protocols,” IEEE Comm. Mag., vol. 40, no. 10, pp. 118–124, Oct 2002.

[119] G. Swallow, S. Bryant, and L. Andersson, “Avoiding equal cost multipath treatment
in MPLS networks,” RFC 4928, June 2007.

[120] M. Garey, , and D. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1990.

[121] T. Hasunuma, “Completely independent spanning trees in the underlying graph of
a line digraph,” Discrete Mathematics, vol. 234, no. 1-3, pp. 149–157, 2001.

[122] ——, “Completely independent spanning trees in maximal planar graphs,” in
Graph-Theoretic Concepts in Computer Science. Springer, 2002, pp. 235–245.

[123] C. Oliveira and P. Pardalos, Mathematical Aspects of Network Routing Optimiza-
tion. Springer Verlag, 2011, vol. 53.

[124] M. Resende and P. Pardalos, Handbook of optimization in telecommunications.
Springer Verlag, 2006, vol. 10.

[125] G. Schollmeier, J. Charzinski, A. Kirstädter, C. Reichert, K. Schrodi, Y. Glickman,
and C. Winkler, “Improving the resilience in IP networks,” in Workshop on High
Performance Switching and Routing (HPSR). IEEE, 2003, pp. 91–96.

[126] C. Reichert, Y. Glickmann, and T. Magedanz, “Two routing algorithms for failure
protection in ip networks,” in IEEE Symposium on Computers and Communications
(ISCC), 2005, pp. 97–102.

[127] S. Ray, R. Guérin, K. Kwong, and R. Sofia, “Always acyclic distributed path compu-
tation,” IEEE/ACM Transactions on Networking (ToN), vol. 18, no. 1, pp. 307–319,
2010.

[128] Y. Ohara, S. Imahori, and R. Van Meter, “Mara: Maximum alternative routing
algorithm,” in IEEE INFOCOM 2009, 2009, pp. 298–306.

[129] J. Tapolcai, L. Rónyai, and P.-H. Ho, “Link fault localization using bi-directional m-
trails in all-optical mesh networks,” IEEE Transactions on Communications, 2012.

[130] M. Nagy, J. Tapolcai, and G. Retvari, “Optimization methods for improving IP-level
fast protection for local shared risk groups with loop-free alternates,” Telecommu-
nication Systems, 2012.

[131] J. Tapolcai, “Sufficient conditions for protection routing in IP networks,” Springer
Optimization Letters, 2012.

 dc_498_12

Index

alarm code table (ACT), 8

bidirectional m-trail (bm-trail), 5, 6

chocolate bar graph, 17
circulant graph, 23
combinatorial group testing (CGT), 32, 33
completely independent spanning trees, 92

dense SRLG (multiple failure), 5

failure dependent protection (FDP), 66

generalized multi-protocol label switching (GM-
PLS), 66

girth of a graph, 40

IP Fast ReRoute (IPFRR), 80

LFA failure coverage η(G), 83
link-based monitoring, 3
local UFL (L-UFL), 6, 44
loop-free alternates (LFA), 80, 82

monitoring cost (b), 7
monitoring cycle (m-cycle), 5, 6, 8
monitoring overhead, 73
monitoring resource hidden property, 73
monitoring trail (m-trail), 5, 6

network-wide local UFL (NL-UFL), 6, 45

preconfigured-Cycle (p-Cycle), 67, 68
protection lightpath (P-LP), 66
protection routing, 89

segment shared protection (SSP), 66
shape constraint, 6
shared backup path protection (SBPP), 66
shared protection, 66
shared risk link group (SRLG), 5
spare capacity, 66, 72
spare capacity allocation (SCA), 72
sparse SRLG, 5

unambiguous failure localization (UFL), 5,
8

working lightpath (W-LP), 66

109

 dc_498_12

