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Introcuciion

he first step in almost every computer
vision process, called early vision, in-
volves a variety of digital image pro-
cessing tasks dealing directly with massive
amounts of pixel data. The goal is to trans-

form the digitized image data into more mean-

ingful tokens (edges, regions, objects, etc.)
for higher level processing.

First, we deal with statistical approaches
of image segmentation, where the final goal
is to extract coherent regions correspond-
ing to visual objects of a particular applica-
tion (e.g. cells in a microscope image, or
land coverage in satellite images). In real
scenes, neighboring pixels usually have sim-
ilar properties. In a probabilistic framework,

such regularities are well expressed by Markov

Random Fields. On the other hand, the lo-

cal behavior of Markov Random Fields per-
mits to develop highly efficient algorithms in
the solution of the combinatorial optimiza-
tion problem associated with such a model.
We also discuss parameter estimation meth-
ods in order to develop completely data-
driven algorithms.

Second, we will consider methods to re-
cover the geometric relationship between
a pair of visual objects extracted from im-
ages. This is a fundamental problem, also
known as registration or matching, which
occurs in many image analysis systems where
views or different modalities of an object
need to be compared or fused, e.g. multi-
modal medical imagery or the comparison
of a template with the image of a manufac-
tured part in an industrial inspection sys-
tem.
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2 Introduction

An image processing system involves a sensing device (ysuahmera) and computer
algorithms to interpret the picture. The teimage(more preciselymonochrome image
refers to a two dimensional light intensity function whosdue at any point is proportional
to the brightnesgytey-leve) of the image at that point [100]. digital imageis a discretized
image both in spatial coordinates and in brightness. Itusilgrepresented as a two dimen-
sional matrix, the elements of such a digital array are dgligels. The digitized image is
the starting point of any kind of computer analysis. In somgliaations, the sensing device
may be more specific responding to other forms of light: idfdamaging, photon emission
tomography, radar imaging [171], ultrasonic imaging, etc.

Extraction of coherent image regions

When human observers are interpreting images, they arenhptaking into account direct
observations like color or intensity, but also a priori kiegge about the world. However,
such a complex, interacting method is rarely used in imagegssing systems. Most of
the algorithms are bottom-up: they try to extract some usefarmation (basically a seg-
mentation) solely from the observed image data and thendbmentation is interpreted.
Obviously, image data alone cannot provide reliable inetion. Hence the use of higher
level knowledge, in the form of shape priors, received matenéon in the past few years.
The dominating approach adopts a variational or level sehéwork where the segmenta-
tion criteria is summarized in an energy functional whicketits minimum at the desired
segmentation of the input image. Previous work concertrateforeground - background
segmentation with a data model relying on image gradientvaitid template-like shape
priors where the actual contour is matched to a referengeeséwad high deviations are pe-
nalized. However, handling of more than one, possibly teffié objects in a scene remains a
challenge as well as the use of more elaborated data modelhether hand, Markovian
approaches are well suited to multi-object segmentatidritbke work has been done on
embedding shape priors into such models.

The primary goal of any segmentation algorithm is to divide domainR of the in-
put image into the disjoint part®; such that they belong to distinct objects in the scene.
The solution of this problem sometimes requires high lewelvidedge about the shape and
appearance of the objects under investigation [80,1291BR. In many applications, how-
ever, such information is not available or impractical te.udence low-level features of the
surface patches are used for the segmentation proces8[5206]. In either case, we have
to summarize all relevant information in a model which isthdjusted to fit the image data.

One broadly used class of models is the so catledoon modelwhich has been ex-
tensively studied from both probabilistic [32,97] and a#ional [66, 158] viewpoints. The
model assumes that the real world scene consists of a segiohsewhose observed low-
level features changes slowly, but across the boundarydaetithem, these features change
abruptly. What we want to infer is @artoonw (also called dabeling) consisting of a sim-
plified, abstract version of the input imageregionsRi; has a constant value (callediadel
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in our context) and the discontinuities between them formrael - the contour. The pair
(w, T') specifies aegmentationRegion based methods are mainly focusing.amhile edge
based methods are trying to determindirectly. However, a good approach has to model
both (either explicitly or implicitly).

Active Contours (snakes) are closed curves evolving towsedoundary of the object
of interest. The curve evolution is governed by a boundamngtional [127] which takes its
minimum on the object contour. The main drawback of the patamsnake model is that it
cannot handle topological changes easily. Neverthelesg,iecame quite popular because
they make it relatively easy to enforce contour-smoothraess starting from an appropriate
initialization a local minimum of the associated energydiion will give good results.

Taking the probabilistic approach, one usually wants toeomwith aprobability mea-
sureon the sef? of all possible segmentations #fand then select the one with the highest
probability. This probability measure is usually definecaiBayesian framework [32, 77,
156, 199], in terms of a set of observed and hidden randomabias. In our context, obser-
vations consists in low-level features used for partitignine image, and the hidden entity
represents the segmentation itself. Taga likelihood(orimaging modglquantify how well
any segmentation fits the observations.

In addition, aprior define a set of properties that any segmentation must possess
gardless the image data. Purely data driven methods caeabvery well with high noise,
cluttered background or occlusions. Hence the idea of pawating some prior knowledge
about the shape of the objects has been considered by maayaiesrs. Early approaches
for shape prior were quite generic, enforcing some kind afibgeneity and contour smooth-
ness [24,66,74,79,97,127]. For example, [24,97] uses &dan smoothness prior (basi-
cally a Potts model [58]) ow; [66,97] uses a line process to control the formation ofargi
boundaries; and active contour models [127] have been &asiicity, rigidity, contour
length, balloon or area minimizing forces [74, 79] in orderfavor smooth closed curves.
In spite of their simplicity, these methods proved to be \&ficient in dealing with noisy
images.

Herein, we will present our main contributions to consteftitient Markovian models to
solve various image analysis problems related to remotrsggand biomedical applications.
The ultimate goal of these methods is to extract cohereranmgfull regions corresponding
to visual objects of a particular applicatiang.tree crowns in aerial images, land coverage
in satellite images, cells and lipid droplets in microscapages, moving regions in video
frames, etc.

Alignment of visual objects

Registration is a fundamental problem in various fields cdge processing where images
taken from different views, at different times, or by ditfat sensors need to be compared or
combined. In a general setting, one is looking for a tramsé&dion which aligns two images
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such that one image (called tbbservation becomes similar to the second one (called the
template.

When registering an image pair, first we have to charactéheossible deformations.
From this point of view, registration techniques can begfas] into two main categories:
physical model-based and parametric or functional reptetien [118]. Herein, we deal
with the latter representation, which typically origin&tam interpolation and approximation
theory. Most of the existing approaches assume a lineasfoanation (rigid-body, similar-
ity, affine) between the images, but in many applicationdinear deformations [202}(g.
projective, polynomial, elastic) need to be consideredpidal applications include visual
inspection [192], object matching [60] and medical imagalysis [114]. Good surveys can
be found in [143,207].

From a methodological point of view, we can differentitdadmark-basednd area-
based(or featureless methods [71, 115, 144, 179, 207.andmark-based methodsly on
extracted corresponding landmarks [105, 207], then tlygmelg transformation is recovered
as a solution of a system of equations constructed from ttableshed correspondences.
Unfortunately, the correspondence problem itself is farmfrtrivial, especially in the case
of strong deformations. On the other hand, méagtureless approachestimate the trans-
formation parameters directly from image intensity valaesr corresponding regions [146]
or define a cost function based on a similarity metric and fireldolution via a complex
nonlinear optimization procedure [110].

A common assumption of both approaches is that the strerfgtheotransformation
is limited or close to identity: The neighborhood oflandmarkis searched for corre-
spondences, whilarea-basednethods may get stuck in local minima for strong deforma-
tions. Furthermore, both approaches rely on the avaitglafirich radiometric information:
Landmark-basethethods usually match local brightness patterns arourehsgbints [142]
while featureless methoamsake use of intensity correlation between image patchesalmy
cases, however, such information may not be availabtelfinary shapes) or it is very lim-
ited (e.g.prints, images of traffic signs). Another common problemtisrgy radiometric
distortion €.g. X-ray images, differently exposed images). Although theme some time
consuming methods to cope with brightness change acroggeipers [126], such image
degradations are difficult to handle. While these issueseratdssical brightness-based fea-
tures unreliable thus challenging current registratiahmeques, the segmentation of such
images can be straightforward or readily available withipaaticular application. There-
fore a valid alternative is to solve the registration problgsing a binary representatiare(
segmentation) of the images [181].

For example, spline-based deformations have been comnusely to register medical
images or volumes. The interpolating Thin-plate SplineBY was originally proposed
by [67], which relies on a set of point correspondences betvibee image pairs. However,
these correspondences are prone to error in real apphesagiod therefore [175] extended
the bending energy of TPS to approximation and reguladmaly introducing the corre-
spondence localization error. On the other hand, we [12)gsed a generic framework for
non-rigid registration which does not require explicitqotorrespondences. In our subse-
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guent work [41], this framework has been adopted to solvaimadtal registration of MRI
and TRUS prostate images for reliable cancer diagnosis.

Another prominent medical application is complex bonetiree reduction which fre-
guently requires surgical care, especially when angulatiodisplacement of bone frag-
ments are large. In such situations, computer aided suirgiaaning is done before the
actual surgery takes place, which allows to gather morernmition about the dislocation
of the fragments and to arrange and analyze the surgicahmtgpto be inserted. A crucial
part of such a system is the relocation of bone fragmentssio dhiginal anatomic position.
In [8], we applied our framework to reduce pelvic fracturegg 3D rigid-body transforma-
tions. In cases of single side fractures, tamplateis simply obtained by mirroring intact
bones of the patient.

Herein, we will present our general registration framewfwk linear and non-linear
alignment of extracted visual objects. A unique featurewfapproach is that a wide range
of deformations are handled in a unified, correspondergflamework. It provides an
efficient solution for various applications ranging fromdil imaging to industrial inspec-
tions, where classical methods perform poorly.
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Markovian sagmaniaiion modals

~ a

n this chapter, we summarize the main
results of our early work related to Marko-
vian image modeling:

A novel hierarchical MRF model and its
application to satellite image segmentation.

A new annealing schedule for Simulated
Annealing: Multi-temperature annealing al-

lows to assign different temperatures to dif-
ferent cliques during the minimization of the
energy of a MRF model. The convergence
of the new algorithm has also been proved
toward a global optimum.

Etimation of the hierarchical model pa-
rameters and application to remote sensing
image segmentation.
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1.1 Introduction

The primary goal of any segmentation algorithm is to divitedomain® of the input image
into the disjoint parts?; such that they belong to distinct objects in the scene. Theiso

of this problem sometimes requires high level knowledgeutitite shape and appearance
of the objects under investigation [80, 129,172, 188]. Imynapplications, however, such
information is not available or impractical to use. Henoe-level features of the surface
patches are used for the segmentation process [57, 137, Ble8¢in, we are interested in
the latter approach. In either case, we have to summarizeleant information in a model
which is then adjusted to fit the image data.

One broadly used class of models is the so cattioon modelwhich has been exten-
sively studied from both probabilistic [97] and variatidf@6, 158] viewpoints. The model
assumes that the real world scene consists of a set of reglurse observed low-level fea-
tures changes slowly, but across the boundary between thesg features change abruptly.
What we want to infer is aartoonw consisting of a simplified, abstract version of the input
imageZ: regionsk; has a constant value (calledadel in our context) and the discontinu-
ities between them form a cunlé- the contour. The paifw, I') specifies asegmentation
Region based methods are mainly focusing.owhile edge based methods are trying to
determind” directly.

Taking the probabilistic approach, one usually wants toeamwith aprobability mea-
sureon the sef? of all possible segmentations #fand then select the one with the highest
probability. Note thaf) is finite, although huge. A widely accepted standard, alstvaied
by the human visual system [128,157], is to construct thebability measure in a Bayesian
framework [77, 156, 199]: We shall assume that we have a sethsgrved ) and hidden
(X) random variables. In our context, any observed value Y represents the low-level
features used for partitioning the image, and the hiddeityente X represents the seg-
mentation itself. First, we have to quantify how well any meence ofz fits y. This is
expressed by the probability distributidt(y|z) - theimaging model Second, we define a
set of properties that any segmentatiomust posses regardless the image data. These are
described byP (), theprior, which tells us how well any occurreneesatisfies these prop-
erties. Factoring these distributions and applying theeBaiheorem gives us tiposterior
distribution P(z]y) < P(y|x)P(x). Note that the constant factdy P(y) has been dropped
as we are only interested ihwhich maximizeshe posteriori.e. the Maximum A Posteriori
(MAP) estimate of the hidden field .

The models of the above distributions depend also on cepaiameters that we de-
note by©®. Supervised segmentation assumes that these parametesshar known or a
set of joint realizations of the hidden field and observation¥” (called atraining se} is
available [97,191]. This is known in statistics as ttuenplete datgproblem which is rela-
tively easy to solve using Maximum Likelihood (ML) [77]. Albugh the prior knowledge of
the parameters is a strong assumption, supervised methodslbuseful alternatives when
working in a controlled environment. Many industrial agglions, like quality inspection
of agricultural products [161], fall into this category. time unsupervised case, however, we
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Cliques:
o 00

Figure 1.1: First order neighborhood system with corresponding clgue

know neither® nor X. This is called thencomplete datgroblem where botk and X has
to be inferred from the only observable entity Hence our MAP estimation problem be-
comesz, ©) = arg max, ¢ P(x, O|y). Expectation Maximizatio(EM) [81] and its variants
(Stochastic EM [75, 149], Gibbsian EM [76]), as well ltasrated Conditional Expectation
(ICE) [25, 68] are widely used to solve such problems. It ipamiant to note, however, that
these methods calculate a local maximum [77].

Due to the difficulty of estimating the number of pixel clasger clusters), unsupervised
algorithms often suppose that this paramet&niswvn a priori[99,106,137,140,149]. When
the number of pixel classes is also being estimated, thepengised segmentation problem
may be treated asraodel selectioproblem over a combined model space.

1.1.1 Markovian approach

In real images regions are usually homogeneous, neighippixels have similar properties.
Markov Random Fields (MRF) are often used to capture suclegtral constraints in a
probabilistic framework. MRFs are well studied with a sggaheoretical background hence
providing a tool for rigorous and concise image modelingtir@rmore, they allow Markov
Chain Monte Carlo (MCMC) sampling of the (hidden) undertyistructure which greatly
simplifies inference and parameter estimation.

Formally, a simple MRF image model is constructed as follomesare given a set of sites
(usually corresponding to pixel$) = {s1, s2, ..., sy }. For each site, the region-type (or
class) that the site belongs to is specified by a class labelvhich is modeled as a discrete
random variable taking valuesin= {1,2,..., L}. The set of these labels= {w,, s € S}
is a random field, called thiabel process Furthermore, the observed image featueeg.(
graylevel, color, texture,...) are supposed to be a ra@ize = { f;|s € S} from another
random field, which is a function of the label process Basically, theimage process
represents the manifestation of the underlying label m®c€&hus, the overall segmentation
model is composed of the hidden label procesand the observable noisy image process

DSc dissertation, 2013



dc_494 12

10 Chapter 1. Markovian segmentation models

F. If each pixel class is represented by a different model therobserved image may be
viewed as a sample from a realization of the underlying l&bkl.

(w, F) is then regarded as a MRF with respect to an appropriate peigbod-system
G = {Gs}ses- The simplest example of such a neighborhood can be seeg.ifh.Ei Accord-
ing to the Hammersley-Clifford theorem [54],, ) must then follow a Gibbs distribution
with an energy functiot/ (w, F) = > .. Ve(w, F), whereC denotes a clique af, andC
is the set of all cliques. The restriction©fto the sites of a given cliqué is denoted by.
The potential functioV(wc) is defined for every’ € C and everyw € Q, whereQ) = AV
is the set of all possiblé&” discrete labelings. The advantage of such a decomposgion i
that these potentials are a function of the local configaradif the field making it possible
to define the Gibbs distribution directly in terms of locaeractions.

The MAP estimatev of the label field is then obtained by minimizing the non-aaxav
energy function, which can be solved by stochastic or detestic relaxation [3, 4, 33, 34].

1.2 Hierarchical MRF models and multi-temperature an-
nealing

It is well known that multigrid methods can improve signifitlg the convergence rate and
the quality of the final results of iterative relaxation teitfues. Herein, we propose a new
hierarchical model [14, 20—24], which consists of a labebpyid and a single observation
field. The parameters of the coarse grid can be derived bylsicopputation from the finest
grid. In addition, we have introduced a new local interacbetween two neighboring grids
which allows to propagate information more efficiently gigiestimates closer to the global
optimum for deterministic as well as for stochastic relaaschemes. For the hierarchical
model, we also propose a novel Multi-Temperature AnnegdMiBA) algorithm [24,36]. The
convergence towards the global optimum is proven by the rgénation of the annealing
theorem of Geman and Geman [97].

1.2.1 Multiscale and hierarchical model

In the following, we will focus on a MRF with a first order neigbrhood (see Fig. 1.1)
whose energy function is given by:

Ulw,F) =U(w, F) + Us(w) (1.1)

whereU; (resp. U,) denotes the energy of the first order (resp. second ordgred. To
generate a multigrid MRF model, let us divide the initialdynto blocks ofn x n, typically
16 (@ x 4) neighboring pixels. We consider that the same label igyassi to each pixels
of a given block. These configurations will describe the MRBcale 1. Scale is defined
similarly by considering labels which are constant oveckoof sizen’ x n'.
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| S‘+1
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Figure 1.2: The isomorphisn®’ betweens! Figure 1.3: The neighborhood syste¢hand
andS®. the clique<C;, C» andCs.

LetB" = {bi,.... by } (N; = N/n*) denote the set of blocks aft) the configuration-
space at scale(); € Q,_1 C --- C Qp = Q). The label associated with bloék is denoted
by wi. We can define the same neighborhood structurB’as onS:

b = b or

3C € C:C'Nbi, # O andC N b # 0 (1.2

bi. andb; are neighbors—>- {

Let us partition the original st into two disjoint subset§;, (cliques which are included in
b,) andC;, ,(cliques which sit astride two neighboring blockg , b; }). It is obvious from this
partition that our energy function can be decomposed inagheviing way:

Ui(w, F) =Y Vilwa f) = 3. Y Vilwe, f) = > V(W F)  (13)

seS bt B seb b eB?

VE (Wi, F)

D) =D Valw) = 3 Y Mo+ Y Y Valwd)

ceC bt eB CeCl {by,b; }neighbors Cec}i,l
N— —————
VkBZ (wi) Vlfli (Wi wi)
- k \Wg kel \WEy Wy .
bt eB {bk,b; }neighbors

Now, we define a pyramid (see Figure 1.2) where léwantains the coarse grisf which
is isomorphic to the scalB’. The coarse grid has a reduced configuration sgace A™:.
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The isomorphisn®’ : St — B is just a projection of the coarse label field to the finest grid
S° = S. The energy function on the grigf (: = 0,..., M) is derived from Eq. (1.3)—(1.4):

U'Ww,F) = Ui, F)+ Us(w i)—Ul@i(wi) f)+U2(q>i( i)

whereU; (w', F) = Z(%B%w,i,f)wk => Vi, F (1.5)
keSt keS?
andUi(w') = Z wk,wl Z Vi(wE) (1.6)
{k,l}neighbors ciect

where(" is a second order clique corresponding to the definition in (EQ) andC’ is the
set of cliques on grid.

LetS = {51,...,55} = U, S (N = M, N%) denote the sites of the pyramid. We
define the foIIowmg functionr between two neighboring levels, which assigns to a site its
descendants (that is the sites of the corresponding block):

U:S — 8 UG)={r|lseS' =rcS andi! C b} (1.7)

It is clear that?—! will assign to a site its ancestor (that is the site at the up@ee!
corresponding to the block of this site). Now we can definehmse sites the following
neighborhood-system (see Fig. 1.3):

= (U GHYU{T (5 U(s) | 5€S) (1.8)

whereG' is the neighborhood structure of tié level. We will consider only the first and
second order cliques, potentials for other cliques aressgubto bé. LetC denote the set of
these cliques which can be partitioned into three disjaibsst<;, C,, C; corresponding to
first order cliques, second order cliques which are on theedavel and second order cliques
which sit astride two neighboring levels (see Figure 1.3t (. denote the configuration-
space of the pyramid:

Q=Z"xZx--. xEM ={g|o= ("o, . . . ")} (1.9)
The model on the pyramid defines a MRF, whose energy fundigiven by:

Uw,F) = U(w, F)+Uy@) (1.10)

M

U(@,F) = Z‘_/l(@@}—)zzzvl weis F ZUlw F)

ses i=0 sies

D) = Y Va@o)+ Y Valwe) =Y Uiw) + Y Va(@o)
CeCs CeCs 1=0 CeCs

= > Viw) + ) Val@c)

i=0 CeC? Cels
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| model | num. of iter.| CPU time| timeliter.| errorrate] 5| ~ |
monogrid 89| 10.39sec| 0.117 sec. 2576| 1.0 —
multiscale 146| 14.7sec| 0.1sec. 2118| 1.0 —
hierarchical 42 | 460.9 sec| 10.97 sec. 1231 1.0 0.2

Noisy image SN R = 10dB) Monogrid Multiscale Hierarchical

Figure 1.4: Results obtained by the Gibbs Sampler [97] on a noisy syioth@iage (28 x 128,
SNR = 10dB) with 16 classes [14, 20-24]. In the table, we show for each model timeber of
iterations, the CPU time, the error rate of the segmentatienthe number of misclassified pixels)
and the inter- and intra-cliqgue potential$and-y.

LY _ r

Original image Monogrid Multiscale Hierarchical

Figure 1.5: Results obtained by ICM [64] on %6 x 256) SPOT image with classes [14,20-24].
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The above energy of the hierarchical model can be minimisetclassical combinatorial
optimization algorithms [3, 4, 33, 34, 136]. The only ditfece is that we work on a pyra-
mid here and not on a rectangular lattice as in the case dficidsnonogrid models. We
have applied the model for supervised image segmentatidic@mpared the segmentation
results of the classical monogrid [3, 33—-35], multiscald hrerarchical models on synthetic
(Fig. 1.4) and real (Fig. 1.5) images. For both images, thellpyramid has been generated
with 4 levels. The detailed equations can be found in [14, 24]. &dts have been conducted
on a Connection Machine CM200 wih¥{ processors. In terms of segmentation quality,
the hierarchical model clearly outperforms the other mashd-urther results can be found
in [14,24].

1.2.2 Multi-temperature annealing

In the following we will focus on Simulated Annealing (SA)7P where the temperature-
change is controlled by the so-callednealing schedulelhere are two well known schemes,
homogeneouand inhomogeneouannealing [136], which works also on the hierarchical
model. Herein, we propose a new annealing schedule, dslilgt Temperature Annealing
(MTA), which is the most efficient with the new model. The lzaslea is to associate higher
temperatures to coarser levels in the pyramid which makesldorithm less sensitive to
local minima. However at a finer resolution, the relaxat®performed at a lower temper-
ature (at the bottom level, it is close ). For the cliques siting between two levels, we
use either the temperature of the finer level or the one ofadheser level (but once chosen,
we always keep the same choice throughout the algorithm)teMenerally, we have the
following problem:

LetS = {s1,...,sn} be a set of siteg7 some neighborhood system with cliquéand
w a MRF over these sites with energy functidnr, denotes the uniform distribution on the
set of globally optimal configurations, and defitié” = max, U(w), U™ = min, U(w)
andA = U*w — U™/, Furthermore, let us suppose that the sites are visitedofgating in
the order{n;,n,,...} C S. We now define an annealing scheme where the temperature
depends on the iteratidnand on the clique§'. For that purpose, leb denotes the following
operation:

exp(—U(w) @ T'(k,C))

P(X = w) = TT(k,C) (w) = 7 (111)

Vc(w)
h w = : .
whereU (w) @ T'(k,C) CEEC T, O (1.12)

As usual with SA [97, 136], the transition from one configigatto another is governed
by the energy change between the two states. Assuaflirg (2, is aglobally optimal
configuration,U (w') — U™/ equals to0 (i.e. there is no more energy change, the system
is frozen). In the case of a classical annealing, dividin@lmpnstant temperature does not
change this relation (obviouslyk: (U (w') —U™/) /T, is still 0). But it is not necessarily true
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that(U(w') — U™) @ T(k, C) is also0! Because choosing sufficiently small temperatures
for the cliques wherey, is locally not optimal (.e. strengthening the non-optimal cliques)
and choosing sufficiently high temperatures for the cliquberew;, is locally optimal §.e.
weakening the optimal cliques), we obtditi(w’) — U™) @ T(k,C) > 0, meaning that

w’ is no longerglobally optimal (.e. in such cases, SA may not be able to reach a global
optimum).

Thus, we have to impose further conditions on the temperdtuguarantee the conver-
gence toward global optimum. First, let us examine the deawmition over the cliques of
U(w) — U(n) for arbitraryw andn, w # n:

Uw) = U(n) =>_(Ve(w) = Ve(n)). (1.13)

Indeed, there may be negative and positive members in tloergmusition. According to this
fact, we have the following subsums:

> (Velw) = Veln) = > (Ve(w) = Ve(n))

ceC CeC:(Vo(w)—Ve(n))<0

J

~\~

2 (w,m)

+ > (Ve(w) = Ve(n)). (1.14)

CeC:(Ve(w)—Ve(n)=0

J/

5t (w,m)
Furthermore, let us defing} as:
Y= min X, w"). (1.15)
w' € Qsup
w'” e Qopt

Then the following theorem gives an annealing schedulerethe temperature is a function
of kandC € C [24]:
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Theorem 1.2.1 (Multi-Temperature Annealing) Assume that there exists an integer
k > N such that for every = 0,1,2,..., S C {ngs1, Ngro, ..., Mprnt- ForallC € C,
letT(k,C) be any decreasing sequence of temperaturkgon which

() limy_oo T(k, C) = 0. |
Let us denote respectively ﬁig”f andT;"*? the maximum and minimum of the tem-
perature function &t (vC' € C: ;" < T(k,C) < T:*).

(i) Forall k > kq, for some integek, > 2: T,j”f > N L/ In(k).

(iii) If X7 (w,w’) # 0 for somew € Q\ Q,, W' € Q,, then a further condition must be
imposed:

Tsup_Tinf .
For allk: kTif’ﬂ < R with
k

_ymnf
R = min U(W)—U (1.16)
w € 2\ Qopt ‘ 2_<w7w/> ‘
w' e Qopt
Y (w,w') #0
Then for any starting configuratione ) and for everyw € §):
lim P(X (k) =w | X(0) =n) = m(w). (1.17)

k—o00

The complete proof of this theorem can be found in Appendikaid in [20, 24].
Remarks:

1. In practice, we cannot determifigandX [, as we cannot comput® neither.

2. Considering®} in condition 1.2.1/ii, we have the same problem as in the cdise
a classical annealing. The only difference is that in a atasannealing, we hava
instead of= . Consequently, the same solutions may be used: an exparssitedule
with a sufficiently high initial temperature.

3. The factorR is more interesting. We propose herein two possibilitiegctvitan be
used for practical implementations of the method: Eithercheose a sufficiently
small interval[ 7"/, "] and suppose that it satisfies the condition 1.2.1/iii (weshav
used this technique in the simulations), or we use a moret &t easily verifiable
condition instead of condition 1.2.1/iii, namely:

= 0. (1.18)

4. What happens £~ (w,w’) is zero for allw andw’ in condition 1.2.1/iii and thus
R is not defined? This is the best case because it means thgibbdlly optimal
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Figure 1.6: Energy decrease and segmentation results of the Gibbs sampla synthetic image
with the inhomogeneous and MTA schedules. In both casepatheneters were strictly the same,
the only difference is the applied schedule. We also shovgltiteal energy plot (computed at a
fixed temperature on the finest level) versus the numberrafidgas. Note that both schedules reach
practically the same minimum (53415.4 for the inhomogesemd 53421.4 for the MTA), however
the inhomogeneous schedule requi288 iterations (96.8 sec. CPU time) while the MTA schedule
requires onlyl00 iterations §40.6 sec. CPU time) for the convergence [20, 24].

configurations are alslocally optimal. That is we have no restriction on the interval
[T,ﬁ"f, T,*"], thus anylocal temperature schedule satisfying conditions 1.2.1/i41ii2.
is good.

In Fig. 1.6, we compare the inhomogeneous and MTA schedules rmoisy synthetic
image using the Gibbs sampler. Since each site interacksitsiancestor and its descen-
dants, the hierarchical model usually requires more comgtime than a monogrid model.
However, as we have shown in [20, 24], experiments provetthstmodel with the MTA
schedule yields faster convergence (with respect to théopuof iterations) for the stochas-
tic relaxation algorithms and gives estimates which areeri®o the global optimum. Other
tests can be found in [20, 24].

1.3 Parameter estimation

In real life applications, the model parameters are uswaiknown, one has to estimate [56]
them from the observable image. Here we develop an algofitiirhierarchical Marko-
vian models [25, 36—38]. Our approach is similar in spiritterative Conditional Estima-
tion [149,167] as well as to the Estimation-Maximizatiog@ithm: we recursively look at
the Maximum a Posteriori (MAP) estimate of the label fieldegithe estimated parameters
then we look at the Maximum Likelihood (ML) estimate of theg@aeters given a tentative
labeling obtained in the previous step. The only parameippased to be known is the
number of labels, all the other parameters are estimated.

When both the model parametegsand w are unknown, the estimation problem be-
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comes [38, 96, 137] R
(0,0) = arg m%xP(w,]: | ©). (1.19)

The pair(w, C:)) is the global maximum of the joint probabiliy(w, F | ©). If we regardo®
as arandom variable, the above maximization is an ordina# stimation in the following
way [96]: Let us suppose, thétis restricted to a finite volume domalPy and suppose that
© is uniform onDg (that isP(©) is constant). Then, we get [38, 96]:

P(w,F | ©)P(O)

arg IB%XP(W, O|F) = argrg%x P (1.20)
(w 7:\ )
= argmax (1.21)
fD we w ‘F| @)
= argm%xP(w,]: | ©). (1.22)

However, this maximization is very difficult, having no ditesolution. Even Simulated

Annealing (SA) is not implementable because the local ataristics with respect to the

parameter® cannot be computed frolR(w, F | ©). One possible solution is to adopt the
following criterion instead [38, 96, 137]:

& = argmaxP(w,F |©) (1.23)

@

= argmgxp(@,f| O) (1.24)

Clearly, Eqg. (1.23) is equivalent to Eq. (1.19) féer = © and Eq. (1.24) is equivalent to
Eq. (1.19) withw = @. Furthermore, Eq. (1.23) is equivalent to the MAP estimdite m
the case of known parameters:

argmax P(w, F | ©) = argmax P(w | F,0)P(F | ©) = argmax P(w | F,O).

Hence in the following we will concentrate on Eq. (1.24) whgives the ML estimate of the
parameters. Considering the hierarchical MRF segmentatiadel (see Fig. 1.3), we have
the following logarithmic likelihood function [25, 36—38]

ZZ&Xﬂmf%%ﬁﬁgs

i=0 steSt sebl, ©w
S

M
=B ¢ Y 0(@c) = Y 8(@e) ~n(Z(5,)) (1.25)
=0  Ciect , CeCs P
Nt (D) Nih(@)

whereq' is the number of cliques between two neighboring blocks aled§?, (%) de-
notes the number of inhomogeneous cliques siting at the saale andV (&) denotes
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the number of inhomogeneous cliques siting astride twohixgng levels in the pyramid.
Considering the first term, we get

XM: > <—1n(\/%a@) _ (f;a%)z)

1=0 Siesi Sebii Ws
s

SYY Y Y (_m(mm - %) (1.26)

AEA =0 sieS) seb,
S’L

whereS; is the set of sites at levelwherew,; = \. Derivating with respect ta, ando,,
we get a closed form solution for the ML estimates of the Gangsarameters:

VAe Ay = 5 0=
R o DD DD DA B For 90 3D S

i=0 sieSy seb’; =0 sieSy seb’;

(1.27)
Notice that a grey-level valug, may be considered several times. More precisgélyis
consideredn-times in the above sum for a givernif there arem scales wher& assigns the
label X to the sites. m can also be seen as a weight. Obviously, the mdras been labeled
by \ at different levels, the more is probable thdtelongs to class and hence its grey-level
value f, characterizes better the classThe derivates of the logarithmic likelihood function
with respect tg5 and~ are given by:

%(—BN"h(@)—ln(Z(ﬁ,v))) = —Nih(@)—%ln( (8,7)) (1.28)
%(—W”‘(@)—IH(Z(@W))) = —N”‘(@)—%ln(Z(ﬁ,V)) (1.29)

From which, we get

by S V@) exp(—ANT ) = 15 ()
MO = AN @) — A ) (130
ey T N ) exp(<ANT ) = 1N
AR S e o e ) -3

The solution of the above equations can be approximated tisenfollowing algorithm.
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Algorithm 1.3.1 (Hyperparameter Estimation)

@ Setk = 0 and initialize 3" and~°. Furthermore, letN" (&) denote the number of
inhomogeneous cliques at the same scaleléfidts) denotes the number of inhomo-
geneous cliques between levels.

(@ Using SA at a fixed temperatulé generate a new labelingsampling from
exXp <_% sz\io Z{s,r}ECi 5(04-137 wr)) N exXp <_% Z{S,T}Gé 5(ws, wr)>
Z (B, %) Z(B%,7%) '

Compute the number of inhomogeneous cligiés(n) andN*(n) in .

PX =w) =
(1.32)

@ If N"(n) ~ N"(©) andN"(n) ~ N"(©) then stop, elsé = k + 1. If N"*(n) <
N (%) then decreasg”, if N'() > Ni"(@) then increasé*. 3* is obtained in the
same way. Continue Steép with (5 Bk ).

This algorithm completes the computation of the ML estinudithe parameters givei The
unsupervised segmentation is then carried out uaohgptive Simulated Annealirig8, 96],
which is an iterative algorithm generating tentative laigs based on current parameter es-
timates (.e. solving Eq. (1.23)) then updating the parameter values éo L estimate
based on the current labelinge( solving Eg. (1.24) by making use of Eq. (1.27) and Algo-
rithm 1.3.1). In fact, it is a classical Simulated Annealingh an additional step to rees-
timate model parameters during segmentation. The corveegef ASA has been proven
in [137].

The algorithm has been tested on several synthetic and megges [25, 37, 38]. In
Fig. 1.7, we show one of these results. In summary, the pregemsupervised algorithm
provide results comparable to those obtained by supergisgohentations, but of course at
the price of higher computing time.

1.4 Application in remote sensing

Land cover classification is a common task in analysinglgatehages [32]. Our MRF mod-
els can be readily applied to such problems as using apptegensors, different land prop-
erties can be distinguished based on the gray-level disimib of pixels. Herein we show
two examples of SPOT satellite image segmentation usirigrdift models and stochastic
optimizations techniques [14,20-24, 38].

In Fig. 1.8 we present a SPOT image of size x 512 with ground truth data (see
Fig. 1.9). In Table 1.1, we give the mean) @nd the variancesf) for each of the 6 classes
correspondig to different land coverages.
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Unsupervised
Parameter| Initial | Final || Supervised
10 83.5] 84.3 85.48
ol 256.0| 483.9 446.60
. oo [ 100.0| 115.5 115.60
SNR = 5dB Histogram o? 169.0| 444.6 533.97
2 152.5| 146.7 146.11
o2 676.0| 502.1 540.32
3 181.5| 177.9 178.01
‘ 1 o2 100.0| 500.0 504.34
3 07] 1.0 0.7
L L 5 01| 01 01

Supervised (0.6% error) Unsupervised (0.68% error)

Figure 1.7: Supervised and unsupervised segmentation results andasssication rate with the
Gibbs Sampler. We also compare the parameters obtainedehynbupervised algorithm to the ones
used for the supervised segmentation [25, 36—38].

lclass| 1] 2| 3| 4] 5] 6|
1 65.3| 81.3| 75.4| 98.5| 82.5| 129.0
o? 6.4| 12.7| 14.9| 16.8| 9.46| 183.2

Table 1.1: Parameters of the “assalmer” image.

As we can see, the classesaand5 have nearly the same parameters, it is difficult to
distinguish between them. Fig. 1.10 (resp. Fig. 1.11) shihegesults obtained with the
ICM (resp. the Gibbs Sampler). For these results, we giveadreawvn by an expert (ground
truth data, see Fig. 1.9). The clasdes 6 correspond to the regionss., Bz, By, az, hc
and92, on the map. For the hierarchical model a slight improvemantte noticed for the
results of the Gibbs sampler, however, for the ICM, the ilaproent is more significant.

In Fig. 1.12, another SPOT image with classes is presented with overlayed ground
truth data (The regions are drawn by an expert (Unfortupatieéy are shifted up by some
pixels. Please take it into account when evaluating thelteyun Table 1.2, we give the
mean f) and the varianceof’) for each class. Fig. 1.13 shows a supervised segmentation
using the parameters listed in Table 1.2. Unsupervisedtiadtig. 1.14 is comparable to the
supervised one, but it requires more computing time and reensitive to noise. However,
the main advantage is that unsupervised methods are catypdata-driven. The only input
parameter is the number of regions.
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Figure 1.8: Original SPOT image “assalmer” with 6 classes.
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Figure 1.9: Ground truth data.
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Ground truth data

Multiscale model Hierarchical model

Figure 1.10: Results of the ICM algorithm. Comparison with ground truétad
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Figure 1.11: Results of the Gibbs Sampler. Comparison with ground trath.d
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Figure 1.12: Training areas on the “holland” image.
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Figure 1.13: Supervised segmentation result withclasses (Gibbs Sampler).

DSc dissertation, 2013



dc_494 12

28 Chapter 1. Markovian segmentation models

Figure 1.14: Unsupervised segmentation result withclasses (Gibbs Sampler).
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[cass| 1] 2] 3] 4] 5] 6] 7] 8] 9] 10]
n 54.61| 73.57| 159.96| 122.84| 129.90| 146.65| 82.56 | 100.57| 93.85| 182.34
o? 93.10| 4.10| 31.31 8.90| 37.42| 15.83| 35.58| 308.86| 93.71| 73.18

Table 1.2: Parameters of the “holland” image.
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[

nplex ieatures and

parameaiar astimaiion

n this chapter, we present our results on
I using more complex features (e.g. color,

texture, motion) in MRF models and we
also address the associated parameter es-
timation problems:

A monogrid MRF model which is able
to combine color and texture features in or-
der to improve the quality of unsupervised
segmentations.

A novel RIMCMC sampling method which

is able to identify multi-dimensional Gaus-

sian mixtures. This technique has been ap-
plied to fully automatic color image segmen-
tation.

A new multilayer MRF model has been
proposed which is able to segment an im-
age based on multiple cues (such as color,
texture, or motion).

Application areas include motion seg-
mentation (a crucial step in e.g. MPEG cod-
ing) as well as change detection in aerial
images.
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2.1 Introduction

There are many features that one can take as observatidrefsegmentation process: gray-
level, color, motion, different texture features, etc. Ho@r, most of the segmentation algo-
rithms presented in the literature are based on only oneesktfeatures.

One way to combine various features is to design a joint goitibadistribution which is
able to represent the union of the complex observation. dpypsoach works well when the
combined features are of similar natueeg.define a multivariate Gaussian density). Such a
model is proposed in our work [28] for color textured imaggreentation.

However, the human visual system is not treating differeatures jointly. Instead, mul-
tiple cues are perceived simultaneously but in a paraltita and then they are integrated
by our visual system in order to explain the observationdloming these ideas, we have
developed multi-layer Markovian models and successfuydpliad it to color-texture [30,31]
and color-motion segmentation [27, 29]. For example, anont@mt problem is extracting
regions of object motions in the presence of camera drifts Tha key issue in several ap-
plications of aerial imagery. In surveillance and explioaa tasks [135] it can be used as a
preliminary step of object detection, tracking and evemtlysis. On the other hand, in 2-D
mosaicking [168] and in 3-D stereo reconstruction [55] peledent object motions gener-
ate outlier regions for image alignment, thus, they shoeldi&tected and skipped from the
resulting static scene models. An efficient solution to grizblem consists in a three-layer
Markov Random Field which integrates two different feasLiestatistically characterize the
background membership of the pixels [1, 2].

In the following, we give a brief overview of these approaxhe

2.2 Unsupervised segmentation of color textured images

The proposed segmentation model [26, 28] consists of a m@h®RF defined over a
nearest neighborhood system (see Fig. 1.1) with pixel etasspresented by multivariate
Gaussian distributions. This kind of modelization corasgs well to our features: Texture
feature images (extracted by Gabor filters) are construatsdch a way that similar tex-
tures map to similar intensities. Hence pixels with a givexture will be assigned a well
determined value with some variance. Furthermore, pixéls similar color map to their
average color. Putting these feature distributions int® mmiltivariate Normal mixture, the
modes will correspond to clusters of pixels which are homeges in both color and texture
properties. Therefore regions will be formed where bothues are homogeneous while
boundaries will be present where there is a discontinuigitimer color or texture. Applying
these ideas, thienage process can be formalized as follows?(f; | w;) follows a Normal
distributionN (1, 33), each pixel class € A = {1,2,..., L} isrepresented by its mean vec-
tor 11, and covariance matriX,. The whole posterior can now be expressed as a first order
MRF by including the contribution of the likelihood term uiae singletonsi(e. pixel sites
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s € 8). Indeed, the singleton energies directly reflect the podiséic modeling of labels
without context, while doubleton clique potentials exgresationship between neighboring
pixel labels. Thus the energy function of the so defined MR&gensegmentation model has
the following form:

> (VA TEL D) 4 56~ i) B2 = ) 48 % o) @

seS {s,r}ecC

where > 0 is a weighting parameter controlling the importance of therp As 3
increases, the resulting regions become more homogeneous.

The proposed segmentation model has the following paramete

1. The weight5 of the prior term,
2. the number of pixel classds

3. the mean vectaqr, and covariance matriX:, of each class € A.

The automatic determination @f will be addressed in Section 2.3. Whilestrongly
depends on the input image data,s largely independent of it. Experimental evidence
suggests that the model is not sensitive to a particulangetf 5 [26, 28]. We found that
settings > 2.0 gives satisfactory and stable segmentations. Unlike thetfiio parameters,
the mean and covariance of the Gaussians must be compugetydirom the input image.
Our solution to this problem [28] adopts a general iteratilgorithm, known as th&M
algorithm, to compute the maximum likelihood estimates of the paramedf a mixture
density. Basically, we will fit a Gaussian mixture bfcomponents to the histogram of the
image features. The observations consist of the histogaaadj(: = 1,..., D) of the
feature imagesD denotes the number of histogram points and the dimensionlateapoint
equals to the dimension of the combined color-texture feagpace. Assuming there ale
classes, we want to estimate the mean valyeand covariance matricés, for each pixel
class\ € A.

The EM algorithmaims at finding parameter values which maximize the norredliz
log-likelihood function:

L= % Z log (Z P(d; | A)P(A)) (2.2)

AEA

The underlying model is that theomplete datancludes not only the observabde but also
thehidden datdabels/; specifying which Gaussian process generated thedjatactually,

¢; is also a vector of dimensioh and/} = 1 if d; belongs to class and 0 otherwise. The
idea is that if labels were known, the estimation of modeapeeters would be equivalent to
the supervised case. Hence the following algorithm is adténg two steps: The estimation
of a tentative labeling of the data followed by updating tlaegoeter values based on the
tentatively labeled data.
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Algorithm 2.2.1 (EM for Gaussian mixture identification)

@ [Estimation] Replace; with its conditional expectation based on the current param

ter estimates. Since the labels may only take valuasl, the expectation is basically
equivalent to the posterior probability:

P(d: | VPN
POTA) = TP @3)

whereP()\) denotes the component weight.

[Maximization] Then, using the current expectation of the labielas the current
labeling of the data, the estimation of the parameters iplgim

P(\) = % (2.4)
1 D

Hx = E;P(/\ | di)d; (2.5)
1 D

Sy = EZP@ | di)(d; — 102)" (d; — 1) (2.6)

whereK, = 3.7 P(\ | d;). Basically the posteriorB() | d;) are used as a weight
of the data vectors. They express the contribution of adar data poind; to the
class).

Go to StegD until convergence. Each iteration is guaranteed to inertfaeslikelihood
of the estimates. The algorithm is stopped when the chantfedbg-likelihoodL is
less than a predetermined threshold (our test casesl0Sén

The proposed algorithm has been tested on a variety of colagés. We compared seg-

mentation results using color-only, texture-only and corat (color-texture) features [26,
28] and found in all test-cases that segmentation basedymmnéexture gives fuzzy bound-
aries but usually homogeneous regions, whereas segnoenketsed on color is more sen-
sitive to local variations but provides sharp boundaries.féx the combined features, the
advantages of both color and texture based segmentatienbe@n preserved: we obtained
sharp boundaries and homogeneous regions. Results haseaisa@ompared to those ob-
tained by the JSEG algorithm [82], a recent unsupervisethodefior color textured image
segmentation. Our method clearly outperforms JSEG (se€Hiyjbut JSEG’s advantage is
that we do not have to specify the image dependent pararheter
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b)

Original Proposed [28] JSEG [82]

Figure 2.1: Unsupervised segmentation results on color textured is\aggch with 5 classes [28].
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2.3 Segmentation of color images via reversible jump MCMC
sampling

Our problem becomes much harder when the number of ldbslslso unknown. We have
addressed this problem in the context of color-based imeg@mentation [15,16]. When this
parameter is also being estimated, the unsupervised ségtoarproblem may be treated as
amodel selectioproblem over a combined model space. From this point of vicagcomes
amodel indicatorand the observatio# is regarded as a three-variate Normakturewith

L components corresponding to clusters of pixels which anedgeneous in color.

The goal of our analysis is inference about the numbei Gaussian mixture compo-
nents (each one corresponds to a label), the component gi@na@ = {O) = (uy, X)) |
A € A}, the component weights, summing to 1, the inter-pixel interaction strength
and the segmentatian. A broadly used tool to sample from the posterior distribatis
the Metropolis-Hastings method. Classical methods, hewean not be used due to the
changing dimensionality of the parameter space. To oveedbis limitation, a promising
approach, called Reversible Jump MCMC (RIMCMC), has beeptad [15, 16]. When we
have multiple parameter subspaces of different dimenbignais necessary to devise dif-
ferentmove typebetween the subspaces. These will be combined in a so tglbeatl sam-
pler. For the color image segmentation model, the following nigpes are needed [15, 16]:

. sampling the labels (i.e.re-segment the image);

. sampling Gaussian parametérs= {(u, X)) };

1
2
3. sampling the mixture weighis (A € A);
4. sampling the MRF hyperparametér

5

. sampling the number of classegsplitting one mixture component into two, or com-
bining two into one).

The only randomness in scanning these move types is themaodoice between splitting
and merging in move (55). One iteration of the hybrid samalisio called aweep consists

of a complete pass over these moves. The first four move tyjgescaventional in the
sense that they do not alter the dimension of the parameseespereafter, we will focus
on move (55), which requires the use of the reversible jumphaeism. This move type
involves changind. by 1 and making necessary corresponding changes @andp.

The split proposalbegins by randomly choosing a classwith a uniform probability
P (\) = 1/L. ThenL is increased by and )\ is split into \; and \,. In doing so, a
new set of parameters need to be generated. Altdriosganges the dimensionality of the
variables®© andp. Thus we shall define a deterministic functignas a function of these

Gaussian mixture parameters:

(©%,p7) =¢(O,p,u) (2.7)
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I ﬁ g
r dimensional random vector
d+r dimensional subspace
T T \/ T DS
LIJ -1

d dimensional subspace
o

Figure 2.2: ¢ is adiffeomorphismwhich transforms back and forth between parameter subspaice
different dimensionality [15, 16]Dimension matchingan be implemented by generating a random
vectoru such that the dimensions @X, ) and X’ are equal.

where the superscrigt denotes parameter vectors after incremenfing is a set of random
variables having as many elements as the degree of freedmimb¥ariation of the current
parametergO, p) and the proposdl©™, p™). Note that this definition satisfies tligmen-
sion matchingconstraint (see Fig. 2.2), which guarantees that one cap paunk and forth
between different parameter sub-spaces [15, 16]. Thisadatkto ensure the convergence
of simulated annealing towards a global optimum. The nevaipaters of\; and )\, are
assigned by matching th#", 1%, 2* moments of the component being split to those of a
combination of the two new components [15, 16]:

Py o= Dy, +D%, (2.8)
PN = DXy, + DAY, (2.9)
paliapy +23) = pf (] + 20 + o4, (e, +2) (2.10)

There arel0 degrees of freedom in splitting since covariance matrices are symmetric.
Therefore, we need to generate a random variabl@ random vectou2 and a symmetric
random matrixu3. We can now define the diffeomorphismwhich transforms the old
parameter$O, p) into the new(©, p*) using the above moment equations and the random
numbers:1, u2, andu3 [15, 16]:

1
_ . _ 2 T if i — 4
Yoo = O e *ul : 2(2.176)

P 0 ) B/ 02?) (1= w2 = B0 U= w5,) 0%

Py, = mul (2.11)
py, = p(l—ul) (2.12)
1 —ul
M;\rl,z' = i+ u2; EA,i,z‘T (2.13)
1
N I (L 214
,u)\Q’Z i U,?Z )\,2,21 —ul ( )
1

Sii(1—u2?) Shii— ifi=7
Saig = Ry Y (2.15)

ng’,jE,\,z,j\/(l — u2;?) \/(1 —u2®) u3us;; ifi#j

i

DSc dissertation, 2013



dc_494 12

38 Chapter 2. Complex features and parameter estimation

Original image Segmentation (3 labels) Initial Gaussians inal{3 classes)

Figure 2.3: Segmentation of imagese4land the estimated Gaussian mixture [15, 16].

The random variables are chosen from the intervl, 1]. In order to favor splitting a
class into roughly equal portions, bétal, 1.1) distributions are used. The next step is the
reallocation of those siteswherew, = A. This reallocation is based on the new parameters
and has to be completed in such a way as to ensure the redaligiingw™ is drawn from

the posterior distribution withh = 6", p = p* andL = L + 1.

Merging of a pair( A, \;) is basically the inverse of the split operation [15, 16].

Finally, the split or merge proposal is accepted with a pdtig relative to the probabil-
ity ratio of the current and the proposed states. The segtientand parameter estimation
is then obtained as a MAP estimation implemented via siradlahnealing:

Algorithm 2.3.1 (RIMCMC Segmentation)
@ Setk = 0. Initialize 3°, L°, 7°, ©°, and the initial temperatufg,.
@ Asample&*, L*, p*, 3%, ©F) is drawn from the posterior distribution using thbrid

sampleroutlined earlier. Each sub-chain is sampled via the coaedjmg move-type
while all the other parameter values are set to their cugstitate.

@ Goto Step2) withk =k + 1 andTj,., until k < K.

As usual, an exponential annealing scheddlg { = 0.987}, T, = 6.0) was chosen
so that the algorithm would converge after a reasonable eumbiterations. In our
experiments, the algorithm was stopped a#tér iterations (5o =~ 0.1).

The proposed algorithm has been tested [15, 16] on a varfatyab color images and
results have also been compared to those produced by JSEGQH82g. 2.4, we show a
couple of results obtained on the Berkeley Segmentatioadeftand in Fig. 2.5, we plot the
corresponding precision-recall curves. Note that RIMCME i slightly higheF-measure
which ranks it over JSEG. However, it is fair to say that bo#tmod perform equally well
but behave differently: while JSEG tends to smooth out firnaitég hence it has a higher pre-
cision but lower recall value), RIMCMC prefers to keep fineade at the price of producing
more edgesi . its recall values are higher at a lower precision value).
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E— |
T s A
e

a3

Human

Original image segmentation

JSEG [82] RIMCMC [16]

Figure 2.4: Benchmark results on images from the Berkeley Segmenfaditaset [16]
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| Method | F-measurg CPU time|
2 ost - 1 Human segmentatiof 0.79 —
i . RIMCMC 0.57| 15min
ol JSEG 0.56 2 min
i i:g:gg ‘I]?SJL:/ISMC with beta = 2.5 ‘

0 0.25 0.5 0.75 1
Recall

Figure 2.5: Precision-recall curve, F-measure and CPU time compari$onJSEG and RJIM-
CMC [16].
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Figure 2.7. Three-layer MRF model for

Figure 2.6: Multi-layer MRF model [27, 29]. change detection [2]
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2.4 Multilayer MRF modelization

The human visual system is not treating different featuszgigntially. Instead, multiple
cues are perceived simultaneously and then they are ité¢egog our visual system in or-
der to explain the observations. Therefore different imi@geures has to be handled in a
parallel fashion. We have developed such a model in a Maakoframework and success-
fully applied it to color-texture [30, 31] and color-motisegmentation [1,2,27,29]. Herein,
we present the MRF image segmentation model which aims abicamg color and motion
features for video object segmentation [27,29]. The modsldmulti-layer structure (see
Fig. 2.6): Each feature has its own layer, calfedture layer where an MRF model is de-
fined using only the corresponding feature. A special layessigned to the combined MRF
model. This layer interacts with each feature layer andiges/the segmentation based on
the combination of different features. Unlike previous hoels, our approach doesn’t as-
sume motion boundaries being part of spatial ones. The en&gs of the proposed method
is the ability to detect boundaries that are visible onlyhia motion feature as well as those
visible only in the color one.

Perceptually uniform color values and precomputed opfioal data is used as features
for the segmentation. The proposed model consists of 3dayat each layer, we use a
first order neighborhood system and extra inter-layer elgiirig. 2.6). The image features
are represented by multivariate Gaussian distributions.ekample, on the color layer, the
observed imagé* = {f¢|s € S°} consists of three spectral component valuesi(i) at
each pixek denoted by the vectdf. The class label assigned to a siten the color layer is
denoted byy). The energy functiot/ (¢, F¢) of the so defined MRF layer has the following

form:

DG )+ B D S ) + Y, V(e nl)

seSe {s,r}ecC s€8¢
whereGe(f¢, 1) denotes the Gaussian energy term. The last t&ff(u(;, n¢)) is the inter-
layer clique potential. The motion layer adopts a similargg function with some obvious
substitutionsi(e. for simplicity, we assume a translational motion model hefer a more
elaborate model see [29]).

The combined layer only uses the motion and color featurésectly, through inter-
layer cliques. A label consists of a pair of color and motiandls such thay = (n°,n™),
wheren® € A andn™ € A™. The set of labels is denoted by = A° x A™ and the
number of classes” = L°L™. Obviously, not all of these labels are valid for a given imag
Therefore the combined layer model also estimates the nuaflasses and chose those
pairs of motion and color labels which are actually preserd given image. The energy
functionU(n) is of the following form:

> (Valn) + Vo) + V™ (b)) +a Y 6(ns,my)

SES® {s,r}ec

whereV;(ns) denotes singleton energids: (v, nS) (resp. V™ (s, ni*) denotes inter-layer
clique potentials. The last term corresponds to second ortla-layer cliques which ensures
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Figure 2.8: Segmentation results [27, 29].

1 A .
;“_.hza!: i

Original frame Optic flow

Khan & Shah [1BO

Figure 2.9: Comparison of the segmentation results obtained by thegsegh method [27, 29] and
those produced by the algorithm of Khan & Shah [130].

homogeneity of the combined layer. has the same role asin the color layer model and
6(ns,m,) = —1if ny = ., 0if 0y # n, and 1ifns = 7 and n* # n" orns # ¢ and
n = . The idea is that region boundaries present at both colomaottbn layers are
preferred over edges that are found only at one of the fedyess. At any sites, we have

5 inter-layer interactions between two layers: Sifateracts with the corresponding site on
the other layer as well as with the 4 neighboring sites twpsstavay (see Fig. 2.6). This
potential is based on the difference of the first order paénat the corresponding feature
layers. Clearly, the difference is O if and only if both thatigre layer and the combined layer
has the same label. If the labels are different then it is @rtognal to the energy difference
between the two labels. Finally, the singleton energy asthe number of classes at the
combined layer by penalizing small classes.
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2.4.1 Application to motion segmentation and change detdon

The proposed algorithm has been tested on real video sespf; 29]. We also compare
the results to motion only and color only segmentation (zlsi a monogrid model similar
to the one defined for the feature layers but without intgetaliques). The mean vectors
and covariance matrices were computed over representagjians selected by the user. The
number of motion and color classes is known a priori but elass the combined layer are
estimated during the segmentation process. Fig. 2.8 shmws segmentation results. Note
that the head of the men on this image can only be separatedtiebackground using mo-
tion features. Clearly, the multi-layer model provideswéigantly better results compared to
color only and motion only segmentations. See Fig. 2.9 topamthe performance of the
proposed method with the one from [130] on ether and Daughtestandard sequence.
Some of the contours are lost by [130] (the sofa, for exanwlele our method successfully
identifies region boundaries. In particular, our methodbie do separate the hand of the
mother from the face of the daughter in spite of their similaor. This demonstrates again
that the proposed method is quite powerful in combining oro#ind color features in order
to detect boundaries visible only in one of the features. Wealso handle occlusion and
more complex motions using a modified multilayer model pnésein [29]. The model has
also been successfully applied to color-textured imagmsegation [30, 31].

Finally, we present the application of multilayer modeliogautomatic change detection
on airborne images taken with moving cameras [2]. Esséntake want to extract the
accurate silhouettes of moving objects or object-groupsages taken by moving airborne
vehicles in consecutive moments. This problem is solvedvim $teps: first a coarse (but
robust) image registration is performed for camera motimmpgensation, then the aligned
input image pair is segmented into moving (foreground) cisj@and background. Main
challanges are camera motion, noise and the parallaxdsti@used by the static objects
having considerable height (buildings, trees, walls dtom the difference image.

A three-layer MRF model is constructed on a graplwhose structure is shown in
Fig. 2.7. The final goal is to perform a binary segmentatiothefimages into foreground
(fg) and background (bg) classes. For the segmentationtypeof features are extracted
from the aligned image pairi(s), the gray level difference of the corresponding pixels in
the registered images; an(k), the maxima in the local correlation function around pixel
The sites off are arranged into three layeis?, S¢ andS*, each layer having the same size
as the image lattic€. We assign to each pixelc S a unique site in each layee.g.s? is
the site corresponding to pixelon the layerS?. We denotes® € S¢ ands* € S* similarly.
The segmentation is obtained by assigning a laliel to all sites ofG from the label-set:
L = {fg, bg}. The labeling 0fS%/S¢ corresponds to the segmentation based om/thé-(.)
feature, respectively; while the labels at t¥ielayer present the final change mask.

In Fig. 2.10, we show some results obtained on three pairgmdlamages. For each
pair, we show the ground truth change masks obtained by rhaagmentation, the multi-
layer MRF results and a simple fusion obtained as a logicaDAdgeration on the change
masks of two monolayer segmentations based on each feafuresncreased precision of
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the multi-layer model is clearly visible. Another applicat of multilayer modeling can be
found in [62].
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(a) Firstinputimage

(d) Second inputimage

(g) Fusion of two MRFs (h) Fusion of two MRFs () Fusion of two MRFs

(k) Multi-layer MRF (h Multi-layer MRF

(m) Ground Truth (n) Ground Truth (o) Ground Truth

Figure 2.10: Experimental results [2].
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bject extraction remains one of the key
O problems of computer vision, which

can be stated as finding regions in
the image domain occupied by a specified
object or objects. The solution often re-
quires high-level knowledge about the shape
of the objects. HOAC models integrate shape
knowledge via the inclusion of explicit long-
range dependencies between region bound-
ary points. Herein, we will show how to set
the parameters of the HOAC model to fa-
vor regions consisting of any number of ap-
proximately circular connected components,
each component having approximately the
same, specified radius. This yields the 'gas
of circles’ HOACs.

A subsequent reformulation of HOAC mod-
els as phase fields can be interpreted as

real-valued continuum Markov random fields.
Discretizing the phase field GOC model, we
will develop an equivalent ‘gas of circles’
Markov random field model that assigns high
probability to regions in the image domain
consisting of an unknown number of circles
of a given radius. The MRF model is con-
structed in a principled way, thereby creat-
ing an equivalent MRF. The model can be
used as a prior for object extraction when-
ever the objects conform to the ‘gas of cir-
cles’ geometry, e.g. tree crowns in aerial
images or cells in biological images.

Here we present a theoretical and ex-
perimental analysis of these models. The
performance is demonstrated on various syn-
thetic images as well as on the problem of
tree crown detection in aerial images.

47



dc_494 12

48 Chapter 3. The 'gas of cicrcles’ MRF model

3.1 Introduction

Object extraction remains one of the key problems of conrpugeéon and image processing.
The problem is easily stated: find the regions in the imageaiomccupied by a specified
object or objects. The solution of this problem often regsiihigh-level knowledge about
the shape of the objects sought in order to deal with highenalsittered backgrounds, or
occlusions [5, 13, 80,129, 173,188]. As a result, most aggres to extraction have, to
differing degrees and in different ways, incorporated pkimowledge about the shape of the
objects sought. Early approaches were quite generic, #sbeencouraging smoothness
of object boundaries [24,74,79,97,127]. For example, [B8s a Markovian smoothness
prior (basically a Potts model.e. boundary length is penalized); [97] uses a line process
to control the formation of region boundaries and contralature; while classical active
contour models [127] use boundary length and curvature regidn area in order to favor
smooth closed curves [74,79].

Subsequently there has been a great deal of work on theimglamore specific prior
shape knowledge. Many of these methods rely on a kind of t&@phatching: shape vari-
ability is modeled as deformations of a reference shape apesh Often, borrowing ideas
from Grenander’s pattern theory [103], shape variabiliigiag from changes of pose is
modeled as the action of a transformation group on the sh@apées may or may not be
combined with further intrinsic shape variability. Thisdwledge is then summarized in
a statistical model which is incorporated into a variatidi@&, 80, 92, 176] or probabilis-
tic [86,123,153, 183] framework. Although these methodsueaeful for many applications,
the major drawback of using a reference shape (or shapesatishandling an unknown
number of instances of an object in the same image is difficult

In this latter case, marked point processes constitute yanegural approach [83, 154,
165]. However, while allowing a unknown number of objectamces, computational con-
straints mean that individual objects are usually modeddzbtonging to very low-dimensional
families, with no other shape variability allowed. Thistregs the shapes that can be mod-
eled and the geometric accuracy that can be achieved.

An alternative approach, known as ‘higher-order activetaors’ (HOACs), was pre-
sented and developed in [13,173]. HOAC models integratpeskaowledge without us-
ing reference shapes via the inclusion of explicit longgewdependencies between region
boundary points. The lack of reference shapes means tlyatdheéoe used to extract multiple
instances of the same object.

Herein, we will show how to set the parameters of the HOAC rhideduced in [173]
to favor regions consisting of any number of approximatéigutar connected components,
each component having approximately the same, specifi@asrfiB]. A subsequent refor-
mulation of HOAC models (and active contour models in gelh@sequivalent phase field
models [120, 174] brings a number of theoretical and algornit advantages. One of the
most important of these is that phase field models can bematierd as real-valued contin-
uum Markov random fields (MRFs), thereby allowing the théoatand algorithmic toolbox
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Figure 3.1: The interaction function¥.(z) for d = 2.

of random field theory to be brought to bear. Binarizing thagghfield (in any case, regions
are defined by thresholding the real-valued phase field)p&ndurse discretize its domain,
we will develop an equivalent ‘gas of circles’ Markov randéield model [5]. Both HOAC
and MRF formulation of the ‘gas of circles’ model has many liéa applications.e.g.they
have been succesfully applied to the extraction of tree rsdnom aerial images [5, 13].

3.2 Higher order active contours

Higher-order active contours (HOACSs), were presented aveldped in [13,173]. HOAC
models integrate shape knowledge without using referehapes via the inclusion of ex-
plicitlong-range dependencies between region boundanggpdhe lack of reference shapes
means that they can be used to extract multiple instancée sime object. Following [13],
we show how to set the parameters of the model introduced7i8] [tb favor regions con-
sisting of any number of approximately circular connectethponents, each component
having approximately the same, specified radius. This ‘dasrodes’ (GOC) model was
successfully used for the extraction of tree crowns fronehenages [13].

HOAC models, like all active contour models, represent @ore@ by its boundarygR,
a closed!-chain~ in the image domai®. The boundary R is an equivalence class (under
diffeomorphisms of their domain) of zero or more closed paterized curves. The HOAC
energy for the GOC model is [13]:

E,(OR) = A.L(v)+ aA(y) — %/T " n-n'W.(|ly—~'])dtdt" (3.1)

where the parameterized curyevith domainT is an arbitrary member of the equivalence
class of parameterized curves correspondingRp and wherel. and A are the boundary
length and interior area functionals. The last term of Eql)(8ontrols the geometry of
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the region, where represents an (un-normalized) normal vector to the boyndad where
here and elsewhere, primed and unprimed maps are evalugead and unprimed points
of their domain. Thenteraction function¥ . takes the following form, plotted in Fig. 3.1:

1o L2l 1y (zlel=d) i
U,(z) = { 2 (2 - — —sin ( S )) if 2| <.2d, (3.2)
1 —H(|]z| —d) otherwise,

whered controls the range of interaction aiflis the Heaviside step function.

3.3 The ‘gas of circles’ HOAC model

For certain ranges of the parameters involved, the energyir{3.1) favours regions in the
form of networks, consisting of long narrow arms with appneately parallel sides, joined
together at junctions, as described by [173]. It thus presi@good prior for network extrac-
tion from images. This behaviour does not persist for alapeeter values, however. In [13],
we showed that if the parameter triplg., ., 8.) satisfies certain constraints, circular re-
gions of a given radius will be local minima of the energy, #mas stable, thereby yielding
the HOAC ‘gas of circles’ (GOC) model.

For this to work, a circle of the given radius must be staliia} ts, it must be a local
minimum of the energy. In Section 3.3.1, we show that stabtdes are indeed possible
provided certain constraints are placed on the parametdme specifically, we expand
the energyE, in a functional Taylor series to second order around a ciofleadiusry.
The constraint that the circle be an energy extremum themnesythat the first order term
be zero, while the constraint that it be a minimum requires the operator in the second
order term be positive semi-definite. These requirementstcain the parameter values. In
Section 3.3.2, we present numerical experiments usinghat confirm the results of this
analysis.

3.3.1 Stability analysis

We denote a member of the equivalence class of maps repregs#m 1-chain defining the
circle by~g, and a small perturbation hyy. To second order,

oF 1 E
Ey(7) = Ey(v0 + 67) = Eg(vo) + <5’V‘5—,yg>“fo + §<5V| 5729 079) 0 - (3.3)

where(:|-) is a metric on the space dfchains.

Since~y, represents a circle, it is easiest to express it in terms lafr mwordinates:, ¢
onD. For a suitable choice of coordinate 6, a circle of radius:, centred on the origin
is then given byyy(t) = (ro(t),00(t)), wherery(t) = ro, 0(t) = t, andt € [—m, 7). We
are interested in the behaviour of small perturbations= (dr, 66). Because the energy,
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is defined onl-chains, tangential changes+ndo not affect its value. We can therefore set
00 = 0, and concentrate air.

On the circle, using the arc length parameterizatiothe integrands of the different
terms inL£, are functions of — ¢’ only; they are invariant to translations around the circle.
In consequence, the second derivatvé’, /d+(¢)d~(t') is also translation invariant, and
this implies that it can be diagonalized in the Fourier badithe tangent space at. It
is thus easiest to perform the calculation by expressinim terms of this basisor(t) =
S are™ wherek € {m/ry : m € Z}. Below, we simply state the resulting expansions
to second order in the, for the three terms appearing in Eq. (3.1). Details can bedou
in [13].

The boundary length and interior area of the region are givesecond order by

L(y) = /ﬂdt|7'(t)|IQWT0{1+j—z+%Zk2‘ak|2} (3.4)
- k

™ r(0)
Aly) = / d@/ dr' v’ = 7rg + 2mroag + WZ lax]? . (3.5)
-7 0 k

Note that there are no stable solutions using these terme.aléor the circle to be an ex-
tremum, we require\ .27 + a.27ry = 0, which tells us thaty. = —\./r¢. The criterion
for a minimum is, for each, \.rok? + o, > 0. We must have\, > 0 for stability at high
frequencies. Substituting fer,, the condition becomes, (rok? — rgl) > 0. Substituting

k = m/rq, gives the conditiom? — 1 > 0: the zero frequency perturbation is never stable.

The quadratic term can be expressed to second order as

//_: dtdt' G(t,t") = 2x /7r dp Foo(p) + 4may /7r dp Fio(p) (3.6)

—T —T

o Sordacr{] | avFap+ [ dvemirap)] @)

- -7

— [2i7’0k /: dp e’"okagg(p)] + [rng /_: dp e’"okaM(p)k}.S)

whereG(t',t') = 7(t') - 7(t) V(R(t, t')). TheF;; are functionals ofl (and hence ofl), and
functions ofr,, as well as op.
Combining Eq. (3.4), Eq. (3.5), and Eq. (3.8), we find, up tmsel order:
1
Ey(v0 + 67) = eo(ro) + aoer(ro) + 5 Z |ax|ea(k, 70) (3.9)

2
k

where
eo(ro) = 2710+ mars — 7B:Goo(To)
ei(ro) = 2w+ 2maerg — 27 B.G1o(r0)
ea(k,ro) = 2mArok® + 2ma,
—275, [QGQO(TO) + Go1(k, 7o) — 2irokGas(k, o) + 12k*Goy(k, ro)} ,
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Figure 3.2: Plots ofey againstry ande, againstrgk. Left: the energy of a circley plotted against
radius ro for A\, = 1.0, « = 0.8, and 3. = 1.39 calculated from Eq. (3.10) withy, = 1.0. (The
parameters ofl are d = 1.0 ande = 1.0, but note that it is not necessary in general that 7(.)

The function has a minimum a§ = 7 as desired.Right: the second derivative df,, e, plotted
againstryk for the same parameter values. The function is non-negétivall frequencies [13].

whereG;; = ["_ dp e=(=0@)k F(p). Note that there are no off-diagonal terms linking
aj anday for k # k': the Fourier basis diagonalizes the second order term.

3.3.1.1 Parameter constraints

Note that a circle of any radius is always an extremum for pe@r frequency perturbations
(ay for k # 0), as these Fourier coefficients do not appear in the firstraedm (this is also
a consequence of invariance to translations around thie)ifthe condition that a circle be
an extremum for,, as well ¢; = 0) gives rise to a relation between the parameters:

)\c + Ocho
Gro(fo)

where we have introduceg) to indicate the radius at which there is an extremum, to dis-
tinguish it fromrq, the radius of the circle about which we are calculating tk|gaasion
Eq. (3.3). The left hand side of Fig. 3.2 shows a typical pfahe energy, of a circle ver-
sus its radius, with the 5. parameter fixed using the Eq. (3.10) wikh= 1.0, « = 0.8, and

7o = 1.0. The energy has a minimumat = 7, as desired. The relationship betwegrand

B. IS not quite as straightforward as it might seem though. Aslmseen, the energy also
has a maximum at some radius. It is agiriori clear whether it will be the maximum or the
minimum that appears &¢. If we graph the positions of the extrema of the energy of@eir
againstg, for fixed a.., we find a curve qualitatively similar to that shown in Fig3 8this is
an example of a fold catastrophe). The solid curve repregaatminimum, the dashed the
maximum. Note that there is indeed a unigidor a given choice of,. Denote the point

Bc(Am e, 720) - (310)
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Figure 3.3: Schematic plot of the positions of the extrema of the endrgyciocle versuss, [13].

at the bottom of the curve b3, #\"’). Note that at3, = 8, the extrema merge and for
Be < 66(0), there are no extrema: the energy curve is monotonic bethesgiadratic term is
not strong enough to overcome the shrinking effect of thgtleand area terms. In order to
use Eqg. (3.10) then, we have to ensure that we are on the uggrerhof Fig. 3.3.

Eq. (3.10) gives the value ¢f. that provides an extremum ef with respect to changes
of radiusa, at a givenvy (e; (7o) = 0), but we still need to check that the circle of radiyss
indeed stable to perturbations with non-zero frequeneythate, (k, 79) is non-negative for
all k. Scaling arguments mean that in fact the sigm-0fiepends only on the combinations
7o = 1o/d andac = (d/A.)a.. The equation foe, can then be used to obtain bounds on
ac in terms ofr. (Details of these calculations and bounds can be found3j)[The right
hand side of Fig. 3.2 shows a plotaf(k, 7) against'yk for the same parameter values used
for the left hand side, showing that it is non-negative forgk.

We call the resulting model, the ener@y with parameters chosen according to the above
criteria, the ‘gas of circles’ model.

3.3.2 Geometric experiments

To illustrate the behaviour of ‘gas of circles’ model, indhgection we show the results
of some experiments using, (there are no image terms). Fig. 3.4 shows the result of
gradient descent usingj, starting from various different initial regions. (For didaof the
implementation of gradient descent for higher-order @ctiontour energies using level set
methods, see [173].) In the first column, four differentialitegions are shown. The other
three columns show the final regions, at convergence, feettlifferent sets of parameters.
In particular, the three columns hatkge= 15.0, 10.0, and5.0 respectively.

In the first row, the initial shape is a circle of radi8 pixels. The stable states, which
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A 1
*

Figure 3.4: Experimental results using the geometric term: the firsticol shows the initial condi-
tions; the other columns show the stable states for varibasces of the radius [13].

can be seen in the other three columns, are circles with thieederadii in every case. In the
second row, the initial region is composed of four circlesliffierent radii. Depending on
the value ofry, some of these circles shrink and disappear. This behavayube explained
by looking at Fig. 3.2. As already noted, the energy of a eieglhas a maximum at some
radiusrmax. If an initial circle has a radius less thamax, it will ‘slide down the energy
slope’ towardsy = 0, and disappear. If its radius is larger thanay, it will finish in the
minimum, with radius®,. This is precisely what is observed in this second experimien
the third row, the initial condition is composed of four sceg The squares evolve to circles
of the appropriate radii. The fourth row has an initial caiwh composed of four differing
shapes. The nature of the stable states depends on thenddativeen the stable radiug,
and the size of the initial shapes.rlf is much smaller than an initial shape, this shape will
‘decay’ into several circles of radiusg.
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3.4 Phase field model

A subsequent reformulation of HOAC models (and active contoodels in general) as
equivalent phase field models [120, 174] brings a numberexrdtical and algorithmic ad-
vantages. One of the most important of these is that phadeniietlels can be interpreted as
real-valued continuum Markov random fields (MRFs), theralbgwing the theoretical and
algorithmic toolbox of random field theory to be brought t@beRegions are defined by
thresholding the real-valued phase field. Herein, we wiledi@p an MRF GOC model [5]
equivalent to the phase field GOC model, by binarizing thespHeeld and of course dis-
cretizing its domain. We start from the phase field formolatof the contour energy of
Eq. (3.1) givenin [174]:

D ) 3 4 2 )
p6)= [ {Zvep+ar (0- %)+ (G- 5 ) -

—% VoG (x, 2 \V¢' d*xvd*s’ | (3.11)
DQ
whereG(zx, 2’) is defined as in [174]:
G(z,2') = ¥([|lz — 2’|, (3.12)
wherel is a2 x 2 unit matrix andV¥ is as follows:
(2——+—sm(%)) if z < 2d,
¥(z) = { 1—H(z—4d) else. (3.13)

whered is the range of interactions ard is the Heaviside function. Note that in our case
z = ||z — 2'||, hencez > 0 is assumed in Eq. (3.13). The derivativeslowill also be useful
(note that: < 2d is assumed):

, 1 mZ
U'(z) = ¥ (cos <F) — 1) (3.14)
" o _i Tz
U(z) = 57 sin ( yi ) (3.15)
The higher order term in EqQ. (3.11) can be integrated by parts
—% VoG(z, 2 \Ve' dzd*s’ = —%/ H(VV'U(||lz — 2'|)T)¢'d*xd*+(3.16)
D2 D2

_ _@/ o(—V2U(|z — /| 1)¢ dPzd?1(3.17)
_ / v?qf (o — o |)éd/dad’s  (3.18)

Using the followings:

x—a
Viz =2 = T (3.19)
1
Ve —a'|| = o=’ (3.20)
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Figure 3.5: Plots of the higher order interaction functigi(||z — 2/||) for d = 2 (i.e. ||z — 2'|| < 4).
Left: Plot of G(z). Right: Surface plot olG(||z — 2/|]).

let us expandi(||z — '||) = V2¥(||lz — 2'||):

G|z —2'I) = VO(|lz—2|) =V - (U ([|z -2 |)V|z—2']) (3.21)
V(e = ') (V]z = 2'|) (Ve = 2']]) + ¥ (||l — ')V ||z — (8/22)

— (|l — o M 3.23

(] 1) + |z = | (3.23)

1 ||z — 2| T . (7lr—2
- TR Z2N) _q) - g (21 (304
2d||z — 2| (COS( d 2q2 " d (3-24)

assumingd|z — /|| < 2d. Now we have the following energy functional to be discrediz

E(¢) = % /D Vo> (3.25a)
+ay /D <¢— ‘%3) e (3.25h)
o [ (4 2) (2250
+% /DQQ(Hx—x'H)qﬁqﬁ’d?xd%’ (3.25d)

¢ : D — [—1,1] is a real valued function o C R?. Basically,¢ takes the value-1
inside and—1 outside a regiom? while it changes linearly across the boundad. It is
therefore a smoothed version of the characteristic funaifar up to a scaling and shift. It
can also be regarded as a fuzzy membership function.
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3.5 Equivalence of the HOAC, phase field, and MRF mod-
els

HOAC and phase field models represent binary partitionifigiseodomainD. If we denote
the space of binary partitions of the domairby B, then the following mappings will relate
these representations to a partitioning:

g: TI'=B~y—B:g(y) =1p (3.26)
f: ®=Bo— B:f(¢)=1p (3.27)

wherel and® denote the space of HOACs and phase fields respectively. appingsf
and g aremany to onebecause we can reach the same characteristic functiorevesad
parameterization of the phase field and contour models. nergé / may be regarded as a
guantization of a given phase field functigmn order to obtain the characteristic function of
the corresponding partitioR, which is said to be represented dySuch a quantization can
be achieved in several way$z = H(¢) is the simplest one used for example in [174]. A
more generic approach is to conveiinto a fuzzy membership functiops = (¢+1)/2, x :

B — [0, 1] and therdefuzzifyy p.

Both the HOAC and phase field models produce an optimal bipargitioning of the
domainD in the sense that the resulting contour and field have thesoeveergy state of the
respective energy functionals:

7 = argmin Ey(7) (3.28)
~yel’

g/g = argmin F(¢) (3.29)
Pped

Of course, the partitioning§f = f(ngﬁ) andﬁg = ¢g(¥) may not be the same.

While the above models are continuous, both the domain atd space of an MRF
model are discrete. For now, let us consider a realizatiohthe MRF as dinary labeling
of the latticeS which is the discretization of the domai

w:S = {—1,+1} (3.30)

Depending on the discretization Bf, there may be several partitioninggse 8 mapping to
the same binary labeling:

m:B—->Q B—wm(B)=2-1lp—1=w (3.31)

where(2 denote the space of binary labelings®fm is amany to onenapping as there are
many continuous partitions which discretizes into the shimary labeling. Here the transfer
of the characteristic function is easily defined but the rdigzation of the domai® can be
achieved in several different ways.
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In summary, starting from a phase fieldwe can reach a binary labeling and this is a
unique correspondence:

¢ B—w:m(f(p) =w (3.32)

Note that we cannot directly relate a phase fiekt a labelingo because none of the above
mappings are invertible. However, we can define equivaletasses of binary partitions
with respect to a given discretization of the dom@irand equivalence classes of the phase
fields with respect to a given defuzzification of the membigréimctiony z.

Before constructing an equivalent MRF model, we have tafglar what sense we want
the phase field, and MRF models to be equivalent. It is cleéat, @éach of these models is
describing the same real world phenomenon. Since each maodslat minimizing some
energy functional, it is expected that the optimume. arguments of the global minimum)
be equivalent. Formally:

~

m(f(¢)) = ©, where (3.33)
w = argmeisl)lU(w) (3.34)

Unfortunately, it is not easy to quantify such an equivaéepartly because these optimums
are defined indirectly, via the different energy functiamaHence we will state a slightly
more restricted, but easily formalized equivalence, wischlso a sufficient (but not neces-
sary) condition of the above optimum equivalence. Let uscmra mapno f =W : & —

Q2. Since we will compute MAP estimates, and since we wish tegme the property that
circles of a given radius have higher probability than nbamlring configurations, we define
the MRF energy to be [5]

U(w) = @:vﬁiﬁ?:w E(¢). (3.35)

We thus set the energy(w) of a particular binary fieldv to the energy minimum of the
phase field§¢ : W (¢) = w} belonging to the equivalence class«of

3.6 Discretization

Following our development in Section 3.5, we will now atterigpdiscretize the phase field
model whose energ¥(¢) is defined in Eq. (3.25). For that purpose, we have to diseti
the domairD, the functiong, and the energy itself.

3.6.1 Quantization of the function¢

The simplest way to quantizg is taking2H (¢) — 1. The resulting discrete function will
be denoted by* : D — {—1,+1}. The energy of the discrete functigrit can be derived
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Figure 3.6: Discretization of the domaif». Each lattice sites € S represents a unit squakg in D,
that we call acell.

from Eq. (3.25) as follows:

B(6*) = BEQH()-1) (3.36)
=té{%ﬁveﬂwo—nf+afQmaw—w>—95@%i3)}d%

o [ o (O @HO 1Y

2 [ gl — a6 - 1A - Nty 337)
= /D {%\W@WP + %(2}[@5) 1) - %} 2
+% /D G(llz — ') (2H(¢) — )(2H(¢') - 1)d*wd’s’ (3.38)

Note that the discrete representatignof the fieldy corresponds to a contour representa-
tion v and this is a one to one mapping. Furthermore, the gradientte>) V¢ contributes a
non-zero value only on the region boundaries, wifete 0. Therefore this term corresponds
to the contour length termi() in Eq. (3.1).

3.6.2 Discretization of the domainD

D is simply discretized as a finite rectangular latti€ec 7Z2. Each lattice sites € S
corresponds to (or represents) a rectangular aréa D, that we call acell. In our case,
these cells are squares of unit size (see Fig. 3.6). Theeh&rg) over the latticeS can be
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derived from Eq. (3.25) as follows:

E(¢p)=U(p) = Z{%/cs\vm?d%JrafL (gb—%g) d2x+xf/cs (%4—%2) d%}

seS

*% > / G(lz - 2'|)o¢ dwd*a’ (3:39)

SsES res v esXer

3.6.3 Discretization of the energy functional

In the following, we will derive the discrete energy functad when both the domai®» and
function¢ are discretized. This procedure will convert the contirsipliase field model into
a discrete one. The resulting discrete field will be denotedb S — {—1,+1}. In our
case, it is natural to assume the following discretizatioth guantization:

ws :=2H </ gbdzx) —1 (3.40)

Similarly, higher powers of are discretized as

w' o= 2H ( ¢”d2x) —1; Vn=2,3,... (3.41)
- +1 Vn=2,4,...
- { ws Vn=3,5,... (3.42)

Let us now consider the phase field energy Eq. (3.25). As ugwabradient operatdv is
replaced by the finite difference operatr

Vo ~ Aw (3.43)
/\v¢|2 Y (we—w)? (3.44)

f[s=rl=1

Hence the first term Eq. (3.25a) becomes

Df 2 12 _ Df 2 12
7/D|vgzs| Pr = 7; i IVo|?d*x (3.45)
~ D DY (we—w) (3.46)
lls—r[l=1
where
D= %Df (3.47)
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The next term Eq. (3.25b) is approximated by

(5o - ([ o)
wE(omge) o T

a ZWS’ (3.48)

Q

Q

yielding
a=—-oy (3.49)
Eqg. (3.25c) becomes

4 2
)\f/D(%—%) T = )\fzS:G/cS&d%_%/cﬁQdm)

1 1 1
Afz(ra) =X 7]

Q

~ NS, (3.50)
from which we get
A= —iAf (3.51)
Finally the non-linear term Eq. (3.25d) is as follows
ﬁf / 132 32,/ 2, .92 1
3ot aosira = 5 Y [ Glle—ahooitads

G(||x — 2'||)d*zd*a’

%
o
M -
=
€
T~

[|s—r||<2d CsxCr
~ B Y ww Py, (3.52)
[[s—r||<2d

whereF, denotes the discrete version of the opergdir — «’||). Setting

B8=5 (3.53)
yields
F, = / G(||lx — 2'||)d*xd*s’ (3.54)
csxey

Putting these terms together we get the energy of the desoretlel:
Ulw) = MNS|+ aZws +D Z ws — wy)? + Z wew, Fy.  (3.55)
ls—r[l=1 |ls—r||<2d

Note that the first term is constant hence it can be omittecWwhe ) is minimized. Now let
us have a closer look at the parameters of the above energydnal.
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3.6.3.1 Relationship between the parameters of the contoand field energies

The following relationship between the contour and fieldapagters has been derived in [174]:

A= Twith Kp=1+5(ap/\f)? (3.56)
4

Qe = oy (3.57)

B. = 4By (3.58)

The equivalence of the HOAC and phase field energy is thublestiad using the above
parameter settings [174]. The value &} is derived from an approximation of the phase
field energy, see [174] for details.

3.6.3.2 Parameters of the discrete energy functional

In summary, we have the following relationship between trameters of the HOAC energy
Eq. (3.1), the continuous Eq. (3.25) and discrete Eq. (JiBk) energies:

0 %af _ %ae (3.59)
D — %Df (3.60)
A = —iAf (3.61)
B — B — %50 (3.62)
Finally, from Eq. (3.56) and the above equations, we get
A= % with K; = 1+ 5(as/A;)? (3.63)
= % with K = 1+ 5(3a/ — 8))? (3.64)

3.7 Markovian interpretation

Now we will show that the discrete energy functional in Eq5E) defines a Markov Random
Field (MRF) with respect to an appropriate neighborhoodesys. Since the first term of
the energy is a constant|(S|), let us first remove it:

Uw)=aY w+D > (wi—w)+8 Y wwFy (3.65)

[[s—r|=1 [[s—r||<2d
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O site out of
neighborhood
S . singleton

r O doubleton &
lomg range

r . long range

Figure 3.7: MRF neighborhood system corresponding to the higher ortteraction functiorG (||« —
2||) ford =2 (i.e. ||z — 2’| < 4).

In this contextw = {w, : s € S} is called thelabel processvhich is modeled as a MRF.
(2 denotes the set of all possible labelings of the latficeSince we have two labels-(),
Q| = 251,

Definition 3.7.1 (Gibbs distribution) A Gibbs distribution is a probability measule
on() with the following representation:

Pw) = 22U (3.66)
Z
whereZ is thenormalizing constantr partition function:
Z = Z exp (—U(w)) (3.67)

we

Clearly, U(w) from Eg. (3.65) defines a Gibbs distribution, although thempotation
of Z is usually not tractable. Note however, that for samplirgfield, we do not need to
compute the actual value ¢f as long as the parametefs «, 5 are fixed a priori.w and
P(w) must also satisfy the following conditions:

Definition 3.7.2 (Markov random field) X is a Markov random field (MRF) with
respect ta if

(i) forallw € Q: P(X = w) > 0,

(ii) foreverys € S andw € ()
P Xs=ws | Xy =wp,r#3)=P(Xs =ws | Xy = w,, 7 € 1s).
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3.7.21i) is satisfied by definition{(w) belongs to the exponential family). For 3.7.2/ii),
we have to find the neighborhood system satisfying the Masgkosonstraint. In Eq. (3.65),
there are two type of interactions (see Fig. 3.7):

1. The approximation of the gradient term by the finite déferes in the second term,
which corresponds to a classical nearest neighborhood.

2. The higher order pairwise interactions governed by tkerdie operatoF’ which cor-
responds to a neighborhood of diametér

Since the size of the neighborhood is dominated by the laiteraction ( > 2 in practice),
we conclude that the neighborhood of a site S consists of the set of siteg = {r ¢

S :||s — || < 2d} (see Fig. 3.7). The Gibbs - MRF equivalence is then estadaifly the
Hammersley-Cliffordheorem [63].

Theorem 3.7.1 (Hammersley-Clifford) X' is a MRF with respect to the neighborhood
systenv ifand only if P(w) = P(X = w) is a Gibbs distribution with an energy equal to
the sum otlique potentialsthat is

p(w) = 22U _ o = dec Velw) (3.68)

Definition 3.7.3 (Clique) A subsetC C S is a clique if every pair of distinct sites in
C' are neighborsC denotes the set of cliques adeb(C) = maxcec |C.

The advantage of such a decomposition is that these pd&eat@a a function of the
local configuration of the field making it possible to define tBibbs distribution directly
in terms of local interactions. Since our neighborhood mia®f three types of cliques
(singleton doubleton andlong rangepairs), the definition of the energy functiéhw) can
be completed by defining the corresponding clique potential

3.7.1 Singleton potential

Vs Vi = aws (3.69)

Depending on the sign af, the singleton potential will either prefer, = —1 orw, = +1
everywhere. Hence setting> 0 will prefer a homogeneous background & —1). It can
also be interpreted as amnea term Thus asy is increased, typical configurations have less
foreground pixels, yielding less circles. This is illusé@in Fig. 3.8), where samples from
the MRF are shown for differemt.
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a = 0.1863 a=0.21 a=0.24 a=0.27

Figure 3.8: Typical samples from the MRF defined iy the effect of alteringx (d = 8, 8 = 0.096,

D = 0.1545) [5].

Figure 3.9: The contour length in the continuous (left) and in the ditkcmodel (right). The table
shows the continuous and discrete lengths vs. differemisd8].

r | Phase field MRF | PF/MRF
2 8 12 0.66
3 16 20 0.8
4 21.5 28 0.77

5 27.3 36 0.75
10 62.6 76 0.82
15 95.5 116 0.82
20 128.5 156 0.82
50 326.4 396 0.82

3.7.2 Doubleton potential

In the MRF model, the contour length is expressed by the ddoblterm: when neighbors
have different labels then there is an (implicit) conto@neént between them. In such cases
the doubleton potential is non-zero, otherwise it vanishésnce the contour length in the
MRF model is proportional to the overall energy of inhomaogaus doubletons:

— 1. _ s | 4D if ws # w,
Vis,r},|Is=r|| =1: Vg = D(ws —wy)* = { 0 otherwise (3.70)

However, due to the discretization, this contour is londgeamtthe one in the phase field,
even when the phase field is discretized (see Fig. 3.9). leraodcorrect for this mismatch,

we have to multiplyD, by the ratio of contour lengths~{( 0.82) according to the table

in Fig. 3.9). Furthermore, each doubleton potential is tediiwice in the summation in

Eqg. (3.65), hence the final energy must be divide@ bwe thus get the following modified

formula (see Eq. (3.47) for the original formula) to compltéom the phase field parameter
Df:

0.82
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3.7.3 Long range potential

Introduces the prior shape knowledge:

Vi{s,r}lls =7l <2d: V[, = BFqwsw, (3.72)
_ _5Fsr if Ws 7& Wy
N { +B3F,, otherwise (3.73)

Looking at Fig. 3.5 and Fig. 3.7, it is clear that the aboveeptal at siteq s, r} will favor

the same label whelps — || < d’ (attractive caspand a different label ift’ < ||s—r| < 2d
(repulsive casg whered’ = d + ¢, because the zero point of the high order interaction
function is not ind, see Fig. 3.5. Furthermore, it has no effect when- || equals td, or

d'. Therefore this potential is only meaningful whé» 2.

3.8 The 'gas of circles’ MRF model

Using the energy function of Eg. (3.65), we can now easilyngefhe probabilityP?(w) of
the 'gas of circles’ Markov random field as

Pw) = exp (—=U(w)) (3.74)

exp (—aZws - D Z (ws —wy)* = B Z Fsrwswr) (3.75)
s |

[s—r||=1 [[s—r||<2d

NI= N|+

whereZ is thepartition function

Of course, for the extraction of circular objects from reahges, we also needdata
likelihood, P(Z | w), which completes the definition of thosterior P(w | Z) = P(Z |
w)P(w). Obviously, the definition of’(Z | w) is problem dependent. Herein, we will use
a data likelihood that represents the background and fouegr pixel classes by Gaussian
distributions. This adds inhomogeneous termd/to The result is that in the posterior
probability forw, V; is given by

V, = aw, + ’y(ln(\/(27r)aws) + M) (3.76)

2
20,

The parameters of the Gaussian distributipns ando,; are learned from representative
samples provided by the user.

Using standard algorithms like simulated annealiegy( Gibbs Samplef97] or the
Metropolis-Hastingsmethod [113, 152]), we can find MAP estimatés In our experi-
ments [5], we used a standard Gibbs sampler [97]. The irngaperature was set ©
and we used an exponential annealing schediule = 0.977}. The iterations were stopped
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T =2 T=1 T =0.5 T =0.01

Figure 3.10: The evolution of the MRF modgk = 0.1863; D = 0.1545; d = 10). From left to right
we can see results at different temperatures. In the first(ow= 0.05) the contour vanishes, in the
second row( = 0.6) contour grows arms, and in the third rog$ = 0.0911), whereg is computed
from the GOC phase field model, the final regions are stabtdesr

when the temperature decreased belaw. Fig. 3.10 shows typical configurations sampled
at differenet temperatures from the priffw) in Eq. (3.75) with various parameter set-
tings. These experiments confirm that the model behavesié&eontinuous models: when
parameters are set according to the satibility analysis@iGOC model, then low energy
configurations consist of stable circles.

3.8.1 Experiments

Table 3.1 shows the quantitative results obtained on a sétlasynthetic noisy images. We
compare the segmentation results to a classical MRF moglelfdch doesn'’t include a
shape prior. For a fair comparison, the false-positive @te)false-negative (FN) rates were
computed while excluding the small circular regions. Thisa avoid biasing the measure:
the classical MRF should detect all regions having a pdeicntensity while our model will
only detect the desired circles. Based on these numbessléar that the proposed model is
less sensitive to noise. Fig. 3.11 and Fig. 3.12 show sarepldts on synthetic images and
demonstrates the results for various noise levels.
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Original Noisy image Classical MRF GOC MRF

Figure 3.11: For moderate noise levels (SNR—5dB), the classical MRF model finds all circles, but
-as expected- the GOC MRF model detects only circles witappeopriate radius.
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Original Noisy image Classical MRF GOC MRF

Figure 3.12: Results on synthetic noisy images. In the first row SNR12dB, otherwise SNR=
—16dB. The GOC MRF model segments the circles accurately whdectassical MRF model is
challenged by the high noise level.
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MRF GOC MRF

Noise (dB)|| FP | FN Noise (dB)|| FP | FN

0 13 | 46 0 11 | 10

-5 22 | 76 -5 21 | 32

-10 34 | 144 -10 51 | 82

-14 42 | 223 -14 62 | 120

-16 49 | 431 -16 87 | 154

-20 102 | 651 -20 147 | 394

Table 3.1: Results on a set dft0 noisy synthetic imaged.eft: classical MRF;Right: GOC MRF.
The slightly higher false-positive rate in the case of theCI@RF model is probably due to the fact
that a small error in the position of the detected circlesufessin more background pixels classified
as foreground [5].

3.9 Application in remote sensing

Forestry is a domain in which image processing and compusernvtechniques can have
a significant impact. Resource management and conservatjoire information about the

current state of a forest or plantation. Much of this infotim@acan be summarized in statis-
tics related to the size and placement of individual treevaso(e.g. mean crown area and

diameter, density of the trees). Currently, this inforroatis gathered using expensive field
surveys and time-consuming semi-automatic procedurds tiae result that partial informa-

tion from a number of chosen sites frequently has to be eskatgd. An image processing
method capable of automatically extracting tree crownsifrigh resolution aerial or satel-

lite images and computing statistics based on the resuliédrgveatly aid this domain.

The tree crown extraction problem can be viewed as a speasal of a general image
understanding problem: the identification of the regfbim the image domaif® correspond-
ing to some entity or entities in the scene. In order to sdive problem in any particular
case, we have to construct, even if only implicitly, a prabigbdistribution on the space
of regionsP(R|I, K). This distribution depends on the current image datnd on any
prior knowledgeKk” we may have about the region or about its relation to the indage, as
encoded in the likelihood® (/| R, K') and the priorP(R|K') appearing in the Bayes’ decom-
position of P(R|I, K) (or equivalently in their energies In P(/|R, K') and— In P(R|K)).
This probability distribution can then be used to make esti#® of the region we are looking
for.

In the automatic solution of realistic problems, the prinowledgek’, and in particular
prior knowledge about the ‘shape’ of the region, as desdriiyeP(R|K), is critical. The
tree crown extraction problem provides a good exampleiquaarly in plantationsi takes
the form of a collection of approximately circular connectmponents of similar size.
There is thus a great deal of prior knowledge about the regpoight which can be modeled
by the 'gas of circles’ model.

The main challenge to successful detection of crowns isltiieeced background, which
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causes traditional segmentation methods to fail. Fig., 3@ 3.15, and Fig. 3.16 show
some results. In Fig. 3.13 and Fig. 3.16, the trees are diffioiseparate due to shadows,
blur, and vegetation between neighbouring crowns. In Fij3 3results with the HOAC,
phase field, and MRF models are shown. In Fig. 3.15, the cl@sMRF model fails to
separate trees from background vegetation because theysimanNar intensity distributions.
Obviously, thed parameter of our model, controlling the approximate radiute detected
trees, must be set correctly in order to achieve the besbipeaince. Fig. 3.14 demonstrates
the effect of varioud settings.
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phase field result [119]

HOAC result [13]

Original

GOC MRF ( = 7)

GOC MRFd = 6)

Classical MRF

Figure 3.13: Top: Results of the continuous models [13, 118pttom: Results with various MRF

models [5].
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d=5

Figure 3.14: The effect of thd parameter. Agl is increasing, smaller trees are not detected.

Original image Classical MRF GOC MRF
Figure 3.15: The classical MRF model fails to separate trees from baakgtlovegetation because
they have similar intensity distributions [5].
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Figure 3.16: Tree crown extraction result with the 'gas of circles’ MRFaabon a regularly planted
pine forest [5].
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major limitation of the 'gas of circles’
A model is that touching or overlapping

objects cannot be represented. A gen-
eralization of the original GOC model that
overcomes these limitations while maintain-
ing computational efficiency is the multi-layer
phase field GOC model. It consists of multi-
ple instances of the phase field GOC model,
each instance being known as a ‘layer’. Each
layer has an associated energy function, re-
gions being defined by thresholding. Intra-
layer interactions assign low energy to con-
figurations consisting of non-overlapping near-
circular regions, while overlapping regions
are represented in separate layers. Inter-
layer interactions penalize overlaps. This
makes it possible to represent overlapping

objects as subsets on different layers, thereby
removing the above limitation.

The Markovian formulation yields a multi-
layer binary Markov random field model that
assigns high probability to object configu-
rations in the image domain consisting of
an unknown number of possibly touching or
overlapping near-circular objects of approx-
imately a given size. Each layer has an as-
sociated binary random field that specifies
a region corresponding to objects. Over-
lapping objects are represented by regions
in different layers. Within each layer, long-
range clique potentials favor connected com-
ponents of approximately circular shape, while
regions in different layers that overlap are
penalized through inter-layer cliques.
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4.1 Introduction

An important subset of object extraction problems involudtiple objects of near-circular
shapeg.g.tree crowns in remote sensing images, and cells and otlhetstes in biological
images, and are thus difficult to solve using standard shagmehing methods. To address
these problems, the HOAC model has been developed favosuipgets of the image do-
main consisting of any number of near-circular componeritis approximately a given ra-
dius [13,120]. This ‘gas of circles’ (GOC) model was suctd@sused for the extraction of
tree crowns from aerial images. The model suffers, howéran two limitations that ren-
der it unsuitable for many important applications. The fasses from the representation:
because the configuration space consists of subsets of #yeidomain, as opposed to sets
of subsets, touching or overlapping objects cannot be septed. The second arises from
the model: the long-range interactions that favour ne@utar shapes also create repulsive
interactions between nearby objects, meaning that objedtsv-energy configurations are
typically separated by a distance comparable to their size.

Herein, we present a generalization of the GOC model thatcowees all these limita-
tions while maintaining computational efficiency: the nHatyer phase field GOC model [42].
This model consists of multiple instances of the phase fi€d€@odel, each instance being
known as a ‘layer’. This makes it possible to represent aygihg objects as subsets on
different layers, thereby removing the first limitation. €rbnly inter-layer interaction is an
overlap penalty: the long-range interaction does not aetdxen different layers. As a result,
objects in separate layers do not repel, thereby removiegeicond limitation. MAP esti-
mates can be computed by minimizing the energy of the modejradient descent, which
is relatively computationally efficient if a good initiaiion is available.

In [45], we have developed an equivalent binary Markov randield model, the multi-
layer GOC MRF model. The main difference compared to theicoats phase field model
is that the MRF energy can be minimized via standard stoichaptimization, which -
although computationally more expensive than gradientetds do not require any initial-
ization.

With a suitable data likelihood, these models can be usedbgct extraction in the
many cases in which the ‘gas of circles’ geometry is relevlletrein, we demonstrate their
use for the extraction of cells and lipid droplets from bgitmal images.

4.2 Layeredrepresentation of overlapping near-circular fapes

We now extend the single-layer model of Eq. (3.11) tmati-layer GOC model. The use
of multiple layers enables the representation, not justbssts, but of sets of subsetsIof
because subsets with non-empty intersection can now besemied on separate layers. As
a result, the new model can represent objects that touchwarthp in the image.
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Figure 4.1: Layered phase fields.

This is not enough on its own because the long-range interaict Eq. (3.11) creates a
repulsion between connected components, favouring coafigas in which the objects are
separated by a distance comparable to their size. Whilepgpte for some problems,g.
tree crowns in regular plantations [120], it fails for prefvis in which objects are touching or
overlapping, see.g.Fig. 4.8. To overcome this limitation, in the new model thedaange
interactions act intra-layer bumot inter-layer. This has two effects. First, the low-energy
configurations in each layer are still ‘gas of circles’ coaf@fions, as required. Second,
the repulsive interaction is eliminated, because repeilgimteracting regions can ‘escape’
to separate layers. The result is that overlapping ‘gasrofes’ configurations on separate
layers can now be combined without penalty. To avoid degga@onfigurations, in which a
given object is duplicated across all layers, an interfl@yea overlap penalty is introduced.

To proceed, we redefine the phase field as a multi-compongettob = {¢;}icii.q :
[1./]xD — R, ¢, wherel is the number of layers. The total enetfyof the new multi-layer
model then takes the form

l

E(¢) =) E(¢:)+ g Z/Du + i) (1+¢5) , (4.1)

i=1 i#j

where E is defined in Eqg. (3.11), and is a new parameter controlling the strength of the
overlap penalty. An example of a low-energy configuratioshiswn in Fig. 4.1.

Note that ‘background’ points, with; ~ —1, do not generate overlap penalty. Note also
that if they do not overlap, objects in range of the repulsnteraction will tend to lie in
different layers. If they do overlap, there is competiti@tveeen the repulsive interaction
and the overlap penalty. K is not too large, they will exist on separate layers; i6 large
enough, they will exist on the same layer, perhaps reduciogé object.
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4.2.1 Functional derivative of the layered energy

The layered phase field energy will be minimized via gradisssicent, for which we need to
compute its functional derivative:

0E(¢) _ 6E(dr) | wIEo(0)
Sp(a')  O¢r(a) 4 dn(a)

where Eo(¢) denotes the overlap energy term from Eq. (4.1). The first israimply the
functional derivative of evaluated at the,,, and so is known [120, 174]. The derivative of
the overlap energy is

(4.2)

‘;gsg; _ ; [ o {0, 1+ 0,(a) + (1 + 0@ ud .2} .3)
- i 51+ 6;(2)) + 65(1 + ¢s(2")) (4.4)
- géu—&wu+¢xf»+§31—@M1+@mw (45)
= i (1+¢;(2") — (1+ ¢k(;'))) + Z ((T+¢i(2) = (1 + dn(a’))(4.6)
= 22(1 + ¢i(z)) | (4.7)
= 2(:&— 1)+2 ; bz (4.8)

4.3 The multi-layer MRF ‘gas of circles’ model

34

iy

o

o

Intra-layer interactions Inter-layer interaction

Figure 4.2: MRF neighborhoods.
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The multi-layer MRF GOC model, similar to the multi-layergsefield model, uses mul-
tiple copies of the MRF GOC model, as follows [45]. The donHithe binary random field
becomesS = ¢ x S, or alternatively, the field is a map frosito B, whereB = {—1,+1}
and/ denotes eithef ¢ Z* or the set{1,...,¢}. Hencew = {w®} fori € ¢, where
w® : S — B. In principle, we would like/ = Z*,i.e. an infinite number of layers, as
this would place no restrictions on the possible configareti In practice, there is always a
maximum number of mutual overlaps, ahdeed be no larger than this.

Sites that only differ in the value afcorrespond to the same spatial point. Thus the
domainS can be thought of as a series of layers, each of which is ispinoto S, hence
the name ‘multi-layer’. It is clear that the multi-layer fledan represent overlapping objects,
simply by placing the regions corresponding to them on cbfielayers.

The Gibbs energy/ of the multi-layer model is the sum of the MRF GOC energies of
each layer, plus an inter-layer interaction term that peealoverlaps (see Fig. 4.2):

4
U(w) = ZU(w(i))+§ZZ(1+w§i))(l+w§j)), (4.9)

i#£j s

wherex is a new parameter controlling the strength of the overlamjtg! Note that the
inter-layer energy is ultralocal: only corresponding sitbe different layers interact. Thus
two regions in different layers experience no interactiomlaunless they overlap. This
eliminates the repulsive energy that exists in the singyed model, because nearby but non-
overlapping regions in different layers always have lowsgrgy than the same regions in
the same layer, assuming the intra-layer interactionsegreisive.

4.3.1 Energy of two interacting circles

In order to understand the behavior of the model, in thisieseate analyze the energy of
two circles, on the same layer and on different layers. Weidan the configurations shown
in Fig. 4.3, wherew stands for the size of the intersectiom: < 0 means the circles do
not intersect, whilev > 0 represents a non-empty intersection of width We want to
express the energy of these configurations as a functian. ofVe take advantage of the
equivalence of the ‘gas of circles’ MRF and HOAC models to tieehigher-order active
contour energy Eq. (3.1) to compute the energy of the twdesrcThe parameters of this
energy come from the equivalences between the three fotiongas. = 45; the unit weight
of a boundary point i%‘%; while the difference in energy between an interior and réste
point is2«. Thus the MRF energy of a single circle with radiusan be written as

E(r)= %27’% + 2007 — 23 / /027T df do’ r* cos(§ — 0') G(v(0) —v(0")), (4.10)

INotice thatlJ is invariant to permutations of the layers. This will remaire even after we add a likelihood
energy. Thus all configurations, and in particular minimurergy configurations, ar@ times degenerate. In
practice, this degeneracy will be spontaneously brokembyptimization algorithm.
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r T T J
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Figure 4.3: Configurations of two overlapping circles and correspogdplots of £ (r, w) and
Es(r,w) vs.w for two circles of radiug- = 10.

where~ is an embedding corresponding to the circle, parameteragedhown in Fig. 4.3,
by polar angle.

4.3.1.1 Different layers

When the two circles are in different layers, the only intéian energy is the inter-layer
overlap penalty. Thus the energy is constant until theesrstart to overlap. It then starts to
increase:

Eq(r,w) =2E(r) + kA(r,w) , (4.11)

whereA(r, w) is the area of the overlap given by

Alr,w) 2<r2arccos (1—2—“;)—(7"—%)\/27"10—%2) if w>0, (4.12)

0 otherwise.

4.3.1.2 Same layer

When the two circles are in the same layer, they interagct i —2d for the particular form
of interaction function in Eqg. (3.2). (Note that we need oobnsiderw < 2r, wherer is
the radius of the circles, due to symmetry.) Thus i —2d, the energy is simplgE(r).
Forw > —2d, the energy increases with until w = 0. As the circles start to overlap (and
thus no longer form two circles, but a combined ‘dumbbelBsd), there is effectively an
attractive energy that causes an energy decrease witlasiueger until the combined shape,
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and thus the energy, becomes that of a single citcle-(2r). More precisely, the energy of
two circles is

4D
Ey(r,w) = @2(2r7r — L(r,w)) + 204(27"27r — A(r,w))

9.
Y / / | " dby dO), 12 cos(0y — 0,) G (02) — 1 (6))

- 25//:d91 dfy 1% cos(0y — (m — 65)) G(A(0y,0,,w)), (4.13)

where~, » are two embeddings corresponding to the two circles, paeaied by angles
6, » respectively, as shown in Fig. 4.3. We have taken advanthggnometry to write the
second line in terms of; only. L(r, w) is the arc length of the intersection segment, while

A6y, 05, w) = \/(r(sin(0;) — sin(6,)))2 + (2r — w — r(cos(f;) — cos(6)))?  (4.14)

is the distance between the pointg6;) and,(6.). The limitsé, = cos™!(min(1, 152))
andfd; = 2m — 0, are the radial angles of the two intersection points.

The righthand side of Fig. 4.3 shows plots Bfy)(r, w) and Es)(r,w) againstw for
circles withr = 10. When the overlap is greater than a certain threshold, clbedrby «,
the energy of two circles in different layers becomes grehtn two partially merged circles
in one layer. Below this threshold, however, the two layerfiguration has a lower energy.
The stable configuration energy of two circles is given byldveer envelope of the curves
in Fig. 4.3, and one can thus see that the repulsive energgxttsas in the single-layer MRF
GOC model is eliminated in the multi-layer MRF GOC model.

4.3.2 Experimental results

In this section, we report on the quantitative evaluatiothefbehavior and performance of
the multi-layer MRF GOC model in object extraction problamslving simulated data and
microscope images. Results were obtained as MAP estimaegy the multi-layer MRF
GOC model as a prior, combined with a likelihood enetgyto be described shortlyo =
arg max,, P(I|w)P(w) = argmin, UL (I,w) 4+ U(w), wherel : S — R is the image data.
Optimization was performed using Gibbs sampling coupletth wimulated annealing [97].
The annealing schedule was exponential, with half-lifeeast70 iterations, and a starting
temperature 03.0 for the parameter values used in the experiments.

4.3.2.1 Data likelihood

The data likelihood models the image in the interior and moteegions using Gaussian
distributions with constant means, and covariances equltferent multiples of the identity.
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0.4 (=4,k=04

W

¢=5,k=0.05 0.4 ¢ =6,k=0.05

Figure 4.4: Stable configurations of the multi-layer MRF GOC model fdiedént numbers of layers
and values of:.

In addition, we add an image gradient term connecting neighd pixels, as follows. For
each pair of neighboring sitesands’, let (s, s’) be the unit vector pointing fromto s’. Let
§ = argmaxye(s ) (|VI(1)|). Leth(s,s") = |(s,s") - VI(5)|. Then define

| . h(s,s') W = w(,)’
gils, &) = { |VI(3)] — h(s,s) other\lee (4.15)

The likelihood energy then becomes

Up(l,w) = ZV{Z n ((2m) 20,0 ) +%} 2D s, s')} , (4.16)

i s ws s s'~s

wherey and~, are positive weights. In practice, the parametersando., of the Gaussian
distributions were learned from representative samples.

4.3.2.2 Simulation results with the multi-layer MRF GOC mocdel

In the first experiment, we study the global minimaléf Choosing, without loss of gen-
erality, d = 10, and choosing the intra-layer parameters- 0.18634, D = 0.15451, and
£ = 0.091137 according to the stability constraints [5, 13] and to engbes stable circles
have negative energy] was then minimized for different numbers of layérand values
of k. Fig. 4.4 shows representative examples of these optinmigroations. The top-left
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Figure 4.5: Plots of the relative interior area (left) and shape erroigfnt) of the stable configurations
againstk.
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Figure 4.6: Results on noisy synthetic images (SN®IB) containing two circles of radius) with
different degrees of overlap. Left: typical extractionuits. Right: plot of segmentation error as a
function of degree of overlapu) and x.

result has/ = 1: note the spacing of the circles due to the intra-layer @palenergy.
When there are more layers, the intra-layer energies fagondarly dense ‘gas of circles’
in each layer. Fof < 3, every layer may contain such a configuration without theles

in different layers overlapping. Fdr > 3, however, it is not possible to achieve both an
optimal configuration in each layer and zero overlap endfgy.smallx, the model tries to
generate a dense configuration in each layer at the pricevofdhaverlaps. For large, the
situation is the opposite: the model tries to avoid overkphe price of having less circles
in each layer. Fig. 4.5 shows a plot of the relative inter'r@aqlﬁ > H(w) against<, where

N = |S]. The value is almost constant for< 3, while for ¢ > 3, the value decreases with
k. The circularity of the regions was also evaluated. Thethghd plot in Fig. 4.5 shows
the percentage of pixels outside the ideal desired ciréMdthiough for/ > 3, these errors
increase slightly, overall they remain low, meaning that tonnected components remain
circles to good accuracy for alandx.
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4.3.2.3 Quantitative evaluation on synthetic images

In this experiment, we demonstrate the efficiency of our rhadseparating overlapping
circles. A series of noisy synthetic images were generatetbing two circles of radius
10 with different degrees of overlap. The weights in the likelbd energy were set to= 0.1
and~; = 0, i.e.no gradient term was used. We used two layers and differivgjues in the
rangef0.01, 1]. Segmentation error was evaluated as the proportion ofriectly segmented
pixels. A plot of these errors versus the amount of overagnd « is shown in Fig. 4.6.
Note that there is a rather clear drop in the segmentatiam &or ~ = 0.7. Whenw > 10
(corresponding to an overlap of greater than 50%), a largemrequired to get an accurate
segmentation{ = 0.88 was needed in the last case in Fig. 4.6), anddar 15, itis hard to
get good quality results. In summary, the model performg feelreasonable overlaps and
it is not sensitive to the value a&f. On the other hand, there is a performance drop for very
large overlaps.

4.4  Application in biomedical imaging

Biomedical image segmentation aims to find the boundarigardus biological structures,
e.g.cells, chromosomes, genes, proteins and other sub-gatlui@onents in various image
types [177]. Light microscope techniques are often usetlffauresulting images are fre-
guently noisy, blurred, and of low contrast, making acaisggmentation difficult. In many
cases, the geometric structures involved are near-cirguth many overlaps, so that our
multi-layer 'gas of circles’ model is well suited to extrang the desired structures. While
the phase field model is computationally more efficient,quiess an appropriate initializa-
tion. The MRF model works without any particular initialtzan at the price of higher CPU
times. Let us briefly review the results obtained on micrpscdata using these representa-
tions.

4.4.1 Performance of the phase field model

For the evaluation of the multi-layer phase field GOC modaleah microscope images, we
used the following phase field data term:

E(I,R) = /Q {%w Vo (4.17)
(I — pin)? (I — poup)”
+ V2 2O_i2n ¢+ + QU(Q)ut ¢] } ) (418)

where: V¢, ando. = (1 + ¢)/2 are approximately the normal vector to the boundary, and
the characteristic functions of the regiof)(and its complement~) respectively [120];
I': D — Ris the image datayjjy ot andojp oyt @re the parameters of pixel-wise Gaussian
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Figure 4.8: Extraction from light microscope images of lipid drops hayia particular radius.

distributions modelling the image in the interior (in) andezior (out) regions, learned from
samples; and; » are positive weights.

To initialize the multi-layer phase field, we used a simpleegiolding and connected
component detection, plus random assignment of diffegrerk to nearby initial regions.
Typical computation time in Matlab is about 20 seconds f20@x 100 image with3 layers.
Sample esults are shown in Fig. 4.7 and Fig. 4.8.

4.4.2 Results with the MRF model

The extraction results shown in Fig. 4.9 and Fig. 4.10 demtnatesthe effectiveness of the
proposed multi-layer MRF GOC model for this type of task. (omation times vary from
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~ 20s to~ 1000s for images of siz&V = 10*. The key factor is the number of layers, with
the minimum time corresponding to= 2, the maximum td = 6.

w -

Figure 4.10: Extraction of lipid drops from light microscope images @sthe multi-layer MRF GOC
model.
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Linear registration of 2D

~

e consider the estimation of linear
\/ \/ transformations aligning a known 2D
or 3D object and its distorted obser-
vation. The classical way to solve this reg-
istration problem is to find correspondences
between the two images and then compute
the transformation parameters from these
landmarks. Unlike traditional approaches,
our method works without landmark extrac-
tion and feature correspondences. Here we
present how to find a linear transformation
as the solution of either a polynomial or a
linear system of equations without estab-
lishing correspondences.

The basic idea is to set up a system
of nonlinear equations whose solution di-
rectly provides the parameters of the align-

ing transformation. Each equation is gen-
erated by integrating a nonlinear function
over the object’'s domains. Thus the num-
ber of equations is determined by the num-
ber of adopted nonlinear functions yielding
a flexible mechanism to generate sufficiently
many equations. An alternative formulation
of the method leads to a linear system of
equations constructed by fitting Gaussian
densities to the shapes which preserve the
effect of the unknown transformation.

The advantages of the proposed solu-
tions are that they are fast, easy to imple-
ment, have linear time complexity, work with-
out landmark correspondences and are in-
dependent of the magnitude of transforma-
tion.
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5.1 Introduction

Registration is a crucial step when images of different giewsensors of an object need to
be compared or combined. In a general setting, one is lodking transformation which
aligns two images such that one image (calleddhservationor moving image) becomes
similar to the second one (called ttemplate or model image). Due to the large number
of possible transformations, there is a huge variabilityhef object signature. In fact, each
observations an element of the orbit of the transformations appliechete¢mplate Hence
the problem is inherentlyl-definedunless this variability is taken into account.

Several techniques have been proposed to address the affisgation problem. By
thresholding the magnitude of Fourier Transform of the iesaghanget al. [204] construct
affine invariant features, which are insensitive to nois@yder to establish point correspon-
dence. Several Fourier domain based methods [125, 133jseprimages in a coordinate
system in which the affine transformation is reduced to asaropic scaling factor, which
can be computed using cross correlation methods. GovinduSaekar [102] develop a
framework that uses the statistical distribution of gearogtroperties of image contours to
estimate the relevant transformation parameters. Maiargdges of these methods is that
they do not need point correspondences across views aneésmaay also differ by the over-
all level of illumination. A novel one-element voxel attuite, the distance-intensity (DI) is
defined in [95]. This feature encodes spatial informatioa gtobal level, and the distance
of the voxel to its closest object boundary, together with @higinal intensity information.
Then the registration is obtained by exploiting mutual infation as a similarity measure
on the DI feature space. For matching 2D feature points,][idduces the general affine
case to the orthogonal case by using the means and covariatdees of the point sets,
then the rotation is computed as the roots of a low-degregtntoefficients polynomial.
Another direct approach [169] extends the given patternset @f affine covariant versions,
each carrying slightly different information, and thenrext features for registration from
each of them separately. The transformation is paramete@azt different scales, using a
decomposition of the deformation vector field over a seqeeafmested (multiresolution)
subspaces in [159]. An energy function describing the augons between the images is
then minimized under a set of constraints, ensuring thatrdmesformation maintains the
topology in the deformed image. Manayal. [145] explore an optimization framework for
computing shape distance and shape matching from inteyaiants, which are employed
for robustness to high-frequency noise. Shape warping éyctimputation of an optimal
reparameterization allows this method to account for l&wgalized changes such as occlu-
sions and configuration changes. In [116] a method for ifleng silhouettes from a given
set of Radon projections is presented. The authors studytt@®adon transform changes
when a given 2D function is subjected to rotation, scalirgpglation, and reflection. Using
these properties, the parameters of the aligning transfitomare expressed in terms of the
Radon transform. In [107] a computationally simple solnti® proposed to the affine reg-
istration ofgray levelimages avoiding both the correspondence problem as weikasged
for optimization. The original problem was reformulatedagsequivalent linear parame-
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ter estimationone having auniqueand exactsolution. However, the method relies on the
availability of rich radiometric information which is cldg not available in the binary case.

Herein, we will present our generic framework for recovgrimear [9, 49-51] defor-
mations of binary objects without correspondences. Thdatehas many applications in
medical image analysis, a few examples will also be preddraee.

5.2 Problem statement

Let us denoteéemplateand observationpoints byx = [z, 7s,...,7,]T € P" andy =
(Y1, 92, - ., ya)T € P respectively. The projective spake allows simple notation for affine
transforms and assumes using of homogeneous coordinaitese &fine transformations
never alter the third (homogeneous) coordinate of a poinighvis therefore always equal to
1, we, for simplicity, and without loss of generality, libdyanterchange between projective
and Euclidean space, keeping the simplest notation. Tiniitgeelation between the shapes
is then as follows

y=Ax & x=A"y, (5.1)

where A € R™ " is the unknown affine transformation that we want to reco@assical
landmark-based approaches would now identify sufficiemioer of point pairgx;, y; },
then solve the system of linear equations obtained from &4).( However, we are inter-
ested in a direct approach without solving the correspocel@noblem. For that purpose,
shapes will be represented by their characteristic fundtio P* — {0, 1}, where0 and1
correspond to the background and foreground respectilfelse denote theemplateby 1,
and theobservatiorby 1,, the following equality also holds

ﬂt(x) - ]]'O(AX) = ]]'O(Y) . (52)

When we can observe some image featuess.gray-levels of the pixels [108,109]) that are
invariant under the transformation, then we can define aitiaddl relation

f(x) = g(Ax) = g(y) , (5.3)
wheref, g : P" — R arecovariant functionsinder the transformatioA, defined on those
observed features. Furthermore, the above relationsifineatitl when a function is acting
on both sides of Eq. (5.1) and Eqg. (5.3) [6,7,9, 108, 109]e&d for arbitrary : P* — R
andyn : R — R, we get

wly) = w(Ax) (5.4)
nog(y) = nog(Ax)=mno f(x). (5.5)
Starting from either Eq. (5.4) or Eq. (5.5), we can generatenany linearly independent
equations as needed by making use of nonline@esp.n) functions. There is a fundamen-
tal difference between the above two equations though: dméimear functionw is acting
directly on the point coordinates and hence on the unknowanpeters ofA resulting in a

nonlinearsystem of equations [9]; whereass acting on thecovariant functionsf andg
allowing for alinear system of equations [6, 7,108, 109].
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Figure 5.1: The effect of applying a polynomial (left) and a trigonoritefright) w function can be
interpreted as a consistent colorization or as a volume.

5.3 Solution via a nonlinear system of equations

Let us start with Eq. (5.4) and construct a system of poly@beguations [9]. For an easier
presentation, we will consider 2D shapes where homogensmarslinates of theemplate
and observationpoints are denoted by = [x, 25,17 € P? andy = [y1, 4, 1]T € P?
respectively. The unknown affine transformatidrthat we want to recover is thus

@11 a2 13 d11 q12 13
A=| ax axn as and A '=| g g @3
0 0 1 0 0 1

Note thatA ~! exists and it is also an affine transformation siAcis affine. We are interested
in a direct solution without solving the correspondencebfam. For that purpose, we will
take the Lebesgue integtaif both sides of the identity relation in Eq. (5.1)

1

xdx = — [ A7lydy, (5.6)
/pz A Jp2

where the integral transformation= A~'y, dx = dy/|A| has been applied. The deter-

minant|A| is the Jacobian which corresponds to the measure of thefdraration. Fur-

thermore, since shapes are represented by their chaséictéunctionsl; and1, satisfying

Eq. (5.2), the Jacobian can then be evaluated by integrating

1 Joz Lo(y)dy
/IPQ Ly(x)dx = Al L. L(y)dy < [Al= T Li(x)dx

Since the characteristic functions take only values ff@iml }, we can further simplify the
above integrals by making use of the relation:

/Ilt(x)dxz/ dx,
P? Fi

LAlthough we write these integrals 7, they are equivalent to the corresponding Lebesgue irlteigr?
(i.e.integration is actually performed in the correspondingt€aan coordinate system). This is because by
using homogeneous coordinates, the real plhés mapped to thev = 1 plane in real projective spa®
and affine transformations will never alter the homogen@ousponenty. One can therefore safely assume
that it is alwaysl and ignore it.
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where the finite domaist; consists of théemplateforeground regions?; = {x € P?|1;(x) =
1}. Similarly, we can restrict the integral @f(y) to theobservatiorforeground regiong,.
Therefore evaluating the integrals yields Hreaof the foreground regions. From this point
of view, the measure of the transformatiph| corresponds to the ratio of tlebservation
andtemplateshapes’ area

Jz, dy

fftdx’

which can be directly computed from the input images. Tha sigbiguity of the deter-
minant is also easily eliminated: A negative Jacobian won&hn that the transformation
is not orientation-preserving.€. flipping of coordinates is allowed). In practice, however,
physical constraints will usually prevent such a transfation hence we can assume tht

is always positive.

|A| = (5.7)

Now multiplying Eqg. (5.6) and Eq. (5.2) yields a finite intagequation:

1
/ XL (x)dx = | ATlyL(y)dy <
p2 |A| Jp
1
/xdx = — A~ lydy. (5.8)
7 Al Jz,

This equation implies that the finite domaiAsand.F, are also related a&, = A F;, i.e.we
match the shapes as a whole instead of point corresponddncest, Eq. (5.8) is a linear
system of two equations fdr= 1, 2:

|A| SdeXZQM/ yldY+Qk2/ Z/de+Qk3/ dy.
]:t o o o

It is clear that both sides of the equation as well as the Jandan be easily computed from
the input shapes. Unfortunately, two equations alone aremaugh to solve for 6 unknowns.
However, making use of Eq. (5.4), we can generate suffigiendny equations by making
use of nonlineaw functions:

/ w(x)dx = L w(A™y)dy. (5.9)
A Al )7,

Intuitively, eachw generates a consistent coloring of the shapes as shown.ib.EigFrom
a geometric point of view, Eq. (5.8) simply matches the cenfemass of thetemplate
and observationwhile the new equations of Eq. (5.9) match the volumes overstiapes
constructed by the nonlinear functions(see Fig. 5.1). Sinces are also applied to the
unknowns, the resulting equations will be nonlinear. Thepsest nonlinear system is a low
order polynomial system thus we aim at choosinguch that Eq. (5.9) is polynomial. The
following proposition states that this is achieved wheis a polynome.

Theorem 5.3.1Letw : P" — P" andx € P" (n € N). If the kth coordinate ofs(x),
denoted by"*(x) = p, is a realn-variate polynome]l < k < n, then applyingv in
Eq. (5.9) results in a polynomial system of equations up tegrek ofleg(py).
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The proof can be found in Appendix A.2 and in [9].

It is thus clear that the class of (n € Ny) functions are a perfect choice for Hence,
we obtain the following polynomial equations fbr= 1,2 andn = 1, 2, 3:

Al /:ck =D, (Z) > (j) i qm]ng/yl v (5.10)
i=1 j=0

The system of Eq. (5.10) contains six polynomial equatigngwrder three which is suffi-
cient to solve for all unknowns. In fact we have two separgstesns fork = 1, 2:

|A|/9Uk = Qk1/y1+%2/?/2+%3/1, (5.11)
|A\/:c2 = q%/y%q,é/y%+q;§3/1+2qk1qk2/y1yz+2qk1qk3/y1

+2qk2qx3 /Z/z; (5.12)

|A|/xi = q;§1/yf’+q;§2/y§’+q;§’3/1+3q;31qkz/yfy2+3qi1qk3/yf
+3q79 3 / Vs + 3qk107s / 1Y% + 3q2a?s / Yo + 3135 / Y1

+0qk1qr2qrs / Y1y2- (5.13)

The solution is obtained via a direct solverd.thesolvefunction in Matlab, but other pack-
ages are also available, lilRHCpack[193—-195]) in a single pass without any loop or opti-
mization [9]. Although, we have to solve a polynomial systéne complexity of this step
is constant and, most importantly, independent of the insagee A demo implementation is
also availabel at our websitgtp://www.inf.u-szeged.hu/ ~ kato/software/
affbinregdemo.html . However, we may get several possible solutions for each un-
known ¢; due to the cubic polynomial equations. Out of these potestiltions, we can
select the right one by dropping the complex roots and setpte transformation whose
determinant matches the Jacobian computed by Eq. (5.7¢ tNat an exact solution always
exists, whenever Eq. (5.2) is satisfied. In practice, howevsolution may not exists due to
discretization errors or noise on the point coordinatesc#lvealways check for the existence
of a solution by computing the resultant of the system, whiésecond order polynome. On
the other hand, the solution is not unique (but exists!),mihe shape is affine symmetric.

When an overdetermined system is constructed [51], theast-squaresolution can be
obtained by classicdlevenberg-Marquardalgorithm [147].

Some registration examples can be seen in Fig. 5.8, wherprbgthesis X-ray image
pairs are aligned using a 2D affine transformation. The gotal fuse post operative follow-
up scans of the hip prosthesis to check loosening of the mhphote that correspondence-
based methods are challenged by lack of corner-like lanksreard the nonlinear radiomet-
ric distortion between follow-ups. However, segmentatbthe implant is straightforward,

Zoltan Kato



dc_494 12

5.3. Solution via a nonlinear system of equations 97

hence binary registration is a viable option here. In spitd® inherent modeling error (the
physical transformation of the implant is a 3D rigid motiailléwed by a projection), our

method was able to find a precise alignment. This is mainlytdubke fact, that images are
taken in a standard position of the patient, hence affinestoamation is a good approxima-
tion.

5.3.1 Registration of 3D objects

The extension of the polynomial equations to 3D objects $49-s relatively straight-
forward. To generate a polynomial system, we select polyabfanctions of the form
w(x)gﬂ,,,p" = o' ... 2P denoting thek-th coordinate of the transformed point, where

p1,---,Pn € No. From Eq. (5.9) these functions generate the following poigial equa-
tions (up to order 3):

A| [ 1dx = /1dy, (5.14)
]:t o
n+1

Al wodx = Y [ way. (5.15)
i=1 Fo

Fi
n+1 n+1

Al mmvax = 303 auns [ sy (5.16)

Fi i=1 j=1 Fo

n+1 n+1 n+1

AL [ran, dx =3 3" S autsan v dy (5.17)
-/Tt ]:o

i=1 j=1 k=1

wherel < a,b,c < n,a < b < ¢, andg;; denote the unknown elements of theimensional
inverse transformatioA —!. The formulation of higher order polynomials is analogous.

In general, these functions introduce mixed moments in bioldss of the equations, yiel-
ing one, non-separable system. In practice, that causesbtems when using an iterative
least-squares solution method, but usually it is not efiicie solve such a system analyti-
cally We can achieve separable systems of equations by further limitingahfenctions:
out of parameters; only one of them is allowed to be non-zero. In this case:ttie system
of equations can be written in a more compact form to any qraer

p i1 . ZAnfl .
p _ p 31 lp—1
wif e = ()5 ()5 (%)
2120 2220 Zn=0
qil_il .. .q,i’;_ll"qlifnﬂ/ ylf_ily;l*i2 ymTin gy o (5.18)
Fo
However, numerical implementation has to be carefully glesil. Therefore, both in

2D and 3D we examined two different types of solution methdtkyative least-squares
solutions and direct analytical solutions.
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A, '§!:;:}
A,
I

Figure 5.2: Affine puzzle: reconstructing the complete template olfijewt its deformed parts.

e In case of a direct method, limited number of equations candssl (according to
the degree of freedom of thedimensional affine transformation), while an iterative
approach allows for an overdetermined system, which mag/ miore stability.

e Direct methods may provide many hundreds or even thousdmatsssible solutions,
many (or even all) of them may be complex thus a solution selescheme has to be
used to produce only one real solution from these. lteratieéhods provide a single
real solution, but the search may fall into local minima. Void such local minima,
usually a sophisticated search strategy is necessary.

¢ Direct methods can provide full affine solutions only, butase of iterative methods
restrictions to lower degree of freedom transformatioesaasy to impose.

We found that the direct approach gives more stable redultsthe iterative one is more
precise. It is also possible to combine the two approachés: direct approach provides
the initialization of the iterative one. A demo implememdatof our 3D shape registra-
tion method is available dtttp://www.inf.u-szeged.hu/ ~ kato/software/
affbin3dregdemo.html

Another issue is discretization error, which might be pafarly problematic in 3D.
For that purpose, we extended our method by investigatiagcéise when the segmenta-
tion method is capable of producifigzzy objed instead of a binary result in both 2D and
3D. It has been shown that the information preserved by Usirry representation based on
area coverage may be successfully utilized to improve gi@tiand accuracy of our equa-
tions [49,51]. The result of a series of synthetic tests @tbilat fuzzy representation yields
lower registration errors in average.

Quantitative evaluation on synthetic data of the variog®@ihmic solutions has been
presented in [9, 49, 51] In Fig. 5.9 and Fig. 5.10, some reggish results on 3D medical
images are shown.
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5.4 Affine puzzle

The affine puzzle problem can be formulated as follows: Gardmary image of an object
(thetemplatg@ and another binary image (tlbservatiof containing the fragments of the
template we want to establish the geometric correspondence betthese images which
reconstructs the completemplateobject from its parts. The overall distortion is a global
nonlinear transformation with the following constraine¢srig. 5.2):

e the object parts are distinat€. either disconnected or separated by segmentation),
¢ all fragments of theéemplateare available, but

e each of them is subject to a different affine deformation, toedpartitioning of the
templateobject is unknown.

Arelated problem is partial matching of shapes [69,94,1P@}tial matching addresses a
particularly challenging setting of classical shape miatghwhere two shapes are dissimilar
in general, but have significant similar parts. In this cgiteur problem would require to
find a partial matching between tkemplateand each fragments of tlidservation Current
approaches are usually based on the Laplace-Beltrami warkg170, 178], but classical
approaches like the Iterative Closest Point (ICP) [65] atgm can also be used assuming an
appropriate shape representation [69]. Considering theraigh computational complexity
of these algorithms, this solution is far from optimal for guoblem.

Most of the existing solutions to the puzzle problem [13D,1%3] consist in matching
fragment-pairs to find neighbors, which are then reassaityea rigid body transforma-
tion. Although classical approaches may account fienaplateobject by incorporating a set
of constraints to improve the overall performance, theypanmarily targeted to problems
where atemplates not availableg.g.archaeology [150]. On the other hand, there are many
applications where ®emplateobject is available: In industrial applications usually 8iod-
els of manufactured parts can be easily produced. In meuizaging anatlascan be used
or, by taking advantage of the symmetry of the human bodyintaet bone can provide a
templatefor bone fracture reduction, as shown in Fig. 5.11. Theeefoe address this im-
portant setting of the puzzle problem and propose a genelutien which can be applied
to both 2D and 3D transformations. The proposed solutior@8sists in constructing and
solving a polynomial system of equations similar to Eq. {3-15.13), which provides all
the unknown parameters of the alignment.

5.4.1 Realigning object parts

Given ann dimensionatemplateobject and arobservationcontaining its affine deformed
fragments, we want to recover the transformations realgthese shapes into their original
position on theemplate Let us denote the homogeneous point coordinates dethelate
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andobservationby x = [z1,...,2,,1] andy = [y1,...,yn, 1] € P". Furthermore, let
¢ € N denote the number of fragments on tieservation The transformation aligning the
observatiorwith thetemplatels a non-linear one, composed®iinear transformations

@11 A2 - - Gil(nd1)
A= e i=1,...0. (5.19)
Ain1  Aip2 - -+ Qip(nt1)
0 0o ... 1

Since theobservatiorhas disjoint parts, we can assume that points of each defbshegpe
are labeled by the functiow’ : P — {0,1,...,¢}, which assign$ to the background.
Obviously, there is a correspondihiddenlabeling\ : P* — {0,1,...,¢} which assigns

the labeli to thetemplatepoints corresponding to théh shape. Our goal is to recover the
affine matrice{ A, }{_,. The main challenges are that neither the partitioniregthe hidden
labeling\) of thetemplatenor correspondences between the shapes are known.

Let us first establish a solution for th& shape. Theéemplateandobservatiordomains
are denoted byD; = {x € P"|A\(x) = i} andD; = {y € P"|N(y) = i}, respectively.
Note thatD; is known butD; is unknown. The points of these domains are related by the
unknown transformatio\; via the identity relation of Eq. (5.1). As before, applying a
functionw : P — R and integrating out individual point correspondencesdgel

/D. wx)dx = |A;| | w(Ayy)dy, (5.20)

D,

Based on Eq. (5.20), we can construct as many equations dechbg making use of a set
of nonlinear functionw; }*,, m > n(n + 1) [8, 9].

We have established relations betweem"éHeshape-pair, but we know neither the corre-
spondence between the shapes nor the partitidRjraf thetemplate Would these informa-
tion available, a pairwise alignment could be recoveredrbystandard binary registration
method. Unfortunately, that would require to solve a paniatching problem [69] between
eachobservationshape and theemplate which is far from trivial. Therefore we will sum
equations for all shape domaify and solve the problem simultaneously, estimating all
parameters in one system of equations. Thus Eq. (5.20) escom

¢ ¢
;/p wj(x)dx = ; |A;] /D; wi(Agy)dy . (5.21)

Let D := U{_, D;, whereD = {x € P"|\(x) # 0} is the shape domain corresponding to the
wholetemplate Therefore the left hand side of the above equation can ldeewias

é/p “’j(x)d":/ﬂ D wj(x>dX=/ij(X)dx, (5.22)

i=1
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Figure 5.3: Solutions of the Tangram puzzle (the average alignmentmendf an image was about
50 sec. in Matlab).Top: Observationsare taken by digital cameraMiddle: Solutions, found in
the Tangram manualBottom: The scannedemplatesilhouettes with overlaid contours of aligned
fragments.

which can be computed directly from the input image withaubwing the partitioningD;.
The resulting system of equations Hagn + 1) unknowns:

l

/wj(x)dX: Z|Al|/ wi(Ayy)dy, j=1,...,m. (5.23)
D D!

i=1

The solution of the above system provides all the unknowarpaters of the overall defor-
mation. Since each; provides one equation, we need> ¢n(n+ 1) nonlinear functions to
solve for/ linear transformations. In practice; > ¢/n(n + 1) yielding an over-determined
system for which a least squares solution is obtained [8]e dhantitative evaluation of
the proposed algorithm on a large synthetic dataset contg#D and 3D images has been
presented in [8]. The results show that the method perforelsamd robust against seg-
mentation errors. The method has been succesfully apgi2® treal images of a tangram
puzzle (see Fig. 5.3) as well as to volumetric medical imagesl for surgical planning (see
Fig. 5.11) [8].

5.5 Solution via a linear system of equations

Let us now consider Eq. (5.5) and construct a system of liagaations [6, 7]. The crucial
step of this approach is to construct a paicofariant functionsatisfying Eqg. (5.3). Once
these functions are established, we can adopt the diretiochétom [108, 109] to solve for
the unknown affine transformation given in its inhomogersfoun (A, t). When graylevel

images are considered, the image functions themself serap@aropriate covariant func-
tions [108,109]. Unfortunately, the construction of sughdtions for binary images is quite
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@) (b) (©

Figure 5.4: Gaussian PDFs fitted over a compound shape yield a consistémting. (a) Original
shape; (b) 3D plot of the Gaussian PDFs over the elliptic domth » = 2; (c) Gaussian densities
as a grayscale image. The white contour shows shape bowsdari

challenging due to the lack of radiometric information: $&dunctions must be based on
the only available geometric information [6, 7].

5.5.1 Construction of covariant functions

Since we know that theemplateandobservatiorare identical up to an affine transformation
(this is stated in Eg. (5.1)), we do not need to representeshapherefore we can safely
consider the points of themplateas a sample from a bivariate normally distributed random
variable denoted b ~ N(u, 32) with probability density function (PDF) [6]

1
2T

1 T —1

X) = exp | — =(x— X (x— ) .
P9 = 5 —rexp (= =)= x - )
Applying any linear transformation t& results also in a bivariate normal random variable
Y = AX + t with parameters

(

Xy N, S) = N(Ap + t, ASAT) . (5.24)

The parameters of the probability densiti€é., ) and N (/, ¥') can be readily estimated
as the sample means and covariances of the point coordimédiés |A| can be expressed
from AXAT = ¥’ as

|A[[S||AT| =2, hence |A]=/[Z]/[Z]. (5.25)

From a geometric point of view, the mean valueand /' represent the center of mass
of the templateand observationrespectively, whileX and X’ capture the orientation and
eccentricity of the shapes. Fig. 5.4 shows a compound shephe fitted Gaussian densities
of each component.
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Now let us have a closer look at the relationship betweer ands(y), the PDF ofY".
It follows from Eq. (5.24), tha®'~! = A-T3X~1A~!, furthermore

(v — 1) = (Ax+t— (Au+t)) = (Ax— Ap) .
We thus get

exp ( ~ LAx— Ap)TA TS A (Ax — Au)>
o 2 \/TATSIAT
exp ( —t(x— W) TATATTSTATTA(x — ,u)> p(x)
Al2ry/[3] ~ AT

Finally, substituting backA | from Eq. (5.25), we get

VIZpx) = VI¥s(y) . (5.26)

It is well known, that the normalizing constaht(2r+/|%|) in the density functions ensures
that the integral of the PDF evaluates to 1. It is also the maxrin value of the density
function, which is inversely proportional to the area of #f@pe. This dependence on the
shape size may cause numerical instabilities hence we deiirevariant functions?, S :

R? — R as the unnormalized densities

P(x) = or |zumx>:exp(—étx—onz-%x—;w),
Sly) = 2mV/[¥s(y) = exp (—%(y — 1) =y — u’)) : (5.27)

Since the covariance matrices and mean vectors can be cednfpain the images, botR
andsS is obtained directly from the input shapes and theycanariantsatisfying Eq. (5.3):

Px)=SAx+t)=3S(y) . (5.28)

Hence, we only make use of the statistics of the foregrourdigin order to compute a
covariant function pair We remark that we don't represent the shape itself, instesadse
this function pair to construct our system of linear equadio

5.5.2 Linear estimation of affine parameters

Multiplying Eq. (5.1) and Eqg. (5.28), and integrating oudlividual point correspondences,
we get the following equation:

/‘xpoqmchArl Al (y — 6)S(y)dy .
Fi Fo
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Adopting a set of nonlinear functions: R — R, we can easily generate new equations
according to Eq. (5.5):

Lxmmmwx:mwl Ay — t)n(S(y))dy . (5.29)

Fo

If ¢;,; denotes the elements &f ! and—A 't

Al — [(Jn 12 } and — A — [%3 } ’
421 422 423

we can expand the integrals yielding the following lineasteyn

[A[ [ 2en(P(x))dx =
Fi

2
S [ un(SGNdy + as [ Sy, k=12,
i=1 Fo 0
Adopting a set of linearly independent functiong}‘_,, we can rewrite the system in matrix
form

Jrym(S®)) Jr vem(Sy) [z m(Sy)) {q,ﬂ]

Lo (SO [ m(SE)) Jr 1(S(y))

Jz wxm(P(x))

SN . k=12, (5.30)

J7, zrne(P(x))
The solution of this linear system provides the parametetiseoregistration. 1 > 3 then
the system is over-determined and the solution is obtaisedla@ast squares solution. Note
that independently of the number of systems, the coefficiattix on the left hand side of

Eqg. (5.30) need to be computed only once. Hence the compleiihe algorithm depends
linearly on the size of the shapes.

5.5.3 Choosing the integration domain

A trivial choice for the domains in our integral equation E829) is the foreground regions
F; and.F, [6]. Since the parameters of the transformation are estidhlay integrating over
the segmented domains, this approach works well as long &aveea near-perfect segmen-
tation. Unfortunately, this is rarely encountered in rigdlr]. Therefore a clear disadvantage
of this approach is that any segmentation error will inhdyeresult in erroneous integrals
causing misalignment. However, image analysis often dedlsthe matching of objects
composed of several parts, yielding a group of disjoint ssaphen segmented. The topol-
ogy of such compound shapes will not change under the actitre@ffine group. In such
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cases, we use a more robust method to define correspondeggatibn domains making use
of the statistics of compound shapes instead of their setatien.

Let us assume that titemplateconsists ofm > 2 disjoint shapes. This is the typical
output of classical region-based segmentation algoritlrhere the labelling of the different
regions results in disjoint shapes, but similar resultstwamachieved by detecting the con-
nected components of a compound object. In both cases, plaéahour method will be a
pair of labeled images, where each component onehmlatehas exactly one correspond-
ing shape on thebservationi.e. there exists a bijective mapping between td@plateand
observationcomponents under the transformatioh, t). For each pair of corresponding
components, we can establistvariant functions?; ands; similar to Eq. (5.27):

Pix) = exp (= 5x— ) B - )
Sily) = exp ( — %(y — ) =Ny - ué)) ,

whereX;, ¥ andyu;,u; are the covariance matrices and mean vectors oﬁh‘@ape on the
templateandobservationrespectively. This yields an equation similar to Eq. ($9 each

1 < ¢ < m. If the correspondence between components would be knogmwle could
simply construct a system af equations and solve for the unknowns. As such a matching
is not known, we will sum these relations yielding

m

zi?/f xi1)(Pi(x))dx = /FtXZn(PZ-(X))dx -

i=1

m

AT ATy —6))  n(Si(y))dy - (5.31)

Fo i=1

Instead of establishing; andS; and then constructing Eq. (5.31), we can sum these func-
tions [7] resulting anothecovariant function pairP? andS. Hence, we have an alternative
way to define oucovariant function$7]:

m

P=>"P;, and S:ié},

1=0 i=0

whereP, and S, corresponds to the the overall shape.({the whole foreground region)
of the templateand theobservation respectively. Note that these sums are mixtures of
unnormalized Gaussian densities which can also be intexpres a consistent coloring of
the template and observation respectively (see Fig. 5.48y)consistent coloring, we mean
that these functions preserve the effect of the unknowrstoamation. Furthermore, these
functions can be constructed exactly and uniquely from thjeab points alone without any
knowledge about the aligning transformation. As a resu#t,can transform the original
binary images into graylevel ones, where correspondinglpitave exactly the same gray
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value. Neverthelesg, andS can also be used in Eqg. (5.29), however, we recommend to use
Eq. (5.31), since it can be numerically more efficient to catep

The next step is to get rid of the segmentation dom&jrand.F,. Our goal is to to select
appropriate domain®; andD,, satisfying the following properties

1. they are related by the unknown transformatoB; + t = D,,

2. the integrands are rich enoughte(have characteristic pattern) within the selected
domains.

The key idea is using the statistics of the whigleplateandobservatiorobjects. Indeed, the
overall shapei(e. the whole foreground region) of themplateandobservatioralso gives
rise to a pair of covariant Gaussian densifiés) ands(y). Since the equidensity contours
of these PDFs are ellipsoids centered at the mean, it isaldtuchose a corresponding pair
of these ellipses as the integration domain. Simplifying (G26), we get the well known
Mahalanobis-distance which defines a metric invariant uiige unknown transformation
(A, t):

(x—w)'S x—p) =y — )=y —u).
Corresponding domains can then be obtained by selectimggpehose Mahalanobis-distance
are less than? from the mean:

D = {xeR(x—u)'S " (x—p) <r?) (5.32)

D, = {yeR(y—p)'=(y—p)<r’} (5.33)
To satisfy property 2), we may choose an ellipse accordinlygtwo sigma rulgi.e.r = 2),
which guarantees that abouit’% of values are within the enclosed ellipsoid (see Fig. 5.4).

Experiments show that good alignments can be achieved tggsetanging from = 1 to
r=3.

In summary, all we need to construct a system of linear egustare the means and
covariances of the input shapes. Based on these statisicsan select the integration
domains and construct appropriate covariant functioridiyig the system Eq. (5.34) similar
to EqQ. (5.30).

fp ?/12771 fp 922771 fp 2771 (¥))

qk1
qk2

fp Y1 Z ne(S fp Y2 Z ne(S fp Z ne(Si(y)) o

tamimm@»
= |A] : k=12, (5.34)

hmimmm
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Runtime (sec.) ¢ (pixel) ¢ (%)

Polynomial 0.98 0.51 0.15
Linear 1.5 5.42 2.6
Mult. covar. functions 0.33 0.54 0.19

Table 5.1: Registration results on a benchmark dataset of synthetipesh

Figure 5.5: Alignment of hip prosthesis X-ray images using a polynosyatem of equations with
functions{z, »2, z3}. Registration results are shown as an overlayed contouhersecond image.

Figure 5.6: Alignment of a hip prosthesis X-ray image using a linear esysbf equations withy
functions{z, %, '/3} (corresponding colorizations are shown on the right). Regtion result is
shown as an overlayed contour on the second image.
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Figure 5.7: Alignment of a traffic sign images using a linear system ofgns with multiple shape
parts. The first image shows the elliptic integration domaith the compound covariant function
fitted over theemplate Registration results are shown as an overlayed contouhersecond image.

5.6 Discussion

Based on the Matlab implementation of the polynomial ($&c%.3 and linear (Section 5.5)
methods, we give a brief quantitativ evaluation on a set ofentban1000 synthetically
generated observations foo different shapes. The applied transformations were rahdom
composed 06°, 10°, ..., 350° rotations;0,0.4, ..., 1.2 shearingsf).5,0.7, ..., 1.9 scalings,
and —20, 0, 20 translations along both axes. The resulting images arezef=si 1400 x
1400. For evaluation, we have computed two error measures: tbe &oefficient ag =

—ﬁf%' - 100%, where/\ denotes symmetric difference, whilg R andO are the pixels of

thetemplateregisteredbbject andbservatiorrespectively; and = ‘%' > et I(A—A)p|,
which measures the average distance between thtamel the estimated transformation.
These results are shown in Table 5.1. Based on these nuriledear that the polynomial
solution provides rather good alignments at the pricezoisec. CPU time. The linear
system based on a single pair of covariant functions giveagn(5.30) works well when
there are no segmentation errors, but deteriorates quidkgn pixels are missing. On the
other hand, the linear system with multiple pairs of covarfanctions given in Eq. (5.34)
clearly outperforms the polynomial solution in terms of Ctttde as well as in robustness:
even for 90% missing pixels [7], this method still providexeptable alignments while
the polynomial system fails over 50% [9]. We also remarki thke any other area based
method- both approaches are quite sensitive to occlusientsyaelds large errors in the
system of equations.

In Fig. 5.5 and Fig. 5.6, we show registration results on Xeedy images. These results
also confirm the higher precision of the polynomial systemhilé/the multiple covariant
function approach cannot be applied on these images sinaanlyehave a single shape,
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Figure 5.8: Fusion of hip prosthesis X-ray image pairs by registerinipfe up images using a 2D
affine transformation (typical CPU time is aroutidsec. in Matlab).

Fig. 5.7 shows the alignment of traffic signes where -due éocimpound shape of these
signs- the multiple covariant function approach workstyresell.

A more detailed evaluation of these methods can be found i §6-11,49-51]

5.7 Medical applications

Fast rigid-body registration of bone structures is impariaimage guided surgical planning
in execution for registering pre-operative volumes toariperative ones. Zharg al. give
an overview of surface based registration techniques [288] propose a 15 times faster
method than standard Iterative Closest Point (ICP) methBldsvever, it still takes around
one minute to register vertebrae models segmented fromraggiution CT images. If the
segmentation is available, our method could be used inste&P to get the result faster.

Affine registration is also applied for creation of brairaatts, at least as preliminary step
before an elastic or non-linear part [104]. Automatic adifplacement of deformable organ
models can also benefit from fast linear registrations [1Bg]collecting and transforming a
set of images to a common reference frame, a probabilistis ean be produced for various
organs. Using the same registration method, this prolstibiatlas data can be mapped to
the space of the study to be segmented. Here precise aligmina@ihanatomical structures
is not crucial, the focus is on fast execution.

Herein we present some medical applications of our linggist@ation framework.

5.7.1 Fusion of hip prosthesis X-ray images

Hip replacement [84, 111] is a surgical procedure in whiah hip joint is replaced by a
prosthetic implant. In the short post-operative time, ¢tifen is a major concern. An in-
flammatory process may cause bone resorption and subsdgosaning or fracture, often
requiring revision surgery. In current practice, clinitsaassess loosening by inspecting a
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Figure 5.9: Registration of pelvic CT data: superimposed registeredb®de models (typical CPU
time is around0.25 sec for 1 megavoxel objects using our Java demo program) fifshéwo cases
show good alignment. Even the third one provides a good appation of the true alignment.

Figure 5.10: Registration of thoracic CT data: superimposed registe3@lbone models. Perfect
alignment is not possible due to the relative movementsedidhe structure. Affine alignment results
are used as a good starting point ferg.lymph node detection.

number of post-operative X-ray images of the patient’s biptj taken over a period of time.
Obviously, such an analysis requires the registration cdyXimages. Even visual inspection
can benefit from registration as clinically significant ghesis movement can be very small.

There are two main challenges in registering hip X-ray insagene is the highly non-
linear radiometric distortion [87] which makes any gregkelased method unstable. For-
tunately, the segmentation of the prosthetic implant isegstiraightforward [162] so shape
registration is a valid alternative here. The second prohigethat the true transformation is a
projective one which depends also on the position of theamigh 3D space. Indeed, there
is a rigid-body transformation in 3D space between the imiglavhich becomes a projective
mapping between the X-ray images. The affine assumption ¢od gpproximation here,
as the X-ray images are taken in a well defirst@indard positiorof the patient’s leg. For
diagnosis, the area around the implant (especially thetmpiart of it) is the most important
for the physician. It is where the registration must be thestnpoecise. Based on such an
alignment, we cae.g.visualize the fused follow-up images for evaluation by apezk (see
Fig. 5.8).
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5.7.2 Registration of pelvic and thoracic CT volumes

The application of the affine solution to 3D objects has baesgnted in [49-51]: Typical
medical applications include the alignment of pelvic andréicic CT volumes based on
segmented bony structures.

CT image pairs delineating the pelvic area were acquiredff@rent times. The pairs
of images were from the same patient. The spatial resolofitime CT studies were around
0.6 — 0.8 mm in-slice. The slice distance wasnm in 11 cases2.5 mm in 4 cases. We
also got three CT thoracic studies of the same person acdoyrea PET-CT scanner. Here
the in-slice resolution wa%.9766 mm and the slice distance wa27 mm. We used the full
thoracic region and the extracted pelvis region also.

Our algorithm was implemented in Matlab 7.7 and was run ors&td@ computer using
Intel Core2 Duo processor at4 GHz. The construction of the system of equations took
around half a second, the optimization around 0.2 secondeXample, the average com-
puting time of a Mutual Information-based registration hoet was around 2 minutes for the
smaller, and minutes for the larger pelvic CT studies [50]. For the stadiethe thorax, it
usually took around 8 minutes to finish. This clearly shovesabmputational superiority of
our approach.

The main challenges fgoelvic CT imagesire poor image resolution, substantial seg-
mentation errors, and slightly different placement of thméral head and lower portion of
the spine. These CT experiments (see Fig. 5.9 showed [50¢vea when the physical de-
formation does not correspond exactly to the affine requitesiresults are good or at least
acceptable.

For thoracic imageghe rigidity criterion no longer holds. Besides the femdrahds,
the spine and the scapula can be moved with respect to eaeh dilevertheless, rigid
registration of such images are also common and importarg.tplymphoma detections
and changes over time using PET-CT scanners. PET image®dithe uptake of the
contrast agent in organs (lymph nodes), while the CT modedih be used for registration
and morphological localization. Here non-rigid regigtvas are discouraged since these
could change the size of the organs. Sample registratiaisest our algorithm are shown
in Fig. 5.10.

5.7.3 Bone fracture reduction

Complex bone fracture reduction frequently requires saigiare, especially when angula-
tion or displacement of bone fragments are large. Sinceninat idata is typically a volume
CT image, bone fragment repositioning has to be perform@bDigpace which requires an
expensive special 3D haptic device and quite a lot of manwakwTherefore automatic
bone fracture reduction can save considerable time, prayieixperts with a rough align-
ment which can be manually fine-tuned according to anatoeguirements. Since surgical
planning involves the biomechanical analysis of the boni wnplants, only rigid-body
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template observation realigndmbne fragments

Figure 5.11: Bone fracture reduction (CPU time in Matlab was 15 sec. fasth1l megavoxel CT
volumes). Théemplateis obtained by mirroring the intact bone.

transformations are allowed. In [85], a classical ICP atbar is used to realign fractures.
Winkelbachet al. [198] proposed an approach for estimating the relativesteamations
between fragments of a broken cylindrical structure by gisiell known surface registra-
tion techniques, like 2D depth correlation and the ICP alfgor. In [166], registration is
solved by using quadrature filter phase difference to estéinogal displacements.

In [8], we formulated the problem as aiffine puzzleand found that our algorithm is
able to solve bone fracture reduction on large volumetridioa images within a couple of
seconds (see Fig. 5.11).
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Nt of 2D snapas

n this chapter, we extend our framework
I to estimate the parameters of a general

diffeomorphism that aligns a known shape
and its distorted observation. Classical reg-
istration methods first establish correspon-
dences between the shapes and then com-
pute the transformation parameters from these
landmarks. Herein, we trace back the prob-
lem to the solution of a system of nonlinear
equations which directly gives the parame-
ters of the aligning transformation. The pro-

posed method provides a generic frame-
work to recover any diffeomorphic deforma-
tion without established correspondences.
It is easy to implement, not sensitive to the
strength of the deformation, and robust against
segmentation errors. The method has been
applied to several commonly used transfor-
mation models. The performance of the
proposed framework has been demonstrated
on large synthetic datasets as well as in the
context of various applications.
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6.1 Introduction

When registering a pair of objects, first we have to charemtéhe possible deformations.
From this point of view, registration techniques can begfas] into two main categories:
physical model-based and parametric or functional reptetien [118]. Herein, we deal
with the latter representation, which typically origindtem interpolation and approxima-
tion theory. Broadly used classes of such deformations algnpmial and spline-based
transformation®.g.thin plate splines (TPS) [67,202]. TPS models are typichdged on
interpolation: the control points of thin plate spline misdare placed at extracted point
matches and they usually include various regularizatisush as the bending energy [67].
Polynomial deformations are governed by fewer parametaitsage actinggylobally on the
shapes, hence regularization is usually not needed. Meremany non-polynomial trans-
formation can be approximated by a polynomial engvia a Taylor expansion [12].

In this chapter, we extend the framework presented in Ch&pteestimate nonlinear dif-
feomorphic transformations without establishing coroesjences or restricting the strength
of the deformation. The basic idea is to set up a system ofimeanl equations by inte-
grating a set of nonlinear functions over the image domanasthen solve it by classical
Levenberg-Marquardt algorithrfi47]. If perfect graylevel images would be availakligh-
out any radiometric distortiojthen the estimation of an aligning homeomorphism could be
traced back to the solution of a linear system of equatio8F |8 real applications, however,
such a strict requirement cannot be satisfied. Herein, wiestvdw that registration can be
solved without making use of any intensity information. Thain contribution is a unifying
framework, which provides the registration of planar slsapeder various diffeomorphic
deformations€.g.planar homography, polynomial or thin plate spline transfations). We
have conducted a comprehensive test on a large set of sgnthages to demonstrate the
performance and robustness of the proposed approach. Tihedngas been successfully
applied to a variety of real problems,g.alignment of hip prosthesis X-ray images, regis-
tering traffic signs and handwritten characters, or visuspection of printed signs on hoses
manufactured in automotive industry.

6.1.1 State of the art

While registration of grayscale or color images is well #dd53, 131, 134,139, 148, 160,
180], the alignment of binary shapes [9, 60, 70, 124, 184, 18%] received less attention.
Most of the current approaches are restricted to the affioepyf9, 182,184, 201]. In [9],
Domokos and Kato showed that it is possible to trace backftimeanatching problem to an
exactly solvable polynomial system of equations. Moments$iavariants also provide an
efficient tool for recovering linear deformations [184]. &agmetric, variational framework
is introduced in [201], which uses active contours to siamgbusly segment and register
images. The method [201] is applied to medical image registn, where 2D and 3D rigid
body transformations are considered. Another statistassed algorithm is proposed in [182]
for registration of edge-detected images, which utilizégeepixel matching to determine
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the "best” translations. Then a statistical procedure, elgrthe McNemar test, is used to
determine which candidate solutions are not significantbysivthan the best ones. This
allows for the construction of confidence regions in thesegtion parameters. Note that
this method is limited to solving for 2D translations onh\8P1.

In this paper, we are interested in nonlinear alignment apsel, which is a more chal-
lenging problem. The most common nonlinear registratiothoes are based on point cor-
respondences [60, 105, 200]. Although there are robustdiriygetectors like SIFT [142]
or SURF [59], these are relying on rich intensity patternssttheir use is limited in binary
registration.Landmark-basedonlinear shape matching has been addressed by Belengie
al. [60]. The method first searches for point correspondencsglesa the two objects, then
estimates the transformation using a generic thin plaieesphodel. The point matches are
established using a novel similarity metric, calthpe contextvhich consists in construct-
ing a log-polar histogram of surrounding edge pixels. Theaathge compared to traditional
landmark based approaches is that landmarks need not betgatints and radiometric in-
formation is not involved. Basically the method can be rdgdras matching two points sets,
each of them being a dense sample from the corresponding@'shagundary. Obviously,
there is no guarantee that point pairs are exactly correipgrbecause of the sampling
procedure. However, having a dense sample will certaingpkaismatch error at a mini-
mum. The correspondences are simply established by saMingar assignment problem,
which requires time consuming optimization methods. Fa@naple, the complexity of the
Hungarian method adopted in [60]@ N?).

An important class of nonlinear transformations is the plamplane homography which
aligns two images of the same planar object taken from diffeviews. Lepetit and Fua pro-
posed a method [139] for keypoint recognition on graysacakeges. The main idea is to find
keypoints during a training phase where a projectivelyedéht image set of target object is
used. Although the recognition of keypoints becomes vesy, fhe training phase is very
time consuming. In [134], a Fourier domain based approaghasented using intensities
for computing the image-to-image transformation. Imagesi@nsformed into the Fourier
domain where the transformation parameters are compuieg a®ss correlation methods.
In [124], planar homography is computed in the Fourier donfismam a starting affine esti-
mation using the shape contours. In [197], the concept afacheristic line is employed to
show some useful properties of a planar homography mathichwrelate with Euler angles
of the planar pattern.

Stochastic models with iterative optimization technigaes also quite popular in this
domain: In [105], Gucet al. propose a method to register shapes which underwent diffeo-
morphic distortions, where simulated annealing is usedstiomate point correspondences
between the boundary points of the shapes. A Brownian maotiotel in the group of dif-
feomorphisms has been introduced in [160]. The authorsoéxglprior for warps based
on a simple invariance principle under warping. An estioratiased on this prior guaran-
tees an invertible, source-destination symmetric, angwarariant warp. The maximum-
likelihood warp is then computed via a PDE scheme. [180] askrrkov Random Field
model to solve the registration problem. The deformatiosteiscribed by a field of discrete
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variables, representing displacements of (blocks of)IpiX¥exact maximum a posteriori in-
ference is intractable hence a linear programming relaragchnique is used. In [189], the
registration problem is formulated as probabilistic iefece using a generative model and
the expectation-maximization algorithm. The authors deéfirdata-driven technique which
makes use of shape features. This gives a hybrid algorithinhwdombines generative
and discriminative models. The measure of similarity isradiin terms of the amount of
transformation required. The shapes are represented bgespaint or continuous-contour
representations depending on the form of the data. Kdeml. presented a stochastic gra-
dient descent optimization method with adaptive step sieéiption [131]. This method
employs a stochastic subsampling technique to acceldrateptimization process. The se-
lection mechanism for the method'’s free parameters takesotount the chosen similarity
measure, the transformation model, and the image contenrtgler to estimate proper values
for the most important settings.

Bronsetinet al. studied some fundamental problems in the analysis of rgid-de-
formable shapes [70]. In particular, a novel similarityteria for shape comparison and
its extension to partial similarity has been proposed. Tsteywed that the correspondence
problem is also solvable using their similarity metric. B0D], Worz and Rohr proposed
a novel approximation approach to registrate elastic detions. This landmark-based
method uses Gaussian elastic body splines. Other methedstational techniques [148].
We note that these methods has a rather high computatiomerate In [185], a non-rigid
registration algorithms is proposed basedlgmorm and information-theory.

Another common approach is to approximate a nonlinear deftbon via piecewise lin-
ear transformations: In [53], a novel framework to fuse loitad or affine components into
a global invertible transformation, called Log-Euclidgaoilyaffine, has been presented. A
simple algorithm is proposed to compute efficiently suchdfarmations and their inverses
on regular grids.

6.2 Registration framework

In the general case, we want to recover the parameters obireay ¢ : R? — R? diffeo-

morphismwhich aligns a pair of shapes. Let us denote the point coatelénof theemplate
andobservatiorby x = [z1, 25]7 € R? andy = [y1,42]7 € R? respectively. The following
identity relation is assumed between the point coordinaftéise shapes:

y=9¢x) & x=¢ (), (6.1)

wherep~! : R? — R? is the corresponding inverse transformation. Note {hdt always
exists since a diffeomorphism is a bijective function suwdt both the function and its in-
verse have continuous mixed partial derivatives. Supploaedghapes are represented by
their characteristic functioit : R* — {0, 1}, where0 and1 correspond to the background
and foreground respectively. If we denote thmplateby 1; and theobservatiorby 1, the
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following equality also holds

Lo(y) = To(p(x)) = Li(x), (6.2)

sincex andy are corresponding point coordinates.

Classical landmark based approaches would now set up arsydtequations from
Eq. (6.1) using point correspondences. However, we areesited in a direct approach
without solving the correspondence problem. As a consempjeme cannot directly use
Eq. (6.1)-(6.2) because we do not have established poirs. gdowever, we can multiply
these equations and then integrate out individual poinespondences yielding

[ty = [ oGnx 1,000 i (6.9
R2 R2

where the integral transformatigh= ¢(x), dy = |.J,(x)| dx has been applied. The Jaco-
bian determinant/,| : R* — R

dp1 Op1
J = | 921 Qa2 6.4
o) = | 2o 2 (6.4)
o1 0o
gives the measure of the transformation at each point. Natein the case of affina.é.
linear) transformations, the partial derivatives of th&talition are constants, hence the Jaco-
bian is also constant and the transformation measure campé/somputed as the ratio of
the shape areas. This property has been explored in [9]irH&@vever, the transformation
is nonlinear causing the Jacobian to become a non-consiactidn of the coordinates.

Since multiplying with the characteristic functions edsaly restricts the integral do-
mains to the foreground regiods = {x € R?|1,(x) = 1} and.F, = {y € R?|1,(y) = 1},
we obtain the following finite integral equation:

[ vy = [ o610 dx 65)
o »Ft
The diffeomorphisnp can be decomposed as

p(x) = [p1(x), p2(x)]7, (6.6)

wherey, ¢, : R? — R are coordinate functions. Hence Eq. (6.5), which iseéator form
can be decomposed into a system of two equations using thesdirate functions:

/%WZA%@MMW&iZM- (6.7)

The parameters ap are the unknowns of these equations. Usuallyyas more than two
unknown parameters therefore a system of two equationg smoagh to recovep.
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6.2.1 Construction of the system of equations

First of all, let us notice that the identity relation in E.X) remains valid when a function
w : R? — R is acting on both sides of the equation [9, 43, 44]. Indeeda foroperly chosen
W

wiy) =w(px) < wx) =wle(y)): (6.8)
Thus the following integral equation is obtained from Eq5§6
[ wtiay = [ wlot) 11000 dx (6.9
o Fi

The basic idea of the proposed framework is to generate igufig many equations using
a set of nonlineaw functions. Let the number of parameterswwienoted byt and let
{wi}t_,,w; : R — R denote the set of adopted nonlinear functions. In orderliedor all
unknowns, we need at leasequations, hencé > k. We thus obtain the following system
of equations

/wMWszW@HMWﬁ7i=Lm% (6.10)

where eachw; function provides one new equation. Note that the generqedtions pro-
vide no new information, they simply impose additional domsts. Note also that these
equations need to be algebraically independent. Whilectimslition is difficult to verify in
practice, itis also clear that linear independence;dtinctions -which is easier to verify- is
crucial, as linear dependency would result in algebrajcddipendent equations. Therefore
in practice, we always use a setrainlinearw; functions. The solution of the system gives
the parameters of the aligning transformation. Intuijlyelachw; generates a consistent
coloring of the shapes as shown in Fig. 5.1. From a geomatiit pf view, Eq. (6.5) sim-
ply matches the center of mass of tieenplateandobservationwhile the new equations in
Eqg. (6.9) match the volumes over the shapes constructedelyathlinear functions; (see
Fig. 5.1).

6.2.2 Discussion
6.2.2.1 Relation to moment-based approaches

Although the derivations in the previous section are not mabaseger se it is interesting

to analyze how the resulting equation of Eq. (6.10) is relademoments. Image moments
and invariants [91] were introduced by Hu [121] for 2D pattanalysis. Since then, they
became one of the most popular region-based descriptoasibe@ny shape can be recon-
structed from its infinite set of moments [92]. Traditionabtdimensionalp + q)th order
moments of a functiop : R?> — R are defined as

mma/ﬁﬂwwm
]RQ
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wherep, ¢ € Ny. Whenp is an image function then these moments are also referresl to a
image momentdn the binary case, where objects are represented by il@ustte,o is a
characteristic function yielding:,, = [, z{z3dx with 7 = {x € R? : o(x) = 1}. This

is often calledshapeor geometricmoment as it only uses polynomials of the coordinates.
Generally, orthogonal moments, such as Legendre [92] anikemoments [187], are nu-
merically more stable than regular moments. We remark, tiexvéhat orthogonal moments
can be expressed by regular moments.

In this sense, we can recognizé)tQ orderfunction momenof w; in the left hand side
of Eg. (6.10) (just like any function integral can be regakrds theo! order moment of the
function itself). Similarly to Legendre or Zernike momeraar function moments could also
be expressed in terms sfiape momentshenever the adopted functions are polynomials.
Whenw; is not polynomial then its Taylor expansion results in anragimating polynomial
which in turn yields annfinite sum of shape moments. The right hand side of Eq. (6.10) is
more complex as itincludes the product of the unknown ti@nsétiony(x) and its Jacobian
determinant.J,(x)| which are not necessarily polynomials. Therefore, inddpetly of the
choice ofw;, it can only be expressed in terms of shape moments by expaidinto a
Taylor series.

It is thus clear that our system of equations outlined in BAL) cannot be rewritten in
terms of a finite set of classicahape momentsnd hence not even in terms of orthogonal
moments. This result corresponds to similar findings regabirh [90, 190] in the context of
projective invariants. What we propose in this paper is la@oapproach, which —starting
from the identity relation in Eq. (6.1)— builds up a frameWwtw generate an arbitrary set of
equations.

6.2.2.2 Invariance vs. covariance

Moment invariants [121, 190] are extensively studied ay @r@vide a powerful tool for
shape matching. Basically, invariants are functions imentarthe action of a particular de-
formation. There is a well established theory on affine irards [89, 91], but invariants of
higher order deformations are hard to construct. Recemhortant results on the existence
of projective moment invariants [90] as well as on geneeaimvariants, calledmplicit
Moment Invariantg§88, 91], have also been reported. Herein, we are not irntmes con-
structing invariants as, being immune to the deformatieay do not provide constraints on
the actual transformation parameters. Instead, we c@eafiantfunctions that vary with the
transformationy(x), hence constraining its parameters. Indeegarianceandcovariance
play a complementary role: While invariants identify a shaggardless of its deformation,
covariants identify the actual deformation.

6.2.2.3 Registration vs. matching

There is a fundamental difference between the problem a$tragjon andshape match-
ing [91]. In either case, we fix the family of possible transfotimias. In the case of match-
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ing, we need to determine whether two objects are from theesaass or not. For that
purpose, it is enough to ask whether there exists a tranataymwhich aligns the objects
(i.e. whether they are on the same orbit of the fixed transformatiass), but the aligning
transformation is not of interest. However, in the registra problem we always assume
that there exists a transformation which aligns the obj@etswe need to estimate its param-
eters. This explains why multiple object matching algonthoften make use a@fvariants
ignoring the effect of the unknown transformation, and wbyarianceis used to solve the
registration problem. Due to the difficulty in finding apprigppe invariants under elastic
deformations [88, 91], nonlinear shape matching (or rettamgy) is often solved by register-
ing a givenobservationrepresenting the deformed shape to be recognized, tertngates
stored in a database [60]. A similarity metric is then camgied using the strength of the de-
formation €.9.bending energy) and the shape is recognized athplatewith the minimal
distortion.

6.3 Choice ofw functions

Given p(x) and its JacobiafJ,(x)| of a particular deformation model, the parameters of
the aligning transformation are obtained as a solution @fffstem of equations Eq. (6.10).
For constructing these equations, we need an appropriatd fenctions{w;}¢_,. Theo-
retically, any nonlinear function satisfying Eq. (6.8) tsbbe applied. In practice, however
there are two important considerations. First, our equatere always corrupted by errors
arising from imperfect datae(g.segmentation and discretization errors). Therefore the so
lution is obtained via least-squares minimization of étgebraic error Since both sides of
these equations contain an integral of the correspondifignction, the characteristics of
clearly influence the overall error. In particular, we expae equal contribution from each
equation in order to guarantee an unbiased error measuman&eiterative least-squares
minimization algorithms, like thé&evenberg-Marquardt algorithrfi47], require the eval-
uation of the equations at every iteration step. Thus the tomplexity of the algorithm

is considerably decreased if the integrals can be precadpbence avoiding scanning the
image pixels at every iteration.

6.3.1 Normalization

Thealgebraic errorof the system Eq. (6.10) is obtained as the sum of squarerserro

l

EZ(me@wwiﬂ%@wﬂa

i=1

wherey is the estimated transformation. On the other handg#wenetric errolis measured
as the absolute difference between the registered shapes:

Gl = |@(Ft) & Fol,
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whereA is the symmetric difference. L&t; = ¢(F)\F, andG, = F,\@(F;), yielding
G =G UGy andG1 NGy = 0. Since, -\ (wi(y) —wi(y)) dy = 0, the algebraic error

can be expressed as
l

> (/G wi(y)dy — /G Wi(Y)dY)Q- (6.11)

=1

The ith equation contributes to the error by the difference of thegrals ofw; over the
non-overlapping domains; andG,. Thus the magnitude of the contributed value depends
not only on the geometric err@r but also on the values; takes over these domains. Large
variations in the range of different; functions yield an uneven contribution of different
equations which leads to a biased algebraic error or, iemdrcases, to numerical instability.

A usual remedy is to normalize the coordinates of both shamesthe unit square
([-0.5,0.5] x [—0.5,0.5] in our experiments), and to choose with a range limited to a
similar interval €.g.[—1, 1]). This is achieved by dividing the integrals in Eq. (6.10}twi
an appropriate constant corresponding to the maximal madgnof the integral. Since the
integral of a givenw; depends on the integration domaire(the actual transformed shape),
a trivial upper bound would be the infinite integrfal, |w;|. Unfortunately, this integral may
not be computed or yields an infinite value thus making thigllaf normalization unfeasi-
ble. Therefore we need to find a finite domain which containstdrmediate shapes during
the minimization process. We found experimentally (see Eit), that the transformations
occurring during the least-squares minimization processat transform the shapes out of
a circle with center in the origin and a radieg (i.e. the circumscribed circle of the unit
square). We thus adopt the following constant

N; = |w; (x)|dx, (6.12)

)| <2
and the normalized version of Eg. (6.10) becomes

[, i)y Jr, wil(0) 11,00 dx

oL A
5 5 TN (6.13)

6.3.2 Computational efficiency

The Levenberg-Marquardt algorithmequires the evaluation of the equations at every iter-
ation step. Unfortunately, the integrands on the right hsidé of Eq. (6.13) include the
unknowns implying that we have to recompute these integiiagsaich iteration, yielding a
time complexity ofO(k(N +M)), wherek is the number of iterations (typically aroutdo0

in our experiments), whiléV andM are the number of the foreground pixels of taeplate
andobservatiorrespectively. If we could eliminate the unknowns from thiegrands then
the integrals could be precomputed and the runtime of theswalould become independent
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Figure 6.1: Coverage of transformed shapes~ofl 500 synthetic observations during the minimiza-
tion process. Pixel values represent the number of inteimedhapes that included a particular
pixel. For reference, we also show the circle with rad%éfs used for normalization.

from the number of foreground pixeld + N. We will show that this can be achieved by
applying polynomialy; functions in Eqg. (6.13).

Let us suppose thai(x) = >, a;¢;(x), Whereq;, € R, and¢, : R* — R? are ba-
sis functions. Note that polynomial or thin plate splineatefations are of the above form
while other diffeomorphisms can be approximated by the fimstterms of their Taylor ex-
pansion [93] yielding the above representation. Furtheenlet us denota = [ay, ..., a,]

ando(x) = [¢1(x), ..., ¢n(x)].

Definition 6.3.1 When a functionf : R?> — R? is such that

n m

F(Da0ix) = g5(@)hy(9(x)),

i=1 j=1

wherem € N andg; : R* — R, h; : R — R? for1 < j < m, then we sayf is
separablevith respect ta andg(x).

The following theorem states that applying polynomiafunctions in Eq. (6.13) results
in a regular nonlinear equation with respect to the unknawns . , a,, instead of an integral
equation.
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Theorem 6.3.1 Whenf : R? — R? is polynomial, then the following equality holds:

[ #1760l dx = 3 ata) [ m(o(xix (614

wherem € N andg; : R"* — R, h; : R* - R? for1 <i < m.

The proof can be found in Appendix A.3 and in [12]. As a conssme, choosing a
polynomialw; function allows us to eliminate the unknowadrom the integrand. Hence
[ hi(é(x))dx has to be computed only once and the time complexity of theesblecomes
independent of the size of the input images.

6.3.3 Solution and complexity

The obtained system of equation is solved by iterative legstires minimization using
the Levenberg-Marquardt algorithr(LM) [147]. The time complexity of the algorithm is
O(N + M) whenever we adopt a polynomial set;}¢_,. Note, that LM finds a local min-
imum. However, our numerical experiments show that thetswidfound by LM is quite
close to the geometrically correct one. A theoretical asialwould be far too complex, but
intuitively we can argue as follows: To avoid geometricaityong local minima, proper nor-
malization is crucial. As explained in Section 6.3.1, thea@pns need to be balanced and
shapes must be normalized into the unit square. This guasnthat initially shapes are
overlapping making the identity transform a good initiatibn, while balanced equations
eliminate undesirable bias during iterations caused lgelapefficients in some equations.
Finally, we have to remark that deformations with higherrdegpf freedomé.g. TPS) may
have many geometrically correct solutions.(many transformation may produce an almost
perfect alignment due to the fact that deformations are wisiple around the boundary of
the shapes). Therefore, although the parameter spaceigharidimension, LM also has a
higher chance to find a local minima close to one of these cosutions.

6.4 Modeling deformation fields

It is a quite common assumption in image registration, thatdeformation field is smooth
and invertible, especially when the resulting deformaffietd is further analyzede(g.in
deformation-based morphometry or construction of shapéetsd Diffeomorphisms pro-
vide a convenient mathematical framework to describe seébrohations. Various paramet-
ric models of diffeomorphic deformations have been progdasehe literature [202]. These
are either based on a physical modely(planar homography) or on a general parameteri-
zation using different basis functions.g.thin plate spline, B-spline). Herein, we will focus
on some broadly used class of deformations, but our framewan be applied to other
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nonlinear transformations as well (see Section 6.6.6,stance). Essentially, all we need
to apply our framework to a particular deformation model thie formulas of the adopted
diffeomorphismpy(x) and its Jacobiaf/,,(x)|.

6.4.1 Planar homography

Perspective images of planar scenes are usual in perceftroan made environments. In
such cases, a planar scene and its image are related by a@lpla@me homography, also
known as a plane projective transformation. Estimatingodm@meters of such transforma-
tions is a fundamental problem in computer vision with vasiapplications.

Let us denote the homogeneous coordinates otdh®plateand observationby x' =
[z}, b, 5] € P* andy’ = [y}, v5, y4]T € P?, respectively. Planar homography is then a
linear transformation in the projective plaié

y=Hx <& x=H'y, (6.15)

whereH = {H,,} is the unknowrs x 3 transformation matrix that we want to recover. Note
thatH has only 8 degree of freedom thus one of its 9 elements candx fikerein we will
setH33 = 1. Although H33 could be0 or small in general, the coordinates of the input shapes
are normalized before matching inte0.5; 0.5] x [—0.5; 0.5] with center of mass being the
origin. Thus if H33 would be0 then H would map the origin0, 0, z5]* of the template
into [H,32%, Hesrh, 07 on theobservation(i.e. to infinity yielding an ellipse to become a
parabola), which is quite unlikely to be observed in a readgm pair. Similarly, ifHs3 is
very small, then the origin is mapped to a distant point inmgyextreme distortion which is
again unlikely in practice. These are close to degeneratatgins for which a numerically
stable solution may not exists anyway.

As usual, the inhomogeneous coordinates [y, y»]7 € R? of a homogeneous poit
are obtained by projective division

Yy Huxy+ Hipxg + Hiz
o= == = x1(x)
Y3 Hsixy + Hspwg + 1
b Hoyxy + Hooxo + H.
Y2 = y_? -2 = 2= Xa(x) (6.16)
Ys Hgyxy + Hzoxg + 1

wherey; : R? — R. Indeed, planar homography is a linear transformation énpitojective
planeP?, but it becomes nonlinear within the Euclidean pl&te The nonlinear transfor-
mation corresponding t#l is denoted byy : R? — R?, x(x) = [x1(x), x2(x)]” and the
Jacobian determinanf, | : R* — R is given by

2 L
|JX(X)| — 1 2 — 3 - (617)
% % (H31£E1 + Hsoxo + 1)
r1 €2
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6.4.2 Thin plate spline

Thin plate spline (TPS) [67,101, 202] are widely used to approximate noia-dgforma-
tions using radial basis functions. Given a set of contrahfsoc, € R? and associated
mapping coefficients;;, wy;, € Rwith7 = 1,2, 5 = 1,2,3andk = 1,..., K, the TPS
interpolating pointg:;, is given by [202]

K

Gi(X) = anr1 + apxy + aiz + Z wrQ(||ck — x|]) (6.18)
k=1

where( : R — R is theradial basis function
Q(r) =r*logr?.

Note that parameters include 6 global affine paramete@nd2 K local coefficientsuy,; for

the control points. In classical correspondence-baseappes control points are placed in
extracted point matchese. we know the exact mapping at the control points and mappings
of other points arenterpolatedusing TPS. In our approach, however, TPS can be regarded as
a parametric model tapproximatehe underlying free-form deformation. The parameters of
this model are then estimated by our method. In order to capteformations everywhere,

we place the radial basis functionse(control points) on a uniform grid. Obviously, a finer
grid allows to recover finer details of the deformation fieldhee price of more equations.

The physical interpretation of Eq. (6.18) is a thin plateodiefing under point loads acting
in the control points. Additional constraints are that thenof the loads applied to the plate
as well as moments with respect to both axes should be 0. Tdreseeeded to ensure
that the plate would not move or rotate under the impositibthe loads, thus remaining
stationery [202]:

K K
S wy=0 and Y ey =0, ij=12. (6.19)
k=1 k=1

Another interpretation of the above constraints is thapllage at infinity behaves according
to the affine term. Let : R? — R? ¢(x) = [(x),5(x)]” a TPS map withs + 2K
parameters. The Jacobiph(x)| of the transformatior is composed of the following partial
derivatives{(,j = 1,2)

as;
6$j

K
= a;; — Z 2wpi(cr; — 2;)(1 + log(|lex — x|[?)) - (6.20)
k=1

6.5 Experimental results

The proposed method ha been tested on various synthetiealahtasets. The performance
of the algorithm has also been compared to two other nonleggstration methodsShape
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Context[60] which has been developed for general nonlinear registr andnomes{141]
which implements a classical algorithm for homographyneation. The proposed algorithm
has been implemented in Matlab R2008 and all tests have baamra Pentium IV 3.2 GHz
under Linux operating system. The demo implementation ofmethod is available for
download ahttp://www.inf.u-szeged.hu/ ~ kato/software/

Registration results were quantitatively evaluated usikind of error measures. The
first one §) is the absolute difference of the registered shapes, winileasures the distance
between the trug and the estimated transformation:

_|F A F

§=r= ol
|F| + |F,)|

1
100%, €= > ) = 2],

XEFt

whereF;, F,, andF, denote the set of foreground pixels of tteenplate observationand
theregisteredemplate respectively.

Intuitively, e shows the average transformation error per pixel. Notetthatmeasure
can only be evaluated on synthetic images where the appéadformation is known while
0 can always be computed. On the other hangiyes a better characterization of the trans-
formation error as it directly evaluates the mistransfdrama 6 sees only the percentage of
non-overlapping area between thleservationandregisteredshape. Hence the value &f
depends also on the compactness, topology, and segmerdaio of the shapes.

Eq.(621) Eq.(622) Eq.(623) Eq (624) Eq (625) EQREP.

Figure 6.2: Plots of testedw; } function sets.

6.5.1 Comparison of variousv functions

According to our theoretical results presented in Secti@nwBe expect that the precision of
the recovered transformation parameters is independehé ahoice of thgw; } set as long
as equations are properly normalized. To verify these foglive evaluated the registration
quality of various{w; } function sets. We considered power and trigonometric fonstas
well as polynomials, a total df different sets (see Fig. 6.2):

1. Power functions
wi(x) = x] xy" (6.21)

;)(g,o), (1,0), (0,1), (1,1),(2,0), (0,2), (2,1), (1,2), (2,2), (3,0),

with (n;,m;) €
(0,3),(3,1), (1

9
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. Rotated power functions

wi(x) = (z1 cos a; — 9 sin a;)"™ (1 sin o + x9 cos ;)™ (6.22)

with o; € {0, 2,2} and(n;, m;) € {(1,2), (2,1), (1,3), (3,1)}

. Mixed trigonometric functions

wi(x) = sin(n;x ) cos(m;xaom) (6.23)

with (n;,ms) € {(1,2), (2,1), (2,2), (1,3), (3,1), (2,3), (3.2), (3,3), (1,4), (4,1),
(2,4), (4,2)}

. Trigonometric functions

wi(x) = Qi(niw1) Ri(miw) (6.24)

with Q;(x), R;(z) € {sin(z), cos(x)} and(n;, m;) € {(1,1), (1,2), (2,1)}

. Polynomials

wi(x) = P, (1) Prn, (22) (6.25)

with (n;,m;) € {(1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (1,4), (4,1), (2,4), (4,2),
(3,4), (4,3)} composed of the following random polynomials:

(r) = 22° —x—1

() = 22° —2?

() = 2% —302% + 3z + 2
() = 32° —2® +50—1

. Polynomials

w;(X) = Ln, (21) L, (2) (6.26)

with (n;, m;) € {(2,3), (3,2), (2,4), (4,2), (3,4), (4,3), (2,5), (5,2), (3,5), (5,3),
(4,5), (5,4)} composed of the following Legendre polynomials:

Ly(z) = % (32* — 1)

Ls(z) = % (52° — 3x)

Ly(z) = % (352% — 3027 + 3)
Ly(z) = é (632° — 702" 4 152)
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The quantitative evaluation of the above function sets anensarized in Table 6.1. Ba-
sically, all medianj error measures are betweem — 0.2. Although the mean values have a
slightly bigger variance, this is mainly caused by a fewieutlrather than a systematic error.
It is thus fair to say that the consideredfunctions perform equally well, which confirms
our theoretical results.

The question is therefore naturally arising: Whigeh } set should be used? Or in more
general: What properties should the;} set have? From a theoretical point of view, there
are only trivial restrictions on the applied functions: @msly, w; must be an integrable
function over the finite domaing, and F;. The functions have to be rich enougle. they
have to produce a varying surface over the shape doreainsge Fig. 6.2). For example,
the constant functiow(z) = c is clearly wrong as it makes Eg. (6.8) always true indepen-
dently of the underlying deformation. From a practical paifwview, the picture is different:
First of all, we have to solve numerically a system of intégruations. According to The-
orem 6.3.1, we can reduce this problem to the solution of dimesr system of equations
when thew; functions are polynomial. The empirical results preseindtis section show,
that registration quality is almost unaffected by the caatw, functions but computational
efficiency is clearly increased for a polynomial;} set. Therefore we recommend to use
low order polynomials for computational efficiency. In oxperiments, we have used the
set 11), unless otherwise noted.

{w:} set (%) e(pixel)
m 7] o m o] o
11) 0.09 053 3.38| 008 3.03 2236
22) 0.11 101 501|010 440 24.14
33) 0.21 12.28 19.61 0.19 20.14 41.73
44) 0.12 152 6.25| 011 6.02 25.79
55) 0.10 0.80 4.75| 0.08 3.27 18.60
66) 0.10 0.99 4.84|0.08 417 20.78

Table 6.1: Quantitative comparison of variougv; } function sets.m, u, ando denote the median,
mean, and deviation.

6.5.2 Quantitative evaluation on synthetic data

Herein, we will focus on planar homography. Synthetic t@gth other deformation mod-

els can be found in [43]. Our benchmark dataset containdifferent shapes and their
transformed versions, a total &f 1500 images of siz56 x 256. The applied plane projec-
tive transformations were randomly composed &f . . ., 1.5 scalings;—7, . . ., 7 rotations
along the three axes:1, .. ., 1 translations along bothandy axis and).5, . . ., 2.5 along the

z axis; and a random focal length chosen frigm, 1.5]. Note that these are projective trans-
formations mapping gemplateshape from a plane placed in the 3D Euclidean space to the

xy plane. Some typical examples of these images can be seeqn B 8jwhile a summary of
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Template ObservationSC [60] Proposed

@
A X
o @
VR 4

Figure 6.3: Planar homographie€Example images from the synthetic data set and registraten
sults obtained byshape Contexo0] and the proposed method. Théservatiorand the registered
templatewere overlaid, overlapping pixels are depicted in gray véaesr non-overlapping ones are
shown in black.

Runtime (sec.) ¢ (%) e (pixel)
SC P SC P P
m | 98.72 16.04 2.69 0.09| 0.08
u | 102.78 27.04 4.41 0.54] 2.97
o | 28.26 45.34 4.79 3.42| 22.04

Table 6.2: Comparative tests of the proposed method on the synthdatisetsfor recovering alanar
homography SC —Shape ConteX60]; P — proposed methodn, 1, ando denote the median, mean,
and deviation.

registration results is presented in Table 6.2. We havealsypared the performance of our
method to that oShape ConteX60]. For testing, we used the program provided by the au-
thors and set its parameters empirically to their optimble&ecta_init = 30, n_iter = 30,
annealing rate- = 7). We remark that the program’s only output is the registesteape,
hencer could not be computed.

6.5.2.1 Robustness

In practice, segmentation never produces perfect shagesefbre we have also evaluated
the robustness of the proposed approach against segroergatirs. Besides using various
kind of real images inherently subject to such errors, weetedg8o conducted a systematic
test on simulated data: In the first testcasg, . . ., 20% of the foreground pixels has been
removed from th@bservatiorbefore registration. In the second case, we occluded aontin
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SUw

(a) missing (b) occlu- (c) disoc- (d) bound-
pixels sion clusion ary error

Figure 6.4: Sample observations with various degradations.

ous square-shaped regions of size equalto. . . , 10% of the shape, while in the third case
we disoccluded a similar region. Finally, we randomly addetemoved squares uniformly
around the boundary of a total siz&, ..., 10% of the shape. Note that we do not include
cases where erroneous foreground regions appear as destedrregions, because such
false regions can be efficiently removed by appropriate mmalggical filtering. We there-
fore concentrate on cases where segmentation errors da@fiiered out. See samples of
these errors in Fig. 6.4.

Table 6.3 shows that our method is quite robust wheneversssre uniformly distributed
(first and fourth testcases) over the whole shape. Howeusecomes less stable in case of
larger localized errors, like occlusion and disocclusibimis is a usual behavior of area-based
methods because they are relying on quantities obtaineat&égrating over the whole object
area. Thus large missing parts would drastically changsetig@antities resulting in false
registrations. Nevertheless, in many application areascan take images under controlled
conditions which guarantees that observations are notdedl €.g. medical imaging, in-
dustrial inspection). Note also th&hape ConteX60] is consistently outperformed by our
method except in the cases of occlusion and disocclusion.

6.6 Applications

Herein, we will demonstrate the relevance of our approacraiious application domains
using two common models: planar homography and thin pldieesps well as application-
specific deformation models.

6.6.1 Matching traffic signs

Nowadays, modern cars include many safety systems. Auioinaffic sign recognition is

a major challenge of such intelligent systems, where ond@key tasks is the matching
of a projectively distorted sign with t&mplate Herein, we have used classical thresholding
and some morphological operations for segmentation bonaatic detection/segmentation
is also possible [164]. Fig. 6.5 show some registrationltesiEach image pair was taken
from different signboards. The main challenges were strefgrmations, segmentation
errors and variations in the style of the depicted objectsr éxample, theobservations

in Fig. 6.5(b) and Fig. 6.5(c) do not contain exactly the saiape as the object on the
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(a) missing pixels 5% 10% 15% 20%
21.85 2491 26.38 27.2
597 6.14 6.37 6.56
298 5,69 851 11.57
413 523 6.09 6.74

(b) size of occlusion 1% 2.5% 5% 10%
3.03 355 455 6.79
479 479 5.09 7.03
141 340 6.19 11.27
3.49 4.18 5.09 6.6

(c) size of disocclusion 1% 2.5% 5% 10%
3.63 452 6.25 9.28
519 561 6.84 7.78
193 454 828 13.62
431 513 6.16 7.09

(d) size of boundary error 1% 5% 10% 20%
286 3.78 468 6.92
472 483 5.04 592
054 167 267 4.03
3.28 3.5 3.9 4.47

Shape Context [60]

Proposed method

9 3 o 3

Shape Context [60]

Proposed method

9 3 o 3

Shape Context [60]

Proposed method

9 3 o 3

Shape Context [60]

9 3 o 3

Proposed method

Table 6.3: Median (n) and standard deviationo{) of § error (%) vs. various type of segmentation
errors as shown in Fig. 6.4.

template In particular, theSTOPsign in Fig. 6.5(c) uses different fonts. In spite of these
difficulties, our method was able to recover a quite accuratesformation (the average
error wasl2, 66% on these images).

6.6.2 Aligning hip prosthesis X-ray images

In Section 5.7.1, the problem of assessing hip prosthessifig has already been addressed.
Clinicians assess loosening by inspecting a number ofiellp X-ray images, where a cru-
cial task is the registration of X-ray images as shown in &i§. Herein, we show registration
results using a planar homography deformation model. SimeeX-ray images are always
taken in a well definedtandard positiorof the patient’s leg, this is a good approximation
here. Some of these results are presented in Fig. 6.6.

6.6.2.1 Comparison with correspondence-based homograplgtimation

Since the grayscale versions of the images were availdblgs possible to compare our
method to a feature-correspondence based solution. Rgnih@zose, we have usédmesil4l],
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Runtime (sec.) 0 (%)
m % o m % o

Shape Context [60] 35.02 34.43 7.58 7.86 9.40 4.71
Proposed method 10.00 9.81 1.47 7.66 8.93 4.22

Table 6.4: Comparative results o000 image pairs from the MNIST database., 1, and o stand
for the median, mean, and standard deviation.

which implements a kind of “gold standard” algorithm comgd®f [112, 205]. The point
correspondences has been extracted bySIR@ [142] method. As input, we provided the
masked signboard region for traffic sign matching and thetpesis region for medical reg-
istration. Furthermore, we have also extracted point spwadences established Siape
Context[60]. Here, the input was the binary mask itself usedStFT as well as for our
method. Although th&IFT parameter calledistRatio , controlling the number of the
extracted correspondences, has been manually fine-tureedowid not get reliable results
due to the lack of rich radiometric features. Fig. 6.6 shawsresults on X-ray images while
on traffic signs (see Fig. 6.53IFT could not find enough correspondences in about half of
the cases. As fdBhape Contexbvased correspondences, we got somewhat better alignments
(an averagé of 33.47% for the traffic sign images).

6.6.3 Matching handwritten characters

The performance of our method has been evaluated on aligpaingwritten digits from the
MNISTdataset [138]. A standard approach in matching characgéosalign the observation
(to be recognized) with each of the digit templates, andgeze it as the template with the
lowest deformation. A similar approach is used in [60] whielm be applied in our case too.
Herein, we will concentrate on the alignment of these charac Since this is a free-form
deformation, we used théin plate splinemodel with25 control points placed on a regular
grid over the input shapes. The model Ra®5 + 6 = 56 parameters. The equations were
generated using the function set Eq. (6.21) with paramétetsm;,n; < 8, m; +n; < 8
resulting in an overdetermined system of 81 equations. Xperement consisted ot 2000
test cases, some example images and registration resellshewn in Fig. 6.7. Moreover,
we also compared our results to Shape Context [60], whiah @des a thin plate spline
model but control points are placed on corresponding camgounts. Comparative results in
Table 6.4 show that our method provides slightly better tmegavithinl /3 of CPU time.

6.6.4 Fusion of MRI and TRUS prostate images

Countries in Europe and USA have been following prostate@&ascreening programs since
the lastl5 years [52]. A patient with abnormal findings is generally iadd for a prostate
biopsy to diagnose the benign or malignant lesions. Duraeglie biopsy, the most common
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appearance of malignant lesions in Transrectal Ultras¢URWS) is hypoechoic. The accu-
racy of sonographic finding of hypoechoic prostate cancaoihes is typically43% [73]. In
contrast, Magnetic Resonance Imaging (MRI) has a negatadigiive value oR0% — 84%
for significant cancer and the accuracy of MRI to diagnosestate cancer is approximately
72% — 76% [196]. Therefore, MRI may serve as a triage test for men deeimée at risk
of prostate cancer and may reduce the number of re-biopdids at the same time pro-
vide more useful information for those who are sent for bjopSonsequently, fusion of
pre-biopsy MR images onto interoperative TRUS images miigtrease the overall biopsy
accuracy [122].

An essential part of this procedure is the alignment of tlyggrented prostate regions in
the two modalities. Since the prostate may undergo defeoms=tiue to the insertion of the
endorectal probe through the rectum during the MR imagingelkas inflation of the en-
dorectal balloon, nonlinear registration is needed fomthutimodal alignment. Due to the
rather different content of these modalities, radiomefricrmation cannot be used reliably.
Fortunately, the segmentation of the prostate is availabb®th modalities, which is effi-
ciently obtained by an Active Appearance Model [98]. Plgdine control points of a TPS
on a uniform grid over the prostate shapes, they can be Hir@aned without established
correspondences. Fig. 6.9 shows some examples of alignsthfg images obtained by this
method. In [41], we have improved the generic non-linearstegtion framework of [12]
by establishing a few prostate-specific point correspooelemnd regularizing the overall
deformation. The point correspondences under the influehagich the thin-plate bends
are established on the prostate contours by a method basedtching the shape-context
([61]) representations of contour points using Bhattagyedistance ( [155]). The approxi-
mation and regularization of the bending energy of the fiate splines are added to the set
of non-linear TPS equations and are jointly minimized foolgon. Fig. 6.8 shows some
registration results on multimodal prostate images.

6.6.5 Elastic registration of 3D lung CT volumes

Lung alignment s a crucial task in lung cancer diagnosi$. [D2ring the treatment, changes
in the tumor size are determined by comparioljow-up PET/CT scans which are taken at
regular intervals depending on the treatment and the sizleesfumor. Due to respiratory
motion, the lung is subject to a nonlinear deformation betwsuchfollow-ups, hence it
is hard to automatically find correspondences. A commontiseacs to determine corre-
sponding regions by hand, but this makes the procedure timsuening and the obtained
alignments may not be accurate enough for measuring changes

Our algorithm has been successfully applied [46, 47] tonaB® lung CT scans. As
usual in elastic medical imaging, the adopted parametridehis a 3D Thin plate splines
(TPS) [67,202k : R* — R? which can also be decomposed as three coordinate functions
s(x) = [q1(x),5(x),s(x)]T. Given a set of control points, € R? and associated map-
ping coefficientsy;;, wy; € Rwithe =1,...,3,7 =1,...,4andk = 1,..., K, the TPS
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functions are

K

Gi(X) = anx1 + aprs + aisTs + ay + ZwkiQ(HCk —x|) (6.27)
k=1

where@ : R — R is the radial basis function, which has the following forn8iD [67]:

Q(r) = Ir].

The number of the necessary parameters\are 3( K +4) consisting ofl 2 affine parameters
a;; and3 coefficientswy, for each of the/X control pointscy,.

As for the prostate registration problem, we also includedrading energy regularization
to ensure the proper alignment of the inner structures. Segistration results are presented
in Fig. 6.11, where we also show the achieved alignment oysgede slices of the original
lung CT images. For these slices, the original and transfdrimages were combined as an
8 x 8 checkerboard pattern.

6.6.6 Industrial inspection

An important step in hose manufacturing for automotive stduis to print various signs
on the hose surface in order to facilitate installation (8&e 6.10). The quality control
of this process involves visual inspection of the printeghsi In an automated inspection
system, this can be implemented by comparing images of ihéegrsign to itstemplate
which requires the alignment of themplateandobservatiorshapes. The main challenges
are segmentation errors and complex distortions. The palysiodel of the contact printing
procedure is as follows:

1. The stamp (basically a planar template of the sign) istioo&d on the hose surface.
This can be described by a 2D rotation and scaingR? — R? of thetemplate

2. Then the stamp is pressed onto the surface, modeled asfotraationy : R? — R3
that maps théemplatés plane to a cylinder with radius

.21 7
v(x) = rsin —=, oz, —r cos -

3. Finally, a picture is taken with a camera, which is desatiby a classical projective
transformatior : R3 — R? with an unknown camera matrix.

Thus the transformation

o(x) = (Povyo8S)(x) (6.28)
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acting between a planegmplateand its distorte@bservatiorhas 11 parameterS:has 3 pa-
rameters; has onex), andP has 7 (six extrinsic parameters and the focal length). Tbe-Ja
bian|.J,| is straightforward to compute, although yields a lengthyrfola that we omit here
due to lack of space. Equations were generated by the funs#ibEq. (6.22) with param-
eters using all combinations for, € {0, %, %} and(n;, m;) € {(1,2),(2,1),(1,3),(3,1)}
yielding a system of2 equations. The method has been tested on morelfitareal images
and it proved to be efficient in spite of segmentation errassevere distortions.
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AN
: 1'1?1»\%

(1 RN /7

Figure 6.5: Registration results on traffic signs. Themplatesare in the first row, then the re-
sults obtained bsIFT [142]+ homest{141] (second row), where the images show point correspon-
dences between the images foundSbyT [142] in the third row. The results obtained Ihape
Context[60]+ homest[141] (fourth row) and the proposed method in the last row.e ™ontours of
the registered images are overlaid.
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SIFT [142] SC [60] Proposed
™ Ly (o |

Lg .4

0=284% 6=1023% 6 =1.32%

Figure 6.6: Registration results on hip prosthesis X-ray images. Therland contours show the
aligned contours of the corresponding images on the leftagks in the second column show the
registration results obtained b$IFT [142]+homest[141], in the third column the results @hape
Context[60]+ homesi141], while the last column contains the results of the egd method.

) R "o

fE3MS 647
1334 6 7 ¥
1% 34 67 %
Gl13346 67 %8X%

Figure 6.7: Sample images from the MNIST dataset and registration tesging a thin plate spline
model. First and second rows show the images usem@mplatesand observationsvhile the3d
and4!h rows show the registration results obtained by Shape Cof6kand the proposed method,

respectively.
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fixed TRUS moving MRI registration result

= =
- —

Figure 6.8: MRI-TRUST multimodal prostate registration results. Ragtion result is shown as a
checkerborard of TRUS and transformed MR images to showlitihe@ent of the inner structures.
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Figure 6.9: Alignment of MRI (left) and US (right) prostate images usngPS deformation model.
The contours of the registered MRI images are overlaid ornlt8émagess errors are 2.12% (first
row) and 1.88% (second row).

Sz 2& e

. .

Figure 6.10: Registration results of printed sign$op: planar templates Bottom: the correspond-
ing observationavith the overlaid contour of the registration results. Thetfimage pair shows the

segmented regions used for registration. Note the typiegirentation errors. (Images provided by
ContiTech Fluid Automotive Hungaria Lid.
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A A
A A

Figure 6.11: Alignment of lung CT volumes and the combined slices of tiggnaf and the trans-
formed images as an 8x8 checkerboard pattern. SegmentedrigDirhages were generated by the
InterView Fusion software of Mediso Ltd.
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n this dissertation, we have summarized
our main contributions to MRF image seg-
mentation and shape alignment:

A novel hierarchical MRF model and its
application to supervised and unsupervised
satellite image segmentation has been pro-
posed. A new annealing schedule for Sim-
ulated Annealing: Multi-temperature anneal-
ing allows to assign different temperatures
to different cliques during the minimization
of the energy of a MRF model. The conver-
gence of the new algorithm has also been
proved toward a global optimum.

Probabilistic models for multi-cue seg-
mentation and the 'gas of circles’ shape prior.
In particular, monogrid and multilayer prob-

abilistic models for color-, texture-, and motion-

based segmentation and associated param-
eter estimation techniques. RIMCMC sam-

pler has been generalized for multi-variate
Gaussian mixtures and has been used for
fully automatic color image segmentation.
The methods have been applied to motion
segmentation of video frames and change
detection in aerial imagery.

A unified correspondence-less framework
for the geometric alignment of 2D and 3D
objects. The framework is able to recover a
wide range of deformations such as affine,
projective, and thin plate splines. Indepen-
dently of the particular transformation, it re-
lies on the solution of a system on non-
linear equations which can be easily con-
structed by integrating non-linear functions
over the shape’s domains. Successful ap-
plications include various problems in med-
ical image analysis as well as industrial in-
spection.
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Summary of new scientific results

My new scientific results, where my contribution was esséntiill be summarized in three
thesis points. The first one being my results presented alswyiPhD dissertation, while
the rest has been achieved after obtaining my PhD degreevdelpublications and related
Chapters of the dissertation are listed at the end of eadistheint.

1. Multi-resolution and hierarchical Markov models for image segmentation

New probabilistic models and optimization methods wereettgyed for supervised
and unsupervised gray-level image segmentat@e Chapter.1

() 1 have proposed a novel hierarchical MRF model and itdiaafion to satellite
image segmentatiofRelated publicationg14,20-24, 32].

(ii) 1 have developed a new annealing schedule for Simul&tedealing: Multi-
temperature annealing allows to assign different tempegato different cliques
during the minimization of the energy of a MRF model. | haveved the
convergence of the new algorithm toward a global optimuRelated publica-
tions [24,32].

(ii) 1 have shown how to estimate the hierarchical modebpagters and applied it
to land coverage segmentation on satellite imaBetated publicationg25, 32,
36-38].

2. Probabilistic models for multi-cue segmentation and the 'g@s of circles’ shape
prior.

Besides gray-levels, there are many cues that one can taltesassation for the seg-
mentation process: color, motion, different texture feadu etc. Moreover, many
application-specific restrictions may apply to the shapextfacted regions. To deal
with segmentation problems where coherent regions areagkiimterms of such com-
plex features, | have proposed new probabilistic data nsomiel shape priors as well
as associated parameter estimation methods.

(i) One way to combine various features is to design a joiabpbility distribution
which is able to represent the union of the complex obsemati have shown
that this approach works well when the combined feature®fsamilar nature
(e.g.define a multivariate Gaussian density). | have developedraogrid MRF
model which is able to combine color and texture featuresrdeioto improve
the quality of unsupervised segmentations. | have intreducnovel Reversible
Jump Markov Chain Monte Carlo sampling method which is ablédéentify
multi-dimensional Gaussian mixtures. This technique resnisuccessfully ap-
plied to fully automatic color image segmentati@ee Chapter 2. Related pub-
lications [15, 16, 26, 28, 32].
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(ii)

(iii)

(iv)

| have proposed a new multilayer MRF model which is alblségment an image
based on multiple cueg.@g.color, texture, or motion), which are not necessarily
representable as a simple joint distribution. The methaldeen successfully
applied to motion segmentation (a crucial stegig. MPEG coding) as well as
change detection in aerial imag&ee Chapter 2. Related publicatiofi, 2,27,
29-32].

Higher order active contour (HOAC) models integrateape knowledge via the
inclusion of explicit long-range dependencies betweerrelgoundary points. It
is possible to set the parameters of the HOAC model to faygions consisting
of any number of approximately circular connected comptseith some spec-
ified radius. This yields the 'gas of circles’ HOACs. Stagtiinom the equivalent
phase field formulation of the model, | have developed a pibiséic Markov
model: the 'gas of circles’ MRF. The proposed methods has lseecessfully
applied to extract tree crowns in aerial images for foretspurce management.
See Chapter 3. Related publicatiofts, 13].

In biomedical image interpretation, a major limitati@of the 'gas of circles’

model is that touching or overlapping objects cannot beesgmted. To over-
comes these limitations, | have proposed an alternativeseptation while main-
taining computational efficiency: the multi-layer 'gas ofctes’ model. Both

continuous phase-field and discrete MRF models have beeiaged and suc-
cessfully applied to various segmentation tasks in mi@pedmage analysis.
See Chapter 4. Related publicatiof$2, 45]

3. Correspondence-less alignment of 2D and 3D visual objects

| have proposed a general framework for recovering diffequnic deformations of
2D and 3D shapes. The fundamental difference compareddsictd image registra-
tion algorithms is that this model works without any landkydeature detection, or
correspondences by adopting a novel idea where the tramafion is obtained as a
solution of a system of non-linear equations.

(i)

| have developed a generic framework for recoveringdimgeformations of 2D
and 3D binary objects without correspondences. The baseigito set up a sys-
tem of nonlinear equations whose solution directly prositie parameters of the
aligning transformation. Each equation is generated bsgmatting a nonlinear
function over the object’s domains. Thus the number of eagnatis determined
by the number of adopted nonlinear functions yielding a fiexmechanism to
generate sufficiently many equations. | have shown that pwnetions always
yield a polynomial system. | have given an alternative fdatian of the method
yielding a linear system of equations constructed by fit@ayssian densities to
the shapes which preserve the effect of the unknown tramsftoon. The method
has many applications in medical image analySise Chapter 5. Related publi-
cations [6-11,17,49-51].
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(ii) 1 have developed a substantial extension of the affiggsteation framework to
solve the estimation of a broad range of nonlinear diffegrhmrtransformations
without establishing correspondences or restricting trength of the deforma-
tion. In particular, | have explicitly shown how to constriacsystem of equa-
tions to recover deformations like planar homography, poigial and thin plate
splines, but other diffeomorphic transformations are ed¢atively easy to adopt.
| have formulated a theorem stating that using power funstend a parametric
transformation model in the form of a linear combination ofinge basis func-
tions, then the resulting system consists of plain nonalireguations. Using
the proposed method, numerous registration problems hese ¢plved in many
important application areas ranging from medical imagéyaiato industrial in-
spection.See Chapter 6. Related publicatiofs2, 18, 19,39-41,43,44,46-48]

Demo implementations of some of my methods are also avaifat http://www.
inf.u-szeged.hu/ ~ kato/software/ as follows:

e Supervised Image Segmentation Using Markov Random Fieldss is the sample
implementation of a Markov random field based supervised@segmentation algo-
rithm for simple gray-level imagery.

e Supervised Color Image Segmentation in a Markovian Framewmplementation of
a supervised Markov random field based color image segnamedgorithm.

¢ Affine Registration of Planar ShapeB\A code with a direct solver (only runs under
Windows).

¢ Affine Registration of 3D ObjectdAVA code with multi-threading~£ 0.2sec. CPU
time for megavoxel volumes).

e Nonlinear Shape Registration without Correspondendesplements planar homog-
raphy, extension to other nonlinear deformations is neftieasy.
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Proof of tineorams

r I 1 he appendix contains the technical de- ing algorithm (Theorem 1.2.1). The next

tails of the proofs of various theoreti- two results related to affine and elastic reg-

cal contributions appearing in this dis- istrations are Theorem 5.3.1 and Theorem 6.3.1,
sertation. The first such result is the con- which state the conditions for reducing the
vergence of the multi-temperature anneal- system of integral equations to a system of

plain polynomial equations.
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A.1 Proof of the multi-temperature annealing theorem

We follow the proof of the annealing theorem given by Gemash @eman in [97]. Essen-
tially, we can apply the same proof, only a slight modificati® needed [24].

A.1.1 Notations

We recall a few notationsS = {sy,..., sy} denotes the set of site§,= {0,1,...,L — 1}

is a common state space andn,n’... € Q denote configurations, whefe = AV is
finite. The sites are updated in the order, n,,...} C S. The generated configurations
constitute an inhomogeneous Markov chaik (k),k = 0,1,2,...}, where X (0) is the
initial configuration. The transitioX (k—1) — X (k) is controlled by the Gibbs distribution
Trk,c) according to the transition matrix at tinke

] ey (X, = 0y | Xs =5, 8 # ), if = wl,, — for somer € A

FPon(k) == 0 otherwise

(A1)
Trk,c)(w) denotes the Gibbs distribution at iteratibn

exp(—U(w) o T(k,C
Trec)(w) = p{~U )Z ( ) (A.2)
with U(w) @ T(k,C) = ZTV2<°2 : (A.3)

c Tk, C)

The local characteristics of the above distribution areotiesh by:

71-T(k,C')(*er = Ws | X, =wp, s 7£ T’) = i exXp <_ Z VC(W) ) (A4)

Zs Cec:seC Tk C)
. . Vc(w wS:)\)
with 7, = Z exp ( Z 7T(k, ) ) (A.5)
AEA CeC:seC
The decomposition aff (w) — U(n) for arbitraryw andn, w # n is given by:
Ulw) = U = )_(Velw) = Veln). (A.6)
ceC

Denoting respectively by:*(w,n) and X~ (w,n) the sum over the positive and negative
cliques, we get:

Z(Vc(w) —Ve(n))

ceC

= > (Vol(w) — Va(n)) + 3 Ve(w) — Vo). (A7)

ceC:(Ve(w)—Ve(n))<0 \C'Gci(Vc(W)*VC(W))EO

J/ J/

£ (w7) S+ (wm)
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Furthermore, let

usr = maécU( w), (A.8)
we
inf
U = glelgU( w), (A.9)
andA = U — U™/, (A.10)

and define>{ as the minimum of positive sums:

Y= min X, w"). (A.11)
w' e Qsup
w'” e Qopt

ObviouslyA < ¥1.
Given any starting distributiomy, the distribution ofX (k) is given by the vectog, Hfﬂ P(i):

Pa(X(k) =w) = @ﬂjp@)

- ZP k) = w|X(0) = n)po(n) (A.13)

(A.12)

We use the following notation for transitiongt < k£ andw, n € Q:
P(k,wll,n) = P(X(k) = w|X(I) = n),

and for any distribution on €:

P(k,wll, 1) = ZP k) = w| X (1) = n)u(n).

Sometimes, we use this notation/aék, |/, i), where *” meansany configuration front.
Finally, let|| — v|| denotes the following distance between two distributiom§o

vl =) |nw) -

It is clear, thatlim,, .. i, = p in distribution (i.e. Vw : p,(w) — p(w)) if and only if
[[ptn — ]l = 0.

A.1.2 Proof of the theorem

First, we state two lemmas which imply Theorem 1.2.1:
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LemmaA.1.1 Foreveryk,=0,1,2...:

lim sup [P(X(k) = w|X (ko) = ) — P(X(k) = w|X (ko) = )| =0.  (A14)

k—o0 w’n/’n//
Proof:
Fixky=0,1,2,..., definekK; = ky+1k,l = 0,1,2, ..., wherex is the number of transitions
necessary for a full sweep 6f(for everyk = 0,1,2,...: S C {ngi1, nks2, - - -, Nprr ). LEL

d(k) be the smallest probability among the local charactesstic

5(k) = 1in<fN ﬂ-T(k,C)(XSZ’ - wsi‘ij = wsj7.j # Z)
weN

A lower bound for§ (k) is given by:

exp(=U*"* 0T (k,C))  exp(-A0T(k,C)) _ 1
o) 2 Lexp(—=Uf @ T(k,C)) L =

exp(—X 0 T(k,C)

1 n
> zexp(—ZZ/Tk f) )

whereL =| A | is the number of possible states at a site. Now &ird definen; as the time
of the last replacement of site beforeK; + 1 (that is before thé&” full sweep):

Vi:l <i< N:m; =sup{k:k < K;,n,=s;}.

Without loss of generality, we can assume that > ms,--- > my (otherwise relabel the
sites). Then:
P(X(Kl) = w‘X(Kl,ﬁ = w/)
= P(X81 (ml) = Wsy, XSz(mQ) = Wsgy - - 7X5N(mN) = w5N|X(Kl_1) = w/)
N-—1
= H P(st(ml) = w8i|XSi+1(mi+1) = Ws;pqy -+ 7X5N(mN) = Wsps X(Kl—l) = w,)
=1
al al . SAN

> Hé(mi) > LN Hexp(—A/T&”if) > L Nexp (—Tﬁf ) (A.15)

i=1 i=1 ko+lk

sincem; < K; =kyg+1lk,i=1,2...,N andT,j”f is decreasing. Ikq + [k is sufficiently

large theril™/, > N1 /In(ko + Ix) according to condition 1.2.1/ii and Eq. (A.15) can be
ko+lk A

continued as:

YiIN
P(X(K) = wX(K;_)) =) > LN — 4 = L N (ko +1r)""
(X(0) =X (i) =) = 1 e (= ggriag g ) = &l 10)
Hence, for a sufficiently small constain{0 < I' < 1), we can assume that
inf P(X(K) = 0 X (i) = o) > A2 (A.16)
1mn = W _ = W .
! : “ = ko + Ik
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foreveryky =0,1,2,...andl = 1,2, ..., keeping in mind thak;, depends ofk.

Consider now the limit given in Eq. (A.14) and for eath> k,, define K*'?(k) =
sup{l : K; < k} (the last sweep before thé" transition) so thalimy, ., K**’(k) = co. Fix
k> K.

sup |P(X (k) = w|X(0) =n') = P(X(k) = w|X(0) =7")|

! ol
w?n 717

—sup (sup PX(R) = wlX(0) = 1) = nf PX(R) = I X(0) =)

w

=gpG?EZHX@wu¢WKn:wﬂ%wKa:dum»:m

- i%fz P(X(k) = w|X(K)) = )P(X(K;) = | X(0) = n))

= sup Q(k, w).
Furthermore, for each € Q:

sup Y P(X (k) = w|X (K1) = ') P(X(K)) = w/| X (0) = n)

n W'

< supz P(X(k) = w|X(K;) = w)p(w),

14 W'

wherey is any probability measure dn. Using Eq. (A.16), we get:

W) > r.—=
oW _ko—i‘llﬁj.

Suppose thaP (X (k) = w|X(K;) = «') is maximized atv’ = w*? and minimized at
w' = w™. Then we get:

sup D PIX () = wl X () = w)u(e!) <

(1 . 1>;L+_m) P(X (k) = w[X (K)) = w™)
r.—n !
+k0 + Ik w/;up PO =X =) |

(. J
~\~

P(X(k):w\X(Kl):wi”f)-f—zw/#wsup’winf P(X(k)=w|X(K1)=w")

and in a similar way:

inf 3" PX() = w|X (K1) = )ple) 2
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(1 (0¥ = D ) PO =l X () = )

n Lo
k(] + Ik

> PX(k) = w|X(K) =)

w/#winf
A >

P(X () =] X (K1) =" 45 eup ying PX(0)=0] X (K1) =)
Then, itis clear that

r
k?0+lli

Qk,w) < (1 - ) (P(X (k) = w|X (K1) = w™) = P(X(k) = w|X(K;) = w™)),
hence:
sup |P(X (k) = w|X(0) =7') — P(X(k) = w|X(0) = n")| <

7 ol
w777 777

<l_%iM)S“”P““ﬁIMXMw=nv—mX@wu¢wKn=ﬂmg

! ol
w777 777

T T , - o
(- 55) ((1 ) o [POX(R) = WlX(2) = ) — POX(R) = ol X(R2) = >\>

Proceeding this way, we have the following bound:

Ksup(k;)

< II (1—,€0£m) sup |P(X (k) = w|X (Kgsuw) = 1)

kzl w?n, 717”

—P(X (k) = w|X (Kgewp) = 1")|
and finally, since the the possible maximal value of the supra is1:

K sup (k)

r
sup [P(X(k) =w|X(0) = 1) = P(X (k) =|X(0) =) <[] O—k l)-
w’n/’n// he1 0 + K
It is then sufficient to show that
T r
%E&HO_ ko+m) =0

k=1

which is a well known consequence of the divergence of theser
> (ko +18)7!
l

for all kg andk. This completes the proof. Q.E.D.
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LemmaA.1.2
lim sup || P(k, [ko, m0) — mo [|= 0.

ko—00 >k,

Proof:
In the following, letP, ,(-) stand forP(k, -| ko, m), SO that for anye > k¢ > 0:

Pioi(w) =) P(X(k) = wl|X (ko) = n)mo(n).

First, we show that for any > kq > 0:
| Peoke — T,y | < M| Prok—1 — Trr,o) |-
We can assume for convenience that= s;. Then
| Prok — Tr(r,0) || =

Z ’ﬂ-T(k,C)(Xsl - w51|Xs = Ws, S 7& Sl)Pko,k—l(Xs = Ws, S 7& 51)

(Wsq5-Ws )

_7TT(I<:,C)<X3 = wg, S € 8)’

155

(A.17)

(A.18)

- Z Z ﬂT(k,C)(Xsl - w51|Xs = Ws, S 7& 51) |Pk;(),k;—1(Xs = Ws, S 7& 51)

(Wsgye-ws ) wsy EA
—WT(k,C)(Xs = Ws, 8 # 51)‘)

= Z }Pko,k—l(Xs =W, 8§ F 81) - TrT(k,C)(XS =W, 8§ # 51)‘

(w52a"'wSN)

= Z Z(Pko’k,l(Xs =W, 8 €S) — M) (Xs =ws, s €8))

(Wsg 5o s ) | Wsy

< Z }Pko,k—l(Xs = Ws, S € S) - 71-T(k,C)(*er = Ws, S € S)}

("Jsla---wsw)
= || Prok—1 — .0 |-

Second, we prove that(; ) converges tar, (the uniform distribution or,,):

I - = 0.
Jim |70 — w7l = 0

To see this, lef(2,,;| be the number of globally optimal configurations. Then

Jim 7,0 (W)
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_ fim exp(—U(w) @ T'(k,C))
ko0 3 eq,, eXP(=UW) @ T(k,C)) + 3 0q,,, exp(-UWw) @ T(k, C))

= lim exp(—(U(w) — Uinf) 0Tk, C)) = { ! w ¢ Qopt
- ‘ _ ;
k=00 |[Qopt| + 3, XP(=(Uw) = U™) 0 T(k, C)) o] W € opt
(A.19)
The above equation is true(i (w) — U™/) @ T'(k, C') > 0. Let us rewrite this inequality as
> VG(? - gC(w ) > (A.20)
o (k, C)

wherew’ is any globally optimal configuration (i.ew’ € Q,,). While Vi (w) — Vi (w')
may be negativel/ (w) — U™/ is always positive or zero. We denote byw) the energy
difference in Eg. (A.20) without the temperature. Obviguglis non-negative:

Sw) =Y Volw) = Vo) =Uw) = U™ >0

Then, let us decompos&w) according to Eq. (1.14):
Y(w) =EH(w,w') + 7 (w, ).

From which:
YH(w,w) =S(w) — X (w,w).

Now, we consider Eg. (A.20):

Z VC(C;)(]:: g(;(WI) — 2_(w,w’) o T(k,C)+ Z+(w,w’) o T(k,C)
cec ’

2 (w, W) - TP 4+ St (w, W) - T

> ¥ (w, w')/T,inf + 25 (w, W)/ T = infrpsup
Tk Tk

>0
Furthermore:
S (w, W) TP 4+ S (w, ) T = 57 (w, W) - TP+ (B(w) — B (w, )T

Therefore: ‘ '
= (w, W) (T = TM) = S(w) - T 2 0
Dividing by >~ (w, w’) which is negative, we get:

TS (ww) [

Which is true due to condition 1.2.1/iii of the theorem.
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Finally, we can prove that

o0

Z HWT(k,C) — 7TT(k+1,C)H < 0 (A.21)
k=1
since . .
Z H”T(k,C) — TT(k+1,0) H = Z Z ’WT(k,m (W) = Tr@+1,0) (Wﬂ
k=1 w k=1
and since

Vw : Tpge,oy(w) — mo(w),
it is enough to show that,(w) is monotonous for everyw. However it is clear from
Eg. (A.19) that

o if w¢ Q,, thenmy(w) is strictly increasing fof) < 7' < e for some sufficiently small
€

o if we Q,, thenmy(w) is strictly decreasing for all’ > 0.

Fix k > ky > 0. From Eq. (A.18) and Eq. (A.21), we obtain:
[1Pko ke = mol| < [ Pro i = mrw.oy | + 1720y = moll

< || Prop—1 — 7o) |l + lmr,cy — mol| BY EQ. (A.18)
<N Prop—1 — mr-1,0)ll + |7r@-1,0) — 7o) | + |77, 0) — Ol
< | Pro k-2 — TP(k—2,0) |+ ||7TT(k72,C) — WT(kfl,C)” + ||7TT(k71,C) — TrT(k,C)H + ||7TT(k,C) — o |

k—1

< S Proke — Tr(Ro,0) || Z |mra.c) — mraco)ll + 17rg.o) — moll-
I=ko

On the other hand,

Pko,ko = To
and
li — =0.
kl_{{.lo 77,0y — moll
Then we have
k—1
lim sup sup || Py, & — 7o|| < limsup sup Z |Tra,0) — Trsno)l|
ko—oo k>ko ko—oo k>ko I=ko
= lim sup Z |Tra,c) — Trasne)l =0
k0~>oo l:k‘()
The last term i$) by (A.21) which completes the proof. Q.E.D.

DSc dissertation, 2013



dc_494 12

158 Appendix A. Proof of theorems

Theorem 1.2.1 (Multi-Temperature Annealing) Assume that there exists an integer
k > N such that for every = 0,1,2,..., S C {ngs1, Ngro, ..., Mprnt- ForallC € C,
letT(k,C) be any decreasing sequence of temperaturkgon which

(i) limy,_,o T(k,C) = 0. ‘
Let us denote respectively By’ andT;* the maximum and minimum of the tem-

perature function &t (vC' € C: ;" < T(k,C) < T:*).
(i) Forall k > kq, for some integek, > 2: T,i”f > N L/ In(k).

(iii) If X7 (w,w’) # 0 for somew € Q\ Q,, W' € Q,, then a further condition must be

imposed'
For allk: 7f < R with
_ [Jinf
R— mm JW)-U™
WweEN\ Qopr | 2 (w, W) |
w' e Qopt
Y (w,w') #0

Then for any starting configuratione ) and for everyw € §):

lim P(X (k) =w | X(0) =n) = m(w). (A.22)

k—o00

Proof:
Using the above mentioned lemmas, we can easily prove treaéing theorem:

liglsur)llP(X(k)Z-lX(O)z )—Woll—thUthsup 1Y - Pk, ko, n') P (Ko, 1[0, 7)o |
— 00 ko—rc0 k— oo B
k>ko n

< limsuplimsup || Y~ P(k, -[ko, 1) P (ko, 7|0, 1) — P(k, |ko, mo) |
ko—o00 Il;g;g "
+ lim sup lim sup || P(k, -| ko, m0) — mo]| -
ko—o00 k— o0
k>ko

The last term i$ by Lemma A.1.2. Moreover?(ko, -|0, ) andm, have total mass, thus:

HZP ko, 1) P (Ko, 110, ) — P(k, ko, mo) |

= Zsup | Z (k, wlko,n') — P(k,w|ko, n"))(P(ko, 1|0, n) — mo(n))|
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< QZ sup |P(k,w|ko,n') — P(k,wl|ko,n")] .
- 17/717//
Finally,
limsup || P(X (k) = -[X(0) = n) — 7|

k—00

<2 Zlim sup lim sup sup |P(k, w|ko, ') — P(k,w|ko,n")| =0
o ko—oo KR '’
Z R0

The last term i) by Lemma A.1.1 which completes the proof of the annealinge.
Q.E.D.
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A.2 Proof of Theorem 5.3.1

Let1 < k < n arbitrary and fixed. We assume thélt(x) is polynomial,i.e. there exists an
n-variate real polynomeg;, with deg(p) > 1, such that

Uk

WF(x) = pp(w1, ..., 2,) = Z si(ATy) L (A y) Y, (A.23)

i=1

whereu;, = ( dedgé‘g’z;j; " ) : andA;1 denotes thegth row of A~!. One term of Eq. (A.23)
k
can be expanded by making use of Maltinomial theoren{151]. For a given and for all

1 <j <n,weget

(A7'y)*9 = (guys + - + Gutin + Gnsn) ™

aij! Bij1 Bijn Bijn+1), Bij1 Bijn
- Z Bin!. .. Bij( +1)‘qj1 o Gin Qi) Y17 Yn
i1l !
Bij1y -+ Bij(n+1) € No J I
Bij1 + -+ Bij(nt1) = Xj

hence we get afin + 1)-variate real polynome. In fact, we should compute the sum of
the product ofn pieces of(n + 1) - variate polynoms in Eq. (A.23). Let = n(n + 1)

and consider these products rasvariate polynoms. Furthermore, the sumofvariate
polynoms is also amn-variate polynome. Integrating and using this observatiencan
rewrite Eqg. (A.23) as

U Vg
/Z si(ATy) (A y) i = / Ztin’“ Cqmydn g
i=1 i=1

deg(px) +m

wherev, = (
deg(pr)
equation has a degree of updez(py). Furthermore, by making use of the basic properties

of the Lebesgue integral, we get

Vg (™
Yi1 Yim ,,0i1 Oin __ Vi1 Vim o001 Sin
/E Lgi ™t gm i =) /ti% gyt
i=1 i=1

). It is obvious from the above equation that the system of

Vi Vg
_ Vil Yim 0i1 Oin __ Vi1 Yim
= E Liqy” G, /ylz Y —E Widy -« -y -
i=1 =1

The last term is indeed a real polynomewith variablesy, . . ., ¢, yielding

60 =ntare- )

Hence the system of equations is polynomial which compléiegroof.
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A.3 Proof of Theorem 6.3.1

The statement of Theorem 6.3.1 follows from the next threetas [12].

Lemma A.3.1 If f; andf, are separable with respect (t®,¢(x)), then the function
F(x) = f1(x)f2(x) is also separable.

Proof:
Since bothf; and f, are separable, there exist two sets of functigiﬁé g](?) :R"™ - R and

hﬁl,h] R —» R2for 1 < i < sandl < j < ¢ such that
F@>=:§ja (a)hi" (¢ §jg a)h” (¢(x))

= }j}jg (a)h" (6(x)) 1 (6(x)).

i=1 j=1

Making use of the notationg = g, ¢\” andh, = A" h\? with 1 = (i — 1)t + j, we get

= Zgl(a)hl(¢(x>>

which completes the proof. Q.E.D.

LemmaA.3.2 If o(x) = >, a;¢;(x), then|J,(x)| is separable with respect to
(a,¢(x)).

Proof:
Let us denote the components of the basis functiong@s = [¢:1(x), ¢i2(x)]. The partial
derivatives), oy (k, 1 = 1,2) of p(x) are then given by

&Pk
Bor ;a@@k kl=1,2

from which the Jacobian determinant of Eq. (6.4) can be @mitts

[o(x)] = (Zaaldm )(Zaﬁmﬁ )
(Zazamﬂ )(Za]alqsﬂ( )
= ZZ@% O i1 (%) 02 (%)

i=1 j=1

— 0011 (x)010j2(%)).
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Settingg;(a) = a;a; andhy(P(x)) = 01¢i1(X)020,2(X) — 21 (x)01Pja(x) With [ = (i —

)n+ j, we get
X)| = ga)h(é(x))

The Jacobian is thus separable, which completes the proof. Q.E.D.

LemmaA.3.3 If p(x) = > 1" a;¢;(x) andp(x) = [pi(x1,z2), a1, x2)], where
p1,p2 € Rlxy, 5] are polynomials withleg(p,) = dy anddeg(ps) = do, thenp(e(x)) is
separable with respect a,p(x)).

Proof:
Let us consider the first componentof

p(3 00 = [in (3 0. 3]

Sincep; (z1,22) = >, c;rPxy is polynomial,
b1 ( Z ai¢i1<x)a Z az‘¢z‘2(X)> =
i=1 i=1
Z Cj < Z az‘@l(x))qj < Z a’i¢i2(x)>Tj
J i=1 i=1

( Yoy aiqﬁﬂ(x))qj can be further expanded by making use ofithdtinomial theorenj151]
as

ql ar Sn
Zﬁ @y 911 (X)L P (%)

wheresy,...,s, € Npand)_" | s; = d;. For thelth term of the above sum, let us define
gn(a) = 95! sart . oair andhy (o(x)) =[], ¢ (x)%, yielding

s1l...sn!

n

(Z a;pi1(x ) Zgll Yhair (¢

i=1

_1(y) I (H22 - H32H23)Z/1 - (H12 - H32H13)y2 + HozHio — Hyy Hyz
= 1 =
u (HspHyy — Hsi Hop)yy — (HspH1y — Hsi Hio)ys + HogHiy — Hoy1 Hy
X71<Y) S _(H21 - H31H23)y1 + (Hn — H31H13)y2 — (H23H11 — HQl[I—IA?”ZA\
— 2 — 7\ -r
? (HsoHor — Hyi Hoo)yr — (Hao Huy — HyiHaz)ys + HasHiy — Hofis
H 2
)] = = 3
((HspHay — H3yHyo)yy — (HaoHyy — Hy1 Hyo)ys + HogHyy — Hoy Hyy)
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n

Hence( Yo aiqﬁﬂ(x))qj is separable and similarlglzz‘:1 aigbig(x))” is also separable.
Furthermore, their product is also separable by Lemma AtBuk we proved that; is sepa-
rable. Similarly, it is easy to see thatis also separable, which completes the pr&E.D.

Now the statement of Theorem 6.3.1 is easily sef:(x)) and|J,(x)| are separable
by Lemma A.3.3 and Lemma A.3.2, respectively. Hence thedpct f(¢(x))|J,(x)| is
also separable by Lemma A.3.1 and using the basic propeftiesegral calculus, we get
Eq. (6.14).
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