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IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

T
he first step in almost every computer
vision process, called early vision, in-
volves a variety of digital image pro-

cessing tasks dealing directly with massive
amounts of pixel data. The goal is to trans-
form the digitized image data into more mean-
ingful tokens (edges, regions, objects, etc.)
for higher level processing.

First, we deal with statistical approaches
of image segmentation, where the final goal
is to extract coherent regions correspond-
ing to visual objects of a particular applica-
tion (e.g. cells in a microscope image, or
land coverage in satellite images). In real
scenes, neighboring pixels usually have sim-
ilar properties. In a probabilistic framework,
such regularities are well expressed by Markov
Random Fields. On the other hand, the lo-

cal behavior of Markov Random Fields per-
mits to develop highly efficient algorithms in
the solution of the combinatorial optimiza-
tion problem associated with such a model.
We also discuss parameter estimation meth-
ods in order to develop completely data-
driven algorithms.

Second, we will consider methods to re-
cover the geometric relationship between
a pair of visual objects extracted from im-
ages. This is a fundamental problem, also
known as registration or matching, which
occurs in many image analysis systems where
views or different modalities of an object
need to be compared or fused, e.g. multi-
modal medical imagery or the comparison
of a template with the image of a manufac-
tured part in an industrial inspection sys-
tem.
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2 Introduction

An image processing system involves a sensing device (usually a camera) and computer
algorithms to interpret the picture. The termimage(more precisely,monochrome image)
refers to a two dimensional light intensity function whose value at any point is proportional
to the brightness (grey-level) of the image at that point [100]. Adigital imageis a discretized
image both in spatial coordinates and in brightness. It is usually represented as a two dimen-
sional matrix, the elements of such a digital array are called pixels. The digitized image is
the starting point of any kind of computer analysis. In some applications, the sensing device
may be more specific responding to other forms of light: infrared imaging, photon emission
tomography, radar imaging [171], ultrasonic imaging, etc.

Extraction of coherent image regions

When human observers are interpreting images, they are not only taking into account direct
observations like color or intensity, but also a priori knowledge about the world. However,
such a complex, interacting method is rarely used in image processing systems. Most of
the algorithms are bottom-up: they try to extract some useful information (basically a seg-
mentation) solely from the observed image data and then the segmentation is interpreted.
Obviously, image data alone cannot provide reliable information. Hence the use of higher
level knowledge, in the form of shape priors, received more attention in the past few years.
The dominating approach adopts a variational or level set framework where the segmenta-
tion criteria is summarized in an energy functional which takes its minimum at the desired
segmentation of the input image. Previous work concentrated on foreground - background
segmentation with a data model relying on image gradient andwith template-like shape
priors where the actual contour is matched to a reference shape and high deviations are pe-
nalized. However, handling of more than one, possibly different objects in a scene remains a
challenge as well as the use of more elaborated data models. On the other hand, Markovian
approaches are well suited to multi-object segmentation but little work has been done on
embedding shape priors into such models.

The primary goal of any segmentation algorithm is to divide the domainR of the in-
put image into the disjoint partsRi such that they belong to distinct objects in the scene.
The solution of this problem sometimes requires high level knowledge about the shape and
appearance of the objects under investigation [80,129,172,188]. In many applications, how-
ever, such information is not available or impractical to use. Hence low-level features of the
surface patches are used for the segmentation process [57,137,206]. In either case, we have
to summarize all relevant information in a model which is then adjusted to fit the image data.

One broadly used class of models is the so calledcartoon model, which has been ex-
tensively studied from both probabilistic [32, 97] and variational [66, 158] viewpoints. The
model assumes that the real world scene consists of a set of regions whose observed low-
level features changes slowly, but across the boundary between them, these features change
abruptly. What we want to infer is acartoonω (also called alabeling) consisting of a sim-
plified, abstract version of the input imageI: regionsRi has a constant value (called alabel
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Introduction 3

in our context) and the discontinuities between them form a curveΓ - the contour. The pair
(ω,Γ) specifies asegmentation. Region based methods are mainly focusing onω while edge
based methods are trying to determineΓ directly. However, a good approach has to model
both (either explicitly or implicitly).

Active Contours (snakes) are closed curves evolving towardthe boundary of the object
of interest. The curve evolution is governed by a boundary functional [127] which takes its
minimum on the object contour. The main drawback of the parametric snake model is that it
cannot handle topological changes easily. Nevertheless, they became quite popular because
they make it relatively easy to enforce contour-smoothness; and starting from an appropriate
initialization a local minimum of the associated energy function will give good results.

Taking the probabilistic approach, one usually wants to come up with aprobability mea-
sureon the setΩ of all possible segmentations ofI and then select the one with the highest
probability. This probability measure is usually defined ina Bayesian framework [32, 77,
156, 199], in terms of a set of observed and hidden random variables. In our context, obser-
vations consists in low-level features used for partitioning the image, and the hidden entity
represents the segmentation itself. Thedata likelihood(or imaging model) quantify how well
any segmentation fits the observations.

In addition, aprior define a set of properties that any segmentation must possessre-
gardless the image data. Purely data driven methods cannot deal very well with high noise,
cluttered background or occlusions. Hence the idea of incorporating some prior knowledge
about the shape of the objects has been considered by many researchers. Early approaches
for shape prior were quite generic, enforcing some kind of homogeneity and contour smooth-
ness [24,66,74,79,97,127]. For example, [24,97] uses a Markovian smoothness prior (basi-
cally a Potts model [58]) onω; [66,97] uses a line process to control the formation of region
boundaries; and active contour models [127] have been usingelasticity, rigidity, contour
length, balloon or area minimizing forces [74, 79] in order to favor smooth closed curves.
In spite of their simplicity, these methods proved to be veryefficient in dealing with noisy
images.

Herein, we will present our main contributions to constructefficient Markovian models to
solve various image analysis problems related to remote sensing and biomedical applications.
The ultimate goal of these methods is to extract coherent, meaningfull regions corresponding
to visual objects of a particular application,e.g.tree crowns in aerial images, land coverage
in satellite images, cells and lipid droplets in microscopeimages, moving regions in video
frames, etc.

Alignment of visual objects

Registration is a fundamental problem in various fields of image processing where images
taken from different views, at different times, or by different sensors need to be compared or
combined. In a general setting, one is looking for a transformation which aligns two images
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4 Introduction

such that one image (called theobservation) becomes similar to the second one (called the
template).

When registering an image pair, first we have to characterizethe possible deformations.
From this point of view, registration techniques can be classified into two main categories:
physical model-based and parametric or functional representation [118]. Herein, we deal
with the latter representation, which typically originatefrom interpolation and approximation
theory. Most of the existing approaches assume a linear transformation (rigid-body, similar-
ity, affine) between the images, but in many applications nonlinear deformations [202] (e.g.
projective, polynomial, elastic) need to be considered. Typical applications include visual
inspection [192], object matching [60] and medical image analysis [114]. Good surveys can
be found in [143,207].

From a methodological point of view, we can differentiatelandmark-basedandarea-
based(or featureless) methods [71, 115, 144, 179, 207].Landmark-based methodsrely on
extracted corresponding landmarks [105,207], then the aligning transformation is recovered
as a solution of a system of equations constructed from the established correspondences.
Unfortunately, the correspondence problem itself is far from trivial, especially in the case
of strong deformations. On the other hand, manyfeatureless approachesestimate the trans-
formation parameters directly from image intensity valuesover corresponding regions [146]
or define a cost function based on a similarity metric and find the solution via a complex
nonlinear optimization procedure [110].

A common assumption of both approaches is that the strength of the transformation
is limited or close to identity: The neighborhood of alandmark is searched for corre-
spondences, whilearea-basedmethods may get stuck in local minima for strong deforma-
tions. Furthermore, both approaches rely on the availability of rich radiometric information:
Landmark-basedmethods usually match local brightness patterns around salient points [142]
while featureless methodsmake use of intensity correlation between image patches. Inmany
cases, however, such information may not be available (e.g.binary shapes) or it is very lim-
ited (e.g.prints, images of traffic signs). Another common problem is strong radiometric
distortion (e.g.X-ray images, differently exposed images). Although thereare some time
consuming methods to cope with brightness change across image pairs [126], such image
degradations are difficult to handle. While these issues make classical brightness-based fea-
tures unreliable thus challenging current registration techniques, the segmentation of such
images can be straightforward or readily available within aparticular application. There-
fore a valid alternative is to solve the registration problem using a binary representation (i.e.
segmentation) of the images [181].

For example, spline-based deformations have been commonlyused to register medical
images or volumes. The interpolating Thin-plate Splines (TPS) was originally proposed
by [67], which relies on a set of point correspondences between the image pairs. However,
these correspondences are prone to error in real applications and therefore [175] extended
the bending energy of TPS to approximation and regularization by introducing the corre-
spondence localization error. On the other hand, we [12] proposed a generic framework for
non-rigid registration which does not require explicit point correspondences. In our subse-
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quent work [41], this framework has been adopted to solve multimodal registration of MRI
and TRUS prostate images for reliable cancer diagnosis.

Another prominent medical application is complex bone fracture reduction which fre-
quently requires surgical care, especially when angulation or displacement of bone frag-
ments are large. In such situations, computer aided surgical planning is done before the
actual surgery takes place, which allows to gather more information about the dislocation
of the fragments and to arrange and analyze the surgical implants to be inserted. A crucial
part of such a system is the relocation of bone fragments to their original anatomic position.
In [8], we applied our framework to reduce pelvic fractures using 3D rigid-body transforma-
tions. In cases of single side fractures, thetemplateis simply obtained by mirroring intact
bones of the patient.

Herein, we will present our general registration frameworkfor linear and non-linear
alignment of extracted visual objects. A unique feature of our approach is that a wide range
of deformations are handled in a unified, correspondence-less framework. It provides an
efficient solution for various applications ranging from medical imaging to industrial inspec-
tions, where classical methods perform poorly.
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I
n this chapter, we summarize the main
results of our early work related to Marko-
vian image modeling:

A novel hierarchical MRF model and its
application to satellite image segmentation.

A new annealing schedule for Simulated
Annealing: Multi-temperature annealing al-

lows to assign different temperatures to dif-
ferent cliques during the minimization of the
energy of a MRF model. The convergence
of the new algorithm has also been proved
toward a global optimum.

Etimation of the hierarchical model pa-
rameters and application to remote sensing
image segmentation.
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8 Chapter 1. Markovian segmentation models

1.1 Introduction

The primary goal of any segmentation algorithm is to divide the domainR of the input image
into the disjoint partsRi such that they belong to distinct objects in the scene. The solution
of this problem sometimes requires high level knowledge about the shape and appearance
of the objects under investigation [80, 129, 172, 188]. In many applications, however, such
information is not available or impractical to use. Hence low-level features of the surface
patches are used for the segmentation process [57, 137, 206]. Herein, we are interested in
the latter approach. In either case, we have to summarize allrelevant information in a model
which is then adjusted to fit the image data.

One broadly used class of models is the so calledcartoon model, which has been exten-
sively studied from both probabilistic [97] and variational [66, 158] viewpoints. The model
assumes that the real world scene consists of a set of regionswhose observed low-level fea-
tures changes slowly, but across the boundary between them,these features change abruptly.
What we want to infer is acartoonω consisting of a simplified, abstract version of the input
imageI: regionsRi has a constant value (called alabel in our context) and the discontinu-
ities between them form a curveΓ - the contour. The pair(ω,Γ) specifies asegmentation.
Region based methods are mainly focusing onω while edge based methods are trying to
determineΓ directly.

Taking the probabilistic approach, one usually wants to come up with aprobability mea-
sureon the setΩ of all possible segmentations ofI and then select the one with the highest
probability. Note thatΩ is finite, although huge. A widely accepted standard, also motivated
by the human visual system [128,157], is to construct this probability measure in a Bayesian
framework [77, 156, 199]: We shall assume that we have a set ofobserved (Y ) and hidden
(X) random variables. In our context, any observed valuey ∈ Y represents the low-level
features used for partitioning the image, and the hidden entity x ∈ X represents the seg-
mentation itself. First, we have to quantify how well any occurrence ofx fits y. This is
expressed by the probability distributionP (y|x) - the imaging model. Second, we define a
set of properties that any segmentationx must posses regardless the image data. These are
described byP (x), theprior, which tells us how well any occurrencex satisfies these prop-
erties. Factoring these distributions and applying the Bayes theorem gives us theposterior
distributionP (x|y) ∝ P (y|x)P (x). Note that the constant factor1/P (y) has been dropped
as we are only interested in̂x which maximizesthe posterior,i.e. the Maximum A Posteriori
(MAP) estimate of the hidden fieldX.

The models of the above distributions depend also on certainparameters that we de-
note byΘ. Supervised segmentation assumes that these parameters are either known or a
set of joint realizations of the hidden fieldX and observationsY (called atraining set) is
available [97, 191]. This is known in statistics as thecomplete dataproblem which is rela-
tively easy to solve using Maximum Likelihood (ML) [77]. Although the prior knowledge of
the parameters is a strong assumption, supervised methods are still useful alternatives when
working in a controlled environment. Many industrial applications, like quality inspection
of agricultural products [161], fall into this category. Inthe unsupervised case, however, we
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1.1. Introduction 9

Cliques:

Figure 1.1: First order neighborhood system with corresponding cliques.

know neitherΘ norX. This is called theincomplete dataproblem where bothΘ andX has
to be inferred from the only observable entityY . Hence our MAP estimation problem be-
comes(x̂, Θ̂) = argmaxx,Θ P (x,Θ|y). Expectation Maximization(EM) [81] and its variants
(Stochastic EM [75, 149], Gibbsian EM [76]), as well asIterated Conditional Expectation
(ICE) [25, 68] are widely used to solve such problems. It is important to note, however, that
these methods calculate a local maximum [77].

Due to the difficulty of estimating the number of pixel classes (or clusters), unsupervised
algorithms often suppose that this parameter isknown a priori[99,106,137,140,149]. When
the number of pixel classes is also being estimated, the unsupervised segmentation problem
may be treated as amodel selectionproblem over a combined model space.

1.1.1 Markovian approach

In real images regions are usually homogeneous, neighboring pixels have similar properties.
Markov Random Fields (MRF) are often used to capture such contextual constraints in a
probabilistic framework. MRFs are well studied with a strong theoretical background hence
providing a tool for rigorous and concise image modeling. Furthermore, they allow Markov
Chain Monte Carlo (MCMC) sampling of the (hidden) underlying structure which greatly
simplifies inference and parameter estimation.

Formally, a simple MRF image model is constructed as follows: we are given a set of sites
(usually corresponding to pixels)S = {s1, s2, . . . , sN}. For each sites, the region-type (or
class) that the site belongs to is specified by a class label,ωs, which is modeled as a discrete
random variable taking values inΛ = {1, 2, . . . , L}. The set of these labelsω = {ωs, s ∈ S}
is a random field, called thelabel process. Furthermore, the observed image features (e.g.
graylevel, color, texture,. . . ) are supposed to be a realization F = {fs|s ∈ S} from another
random field, which is a function of the label processω. Basically, theimage processF
represents the manifestation of the underlying label process. Thus, the overall segmentation
model is composed of the hidden label processω and the observable noisy image process
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10 Chapter 1. Markovian segmentation models

F . If each pixel class is represented by a different model thenthe observed image may be
viewed as a sample from a realization of the underlying labelfield.

(ω,F) is then regarded as a MRF with respect to an appropriate neighborhood-system
G = {Gs}s∈S. The simplest example of such a neighborhood can be seen in Fig. 1.1. Accord-
ing to the Hammersley-Clifford theorem [54],(ω,F) must then follow a Gibbs distribution
with an energy functionU(ω,F) =

∑
C∈C VC(ω,F), whereC denotes a clique ofG, andC

is the set of all cliques. The restriction ofω to the sites of a given cliqueC is denoted byωC.
The potential functionVC(ωC) is defined for everyC ∈ C and everyω ∈ Ω, whereΩ = ΛN

is the set of all possibleLN discrete labelings. The advantage of such a decomposition is
that these potentials are a function of the local configuration of the field making it possible
to define the Gibbs distribution directly in terms of local interactions.

The MAP estimatêω of the label field is then obtained by minimizing the non-convex
energy function, which can be solved by stochastic or deterministic relaxation [3,4,33,34].

1.2 Hierarchical MRF models and multi-temperature an-
nealing

It is well known that multigrid methods can improve significantly the convergence rate and
the quality of the final results of iterative relaxation techniques. Herein, we propose a new
hierarchical model [14, 20–24], which consists of a label pyramid and a single observation
field. The parameters of the coarse grid can be derived by simple computation from the finest
grid. In addition, we have introduced a new local interaction between two neighboring grids
which allows to propagate information more efficiently giving estimates closer to the global
optimum for deterministic as well as for stochastic relaxation schemes. For the hierarchical
model, we also propose a novel Multi-Temperature Annealing(MTA) algorithm [24,36]. The
convergence towards the global optimum is proven by the generalization of the annealing
theorem of Geman and Geman [97].

1.2.1 Multiscale and hierarchical model

In the following, we will focus on a MRF with a first order neighborhood (see Fig. 1.1)
whose energy function is given by:

U(ω,F) = U1(ω,F) + U2(ω) (1.1)

whereU1 (resp. U2) denotes the energy of the first order (resp. second order) cliques. To
generate a multigrid MRF model, let us divide the initial grid into blocks ofn× n, typically
16 (4 × 4) neighboring pixels. We consider that the same label is assigned to each pixels
of a given block. These configurations will describe the MRF at scale 1. Scalei is defined
similarly by considering labels which are constant over blocks of sizeni × ni.
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Figure 1.3: The neighborhood system̄G and
the cliquesC̄1, C̄2 and C̄3.

Let Bi = {bi1, . . . , biNi
} (Ni = N/n2i) denote the set of blocks andΩi the configuration-

space at scalei (Ωi ⊂ Ωi−1 ⊂ · · · ⊂ Ω0 = Ω). The label associated with blockbik is denoted
by ωi

k. We can define the same neighborhood structure onBi as onS:

bik andbil are neighbors⇐⇒
{
bik ≡ bil or
∃C ∈ C:C ∩ bik 6= ∅ andC ∩ bil 6= ∅ (1.2)

Let us partition the original setC into two disjoint subsetsCi
k (cliques which are included in

bik) andCi
k,l(cliques which sit astride two neighboring blocks{bik, bil}). It is obvious from this

partition that our energy function can be decomposed in the following way:

U1(ω,F) =
∑

s∈S
V1(ωs, fs) =

∑

bi
k
∈Bi

∑

s∈bi
k

V1(ωs, fs)

︸ ︷︷ ︸
V Bi

1 (ωi
k
,F)

=
∑

bi
k
∈Bi

V Bi

1 (ωi
k,F) (1.3)

U2(ω) =
∑

C∈C
V2(ωc) =

∑

bi
k
∈Bi

∑

C∈Ci
k

V2(ωc)

︸ ︷︷ ︸
V Bi

k
(ωi

k
)

+
∑

{bk,bl}neighbors

∑

C∈Ci
k,l

V2(ωc)

︸ ︷︷ ︸
V Bi

k,l
(ωi

k
,ωi

l
)

=
∑

bi
k
∈Bi

V Bi

k (ωi
k) +

∑

{bk,bl}neighbors
V Bi

k,l (ω
i
k, ω

i
l) (1.4)

Now, we define a pyramid (see Figure 1.2) where leveli contains the coarse gridSi which
is isomorphic to the scaleBi. The coarse grid has a reduced configuration spaceΞi = ΛNi.
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12 Chapter 1. Markovian segmentation models

The isomorphismΦi : Si → Bi is just a projection of the coarse label field to the finest grid
S0 ≡ S. The energy function on the gridSi (i = 0, . . . ,M) is derived from Eq. (1.3)–(1.4):

U i(ωi,F) = U i
1(ω

i,F) + U i
2(ω

i) = U1(Φ
i(ωi),F) + U2(Φ

i(ωi))

whereU i
1(ω

i,F) =
∑

k∈Si

(V Bi

1 (ωi
k,F) + V Bi

k (ωi
k)) =

∑

k∈Si

V i
1 (ω

i
k,F) (1.5)

andU i
2(ω

i) =
∑

{k,l}neighbors
V Bi

k,l (ω
i
k, ω

i
l) =

∑

Ci∈Ci

V i
2 (ω

i
C) (1.6)

whereC i is a second order clique corresponding to the definition in Eq. (1.2) andCi is the
set of cliques on gridi.

Let S̄ = {s̄1, . . . , s̄N̄} =
⋃M

i=0 Si (N̄ =
∑M

i=0N
i) denote the sites of the pyramid. We

define the following functionΨ between two neighboring levels, which assigns to a site its
descendants (that is the sites of the corresponding block):

Ψ : Si −→ Si−1, Ψ(s̄) = {r̄ | s̄ ∈ Si ⇒ r̄ ∈ Si−1 andbi−1
r̄ ⊂ bis̄} (1.7)

It is clear thatΨ−1 will assign to a site its ancestor (that is the site at the upper level
corresponding to the block of this site). Now we can define on these sites the following
neighborhood-system (see Fig. 1.3):

Ḡ = (

M⋃

i=0

Gi) ∪ {Ψ−1(s̄) ∪Ψ(s̄) | s̄ ∈ S̄} (1.8)

whereGi is the neighborhood structure of theith level. We will consider only the first and
second order cliques, potentials for other cliques are supposed to be0. Let C̄ denote the set of
these cliques which can be partitioned into three disjoint subsetsC̄1, C̄2, C̄3 corresponding to
first order cliques, second order cliques which are on the same level and second order cliques
which sit astride two neighboring levels (see Figure 1.3). Let Ω̄ denote the configuration-
space of the pyramid:

Ω̄ = Ξ0 × Ξ1 × · · · × ΞM = {ω̄ | ω̄ = (ω0, ω1, . . . , ωM)} (1.9)

The model on the pyramid defines a MRF, whose energy function is given by:

Ū(ω̄,F) = Ū1(ω̄,F) + Ū2(ω̄) (1.10)

Ū1(ω̄,F) =
∑

s̄∈S̄

V̄1(ω̄s̄,F) =
M∑

i=0

∑

si∈Si

V i
1 (ω

i
si,F) =

M∑

i=0

U i
1(ω

i,F)

Ū2(ω̄) =
∑

C∈C̄2

V̄2(ω̄C) +
∑

C∈C̄3

V̄2(ω̄C) =

M∑

i=0

U i
2(ω

i) +
∑

C∈C̄3

V̄2(ω̄C)

=
M∑

i=0

∑

C∈Ci

V i
2 (ω

i
c) +

∑

C∈C̄3

V̄2(ω̄C)
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1.2. Hierarchical MRF models and multi-temperature annealing 13

model num. of iter. CPU time time/iter. error rate β γ

monogrid 89 10.39 sec. 0.117 sec. 2576 1.0 —
multiscale 146 14.7 sec. 0.1 sec. 2118 1.0 —
hierarchical 42 460.9 sec. 10.97 sec. 1231 1.0 0.2

Noisy image (SNR = 10dB) Monogrid Multiscale Hierarchical

Figure 1.4: Results obtained by the Gibbs Sampler [97] on a noisy synthetic image (128 × 128,
SNR = 10dB) with 16 classes [14, 20–24]. In the table, we show for each model the number of
iterations, the CPU time, the error rate of the segmentation(= the number of misclassified pixels)
and the inter- and intra-clique potentialsβ andγ.

Original image Monogrid Multiscale Hierarchical

Figure 1.5: Results obtained by ICM [64] on a (256× 256) SPOT image with4 classes [14,20–24].

DSc dissertation, 2013

               dc_494_12



14 Chapter 1. Markovian segmentation models

The above energy of the hierarchical model can be minimized using classical combinatorial
optimization algorithms [3, 4, 33, 34, 136]. The only difference is that we work on a pyra-
mid here and not on a rectangular lattice as in the case of classical monogrid models. We
have applied the model for supervised image segmentation and compared the segmentation
results of the classical monogrid [3,33–35], multiscale and hierarchical models on synthetic
(Fig. 1.4) and real (Fig. 1.5) images. For both images, the label pyramid has been generated
with 4 levels. The detailed equations can be found in [14,24]. All tests have been conducted
on a Connection Machine CM200 with8K processors. In terms of segmentation quality,
the hierarchical model clearly outperforms the other methods. Further results can be found
in [14,24].

1.2.2 Multi-temperature annealing

In the following we will focus on Simulated Annealing (SA) [97], where the temperature-
change is controlled by the so-calledannealing schedule. There are two well known schemes,
homogeneousand inhomogeneousannealing [136], which works also on the hierarchical
model. Herein, we propose a new annealing schedule, calledMulti-Temperature Annealing
(MTA), which is the most efficient with the new model. The basic idea is to associate higher
temperatures to coarser levels in the pyramid which makes the algorithm less sensitive to
local minima. However at a finer resolution, the relaxation is performed at a lower temper-
ature (at the bottom level, it is close to0). For the cliques siting between two levels, we
use either the temperature of the finer level or the one of the coarser level (but once chosen,
we always keep the same choice throughout the algorithm). More generally, we have the
following problem:

Let S = {s1, . . . , sN} be a set of sites,G some neighborhood system with cliquesC and
ω a MRF over these sites with energy functionU . π0 denotes the uniform distribution on the
set of globally optimal configurations, and defineUsup = maxω U(ω), U inf = minω U(ω)
and∆ = Usup − U inf . Furthermore, let us suppose that the sites are visited for updating in
the order{n1, n2, . . .} ⊂ S. We now define an annealing scheme where the temperatureT
depends on the iterationk and on the cliquesC. For that purpose, let⊘ denotes the following
operation:

P (X = ω) = πT (k,C)(ω) =
exp(−U(ω)⊘ T (k, C))

Z
(1.11)

whereU(ω)⊘ T (k, C) =
∑

C∈C

VC(ω)

T (k, C)
. (1.12)

As usual with SA [97, 136], the transition from one configuration to another is governed
by the energy change between the two states. Assumingω′ ∈ Ωopt is a globally optimal
configuration,U(ω′) − U inf equals to0 (i.e. there is no more energy change, the system
is frozen). In the case of a classical annealing, dividing bya constant temperature does not
change this relation (obviously,∀k: (U(ω′)−U inf )/Tk is still 0). But it is not necessarily true
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1.2. Hierarchical MRF models and multi-temperature annealing 15

that(U(ω′) − U inf )⊘ T (k, C) is also0! Because choosing sufficiently small temperatures
for the cliques whereω′

C is locally not optimal (i.e. strengthening the non-optimal cliques)
and choosing sufficiently high temperatures for the cliqueswhereω′

C is locally optimal (i.e.
weakening the optimal cliques), we obtain(U(ω′) − U inf ) ⊘ T (k, C) > 0, meaning that
ω′ is no longerglobally optimal (i.e. in such cases, SA may not be able to reach a global
optimum).

Thus, we have to impose further conditions on the temperature to guarantee the conver-
gence toward global optimum. First, let us examine the decomposition over the cliques of
U(ω)− U(η) for arbitraryω andη, ω 6= η:

U(ω)− U(η) =
∑

C∈C
(VC(ω)− VC(η)). (1.13)

Indeed, there may be negative and positive members in the decomposition. According to this
fact, we have the following subsums:

∑

C∈C
(VC(ω)− VC(η)) =

∑

C∈C:(VC(ω)−VC(η))<0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ−(ω,η)

+
∑

C∈C:(VC(ω)−VC (η))≥0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ+(ω,η)

. (1.14)

Furthermore, let us defineΣ+
∆ as:

Σ+
∆ = min

ω′ ∈ Ωsup

ω′′ ∈ Ωopt

Σ+(ω′, ω′′). (1.15)

Then the following theorem gives an annealing schedule, where the temperature is a function
of k andC ∈ C [24]:
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16 Chapter 1. Markovian segmentation models

Theorem 1.2.1 (Multi-Temperature Annealing) Assume that there exists an integer
κ ≥ N such that for everyk = 0, 1, 2, . . ., S ⊆ {nk+1, nk+2, . . . , nk+κ}. For allC ∈ C,
let T (k, C) be any decreasing sequence of temperatures ink for which

(i) limk→∞ T (k, C) = 0.
Let us denote respectively byT inf

k andT sup
k the maximum and minimum of the tem-

perature function atk (∀C ∈ C:T inf
k ≤ T (k, C) ≤ T sup

k ).

(ii) For all k ≥ k0, for some integerk0 ≥ 2: T inf
k ≥ NΣ+

∆/ ln(k).

(iii) If Σ−(ω, ω′) 6= 0 for someω ∈ Ω \ Ωopt, ω′ ∈ Ωopt then a further condition must be
imposed:

For allk: T sup

k
−T inf

k

T inf
k

≤ R with

R = min
ω ∈ Ω \ Ωopt

ω′ ∈ Ωopt

Σ−(ω, ω′) 6= 0

U(ω)− U inf

| Σ−(ω, ω′) | . (1.16)

Then for any starting configurationη ∈ Ω and for everyω ∈ Ω:

lim
k→∞

P (X(k) = ω | X(0) = η) = π0(ω). (1.17)

The complete proof of this theorem can be found in Appendix A.1 and in [20,24].

Remarks:

1. In practice, we cannot determineR andΣ+
∆, as we cannot compute∆ neither.

2. ConsideringΣ+
∆ in condition 1.2.1/ii, we have the same problem as in the caseof

a classical annealing. The only difference is that in a classical annealing, we have∆
instead ofΣ+

∆. Consequently, the same solutions may be used: an exponential schedule
with a sufficiently high initial temperature.

3. The factorR is more interesting. We propose herein two possibilities which can be
used for practical implementations of the method: Either wechoose a sufficiently
small interval[T inf

0 , T sup
0 ] and suppose that it satisfies the condition 1.2.1/iii (we have

used this technique in the simulations), or we use a more strict but easily verifiable
condition instead of condition 1.2.1/iii, namely:

lim
k→∞

T sup
k − T inf

k

T inf
k

= 0. (1.18)

4. What happens ifΣ−(ω, ω′) is zero for allω andω′ in condition 1.2.1/iii and thus
R is not defined? This is the best case because it means that allglobally optimal
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1.3. Parameter estimation 17
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Figure 1.6: Energy decrease and segmentation results of the Gibbs sampler on a synthetic image
with the inhomogeneous and MTA schedules. In both cases, theparameters were strictly the same,
the only difference is the applied schedule. We also show theglobal energy plot (computed at a
fixed temperature on the finest level) versus the number of iterations. Note that both schedules reach
practically the same minimum (53415.4 for the inhomogeneous and 53421.4 for the MTA), however
the inhomogeneous schedule requires238 iterations (796.8 sec. CPU time) while the MTA schedule
requires only100 iterations (340.6 sec. CPU time) for the convergence [20,24].

configurations are alsolocally optimal. That is we have no restriction on the interval
[T inf

k , T sup
k ], thus anylocal temperature schedule satisfying conditions 1.2.1/i–1.2.1/ii

is good.

In Fig. 1.6, we compare the inhomogeneous and MTA schedules on a noisy synthetic
image using the Gibbs sampler. Since each site interacts with its ancestor and its descen-
dants, the hierarchical model usually requires more computing time than a monogrid model.
However, as we have shown in [20, 24], experiments prove thatthis model with the MTA
schedule yields faster convergence (with respect to the number of iterations) for the stochas-
tic relaxation algorithms and gives estimates which are closer to the global optimum. Other
tests can be found in [20,24].

1.3 Parameter estimation

In real life applications, the model parameters are usuallyunknown, one has to estimate [56]
them from the observable image. Here we develop an algorithmfor hierarchical Marko-
vian models [25, 36–38]. Our approach is similar in spirit toIterative Conditional Estima-
tion [149, 167] as well as to the Estimation-Maximization algorithm: we recursively look at
the Maximum a Posteriori (MAP) estimate of the label field given the estimated parameters
then we look at the Maximum Likelihood (ML) estimate of the parameters given a tentative
labeling obtained in the previous step. The only parameter supposed to be known is the
number of labels, all the other parameters are estimated.

When both the model parametersΘ andω are unknown, the estimation problem be-
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18 Chapter 1. Markovian segmentation models

comes [38,96,137]
(ω̂, Θ̂) = argmax

ω,Θ
P (ω,F | Θ). (1.19)

The pair(ω̂, Θ̂) is the global maximum of the joint probabilityP (ω,F | Θ). If we regardΘ
as a random variable, the above maximization is an ordinary MAP estimation in the following
way [96]: Let us suppose, thatΘ is restricted to a finite volume domainDΘ and suppose that
Θ is uniform onDΘ (that isP (Θ) is constant). Then, we get [38,96]:

argmax
ω,Θ

P (ω,Θ | F) = argmax
ω,Θ

P (ω,F | Θ)P (Θ)

P (F)
(1.20)

= argmax
ω,Θ

P (ω,F | Θ)∫
DΘ

∑
ω∈Ω P (ω,F | Θ)dΘ

(1.21)

= argmax
ω,Θ

P (ω,F | Θ). (1.22)

However, this maximization is very difficult, having no direct solution. Even Simulated
Annealing (SA) is not implementable because the local characteristics with respect to the
parametersΘ cannot be computed fromP (ω,F | Θ). One possible solution is to adopt the
following criterion instead [38,96,137]:

ω̂ = argmax
ω

P (ω,F | Θ̂) (1.23)

Θ̂ = argmax
Θ

P (ω̂,F | Θ) (1.24)

Clearly, Eq. (1.23) is equivalent to Eq. (1.19) forΘ = Θ̂ and Eq. (1.24) is equivalent to
Eq. (1.19) withω = ω̂. Furthermore, Eq. (1.23) is equivalent to the MAP estimate of ω in
the case of known parameters:

argmax
ω

P (ω,F | Θ̂) = argmax
ω

P (ω | F , Θ̂)P (F | Θ̂) = argmax
ω

P (ω | F , Θ̂).

Hence in the following we will concentrate on Eq. (1.24) which gives the ML estimate of the
parameters. Considering the hierarchical MRF segmentation model (see Fig. 1.3), we have
the following logarithmic likelihood function [25,36–38]:

M∑

i=0

∑

si∈Si

∑

s∈bi
si

(
− ln(

√
2πσω̂s

)− (fs − µω̂s
)2

2σ2
ω̂s

)

−β
M∑

i=0

qi
∑

Ci∈Ci

δ(ω̂Ci)

︸ ︷︷ ︸
N ih(ω̂)

−γ
∑

C∈C̄3

δ(ω̂C)

︸ ︷︷ ︸
N̄ ih(ω̂)

− ln(Z(β, γ)) (1.25)

whereqi is the number of cliques between two neighboring blocks at scaleBi, N ih(ω̂) de-
notes the number of inhomogeneous cliques siting at the samescale andN̄ ih(ω̂) denotes
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1.3. Parameter estimation 19

the number of inhomogeneous cliques siting astride two neighboring levels in the pyramid.
Considering the first term, we get

M∑

i=0

∑

si∈Si

∑

s∈bi
si

(
− ln(

√
2πσω̂s

)− (fs − µω̂s
)2

2σ2
ω̂s

)

=
∑

λ∈Λ

M∑

i=0

∑

si∈Si
λ

∑

s∈bi
si

(
− ln(

√
2πσλ)−

(fs − µλ)
2

2σ2
λ

)
(1.26)

whereSi
λ is the set of sites at leveli whereω̂si = λ. Derivating with respect toµλ andσλ,

we get a closed form solution for the ML estimates of the Gaussian parameters:

∀λ ∈ Λ: µλ =
1

∑M
i=0 | Si

λ |

M∑

i=0

∑

si∈Si
λ

∑

s∈bi
si

fs, σ2
λ =

1
∑M

i=0 | Si
λ |

M∑

i=0

∑

si∈Si
λ

∑

s∈bi
si

(fs−µλ)
2

(1.27)
Notice that a grey-level valuefs may be considered several times. More precisely,fs is
consideredm-times in the above sum for a givenλ if there arem scales wherêω assigns the
labelλ to the sites. m can also be seen as a weight. Obviously, the mores has been labeled
byλ at different levels, the more is probable thats belongs to classλ and hence its grey-level
valuefs characterizes better the classλ. The derivates of the logarithmic likelihood function
with respect toβ andγ are given by:

∂

∂β

(
−βN ih(ω̂)− ln(Z(β, γ))

)
= −N ih(ω̂)− ∂

∂β
ln(Z(β, γ)) (1.28)

∂

∂γ

(
−γN̄ ih(ω̂)− ln(Z(β, γ))

)
= −N̄ ih(ω̂)− ∂

∂γ
ln(Z(β, γ)) (1.29)

From which, we get

N ih(ω̂) =

∑
ω∈ΩN

ih(ω) exp(−βN ih(ω)− γN̄ ih(ω))∑
ω∈Ω exp(−βN ih(ω)− γN̄ ih(ω))

(1.30)

N̄ ih(ω̂) =

∑
ω∈Ω N̄

ih(ω) exp(−βN ih(ω)− γN̄ ih(ω))∑
ω∈Ω exp(−βN ih(ω)− γN̄ ih(ω))

(1.31)

The solution of the above equations can be approximated using the following algorithm.

DSc dissertation, 2013

               dc_494_12



20 Chapter 1. Markovian segmentation models

Algorithm 1.3.1 (Hyperparameter Estimation)

©1 Setk = 0 and initializeβ̂0 and γ̂0. Furthermore, letN ih(ω̂) denote the number of
inhomogeneous cliques at the same scale andN̄ ih(ω̂) denotes the number of inhomo-
geneous cliques between levels.

©2 Using SA at a fixed temperatureT , generate a new labelingη sampling from

P (X = ω) =
exp

(
− β̂k

T

∑M
i=0

∑
{s,r}∈Ci δ(ωs, ωr)

)

Z(β̂k, γ̂k)
+
exp

(
− γ̂k

T

∑
{s,r}∈C̄ δ(ωs, ωr)

)

Z(β̂k, γ̂k)
.

(1.32)
Compute the number of inhomogeneous cliquesN ih(η) andN̄ ih(η) in η.

©3 If N ih(η) ≈ N ih(ω̂) andN̄ ih(η) ≈ N̄ ih(ω̂) then stop, elsek = k + 1. If N ih(η) <

N ih(ω̂) then decreasêβk, if N ih(η) > N ih(ω̂) then increasêβk. γ̂k is obtained in the
same way. Continue Step©2 with (β̂k, γ̂k).

This algorithm completes the computation of the ML estimateof the parameters given̂ω. The
unsupervised segmentation is then carried out usingAdaptive Simulated Annealing[38,96],
which is an iterative algorithm generating tentative labelings based on current parameter es-
timates (i.e. solving Eq. (1.23)) then updating the parameter values to their ML estimate
based on the current labeling (i.e. solving Eq. (1.24) by making use of Eq. (1.27) and Algo-
rithm 1.3.1). In fact, it is a classical Simulated Annealingwith an additional step to rees-
timate model parameters during segmentation. The convergence of ASA has been proven
in [137].

The algorithm has been tested on several synthetic and real images [25, 37, 38]. In
Fig. 1.7, we show one of these results. In summary, the presented unsupervised algorithm
provide results comparable to those obtained by supervisedsegmentations, but of course at
the price of higher computing time.

1.4 Application in remote sensing

Land cover classification is a common task in analysing satellite images [32]. Our MRF mod-
els can be readily applied to such problems as using appropriate sensors, different land prop-
erties can be distinguished based on the gray-level distribution of pixels. Herein we show
two examples of SPOT satellite image segmentation using different models and stochastic
optimizations techniques [14,20–24,38].

In Fig. 1.8 we present a SPOT image of size512 × 512 with ground truth data (see
Fig. 1.9). In Table 1.1, we give the mean (µ) and the variance (σ2) for each of the 6 classes
correspondig to different land coverages.
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255.00.0
Grey-levels

1
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SNR = 5dB Histogram

Supervised (0.6% error) Unsupervised (0.68% error)

Unsupervised
Parameter Initial Final Supervised

µ0 83.5 84.3 85.48
σ2
0 256.0 483.9 446.60

µ1 100.0 115.5 115.60
σ2
1 169.0 444.6 533.97

µ2 152.5 146.7 146.11
σ2
2 676.0 502.1 540.32

µ3 181.5 177.9 178.01
σ2
3 100.0 500.0 504.34

β 0.7 1.0 0.7
γ 0.1 0.1 0.1

Figure 1.7: Supervised and unsupervised segmentation results and misclassification rate with the
Gibbs Sampler. We also compare the parameters obtained by the unsupervised algorithm to the ones
used for the supervised segmentation [25,36–38].

class 1 2 3 4 5 6

µ 65.3 81.3 75.4 98.5 82.5 129.0
σ2 6.4 12.7 14.9 16.8 9.46 183.2

Table 1.1:Parameters of the “assalmer” image.

As we can see, the classes2 and5 have nearly the same parameters, it is difficult to
distinguish between them. Fig. 1.10 (resp. Fig. 1.11) showsthe results obtained with the
ICM (resp. the Gibbs Sampler). For these results, we give a map drawn by an expert (ground
truth data, see Fig. 1.9). The classes1 − 6 correspond to the regionsB3c, B3b, B3d, a2, hc
and92a on the map. For the hierarchical model a slight improvement can be noticed for the
results of the Gibbs sampler, however, for the ICM, the improvement is more significant.

In Fig. 1.12, another SPOT image with10 classes is presented with overlayed ground
truth data (The regions are drawn by an expert (Unfortunately, they are shifted up by some
pixels. Please take it into account when evaluating the results.) In Table 1.2, we give the
mean (µ) and the variance (σ2) for each class. Fig. 1.13 shows a supervised segmentation
using the parameters listed in Table 1.2. Unsupervised result in Fig. 1.14 is comparable to the
supervised one, but it requires more computing time and is more sensitive to noise. However,
the main advantage is that unsupervised methods are completely data-driven. The only input
parameter is the number of regions.
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22 Chapter 1. Markovian segmentation models

Figure 1.8: Original SPOT image “assalmer” with 6 classes.
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1.4. Application in remote sensing 23

Figure 1.9: Ground truth data.
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24 Chapter 1. Markovian segmentation models

Monogrid model Ground truth data

Multiscale model Hierarchical model

Figure 1.10:Results of the ICM algorithm. Comparison with ground truth data.
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Monogrid model Ground truth data

Multiscale model Hierarchical model

Figure 1.11:Results of the Gibbs Sampler. Comparison with ground truth data.

DSc dissertation, 2013

               dc_494_12



26 Chapter 1. Markovian segmentation models

1 23 410587
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Figure 1.12:Training areas on the “holland” image.
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1.4. Application in remote sensing 27

Figure 1.13:Supervised segmentation result with10 classes (Gibbs Sampler).
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28 Chapter 1. Markovian segmentation models

Figure 1.14:Unsupervised segmentation result with10 classes (Gibbs Sampler).
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1.4. Application in remote sensing 29

class 1 2 3 4 5 6 7 8 9 10

µ 54.61 73.57 159.96 122.84 129.90 146.65 82.56 100.57 93.85 182.34
σ2 93.10 4.10 31.31 8.90 37.42 15.83 35.58 308.86 93.71 73.18

Table 1.2:Parameters of the “holland” image.
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I
n this chapter, we present our results on
using more complex features (e.g. color,
texture, motion) in MRF models and we

also address the associated parameter es-
timation problems:

A monogrid MRF model which is able
to combine color and texture features in or-
der to improve the quality of unsupervised
segmentations.

A novel RJMCMC sampling method which
is able to identify multi-dimensional Gaus-

sian mixtures. This technique has been ap-
plied to fully automatic color image segmen-
tation.

A new multilayer MRF model has been
proposed which is able to segment an im-
age based on multiple cues (such as color,
texture, or motion).

Application areas include motion seg-
mentation (a crucial step in e.g. MPEG cod-
ing) as well as change detection in aerial
images.
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2.1 Introduction

There are many features that one can take as observation for the segmentation process: gray-
level, color, motion, different texture features, etc. However, most of the segmentation algo-
rithms presented in the literature are based on only one of these features.

One way to combine various features is to design a joint probability distribution which is
able to represent the union of the complex observation. Thisapproach works well when the
combined features are of similar nature (e.g.define a multivariate Gaussian density). Such a
model is proposed in our work [28] for color textured image segmentation.

However, the human visual system is not treating different features jointly. Instead, mul-
tiple cues are perceived simultaneously but in a parallel fashion and then they are integrated
by our visual system in order to explain the observations. Following these ideas, we have
developed multi-layer Markovian models and successfully applied it to color-texture [30,31]
and color-motion segmentation [27, 29]. For example, an important problem is extracting
regions of object motions in the presence of camera drift. This is a key issue in several ap-
plications of aerial imagery. In surveillance and exploitation tasks [135] it can be used as a
preliminary step of object detection, tracking and event analysis. On the other hand, in 2-D
mosaicking [168] and in 3-D stereo reconstruction [55] independent object motions gener-
ate outlier regions for image alignment, thus, they should be detected and skipped from the
resulting static scene models. An efficient solution to thisproblem consists in a three-layer
Markov Random Field which integrates two different features to statistically characterize the
background membership of the pixels [1,2].

In the following, we give a brief overview of these approaches.

2.2 Unsupervised segmentation of color textured images

The proposed segmentation model [26, 28] consists of a monogrid MRF defined over a
nearest neighborhood system (see Fig. 1.1) with pixel classes represented by multivariate
Gaussian distributions. This kind of modelization corresponds well to our features: Texture
feature images (extracted by Gabor filters) are constructedin such a way that similar tex-
tures map to similar intensities. Hence pixels with a given texture will be assigned a well
determined value with some variance. Furthermore, pixels with similar color map to their
average color. Putting these feature distributions into one multivariate Normal mixture, the
modes will correspond to clusters of pixels which are homogeneous in both color and texture
properties. Therefore regions will be formed where both features are homogeneous while
boundaries will be present where there is a discontinuity ineither color or texture. Applying
these ideas, theimage processF can be formalized as follows:P (fs | ωs) follows a Normal
distributionN(µ,Σ), each pixel classλ ∈ Λ = {1, 2, . . . , L} is represented by its mean vec-
tor µλ and covariance matrixΣλ. The whole posterior can now be expressed as a first order
MRF by including the contribution of the likelihood term viathe singletons (i.e. pixel sites
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s ∈ S). Indeed, the singleton energies directly reflect the probabilistic modeling of labels
without context, while doubleton clique potentials express relationship between neighboring
pixel labels. Thus the energy function of the so defined MRF image segmentation model has
the following form:

∑

s∈S

(
ln(
√

(2π)n | Σωs
|) + 1

2
(fs − µωs

)Σ−1
ωs
(fs − µωs

)T
)
+ β

∑

{s,r}∈C
δ(ωs, ωr) (2.1)

whereβ > 0 is a weighting parameter controlling the importance of the prior. As β
increases, the resulting regions become more homogeneous.

The proposed segmentation model has the following parameters:

1. The weightβ of the prior term,

2. the number of pixel classesL,

3. the mean vectorµλ and covariance matrixΣλ of each classλ ∈ Λ.

The automatic determination ofL will be addressed in Section 2.3. WhileL strongly
depends on the input image data,β is largely independent of it. Experimental evidence
suggests that the model is not sensitive to a particular setting of β [26, 28]. We found that
settingβ ≥ 2.0 gives satisfactory and stable segmentations. Unlike the first two parameters,
the mean and covariance of the Gaussians must be computed directly from the input image.
Our solution to this problem [28] adopts a general iterativealgorithm, known as theEM
algorithm, to compute the maximum likelihood estimates of the parameters of a mixture
density. Basically, we will fit a Gaussian mixture ofL components to the histogram of the
image features. The observations consist of the histogram datadi(i = 1, . . . , D) of the
feature images.D denotes the number of histogram points and the dimension of adata point
equals to the dimension of the combined color-texture feature space. Assuming there areL
classes, we want to estimate the mean valuesµλ and covariance matricesΣλ for each pixel
classλ ∈ Λ.

The EM algorithm aims at finding parameter values which maximize the normalized
log-likelihood function:

L =
1

D

D∑

i=1

log

(
∑

λ∈Λ
P (di | λ)P (λ)

)
(2.2)

The underlying model is that thecomplete dataincludes not only the observabledi but also
thehidden datalabelsℓi specifying which Gaussian process generated the datadi. Actually,
ℓi is also a vector of dimensionL andℓλi = 1 if di belongs to classλ and 0 otherwise. The
idea is that if labels were known, the estimation of model parameters would be equivalent to
the supervised case. Hence the following algorithm is alternating two steps: The estimation
of a tentative labeling of the data followed by updating the parameter values based on the
tentatively labeled data.
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34 Chapter 2. Complex features and parameter estimation

Algorithm 2.2.1 (EM for Gaussian mixture identification)

©1 [Estimation] Replaceℓi with its conditional expectation based on the current parame-
ter estimates. Since the labels may only take values0 or 1, the expectation is basically
equivalent to the posterior probability:

P (λ | di) =
P (di | λ)P (λ)∑
λ∈Λ P (di | λ)P (λ)

, (2.3)

whereP (λ) denotes the component weight.

©2 [Maximization] Then, using the current expectation of the labelsℓi as the current
labeling of the data, the estimation of the parameters is simple:

P (λ) =
Kλ

D
(2.4)

µλ =
1

Kλ

D∑

i=1

P (λ | di)di (2.5)

Σλ =
1

Kλ

D∑

i=1

P (λ | di)(di − µλ)
T (di − µλ) (2.6)

whereKλ =
∑D

i=1 P (λ | di). Basically the posteriorsP (λ | di) are used as a weight
of the data vectors. They express the contribution of a particular data pointdi to the
classλ.

©3 Go to Step©1 until convergence. Each iteration is guaranteed to increase the likelihood
of the estimates. The algorithm is stopped when the change ofthe log-likelihoodL is
less than a predetermined threshold (our test cases used10−7).

The proposed algorithm has been tested on a variety of color images. We compared seg-
mentation results using color-only, texture-only and combined (color+texture) features [26,
28] and found in all test-cases that segmentation based purely on texture gives fuzzy bound-
aries but usually homogeneous regions, whereas segmentation based on color is more sen-
sitive to local variations but provides sharp boundaries. As for the combined features, the
advantages of both color and texture based segmentation have been preserved: we obtained
sharp boundaries and homogeneous regions. Results has alsobeen compared to those ob-
tained by the JSEG algorithm [82], a recent unsupervised method for color textured image
segmentation. Our method clearly outperforms JSEG (see Fig. 2.1) but JSEG’s advantage is
that we do not have to specify the image dependent parameterL.
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a)

b)

c)

d)
Original Proposed [28] JSEG [82]

Figure 2.1: Unsupervised segmentation results on color textured images, each with 5 classes [28].
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2.3 Segmentation of color images via reversible jump MCMC
sampling

Our problem becomes much harder when the number of labelsL is also unknown. We have
addressed this problem in the context of color-based image segmentation [15,16]. When this
parameter is also being estimated, the unsupervised segmentation problem may be treated as
amodel selectionproblem over a combined model space. From this point of view,L becomes
a model indicatorand the observationF is regarded as a three-variate Normalmixturewith
L components corresponding to clusters of pixels which are homogeneous in color.

The goal of our analysis is inference about the numberL of Gaussian mixture compo-
nents (each one corresponds to a label), the component parametersΘ = {Θλ = (µλ,Σλ) |
λ ∈ Λ}, the component weightspλ summing to 1, the inter-pixel interaction strengthβ,
and the segmentationω. A broadly used tool to sample from the posterior distribution is
the Metropolis-Hastings method. Classical methods, however, can not be used due to the
changing dimensionality of the parameter space. To overcome this limitation, a promising
approach, called Reversible Jump MCMC (RJMCMC), has been adopted [15,16]. When we
have multiple parameter subspaces of different dimensionality, it is necessary to devise dif-
ferentmove typesbetween the subspaces. These will be combined in a so calledhybrid sam-
pler. For the color image segmentation model, the following movetypes are needed [15,16]:

1. sampling the labelsω (i.e. re-segment the image);

2. sampling Gaussian parametersΘ = {(µλ,Σλ)};

3. sampling the mixture weightspλ(λ ∈ Λ);

4. sampling the MRF hyperparameterβ;

5. sampling the number of classesL (splitting one mixture component into two, or com-
bining two into one).

The only randomness in scanning these move types is the random choice between splitting
and merging in move (55). One iteration of the hybrid sampler, also called asweep, consists
of a complete pass over these moves. The first four move types are conventional in the
sense that they do not alter the dimension of the parameter space. Hereafter, we will focus
on move (55), which requires the use of the reversible jump mechanism. This move type
involves changingL by 1 and making necessary corresponding changes toω,Θ andp.

The split proposalbegins by randomly choosing a classλ with a uniform probability
P split
select(λ) = 1/L. ThenL is increased by1 andλ is split intoλ1 andλ2. In doing so, a

new set of parameters need to be generated. AlteringL changes the dimensionality of the
variablesΘ andp. Thus we shall define a deterministic functionψ as a function of these
Gaussian mixture parameters:

(Θ+, p+) = ψ(Θ, p, u) (2.7)
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d+r dimensional subspace

u

X

X’

ψ

r dimensional random vector

d dimensional subspace

ψ

−1

Figure 2.2:ψ is adiffeomorphismwhich transforms back and forth between parameter subspaces of
different dimensionality [15, 16].Dimension matchingcan be implemented by generating a random
vectoru such that the dimensions of(X,u) andX ′ are equal.

where the superscript+ denotes parameter vectors after incrementingL. u is a set of random
variables having as many elements as the degree of freedom ofjoint variation of the current
parameters(Θ, p) and the proposal(Θ+, p+). Note that this definition satisfies thedimen-
sion matchingconstraint (see Fig. 2.2), which guarantees that one can jump back and forth
between different parameter sub-spaces [15, 16]. This is needed to ensure the convergence
of simulated annealing towards a global optimum. The new parameters ofλ1 andλ2 are
assigned by matching the0th, 1th, 2th moments of the component being split to those of a
combination of the two new components [15,16]:

pλ = p+λ1
+ p+λ2

(2.8)

pλµλ = p+λ1
µ+
λ1

+ p+λ2
µ+
λ2

(2.9)

pλ(µλµ
T
λ +Σλ) = p+λ1

(µ+
λ1
µ+T
λ1

+Σ+
λ1
) + p+λ2

(µ+
λ2
µ+T
λ2

+Σ+
λ2
) (2.10)

There are10 degrees of freedom in splittingλ since covariance matrices are symmetric.
Therefore, we need to generate a random variableu1, a random vectoru2 and a symmetric
random matrixu3. We can now define the diffeomorphismψ which transforms the old
parameters(Θ, p) into the new(Θ+, p+) using the above moment equations and the random
numbersu1, u2, andu3 [15,16]:

p+λ1
= pλu1 (2.11)

p+λ2
= pλ(1− u1) (2.12)

µ+
λ1,i

= µλ,i + u2 i

√
Σλ,i,i

1− u1

u1
(2.13)

µ+
λ2,i

= µλ,i − u2 i

√
Σλ,i,i

u1

1− u1
(2.14)

Σ+
λ1,i,j

=





u3 i,i

(
1− u2 i

2
)
Σλ,i,i

1

u1
if i = j

u3 i,jΣλ,i,j

√(
1− u2 i

2
)√(

1− u2 j
2
)
u3 i,iu3 j,j if i 6= j

(2.15)

Σ+
λ2,i,j

=





(1− u3 i,i)
(
1− u2 i

2
)
Σλ,i,i

1

u1
if i = j

(1− u3 i,j) Σλ,i,j

√(
1− u2 i

2
) (

1− u2 j
2
)√

(1− u3 i,i) (1− u3 j,j) if i 6= j
(2.16)
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Figure 2.3: Segmentation of imagerose41and the estimated Gaussian mixture [15,16].

The random variablesu are chosen from the interval(0, 1]. In order to favor splitting a
class into roughly equal portions, beta(1.1, 1.1) distributions are used. The next step is the
reallocation of those sitess whereωs = λ. This reallocation is based on the new parameters
and has to be completed in such a way as to ensure the resultinglabelingω+ is drawn from
the posterior distribution withΘ = Θ+, p = p+ andL = L+ 1.

Merging of a pair(λ1, λ2) is basically the inverse of the split operation [15,16].

Finally, the split or merge proposal is accepted with a probability relative to the probabil-
ity ratio of the current and the proposed states. The segmentation and parameter estimation
is then obtained as a MAP estimation implemented via simulated annealing:

Algorithm 2.3.1 (RJMCMC Segmentation)

©1 Setk = 0. Initialize β̂0, L̂0, p̂0, Θ̂0, and the initial temperatureT0.

©2 A sample(ω̂k, L̂k, p̂k, β̂k, Θ̂k) is drawn from the posterior distribution using thehybrid
sampleroutlined earlier. Each sub-chain is sampled via the corresponding move-type
while all the other parameter values are set to their currentestimate.

©3 Goto Step©2 with k = k + 1 andTk+1 until k < K.

As usual, an exponential annealing schedule (Tk+1 = 0.98Tk, T0 = 6.0) was chosen
so that the algorithm would converge after a reasonable number of iterations. In our
experiments, the algorithm was stopped after200 iterations (T200 ≈ 0.1).

The proposed algorithm has been tested [15, 16] on a variety of real color images and
results have also been compared to those produced by JSEG [82]. In Fig. 2.4, we show a
couple of results obtained on the Berkeley Segmentation Dataset, and in Fig. 2.5, we plot the
corresponding precision-recall curves. Note that RJMCMC has a slightly higherF-measure
which ranks it over JSEG. However, it is fair to say that both method perform equally well
but behave differently: while JSEG tends to smooth out fine details (hence it has a higher pre-
cision but lower recall value), RJMCMC prefers to keep fine details at the price of producing
more edges (i.e. its recall values are higher at a lower precision value).
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Original image
Human

segmentation
JSEG [82] RJMCMC [16]

Figure 2.4: Benchmark results on images from the Berkeley SegmentationDataset [16]
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Figure 2.5: Precision-recall curve, F-measure and CPU time comparisonfor JSEG and RJM-
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Figure 2.6: Multi-layer MRF model [27,29].
Figure 2.7: Three-layer MRF model for
change detection [2].
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2.4 Multilayer MRF modelization

The human visual system is not treating different features sequentially. Instead, multiple
cues are perceived simultaneously and then they are integrated by our visual system in or-
der to explain the observations. Therefore different imagefeatures has to be handled in a
parallel fashion. We have developed such a model in a Markovian framework and success-
fully applied it to color-texture [30,31] and color-motionsegmentation [1,2,27,29]. Herein,
we present the MRF image segmentation model which aims at combining color and motion
features for video object segmentation [27, 29]. The model has a multi-layer structure (see
Fig. 2.6): Each feature has its own layer, calledfeature layer, where an MRF model is de-
fined using only the corresponding feature. A special layer is assigned to the combined MRF
model. This layer interacts with each feature layer and provides the segmentation based on
the combination of different features. Unlike previous methods, our approach doesn’t as-
sume motion boundaries being part of spatial ones. The uniqueness of the proposed method
is the ability to detect boundaries that are visible only in the motion feature as well as those
visible only in the color one.

Perceptually uniform color values and precomputed opticalflow data is used as features
for the segmentation. The proposed model consists of 3 layers. At each layer, we use a
first order neighborhood system and extra inter-layer cliques (Fig. 2.6). The image features
are represented by multivariate Gaussian distributions. For example, on the color layer, the
observed imageF c = {f cs |s ∈ Sc} consists of three spectral component values (L∗u∗v∗) at
each pixels denoted by the vectorf cs . The class label assigned to a sites on the color layer is
denoted byψs. The energy functionU(ψ,F c) of the so defined MRF layer has the following
form: ∑

s∈Sc

Gc(f cs , ψs) + β
∑

{s,r}∈C
δ(ψs, ψr) +

∑

s∈Sc

V c(ψs, η
c
s)

whereGc(f cs , ψs) denotes the Gaussian energy term. The last term (V c(ψs, η
c
s)) is the inter-

layer clique potential. The motion layer adopts a similar energy function with some obvious
substitutions (i.e. for simplicity, we assume a translational motion model here– for a more
elaborate model see [29]).

The combined layer only uses the motion and color features indirectly, through inter-
layer cliques. A label consists of a pair of color and motion labels such thatη = 〈ηc, ηm〉,
whereηc ∈ Λc andηm ∈ Λm. The set of labels is denoted byΛx = Λc × Λm and the
number of classesLx = LcLm. Obviously, not all of these labels are valid for a given image.
Therefore the combined layer model also estimates the number of classes and chose those
pairs of motion and color labels which are actually present in a given image. The energy
functionU(η) is of the following form:

∑

s∈Sx

(Vs(ηs) + V c(ψs, η
c
s) + V m(φs, η

m
s )) + α

∑

{s,r}∈C
δ(ηs, ηr)

whereVs(ηs) denotes singleton energies,V c(ψs, η
c
s) (resp. V m(φs, η

m
s ) denotes inter-layer

clique potentials. The last term corresponds to second order intra-layer cliques which ensures
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Original frame Optic flow

Color only Motion only

Multilayer

Figure 2.8: Segmentation results [27,29].

Original frame Optic flow Multilayer [27,29] Khan & Shah [130]

Figure 2.9: Comparison of the segmentation results obtained by the proposed method [27, 29] and
those produced by the algorithm of Khan & Shah [130].

homogeneity of the combined layer.α has the same role asβ in the color layer model and
δ(ηs, ηr) = −1 if ηs = ηr, 0 if ηs 6= ηr and 1 if ηcs = ηcr and ηms 6= ηmr or ηcs 6= ηcr and
ηms = ηmr . The idea is that region boundaries present at both color andmotion layers are
preferred over edges that are found only at one of the featurelayers. At any sites, we have
5 inter-layer interactions between two layers: Sites interacts with the corresponding site on
the other layer as well as with the 4 neighboring sites two steps away (see Fig. 2.6). This
potential is based on the difference of the first order potentials at the corresponding feature
layers. Clearly, the difference is 0 if and only if both the feature layer and the combined layer
has the same label. If the labels are different then it is proportional to the energy difference
between the two labels. Finally, the singleton energy controls the number of classes at the
combined layer by penalizing small classes.
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2.4.1 Application to motion segmentation and change detection

The proposed algorithm has been tested on real video sequences [27, 29]. We also compare
the results to motion only and color only segmentation (basically a monogrid model similar
to the one defined for the feature layers but without inter-layer cliques). The mean vectors
and covariance matrices were computed over representativeregions selected by the user. The
number of motion and color classes is known a priori but classes on the combined layer are
estimated during the segmentation process. Fig. 2.8 shows some segmentation results. Note
that the head of the men on this image can only be separated from the background using mo-
tion features. Clearly, the multi-layer model provides significantly better results compared to
color only and motion only segmentations. See Fig. 2.9 to compare the performance of the
proposed method with the one from [130] on theMother and Daughterstandard sequence.
Some of the contours are lost by [130] (the sofa, for example)while our method successfully
identifies region boundaries. In particular, our method is able to separate the hand of the
mother from the face of the daughter in spite of their similarcolor. This demonstrates again
that the proposed method is quite powerful in combining motion and color features in order
to detect boundaries visible only in one of the features. We can also handle occlusion and
more complex motions using a modified multilayer model presented in [29]. The model has
also been successfully applied to color-textured image segmentation [30,31].

Finally, we present the application of multilayer modelingfor automatic change detection
on airborne images taken with moving cameras [2]. Essentially, we want to extract the
accurate silhouettes of moving objects or object-groups inimages taken by moving airborne
vehicles in consecutive moments. This problem is solved in two steps: first a coarse (but
robust) image registration is performed for camera motion compensation, then the aligned
input image pair is segmented into moving (foreground) objects and background. Main
challanges are camera motion, noise and the parallax artifacts caused by the static objects
having considerable height (buildings, trees, walls etc.)from the difference image.

A three-layer MRF model is constructed on a graphG whose structure is shown in
Fig. 2.7. The final goal is to perform a binary segmentation ofthe images into foreground
(fg) and background (bg) classes. For the segmentation, twotype of features are extracted
from the aligned image pair:d(s), the gray level difference of the corresponding pixels in
the registered images; andc(s), the maxima in the local correlation function around pixels.
The sites ofG are arranged into three layers:Sd, Sc andS∗, each layer having the same size
as the image latticeS. We assign to each pixels ∈ S a unique site in each layer:e.g.sd is
the site corresponding to pixels on the layerSd. We denotesc ∈ Sc ands∗ ∈ S∗ similarly.
The segmentation is obtained by assigning a labelω(.) to all sites ofG from the label-set:
L , {fg, bg}. The labeling ofSd/Sc corresponds to the segmentation based on thed(.)/c(.)
feature, respectively; while the labels at theS∗ layer present the final change mask.

In Fig. 2.10, we show some results obtained on three pairs of aerial images. For each
pair, we show the ground truth change masks obtained by manual segmentation, the multi-
layer MRF results and a simple fusion obtained as a logical AND operation on the change
masks of two monolayer segmentations based on each features. The increased precision of
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the multi-layer model is clearly visible. Another application of multilayer modeling can be
found in [62].
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(a) First input image (b) First input image (c) First input image

(d) Second input image (e) Second input image (f) Second input image

(g) Fusion of two MRFs (h) Fusion of two MRFs (i) Fusion of two MRFs

(j) Multi-layer MRF (k) Multi-layer MRF (l) Multi-layer MRF

(m) Ground Truth (n) Ground Truth (o) Ground Truth

Figure 2.10:Experimental results [2].
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O
bject extraction remains one of the key
problems of computer vision, which
can be stated as finding regions in

the image domain occupied by a specified
object or objects. The solution often re-
quires high-level knowledge about the shape
of the objects. HOAC models integrate shape
knowledge via the inclusion of explicit long-
range dependencies between region bound-
ary points. Herein, we will show how to set
the parameters of the HOAC model to fa-
vor regions consisting of any number of ap-
proximately circular connected components,
each component having approximately the
same, specified radius. This yields the ’gas
of circles’ HOACs.

A subsequent reformulation of HOAC mod-
els as phase fields can be interpreted as

real-valued continuum Markov random fields.
Discretizing the phase field GOC model, we
will develop an equivalent ‘gas of circles’
Markov random field model that assigns high
probability to regions in the image domain
consisting of an unknown number of circles
of a given radius. The MRF model is con-
structed in a principled way, thereby creat-
ing an equivalent MRF. The model can be
used as a prior for object extraction when-
ever the objects conform to the ‘gas of cir-
cles’ geometry, e.g. tree crowns in aerial
images or cells in biological images.

Here we present a theoretical and ex-
perimental analysis of these models. The
performance is demonstrated on various syn-
thetic images as well as on the problem of
tree crown detection in aerial images.
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3.1 Introduction

Object extraction remains one of the key problems of computer vision and image processing.
The problem is easily stated: find the regions in the image domain occupied by a specified
object or objects. The solution of this problem often requires high-level knowledge about
the shape of the objects sought in order to deal with high noise, cluttered backgrounds, or
occlusions [5, 13, 80, 129, 173, 188]. As a result, most approaches to extraction have, to
differing degrees and in different ways, incorporated prior knowledge about the shape of the
objects sought. Early approaches were quite generic, essentially encouraging smoothness
of object boundaries [24, 74, 79, 97, 127]. For example, [24]uses a Markovian smoothness
prior (basically a Potts model,i.e. boundary length is penalized); [97] uses a line process
to control the formation of region boundaries and control curvature; while classical active
contour models [127] use boundary length and curvature, andregion area in order to favor
smooth closed curves [74,79].

Subsequently there has been a great deal of work on the inclusion of more specific prior
shape knowledge. Many of these methods rely on a kind of template matching: shape vari-
ability is modeled as deformations of a reference shape or shapes. Often, borrowing ideas
from Grenander’s pattern theory [103], shape variability arising from changes of pose is
modeled as the action of a transformation group on the shape.This may or may not be
combined with further intrinsic shape variability. This knowledge is then summarized in
a statistical model which is incorporated into a variational [78, 80, 92, 176] or probabilis-
tic [86,123,153,183] framework. Although these methods are useful for many applications,
the major drawback of using a reference shape (or shapes) is that handling an unknown
number of instances of an object in the same image is difficult.

In this latter case, marked point processes constitute a very natural approach [83, 154,
165]. However, while allowing a unknown number of object instances, computational con-
straints mean that individual objects are usually modeled as belonging to very low-dimensional
families, with no other shape variability allowed. This restricts the shapes that can be mod-
eled and the geometric accuracy that can be achieved.

An alternative approach, known as ‘higher-order active contours’ (HOACs), was pre-
sented and developed in [13, 173]. HOAC models integrate shape knowledge without us-
ing reference shapes via the inclusion of explicit long-range dependencies between region
boundary points. The lack of reference shapes means that they can be used to extract multiple
instances of the same object.

Herein, we will show how to set the parameters of the HOAC model introduced in [173]
to favor regions consisting of any number of approximately circular connected components,
each component having approximately the same, specified radius [13]. A subsequent refor-
mulation of HOAC models (and active contour models in general) as equivalent phase field
models [120, 174] brings a number of theoretical and algorithmic advantages. One of the
most important of these is that phase field models can be interpreted as real-valued contin-
uum Markov random fields (MRFs), thereby allowing the theoretical and algorithmic toolbox
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3.2. Higher order active contours 49

Figure 3.1: The interaction functionΨc(z) for d = 2.

of random field theory to be brought to bear. Binarizing the phase field (in any case, regions
are defined by thresholding the real-valued phase field), andof course discretize its domain,
we will develop an equivalent ‘gas of circles’ Markov randomfield model [5]. Both HOAC
and MRF formulation of the ‘gas of circles’ model has many real life applications,e.g.they
have been succesfully applied to the extraction of tree crowns from aerial images [5,13].

3.2 Higher order active contours

Higher-order active contours (HOACs), were presented and developed in [13, 173]. HOAC
models integrate shape knowledge without using reference shapes via the inclusion of ex-
plicit long-range dependencies between region boundary points. The lack of reference shapes
means that they can be used to extract multiple instances of the same object. Following [13],
we show how to set the parameters of the model introduced in [173] to favor regions con-
sisting of any number of approximately circular connected components, each component
having approximately the same, specified radius. This ‘gas of circles’ (GOC) model was
successfully used for the extraction of tree crowns from aerial images [13].

HOAC models, like all active contour models, represent a regionR by its boundary,∂R,
a closed1-chainγ in the image domainD. The boundary∂R is an equivalence class (under
diffeomorphisms of their domain) of zero or more closed parameterized curves. The HOAC
energy for the GOC model is [13]:

Eg(∂R) = λcL(γ) + αcA(γ)−
βc
2

∫

T×T ′
n · n′Ψc(|γ − γ′|)dtdt′ , (3.1)

where the parameterized curveγ with domainT is an arbitrary member of the equivalence
class of parameterized curves corresponding to∂R, and whereL andA are the boundary
length and interior area functionals. The last term of Eq. (3.1) controls the geometry of
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50 Chapter 3. The ’gas of cicrcles’ MRF model

the region, wheren represents an (un-normalized) normal vector to the boundary, and where
here and elsewhere, primed and unprimed maps are evaluated at primed and unprimed points
of their domain. Theinteraction functionΨc takes the following form, plotted in Fig. 3.1:

Ψc(z) =

{
1
2

(
2− |z|

d
− 1

π
sin
(

π(|z|−d)
d

))
if |z| < 2d,

1−H(|z| − d) otherwise,
(3.2)

whered controls the range of interaction andH is the Heaviside step function.

3.3 The ‘gas of circles’ HOAC model

For certain ranges of the parameters involved, the energy inEq. (3.1) favours regions in the
form of networks, consisting of long narrow arms with approximately parallel sides, joined
together at junctions, as described by [173]. It thus provides a good prior for network extrac-
tion from images. This behaviour does not persist for all parameter values, however. In [13],
we showed that if the parameter triple(λc, αc, βc) satisfies certain constraints, circular re-
gions of a given radius will be local minima of the energy, andthus stable, thereby yielding
the HOAC ‘gas of circles’ (GOC) model.

For this to work, a circle of the given radius must be stable, that is, it must be a local
minimum of the energy. In Section 3.3.1, we show that stable circles are indeed possible
provided certain constraints are placed on the parameters.More specifically, we expand
the energyEg in a functional Taylor series to second order around a circleof radiusr0.
The constraint that the circle be an energy extremum then requires that the first order term
be zero, while the constraint that it be a minimum requires that the operator in the second
order term be positive semi-definite. These requirements constrain the parameter values. In
Section 3.3.2, we present numerical experiments usingEg that confirm the results of this
analysis.

3.3.1 Stability analysis

We denote a member of the equivalence class of maps representing the1-chain defining the
circle byγ0, and a small perturbation byδγ. To second order,

Eg(γ) = Eg(γ0 + δγ) = Eg(γ0) + 〈δγ|δEg

δγ
〉γ0 +

1

2
〈δγ|δ

2Eg

δγ2
|δγ〉γ0 . (3.3)

where〈·|·〉 is a metric on the space of1-chains.

Sinceγ0 represents a circle, it is easiest to express it in terms of polar coordinatesr, θ
onD. For a suitable choice of coordinate onS1, a circle of radiusr0 centred on the origin
is then given byγ0(t) = (r0(t), θ0(t)), wherer0(t) = r0, θ(t) = t, andt ∈ [−π, π). We
are interested in the behaviour of small perturbationsδγ = (δr, δθ). Because the energyEg
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is defined on1-chains, tangential changes inγ do not affect its value. We can therefore set
δθ = 0, and concentrate onδr.

On the circle, using the arc length parameterizationt, the integrands of the different
terms inEg are functions oft − t′ only; they are invariant to translations around the circle.
In consequence, the second derivativeδ2Eg/δγ(t)δγ(t

′) is also translation invariant, and
this implies that it can be diagonalized in the Fourier basisof the tangent space atγ0. It
is thus easiest to perform the calculation by expressingδr in terms of this basis:δr(t) =∑

k ake
ir0kt, wherek ∈ {m/r0 : m ∈ Z}. Below, we simply state the resulting expansions

to second order in theak for the three terms appearing in Eq. (3.1). Details can be found
in [13].

The boundary length and interior area of the region are givento second order by

L(γ) =

∫ π

−π

dt |τ(t)| = 2πr0

{
1 +

a0
r0

+
1

2

∑

k

k2|ak|2
}

(3.4)

A(γ) =

∫ π

−π

dθ

∫ r(θ)

0

dr′ r′ = πr20 + 2πr0a0 + π
∑

k

|ak|2 . (3.5)

Note that there are no stable solutions using these terms alone. For the circle to be an ex-
tremum, we requireλc2π + αc2πr0 = 0, which tells us thatαc = −λc/r0. The criterion
for a minimum is, for eachk, λcr0k2 + αc ≥ 0. We must haveλc > 0 for stability at high
frequencies. Substituting forαc, the condition becomesλc(r0k2 − r−1

0 ) ≥ 0. Substituting
k = m/r0, gives the conditionm2 − 1 ≥ 0: the zero frequency perturbation is never stable.

The quadratic term can be expressed to second order as
∫ ∫ π

−π

dt dt′ G(t, t′) = 2π

∫ π

−π

dp F00(p) + 4πa0

∫ π

−π

dp F10(p) (3.6)

+
∑

k

2π|ak|2
{[

2

∫ π

−π

dp F20(p) +

∫ π

−π

dp e−ir0kpF21(p)
]

(3.7)

−
[
2ir0k

∫ π

−π

dp e−ir0kpF23(p)
]
+
[
r20k

2

∫ π

−π

dp e−ir0kpF24(p)
]}

,(3.8)

whereG(t′, t′) = τ(t′) · τ(t) Ψ(R(t, t′)). TheFij are functionals ofΨ (and hence ofd), and
functions ofr0, as well as ofp.

Combining Eq. (3.4), Eq. (3.5), and Eq. (3.8), we find, up to second order:

Eg(γ0 + δγ) = e0(r0) + a0e1(r0) +
1

2

∑

k

|ak|2e2(k, r0) , (3.9)

where

e0(r0) = 2πλcr0 + παcr
2
0 − πβcG00(r0)

e1(r0) = 2πλc + 2παcr0 − 2πβcG10(r0)

e2(k, r0) = 2πλcr0k
2 + 2παc

−2πβc
[
2G20(r0) +G21(k, r0)− 2ir0kG23(k, r0) + r20k

2G24(k, r0)
]
,
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Figure 3.2: Plots ofe0 againstr0 ande2 againstr̂0k. Left : the energy of a circlee0 plotted against
radius r0 for λc = 1.0, α = 0.8, andβc = 1.39 calculated from Eq. (3.10) witĥr0 = 1.0. (The
parameters ofΨ are d = 1.0 and ǫ = 1.0, but note that it is not necessary in general thatd = r̂0.)
The function has a minimum atr0 = r̂0 as desired.Right: the second derivative ofEg, e2, plotted
againstr̂0k for the same parameter values. The function is non-negativefor all frequencies [13].

whereGij =
∫ π

−π
dp e−ir0(1−δ(j))kpFij(p). Note that there are no off-diagonal terms linking

ak andak′ for k 6= k′: the Fourier basis diagonalizes the second order term.

3.3.1.1 Parameter constraints

Note that a circle of any radius is always an extremum for non-zero frequency perturbations
(ak for k 6= 0), as these Fourier coefficients do not appear in the first order term (this is also
a consequence of invariance to translations around the circle). The condition that a circle be
an extremum fora0 as well (e1 = 0) gives rise to a relation between the parameters:

βc(λc, αc, r̂0) =
λc + αcr̂0
G10(r̂0)

, (3.10)

where we have introduced̂r0 to indicate the radius at which there is an extremum, to dis-
tinguish it from r0, the radius of the circle about which we are calculating the expansion
Eq. (3.3). The left hand side of Fig. 3.2 shows a typical plot of the energye0 of a circle ver-
sus its radiusr0, with theβc parameter fixed using the Eq. (3.10) withλc = 1.0, α = 0.8, and
r̂0 = 1.0. The energy has a minimum atr0 = r̂0 as desired. The relationship betweenr̂0 and
βc is not quite as straightforward as it might seem though. As can be seen, the energy also
has a maximum at some radius. It is nota priori clear whether it will be the maximum or the
minimum that appears atr̂0. If we graph the positions of the extrema of the energy of a circle
againstβc for fixedαc, we find a curve qualitatively similar to that shown in Fig. 3.3 (this is
an example of a fold catastrophe). The solid curve represents the minimum, the dashed the
maximum. Note that there is indeed a uniqueβc for a given choice of̂r0. Denote the point
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Figure 3.3: Schematic plot of the positions of the extrema of the energy of a circle versusβc [13].

at the bottom of the curve by(β(0)
c , r̂

(0)
0 ). Note that atβc = β

(0)
c , the extrema merge and for

βc < β
(0)
c , there are no extrema: the energy curve is monotonic becausethe quadratic term is

not strong enough to overcome the shrinking effect of the length and area terms. In order to
use Eq. (3.10) then, we have to ensure that we are on the upper branch of Fig. 3.3.

Eq. (3.10) gives the value ofβc that provides an extremum ofe0 with respect to changes
of radiusa0 at a given̂r0 (e1(r̂0) = 0), but we still need to check that the circle of radiusr̂0 is
indeed stable to perturbations with non-zero frequency,i.e. thate2(k, r̂0) is non-negative for
all k. Scaling arguments mean that in fact the sign ofe2 depends only on the combinations
r̃0 = r0/d andα̃C = (d/λc)αc. The equation fore2 can then be used to obtain bounds on
α̃C in terms ofr̃0. (Details of these calculations and bounds can be found in [13].) The right
hand side of Fig. 3.2 shows a plot ofe2(k, r̂0) against̂r0k for the same parameter values used
for the left hand side, showing that it is non-negative for all r̂0k.

We call the resulting model, the energyEg with parameters chosen according to the above
criteria, the ‘gas of circles’ model.

3.3.2 Geometric experiments

To illustrate the behaviour of ‘gas of circles’ model, in this section we show the results
of some experiments usingEg (there are no image terms). Fig. 3.4 shows the result of
gradient descent usingEg starting from various different initial regions. (For details of the
implementation of gradient descent for higher-order active contour energies using level set
methods, see [173].) In the first column, four different initial regions are shown. The other
three columns show the final regions, at convergence, for three different sets of parameters.
In particular, the three columns haver̂0 = 15.0, 10.0, and5.0 respectively.

In the first row, the initial shape is a circle of radius32 pixels. The stable states, which
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(Initial) (r̂0 = 15) (r̂0 = 10) (r̂0 = 5)

Figure 3.4: Experimental results using the geometric term: the first column shows the initial condi-
tions; the other columns show the stable states for various choices of the radius [13].

can be seen in the other three columns, are circles with the desired radii in every case. In the
second row, the initial region is composed of four circles ofdifferent radii. Depending on
the value of̂r0, some of these circles shrink and disappear. This behaviourcan be explained
by looking at Fig. 3.2. As already noted, the energy of a circle e0 has a maximum at some
radiusrmax. If an initial circle has a radius less thanrmax, it will ‘slide down the energy
slope’ towardsr0 = 0, and disappear. If its radius is larger thanrmax, it will finish in the
minimum, with radiuŝr0. This is precisely what is observed in this second experiment. In
the third row, the initial condition is composed of four squares. The squares evolve to circles
of the appropriate radii. The fourth row has an initial condition composed of four differing
shapes. The nature of the stable states depends on the relation between the stable radius,r̂0,
and the size of the initial shapes. Ifr̂0 is much smaller than an initial shape, this shape will
‘decay’ into several circles of radiuŝr0.
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3.4 Phase field model

A subsequent reformulation of HOAC models (and active contour models in general) as
equivalent phase field models [120, 174] brings a number of theoretical and algorithmic ad-
vantages. One of the most important of these is that phase field models can be interpreted as
real-valued continuum Markov random fields (MRFs), therebyallowing the theoretical and
algorithmic toolbox of random field theory to be brought to bear. Regions are defined by
thresholding the real-valued phase field. Herein, we will develop an MRF GOC model [5]
equivalent to the phase field GOC model, by binarizing the phase field and of course dis-
cretizing its domain. We start from the phase field formulation of the contour energy of
Eq. (3.1) given in [174]:

E(φ) =

∫

D

{
Df

2
|∇φ|2 + αf

(
φ− φ3

3

)
+ λf

(
φ4

4
− φ2

2

)}
d2x−

−βf
2

∫

D2

∇φG(x, x′)∇φ′d2xd2x′ , (3.11)

whereG(x, x′) is defined as in [174]:

G(x, x′) = Ψ(‖x− x′‖)I, (3.12)

whereI is a2× 2 unit matrix andΨ is as follows:

Ψ(z) =

{
1
2

(
2− z

d
+ 1

π
sin
(
πz
d

))
if z < 2d,

1−H(z − d) else.
(3.13)

whered is the range of interactions andH is the Heaviside function. Note that in our case
z = ‖x− x′‖, hencez ≥ 0 is assumed in Eq. (3.13). The derivatives ofΨ will also be useful
(note thatz < 2d is assumed):

Ψ′(z) =
1

2d

(
cos
(πz
d

)
− 1
)

(3.14)

Ψ′′(z) = − π

2d2
sin
(πz
d

)
(3.15)

The higher order term in Eq. (3.11) can be integrated by parts:

−βf
2

∫

D2

∇φG(x, x′)∇φ′d2xd2x′ = −βf
2

∫

D2

φ(∇∇′Ψ(‖x− x′‖)I)φ′d2xd2x′(3.16)

= −βf
2

∫

D2

φ(−∇2Ψ(‖x− x′‖)I)φ′d2xd2x′(3.17)

=
βf
2

∫

D2

∇2Ψ︸︷︷︸
G

(‖x− x′‖)φφ′d2xd2x′ (3.18)

Using the followings:

∇‖x− x′‖ =
x− x′

‖x− x′‖ (3.19)

∇2‖x− x′‖ =
1

‖x− x′‖ , (3.20)
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Figure 3.5: Plots of the higher order interaction functionG(‖x− x′‖) for d = 2 (i.e. ‖x− x′‖ < 4).
Left : Plot of G(z). Right: Surface plot ofG(‖x− x′‖).

let us expandG(‖x− x′‖) = ∇2Ψ(‖x− x′‖):

G(‖x− x′‖) = ∇2Ψ(‖x− x′‖) = ∇ · (Ψ′(‖x− x′‖)∇‖x− x′‖) (3.21)

= Ψ′′(‖x− x′‖) (∇‖x− x′‖)(∇‖x− x′‖)︸ ︷︷ ︸
=1

+Ψ′(‖x− x′‖)∇2‖x− x′‖(3.22)

= Ψ′′(‖x− x′‖) + Ψ′(‖x− x′‖)
‖x− x′‖ (3.23)

=
1

2d‖x− x′‖

(
cos

(
π‖x− x′‖

d

)
− 1

)
− π

2d2
sin

(
π‖x− x′‖

d

)
,(3.24)

assuming‖x− x′‖ < 2d. Now we have the following energy functional to be discretized:

E(φ) =
Df

2

∫

D
|∇φ|2d2x (3.25a)

+αf

∫

D

(
φ− φ3

3

)
d2x (3.25b)

+λf

∫

D

(
φ4

4
− φ2

2

)
d2x (3.25c)

+
βf
2

∫

D2

G(‖x− x′‖)φφ′d2xd2x′ (3.25d)

φ : D → [−1, 1] is a real valued function onD ⊂ R2. Basically,φ takes the value+1
inside and−1 outside a regionR while it changes linearly across the boundary∂R. It is
therefore a smoothed version of the characteristic function ofR up to a scaling and shift. It
can also be regarded as a fuzzy membership function.
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3.5 Equivalence of the HOAC, phase field, and MRF mod-
els

HOAC and phase field models represent binary partitionings of the domainD. If we denote
the space of binary partitions of the domainD byB, then the following mappings will relate
these representations to a partitioning:

g : Γ → B, γ 7→ B : g(γ) = 1B (3.26)

f : Φ → B, φ 7→ B : f(φ) = 1B (3.27)

whereΓ andΦ denote the space of HOACs and phase fields respectively. The mappingsf
andg aremany to one, because we can reach the same characteristic function via several
parameterization of the phase field and contour models. In general,f may be regarded as a
quantization of a given phase field functionφ in order to obtain the characteristic function of
the corresponding partitionB, which is said to be represented byφ. Such a quantization can
be achieved in several ways.1B ≡ H(φ) is the simplest one used for example in [174]. A
more generic approach is to convertφ into a fuzzy membership functionχB = (φ+1)/2, χ :
B → [0, 1] and thendefuzzifyχB.

Both the HOAC and phase field models produce an optimal binarypartitioning of the
domainD in the sense that the resulting contour and field have the lowest energy state of the
respective energy functionals:

γ̂ = argmin
γ∈Γ

Eg(γ) (3.28)

φ̂ = argmin
φ∈Φ

E(φ) (3.29)

Of course, the partitioningŝBf = f(φ̂) andB̂g = g(γ̂) may not be the same.

While the above models are continuous, both the domain and state space of an MRF
model are discrete. For now, let us consider a realizationω of the MRF as abinary labeling
of the latticeS which is the discretization of the domainD:

ω : S → {−1,+1} (3.30)

Depending on the discretization ofD, there may be several partitioningsB ∈ B mapping to
the same binary labelingω:

m : B → Ω, B 7→ ω,m(B) = 2 · 1B − 1 ≡ ω (3.31)

whereΩ denote the space of binary labelings ofS. m is amany to onemapping as there are
many continuous partitions which discretizes into the samebinary labeling. Here the transfer
of the characteristic function is easily defined but the discretization of the domainD can be
achieved in several different ways.
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In summary, starting from a phase fieldφ, we can reach a binary labelingω, and this is a
unique correspondence:

φ 7→ B 7→ ω : m(f(φ)) = ω (3.32)

Note that we cannot directly relate a phase fieldφ to a labelingω because none of the above
mappings are invertible. However, we can define equivalenceclasses of binary partitions
with respect to a given discretization of the domainD and equivalence classes of the phase
fields with respect to a given defuzzification of the membership functionχB.

Before constructing an equivalent MRF model, we have to clarify in what sense we want
the phase field, and MRF models to be equivalent. It is clear, that each of these models is
describing the same real world phenomenon. Since each modelaims at minimizing some
energy functional, it is expected that the optimums (i.e. arguments of the global minimum)
be equivalent. Formally:

m(f(φ̂)) = ω̂, where (3.33)

ω̂ = argmin
ω∈Ω

U(ω) (3.34)

Unfortunately, it is not easy to quantify such an equivalence, partly because these optimums
are defined indirectly, via the different energy functionals. Hence we will state a slightly
more restricted, but easily formalized equivalence, whichis also a sufficient (but not neces-
sary) condition of the above optimum equivalence. Let us consider a mapm◦f =W : Φ →
Ω. Since we will compute MAP estimates, and since we wish to preserve the property that
circles of a given radius have higher probability than neighbouring configurations, we define
the MRF energy to be [5]

U(ω) = min
Φ:W (φ)=ω

E(φ). (3.35)

We thus set the energyU(ω) of a particular binary fieldω to the energy minimum of the
phase fields{φ :W (φ) = ω} belonging to the equivalence class ofω.

3.6 Discretization

Following our development in Section 3.5, we will now attempt to discretize the phase field
model whose energyE(φ) is defined in Eq. (3.25). For that purpose, we have to discretize
the domainD, the functionφ, and the energy itself.

3.6.1 Quantization of the functionφ

The simplest way to quantizeφ is taking2H(φ) − 1. The resulting discrete function will
be denoted byφ± : D → {−1,+1}. The energy of the discrete functionφ± can be derived
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cs

 s

Figure 3.6: Discretization of the domainD. Each lattice sites ∈ S represents a unit squarecs in D,
that we call acell.

from Eq. (3.25) as follows:

E(φ±) = E(2H(φ)− 1) (3.36)

=

∫

D

{
Df

2
|∇(2H(φ)− 1)|2 + αf

(
(2H(φ)− 1)− (2H(φ)− 1)3

3

)}
d2x

+

∫

D
λf

(
(2H(φ)− 1)4

4
− (2H(φ)− 1)2

2

)
d2x

+
βf
2

∫

D2

G(‖x− x′‖)(2H(φ)− 1)(2H(φ′)− 1)d2xd2x′ (3.37)

=

∫

D

{
Df

2
|2δ(φ)∇φ|2 + 2αf

3
(2H(φ)− 1)− λf

4

}
d2x

+
βf
2

∫

D2

G(‖x− x′‖)(2H(φ)− 1)(2H(φ′)− 1)d2xd2x′ (3.38)

Note that the discrete representationφ± of the fieldφ corresponds to a contour representa-
tion γ and this is a one to one mapping. Furthermore, the gradient term δ(φ)∇φ contributes a
non-zero value only on the region boundaries, whereφ = 0. Therefore this term corresponds
to the contour length termL(γ) in Eq. (3.1).

3.6.2 Discretization of the domainD

D is simply discretized as a finite rectangular latticeS ⊂ Z2. Each lattice sites ∈ S
corresponds to (or represents) a rectangular areacs in D, that we call acell. In our case,
these cells are squares of unit size (see Fig. 3.6). The energy U(φ) over the latticeS can be
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derived from Eq. (3.25) as follows:

E(φ) ≡ U(φ) =
∑

s∈S

{
Df

2

∫

cs

|∇φ|2d2x+ αf

∫

cs

(
φ− φ3

3

)
d2x+ λf

∫

cs

(
φ4

4
− φ2

2

)
d2x

}

+
βf
2

∑

s∈S

∑

r∈S

∫

cs×cr

G(‖x− x′‖)φφ′d2xd2x′ (3.39)

3.6.3 Discretization of the energy functional

In the following, we will derive the discrete energy functional when both the domainD and
functionφ are discretized. This procedure will convert the continuous phase field model into
a discrete one. The resulting discrete field will be denoted by ω : S → {−1,+1}. In our
case, it is natural to assume the following discretization and quantization:

ωs := 2H

(∫

cs

φd2x

)
− 1 (3.40)

Similarly, higher powers ofφ are discretized as

ωn
s := 2H

(∫

cs

φnd2x

)
− 1; ∀n = 2, 3, . . . (3.41)

≡
{

+1 ∀n = 2, 4, . . .
ωs ∀n = 3, 5, . . .

(3.42)

Let us now consider the phase field energy Eq. (3.25). As usual, the gradient operator∇ is
replaced by the finite difference operator△:

∇φ ≈ △ω (3.43)∫

cs

|∇φ|2 ≈
∑

‖s−r‖=1

(ωs − ωr)
2 (3.44)

Hence the first term Eq. (3.25a) becomes

Df

2

∫

D
|∇φ|2d2x =

Df

2

∑

s

∫

cs

|∇φ|2d2x (3.45)

≈ D
∑

‖s−r‖=1

(ωs − ωr)
2, (3.46)

where

D =
1

2
Df (3.47)
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The next term Eq. (3.25b) is approximated by

αf

∫

D

(
φ− φ3

3

)
d2x = αf

∑

s

(∫

cs

φd2x− 1

3

∫

cs

φ3d2x

)

≈ αf

∑

s

(
ωs −

1

3
ωs

)
= αf

∑

s

2

3
ωs

≈ α
∑

s

ωs, (3.48)

yielding

α =
2

3
αf (3.49)

Eq. (3.25c) becomes

λf

∫

D

(
φ4

4
− φ2

2

)
d2x = λf

∑

s

(
1

4

∫

cs

φ4d2x− 1

2

∫

cs

φ2d2x

)

≈ λf
∑

s

(
1

4
− 1

2

)
= λf

∑

s

−1

4

≈ λ|S|, (3.50)

from which we get

λ = −1

4
λf (3.51)

Finally the non-linear term Eq. (3.25d) is as follows

βf
2

∫

D2

G(‖x− x′‖)φφ′d2xd2x′ = βf
∑

‖s−r‖<2d

∫

cs×cr

G(‖x− x′‖)φφ′d2xd2x′

≈ βf
∑

‖s−r‖<2d

ωsωr

∫

cs×cr

G(‖x− x′‖)d2xd2x′

≈ β
∑

‖s−r‖<2d

ωsωrFsr, (3.52)

whereFsr denotes the discrete version of the operatorG(‖x− x′‖). Setting

β = βf (3.53)

yields

Fsr =

∫

cs×cr

G(‖x− x′‖)d2xd2x′ (3.54)

Putting these terms together we get the energy of the discrete model:

U(ω) = λ|S| + α
∑

s

ωs +D
∑

‖s−r‖=1

(ωs − ωr)
2 + β

∑

‖s−r‖<2d

ωsωrFsr (3.55)

Note that the first term is constant hence it can be omitted whenU(ω) is minimized. Now let
us have a closer look at the parameters of the above energy functional.
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3.6.3.1 Relationship between the parameters of the contourand field energies

The following relationship between the contour and field parameters has been derived in [174]:

λ2c =
16DfλfKf

15
with Kf = 1 + 5(αf/λf)

2 (3.56)

αc =
4

3
αf (3.57)

βc = 4βf (3.58)

The equivalence of the HOAC and phase field energy is thus established using the above
parameter settings [174]. The value ofKf is derived from an approximation of the phase
field energy, see [174] for details.

3.6.3.2 Parameters of the discrete energy functional

In summary, we have the following relationship between the parameters of the HOAC energy
Eq. (3.1), the continuous Eq. (3.25) and discrete Eq. (3.55)field energies:

α =
2

3
αf =

1

2
αc (3.59)

D =
1

2
Df (3.60)

λ = −1

4
λf (3.61)

β = βf =
1

4
βc (3.62)

Finally, from Eq. (3.56) and the above equations, we get

λ2c =
16DfλfKf

15
with Kf = 1 + 5(αf/λf)

2 (3.63)

=
−128DλK

15
with K = 1 + 5(3α/− 8λ)2 (3.64)

3.7 Markovian interpretation

Now we will show that the discrete energy functional in Eq. (3.55) defines a Markov Random
Field (MRF) with respect to an appropriate neighborhood systemν. Since the first term of
the energy is a constant (λ|S|), let us first remove it:

U(ω) = α
∑

s

ωs +D
∑

‖s−r‖=1

(ωs − ωr)
2 + β

∑

‖s−r‖<2d

ωsωrFsr (3.65)
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r
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lomg range

singleton

site out of
neighborhood

doubleton &

Figure 3.7:MRF neighborhood system corresponding to the higher order interaction functionG(‖x−
x′‖) for d = 2 (i.e. ‖x− x′‖ < 4).

In this context,ω = {ωs : s ∈ S} is called thelabel processwhich is modeled as a MRF.
Ω denotes the set of all possible labelings of the latticeS. Since we have two labels (±1),
|Ω| = 2|S|.

Definition 3.7.1 (Gibbs distribution) A Gibbs distribution is a probability measureP
onΩ with the following representation:

P (ω) =
exp (−U(ω))

Z
, (3.66)

whereZ is thenormalizing constantor partition function:

Z =
∑

ω∈Ω
exp (−U(ω)) (3.67)

Clearly,U(ω) from Eq. (3.65) defines a Gibbs distribution, although the computation
of Z is usually not tractable. Note however, that for sampling the field, we do not need to
compute the actual value ofZ as long as the parametersD,α, β are fixed a priori.ω and
P (ω) must also satisfy the following conditions:

Definition 3.7.2 (Markov random field) X is a Markov random field (MRF) with
respect toν if

(i) for all ω ∈ Ω: P (X = ω) > 0,

(ii) for everys ∈ S andω ∈ Ω:
P (Xs = ωs | Xr = ωr, r 6= s) = P (Xs = ωs | Xr = ωr, r ∈ νs).
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3.7.2/i) is satisfied by definition (P (ω) belongs to the exponential family). For 3.7.2/ii),
we have to find the neighborhood system satisfying the Markovian constraint. In Eq. (3.65),
there are two type of interactions (see Fig. 3.7):

1. The approximation of the gradient term by the finite differences in the second term,
which corresponds to a classical nearest neighborhood.

2. The higher order pairwise interactions governed by the discrete operatorF which cor-
responds to a neighborhood of diameter2d.

Since the size of the neighborhood is dominated by the latterinteraction (d ≥ 2 in practice),
we conclude that the neighborhood of a sites ∈ S consists of the set of sitesνs = {r ∈
S : ‖s − r‖ < 2d} (see Fig. 3.7). The Gibbs - MRF equivalence is then established by the
Hammersley-Cliffordtheorem [63].

Theorem 3.7.1 (Hammersley-Clifford) X is a MRF with respect to the neighborhood
systemν if and only ifP (ω) = P (X = ω) is a Gibbs distribution with an energy equal to
the sum ofclique potentials, that is

P (ω) =
exp (−U(ω))

Z
=

exp
(
−∑C∈C VC(ω)

)

Z
(3.68)

Definition 3.7.3 (Clique) A subsetC ⊆ S is a clique if every pair of distinct sites in
C are neighbors.C denotes the set of cliques anddeg(C) = maxC∈C |C|.

The advantage of such a decomposition is that these potentials are a function of the
local configuration of the field making it possible to define the Gibbs distribution directly
in terms of local interactions. Since our neighborhood consists of three types of cliques
(singleton, doubleton, andlong rangepairs), the definition of the energy functionU(ω) can
be completed by defining the corresponding clique potentials.

3.7.1 Singleton potential

∀s : Vs = αωs (3.69)

Depending on the sign ofα, the singleton potential will either preferωs = −1 or ωs = +1
everywhere. Hence settingα > 0 will prefer a homogeneous background (ωs = −1). It can
also be interpreted as anarea term. Thus asα is increased, typical configurations have less
foreground pixels, yielding less circles. This is illustrated in Fig. 3.8), where samples from
the MRF are shown for differentα.
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α = 0.1863 α = 0.21 α = 0.24 α = 0.27

Figure 3.8: Typical samples from the MRF defined byU : the effect of alteringα (d = 8, β = 0.096,
D = 0.1545) [5].

r Phase field MRF PF/MRF
2 8 12 0.66
3 16 20 0.8
4 21.5 28 0.77
5 27.3 36 0.75
10 62.6 76 0.82
15 95.5 116 0.82
20 128.5 156 0.82
50 326.4 396 0.82

Figure 3.9: The contour length in the continuous (left) and in the discrete model (right). The table
shows the continuous and discrete lengths vs. different radius [5].

3.7.2 Doubleton potential

In the MRF model, the contour length is expressed by the doubleton term: when neighbors
have different labels then there is an (implicit) contour element between them. In such cases
the doubleton potential is non-zero, otherwise it vanishes. Hence the contour length in the
MRF model is proportional to the overall energy of inhomogeneous doubletons:

∀{s, r}, ‖s− r‖ = 1 : V{s,r} = D(ωs − ωr)
2 =

{
4D if ωs 6= ωr

0 otherwise
(3.70)

However, due to the discretization, this contour is longer than the one in the phase field,
even when the phase field is discretized (see Fig. 3.9). In order to correct for this mismatch,
we have to multiplyDf by the ratio of contour lengths ((≈ 0.82) according to the table
in Fig. 3.9). Furthermore, each doubleton potential is counted twice in the summation in
Eq. (3.65), hence the final energy must be divided by2. We thus get the following modified
formula (see Eq. (3.47) for the original formula) to computeD from the phase field parameter
Df :

D =
0.82

4
Df (3.71)
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3.7.3 Long range potential

Introduces the prior shape knowledge:

∀{s, r}, ‖s− r‖ < 2d : V ′
{s,r} = βFsrωsωr (3.72)

=

{
−βFsr if ωs 6= ωr

+βFsr otherwise
(3.73)

Looking at Fig. 3.5 and Fig. 3.7, it is clear that the above potential at sites{s, r} will favor
the same label when‖s− r‖ < d′ (attractive case) and a different label ifd′ < ‖s− r‖ < 2d
(repulsive case), whered′ = d + ǫ, because the zero point of the high order interaction
function is not ind, see Fig. 3.5. Furthermore, it has no effect when‖s− r‖ equals to0, or
d′. Therefore this potential is only meaningful whend ≥ 2.

3.8 The ’gas of circles’ MRF model

Using the energy function of Eq. (3.65), we can now easily define the probabilityP (ω) of
the ’gas of circles’ Markov random fieldω as

P (ω) =
1

Z
exp (−U(ω)) (3.74)

=
1

Z
exp


−α

∑

s

ωs −D
∑

‖s−r‖=1

(ωs − ωr)
2 − β

∑

‖s−r‖<2d

Fsrωsωr


 (3.75)

whereZ is thepartition function.

Of course, for the extraction of circular objects from real images, we also need adata
likelihood, P (I | ω), which completes the definition of theposteriorP (ω | I) = P (I |
ω)P (ω). Obviously, the definition ofP (I | ω) is problem dependent. Herein, we will use
a data likelihood that represents the background and foreground pixel classes by Gaussian
distributions. This adds inhomogeneous terms toVs. The result is that in the posterior
probability forω, Vs is given by

Vs = αωs + γ

(
ln(
√
(2π)σωs

) +
(Is − µωs

)2

2σ2
ωs

)
. (3.76)

The parameters of the Gaussian distributionsµ±1 andσ±1 are learned from representative
samples provided by the user.

Using standard algorithms like simulated annealing (e.g. Gibbs Sampler[97] or the
Metropolis-Hastingsmethod [113, 152]), we can find MAP estimatesω̂. In our experi-
ments [5], we used a standard Gibbs sampler [97]. The initialtemperature was set to3
and we used an exponential annealing scheduleTk+1 = 0.97Tk. The iterations were stopped
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T = 2 T = 1 T = 0.5 T = 0.01

Figure 3.10:The evolution of the MRF model(α = 0.1863;D = 0.1545; d = 10). From left to right
we can see results at different temperatures. In the first row(β = 0.05) the contour vanishes, in the
second row(β = 0.6) contour grows arms, and in the third row(β = 0.0911), whereβ is computed
from the GOC phase field model, the final regions are stable circles.

when the temperature decreased below0.01. Fig. 3.10 shows typical configurations sampled
at differenet temperatures from the priorP (ω) in Eq. (3.75) with various parameter set-
tings. These experiments confirm that the model behaves likethe continuous models: when
parameters are set according to the satibility analysis of the GOC model, then low energy
configurations consist of stable circles.

3.8.1 Experiments

Table 3.1 shows the quantitative results obtained on a set of160 synthetic noisy images. We
compare the segmentation results to a classical MRF model [3], which doesn’t include a
shape prior. For a fair comparison, the false-positive (FP)and false-negative (FN) rates were
computed while excluding the small circular regions. This is to avoid biasing the measure:
the classical MRF should detect all regions having a particular intensity while our model will
only detect the desired circles. Based on these numbers, it is clear that the proposed model is
less sensitive to noise. Fig. 3.11 and Fig. 3.12 show sample results on synthetic images and
demonstrates the results for various noise levels.
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Original Noisy image Classical MRF GOC MRF

Figure 3.11:For moderate noise levels (SNR= −5dB), the classical MRF model finds all circles, but
-as expected- the GOC MRF model detects only circles with theappropriate radius.
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Original Noisy image Classical MRF GOC MRF

Figure 3.12: Results on synthetic noisy images. In the first row SNR= −12dB, otherwise SNR=
−16dB. The GOC MRF model segments the circles accurately while the classical MRF model is
challenged by the high noise level.
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MRF GOC MRF
Noise (dB) FP FN

0 13 46
-5 22 76
-10 34 144
-14 42 223
-16 49 431
-20 102 651

Noise (dB) FP FN
0 11 10
-5 21 32
-10 51 82
-14 62 120
-16 87 154
-20 147 394

Table 3.1: Results on a set of160 noisy synthetic images.Left: classical MRF;Right: GOC MRF.
The slightly higher false-positive rate in the case of the GOC MRF model is probably due to the fact
that a small error in the position of the detected circles results in more background pixels classified
as foreground [5].

3.9 Application in remote sensing

Forestry is a domain in which image processing and computer vision techniques can have
a significant impact. Resource management and conservationrequire information about the
current state of a forest or plantation. Much of this information can be summarized in statis-
tics related to the size and placement of individual tree crowns (e.g.mean crown area and
diameter, density of the trees). Currently, this information is gathered using expensive field
surveys and time-consuming semi-automatic procedures, with the result that partial informa-
tion from a number of chosen sites frequently has to be extrapolated. An image processing
method capable of automatically extracting tree crowns from high resolution aerial or satel-
lite images and computing statistics based on the results would greatly aid this domain.

The tree crown extraction problem can be viewed as a special case of a general image
understanding problem: the identification of the regionR in the image domainD correspond-
ing to some entity or entities in the scene. In order to solve this problem in any particular
case, we have to construct, even if only implicitly, a probability distribution on the space
of regionsP (R|I,K). This distribution depends on the current image dataI and on any
prior knowledgeK we may have about the region or about its relation to the imagedata, as
encoded in the likelihoodP (I|R,K) and the priorP (R|K) appearing in the Bayes’ decom-
position ofP (R|I,K) (or equivalently in their energies− lnP (I|R,K) and− lnP (R|K)).
This probability distribution can then be used to make estimates of the region we are looking
for.

In the automatic solution of realistic problems, the prior knowledgeK, and in particular
prior knowledge about the ‘shape’ of the region, as described by P (R|K), is critical. The
tree crown extraction problem provides a good example: particularly in plantations,R takes
the form of a collection of approximately circular connected components of similar size.
There is thus a great deal of prior knowledge about the regionsought which can be modeled
by the ’gas of circles’ model.

The main challenge to successful detection of crowns is the cluttered background, which
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causes traditional segmentation methods to fail. Fig. 3.13, Fig. 3.15, and Fig. 3.16 show
some results. In Fig. 3.13 and Fig. 3.16, the trees are difficult to separate due to shadows,
blur, and vegetation between neighbouring crowns. In Fig. 3.13, results with the HOAC,
phase field, and MRF models are shown. In Fig. 3.15, the classical MRF model fails to
separate trees from background vegetation because they have similar intensity distributions.
Obviously, thed parameter of our model, controlling the approximate radiusof the detected
trees, must be set correctly in order to achieve the best performance. Fig. 3.14 demonstrates
the effect of variousd settings.

DSc dissertation, 2013

               dc_494_12



72 Chapter 3. The ’gas of cicrcles’ MRF model

Original HOAC result [13] phase field result [119]

Classical MRF GOC MRF (d = 6) GOC MRF (d = 7)

Figure 3.13: Top: Results of the continuous models [13, 119].Bottom: Results with various MRF
models [5].
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d = 5 d = 6 d = 7

Figure 3.14:The effect of thed parameter. Asd is increasing, smaller trees are not detected.

Original image Classical MRF GOC MRF

Figure 3.15: The classical MRF model fails to separate trees from background vegetation because
they have similar intensity distributions [5].
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Figure 3.16:Tree crown extraction result with the ’gas of circles’ MRF model on a regularly planted
pine forest [5].
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A
major limitation of the ’gas of circles’

model is that touching or overlapping
objects cannot be represented. A gen-

eralization of the original GOC model that
overcomes these limitations while maintain-
ing computational efficiency is the multi-layer
phase field GOC model. It consists of multi-
ple instances of the phase field GOC model,
each instance being known as a ‘layer’. Each
layer has an associated energy function, re-
gions being defined by thresholding. Intra-
layer interactions assign low energy to con-
figurations consisting of non-overlapping near-
circular regions, while overlapping regions
are represented in separate layers. Inter-
layer interactions penalize overlaps. This
makes it possible to represent overlapping

objects as subsets on different layers, thereby
removing the above limitation.

The Markovian formulation yields a multi-
layer binary Markov random field model that
assigns high probability to object configu-
rations in the image domain consisting of
an unknown number of possibly touching or
overlapping near-circular objects of approx-
imately a given size. Each layer has an as-
sociated binary random field that specifies
a region corresponding to objects. Over-
lapping objects are represented by regions
in different layers. Within each layer, long-
range clique potentials favor connected com-
ponents of approximately circular shape, while
regions in different layers that overlap are
penalized through inter-layer cliques.
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4.1 Introduction

An important subset of object extraction problems involve multiple objects of near-circular
shape,e.g.tree crowns in remote sensing images, and cells and other structures in biological
images, and are thus difficult to solve using standard shape modelling methods. To address
these problems, the HOAC model has been developed favouringsubsets of the image do-
main consisting of any number of near-circular components with approximately a given ra-
dius [13,120]. This ‘gas of circles’ (GOC) model was successfully used for the extraction of
tree crowns from aerial images. The model suffers, however,from two limitations that ren-
der it unsuitable for many important applications. The firstarises from the representation:
because the configuration space consists of subsets of the image domain, as opposed to sets
of subsets, touching or overlapping objects cannot be represented. The second arises from
the model: the long-range interactions that favour near-circular shapes also create repulsive
interactions between nearby objects, meaning that objectsin low-energy configurations are
typically separated by a distance comparable to their size.

Herein, we present a generalization of the GOC model that overcomes all these limita-
tions while maintaining computational efficiency: the multi-layer phase field GOC model [42].
This model consists of multiple instances of the phase field GOC model, each instance being
known as a ‘layer’. This makes it possible to represent overlapping objects as subsets on
different layers, thereby removing the first limitation. The only inter-layer interaction is an
overlap penalty: the long-range interaction does not act between different layers. As a result,
objects in separate layers do not repel, thereby removing the second limitation. MAP esti-
mates can be computed by minimizing the energy of the model via gradient descent, which
is relatively computationally efficient if a good initialization is available.

In [45], we have developed an equivalent binary Markov random field model, the multi-
layer GOC MRF model. The main difference compared to the continuous phase field model
is that the MRF energy can be minimized via standard stochastic optimization, which -
although computationally more expensive than gradient descent- do not require any initial-
ization.

With a suitable data likelihood, these models can be used forobject extraction in the
many cases in which the ‘gas of circles’ geometry is relevant. Herein, we demonstrate their
use for the extraction of cells and lipid droplets from biological images.

4.2 Layered representation of overlapping near-circular shapes

We now extend the single-layer model of Eq. (3.11) to amulti-layerGOC model. The use
of multiple layers enables the representation, not just of subsets, but of sets of subsets ofD,
because subsets with non-empty intersection can now be represented on separate layers. As
a result, the new model can represent objects that touch and overlap in the image.
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4.2. Layered representation of overlapping near-circular shapes 79

Figure 4.1: Layered phase fields.

This is not enough on its own because the long-range interaction in Eq. (3.11) creates a
repulsion between connected components, favouring configurations in which the objects are
separated by a distance comparable to their size. While appropriate for some problems,e.g.
tree crowns in regular plantations [120], it fails for problems in which objects are touching or
overlapping, seee.g.Fig. 4.8. To overcome this limitation, in the new model the long-range
interactions act intra-layer butnot inter-layer. This has two effects. First, the low-energy
configurations in each layer are still ‘gas of circles’ configurations, as required. Second,
the repulsive interaction is eliminated, because repulsively interacting regions can ‘escape’
to separate layers. The result is that overlapping ‘gas of circles’ configurations on separate
layers can now be combined without penalty. To avoid degenerate configurations, in which a
given object is duplicated across all layers, an inter-layer area overlap penalty is introduced.

To proceed, we redefine the phase field as a multi-component object: φ = {φi}i∈[1..ℓ] :
[1..ℓ]×D → R, φ, whereℓ is the number of layers. The total energyẼ of the new multi-layer
model then takes the form

Ẽ(φ) =
ℓ∑

i=1

E(φi) +
κ

4

∑

i 6=j

∫

D
(1 + φi)(1 + φj) , (4.1)

whereE is defined in Eq. (3.11), andκ is a new parameter controlling the strength of the
overlap penalty. An example of a low-energy configuration isshown in Fig. 4.1.

Note that ‘background’ points, withφi ≃ −1, do not generate overlap penalty. Note also
that if they do not overlap, objects in range of the repulsiveinteraction will tend to lie in
different layers. If they do overlap, there is competition between the repulsive interaction
and the overlap penalty. Ifκ is not too large, they will exist on separate layers; ifκ is large
enough, they will exist on the same layer, perhaps reducing to one object.
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80 Chapter 4. The multi-layer ’gas of circles’ model

4.2.1 Functional derivative of the layered energy

The layered phase field energy will be minimized via gradientdescent, for which we need to
compute its functional derivative:

δẼ(φ)

δφk(x′)
=
δE(φk)

δφk(x′)
+
κ

4

δEO(φ)

δφk(x′)
(4.2)

whereEO(φ) denotes the overlap energy term from Eq. (4.1). The first termis simply the
functional derivative ofE evaluated at theφk, and so is known [120,174]. The derivative of
the overlap energy is

δEO(φ)

δφk(x′)
=

∑

i 6=j

∫

D
dx {δikδ(x, x′)(1 + φj(x)) + (1 + φi(x))δjkδ(x, x

′)} (4.3)

=
∑

i 6=j

δik(1 + φj(x
′)) + δjk(1 + φi(x

′)) (4.4)

=
∑

j

(1− δkj)(1 + φj(x
′)) +

∑

i

(1− δki)(1 + φi(x
′)) (4.5)

=
∑

j

((1 + φj(x
′))− (1 + φk(x

′))) +
∑

i

((1 + φi(x
′))− (1 + φk(x

′)))(4.6)

= 2
∑

i 6=k

(1 + φi(x
′)) (4.7)

= 2(ℓ− 1) + 2
∑

i 6=k

φi(x
′) (4.8)

4.3 The multi-layer MRF ‘gas of circles’ model

Intra-layer interactions Inter-layer interaction

Figure 4.2: MRF neighborhoods.
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4.3. The multi-layer MRF ‘gas of circles’ model 81

The multi-layer MRF GOC model, similar to the multi-layer phasefield model, uses mul-
tiple copies of the MRF GOC model, as follows [45]. The domainof the binary random field
becomesS̃ = ℓ× S, or alternatively, the field is a map fromS toBℓ, whereB = {−1,+1}
and ℓ denotes eitherℓ ∈ Z+ or the set{1, . . . , ℓ}. Henceω = {ω(i)} for i ∈ ℓ, where
ω(i) : S → B. In principle, we would likeℓ = Z+,i.e. an infinite number of layers, as
this would place no restrictions on the possible configurations. In practice, there is always a
maximum number of mutual overlaps, andℓ need be no larger than this.

Sites that only differ in the value ofi correspond to the same spatial point. Thus the
domainS̃ can be thought of as a series of layers, each of which is isomorphic toS, hence
the name ‘multi-layer’. It is clear that the multi-layer field can represent overlapping objects,
simply by placing the regions corresponding to them on different layers.

The Gibbs energỹU of the multi-layer model is the sum of the MRF GOC energies of
each layer, plus an inter-layer interaction term that penalizes overlaps (see Fig. 4.2):

Ũ(ω) =

ℓ∑

i=1

U(ω(i)) +
κ

4

∑

i 6=j

∑

s

(1 + ω(i)
s )(1 + ω(j)

s ) , (4.9)

whereκ is a new parameter controlling the strength of the overlap penalty.1 Note that the
inter-layer energy is ultralocal: only corresponding sites on different layers interact. Thus
two regions in different layers experience no interaction at all unless they overlap. This
eliminates the repulsive energy that exists in the single-layer model, because nearby but non-
overlapping regions in different layers always have lower energy than the same regions in
the same layer, assuming the intra-layer interactions are repulsive.

4.3.1 Energy of two interacting circles

In order to understand the behavior of the model, in this section we analyze the energy of
two circles, on the same layer and on different layers. We consider the configurations shown
in Fig. 4.3, wherew stands for the size of the intersection:w < 0 means the circles do
not intersect, whilew > 0 represents a non-empty intersection of widthw. We want to
express the energy of these configurations as a function ofw. We take advantage of the
equivalence of the ‘gas of circles’ MRF and HOAC models to usethe higher-order active
contour energy Eq. (3.1) to compute the energy of the two circles. The parameters of this
energy come from the equivalences between the three formulations:βc = 4β; the unit weight
of a boundary point is4D

0.82
; while the difference in energy between an interior and exterior

point is2α. Thus the MRF energy of a single circle with radiusr can be written as

E(r) =
4D

0.82
2rπ + 2αr2π − 2β

∫ ∫ 2π

0

dθ dθ′ r2 cos(θ − θ′) G(γ(θ)− γ(θ′)) , (4.10)

1Notice thatŨ is invariant to permutations of the layers. This will remaintrue even after we add a likelihood
energy. Thus all configurations, and in particular minimum energy configurations, areℓ! times degenerate. In
practice, this degeneracy will be spontaneously broken by the optimization algorithm.
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82 Chapter 4. The multi-layer ’gas of circles’ model

θ2

r r

w > 0

θ1

Figure 4.3: Configurations of two overlapping circles and corresponding plots ofE(M)(r, w) and
E(S)(r, w) vs.w for two circles of radiusr = 10.

whereγ is an embedding corresponding to the circle, parameterized, as shown in Fig. 4.3,
by polar angleθ.

4.3.1.1 Different layers

When the two circles are in different layers, the only interaction energy is the inter-layer
overlap penalty. Thus the energy is constant until the circles start to overlap. It then starts to
increase:

E(M)(r, w) = 2E(r) + κA(r, w) , (4.11)

whereA(r, w) is the area of the overlap given by

A(r, w) =





2

(
r2 arccos

(
1− w

2r

)
−
(
r − w

2

)√
2rw − w2

4

)
if w > 0,

0 otherwise.
(4.12)

4.3.1.2 Same layer

When the two circles are in the same layer, they interact ifw > −2d for the particular form
of interaction function in Eq. (3.2). (Note that we need onlyconsiderw ≤ 2r, wherer is
the radius of the circles, due to symmetry.) Thus ifw ≤ −2d, the energy is simply2E(r).
Forw > −2d, the energy increases withw until w ∼= 0. As the circles start to overlap (and
thus no longer form two circles, but a combined ‘dumbbell’ shape), there is effectively an
attractive energy that causes an energy decrease with increasingw until the combined shape,
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and thus the energy, becomes that of a single circle (w = 2r). More precisely, the energy of
two circles is

E(S)(r, w) =
4D

0.82
2(2rπ − L(r, w)) + 2α(2r2π − A(r, w))

− 4β

∫ ∫ θf

θs

dθ1 dθ
′
1 r

2 cos(θ1 − θ′1)G(γ1(θ1)− γ1(θ
′
1))

− 2β

∫ ∫ θf

θs

dθ1 dθ2 r
2 cos(θ1 − (π − θ2))G(∆(θ1, θ2, w)) , (4.13)

whereγ1,2 are two embeddings corresponding to the two circles, parameterized by angles
θ1,2 respectively, as shown in Fig. 4.3. We have taken advantage of symmetry to write the
second line in terms ofγ1 only. L(r, w) is the arc length of the intersection segment, while

∆(θ1, θ2, w) =
√

(r(sin(θ1)− sin(θ2)))2 + (2r − w − r(cos(θ1)− cos(θ2)))2 (4.14)

is the distance between the pointsγ1(θ1) andγ2(θ2). The limitsθs = cos−1(min(1, 1−w
2d

))
andθf = 2π − θs are the radial angles of the two intersection points.

The righthand side of Fig. 4.3 shows plots ofE(M)(r, w) andE(S)(r, w) againstw for
circles withr = 10. When the overlap is greater than a certain threshold, controlled byκ,
the energy of two circles in different layers becomes greater than two partially merged circles
in one layer. Below this threshold, however, the two layer configuration has a lower energy.
The stable configuration energy of two circles is given by thelower envelope of the curves
in Fig. 4.3, and one can thus see that the repulsive energy that exists in the single-layer MRF
GOC model is eliminated in the multi-layer MRF GOC model.

4.3.2 Experimental results

In this section, we report on the quantitative evaluation ofthe behavior and performance of
the multi-layer MRF GOC model in object extraction problemsinvolving simulated data and
microscope images. Results were obtained as MAP estimates,using the multi-layer MRF
GOC model as a prior, combined with a likelihood energyUL to be described shortly:̂ω =
argmaxω P (I|ω)P (ω) = argminω UL(I, ω) + Ũ(ω), whereI : S → R is the image data.
Optimization was performed using Gibbs sampling coupled with simulated annealing [97].
The annealing schedule was exponential, with half-life at least70 iterations, and a starting
temperature of3.0 for the parameter values used in the experiments.

4.3.2.1 Data likelihood

The data likelihood models the image in the interior and exterior regions using Gaussian
distributions with constant means, and covariances equal to different multiples of the identity.
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ℓ = 1 ℓ = 2, κ = 0.4 ℓ = 3, κ = 0.4 ℓ = 4, κ = 0.4

ℓ = 5, κ = 0.05 ℓ = 5, κ = 0.4 ℓ = 6, κ = 0.05 ℓ = 6, κ = 0.4

Figure 4.4: Stable configurations of the multi-layer MRF GOC model for different numbers of layers
and values ofκ.

In addition, we add an image gradient term connecting neighboring pixels, as follows. For
each pair of neighboring sites,s ands′, let (s, s′) be the unit vector pointing froms to s′. Let
ŝ = argmaxt∈{s,s′}(|∇I(t)|). Leth(s, s′) = |(s, s′) · ∇I(ŝ)|. Then define

gi(s, s
′) =

{
h(s, s′) ω

(i)
s = ω

(i)
s′ ,

|∇I(ŝ)| − h(s, s′) otherwise.
(4.15)

The likelihood energy then becomes

UL(I, ω) =
∑

i

γ

{∑

s

[
ln
(
(2π)1/2σ

ω
(i)
s

)
+

(
Is − µ

ω
(i)
s

)2

2σ2

ω
(i)
s

]
+
γ2
2

∑

s

∑

s′∼s

gi(s, s
′)

}
, (4.16)

whereγ andγ2 are positive weights. In practice, the parametersµ±1 andσ±1 of the Gaussian
distributions were learned from representative samples.

4.3.2.2 Simulation results with the multi-layer MRF GOC model

In the first experiment, we study the global minima ofŨ . Choosing, without loss of gen-
erality, d = 10, and choosing the intra-layer parametersα = 0.18634, D = 0.15451, and
β = 0.091137 according to the stability constraints [5, 13] and to ensurethat stable circles
have negative energy,̃U was then minimized for different numbers of layersℓ and values
of κ. Fig. 4.4 shows representative examples of these optimal configurations. The top-left
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Figure 4.5:Plots of the relative interior area (left) and shape error (right) of the stable configurations
againstκ.

Noisy image Smallκ Bestκ Big κ

Figure 4.6: Results on noisy synthetic images (SNR= 0dB) containing two circles of radius10 with
different degrees of overlap. Left: typical extraction results. Right: plot of segmentation error as a
function of degree of overlap (w) andκ.

result hasℓ = 1: note the spacing of the circles due to the intra-layer repulsive energy.
When there are more layers, the intra-layer energies favor asimilarly dense ‘gas of circles’
in each layer. Forℓ ≤ 3, every layer may contain such a configuration without the circles
in different layers overlapping. Forℓ > 3, however, it is not possible to achieve both an
optimal configuration in each layer and zero overlap energy.For smallκ, the model tries to
generate a dense configuration in each layer at the price of having overlaps. For largeκ, the
situation is the opposite: the model tries to avoid overlapsat the price of having less circles
in each layer. Fig. 4.5 shows a plot of the relative interior area 1

ℓN

∑
H(ω) againstκ, where

N = |S|. The value is almost constant forℓ ≤ 3, while for ℓ > 3, the value decreases with
κ. The circularity of the regions was also evaluated. The righthand plot in Fig. 4.5 shows
the percentage of pixels outside the ideal desired circles.Although for ℓ > 3, these errors
increase slightly, overall they remain low, meaning that the connected components remain
circles to good accuracy for allℓ andκ.
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4.3.2.3 Quantitative evaluation on synthetic images

In this experiment, we demonstrate the efficiency of our model in separating overlapping
circles. A series of noisy synthetic images were generated containing two circles of radius
10with different degrees of overlap. The weights in the likelihood energy were set toγ = 0.1
andγ2 = 0, i.e. no gradient term was used. We used two layers and differingκ values in the
range[0.01, 1]. Segmentation error was evaluated as the proportion of incorrectly segmented
pixels. A plot of these errors versus the amount of overlapw andκ is shown in Fig. 4.6.
Note that there is a rather clear drop in the segmentation error for κ ∼= 0.7. Whenw > 10
(corresponding to an overlap of greater than 50%), a largerκ is required to get an accurate
segmentation (κ = 0.88 was needed in the last case in Fig. 4.6), and forw > 15, it is hard to
get good quality results. In summary, the model performs well for reasonable overlaps and
it is not sensitive to the value ofκ. On the other hand, there is a performance drop for very
large overlaps.

4.4 Application in biomedical imaging

Biomedical image segmentation aims to find the boundaries ofvarious biological structures,
e.g.cells, chromosomes, genes, proteins and other sub-cellular components in various image
types [177]. Light microscope techniques are often used, but the resulting images are fre-
quently noisy, blurred, and of low contrast, making accurate segmentation difficult. In many
cases, the geometric structures involved are near-circular with many overlaps, so that our
multi-layer ’gas of circles’ model is well suited to extracting the desired structures. While
the phase field model is computationally more efficient, it requires an appropriate initializa-
tion. The MRF model works without any particular initialization at the price of higher CPU
times. Let us briefly review the results obtained on microscope data using these representa-
tions.

4.4.1 Performance of the phase field model

For the evaluation of the multi-layer phase field GOC model onreal microscope images, we
used the following phase field data term:

Ei(I, R) =

∫

Ω

{
γ1∇I · ∇φ (4.17)

+ γ2

[
(I − µin)

2

2σ2
in

φ+ +
(I − µout)

2

2σ2
out

φ−

]}
, (4.18)

where:∇φ, andφ± = (1 ± φ)/2 are approximately the normal vector to the boundary, and
the characteristic functions of the region (+) and its complement (−) respectively [120];
I : D → R is the image data;µin,out andσin,out are the parameters of pixel-wise Gaussian
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Figure 4.7: Extraction from light microscope images of cells having a particular radius.

Figure 4.8: Extraction from light microscope images of lipid drops having a particular radius.

distributions modelling the image in the interior (in) and exterior (out) regions, learned from
samples; andγ1,2 are positive weights.

To initialize the multi-layer phase field, we used a simple thresholding and connected
component detection, plus random assignment of different layers to nearby initial regions.
Typical computation time in Matlab is about 20 seconds for a200×100 image with3 layers.
Sample esults are shown in Fig. 4.7 and Fig. 4.8.

4.4.2 Results with the MRF model

The extraction results shown in Fig. 4.9 and Fig. 4.10 demonstrate the effectiveness of the
proposed multi-layer MRF GOC model for this type of task. Computation times vary from
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∼ 20s to∼ 1000s for images of sizeN = 104. The key factor is the number of layers, with
the minimum time corresponding toℓ = 2, the maximum toℓ = 6.

Figure 4.9: Extraction of cells from light microscope images using the multi-layer MRF GOC model.

Figure 4.10:Extraction of lipid drops from light microscope images using the multi-layer MRF GOC
model.

Zoltan Kato

               dc_494_12



               dc_494_12



IN THIS CHAPTER:

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 92

5.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 93

5.3 Solution via a nonlinear system of equations . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Registration of 3D objects . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 97

5.4 Affine puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 99

5.4.1 Realigning object parts . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 99

5.5 Solution via a linear system of equations . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.1 Construction of covariant functions . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.2 Linear estimation of affine parameters . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.3 Choosing the integration domain . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 108

5.7 Medical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 109

5.7.1 Fusion of hip prosthesis X-ray images . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7.2 Registration of pelvic and thoracic CT volumes . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7.3 Bone fracture reduction . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 111

90

               dc_494_12



5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.
Linear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objectsLinear registration of 2D and 3D objects

W
e consider the estimation of linear
transformations aligning a known 2D
or 3D object and its distorted obser-

vation. The classical way to solve this reg-
istration problem is to find correspondences
between the two images and then compute
the transformation parameters from these
landmarks. Unlike traditional approaches,
our method works without landmark extrac-
tion and feature correspondences. Here we
present how to find a linear transformation
as the solution of either a polynomial or a
linear system of equations without estab-
lishing correspondences.

The basic idea is to set up a system
of nonlinear equations whose solution di-
rectly provides the parameters of the align-

ing transformation. Each equation is gen-
erated by integrating a nonlinear function
over the object’s domains. Thus the num-
ber of equations is determined by the num-
ber of adopted nonlinear functions yielding
a flexible mechanism to generate sufficiently
many equations. An alternative formulation
of the method leads to a linear system of
equations constructed by fitting Gaussian
densities to the shapes which preserve the
effect of the unknown transformation.

The advantages of the proposed solu-
tions are that they are fast, easy to imple-
ment, have linear time complexity, work with-
out landmark correspondences and are in-
dependent of the magnitude of transforma-
tion.
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5.1 Introduction

Registration is a crucial step when images of different views or sensors of an object need to
be compared or combined. In a general setting, one is lookingfor a transformation which
aligns two images such that one image (called theobservation, or moving image) becomes
similar to the second one (called thetemplate, or model image). Due to the large number
of possible transformations, there is a huge variability ofthe object signature. In fact, each
observationis an element of the orbit of the transformations applied to the template. Hence
the problem is inherentlyill-definedunless this variability is taken into account.

Several techniques have been proposed to address the affine registration problem. By
thresholding the magnitude of Fourier Transform of the images Zhanget al. [204] construct
affine invariant features, which are insensitive to noise, in order to establish point correspon-
dence. Several Fourier domain based methods [125, 133] represent images in a coordinate
system in which the affine transformation is reduced to an anisotropic scaling factor, which
can be computed using cross correlation methods. Govindu and Shekar [102] develop a
framework that uses the statistical distribution of geometric properties of image contours to
estimate the relevant transformation parameters. Main advantages of these methods is that
they do not need point correspondences across views and images may also differ by the over-
all level of illumination. A novel one-element voxel attribute, the distance-intensity (DI) is
defined in [95]. This feature encodes spatial information ata global level, and the distance
of the voxel to its closest object boundary, together with the original intensity information.
Then the registration is obtained by exploiting mutual information as a similarity measure
on the DI feature space. For matching 2D feature points, [117] reduces the general affine
case to the orthogonal case by using the means and covariancematrices of the point sets,
then the rotation is computed as the roots of a low-degree complex coefficients polynomial.
Another direct approach [169] extends the given pattern to aset of affine covariant versions,
each carrying slightly different information, and then extract features for registration from
each of them separately. The transformation is parameterized at different scales, using a
decomposition of the deformation vector field over a sequence of nested (multiresolution)
subspaces in [159]. An energy function describing the interactions between the images is
then minimized under a set of constraints, ensuring that thetransformation maintains the
topology in the deformed image. Manayet al. [145] explore an optimization framework for
computing shape distance and shape matching from integral invariants, which are employed
for robustness to high-frequency noise. Shape warping by the computation of an optimal
reparameterization allows this method to account for largelocalized changes such as occlu-
sions and configuration changes. In [116] a method for identifying silhouettes from a given
set of Radon projections is presented. The authors study howthe Radon transform changes
when a given 2D function is subjected to rotation, scaling, translation, and reflection. Using
these properties, the parameters of the aligning transformation are expressed in terms of the
Radon transform. In [107] a computationally simple solution is proposed to the affine reg-
istration ofgray levelimages avoiding both the correspondence problem as well as the need
for optimization. The original problem was reformulated asan equivalent linear parame-
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5.2. Problem statement 93

ter estimationone having auniqueandexactsolution. However, the method relies on the
availability of rich radiometric information which is clearly not available in the binary case.

Herein, we will present our generic framework for recovering linear [9, 49–51] defor-
mations of binary objects without correspondences. The method has many applications in
medical image analysis, a few examples will also be presented here.

5.2 Problem statement

Let us denotetemplateand observationpoints byx = [x1, x2, . . . , xn]
T ∈ P

n andy =
[y1, y2, . . . , yn]

T ∈ P
n respectively. The projective spacePn allows simple notation for affine

transforms and assumes using of homogeneous coordinates. Since affine transformations
never alter the third (homogeneous) coordinate of a point, which is therefore always equal to
1, we, for simplicity, and without loss of generality, liberally interchange between projective
and Euclidean space, keeping the simplest notation. The identity relation between the shapes
is then as follows

y = Ax ⇔ x = A−1y , (5.1)

whereA ∈ Rn×n is the unknown affine transformation that we want to recover.Classical
landmark-based approaches would now identify sufficient number of point pairs{xi,yi}mi=1

then solve the system of linear equations obtained from Eq. (5.1). However, we are inter-
ested in a direct approach without solving the correspondence problem. For that purpose,
shapes will be represented by their characteristic function 1 : Pn → {0, 1}, where0 and1
correspond to the background and foreground respectively.If we denote thetemplateby 1t

and theobservationby 1o, the following equality also holds1t(x) = 1o(Ax) = 1o(y) . (5.2)

When we can observe some image features (e.g.gray-levels of the pixels [108,109]) that are
invariant under the transformation, then we can define an additional relation

f(x) = g(Ax) = g(y) , (5.3)

wheref, g : Pn → R arecovariant functionsunder the transformationA, defined on those
observed features. Furthermore, the above relations are still valid when a function is acting
on both sides of Eq. (5.1) and Eq. (5.3) [6, 7, 9, 108, 109]. Indeed, for arbitraryω : Pn → R
andη : R→ R, we get

ω(y) = ω(Ax) (5.4)

η ◦ g(y) = η ◦ g(Ax) = η ◦ f(x) . (5.5)

Starting from either Eq. (5.4) or Eq. (5.5), we can generate as many linearly independent
equations as needed by making use of nonlinearω (resp.η) functions. There is a fundamen-
tal difference between the above two equations though: the nonlinear functionω is acting
directly on the point coordinates and hence on the unknown parameters ofA resulting in a
nonlinearsystem of equations [9]; whereasη is acting on thecovariant functionsf andg
allowing for alinear system of equations [6,7,108,109].
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94 Chapter 5. Linear registration of 2D and 3D objects

Figure 5.1: The effect of applying a polynomial (left) and a trigonometric (right) ω function can be
interpreted as a consistent colorization or as a volume.

5.3 Solution via a nonlinear system of equations

Let us start with Eq. (5.4) and construct a system of polynomial equations [9]. For an easier
presentation, we will consider 2D shapes where homogeneouscoordinates of thetemplate
andobservationpoints are denoted byx = [x1, x2, 1]

T ∈ P
2 andy = [y1, y2, 1]

T ∈ P
2

respectively. The unknown affine transformationA that we want to recover is thus

A =




a11 a12 a13
a21 a22 a23
0 0 1


 and A−1 =




q11 q12 q13
q21 q22 q23
0 0 1


 .

Note thatA−1 exists and it is also an affine transformation sinceA is affine. We are interested
in a direct solution without solving the correspondence problem. For that purpose, we will
take the Lebesgue integral1 of both sides of the identity relation in Eq. (5.1)

∫

P2

xdx =
1

|A|

∫

P2

A−1ydy, (5.6)

where the integral transformationx = A−1y, dx = dy/|A| has been applied. The deter-
minant |A| is the Jacobian which corresponds to the measure of the transformation. Fur-
thermore, since shapes are represented by their characteristic functions1t and1o satisfying
Eq. (5.2), the Jacobian can then be evaluated by integrating

∫

P2

1t(x)dx =
1

|A|

∫

P2

1o(y)dy ⇔ |A| =
∫
P2 1o(y)dy∫
P2 1t(x)dx

.

Since the characteristic functions take only values from{0, 1}, we can further simplify the
above integrals by making use of the relation:

∫

P2

1t(x)dx ≡
∫

Ft

dx,

1Although we write these integrals inP2, they are equivalent to the corresponding Lebesgue integrals inR
2

(i.e. integration is actually performed in the corresponding Cartesian coordinate system). This is because by
using homogeneous coordinates, the real planeR

2 is mapped to thew = 1 plane in real projective spaceP2

and affine transformations will never alter the homogeneouscomponentw. One can therefore safely assume
that it is always1 and ignore it.
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5.3. Solution via a nonlinear system of equations 95

where the finite domainFt consists of thetemplateforeground regions:Ft = {x ∈ P
2|1t(x) =

1}. Similarly, we can restrict the integral of1o(y) to theobservationforeground regionsFo.
Therefore evaluating the integrals yields theareaof the foreground regions. From this point
of view, the measure of the transformation|A| corresponds to the ratio of theobservation
andtemplateshapes’ area

|A| =
∫
Fo
dy∫

Ft
dx
, (5.7)

which can be directly computed from the input images. The sign ambiguity of the deter-
minant is also easily eliminated: A negative Jacobian wouldmean that the transformation
is not orientation-preserving (i.e. flipping of coordinates is allowed). In practice, however,
physical constraints will usually prevent such a transformation hence we can assume that|A|
is always positive.

Now multiplying Eq. (5.6) and Eq. (5.2) yields a finite integral equation:
∫

P2

x1t(x)dx =
1

|A|

∫

P2

A−1y1o(y)dy ⇔
∫

Ft

xdx =
1

|A|

∫

Fo

A−1ydy. (5.8)

This equation implies that the finite domainsFt andFo are also related asFo = AFt, i.e.we
match the shapes as a whole instead of point correspondences. In fact, Eq. (5.8) is a linear
system of two equations fork = 1, 2:

|A|
∫

Ft

xkdx = qk1

∫

Fo

y1dy + qk2

∫

Fo

y2dy + qk3

∫

Fo

dy.

It is clear that both sides of the equation as well as the Jacobian can be easily computed from
the input shapes. Unfortunately, two equations alone are not enough to solve for 6 unknowns.
However, making use of Eq. (5.4), we can generate sufficiently many equations by making
use of nonlinearω functions:

∫

Ft

ω(x)dx =
1

|A|

∫

Fo

ω(A−1y)dy. (5.9)

Intuitively, eachω generates a consistent coloring of the shapes as shown in Fig. 5.1. From
a geometric point of view, Eq. (5.8) simply matches the center of mass of thetemplate
andobservationwhile the new equations of Eq. (5.9) match the volumes over the shapes
constructed by the nonlinear functionsω (see Fig. 5.1). Sinceωs are also applied to the
unknowns, the resulting equations will be nonlinear. The simplest nonlinear system is a low
order polynomial system thus we aim at choosingω such that Eq. (5.9) is polynomial. The
following proposition states that this is achieved whenω is a polynome.

Theorem 5.3.1 Let ω : Pn → P
n andx ∈ P

n (n ∈ N). If the kth coordinate ofω(x),
denoted byωk(x) = pk is a realn-variate polynome,1 ≤ k ≤ n, then applyingω in
Eq. (5.9) results in a polynomial system of equations up to a degree ofdeg(pk).
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96 Chapter 5. Linear registration of 2D and 3D objects

The proof can be found in Appendix A.2 and in [9].

It is thus clear that the class ofxn(n ∈ N0) functions are a perfect choice forω. Hence,
we obtain the following polynomial equations fork = 1, 2 andn = 1, 2, 3:

|A|
∫
xnk =

n∑

i=1

(
n

i

) i∑

j=0

(
i

j

)
qn−i
k1 qi−j

k2 q
j
k3

∫
yn−i
1 yi−j

2 . (5.10)

The system of Eq. (5.10) contains six polynomial equations up to order three which is suffi-
cient to solve for all unknowns. In fact we have two separate systems fork = 1, 2:

|A|
∫
xk = qk1

∫
y1 + qk2

∫
y2 + qk3

∫
1, (5.11)

|A|
∫
x2k = q2k1

∫
y21 + q2k2

∫
y22 + q2k3

∫
1 + 2qk1qk2

∫
y1y2 + 2qk1qk3

∫
y1

+2qk2qk3

∫
y2, (5.12)

|A|
∫
x3k = q3k1

∫
y31 + q3k2

∫
y32 + q3k3

∫
1 + 3q2k1qk2

∫
y21y2 + 3q2k1qk3

∫
y21

+3q2k2qk3

∫
y22 + 3qk1q

2
k2

∫
y1y

2
2 + 3qk2q

2
k3

∫
y2 + 3qk1q

2
k3

∫
y1

+6qk1qk2qk3

∫
y1y2. (5.13)

The solution is obtained via a direct solver (e.g.thesolvefunction in Matlab, but other pack-
ages are also available, likePHCpack[193–195]) in a single pass without any loop or opti-
mization [9]. Although, we have to solve a polynomial system, the complexity of this step
is constant and, most importantly, independent of the imagesize. A demo implementation is
also availabel at our websitehttp://www.inf.u-szeged.hu/ ˜ kato/software/
affbinregdemo.html . However, we may get several possible solutions for each un-
knownqki due to the cubic polynomial equations. Out of these potential solutions, we can
select the right one by dropping the complex roots and selecting the transformation whose
determinant matches the Jacobian computed by Eq. (5.7). Note that an exact solution always
exists, whenever Eq. (5.2) is satisfied. In practice, however, a solution may not exists due to
discretization errors or noise on the point coordinates. Wecan always check for the existence
of a solution by computing the resultant of the system, whichis a second order polynome. On
the other hand, the solution is not unique (but exists!), when the shape is affine symmetric.

When an overdetermined system is constructed [51], then aleast-squaressolution can be
obtained by classicalLevenberg-Marquardtalgorithm [147].

Some registration examples can be seen in Fig. 5.8, where hipprosthesis X-ray image
pairs are aligned using a 2D affine transformation. The goal is to fuse post operative follow-
up scans of the hip prosthesis to check loosening of the implant. Note that correspondence-
based methods are challenged by lack of corner-like landmarks and the nonlinear radiomet-
ric distortion between follow-ups. However, segmentationof the implant is straightforward,
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hence binary registration is a viable option here. In spite of the inherent modeling error (the
physical transformation of the implant is a 3D rigid motion followed by a projection), our
method was able to find a precise alignment. This is mainly dueto the fact, that images are
taken in a standard position of the patient, hence affine transformation is a good approxima-
tion.

5.3.1 Registration of 3D objects

The extension of the polynomial equations to 3D objects [49–51] is relatively straight-
forward. To generate a polynomial system, we select polynomial functions of the form
ω(x)

(k)
p1,...,pn = xp11 . . . xpnn , denoting thek-th coordinate of the transformed point, where

p1, . . . , pn ∈ N0. From Eq. (5.9) these functions generate the following polynomial equa-
tions (up to order 3):

|A|
∫

Ft

1 dx =

∫

Fo

1 dy , (5.14)

|A|
∫

Ft

xa dx =
n+1∑

i=1

qai

∫

Fo

yi dy , (5.15)

|A|
∫

Ft

xaxb dx =
n+1∑

i=1

n+1∑

j=1

qaiqbj

∫

Fo

yiyj dy , (5.16)

|A|
∫

Ft

xaxbxc dx =

n+1∑

i=1

n+1∑

j=1

n+1∑

k=1

qaiqbjqck

∫

Fo

yiyjyk dy (5.17)

where1 ≤ a, b, c ≤ n, a ≤ b ≤ c, andqij denote the unknown elements of the3-dimensional
inverse transformationA−1. The formulation of higher order polynomials is analogous.

In general, these functions introduce mixed moments in bothsides of the equations, yiel-
ing one, non-separable system. In practice, that causes no problems when using an iterative
least-squares solution method, but usually it is not efficient to solve such a system analyti-
cally We can achieven separable systems of equations by further limiting theω functions:
out of parameterspi only one of them is allowed to be non-zero. In this case thek-th system
of equations can be written in a more compact form to any orderp as

|A|
∫

Ft

xpk dx =

p∑

i1=0

(
p
i1

) i1∑

i2=0

(
i1
i2

)
. . .

in−1∑

in=0

(
in−1

in

)

qp−i1
k1 . . . q

in−1−in
kn qink,n+1

∫

Fo

yp−i1
1 yi1−i2

2 . . . yin−1−in
n dy . (5.18)

However, numerical implementation has to be carefully designed. Therefore, both in
2D and 3D we examined two different types of solution methods: iterative least-squares
solutions and direct analytical solutions.
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98 Chapter 5. Linear registration of 2D and 3D objects

Figure 5.2: Affine puzzle: reconstructing the complete template objectfrom its deformed parts.

• In case of a direct method, limited number of equations can beused (according to
the degree of freedom of then-dimensional affine transformation), while an iterative
approach allows for an overdetermined system, which may give more stability.

• Direct methods may provide many hundreds or even thousands of possible solutions,
many (or even all) of them may be complex thus a solution selection scheme has to be
used to produce only one real solution from these. Iterativemethods provide a single
real solution, but the search may fall into local minima. To avoid such local minima,
usually a sophisticated search strategy is necessary.

• Direct methods can provide full affine solutions only, but incase of iterative methods
restrictions to lower degree of freedom transformations are easy to impose.

We found that the direct approach gives more stable results,but the iterative one is more
precise. It is also possible to combine the two approaches: The direct approach provides
the initialization of the iterative one. A demo implementation of our 3D shape registra-
tion method is available athttp://www.inf.u-szeged.hu/ ˜ kato/software/
affbin3dregdemo.html

Another issue is discretization error, which might be particularly problematic in 3D.
For that purpose, we extended our method by investigating the case when the segmenta-
tion method is capable of producingfuzzy objects instead of a binary result in both 2D and
3D. It has been shown that the information preserved by usingfuzzy representation based on
area coverage may be successfully utilized to improve precision and accuracy of our equa-
tions [49,51]. The result of a series of synthetic tests showed that fuzzy representation yields
lower registration errors in average.

Quantitative evaluation on synthetic data of the various algorithmic solutions has been
presented in [9, 49, 51] In Fig. 5.9 and Fig. 5.10, some registration results on 3D medical
images are shown.
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5.4. Affine puzzle 99

5.4 Affine puzzle

The affine puzzle problem can be formulated as follows: Givena binary image of an object
(the template) and another binary image (theobservation) containing the fragments of the
template, we want to establish the geometric correspondence betweenthese images which
reconstructs the completetemplateobject from its parts. The overall distortion is a global
nonlinear transformation with the following constraint (see Fig. 5.2):

• the object parts are distinct (i.e.either disconnected or separated by segmentation),

• all fragments of thetemplateare available, but

• each of them is subject to a different affine deformation, andthe partitioning of the
templateobject is unknown.

A related problem is partial matching of shapes [69,94,170]. Partial matching addresses a
particularly challenging setting of classical shape matching, where two shapes are dissimilar
in general, but have significant similar parts. In this context, our problem would require to
find a partial matching between thetemplateand each fragments of theobservation. Current
approaches are usually based on the Laplace-Beltrami framework [170, 178], but classical
approaches like the Iterative Closest Point (ICP) [65] algorithm can also be used assuming an
appropriate shape representation [69]. Considering the rather high computational complexity
of these algorithms, this solution is far from optimal for our problem.

Most of the existing solutions to the puzzle problem [132, 150, 163] consist in matching
fragment-pairs to find neighbors, which are then reassembled by a rigid body transforma-
tion. Although classical approaches may account for atemplateobject by incorporating a set
of constraints to improve the overall performance, they areprimarily targeted to problems
where atemplateis not available,e.g.archaeology [150]. On the other hand, there are many
applications where atemplateobject is available: In industrial applications usually 3Dmod-
els of manufactured parts can be easily produced. In medicalimaging anatlascan be used
or, by taking advantage of the symmetry of the human body, theintact bone can provide a
templatefor bone fracture reduction, as shown in Fig. 5.11. Therefore we address this im-
portant setting of the puzzle problem and propose a generic solution which can be applied
to both 2D and 3D transformations. The proposed solution [8]consists in constructing and
solving a polynomial system of equations similar to Eq. (5.11)–(5.13), which provides all
the unknown parameters of the alignment.

5.4.1 Realigning object parts

Given ann dimensionaltemplateobject and anobservationcontaining its affine deformed
fragments, we want to recover the transformations realigning these shapes into their original
position on thetemplate. Let us denote the homogeneous point coordinates of thetemplate
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and observationby x = [x1, . . . , xn, 1] andy = [y1, . . . , yn, 1] ∈ P
n. Furthermore, let

ℓ ∈ N denote the number of fragments on theobservation. The transformation aligning the
observationwith thetemplateis a non-linear one, composed ofℓ linear transformations

Ai =




ai11 ai12 . . . ai1(n+1)
...

. . .
...

ain1 ain2 . . . ain(n+1)

0 0 . . . 1


 i = 1, . . . ℓ . (5.19)

Since theobservationhas disjoint parts, we can assume that points of each deformed shape
are labeled by the functionλ′ : P

n → {0, 1, . . . , ℓ}, which assigns0 to the background.
Obviously, there is a correspondinghiddenlabelingλ : Pn → {0, 1, . . . , ℓ} which assigns
the labeli to thetemplatepoints corresponding to theith shape. Our goal is to recover the
affine matrices{Ai}ℓi=1. The main challenges are that neither the partitioning (i.e. the hidden
labelingλ) of thetemplatenor correspondences between the shapes are known.

Let us first establish a solution for theith shape. Thetemplateandobservationdomains
are denoted byDi = {x ∈ P

n|λ(x) = i} andD′
i = {y ∈ P

n|λ′(y) = i}, respectively.
Note thatD′

i is known butDi is unknown. The points of these domains are related by the
unknown transformationAi via the identity relation of Eq. (5.1). As before, applying a
functionω : Pn → R and integrating out individual point correspondences yields

∫

Di

ω(x)dx = |Ai|
∫

D′
i

ω(Aiy)dy, (5.20)

Based on Eq. (5.20), we can construct as many equations as needed by making use of a set
of nonlinear functions{ωj}mj=1,m ≥ n(n + 1) [8,9].

We have established relations between theith shape-pair, but we know neither the corre-
spondence between the shapes nor the partitioningDi of thetemplate. Would these informa-
tion available, a pairwise alignment could be recovered by any standard binary registration
method. Unfortunately, that would require to solve a partial matching problem [69] between
eachobservationshape and thetemplate, which is far from trivial. Therefore we will sum
equations for all shape domainsDi and solve the problem simultaneously, estimating all
parameters in one system of equations. Thus Eq. (5.20) becomes

ℓ∑

i=1

∫

Di

ωj(x)dx =
ℓ∑

i=1

|Ai|
∫

D′
i

ωj(Aiy)dy . (5.21)

Let D := ∪ℓ
i=1Di, whereD = {x ∈ P

n|λ(x) 6= 0} is the shape domain corresponding to the
wholetemplate. Therefore the left hand side of the above equation can be written as

ℓ∑

i=1

∫

Di

ωj(x)dx =

∫
⋃ℓ

i=1 Di

ωj(x)dx =

∫

D
ωj(x)dx , (5.22)
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Figure 5.3: Solutions of the Tangram puzzle (the average alignment runtime of an image was about
50 sec. in Matlab).Top: Observationsare taken by digital camera.Middle: Solutions, found in
the Tangram manual.Bottom: The scannedtemplatesilhouettes with overlaid contours of aligned
fragments.

which can be computed directly from the input image without knowing the partitioningDi.
The resulting system of equations hasℓn(n+ 1) unknowns:

∫

D
ωj(x)dx =

ℓ∑

i=1

|Ai|
∫

D′
i

ωj(Aiy)dy, j = 1, . . . , m . (5.23)

The solution of the above system provides all the unknown parameters of the overall defor-
mation. Since eachωj provides one equation, we needm ≥ ℓn(n+1) nonlinear functions to
solve forℓ linear transformations. In practice,m > ℓn(n + 1) yielding an over-determined
system for which a least squares solution is obtained [8]. The quantitative evaluation of
the proposed algorithm on a large synthetic dataset containing 2D and 3D images has been
presented in [8]. The results show that the method performs well and robust against seg-
mentation errors. The method has been succesfully applied to 2D real images of a tangram
puzzle (see Fig. 5.3) as well as to volumetric medical imagesused for surgical planning (see
Fig. 5.11) [8].

5.5 Solution via a linear system of equations

Let us now consider Eq. (5.5) and construct a system of linearequations [6, 7]. The crucial
step of this approach is to construct a pair ofcovariant functionssatisfying Eq. (5.3). Once
these functions are established, we can adopt the direct method from [108, 109] to solve for
the unknown affine transformation given in its inhomogeneous form(A, t). When graylevel
images are considered, the image functions themself serve as appropriate covariant func-
tions [108,109]. Unfortunately, the construction of such functions for binary images is quite
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(a) (b) (c)

Figure 5.4: Gaussian PDFs fitted over a compound shape yield a consistentcoloring. (a) Original
shape; (b) 3D plot of the Gaussian PDFs over the elliptic domain with r = 2; (c) Gaussian densities
as a grayscale image. The white contour shows shape boundaries.

challenging due to the lack of radiometric information: These functions must be based on
the only available geometric information [6,7].

5.5.1 Construction of covariant functions

Since we know that thetemplateandobservationare identical up to an affine transformation
(this is stated in Eq. (5.1)), we do not need to represent shapes. Therefore we can safely
consider the points of thetemplateas a sample from a bivariate normally distributed random
variable denoted byX ∼ N(µ,Σ) with probability density function (PDF) [6]

p(x) =
1

2π
√
|Σ|

exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)
.

Applying any linear transformation toX results also in a bivariate normal random variable
Y = AX + t with parameters

X
(A,t)7→ Y ∼ N(µ′,Σ′) = N(Aµ+ t,AΣAT ) . (5.24)

The parameters of the probability densitiesN(µ,Σ) andN(µ′,Σ′) can be readily estimated
as the sample means and covariances of the point coordinates, while |A| can be expressed
fromAΣAT = Σ′ as

|A||Σ||AT | = |Σ′| , hence |A| =
√

|Σ′|/|Σ| . (5.25)

From a geometric point of view, the mean valuesµ andµ′ represent the center of mass
of the templateandobservationrespectively, whileΣ andΣ′ capture the orientation and
eccentricity of the shapes. Fig. 5.4 shows a compound shape and the fitted Gaussian densities
of each component.
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5.5. Solution via a linear system of equations 103

Now let us have a closer look at the relationship betweenp(x) ands(y), the PDF ofY .
It follows from Eq. (5.24), thatΣ′−1 = A−TΣ−1A−1, furthermore

(y − µ′) = (Ax+ t− (Aµ+ t)) = (Ax−Aµ) .

We thus get

s(y) =
exp

(
− 1

2
(Ax−Aµ)TA−TΣ−1A−1(Ax−Aµ)

)

2π
√
|A||Σ|AT |

=
exp

(
− 1

2
(x− µ)TATA−TΣ−1A−1A(x− µ)

)

|A|2π
√
|Σ|

=
p(x)

|A| .

Finally, substituting back|A| from Eq. (5.25), we get

√
|Σ|p(x) =

√
|Σ′|s(y) . (5.26)

It is well known, that the normalizing constant1/(2π
√
|Σ|) in the density functions ensures

that the integral of the PDF evaluates to 1. It is also the maximum value of the density
function, which is inversely proportional to the area of theshape. This dependence on the
shape size may cause numerical instabilities hence we defineour covariant functionsP,S :
R

2 → R as the unnormalized densities

P(x) = 2π
√
|Σ|p(x) = exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

S(y) = 2π
√
|Σ′|s(y) = exp

(
−1

2
(y− µ′)TΣ′−1(y − µ′)

)
. (5.27)

Since the covariance matrices and mean vectors can be computed from the images, bothP
andS is obtained directly from the input shapes and they arecovariantsatisfying Eq. (5.3):

P(x) = S(Ax + t) = S(y) . (5.28)

Hence, we only make use of the statistics of the foreground pixels in order to compute a
covariant function pair. We remark that we don’t represent the shape itself, insteadwe use
this function pair to construct our system of linear equations.

5.5.2 Linear estimation of affine parameters

Multiplying Eq. (5.1) and Eq. (5.28), and integrating out individual point correspondences,
we get the following equation:

∫

Ft

xP(x)dx = |A|−1

∫

Fo

A−1(y − t)S(y)dy ,
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Adopting a set of nonlinear functionsη : R → R, we can easily generate new equations
according to Eq. (5.5):

∫

Ft

xη(P(x))dx = |A|−1

∫

Fo

A−1(y − t)η(S(y))dy . (5.29)

If qki denotes the elements ofA−1 and−A−1t

A−1 =

[
q11 q12
q21 q22

]
and −A−1t =

[
q13
q23

]
,

we can expand the integrals yielding the following linear system

|A|
∫

Ft

xkη(P(x))dx =

2∑

i=1

qki

∫

Fo

yiη(S(y))dy + qk3

∫

Fo

η(S(y))dy, k = 1, 2 .

Adopting a set of linearly independent functions{ηi}ℓi=1, we can rewrite the system in matrix
form 



∫
Fo
y1η1(S(y))

∫
Fo
y2η1(S(y))

∫
Fo
η1(S(y))

...
...

...∫
Fo
y1ηℓ(S(y))

∫
Fo
y2ηℓ(S(y))

∫
Fo
ηℓ(S(y))






qk1
qk2
qk3




= |A|




∫
Ft
xkη1(P(x))

...∫
Ft
xkηℓ(P(x))


 , k = 1, 2 . (5.30)

The solution of this linear system provides the parameters of the registration. Ifℓ > 3 then
the system is over-determined and the solution is obtained as a least squares solution. Note
that independently of the number of systems, the coefficientmatrix on the left hand side of
Eq. (5.30) need to be computed only once. Hence the complexity of the algorithm depends
linearly on the size of the shapes.

5.5.3 Choosing the integration domain

A trivial choice for the domains in our integral equation Eq.(5.29) is the foreground regions
Ft andFo [6]. Since the parameters of the transformation are estimated by integrating over
the segmented domains, this approach works well as long as wehave a near-perfect segmen-
tation. Unfortunately, this is rarely encountered in reality [7]. Therefore a clear disadvantage
of this approach is that any segmentation error will inherently result in erroneous integrals
causing misalignment. However, image analysis often dealswith the matching of objects
composed of several parts, yielding a group of disjoint shapes when segmented. The topol-
ogy of such compound shapes will not change under the action of the affine group. In such
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5.5. Solution via a linear system of equations 105

cases, we use a more robust method to define corresponding integration domains making use
of the statistics of compound shapes instead of their segmentation.

Let us assume that thetemplateconsists ofm ≥ 2 disjoint shapes. This is the typical
output of classical region-based segmentation algorithms, where the labelling of the different
regions results in disjoint shapes, but similar results canbe achieved by detecting the con-
nected components of a compound object. In both cases, the input of our method will be a
pair of labeled images, where each component on thetemplatehas exactly one correspond-
ing shape on theobservation, i.e. there exists a bijective mapping between thetemplateand
observationcomponents under the transformation(A, t). For each pair of corresponding
components, we can establishcovariant functionsPi andSi similar to Eq. (5.27):

Pi(x) = exp
(
− 1

2
(x− µi)

TΣ−1
i (x− µi)

)

Si(y) = exp
(
− 1

2
(y − µ′

i)
TΣ′−1

i (y− µ′
i)
)
,

whereΣi,Σ′
i andµi,µ′

i are the covariance matrices and mean vectors of theith shape on the
templateandobservation, respectively. This yields an equation similar to Eq. (5.29) for each
1 ≤ i ≤ m. If the correspondence between components would be known then we could
simply construct a system ofm equations and solve for the unknowns. As such a matching
is not known, we will sum these relations yielding

m∑

i=1

∫

Ft

xη(Pi(x))dx =

∫

Ft

x

m∑

i=1

η(Pi(x))dx =

|A|−1

∫

Fo

A−1(y − t)

m∑

i=1

η(Si(y))dy . (5.31)

Instead of establishingPi andSi and then constructing Eq. (5.31), we can sum these func-
tions [7] resulting anothercovariant function pairP andS. Hence, we have an alternative
way to define ourcovariant functions[7]:

P =
m∑

i=0

Pi , and S =
m∑

i=0

Si ,

whereP0 andS0 corresponds to the the overall shape (i.e. the whole foreground region)
of the templateand theobservation, respectively. Note that these sums are mixtures of
unnormalized Gaussian densities which can also be interpreted as a consistent coloring of
the template and observation respectively (see Fig. 5.4(b)). By consistent coloring, we mean
that these functions preserve the effect of the unknown transformation. Furthermore, these
functions can be constructed exactly and uniquely from the object points alone without any
knowledge about the aligning transformation. As a result, we can transform the original
binary images into graylevel ones, where corresponding pixels have exactly the same gray
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value. Nevertheless,P andS can also be used in Eq. (5.29), however, we recommend to use
Eq. (5.31), since it can be numerically more efficient to compute.

The next step is to get rid of the segmentation domainsFt andFo. Our goal is to to select
appropriate domainsDt andDo satisfying the following properties

1. they are related by the unknown transformationADt + t = Do

2. the integrands are rich enough (i.e. have characteristic pattern) within the selected
domains.

The key idea is using the statistics of the wholetemplateandobservationobjects. Indeed, the
overall shape (i.e. the whole foreground region) of thetemplateandobservationalso gives
rise to a pair of covariant Gaussian densitiesp(x) ands(y). Since the equidensity contours
of these PDFs are ellipsoids centered at the mean, it is natural to chose a corresponding pair
of these ellipses as the integration domain. Simplifying Eq. (5.26), we get the well known
Mahalanobis-distance which defines a metric invariant under the unknown transformation
(A, t):

(x− µ)TΣ−1(x− µ) = (y − µ′)TΣ′−1(y − µ′) .

Corresponding domains can then be obtained by selecting points whose Mahalanobis-distance
are less thanr2 from the mean:

Dt = {x ∈ R
2|(x− µ)TΣ−1(x− µ) ≤ r2} (5.32)

Do = {y ∈ R
2|(y− µ′)TΣ′−1(y − µ′) ≤ r2} (5.33)

To satisfy property 2), we may choose an ellipse according tothetwo sigma rule(i.e.r = 2),
which guarantees that about95% of values are within the enclosed ellipsoid (see Fig. 5.4).
Experiments show that good alignments can be achieved by settings ranging fromr = 1 to
r = 3.

In summary, all we need to construct a system of linear equations are the means and
covariances of the input shapes. Based on these statistics,we can select the integration
domains and construct appropriate covariant functions yielding the system Eq. (5.34) similar
to Eq. (5.30).




∫
Do
y1

m∑
i=1

η1(Si(y))
∫
Do
y2

m∑
i=1

η1(Si(y))
∫
Do

m∑
i=1

η1(Si(y))

...
...

...
∫
Do
y1

m∑
i=1

ηℓ(Si(y))
∫
Do
y2

m∑
i=1

ηℓ(Si(y))
∫
Do

m∑
i=1

ηℓ(Si(y))






qk1
qk2
qk3




= |A|




∫
Dt
xk

m∑
i=1

η1(Pi(x))

...
∫
Dt
xk

m∑
i=1

ηℓ(Pi(x))



, k = 1, 2 . (5.34)
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Runtime (sec.) ǫ (pixel) δ (%)
Polynomial 0.98 0.51 0.15
Linear 1.5 5.42 2.6
Mult. covar. functions 0.33 0.54 0.19

Table 5.1:Registration results on a benchmark dataset of synthetic shapes.

Figure 5.5: Alignment of hip prosthesis X-ray images using a polynomialsystem of equations withω
functions{x, x2, x3}. Registration results are shown as an overlayed contour on the second image.

Figure 5.6: Alignment of a hip prosthesis X-ray image using a linear system of equations withω
functions{x, x3, x1/3} (corresponding colorizations are shown on the right). Registration result is
shown as an overlayed contour on the second image.
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108 Chapter 5. Linear registration of 2D and 3D objects

Figure 5.7: Alignment of a traffic sign images using a linear system of equations with multiple shape
parts. The first image shows the elliptic integration domainwith the compound covariant function
fitted over thetemplate. Registration results are shown as an overlayed contour on the second image.

5.6 Discussion

Based on the Matlab implementation of the polynomial (Section 5.3 and linear (Section 5.5)
methods, we give a brief quantitativ evaluation on a set of more than1000 synthetically
generated observations for60 different shapes. The applied transformations were randomly
composed of0◦, 10◦, . . . , 350◦ rotations;0, 0.4, . . . , 1.2 shearings;0.5, 0.7, . . . , 1.9 scalings,
and−20, 0, 20 translations along both axes. The resulting images are of size ≈ 1400 ×
1400. For evaluation, we have computed two error measures: the Dice coefficient asδ =
|R△O|
|R|+|O| · 100%, where△ denotes symmetric difference, whileT , R andO are the pixels of

thetemplate, registeredobject andobservationrespectively; andǫ = 1
|T |
∑

p∈T ‖(A−Ã)p‖,

which measures the average distance between the trueA and the estimated̃A transformation.
These results are shown in Table 5.1. Based on these numbers,it is clear that the polynomial
solution provides rather good alignments at the price of≈ 1sec. CPU time. The linear
system based on a single pair of covariant functions given inEq. (5.30) works well when
there are no segmentation errors, but deteriorates quicklywhen pixels are missing. On the
other hand, the linear system with multiple pairs of covariant functions given in Eq. (5.34)
clearly outperforms the polynomial solution in terms of CPUtime as well as in robustness:
even for 90% missing pixels [7], this method still provides acceptable alignments while
the polynomial system fails over 50% [9]. We also remark, that -like any other area based
method- both approaches are quite sensitive to occlusions as it yields large errors in the
system of equations.

In Fig. 5.5 and Fig. 5.6, we show registration results on realX-ray images. These results
also confirm the higher precision of the polynomial system. While the multiple covariant
function approach cannot be applied on these images since weonly have a single shape,
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5.7. Medical applications 109

Figure 5.8: Fusion of hip prosthesis X-ray image pairs by registering follow up images using a 2D
affine transformation (typical CPU time is around1 sec. in Matlab).

Fig. 5.7 shows the alignment of traffic signes where -due to the compound shape of these
signs- the multiple covariant function approach works pretty well.

A more detailed evaluation of these methods can be found in [6,7,9–11,49–51]

5.7 Medical applications

Fast rigid-body registration of bone structures is important in image guided surgical planning
in execution for registering pre-operative volumes to intra-operative ones. Zhanget al.give
an overview of surface based registration techniques [203]and propose a 15 times faster
method than standard Iterative Closest Point (ICP) methods. However, it still takes around
one minute to register vertebrae models segmented from highresolution CT images. If the
segmentation is available, our method could be used insteadof ICP to get the result faster.

Affine registration is also applied for creation of brain atlases, at least as preliminary step
before an elastic or non-linear part [104]. Automatic initial placement of deformable organ
models can also benefit from fast linear registrations [186]. By collecting and transforming a
set of images to a common reference frame, a probabilistic atlas can be produced for various
organs. Using the same registration method, this probabilistic atlas data can be mapped to
the space of the study to be segmented. Here precise alignment of all anatomical structures
is not crucial, the focus is on fast execution.

Herein we present some medical applications of our linear registration framework.

5.7.1 Fusion of hip prosthesis X-ray images

Hip replacement [84, 111] is a surgical procedure in which the hip joint is replaced by a
prosthetic implant. In the short post-operative time, infection is a major concern. An in-
flammatory process may cause bone resorption and subsequentloosening or fracture, often
requiring revision surgery. In current practice, clinicians assess loosening by inspecting a
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110 Chapter 5. Linear registration of 2D and 3D objects

Figure 5.9: Registration of pelvic CT data: superimposed registered 3Dbone models (typical CPU
time is around0.25 sec for 1 megavoxel objects using our Java demo program). Thefirst two cases
show good alignment. Even the third one provides a good approximation of the true alignment.

Figure 5.10: Registration of thoracic CT data: superimposed registered3D bone models. Perfect
alignment is not possible due to the relative movements of the bone structure. Affine alignment results
are used as a good starting point fore.g.lymph node detection.

number of post-operative X-ray images of the patient’s hip joint, taken over a period of time.
Obviously, such an analysis requires the registration of X-ray images. Even visual inspection
can benefit from registration as clinically significant prosthesis movement can be very small.

There are two main challenges in registering hip X-ray images: One is the highly non-
linear radiometric distortion [87] which makes any greylevel-based method unstable. For-
tunately, the segmentation of the prosthetic implant is quite straightforward [162] so shape
registration is a valid alternative here. The second problem is that the true transformation is a
projective one which depends also on the position of the implant in 3D space. Indeed, there
is a rigid-body transformation in 3D space between the implants, which becomes a projective
mapping between the X-ray images. The affine assumption is a good approximation here,
as the X-ray images are taken in a well definedstandard positionof the patient’s leg. For
diagnosis, the area around the implant (especially the bottom part of it) is the most important
for the physician. It is where the registration must be the most precise. Based on such an
alignment, we cane.g.visualize the fused follow-up images for evaluation by an expert (see
Fig. 5.8).
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5.7. Medical applications 111

5.7.2 Registration of pelvic and thoracic CT volumes

The application of the affine solution to 3D objects has been presented in [49–51]: Typical
medical applications include the alignment of pelvic and thoracic CT volumes based on
segmented bony structures.

CT image pairs delineating the pelvic area were acquired at different times. The pairs
of images were from the same patient. The spatial resolutionof the CT studies were around
0.6 − 0.8 mm in-slice. The slice distance was5 mm in 11 cases,2.5 mm in 4 cases. We
also got three CT thoracic studies of the same person acquired by a PET-CT scanner. Here
the in-slice resolution was0.9766 mm and the slice distance was3.27 mm. We used the full
thoracic region and the extracted pelvis region also.

Our algorithm was implemented in Matlab 7.7 and was run on a desktop computer using
Intel Core2 Duo processor at2.4 GHz. The construction of the system of equations took
around half a second, the optimization around 0.2 second. For example, the average com-
puting time of a Mutual Information-based registration method was around 2 minutes for the
smaller, and6 minutes for the larger pelvic CT studies [50]. For the studies of the thorax, it
usually took around 8 minutes to finish. This clearly shows the computational superiority of
our approach.

The main challenges forpelvic CT imagesare poor image resolution, substantial seg-
mentation errors, and slightly different placement of the femoral head and lower portion of
the spine. These CT experiments (see Fig. 5.9 showed [50] that even when the physical de-
formation does not correspond exactly to the affine required, the results are good or at least
acceptable.

For thoracic imagesthe rigidity criterion no longer holds. Besides the femoralheads,
the spine and the scapula can be moved with respect to each other. Nevertheless, rigid
registration of such images are also common and important for e.g. lymphoma detections
and changes over time using PET-CT scanners. PET images delineate the uptake of the
contrast agent in organs (lymph nodes), while the CT modality can be used for registration
and morphological localization. Here non-rigid registrations are discouraged since these
could change the size of the organs. Sample registration results of our algorithm are shown
in Fig. 5.10.

5.7.3 Bone fracture reduction

Complex bone fracture reduction frequently requires surgical care, especially when angula-
tion or displacement of bone fragments are large. Since the input data is typically a volume
CT image, bone fragment repositioning has to be performed in3D space which requires an
expensive special 3D haptic device and quite a lot of manual work. Therefore automatic
bone fracture reduction can save considerable time, providing experts with a rough align-
ment which can be manually fine-tuned according to anatomic requirements. Since surgical
planning involves the biomechanical analysis of the bone with implants, only rigid-body
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template observation realignedbone fragments

Figure 5.11: Bone fracture reduction (CPU time in Matlab was 15 sec. for these 1 megavoxel CT
volumes). Thetemplateis obtained by mirroring the intact bone.

transformations are allowed. In [85], a classical ICP algorithm is used to realign fractures.
Winkelbachet al. [198] proposed an approach for estimating the relative transformations
between fragments of a broken cylindrical structure by using well known surface registra-
tion techniques, like 2D depth correlation and the ICP algorithm. In [166], registration is
solved by using quadrature filter phase difference to estimate local displacements.

In [8], we formulated the problem as anaffine puzzleand found that our algorithm is
able to solve bone fracture reduction on large volumetric medical images within a couple of
seconds (see Fig. 5.11).
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I
n this chapter, we extend our framework
to estimate the parameters of a general
diffeomorphism that aligns a known shape

and its distorted observation. Classical reg-
istration methods first establish correspon-
dences between the shapes and then com-
pute the transformation parameters from these
landmarks. Herein, we trace back the prob-
lem to the solution of a system of nonlinear
equations which directly gives the parame-
ters of the aligning transformation. The pro-

posed method provides a generic frame-
work to recover any diffeomorphic deforma-
tion without established correspondences.
It is easy to implement, not sensitive to the
strength of the deformation, and robust against
segmentation errors. The method has been
applied to several commonly used transfor-
mation models. The performance of the
proposed framework has been demonstrated
on large synthetic datasets as well as in the
context of various applications.
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116 Chapter 6. Nonlinear alignment of 2D shapes

6.1 Introduction

When registering a pair of objects, first we have to characterize the possible deformations.
From this point of view, registration techniques can be classified into two main categories:
physical model-based and parametric or functional representation [118]. Herein, we deal
with the latter representation, which typically originatefrom interpolation and approxima-
tion theory. Broadly used classes of such deformations are polynomial and spline-based
transformationse.g. thin plate splines (TPS) [67, 202]. TPS models are typicallybased on
interpolation: the control points of thin plate spline models are placed at extracted point
matches and they usually include various regularizations,such as the bending energy [67].
Polynomial deformations are governed by fewer parameters and are actingglobally on the
shapes, hence regularization is usually not needed. Moreover, many non-polynomial trans-
formation can be approximated by a polynomial onee.g.via a Taylor expansion [12].

In this chapter, we extend the framework presented in Chapter 5 to estimate nonlinear dif-
feomorphic transformations without establishing correspondences or restricting the strength
of the deformation. The basic idea is to set up a system of nonlinear equations by inte-
grating a set of nonlinear functions over the image domains and then solve it by classical
Levenberg-Marquardt algorithm[147]. If perfect graylevel images would be availablewith-
out any radiometric distortion, then the estimation of an aligning homeomorphism could be
traced back to the solution of a linear system of equations [93]. In real applications, however,
such a strict requirement cannot be satisfied. Herein, we will show that registration can be
solved without making use of any intensity information. Themain contribution is a unifying
framework, which provides the registration of planar shapes under various diffeomorphic
deformations (e.g.planar homography, polynomial or thin plate spline transformations). We
have conducted a comprehensive test on a large set of synthetic images to demonstrate the
performance and robustness of the proposed approach. The method has been successfully
applied to a variety of real problems,e.g.alignment of hip prosthesis X-ray images, regis-
tering traffic signs and handwritten characters, or visual inspection of printed signs on hoses
manufactured in automotive industry.

6.1.1 State of the art

While registration of grayscale or color images is well studied [53, 131, 134, 139, 148, 160,
180], the alignment of binary shapes [9, 60, 70, 124, 184, 185, 197] received less attention.
Most of the current approaches are restricted to the affine group [9, 182, 184, 201]. In [9],
Domokos and Kato showed that it is possible to trace back the affine matching problem to an
exactly solvable polynomial system of equations. Moments and invariants also provide an
efficient tool for recovering linear deformations [184]. A geometric, variational framework
is introduced in [201], which uses active contours to simultaneously segment and register
images. The method [201] is applied to medical image registration, where 2D and 3D rigid
body transformations are considered. Another statistics-based algorithm is proposed in [182]
for registration of edge-detected images, which utilizes edge pixel matching to determine
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6.1. Introduction 117

the ”best” translations. Then a statistical procedure, namely the McNemar test, is used to
determine which candidate solutions are not significantly worst than the best ones. This
allows for the construction of confidence regions in the registration parameters. Note that
this method is limited to solving for 2D translations only [182].

In this paper, we are interested in nonlinear alignment of shapes, which is a more chal-
lenging problem. The most common nonlinear registration methods are based on point cor-
respondences [60, 105, 200]. Although there are robust keypoint detectors like SIFT [142]
or SURF [59], these are relying on rich intensity patterns thus their use is limited in binary
registration.Landmark-basednonlinear shape matching has been addressed by Belongieet
al. [60]. The method first searches for point correspondences between the two objects, then
estimates the transformation using a generic thin plate spline model. The point matches are
established using a novel similarity metric, calledshape context, which consists in construct-
ing a log-polar histogram of surrounding edge pixels. The advantage compared to traditional
landmark based approaches is that landmarks need not be salient points and radiometric in-
formation is not involved. Basically the method can be regarded as matching two points sets,
each of them being a dense sample from the corresponding shape’s boundary. Obviously,
there is no guarantee that point pairs are exactly corresponding because of the sampling
procedure. However, having a dense sample will certainly keep mismatch error at a mini-
mum. The correspondences are simply established by solvinga linear assignment problem,
which requires time consuming optimization methods. For example, the complexity of the
Hungarian method adopted in [60] isO(N3).

An important class of nonlinear transformations is the plane to plane homography which
aligns two images of the same planar object taken from different views. Lepetit and Fua pro-
posed a method [139] for keypoint recognition on grayscale images. The main idea is to find
keypoints during a training phase where a projectively different image set of target object is
used. Although the recognition of keypoints becomes very fast, the training phase is very
time consuming. In [134], a Fourier domain based approach ispresented using intensities
for computing the image-to-image transformation. Images are transformed into the Fourier
domain where the transformation parameters are computed using cross correlation methods.
In [124], planar homography is computed in the Fourier domain from a starting affine esti-
mation using the shape contours. In [197], the concept of characteristic line is employed to
show some useful properties of a planar homography matrix, which relate with Euler angles
of the planar pattern.

Stochastic models with iterative optimization techniquesare also quite popular in this
domain: In [105], Guoet al. propose a method to register shapes which underwent diffeo-
morphic distortions, where simulated annealing is used to estimate point correspondences
between the boundary points of the shapes. A Brownian motionmodel in the group of dif-
feomorphisms has been introduced in [160]. The authors exploit a prior for warps based
on a simple invariance principle under warping. An estimation based on this prior guaran-
tees an invertible, source-destination symmetric, and warp-invariant warp. The maximum-
likelihood warp is then computed via a PDE scheme. [180] usesa Markov Random Field
model to solve the registration problem. The deformation isdescribed by a field of discrete
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118 Chapter 6. Nonlinear alignment of 2D shapes

variables, representing displacements of (blocks of) pixels. Exact maximum a posteriori in-
ference is intractable hence a linear programming relaxation technique is used. In [189], the
registration problem is formulated as probabilistic inference using a generative model and
the expectation-maximization algorithm. The authors define a data-driven technique which
makes use of shape features. This gives a hybrid algorithm which combines generative
and discriminative models. The measure of similarity is defined in terms of the amount of
transformation required. The shapes are represented by sparse-point or continuous-contour
representations depending on the form of the data. Kleinet al. presented a stochastic gra-
dient descent optimization method with adaptive step size prediction [131]. This method
employs a stochastic subsampling technique to accelerate the optimization process. The se-
lection mechanism for the method’s free parameters takes into account the chosen similarity
measure, the transformation model, and the image content, in order to estimate proper values
for the most important settings.

Bronsetinet al. studied some fundamental problems in the analysis of non-rigid de-
formable shapes [70]. In particular, a novel similarity criteria for shape comparison and
its extension to partial similarity has been proposed. Theyshowed that the correspondence
problem is also solvable using their similarity metric. In [200], Wörz and Rohr proposed
a novel approximation approach to registrate elastic deformations. This landmark-based
method uses Gaussian elastic body splines. Other methods use variational techniques [148].
We note that these methods has a rather high computational demand. In [185], a non-rigid
registration algorithms is proposed based onL2 norm and information-theory.

Another common approach is to approximate a nonlinear deformation via piecewise lin-
ear transformations: In [53], a novel framework to fuse local rigid or affine components into
a global invertible transformation, called Log-Euclideanpolyaffine, has been presented. A
simple algorithm is proposed to compute efficiently such transformations and their inverses
on regular grids.

6.2 Registration framework

In the general case, we want to recover the parameters of an arbitraryϕ : R2 → R
2 diffeo-

morphismwhich aligns a pair of shapes. Let us denote the point coordinates of thetemplate
andobservationby x = [x1, x2]

T ∈ R
2 andy = [y1, y2]

T ∈ R
2 respectively. The following

identity relation is assumed between the point coordinatesof the shapes:

y = ϕ(x) ⇔ x = ϕ−1(y), (6.1)

whereϕ−1 : R2 → R
2 is the corresponding inverse transformation. Note thatϕ−1 always

exists since a diffeomorphism is a bijective function such that both the function and its in-
verse have continuous mixed partial derivatives. Suppose that shapes are represented by
their characteristic function1 : R2 → {0, 1}, where0 and1 correspond to the background
and foreground respectively. If we denote thetemplateby 1t and theobservationby 1o, the
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6.2. Registration framework 119

following equality also holds 1o(y) = 1o(ϕ(x)) = 1t(x), (6.2)

sincex andy are corresponding point coordinates.

Classical landmark based approaches would now set up a system of equations from
Eq. (6.1) using point correspondences. However, we are interested in a direct approach
without solving the correspondence problem. As a consequence, we cannot directly use
Eq. (6.1)–(6.2) because we do not have established point pairs. However, we can multiply
these equations and then integrate out individual point correspondences yielding

∫

R2

y1o(y)dy =

∫

R2

ϕ(x)1t(x) |Jϕ(x)| dx, (6.3)

where the integral transformationy = ϕ(x), dy = |Jϕ(x)| dx has been applied. The Jaco-
bian determinant|Jϕ| : R2 → R

|Jϕ(x)| =

∣∣∣∣∣∣

∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ2

∂x1

∂ϕ2

∂x2

∣∣∣∣∣∣
(6.4)

gives the measure of the transformation at each point. Note that in the case of affine (i.e.
linear) transformations, the partial derivatives of the distortion are constants, hence the Jaco-
bian is also constant and the transformation measure can be simply computed as the ratio of
the shape areas. This property has been explored in [9]. Herein, however, the transformation
is nonlinear causing the Jacobian to become a non-constant function of the coordinates.

Since multiplying with the characteristic functions essentially restricts the integral do-
mains to the foreground regionsFt = {x ∈ R

2|1t(x) = 1} andFo = {y ∈ R
2|1o(y) = 1},

we obtain the following finite integral equation:
∫

Fo

ydy =

∫

Ft

ϕ(x) |Jϕ(x)| dx. (6.5)

The diffeomorphismϕ can be decomposed as

ϕ(x) = [ϕ1(x), ϕ2(x)]
T , (6.6)

whereϕ1, ϕ2 : R2 → R are coordinate functions. Hence Eq. (6.5), which is invector form,
can be decomposed into a system of two equations using these coordinate functions:

∫

Fo

yidy =

∫

Ft

ϕi(x) |Jϕ(x)| dx, i = 1, 2. (6.7)

The parameters ofϕ are the unknowns of these equations. Usually,ϕ has more than two
unknown parameters therefore a system of two equations is not enough to recoverϕ.

DSc dissertation, 2013

               dc_494_12



120 Chapter 6. Nonlinear alignment of 2D shapes

6.2.1 Construction of the system of equations

First of all, let us notice that the identity relation in Eq. (6.1) remains valid when a function
ω : R2 → R is acting on both sides of the equation [9,43,44]. Indeed, for a properly chosen
ω

ω(y) = ω(ϕ(x)) ⇔ ω(x) = ω(ϕ−1(y)). (6.8)

Thus the following integral equation is obtained from Eq. (6.5)
∫

Fo

ω(y)dy =

∫

Ft

ω(ϕ(x)) |Jϕ(x)| dx. (6.9)

The basic idea of the proposed framework is to generate sufficiently many equations using
a set of nonlinearω functions. Let the number of parameters ofϕ denoted byk and let
{ωi}ℓi=1, ωi : R

2 → R denote the set of adopted nonlinear functions. In order to solve for all
unknowns, we need at leastk equations, henceℓ ≥ k. We thus obtain the following system
of equations

∫

Fo

ωi(y)dy =

∫

Ft

ωi(ϕ(x)) |Jϕ(x)| dx, i = 1, . . . , ℓ, (6.10)

where eachωi function provides one new equation. Note that the generatedequations pro-
vide no new information, they simply impose additional constraints. Note also that these
equations need to be algebraically independent. While thiscondition is difficult to verify in
practice, it is also clear that linear independence ofωi functions -which is easier to verify- is
crucial, as linear dependency would result in algebraically dependent equations. Therefore
in practice, we always use a set ofnonlinearωi functions. The solution of the system gives
the parameters of the aligning transformation. Intuitively, eachωi generates a consistent
coloring of the shapes as shown in Fig. 5.1. From a geometric point of view, Eq. (6.5) sim-
ply matches the center of mass of thetemplateandobservationwhile the new equations in
Eq. (6.9) match the volumes over the shapes constructed by the nonlinear functionsωi (see
Fig. 5.1).

6.2.2 Discussion

6.2.2.1 Relation to moment-based approaches

Although the derivations in the previous section are not moment-basedper se, it is interesting
to analyze how the resulting equation of Eq. (6.10) is related to moments. Image moments
and invariants [91] were introduced by Hu [121] for 2D pattern analysis. Since then, they
became one of the most popular region-based descriptors because any shape can be recon-
structed from its infinite set of moments [92]. Traditional two dimensional(p + q)th order
moments of a function̺ : R2 → R are defined as

mpq =

∫

R2

xp1x
q
2̺(x)dx ,
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6.2. Registration framework 121

wherep, q ∈ N0. When̺ is an image function then these moments are also referred to as
image moments. In the binary case, where objects are represented by their silhouette,̺ is a
characteristic function yieldingmpq =

∫
F x

p
1x

q
2dx with F = {x ∈ R

2 : ̺(x) = 1}. This
is often calledshapeor geometricmoment as it only uses polynomials of the coordinates.
Generally, orthogonal moments, such as Legendre [92] or Zernike moments [187], are nu-
merically more stable than regular moments. We remark, however, that orthogonal moments
can be expressed by regular moments.

In this sense, we can recognize a0th order function momentof ωi in the left hand side
of Eq. (6.10) (just like any function integral can be regarded as the0th order moment of the
function itself). Similarly to Legendre or Zernike moments, our function moments could also
be expressed in terms ofshape momentswhenever the adoptedωi functions are polynomials.
Whenωi is not polynomial then its Taylor expansion results in an approximating polynomial
which in turn yields aninfinite sum of shape moments. The right hand side of Eq. (6.10) is
more complex as it includes the product of the unknown transformationϕ(x) and its Jacobian
determinant|Jϕ(x)| which are not necessarily polynomials. Therefore, independently of the
choice ofωi, it can only be expressed in terms of shape moments by expanding it into a
Taylor series.

It is thus clear that our system of equations outlined in Eq. (6.10) cannot be rewritten in
terms of a finite set of classicalshape moments, and hence not even in terms of orthogonal
moments. This result corresponds to similar findings reported in [90, 190] in the context of
projective invariants. What we propose in this paper is another approach, which –starting
from the identity relation in Eq. (6.1)– builds up a framework to generate an arbitrary set of
equations.

6.2.2.2 Invariance vs. covariance

Moment invariants [121, 190] are extensively studied as they provide a powerful tool for
shape matching. Basically, invariants are functions immune to the action of a particular de-
formation. There is a well established theory on affine invariants [89, 91], but invariants of
higher order deformations are hard to construct. Recently important results on the existence
of projective moment invariants [90] as well as on generalized invariants, calledImplicit
Moment Invariants[88, 91], have also been reported. Herein, we are not interested in con-
structing invariants as, being immune to the deformation, they do not provide constraints on
the actual transformation parameters. Instead, we needcovariantfunctions that vary with the
transformationϕ(x), hence constraining its parameters. Indeed,invarianceandcovariance
play a complementary role: While invariants identify a shape regardless of its deformation,
covariants identify the actual deformation.

6.2.2.3 Registration vs. matching

There is a fundamental difference between the problem of registration andshape match-
ing [91]. In either case, we fix the family of possible transformations. In the case of match-
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122 Chapter 6. Nonlinear alignment of 2D shapes

ing, we need to determine whether two objects are from the same class or not. For that
purpose, it is enough to ask whether there exists a transformation which aligns the objects
(i.e. whether they are on the same orbit of the fixed transformationclass), but the aligning
transformation is not of interest. However, in the registration problem we always assume
that there exists a transformation which aligns the objectsand we need to estimate its param-
eters. This explains why multiple object matching algorithms often make use ofinvariants,
ignoring the effect of the unknown transformation, and whycovarianceis used to solve the
registration problem. Due to the difficulty in finding appropriate invariants under elastic
deformations [88,91], nonlinear shape matching (or recognition) is often solved by register-
ing a givenobservation, representing the deformed shape to be recognized, to thetemplates
stored in a database [60]. A similarity metric is then constructed using the strength of the de-
formation (e.g.bending energy) and the shape is recognized as thetemplatewith the minimal
distortion.

6.3 Choice ofω functions

Givenϕ(x) and its Jacobian|Jϕ(x)| of a particular deformation model, the parameters of
the aligning transformation are obtained as a solution of the system of equations Eq. (6.10).
For constructing these equations, we need an appropriate set of functions{ωi}ℓi=1. Theo-
retically, any nonlinear function satisfying Eq. (6.8) could be applied. In practice, however
there are two important considerations. First, our equations are always corrupted by errors
arising from imperfect data (e.g.segmentation and discretization errors). Therefore the so-
lution is obtained via least-squares minimization of thealgebraic error. Since both sides of
these equations contain an integral of the correspondingωi function, the characteristics ofωi

clearly influence the overall error. In particular, we expect an equal contribution from each
equation in order to guarantee an unbiased error measure. Second, iterative least-squares
minimization algorithms, like theLevenberg-Marquardt algorithm[147], require the eval-
uation of the equations at every iteration step. Thus the time complexity of the algorithm
is considerably decreased if the integrals can be precomputed, hence avoiding scanning the
image pixels at every iteration.

6.3.1 Normalization

Thealgebraic errorof the system Eq. (6.10) is obtained as the sum of squared errors :

ℓ∑

i=1

(∫

ϕ̂(Ft)

ωi(y)dy −
∫

Fo

ωi(y)dy

)2

,

whereϕ̂ is the estimated transformation. On the other hand, thegeometric erroris measured
as the absolute difference between the registered shapes:

|G| = |ϕ̂(Ft) △ Fo|,
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where△ is the symmetric difference. LetG1 = ϕ̂(Ft)\Fo andG2 = Fo\ϕ̂(Ft), yielding
G = G1 ∪G2 andG1 ∩G2 = ∅. Since

∫
ϕ̂(Ft)∩Fo

(ωi(y)− ωi(y)) dy = 0, the algebraic error
can be expressed as

ℓ∑

i=1

(∫

G1

ωi(y)dy−
∫

G2

ωi(y)dy

)2

. (6.11)

The ith equation contributes to the error by the difference of the integrals ofωi over the
non-overlapping domainsG1 andG2. Thus the magnitude of the contributed value depends
not only on the geometric errorG but also on the valuesωi takes over these domains. Large
variations in the range of differentωi functions yield an uneven contribution of different
equations which leads to a biased algebraic error or, in extreme cases, to numerical instability.

A usual remedy is to normalize the coordinates of both shapesinto the unit square
([−0.5, 0.5] × [−0.5, 0.5] in our experiments), and to chooseωi with a range limited to a
similar interval (e.g.[−1, 1]). This is achieved by dividing the integrals in Eq. (6.10) with
an appropriate constant corresponding to the maximal magnitude of the integral. Since the
integral of a givenωi depends on the integration domain (i.e. the actual transformed shape),
a trivial upper bound would be the infinite integral

∫
R2 |ωi|. Unfortunately, this integral may

not be computed or yields an infinite value thus making this kind of normalization unfeasi-
ble. Therefore we need to find a finite domain which contains all intermediate shapes during
the minimization process. We found experimentally (see Fig. 6.1), that the transformations
occurring during the least-squares minimization process do not transform the shapes out of
a circle with center in the origin and a radius

√
2
2

(i.e. the circumscribed circle of the unit
square). We thus adopt the following constant

Ni =

∫

‖x‖≤
√

2
2

|ωi(x)|dx, (6.12)

and the normalized version of Eq. (6.10) becomes
∫
Fo
ωi(y)dy

Ni
=

∫
Ft
ωi(ϕ(x)) |Jϕ(x)| dx

Ni
, i = 1, . . . , ℓ. (6.13)

6.3.2 Computational efficiency

The Levenberg-Marquardt algorithmrequires the evaluation of the equations at every iter-
ation step. Unfortunately, the integrands on the right handside of Eq. (6.13) include the
unknowns implying that we have to recompute these integralsat each iteration, yielding a
time complexity ofO(k(N+M)), wherek is the number of iterations (typically around1000
in our experiments), whileN andM are the number of the foreground pixels of thetemplate
andobservationrespectively. If we could eliminate the unknowns from the integrands then
the integrals could be precomputed and the runtime of the solver would become independent
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Figure 6.1: Coverage of transformed shapes of≈ 1500 synthetic observations during the minimiza-
tion process. Pixel values represent the number of intermediate shapes that included a particular
pixel. For reference, we also show the circle with radius

√
2
2 used for normalization.

from the number of foreground pixelsM + N . We will show that this can be achieved by
applying polynomialωi functions in Eq. (6.13).

Let us suppose thatϕ(x) =
∑n

i=1 aiφi(x), whereai ∈ R, andφi : R
2 → R

2 are ba-
sis functions. Note that polynomial or thin plate spline deformations are of the above form
while other diffeomorphisms can be approximated by the firstfew terms of their Taylor ex-
pansion [93] yielding the above representation. Furthermore, let us denotea = [a1, . . . , an]
andφ(x) = [φ1(x), . . . , φn(x)].

Definition 6.3.1 When a functionf : R2 → R
2 is such that

f
( n∑

i=1

aiφi(x)
)
=

m∑

j=1

gj(a)hj(φ(x)),

wherem ∈ N andgj : Rn → R, hj : R2n → R
2 for 1 ≤ j ≤ m, then we sayf is

separablewith respect toa andφ(x).

The following theorem states that applying polynomialωi functions in Eq. (6.13) results
in a regular nonlinear equation with respect to the unknownsa1, . . . , an instead of an integral
equation.
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Theorem 6.3.1 Whenf : R2 → R
2 is polynomial, then the following equality holds:

∫

F
f(ϕ(x)) |Jϕ(x)| dx =

m∑

i=1

gi(a)

∫

F
hi(φ(x))dx, (6.14)

wherem ∈ N andgi : Rn → R, hi : R2n → R
2 for 1 ≤ i ≤ m.

The proof can be found in Appendix A.3 and in [12]. As a consequence, choosing a
polynomialωi function allows us to eliminate the unknownsa from the integrand. Hence∫
F hi(φ(x))dx has to be computed only once and the time complexity of the solver becomes

independent of the size of the input images.

6.3.3 Solution and complexity

The obtained system of equation is solved by iterative leastsquares minimization using
the Levenberg-Marquardt algorithm(LM) [147]. The time complexity of the algorithm is
O(N +M) whenever we adopt a polynomial set{ωi}ℓi=1. Note, that LM finds a local min-
imum. However, our numerical experiments show that the solution found by LM is quite
close to the geometrically correct one. A theoretical analysis would be far too complex, but
intuitively we can argue as follows: To avoid geometricallywrong local minima, proper nor-
malization is crucial. As explained in Section 6.3.1, the equations need to be balanced and
shapes must be normalized into the unit square. This guarantees, that initially shapes are
overlapping making the identity transform a good initialization, while balanced equations
eliminate undesirable bias during iterations caused by large coefficients in some equations.
Finally, we have to remark that deformations with higher degree of freedom (e.g.TPS) may
have many geometrically correct solutions (i.e.many transformation may produce an almost
perfect alignment due to the fact that deformations are onlyvisible around the boundary of
the shapes). Therefore, although the parameter space is of higher dimension, LM also has a
higher chance to find a local minima close to one of these correct solutions.

6.4 Modeling deformation fields

It is a quite common assumption in image registration, that the deformation field is smooth
and invertible, especially when the resulting deformationfield is further analyzed (e.g. in
deformation-based morphometry or construction of shape models). Diffeomorphisms pro-
vide a convenient mathematical framework to describe such deformations. Various paramet-
ric models of diffeomorphic deformations have been proposed in the literature [202]. These
are either based on a physical model (e.g.planar homography) or on a general parameteri-
zation using different basis functions (e.g.thin plate spline, B-spline). Herein, we will focus
on some broadly used class of deformations, but our framework can be applied to other
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126 Chapter 6. Nonlinear alignment of 2D shapes

nonlinear transformations as well (see Section 6.6.6, for instance). Essentially, all we need
to apply our framework to a particular deformation model arethe formulas of the adopted
diffeomorphismϕ(x) and its Jacobian|Jϕ(x)|.

6.4.1 Planar homography

Perspective images of planar scenes are usual in perceptionof man made environments. In
such cases, a planar scene and its image are related by a planeto plane homography, also
known as a plane projective transformation. Estimating theparameters of such transforma-
tions is a fundamental problem in computer vision with various applications.

Let us denote the homogeneous coordinates of thetemplateandobservationby x′ =
[x′1, x

′
2, x

′
3]

T ∈ P
2 andy′ = [y′1, y

′
2, y

′
3]
T ∈ P

2, respectively. Planar homography is then a
linear transformation in the projective planeP2

y′ = Hx′ ⇔ x′ = H−1y′ , (6.15)

whereH = {Hij} is the unknown3×3 transformation matrix that we want to recover. Note
thatH has only 8 degree of freedom thus one of its 9 elements can be fixed. Herein we will
setH33 = 1. AlthoughH33 could be0 or small in general, the coordinates of the input shapes
are normalized before matching into[−0.5; 0.5]× [−0.5; 0.5] with center of mass being the
origin. Thus ifH33 would be0 thenH would map the origin[0, 0, x′3]

T of the template
into [H13x

′
3, H23x

′
3, 0]

T on theobservation(i.e. to infinity yielding an ellipse to become a
parabola), which is quite unlikely to be observed in a real image pair. Similarly, ifH33 is
very small, then the origin is mapped to a distant point implying extreme distortion which is
again unlikely in practice. These are close to degenerate situations for which a numerically
stable solution may not exists anyway.

As usual, the inhomogeneous coordinatesy = [y1, y2]
T ∈ R

2 of a homogeneous pointy′

are obtained by projective division

y1 =
y′1
y′3

=
H11x1 +H12x2 +H13

H31x1 +H32x2 + 1
≡ χ1(x)

y2 =
y′2
y′3

=
H21x1 +H22x2 +H23

H31x1 +H32x2 + 1
≡ χ2(x) , (6.16)

whereχi : R
2 → R. Indeed, planar homography is a linear transformation in the projective

planeP2, but it becomes nonlinear within the Euclidean planeR
2. The nonlinear transfor-

mation corresponding toH is denoted byχ : R2 → R
2, χ(x) = [χ1(x), χ2(x)]

T and the
Jacobian determinant|Jχ| : R2 → R is given by

|Jχ(x)| =

∣∣∣∣∣∣

∂χ1

∂x1

∂χ1

∂x2

∂χ2

∂x1

∂χ2

∂x2

∣∣∣∣∣∣
=

|H|
(H31x1 +H32x2 + 1)3

. (6.17)
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6.4.2 Thin plate spline

Thin plate splines (TPS) [67, 101, 202] are widely used to approximate non-rigid deforma-
tions using radial basis functions. Given a set of control points ck ∈ R

2 and associated
mapping coefficientsaij , wki ∈ R with i = 1, 2, j = 1, 2, 3 andk = 1, . . . , K, the TPS
interpolating pointsck is given by [202]

ςi(x) = ai1x1 + ai2x2 + ai3 +
K∑

k=1

wkiQ(||ck − x||) , (6.18)

whereQ : R → R is theradial basis function

Q(r) = r2 log r2 .

Note that parameters include 6 global affine parametersaij and2K local coefficientswki for
the control points. In classical correspondence-based approaches control points are placed in
extracted point matches,i.e.we know the exact mapping at the control points and mappings
of other points areinterpolatedusing TPS. In our approach, however, TPS can be regarded as
a parametric model toapproximatethe underlying free-form deformation. The parameters of
this model are then estimated by our method. In order to capture deformations everywhere,
we place the radial basis functions (i.e. control points) on a uniform grid. Obviously, a finer
grid allows to recover finer details of the deformation field at the price of more equations.

The physical interpretation of Eq. (6.18) is a thin plate deforming under point loads acting
in the control points. Additional constraints are that the sum of the loads applied to the plate
as well as moments with respect to both axes should be 0. Theseare needed to ensure
that the plate would not move or rotate under the imposition of the loads, thus remaining
stationery [202]:

K∑

k=1

wki = 0 and
K∑

k=1

ckjwki = 0, i, j = 1, 2 . (6.19)

Another interpretation of the above constraints is that theplate at infinity behaves according
to the affine term. Letς : R

2 → R
2, ς(x) = [ς1(x), ς2(x)]

T a TPS map with6 + 2K
parameters. The Jacobian|Jς(x)| of the transformationς is composed of the following partial
derivatives (i, j = 1, 2)

∂ςi
∂xj

= aij −
K∑

k=1

2wki(ckj − xj)(1 + log(||ck − x||2)) . (6.20)

6.5 Experimental results

The proposed method ha been tested on various synthetic and real datasets. The performance
of the algorithm has also been compared to two other nonlinear registration methods:Shape
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128 Chapter 6. Nonlinear alignment of 2D shapes

Context[60] which has been developed for general nonlinear registration andhomest[141]
which implements a classical algorithm for homography estimation. The proposed algorithm
has been implemented in Matlab R2008 and all tests have been ran on a Pentium IV 3.2 GHz
under Linux operating system. The demo implementation of our method is available for
download athttp://www.inf.u-szeged.hu/ ˜ kato/software/ .

Registration results were quantitatively evaluated usingtwo kind of error measures. The
first one (δ) is the absolute difference of the registered shapes, whileǫ measures the distance
between the trueϕ and the estimated̂ϕ transformation:

δ =
|Fr △ Fo|
|Fr|+ |Fo|

· 100%, ǫ =
1

|Ft|
∑

x∈Ft

‖ϕ(x)− ϕ̂(x)‖,

whereFt, Fo, andFr denote the set of foreground pixels of thetemplate, observation, and
theregisteredtemplate respectively.

Intuitively, ǫ shows the average transformation error per pixel. Note thatthis measure
can only be evaluated on synthetic images where the applied transformation is known while
δ can always be computed. On the other hand,ǫ gives a better characterization of the trans-
formation error as it directly evaluates the mistransformation. δ sees only the percentage of
non-overlapping area between theobservationandregisteredshape. Hence the value ofδ
depends also on the compactness, topology, and segmentation error of the shapes.

Eq. (6.21) Eq. (6.22) Eq. (6.23) Eq. (6.24) Eq. (6.25) Eq. (6.26)

Figure 6.2: Plots of tested{ωi} function sets.

6.5.1 Comparison of variousω functions

According to our theoretical results presented in Section 6.3, we expect that the precision of
the recovered transformation parameters is independent ofthe choice of the{ωi} set as long
as equations are properly normalized. To verify these findings, we evaluated the registration
quality of various{ωi} function sets. We considered power and trigonometric functions as
well as polynomials, a total of6 different sets (see Fig. 6.2):

1. Power functions
ωi(x) = xni

1 x
mi

2 (6.21)

with (ni, mi) ∈ {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2), (2, 1), (1, 2), (2, 2), (3, 0),
(0, 3), (3, 1), (1, 3)}
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2. Rotated power functions

ωi(x) = (x1 cosαi − x2 sinαi)
ni(x1 sinαi + x2 cosαi)

mi (6.22)

with αi ∈
{
0, π

6
, π
3

}
and(ni, mi) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)}

3. Mixed trigonometric functions

ωi(x) = sin(nix1π) cos(mix2π) (6.23)

with (ni, mi) ∈ {(1, 2), (2, 1), (2, 2), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3), (1, 4), (4, 1),
(2, 4), (4, 2)}

4. Trigonometric functions

ωi(x) = Qi(nix1)Ri(mix2) (6.24)

with Qi(x), Ri(x) ∈ {sin(x), cos(x)} and(ni, mi) ∈ {(1, 1), (1, 2), (2, 1)}

5. Polynomials
ωi(x) = Pni

(x1)Pmi
(x2) (6.25)

with (ni, mi) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (1, 4), (4, 1), (2, 4), (4, 2),
(3, 4), (4, 3)} composed of the following random polynomials:

P1(x) = 2x2 − x− 1

P2(x) = 2x3 − x2

P3(x) = x3 − 30x2 + 3x+ 2

P4(x) = 3x5 − x2 + 5x− 1

6. Polynomials
ωi(x) = Lni

(x1)Lmi
(x2) (6.26)

with (ni, mi) ∈ {(2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (2, 5), (5, 2), (3, 5), (5, 3),
(4, 5), (5, 4)} composed of the following Legendre polynomials:

L2(x) =
1

2

(
3x2 − 1

)

L3(x) =
1

2

(
5x3 − 3x

)

L4(x) =
1

8

(
35x4 − 30x2 + 3

)

L5(x) =
1

8

(
63x5 − 70x3 + 15x

)
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The quantitative evaluation of the above function sets are summarized in Table 6.1. Ba-
sically, all medianδ error measures are between0.1− 0.2. Although the mean values have a
slightly bigger variance, this is mainly caused by a few outliers rather than a systematic error.
It is thus fair to say that the consideredωi functions perform equally well, which confirms
our theoretical results.

The question is therefore naturally arising: Which{ωi} set should be used? Or in more
general: What properties should the{ωi} set have? From a theoretical point of view, there
are only trivial restrictions on the applied functions: Obviously, ωi must be an integrable
function over the finite domainsFo andFt. The functions have to be rich enough,i.e. they
have to produce a varying surface over the shape domain (e.g.see Fig. 6.2). For example,
the constant functionω(x) ≡ c is clearly wrong as it makes Eq. (6.8) always true indepen-
dently of the underlying deformation. From a practical point of view, the picture is different:
First of all, we have to solve numerically a system of integral equations. According to The-
orem 6.3.1, we can reduce this problem to the solution of a nonlinear system of equations
when theωi functions are polynomial. The empirical results presentedin this section show,
that registration quality is almost unaffected by the choice ofωi functions but computational
efficiency is clearly increased for a polynomial{ωi} set. Therefore we recommend to use
low order polynomials for computational efficiency. In our experiments, we have used the
set 11), unless otherwise noted.

{ωi} set
δ(%) ǫ(pixel)

m µ σ m µ σ

11) 0.09 0.53 3.38 0.08 3.03 22.36
22) 0.11 1.01 5.01 0.10 4.40 24.14
33) 0.21 12.28 19.61 0.19 20.14 41.73
44) 0.12 1.52 6.25 0.11 6.02 25.79
55) 0.10 0.80 4.75 0.08 3.27 18.60
66) 0.10 0.99 4.84 0.08 4.17 20.78

Table 6.1: Quantitative comparison of various{ωi} function sets.m, µ, andσ denote the median,
mean, and deviation.

6.5.2 Quantitative evaluation on synthetic data

Herein, we will focus on planar homography. Synthetic testswith other deformation mod-
els can be found in [43]. Our benchmark dataset contains37 different shapes and their
transformed versions, a total of≈ 1500 images of size256× 256. The applied plane projec-
tive transformations were randomly composed of0.5, . . . , 1.5 scalings;−π

4
, . . . , π

4
rotations

along the three axes;−1, . . . , 1 translations along bothx andy axis and0.5, . . . , 2.5 along the
z axis; and a random focal length chosen from[0.5, 1.5]. Note that these are projective trans-
formations mapping atemplateshape from a plane placed in the 3D Euclidean space to the
xy plane. Some typical examples of these images can be seen in Fig. 6.3, while a summary of
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Template ObservationSC [60] Proposed

Figure 6.3: Planar homographies:Example images from the synthetic data set and registrationre-
sults obtained byShape Context[60] and the proposed method. Theobservationand the registered
templatewere overlaid, overlapping pixels are depicted in gray whereas non-overlapping ones are
shown in black.

Runtime (sec.) δ (%) ǫ (pixel)
SC P SC P P

m 98.72 16.04 2.69 0.09 0.08
µ 102.78 27.04 4.41 0.54 2.97
σ 28.26 45.34 4.79 3.42 22.04

Table 6.2:Comparative tests of the proposed method on the synthetic dataset for recovering aplanar
homography. SC –Shape Context[60]; P – proposed method.m, µ, andσ denote the median, mean,
and deviation.

registration results is presented in Table 6.2. We have alsocompared the performance of our
method to that ofShape Context[60]. For testing, we used the program provided by the au-
thors and set its parameters empirically to their optimal value (beta init = 30 , n iter = 30 ,
annealing rater = 1 ). We remark that the program’s only output is the registeredshape,
henceǫ could not be computed.

6.5.2.1 Robustness

In practice, segmentation never produces perfect shapes. Therefore we have also evaluated
the robustness of the proposed approach against segmentation errors. Besides using various
kind of real images inherently subject to such errors, we have also conducted a systematic
test on simulated data: In the first testcase,5%, . . . , 20% of the foreground pixels has been
removed from theobservationbefore registration. In the second case, we occluded continu-
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(a) missing
pixels

(b) occlu-
sion

(c) disoc-
clusion

(d) bound-
ary error

Figure 6.4: Sample observations with various degradations.

ous square-shaped regions of size equal to1%, . . . , 10% of the shape, while in the third case
we disoccluded a similar region. Finally, we randomly addedor removed squares uniformly
around the boundary of a total size1%, . . . , 10% of the shape. Note that we do not include
cases where erroneous foreground regions appear as disconnected regions, because such
false regions can be efficiently removed by appropriate morphological filtering. We there-
fore concentrate on cases where segmentation errors cannotbe filtered out. See samples of
these errors in Fig. 6.4.

Table 6.3 shows that our method is quite robust whenever errors are uniformly distributed
(first and fourth testcases) over the whole shape. However, it becomes less stable in case of
larger localized errors, like occlusion and disocclusion.This is a usual behavior of area-based
methods because they are relying on quantities obtained by integrating over the whole object
area. Thus large missing parts would drastically change these quantities resulting in false
registrations. Nevertheless, in many application areas one can take images under controlled
conditions which guarantees that observations are not occluded (e.g.medical imaging, in-
dustrial inspection). Note also thatShape Context[60] is consistently outperformed by our
method except in the cases of occlusion and disocclusion.

6.6 Applications

Herein, we will demonstrate the relevance of our approach invarious application domains
using two common models: planar homography and thin plate spline as well as application-
specific deformation models.

6.6.1 Matching traffic signs

Nowadays, modern cars include many safety systems. Automatic traffic sign recognition is
a major challenge of such intelligent systems, where one of the key tasks is the matching
of a projectively distorted sign with atemplate. Herein, we have used classical thresholding
and some morphological operations for segmentation but automatic detection/segmentation
is also possible [164]. Fig. 6.5 show some registration results. Each image pair was taken
from different signboards. The main challenges were strongdeformations, segmentation
errors and variations in the style of the depicted objects. For example, theobservations
in Fig. 6.5(b) and Fig. 6.5(c) do not contain exactly the sameshape as the object on the
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(a) missing pixels 5% 10% 15% 20%

Shape Context [60]
m 21.85 24.91 26.38 27.2
σ 5.97 6.14 6.37 6.56

Proposed method
m 2.98 5.69 8.51 11.57
σ 4.13 5.23 6.09 6.74

(b) size of occlusion 1% 2.5% 5% 10%

Shape Context [60]
m 3.03 3.55 4.55 6.79
σ 4.79 4.79 5.09 7.03

Proposed method
m 1.41 3.40 6.19 11.27
σ 3.49 4.18 5.09 6.6

(c) size of disocclusion 1% 2.5% 5% 10%

Shape Context [60]
m 3.63 4.52 6.25 9.28
σ 5.19 5.61 6.84 7.78

Proposed method
m 1.93 4.54 8.28 13.62
σ 4.31 5.13 6.16 7.09

(d) size of boundary error 1% 5% 10% 20%

Shape Context [60]
m 2.86 3.78 4.68 6.92
σ 4.72 4.83 5.04 5.92

Proposed method
m 0.54 1.67 2.67 4.03
σ 3.28 3.5 3.9 4.47

Table 6.3: Median (m) and standard deviation (σ) of δ error (%) vs. various type of segmentation
errors as shown in Fig. 6.4.

template. In particular, theSTOPsign in Fig. 6.5(c) uses different fonts. In spite of these
difficulties, our method was able to recover a quite accuratetransformation (the averageδ
error was12, 66% on these images).

6.6.2 Aligning hip prosthesis X-ray images

In Section 5.7.1, the problem of assessing hip prosthesis loosing has already been addressed.
Clinicians assess loosening by inspecting a number of follow-up X-ray images, where a cru-
cial task is the registration of X-ray images as shown in Fig.6.6. Herein, we show registration
results using a planar homography deformation model. Sincethe X-ray images are always
taken in a well definedstandard positionof the patient’s leg, this is a good approximation
here. Some of these results are presented in Fig. 6.6.

6.6.2.1 Comparison with correspondence-based homographyestimation

Since the grayscale versions of the images were available, it was possible to compare our
method to a feature-correspondence based solution. For that purpose, we have usedhomest[141],
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Runtime (sec.) δ (%)
m µ σ m µ σ

Shape Context [60] 35.02 34.43 7.58 7.86 9.40 4.71
Proposed method 10.00 9.81 1.47 7.66 8.93 4.22

Table 6.4: Comparative results on2000 image pairs from the MNIST database.m, µ, andσ stand
for the median, mean, and standard deviation.

which implements a kind of “gold standard” algorithm composed of [112, 205]. The point
correspondences has been extracted by theSIFT [142] method. As input, we provided the
masked signboard region for traffic sign matching and the prosthesis region for medical reg-
istration. Furthermore, we have also extracted point correspondences established byShape
Context[60]. Here, the input was the binary mask itself used forSIFT as well as for our
method. Although theSIFT parameter calleddistRatio , controlling the number of the
extracted correspondences, has been manually fine-tuned, we could not get reliable results
due to the lack of rich radiometric features. Fig. 6.6 shows two results on X-ray images while
on traffic signs (see Fig. 6.5),SIFTcould not find enough correspondences in about half of
the cases. As forShape Context-based correspondences, we got somewhat better alignments
(an averageδ of 33.47% for the traffic sign images).

6.6.3 Matching handwritten characters

The performance of our method has been evaluated on aligninghandwritten digits from the
MNISTdataset [138]. A standard approach in matching characters is to align the observation
(to be recognized) with each of the digit templates, and recognize it as the template with the
lowest deformation. A similar approach is used in [60] whichcan be applied in our case too.
Herein, we will concentrate on the alignment of these characters. Since this is a free-form
deformation, we used thethin plate splinemodel with25 control points placed on a regular
grid over the input shapes. The model has2 · 25 + 6 = 56 parameters. The equations were
generated using the function set Eq. (6.21) with parameters0 ≤ mi, ni ≤ 8, mi + ni ≤ 8
resulting in an overdetermined system of 81 equations. The experiment consisted of≈ 2000
test cases, some example images and registration results are shown in Fig. 6.7. Moreover,
we also compared our results to Shape Context [60], which also uses a thin plate spline
model but control points are placed on corresponding contour points. Comparative results in
Table 6.4 show that our method provides slightly better matches within1/3 of CPU time.

6.6.4 Fusion of MRI and TRUS prostate images

Countries in Europe and USA have been following prostate cancer screening programs since
the last15 years [52]. A patient with abnormal findings is generally advised for a prostate
biopsy to diagnose the benign or malignant lesions. During needle biopsy, the most common
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appearance of malignant lesions in Transrectal Ultrasound(TRUS) is hypoechoic. The accu-
racy of sonographic finding of hypoechoic prostate cancer lesions is typically43% [73]. In
contrast, Magnetic Resonance Imaging (MRI) has a negative predictive value of80%− 84%
for significant cancer and the accuracy of MRI to diagnose prostate cancer is approximately
72% − 76% [196]. Therefore, MRI may serve as a triage test for men deemed to be at risk
of prostate cancer and may reduce the number of re-biopsies while at the same time pro-
vide more useful information for those who are sent for biopsy. Consequently, fusion of
pre-biopsy MR images onto interoperative TRUS images mightincrease the overall biopsy
accuracy [122].

An essential part of this procedure is the alignment of the segmented prostate regions in
the two modalities. Since the prostate may undergo deformations due to the insertion of the
endorectal probe through the rectum during the MR imaging aswell as inflation of the en-
dorectal balloon, nonlinear registration is needed for themultimodal alignment. Due to the
rather different content of these modalities, radiometricinformation cannot be used reliably.
Fortunately, the segmentation of the prostate is availablein both modalities, which is effi-
ciently obtained by an Active Appearance Model [98]. Placing the control points of a TPS
on a uniform grid over the prostate shapes, they can be directly aligned without established
correspondences. Fig. 6.9 shows some examples of aligned prostate images obtained by this
method. In [41], we have improved the generic non-linear registration framework of [12]
by establishing a few prostate-specific point correspondences and regularizing the overall
deformation. The point correspondences under the influenceof which the thin-plate bends
are established on the prostate contours by a method based onmatching the shape-context
( [61]) representations of contour points using Bhattacharyya distance ( [155]). The approxi-
mation and regularization of the bending energy of the thin-plate splines are added to the set
of non-linear TPS equations and are jointly minimized for a solution. Fig. 6.8 shows some
registration results on multimodal prostate images.

6.6.5 Elastic registration of 3D lung CT volumes

Lung alignment is a crucial task in lung cancer diagnosis [72]. During the treatment, changes
in the tumor size are determined by comparingfollow-upPET/CT scans which are taken at
regular intervals depending on the treatment and the size ofthe tumor. Due to respiratory
motion, the lung is subject to a nonlinear deformation between suchfollow-ups, hence it
is hard to automatically find correspondences. A common practice is to determine corre-
sponding regions by hand, but this makes the procedure time consuming and the obtained
alignments may not be accurate enough for measuring changes.

Our algorithm has been successfully applied [46, 47] to align 3D lung CT scans. As
usual in elastic medical imaging, the adopted parametric model is a 3D Thin plate splines
(TPS) [67, 202]ς : R3 → R

3 which can also be decomposed as three coordinate functions
ς(x) = [ς1(x), ς2(x), ς3(x)]

T . Given a set of control pointsck ∈ R
3 and associated map-

ping coefficientsaij , wki ∈ R with i = 1, . . . , 3, j = 1, . . . , 4 andk = 1, . . . , K, the TPS
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functions are

ςi(x) = ai1x1 + ai2x2 + ai3x3 + ai4 +
K∑

k=1

wkiQ(‖ck − x‖) (6.27)

whereQ : R → R is the radial basis function, which has the following form in3D [67]:

Q(r) = |r|.

The number of the necessary parameters areN = 3(K+4) consisting of12 affine parameters
aij and3 coefficientswki for each of theK control pointsck.

As for the prostate registration problem, we also included abending energy regularization
to ensure the proper alignment of the inner structures. Someregistration results are presented
in Fig. 6.11, where we also show the achieved alignment on grayscale slices of the original
lung CT images. For these slices, the original and transformed images were combined as an
8× 8 checkerboard pattern.

6.6.6 Industrial inspection

An important step in hose manufacturing for automotive industry is to print various signs
on the hose surface in order to facilitate installation (seeFig. 6.10). The quality control
of this process involves visual inspection of the printed signs. In an automated inspection
system, this can be implemented by comparing images of the printed sign to itstemplate,
which requires the alignment of thetemplateandobservationshapes. The main challenges
are segmentation errors and complex distortions. The physical model of the contact printing
procedure is as follows:

1. The stamp (basically a planar template of the sign) is positioned on the hose surface.
This can be described by a 2D rotation and scalingS : R2 → R

2 of thetemplate.

2. Then the stamp is pressed onto the surface, modeled as a transformationγ : R2 → R
3

that maps thetemplate’s plane to a cylinder with radiusr:

γ(x) =
[
r sin

x1
r
, x2,−r cos

x1
r

]T
.

3. Finally, a picture is taken with a camera, which is described by a classical projective
transformationP : R3 → R

2 with an unknown camera matrix.

Thus the transformation

ϕ(x) = (P ◦ γ ◦ S)(x) (6.28)
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acting between a planartemplateand its distortedobservationhas 11 parameters:S has 3 pa-
rameters,γ has one (r), andP has 7 (six extrinsic parameters and the focal length). The Jaco-
bian|Jϕ| is straightforward to compute, although yields a lengthy formula that we omit here
due to lack of space. Equations were generated by the function set Eq. (6.22) with param-
eters using all combinations forαi ∈

{
0, π

6
, π
3

}
and(ni, mi) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)}

yielding a system of12 equations. The method has been tested on more than150 real images
and it proved to be efficient in spite of segmentation errors and severe distortions.
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(a) (b) (c) (d)

Figure 6.5: Registration results on traffic signs. Thetemplatesare in the first row, then the re-
sults obtained bySIFT [142]+ homest[141] (second row), where the images show point correspon-
dences between the images found bySIFT [142] in the third row. The results obtained byShape
Context[60]+ homest[141] (fourth row) and the proposed method in the last row. The contours of
the registered images are overlaid.
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SIFT [142] SC [60] Proposed

δ = 18.65% δ = 1.83% δ = 1.64%

δ = 2.84% δ = 10.23% δ = 1.32%

Figure 6.6: Registration results on hip prosthesis X-ray images. The overlaid contours show the
aligned contours of the corresponding images on the left. Images in the second column show the
registration results obtained bySIFT [142]+ homest[141], in the third column the results ofShape
Context[60]+ homest[141], while the last column contains the results of the proposed method.

Figure 6.7: Sample images from the MNIST dataset and registration results using a thin plate spline
model. First and second rows show the images used astemplatesand observationswhile the3rd

and4th rows show the registration results obtained by Shape Context [60] and the proposed method,
respectively.
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fixed TRUS moving MRI registration result

Figure 6.8: MRI-TRUST multimodal prostate registration results. Registration result is shown as a
checkerborard of TRUS and transformed MR images to show the alignment of the inner structures.
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6.6. Applications 141

Figure 6.9: Alignment of MRI (left) and US (right) prostate images usinga TPS deformation model.
The contours of the registered MRI images are overlaid on theUS images.δ errors are 2.12% (first
row) and 1.88% (second row).

Figure 6.10: Registration results of printed signs.Top: planar templates. Bottom: the correspond-
ing observationswith the overlaid contour of the registration results. The first image pair shows the
segmented regions used for registration. Note the typical segmentation errors. (Images provided by
ContiTech Fluid Automotive Hungária Ltd.)
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142 Chapter 6. Nonlinear alignment of 2D shapes

Figure 6.11: Alignment of lung CT volumes and the combined slices of the original and the trans-
formed images as an 8x8 checkerboard pattern. Segmented 3D lung images were generated by the
InterView Fusion software of Mediso Ltd..
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ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion

I
n this dissertation, we have summarized
our main contributions to MRF image seg-
mentation and shape alignment:

A novel hierarchical MRF model and its
application to supervised and unsupervised
satellite image segmentation has been pro-
posed. A new annealing schedule for Sim-
ulated Annealing: Multi-temperature anneal-
ing allows to assign different temperatures
to different cliques during the minimization
of the energy of a MRF model. The conver-
gence of the new algorithm has also been
proved toward a global optimum.

Probabilistic models for multi-cue seg-
mentation and the ’gas of circles’ shape prior.
In particular, monogrid and multilayer prob-
abilistic models for color-, texture-, and motion-
based segmentation and associated param-
eter estimation techniques. RJMCMC sam-

pler has been generalized for multi-variate
Gaussian mixtures and has been used for
fully automatic color image segmentation.
The methods have been applied to motion
segmentation of video frames and change
detection in aerial imagery.

A unified correspondence-less framework
for the geometric alignment of 2D and 3D
objects. The framework is able to recover a
wide range of deformations such as affine,
projective, and thin plate splines. Indepen-
dently of the particular transformation, it re-
lies on the solution of a system on non-
linear equations which can be easily con-
structed by integrating non-linear functions
over the shape’s domains. Successful ap-
plications include various problems in med-
ical image analysis as well as industrial in-
spection.
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Summary of new scientific results

My new scientific results, where my contribution was essential, will be summarized in three
thesis points. The first one being my results presented also in my PhD dissertation, while
the rest has been achieved after obtaining my PhD degree. Relevant publications and related
Chapters of the dissertation are listed at the end of each thesis point.

1. Multi-resolution and hierarchical Markov models for image segmentation

New probabilistic models and optimization methods were developed for supervised
and unsupervised gray-level image segmentation.See Chapter 1.

(i) I have proposed a novel hierarchical MRF model and its application to satellite
image segmentation.Related publications: [14,20–24,32].

(ii) I have developed a new annealing schedule for SimulatedAnnealing: Multi-
temperature annealing allows to assign different temperatures to different cliques
during the minimization of the energy of a MRF model. I have proved the
convergence of the new algorithm toward a global optimum.Related publica-
tions: [24,32].

(iii) I have shown how to estimate the hierarchical model parameters and applied it
to land coverage segmentation on satellite images.Related publications: [25,32,
36–38].

2. Probabilistic models for multi-cue segmentation and the ’gas of circles’ shape
prior.

Besides gray-levels, there are many cues that one can take asobservation for the seg-
mentation process: color, motion, different texture features, etc. Moreover, many
application-specific restrictions may apply to the shape ofextracted regions. To deal
with segmentation problems where coherent regions are defined in terms of such com-
plex features, I have proposed new probabilistic data models and shape priors as well
as associated parameter estimation methods.

(i) One way to combine various features is to design a joint probability distribution
which is able to represent the union of the complex observation. I have shown
that this approach works well when the combined features areof similar nature
(e.g.define a multivariate Gaussian density). I have developed a monogrid MRF
model which is able to combine color and texture features in order to improve
the quality of unsupervised segmentations. I have introduced a novel Reversible
Jump Markov Chain Monte Carlo sampling method which is able to identify
multi-dimensional Gaussian mixtures. This technique has been successfully ap-
plied to fully automatic color image segmentation.See Chapter 2. Related pub-
lications: [15,16,26,28,32].
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(ii) I have proposed a new multilayer MRF model which is able to segment an image
based on multiple cues (e.g.color, texture, or motion), which are not necessarily
representable as a simple joint distribution. The method has been successfully
applied to motion segmentation (a crucial step ine.g.MPEG coding) as well as
change detection in aerial images.See Chapter 2. Related publications: [1,2,27,
29–32].

(iii) Higher order active contour (HOAC) models integrate shape knowledge via the
inclusion of explicit long-range dependencies between region boundary points. It
is possible to set the parameters of the HOAC model to favor regions consisting
of any number of approximately circular connected components with some spec-
ified radius. This yields the ’gas of circles’ HOACs. Starting from the equivalent
phase field formulation of the model, I have developed a probabilistic Markov
model: the ’gas of circles’ MRF. The proposed methods has been successfully
applied to extract tree crowns in aerial images for forestryresource management.
See Chapter 3. Related publications: [5,13].

(iv) In biomedical image interpretation, a major limitation of the ’gas of circles’
model is that touching or overlapping objects cannot be represented. To over-
comes these limitations, I have proposed an alternative representation while main-
taining computational efficiency: the multi-layer ’gas of circles’ model. Both
continuous phase-field and discrete MRF models have been developed and suc-
cessfully applied to various segmentation tasks in microscope image analysis.
See Chapter 4. Related publications: [42,45]

3. Correspondence-less alignment of 2D and 3D visual objects.

I have proposed a general framework for recovering diffeomorphic deformations of
2D and 3D shapes. The fundamental difference compared to classical image registra-
tion algorithms is that this model works without any landmark, feature detection, or
correspondences by adopting a novel idea where the transformation is obtained as a
solution of a system of non-linear equations.

(i) I have developed a generic framework for recovering linear deformations of 2D
and 3D binary objects without correspondences. The basic idea is to set up a sys-
tem of nonlinear equations whose solution directly provides the parameters of the
aligning transformation. Each equation is generated by integrating a nonlinear
function over the object’s domains. Thus the number of equations is determined
by the number of adopted nonlinear functions yielding a flexible mechanism to
generate sufficiently many equations. I have shown that power functions always
yield a polynomial system. I have given an alternative formulation of the method
yielding a linear system of equations constructed by fittingGaussian densities to
the shapes which preserve the effect of the unknown transformation. The method
has many applications in medical image analysis.See Chapter 5. Related publi-
cations: [6–11,17,49–51].
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(ii) I have developed a substantial extension of the affine registration framework to
solve the estimation of a broad range of nonlinear diffeomorphic transformations
without establishing correspondences or restricting the strength of the deforma-
tion. In particular, I have explicitly shown how to construct a system of equa-
tions to recover deformations like planar homography, polynomial and thin plate
splines, but other diffeomorphic transformations are alsorelatively easy to adopt.
I have formulated a theorem stating that using power functions and a parametric
transformation model in the form of a linear combination of some basis func-
tions, then the resulting system consists of plain non-linear equations. Using
the proposed method, numerous registration problems have been solved in many
important application areas ranging from medical image analysis to industrial in-
spection.See Chapter 6. Related publications: [12,18,19,39–41,43,44,46–48]

Demo implementations of some of my methods are also available fromhttp://www.
inf.u-szeged.hu/ ˜ kato/software/ as follows:

• Supervised Image Segmentation Using Markov Random Fields: This is the sample
implementation of a Markov random field based supervised image segmentation algo-
rithm for simple gray-level imagery.

• Supervised Color Image Segmentation in a Markovian Framework: Implementation of
a supervised Markov random field based color image segmentation algorithm.

• Affine Registration of Planar Shapes: JAVA code with a direct solver (only runs under
Windows).

• Affine Registration of 3D Objects: JAVA code with multi-threading (≈ 0.2sec. CPU
time for megavoxel volumes).

• Nonlinear Shape Registration without Correspondences: Implements planar homog-
raphy, extension to other nonlinear deformations is relatively easy.
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T
he appendix contains the technical de-
tails of the proofs of various theoreti-
cal contributions appearing in this dis-

sertation. The first such result is the con-
vergence of the multi-temperature anneal-

ing algorithm (Theorem 1.2.1). The next
two results related to affine and elastic reg-
istrations are Theorem 5.3.1 and Theorem 6.3.1,
which state the conditions for reducing the
system of integral equations to a system of
plain polynomial equations.
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150 Appendix A. Proof of theorems

A.1 Proof of the multi-temperature annealing theorem

We follow the proof of the annealing theorem given by Geman and Geman in [97]. Essen-
tially, we can apply the same proof, only a slight modification is needed [24].

A.1.1 Notations

We recall a few notations:S = {s1, . . . , sN} denotes the set of sites,Λ = {0, 1, . . . , L− 1}
is a common state space andω, η, η′ . . . ∈ Ω denote configurations, whereΩ = ΛN is
finite. The sites are updated in the order{n1, n2, . . .} ⊂ S. The generated configurations
constitute an inhomogeneous Markov chain{X(k), k = 0, 1, 2, . . .}, whereX(0) is the
initial configuration. The transitionX(k−1) → X(k) is controlled by the Gibbs distribution
πT (k,C) according to the transition matrix at timek:

Pω,η(k) ==

{
πT (k,C)(Xnk

= ηnk
| Xs = ηs, s 6= nk), if η = ω|ωnk

=λ for someλ ∈ Λ

0, otherwise
(A.1)

πT (k,C)(ω) denotes the Gibbs distribution at iterationk

πT (k,C)(ω) =
exp(−U(ω)⊘ T (k, C))

Z
(A.2)

with U(ω)⊘ T (k, C) =
∑

C∈C

VC(ω)

T (k, C)
. (A.3)

The local characteristics of the above distribution are denoted by:

πT (k,C)(Xs = ωs | Xr = ωr, s 6= r) =
1

Zs
exp

(
−

∑

C∈C:s∈C

VC(ω)

T (k, C)

)
(A.4)

with Zs =
∑

λ∈Λ
exp

(
−

∑

C∈C:s∈C

VC(ω|ωs=λ)

T (k, C)

)
(A.5)

The decomposition ofU(ω)− U(η) for arbitraryω andη, ω 6= η is given by:

U(ω)− U(η) =
∑

C∈C
(VC(ω)− VC(η)). (A.6)

Denoting respectively byΣ+(ω, η) andΣ−(ω, η) the sum over the positive and negative
cliques, we get: ∑

C∈C
(VC(ω)− VC(η))

=
∑

C∈C:(VC(ω)−VC (η))<0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ−(ω,η)

+
∑

C∈C:(VC(ω)−VC (η))≥0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ+(ω,η)

. (A.7)
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Furthermore, let

Usup = max
ω∈Ω

U(ω), (A.8)

U inf = min
ω∈Ω

U(ω), (A.9)

and∆ = Usup − U inf . (A.10)

and defineΣ+
∆ as the minimum of positive sums:

Σ+
∆ = min

ω′ ∈ Ωsup

ω′′ ∈ Ωopt

Σ+(ω′, ω′′). (A.11)

Obviously∆ ≤ Σ+
∆.

Given any starting distributionµ0, the distribution ofX(k) is given by the vectorµ0

∏k
i=1 P (i):

Pµ0(X(k) = ω) =

(
µ0

k∏

i=1

P (i)

)∣∣∣∣∣
ω

(A.12)

=
∑

η

P (X(k) = ω|X(0) = η)µ0(η) (A.13)

We use the following notation for transitions:∀l < k andω, η ∈ Ω:

P (k, ω|l, η) = P (X(k) = ω|X(l) = η),

and for any distributionµ onΩ:

P (k, ω|l, µ) =
∑

η

P (X(k) = ω|X(l) = η)µ(η).

Sometimes, we use this notation asP (k, ·|l, µ), where “·” meansanyconfiguration fromΩ.
Finally, let‖µ− ν‖ denotes the following distance between two distributions on Ω:

‖µ− ν‖ =
∑

ω

|µ(ω)− ν(ω)| .

It is clear, thatlimn→∞ µn = µ in distribution (i.e. ∀ω : µn(ω) → µ(ω)) if and only if
‖µn − µ‖ → 0.

A.1.2 Proof of the theorem

First, we state two lemmas which imply Theorem 1.2.1:
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Lemma A.1.1 For everyk0 = 0, 1, 2 . . .:

lim
k→∞

sup
ω,η′,η′′

|P (X(k) = ω|X(k0) = η′)− P (X(k) = ω|X(k0) = η′′)| = 0. (A.14)

Proof:
Fix k0 = 0, 1, 2, . . ., defineKl = k0+ lκ, l = 0, 1, 2, . . ., whereκ is the number of transitions
necessary for a full sweep ofS (for everyk = 0, 1, 2, . . .: S ⊆ {nk+1, nk+2, . . . , nk+κ}). Let
δ(k) be the smallest probability among the local characteristics:

δ(k) = inf
1≤i≤N

ω∈Ω
πT (k,C)(Xsi = ωsi|Xsj = ωsj , j 6= i).

A lower bound forδ(k) is given by:

δ(k) ≥ exp(−Usup ⊘ T (k, C))

L exp(−U inf ⊘ T (k, C))
=

exp(−∆⊘ T (k, C))

L
≥ 1

L
exp(−Σ+

∆ ⊘ T (k, C)

≥ 1

L
exp(−Σ+

∆/T
inf
k ) ,

whereL =| Λ | is the number of possible states at a site. Now fixl and definemi as the time
of the last replacement of sitesi beforeKl + 1 (that is before thelth full sweep):

∀i: 1 ≤ i ≤ N : mi = sup{k : k ≤ Kl, nk = si}.

Without loss of generality, we can assume thatm1 > m2 · · · > mN (otherwise relabel the
sites). Then:

P (X(Kl) = ω|X(Kl−1) = ω′)

= P (Xs1(m1) = ωs1, Xs2(m2) = ωs2, . . . , XsN (mN ) = ωsN |X(Kl−1) = ω′)

=

N−1∏

i=1

P (Xsi(mi) = ωsi|Xsi+1
(mi+1) = ωsi+1

, . . . , XsN (mN ) = ωsN , X(Kl−1) = ω′)

≥
N∏

i=1

δ(mi) ≥ L−N

N∏

i=1

exp(−∆/T inf
mi

) ≥ L−N exp

(
− Σ+

∆N

T inf
k0+lκ

)
(A.15)

sincemi ≤ Kl = k0 + lκ, i = 1, 2 . . . , N andT inf
k is decreasing. Ifk0 + lκ is sufficiently

large thenT inf
k0+lκ ≥ NΣ+

∆/ ln(k0 + lκ) according to condition 1.2.1/ii and Eq. (A.15) can be
continued as:

P (X(Kl) = ω|X(Kl−1) = ω′) ≥ L−N exp

(
− Σ+

∆N

NΣ+
∆/ ln(k0 + lκ)

)
= L−N (k0 + lκ)−1.

Hence, for a sufficiently small constantΓ (0 < Γ ≤ 1), we can assume that

inf
ω,ω′

P (X(Kl) = ω|X(Kl−1) = ω′) ≥ ΓL−N

k0 + lκ
(A.16)
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for everyk0 = 0, 1, 2, . . . andl = 1, 2, . . ., keeping in mind thatKl depends onk0.

Consider now the limit given in Eq. (A.14) and for eachk > k0, defineKsup(k) =
sup{l : Kl < k} (the last sweep before thekth transition) so thatlimk→∞Ksup(k) = ∞. Fix
k > K1:

sup
ω,η′,η′′

|P (X(k) = ω|X(0) = η′)− P (X(k) = ω|X(0) = η′′)|

= sup
ω

(
sup
η
P (X(k) = ω|X(0) = η)− inf

η
P (X(k) = ω|X(0) = η)

)

= sup
ω

(
sup
η

∑

ω′

P (X(k) = ω|X(K1) = ω′)P (X(K1) = ω′|X(0) = η)

− inf
η

∑

ω′

P (X(k) = ω|X(K1) = ω′)P (X(K1) = ω′|X(0) = η)

)

.
= sup

ω
Q(k, ω).

Furthermore, for eachω ∈ Ω:

sup
η

∑

ω′

P (X(k) = ω|X(K1) = ω′)P (X(K1) = ω′|X(0) = η)

≤ sup
µ

∑

ω′

P (X(k) = ω|X(K1) = ω′)µ(ω′),

whereµ is any probability measure onΩ. Using Eq. (A.16), we get:

µ(ω′) ≥ ΓL−N

k0 + lκ
.

Suppose thatP (X(k) = ω|X(K1) = ω′) is maximized atω′ = ωsup and minimized at
ω′ = ωinf . Then we get:

sup
µ

∑

ω′

P (X(k) = ω|X(K1) = ω′)µ(ω′) ≤

(
1− (LN − 1)

ΓL−N

k0 + lκ

)
P (X(k) = ω|X(K1) = ωsup)

+
ΓL−N

k0 + lκ

∑

ω′ 6=ωsup

P (X(k) = ω|X(K1) = ω′)

︸ ︷︷ ︸
P (X(k)=ω|X(K1)=ωinf )+

∑
ω′ 6=ωsup,ωinf P (X(k)=ω|X(K1)=ω′)

,

and in a similar way:

inf
µ

∑

ω′

P (X(k) = ω|X(K1) = ω′)µ(ω′) ≥
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(
1− (LN − 1)

ΓL−N

k0 + lκ

)
P (X(k) = ω|X(K1) = ωinf)

+
ΓL−N

k0 + lκ

∑

ω′ 6=ωinf

P (X(k) = ω|X(K1) = ω′)

︸ ︷︷ ︸
P (X(k)=ω|X(K1)=ωsup)+

∑
ω′ 6=ωsup,ωinf P (X(k)=ω|X(K1)=ω′)

.

Then, it is clear that

Q(k, ω) ≤
(
1− Γ

k0 + lκ

)(
P (X(k) = ω|X(K1) = ωsup)− P (X(k) = ω|X(K1) = ωinf)

)
,

hence:
sup

ω,η′,η′′
|P (X(k) = ω|X(0) = η′)− P (X(k) = ω|X(0) = η′′)| ≤

(
1− Γ

k0 + lκ

)
sup

ω,η′,η′′
|P (X(k) = ω|X(K1) = η′)− P (X(k) = ω|X(K1) = η′′)| ≤

(
1− Γ

k0 + lκ

)((
1− Γ

k0 + lκ

)
sup

ω,η′,η′′

∣∣P (X(k) = ω|X(K2) = η′)− P (X(k) = ω|X(K2) = η′′)
∣∣
)

Proceeding this way, we have the following bound:

≤
Ksup(k)∏

k=1

(
1− Γ

k0 + lκ

)
sup

ω,η′,η′′

∣∣P (X(k) = ω|X(KKsup(k)) = η′)

−P (X(k) = ω|X(KKsup(k)) = η′′)
∣∣

and finally, since the the possible maximal value of the supremum is1:

sup
ω,η′,η′′

|P (X(k) = ω|X(0) = η′)− P (X(k) = ω|X(0) = η′′)| ≤
Ksup(k)∏

k=1

(
1− Γ

k0 + lκ

)
.

It is then sufficient to show that

lim
m→∞

m∏

k=1

(
1− Γ

k0 + lκ

)
= 0.

which is a well known consequence of the divergence of the series

∑

l

(k0 + lκ)−1

for all k0 andκ. This completes the proof. Q.E.D.
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Lemma A.1.2
lim

k0→∞
sup
k≥k0

‖ P (k, ·|k0, π0)− π0 ‖= 0. (A.17)

Proof:
In the following, letPk0,k(·) stand forP (k, ·|k0, π0), so that for anyk ≥ k0 > 0:

Pk0,k(ω) =
∑

η

P (X(k) = ω|X(k0) = η)π0(η).

First, we show that for anyk > k0 ≥ 0:

‖Pk0,k − πT (k,C)‖ ≤ ‖Pk0,k−1 − πT (k,C)‖. (A.18)

We can assume for convenience thatnk = s1. Then

‖Pk0,k − πT (k,C)‖ =

∑

(ωs1 ,...ωsN
)

∣∣πT (k,C)(Xs1 = ωs1|Xs = ωs, s 6= s1)Pk0,k−1(Xs = ωs, s 6= s1)

−πT (k,C)(Xs = ωs, s ∈ S)
∣∣

=
∑

(ωs2 ,...ωsN
)


∑

ωs1∈Λ
πT (k,C)(Xs1 = ωs1|Xs = ωs, s 6= s1) |Pk0,k−1(Xs = ωs, s 6= s1)

−πT (k,C)(Xs = ωs, s 6= s1)
∣∣)

=
∑

(ωs2 ,...ωsN
)

∣∣Pk0,k−1(Xs = ωs, s 6= s1)− πT (k,C)(Xs = ωs, s 6= s1)
∣∣

=
∑

(ωs2 ,...ωsN
)

∣∣∣∣∣∣

∑

ωs1

(Pk0,k−1(Xs = ωs, s ∈ S)− πT (k,C)(Xs = ωs, s ∈ S))

∣∣∣∣∣∣

≤
∑

(ωs1 ,...ωsN
)

∣∣Pk0,k−1(Xs = ωs, s ∈ S)− πT (k,C)(Xs = ωs, s ∈ S)
∣∣

= ‖Pk0,k−1 − πT (k,C)‖.
Second, we prove thatπT (k,C) converges toπ0 (the uniform distribution onΩopt):

lim
k→∞

‖π0 − πT (k,C)‖ = 0.

To see this, let|Ωopt| be the number of globally optimal configurations. Then

lim
k→∞

πT (k,C)(ω)
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= lim
k→∞

exp(−U(ω)⊘ T (k, C))∑
ω′∈Ωopt

exp(−U(ω′)⊘ T (k, C)) +
∑

ω′ 6∈Ωopt
exp(−U(ω′)⊘ T (k, C))

= lim
k→∞

exp(−(U(ω)− U inf )⊘ T (k, C))

|Ωopt|+
∑

ω′ 6∈Ωopt
exp(−(U(ω)− U inf )⊘ T (k, C))

=

{
0 ω /∈ Ωopt
1

|Ωopt| ω ∈ Ωopt

(A.19)
The above equation is true if(U(ω)−U inf)⊘T (k, C) ≥ 0. Let us rewrite this inequality as

∑

C∈C

VC(ω)− VC(ω
′)

T (k, C)
≥ 0 (A.20)

whereω′ is any globally optimal configuration (i.e.ω′ ∈ Ωopt). While VC(ω) − VC(ω
′)

may be negative,U(ω) − U inf is always positive or zero. We denote byΣ(ω) the energy
difference in Eq. (A.20) without the temperature. Obviously, it is non-negative:

Σ(ω) =
∑

C∈C
VC(ω)− VC(ω

′) = U(ω)− U inf ≥ 0

Then, let us decomposeΣ(ω) according to Eq. (1.14):

Σ(ω) = Σ+(ω, ω′) + Σ−(ω, ω′).

From which:
Σ+(ω, ω′) = Σ(ω)− Σ−(ω, ω′).

Now, we consider Eq. (A.20):

∑

C∈C

VC(ω)− VC(ω
′)

T (k, C)
= Σ−(ω, ω′)⊘ T (k, C) + Σ+(ω, ω′)⊘ T (k, C)

≥ Σ−(ω, ω′)/T inf
k + Σ+(ω, ω′)/T sup

k =
Σ−(ω, ω′) · T sup

k + Σ+(ω, ω′) · T inf
k

T inf
k T sup

k

≥ 0

Furthermore:

Σ−(ω, ω′) · T sup
k + Σ+(ω, ω′) · T inf

k = Σ−(ω, ω′) · T sup
k + (Σ(ω)− Σ−(ω, ω′))T inf

k

Therefore:
Σ−(ω, ω′)(T sup

k − T inf
k )− Σ(ω) · T inf

k ≥ 0

Dividing byΣ−(ω, ω′) which is negative, we get:

T sup
k − T inf

k ≤ Σ(ω)

| Σ−(ω, ω′) |T
inf
k

Which is true due to condition 1.2.1/iii of the theorem.
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Finally, we can prove that

∞∑

k=1

∥∥πT (k,C) − πT (k+1,C)

∥∥ <∞ (A.21)

since ∞∑

k=1

∥∥πT (k,C) − πT (k+1,C)

∥∥ =
∑

ω

∞∑

k=1

∣∣πT (k,C)(ω)− πT (k+1,C)(ω)
∣∣

and since
∀ω : πT (k,C)(ω) −→ π0(ω),

it is enough to show thatπT (ω) is monotonous for everyω. However it is clear from
Eq. (A.19) that

• if ω /∈ Ωopt thenπT (ω) is strictly increasing for0 < T ≤ ǫ for some sufficiently small
ǫ,

• if ω ∈ Ωopt thenπT (ω) is strictly decreasing for allT > 0.

Fix k > k0 ≥ 0. From Eq. (A.18) and Eq. (A.21), we obtain:

‖Pk0,k − π0‖ ≤ ‖Pk0,k − πT (k,C)‖+ ‖πT (k,C) − π0‖

≤ ‖Pk0,k−1 − πT (k,C)‖+ ‖πT (k,C) − π0‖ by Eq. (A.18)

≤ ‖Pk0,k−1 − πT (k−1,C)‖+ ‖πT (k−1,C) − πT (k,C)‖+ ‖πT (k,C) − π0‖
≤ ‖Pk0,k−2−πT (k−2,C)‖+ ‖πT (k−2,C)−πT (k−1,C)‖+ ‖πT (k−1,C)−πT (k,C)‖+ ‖πT (k,C)−π0‖

≤ · · · ≤ ‖Pk0,k0 − πT (k0,C)‖+
k−1∑

l=k0

‖πT (l,C) − πT (l+1,C)‖+ ‖πT (k,C) − π0‖.

On the other hand,
Pk0,k0 = π0

and
lim
k→∞

‖πT (k,C) − π0‖ = 0.

Then we have

lim sup
k0→∞

sup
k≥k0

‖Pk0,k − π0‖ ≤ lim sup
k0→∞

sup
k>k0

k−1∑

l=k0

‖πT (l,C) − πT (l+1,C)‖

= lim sup
k0→∞

∞∑

l=k0

‖πT (l,C) − πT (l+1,C)‖ = 0

The last term is0 by (A.21) which completes the proof. Q.E.D.
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Theorem 1.2.1 (Multi-Temperature Annealing) Assume that there exists an integer
κ ≥ N such that for everyk = 0, 1, 2, . . ., S ⊆ {nk+1, nk+2, . . . , nk+κ}. For allC ∈ C,
let T (k, C) be any decreasing sequence of temperatures ink for which

(i) limk→∞ T (k, C) = 0.
Let us denote respectively byT inf

k andT sup
k the maximum and minimum of the tem-

perature function atk (∀C ∈ C:T inf
k ≤ T (k, C) ≤ T sup

k ).

(ii) For all k ≥ k0, for some integerk0 ≥ 2: T inf
k ≥ NΣ+

∆/ ln(k).

(iii) If Σ−(ω, ω′) 6= 0 for someω ∈ Ω \ Ωopt, ω′ ∈ Ωopt then a further condition must be
imposed:

For allk: T sup

k
−T inf

k

T inf
k

≤ R with

R = min
ω ∈ Ω \ Ωopt

ω′ ∈ Ωopt

Σ−(ω, ω′) 6= 0

U(ω)− U inf

| Σ−(ω, ω′) |

Then for any starting configurationη ∈ Ω and for everyω ∈ Ω:

lim
k→∞

P (X(k) = ω | X(0) = η) = π0(ω). (A.22)

Proof:
Using the above mentioned lemmas, we can easily prove the annealing theorem:

lim sup
k→∞

‖P (X(k) = ·|X(0) = η)−π0‖ = lim sup
k0→∞

lim sup
k→∞
k≥k0

‖
∑

η′

P (k, ·|k0, η′)P (k0, η′|0, η)−π0‖

≤ lim sup
k0→∞

lim sup
k→∞
k≥k0

‖
∑

η′

P (k, ·|k0, η′)P (k0, η′|0, η)− P (k, ·|k0, π0)‖

+ lim sup
k0→∞

lim sup
k→∞
k≥k0

‖P (k, ·|k0, π0)− π0‖ .

The last term is0 by Lemma A.1.2. Moreover,P (k0, ·|0, η) andπ0 have total mass1, thus:

‖
∑

η′

P (k, ·|k0, η′)P (k0, η′|0, η)− P (k, ·|k0, π0)‖

=
∑

ω

sup
η′′

|
∑

η′

(P (k, ω|k0, η′)− P (k, ω|k0, η′′))(P (k0, η′|0, η)− π0(η
′))|
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≤ 2
∑

ω

sup
η′,η′′

|P (k, ω|k0, η′)− P (k, ω|k0, η′′)| .

Finally,
lim sup
k→∞

‖P (X(k) = ·|X(0) = η)− π0‖

≤ 2
∑

ω

lim sup
k0→∞

lim sup
k→∞
k≥k0

sup
η′,η′′

|P (k, ω|k0, η′)− P (k, ω|k0, η′′)| = 0

The last term is0 by Lemma A.1.1 which completes the proof of the annealing theorem.
Q.E.D.
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A.2 Proof of Theorem 5.3.1

Let 1 ≤ k ≤ n arbitrary and fixed. We assume thatωk(x) is polynomial,i.e. there exists an
n-variate real polynomepk with deg(pk) ≥ 1, such that

ωk(x) = pk(x1, . . . , xn) =

uk∑

i=1

si(A
−1
1 y)αi1 . . . (A−1

n y)αin , (A.23)

whereuk =

(
deg(pk) + n
deg(pk)

)
, andA−1

j denotes thejth row ofA−1. One term of Eq. (A.23)

can be expanded by making use of theMultinomial theorem[151]. For a giveni and for all
1 ≤ j ≤ n, we get

(A−1
j y)αij = (qj1y1 + . . .+ qjnyn + qj(n+1))

αij

=
∑

βij1, . . . , βij(n+1) ∈ N0

βij1 + . . .+ βij(n+1) = αij

αij!

βij1! . . . βij(n+1)!
q
βij1

j1 . . . q
βijn

jn q
βij(n+1)

j(n+1) y
βij1

1 . . . yβijn
n ,

hence we get an(n + 1)-variate real polynome. In fact, we should compute the sum of
the product ofn pieces of(n + 1) - variate polynoms in Eq. (A.23). Letm = n(n + 1)
and consider these products asm-variate polynoms. Furthermore, the sum ofm-variate
polynoms is also anm-variate polynome. Integrating and using this observationwe can
rewrite Eq. (A.23) as

∫ uk∑

i=1

si(A
−1
1 y)αi1 . . . (A−1

n y)αin ≡
∫ vk∑

i=1

tiq
γi1
1 . . . qγimm yδi11 . . . yδinn ,

wherevk =

(
deg(pk) +m

deg(pk)

)
. It is obvious from the above equation that the system of

equation has a degree of up todeg(pk). Furthermore, by making use of the basic properties
of the Lebesgue integral, we get

∫ vk∑

i=1

tiq
γi1
1 . . . qγimm yδi11 . . . yδinn =

vk∑

i=1

∫
tiq

γi1
1 . . . qγimm yδi11 . . . yδinn

=

vk∑

i=1

tiq
γi1
1 . . . qγimm

∫
yδi11 . . . yδinn =

vk∑

i=1

wiq
γi1
1 . . . qγimm .

The last term is indeed a real polynomerk with variablesq1, . . . , qm yielding
∫
ωk(x) ≡ rk(q1, . . . , qm).

Hence the system of equations is polynomial which completesthe proof.
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A.3 Proof of Theorem 6.3.1

The statement of Theorem 6.3.1 follows from the next three lemmas [12].

Lemma A.3.1 If f1 andf2 are separable with respect to(a,φ(x)), then the function
F (x) = f1(x)f2(x) is also separable.

Proof:
Since bothf1 andf2 are separable, there exist two sets of functionsg

(1)
i , g

(2)
j : Rn → R and

h
(1)
i , h

(2)
j : R2n → R

2 for 1 ≤ i ≤ s and1 ≤ j ≤ t such that

F (x) =

s∑

i=1

g
(1)
i (a)h

(1)
i (φ(x))

t∑

j=1

g
(2)
j (a)h

(2)
j (φ(x))

=

s∑

i=1

t∑

j=1

g
(1)
i (a)g

(2)
j (a)h

(1)
i (φ(x))h

(2)
j (φ(x)).

Making use of the notationsgl = g
(1)
i g

(2)
j andhl = h

(1)
i h

(2)
j with l = (i− 1)t+ j, we get

F (x) =

st∑

l=1

gl(a)hl(φ(x)),

which completes the proof. Q.E.D.

Lemma A.3.2 If ϕ(x) =
∑n

i=1 aiφi(x), then |Jϕ(x)| is separable with respect to
(a,φ(x)).

Proof:
Let us denote the components of the basis functions asφi(x) = [φi1(x), φi2(x)]. The partial
derivatives∂lϕk (k, l = 1, 2) of ϕ(x) are then given by

∂ϕk

∂xl
=

n∑

i=1

ai∂lφik(x), k, l = 1, 2

from which the Jacobian determinant of Eq. (6.4) can be written as

|Jϕ(x)| =
( n∑

i=1

ai∂1φi1(x)
)( n∑

j=1

aj∂2φj2(x)
)

−
( n∑

i=1

ai∂2φi1(x)
)( n∑

j=1

aj∂1φj2(x)
)

=

n∑

i=1

n∑

j=1

aiaj(∂1φi1(x)∂2φj2(x)

−∂2φi1(x)∂1φj2(x)).
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Settinggl(a) = aiaj andhl(φ(x)) = ∂1φi1(x)∂2φj2(x) − ∂2φi1(x)∂1φj2(x) with l = (i −
1)n+ j, we get

|Jϕ(x)| =
n2∑

l=1

gl(a)hl(φ(x)).

The Jacobian is thus separable, which completes the proof. Q.E.D.

Lemma A.3.3 If ϕ(x) =
∑n

i=1 aiφi(x) andp(x) = [p1(x1, x2), p2(x1, x2)], where
p1, p2 ∈ R[x1, x2] are polynomials withdeg(p1) = d1 anddeg(p2) = d2, thenp(ϕ(x)) is
separable with respect to(a,φ(x)).

Proof:
Let us consider the first componentp1 of

p
( n∑

i=1

aiφi(x)
)
=
[
p1

( n∑

i=1

aiφi(x)
)
, p2

( n∑

i=1

aiφi(x)
)]
.

Sincep1(x1, x2) =
∑

j cjx
qj
1 x

rj
2 is polynomial,

p1

( n∑

i=1

aiφi1(x),

n∑

i=1

aiφi2(x)
)
=

∑

j

cj

( n∑

i=1

aiφi1(x)
)qj( n∑

i=1

aiφi2(x)
)rj

.

(∑n
i=1 aiφi1(x)

)qj
can be further expanded by making use of theMultinomial theorem[151]

as ∑ qj !

s1! . . . sn!
as11 . . . asnn φ11(x)

s1 . . . φn1(x)
sn,

wheres1, . . . , sn ∈ N0 and
∑n

i=1 si = d1. For thelth term of the above sum, let us define
gl1(a) =

qj !

s1!...sn!
as11 . . . asnn andhl1(φ(x)) =

∏n
i=1 φi1(x)

si, yielding

( n∑

i=1

aiφi1(x)
)qj

=
∑

l

gl1(a)hl1(φ(x)).

χ−1
1 (y) = x1 =

(H22 −H32H23)y1 − (H12 −H32H13)y2 +H23H12 −H22H13

(H32H21 −H31H22)y1 − (H32H11 −H31H12)y2 +H22H11 −H21H12

χ−1
2 (y) = x2 =

−(H21 −H31H23)y1 + (H11 −H31H13)y2 − (H23H11 −H21H13)

(H32H21 −H31H22)y1 − (H32H11 −H31H12)y2 +H22H11 −H21H12
(A.24)

|Jχ−1(y)| =
|H|2

((H32H21 −H31H22)y1 − (H32H11 −H31H12)y2 +H22H11 −H21H12)3
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Hence
(∑n

i=1 aiφi1(x)
)qj

is separable and similarly
(∑n

i=1 aiφi2(x)
)rj

is also separable.

Furthermore, their product is also separable by Lemma A.3.1, thus we proved thatp1 is sepa-
rable. Similarly, it is easy to see thatp2 is also separable, which completes the proof.Q.E.D.

Now the statement of Theorem 6.3.1 is easily seen:f(ϕ(x)) and|Jϕ(x)| are separable
by Lemma A.3.3 and Lemma A.3.2, respectively. Hence their productf(ϕ(x))|Jϕ(x)| is
also separable by Lemma A.3.1 and using the basic propertiesof integral calculus, we get
Eq. (6.14).

DSc dissertation, 2013

               dc_494_12



               dc_494_12



Author’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publicationsAuthor’s publications

[1] C. Benedek, T. Sziranyi,Z. Kato , and J. Zerubia, “A multi-layer MRF model for
object-motion detection in uregistered airborne image-pairs,” in Proceedings of Inter-
national Conference on Image Processing, (San Antonio, Texas, USA), pp. 141–144,
IEEE, IEEE, Sep. 2007.

[2] C. Benedek, T. Sziranyi,Z. Kato , and J. Zerubia, “Detection of object motion re-
gions in aerial image pairs with a multilayer Markovian model,” IEEE Transactions
on Image Processing, vol. 18, pp. 2303–2315, Oct. 2009.

[3] M. Berthod, Z. Kato , S. Yu, and J. Zerubia, “Bayesian image classification using
Markov random fields,”Image and Vision Computing, vol. 14, pp. 285–295, 1996.

[4] M. Berthod,Z. Kato , and J. Zerubia, “DPA: A deterministic approach to the MAP,”
IEEE Transactions on Image Processing, vol. 4, pp. 1312–1314, Sep. 1995.

[5] T. Blaskovics,Z. Kato , and I. Jermyn, “A Markov random field model for extracting
near-circular shapes,” inProceedings of International Conference on Image Process-
ing, (Cairo, Egypt), pp. 1073–1076, IEEE, IEEE, Nov. 2009.

[6] C. Domokos andZ. Kato , “Binary image registration using covariant Gaussian densi-
ties,” in International Conference on Image Analysis and Recognition, (A. Campilho
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