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Introduction

The mathemetical theory of elasticity Cwhich has practicaly
important applications in architecture, engineering, physics and

all other useful arts in which the material of construction is

solid) owes its development to demand for more realistic methods
of determing the safty factors of structures or machine parts.

The rapid and intensive development of computer engineering has

arouseaed t he considerabl e i nterect. Of researchers for t.he
devel opment of effective numerical methods for the solution of

elasticity problems. Together with the methods in continuum

mechaincs and engineering calculations.

Oneof the important and complicated cases in the elasticity
problems are those in which a body has been strained by a load or
subjected to very great pressure, and is set free, the set
gradually diminishes. The body never returns to its primitive
condition, and the ultimate deformation is the "permanent set',
the part of strain that gradually dicappears is called elastic
after—-strain. In other elastic problems some plasticity of the
material appears as soon as the limit of linear elasticy is
exceeded. This leads to the elastic-plastic problems which are
still under considerable investigation.

The particular problem investigated in this dissertation is

an elastic cylinder of rotational symmetry. The cylinder 1is
subjected to a torque applied at both ends. The torque of
sufficient magnitude is to cause portions of the material of the
cylinder to yield. The material is assummed to be isotropic and
vields according to the condition of von Mises. This condition
Means that below the vyield point the behavior is perfectly

elastic and after vield the material exhibits perfect plasticity.




The yield condition requires that the maximum shearing stress has

the constant value equal to the yield stress in pure shear.
Because of the axial symmetry of the cvylinder the

formulation of the problem can be ‘reduced to a two-dimensional

domail n.

In obtaining the elastic and plastic equations it 1is

assummed [1] that the only two non-zero components of the stress

ro Sz
function u by

tensor are T and T and there are given in terms of stress

" . — 1 du - I 1 du

ro 2 oz Sz 2 or
I | |

The elastic problem is expressed by the linear second-order
elliptic equation with variable coefficients (1], [38), [39]. The
boundary conditions are mixed: On two parts of the boundary C(the
central and lateral lines) the values of the function have been
given (first-kind boundary conditions). On other parts of the
boundary (the right and left sides) the derivative of the
function have been given (second-kind boundary conditions). On
one part of the boundary (central line) the '.coef‘f‘i cients of the
elastic equation tends to infinity (for more detail see ch.ID.

The plastic problem is expressed by the equalization of the
absolut wvalue of the plastic stress function to a constant
depends on the material. This problem has the form of Cauchy
problem for non-linear first-order hyperbolic equation C(see
ch.IID.

The main problem is to obtain the free boundary separating
the elastic and plastic domains. On this free boundary the
solution of the elastic-plastic problem and its gradient are
contilnuous.

We now give a short description of the contents of the
dissertation.

In chapter I, we have constructed a special spline function

of fourth degree for the approximation of the elastic problem in




two different domains. This spline, which satisfies the equation
of the problem in the every subdomai n with the main boundary
conditions, has only four coefficients. We have proved that such
spline function exist and it is continuous over the whole given
domains and not only at the grid-points of the meshs (see
theocrems 1.1.1 and 1.3.1). Furthermore we show that this spline
gives better approximate solution to the problem than the
piecewise linear spline. We have proved the convergence of the
spline for the one and two-dimensional elastic problems and for
the last case in two different domains corresponding to the
constant and wvariable diameters. The only property used for the
convergence that our spline belong to the W' -Sobol ev space. The

2
coefficients of the spline are obtained by Ritz method with the

using of Lagrange multiplvyers.

In chapter II1 we have constructed by finite difference
method two schemes-explicit and implicit-for the solution of
non—linear first-order hyperbolic equation with given boundary
conditions which expresses the plastic problem in a cylinder of
variable diameter. The accuracies, acdvantages and the
dl sadvantages of these two schemes are discussed.

Following thé classical iteration methods, in chapter 111,
we have proposed a new iteration processes for the solution of
the one-dimensional elastic-plastic problem. As a result of these
lteration methods we have found out the position of the free
boundary separating the elastic and plastic domains. The
quadratic convergence of these iterations has been proved.

In chapter IV we have investigated the solution of the
two—-dimensional free boundary problem in rectangular domain with
gi ven boundary condi tions as a special case of the

elastic-plastic problem formulated above. The solution of the

boundary wvalue problem of the csecond-order elliptic diffrential

—

equation which expresses the elastic problem has been obtained by

the analytic represention in the form of infinity series. Then we

constructed iteration process to obtain the free boundary of the
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elastic-plastic problem. The convergence of the iteration 1s
shown. '

L chapter Vv we considered the solution of the
elastic-plastic problem in the cylinder of variable diameter with
the using of more general boundary conditions. Iteration process
is proposed to obtain the unknown free boundary. The plastic
problem need be solved only one time during all the iteration
process. The elastic problem must be solved in every step of the
iteration process in the corrigated domain with the new
approximate boundary, using the value of the plastic function on
this boundary line. The elastic and plastic problems can be
solved by the methods introduced in the first two chapters. We
proposed a method for obtaining the first approximation of the
free boundary too. The next approximations of the free boundary
can be found from the comparsion between the gradients of
solutions of +the elastic and plastic problems. Iteration
processes based on qualititive and quantitive strategies have
been constructed. The convergence of these 1terations 1is
discussed.

Most of the dissertation contents were presented in form of
the papers ([38] , [39), (401, (411, (421, [431). and lectures
before the following conferences and seminars:

CiD) Approximate Solution for an Elastic Problem 1in a
cylinder with Circular Section by Spline Method. Seminar held at
Computer Center of ELTE, 1987. ' .

Ciid) Some Results About Solving Elastic-Plastic Problem of
Free Boundary (in Russain), with R. Farzan. "Taung Uber Probleme
und Methoden der Mathematischen Physik" Conference held in DDR,
1988.

Ciiid Spline Functions Solution of Elastic Problem. "Fourth
Conference of Program Designers'" held in Budapest, 1988.

Civ) Spline Method for one Elastic Problem in the Body with
Cylinderical Symmetry. Seminar organized by Veszprém University

in cooperation with "Society of Educational Science” Veszpreéem




county organization, "Bolyai Janos Matematical Society"” Veszprém
county branch, and ."Neumann Janos Society of Computer Science"

Veszpréem county organization. Held at Veszprém University, 1989.
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CHAPTER 1

Aproximate Solution For An Elastic Problem.By Spline Functions

1.0. Comments and literatures. In developing the polinomial

Splines one may consider the approximating functions

SCx) = c1¢1Cx) + c2¢>ZCxJ +. .. +cn¢anJ -
that satisfy a set of mixed Ci. e. both interpolitory and

smoothneés) constraints. Let the functions ‘ﬂ“ = 1,N) are
linearly independent on the interval [a,b]l so they span a
N—dimensional subspace XN of Cla,bl. Oné can suppress the
smoothness constraints by building the desired smoothness into
the basis ¢i’ leavi ng a set of pure interpolatory constraints to
fulfill. At other times one can start with the space XN and ask
what kind of interpoclation problems can be uniquely solved by
members of this linear space. Following these ways one can
construct different types of polynomial splines.

A spline of order 2n is simple when there is at most a jump
discontinuity in the (2n-1J0th derivative at a mesh point. When
Jumps in derivative of order greater than 2n-k-1 are permitted at
an interior mesh point X s the spline is said rt,t.:a be of deficiency
k at X. . If the . spline is of deficiency k at all interior mesh
points, it is said to be of deficiency k where O £ k < n.

The effectiveness of the spline in approximation can be
ex;::lained to a considerable extend by its striking convergence

properties. If ‘Yo Cqg th derivative of the function ) is

continuous on [a,b]l] (g = 0,1,2, ord4d), it is found that SACf‘;x)

h. Similarly, S,PCf;% converges to fPCx (0 < p < @ at
least as rapidly as the (g-pdth power of the mesh norm. The

construction and convergence of splines in two-dimensional

T S e o e e S | (S ——
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domains are similar to that of one-dimensional splines. For the

spline theory and its applications one may refer to the work of

(), (101, (111, [12]1, [(13].

The elastic problem under consideration is represented by

the following minimization problem: The unknown u satisfies

u e HA and ICuw = min ICv),
VveH
A
where the set H of admissible functions is closed convex subset

A
of Hilbert space W, and the functional I of the system takes the

fform

ICvd = alv,v]l - 2fCvd,
where a [ , ] is a symmetric bilinear form Calv,w) = alw,Vv)) and
f is a linear form, both defined and continuous over the Hilbert
space W. As regards existence and uniqueness properties of the
solution of this problem, it is assumed in addition that
Cid the spéce W is complete.
Ciid the bilinear form al , ] is symmetric and v elliptic,

in the sense that

da> 0, Vv € W, a1|v1|a$¢a[v.v].
Ritz method is used to obtain the coefficients of the spline
with the use of Lagrange multiplyers, that is we minimize the

functional

ICVvD = alv,v] - 2fCvd + Z )\i.gi.

with respect to the coefficients of the spline, where X1 are the

Lagrange multiplyers, g, are functions which expresses the

conditions ©f the continuity of the splines (see 1.2.39).

For Ritz method and the minimization problems we refer to the

books [21, [S], [6]1., [14].

1.1. Introduction. In this chapter we shall use spline
functions method to obtain an approximate solution for an elastic
axisymmetric cylinder problem. The cylinder subjected to a torque
T applied at both ends CFIG.1.1)D.




Torque Torque
4
1
T
L
D S
FIGURE 1.1. An axisymmetric cylinder
The formulation of the problem [1] can be done 1in a

two-dimensional domain in the rz-plane because of supposed axial
symmetry. The pf‘obl em reduced to find function u which must

satisfy the elliptic differential equation:

- o 1 gu ) 0 1 Ju B
Cl1.1.1D Au: = = [ra - J -—-5-2"* [rs 52—'—-] = 0, F.ZGQ@}
together with the boundary conditions:
c1.1.2D ”lan = FCz), on the surfaces of domain,
C1.1: 3 - gz = ¢1Cr3 . on the left side of the domain,
Cl1.1. 4D z: = ¢>2Cr) : on the right side of the domain.

Notice the above boundary conditions are more general than those

given in [1] where F(z) = constant, e;'biCr) = ¢>2Cr) = 0.




1.2.1. It is desirable to consider the elastic axisymmetric

problem in the casé when the diameter of the domain is constant

CrlG.2.1).

FIGURE 2.1. The domain

The problem can be summarized as follows: The function u must

satisfy equationCl.1.1) on Q with the boundary conditions

cl1.2.1) u = 0, on l"o,

Ci1.2.2) u = FCz), on l"i.
gu _ = JOu _

Cl1.2.3) I e = ¢>1Cr3 , On I"z,
gu _ Ju  _ :

cl1.2. 4D s W gl W ¢2(FD , On ra,

where l"i' Ci = 0,3) are as shown in FIG.2.1.

1.2.2. The construction of spline functions. Let the domain

Q CFIG.2.1) is divided into (n x m) rectangular subdomains by

10




lines parallel to the rectangular coordinates. Let

c1.2.8 au((u ry=ao=u, &6 ., i =0,n-1, j = O0,m1,
| L =0 | ‘-;J "IJ
nzl, mz2, where§,={z,r|z < z £ zZ s .S rsr .
L,) L L+4 J J+1
z =3i.h , r =Jh};z =r =0, zZz =2, r =R
L z J r O O n m

Let the solution of ((1.1.1) be approximated by the spline

- function:

Cl1.2.86D uCz,rd) 2 sSs.Cz,rd:= S Cz,rd), in G .
| A L) L,)

In constructing SACz,r) the following stéps have been considered

Cid Supposé S,(z,r) in every subdomain Gi.

; is a polynomial

A
of two variables. |
Ciid Let this polynomial satisfy (1.1.1) in the interior of

the subdomains:

Cl.2.7) A Si. jCz.r) = 0O, in G .

L,)

Ciiid The minimal degree polynomial of two variables
obtained that satisfy (1.2.7) nontrivially is |

C1.2.8) S, €z,r> = A r*+B r*z+c =z +D

') L) L) % _ L)

where A , B_ , C and D are constants.
L) L,) L,) L,)

Civd The spline functions C(1.2.8) are supposed to be
continuous in Q. ' ' I

The main reason of choosi ng the fcurth—degree. pol ynominal
for constructing the spline is- deduced from the ffollowi ng:' By
' Fr* R* is obtai ned, for
the one-dimensional elastic probl em (Au = -3/8rCl/r 8us/drd) = O,
~with the boundary condition uCOD = 0, uCR) = F'), and for the
problem (€1.1.15,C1.2.13-C1.2.4)) in the case that F(z) = const.,

formula (1.2.8) the exact solution u

| ¢1Cr) = ¢>2Cr~3 = 0. Therefore, we can suppose that (1.2.8) gives a
better approximate solution to (1.1.1) with the boundary

11




conditions Cl1.2.10-C1.2.4), than a pliecewise bilinear

approximation (standard two-dimensional bilinear function with

ffour coefficients).

Let us rewrite formula (1.2.8) in the analogous form

4 4
Cl1.2.9) > (2Z,rJ) = a, ., Cr-rD + b, .
L) L,) L,)

J
c. (z-zJ)0 +d ,, i =0,n-1, j =0,m1,
L,) L Ly )

Cr‘-— rf) Cz - 20 +
) L

where a,. . ,b . ,c. and d are constants.
L,) L,) L,) L,)

Suppose that ((1.2.9) satisfies the main boundary conditions
(1.2.10,C1.2.2), but not by all means the natural boundary
conditions (1.2.33,0(1.2.40 [2]. Therefore, the formula (1.2.9)
have the following forms in the first and the last rows in O

C1.2.10D S, Cz,r> = a r* 4 b, r4Ccz-z>, i

tl L!O ,0 ‘r

O,n-1,

c1.2.11) S Cz,rd> = a cr*-Rr* + b 1c:~‘—R‘)c2-—zL> + Fcz),

L,m- L,m- 4 L, m-
i = 0,n-1,
where FCz) is the piecewise linear approximation of the function
FCz).
For the other rows in Q Ci.e. j = 1,m-2) the spline functions

have the form (1.2.9).

THEOREM 1.2.1. The continuous spline functions (1.2.9) exist
in Q and satisfy the main boundary conditions (1.2.1>-C1.2.2).

PROOF. The conditions that the spline functions (1.2.9) be

continuous in Q and take on the main boundary function values

are expressed by the following system of equations

Cl1.2.4&) a +b (z -z -a =0,1 =0,n2, j = 0,m—1,
%3 L] L+1 L 1+4,)

£1.2.13%) c. (z -zJ) - d  -d , ,=0,i =0,n—2, jJj =1,m-2,
L) L+4 L L) L+1,)

C1.2.14) a r*-d =0, i =0,n1,
L,0 i L4

12




B b, r -—-—c¢ =0, 1 = 0,n-1,
1,0 1 i,1 , -
c1.2.18> a _ (r% -r%)+d -d . =0,i =0,n1,j =1,m3,
L,) J+ 1 ) L,) L o
€1.2.17> b (r% - r®) + ¢ - ¢ . =0, = 0,n1,j = 0,1,m3,
L,] - X ) L,) L4
C1.2.18D a. (r*4 — r‘ ) + d. —-a (r‘ - r‘) =
i, Mm—2 m-4 m—-2 L,m-2 L,m-4 m-4 m

= F‘Czi). i = O,n-1,

C1.2.19D b (r‘ R ) + c
L,m-2 m-—4 m-2

4 4
L,m-z-_bi.,m—:l(r m-1 - m)

) F(zt+1) - F(zi) —
il - e = O,n-1.
L+ 14 L

The system (1.2.120-C1.2.19) has 2a2(Z2mn-m-2n+l) equations with
4Cmn-n) coefficients. The analysis shows that there exist

Cmn—n-m+l) dependent equations in the system. By deleting ' the

dependent equations from the system Cusing the equations

€1.2.14),C1.2.162,C1.2.18) for i=0 only) we get the following M

system Cof N = (Bmn-3n—-m+1l) 1independent equations with 4U(mn-n)

unknown coefficients)

a + b (z -z -a , = 0, 1 =0,n—2a, J =0,m1,

L,) 1,) L+1 L L+4,)
c Lz -z2z) —d ~— d = 0, i = 0O,n—2, J = 1,m-2,

1,)] L+4 L L,) L+4,)
a r‘ - d = 0,

0,0 1 0,1
b r‘ - C. = 0, i = 0,n-1,;

1,0 i i,4

4 4 - e

a ,(r', —r_)+d - d = 0, j = 1,m=-3,

Q,) J+ 1 J 0,) O,)+1

4 4 — —

b_,(r_ -—r,)+c_ - c =0, i =0,n-1, J =1,m=3,

L,) J+ 1 ) L,) L,)+1
a (r‘ - r"' ) + d - a (r‘ - r‘) = FCO)D,

o,m—-2 m-—4 m-2 o,m-2 O, m-1 m-41 m

4 4 4 4 F(z\.+1) - F(ZI.)

b, £ g I - b (r_ -r ) = .

i,m-2 m-4 m-—2 L,m-2 L, m-1 m-4 m - S

. L+ 1 %

i1 = 0O,n-1

13 |




By induction we get that the rank of matrix P (P is the matrix of

coefficients for the system M) is equal to the rank of matrix P
(P is obtained by adjoining to matrix P the column made up of the
right hand side terms of the system M). Therefore the system Mis
consistent [3]' and its solution exists but not unique. Hence we

have now a family of continuous splines in Q.

1.2.3. Let us give some useful results from the theory of
the bilinear spline functions by which we can construct splihe
functions solve the one and two-dimensional elastic problems
mentioned before. These splines are equivalent to the form
C1.2.8) but they have another forms.

Cid) The one variable continuous piecewise linear spline

functions on the interval [0O,R] can be defined as follows [4)

_ n-1
C1.2.200 S,Cr> = ar + b + i_?..:i aj(r - rj)+.
r rj, rar
i - )
where (r rj)+ : { 0. r<rj
lThe spline functions constructed above, for one-dimensional

elastic problem, can be written as follows
m-1
C1.2.21) SpCrd = a (r*-rf) + b+ T a (r - r3),-
Ciid) The two variables conti nuo:Js pliecewise bilinear spline
functions on the domain [0,2] x [0O,R] can be defined as follows

[ 4]

m-4
Cl1.2.22) SA Cz,rd) = Po OCz.r) + Z QCrD(z - z)+
J 1
m-—4 n-=414 m-4
+ ZPCZ)(I"‘I‘)"‘ Z Ze (z—z)(r-—- _),
i=14 j=1 ‘e
T =P JEET
where (z - zi')+ . =2 {O - z(zt' and (r - r,)+ as defined above,

L

and

14




P CZ.,.rl):= a r + b r z + c z + d ;
0,0 0,0 0,0 T 0,0 0,0

QtCr): = ar +c¢, PCz):=Dbz + d.

L L J J J

The spline functions constructed for the two-dimensional

problem C1.1.1) can be written as follows ﬁ
- m-—4
ci.2.23 SACz.rD = F’O.OCz,r) + Zi(a r*+ o )(z - zt)+ + -21 (bjz 4
L = )= |
n—414 m-1 |
+d Y- T L e (2 -2)00 -, . '.
L =4 J-i .|
|

where P Cz,rJ:= a r~4+ b r‘z + & Zz + d

0,0 0,0 0,0 0,0 0,0

Formul a Cl.2.23) satisfies the main boundary conditions |
Cl1.2.10-C(1.2.2), and so the following splines we get in the first i

and the last rows in Q 1

n—-4

C1.2.24) S Cz,rd =a_ r*+b r'z+ ¥V arfz-2z) .
1,0 0,0 0,0 = L LY+
r 4
Cl.2.25) . Cz,.r) = (b z + d )[ - 1] r +
L,m—4 m-—4 m-1 4 m-—4
| 7 &
n-1 L4 . _ L4
+ Z e [ ] (z - z).r + FCzD
L =1 ~ R R

It can be shown that the spline functions (1.2.23)-C1.2.2%) are
equivalent to the spline functions C1.2.9)-C1.2.11) and have the

same number of unknown coefficients Cmn+m—n-1D.

1.2.4. The existence of general solution of analytical

problem. We have a space of continuous spline functions. These

splines are satisfying the main boundary conditions and contain

Cmn—n+m-1) free coefficients. Ritz method has been chosen to
obtain the approximate solution of (1.1.1) together with using
the natural boundary conditions C1.2.3)-C1.2.4).

It is need to show that the genéralized gsolution of €1.1.1)

exists in the Hilbert space. For this reason we rewrite the

15




original problem to an equivalent form as follows: Let

C1.2.28)  u =T + U . u = Fczd) r*/R¢,
and so
C1.2.27> Au = Au + Au = O.

‘From €1.1.13,C1.2.10-C1.2.4),C1.2.26), and C1.2.27) the following

non—homogenous problem for the function u is obtained

C1.2.28 Au = F: = rR*. 4d%Fc=z>.dz?%,
C1.2.29 uCz,0) = uCz,R) = O,
du | = . 4 4 dF
Cl.2. 300 3 CO,rd = ¢1Cr). = ¢1Cr) r /R P COd,
du = - 4_4 dF
C1.2.31) 55— CZ:rd = @ Crd:= ¢ (rd r 7R = (D.

Obviously this problem is equivalent to the original problem.

Therefore the domain of definition of the operator A of (C1.1.1)D

become
C1.2.32 DCAY = {VIAVG LZCQ). v(z,0) = v(z,R) = O} .
Let us define the bilinear functional as follows [2,5,6]
Cl1.2. 33D [u,v] = Iia [ g: g;f + g: g: ] dz dr.

9.

This bilinear functional has all the properties of the inner
product in the Hilbert space. Therefore the energetical Hilbert
space H can be defined as follows CH can be also denoted as the

A A
welghted Sobolev space [11]1)D.

i oV 2 oV .2 nalle
Cl1.2. 34D - HA = {v[-—;—;;—z- [( % )+ ( = )] eLZCQJ. viz,0) =

= v(z,R) = O}.

If u,v, € HA then the product (1.2.33) makes sense [2,5,6].

Let the norm of v in HA be as follows

C1.2. 3% (vl = [v,v1¥2

Therefore if, for every v e HA.G satisfies the equality

16




T dF av

Cl1.2.36) [u,v] = CF,V:= - j‘ Y = == dz dr +
0
R R
1 1
+ | 5 ¢ Crd> vCO,rddr + | — ¢,Crd> vCZ,rd dr,
O O |

then u is the generalized solution of (1.2.28)-C1.2.31) [2,5].

It can be seen than the operator (F,v) is bounded in H

C1.2.37D |CF‘.v)| < clv],

if the following are satisfied
(1> FCz) e W (0,21,

—]-'—-———--¢>Cr-)  LIO,R], k
372 TK 2

Ciid 1, 2.

I

Now we can say that the generalized solution u of (1.2.28) exists
in the Hilbert space HA[BJ . According to that the generalized
solution U = U + U of (C1.1.1) exists too in the energetical

space.

1.2.95. The properties of spline functions. The'approximation
of the generalized solution is sought in a set of splines by the

Ritz method. From the variational method theory [2,6], u is
minimizing the functional ICvD

C1.2.38) ICVv) = [(v,v]l-2 CF,Vw.
To use the conditions of continuity of the set of the

splines SA’ we rewrite the form of the functional (1.2.38) as
follows

B N
Cl.2.39) ICSA) = [SA’SA] ol (F'SA) + Z?\k g,

where kk {k = 1.N] are the Lagrange multiplvyers, g, are left hand
side functions of the independent system of equations M. So the
approximate solution of the original problem is the spline

functions which minimizes the functional I(SA)' Notice that in

17
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the system of equations, which will appear as a consequence of
minimizing C1.2.39), it is needed to use the equatthSLgk = 0O too
according to the theory of Lagrange multiplyers.

Remark. We don't need the Lagrange multiplyers in case of
using the spline in form of (1.2.23). But we know as mentioned
befor that the spline in forms of €1.2.9)-C1.2.11) is more useful
for our purposes.

Let us consider the spline functions density for the one and
the two—-dimensional problems. First we are going to introduce the
one dimensional problem briefly. The problem reduced to find the
function u which must satisfy the differential equation [1]

_ d 1 du _
Cl1.2.40D Au = Ir [rra = ] = 0,

with the boundary conditions uC0) = 0O, uCR) = F,.
The generalized solution of (1.2.40) is approximated by the

following spline functions

Cl.2.41D S.Cr) = 8SCr) = a_(r‘-— r‘) + d, rr{<r ., d = 0.
A ) ) ) J ) j*1° ©

SA ls supposed to be continuous on Co,R). From the connections

between the polynomials C(1.2.41) the following system of

equations is obtained

C1.2. 42> a(r? -r%) +4d =4
Jr J+1 J

] j*1

The properties and definitions introduced to the spline
functions in the two-dimensional problem can be considered in the
one—-dimensional problem too. Hence, the approximate solution of
(1.2.42) can be obtained by using the similar functibnal to that
of (1.2.39). The functions g. appeared 1in (1.2.38) now have the
following form

-4

C1.2.43D g, =a_ (r.,

= r‘) + d -d
K K K

K+14

Note. It is easy to see that S.(rd e w; N C and S,(rd> € H_n C.

A
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THEOREM 1.2.2. The set of the splines S,(r) (1.2.41) in a

A
limit sense are dense in HA. That is for every flr) e HA there
exists 'S"ACr) such that
[f‘Cr)—§ACr)] + 0if h » 0 Cm + ad,

in the mean time for f(r) and SACFD the following are true

| |f¢<rd> - §.¢rd||. » O if h_ s O,
L r

A
2

Crd|| .» O if h =+ O,
i r

W
2z

| |£crd> - 8,

where h = max |r - r_l.
r J+di J

PROOF. Let the form of the spline functions on (r,r ) as
i

Jj+1
follow
B f - f
€1.2.44> S,Crd =8cCrd:=¢ + 322 3 (% Y,
A ) ) 4 1 )
r . - t
J+1 J

where f‘j= ferD. It is obviocous that (1.2.44) is continuous on all

the interval (O, R)D.

We want to remark that from lemma 1.2.1.Cthe prove is in
page 31 J it follows that fdrd) e W:. Therefore there exists at

least one point r on the interval (r_.r, ) such that af Cr D
C ) J+1 dr -

exists and is bounded. The Taylor’'s expansion with the Peano's

) (7]

J+4

form of the remainder at the neighborhood of r_on (rj.r

Cl.2.45)D fCr) = fCr D + Cr = r D ot
&

i — CrcD + o(]r - rc|),

Formula (1.2.45) is used to get the expansions of f‘j. f.iﬂ in
Cl.2.44). Subtracting (1.2.44) from (1.2.45) we get

df
dr

— 2
C1.2. 48 [£Cr> - S Crd | = Cr > O(h”) + oCh ).

For the Lz—-norm on all the interval (O,R), we get
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(L1.2.47C) HfCr) —SCI‘)” = oCh D.
A L r

2
The same results can be obtained for the C-norm too.

Let us differentiate (1.2.44) and (1.2.45D

d & CrD f - £
C1. 2 48) — 3 = J¥E ) 4n8
T - dr 4 4 |
e -
]+ 1 J |
d fCrd _ df 1 _
C1.8.4—g) T - dl" Cl‘c) - —-I-r—_:-l—— - (II‘ rcl).

Subtracting €1.2.48) from (1.2.49) we obtain

d & CrD
Cl.2.50D _E__{‘_(_Z_r_*_?_ SYT R U ag Cr D OCh J> + h“1 oCh D.
dr dr dr c r O # r
d S Cr) . .
Since —E*L__— is bounded on CO,ER) and fdr) e Wz we have
d S Crd
c1.2.81> | |& L2 3 = h™ oth ).
dr dr r r
L (O,R) ,

2
Clearly from €1.2.47) and (1.2.51) we get

- -
C1.2.52D ||fCr) E SACr)ll ;" hr

W
2

For the norm in the HA space we have

oCh J.
r

R
2
Cl1.2.53 [-fCr) - §ACr)] 2. = f 13 [ jr (fCr) - §ACrD)] dr .
- r
o

The norm (1.2.83) can be written as a sum of integrals over the
subdomains (rj,rjﬂ). Because f(r> e H the Taylor’s expansion of
f in the neighborhood of r = O become:

3 4

Cl.2.54) fCrd =b3r+b4r +. ...

From C1.2.48)-C1.2.49) and (1.2.53)-C1.2.54) we obtailned
h
! 1 d — . 2

Lz [ [ _ (rerd - SOCrD)] dr = o(h?).
O

=0




For j>0 the following integral exists and is bounded

rj-l-:l r\j-c-i
1 d - . 1 -2 2
- < —
Ci.2.880 | = [ —— (fcrd Ser))] dr < 5 ] h_ o(h’)dr
. ] r,
J J
-4 2
= h_ o(hr).
Finally the norm for all the intervals can be written as
follows
h
. 2 1, 4 B 2
C1.2.87 [(f‘Cr) - Ser))] = f s [ I (fCr) - SOCr))] dr +
o

m- 14 rj-l-:l ) m- 4
' 1 d - 2 -4 2
+ 2 I . [ = (fCrd> - Ser))] dr = O(hr) + z hr o(hr) =
J=1 . r J=1
J

= h° of(h?).

r

Obviously from (1.2.35) and (1.2.57) we havé

= 4
r

C1.2.88) [ fCr> = S Cr3] = h " oCh ).

i

and h " oCh D 2 0 if h = O.
r I r

If fdrd) e W: M HA , we can get a better estimations than
that obtained in theocrem 1.2.2. To show this we introduce the

following theorem.

THEOREM 1.2.3. If fCr) e w: N H there exist §,(rd such that

the following estimations are true

[fCr> - S ,Cr>)] = OCh D,
- 2
||fCr.') - SACPDHLZ = O(hr).
||fCr) - §ACI~)||W1 = O(hr) !ﬁ
2 1

2l




PROOF. Because f(r) e W there exists at least one point r_

on the interval (Cr ,r. D such that —d—-f:—-— Crc) exists and 1is

+1 2
’y | dr

bounded.
The Taylor's expansion of fCr) at the neighborhood of r_ on

er urF
J j+1
Cl.2.58) fCrD = fCr > + A h ag Cr D + QCrD,
c r r dr c 1
where \h =r - r , [Xx |
r r C o

The Peano's foym of the remainder in €C1.2.5%9) (7,8] is

| 2
C1.2.60) Qcrd = A%h% 9L ¢r > + of(h?).
. 1 r r dr c r
2
Hence we have Lhat |Q1Cr) | = O(hr).

Subtract the spline functions (1.2.44) from (1.2.57) we have

C1.2.612 |fCrd - S

_ 2
ACr) | = O(hr).
For the Lz—norm on all the interval (O,R) we get

- = 2
C1.2.62> |j£ced = S ced || = ofhl).

Notice that because fC(r) e Wz it follows that fdro € Clo,R], and

B 2
Cr | |C[0,R] K 'O(hr)

.

so it is true that ||fCr) - S

A
dS . Cr) ,

Subtracting ———3—;—— from —-%2— , where the Peano's form
for the remainder in the expansion of jxf: is |Q2C ro | = OChr) , we
obtain

dS,CrD
c1.2.83  |-=2 - & ) - oxho).
_ dr dr r

' Since d-S_ACrD/dr are bounded and piece-wise continous on (O,R),

and f e Wz we have

C1.2.64) | |fCr> = S

ACr) | | = O(hr).

L (O,R)
2

Therefore, from (1.2.62) and (1.2.64) we get

oo




C1.2.68 | |fCrd> - s,crd || = ofh).

v
. 2 .
Following theorem 1.2.2. we get the norm in HA space as
follows
h
1 2
C1.2.66) [fCr) - §Cr)]z = j 3 = (fCr) - §Cr)) dr +
A r3 dr O
E - ;
B . |
m- 4 J+ 1 m- 4 |
1 d o ® s 2. - 2 2 _
+ z f - [ = (f‘Cr) - Ser))] dr = O(hr) + z hr O(hr) — O(hr). ;
J=1 4 I | J=1 |

Clearly from (1.2.35) and (1.2.66) we have

C1.2.67> [fCrd> - S,crd] = OCh)D>.

B L Sm—— e R S e e N ——— e R

|
e ol e

Next we are going to introduce the spline functions density

for the two-dimensional problem.

THEOREM 1.2.4. The set of the spline functions S,(z,r>
|.

C1.2.9) 1in a limit sense are dense in HA. ~That 1is for every

fCz,r> € H_there exists S5, such that ' |

[f<z.,rd> - S,Cz,r>] » Oif h,h + O, Cn,m » o,

A

in the mean time for fCz,rd) and S§,Cz,rd) the following are true

A
| |f¢z,rd> - S,Cz,rd || + O if h ,h_ » O,
A L2 z r
| |f¢z,r> - S, Cz,rd|| . » O if h ,h = O,
A 1 z r
w2
where h = max (z, - z3, h = max Cr, -r ). | | i
z i+4 L r j*1 |

PROOF. Let the form of the splines in Gij be as follows

o3




Cl1.2.68) S Cz,r) =S

f i 4 - 1

1L+4, j+1 L, jJ+1 L+41, )

4 4
hz(rj+1— rj)

r +1_ fi. 4 4
L, ) L, ) (r,__r.)_'_
4 4 J
- r L A
J+1 J

O
+ . : — +
s (z zi) fi.,j ,
z
where fi.j = szt.er. Clearly (1.2.68) is continuous in Q.

From lemma 1.2.2 Cthe prove is in page32) it follows that

fCz,rJ) € W:. Therefore there exists at least one point Cz ,r ) on

the subdomains Gi.

2

of
oz

C C

ot

such that ——Czc. rc) and ——{z , rJ) exist
C

or c

and are bounded . The Taylor's expansion of fCz,r) at the
neighborhood of Czc.rc) in G i (7] is
. L,
' of
Cl.2.69 fCz,rd> = fCz ,r D + Cz - z D Cz , rJ +
c ¢ c oz c c

+Cr-r36f Cz.r-)+o[ Cz—z)z+Cr~-r)2].

C or c c c c |
It is easy to show that /Cz - z >%+ ¢r = r D% < |2 - 2z | +

' C | c | c

+ Ir -rc| and 0[ Cz — z D%+ ¢cr = r D

Formula (1.2.69)

f . f and f

1+1,)

from C1.2.69) we get

is

1,)+1 1+1,)+1

€1.2.700  |fCz,rd - S

A

C

Cz.r)l =

af
ar

C

used to get the expansions of f{

‘ ] =o(lz - z_|) + o(|r - r_|)

L, )

in (C1.2.68). Subtracting C(1.2.68)

Y 4
Cz_,r > O(h7) + oCh + h .

For the L norm on the domain Q we get

2

C1.8.71 | |£Cz,rd) - S

ACz.r.') | |

oCh + h D.
z r

Let us differentaiate (1.2.68) and so we obtain

=4

e T ey | ey

& — — ————

e e 1
e — -




(_'1_8_'78) ; Ly ) — i.+1,j+1 i..,j‘ﬁi i.+1,j i..,j (r4_ r‘.») +
J+1
f + f
i L+41, ) % 5 3 '
h
z
a S . f - f
C1 . 8. TEY =7 sl W smmcsmsrioScais 41 *
or 4 4
| i -
J+1 J
fi+1 '%1- fi"+1- f'+1 + 1 ' 3
+ s J v J L > J L, ) Ar (z .- z.)-

4 4
hz(rj+1— rj)

For the derivatives of fCz,r) the Taylor’'s expansion become

- afCz,rd  af o 2
Ci.g. 74D e : Czc,rc) + (Cz zc) +
+ (Cr —r))djz [Cz—z)2+Cr—r)2 ]
C
ofCz,rd of 2
r B e I e e = — +
C1.2.75) —= >— Cz_,r D + (Cz z D
+ L - r))_1/2 [Cz -z 3%+ ¢r - r > ]
a5 | s

Subtracting C1.2.72) from Cl.2.74)D and Cl.2.73) from

C1.2.75) we obtain

- @S (Cz ,r>) —
I R L LY RN R ¢\ h:)"“’z-o[a/c:hz + h:]

Il

a9z gz
S (Cz ,rd /[
afCz,rd L v ' e B 2\-1/2 2 2
C1.2.77) IT —-————é-r-:—-—————-—l = (hz + hr) o[ Chz ¥ hr].
s, Cz,rd @S, Cz,rd
Since ————o—, —4m———— are bounded, piecewise continuous

oz or

in QQ, and fCz,rJ e W: we have

o




g9 S, Cz,rD

ofCz,ro A _ 2 2.-1/2 . B 2
L i | NP Gl o Rl (L,

S Cz,rd

ofCz,rD A _ 2 2\-1/2 2 2
127 ||FGEE - ||, o (] ¢ MY To[fen] b

Clearly from C1.2.710, (1.2.78) and (1.2.79) we get

A

C1.2.80D | |fCz.r> -§,Cz,r> || . = (h. + hz)""’z-o[m/crxz + hz].
| z r z r

4
2

The right side of (1.2.80) tends to zero if h_and h_ tend to

Lero. -

For the norm in the HA space we consider the following

' - 2 1 g o 2
Cl1.2.81D [f‘Cz.r) —SACz,r)] = I ra [(——5—2— Cf- S )) +
Q

) - n-4 MmMm—=41 1
+ (-2 cr- §)0) ]dz ar =5 Y [
| | 1=0 }=0 a

L, )

o = 2
X [(_52_ ce- 5, O)

+ (—-g—r:- Cf = -Si., jD)z]dz dr.

Because sz.r)  H the Taylor’'s expansion of ffCz,rJ) 1in the

A
nieghborhood of r = O:

3 4

Cl.2.82) fCz,r) = aSCz) r+ a‘Cz) r o+ .....

Let the spline functions in the nieghborhood of r = O:

B aQCz_) .
(1.2.83 8§ (z,rd> = ( — + a Cz)d)r" +
1,0 I‘:t * L
a3Cz_+1D - aaCz_) a4Cz‘ 1) - a‘Cz_) )
+ - - -y 2 vt % Ir%cz - z)D.
h r h "
z i z

Therefore from C1.2.82) and (1.2.83) we obtain that

6




L+ 1

C1.2.84) z [ I - [(___‘?____ cr- 8 ) 4 |

oz

+ ( gr Cf - §i. rob)z]dz dr = O(h:) !

For £>0 the following integral exists and is bounded

C1.2.85) i — [(_3_ cf- 8 D) +

o — 2 2
+ ( - Cf - S , J)) ]dz dr = c:a(h2 + hr).

|
From C1.2.84) and (1.2.85) the norm in all the domain Q can be l
f
|

written ;
n—414 m-1 'l
C1.2. 86D Y ) JJ o(nl + nY)dz ar + o(h?) = |
L=0 )=0 !
il |
_ | 2 2 2 i
~ h h O(hr " hz) " O(hr)' :
z r |
|
Therefore |
— 2 2 ~4/2 2 2
C1.2.87) [fCz.rd> - §,cz,rd] = (b2 + h) 0[ Ch? + hr].

The right side of (1.2.87) tends to zero if h and h tend to
z r

Lel Q.

If fCz,rd) e W: M HA we can get a better estimations than
that obtained in theorem 1.2. 4.

THEQREM 1.2.5. if fCz.r) e w: N H_there exist §ACZ,I~> such

that the following estimations are true

" {




[ £fCz,rD —'§ACZ.P)] = O(hz + hr)

T e T o L

—
A ——— o —

_ 2 2
| |[ fCz,rD —SACz,r)] ||1..2 O(hz + hr)

||[sz,r) -—SA

cz,r3] ||

W
2

2 2
O(h, + h))

PROOF. Because f(z,r) e W: there exists at least one point L'

2 2 2
Czc,r D on Gi . such that [ 2 1; ’_526_%? ; o 2
“ - " 3z or

] exist and are

bounded.

=
- — L — e e ——— . e e

The Taylor’'s expansion of fC(z,r) at the neighborhood of

Cz ,r D in G
c C i,]

C

Cl1.2.88) fLz.r) = fC2 .r ) + A B s’ ¥ X B o e
C C = Z

afCz ,r D ofCz _,r D |
az r r or :

+ QCz,rD Where Ah =2z -z Ah =r - r |, I | =1, x| = 1. |
a z =z | ‘

C i & C A

The Peano’s form of the remainder in (1.2.88) [7,8] - ' ‘ai.

r Oz Or c

2 2 d°f 2 2 3°f _ |

1.2.890  QCz,rd = A" h Cz ,r D> + A" h" . Cz ,r ) + |
3 z 2 2 c c r r 2 c cC I

oz or i

' a°f 2 ' |

+ 22 h A h Cz_,r D + o(h® + h). |
zZ Z r C z r | i:

Hence we have that IQBCz.r) | = O(h: + hf)

Let the spline functions form in Gi.j be as follows

f. ; _f ; |
(1.2.900 S, Cz,r) =S Cz,r):= __:_:_J_"__‘_____L_:A.(r‘_ p‘f) + -
r . -
J+14 J
f'+1 '+1_ f\i. '+1_ f‘+1 + L ) 4 4
+ L s J s ) L r J Llj(r_r)cz__z:’_'_
J L
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f A 3

- tr2.d eV ez -z 4+ £ .

l'.'zz i L,)
where fi.,j: = szi-.rj). It can be seen that (1.2.80) 1is continuous
in Q. Formula (1.2.88) can be used to get the functions fi.,j"
f o X f in Cl1.2.90). Subtract C1.2.87) from

L4d,j  Lj+e ] 144,41

C1.2.85) we obtain

| | - 2 2
C1.8.91)_ lsz.r) - SACz,r)| = O(hz + hr).
For the Lz—norm in 2 we have
— 2 2
C1.2.82D | |[fC<z,rd - SACz.r)Ile = O(hz'-!- hr).

The first p.artial derivatives of (1.2.88) are

of = of z
Cl.2.983D 39 3 Czc.rc) + QBCZ.I‘)‘.

af _ of "
Cl.2.984) I - “r Czc.rc) + QQCz,r).

The Peano’'s form of the remainders in (1.2.93)-(1.2.94) are

z af o f |
Cl. o . 95) Qa = )\zhz —b—z_ CZC’ PC) + Krhr _-5_2_5—[:- Czc,rc) <+ D(hz+ hr).
. af 3%t
C1.2.96) Q. =Ah ——Cz ,rJ> +AXh —=—-Cz,r)> +o(h+ h)
It can be seen that
| - —s . —
Cl1.2.97). . Ile O(hz+ hr)' IQQ I . O(hz+ hr)'

The first partial derivatives of (1.2.90) are

....A |

C(1.2.98) o _Cz.r) = O(hz+ hr).
a§A

C1.8. QQ) ——‘9?— CZ.I‘) = qhz*‘ hr).

from formulas (1.2.93)-C1.2.94) and (1.2.88)-(1.2.99) we get

cS




C1.2.100D gg - 62A | = O(hz+ hr).
s
€1.2.101) | gf: - —-é-rf-‘é—| = O(h_+ h ).

Since (1.2.98)-(1.2.99) are bounded piecewise continuous in A,

and fCz,r) e€ Wz we have

2
oS
ofCz) A
(1.2.102> |} —— = =3 ||Lz = O(h_+ h ),
as
o1 Cz) A _
C1.2.103 ”""’"‘“‘"‘“’ar ~ — ““z = O(hz+ hr).
Hence, from C1.2.92) and (1.2.102) - (1.2.103) we get

€1.2.104> | [fCz.r> = S, Cz,r3 || = O(h + h ).
v/
2
Following theorem 1.2.4 we can obtain the norm in the HA Space as
follows
r v A
n-1 +1
€1.2.10%8  [fCz,r> - §,Cz,rd>]” Y I - [(—‘3- ¢t - 8 D)
’ A7 Wi 3 oz 1,0 .
L =0 o . r |
L ',l"
|
n-1 m-1 /
o - 2 = 2 |
L=0 J—O
L,J W
o — 2 2 2 2 2 2
+ ( == Cf- Si.,j)) ] dz dr = O(hr) + O(hz+ hr) - O(hz + hr)

Therefore,

from (1.2.359) and €(1.2.109) we have

C1.2.106D

[ fCz,r> - S

A

Cz,r)]

O(hz+ hr).

1.2.6. The convergence of the approximate solutions.
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LEMMA 1.2.1. In the One-dimensional ‘problem (1.2.403, for

every ulr) = HA.' there exists a constant <, such that

||u|| Sci[u].

PROOF. For the Lz—norm of the first derivative of the

function u on the interval CO,R) we have

. du 2 ' 8 1 du ,2
(1.2.107> ||dr|| =[] = [r” E.|dr| dr <
2

R
< R . = R [u,ul

O
Let

r : .
€1.2.108) u = | g;‘( dx = [ x°7* (—%7;- o —) dx .
| >

Using Cauchy-Bunyakovsky’'s inequality to the integral (1.2.10%5)

r R

4
2 3 du ,2 r 1
€1.2.109 u” = [ x* dx J“( Oz || ) dx s — -
o | o =
Hence we get _ '
R R
i 2 2 r* R> 2
C1.2.110> | [u] | = _[ u  dr < f 7~ dr [u,ul = —& [ul’
| 2 o o

Therefore, from (1.2.107) and (1.2.110) we obtain the norm
of the function u in W:

€1.2.111) ||u|| < c [ul,

Il
A
¥
+

where c
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LEMMA 1.2.2. In the two-dimensional problem C€1.1.1), for

every uCz,r) e HA. there exists a constant c, such that

||u|| . < cz[u].
A" 4

2

PROOF. For the L.z—norm of the first partial derivatives

of the function uCz,r) on Q we have

C1.2.112) | g: || ° SRajl | g” | % dz dr.
i r‘:'l ¥
2 (2

ct.2.113  ||—2|]* =R [ 2 |24 % az ar.
Lz Q rS I

Therefore, from C1.2.112) - C1.2.113) we obtain

C1.2.114D | g;‘ |5+ g” |* < R? [u,ul.
x P L
2 2
Let
r r
_ du B 3/2 1 du
Cl1.2.115D uCz,rd) = f——CaX Z,X) dx = I X -—-————-———xg/z ;> Cz,x) dx.
O O

Using Cauchy-Bunyakovsky’'s inequality to the integral (1.2.115)

r

r
(1.2.116D u2Cz,rD < fxa dx fl | o Cz, D “dx <
xa O
o O
R
r4 1 ou 2
<
< — fxa | e Cz, ) dx.
O

Integrating the both sides of (1.2.116) over the domain Q we get

R Z

4
2 r 1
C1.2.117> fuCz.r‘D dz dr = dr J.J”xal |
O O

2
i |
Q2

dz dx =

ou
[ ple
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P>
=0

———
pm——

1 ou 2

f alérl dz dr.
r

9.

By analogy one can have

’ 2 R Z 1 ou 2
ct.2.118> [ u'Cz,rd dz dr € ——— [—— |-———|" dz dx
O ' Q>
Therefore from €(1.2.117) and (1.2.118) we obtain
- 9_.2
2 R R Z
(1.2.119 2 [ u'Cz,rd dz dr < max (55 » —s—) [u,ul.
@
Hence
- 3_.2
2 R R Z
< =
Cl1.2.120D ||u1| < max:( 55 ° ) ) [u, ul.

From €1.2.1140 and (1.2.120) we get the norm of the function u in

w.
2

Ci.8.1210 | |ul] . £ e_(ul,
vi 2
2
where
2 2
Cl.2.122D cz = Fc‘a [1 + max (—-—?(—5 X ——%--—)].

~J

THEOREM 1.2.6. The approximated solutions S of the one and
two-dimensional problems, obtained form the minimization of the
functional (1.2.39) over the families of splines, are convergent
to the generalized solution Elg of the original problems (1.1.1)
and C1.2.40> in the W -norm
| Iu0 - S| | , > O if h » O, where h = maxlhrl and h = max|h_,h

W
2

~J

PROOF. The generalized solution u satisfy the following

equality (see (1.2.36) and (1.2.38)) for every v € HA

33

e —

m—




: P “ 2 _ A P | —. ~ et —
c1.2.128  [u - v]® =[G - viG - v] = [v.v] - 2[v.G ] + [G .G ] =

= [ v.v] - F_’.(V.IE') — [GO,GO] -

= I(v) - E(Go)

Because S are minimizing the functional I, for every spline

v
e
R
»)
o
o
[S——
|
-
~
<
-/
I
| e
G
0
-
o
[S——
+
v
~~
w
oy
—’
i

function SA we have

c1.2.124>  I(8) - I(u) < I(S,) - I(u ) = [qo, - s,]°%
Therefore from Cl.2.123)-C1.2.124) we obtain

" i~

€1.2.128) [u_ -S] <inf [u - S
" O O

o

Al

Hence, from lemma 1.2.1 and theorem 1.2.2, respectivly, from
lemma 1.2.2. and theocrem 1.2.4 we have

1.2.1260  ||u, - S|| , < C[u S] = Cinf [u -S,] +0if h 0.

vz , SA

Remark. If u are the classical solutions of the equi valent

O
problems of C1.1.10 and C1.2.40), it means u e DCAD and at the

O

same t.ime u e W: . Therefore, theorem 1.2.3, theorem 1.2.5 can

O
be used with lemma 1.2.1, lemma 1.2.2 and C1.2.125) to obtain the

better estimations for ||G0 - §||:

C1.2.127D ||u - S|| = OChD.
o 1

1.3.1. Let us loock for an approximate solution to the
elastic problem (1.1.10 in a cylinder of variable diameter with
the boundary conditions (1.2.10-C1.2.4) on the given domain Q&:=
LO,Z2IxLO,RC20] CFIG.3.1).
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FIGURE 32.1. The domain Qe

We shall propagate the spline method introduced in the previous

section to the present case too.

1.3.2. The construction of the spline function. The

intervals of the zr-plane (FIG. 3.2) are breaked up as follows

Cl1.3.1D O =2 £ zZ2zX...<z<z2z ...z = 2 ,
O - | L 1

+1 n

||

Cl. 3.2) O r < r1<...<r,<r_ A

O ) )+1 m
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o \ 4
" iiil i..-
Z ,_ Smmeemasigy )
0 N 4 ) 2n3 Li L4 /

FIGURE 3.2. The partition of the domain Qe

It 1s supposed that: Cz ,r 2, Cz ,r 02 and (z ,r D are
n m n m n m

1 2 2 1 9

grid-points, where o< n1<nz<n and o< mi<mz< m. The given function r

= RCz) (C(which 1s denote the boundary 1"1) is constant for z €

o,z 1, 2z € [z ,2)], decreasing on the interval Czr‘II 'Zn ) and

n n
1 2 1 2
increasing on the interval oz .,Zh J. Its minimum at the point
"2 a
Cz ,r DJ. Suppose that
"2 My
Cl. 3.3 r = RCz 2, i =1,n - n ,
m —L N +Lv 2 p |
2 1
Cl1l.3.4) r = RCz D, 1 =1,n — n
m +1 N +L 9 2
1 2
It follows that
Cl.3.5D n - n = m-m , n — N = m — m
2 1 2 1 3 2 1
Let us approximate r* = R* =z Cwe shall use it later ond) on the

given intervals by the following piecewise linear functions
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C1.3.6) R =zd ~ R*%=z> = p* + __J Y L~ XY,
y¥#4 Z - L L
L+ 1 L
n < 1i < n, 2z L Z £ 2 :
1 2 L L+1
4 4
4 ~ 4 4 I~'+1_ d
C1.3.7D R'Cz) ~ RCzd :=pr* + 2 l _Cz - 2z,
) Z - L
L+ 1 L
n < 1 < n, z € 2 € Z ;
2 3 L L+1
The function u = F(z) on l"1 is approximated by the following
piecewise linear function
N F‘Cz_+1) - Pz )
C1.3.8) FCz) =~ FCz) := FCz D + - -— Cz - 2,
L Z . - L
L+ 1 L
i =0,n - 1 .
Let QG be divided to the elements O j: Rectangulars into the
L;

domain Q . Triangualrs C(with two straight sides and one curved
©

sided at the neighborhood of , on the intervals (z .z ),
i 2

(zh Z ) CFIG. 3. 2.
1 3

The total number of the elements Q are
L,J

Cl. =2.9D n-m+ n C(m - m2J) + Cn — nO>XXm — m)>) +
1 1 2 1 9 1
Cn — n J2Cn — n + 1O Cn — n J)Cn - n + 1D
2 1 2 1 3 2 3 2
o e sticsssossi. W s a—————— i
P P

The spline functions (1.2.9) have the following forms at the

neighborhood of the boundaries I' and I"1 on 2
L

O »)
C1.3.10) S Cz,rd =a r* 4+ b r*z - 2z>, i =0.n =1 ,
L,0 L,0 L, 0 L
C1.3.11D S Cz,r) = a (r‘— r* ) + b (r‘-—- r )Cz z D |
L,m -4 t,m -1 m L, m —1 m | P
2 2 2 2 VA
+ FCzd , i = O,n -1 ,
€1.3.12D S Cz,rd = a (r*- R%=zd) + Fczd ,
L,) LR
i = n-1-1, J = m+ 1 , l =0,n - n -1 ,
2 1 1 1 1 2 1

= ¥4




€1.3.13 S. Cz,rd = a (r- R%=zd)) + Fcz> .4 =n-1_,
L,) L,) | 2 2

\j = m > l » l - o’n - n - 1 ’

, 1 2 2 3 2

C1.3.14D S Czy,rd =a  (r-rYY+ b  (r*-r*)z - z> +
i,m-4 i,m—-1 m i,m- 1 m B

+ FCz>, i =n_, n -1

THEOREM 1.3.1. The continuous spline functions (1.2.9) exist
in Q and satisfy the main boundary conditions C1.2.1) - C1.2.2).

PROOF. The conditions that the spline functions (1.2.9) and

€C1.3.10) - (€1.3.14) be continuous in @ and satisfy the main

e
boundary conditions are expressed by the following system of

equations

C1-3- 15) | a .+ b. ,CZ_ == Z:) - . = O. i — O}n - 2;
ts) Ls) L+1 L L+14,)

] = O.mi—- Ls

Cl.3.16D c. (z -2zJ)2 +d -4 =0, 1 =0,n -2,
L,) 1+4 L b J 1+1,)

J -— 1.m1— 1,

C1.3.17D a +b (z -z> -a =0, 41 =0,n -1,
L,) Lol L+1 L 1L+1,) i

.j e m’.tmz- 1.

e W e B 0 c. Lz —-2z) + 4. - d . =0, 1 =0,n -1,

| L,) L+4 L L, ) L+1,) i
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Cl1.3.18) a + b C(z - z) - a = 0, i = n+ 1,

1 1 1 2 1 1 2 1 1
Cl1.3.21D a + b Cz -z - a. =0 , 1 = n+1 -2,
L, L) L+1 L L+1,) 2 . |
J = m+1, 1=0,n-n -2, |
1 1 1 2 1 |
4 4
C1.3.22 c C(z -2z>+d -a (r.-r )=FClz D,
Ly} L+1 L | L+1,) J J+1 L+1
1 =€n+1-2, J=m+1, 1=0,n-n-2,
2 1 1 1 1 2 1
Cl.3.23) . .~ A =0, 1 = n + 1 , J = m+ 1 ,
L,) L+1,) 2 2 1 1
l - O'n S & T 1'
B 9 2
Cl.3.24) a ,(r‘_’ - r) + d. = FCz J2,i = n+1 , |
L+1,) j+4 ) L% ) L+1 2 VA ;
J = m+ 1 , 1 = 0,n — n — &, |
1 2 2 9 2
1. 3. 259 a +b Lz —z)J) — a =0 , 1i =n+1 + k + 1,
ko) L,) L+1 L L+1,) 2 2 2
J = m+ k , l1 =0,n - n - k - 2, k = O,n.— n - a,
1 2 2 3 2 2 2 g 2
)
Cl. 3. 26D c Cz -zD + d - d = 0, i = n+1+ %k + 1,
L) L+1 L T v 41, 2 2 Z
j=m+%k, 1 =0,n-n-k -&, k=0,n -n - 2,
1 2 2 3 2 2 2 3 2 |
e N P a + b (z - =z) - a = 0, 1 = n + n - 2,
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] = m_,m - 1,

Cl.3.28) c. Lz —~zJ + a .— d =0, 1 = n ,n - 2,
L,) L+1 L L, ) L+4,] 3
J = m_ ,m - "
4 4
(1.3.289) a [(r —r_)+d_ - d, =0, 1 =0,n — 1,
L1+ 41 ) L« J L+4, )

J] = O.mi— 5y

C1.3. 30 b (r* -r) +ec - e = 0, i =0,n - 1,
il ) b s ) L\+14, )}
= Ol o B
J m_ e
4 4 _ e
C1.3.3231D a (r —r_)+d_ - d. = O, i =0O,n - 1,
1"«] J+1 J LrJ L+1:J 1
J = m_ - 1.mz— 35
4 4 e
Cl. 3. 22D b (r -r',,)+c_ Rl =3 = 0, 1 = O;,n = 1,
PR E | } L, ) L+ 1, ) 1
J = m = 1.m2— 3.
4
C1.3.33D a (r® -r* )+ d - a (r* -r%) =
L,m -2 m -1 m -2 tL,m -2 v, -4 m -1 m
2 2 2 2 2 2 2
= P2 ), 1 = O,n — 1,
L 1
4
C1.3.34D b (r* -r* )Y+ e - b (r® -r%) =
LM -2 m -1 m -2 L,m -2 tL,m -1 m -1 m
2 2 2 2 1 2 1
FCz‘*i) - pCZ )
| | P e R o
= — —, i =0,n - 1,
7.a — 1
L+ 1 L
4 4
Cl. 2. 25D a |(r --r_)+d Rl & = Q, i = n + 1 ,
L,) )+ 1 ) L ) L4411, ) 1 1
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J=m+k-1, k=0,n-n-1-2,1=0,n -n - 2,
1 1 1 1 1 2 1
4 4
Cl. 3. 36D b (r - r.) + c - C _ = Q, i1 = n
L)+ 4 J L, ) L, J+4
j=m+k-1, k=0n-n-1-2,1=0,n-n - 2,
1 1 1 1 1 1 1
4 4
4 4 r-'-4-1_.1."-1-2
C1.3.37 b (r7 - rY)+c - a ’ ’
LJvJj+ 14 J L 5 ) v +41, ) Z - &,
L+ 1 L
FC=z +1) - pCZ D
x . Z . 2 1 1 1
L+ 1 L
C1.3.38) a (r*-rYHY+4a - a (r® - r* )
L, )+ 4 ) L, ) L+ 41, ) J+1 )+2
1 = n +1 -1, J = m+1 -1, l =0,n — n ,
2 1 1 1 1 2 1
4 4
C1.3. 39 b _(n - r. ) + c - = 0, {1 = n
L, )+ 1 J L, ) L+141, )
J=m+k-1,1=0,n-n-k -2, k =0,n - n - 2,
1 2 2 2 2 3
4 4
Cl.3.40D a (r —r_) + d - o = 0, i
v )+ 14 ) v, ) L4+4, )
J =m+k—1p l=0pn_n-k "‘8. k =O,n""l“l"'2.
| 2 2 2 2 3
4 4
Cl1.3.41D a (r —r,)+d_ = FCz D i = n +1
L))+ 1 J L, )
J=m+1-1, 1 =0,n-n - 1,
1 2 2 3 2
4 4
o - r
J+1 ) b v ) t s Z -
L+ 14 L
FCz J — FCz D
i+4
= ,j_:n-}-l"j:m-{-l—l.l:
=z Zz . 2 2 | 2 2
L+ 1 1
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C1.3.43) b (r* - r*"Y + ¢ -¢ =0, i=n,n -1,
L,) J""- J L, ) L,J+1 3

J = m-1,m - 2,

C1.3.44D a (r* -r)+d -d n_,n - 1, |
L))+ A ) t i 3 L, %4 3

|
O
p-
I

Cl. 3.4 a (r4 - r4 )-+ci, - a. (r4 — r‘ = FCz D, |
v,.,m—2 m+ 1 m-— 2 L., m—<£ L, m—141 m-— 1 m L i
|
i =n .o - 1.
9 |
C1.3. 46D b (r*-r* Y+ec. -b  (r* -r* = |
L.m—2 m+ 1 m- 2 L, m—2 L,m—1 m-— 14 m
FCz D — FCz D
L+ 1 1 ' . e
- ¥ h - N s &3 ™ 1,
= - 2z 9
L+ 14 L
The system (1.2.15) - (1.3.46) has ﬁ
C1.3.47D 2Cn - nJ)%+ 2Cn - nJ%+ 4ncm - m> - nC1 - 4md -
| 2 1 9 2 1 2 1
- 4ndm - mJ) — m - m-=-—n ,
3 1 1 1
equations with
C1.3.48) 2Cn - nD%+ 2Cn - n D)%+ 4nCm - 1> - 4n Cm — m D + ;
2 i 3 2 1 2 i J
+ 4dnCm — mD) — n+ n ., f
3 1 1 3 y
coefficients. The analysis shows that there exist “
Cl.3.49) Cn—n)2+Cn—n)2+nCm—m)—an+1D—-nCm—m)-—
2 1 3 2 1 2 1 3 4
Cn - nJ)XCn — n - 1) Cn — nJ2Cn — n - 1)
e D — 2 1 2 1 B 3 3 3 2
1 1 3 o =
dependent equations in the system. By deleting those dependent

equations from the system Cusing the equations (1.3.29), (1. 3. 33D
for i = O only, and neglecting the equations (1.3.240, (1.3.31),

L

C1.3.3%5D, (1.3.38), (1.3.40>, (1.23.440 and (C1.3.45)0) we get the M
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system of independent equations. The number of the independent

equations are

"~

C1.3.50) N =Cn-ndd%+¢cn-ndY* 3nCm-m) - nC1l - 3m) -
2 i 3 2 1 2 1i

, an— n1)Cn2“ ni— 1)
-asn tm-mo>o-an+n-¢2m-+ —oAH—momomm o ——_— 4
3 1 1 3 o

tn —_ nJ)XAin —n - 1D
3 2 3 2

=
with the number of the coefficients (1. 3.48).

4-

"

By induction we found that the system M is consistent [3]

and its solution exists but not unique. Hence we have now a

erh—

family of continuous spline functions in Qa.

1.3.3. Let the spline functions (1.2.9, (1.3.10) - (C1.3.14)
have the similar properties described in 1.2.8% for the spline
functions (1.2.9) - (1.2.11). In present section we are going to

prove two theorems for the density of the spline functions

C1.2.9), €1.3.100 - C1.323.14) in the domain Qe.

THEOREM 1.3.2. If fCz,rd e W; M HA the set of splines

SACz.rD is dense in a limit sense in HA with better

estimation. That is there exists SA such that.
[fi(z,r) - SACz.r)] = O(hz+ hr).

in mean time for fCz,r) and S,Cz,r) are true the following

A
- 2 2
| ||f‘Cz.r) - SACz,r)HLz = O(hz-l- hr).
| |£€z.r> - §,Cz,rd|| = O(h_+ h),
Y2
where h = max Iz_ -z |, h = max |r, - p |
= iL+1 i r J+i J

PROOF. The estimates of the approximation by the spline

functions ((1.2.68) 1in the rectangular elements 1in ()‘D are

43
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introduced in theorem 1.2.5. Therefore let us look for the

estimates of the approximation in the triangular elements in Q .
e

Because fC(z,rJ) e w” there exists at least one point on Q

2 i,)
2 2 2
such that [——-‘—3—-—-1:———. -—?f-‘- — _E__] exist and are bounded. The
2 gz or 2
a z ar
Taylor’s expansion of fCz,r) at the neighborhood of (z, ,rJ in

L+1 )

Q (the left curved sides triangular elements with the points
L, )
Cz.tr.)r CZ :r.)r(z. I ))
L ) L+1 ) L+1 j+1

ot

(1l.3.91) fCz,ro = + A h | + XN h , + Q CZsD s
L44,) z Z az L+1,) r r¢r oz L+4,) 4

where

Cl. 3.52) Zz = Z + X h C—-1 = A S 0O,

L+1 z Z z

Cl1.3.953) r r + X h, LD S A S 1),
r r

J
The Peano's form of the remainder in C1.3.50) [7,8] is |

2 2
C1.3.54) QCz,r) = A%h2 25 PN .
-+ z = 2| _ r r 2 | . _
g Z |i+1,) g r |i+1,)
62f 2 2
B, AR, ] e+ R

L+1,)
From C1.3.54) it can be seen that

C1.3.55) |Q,Cz,rd | = O(hZ + hY).

For the spline functions in the left curved sides triangular

elements we let

f L i .
C1.3.56) S Cz,rd) =S8 Cz,r):= —*t.)%1 vH1.0 |4 p*
A L,) 4 4 )
r - r
J+ 1 J
r4+1— r4 FCz_*i) - FCzZ D
SU— "~ Cz - z)| + FCz D + e — Cz - z),
< - = L L i - Z L
L+ 1 L L+ 1 L
where f := fCz ,r D and F(z): = f(z,E’.Cz)).
L,J L j
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It is obvious that the spline functions given by (1.2.68) and
C1.3.560 are cotinuous in Q. From formula (1.3.51) we get the
(=2

f , 2 1. 3082, Subtracting (¢1.3.51)

functions f. S B . .
L+1,J+1 _‘-""1:,]

from (1.3.56) we obtain that

C1.3.57D fCz,rd - S Cz,rd) = QCz,rd> - xQ (z. .r. ) +
4 r 4 1+1 j+1

Yol

| 2 2
+ )\ZQ4 Czi .rj) + O(hz+ hr).

Therefore
— 2 2
C1.3.88 |fCz,rd> - S,Cz,rd| = O(h] + h’),
For the Lz—norm on Qe we get
— 2 2
C1.3.59 | |[fCz,rD> - SACz.rD“L = O(hz+ hr),

2
Notice because fCz,rd e W: it follows that fCz,.,rD e C(OO), and so
i1t is true that

_ _ 2 2
€1.3.800  |[fCz,r> - S,Cz,r)| 10(00} = O(h_+ h ),

The first partial derivatives of (1.3.51) are

of “ _of z
C1.3.61)D 3 Cz,rd = i Ii.+1.j+ Q4 Cz,rJ,

ot _af z
C1:3.6825 3 Cz,rd = — Ii.+1,j+ Q, Cz,rd.

The Peano’'s form of the remainders in €1.3.61) - (1.3.62) are

C1.3.63) Qi Cz.r) =
2 2
= Cz - Z p a1 + Cr - r D ng; +
L g Zz i+4,] ’ i i+4,)
+ o]z -z, )+ o(|r - r])
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C1.3.64)D ci Cz,rd) =Cz — = D +

2 2
g f g f
-1 * Cr - P g T —— -4 o |z - zi-ﬂl) + o |r - rjl).
v+4,) g r V44,9

It can be seen that

|
Il

€1.3.865) |Q] Cz,rd)| = &Xh_ + h D>, |Q Cz,rd| = OCh + h D).
4 z r 4 z r
The first partial derivatives of (1.2 56) are

3 S

L, 1 - af B
C1.3.66) —tie CE,PY = 3 [hz - |m'j Q,Cz,, rj)],
p”
3 S
C1.3.67D w_—é:'-L Cz,rd) =

of N 1

oz li_+1,j h Q4C2i.+1'rj+13]'

¢l

From formulas (1.3.61) - (1.3.62) and (1.3.66) - (1.3.687) we

= (1 + OChr)) hr[

get
8 S
of A 3 z 1 .
1. 3. 68D | 9= TI — |Q4 (_Z.r) ¥ - Q“CZi, I“J) — C(hz'*' ljr)'
z
a S
af A 3 r 1 - R
1.3. 69 | = 3 | = |Q4Cz.r) ¥ Q“cziﬂ.rju) + OChr)| =
r
= OCh + h D.
= r

Since (1.3.660 - (1.3.67) are bounded, piecewise continuous, |

on 2, and fCz,r) e Wz we have

e 2
o S
ot A -
C1.370) Il 62 o T—-II s OChz"' h!‘)'
I"2
af 2 §A
Cl1.3.71D || 3 e ET ||L= OChz+ hri).
2
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Therefore, from (1.2.59) and (1.2.70) - (1.3.71) we obtain

e —

Cl.3.72d ||f(z,r) —SCz,r)H = OCh + h ).
A 1 z r
W/
2
Similar results can be obtained for the right curved side
triangular elements too. Therefore, for all the triangular
elements Qi.j on 2 we get that
, =)
1 o ~; 2 (44
C1.3.73 I - [[ 55— (f¢z.rd> - S J_CZ..,r:)) b g (PCZ, 0Y -
a T
]
- 8§ ¢z,rd)%|dz dr = O(h® + h?)
L, ] ’ Z r’

Now, from theorem 1.2.5 and (1.3.73) we can write the nerm in the
HA space on all the domain Qe as follows
n-414 m -1
— 2 c 1 o
C1.3.74D [ fCz,rd> - S ,Cz,rd]" = Z z il —= [[ 5>—(fCz,rd> -
L=0 jJ=1 QO r
L,J
B 2 3 2
— - +
SL,JCZ’FD)] + [ - (sz,r) St’jCz,r))] ]dz dr
r & .
n—4 1 L+1
1 3 _ .
+ z f f - [[ 55— (fCz,rd> - S_LroCz,rD)] +
L=0 r
O z
L
o — . 2 2
4 [ = (sz,r) — Siquz.rD)] ]dz dr = C)(hz + hr)
RCz D
where m: = [ - ] + 1.
i h
&
Therefore, from (1.2.35) the norm in HA have the following
estimate
Cl1.3.75D [ fCz,rd> - '“S'Cz.r)] = OCh + hD.
A z r
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THEOREM 1.3.3. The set of the spline functions S, Cz,r)

Cl.2.9) on Q; in a limit sense are dense in H . That is for every

A
Cz.r) Such that

fCz,rJ) € HA there exists &

A

fCz,rd) - SACZ,FDI + O if h k% > O, Cn,m > o,
-

in mean time for fC(z,rd) and SACz.rD the following are true

| |[f¢z,rd> - S

Cz.r)HL + O if hz,hr + O, Cn,m > o,

A . l

||sz.rD = SﬁCz,r)ll + O if h,h > 0, Cn,m > o,
1 o r

"
2

where h = max Iz_
L

z

- z_L.rx = max |r, - r
+1 1

r )+1 )

PROOF. The estimates of the approximation by the spline

functions ((1.2.68) in the rectangular elements on Q are
e

introduced in theorem 1.2.4. Let us look for the estimates of the

approximation in the triangular elements on Q .
©
For the spline functions in the left curved side triangular
elements we let it have the form (1.2.56). From lemma 1.3.2 it

follows that fC(z,r) e W;. Therefore there exists at least one

point (Z . D on the triangul ar elements Q such that
af < af ol -
(2 ,P J and Cz ,r D exist and are bounded. The Taylor’'s r.
az C & or e © _;l
expansion of fCz,r) at Cz ,r J is
G C
ot
Cl.3.76D fCz,rd) = fCz ,r D + Cz - z ) CZ 0 ) #
c c c oz c c
Cr = r D o Cz ,r J) + o Cz—z)2+Cr—r‘)2
C ar o C o ¢
2 2
where o LZ = 2 X + Ly = r ) = oCh + h ).
C C =z r
Subtracting (1.3.56)> from (1. 3.76) we get
€1.3.77 fcz,rd - S, Cz,rd = o(h_ + h).
A z r
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For the Lz—norm on {2 we have
©

Cl1.3.78) | |fCz,r> - §Ac2.r3||L2 = o(h_+ h_).

From the first derivative of the spline functions (1.3.956), the

first derivatives of the Taylor's expansion (1.3.76), and slince

6§ﬁ O BSA 70r are bounded, piliecewise continuous on Q2 , and
e

fCz,rd) € W: we get the following for the Lz—-norm

S Cz.rd
afCz,r) AT B
C1.3.79 H oz - oz HL «Q y
2 e
2 2
= (hz + h:)-1/2 O hz+ hr .
s Cz.rd
2 Cz.r) A _
€1.3.80 |I or N or IILZ(QG:. B

Therefore from C1.3.78) and (1. 3.79-1.3.80) we have

i

2
C1.3.81) | [fCz,r> - 8 Rk npt

& h:) O Z r

Z

Cz,r)‘| , = (h

W
Y4

A

The right side of (1.3.81) tends to zero if hz.hr tend to zero.
Similar results can be obtained for the right curved side
triangqular elements too.
From theorem 1.2.4 and (1.3.81) we can write the norm in the

HA space on (2 as follows
e

n-14 m -1

L
C1.3.82) [fcz.rd - S cz,e0]® = K ) [ - [[—%—{sz.r) -

L=0 j=1 r
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r Z
n-41 1 L+1 ,
+ z | | - [[6 fCz,r) - S Czr))]+
| 3 oz ’ Lo '
L=0 P
O z
L
o — z | 2 2 2
— = — + +
+ [ I (sz,rD SiIOCz,rD)] ]dz dr e o(hz hr) o(hr).
v A r
RCz D
where mi: = [ = - ] + 1. Hence we get that
r
2 2 -1./2 ’hz+ h2
Cl. 3. 83D [f‘CZ,F:) — CZ.F)] -'-‘—"(l‘l + h) - Y =z r .
A v 4 r

The right side of (1.3.83) tends to zero if h ,h tend to zero.

A r

1.3.4. Definition for the partition of quadrilateral domain ;
with one side curved. From this definition we can consider the
partition of the domain Q which is needed for the integration of

e .

the spline functions.

Let
ke k : k B k ———
Cl.3.84)D LZ =+ ) er‘i: RCz D> =0, RCzD > 0O, k = 1,N,
-k —k . —k -k T
Cl. 3. 84D CZ . ) e[“i: RCZ 2 = O, RCz2 D) £ O; k = 1.,N,
where QO = zo < z1 <....XK zN < zN+i = L, zk < Ek 4 zkﬂ.

Let us consider the following

ad) If RCzd > O (or R'Cz) < O ) for z € [(0,2]

—0O

then N =1 and =z = O (or - = Z).
bd) If RCO) < O then z° = O.
-N

c) If RCZ > O then =z

|

s

]

d) If RCOD = 0O and max PC(z) = F?:‘1 f or

[O,.r_. ] then z

]
-

N
M

S0




—N

e) If R CZD = 0 and max R(z) = R for z € [zN.Z] then =z = Z.

2

Let the inverse of the boundary functions as follows

C1.3.86) inv R*rd> = inv (RCz)), z* <€ z < z°,
C1.3.87) inv B> = inv (RC2)), 2¢ < z < 2™
Let us define the following functions:
. O ,0<r < r°.
C1.3.88) z°%Crd> = . . .
inv R CrD, r < r £r .
th’ﬁOCFD ,rjﬁfr = r1
— 0O m 1 mi.-i mL
C1.3.89) ZCr) =4 inv R "~ 7Crd, r > r > r
P , min rY > r >0
)
| m.
i — ' . . J 1L—
where m = 1 and m, min {j|Jj > m ., r°<or }.
Let
C1.3. 90D ZCrd = inv R¢Crd> , r* < r < r~
inv ﬁkCrD, F*:E:r-z ma x (rk.rk+1)
m]_( k k
i ' o~ = & mi.—i k m\.
C1.32.91D ZCr) = inv E . r > r 2 max (r o r )
< ; rk+1> r = rk if rk = min (I"JIJ =
k
k K K ; g
wher e m_ = k + 1, m. = min [J IJ D m _» T < r )
N ? K
Therefore, 1t 1s true that ) = kUOQ , where the elements Qo
« = ¥

are defined as follows

O — O —0 - 0
. 92D Q= [O,r | x| Z7Crd,Z Crof,

W

g

=1




k

e

- — L —————

Cl1.3.93D (2 1,N.

N zcry, Z5era],  x

*

It can be seen that if Cz*,r D) e Qk then for every z < =z
e

3

B

(1.3.94>  (z.,r) e, k =0,N

1.3.5. The convergence of the approximate solutions.

]

LEMMA 1.3.1. In the two-dimensional problem C1.1.1) on O
e

for every uCz,rd) e HA there exists a constant C_ such that

||u| lw1 < co[u].

PROOF'. For the Lz—-norm of the first derivatives of the

function uCz,rd) on QO we have the <same result obtained in lemma

©
1.2.2, 1. e.

ou 2 du 2 —3
C1.3.95) =1, * |l—5—117 = R’tu,us,
2 2
where R = ma x RCz)D.
To get the Lz—norm of the function uCz,rd on Qe. let
r r
guCz,rD B 3/2 1 ouCz,rd
C1.3.96) uCz,rd [ e dx = [ % BNCPZ I~ dx.
O O

By using Cquchy-Bunyakovsky’'s inequality to the square of the
integral (1.3.96) we get

r r
2 g 1 ouCz,rd 2
£ 5 s, oK <

C1.3.97) €z, |7 = [ x7 dx | % | ———p=taa T dise %

o O

4 R((z)
5 1 ouCZ,rd ;2
( »
-4 -r 3 l ax -
X
o

Integrating the both sides of (1.3.97) over the domain O we have

e




C1.3.98) [ |uCz,rd>|*dzdr = | |u]|Z <
Lz
2
(S
Z . R{(Z) < R(Z) 2
o 1 ouC z, )

< — 4 <
< J[ f A ar f 3 F dx]dz <

o - O O "

R %, Roz> y . 2

r 1 l auC z, >0 R 1 I ouCz.r)
< —— S
< J—7— dr f[f 3 I d’“]dz 55~ J — ar
P r
O O O (2
©
Let
Z
C1.3.99 uCz,rd) = J‘ quty.r) dy, Cz,rd e OF,
” oy e
2 (r)

where uCz,rd = O if Cz,rD esF; L Fz.

By using Cauchy-Bunyakovsky's
integral (1.3.949) we obtain

¢ <

€1.3.100>  |uCz,rD

Z

J
k

Z (r)

Z5 (r)
(Z B ZkCrD)* J~ I 6uCy,r)
Z

ay

<

k
{r)

inequality to the square of the

IA

| AuCy, rd

2
oy I

Z
dy | dy
Zk(

r)

dy.

Let us integrate the left hand side of (1.3.100) over Qe

c1.3.2012

B il
S s

[ |uCz,r>|*dzdr
Q

@

).

k=0 (2
(=5

n

JhluCz.rDlzdzdr.
k

Integrating the both sides of (1.3.100) over Qﬁ we get

DS

dzdr

e




Qlc
e
-k - o - k
r Z (r) Z (r)
k ouCy,rd 2
< — =
< f f (z ZCrd)dz f | 3y dy |dr
k k k
r Z (r) Z (r)
-k - k
r -k 1 " Z (r)
_J- (2 Cr> ; Z Cr)! réf 13 | BUEY.PD zdy dr <
k K r Y
r Z (r)
-k -k
—_ P Z (r)
Z R 1 ouCy,rd 2
< * —
< = f f - 35 | “dzdr
k k r
r Z (r)
2—3
- 1 ouCy,rd 2
allan j; 5 | gmiee | “dadir
(2
e

Therefore from (1.3.102) we have that

N

L =3 !1
2 L KR - 1 ouCy,rd 2
€1.3.103 ||u||L2 < _"é““'EE: Jk rah-|~_—52—-—- dzdr. !
k=0 () N
=
Now from (1.3.98) and (1.32.103) we get the Lz—-norm of the
function uCz,rd on O
e
—5 2—3 '
2 1 K Z K 1 ouCz,rd , 2
< = , R b et Mol
Cl1.3.104D IIUHL < —— max [2 : % ] f = = |5+
2 A r

6uCz.r)|2dzdr.

oz

o

Finally from (1.3.985) and C1.2.104) we get the W:—norm of uCz,r)

on
(=3




(1.3.108>  ||u||® = c_rul,
W

where

Cl.3.106)D ‘s = R + max [ . —E—E—HJ > 0.

"

THEOREM 1.3.2. The approximated solution S obtained from the

minimization of the functicnal C1.2.39) over the family of

splines (1.2.9) on Qe is convergent to the generalized solution

u of the original problem C1.1.1) in the W;ﬂumwn

||Ju =S|| .+ 0 if h ,h = O,
O 1

PROOF. In theorem 1.2.6 we proved the following inequality

€1.3.107) [4 - &] <inf [4 - S
O S O

A Al

Hence from theorem 1.3.3, lemma 1.32.1 and (1.2.107) we obtain that

€1.3.108 ||[u - S|| ,=c[u - 5] =c igg | u_
W

Remark. If u is the classical sol ution of the equivalent

O

problem of (1.1.1) on Q, it mean Go  DCA) and at the same time
e

Go = W:. Therefore, theorem 1.3.2 can be used with lemma 1.3 1

and (1.3.107) to obtain the better estimation for ||GO* §||:

i~ i~

C1.3.109) | |lu - S||] ., = OCh + hD.
O wi z y

2

S )
bA] > O if hz.hr 4 O,




CHAPTER 11

Numerical Solution For The Plastic Problem

2.0. Comments and literatures. In a part of the previous
chapter we investigated the solution of the elastic problem in a
cylinder subjected to a torque applied at both ends. The material
of the cylinder of wvariable diameter is supposed to be only
elastic. However, as the torque increases the strecs function g
detined by

g = ! lgrad u|
2

r
increases, particularly at the nei ghborhood of I"i, and a small

plastic domain can forms Csee (11, [36], [37]1). O is thus di vided

into two domains, the elastic domain Qe and the plastic domain Qp
with unknown free boundary separati ng them. In this chapter we
shall consider the solution of the plastic problem. For the

solution of the non-linear first order hyperbeolic equation by
finite difference method we shall use the common explicit and

implicit schemes. In this matter we refer to the books (141,
321, [33).

<.1l. Introduction. The plastic problem we shall consider i<
a nonlinear first order equation with a gi ven boundar vy
conditions, and so it is a Cauchy problem. The problem is
summarized as follows [1): Find the function u which must satisty

the nonlinear hyperbelic equation

c2.1.1D r~4q2:= ( g: )2+ ( g; )2 = r*k® , on QP,

Cwhere q is a stress function [11),

with the boundary conditions:




C2.1.2D u(z.R1Cz)) = FCz) , on I ,

ou
cC2.1.3D ;= Cz.r)lz___o = ¢ Crd on l"2 :
C2.1. 4D e S R = & Crd n I
S oz ' Izzz o ¢2 ' ' = 3 '

wher e FiCi = 1,3) are as shown in FIG. 2.1

FIGURE 2.1. THE DOMAIN QP

We remark that the conditions (2.1.2)-C(2.1.4) are more general
than those used in ([(1]. Notice that the above plastic problem
formulation did not involve the boundary l"'o for two reasons. The
first reason because (2.1.1) 1is the first order hyperbolic
equation so theoreticaly it 1is enough to satisfy the three

poundary c<conditions ((2.1.2)-(C2.1.4). The second reason that

physicaly 1f the plastic domain Q will occupy all the domain of
P

the cylinder (11 including the boundary F'O it means that the

» 4




rotation of the torque T is too great and no solution exists.
We are going to find an approximate solution for the probl em

by using finite difference methed.

=.2. The construction of the finite difference method.

Let the domain O [O,Z21x[O,RCz>] be divided by a grid-points
P

similar to those used for the division of the domain Qe in

chapter I (see FIG.2.1). That is let

Ce.2.1D O =z z<...< 2z < z (K...{< 2 =22,
L

O 1 L+1 n

C2.2.2) O

r < r<...< r < r <£...<r .
O 1 J j+1 m

and Cz ,r D,z ,r D are grid-points, where
n m n m

1 2 3
(2. 2. 3) O <n1< n3< n , O < m2< m.
The given function r = R(z) is constant for z € [0,z ] and z e

1 n
|

[Zn v ad ; Increasing on the interwval (z b . ) Suppose that
n M

3 1 3
c2.2. 4D r =R(z ), 1 =1,n_-n
m2+l. | h1+\. 3 1
Obviosly the elementary domains on Qp can be rectangles and

triangles as well:

1. Rectangulars, inside Q, at the neighborhood of I"1 for
P

the intervals (O,zn ), (z_ .2), and at the neighborhood of r_ and
n
1 3

[ .
3

<. Triangulars only at the neighborhood of I"1 in the

interval (z ,z ).

mn n

1 3
Now from the finite difference method let us first construct an
explicit scheme for the equation (2.1.1) with the boundary
conditions (2.1.2)-C2.1.4) on the predescribed elementary domains

separately. First for the rectangular elements let

du u = K- ‘v d
(2.3 B ~ _ vsJ) @ t.)*1 ,
or 'z_,r, h
L) ro
J
ou =, 1 . 1-_ - 1 +1
+ 5 J+ L - ,J
C2.2.6) o - ,
oz Iz_,r_ h + h
L) Z Z
L + 1 1
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where

Ce.a. 7D h = r-r

Therefore from (2.2.5),(2.2.6), the equation C2.1.1)0 can

written approximatly as follows:

Ce. 2. 8)

U = = u. . = hn
| VP L,)+14 r

The scheme (2.28) satisfy the boundary conditions (2.1.2)-(2.1. 4)

as follows:

C2. 2. ) u = FCz_LD -

(2.2, 12D

U o= . =
N ] N, +1

In the triangular

elements let us look for an explicit

scheme to find the solutions u (i = n+¢{ J = m+ £ - 1, £ =

L, )1 1 2

1,n — n )J.It 1is seen that for these soluti ons exlist two cases.

3 N
Case 1. Let

G . 1 3) F'CziD = uCz ,r J,

L

on the curved part of ri.

J

Suppose that we know the solution in r

= r.. Hence we can write the following relation

J

o9




FCz . D FCz D uCz,,r_D-uCz,_i,r__ij
Ce2.e2:14) - v 3y oort7r 37T ~ < Vou,

/ h + KR®
z r
L

)

wher e S = [ |S|
/. /hz
- A
Hence
h D ou
C2.2.15) (S Vu = _—

. > or
/ h + h
z r

Therefore on the interval C(z '12' ) we get that
L= L

P F‘Czi)—FCz_ 1) r S
~ L= _ J
Ce.2.16D 3> |__ B I T+ "3
Z Z .
L L
and on the interval (z ,z,ﬂ) we get that
L L
U uCzL+1.rj)-uCz_.r_) uCz_+1,r_)—FCz_)
b --_.__..._..________._____.____________‘.'_________J__ - . J - |
C2.2.17) 3 |+ = i P
z Z
L+ 1 L+ 1
From (2.2.163,0(2.2.17) we get
du ~ 1 du Jdu " UCZL+1'rj) FLE 2
.= 2 ( v L) = :
oz zi- o oz + oz — oh
| zi.+1
h .
rCz D-FCz. D r |
. L L-1 N ] ou |
=h =h or
z z
L L
Let
& uCzL+1,rj)—FCzi) FCZLD_FCZ'L—13
C2.2.18D F =—————-——8—-H——————-———-———-—+-—~—-———é—ﬂ-——--——————————,
z z
L+ 1 L
and so
60




C2.2.19

lheretfore from (2.2.19), the equation (2.1.1) can be written as

tollows E
|
4h h ﬂ
& K- .
h® + 4h°
r - A
) L
Ah*
zl. 2 rj+ rj--:l 4 w2
- 2 2 [% ( = :)_—F? ] -
h + 4h
r z .
) L
Hence
=h
ou z\_ ¥
Ca.2.21D y -— - h F +
h + 4h° Fs
r . -
J L
/ , 2 2 rj+rj—14 2 2 %2
+ ——
(hr.+ 4hz')(————§-u—*) k 4hz'F
) L L
L.ot us write that
ou -, j— ol S 1
~ L, L, )~
Ce. 2. 22) = T -
r .
J
Therefore
<h h
Z . . -
C2.2.23 u = u - —-—-2-—1‘__"__ h F +
= “on® o+ an?® |7
A

2 rj+ rj—i 4 2 2 * 2
- + 4h2L)(————"2————) k - 4th

L

Case 2. The only difference in this case from the first that

now for 1 = na we have

61




du _ L+ 4
Ce. 2. 24) - - i -
z
L+ 1
Therefore CE.B.iB) become
' * FC2,+1,P_)+FC2_D FCzi)-FCzi 1)
- L ) L -
C2. 2. 25D FF = S + St
- Z
L+ 1 L

2. 3. The accuracy of the approximate solution.

THEOREM 2.3.1. The accuracy of the approximate solution
obtained by the explicit scheme (2.2.8) has the following

estimation

w o= O(hr_+ hi)

PROOF. From the equation (2.2.8). we can write the following

2

u, LT U D U. o iae Y. ..]2
L, )+ Ly ) L+1, )+ L—-1, )4
C2.3.1D —_— ! + | T ) =
h h + h
& z z
J+ 1 L L+ 1

. l"+1 4 2
= [————9-—————‘1-—-—] k + y, i = 0,2 -1, ] = O, 1,
o m

mn
where yw is the error of the approximation. Let

h

¢ d 1 + 14

C2. 3.2 u = u[%,n“_+-—_—J—--].
TR =
The Taylor’'s expansions for the functions u , u ., u |,
Lol i ta t=-4,)%1
u ., can be written as follows
L+14,)+4
h h*
c2 3. 3) o * lr‘j+1 adu | * N rj-l-i 62u # N ha
b T T 5 2| T Ah)
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h h* ,
r
" ) + 1 gu | * j+1 g u @ * 3
3. — 37 o O iR .
(2.3.4D U s Ut 5 = 5 o O(h )
or
hl“
' ¥
C2.3.5) u o= u o+ ive _Ou  * u M
i+ 1, )+ 1 = or z oz
i+1
h” ] ] h* ,
rj+1 g u | * g u  * zj+1 g u  *
! 8 2 * h » 6rc‘:?z| " e 2
or rj+1 “1 44 oz
3 3
+ C(hr+ hz).
h!“
' %
(e, 3. 8D u. = u* + —3*1 ou - B ou I"E +
L= 4 ,)* 1 = or zi oz
h’ 2 2 h_ 2
r A
j+ 1 g u  * g u @ * L 0 u  * 3 3
B e i—— A——— - — — =
3 2 | hr_ hz, 6’1‘32' " o 2 ' * O(hr+ hz)'
ar j+1 L az
By substituting (2.3.3)-C(2.3.6) in (2.3.1) we get that
—_ du %2 2 du | *2 2, _ _%*q4 2
c2.3.7D = | T+ O(hr) + — + O(hr+ hz) = r K™ + y 1
Therefore, from (2.1.1) and (2. 3.7) we have that
2
= +
(2.3.8) Y O(hr hz).
Remark. In practise the domain Q must be small (11,

P
therefore it 1s not need to consider the convergence of the

approximate solution of the problem. But we can say that from the
theory of the stability of hyperbeolic equations it is known that

the scheme is stabile if h = OCh ) and this condition easy can
r A

be satisfied by the scheme (2.2.8).

<.4. In section 2.2 the difference scheme was an explicit

one. It can be constructed also the following implicit scheme for

kX



the equation (2.1.1D

C2.4.1> u, . = u -

the explicit scheme (2.2.8). First the stability of the implicit

scheme is better than those of the explicit scheme. Second the

implicit scheme is more accurate than the explicit scheme.

THEOREM 2.4.1. The accuracy of the approximate solution
obtained by implicit scheme (2.4.1) has the following estimation

_ 2 2
C2.4.2) W = O(hz + hr).
The proof of this theorem is similar to that one of theorem

e.3.1.

Remark. In the explicit scheme if we have the solution in a
given row, the next row for every equation can be solved
independently from the other. The first di sadvantage of the
implicit scheme that in a given row one must solve a system of
nonlinear equations. For the solution of the system (2.4.1) one
of the well known methods from the theory of nonlinear systems of
algebric equations can be used. The second di sadvantage of the
implicit scheme that the explicit scheme can be better applied
for problems of varied boundaries as the case in the free
boundary problems.

Notice that in the solution of the elastic-plastic problems,
which will be consider in next chapters, we can use the obtained
solution of the plastic problem as a given cone, while it is not

depend upon the solution of the elastic problem.

G4




CHAPTER 111

Interation Frocess For The One-Dimensional

tlastic Platic Frodblem

3.0. Comments and literature. The classical one-dimensional
elastic-plastic problem can be alternatively reformulated to the

following variational inequality [(1]: Find u e HA such that

aCu,v-u) 2 0O, for all v e H“!h

where
H = (v e ¢'co,1); vCOd = 0, wW1d =1, v = ¢)

and the obstcal ¢ be such that

grad ¢ = gf =l<rz. O < r < 1, C1O = 1,

so that
@ = kr /3 + C1 - ks3), O < r < 1.

Let a be the bilinear functionnal

1 1
1 1
aCu,v) = J = ur(vr ur)dr' . f - ur(vr ur)dr.
P r
o T
Integrating by parts and since vCO> = uC0> = 0O, v(1D> = uCld =1,
Au = O 1n Q = CO,7), and u = ¢ in Q = Ct,1>, it is obtained
@ P

1
aCu,v — u) = I Cv — ¢J) Au dr.

T

k/r‘2 > O 1n Qp, therefore u 1is

the solution of the above wvariational inequality. In [1]1 the

One can see that v 2 ¢ and Au

classical two-dimensional elastic-plastic problem also was

reformulated as a variational inequality problem. The free
boundary problems were Peformuiated almost as a variational
inequalities regarding their mechanical and physical situtions.

We refer to the books and works of [15]1, (161, [17], [18), [19],
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(201, [21]1, [22].

There is a connection between the variational inequalities
and the minimization problems introduced in chapter I. This
connection is given by the following result: An element u is the

solution of the abstract minimization problem if and only if

U e U and v € U, aCu,v — u) =z fCv — uwu.

Methods of numerical approximation of sclutions of variational

inequalities are treated in (231, [24]1, [28], [26].

3.1. Introduction. In this chapter we want to present
iteration process ideas for sol ving the one-dimensicnal
elastic-plastic problem although its exact solutien is known.
Because we intend from presenting these ideas that they will be
useful for solving the two-dimensional problems too as it will be

seen in the next chapters.

3.2. The elastic-plastic preblem for the one-dimensicnal
case can be summarized as follows:

The solutions,of the elastic problem u°, and of the plastic
P

problem u", satisfy the following equations
e
ol v 0 A o) Au®: = - L [ - e ] = 0, r € CO,rd,
dr 3 dr
r
LS. . 2) .= | dup' = k r € Cr,RD
o s -2 dr ' P

with the boundary conditions

C3.2. 3 u-cod = O,
C3.2. 4D uPCRY =T,
C3.2.5) u“crd = ufcr,
e P
C3.2.6) U, ¢y » U ey
dr dr

where r € CO,R) is the unknown free boundary of the problem.
Now from the equations (3.2.1), (3.2.2) and the boundary

conditions (3.2.3)-(3.2.6), one can obtain the exact solutions of
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€3.2.7> u® = Xt
4r
C3.2.8) up = T - ——]—(3—-— CRQ-— rgl),
3 3 12
C(3.2.9D r = k- = -

Notice that the solution uf is not depends upon r. The point r

depends upon the value of the coefficient k. The only possibilty

of the existence of the solution r that k has the following

val ues

31 ¢ K < 4T
3 g

R R

3.3. The first iteration process idea and its convergence.
Suppose that the free boundary r is approximated by r and it is

true for r the following
(3.3.1) r =r + &,

where & is a small number.

Let us construct from (3.2.7), (3.2.8)an approximate solution

L~

for the elastic problem by using the condition (2.2.% at r
point:

C3. 3.2 u. Crd = uf r

Hence it is obtained that

(3.3.3 u’Crd = —— (T - —— CR? —FM).

Now the correction of the free boundary can be done from the

~Ne

difference between the first derivatives of the functions u and
u® at the point r as follows: Let
_ du® _~ du® =~ a
C3. 3. 4 [ = [ = Cr) = Cr)] =
— 9 ~ 3

_ .~2 4 _k 3 ~3 _ ,.~2 4 ~ kr kr B
= kr - [T ——é——CR r)] = kr - [ TS + 3]—

r r

k(r-— r°

= — krd& + k&%+ OCS™H.

Il
I
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From (3.3.4) we can write that

L3 3.5 S = - - f .
kr
.t
P | ~ e
C3. 3.6 P [_9.':‘__ - _9..‘.‘.‘___]
~ dr dr ~
kr I

The formula (3. 3.6) can be used as an approximation of &, as well

as it can be applied for the iteration process: Let Fj be the

j—th approximation of r and so

P ~ e
C3. 3.7 uCr D = u'Cr D, S = - : [du - du] ’
} ) } - dr dr -
) J
The next approximation F,i can be written as follows
J-l-
C3.3.8) r =r, - &

J+1 J J

Let us consider the convergence of this iteration process by the

following theorem.

THEOREM 3.3.1. The iteration process (3.3.7) and (3.3.8) 1is

convergent and the following estimation is satisfied
| r. =~ 1| :o[|F_-—F|2].
)+ )

PEOOF. From (3.3.1), (3.3.4>, (3.3.7), (3.3.8) we have

P ~ & B
L 3. 3. 100 6_“ = r,ﬂ - r = r + 1,, [3;‘ - 3: ]......_ r = &6 +
J ) ) ot -~ J
) )
1 ~ 2 g 6? 3
+ - kr & + k& + S - + =1
il SR C) e O
) )
Thus
€3.3.112 Foo-r| =o[|;~"_-—;~‘|"‘] , jo=o0,1.....
J+1 ]
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3.4 The second iteration process idea. Let r be the

approximated boundary between the elastic and the plastic domain,

and

C3.4.1) ucrd = ufcrd, r = r.

It is easy to show that thére exists the second intersection

{4

point r of the curves u-Crd) and ufCrd where

N

€3.4.2D a’cr = WP,

and r<r<r or F<r<r

Suppose that ?

C3. 4.3 r -1 = &, '

and |6| is small number. Now if l

€3. 4.4 r - r = g,

it can be shown from (3.3.232) and (3.4.2) that

(3.4.5) £ =6 - — & + osD. |
3r :

]

Clearly for givemlrj the function U Cr) can be obtained from

C3.3.3). After that the equation (2. 4.2) need be solved for the

N
N

other intersection point r. After that the next approximation
)
can be written as follows
o r +r
(3.4.6D r, = 3 :
j+1 o
To consider the convergence of the iteration process one

can obtain from (3.4.3)-C32.4.6) that

r + r S + g

C3.4.7) S =r -—-r =23 3 - __3 I - oxsH. ;
j+1 j+1 e o j

This result can be formulated in the feollowing theorem.

THEOREM. 3.4.1. The iteration process (2.4.6) is convergent

E .
B E— .

and the following estimation is true

I o[|;~""j . F’|].

B — TEEEE-  JEE-me——m—"
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Chapter 1V

Two-Dimensitonal Free Boundary

Problem In Rectangular Domain

4.0. Comments and literatures. For the Fourier trigonometric
series we shall use in this chapter let the boundary condition
function Csee 4.1.4) fCz) be a piecewise continupus with period
Z. This function can be represented in the form of a sum of
infinite number of harmonics

u = a cos—nri+b sin—llf-z—z—-—. n = 0,1,2,...
n N 5 N &

of the same period Z. Thus we come to the Fourier series

a 00
— B O . Ntz . Bz
t(z) = = + Z [an CoSs — + bn slin ———-———-—-—-—Z ]
vy o=

where the coefficients of the series have the following values

7z
1 ==
ao — —2'—" I fCz) dz
O
Z Ntz
a 1 cCoOos —-—"—-""‘Z
h} — "‘“"""""ffCZD { dZ % n — Op1'2|---
i . 5 ¥ J 4
b sin ————o
n O Z

The Fourier series of an even functions contain only cosines of
arcs and ifit has an odd functions then it contains only sines of
arcs. For the literature on Fourier series we refer to (271,

[28].

4.1. Introduction. In this chapter we are going to find a
solution for a two-dimensional free Dboundary problem 1in a
rectangular domain. First, using an analytic represention to get

the unknown function of the problem and second applying the idea
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introduced in chapt. III to obtain an iteration process for the

unknown free boundary.
The problem can be summarized as follows: Let the function

uCz,rJ) must satisfy the elliptic differential equation (see

chapt. 1D

=O.

3 1 du 3 1 du )

L&.1.32 = = T ou ‘rs - or ) - 9z L3 oz

on the elastic domain O; < QQ C(FIG.4.1) together with the boundary

condiltions:

C4.1.2) uCz,o) = 0O,
ou . du _
C4.1.3 5l = O 55| ,., = O-
%
|
|
r |

FPLOGURE 4.1. The domalin Q1 < €

e

Moreover across r = R = const, the following conditions need to be

satisfied:
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C4.1.4D uCz,R) = ufcz,.P) = fc=zd,

C4.1.5 VuCz,rd| = YuCz,rd|
= =

P

2 - M ]
where u € W denote a given function on .

2

Notice the solution of equation C4.1.1) on the given domain Qe

with the given boundary condition uCz,R) = f(z) was obtained by
spline function method in chapt. I, but the only difference that

in the present case we supposed c,bi(fr) = qsz rJ) = 0.

4. 2. An analytic solution with the use of Fourier

infinity series method. Suppose that

C4.2.1) uCz,rd) = ZCz> R Cr).
By substituting C(4.2.1) into (4.1.1) we get

2 ¥ 2 * »*
C4.2.2) ————1 _________dZ = - : e + = jf ’

Z* d z2 , E* d rz rR*

in which the left side is function of z and the right side is

function of r only. So this formula leads to the following two

ordinary differential equations for the functions Z* and R*

42z" »
C4. 2. 3D —_—+ AZ = 0,
2
0 b
> ¥
C4.2.4) __d__?__ 3*_ — >\FE* = 0O,
dr rkR

where A is an arbitrary constant. The boundary conditions for -

»*
and R can be determined from C4.1.2) and (4.1.3) as follows

- dz" dz"

C4.2.5) O3 = C2D = O,
dz dz
W

C4,.2.6) RYCOd = O.

For the solution of the equations (4.2.3) and (4.2.4) we have

three cases:
CidD If A < O the solution of Z* not exists.

Ciid If A = O the following sclutions are obtained.

e




¥ R 4
Ck. B: T Z = const, R =b r , b = const.

O O
Ciiio If X > O we get the feollowing solution for the

eigenvalue problem (4.2.3) with the condition C(4.2.5)
cosvxk Z,

2, 2
2

&

N

C4.2.8) Zk = C
7

» Kk

where A = 1,2,....

k

It is known that the solution of the modified Bessel’'s equation

2 2 2 2
d”w 1-2a dw [(bczc—:l)z L, 2 m- ¢ ]w

+
dz

2 > 4 dz
with the boundary condition (4.2.6) can be written as follows [8]

C4.2.9)

C4.2.10D w ==zJ Cb =z,

m
wher e Jm is the first kind of BRBessel’'s function. For the solution
of the equation C4.2.4) let a = 2, ¢ = 1, b- = “A,, m = 2 in

C4.2.9). Therefore from (4.2.10) we get
C4.2.11) R

2 .
\ c,r Jz(l ka r).

or by wusing the represention of the Bessel's function with

complex argument we get

* 2
C4.2.12D Rk = e r Iz(Vik _r),
where I2 is the modified Bessel’'s function:
C4.2.13D I Czd) =i "J CizD.

m m

Now from using the Fourier series for the solutions (4.2.7),
C4.2.8) and (4.2.12) we get the solution of equation (4.1.1)D
which is satisfied by the conditions C4.1.2), C4.1.3D

00
. 4 2 n k =z nm k r
C4.2.14D i z.r) = cor + r kgi Ck COS = I2 [—-—-——-—-—-—-—-——-Z ]

The function f(z), which is supposed to satisfy the boundary

df . df
dz L = dz

the Fourier series as follows

condition C(4.1. 3D [ C2 = O] can be expressed by

———

s
C4.2.15D fCz) = a + ): a, cos n -
k=1

nkz
O z '

where the Fourier coefficients of f(z) have the following form
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Z Z
- 1 oy - = - n k Y

C4.2.16D a_ = —Z——j fCyddy, a = 'Z'f fCyd> cos ———= dy,

O O
K =2 L s s« s
Let us consider the Fourier coefficients estimation. From
C4.2.15) we get that

—" nz > 2 n k =z
C4.2.17D f Cz) = - z a k° cos
Z; =t k P

Since uf e W: we have that  (z) Lz' Hence the estimation of

C4.2.170 is [8]

C4.2.18D la k% |—> o .
k k 2 @
To obtain the wvalues of the coefficients Co and Ck in

C4.2.16)0 let us use the condition (4.1.4) and so we get

ao ak n k K -1
C4.2.19D & s [I (———-—-———-—-—)] , k =1,2,.....
O R‘ k E:z 2 s

By substituting (4.2.19) into C4.2.14) we get that

Il
1

m k r
r4 rz © it k Z Iz( Z; )
C4.2. 20D uCz,rd) = a .- Z a cos
O 4 2 k L T k R
P P k=1 I-( )
2 Z,

4. 3. An interation process construction to obtain the free

~J

boundary. Let R be the approximated free boundary on Q such that

e

~JS

C4.3.1) R =R + &6,

where R represents the unknown exact boundary of Qe, and & is
supposed to be small number. We assumed before that uf is a gl ven
function on Q. Therefore on E = const the function

C4.3.2D fCzd) = ubcz, R

is known. Similarly as in (4.2.15) we can write that

00
C4. 3. 3D £fCzd) = a + Z a cos -—--T-[--E—-E-—-
O . = k Z

and for the coefficients of f(z) it is true the relations in

L. 2. 18D,
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Now for the domain Q < Q Cwith the boundary R) the solution

e

of (4.1.1) (Clet wus denoted by uCz,rd), which satisfies the

boundary function (4. 3. 2), can be written as follows

4 2 00 I (n X r')
C4.3.4) aCz,rd) = a —- + I Y a cos — N . ‘
O ~ 4 ~ 2 k L ~
2 =
Let us loock for the relations between ak and ;k' From

the Taylor’'s expansion and (4.3.1) the boundary function £CzD

C4.3.2) can beﬁwritten as follows

S
[é

~ P 6up .. 2
C4. 3.5 f€Czl)d = wCz,R) + 6 I Cz,RD + OCS&D.
Hence from C(4.2.160 and (4. 2. 5) we get that
Z
~ 1 au’ 2
C4.3.6D ao-a0+c5_-2-_f = 1R dy + OCS&™D,
O
and similary for Zk Ck = 1,2,...) we have
Z
—_ ~ = au” T k vy 2 L
= + —_— _—_— . 2 ; |
C4.3.7D a, a S = I - IR COS = dy OoCS D
O

From the formulation of the problem one can see that

C4.3.8D ucz, R = J¥cz,R = fczd,
au ~_  _ @uFf ~_ _ dfCzd
C4. 2. Q) - C..:..R:) — e CZ.E) — T .

nJ

But for R #2 R it is obvious that

N g
M .8 = U . B

C4. 2.10D
onr or

This means that the second condition of (4.1.5) is not satisfied.

We shall use (4.3.10) to determine, from the difference between

(™

du dr and duF 9r in r = E, the approximate value of 6.

~J

From C4.32.4) let us obtain 8u dr on the line r = R, and so




00
C4.3.11) | - 24+ 2y 3 cos LEZ,
_ or ~ ~ ~ k &

r=R R R k=1

+ E s 'cog ~N X _______(___E___?__ >
- > &
,(55)

where I; denotes the first derivative over 1its argument. By

substituting (4.3.10, (4.3.6), (4.3.7) into (4.32.110 and using
that

T k R

I
L. S S [———————-——-——-—C

Z S
L (55)

Y,

CR+&D
)

&
nm k CR+6D
I(——) I,

we get with an arrangment to the terms the following

;s 2Tt K
Iz(

0

[

I;("—-—___—
(

NISINI ™

] + OCE

~ 42 Q0
Ju O = it kK 2
C4.32.12D = . = "B + - Z a cos ———
r=R =
00 -
T k T k =z m k R T k E
S R LR T TS LTI EITN
oA Q0
+ & |- 20 + 22 (ao + Z a, cos T kZz ) +
| R k=1
Z Z
2 auf 2 1 au’
+ e i
Rz |y ¥ Lo ) 3l W
O O




QO
nm k =z r T k R n k R
x cos T (TS L,(RE)) ¢ L A, >

, T k K ,
w K Z Iz( 2 2
zcos-—————-—-—-——-— S SN S5 con + O C& D.
Z I(nkR’
2 Py R

1Tk

*( 2""’")

To simplify the material it can be seen that the first three
terms in C(4.3.12) denote Jdu-adrCz,R) and by Taylor’'s expansion one

can write

P 2 p
(4.3.13) au = o | - & _-(—?-——L—I— — OCchf).
or or ~ 2
i R or R
Let us assume that
ouf - nk z
C4.3.14D A = g * ) g, €O0S —s—,
R k=1
wher e
Z
1 auf
O
Z
e au’ n ok vy o
gk*—'*—-z——'f - IR COS ————-z—-——"dy. ]\—1,2,....
O

By substituting (4.3.13), (4.2.14) into (4.3.12) and using the

Taylor’s expansions to express all the values of (4.3.12) on the

boundary r = R one can obtain the difference between g: I..... and
R
au’ , ,
5. in form of a power series of the small parameter & as
R
follows
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o P 2 p oA,
C4.3.16D g: - 3?3 |, =6 |2 - —2— - 82 uPCz,Rd +
R R 61"2 R 2 |
, Tk =
2 o~ 2 aut - o~ ok n k z Iz( >—)
+ g + I + Z g COS +
~ 2 o ~ 2 or ~ k Z 2 ~
R E R k=4 1 (n k R
2 & )
. T k (2 n k =z I;(n ; E ' 2
R e e ot S = fo e
k=1 1 (_n_____k E
2 Z.

i~

where ék are the Fourier coefficients of du’-8r on E.
Now it can be seen that the first five terms in the right hand
side of (4.3.16) are bounded because they have known vales.
Therefore let us look for the esti mations of the last two series

in C4.3.16). Since u’ e W: and in addition we suppose that

3 p
2 € L then for g the following estimation is true
2 2 k
adz or
2
C4.3.17D ngk |E—_; o
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