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Bevezetés és áttekintés
(Summary in Hungarian)

Az egyik legfontosabb és legtöbbet vizsgált gráfelméleti paraméter a kromatikus szám,
azon sźınek minimális száma, melyekkel a gráf csúcsai kisźınezhetők úgy, hogy szomszédos
csúcsok sźıne különböző legyen.

A G gráf χ(G) kromatikus számának egyik legtermészetesebb alsó becslése a gráf ω(G)
klikkszáma, a csúcshalmaz legnagyobb olyan részhalmazának elemszáma, amelyben min-
den csúcspár össze van kötve. Ez a becslés sokszor nagyon gyenge, egy háromszögmentes
gráf kromatikus száma is lehet tetszőlegesen nagy, ezt bizonýıtja pl. Mycielski [123]
konstrukciója.

Az értekezésben fontos szerepet játszik gráfok konormálisnak nevezett szorzata, illetve
hatványa, melynek bevezetését egyebek mellett számos információelméleti kérdés mo-
tiválja. E művelet során a klikkszám és a kromatikus szám ellentétesen viselkedik: előbbi
szupermultiplikat́ıv, utóbbi szubmultiplikat́ıv erre a szorzásra nézve, melynek defińıciója
a következő.

Defińıció. Az F és G gráfok konormális szorzata az az F ·G gráf, melyre

V (F ·G) = V (F ) × V (G)

E(F ·G) = {{(f, g), (f ′, g′)} : {f, f ′} ∈ E(F ) vagy {g, g′} ∈ E(G)}.
Gt a G gráf önmagával vett t-szeres konormális szorzata, amit G t-edik konormális
hatványának h́ıvunk.

A most definiált hatványozásra úgy érdemes gondolni, hogy amennyiben G élei a
csúcsok valamiféle megkülönböztethetőségét jelentik, akkor a konormális hatványozás ezt
a relációt terjeszti ki a csúcsok t hosszú sorozataira: két ilyen sorozat pontosan akkor
megkülönböztethető, ha legalább egy koordinátában az.

Nem nehéz belátni, hogy, mint fent emĺıtettük, tetszőleges F és G gráfra fennáll az

ω(F ·G) ≥ ω(F )ω(G) valamint a χ(F ·G) ≤ χ(F )χ(G)

egyenlőtlenség.
A fentiből következik, hogy a

χ∗(G) := lim
t→∞

t
√

χ(Gt)
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és a
c(G) := lim

t→∞

t
√

ω(Gt)

határértékek egyaránt léteznek, és rájuk ω(G) ≤ c(G) ≤ χ∗(G) ≤ χ(G) teljesül.

Az elsőként feĺırt χ∗(G) határérték jól ismert mennyiség. A kromatikus szám feĺırható
egy egészértékű programozási feladat megoldásaként. Ennek valós relaxációját megoldva
jutunk a frakcionális kromatikus szám fogalmához, mely McEliece és Posner [120] egy
tételéből adódóan (ld. Berge és Simonovits [19] dolgozatát is) megegyezik a fenti χ∗(G)
határértékkel.

A klikkszám is feĺırható egészértékű programozási feladat megoldásaként, ennek valós
relaxációja a frakcionális klikkszám fogalmához vezet, amelynek értéke a lineáris prog-
ramozás dualitástétele révén mindig azonos a frakcionális kromatikus szám, tehát χ∗(G)
értékével. Várható volna mindezek alapján, hogy c(G) is ezzel a közös értékkel legyen
egyenlő. Ez azonban nincs ı́gy.

A c(G) mennyiség, pontosabban annak logaritmusa, Shannon [139] információelméleti
vizsgálataiban bukkant fel először.

Defińıció. (Shannon [139]) Egy G gráf (logaritmikus) Shannon kapacitása1 a

C(G) = lim
1

t
log2 ω(Gt)

mennyiség.

A logaritmálás oka az információelméleti háttér, a fenti mennyiség ugyanis egy zajos
csatorna bitekben mért ún. zéró-hiba kapacitását fejezi ki. Innen adódik az is, hogy a
logaritmus alapja 2. A továbbiakban is minden logaritmus kettes alapú lesz, ezentúl ezt
nem ı́rjuk ki.

A Shannon kapacitás a modern kombinatorika egyik különösen érdekes fogalma.
Vizsgálatát számos váratlan kapcsolat, valamint némely vele kapcsolatos probléma
meglepő nehézsége egyaránt indokolja. Az a talán ártatlannak látszó kérdés például, hogy
egy háromszögmentes gráfra a C(G) érték lehet-e tetszőlegesen nagy, ekvivalens Erdősnek
egy máig megoldatlan problémájával, mely azt kérdezi, hogy az R(3 : t) := R(3, 3, . . . , 3)
Ramsey szám (az a legkisebb r szám, amire a Kr teljes gráf éleit t sźınnel sźınezve biztosan
keletkezik egysźınű háromszög) gyorsabban nő-e, mint bármilyen rögźıtett c konstans t-
edik hatványa (ld. Erdős, McEliece és Taylor [49], Alon és Orlitsky [6], valamint Rosenfeld
és Nešetřil [125] cikkeit).

Shannon [139] meghatározta minden legfeljebb 4 csúcsú gráf Shannon kapacitását és az
5 csúcsúakét is egy kivétellel. Az 5 hosszúságú C5 kör Shannon kapacitásáról csak 23 évvel
később bizonýıtotta be Lovász [109], hogy a Shannon által megadott alsó korláttal, log

√
5-

tel egyenlő. A Shannon kapacitás probléma nehézségét a fentieken túl az is jól mutatja,

1Megjegyezzük, hogy számos tárgyalás a C(Ḡ) mennyiséget nevezi a G gráf Shannon kapacitásának,
ahol Ḡ a G gráf komplementere. Maga Shannon is ezt a nyelvezetet használja, mi azért nem ezt követjük,
mert az iránýıtott gráfok kapacitásainak tárgyalása ı́gy természetesebb lesz. Erről bővebben ld. a dolgozat
1.5.Megjegyzését.
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hogy az ötnél hosszabb páratlan körökre mindmáig ismeretlen a C(G) érték, és még azt is
csak 2003-ban igazolta Bohman és Holzman [24], hogy C(C2k+1) > log 2 minden k-ra, azaz
minden háromnál hosszabb páratlan kör Shannon kapacitása meghaladja a klikkszámából
adódó egyszerű alsó korlátot.

A Shannon kapacitás vizsgálata által inspirálva vezette be Berge [15, 16, 17] a perfekt
gráfokat (ld. Ramı́rez-Alfonśın és Berge [18]).

Defińıció. (Berge [16]) Egy G gráf perfekt, ha minden G′ fesźıtett részgráfjára χ(G′) =
ω(G′) teljesül.

A perfekt gráfok rendḱıvül fontos és sokat vizsgált gráfosztályt alkotnak. Ennek
legfőbb oka az, hogy kapcsolatot teremtenek olyan látszólag távolabbi területek között,
mint a gráfelmélet, a poliéderes kombinatorika és az információelmélet. Számos ilyen
kapcsolatot részletesen tárgyal a Ramı́rez-Alfonśın és Reed által szerkesztett [128] könyv,
valamint Schrijver [136] monumentális monográfiájának három perfekt gráfokról szóló fe-
jezete. Igen sok érdekes gráf perfekt. Ilyenek például a páros gráfok és élgráfjaik, az
intervallumgráfok, vagy a részben rendezett halmazokhoz rendelhető ún. összehasonĺıtási
gráfok.

A perfekt gráfok számos szép struktúrális tulajdonsága önmagában figyelemre méltó.
Kiemelkednek ezek közül a Berge [15, 16] h́ıres sejtéseiből mára tétellé vált álĺıtások, a
megfogalmazása után körülbelül egy évtizeddel Lovász [106] által bebizonýıtott Perfekt
Gráf Tétel és a kimondása után negyven évvel igazolt Erős Perfekt Gráf Tétel, melyről
2002-ben jelentette be Chudnovsky, Robertson, Seymour és Thomas [30, 31], hogy be-
bizonýıtották. A Perfekt Gráf Tétel szerint egy gráf akkor és csak akkor perfekt, ha a
komplementere az. Az ezt általánośıtó Erős Perfekt Gráf Tétel azt álĺıtja, hogy egy gráf
pontosan akkor perfekt, ha fesźıtett részgráfként nem tartalmaz páratlan kört vagy ilyen-
nek komplementerét. Utóbbi, a megoldásáig Erős Perfekt Gráf Sejtésként ismert álĺıtás,
a gráfelmélet kiemelkedő problémája volt az elmúlt évtizedekben.

Közvetve tehát mindez Shannon [139] zéró-hiba kapacitás vizsgálataiból eredt.

Cohennel és Körnerrel a [33] cikkben a Shannon kapacitás fogalmát gráfcsaládokra
terjesztettük ki, majd Körnerrel a [98] dolgozatban egy olyan extremális halmazelméleti
kérdést vizsgáltunk, ami leford́ıtható volt iránýıtott gráfcsaládok egy kapacitás t́ıpusú
paraméterének vizsgálatára. Ezt általánośıtva Gargano, Körner és Vaccaro [60] bevezette
az iránýıtott gráfokra értelmezett Sperner kapacitás fogalmat és ennek gráfcsaládokra való
kiterjesztését. Ezzel megteremtették számos érdekes extremális halmazelméleti probléma
közös tárgyalásának lehetőségét és [61, 62] cikkeikben bebizonýıtottak egy mély tételt,
mely számos ilyen problémát egyszerre megold. Ezek között a legnevezetesebb Rényinek
az ún. kvalitat́ıv 2-függetlenségre vonatkozó problémája, mely ı́gy felvetése után több,
mint húsz évvel szintén megoldást nyert. Megjegyezzük, hogy a [33]-beli problémafelvetés
eredetileg infomációelméleti ind́ıttatású volt, a gráfcsaládok Shannon kapacitásaként
értelmezett fogalom az ún. összetett csatorna zéró-hiba kapacitásának felel meg. Nayak
és Rose [124] nemrégiben észrevette, hogy gráfcsaládok Sperner kapacitására is adható
ehhez hasonló információelméleti interpretáció.
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A Sperner kapacitás a Shannon kapacitás formális általánośıtásának tekinthető a-
mennyiben az iránýıtatlan gráfokat olyan iránýıtott gráfoknak tekintjük, melyek minden
élüket mindkét lehetséges iránýıtásukkal tartalmazzák. Látva, hogy a Shannon kapacitás
értékét konkrét kis gráfokra sem mindig könnyű meghatározni, nem meglepő, hogy a
helyzet hasonló a Sperner kapacitás esetében is. (Már egy ciklikusan iránýıtott háromszög
Sperner kapacitásának megállaṕıtása sem triviális, ld. Calderbank, Frankl, Graham, Li,
Shepp [28] és Blokhuis [23] dolgozatait.) Ugyanakkor nem egyszerűen egy megoldatlan
probléma még nehezebbé tételéről van szó, hiszen a Sperner kapacitás meghatározása sok-
szor olyan gráfokra is érdekes, melyek iránýıtatlan verziójára ismerjük a Shannon kapacitás
értékét. Különösen érdekes továbbá az iránýıtás hatását figyelni, vagyis összehasonĺıtani
egy iránýıtatlan gráf Shannon kapacitását iránýıtott változatai Sperner kapacitásával.
Utóbbi sohasem lehet nagyobb az előbbinél, az egyenlőség pontos feltételei nem ismertek.

A Shannon kapacitáshoz hasonlóan az információelméletből származó gráfelméleti fo-
galom a gráfentrópia. Körner [88] vezette be 1973-ban megjelent cikkében és a frakcionális
kromatikus szám egyfajta valósźınűségi finomı́tásaként is felfogható. A gráfentrópia tel-
jeśıt egy szintén Körner [89] által észrevett szubadditivitási egyenlőtlenséget (ld. (2)),
mely alkalmassá tette különféle kombinatorikus becslésekre, ld. pl. Körner [89], New-
man, Ragde, Wigderson [126], Radhakrishnan [127] dolgozatait. Körner és Marton [93] a
gráfentrópia és a rá vonatkozó alapvető egyenlőtlenség közvetlen általánośıtásával uniform
hipergráfok entrópiájának seǵıtségével adtak jobb becslést a Körner által a [89] dolgozat-
ban Fredman és Komlós [54] nyomán vizsgált ún. “perfect hashing” problémára. A
gráfentrópia talán legnagyobb sikere Kahn és Kim [83] áttörést jelentő eredménye, mely-
ben először adtak meg konstans szorzó erejéig optimális számú összehasonĺıtást használó,
és ezeket determinisztikusan és polinomidőben megválasztó algoritmust arra a sokat
vizsgált rendezési problémára, melyben egy ismert részben rendezést kell minél kevesebb
elempár összehasonĺıtásával kiterjeszteni teljes rendezéssé. Ebben már az a Körner és
Marton [92] által sejtett és a Csiszár, Körner, Lovász és Marton társszerzőkkel ı́rt [38]
cikkben bizonýıtott eredmény is szerepet játszott, mely szoros összefüggést állaṕıtott meg
a gráfentrópia és a perfekt gráfok között.

Az értekezés [140] dolgozaton alapuló 1.1. Alfejezete és a [142] dolgozat felhasználásával
készült 1.2. Alfejezet a perfekt gráfok és a gráfentrópia kapcsolatát kimondó [38]-beli tétel
egy-egy kiterjesztését tárgyalja. Az első fejezet [143] cikken alapuló harmadik alfejezete a
Witsenhausen ráta2 nevű rokon fogalom gráfcsaládos változatát vezeti be és erre bizonýıt
egy információelméleti tartalmát tekintve talán meglepő tételt.

A második fejezetben gráfkapacitásokkal foglalkozunk. A Galluccioval, Garganoval és
Körnerrel közös [59] cikken alapuló első alfejezetben iránýıtott gráfoknak a Sperner ka-
pacitáshoz hasonlóan extremális halmazelméleti kérdésekre is leford́ıtható kapacitás jel-
legű paraméterét vizsgáljuk, majd ennek egy iránýıtatlan gráfokra vonatkozó rokonát.

2Az angol rate szót az információelméletben gyakran sebességnek ford́ıtják, ha annak maximalizálása
a cél. Itt azonban minimalizálni szeretnénk, ezért választottuk inkább az idegenebbül hangzó, de talán
kevésbé félrevezető szót.
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Közben fogalkozunk a Sperner kapacitással is, és megmutatjuk, hogy az öt hosszú körnek
van olyan iránýıtása, aminek Sperner kapacitása eléri a C(C5) = log

√
5 értéket. A Salival

közös [132] cikken alapuló második alfejezetben ezt az észrevételt általánośıtjuk tetszőleges
csúcstranzit́ıv önkomplementer gráfra. A Körnerrel és Pilotoval közös [97] cikken alapuló
harmadik alfejezetben Alon [2] korábbi eredményét általánośıtó új felső korlátot adunk a
Sperner kapacitásra. Ebben főszerepet játszik az Erdős, Füredi, Hajnal, Komjáth, Rödl
és Seress [47] által bevezetett lokális kromatikus szám nevű paraméter, illetve annak
iránýıtott gráfokra való általánośıtása. Azt is megmutatjuk, hogy a lokális kromatikus
szám sohasem kisebb a frakcionális kromatikus számnál. Ez utóbbi eredmény a har-
madik fejezet vizsgálatainak kiindulópontja. A lokális kromatikus számról nyilvánvaló,
hogy a kromatikus számnál sohasem nagyobb, ı́gy az előbbi eredmény szerint mindig a
frakcionális kromatikus szám és a kromatikus szám közé esik. Ez motiválja, hogy olyan
gráfokra próbáljuk meghatározni az értékét, amire ez utóbbi két paraméter távol esik
egymástól.

Viszonylag kevés olyan gráfcsalád ismert, amelynél e két paraméter messze van
egymástól, és az ilyenekbe tartozó gráfoknál gyakran magának a kromatikus számnak
a meghatározása is nehézségekbe ütközik. E nehézséget sok esetben azzal a váratlan,
Lovász [108] Kneser gráfokkal kapcsolatos úttörő munkájából származó technikával lehet
legyőzni, amely megfelelő előkészületek után az algebrai topológia h́ıres tételét, a Borsuk-
Ulam tételt h́ıvja seǵıtségül. A harmadik fejezet Tardos Gáborral közös [144] cikken
alapuló első alfejezetében látni fogjuk, hogy ez a technika, az ún. topologikus módszer, a
lokális kromatikus szám, sőt egy másik sźınezési paraméter, a cirkuláris kromatikus szám
vizsgálatára is alkalmas. A lokális kromatikus számra sok esetben éles alsó becslést adunk.
Az élességet kombinatorikus úton látjuk be, majd bizonyos topológiai következményeit
is megfogalmazzuk. A cirkuláris kromatikus számra kapott eredményünk részlegesen
(páros kromatikus gráfok esetén) igazolja Johnson, Holroyd és Stahl [81], valamint Chang,
Huang és Zhu [29] egy-egy sejtését. Az előbbi sejtéssel kapcsolatos eredményt tőlünk
függetlenül Meunier [121] is elérte. A szintén Tardos Gáborral közös [145] cikken ala-
puló 3.2. Alfejezetben szintén a topologikus módszert használva a fejezet első felében is
vizsgált G gráfok optimális (χ(G) sźınt használó) sźınezéseiről látjuk be, hogy bennük min-
den elépzelhető χ(G) csúcsú teljesen tarka teljes páros gráf megjelenik részgráfként. Ez
egyfajta ellenpontja a lokális kromatikus számra bizonýıtott eredményeinknek, melyek in-
terpretálhatók úgy, hogy ha a kromatikus számnál csak eggyel több sźınt is használhatunk,
akkor ezen tarka teljes páros gráfok közül egy kivételével mindegyik elkerülhető.

A topologikus módszer, ezen belül is a Borsuk-Ulam tételt használó technika je-
lentőségét nehéz túlbecsülni, itt most csak Matoušek [116] remek könyvére hivatkozunk,
további előzményeket pedig a harmadik fejezet eredményeinek bővebb bemutatásakor
tárgyalunk.

Az alábbiakban az egyes fejezetek néhány főbb eredményét ismertetem kicsit
részletesebben. Ezen áttekintés végén megtalálható az egyes alfejezetek elkésźıtéséhez
felhasznált dolgozatok felsorolása.
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Gráfok entrópiái

Az értekezés azonos ćımű fejezete három alfejezetének alapjául a [140], [142] egy része és
a [143] dolgozat szolgált.

Gráfentrópia

A gráfentrópia nevű információelméleti függvényt Körner [88] definiálta. A kiin-
dulópont itt is egy információelméleti probléma volt, ez vezetett a következő mennyiség
bevezetéséhez, melyet Körner a G gráf P eloszláshoz tartozó entrópiájának nevezett el:

Hε(G,P ) := lim
t→∞

1

t
log min

P t(U)>1−ε
χ(Gt[U ]),

ahol Gt[U ] a G gráf fentebb bevezetett t-edik konormális hatványának az U ⊆
[V (G)]t csúcshalmazon fesźıtett részgráfja, ε ∈ (0, 1), P pedig egy V (G)-n adott
valósźınűségeloszlás, mely P t(x) =

∏t
i=1 P (xi) módon adja az x = x1 . . . xt sorozat

valósźınűségét és P t(U) =
∑

x∈U P
t(x). Körner [88] megadott H(G,P )-re egy másik for-

mulát is, a kettő egyenlőségének bizonýıtásával belátta, hogy a fenti határérték létezik és
független ε-tól. Ennek a második formulának a további alaḱıtása a [38] cikkben elvezetett
ahhoz a harmadikhoz, amit az értekezésben használunk. Egy F (hiper)gráfban független
halmaznak nevezzük a csúcsok minden olyan részhalmazát, amely nem tartalmaz élet,
a V P (F ) csúcspakolási politóp pedig a független halmazok karakterisztikus vektorainak
konvex burka.

Defińıció. Legyen F (hiper)gráf a V (F ) = {1, ..., n} csúcshalmazon, P = (p1, ..., pn)
pedig valósźınűségeloszlás V (F )-en. Ekkor az F (hiper)gráf P eloszlásra vonatkozó
entrópiája a

H(F, P ) = min
a∈V P (F )

n
∑

i=1

pi log
1

ai
(1)

mennyiség.

Körner [89] a nyolcvanas években észrevette, hogy a gráfentrópia teljeśıti a következő
szubadditivitási tulajdonságot. Ha F és G két gráf ugyanazon a V csúcshalmazon, P
tetszőleges V -n vett eloszlás, F ∪ G pedig a V (F ∪ G) = V,E(F ∪ G) = E(F ) ∪ E(G)
módon megadható gráf, akkor

H(F ∪G,P ) ≤ H(F, P ) +H(G,P ). (2)

Ez az egyenlőtlenség lényegében az egyszerűen belátható χ(F ∪ G) ≤ χ(F )χ(G)
összefüggés következménye. A bevezetőben már emĺıtettük, hogy a fenti egyenlőtlenségre
alapozva nemtriviális becslések nyerhetők egyes kombinatorikai problémákban, ilyen al-
kalmazások találhatók például Körner [89], Newman, Ragde és Wigderson [126], vagy
Radhakrishnan [127] cikkeiben. Mindez felvetette a szubadditivitási egyenlőtlenség
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élességének kérdését, melynek már információelméleti megfontolások szerint is kitüntetett
speciális esete volt az, amikor a két gráf egymás komplementere (ld. Körner és Longo
[91]). Körner és Marton [92] sejtette, a [38] cikkben pedig bizonýıtást nyert, hogy a
H(G,P ) +H(Ḡ, P ) = H(K|V |, P ) = H(P ) egyenlőség pontosan akkor áll fenn minden P
eloszlás esetén, ha G perfekt gráf. Itt H(P ) a P eloszlás entrópiája, ami megegyezik a
|V (G)| csúcsú teljes gráf P -hez tartozó entrópiájával.

Ennek az eredménynek tárgyaljuk két különböző kiterjesztését az első fejezet első két
alfejezetében.

Az 1.1. Alfejezetben karakterizáljuk azon 3-uniform hipergráfokat, amelyek a fentivel
analóg azonosságot teljeśıtenek. A problémát az általános k-uniform esetre is megoldjuk,
de k > 3-ra az derül ki, hogy a ḱıvánt egyenlőség csak a triviális esetekben teljesül.

Hipergráfok entrópiáját Körner és Marton [93] definiálták a gráfentrópia
általánośıtásaként (ld. a fenti defińıciót), a szubadditivitási egyenlőtlenség itt is érvényben
marad és a korábbiakhoz hasonlóan alkalmazható, ld. [93]. Ha F k-uniform hipergráf a V
csúcshalmazon, akkor F -nek F̄ komplementerén azt a V -n megadható hipergráfot értjük,
melynek élei az F -nek E(F ) élhalmazában nem szereplő V -beli k-asok.

Egy 3-uniform F hipergráfot nevezzünk levélmintának, ha reprezentálható a
következőképpen. Legyen T fa, melyben a legalább 2 fokú csúcsok mindegyike meg van
jelölve 0-val vagy 1-gyel. Az ı́gy megjelölt T fához tartozó levélminta az a 3-uniform
hipergráf, melynek csúcsai T levelei (1 fokú csúcsai), élei pedig azon {x, y, z} hármasok,
melyekre a fabeli xy, yz és xz utak egyetlen közös pontja 1-gyel van megjelölve. Az n
csúcsú teljes 3-uniform hipergráfot jelölje K

(3)
n .

1.1.1. Tétel. Az F 3-uniform hipergráfra akkor és csak akkor teljesül minden P eloszlás
mellett a

H(F, P ) +H(F̄ , P ) = H(K
(3)
|V |, P ),

egyenlőség, ha F levélminta.

A tétel kiterjeszthető arra az esetre is, amikor K
(3)
|V |-at kettőnél több hipergráf uniójára

bontjuk.

Az 1.2. Alfejezetben a gráfentrópia és az ún. imperfektségi hányados kapcsolatát
tárgyaljuk. Az imperfektségi hányados fogalmát Gerke és McDiarmid vezették be [65] dol-
gozatukban. Frekvenciakiosztási problémákat vizsgálva minden G gráfhoz hozzárendeltek
egy imp(G) ≥ 1 mennyiséget, mely pontosan akkor egyenlő 1-gyel, ha G perfekt. Az új
fogalom további szép tulajdonsága, hogy imp(G) = imp(Ḡ) teljesül minden G gráfra. A
[142] dolgozatban3 a következő összefüggést sikerült igazolni.

1.2.6. Tétel. Tetszőleges G gráfra teljesül, hogy

log imp(G) = max
P

{H(G,P ) +H(Ḡ, P ) −H(P )}.

3Ennek az összefoglaló dolgozatnak a meǵırására nagyrészt a most tárgyalt eredmény révén került sor,
részben emiatt kért fel a [128] könyv egyik szerkesztője, Bruce Reed, korábbi összefoglaló cikkem [141]
ezt is tartalmazó átdolgozására.
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A tétel tehát azt mutatja, hogy a Gerke és McDiarmid által definiált, imperfektséget
mérő mennyiség és a [38]-beli eredményből adódó imperfektségi mérőszám lényegében
ugyanaz.

A gráfentrópia defińıciójának alábbi általánośıtása szintén [38]-ból való.
Egy A ⊆ Rn

+,0 halmazt konvex saroknak nevezünk, ha zárt, konvex, belseje nemüres,
és teljesül rá, hogy amennyiben a ∈ A és 0 ≤ a′i ≤ ai minden i-re, akkor a′ ∈ A.

A gráfentrópia általánośıtásaként értelmezhető egy konvex sarok entrópiája is az alábbi
formulával:

HA(P ) := min
a∈A

n
∑

i=1

pi log
1

ai
.

McDiarmid [119] bevezeti két konvex sarok, A,B ⊆ Rn
+,0 dilatációs hányadosát az

alábbi módon:
dil(A,B) := min{t : B ⊆ tA}.

Gerke és McDiarmid egyik eredménye szerint ez a fogalom általánośıtása az im-
perfektségi hányadosnak, utóbbi ugyanis kifejezhető két, a szóbanforgó gráfhoz rendelt
speciális konvex sarok dilatációs hányadosaként.

Az 1.2. Alfejezetben megmutatjuk, hogy az 1.2.6. Tételhez hasonlóan bizonýıtható an-
nak következő általánośıtása is.

1.2.8. Tétel.
log dil(A,B) = max

P
{HA(P ) −HB(P )}.

Witsenhausen ráta

A gráfentrópia eredeti defińıciójában másik (az ún. normális) gráfhatványozást al-
kalmazva valamivel kisebb értékű mennyiséghez jutunk, melyet Körner és Longo [91]
vezetett be szintén információelméleti megfontolásból. Ez a jelen dolgozatban H̄(G,P )-
vel jelölt függvény tekinthető úgy, mint a (csak valamivel később bevezetett) Witsen-
hausen rátaként ismert mennyiség valósźınűségi finomı́tása. A Witsenhausen [158] dolgo-
zatában definiált Witsenhausen ráta azt fejezi ki, hogy 0 hibavalósźınűségű dekódolást
elvárva átlagosan mekkora hányadára lehet összetömöŕıteni egy üzenetet, ha a vevő
rendelkezik valamilyen, az adó által nem ismert, de az üzenet tartalmával korreláló
mellékinformációval. A Shannon kapacitás esetéhez hasonlóan itt is egy gráffal jelle-
mezhető az információelméleti szituáció (a csúcsok a lehetséges üzenetek, és kettő össze
van kötve éllel, ha van olyan mellékinformáció, mely nem különbözteti meg őket, tehát
a hozzájuk tartozó üzeneteknek különbözniük kell). Jelölje G∧t a G gráf már emĺıtett

normális hatványát, mely legegyszerűbben a G∧t = (Ḡ)t egyenlőséggel definiálható, ahol
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mindkét felülvonás komplementálást jelent. (Két különböző csúcsot alkotó sorozat pon-
tosan akkor van összekötve, ha minden olyan koordinátában, ahol nem egyenlők, G-nek
élét alkotják.)

Defińıció. (Witsenhausen [158]) A G gráf Witsenhausen ráta nevű paramétere az

R(G) = lim
t→∞

1

t
logχ(G∧t)

mindig létező határérték.

Az 1.3. Alfejezetben azt vizsgáljuk, hogy ha egyetlen adó sok különböző vevőnek
küldi ugyanazt az üzenetet, s ezen adók mind más-más mellékinformációval rendelkeznek,
akkor minden egyes vevőnél 0 hibavalósźınűségű dekódolást elvárva, átlagosan mekkora
hányadára tömöŕıthető össze az üzenet. A meglepő válasz az, hogy ugyanakkorára, mint
amekkorára akkor lenne, ha csak azzal az egy vevővel kellene kommunikálnia az adónak,
amelyik a leggyengébb tömöŕıtést teszi lehetővé. Formálisan, ha k vevő van és Gi ı́rja le az
i-edik vevővel való kommunikációhoz tartozó gráfot (i = 1, . . . , k), G = {G1, . . . , Gk} és a
keresett mennyiséget R(G) jelöli (meggondolható, hogy R(G) = limt→∞

1
t

log(χ(∪iG∧ti ))),
akkor a következő igaz.

1.3.1. Tétel.
R(G) = max

Gi∈G
R(Gi).

A bizonýıtás Gargano, Körner és Vaccaro [62] mély tételén alapul, mely gráfok ka-
pacitásainak valósźınűségi finomı́tására mond ki erős eredményt. A Witsenhausen rátára
ez azért alkalmazható, mert a Witsenhausen ráta már emĺıtett valósźınűségi finomı́tása
és a Shannon kapacitás Csiszár és Körner [37] által bevezetett valósźınűségi finomı́tása
között egy Marton [115] által igazolt szoros öszefüggés áll fönn.

Gráfok kapacitásai

Az értekezés ezen fejezetének egyes alfejezetei rendre a Gallucioval, Garganoval és
Körnerrel közös [59], a Salival közös [132], valamint a Körnerrel és Pilottoval közös
[97] cikkek felhasználásával készültek, eredményeik a megfelelő cikk társszerzőivel közös
eredmények.

Variációk kapacitásfogalmakra

Legyen F tetszőleges, a konormális szorzásra zárt gráfcsalád. A G gráfban fesźıtett
részgráfként megjelenő legnagyobb (legtöbb csúcsú) F -beli gráf csúcsainak számát cF(G)-
vel jelölve cF (Gt) ≥ [cF(G)]t nyilvánvalóan teljesül. Ilyenkor létezik a CF(G) :=
limt→∞

1
t

log cF(Gt) határérték, ami F -nek a teljes gráfok családját választva éppen a
Shannon kapacitás. Ha az F gráfcsaládra még azt a további természetes feltételt is
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szabjuk, hogy a fesźıtett részgráf képzésre is zárt legyen, akkor egy egyszerű észrevétel
(Proposition 2.1.11) mutatja, hogy F megválasztására mindössze néhány lehetőségünk
marad. Triviális eseteket leszámı́tva F nem lehet más, mint az összes üres (vagyis éleket
nem tartalmazó), az összes teljes, vagy az összes teljes sokrészes gráf családja. (Utóbbiba
azon gráfok tartoznak, melyek csúcshalmaza part́ıcionálható néhány élet nem tartalmazó
osztályra úgy, hogy bármely két különböző osztályba eső csúcs össze legyen kötve. Ez a
gráfcsalád tartalmazza mindkét előzőt.) A megfelelő CF(G) értékek közül az első mindig
a függetlenségi szám logaritmusával lesz egyenlő, mert a legnagyobb független halmaz
mérete pontos multiplikativitást mutat a konormális szorzás esetén. A második családhoz
tartozó érték a Shannon kapacitás. Egyedül a harmadik család ad új, nemtriviális mennyi-
séget. Egyebek mellett ezt a mennyiséget vizsgáljuk kaszkád kapacitás néven a második
fejezet első alfejezetében, mely Anna Galluccioval, Luisa Garganoval és Körner Jánossal
közös eredményeket ismertet. A G-beli legtöbb csúcsú fesźıtett teljes sokrészes részgráf
csúcsainak számát W (G)-vel jelölve belátjuk, hogy egy alkalmasan definiált G∗ segédgráf
kromatikus számának logaritmusa felső korlátja G kaszkád kapacitásának. Ez közvetlen
következménye az alábbi tételnek, melynek kimondásához definiáljuk a G∗ gráfot.

A G = (V,E) iránýıtatlan gráf függetlenségi gráfja az a G∗ iránýıtatlan gráf, melynek
csúcsai és élei az alábbi módon adhatók meg:

V (G∗) = {(x,A) : A ⊆ V független halmaz G-ben és x ∈ A},
E(G∗) = {{(x,A), (y, B)} : A = B és x 6= y, vagy ∀a ∈ A, ∀b ∈ B, {a, b} ∈ E}.

2.1.10. Tétel. Tetszőleges G iránýıtatlan gráfra fennáll a

W (Gt) ≤ [χ(G∗)]t

egyenlőtlenség.

A tétel alkalmazásaként mutatunk olyan gráfosztályokat, amelyekre a W (G) mennyi-
ség multiplikat́ıvan viselkedik.

A fenti eredményhez iránýıtott gráfok analóg paramétereit vizsgálva jutottunk el. A
konormális szorzás egyszerűen kiterjeszthető iránýıtott gráfokra: az F és G iránýıtott
gráfok F ·G konormális szorzata az a V (F )×V (G) csúcshalmazú iránýıtott gráf, melyben
az (f1, g1) csúcsból pontosan akkor megy (iránýıtott) él (f2, g2)-be, ha (f1, f2) ∈ E(F )
vagy (g1, g2) ∈ E(G) teljesül. Az iránýıtott esetben is Gt jelöli a G gráf önmagával vett
t-szeres konormális szorzatát. Érdemes megjegyezni, hogy Gt-ben két csúcs között futhat
mindkét irányban él olyankor is, ha G-ben ez nem fordul elő.

Iránýıtott gráfok konormális hatványozása seǵıtségével definiálta Gargano, Körner
és Vaccaro [60] a Sperner kapacitás fogalmát, amiről emĺıtettük a bevezetőben, hogy
különböző extremális halmazelméleti problémák közös tárgyalását tette lehetővé. Ha-
sonló motivációk alapján a 2.1. Alfejezetben bevezetjük az antilánc kapacitás fogalmát,
mely olyan Gt-beli részgráfok maximális csúcsszámának aszimptotikus exponensét méri,
melyekben bármely két csúcs vagy összekötetlen, vagy mindkét irányban összekötött.
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Jelöléssel: ha M(G, t) a legnagyobb ilyen tulajdonságú részgráf csúcsszáma Gt-ben, akkor
G antilánc kapacitása az

A(G) := lim
t→∞

1

t
logM(G, t)

mennyiség. A teljes sokrészes gráfokhoz mindez annak révén kapcsolódik, hogy A(G)
legtermészetesebb alsó becslését bizonyos speciálisan iránýıtott G-beli teljes sokrészes
gráfok maximális csúcsszámának logaritmusa adja.

Ha a G alapgráfban tetszőleges két csúcs legfeljebb az egyik irányban lehet összekötve,
akkor az antilánc kapacitásra is felső becslést ad egy segédgráf kromatikus számának
logaritmusa. Ennek a szintén G∗-gal jelölt gráfnak a csúcshalmaza ugyanúgy adható
meg, mint az iránýıtatlan esetben, élhalmaza pedig az alábbi:

E(G∗) = {{(x,A), (y, B)} : A = B és x 6= y, vagy ∀a ∈ A, ∀b ∈ B, (a, b) ∈ E}.

Az iránýıtatlan gráfok függetlenségi gráfjának defińıciójához képest tehát annyi az
eltérés, hogy ha A és B olyan független halmazok, melyekre minden a ∈ A és b ∈ B
között van él, akkor az is lényeges, hogy az A és B között valamelyik kitüntetett irányba
futó valamennyi él jelen van-e. Ha az iránýıtatlan gráfokat olyan iránýıtott gráfokkal
azonośıtjuk, melyekben minden él mindkét irányban szerepel, akkor az újabb defińıció
magában foglalja a korábbit, s ez indokolja az azonos jelölést.

Az antilánc kapacitást becslő tétel tehát a következő.

2.1.3. Tétel. Ha a G iránýıtott gráfban bármely két pont között legfeljebb az egyik
irányban van él, akkor

A(G) ≤ logχ(G∗).

Pontosabban, fennáll az
M(G, t) ≤ [χ(G∗)]t−1α(G)

egyenlőtlenség, ahol α(G) a G gráf függetlenségi számát jelöli.

A 2.1.3. Tétel és az előbb már kimondott 2.1.10. Tétel bizonýıtása sokban hasonĺıt
ugyan, ennek ellenére a 2.1.10. Tétel bizonýıtása nem teljesen automatikus a 2.1.3. Tétel
bizonýıtásának ismeretében sem. Ennek az az oka, hogy mı́g az iránýıtott probléma
esetén a kieléǵıtendő feltétel csúcspárok között áll fönn, az iránýıtatlan esetben csúcsok
hármasait kell vizsgálni annak megállaṕıtásához, hogy szerepelhetnek-e együtt egy
számunkra megfelelő halmazban, vagyis egy teljes sokrészes gráfban.

Sperner kapacitás becslései

Gargano, Körner és Vaccaro [60] a következő módon általánośıtotta a Shannon kapacitás
fogalmát iránýıtott gráfokra. Jelentse ωs(G) a G iránýıtott gráf legnagyobb olyan U ⊆
V (G) csúcshalmazának elemszámát, amire x, y ∈ U -ból (x, y) ∈ E(G) és (y, x) ∈ E(G) is
következik. (Az ilyen U által fesźıtett részgráfot szimmetrikus klikknek nevezzük.)
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Defińıció (Gargano, Körner, Vaccaro [60]) A G iránýıtott gráf (logaritmikus) Sperner
kapacitása a

Σ(G) = lim
t→∞

1

t
logωs(G

t)

mennyiség.

A defińıcióból adódik, hogy ha egy iránýıtatlan gráfot ismét azzal az iránýıtott gráffal
azonośıtunk, mely minden éle helyén annak mindkét lehetséges iránýıtott változatát tar-
talmazza, akkor az ı́gy kapott iránýıtott gráf Sperner kapacitása az eredeti iránýıtatlan
gráf Shannon kapacitásával lesz azonos. Ebből az is azonnal látható, hogy egy iránýıtatlan
G gráf összes lehetséges Ĝ iránýıtott változatára Σ(Ĝ) ≤ C(G) igaz. Felmerül a kérdés,
hogy ha Ĝ csak olyan iránýıtott gráfot jelenthet, ami G minden élének egyik, de csak egyik
iránýıtását tartalmazza, akkor van-e az ı́gy kapható iránýıtott változatok között mindig
olyan, amire Σ(Ĝ) = C(G). Általánosságban a kérdés nyitott, alább néhány speciális
esetéről szólunk.

Nem nehéz belátni, hogy minden iránýıtott G gráfra fennáll Σ(G) ≥ log tr(G), ahol
tr(G) a gráf tranzit́ıv klikkszáma, vagyis a benne lévő legnagyobb olyan klikk mérete,
melynek csúcsai megćımkézhetők különböző egész számokkal úgy, hogy kisebb ćımkéjű
csúcsból nagyobb ćımkéjűbe mindig menjen él4. Ebből könnyen adódik, hogy amennyiben
egy G iránýıtatlan gráfra χ(G) = ω(G) teljesül, akkor egy legnagyobb klikkjét tranzit́ıvan
(többi élét pedig tetszőlegesen) iránýıtva a keletkező Ĝ iránýıtott gráfra fenn fog állni
a Σ(Ĝ) = C(G) egyenlőség. A 2.1. Alfejezet vizsgálatainak egyik mellékterméke az az
észrevétel (Proposition 2.1.17), hogy C5-nek van olyan iránýıtása, melynek négyzetében
megjelenik egy öt csúcsú tranzit́ıv klikk. Ebből C(C5) = log

√
5 alapján azonnal adódik,

hogy C5 is rendelkezik a fenti tulajdonsággal (noha χ(C5) > ω(C5)). A 2.2. Alfejezetben
ezt az észrevételt általánośıtjuk. Az itt ismertetett, Sali Attilával közös eredmény sze-
rint a vizsgált tulajdonsággal minden csúcstranzit́ıv önkomplementer gráf rendelkezik. A
bizonýıtáshoz az alábbi tételt igazoljuk. (A tétel kimondásában egy halmaz ρ-val jelölt
lineáris rendezése úgy értendő, hogy ρ(k) a halmaz azon elemét jelöli, ami ρ szerint a
k-adik helyre kerül.)

2.2.1. Tétel. Legyen G = (V,E) önkomplementer gráf a V = {1, 2, . . . , n} csúcshalmazon
és legyen τ : V → V a V elemeinek az önkomplementerséget tanúśıtó permutációja,
vagyis olyan egy-egy értelmű leképezés, amire {i, j} akkor és csak akkor nem éle G-nek,
ha {τ−1(i), τ−1(j)} ∈ E. Ekkor létezik V elemeinek olyan σ lineáris rendezése, amire
fennáll, hogy ha {i, j} 6∈ E és σ−1(i) < σ−1(j), akkor σ−1(τ−1(i)) < σ−1(τ−1(j)).

Kevésbé formálisan ez azt jelenti, hogy minden önkomplementer gráf iránýıtható úgy
a komplementérével együtt, hogy iránýıtott gráfként is izomorfak legyenek (ráadásul
egy előre megadott, iránýıtatlan változataik között érvényes izomorfizmus szerint), és

4Röviden azt mondhatnánk, hogy egy klikk tranzit́ıv, ha nincs benne iránýıtott kör, de mivel a
hatványokban oda-vissza élek is megjelenhetnek, biztosabban kerüli el a félreértést a kicsit bonyolultabb
fogalmazás.
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az uniójukként előálló iránýıtott teljes gráf iránýıtása tranzit́ıv legyen. (Ilyen iránýıtást
kapunk, ha a tételbeli lineáris rendezéssel konzisztensen iránýıtjuk a gráf éleit.)

Ebből Lovász [109] egy tételét is felhasználva adódik a következő.

2.2.3. Tétel. Ha G csúcstranzit́ıv és önkomplementer gráf, akkor az összes iránýıtásán
vett Sperner kapacitások maximuma egyenlő a Shannon kapacitásával.

Calderbank, Frankl, Graham, Li és Shepp [28] bizonýıtották először, hogy
egy iránýıtott gráf Sperner kapacitása lehet ténylegesen kisebb, mint iránýıtatlan
megfelelőjének Shannon kapacitása. Azt mutatták meg, hogy egy ciklikusan iránýıtott
háromszög Sperner kapacitása log 2, mı́g C(C3) = log 3 nyilvánvaló. A bizonýıtás lineáris
algebrai módszert használ. Blokhuis [23] rövidesen másik elegáns lineáris algebrai bi-
zonýıtást közölt ugyanerre az álĺıtásra. Az ő bizonýıtását általánośıtotta valamivel később
Alon [2], aki belátta, hogy

Σ(G) ≤ log(min{∆+(G),∆−(G)} + 1),

ahol ∆+(G) és ∆−(G) a G gráf egy-egy csúcsából kiinduló, illetve oda befutó élek
maximális számát jelöli. Ezt az eredményt sikerült tovább általánośıtani Körner Jánossal
és Concetta Pilottoval közösen, erről szól a 2.3. Alfejezet. Az eredmény kimondásához
definiálnunk kell az iránýıtott lokális kromatikus szám fogalmát, mely egy Erdős, Füredi,
Hajnal, Komjáth, Rödl és Seress [47] által bevezetett, iránýıtatlan gráfokon definiált fo-
galom általánośıtása. Először ez utóbbit definiáljuk.

Defińıció. ([47]) Egy G iránýıtatlan gráf lokális kromatikus száma a

ψ(G) := min
c: V (G)→N

max
v∈V (G)

|{c(u) : u ∈ ΓG(v)}|

mennyiség, ahol a minimalizálást az összes c jó sźınezésre végezzük, N a természetes
számok halmaza, ΓG(v) pedig a v csúcs “zárt szomszédsága”, vagyis ΓG(v) = {u ∈ V (G) :
{u, v} ∈ E(G) vagy u = v}.

A lokális kromatikus szám tehát az a minimális szám, amire igaz, hogy ennyi sźınnek
minden jó sźınezésben elő kell fordulnia valamely zárt szomszédságban.

Defińıció. A G iránýıtott gráf iránýıtott lokális kromatikus száma a

ψd(G) := min
c: V (G)→N

max
v∈V (G)

|{c(w) : w ∈ Γ+
G(v)}

mennyiség, ahol a minimalizálást az összes c jó sźınezésre végezzük, vagyis olyanokra,
amelyekben összekötött csúcsok sźıne nem lehet azonos, N a természetes számok halmaza,
Γ+
G(v) pedig a v csúcs “zárt kiszomszédsága”, vagyis Γ+

G(v) = {u ∈ V (G) : (v, u) ∈
E(G) vagy u = v}.

Nyilvánvaló, hogy egy iránýıtatlan gráf minden élét két ugyanazon csúcsok között
vezető ellentétes iránýıtású élre cserélve az utóbbi fogalom az előbbit adja vissza.
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2.3.1. Tétel.
Σ(G) ≤ logψd(G).

(A dolgozatban e tétel kimondásakor a logaritmálás nélküli σ(G) = 2Σ(G) jelölést
használjuk.)

A 2.3.1. Tétel azonnali következménye például, hogy egy iránýıtott páratlan kör
Sperner kapacitása csak úgy lehet nagyobb a triviális log 2 alsó korlátnál, ha részgráfként
tartalmaz egy “alternáló” iránýıtású páratlan kört, vagyis egy olyat, melyben egy
kivételével minden csúcsnak 0 vagy 2 a kifoka. Bohman és Holzman [24] 2003-ban
megjelent, a bevezetőben már emĺıtett eredménye, hogy minden páratlan kör Shannon
kapacitása nagyobb a triviális log 2-nél. Ha tehát a Shannon kapacitás értékét C2k+1

valamely iránýıtott változatának Sperner kapacitása eléri, akkor ez az iránýıtott változat
csakis az alternáló módon iránýıtott lehet. (Öt hosszú páratlan kör esetén szükségképpen
ezt az iránýıtást szolgáltatta a 2.2.1. Tétel bizonýıtása.)

A 2.3.1. Tételt iránýıtatlan (azaz ezzel egyenértékűen, szimmetrikusan iránýıtott)
gráfokra alkalmazva azt kapjuk, hogy C(G) ≤ logψ(G) igaz. Szemben az iránýıtott
esettel, ez itt nem jelent új korlátot. Jelölje ugyanis χ∗(G) ismét a G gráf frakcionális
kromatikus számát. Jól ismert (ld. Shannon [139], Lovász [109]) és a bevezetőben (loga-
ritmálás nélkül) láttuk is, hogy C(G) ≤ logχ∗(G), ugyanakkor azt is belátjuk, hogy a
lokális kromatikus számra fennáll a következő.

2.3.7. Tétel.
ψ(G) ≥ χ∗(G).

A 2.3. Alfejezetben bevezetjük még ψd(G) egy frakcionális változatát, ami a 2.3.1. Tétel
erőśıtéséhez vezet, s elemezzük ennek néhány következményét.

Gráfok sźınezései

Az értekezés harmadik fejezete a Tardos Gáborral közös [144] és [145] cikkeken alapul, az
alábbiakban a dolgozatból idézett valamennyi eredmény Tardos Gáborral közös.

Lokális sźınezés

Az előző fejezetben már szereplő lokális kromatikus számnak triviális felső korlátja a
kromatikus szám. Erdős, Füredi, Hajnal, Komjáth, Rödl és Seress [47] belátták, hogy
az eltérés tetszőlegesen nagy lehet: minden k ≥ 3-hoz megadható olyan G gráf, amire
ψ(G) = 3 és χ(G) ≥ k. Az előző fejezet végén láttuk, hogy a lokális kromatikus
szám ugyanakkor nem lehet kisebb a gráf frakcionális kromatikus számánál. Ahogy a
bevezetőben már emĺıtettük, ez indokolja, hogy a lokális kromatikus szám viselkedését
olyan gráfokra vizsgáljuk, amelyekre e két korlát, a kromatikus szám és a frakcionális
kromatikus szám távol esik egymástól.
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Ilyen tulajdonságú gráfokra alapvető példák a Kneser gráfok és a Mycielski gráfok (ld.
Scheinerman és Ullman [133] könyvét), valamint ezek különféle variánsai, például az ún.
Schrijver gráfok és általánośıtott Mycielski gráfok. Ha χ(G) távol esik χ∗(G)-től, akkor
a kromatikus számnak nem lehet éles becslése az egyébként triviális |V (G)|/α(G) alsó
korlát (ahol α(G) ismét a G gráf függetlenségi száma), mivel ez a mennyiség a frakcionális
kromatikus számot is alulról becsli. Részben ez a magyarázata, hogy számos ilyen gráf
kromatikus számának meghatározásához a megszokott kombinatorikus módszerek nem
elegendőek.

A Kneser gráfok kromatikus számát Kneser 1955-ben léırt sejtését bizonýıtva Lovász
[108] határozta meg több, mint két évtizeddel később. A bizonýıtás az algebrai topológia
h́ıres tételét, a Borsuk-Ulam tételt használta, s a topológiai kombinatorika elnevezésű
terület egyik kiindulópontjává vált, (ld. de Longueville [43] jubileumi cikkét, Björner [21]
összefoglalóját és Matoušek [116] már emĺıtett könyvét). Szintén a topologikus módszerrel
igazolta Schrijver [134], hogy a Kneser gráfok róla elnevezett (csúcs-)sźınkritikus fesźıtett
részgráfjainak kromatikus száma megegyezik a megfelelő Kneser gráfok kromatikus
számával.

Mycielski [123] konstrukciója tetszőleges (legalább egy élet tartalmazó) gráfból olyan
másikat álĺıt elő melynek klikkszáma változatlan, kromatikus száma pedig 1-gyel na-
gyobb az eredeti gráfénál. A kromatikus szám növekedése itt kombinatorikus érveléssel
(is) igazolható. (Mycielski gráfoknak az egyetlen élből kiindulva a konstrukció iterált
alkalmazásával kapható gráfokat szokás h́ıvni.) Az általánośıtott Mycielski konstrukció
ennek a konstrukciónak olyan módośıtása, mely (egy triviális eset kivételével) szintén
változatlanul hagyja a klikkszámot, a kromatikus számot pedig minden olyan esetben
növeli 1-gyel, amikor a gráf eleget tesz egy bizonyos topologikus feltételnek. Ennek a
ténynek szintén topológiai bizonýıtása Stiebitz [149] eredménye (ld. még Gyárfás, Jensen,
Stiebitz [72], Matoušek [116]).

A 3.1. Alfejezet alapjául szolgáló, Tardos Gáborral közös [144] cikkben azt kezdtük
vizsgálni, hogy a topológiai módszer seǵıtségével tudunk-e valamit mondani a fenti t́ıpusú
gráfok lokális kromatikus számáról.

A Lovász-Kneser tétel bizonýıtásának mára számos (szintén topológiát használó,
vagy legalábbis azon alapuló) variánsa ismert (ld. pl. Bárány [11], Dolnyikov [46],
Greene [69]). Matoušek és Ziegler [118] cikke, valamint Matoušek [116] könyve Alon,
Frankl, Lovász [5] és Křiž [101] munkái nyomán ún. box komplexusok bevezetésével
hoz közös nevezőre sok rokon, de számos fontos részletben mégis különböző bi-
zonýıtást. E box komplexusok seǵıtségével topologikus terek rendelhetők gráfokhoz,
melyeknek egyes topológiai paraméterei alsó becslést szolgáltatnak a gráf kromatikus
számára. Ennek részletes léırását valamint a box komplexusok defińıcióját ebben a rövid
összefoglalóban terjedelmi okokból mellőzzük, mindez megtalálható a 3.1. Alfejezetben.
Az eredmények kimondásához alkalmazzuk a 3.1. Alfejezet elején is szerepelő konvenciót,
miszerint topologikusan t-kromatikusnak mondunk egy G gráfot, ha egy bizonyos box
komplexusának egy bizonyos paramétere (a B0(G)-vel jelölt komplexus Z2-coindexe) olyan
értéket vesz föl, hogy abból χ(G) ≥ t következik. (E konvenció pontos jelentéséhez ld.
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a 34. Defińıciót a dolgozat 79. oldalán.) Megjegyezzük, hogy a t-kromatikus Kneser és
Schrijver gráfok toplogikusan t-kromatikus gráfok. Szintén ilyenek azok az általánośıtott
Mycielski konstrukcióval nyerhető gráfok, melyeknél az eredeti gráf, amire a konstrukciót
alkalmazzuk, topologikusan (t− 1)-kromatikus.

A Borsuk-Ulam tétel egy Ky Fan-tól származó általánośıtását [52] használva a
következő alsó becslést adjuk a lokális kromatikus számra.

3.1.1. Tétel. Ha G topologikusan t-kromatikus gráf, akkor

ψ(G) ≥
⌈

t

2

⌉

+ 1.

Ez a tétel a következő, a dolgozatban Cikk-cakk tételnek nevezett, Ky Fan tételéből
adódó általánosabb tétel közvetlen következménye, melynek Kneser gráfokra vonatkozó
speciális esetét Ky Fan maga is igazolta [53].

Cikk-cakk tétel. Legyen G topologikusan t-kromatikus gráf és c ennek tetszőleges
jó sźınezése tetszőleges számú sźınnel, melyekről feltesszük, hogy lineárisan rendezettek.
Ekkor G tartalmaz egy olyan K⌈ t

2
⌉,⌊ t

2
⌋ teljes páros részgráfot, melynek a c sźınezés szerint

mind a t csúcsa különböző sźınű és ezek a sźınek természetes sorrendjükben felsorolva
felváltva helyezkednek el a teljes páros gráf két oldalán.

A 3.1.1. Tétel alsó becslése sok esetben pontos. Ilyen eredményeket megfelelő
paraméterű Schrijver gráfokra, általánośıtott Mycielski gráfokra és ún. Borsuk gráfokra
bizonýıtunk. Itt példaként a Schrijver gráfok esetét részletezzük, ehhez először megadjuk
pontos defińıciójukat. Használni fogjuk az [n] = {1, . . . , n} jelölést.

Defińıció. (Schrijver [134]) Tetszőleges k és n ≥ 2k pozit́ıv egészekhez az SG(n, k) Schri-
jver gráf csúcsainak és éleinek halmaza ı́gy adható meg:

V (SG(n, k)) = {A ⊆ [n] : |A| = k, ∀i {i, i+ 1} * A és {1, n} * A},
E(SG(n, k)) = {{A,B} : A ∩B = ∅}.

Megemĺıtjük, hogy a KG(n, k) Kneser gráf defińıciója ettől annyiban tér el, hogy ott a
csúcshalmaz [n]-nek minden k elemű részhalmazát tartalmazza.

Schrijver [134] tétele szerint χ(SG(n, k)) = n − 2k + 2 és bármely csúcs elhagyása
esetén a kromatikus szám csökken.

A Schrijver gráfok lokális kromatikus számára vonatkozik a következő eredmény.

3.1.3. Tétel. Ha t = n− 2k + 2 > 2 páratlan és n ≥ 4t2 − 7t, akkor

ψ(SG(n, k)) =

⌈

t

2

⌉

+ 1.
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A tételbeli egyenlőséghez az alsó becslést a 3.1.1. Tétel és az a tény szolgáltatja, hogy a
Schrijver gráfok toplogikusan t-kromatikusak a kromatikus számukkal egyenlő t-re. A felső
becslés bizonýıtása kombinatorikus módszerrel történik. Ennek fő ötlete, hogy a gráfot
úgy sźınezzük kromatikus számának megfelelő számú sźınnel, hogy mindazon csúcsok,
amelyek túl sok (az összes felénél több) sźınt látnak, együttesen független szomszédsággal
rendelkezzenek. Ekkor az összes ilyen szomszédság alkotta független halmaz kisźınezhető
egyetlen új sźınnel, és ezzel az egy csúcs által látható sźınek maximális száma körülbelül
a felére csökken. (Akkor mondjuk, hogy egy csúcs “lát” egy sźınt, ha az szerepel a
szomszédainak sźınei között.)

Bizonyos, az előbbi feltételt teljeśıtő (az új sźın bevezetése előtti) sźınezéseket széles
sźınezéseknek h́ıvunk. Nem minden G gráfnak van széles sźınezése χ(G) sźınnel. A Kneser
gráfoknak például nincs, a Schrijver gráfoknak viszont a fenti tételben elő́ırt paraméterek
esetén van, és ez adja a felső korlátot.

Mivel SG(n, k) fesźıtett részgráfja SG(n + 1, k)-nak, a 3.1.3. Tételből az is azonnal
következik, hogy ha t = n− 2k + 2 rögźıtett páros szám és n, k kellően nagy, akkor

ψ(SG(n, k)) ∈
{

t

2
+ 1,

t

2
+ 2

}

.

A megfelelő paraméterű általánośıtott Mycielski gráfoknak szintén megadható kro-
matikus számuknak megfelelő számú sźınt használó széles sźınezésük, ı́gy rájuk is a fen-
tihez hasonló eredmény kapható (3.1.5. Tétel). Ez azt jelenti, hogy megfelelő gráfból
kiindulva és megfelelő paraméterekkel iterálva az általánośıtott Mycielski konstrukciót,
a lokális kromatikus szám iterációnként átlagosan 1/2-del nő. Ezzel kapcsolatban
megemĺıtjük még, hogy a hagyományos Mycielski konstrukció viszont ugyanúgy 1-gyel
növeli a lokális kromatikus számot, mint a kromatikus számot (Proposition 3.1.13).

A B(d, α) Borsuk gráf (ld. Erdős és Hajnal [48], Lovász [111]) az Sd−1 egységgömb
pontjain mint csúcsokon adott végtelen gráf, melyben két pont akkor van összekötve, ha
távolságuk legalább α valamilyen rögźıtett 0 < α < 2 valós számra. A Borsuk-Ulam
tételből következik, hogy χ(B(d, α)) ≥ d+1, és egyenlőség áll, ha α < 2 elér egy bizonyos
korlátot. A korábbiak alapján megmutatható, hogy a Borsuk gráfok lokális kromatikus
száma is a már látottakhoz hasonlóan viselkedik.

3.1.20. Következmény. Páros d esetén létezik olyan αd < 2, hogy αd < α < 2 esetén

ψ(B(d, α)) =
d

2
+ 2.

Topológiai következmények

Az előbbi eredményeknek topológiai következményei is megfogalmazhatóak, melyek
kapcsolatosak Micha Perles alábbi kérdésével. (A kérdést Matatyahu Rubin egy rokon
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kérdése motiválta, s azért, hogy mindez eljutott hozzánk, Bárány Imrét és Gil Kalai-t
illeti köszönet.)

Defińıció. Legyen h nemnegat́ıv egész, és jelölje Q(h) azt a legkisebb ℓ számot, amire az
Sh egységgömb lefedhető (tetszőleges számú) nýılt halmazzal úgy, hogy e halmazok egyike
sem tartalmazza a gömbnek átellenes pontjait, és Sh egyetlen pontja sincs benne ℓ-nél több
halmazban.

Ky Fan tételéből h
2

+ 1 ≤ Q(h) következik. A lokális kromatikus számra adott felső
becsléseinkből pedig adódik, hogy ez páratlan h esetén pontos, páros h esetén pedig
majdnem pontos.

3.1.23. Következmény.
h

2
+ 1 ≤ Q(h) ≤ h

2
+ 2.

A fenti következményt erősebb formában is kimondhatjuk. Ehhez először kimondjuk
Ky Fan tételét (egyik lehetséges formájában).

Ky Fan tétele. ([52]) Legyen A az Sh egységgömb nýılt halmazainak (vagy zárt hal-
mazainak véges) családja, melyre teljesül, hogy ∪A∈A(A∪ (−A)) = Sh. Tegyük fel, hogy A
elemein adott egy “<” rendezés, továbbá, hogy A∩ (−A) = ∅ áll minden A ∈ A halmazra.
Ekkor létezik x ∈ Sh pont és A1 < A2 < . . . < Ah+1 halmazok A-ban, amikre (−1)ix ∈ Ai
teljesül minden i = 1, . . . , h+ 1 esetén.

A lokális kromatikus számra vonatkozó felső korlátaink bizonýıtásából az alábbi álĺıtás
adódik, ami a Ky Fan tételében szereplő paraméterek optimalitásaként értelmezhető.

3.1.21. Következmény. Megadható az Sh egységgömb nýılt (zárt) halmazainak olyan
h + 2 halmazból álló A családja, melyekre ∪A∈A(A ∪ (−A)) = Sh, A ∩ (−A) = ∅ teljesül
minden A ∈ A halmazra, továbbá igaz, hogy egyetlen x ∈ Sh pont sincsen benne

⌈

h+1
2

⌉

-nél
több A ∈ A halmazban. Emellett még az is teljesül minden x ∈ Sh pontra, hogy az x-et
vagy −x-et tartalmazó A-beli halmazok együttes száma legfeljebb h + 1.

Cirkuláris sźınezés

Egy G gráf Vince [157] által bevezetett χc(G) cirkuláris kromatikus száma a következő
módon definiálható.

Valamely p, q pozit́ıv egészekre egy gráf (p, q)-sźınezésén a csúcsok olyan c : V (G) → [p]
sźınezését értjük, amire igaz, hogy ha u és v szomszédos csúcsok, akkor q ≤ |c(u)−c(v)| ≤
p− q. G cirkuláris kromatikus száma a következő mennyiség:

χc(G) = inf

{

p

q
: létezik G−nek (p, q)-sźınezése

}

.
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A cirkuláris kromatikus számra mindig fennáll, hogy χ(G) − 1 < χc(G) ≤ χ(G),
ezért szokás a kromatikus szám egyfajta finomı́tásának tekinteni. A cirkuláris kromatikus
számot az utóbbi időben nagyon sokat vizsgálták, ld. pl. Zhu [159] összefoglaló cikkét,
mely idézi az alábbi két sejtést.

Sejtés. (Johnson, Holroyd, Stahl [81]) A KG(n, k) Kneser gráfra minden n ≥ 2k esetén
fennáll, hogy

χc(KG(n, k)) = χ(KG(n, k)).

Johnson, Holroyd és Stahl [81] belátták a sejtést a k = 2, valamint az n = 2k + 1,
n = 2k + 2 esetekre. Schrijver gráfok cirkuláris kromatikus számát is vizsgálta Lih és
Liu [105] valamint Hajiabolhassan és Zhu [73]. Utóbbi szerzők [73]-ban megmutatták,
hogy minden k-hoz létezik olyan n0(k) küszöb, hogy n ≥ n0(k) esetén χc(SG(n, k)) =
χ(SG(n, k)), amiből az ilyen esetekben χc(KG(n, k)) = χ(KG(n, k)) is következik.

Sejtés. (Chang, Huang, Zhu [29]) A Kn teljes gráfból a Mycielski konstrukció d-szeres
alkalmazásával kapható Md(Kn)-nel jelölt (n + d)-kromatikus gráfra n ≥ d + 2 esetén
fennáll

χc(M
d(Kn)) = χ(Md(Kn)).

Chang, Huang és Zhu [29] a d = 1, 2 esetre belátták a sejtést, valamint megmutatták,
hogy ha χ(G) = d+ 1, akkor a G gráfból a Mycielski konstrukció d-szeres alkalmazásával
kapható Md(G) gráfra χc(M

d(G)) ≤ χ(Md(G)) − 1/2 igaz. Szintén a Mycielski gráfok
cirkuláris kromatikus számát vizsgálta Fan [51] és Hajiabolhassan és Zhu [74]. Az utóbbi
cikkben azt mutatták meg, hogy n ≥ d+ 2 helyett n ≥ (2d + 2)-t ı́rva már igaz a sejtés.

A Cikk-cakk tétel seǵıtségével egyszerűen belátható a következő álĺıtás, amely mindkét
fenti sejtést igazolja azokban az esetekben, amikor a bennük szereplő gráf kromatikus
száma páros. A Kneser és Schrijver gráfokra vonatkozó speciális esetet tőlünk függetlenül
Frédéric Meunier [121] is bebizonýıtotta.

3.1.6. Tétel. Ha G topologikusan t-kromatikus gráf és t páros, akkor χc(G) ≥ t.

3.1.24. Következmény. (ld. Meunier [121] is) A Johnson-Holroyd-Stahl sejtés igaz
minden páros n-re. Páros n-re az erősebb

χc(SG(n, k)) = χ(SG(n, k))

egyenlőség is fönnáll.

3.1.25. Következmény. Ha n+ d páros, akkor χc(M
d(Kn)) = χ(Md(Kn)).

Megjegyezzük, hogy a 3.1.25. Következményt a dolgozatban erősebb formában mond-
juk ki: Kn helyén számos más gráf is állhat és a Mycielski konstrukció helyett az
általánośıtott Mycielski konstrukció is alkalmazható.

Lam, Lin, Gu és Song [102] megadott egy pontos formulát olyan gráfok cirkuláris
kromatikus számára, melyek egy teljes gráfból az általánośıtott Mycielski konstrukció
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egyszeri alkalmazásával állnak elő. Eredményüket felhasználva megmutattuk, hogy a
3.1.24. Következményben Schrijver gráfok esetén nem hagyható el a párossági feltétel.

3.1.27. Tétel. Minden ε > 0 és t ≥ 3 páratlan szám esetén, ha t = n−2k+2 és n ≥ t3/ε,
akkor fennáll

1 − ε < χ(SG(n, k)) − χc(SG(n, k)) < 1.

Kneser jellegű gráfok tarka részgráfjai

A lokális kromatikus számmal kapcsolatos eredményeink megmutatták, hogy egy
topologikusan t-kromatikus gráf sok esetben kisźınezhető úgy t+ 1 sźınnel, hogy benne a
Cikk-cakk tétel által elő́ırt K⌈ t

2
⌉,⌊ t

2
⌋ részgráfok mellett ne forduljon elő más t csúcsú teljes

páros részgráf, aminek minden csúcsa különböző sźınű. (Páratlan t esetén láttuk, hogy
egy ilyen páros gráf mindkét oldalán legfeljebb ⌈ t

2
⌉ csúcs lehet, különben a ψ(G)-re adott

alsó becslés nem volna pontos. A felső becslést adó sźınezést kicsit közelebbről szemügyre
véve adódik, hogy nem lehet mindkét oldalon ennyi csúcs.)

Ha nem használhatunk a kromatikus számnál több sźınt, akkor a helyzet drasztiku-
san megváltozik. Könnyen belátható, hogy tetszőleges t-kromatikus gráf t sźınnel való
sźınezésében lesz (minden sźınosztályban) olyan csúcs, ami az összes sajátjától eltérő
sźınt látja a szomszédságában. A Tardos Gáborral közös [145] dolgozaton alapuló
3.2. Alfejezetben megmutatjuk, hogy topologikusan t-kromatikus gráfokra jóval több is
igaz.

Az eredmény kimondása előtt megemĺıtjük még Csorba, Lange, Schurr és Waßmer [42]
tételét, ami azt mondja ki, hogy egy a topologikus t-kromatikusságnál valamivel enyhébb
feltételt teljeśıtő gráf részgráfként tartalmaz minden olyan Kℓ,m teljes páros gráfot, amire
ℓ + m = t. Olyan topologikusan t-kromatikus gráfok esetén, melyek kromatikus száma
pontosan t, az alábbi tétel általánośıtja ezt az eredményt.

3.2.2. Tétel. Legyen G topologikusan t-kromatikus gráf, χ(G) = t és c : V (G) → [t]
G-nek jó sźınezése. Legyen továbbá A,B ⊆ [t] a sźınhalmaznak tetszőleges bipart́ıciója,
vagyis A ∪B = [t] és A ∩B = ∅.

Ekkor van G-nek olyan Kℓ,m teljes páros részgráfja, aminek minden csúcsa különböző
sźınű, ℓ = |A|, m = |B|, és az ℓ méretű oldalon az A-beli, az m méretű oldalon a B-beli
sźınek szerepelnek.

A tétel bizonýıtásához a Borsuk-Ulam tételnek egy Tucker [153] és Bacon [10] nevéhez
köthető általánośıtását használjuk.

A 3.2.2. Tétel alkalmazható minden olyan gráfra, melyre a topologikus t-
kromatikusságot definiáló topologikus paraméter éles becslést ad a kromatikus számra.
Ilyenek a Kneser, a Schrijver, a(z általánośıtott) Mycielski, valamint a Borsuk gráfok.
A fejezet eredményei révén ez a lista kibőv́ıthető néhány olyan gráffal, melyekről a fenti
eredmények éppen azt mutatták meg, hogy a most felsorolt gráfok valamelyike éltartóan
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(azaz homomorf módon) beleképezhető. A 3.2.4. Következményben felsoroljuk ezeket a
gráfokat.

A 3.2. Alfejezetben egy további tételt is bizonýıtunk, mely Greene [69] és Matoušek
[116] ötleteit Ky Fan tételével kombinálva a Lovász-Kneser tételt általánośıtó Dolnyikov
tételnek [46] adja további általánośıtását.

Köszönetnyilváńıtás

Sokaknak tartozom köszönettel, mert tańıtottak, seǵıtettek, figyelemmel követték
a munkámat. Kandidátusi dolgozatom témavezetőjeként Körner János alapvetően
alaḱıtotta az érdeklődésemet. Számos tőle hallott szép probléma a mai napig meghatározó
a munkámban. Sok-sok figyelmet és bátoŕıtást köszönök Lovász Lászlónak, Simonovits
Miklósnak és T. Sós Verának. Mindig bizalommal fordulhattam mások mellett Csiszár
Imréhez, Győri Ervinhez, Katona Gyulához és Recski Andráshoz. Köszönöm Bárány
Imre, Füredi Zoltán, Gyárfás András és Marton Katalin inspiráló érdeklődését egy-egy
dolgozatom iránt. A közös munka élményét köszönöm minden társszerzőmnek, a még
nem emĺıtettek közül külön is Sali Attilának és Tardos Gábornak. Végül köszönöm még
számos név szerint nem emĺıtett kollégámnak azt a légkört, amiben mindig örömmel dol-
gozhattam.
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Chapter 1

Graph Entropies

1.1 Entropy splitting hypergraphs

This section is based on the paper [140].

1.1.1 Introduction

Graph entropy H(G,P ) is an information theoretic functional on a graph G with a prob-
ability distribution P on its vertex set. It was introduced by Körner in [88]. A basic
property of graph entropy, proved also by Körner [89], is its subadditivity under graph
union. Let F and G be two graphs on the same vertex set V with edge sets E(F ) and
E(G), respectively, and F ∪ G is the graph on V with edge set E(F ) ∪ E(G). Then for
any fixed probability distribution P on V we have

H(F ∪G,P ) ≤ H(F, P ) +H(G,P ). (1.1)

This inequality has become a useful tool for obtaining lower bounds in graph covering
and complexity problems, for various applications, see e.g. Körner [89], Körner and
Marton [94], Boppana [26], Newman, Ragde, and Wigderson [126], Radhakrishnan [127],
and Kahn and Kim [83]. In [93] Körner and Marton introduced hypergraph entropy to
improve upon the Fredman-Komlós bound of [54] generalizing its proof that relied on
the subadditivity of graph entropy in [89]. This generalization was based on a similar
inequality for hypergraphs. (For another application of hypergraph entropy, see Körner
and Marton [95].)

Realizing the central role of inequality (1.1) the natural question of its sharpness arose.
Conditions of equality were already asked for in a special case during the information
theory investigations of Körner and Longo [91]. Similar questions were considered in [92],
[38], and [99]. The results of these investigations showed that there are close connections
between graph entropy and some classical concepts of combinatorics, e.g., perfect graphs.
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One of the main questions in [91] was to characterize those graphs G that satisfy
equality in (1.1) with F = Ḡ (where Ḡ stands for the complementary graph of G) and
every P . It was conjectured in [92] and proved in [38] that these graphs are exactly the
perfect graphs. (For perfect graphs cf. Lovász [106], [112].) In this paper we investigate
conditions for the similar equality in case of complementary uniform hypergraphs.

1.1.2 Basic definitions

The usual notation, V (G), E(G), for the vertex and edge set of a (hyper)graph G will be
used throughout. Logarithm’s are always meant to be binary. (This holds for this entire
work, i.e., also for the later sections and chapters.)

Definition 1 The vertex packing polytope V P (F ) of a hypergraph F is the convex hull
of the characteristic vectors of the independent sets of F .

We remark that an independent set of a hypergraph F is a subset of its vertex set
V (F ) that contains no edge.

Definition 2 Let F be a hypergraph on the vertex set V (F ) = {1, ..., n} and let P =
(p1, ..., pn) be a probability distribution on V (F ) (i.e., p1 + ...+ pn = 1 and pi ≥ 0 for all
i). The entropy of F with respect to P is then defined as

H(F, P ) = min
a∈V P (F )

n
∑

i=1

pi log
1

ai
. (1.2)

Remark 1.1. The results in [88] provide two equivalent definitions for graph entropy. A
third equivalent definition was given in [38]. This is the one we have adopted. (Körner and
Marton [93] generalized one of the earlier definitions when they introduced hypergraph
entropy. The proof of equivalence in [38], however, literally applies to the hypergraph
case, too.) ♦

The union of two hypergraphs on the same vertex set V is a third hypergraph on V
having as its edge set the union of the edge sets of the two original hypergraphs.

A hypergraph is k-uniform if all of its edges have size k. We denote the complete
k-uniform hypergraph on n vertices by K

(k)
n . (Instead of K

(2)
n , however, we usually write

simply Kn.) The complement of a k-uniform hypergraph F on n vertices is the k-uniform
hypergraph F̄ on the same vertex set that has a disjoint edge set from that of F and
satisfies F ∪ F̄ = K

(k)
n .

Considering graphs as 2-uniform hypergraphs, Definition 2 gives graph entropy as a
special case. We remark that it is not difficult to see (cf. Lemma I.3.1 in [36]) from this
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definition that the entropy of the complete graph, Kn, equals the Shannon-entropy of the
probability distribution involved:

H(Kn, P ) = H(P ) =

n
∑

i=1

pi log
1

pi
.

For a somewhat more complicated formula to compute H(K
(k)
n , P ) for k > 2 see

[44]. (The same formula was found independently by Gerards and Hochstättler [63], the
statement of this result is quoted also in [141].)

In [93] Körner and Marton proved that hypergraph entropy is subadditive in general,
i.e., (1.1) holds not only for graphs but also for hypergraphs F and G.

The following definition is from [91] generalized to hypergraphs.

Definition 3 A k-uniform hypergraph F is strongly splitting if for every probability dis-
tribution P on V (F ) = V , we have

H(F, P ) +H(F̄ , P ) = H(K
(k)
|V | , P ). (1.3)

As we have already mentioned, it was conjectured in [92] and proved in [38] that a
graph is strongly splitting if and only if it is perfect.

Our aim here is to characterize strongly splitting k-uniform hypergraphs for k ≥ 3.
The main results are Theorems 1.1.1 and 1.1.2 of the next subsection that give this
characterization for k = 3 and its generalization involving more than two 3-uniform
hypergraphs. It turns out that for k > 3 no strongly splitting hypergraph exists except the
trivial ones, K

(k)
n and its complement. This is shown in Subsection 1.1.4. Subsection 1.1.5

contains some further remarks.

1.1.3 Splitting 3-uniform hypergraphs

All hypergraphs in this subsection will be 3-uniform, so we will often omit the full descrip-
tion and write simply hypergraph. (Graphs, however, still mean 2-uniform hypergraphs.)
To state our results on 3-uniform hypergraphs we need the following definition.

Definition 4 Let T be a tree and let us be given a two-coloring of its internal vertices
with two colors that we call 0 and 1. The leaf-pattern of the two-colored tree T is the
following 3-uniform hypergraph F . The vertices of F are the leaves of T and three leaves
x, y, z form an edge if and only if the unique common point of the paths joining pairs of
x, y and z is colored by 1.

A 3-uniform hypergraph F is said to be a leaf-pattern if there exists a two-colored tree
T such that F is the leaf-pattern of T .

It is obvious that the degree two vertices of a tree will have no effect on its leaf-pattern,
so when concerned about the leaf-pattern, we can always think about trees with no degree
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two vertices. In fact, if a 3-uniform hypergraph F is the leaf-pattern of some tree then
there is a unique two-colored tree not containing degree two vertices and having a proper
coloring (i.e., a coloring in which neighbouring nodes have different colors), for which F

is its leaf-pattern. For example, K
(3)
n is the leaf-pattern of a star on n + 1 points having

1 as the color of the central point.

Strongly splitting 3-uniform hypergraphs are characterized by the following theorem.

Theorem 1.1.1 A 3-uniform hypergraph is strongly splitting if and only if it is a leaf-
pattern.

For the proof we need some preparation. Motivated by game theoretic questions leaf-
patterns were already investigated by Gurvich [70]. We will make use of his theorem
characterizing leaf-patterns by forbidden subhypergraphs. To state this theorem we give
a name to a particular configuration. Consider the five points 0, 1, 2, 3, 4 and the five
hyperedges of the form {i, i + 1, i + 2} where i = 0, 1, 2, 3, 4 and addition is intended
modulo 5. Notice that the hypergraph defined this way is isomorphic to its complement
and let us call it flower. Gurvich’s theorem is the following.

Theorem G ([70]) A 3-uniform hypergraph is a leaf-pattern if and only if it has an even
number of hyperedges on every four vertices and it does not contain an induced flower.

Duplicating a vertex x of a hypergraph F means that a new vertex x′ is added to
V (F ) thereby creating a new hypergraph F ′ as follows. For any set of vertices S ⊆ V (F )
not containing x, the set S ∪ {x′} is an edge of F ′ if and only if S ∪ {x} is an edge of F .
A set S ⊆ V (F ) itself forms an edge of F ′ if and only if it is an edge in F . Notice that
no edge of the new hypergraph contains both x and x′.

Definition 5 A uniform hypergraph is called reducible if it can be obtained from a single
edge by successive use of the following two operations in an arbitrary order:

(i) duplication of a vertex,
(ii) taking the complementary uniform hypergraph.

It is a more or less trivial observation that 3-uniform reducible hypergraphs are equiv-
alent to leaf-patterns. This also implies that every subhypergraph of such a hypergraph
is reducible.

Let us call two vertices siblings in a hypergraph F if they are duplicates of each other
either in F or in F̄ . Observe that a leaf-pattern on at least 4 points always has two
disjoint pairs of siblings. (Considering a longest path in the underlying tree T containing
no degree two vertex the two ends of this path each have a sibling and these two pairs
are disjoint or can be chosen so in case T is a star. This simple argument is due to one
of the anonymous referees.)

Now we recall some consequences of already known results about graph entropy. As
an immediate consequence of the definition of hypergraph entropy, notice that if pi > 0
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for all i, then the minimizing vector a in (1.2) is always a maximal vector of V P (F ).
(We call a vector b maximal in some set of vectors, if this set does not contain a b′ 6= b

with b′i ≥ bi for every i.) This also implies that all the independent sets of F that appear
with positive coefficients in some convex combination representation of this minimizing a

must be maximal. (Thus for an arbitrary distribution this is always so within the induced
subgraph of vertices with positive probability.)

For a hypergraph F let us denote by V P ′(F ) the set of all those vectors a ∈ V P (F )
for which (1 + ε)a /∈ V P (F ) for any ε > 0. In other words, V P ′(F ) is the closure of that
part of the boundary of V P (F ) that is not contained in any of the coordinate hyperplanes
xi = 0.

The following lemma is an immediate consequence of Corollary 7 in [38].

Lemma A For every a ∈ V P ′(F ) there exists a probability distribution P such that
H(F, P ) = −∑n

i=1 pi log ai. Furthermore, if a is a maximal positive vector in V P (F )
then there is an everywhere positive such P and conversely, if no pi = 0 for our P then
a is the unique minimizing vector in the definition of H(F, P ).

The following lemma is also not new (cf. [91], [92], [38] Corollary 10, [99] Lemma 3),
but since it is easy, we give a short proof for the sake of clarity.

Lemma B Let F and G be two hypergraphs, P an everywhere positive probability distribu-
tion and let a ∈ V P (F ), b ∈ V P (G), c ∈ V P (F ∪ G) be the vectors achieving H(F, P ),
H(G,P ), and H(F ∪ G,P ), respectively. Now, if H(F, P ) + H(G,P ) = H(F ∪ G,P )
then necessarily aibi = ci for every i. Furthermore, then any two independent sets ap-
pearing with positive coefficients in some convex combination representations of a and b,
respectively, must intersect in a maximal independent set of F ∪G.

Proof. Observe that the intersection of an independent set of F and an independent
set of G is always an independent set of F ∪ G. (In fact, subadditivity is a consequence
of this observation, cf. [93].) This implies that the vector (a1b1, ..., anbn) ∈ V P (F ∪ G).
So, if H(F, P ) + H(G,P ) = −∑n

i=1 pi log(aibi) = H(F ∪ G,P ), then this vector should
be the minimizing vector defining H(F ∪ G,P ). The statement about the intersection
is then obvious by the remark that only maximal independent sets can appear with
positive coefficients in the representation of a vector achieving entropy with respect to an
everywhere positive P . �

Now we are ready to prove Theorem 1.1.1.
For vectors a, b ∈ Rn we will use the notation a ◦ b = (a1b1, a2b2, ..., anbn).

Proof of Theorem 1.1.1.
First we prove that a strongly splitting hypergraph can contain neither four vertices

inducing an odd number of edges nor an induced flower. To this end it is enough to
show that the flower and also the 3-uniform hypergraphs with an odd number of edges
on four vertices are not strongly splitting. This will imply that no strongly splitting
hypergraph can contain these configurations. Indeed, otherwise we could concentrate a
probability distribution violating (1.3) on this particular subhypergraph, all the entropy
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values would be the same as if the zero-probability vertices did not exist, and so (1.3)
would be violated by the entire hypergraph. But if no strongly splitting hypergraph
contains these subhypergraphs, then all strongly splitting hypergraphs are leaf-patterns
by Theorem G, so this proves one direction of the theorem.

Consider the first pair of forbidden configurations, the 3-uniform hypergraph on four
vertices with one edge and its complement that has three edges. Let us denote them
by F and F̄ , respectively, and their four vertices by x, y, z, t, in such a way that the
only edge of F is {x, y, z}. We will show that for no a ∈ V P (F ) and b ∈ V P (F̄ ) can

aibi = 1
2
, (i = 1, 2, 3, 4) be satisfied. Since c = (1

2
, 1

2
, 1

2
, 1

2
) ∈ V P ′(K

(3)
4 ) is a maximal

vector in V P (K
(3)
4 ), this implies the statement by Lemmas A and B. (In fact, instead of

the above c we could consider any c ∈ V P ′(K
(3)
4 ) satisfying 0 < ci < 1 for every i.)

First observe that every maximal independent set of F̄ containing t has only two
elements, and for having bt > 0 it is necessary for at least one of these sets to get a
positive coefficient in the convex combination representation of b. We may assume that
the set {x, t} gets a positive coefficient. However, this set is a maximal independent set

of K
(3)
4 , too, therefore by Lemma B, all maximal independent sets of F that will get a

positive coefficient in the representation of a must contain {x, t} completely. There are
only two such maximal independent sets in F : {x, y, t} and {x, z, t}. Both of these two
sets should get a positive coefficient in the representation of a in order to have ay > 0 and
az > 0. Now going back to F̄ , apart from {x, t}, it has only one maximal independent set
that intersects both of the previous two independent sets of F in a maximal independent
set of K

(3)
4 , this is {x, y, z}. So, again by Lemma B, apart from {x, t} only this set can get

a positive coefficient in the representation of a. Now observe that all the above mentioned
sets contain x, so whatever convex combination of them is taken, we will have ax = bx = 1,
therefore axbx = 1

2
will not be satisfied. By Lemma B, this proves that the hypergraphs

in our first pair of forbidden configurations are not strongly splitting.

For the flower a similar proof can be carried out. The following argument, however, is
shorter. It was suggested by one of the referees. Let M denote a flower and let the vector
c ∈ V P ′(K

(3)
5 ) we want to have in the form c = a ◦ b with a ∈ V P (M), b ∈ V P (M̄),

be ci = 2
5
, i = 1, .., 5. Assume we have such an a and b. Since the independence number

of M is 3, we have a1 + ... + a5 ≤ 3 and similarly for the bi’s. By the convexity of the
function 1

x
we can write

3 ≥
5

∑

i=1

bi =
2

5

5
∑

i=1

1

ai
≥ (

2

5
)5(

5

3
) =

10

3
,

a contradiction. With Theorem G this concludes the proof of the first part of the theorem.

Now we have to prove that all leaf-patterns are strongly splitting. To this end we use
the observation that leaf-patterns are equivalent to reducible 3-uniform hypergraphs.
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We use induction on n = |V (F )|. For n = 3 the statement is trivial. We assume it
is true for n = m and prove it for n = m + 1. Consider a reducible hypergraph F on
m+ 1 vertices. Let us be given an arbitrary everywhere positive probability distribution
P on the vertices of F and let c ∈ V P (K

(3)
m+1) be the vector achieving H(K

(3)
m+1, P ). (In

case of a not everywhere positive probability distribution we are done by the induction
hypothesis.) Observe that V P (K

(3)
n ) = {h : 0 ≤ hi ≤ 1,

∑n
i=1 hi ≤ 2} and since c must

be a maximal vector in V P (K
(3)
m+1) we surely have

∑m+1
i=1 ci = 2.

We know there exist two disjoint pairs of siblings in F , let them be x, y and z, t. By
∑m+1

i=1 ci = 2 we have that at least one of the two inequalities, cx + cy ≤ 1 and cz + ct ≤ 1,
holds. (Note that this need not be true for k > 3.) We may assume that the first one is
valid and label the vertices so that x = 1 and y = 2. Then we have

c′ = (c1 + c2, c3, c4, ..., cm, cm+1) ∈ V P ′(K(3)
m ),

and c′ is a maximal vector in V P (K
(3)
m ), thus by Lemma A there exists a nowhere vanishing

probability distribution P ′ for which H(K
(3)
m , P ′) is achieved by c′. Now consider the

hypergraph on m vertices that we obtain by identifying the vertices x and y (i.e., 1 and 2)
of F in the obvious manner. The new vertex will be denoted by x′, and the hypergraph
obtained this way we denote by F ′. By the induction hypothesis, F ′ is strongly splitting,
in particular, we have

H(F ′, P ′) +H(F̄ ′, P ′) = H(K(3)
m , P ′).

By Lemma B this means that the vectors a′ and b′ achieving H(F ′, P ′) and H(F̄ ′, P ′),
respectively, satisfy a′ ◦ b′ = c′. Now we obtain an a ∈ V P (F ) and a b ∈ V P (F̄ )
from a′, b′, respectively, that will satisfy a ◦ b = c. To this end we assume that 1 and
2 (the former x and y) are duplicates in F , otherwise we could change notation and
consider F̄ . Look at the maximal independent sets of F ′ and F̄ ′ that appear with positive
coefficients in some representations of a′ and b′, respectively. Let the coefficient of the
independent set I of F ′ be α′(I) in the representation of a′. For x′ /∈ I let α(I) = α′(I)
and for x′ ∈ I let α((I\{x′}) ∪ {x, y}) = α′(I). The coefficient of an independent set
J of F̄ ′ we denote by β ′(J). For x′ /∈ J we let β(J) = β ′(J) while for x′ ∈ J we let
β((J\{x′}) ∪ {x}) = β ′(J) c1

c1+c2
and β((J\{x′}) ∪ {y}) = β ′(J) c2

c1+c2
. It is easy to check

that this way we gave coefficients to independent sets of F and F̄ , and that the a ∈ V P (F )
and b ∈ V P (F̄ ) they represent are:

a = (a′1, a
′
1, a
′
3, a
′
4, ..., a

′
m, a

′
m+1)

and
b = (b′1

c1
c1 + c2

, b′1
c2

c1 + c2
, b′3, b

′
4, ..., b

′
m, b

′
m+1).

Using a′ib
′
i = c′i this immediately gives aibi = ci for every i and so

H(K
(3)
m+1, P ) = −

m+1
∑

i=1

pi log ci = −
m+1
∑

i=1

pi log ai −
m+1
∑

i=1

pi log bi ≥ H(F, P ) +H(F̄ , P ).
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Together with the subadditivity of hypergraph entropy this implies equality above and so
F is strongly splitting. �

Remark 1.2. We note that the second part of the above proof does make use of the
fact that we are in case k = 3, that is, though it may sound plausible, it is not proven,
moreover, it is not true in general that vertex duplication keeps the splitting property
of a uniform hypergraph. If this were true then all reducible uniform hypergraphs were
strongly splitting contradicting Theorem 1.1.3 of the next section. (In case of k = 2
the analogous statement is true and follows from the easy fact that vertex duplication
preserves perfectness of a graph. The more subtle fact that it also preserves perfectness
of the complement is a key lemma in Lovász’s paper [106].) ♦

In [70] Gurvich has proved his Theorem G in a somewhat more general setting. This
we can use to obtain a generalization of Theorem 1.1.1. First a generalization of the
concept of leaf-pattern is needed.

Definition 6 Let T be a tree with its inner nodes colored by colors 1, 2,..., r. The leaf-
factorization of the r-colored tree T is a collection {F1, F2, ..., Fr} of 3-uniform hypergraphs
with the following properties. The vertex set of Fi (i = 1, .., r) is the set of leaves of T
and three leaves x, y, z form an edge in Fi if and only if the unique common point of the
paths xy, yz, and zx is colored with color i in T .

The collection of hypergraphs {F1, ..., Fr} is called a leaf-factorization if it is the leaf-
factorization of some r-colored tree T .

The general result of Gurvich is the following.

Theorem GG A collection {F1, ..., Fr} of 3-uniform hypergraphs is a leaf-factorization
if and only if no Fi contains an induced flower or an odd number of vertices on any four
points.

Using this result we have

Theorem 1.1.2 Let F1, ..., Fr be 3-uniform hypergraphs on a common vertex set V and
their union be the complete 3-uniform hypergraph on V . Then having

r
∑

i=1

H(Fi, P ) = H(K
(3)
|V |, P )

for every distribution P on V is equivalent to {F1, ..., Fr} forming a leaf-factorization.

Proof. By subaditivity and Theorem 1.1.1 the equality in the statement implies that
the Fi’s are edge-disjoint and every Fi is a leaf-pattern, i.e., none of them contains the
forbidden configurations. Then by Theorem GG they form a leaf-factorization. All we
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have to show is that leaf-factorizations satisfy the above equality. This goes by a similar
induction as that in the second part of the proof of Theorem 1.1.1.

Let {F1, ..., Fr} be the leaf-factorization of the r-colored tree T . Since F1 is a leaf-
pattern it has two disjoint pairs of siblings. Let one such pair be x and y with the
additional property that cx + cy ≤ 1 where (c1, c2, ..., c|V |) denotes the vector in V P (K

(3)
|V |)

that gives H(K
(3)
|V |, P ) for some arbitrarily fixed P . Now observe that x and y are siblings

in all Fi’s, moreover, they are duplicates in each Fi except one, Fj , say. (This is because,
if we exclude degree 2 vertices in T , that we can, then x and y must be two leaves of T
with a common neighbour that is colored by j.) After this observation we can more or
less literally repeat the corresponding part of the proof of Theorem 1.1.1 with Fj playing
the role of F̄ there. �

Remark 1.3. Theorem 1.1.2 is the analogue of Corollary 1 in [99] which states that if
{G1, ..., Gr} is a collection of edge disjoint graphs with their union being the complete
graph on their common vertex set, then

r
∑

i=1

H(Gi, P ) = H(P )

for every P is equivalent to all Gi’s being perfect and no triangle having its three edges
in three different Gi’s. It is interesting to note that while all Gi’s being strongly splitting
(i.e., perfect) is not enough for the above equality, all Fi’s being strongly splitting is
sufficient for the analogous equality in the 3-uniform case. ♦

1.1.4 The case k ≥ 4

In this subsection we show that for k > 3 the only strongly splitting k-uniform hypergraphs
are the two trivial ones.

Theorem 1.1.3 If k ≥ 4 and F is a strongly splitting k-uniform hypergraph on n vertices
then F = K

(k)
n or F = K̄

(k)
n .

Proof. It is enough to prove the above statement for n = k + 1. This is because being
strongly splitting is a hereditary property and a k-uniform hypergraph which is complete
or empty on every k + 1 vertices must be complete or empty itself. (The fact that being
strongly splitting is hereditary follows from the argument that a probability distribution
can be concentrated on any subset of the vertex set and then the entropy values are just
the same as if the zero-probability vertices did not exist.) The proof for n = k + 1 will
use similar arguments as the beginning of the proof of Theorem 1.1.1.

Consider a k-uniform hypergraph F with k + 1 vertices and m edges. Up to isomor-
phism, there is only one such hypergraph. Thus we may assume E(F ) = {{1, . . . , k+ 1}\
{i} : i = 1, . . . , m}. Its complement F̄ has k + 1 −m edges. The maximal independent
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sets of F (F̄ ) are the edges of F̄ (F ) and those (k−1)-element sets that are not contained
in the former independent sets.

Like in the proof of Theorem 1.1.1 our setting is this. We consider an arbitrarily given
everywhere positive probability distribution P . This singles out a vector c ∈ V P (K

(k)
k+1)

that achieves the entropy of K
(k)
k+1 with respect to P . Now we look for an a ∈ V P (F ) and

a b ∈ V P (F̄ ) giving a◦b = c, and thereby additivity of hypergraph entropy for the given
P . We will investigate which independent sets of F and F̄ may have positive coefficients
in the convex combination representations of a and b, respectively. It will follow that not
every maximal c in V P (K

(k)
k+1) can be represented this way if neither F nor F̄ is complete,

and then by Lemmas A and B the theorem follows.
So our next task is to choose a maximal positive c in V P (K

(k)
k+1) that we will not be able

to obtain in the required form. By Lemma A this is enough, since then a corresponding
P exists for which c is the unique minimizing vector achieving H(K

(k)
k+1, P ). Let this

c be such that 0 < ci < 1 for every i, and furthermore, none of
∑m

i=1(1 − ci) = 1 and
∑k+1

i=m+1(1−ci) = 1 holds. (In fact, the latter two are equivalent, since
∑k+1

i=1 ci = k−1 for

every maximal c in V P (K
(k)
k+1).) It is easy to check that such a maximal c in V P (K

(k)
k+1)

always exists. We show it cannot be represented as a ◦ b with a ∈ V P (F ), b ∈ V P (F̄ ).
Assume the contrary. First observe that it cannot happen that in the representations

of both, a and b, some (k − 1)-element independent set occurs with positive coefficient,
because (since these sets could not be identical) the intersection of such two sets would not

be a maximal independent set of K
(k)
k+1, thereby contradicting Lemma B. We distinguish

between two cases: either there is at least one (k−1)-element set with positive coefficient
in the representation of, say, a, or no (k−1)-element set appears with positive coefficient
at all.

In the second case, for every vertex i there is at most one independent set with positive
coefficient not containing i. This implies that for every i this unique independent set must
get coefficient (1− ci). We get convex combinations this way only if

∑m
i=1(1− ci) = 1 and

∑k+1
i=m+1(1 − ci) = 1. But this is not satisfied by the c we have chosen.
In the first case, only those two maximal independent sets may have positive coeffi-

cients in the representation of b that contain the (k − 1)-element set appearing in the
representation of a. (This is again by Lemma B.) Since we must have bi > 0 for every i,
these two independent sets must really get positive coefficients there. This implies that
only one (k− 1)-element set can get positive coefficient in the representation of a (again,
by Lemma B). Now observe that this way there are m− 2 points that will be contained
in all the independent sets that may appear in the representations of a or b with positive
coefficient. For all such points i we will have aibi = 1, a contradiction, unless we have
m ≤ 2.

If m = 2, then again, the coefficients of the k-element sets appearing in the repre-
sentation of a are determined. Since the set missing element i is the only set that does
not contain i, its coefficient must be 1 − ci. Labelling the vertices in such a way that 1
and 2 are the two vertices missed by our unique (k − 1)-element set in the representa-
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tion of a, the previous observation implies
∑k+1

i=3 (1 − ci) ≤ 1. We may assume, however,

that c1 and c2 are just the two largest coordinates of c, implying c1 + c2 ≥ 2(k−1)
k+1

, i.e.,
∑k+1

i=3 (1 − ci) = ((k − 1) − (k − 1 − (c1 + c2)) ≥ 2(k−1)
k+1

. But 2(k−1)
k+1

≤ 1 implies k ≤ 3.
It is already implicit in the above argument that m 6= 1. Indeed, if m = 1, then there

is a vertex which is not contained in any independent set of F̄ that is larger than k − 1.
Since some independent set of F̄ containing this vertex must get positive coefficient, there
must be a k− 1-element independent set with positive coefficient in the representation of
b. But we assumed we have a k − 1-element independent set with positive coefficient in
the representation of a. Since the latter two have too small intersection, we have arrived
to a contradiction.

The proof is complete now. �

Theorem 2 of [38] together with our Theorems 1.1.1 and 1.1.3 implies the following

Corollary 1.1.4 A k-uniform hypergraph F is strongly splitting if and only if (at least)
one of the following three statements holds:

(i) k = 2 and F is a perfect graph
(ii) k = 3 and F is a leaf-pattern

(iii) F is K
(k)
n or K̄

(k)
n .

�

1.1.5 Connections with cographs

Cographs are defined as those graphs one can obtain starting from a single vertex by
successively and iteratively using two operations: taking the complement and taking
vertex disjoint union. (For their algorithmic importance, history, and other details, cf.
[34].) By a theorem of Corneil, Lerchs, and Stewart Burlingham [34] cographs are identical
to reducible graphs (i.e., reducible 2-uniform hypergraphs) in the sense of Definition 5. In
fact, Corneil, Lerchs and Stewart Burlingham [34] show the equivalence of eight different
characterizations of cographs, relying also on earlier results by Jung [82], Lerchs [104],
Seinsche [138], and Sumner [150]. (Related results can also be found in [70], cf. also
[85]). Among others, this theorem shows that cographs also admit a characterization by
excluded configurations. In fact, they are equivalent to P4-free graphs, i.e., graphs that
have no induced subgraph isomorphic to a chordless path on 4 vertices.

The definition of reducible hypergraphs gives a natural (although not necessarily
unique) way to describe the evolution of such a hypergraph. We obtain this descrip-
tion by simply ordering the vertices, telling for each vertex which preceding vertex it was
originally a duplicate of and saying at which steps we should complement the hypergraph
we have at hand. Since this means that after having fixed the first three vertices, the
same description can describe a cograph and also a 3-uniform reducible hypergraph, it
is natural that some correspondence can be found between them more directly. This is
really easy to find.
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Proposition 1.1.5 A 3-uniform hypergraph F is reducible if and only if there exists a
cograph G on V (F ) such that in each edge of F the number of edges of G has the same
parity.

�

The proof is straightforward and left to the reader.

Quoting results of Seidel [137], Hayward [76] defines the IP3-structure of a graph G.
This is the 3-uniform hypergraph on V (G) the edges of which are exactly those triples of
vertices that induce an even number of edges in G. (Thus every set of 3 vertices induces
an independent set or a path P3 explaining the term IP3. It is shown (cf. [137], [76])
that the IP3-structures of graphs are exactly those 3-uniform hypergraphs that on every
four vertices have an even number of edges.) Using this terminology and the fact that
the complement of a cograph is also a cograph, the previous proposition says that leaf-
patterns (reducible 3-uniform hypergraphs) are equivalent to the IP3 structures that arise
from cographs. For further details on the related topic of ”Seidel’s switching” cf. also
[100].

Finally, it is interesting to note, that since all cographs are perfect (cf. Lovász [106],
Seinsche [138]), Corollary 1.1.4 together with the above proposition shows a kind of
“monotonicity” as we consider strongly splitting graphs, strongly splitting 3-uniform hy-
pergraphs and then strongly splitting k-uniform hypergraphs with k > 3.

Acknowledgments: Many thanks are due to János Körner and László Lovász for in-
teresting discussions and help. My work also benefitted from the nice coincidence that
Gottfried Tinhofer and Winfried Hochstättler organized a seminar about cographs just at
the time I was writing the paper this section is based on. I also thank Vladimir Gurvich
for informing me about his work on leaf-patterns.
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1.2 Imperfection ratio and graph entropy

In this section we present a result that is published as a new result in [142]. It is an
extension of the characterization of perfectness by graph entropy proven in [38] (for the
exact statement cf. Corollary 1.1.4 (i)) and it was this result that triggered the writing
of the updated survey article [142] and its publication in the book [128].

Apart from some of the concepts already introduced in Section 1.1 the presentation
of this result needs some further notions and facts that are discussed in earlier parts of
[142]. Below we give a short summary of these preliminaries.

1.2.1 Some preliminaries

Recall that the entropy of a graph G with respect to a probability distribution P on its
vertex set can be given by the formula

H(G,P ) = min
a∈V P (G)

∑

i∈V (G)

pi log
1

ai
(1.4)

which is just Definition 2 specified to the case when our hypergraph happens to be a
graph.

It is immediate that Definition 2 can be generalized for more general polytopes, or in
what follows, to convex corners.

Definition 7 A set A ⊆ Rn
+,0 is called a convex corner if it is closed, convex, has a non-

empty interior, and satisfies the property that if 0 ≤ a′i ≤ ai for i = 1, .., n then a ∈ A
implies a′ ∈ A.

Definition 8 ([38]) For a convex corner A ⊆ Rn
+,0 and probability distribution P =

(p1, . . . , pn) the entropy of A with respect to P is defined as

HA(P ) = min
a∈A

n
∑

i=1

pi log
1

ai
.

The proof of the result in [38] stating that a graph is strongly splitting if and only if it
is perfect is based on results related to the notion of antiblocker of a convex corner that
we also need later.

Definition 9 (Fulkerson [55]) Let A ⊆ Rn
+,0 be a convex corner. The antiblocker A∗ of

A is defined as
A∗ = {b ∈ Rn

+,0 : bT · a ≤ 1 ∀a ∈ A}.
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Remark 1.4. It is a well-known fact (cf. Fulkerson [55]) that (A∗)∗ = A. If B = A∗ then
(A,B) is called an antiblocking pair. ♦

In order to characterize strongly splitting graphs the following more general additivity
result was proven in [38].

Theorem 1.2.1 For a convex corner A ⊆ Rn
+,0

HA(P ) +HA∗(P ) = H(P )

holds for every probability distribution P .

The mentioned characterization immediately follows from Theorem 1.2.1 using a well-
known result of Fulkerson [56] and Chvátal [32]. To state the latter we have to define
another polytope associated with a graph. (In what follows we often write stable set in
place of independent set. The two terms are equivalent.)

Definition 10 The fractional vertex packing polytope FV P (G) of a graph G on n ver-
tices is the antiblocker of V P (Ḡ), i.e.,

FV P (G) = {b ∈ Rn
+,0 :

∑

i∈B∈S(Ḡ)

bi ≤ 1 ∀B ∈ S(Ḡ)},

where S(F ) denotes the set of stable sets of graph F .

Since a clique and a stable set can have at most one vertex in common V P (G) ⊆
FV P (G) holds for every graph.

Theorem 1.2.2 (Fulkerson [56], Chvátal [32]) V P (G) = FV P (G) if and only if G is a
perfect graph.

We will also need another additivity result proved in [99].
The notion of substitution is defined in [106] by Lovász in relation with the proof

of the perfect graph theorem. The definition is as follows. Let F and G be two vertex
disjoint graphs and v be a vertex of G. By substituting F for v we mean deleting v and
joining every vertex of F to those vertices of G which have been adjacent with v. We will
denote the resulting graph by Gv←F .

We extend the above concept also to distributions. If we are given a probability
distribution P on V (G) and a probability distribution Q on V (F ) then by Pv←Q we
denote the distribution on V (Gv←F ) given by Pv←Q(x) = P (x) if x ∈ V (G) − {v} and
Pv←Q(x) = P (v)Q(x) if x ∈ V (F ).

Now we are ready to state
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Lemma 1.2.3 (Substitution Lemma) Let F and G be two vertex disjoint graphs, v a
vertex of G, while P and Q are probability distributions on V (G) and V (F ), respectively.
Then we have

H(Gv←F , Pv←Q) = H(G,P ) + P (v)H(F,Q).

(We remark that the lemma called “Substitution Lemma” in [99] is formulated in a
somewhat different way. Still, its proof together with the trivial “Contraction Lemma” of
the same paper immediately gives the proof of our lemma above. The above formulation
appears in [141] and [142].)

To conclude this preliminary subsection we mention one more property of graph en-
tropy we will use. (We write minimum instead of infimum in the following definition as
the minimum is known to exist, cf. e.g. [133].)

Definition 11 The fractional chromatic number χ∗(G) of graph G is defined as the min-
imum sum of non-negative weights on the stable sets of G satisfying that for any vertex
the sum of weights of those stable sets that contain this vertex is at least 1.

The following statement follows easily from the original definition of graph entropy
given in [88] and a theorem of McEliece and Posner [120] (see also as Problem 13.51 in
[110].) It is also easy to deduce it from Definition 2 that we do below for the sake of
completeness. Recall Lemma A from Subsection 1.1.3 that was proven in [38] and states
that for any vector a ∈ V P (G) that belongs to V P ′(G) which is the closure of that part
of the boundary of V P (G) that is not contained in any of the coordinate hyperplanes
xi = 0, there is some probability distribution P on V (G) such that the value of H(G,P )
is attained by a.

Lemma 1.2.4
max
P

H(G,P ) = logχ∗(G).

Proof. It is easy to verify that h := ( 1
χ∗(G)

, 1
χ∗(G)

, . . . , 1
χ∗(G)

) ∈ V P (G) holds for any

graph G implying that the right hand side of (1.4) cannot be larger than logχ∗(G) for
any P .
It follows from the definition of the fractional chromatic number that h ∈ V P ′(G) and
thus by Lemma A there exists a probability distribution P for which H(G,P ) = logχ∗(G)
proving the statement. �

1.2.2 An entropy formula for the imperfection ratio

In a recent paper Gerke and McDiarmid [65] introduced a parameter called the imperfec-
tion ratio of graphs (cf. also [64], [66], [119]). Its definition is motivated by so-called radio
channel assignment problems, the relation is explained in detail in [119]. After repeating
the original definition and two possible characterizations of this new notion we will show
that it can also be characterized in terms of graph entropy.
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The definition of the imperfection ratio needs the notion of substitution in the sense of
[106], cf. its definition before Lemma 1.2.3. For an integer vector x = (xv)v∈V (G) of non-
negative entries let Gx denote the graph obtained from G by substituting a clique of size
xv into G at its vertex v for all v ∈ V (G). (Vertices v with xv = 0 are simply deleted.)
The imperfection ratio is then defined as

imp(G) = max{χ
∗(Gx)

ω(Gx)
: x ∈ {0, 1, . . .}V , x 6= 0},

where ω(F ) stands for the clique number of graph F . It is noted in [119] that the above
maximum is always attained.

One of the main results in [119] contains the following statements we will use later.

Theorem 1.2.5 ([119]) For every graph G the following holds:

imp(G) = min{t : FV P (G) ⊆ t · V P (G)} = max{x · y : x ∈ FV P (G),y ∈ FV P (Ḡ)}.

(The product x · y above simply means the scalar product of the two vectors x and y.
There is a slight abuse of the notation here since it does not show that one of the vectors
should be transposed before the multiplication is carried out. We will use this notation
similarly later on.)

It is worth recalling that the above theorem immediately implies the following results in
[119].

1. A graph G is perfect if and only if imp(G) = 1. (In view of Theorem 1.2.5 this is
equivalent to Theorem 1.2.2. Observe that imp(G) ≥ 1 for any graph.)

2. Complementary graphs have the same imperfection ratio, i.e., imp(Ḡ) = imp(G).

The first statement above can be interpreted by saying that the larger imp(G) the more
imperfect G is. The characterization of perfectness by graph entropy proven in [38] (cf.
Corollary 1.1.4 (i)) suggests that the value

max
P

{H(G,P ) +H(Ḡ, P ) −H(P )}

is also a possible ”measure” of imperfectness of graph G. It turns out that this measure
is essentially the same as imp(G). More precisely, the following is true.

Theorem 1.2.6

max
P

{H(G,P ) +H(Ḡ, P ) −H(P )} = log imp(G)

for all graphs G.
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In the proof we will refer to the following observation.

Lemma 1.2.7 For any non-negative integer vector x ∈ R|V (G)| one has

max
P

{H(G,P ) +H(Ḡ, P ) −H(P )} ≥ max
Q

{H(Gx, Q) +H(Gx, Q) −H(Q)}

with equality if x is non-zero at those points where the maximizing P of the left-hand side
is non-vanishing.

Proof. The Substitution Lemma (Lemma 1.2.3) implies that substituting any graph into
another one at its vertex v in such a way that the sum of the probabilities of the new
vertices is exactly P (v) the entropy increase caused is independent of the original graph
into which we substitute. Thus when cliques of some given size are substituted into G,
then the entropy of G increases by the same amount as that of the complete graph if
we substitute the same sized cliques into it. Since the entropy of the complete graph
is H(P ), the difference H(G,P ) − H(P ) equals H(Gx, Px) − H(Px) where Px is any
distribution on V (Gx) satisfying that summing it on the vertices of a clique substituted
into v ∈ V (G) we get P (v) as the sum. (The latter condition cannot be satisfied only if
x is zero at some v with P (v) 6= 0. This explains why we have the technical condition
for equality in the statement. If that is not satisfied it can only make the right-hand side
smaller. In the following we assume the condition to be satisfied.) At the same time,
H(Ḡ, P ) = H(Gx, Px) since the change of entropy caused by the substitution of stable
sets is zero. Therefore the two maxima above must be the same. �

Proof of Theorem 1.2.6. It is implied by Theorem 1.2.1 that H(G,P ) + H(Ḡ, P ) −
H(P ) = HV P (G)(P )−HFV P (G)(P ) for every G and P . Let Gx be the graph which attains
imp(G). Observing that the vector ( 1

ω(L)
, 1
ω(L)

, . . . , 1
ω(L)

) is in FV P (L) for any graph L we

have HFV P (Gx)(P ) ≤ ∑

v∈V (Gx) pi logω(Gx) = logω(Gx) for every P . Thus by Lemma

1.2.4 we have maxP{HV P (Gx)(P )−HFV P (Gx)(P )} ≥ logχ∗(Gx)−logω(Gx) = log imp(G).
By Lemma 1.2.7 this proves one direction of our statement.

To prove the reverse inequality we use Theorem 1.2.5 from [119]. Applying Theo-
rem 1.2.1 again, observe that H(G,P ) + H(Ḡ, P ) − H(P ) can also be expressed as
H(P ) − HFV P (G)(P ) − HFV P (Ḡ)(P ). Let P0 be the distribution maximizing this expres-
sion and let a and b be the vectors attaining HFV P (G)(P0) and HFV P (Ḡ)(P0), respectively.
Using the inequality between the weighted arithmetic and geometric mean we can write
by the foregoing

max
P

{H(G,P ) +H(Ḡ, P ) −H(P )} = H(P0) −HFV P (G)(P0) −HFV P (Ḡ)(P0) =

∑

i∈V (G)

P0(i) log
aibi
P0(i)

= log
∏

i∈V (G)

(
aibi
P0(i)

)P0(i) ≤ log
∑

i∈V (G)

P0(i)
aibi
P0(i)

= log(a · b)

≤ log max{x · y : x ∈ FV P (G),y ∈ FV P (Ḡ)} = log imp(G).

�

We remark that McDiarmid [119] has somewhat simplified the above proof.
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1.2.3 Dilation ratio and entropy of convex corners

The following generalization of imp(G) is also mentioned in [119]. Let A and B be convex
corners in Rn

+,0. Their dilation ratio is defined as

dil(A,B) = min{t : B ⊆ tA}.
It is also given in [119] that

dil(A,B) = max{x · y : x ∈ A∗,y ∈ B}.
Along similar lines to those proving Theorem 1.2.6 one can show that the following more
general statement also holds.

Theorem 1.2.8 For any two convex corners A,B ⊆ Rn
+,0 one has

log dil(A,B) = max
P

{HA(P ) −HB(P )}.

This was only noted in [142] but here we give more details. We also remark that McDi-
armid’s simplification applies again, see [119].

Showing
max
P

{HA(P ) −HB(P )} ≤ log dil(A,B)

is essentially identical to that in the proof of Theorem 1.2.6. Namely, let P0 be the
disribution attaining the maximum in the left hand side and a, b be the vectors attaining
the minima in the definition of H∗A(P0), HB(P0), respectively. Then just as before, we can
write

max
P

{HA(P ) −HB(P )} = H(P0) −HA∗(P0) −HB(P0) =

=
n

∑

i=1

P0(i) log
aibi
P0(i)

= log
n

∏

i=1

(
aibi
P0(i)

)P0(i) ≤ log
n

∑

i=1

P0(i)
aibi
P0(i)

=

= log(a · b) ≤ log max{x · y : x ∈ A∗,y ∈ B} = log dil(A,B).

To prove the reverse inequality we use an analogue of the Substitution Lemma. (In
fact, the main point in the proof simplification by McDiarmid is that he can avoid the use
of this lemma. Still, I beleive that the proof using this lemma also has some advantages
by the geometric intuition it may provide.) First we define what substitution (of a d-
dimensional simplex, the analogue of a (d+1)-clique) means in this more general context.

Definition 12 Let A ⊆ Rn
+,0 be a convex corner. Let Ai←∆d

denote the convex corner in

Rn+d
+,0 defined as follows

Ai←∆d
:= {a = (a1, . . . , ai−1, ai1 , . . . , aid+1

, ai+1, . . . , an) ∈ Rn+d
+,0 :

(a1, . . . , ai−1,

d+1
∑

r=1

air , ai+1, . . . , an) ∈ A}.
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The lemma that will play the role of the Substitution Lemma now is the following.

Lemma 1.2.9 Let P = (p1, . . . , pn) and Q = (q1, . . . , qd+1) be two arbitrary probabil-
ity distributions of respective dimensions. Let Pi←Q denote the distribution with entries
(p1, . . . , pi−1, piq1, . . . , piqd+1, pi+1, . . . , pn). Then for any convex corner A ⊆ Rn

+,0 we have

HAi←∆d
(Pi←Q) = HA(P ) + piH(Q).

Proof. Let (a1, . . . , ai−1, ai1 , . . . , aid+1
, ai+1 . . . , an) ∈ Ai←∆d

be the vector attaining
HAi←∆d

(Pi←Q). Let ai = max{x : (a1, . . . , ai−1, x, ai+1, . . . , an) ∈ A}. It is clear by

the definition of Ai←∆d
and that of the entropy of convex corners, that

∑d+1
j=1 aij = ai

should hold (at least whenever pi > 0, but otherwise the statement is trivial). Thus there
are nonnegative numbers r1, . . . , rd+1 for which

∑d+1
j=1 rj = 1 and aij = rjai holds for all

j ∈ {1, . . . , d+ 1}.
Therefore we can write

HAi←∆d
(Pi←Q) =

∑

j 6=i

pj log
1

aj
+ pi

d+1
∑

j=1

qj log
1

aij
=

∑

j 6=i

pj log
1

aj
+ pi

d+1
∑

j=1

qj log
1

rjai
=

n
∑

j=1

pj log
1

aj
+ pi

d+1
∑

j=1

qj log
1

rj
≥ HA(P ) + piH(Q),

where the last inequality is by the well-known fact expressed e.g. by Lemma I.3.2(c) in
[36].

On the other hand, if we let a′ = (a′1, . . . , a
′
n) be the vector attaining HA(P ) and

a′ij = qja
′
i for all j, then essentially the same calculation (executed backwards) gives the

reverse inequality. �

We remark that the above proof actually gives the proof of the special case of the Sub-
stitution Lemma used in the previous subsection, namely the case where the substituted
graphs are always cliques.

Corollary 1.2.10 Let A,B ⊆ Rn
+,0 be convex corners and d1, . . . , dn be positive integers.

Let Â and B̂ be obtained from A,B by subsequently substituting the simplex ∆di
into i for

i = 1, . . . , n (simultaneously for both convex corners). Then

max
P

{HA(P ) −HB(P )} = max
P̂

{HÂ(P̂ ) −HB̂(P̂ )}

Proof. It is enough to notice that the entropy increase caused by the substitution of
simplices is the same for the two convex corners for any fixed distributions P and Q
involved in the substitution. �

19



Lemma 1.2.11 Let A,B ⊆ Rn
+,0 be two convex corners. Then for every positive integer

d
dil(A,B) = dil(Ai←∆d

,Bi←∆d
).

Proof. It is clear from the definitions that B ⊆ tA implies Bi←∆d
⊆ tAi←∆d

, therefore
dil(Ai←∆d

,Bi←∆d
) ≤ dil(A,B). On the other hand, if B * tA, then there exists a vector

a = (a1, . . . , an) ∈ A satisfying (1 + ε)a /∈ A for any ε > 0 for which there is a b =
(b1, . . . , bn) ∈ B such that bj > taj for all j with aj > 0. Setting ai,1 = ai, bi,1 = bi and
ai,j = bi,j = 0 for all j > 1 we see that Bi←∆d

* tAi←∆d
. This implies dil(Ai←∆d

,Bi←∆d
) ≥

dil(A,B) completing the proof. �

Proof of Theorem 1.2.8.
We have already seen the proof of maxP{HA(P ) −HB(P )} ≤ log dil(A,B) right after

the statement. So we need to prove only the reverse inequality.
Let A,B ⊆ Rn

+,0 be convex corners and let t = dil(A,B) be attained by the vectors
a = (a1, . . . , an) ∈ A and b = ta ∈ B. Let β0 =

∑n
i=1 bi and let ε > 0 be an arbitrarily

small positive real. Let d1, . . . , dn be non-negative integers for which (1 + ε)
bj

dj+1
≥ β :=

β0
Pn

i=1(di+1)
≥ (1 − ε)

bj
dj+1

for every j. It is clear that such a choice of the di’s is possible.

For every i set bi,j = bi
di+1

for j = 1, . . . , di + 1. (Thus β is just the arithmetic mean of
all the bi,j ’s and the di’s are chosen so, that no bi,j differs too much from the arithmetic
mean.)

Let Âi be defined recursively by Â0 = A and Âi = Ai−1
i←∆di

for i = 1, . . . , n. Let

Â denote Ân and define B̂ similarly from B. (Note that the vector ( β
1+ε

, . . . , β
1+ε

) of

dimension
∑n

i=1(di + 1) is in B̂.)
Let ai,j = bi,j/t for all i, j. Corollary 7 of [38] implies the analogue of Lemma A (see

on page 5 in Subsection 1.1.3) for any convex corner D in place of V P (F ). That is, if D′ is
the closure of that part of the boundary of D that is not contained in any of the coordinate
hyperplanes xi = 0, then for every h ∈ D′ there exists some probability distribution P
such that HD(P ) is attained by h. Applying this to Â and the vector ((ai,j)

di+1
j=1 )ni=1 ∈ Â′

we have a distribution P0 for which HÂ(P0) is attained by ((ai,j)
di+1
j=1 )ni=1. Now we can

write the following. (In the calculation below we assume ai,j > 0 for all i, j. If for some
i, j this would not be the case then P0(i, j) would also vanish thus making the calculation
correct.)

max
P

{HA(P ) −HB(P )} = max
P

{HÂ(P ) −HB̂(P )} ≥

HÂ(P0) −HB̂(P0) =

n
∑

i=1

di+1
∑

j=1

P0(i, j) log
1

ai,j
−HB̂(P0) ≥

∑

i,j

P0(i, j) log
1

ai,j
−

∑

i,j

P0(i, j) log
1 + ε

β
≥

∑

i,j

P0(i, j) log
1

ai,j
−

∑

i,j

P0(i, j) log
1 + ε

bi,j(1 − ε)
=
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∑

i,j

P0(i, j) log
bi,j
ai,j

− log
1 + ε

1 − ε
=

∑

i,j

P0(i, j) log(dil(A,B)) − log
1 + ε

1 − ε
=

log dil(A,B) − log
1 + ε

1 − ε
.

Since the log 1+ε
1−ε

term in the right hand side can be made arbitrarily small by choosing
ε small enough, this proves

max
P

{HA(P ) −HB(P )} ≥ log dil(A,B)

that we needed to complete the proof.
�
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1.3 Witsenhausen rate of multiple sources

Graph entropy was originally defined in terms of graph exponentiation and graph coloring
in [88]. Using a different graph exponentiation the related concept of complementary
graph entropy or co-entropy was introduced in [91]. The latter notion is in a sense a
probabilistic refinement of the information theoretic concept called Witsenhausen’s rate.
In this section we use results of earlier research around these concepts to prove a perhaps
surprising statement whose main interest lies in its information theoretic content.

This section is based on the paper [143]

1.3.1 Introduction

Let X, Y (1), Y (2), . . . , Y (k) be k + 1 discrete random variables. Consider X as a ‘central’
variable available for a transmitter T and the Y (i)’s as side information available for differ-
ent stations S(i), i = 1, 2, . . . , k, that are located at different places. The joint distribution
is known for X and Y (i) for every i. The task is that T broadcast a message received by
all S(i)’s in such a way that learning this message all S(i)’s should be able to determine
X in an error-free manner. The question is the minimum number of bits that should be
used for this per transmission if block coding is allowed. This problem is considered for
k = 1 by Witsenhausen in [158]. He translated the problem to a graph theoretic one and
showed that block coding can indeed help in decreasing the (per transmission) number
of possible messages that should be used. The optimal number of bits to be sent per
transmission defines a graph parameter that is called Witsenhausen’s zero-error rate in
[6]. (We will write simply Witsenhausen rate in the sequel.) In this section we define the
Witsenhausen rate of a family of graphs. (When we speak about a family of graphs we
always mean a finite family in this section.) Our main result is that the Witsenhausen
rate of a family of graphs equals its obvious lower bound: the largest Witsenhausen rate
of the graphs in the family. This will easily follow from a powerful result of Gargano,
Körner, and Vaccaro [62].

1.3.2 The graph theory model

For each i = 1, 2, . . . , k we define the following graph Gi. The vertex set V (Gi) = X
is the support set of the variable X for every i. Two elements, a and b of X form an
edge in Gi if and only if there exists some possible value c of the variable Y (i) that is
jointly possible with both a and b, i.e., Prob(c, a)Prob(c, b) > 0. It is already explained
in [158] that the minimum number of bits to be sent by T to (one) S(i) for making it
learn X (for one instance) in an error-free manner is log2 χ(Gi), where χ(F ) denotes the
chromatic number of graph F . Indeed, if T would use fewer bits, than there were some
two elements of X that form an edge in Gi and still T sends the same message when one
or the other appears as the actual value of X. Since they form an edge there is some
possible value c of Y (i) that is jointly possible with both, thus S(i) would not be able to
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decide which of them occured if it had c as side information. (As in [158], we use the
assumption, that the side information Y (i) is not available at T .) On the other hand, if a
proper coloring of Gi is given, then if T sends the color of X this will make S(i) learn X
using the side-information contained by Y (i).

Just as before, all subsequent logarithms are on base two.

If block coding is allowed then the minimum number of bits to be transmitted to S(i) (not
caring about the other S(j)’s for the moment) by T after observing the n-fold variable
(X1, X2, . . . , Xn) will be logχ(G∧ni ) where G∧ni is an appropriately defined power of the
graph Gi.

Definition 13 Let G = (V,E) be a graph. The nth normal power of G is the graph G∧n

defined as follows. V (G∧n) = V n and

E(G∧n) = {{u,v} : u 6= v, ∀i ui = vi or {ui, vi} ∈ E(G)}.
That is the vertices of G∧n are the n-length sequences over V and two are adjacent iff
they are adjacent at every coordinate where they are not equal.

(In [6] the above graph power is called the AND power. This may explain its notation.
In the next chapter of this work we will often deal with another closely related graph
exponentiation and adopt its name co-normal, while it is called OR power in [6], and
disjunctive power in [79], [133]. Though it would be consistent to denote it by G∨n, as
later we use the co-normal power quite often, we will denote it simply by Gn.)

It is easy to see that two n-length sequences over X are jointly possible with some n-
fold outcome (Y

(i)
1 , Y

(i)
2 , . . . , Y

(i)
n ) iff they are adjacent in G∧ni (our sources are stationary

and memoryless). Thus the previous argument gives that if we cared only about S(i) then
T should transmit one of χ(G∧ni ) messages for making S(i) learn (X1, X2, . . . , Xn). Thus,
in case k = 1 (and denoting G1 by G) the value of interest is the Witsenhausen rate of G
defined as

R(G) = lim
n→∞

1

n
log(χ(G∧n)).

In our problem (when k > 1) the message sent by T should be such that learning it
should be enough for each S(i) to determine X without error. Thus T cannot send the
same message for two n-fold outcome of the variable X if they, as vertices of the graphs
G∧ni , are adjacent in any G∧ni . On the other hand, if we color the elements of V n = X n in
such a way that elements adjacent in any G∧ni get different color, then transmitting the
color of the actual (X1, X2, . . . , Xn) will make all S(i)’s able to determine (X1, X2, . . . , Xn).
This justifies the following definition.

Definition 14 Let G = (G1, . . . , Gk) be a family of graphs all of which have the same
vertex set V . The Witsenhausen rate of the family G is defined by

R(G) = lim
n→∞

1

n
log(χ(∪iG∧ni )),
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where ∪iG∧ni is meant to be the graph on the common vertex set V n of the G∧ni with edge
set ∪iE(G∧ni ).

It is obvious from the definition that R(G) ≥ maxiR(Gi). Our main result in this
section is that this trivial estimation is sharp.

Theorem 1.3.1 If G = (G1, . . . , Gk) is a family of graphs on the same vertex set, then

R(G) = max
Gi∈G

R(Gi).

To appreciate the above statement consider the following.

Example: Let |V | = v and ∪iGi = Kv, i.e, the complete graph on v vertices such that
each Gi is bipartite. (This needs k ≥ log v.) Now for n = 1 we would be obliged to use
log v bits to make sure that each S(i) can decode the outcome of X correctly. However,
with block coding, the above theorem states that roughly one bit per source outcome is
enough if we let n go to infinity.

For proving Theorem 1.3.1 we have to introduce some other notions. This is done in the
next subsection.

1.3.3 Probabilistic graph invariants

The proof of our theorem relies on a result that determines the zero-error capacity of a
compound channel. Here we give our definitions already in graph terms, the translation
is explained in detail in [33] where these investigations started, in [62], where the powerful
result we are going to use was obtained, and also in the survey article [96].

Definition 15 Let G = (G1, . . . , Gk) be a family of graphs all of which have the same
vertex set V . The capacity of the family G is defined by

CSh(G) = lim
n→∞

1

n
log(α(∪iG∧ni )),

where α stands for the independence number (size of largest edgeless subgraph) of a graph.
If G = {G} we write CSh(G) instead of CSh(G).

Remark 1.5. If |G| = 1 then CSh(G) becomes equivalent to what is usually called the
Shannon capacity of the graph G. It is not hard to see that the value CSh(G) represents
the zero-error capacity of the compound channel the individual channels in which are
described by the graphs in the family. For a more detailed explanation, see [33], [62], [96],
cf. also [124]. We have to warn the reader, however, that several papers, including the
ones just cited, use a complementary language and define CSh(G) as our CSh(Ḡ), while
CSh(G) is also defined via cliques instead of independent sets. The language we use here
is the more traditional one (cf. [139], [109]), although the earlier cited papers have their
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good reason to do differently. It has to do with a generalization to oriented graphs that
we will not need in this section. In the next chapter of this work, however, we will often
deal with this generalization and therefore we will also use the complementary language
later. There we will use the notation C(G) = CSh(Ḡ), thus the subscript in the present
notation shows that we use Shannon’s language. On the other hand, with slight abuse of
the terminology, we will also refer to the quantity C(G) later as the Shannon capacity of
graph G. To lessen confusion we will not use the name Shannon capacity in this section
any more. ♦

It is obvious that CSh(G) ≤ mini CSh(Gi). An easy but somewhat more sophisticated
upper bound is obtained in [33]. This needs the following within a given type version of
the CSh(G) invariant introduced by Csiszár and Körner [37]. First we need the concept
of (P, ε)-typical sequences, cf. [36].

Definition 16 Let V be a finite set, P a probability distribution on V , and ε > 0. A
sequence x in V n is said to be (P, ε)-typical if for every a ∈ V we have | 1

n
N(a|x)−P (a)| <

ε, where N(a|x) = |{i : xi = a}|.

Definition 17 Given graph G, probability distribution P , and ε > 0, the graph G∧nP,ε is
the graph induced in G∧n by the (P, ε)-typical sequences.

Definition 18 ([37]) The within a given type P version of the CSh(G) invariant is
CSh(G,P ) defined as

CSh(G,P ) = lim
ε→0

lim sup
n→∞

1

n
logα(G∧nP,ε).

In a similar manner we write

CSh(G, P ) = lim
ε→0

lim sup
n→∞

1

n
logα(∪iG∧ni;P,ε).

The upper bound shown in [33] states CSh(G) ≤ maxP miniCSh(Gi, P ). Gargano,
Körner, and Vaccaro [62] proved the surprising result that this bound is sharp. This is a
corollary of their more general result that we will also need.

Theorem (Gargano, Körner, Vaccaro [62]): For any family of graphs G = {G1, . . . , Gk}
and any probability distribution P on the common vertex set of the Gi’s we have

CSh(G, P ) = min
i
CSh(Gi, P ).

Remark 1.6. The exact statement proven in [62] (cf. also [61] for an important special
case) is that CSh(G1 ∪ G2, P ) = min{CSh(G1, P ), CSh(G2, P )} holds for any two graph
families G1 and G2 with common vertex set. This easily implies the above by setting
G1 = {G1, G2, . . . , Gi} and G2 = {Gi+1} iteratively for all i = 1, 2, . . . , k − 1. ♦
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To relate CSh(G) and R(G) we will use the “within a type version” of R(G) which was
already introduced in [91] by Körner and Longo in a different context under the name
complementary graph entropy. (We use the name co-entropy as in [141] and [142].) Marton
[115] investigated this functional further, while recent interest in it also occured in [87].

Definition 19 The co-entropy H̄(G,P ) of a graph G within a given type P is the value

H̄(G,P ) = lim
ε→0

lim sup
n→∞

1

n
logχ(G∧nP,ε).

In a similar manner we write

H̄(G, P ) = lim
ε→0

lim sup
n→∞

1

n
logχ(∪iG∧ni;P,ε).

Remark 1.7. It would be appropriate to denote the within a type version of R(G) by
R(G,P ). Here we keep the H̄(G,P ) notation only to emphasize that this is not a new
concept. ♦

Remark 1.8. We use the name co-entropy to distinguish the above value from the related
notion of graph entropy introduced by Körner [88]. (The original definition of graph
entropy in [88] differs from that of H̄(G,P ) only in the definition of the graph exponen-
tiation involved.) For a detailed account of the relation of these two concepts see [115] or
[141], [142]. For further relations of graph entropy and source coding, cf. also [7]. ♦

In [115] the following relation is proven.

Lemma (Marton [115]): For any graph G and probability distribution P on its vertex set

H̄(G,P ) = H(P ) − CSh(G,P )

where H(P ) is the Shannon entropy of the distribution P .

We also need the following more general statement the proof of which is exactly the same
as that of Marton’s Lemma.

Lemma 1.3.2 For any family of graphs and any probability distribution on their common
vertex set V one has

H̄(G, P ) = H(P ) − CSh(G, P ).

We sketch the proof of this lemma for the sake of completeness. Setting G = {G} it
also implies Marton’s result. The following lemma of Lovász [107] is needed.

Lemma 1.3.3 For any graph G

χ(G) ≤ χ∗(G)(1 + lnα(G)),

where, as before, χ∗(G) is the fractional chromatic number of graph G.
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Remark 1.9. Lovász’s result is formulated in a more general setting for the covering
numbers of hypergraphs. The above statement is a straightforward corollary of that. For
basic facts about the fractional chromatic number we refer the reader to [133]. One such

fact we need is that for a vertex-transitive graph G one always has χ∗(G) = |V (G)|
α(G)

(see

[133] Proposition 3.1.1). ♦

Sketch of proof of Lemma 1.3.2. Consider a sequence of probability distributions Pn
that can be represented as types of n-length sequences for each n, respectively, and the
series of which converges to P in the sense that ∀ε > 0 ∃n0 such that n ≥ n0 implies
∀a ∈ V : |Pn(a) − P (a)| < ε. As the number of possible types of an n-length sequence is
only a polynomial function of n (cf. Lemma 2.2 of Chapter 1 in [36]) we can write (using
also that our lim sup’s are actually limits)

H̄(G, P ) = lim
n→∞

1

n
logχ(∪iG∧ni;Pn,0).

Since sequences of the same type are all permutations of each other, one easily sees that
the graph ∪iG∧ni;Pn,0 is vertex transitive for any n. Thus we can continue by

lim
n→∞

1

n
logχ(∪iG∧ni;Pn,0) ≤ lim

n→∞

1

n
log

|V (∪iG∧ni;Pn,0)|
α(∪iG∧ni;Pn,0

)
(1 + lnα(∪iG∧ni;Pn,0)) =

H(P ) − CSh(G, P ) + lim
n→∞

1

n
log(1 + lnα(∪iG∧ni;Pn,0)) = H(P ) − CSh(G, P ),

where we used Lemma I.2.3 of [36] for the first equality.

The opposite inequality is obvious as χ(F ) ≥ |V (F )|
α(F )

is trivially true for any graph F and

applying it for F = ∪iG∧ni;Pn,0 we get the above with the inequality reversed.
�

1.3.4 Proof of Theorem 1.3.1

For proving Theorem 1.3.1 we first need an easy lemma.

Lemma 1.3.4
R(G) = max

P
H̄(G, P ).

Proof. Using again the Type Counting Lemma (Lemma 2.2 on page 29) from Csiszár
and Körner’s book [36] we get that

χ(∪iG∧ni ) ≤ (n+ 1)|V |max
P

χ(∪iG∧ni;P,0)

where the maximization is meant over those P ’s that can be exact types of sequences of
length n. (Equivalently, we can just think of G∧ni;P,0 as a graph with no vertices for other
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P ’s). Since χ(∪iG∧ni ) ≥ χ(∪iG∧ni;P,0) obviously holds for any P , taking the logarithm,
dividing by n, and let n go to infinity in the earlier inequality we get the desired result.

�

Proof of Theorem 1.3.1. By the previous two lemmas and the Gargano-Körner-Vaccaro
theorem we have

R(G) = max
P

H̄(G, P ) = max
P

{H(P ) − CSh(G, P )} =

= max
P

{H(P ) − min
Gi∈G

CSh(Gi, P )} = max
P

max
Gi

{H(P ) − CSh(Gi, P )} =

= max
Gi

max
P

H̄(Gi, P ) = max
Gi

R(Gi)

giving the desired result.
�

Remark 1.10. It seems worth noting that while the proof of Theorem 1.3.1 needed separate
investigation of the different types P the statement itself does not contain any reference to
types. This is not so in the original Gargano-Körner-Vaccaro result. Though the reason
of this is a very simple technical difference (namely that the chromatic number is defined
as a minimum, while the clique number and the independence number are appropriate
maximums), we feel that this phenomenon makes Theorem 1.3.1 another good example
of a result that demonstrates the power of the method of types, cf. [35]. ♦
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Chapter 2

Graph Capacities

2.1 Different capacities of a digraph

In this section we will extensively use the co-normal product of graphs already mentioned
in the last section of the previous chapter. The co–normal product of graphs generalize
to digraphs in a natural way. For every class of digraphs closed under this product, the
cardinality of the largest subgraph from the given class, contained as an induced subgraph
in the co–normal powers of a graph G, has an exponential growth. The corresponding
asymptotic exponent is the capacity of G with respect to said class of digraphs. We derive
upper and lower bounds for such and related capacity values and give examples for their
tightness.

This section is based on the joint paper [59] with Anna Galluccio, Luisa Gargano, and
János Körner.

2.1.1 Introduction

An induced complete subgraph is often called a clique and correspondingly, the cardinality
of the largest clique of G is called its clique number. The analysis of its asymptotic
growth in large product graphs leads to one of the most formidable problems in modern
combinatorics. This problem was posed by Shannon [139] in 1956 in connection with his
analysis of the capability of certain noisy communication channels to transmit information
in an error–free manner. Shannon associated a graph with every channel. In our notation
(which is different from his), the vertex set of the graph represents the symbols that can
be transmitted through the channel and two vertices are connected by an edge if the
corresponding symbols can never get confused by the receiver. Put in other words this
means that our two vertices never lead to the reception of the same output symbol. Any
graph can be obtained in this manner.

Shannon’s model naturally leads to a product of graphs through the repeated use of
the channel for the transmission of symbol sequences of some fixed length n, say. If the
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graph G has vertex set V = V (G), then Gn denotes the graph with vertex set V n whose
edge set contains those pairs of sequences which can never get confused by the receiver.
Formally,

{x,y} ∈ E(Gn) if and only if ∃i {xi, yi} ∈ E(G),

where we suppose that xi and yi are the i’th coordinate of x and y, respectively. As
usual, E(G) denotes the edge set of the graph G. Following Berge [14], Gn is called the
n’th co–normal power of G. (As already mentioned in the previous chapter, it is called
OR power in [4], [6] and disjunctive power in [79], [133].) Shannon [139] observed that if
K is a clique in G then Kn is a clique in Gn, whence the clique number of Gn is at least
as big as the n’th power of the clique number of G. In fact, these two quantities coincide
whenever the clique number of G equals its chromatic number. (This observation led
Berge [17] to his celebrated concept of perfect graphs.) On the other hand, Shannon [139]
noticed that for the smallest graph whose chromatic number exceeds its clique number,
the now famous pentagon C5, the clique number of C2

5 is 5 while the square of the clique
number of C5 is just 4. Thus it was natural to ask as Shannon did for the determination
of the (always existing) limit

C(G) = lim
n→∞

1

n
logω(Gn),

where ω(G) is the usual notation for the clique number of G, while C(G) is called the
Shannon capacity of G. A very good exposition of this problem and the new important
developments around it in the late seventies is in the volume [135].

Notice further that this supermultiplicativity of the clique number is in contrast with
the growth of the independence number α(Gn) of the powers of G. Recall that α(G) is
the cardinality of the largest induced edge–free subgraph of G. In fact, it is rather trivial
that every maximal independent set of Gn is the Cartesian product of n independent sets
of G whence

α(Gn) = [α(G)]n.

We will observe (cf. Proposition 2.1.11) that the number of graph classes closed under
both the co-normal product and taking induced subgraphs is surprisingly small. Namely,
apart from trivial ones there are only three such classes: the class of all complete graphs,
the class of edgeless graphs, and the class of all complete multipartite graphs. We have
already mentioned what can be said about the asymptotic growth of the size of largest
graphs of the first two classes in co-normal powers: the first class leads to the famous
notion of Shannon capacity while the second grows trivially by the last equality above.
In case of the third class we experience non-trivial behavior again leading to a new notion
of the flavour of Shannon capacity. We will investigate this new notion under the name
cascade capacity in the second part of this section. One of the main results of the section
is an upper bound on its value.

Originally we were led to the problem of cascade capacity by looking at an analogous
problem for oriented graphs in the first part of the section. (The name “cascade capacity”
comes up already there as it is defined for general directed graphs.)
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The investigation of capacity type concepts for directed graphs already appears in [20]
while a new line of this kind of research was initiated in [98] and further developed by
Gargano, Körner, and Vaccaro in [60] where the notion of Sperner capacity was introduced
as the natural counterpart of Shannon capacity in case of graphs with directed edges. At
this point, a few words about terminology. As usual, we call a graph directed if its edge
set is an arbitrary subset of the set of ordered pairs of its vertices. Graphs in which every
edge is present with at most one of its possible orientations are called oriented. Finally,
a directed graph is called symmetrically directed if each of its edges is present with both
of its possible orientations. (In neither of these cases can our graphs contain loops.)

Sperner capacity is a generalization of Shannon capacity to directed graphs and is
therefore even harder to determine, cf. Calderbank, Frankl, Graham, Li, and Shepp [28]
and Blokhuis [23]. This does not mean, however, that this generalization makes no sense.
On the contrary, Sperner capacity became the key to the solution of some important
open problems in extremal set theory, [61], [62]. Recently its direct information theoretic
relevance was also discovered by Nayak and Rose [124].

The study of the extension of a poset to sequences of its elements leads to the equally
justified notion of antichain capacity that we will introduce in this paper. Although our
concept will be defined for arbitrary oriented graphs, not just those corresponding to
posets, it is useful to present it first in the special case of posets where it is probably more
intuitive.

Let P be a partial order on the set V and write (x, y) ∈ P to indicate that x ∈ V
precedes y ∈ V in the partial order P . Consider for some fixed natural integer n the
Cartesian power V n. Then we can extend P to the sequences x ∈ V n and y ∈ V n by
saying that x precedes y and write (x,y) ∈ P n if for some coordinate i, 1 ≤ i ≤ n we
have (xi, yi) ∈ P , while (yj, xj) ∈ P never holds. Although this relation of precedence is
not necessarily a partial order on V n, it nevertheless has a clear intuitive meaning. Now
there are two different reasons why for two sequences x and y none precedes the other.
Either in no coordinate i is any of (xi, yi) and (yi, xi) in P , or there are two coordinates,
i and j such that both (xi, yi) and (yj, xj) are contained in P . In both cases, there is no
meaningful way to break symmetry and say that one sequence precedes the other. We
will call the set C ⊆ V n an antichain for P n if

x ∈ C, y ∈ C implies (x,y) /∈ P n.

An antichain is a set of sequences on which the partial order implies no relation of prece-
dence at all. Let M(P, n) denote the cardinality of the largest antichain for P n. We call
the always existing limit

lim
n→∞

1

n
logM(P, n)

the antichain capacity of the partial order P and introduce for it the notation A(P ). The
above concept has an immediate extension to the case of an arbitrary oriented graph.

Let G be an oriented graph with vertex set V . We say that two sequences x and
y in V n are G–incomparable, if there are two different coordinates, i and j such that

31



both (xi, yi) and (yj, xj) are directed edges in G. Following [60], we denote by N(G, n)
the maximum cardinality of any set C ⊆ V n such that any two elements of C are G–
incomparable. For the sake of completeness, we should mention that the always existing
limit

Σ(G) = lim
n→∞

1

n
logN(G, n)

is called the Sperner capacity of the oriented graph G introduced by Gargano, Körner,
and Vaccaro [60]. (Notice that the definition can be extended to any directed graph and
thus Sperner capacity is a formal generalization of Shannon capacity, cf. [62] and also
Definition 24 on page 48.)

Now, two sequences, x and y in V n are called G–independent if xi and yi are equal or
non-adjacent vertices of G for any i, 1 ≤ i ≤ n. Finally, the sequences x and y in V n are
called G–unrelated if they are either G–incomparable or G–independent. Let M(G, n)
denote the largest cardinality of a subset C ⊆ V n such that any pair of elements of C are
G–unrelated. We call the always existing limit

A(G) = lim
n→∞

1

n
logM(G, n)

the antichain capacity of the oriented graph G. We shall sometimes call a set as above
an antichain defined by G.

In case of an oriented graph G one immediately sees from the definitions that the
Sperner capacity Σ(G) is always bounded from above by A(G) and that the two notions
coincide for tournaments. Since the Sperner capacity of tournaments is unknown except
for the trivial case of transitive tournaments and a few other special examples for small
vertex sets [28], [23] (cf. also [2]), we immediately understand that determining the
antichain capacity of a graph is not easy and we will be happy if we can find meaningful
and strong enough lower and upper bounds. This is one of the principal aims of the
present section. Incidentally, we will find some interesting problems along the way.

In order to stress the analogy of both Sperner capacity and antichain capacity to
the familiar Shannon capacity of graphs we will introduce an analogue of the co–normal
power of graphs in the case of oriented (and more generally, directed) graphs. The search
for antichains in product graphs leads to the search for induced subgraphs in which the
vertices are partitioned into independent sets and vertices belonging to different classes
of the partition are adjacent. Moreover, the classes are linearly ordered and every edge is
directed in accordance with the order of its two endpoints so as to point in the direction
of the class that comes later in the order. Induced subgraphs with this property will be
called waterfalls. Their growth in product graphs is one of our central problems in this
section.

Initially, we shall be interested in oriented graphs, a case for which our problems are
easier. To the other extreme, we will later treat symmetrically directed graphs, which
will be more conveniently considered as undirected graphs. Although our problems can
be stated more generally, for arbitrary directed graphs, still, we will not discuss these in
detail.
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2.1.2 Waterfalls

The (logarithm of the) clique number is a simple and altogether not very bad lower bound
on the (logarithmic) Shannon capacity of an undirected graph. The core of the problem,
however, lies in the fact that in product graphs larger cliques exist than just the Cartesian
powers of the cliques in the graph itself. In the present case the situation will be similar
in some sense.

Let G be an oriented graph with vertex set V and n be a natural number. An induced
subgraph W of G will be called a waterfall if its vertices can be colored by natural numbers
in such a way that vertices of the same color are non–adjacent, while if the vertex x gets
a smaller color than the vertex y , then this implies that (x, y) ∈ E(G).

A directed graph G with vertex set V defines a directed graph Gn on V n in which
x = x1x2 . . . xn and y = y1y2 . . . yn are connected by a directed edge pointing from x to
y if for at least one i, 1 ≤ i ≤ n, we have (xi, yi) ∈ E(G). Notice that we have called
x and y G–incomparable if both (x,y) and (y,x) form a directed edge in Gn. We call
Gn the n’th co–normal power of G. It is the natural generalization to directed graphs of
the co–normal power of (undirected) graphs with which it coincides in case the graph is
symmetrically directed.

The previous definition of a waterfall carries through literally to the case of directed
graphs.

Definition 20 An induced subgraph W of the directed graph G = (V (G), E(G)) is called
a waterfall if its vertices can be colored with natural numbers in such a way that two
vertices x and y getting the same color are non–adjacent, while if the color of x is a
smaller integer than that of y then necessarily (x, y) ∈ E(G). (Notice that the latter does
not imply the absence of the reversed edge (y, x) ∈ E(G).)

Denote by W (G) the maximum cardinality (number of vertices) of a waterfall in G
and call it the waterfall number of G.

Waterfalls give a simple construction and an easy lower bound for the antichain ca-
pacity of G which is the content of the following lemma.

Lemma 2.1.1 For every natural n the antichain capacity A(G) of the oriented graph G
is bounded from below by the quantity

1

n
logW (Gn).

Proof. Fix some n and a waterfall induced by Gn on some set W ⊆ [V (G)]n with the
property |W | = W (Gn). For every natural m consider those sequences in Wm|W | in which
every element of W occurs m times. One easily sees that, for every natural m, this set
of sequences from Wm|W | is an antichain for G with elements from [V (G)]nm|W |. The
cardinality of this antichain, as m→ ∞, gives the lower bound stated in the lemma. �
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It is easy to see that any co–normal power of a waterfall is again a waterfall, whence

W (Gn) ≥ [W (G)]n

for any directed graph G.
As we shall see later equality holds above in several special cases, but not in general.

This justifies the following

Definition 21 For an arbitrary directed graph G let Θ(G) denote the always existing
limit

Θ(G) = lim
n→∞

1

n
logW (Gn)

and call it the cascade capacity of G.

The cascade capacity is an obvious lower bound for the antichain capacity of a graph.
The bound given by W (G) is not always tight.

Proposition 2.1.2 For an arbitrary oriented graph G we have

logW (G) ≤ A(G)

where strict inequality can also occur.

Proof. Except for an example for the strict inequality, the assertion follows from Lemma
2.1.1. A case of strict inequality is given by the cyclically oriented pentagon graph C5.
Clearly, we have W (C5) = 2, while we will see in a moment that C2

5 has an antichain of
cardinality 5. To see this, denote by the numbers 0,1,2,3,4 the vertices of the pentagon
in the order of the cyclic orientation of the graph. Then C2

5 induces an antichain on the
subset of {0, 1, 2, 3, 4}2 the elements of which are (00), (14), (23), (32), (41). �

To obtain upper bounds on the antichain capacity of an oriented graph we introduce
an auxiliary graph in the next subsection.

2.1.3 Independence graphs

To an arbitrary oriented graph G we associate an undirected graph G∗ as follows. The
vertex set ofG∗ is the set of all pairs (x,A) such that x is a vertex ofG, A is an independent
set of G and A contains x. The pairs (x,A) and (x′, A′) are adjacent in G∗ if either A and
A′ are disjoint and G induces a waterfall with non-empty edge set on A ∪ A′, or A = A′

but x 6= x′.
Our aim in this subsection is to prove that the logarithm of the fractional chromatic

number χ∗(G∗) of the independence graph of G is an upper bound for its antichain
capacity.

For simplicity, we will first prove the following weaker statement.
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Theorem 2.1.3 For an arbitrary oriented graph G we have

A(G) ≤ logχ(G∗),

where χ(G∗) is the chromatic number of the undirected graph G∗. More precisely, we have

M(G, n) ≤ [χ(G∗)]n−1α(G).

Proof. Let C ⊆ V n be an arbitrary antichain of maximum size induced by Gn on some
subset of V n that we consider fixed in the rest of the proof. For an arbitrary x ∈ V n−1

we define
J(x) = {a : a ∈ V, ax ∈ C},

where ax is the sequence obtained in V n by prefixing a to x. One easily sees that the
elements of J(x) form an independent set in G, whatever the sequence x is. For any
independent set A in G we define

C(A) = {x : x ∈ V n−1, J(x) = A}.

Then, clearly, for every independent set A of G the set C(A) is either empty or an
antichain of Gn−1. Moreover, for different independent sets A the corresponding sets
C(A) are disjoint. Denoting the set of independent sets of G by S(G) this immediately
implies that

M(G, n) =
∑

A∈S(G)

|A||C(A)| =
∑

(x,A)∈V (G∗)

|C(A)|. (2.1)

However, much more than C(A) being an antichain is true. Consider namely an arbitrary
vertex–coloring of G∗ and fix some color class in it. For brevity’s sake this will be referred
to as the first color class of G∗. Let the independent sets A1, . . . , Ak (k arbitrary) of G
have the property that for some vertices z1, . . . , zk of G all of (z1, A1), . . . , (zk, Ak) belong
to the first color class of G∗. In order to prove the theorem it will be sufficient to show
that

⋃k
i=1C(Ai) ⊆ V n−1 is an antichain of Gn−1. This is what we will do next.

(The above is in fact sufficient for it will imply that

M(G, n) ≤ χ(G∗)M(G, n− 1),

whence the statement follows by iteratated application of this inequality.)
Let A1, . . . , Ak be as above. We have to prove that for any x,y ∈ ⋃k

i=1C(Ai) the
(n − 1)-length sequences x,y are G-unrelated. If x,y are elements of the same C(Ai)
then this follows from the observation above. Otherwise assume without loss of generality
that x ∈ C(A1) and y ∈ C(A2). Since (z1, A1) and (z2, A2) are not adjacent in G∗ either
there exists an a ∈ A1 and a b ∈ A2 that are non–adjacent (including the possibility of
a = b) in G, or else one of the two sets, say A2, has an element b such that for some two
different vertices of G, c ∈ A1, d ∈ A1 we have

(b, c) ∈ E(G) (d, b) ∈ E(G).
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Consider the first hypothesis first. The sequences ax and by belong to C and hence are G–
unrelated. Since a and b are non–adjacent, this implies that also x and y are G–unrelated
as we have claimed. In case of the second hypothesis, suppose indirectly, that x and y

are not G–unrelated. How can this happen? One reason might be that (xi, yi) ∈ E(G)
for some i, while (yj, xj) ∈ E(G) never occurs for any j. But then dx and by would
not be G–unrelated, a contradiction. The only other possibilty is if (yi, xi) ∈ E(G) for
some i, whereas (xj , yj) ∈ E(G) does not occur for any j. In this case cx and by do not
satisfy the condition of being G–unrelated. This contradiction completes the proof that
⋃k
i=1C(Ai) is an antichain of Gn−1.

Consider now an optimal coloring of the vertices of G∗. For any color j ∈
{1, 2, . . . , χ(G∗)} denote by R(j) the family of all the independent sets A of G appearing
in the color class j for some vertex x ∈ A. Rephrasing what we just proved we see that

∑

A∈R(j)

|C(A)| ≤M(G, n− 1),

for j = 1, 2, . . . , χ(G∗). Substituting these inequalities into (2.1) we get

M(G, n) ≤ χ(G∗)M(G, n− 1)

as claimed.
In order to prove our more precise second statement it suffices to notice that any

antichain in G itself is an independent set. �

Theorem 2.1.4 For an arbitrary oriented graph G we have

A(G) ≤ logχ∗(G∗).

Proof. For fixed k and a k–fold covering of the vertices of G∗ by independent sets of G∗

the previous argument applies. �

Theorem 2.1.3 implies the inequality between the leftmost and rightmost quantities
in the following proposition that we state for later reference.

Proposition 2.1.5 For any oriented graph G we have

W (G) ≤ ω(G∗) ≤ χ(G∗).

Proof. The first inequality follows by observing that a waterfall in G gives rise to a
clique of the same size in G∗. The second inequality is true and well-known for any graph
in place of G∗. �

We do not always have equality even in the first inequality of Proposition 2.1.5. The
simplest example for strict inequality is provided by C3, the triangle graph with cyclically
oriented edges. For this particular graph we have W (C3) = 2 while ω(C∗3) = 3. Going
back to our starting point we can show however that equality holds in both inequalities for
every oriented graph that describes the precedence relations of a poset. In other words this
means that for a poset P the antichain capacity is determined in terms of the waterfall
number of the corresponding graph. We can also prove equality for bipartite graphs
(irrespective of their orientation). Both of these cases will be discussed in Subsection 2.1.5.
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2.1.4 Waterfalls in undirected graphs

Beyond their application to derive lower bounds for antichain capacity, waterfalls interest
us on their own. We are interested in the study of the asymptotic growth of waterfalls
in undirected graphs and in particular in finding classes of graphs for which the waterfall
number is multiplicative for powers of the graph.

A symmetrically directed graph can be identified with an undirected graph on the
same vertex set in the obvious manner. Although a waterfall and the waterfall number
have already been defined for this case, we find it useful to start from scratch and give an
equivalent reformulation of our problems.

Let G be an undirected graph with vertex set V . Any induced subgraph of G which
is a complete k–partite graph for some k will be called a waterfall in G. As before, the
largest cardinality of any waterfall of G is called its waterfall number, denoted by W (G).
We are interested in determining the exponential asymptotics of W (Gn), where Gn is the
n’th co-normal power of the undirected graph G. Our problem has the following quite
natural interpretation. If the absence of an edge is understood as a relation of “sameness”
(indistinguishability) then the waterfall number is the cardinality of the largest set on
which this relation is an equivalence relation. Thus our question amounts to examine the
natural extension of the relation of “sameness” to n–length sequences of symbols from the
point of view of the growth of the cardinality of the largest equivalence relation induced
on some subset of V n. In what follows we will derive upper and lower bounds for the
cascade capacity

Θ(G) = lim
n→∞

1

n
logW (Gn)

of arbitrary undirected graphs. We would be interested in seeing for what classes of graphs
do we have

Θ(G) = logW (G). (2.2)

We will show that the above relation is true for comparability graphs and odd cycles.
Once again, we will bound from above waterfall numbers for the powers of the undi-

rected graph G in terms of what we call its independence graph, yet our previous setup
does not have an automatic reformulation for the undirected case. We have to be careful,
as it can already be seen from the fact that the symmetrically directed graph correspond-
ing to an undirected graph would have an antichain capacity equal to the logarithm of the
cardinality of its vertex set, and thus our Theorem 2.1.3 cannot be saved in the present
context. We define the independence graph G∗ of an arbitrary undirected graph G. The
vertex set of G∗ is the set of all pairs (x,A) such that x is a vertex of G contained in the
independent set A of G. The pairs (x,A), (x′, A′) are adjacent in G∗ if either A and A′

are disjoint and every vertex of A is joined by an edge with every vertex of A′, or A = A′

but x 6= x′. We will say that the independent sets A and A′ are isochromatic if not every
vertex of A is adjacent to all the vertices of A′.

Our aim in this subsection is to prove that the chromatic number χ(G∗) of the indepen-
dence graph of G is an upper bound of all the renormalized waterfall numbers n

√

W (Gn)
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of the powers of G. The proof of this is not unlike but more complicated than that of
Theorem 2.1.3. The reason of this complication is that in the undirected setting we will
need to consider triples of sequences in situations where it was enough to look at pairs in
the oriented case. We will start by establishing a few lemmas.

Unless otherwise stated, in what follows we will fix a graph G with vertex set V =
V (G), an integer n > 0 and a set C ⊆ V n on which the graph Gn induces a waterfall.

Observe that a waterfall cannot contain an induced subgraph on 3 points with exactly
one edge. It is easy to see that this property characterizes waterfalls. In the subsequent
lemmas we will make repeated use of this fact and in doing so we will refer to this 3–point
graph as the forbidden configuration.

Lemma 2.1.6 For an arbitrary x ∈ V n−1 write

J(x) = {a : a ∈ V, ax ∈ C},

where ax denotes the juxtaposition of a and the sequence x. Then J(x) is a waterfall in
G.

Proof. A forbidden configuration in J(x) would generate a forbidden configuration in
C. �

To any independent set A ⊆ V of G we associate the set C(A) consisting of those
sequences x ∈ V n−1 for which A is a maximal independent set in the waterfall J(x). One
easily sees that C(A) is a waterfall for every A.

Lemma 2.1.7 If the distinct independent sets A and B of G are isochromatic then C(A)
and C(B) are disjoint and Gn−1 induces a waterfall on their union.

Proof. Observe first of all that C(A) and C(B) are disjoint. In fact, if they had a common
element y, say, then A ∪ B would be a subset of J(y) and thus a waterfall. If A ∪ B
were independent, then at least one of A and B would not be a maximal independent set
in J(y) contradicting y ∈ C(A) or y ∈ C(B). Thus A ∪ B is not independent but as a
subset of the waterfall J(y) should form a waterfall itself. Therefore every element of A
is adjacent to every element of B contradicting that they are isochromatic. Thus C(A)
and C(B) are indeed disjoint.

Suppose now to the contrary that A and B are isochromatic independent sets of G
and yet Gn−1 does not induce a waterfall on C(A) ∪ C(B). This means that there is a
forbidden configuration in Gn−1 with vertices x, y and z in C(A) ∪ C(B). Suppose in
particular that x and y form an edge. Further, since A and B are isochromatic, there
must be an a ∈ A and a b ∈ B such that (a, b) /∈ E(G). If in the forbidden configuration
the two endpoints of the edge are contained one in C(A) and the other in C(B), i.e.,
x ∈ C(A) and y ∈ C(B), say, then ax, by and az or bz (depending on whether z belongs
to C(A) or C(B)) form a forbidden configuration in C, yielding a contradiction. Suppose
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therefore that the endpoints x and y of the edge in the forbidden configuration induced
by Gn−1 on C(A) ∪ C(B) fall both into the same set; C(A) or C(B). We can suppose
without loss of generality that they both fall into C(A). Then if z ∈ C(B), we find that
ax, ay and bz form a forbidden configuration in C, once again a contradiction. Finally, if
z ∈ C(A), the desired contradiction is achieved by the forbidden configuration ax, ay, az.
�

Lemma 2.1.8 If for the independent sets A and B of G there exist x ∈ C(A) and
y ∈ C(B) such that {x,y} /∈ E(Gn−1), then G induces a waterfall on A ∪ B.

If further A and B are isochromatic, then A ∪ B is an independent set of G.

Proof. By our hypothesis, there exist x ∈ C(A), y ∈ C(B) such that {x,y} /∈ E(Gn−1).
To reason indirectly, suppose that G does not induce a waterfall on A∪B. Then, without
loss of generality we can suppose that a ∈ A, b ∈ B, c ∈ B form a forbidden configuration
in which {a, b} ∈ E(G). Then, however, ax, by, cy form a forbidden configuration in C,
yielding a contradiction.

As for the second statement of the lemma, it is immediate from the foregoing that if
A and B are isochromatic independent sets in G and the latter induces a waterfall on
A ∪ B, then A and B cannot form a complete bipartite graph and hence the union of A
and B must be an independent set of G.

�

Now we are ready to prove our main lemma:

Lemma 2.1.9 If each pair of the distinct independent sets A, B, and D of G are isochro-
matic, then Gn−1 induces a waterfall on C(A) ∪ C(B) ∪ C(D).

Proof. By Lemma 2.1.7 the sets C(A), C(B) and C(D) are disjoint and Gn−1 induces a
waterfall on the union of any two of them. We reason indirectly, and suppose that despite
the above, Gn−1 does not induce a waterfall on C(A) ∪ C(B) ∪ C(D). By the foregoing,
this can only happen if there are 3 sequences falling into the 3 different sets, x ∈ C(A),
y ∈ C(B) and z ∈ C(D) on which the graph Gn−1 induces a forbidden configuration.
Without loss of generality, we can suppose that in this configuration (x,y) ∈ E(Gn−1).
By Lemma 2.1.8 this implies that both D∪A and D∪B are independent sets of G. Hence
there exist 3 vertices, d ∈ D, a ∈ A and b ∈ B such that d is not adjacent to either a or
b. But then dz, ax, by form a forbidden configuration in C, a contradiction. �

The last three lemmas immediately yield

Theorem 2.1.10
W (Gn) ≤ [χ(G∗)]n.
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Proof. Clearly, it is enough to show that

W (Gn) ≤ χ(G∗)W (Gn−1).

To prove this inequality, consider a waterfall C ⊆ Gn of maximum cardinality. Fix
a coloring of the vertices of the independence graph of G with the minimum number
of colors χ(G∗). Fix also an arbitrary color class of this coloring and consider all the
independent sets A of G such that there is a vertex x of A for which the vertex (x,A)
of G∗ belongs to this color class. By the definition of the independence graph all these
independent sets A from the fixed color class will occur just once among these pairs and
any two of them will be isochromatic. Hence, by Lemma 2.1.7 the subgraphs induced by
Gn−1 on the corresponding sets C(A) will all be vertex–disjoint. Let us denote, for every
color j ∈ {1, 2, . . . , χ(G∗)} by R(j) the family of all the independent sets A for which the
color of (x,A) is j for some x. Then, clearly,

|C| ≤
χ(G∗)
∑

j=1

∑

A∈R(j)

|C(A)|. (2.3)

Observe, however, that by Lemma 2.1.9 the graph Gn−1 induces a waterfall on the
union of all those sets C(A) for which the corresponding independent set A belongs to
the same fixed color class. (In fact, Gn−1 induces a waterfall on any three of them by said
lemma. But any possible forbidden configuration would be contained in the union of at
most three among the sets C(A).) Hence our last inequality implies that

W (Gn) = |C| ≤ χ(G∗)W (Gn−1).

To conclude the proof, we notice that for n = 1

W (G) ≤ ω(G∗) ≤ χ(G∗).

�

Remark 2.1. Just as in the oriented case, we can prove the stronger statement

W (Gn) ≤ [χ∗(G∗)]n

using the same ideas as above. ♦

We conclude this subsection with a last remark about waterfalls. In general, it is
interesting to study the growth of the largest subgraph of a certain type in product
graphs. If we restrict ourselves to classes closed under the co–normal product, we get
supermultiplicative (including multiplicative) behavior. If we further restrict ourselves to
hereditary classes, i.e., those which contain every induced subgraph of their elements then
only four infinite classes remain as we will see in the next proposition. One of these classes
is the trivial class containing all graphs. Another one is the class of empty graphs for
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which the growth in products is always multiplicative as mentioned in Subsection 2.1.1.
The third class is the class of complete graphs, the corresponding question of asymptotic
growth in products is the Shannon capacity problem. The only remaining nontrivial class
is the class of waterfalls for which the question of asymptotic growth in products leads to
the problem of determination of cascade capacity.

Proposition 2.1.11 The largest class of graphs that is different from the class of all
graphs and has the property of being closed under the two operations of taking co–normal
products and taking induced subgraphs is the class of waterfalls. Moreover, the only other
nontrivial such classes of graphs are the classes containing all empty graphs and all com-
plete graphs, respectively.

Proof. We prove the first statement first. It is easy to see that the class of waterfalls
is closed under the above two operations. What we really have to prove is that a larger
class of graphs with this property should contain every graph. To this end we first show
that in the co–normal powers of our forbidden configuration every graph appears as an
induced subgraph. Let F be an arbitrary graph and Z be the graph of our forbidden
configuration, a graph on vertices 0, 1, and 2, with a single edge between 1 and 2. We
build up |V (F )| ternary sequences of length |V (F )| − 1 over V (Z) with the property
of inducing a graph isomorphic to F in Z |V (F )|−1. For simplicity of the presentation we
assume that we already know which sequence will belong to which vertex of F and we will
refer to the sequence belonging to the ith vertex of F (according to some arbitrary order)
as the ith sequence. Now let the ith coordinate (1 ≤ i ≤ |V (F )| − 1) of the sequences be
given as follows. It is 1 for the ith sequence, 2 for the sequences belonging to vertices that
are adjacent with the ith vertex and 0 for the rest. It is easy to check that the jth and
kth sequences are adjacent in Z |V (F )|−1 if and only if the jth and kth vertices are adjacent
in F . Now suppose we have a class of graphs that is closed under the two operations we
have in the statement. If it contains a graph that is not a waterfall then it necessarily
contains Z and so by the foregoing it should contain every graph.

For the second statement notice that once we have a non-empty but not-complete
graph in our class then it also contains the graph with three vertices and two edges. It is
easy to verify that the co–normal products of this graph contain every possible waterfall
as an induced subgraph.

Finally, we have to add that any class of graphs closed under our two operations
and containing a graph with two independent vertices must contain all edgeless graphs.
Similarly, if such a class contains a graph with two adjacent vertices it must contain all
complete graphs. Thus the only non-empty class not listed in the statement is the class
containing only the trivial graph on a single point.

�

41



2.1.5 When are the bounds tight?

We shall call a directed graph G conservative if every induced subgraph F ⊆ G satisfies

Θ(F ) = logW (F ). (2.4)

This definition is inspired by the concept of perfect graphs. Our bounds allow us to
show that several classes of graphs are conservative. First we will show, as promised at the
end of Subsection 2.1.3, that comparability digraphs (see definition below) and oriented
bipartite graphs give equality in the inequalities of Proposition 2.1.5. This immediately
implies the conservativeness of these graphs. Then we will deal with undirected graphs
again, showing that comparability graphs and odd cycles are conservative. An example
found by Tomasz  Luczak shows the existence of non-conservative undirected graphs. His
example can easily be extended to an example of a non-conservative oriented graph once
we have Proposition 2.1.17. The section concludes with an application to extremal set
theory.

Let us first recall the definition of a comparability graph and its extension to digraphs.
A graph G is a comparability graph if there exists a poset P on V (G) for which u, v ∈

V (G) are comparable if and only if they are adjacent in G. We call G a comparability
digraph if there exists a poset P on V (G) in which u ∈ V (G) precedes v ∈ V (G) in P if
and only if there is an edge from u to v in G.

It is well known that every comparability graph is perfect, cf. e.g. [14].
It is straightforward from the definition of the independence graph that

ω(G∗) = W (G) (2.5)

for every directed graph G that does not contain a cyclically oriented triangle.
We will associate with an arbitrary digraph G its reduced independence graph G(∗)

through the following definition. The vertex set of G(∗) consists of the independent sets of
G and two vertices are adjacent in G(∗) if and only if the corresponding independent sets
form a waterfall which is not a single independent set in G. (In other words, they form a
complete bipartite graph.) Notice that G∗ can be obtained from G(∗) if we substitute to
each vertex a clique of the size of the independent set it represents in G(∗).

Theorem 2.1.12 For any comparability digraph G we have

W (G) = χ(G∗).

Proof. We claim that if G is a comparability digraph then G(∗) will be a comparability
graph. Indeed, it is easy to check that the following is a partial order on the independent
sets of G. Let the independent set A precede the independent set B if every element of
A precedes every element of B in the original partial order (cf. [45]). The comparability
graph defined by this partial order is just G(∗). This implies that G(∗) is perfect. Using
the result of Lovász [106] saying that the substitution of a vertex of a perfect graph by

42



another perfect graph (in fact, by a clique here) preserves perfectness, we see that G∗ is
perfect. This implies χ(G∗) = ω(G∗) and since a comparability digraph cannot contain a
cyclically oriented triangle the statement follows by (2.5). �

Corollary 2.1.13 The antichain capacity of a partial order equals logW (G) where G is
the comparability digraph of the partial order.

Proof. The statement immediately follows from Proposition 2.1.2 and Theorem 2.1.3 by
the previous theorem. �

Corollary 2.1.14 Every comparability digraph is conservative.

Proof. We already know by the foregoing that for any oriented graph F we have

logW (F ) ≤ Θ(F ) ≤ A(F ) ≤ logχ(F ∗) (2.6)

and so the previous theorem and the trivial observation that every induced subgraph of
a comparability digraph is a comparability digraph implies the statement. �

Another class of oriented graphs for which we can prove the tightness of the upper
bound in Theorem 2.1.3 is the class of oriented bipartite graphs (regardless of the actual
orientation of the edges).

Theorem 2.1.15 For any oriented bipartite graph G we have

A(G) = logW (G).

Proof. What we will actually prove is again the statement χ(G∗) = W (G). By Theorem
2.1.3 this implies what we need. Consider the reduced independence graph G(∗). We claim
that if G is bipartite then so is G(∗). To see this consider a covering of the nodes of G with
two independent sets, A and B. (Such a covering exists since G is bipartite.) Each vertex
of G(∗) represents an independent set of G that should have a non-empty intersection
with at least one of A and B. Now look at those independent sets whose intersection
with A is non-empty. No pair of them can induce a waterfall with two independent sets,
since they have non-adjacent (or possibly common) vertices, those that are in A. So all
these independent sets are non-adjacent as nodes of G(∗). However, all other nodes of G(∗)

represent independent sets intersecting B and thus they are non-adjacent for the same
reason. This proves that G(∗) is bipartite. Since a bipartite graph is always perfect and
cannot contain any triangle (cyclic or not), we conclude that χ(G∗) = W (G) as in the
proof of Theorem 2.1.12. �

Corollary 2.1.16 Every oriented bipartite graph is conservative.
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Proof. The proof is identical with that of Corollary 2.1.14 if replacing Theorem 2.1.12
by Theorem 2.1.15. �

Before turning to undirected graphs we make a final observation about the oriented
case.

It is also natural to ask whether the growth of the largest transitive tournament (which
is a special waterfall) has a multiplicative nature. The answer is no and a counterexample
is given by a specific orientation of C5. The size of the largest transitive tournament in
this graph is obviously two.

Proposition 2.1.17 There exists an orientation of C5 for which the second power of the
resulting graph contains a transitive tournament on five points.

Proof. Let the vertices be 0, 1, 2, 3, 4 in a cyclic order. The orientation now is not
cyclic, however, and the edges are oriented as follows:(0, 1), (0, 4), (2, 1), (2, 3), (4, 3). One
easily checks that the vertices (00), (24), (12), (43) and (31) induce a transitive
tournament in the second power of the graph. �

Remark 2.2. The above observation also implies, that the Sperner capacity of the pentagon
oriented as in the proof equals its Shannon capacity, 1

2
log 5. Rob Calderbank has shown

us [27] by their method [28] that all the other oriented versions of the five length cycle
have Sperner capacity 1. ♦

(We mention that a generalization of the first statement in the above remark will be
given in the next section (see Theorem 2.2.3), while we will see a generalization of the
statement in the second sentence in Section 2.3 (see Theorem 2.3.3).)

Now we come to the analysis of conservativeness in case of undirected graphs. Al-
though an undirected graph can be identified with a symmetrically directed graph in the
usual way, let us be explicit again and repeat the definition for this case. We say that
an undirected graph G is conservative if every induced subgraph F ⊆ G satisfies (2.4).
(Θ(F ) and W (F ) are meant as defined for undirected graphs in the previous subsection.)

Corollary 2.1.18 Bipartite graphs are conservative.

Proof. The proof of Theorem 2.1.15 can be repeated literally to prove that χ(G(∗)) =
W (G) for any bipartite graph G. (In fact, we did not use anything about the orientation
when proving Theorem 2.1.15). Then the statement follows from Theorem 2.1.10. �

The previous corollary is also implied by the following more general statement.

Corollary 2.1.19 Comparability graphs are conservative.

Proof. Let G be a comparability graph representing some poset. The comparability
digraph Ĝ of this poset is an oriented version of G and one easily checks that any subset
of the vertex set inducing a waterfall in G is also a waterfall in Ĝ. Thus W (Ĝ) = W (G)
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and Ĝ∗ is isomorphic to G∗. We have W (Ĝ) = χ(Ĝ∗) from Theorem 2.1.12 and thus
W (G) = χ(G∗) also follows. Since induced subgraphs of comparability graphs are also
comparability graphs the proof is then completed by Theorem 2.1.10. �

The above arguments may suggest that all perfect graphs G satisfy equality in the
inequality W (G) ≤ χ(G∗). This is, however, not the case. A counterexample is provided
by C̄8, the complement of the cycle on 8 vertices. Indeed, while W (C̄8) = 5, one needs 6
colors to color (C̄8)

∗. To see that 5 colors do not suffice consider the subgraph of (C̄8)
∗

induced by the vertices representing the 8 independent sets of cardinality 2 in C̄8. This
subgraph has 16 vertices and its independence number is only 3.

Next we show that all cycles are conservative regardless of the parity of their length.

Corollary 2.1.20 The cycle Ck is conservative for any k ≥ 3.

Proof. It is easy to see what C∗k looks like. The points related to independent sets of size
at least 3 form separate components of their own. Each of these components is a clique
of the size of the independent set it belongs to. The rest is a 3–chromatic component
except for k = 4 but that case is already covered by Corollary 2.1.18. Now if k > 7 then
the chromatic number of C∗k is determined by the size of the largest previously mentioned
clique component. Since its size is that of the largest independent set, i.e., of a special
waterfall in Ck, we are done by Theorem 2.1.10. If 4 6= k ≤ 7 then both χ(C∗k) and W (Ck)
are 3, so again by Theorem 2.1.10 we are done. �

The following example found by Tomasz  Luczak [114] proves that not every graph is
conservative.

Proposition 2.1.21 ( Luczak) Let D10 denote the graph we obtain by substituting a clique
of size two to each vertex of C5, the cycle of length five. This graph is not conservative.

Proof. It is easy to check that W (D10) = 4. On the other hand it is well known that
ω(C2

5) = 5, cf. [139], [109]. If the vertices of C5 are 0, 1, 2, 3, 4 in a cyclic order, such
a clique is induced by the sequences 00, 12, 24, 31, 43. Let the vertices of our D10 be
0, 0′, 1, 1′, .., 4, 4′ where aa′ is the clique substituted in place of a of C5. Then replacing
each sequence ab in the above clique of C2

5 by the four sequences ab, a′b, ab′, a′b′ we obtain
twenty sequences of length 2 inducing a clique in D2

10. This means that W (D2
10) ≥

ω(D2
10) ≥ 20 > [W (D10)]

2. �

Combining the previous example with that of Proposition 2.1.17 one easily obtains
an example of a non-conservative oriented graph. Indeed, let us consider the following
orientation of the graph D10 of the previous proposition. (The vertices are labelled as in
the previous proof.) Any edge joining vertices a and a′ is oriented from a to a′. Edges
joining vertex a or a′ to vertex b or b′ (a 6= b) are oriented as the edge between a and b in
the proof of Proposition 2.1.17. Let the resulting oriented graph be denoted by D+

10.

Proposition 2.1.22 The oriented graph D+
10 is not conservative.
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Proof. It is easy to check that W (D+
10) = 4. Consider the construction of

Proposition 2.1.17 over the five vertices 0, 1, 2, 3, 4. The five sequences of length
2 obtained this way can be extended to twenty sequences of length 2 in the
same way as in Proposition 2.1.21. (To be explicit these twenty sequences are
as follows: 00, 00′, 0′0, 0′0′, 24, 2′4, 24′, 2′4′, 12, 1′2, 12′, 1′2′, 43, 4′3, 43′, 4′3′, 31, 3′1, 31′, 3′1′.)
These twenty sequences induce a transitive tournament in the second power of D+

10 proving
the strict supermultiplicativity of the waterfall number for this graph. �

(We mention that the later paper [2] by Alon gives examples of tournaments for which
the largest transitive subtournament behaves strictly supermultiplicatively with respect
to the co-normal power. As the waterfall number of a tournament is just the size of its
largest transitive subtournament, these oriented graphs are also not conservative.)

Some of the results in this section might have applications in extremal set theory as
was the case with Sperner capacity. Let us conclude with a simple example.

Corollary 2.1.23 Given an n–set X, let the family of pairs {(Al, Bl)}ml=1 of subsets of
X have the properties

Ai ∩Bj = ∅ if and only if Aj ∩ Bi = ∅,

Ai ∩Bi = ∅, i = 1, 2, . . . , m.

The maximum M(n) of the number m of such pairs from an n–set is 2n.

Proof. We start by showing that
M(n) ≤ 2n.

To this end consider the oriented graph G with vertex set V (G) = {0, 1, 2} and edge
set E(G) = {(1, 2)}. Now let us have any family of set pairs as in the statement of the
proposition. We can identify any set pair (Al, Bl) with a ternary sequence, i.e., an element
of {0, 1, 2}n in the following manner. We identify X with the numbers from 1 to n and
define the ternary sequence x = x1x2 . . . xn by setting xk = 1 if k ∈ Ai, xk = 2 if k ∈ Bi

and xk = 0 otherwise. Thus we can see that the family of pairs with our property defines
an antichain in [V (G)]n for G and hence, by Theorem 2.1.3 we see that M(n) ≤ 2n.

The next observation giving the lower bound M(n) ≥ 2n is due to Zsolt Tuza [155].
Divide X into two disjoint parts A and B any way you like and then consider the family
of pairs

{(Y ∩A, Y ∩ B) : Y ⊆ X}.
�

For an exhaustive bibliography of extremal problems for set pairs we refer the reader
to Tuza’s survey [156].

Acknowledgment: We are grateful to Tomasz  Luczak for finding the example presented
in Proposition 2.1.21 thereby saving us from the temptation of nice sounding but wrong
conjectures.
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2.2 Orientations of self-complementary graphs and

the relation of Sperner and Shannon capacities

In this section we prove that the edges of a self-complementary graph and its complement
can be oriented in such a way that they remain isomorphic as digraphs and their union is
a transitive tournament. This result is used to explore the relation between the Shannon
and Sperner capacity of certain graphs. In particular, using results of Lovász, we show
that the maximum Sperner capacity over all orientations of the edges of a vertex-transitive
self-complementary graph equals its Shannon capacity.

This section is based on the joint paper [132] with Attila Sali.

2.2.1 Introduction

The Shannon capacity C(G) of a graph G was defined by Shannon in [139] (see also
[109, 6]). It is easy to determine for many graphs, highly non-trivial but known for some
others and not even known for another many. Sperner capacity is a generalization of this
notion for directed graphs given by Gargano, Körner, and Vaccaro [60]. The motivation
of this generalization was the applicability of the new concept in extremal set theory that
was carried out quite successfully in [61] and [62]. In this section we are dealing with the
connections of these values, the Shannon and Sperner capacities of a graph. Let us recall
the definitions first. (The following graph power is the same what we called co-normal
power in the previous section. A small change in our notational conventions is that in
this section n is kept for denoting the number of vertices of a graph and exponents will
usually be denoted by t.)

Definition 22 Let G be a directed graph on vertex set V . The tth power of G is defined
to be the directed graph Gt on vertex set V t = {x = (x1 . . . xt) : xi ∈ V } with edge set

E(Gt) = {(x,y) : ∃i (xi, yi) ∈ E(G)}.

Recall that Gt may contain edges in both directions between two vertices even if such a
pair of edges is not present in G.

Definition 23 For a directed graph G let tr(G) denote the size (number of vertices) of the
largest transitive tournament that appears as a subgraph of G. The (logarithmic) Sperner
capacity of a digraph G is

Σ(G) = lim
t→∞

1

t
log tr(Gt).

We remark that originally the definition of Σ(G) was formulated in a different way and
we gave that formulation in the previous section. Nevertheless, the two definitions are
equivalent, the one we gave here already appears, e.g., in [50]. (Using the N(G, t) notation
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from Subsection 2.1.1, here is a hint why the equivalence holds. In one hand, tr(Gt) ≥
N(G, t) is trivially true. On the other hand, it is not hard to show that N(G,mt) ≥
(tr(Gt))m/(m+ 1)tr(Gt), thus the mth root of N(G,mt) tends to tr(Gt) if t is fixed and m
goes to infinity.)

The Shannon capacity of an undirected graph G can be defined as the following special
case of Sperner capacity. Let us call (again) a graph symmetrically directed if for each of its
edges it also contains the edge going opposite way between the same two endpoints. Just
as in the previous section we often identify an undirected graph G with the symmetrically
directed graph that has edges (in both directions) between the same endpoints as G has.
This digraph is called the symmetrically directed equivalent of G. Note, that powers
of a symmetrically directed graph are also symmetrically directed, hence they can be
considered as undirected graphs, as well.

Definition 24 The Shannon capacity C(G) of G is the Sperner capacity of its symmet-
rically directed equivalent.

Notice that writing undirected edges instead of directed ones in Definition 22 and the
clique number ω(Gt) in place of tr(Gt) in Definition 23 we get C(G) in place of Σ(G).

It should be clear from the definitions that the Sperner capacity of a digraph is always
bounded from above by the Shannon capacity of the underlying undirected graph. The
two values are not the same in general. It was first shown in [28] (cf. also [23] for a short
and different proof) that the Sperner capacity of a cyclically oriented triangle is 1(= log 2)
while the Shannon capacity of Kn is log n in general, i.e., log 3 for a triangle.

For an undirected graph G let

D(G) = max
Ĝ

Σ(Ĝ),

where Ĝ stands for an oriented version of G, i.e., the maximum is taken over all oriented
graphs Ĝ containing exactly one oriented edge for each edge of G. Clearly D(G) ≤ C(G)
holds. Our main concern is the question whether this inequality is an equality or not.

2.2.2 D(G) versus C(G)

It was already proved by Shannon that C(G) satisfies logω(G) ≤ C(G) ≤ logχ(G) where
χ(G) is the chromatic number of the graph G. (In fact, he proved more, namely, though
in different terms, that the logarithm of the fractional chromatic number of G is also
an upper bound for C(G). For further details of this, see [96]. We remark again that
Shannon and many authors following him used a complementary language, i.e., defined
C(Ḡ) as we defined C(G). (Cf. our approach in Section 1.3 and Remark 1.5 therein.)
The two approaches are equivalent, our reason to break the tradition is our need to orient
edges that would become non-edges in the original language.) It is easy to observe that
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tr(Gt) ≥ (tr(G))t, thus Σ(G) ≥ log tr(G) always holds. (Shannon’s logω(G) ≤ C(G) is a
special case of this.) This inequality is not an equality in general even among tournaments
as was shown by Alon [2]. On the other hand, a clique of an undirected graph can always
be oriented in an acyclic way, thus giving an induced transitive tournament. Therefore
the previous inequalities imply that if χ(G) = ω(G) for G then D(G) = C(G) also holds.
In particular, this happens for all perfect graphs.

The smallest graph for which Shannon was not able to determine the value of its capacity
is C5, the chordless cycle on five points. He observed that ω(C2

5) ≥ 5 > (ω(C5))
2 = 4

implying C(C5) ≥ 1
2

log 5. The theorem that this lower bound is sharp was proven by
Lovász in his celebrated paper [109]. Lovász proved there the more general result that
any vertex-transitive self-complementary graph on n points has Shannon capacity 1

2
logn.

It was already observed in [59] (see Proposition 2.1.17 in the previous section) that C5 has
an orientation for which C2

5 contains an acyclically oriented clique on five points. This
implies D(C5) ≥ 1

2
log 5 and thus by Lovász’ result D(C5) = C(C5). It is worth mentioning

that this orientation of C5 is unique (up to isomorphism); for all other orientations the
Sperner capacity is strictly smaller. This can be shown using the methods of [28] and [23],
as it was shown to us by Rob Calderbank [27]. (See Theorem 2.3.3 of the next section for
a more general result.)

The main result of this section is a generalization of the above observation, showing that
for any self-complementary graph G on n points the edges can be oriented in such a
way that G2 contains a transitively oriented clique of size n. By the above mentioned
result of Lovász this will immediately imply D(G) = C(G) for all vertex-transitive self-
complementary graphs. Another implication, due to the work of Alon and Orlitsky [6], is
that D(G) can be exponentially larger than logω(G).

The core of our result is a theorem about self-complementary graphs that we think to be
interesting in itself. This is the topic of the next subsection.

2.2.3 Self-complementary graphs

A graph G = (V,E) is self-complementary if there exists a complementing permutation of
the elements of V . That is, there exists a bijection τ :V → V with the property that for
all v, w ∈ V, v 6= w we have {v, w} ∈ E if and only if {τ(v), τ(w)} 6∈ E. A characterization
of self-complementary graphs can be found in [130] or [131], cf. also [67].

Let G be a self-complementary graph with complementing permutation τ . Then the set
{(v, τ(v)) : v ∈ V }, or equivalently, the set {(τ(v), v)) : v ∈ V } of pairs (two-length
sequences) induces a clique of size |V | = n in G2. Using these two-length sequences
as building blocks, we can find cliques of size n

t
2 in Gt for every even t. This shows

C(G) ≥ 1
2

log n and by Lovász’ result this is sharp if G has the additional property of
being vertex-transitive (cf. Theorem 12 in [109]). If we could orient the edges of G in such
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a way that for the so obtained oriented graph Ĝ at least one of the cliques of the above
type in Ĝ2 would become a transitive tournament then we would have D(G) ≥ 1

2
logn

and thus D(G) = C(G) for vertex-transitive self-complementary graphs. Therefore we
seek for such orientations. The following theorem will imply that this kind of orientation
always exists. The proof also gives a construction.

If ρ is a linear order of the elements of the set {1, . . . , n} then ρ(x) denotes the element
standing on the xth position in this linear order. Thus ρ−1(i) is the position where element
i can be found. We say that j is to the right of i (according to ρ) iff ρ−1(i) < ρ−1(j).

Theorem 2.2.1 Let G = (V (G), E) be a self-complementary graph on V (G) =
{1, 2, . . . , n} with complementing permutation τ . Then there exists a linear order σ on
V (G) such that if {i, j} 6∈ E and σ−1(i) < σ−1(j), then σ−1(τ−1(i)) < σ−1(τ−1(j)).

Proof. The essential part of the argument concerns the case when τ contains only one
cycle, the remaining cases can be reduced to this easily. So assume first that τ consists
of only one cycle. By results in [130], [131] this implies that n should be even, but this
will not be exploited here.

We may assume without loss of generality that τ = (123 . . . n) and that {1, 2} is an
edge of G. An algorithm will be given, that starting from the identity order, successively
rearranges the terms thus generating the linear order σ. We give a more formal description
of this algorithm first and explain it afterwards.

The algorithm successively produces the linear orders σk (k = 0, 1, . . .) until a certain
condition becomes satisfied. Then the lastly produced σk will be our final order σ.
We start with σ0 being the identity order.
Once σk is given, σk+1 is defined as follows. (Giving σk+1 from σk is the main part of the
algorithm that we iterate. Below we refer to it as the “general step”.)
Let m be the value of σk(n) and let i = σ−1

k (m+ 1), where m+ 1 means 1 in case m = n,
that is in the first step.
Consider the set A := {r : i < r and {σk(r), σk(n)} ∈ E}. If A = ∅ then σ := σk and the
algorithm stops.
Otherwise, let j := minA and define σk+1 as follows:

σk+1(s) =







σk(s) if s < j
m if s = j
σk(s− 1) if j < s ≤ n

Then we repeat the foregoing with σk+1 in place of σk.
The algorithm stops when the A = ∅ condition is satisfied. This will certainly happen
because |A| becomes smaller in each step as it is explained below.

Now we turn to the less formal description.

In the general step when m stands on the last (rightmost) position in σk, we check whether
m has a neighbour to the right of m+ 1. If there is one, then m is inserted just in front of
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its leftmost neighbour which is to the right of m+ 1. This step is repeated until, finally,
all neighbours of the currently last element m are to the left of the (previously inserted)
element m + 1. Since the number of elements to the right of the previously inserted
element is decreasing at every step, the algorithm surely terminates. (As an example, see
the graph on Figure 1. In the first iteration of the general step 8 is inserted in front of
its leftmost neighbour, which is 3, resulting in the σ1-sequence 1,2,8,3,4,5,6,7. In the next
iteration 7 is inserted in front of 4, its leftmost neighbour to the right of 8 in σ1. Finally,
6 is inserted in front of 5, thus the resulting σ-sequence is 1,2,8,3,7,4,6,5 for this graph.)

We have to prove that the linear order we obtain satisfies the requirements. Assume
that σ(n) = m, then σ can be viewed as a merge of the two sequences 1, 2, . . . , m and
n, n − 1, . . . , m + 1. Furthermore, if σ−1(m + 1) = i, then {σ(j), m} 6∈ E for i < j < n,
in other words, m has no neighbour between m + 1 and itself. We have to prove that
if {i, j} 6∈ E and j is to the right of i (according to σ), then τ−1(j) is also to the
right of τ−1(i). Note, that τ−1(b) = b − 1 for 1 < b and τ−1(1) = n. The elements
m + 1, m + 2, . . . , n moved by the algorithm are called inserted, while 1, 2, . . . , m are
called original. Let {i, j} 6∈ E and j be to the right of i. Four cases are distuingished
according to which of i and j is inserted.
Case 1. Both i, j are original. Then i− 1 and j − 1 are also original, provided 1 < i. In
this case the order of i − 1 and j − 1 is the same as the order of i and j. If i = 1, then
τ−1(1) = n and {τ−1(1), τ−1(j)} ∈ E, thus n is put to the left of j − 1.
Case 2. Assume that i is inserted and j is original. Now i > 1 and i − 1 is to the right
of i. Since {i, j} 6∈ E i could not be inserted just in front of j, so j − 1 is also to the
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right of i. However, {i − 1, j − 1} ∈ E, that is i − 1 must be inserted, otherwise i − 1
would have remained as σ(n) and then it must not have any connection to the right of i.
Furthermore it had to be inserted somewhere before j− 1, thus τ−1(j) is also to the right
of τ−1(i).
Case 3. Assume that i is original and j is inserted. If i = 1, then τ−1(i) = n and
{n, j − 1} ∈ E, thus n is inserted before j − 1, i.e., τ−1(j) is also to the right of τ−1(i).
Otherwise, i− 1 is to the left of i and j − 1 is to the right of j.
Case 4. Both i, j are inserted. In this case the larger of i and j is to the left of the other,
thus i > j. Also, either both i− 1 and j − 1 are also inserted or one of them is inserted
and the other is the rightmost element in the linear order obtained. In either case, the
larger of the elements i− 1 and j − 1 is also to the left of the other.
This completes the proof for unicyclic τ .

If τ is not unicyclic then let the number of cycles in τ be d. For d = 1 the theorem is
proved by the foregoing. If τ decomposes into more than one cycle, then the subgraphs
induced by the vertices in each individual cycle are all self-complementary, thus the above
argument can be applied to them one by one. The resulting partial order on V (G), which
is the union of d total orders, can be extended to one total order by putting the cycles in
order. Thus, σ−1(i) < σ−1(j) if i is in a cycle of τ put before the cycle of j, or, if i and j
are in the same cycle of τ , then this is their order given by the algorithm applied to that
cycle alone. Let {i, j} 6∈ E and σ−1(i) < σ−1(j). If i, j are contained in the same cycle
of τ , then σ−1(τ−1(i)) < σ−1(τ−1(j)) holds by the first part of the proof. On the other
hand, if i and j are in different cycles, then one can use that i and τ−1(i), furthermore j
and τ−1(j) are in the same cycles, respectively, so their order according to σ is the same.

�

Note that, taking the left-to-right ordering according to σ, each edge of G is mapped
by τ to an edge of Ḡ of the same orientation. The union of G and Ḡ is the transitive
tournament given by the order (σ(1), σ(2), . . . , σ(n)).

2.2.4 Consequences for Sperner capacity

An immediate implication of Theorem 2.2.1 is a lower bound on the Sperner capacity of
appropriately oriented self-complementary graphs.

Corollary 2.2.2 If G is a self-complementary graph on n vertices then D(G) ≥ 1
2

logn.

Proof. Let the vertex set of G be V = {1, . . . , n} and a complementing permutation of
these vertices be τ . Let σ be the linear order on V satisfying the requirements of Theorem
2.2.1 and orient the edges of G according to σ, that is, the edge {i, j} is oriented from i
towards j iff σ−1(i) < σ−1(j). The resulting oriented graph is denoted by Ĝ. Consider
the subset U of the vertices of Ĝ2 defined by

U = {(i, τ−1(i)) : i = 1, . . . , n}.
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By the properties of σ if {i, j} /∈ E(G) then (τ−1(i), τ−1(j)) ∈ E(Ĝ) iff σ−1(i) < σ−1(j).
Thus U induces a transitive tournament in Ĝ2, because each edge is oriented according
to the σ-order of the first coordinate of the vertices. Therefore every even power Ĝ2k of Ĝ
contains a transitive tournament of size |U |k = nk implying Σ(Ĝ) ≥ 1

2
logn. Since Σ(Ĝ)

is a lower bound on D(G), this proves D(G) ≥ 1
2

log n. �

We remark that the above given lower bound is not tight for all self-complementary
graphs. It is easy to give, for example, self-complementary graphs on 8 vertices with
clique number 4. If such a maximum clique of size 4 is oriented transitively in this graph
then the Sperner capacity of the resulting oriented graph is at least log 4 > 1

2
log 8. (Since

log 3 > 1
2

log 8 the same argument applies also for the graph on Figure 1.) If, however, our
graph is not only self-complementary but also vertex-transitive, then by Lovász’ results
the above bound is tight. The next theorem formulates this statement.

Theorem 2.2.3 For a vertex-transitive self-complementary graph G, the value of D(G)
equals the Shannon capacity of G.

Proof. Lovász proved in [109] that for a vertex-transitive self-complementary graph G
on n vertices C(G) ≤ 1

2
log n. This combined with Corollary 2.2.2 and the fact that

D(G) ≤ C(G) implies the statement. �

A consequence of Corollary 2.2.2 is that the Sperner capacity of a graph can be exponen-
tially larger than the value implied by its clique number. This will follow by using the
proof of the analogous result for Shannon capacity by Alon and Orlitsky [6]. First we
quote a lemma of theirs (see as Lemma 3 of [6] on page 1282). We remark that [6] uses
the complementary language.

Lemma AO: For every integer n that is divisible by 4, there exists a self-complementary
graph G on n vertices with ω(G) < 2⌈log n⌉.

Corollary 2.2.4 For every integer n divisible by 4, there exists a graph G on n vertices
such that D(G) > 2log(ω(G)−2)−2.

Proof. Let n be an integer divisible by 4 and G be the graph constructed by Alon
and Orlitsky proving Lemma AO. Since this graph is self-complementary, Corollary 2.2.2
implies D(G) ≥ 1

2
log n > 2log(ω(G)−2)−2. �

We remark that the graphs in the proof of Lemma AO all have complementing per-
mutations containing cycles of length four only. Thus, the proof of Corollary 2.2.4 does
not require the full generality of Theorem 1.

2.2.5 Further remarks

According to the relation of D(G) and C(G), we can distinguish among the following
three classes of (undirected) graphs. The first class consists of those graphs every oriented
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version of which has its Sperner capacity equal to the Shannon capacity of the graph. The
second class contains the graphs G for which this is not true but still D(G) = C(G) holds.
The third class is the class of those graphs for which D(G) < C(G).

Since every graph containing at least one directed edge has its Sperner capacity at least 1,
all graphs with Shannon capacity 1 belong to the first class. Using Shannon’s observation
that logω(G) ≤ C(G) ≤ logχ(G) one knows that all bipartite graphs have this property.
The same chain of inequalities imply that all graphs with χ(G) = ω(G) belong to one of
the first two classes. This can be seen by orienting a largest clique transitively. Clearly,
the possibility of such orientations shows D(G) = C(G) for any graph G having C(G) =
logω(G) even if the chromatic number and the clique number of G are different. Examples
of such graphs are the complements of Kneser graphs of appropriate parameters, as it is
shown by Theorem 13 of Lovász [109].

It is not clear whether a graph G with C(G) > 1 can belong to the first class. There is no
graph identified to belong to the third class and it is not clear at all whether class three is
empty or not. (This question is also mentioned in [50].) The main novelty of this section
is that many graphs that have a gap between their capacity values and the logarithm of
their clique number also satisfy the D(G) = C(G) equality. This may support the guess
that perhaps this equality always holds but we have too little evidence to state this as a
conjecture.

Finally, let us express our feeling that Theorem 2.2.1, though motivated completely by
the capacity questions exposed here, might have rather different applications, too.

Acknowledgment: We would like to express our sincere gratitude to András Gyárfás,
for his encouraging remarks and continuing interest in our work.

Addendum: The above acknowledged interest of András Gyárfás culminated in the nice
short paper [71] containing a conceptually simpler proof of Theorem 2.2.1.
We also remark that recent results of Bohman and Holzman [24] (that will be mentioned
more explicitely in the next section) combined with earlier results from [28, 2] imply that
the first class of graphs described in Subsection 2.2.5 does not contain (chordless) odd
cycles. Nevertheless, it still does not follow that all graphs in this class are bipartite.
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2.3 Local chromatic number and Sperner capacity

In this section we introduce a directed analog of the local chromatic number defined by
Erdős et al. in [47] and show that it provides an upper bound for the Sperner capacity of
a directed graph. Applications and variants of this result are presented. In particular, we
find a special orientation of an odd cycle and show that it achieves the maximum of Sperner
capacity among the differently oriented versions of the cycle. We show that apart from
this orientation, for all the others an odd cycle has the same Sperner capacity as a single
edge graph. We also show that the (undirected) local chromatic number is bounded from
below by the fractional chromatic number while for power graphs the two invariants have
the same exponential asymptotics (under the co-normal product on which the definition of
Sperner capacity is based). We strengthen our bound on Sperner capacity by introducing
a fractional relaxation of our directed variant of the local chromatic number.

(We note our slight abuse of terminology that we use the term Sperner capacity here
for the non-logarithmic version of the invariant we called Sperner capacity in the previous
sections.)

This section is based on the joint paper [97] with János Körner and Concetta Pilotto.

2.3.1 Introduction

Coloring the vertices of a graph so that no adjacent vertices receive identical colors gives
rise to many interesting problems and invariants, of which the book [80] gives an excellent
survey. The best known among all these invariants is the chromatic number, the minimum
number of colors needed for such proper colorings. An interesting variant was introduced
by Erdős, Füredi, Hajnal, Komjáth, Rödl, and Seress [47] (cf. also [57]). They define the
local chromatic number of a graph as follows.

Definition 25 ([47]) The local chromatic number ψ(G) of a graph G is the maximum
number of different colors appearing in the closed neighbourhood of any vertex, minimized
over all proper colorings of G. Formally,

ψ(G) := min
c: V (G)→N

max
v∈V (G)

|{c(u) : u ∈ ΓG(v)}|,

where N is the set of natural numbers, ΓG(v), the closed neighborhood of the vertex v ∈
V (G), is the set of those vertices of G that are either adjacent or equal to v and c :
V (G) → N runs over those functions that are proper colorings of G.

It is clear that ψ(G) is always bounded from above by the chromatic number, χ(G).
It is much less obvious that ψ(G) can be strictly less than χ(G). Yet this is true; in fact,
as proved in [47], there exist graphs with ψ(G) = 3 and χ(G) arbitrarily large.

Throughout this section, we shall be interested in chromatic invariants as upper bounds
for the Shannon capacity of undirected graphs and its natural generalization Sperner
capacity for directed graphs. We recall that for the sake of unity in the treatment of
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undirected and directed graphs it is convenient and customary to treat Shannon capacity
in terms that are complementary to Shannon’s own, (cf. [139], [109] and [60], [96], and see
the introductory words of Subsection 2.2.2 as well as Remark 1.5 in Section 1.3). In this
language Shannon capacity describes the asymptotic growth of the clique number in the
co-normal powers of a graph. As already mentioned in the beginning of Subsection 2.2.2
Shannon proved (although in different terms) that the (non-logarithmic) Shannon capacity
c(G) of a graph is bounded from above by the fractional chromatic number.

We show that ψ(G) is bounded from below by the fractional chromatic number of G.
This proves, among other things, that ψ(G) is always an upper bound for the Shannon
capacity c(G) of G, but it is not a very useful upper bound since it is always weaker than
the fractional chromatic number itself. We make this seemingly useless remark only to
stress that the situation is rather different in the case of directed graphs.

We introduce an analog of the local chromatic number for directed graphs and show
that it is always an upper bound for the Sperner capacity of the digraph at hand. The
proof is linear algebraic and generalizes an idea already used for bounding Sperner capacity
in [23], [2], [50], cf. also [28]. To illustrate the usefulness of this bound we apply it to
show, for example, that an oriented odd cycle with at least two vertices with outdegree
and indegree 1 always has its Sperner capacity equal to that of the single-edge graph K2.
We also discuss fractional versions that further strengthen our bounds.

2.3.2 Local chromatic number for directed graphs

The definition of the directed version of ψ(G) is straightforward.

Definition 26 The local chromatic number ψd(G) of a digraphG is the maximum number
of different colors appearing in the closed out-neighbourhood of any vertex, minimized over
all proper colorings of G. Formally,

ψd(G) := min
c: V (G)→N

max
v∈V (G)

|{c(w) : w ∈ Γ+
G(v)}

where N is the set of natural numbers, Γ+
G(v), the closed out-neighborhood of the vertex

v ∈ V (G), is the set of those vertices w ∈ V (G) that are either equal to v or else are
endpoints of directed edges (v, w) ∈ E(G), originated in v, and c : V (G) → N runs over
those functions that are proper colorings of G.

Our main goal is to prove that ψd(G) is an upper bound for the Sperner capacity of
digraph G.

2.3.3 Sperner capacity

Recall that we refer to the (di)graph obtained from G by the exponentiation defined in
Definition 22 (see on page 47) as the co-normal power of the graph G.
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(An edge (a, b) always means an oriented edge as opposed to undirected edges denoted
by {a, b}.)

Now we recall the definition of Sperner capacity in its non-logarithmic version and via
symmetric (rather than transitive) cliques.

Definition 27 A subgraph of a digraph is called a symmetric clique if its edge set contains
all ordered pairs of vertices belonging to the subgraph. (In other words, it is a clique with
all its edges present in both directions.) For a directed graph G we denote the size (number
of vertices) of its largest symmetric clique by ωs(G).

Definition 28 ([60]) The (non-logarithmic) Sperner capacity of a digraph G is defined
as

σ(G) = sup
n

n
√

ωs(Gn).

Remark 2.3. Denoting the number of vertices in a largest transitive clique of G by tr(G),
it is easy to show that σ(G) = supn

n
√

tr(Gn) holds, cf. [60, 50] and also our earlier
Definition 23 in Subsection 2.2.1 (page 47). (Recall that by a transitive clique we mean a
clique where the edges are oriented transitively, i.e., consistently with some linear order
of the vertices. It is allowed that some edges be present also in the reverse direction.)
Since tr(Gn) ≥ [tr(G)]n this remark implies that tr(G) ≤ σ(G) holds for any digraph G.
♦

Also recall that for an undirected graph G we call the digraph obtained from G by
directing all its edges in both ways the symmetrically directed equivalent of G. In Shan-
non’s own language the capacity (cf. [139]) of the complement of a(n undirected) graph
G can be defined as the Sperner capacity of its symmetrically directed equivalent. We
denote this quantity by c(G).

Thus, as already mentioned in the previous sections, Sperner capacity is a generaliza-
tion of Shannon capacity. It is a true generalization in the sense that there exist digraphs
the Sperner capacity of which is different from the Shannon capacity (c(G) value) of its
underlying undirected graph. Denoting by G both an arbitrary digraph and its underly-
ing undirected graph, it follows from the definitions that σ(G) ≤ c(G) always holds. The
smallest example with strict inequality in the previous relation is a cyclically oriented
triangle, cf. [28], [23]. (See also [20] for an early and different attempt to generalize
Shannon capacity to directed graphs.)

Shannon capacity is known to be a graph invariant that is difficult to determine (not
only in the algorithmic but in any sense), and it is unknown for many relatively small and
simple graphs, for example, for all odd cycles of length at least 7. This already shows that
the more general invariant Sperner capacity cannot be easy to determine either. For a
survey on graph invariants defined via powers, including Shannon and Sperner capacities,
we refer the reader to [4]. There is an interesting and important connection between
Sperner capacity and extremal set theory, introduced in [98] and fully explored in [62].
Several problems of this flavour are also discussed in [96].
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2.3.4 Main result

Alon [2] proved that for any digraph G

σ(G) ≤ min{∆+(G),∆−(G)} + 1

where ∆+(G) is the maximum out-degree of the graph G and similarly ∆−(G) is the
maximum in-degree. The proof relies on a linear algebraic method similar to the one
already used in [23] for a special case (cf. also [50] for a strengthening and cf. [3] for a
general setup for this method in case of undirected graphs). We also use this method for
proving the following stronger result.

Theorem 2.3.1
σ(G) ≤ ψd(G).

Proof. Consider a proper coloring c : V (G) → N that achieves the value of ψd(G). Let
N+
c (v) denote the set of colors each of which appears as the color of some vertex in the

(open) out-neighbourhood of v in the coloring c.
For each vertex a = (a1, . . . , an) ∈ V (Gn) we define a polynomial

Pa,c(x1, . . . , xn) :=

n
∏

i=1

∏

j∈N+
c (ai)

(xi − j).

Let K be a symmetric clique in Gn. If a ∈ K, b ∈ K then by definition
Pa,c(c(b1), . . . , c(bn)) = 0 if b 6= a, while Pa,c(c(a1), . . . , c(an)) 6= 0 by the properness
of coloring c. This implies that the polynomials {Pa,c(x1, . . . , xn)}a∈K are linearly in-
dependent over the reals. This can be shown in the usual way: substituting c(b) into
∑

a∈K λaPa,c(x) = 0 we obtain λb = 0 and this can be done for each b ∈ K.
Since the degree of xi in Pa,c(x) is at most ψd(G) − 1, the dimension of the linear

space generated by our polynomials is bounded from above by [ψd(G)]n. By the previous
paragraph, this is also an upper bound for |K|. Choosing K to be a symmetric clique of
maximum size we obtain ωs(G

n) ≤ [ψd(G)]n and thus the statement. �

Let Grev denote the “reverse of G”, i.e., the digraph we obtain from G by reversing
the direction of all of its edges. Since obviously σ(G) = σ(Grev), Theorem 2.3.1 has the
following trivial corollary.

Corollary 2.3.2
σ(G) ≤ min{ψd(G), ψd(Grev)}.

�

In Subsections 2.3.7 and 2.3.8 we will strengthen Theorem 2.3.1 by introducing a fractional
version of ψd(G).
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2.3.5 Application: odd cycles

We call an oriented cycle alternating if it has at most one vertex of outdegree 1. (In
stating the following results we follow again the convention that an oriented graph is
a graph without oppositely directed edges between the same two points, while a general
directed graph may contain such pairs of edges.) Clearly, in any oriented cycle the number
of vertices of outdegree 2 equals the number of vertices of outdegree 0. Thus, in particular,
an oriented odd cycle of length 2k + 1 is alternating if it has k points of outdegree zero,
k points of outdegree 2 and only 1 point of outdegree 1. It takes an easy checking that
up to isomorphism there is only one orientation of C2k+1 which is alternating.

Theorem 2.3.3 Let G be an oriented odd cycle that is not alternating. Then

σ(G) = 2.

Proof. Since any digraph with at least one edge has Sperner capacity at least 2 (see
Remark 2.3 after Definition 28), it is enough to prove that 2 is also an upper bound.

Color the vertices of G so that two points receive the same color if and only if they
have a common in-neighbour, i.e., a vertex sending an oriented edge to both of them. It is
easy to check that this coloring is proper if and only if the odd cycle G is not alternating.
In this case, our coloring also has the property that any vertex has only one color in its
out-neigbourhood proving ψd(G) = 2. Then the statement follows by Theorem 2.3.1. �

Remark 2.4. It is easy to see that the following slightly stronger version of the previous
theorem can be proven similarly: If G is a directed odd cycle not containing an alternating
odd cycle, then σ(G) = 2. ♦

The Sperner capacity of an alternating odd cycle can indeed be larger than 2. This is
obvious for C3, where the alternating orientation produces a transitive clique of size 3.
A construction proving that the Sperner capacity of the alternating C5 is at least

√
5 is

given in [59] (cf. Proposition 2.1.17), and this is further analyzed in [132] (see the previous
section). The construction is clearly best possible by the celebrated result of Lovász [109]
showing c(C5) =

√
5.

In [132] (see the previous section) the invariant D(G) = max log σ(Ĝ) was defined
where the maximization is over all orientations Ĝ of G. Let D̂(G) = 2D(G). It follows
from the definitions that D̂(G) ≤ c(G), and it is asked in [132] whether one always has
equality. No counterexample is known, while equality is trivial if χ(G) = ω(G) (just
orient a maximum size clique transitively) and it is proven for vertex-transitive self-
complementary graphs in [132] (cf. the previous section). Denoting the alternatingly
oriented C2k+1 by Calt

2k+1 Theorem 2.3.3 has the following immediate corollary.

Corollary 2.3.4
D̂(C2k+1) = σ(Calt

2k+1)

holds for every positive integer k. �

59



The discussion in this subsection becomes more relevant in the light of a recent result
by Bohman and Holzman [24]. Until recently it was not known whether the Shannon
capacity (in our complementary sense) of the odd cycle C2k+1, i.e., c(C2k+1) is larger than
2 for any value of k > 2. In [24] an affirmative answer to this question was given by
an ingenious construction, showing that this is always the case, i.e., c(C2k+1) > 2 for
every positive integer k. This means that the bound provided by ψd(G) goes beyound the
obvious upper bound c(G) of Sperner capacity in case of non-alternatingly oriented odd
cycles, i.e., the following consequence of Theorem 2.3.3 can also be formulated.

Corollary 2.3.5 If k is any positive integer and C→2k+1 is a non-alternatingly oriented
C2k+1, then

σ(C→2k+1) < c(C2k+1).

�

It is a natural idea to try to use the Bohman-Holzman construction for alternatingly
oriented odd cycles and check whether the so obtained sets of vertices inducing cliques
in the appropriate power graphs will form transitive cliques in the oriented case. (If
the answer were yes it would prove D̂(C2k+1) > 2 for every k strengthening the result
c(C2k+1) > 2 of [24].) This idea turned out to work in the case of C7, thus showing
D̂(C7) > 2. (To record this we list the 17 vertices of C4

7 that form a transitive clique
defined by their ordering on this list. The labels of the vertices of C7 are the first 7
non-negative integers as in [24] and the unique point with outdegree and indegree 1 is
the point labelled 5. Here we give the vertices simply as sequences. Thus the list is:
4444, 0520, 2030, 2051, 0605, 1205, 1320, 3006, 3012, 5106, 5112, 0561, 0613, 1213, 6130,
6151, 1361.) Strangely, however, the same construction did not work for C9: after our
unsuccesful attempts to prove a similar statement, Attila Sali wrote a computer program
to check whether the clique of Bohman and Holzman in the 8th power of an alternating
C9 contains a transitive clique of the same size and the answer turned out to be negative.
(Again, to record more than just this fact, we give six vertices of C8

9 that form a directed
cycle without inversely oriented edges in the clique of Bohman and Holzman whenever
the path obtained after deleting vertex 5 of C9 is oriented alternatingly. The existence
of this cycle shows that the Bohman-Holzman clique does not contain a transitive clique
whenever the only outdegree 1, indegree 1 point of the alternatingly oriented C9 is 4 or
6 (or 5, but this case is less important), that is one of the neighbours of 5, the point
the construction distinguishes. So the promised cycle is: 20302040, 12072040, 12140720,
40121207, 20401320, 07204012.) In spite of this, we believe that the Sperner capacity of
alternating odd cycles will achieve the corresponding Shannon capacity value c(C2k+1).

One more remark is in order. It is easy to check that the vertices of Calt
2k+3 can be

mapped to those of Calt
2k+1 in an edge-preserving manner. This immediately implies that

σ(Calt
2k+3) ≤ σ(Calt

2k+1), i.e., if there were any odd cycle C2k+1 with D̂(C2k+1) = 2, then the
same must hold for all longer odd cycles as well.
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2.3.6 The undirected case

Since identifying with any undirected graph G its symmetrically directed equivalent gives
both σ(G) = c(G) and ψd(G) = ψ(G), it is immediate from Theorem 2.3.1 that c(G) ≤
ψ(G). We will show, however, that ψ(G) is always bounded from below by the fractional
chromatic number of G, which in turn is a well known upper bound for c(G), cf. [139],
[109]. Thus, unlike in the directed case, the local chromatic number does not give us
new information about Shannon capacity. Looking at it from another perspective, this
relation tells us something about the behaviour of the local chromatic number. (For more
on this other perspective, see the follow up paper [144], cf. the next chapter.)

One of the main points in the investigations of the local chromatic number in [47] is
the recognition of the relevance of the universal graphs U(m, k) defined as follows. (From
now on we will use the notation [m] = {1, . . . , m}).

Definition 29 ([47]) Let the graph U(m, k) for positive integers k ≤ m be defined as
follows.

V (U(m, k)) := {(x,A) : x ∈ [m], A ⊆ [m], |A| = k − 1, x /∈ A}
and

E(U(m, k)) := {{(x,A), (y, B)} : x ∈ B, y ∈ A}.

The relevance of these graphs is expressed by the following lemma. Recall that a
homomorphism from some graph F to a graph G is an edge-preserving mapping of V (F )
to V (G).

Lemma 2.3.6 ([47]) A graph G admits a proper coloring c with m colors and
maxv∈V (G) |{c(u) : u ∈ ΓG(v)}| ≤ k if and only if there exists a homomorphism of G
to U(m, k). In particular, ψ(G) ≤ k if and only if there exists an m such that G admits
a homomorphism to U(m, k).

We use these graphs to prove the relation between the fractional chromatic number
and the local chromatic number.

Recall that the fractional chromatic number is χ∗(G) = min
∑

A∈S(G)w(A) where

S(G) denotes the family of independent sets of graph G and the minimization is over all
non-negative weightings w : S(G) → R satisfying

∑

A∋xw(A) ≥ 1 for every x ∈ V (G).
(Such a non-negative weighting is called a fractional coloring.) It is straightforward from
the definition that χ∗(G) ≥ ω(G) holds for any graph G. Another important fact we will

use (as we already did in Section 1.3) is that if G is vertex-transitive, then χ∗(G) = |V (G)|
α(G)

.
For a proof of this fact and for further information about the fractional chromatic number
we refer to the books [133], [68].

Theorem 2.3.7 For any graph G

ψ(G) ≥ χ∗(G).
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The proof relies on the following simple observation.

Lemma 2.3.8 For all m ≥ k ≥ 2 we have χ∗(U(m, k)) = k.

Proof. It is easy to check that χ∗(U(m, k)) ≥ ω(U(m, k)) = k thus we only have to
prove that k is also an upper bound. It is straightforward from their definition that the
graphs U(m, k) are vertex-transitive. (Any permutation of [m] gives an isomorphism, and
any vertex can be mapped to any other by such a permutation.) Consider those vertices
(x,A) for which x ≤ ai for all ai ∈ A. These form an independent set S. Thinking
about the vertices (x,A) as k-tuples with one distinguished element and the elements of
S as those k-tuples whose distinguished element is the smallest one, we immediately get
χ∗(U(m, k)) = |V (U(m,k))|

α(U(m,k))
≤ |V (U(m,k))|

|S|
= k proving the statement. �

Proof of Theorem 2.3.7. Let us have ψ(G) = k. This means that there is a ho-
momorphism from G to U(m, k) for some m (cf. Lemma 2.3.6). Since a homomor-
phism cannot decrease the fractional chromatic number, from Lemma 2.3.8 we obtain
χ∗(G) ≤ χ∗(U(m, k)) = k = ψ(G).

�

In the rest of this subsection we formulate a consequence of Theorem 2.3.7 for the
asymptotic behaviour of the local chromatic number with respect to the co-normal power
of graphs.

It is a well-known theorem of McEliece and Posner [120] (cf. also Berge and Simonovits
[19] and, for this particular formulation, [133]) that

lim
n→∞

n
√

χ(Gn) = χ∗(G).

It is equally well-known (cf., e. g., Corollary 3.4.2 in [133]) that χ∗(Gn) = [χ∗(G)]n. These
two statements and Theorem 2.3.7 immediately imply the following.

Corollary 2.3.9
lim
n→∞

n
√

ψ(Gn) = χ∗(G).

Proof. By χ∗(Gn) ≤ ψ(Gn) ≤ χ(Gn) we have χ∗(G) = n
√

χ∗(Gn) = limn→∞
n
√

χ∗(Gn) ≤
limn→∞

n
√

ψ(Gn) ≤ limn→∞
n
√

χ(Gn) = χ∗(G) where the last equality is by the McEliece-
Posner theorem mentioned above. �

2.3.7 Fractional colorings

Now we define the fractional version of the local chromatic number. For v ∈ V (G) let
Γ+
G(v) denote, as before, the closed out-neighbourhood of v, i.e., the set containing v and

its out-neighbours.
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Definition 30 For a digraph G its (directed) fractional local chromatic number ψ∗d(G)
is defined as follows:

ψ∗d(G) := min
w

max
v∈V (G)

∑

Γ+
G(v)∩A 6=∅

w(A),

where the minimization is over all fractional colorings w of G.
The fractional local chromatic number ψ∗(G) of an undirected graph G is just ψ∗d(Ǧ)

where Ǧ is the symmetrically directed equivalent of G.

An r-fold coloring of a graph G is a coloring of each of its vertices with r distinct
colors with the property that the sets of colors assigned to adjacent vertices are disjoint.
More formally, an r-fold coloring is a set-valued function f : V (G) →

(

N

r

)

satisfying
f(u) ∩ f(v) = ∅ whenever (u, v) ∈ E(G).

Definition 31 Let ψd(G, r) denote the r-fold (directed) local chromatic number of digraph
G defined as

ψd(G, r) := min
f

max
u∈V (G)

| ∪v∈Γ+
G(u) f(v)|,

where the minimization is over all r-fold colorings f of G.
The r-fold local chromatic number ψ(G, r) of an undirected graph G is just ψd(Ǧ, r)

where Ǧ is the symmetrically directed equivalent of G.

It is obvious that

ψ∗d(G) = inf
r

ψd(G, r)

r

for every digraph G. This includes the equality

ψ∗(G) = inf
r

ψ(G, r)

r

for undirected graphs, too.
For a digraph G let G[Kr] denote the graph obtained by substituting a symmetric

clique of size r into each of its vertices. Formally this means

V (G[Kr]) = {(v, i) : v ∈ V (G), i ∈ {1, . . . , r}}

and
E(G[Kr]) = {((u, i), (v, j)) : (u, v) ∈ E(G) or u = v and i 6= j}.

It is easy to see that ψd(G[Kr]) = ψd(G, r) for every digraph G and positive integer r.
It is also not difficult to see that ωs((G[Kr])

n) = rnωs(G
n) for every n. Indeed, any vertex

of Gn can be substituted by rn vertices of (G[Kr])
n in the natural way and a symmetric

clique K of Gn becomes a symmetric clique of size rn|K| in (G[Kr])
n this way proving

ωs((G[Kr])
n) ≥ rnωs(G

n). To see that equality holds let us denote by a(x) the unique
vertex of Gn from which x ∈ (G[Kr])

n can be obtained by the previous substitution.
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(Thus the set Ax := {y : a(y) = a(x)} has rn elements for every x ∈ V ((G[Kr])
n).)

The crucial observation is that if K is a symmetric clique in (G[Kr])
n and x ∈ K, then

K∪Ax is still a symmetric clique (it may be identical to K but may also be larger). Thus
maximal symmetric cliques of (G[Kr])

n can always be obtained as the union of some
sets Ax, which means that they can be obtained as “blown up” versions of symmetric
cliques of Gn. This proves our claim that ωs((G[Kr])

n) = rnωs(G
n). This equality implies

σ(G[Kr]) = rσ(G) for every digraph G and positive integer r.
The observations of the previous paragraph provide the following strengthening of

Theorem 2.3.1.

Theorem 2.3.10 For every digraph G

σ(G) ≤ ψ∗d(G)

holds.

Proof. By Theorem 2.3.1 and the previous observations we have

σ(G) =
σ(G[Kr])

r
≤ ψd(G[Kr])

r
=
ψd(G, r)

r
.

Since this holds for every r we can write

σ(G) ≤ inf
r

ψd(G, r)

r
= ψ∗d(G).

�

We can formulate again the following trivial corollary.

Corollary 2.3.11
σ(G) ≤ min{ψ∗d(G), ψ∗d(Grev)}.

�

To illustrate the usefulness of Theorem 2.3.10 we consider the complement of a 7-cycle
with its only orientation in which all triangles are oriented cyclically. We denote this
graph by D7 (abbreviating double 7-cycle). None of the earlier bounds we know give a
better upper bound for the Sperner capacity of D7 than 3. Now we can improve on this.

Proposition 2.3.12 √
5 ≤ σ(D7) ≤

5

2
.
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Proof. The lower bound follows by observing that D7 contains an alternating 5-cycle.
The upper bound is a consequence of Theorem 2.3.10 since ψ∗d(D7) = 5

2
. We actually need

here only ψ∗d(D7) ≤ 5
2

and this can be seen by giving weight 1
2

to each 2-element stable
set of D7. �

This example can be further generalized as follows. Let D2k+1 denote the following
oriented graph.

V (D2k+1) = {0, 1, . . . , 2k},
and

E(D2k+1) = {(u, v) : v ≡ u+ j (mod 2k + 1), j ∈ {2, 3, . . . , k}}.
Observe that this definition is consistent with the earlier definition of D7 and that the
underlying undirected graph of D2k+1 is the complement of the odd cycle C2k+1. Now we
can state the following

Proposition 2.3.13
⌈

k − 1

2

⌉

+ 1 ≤ σ(D2k+1) ≤
k

2
+ 1.

In particular, σ(D2k+1) = k
2

+ 1 if k is even.

Proof. It is easy to verify for the transitive clique number that tr(D2k+1) = ⌈k−1
2
⌉ + 1

and this gives the lower bound. The upper bound is proven by assigning weight 1
2

to
every 2-element independent set of D2k+1 which clearly gives a fractional coloring. The
weight thus assigned to any closed out-neighbourhood is k

2
+ 1 giving the upper bound by

Theorem 2.3.10.
If k is even, the two bounds coincide. �

We remark that while the upper bound in Proposition 2.3.13 generalizes that of Propo-
sition 2.3.12, the lower bound does not; it is weaker in case k = 3 than that of Proposition
2.3.12. Therefore we consider the oriented graph D7 a particularly interesting instance of
the problem.

As it was the case without fractionalization, Theorem 2.3.10 does not give us new
information in the undirected case, i.e., about Shannon capacity. The reason for this is
the following relation.

Theorem 2.3.14 Let G be an undirected graph. Then

ψ∗(G) = χ∗(G).

To prove Theorem 2.3.14 we need the following generalization of the universal graphs
U(m, k).
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Definition 32 We define the graph Ur(m, k) for positive integers 2r ≤ k ≤ m as follows.

V (Ur(m, k)) := {(X,A) : X,A ⊆ [m], X ∩ A = ∅, |X| = r, |A| = k − r}

and
E(Ur(m, k)) := {{(X,A), (Y,B)} : X ⊆ B, Y ⊆ A}.

Remark 2.5. Note that U1(m, k) = U(m, k), while Ur(m,m) = KG(m, r), the Kneser
graph with parameters m and r. Thus the graphs we just defined provide a common
generalization of Kneser graphs and the universal graphs U(m, k) of [47]. ♦

The following lemma is the general version of Lemma 2.3.6 for multicolorings.

Lemma 2.3.15 A graph G admits a proper r-fold coloring f with m colors in which the
closed neighbourhood of every vertex contains at most k colors if and only if there exists a
homomorphism from G to Ur(m, k). In particular, ψ(G, r) ≤ k if and only if there exists
an m alongside with a homomorphism from G to Ur(m, k).

Proof. The proof is more or less identical to that of Lemma 2.3.6 (cf. [47]). If the
required coloring f exists then assign to each vertex v a pair of sets of colors (X,A) with
X = f(v) and ∪{u,v}∈E(G)f(u) ⊆ A, |A| = k − r. If f has the required properties then
this assignment is possible and is indeed a homomorphism to Ur(m, k).

On the other hand, if the required homomorphism h exists then the r-fold coloring f
defined by the X-part of h(v) = (X,A) as f(v) satisfies the requirements. �

The following lemma is a generalization of Lemma 2.3.8.

Lemma 2.3.16 For all feasible parameters m, k, r

χ∗(Ur(m, k)) =
k

r
.

Proof. Think of the vertices of Ur(m, k) as k-sets of the set [m] with r elements of the
k-set distinguished. The number of vertices is thus

(

m
k

)(

k
r

)

, while the number of those
vertices in which the smallest element of the chosen k-set is among the distinguished ones
is

(

m
k

)(

k−1
r−1

)

. Since the latter kind of vertices form an independent set in Ur(m, k), we

have α(Ur(m, k)) ≥
(

m
k

)(

k−1
r−1

)

. The reverse inequality α(Ur(m, k)) ≤
(

m
k

)(

k−1
r−1

)

follows
from the Erdős-Ko-Rado theorem: once the chosen k-set is fixed, we can have at most
(

k−1
r−1

)

vertices (Xi, Ai) with the property that if i 6= j then Xi∩Xj 6= ∅. IfXi∪Ai = Xj∪Aj ,
then the latter is the very same condition as non-adjacency in Ur(m, k). Thus we know
α(Ur(m, k)) =

(

m
k

)(

k−1
r−1

)

.
Since Ur(m, k) is vertex-transitive (because any permutation of the elements of [m]

gives an automorphism), we have χ∗(Ur(m, k)) = |V (Ur(m,k))|
α(Ur(m,k))

= k
r
. �
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Proof of Theorem 2.3.14. We know by Lemma 2.3.15 that ψ(G, r) = k implies
the existence, for some m, of a homomorphism from G to Ur(m, k). Since a homo-
morphism cannot decrease the value of the fractional chromatic number, this implies
χ∗(G) ≤ χ∗(Ur(m, k)) = k

r
= ψ(G,r)

r
, where, in particular, the first equality holds by

Lemma 2.3.16.
On the other hand, denoting by χ(G, r) the minimum number of colors needed for

a proper r-fold coloring of G, infr
ψ(G,r)
r

≤ χ∗(G) follows from infr
χ(G,r)
r

= χ∗(G) (cf.
Theorem 7.4.5 in [68]) and the obvious inequality ψ(G, r) ≤ χ(G, r). �

We note that universal graphs can also be defined for the directed version of the
local chromatic number. Denoting these graphs by Ud(m, k) they have V (Ud(m, k)) =
V (U(m, k)) while

E(Ud(m, k)) = {((x,A), (y, B)) : y ∈ A}.
To show the analog of Lemma 2.3.6 is straightforward. Comparing Ud(m, k) to U(m, k)
one can see that the symmetrically directed edges of Ud(m, k) are exactly the (undirected)
edges present in U(m, k). This means (but the same can be seen also directly) that
ωs(Ud(m, k)) = k. On the other hand, naturally, ψd(Ud(m, k)) = k, thus for these graphs
we have σ(Ud(m, k)) = ωs(Ud(m, k)) by Theorem 2.3.1 and the obvious inequality ωs(G) ≤
σ(G).

2.3.8 Fractional covers

A non-negative real valued function g : 2V (G) → R is called a fractional cover of V (G) if
∑

U∋v g(U) ≥ 1 holds for all v ∈ V (G).
The most general upper bound on σ(G) we prove in this section is given by the

following inequality that generalizes Theorem 2.3.10 along the lines of a result (Theorem
2) of [50].

Theorem 2.3.17 For any digraph G we have

σ(G) ≤ min
g

∑

U⊆V (G)

g(U)ψ∗d(G[U ]),

where the minimization is over all fractional covers g of V (G) and G[U ] denotes the
digraph induced by G on U ⊆ V (G).

By σ(G) = σ(Grev) we again have the following immediate corollary (cf. Corollary
2.3.2 of Theorem 2.3.1).

Corollary 2.3.18

σ(G) ≤ min







min
g

∑

U⊆V (G)

g(U)ψ∗d(G[U ]), min
g

∑

U⊆V (G)

g(U)ψ∗d(Grev[U ])







.

�
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The proof of Theorem 2.3.17 is almost identical to that of Theorem 2 of [50]. Yet, we
give the details for the sake of completeness.

We need some lemmas. Following [3], we can speak about the representation of a
(di)graph G = (V,E) over a subspace F of polynomials in m variables over a field F .
Such a representation is an assignment of a polynomial fv in F and a vector av ∈ Fm to
each vertex v ∈ V such that the following two conditions hold:
i) for each v ∈ V , fv(av) 6= 0,
and
ii) if (u, v) ∈ E(G) then fu(av) = 0.

Notice that we adapted the description of a representation given in [3] to our termi-
nology (where capacities are defined via cliques instead of stable sets) and to digraphs.

The following two lemmas are from [3]. Their proofs are essentially identical to those
of Lemma 2.2 and Lemma 2.3 in [3] (after some trivial changes caused by the different
language).

Lemma 2.3.19 ([3]) Let G = (V,E) be a digraph and let F be a subspace of polynomials
in m variables over a field F . If G has a representation over F then ωs(G) ≤ dim(F).

Lemma 2.3.20 ([3]) If G and H are two digraphs, G has a representation over F and
H has a representation over H, where F and H are spaces of polynomials over the same
field F , then ωs(G ·H) ≤ dim(F) · dim(H).

Remark 2.6. Lemmas 2.3.19 and 2.3.20 imply that if G and F are as in Lemma 2.3.19 then
σ(G) ≤ dim(F) (cf. Theorem 2.4 in [3]). Notice that our Theorem 2.3.1 is a specialized
version of this statement where the subspace F of polynomials is defined via a proper
coloring of the vertices attaining the value of ψd(G). ♦

Our next Lemma is analogous to Proposition 1 of [50].

Lemma 2.3.21 Let F1, F2, . . . , Fn be digraphs. Then

ωs(F1 · F2 · . . . · Fn) ≤
n

∏

i=1

ψ∗d(Fi).

Proof. First observe that the argument for ωs((G[Kr])
n) = rnωs(G

n) that led us to state
Theorem 2.3.10 generalizes to

ωs(F1[Kr] · F2[Kr] · . . . · Fn[Kr]) = rnωs(F1 · F2 · . . . · Fn).

(This is simply by realizing that in the argument mentioned above we have not used
anywhere that in the n-fold product in question all the graphs were the same whereby we
dealt with the n’th power of a fixed graph.)
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Take the representation (over subspaces of polynomials) given in the proof of Theorem
2.3.1 now for F1[Kr], F2[Kr], . . . , Fn[Kr], i.e., represent Fi[Kr] for each i by the polynomials
{Pa,ci(xi) :=

∏

j∈N+
ci

(a)(xi − j)}a∈V (Fi[Kr]), where ci is a coloring of V (Fi[Kr]) that attains

the value of ψd(Fi[Kr]). The dimension of this representation of Fi[Kr] is bounded from
above by ψd(Fi[Kr]). Now applying Lemma 2.3.20 we obtain

ωs(F1[Kr] · F2[Kr] · . . . · Fn[Kr]) ≤
n

∏

i=1

ψd(Fi[Kr]) =
n

∏

i=1

ψd(Fi, r).

Thus

ωs(F1 · F2 · . . . · Fn) =
ωs(F1[Kr] · F2[Kr] · . . . · Fn[Kr])

rn
≤

n
∏

i=1

ψd(Fi, r)

r
.

Since this last inequality is true for every positive integer r we can also write

ωs(F1 · F2 · . . . · Fn) ≤ inf
r

n
∏

i=1

ψd(Fi, r)

r
= lim inf

r

n
∏

i=1

ψd(Fi, r)

r
=

=
n

∏

i=1

lim inf
r

ψd(Fi, r)

r
=

n
∏

i=1

ψ∗d(Fi).

�

Proof of Theorem 2.3.17. We call a function h assigning non-negative integer values
to the elements of 2V (G) a q-cover (q is a positive integer) of V (G) if

∑

U∋v h(U) ≥ q holds
for all v ∈ V (G).

It is clear that

min
g

∑

U⊆V (G)

g(U)ψ∗d(G[U ]) = inf
q

1

q
min
h

∑

U⊆V (G)

h(U)ψ∗d(G[U ]),

where the minimization on the left hand side is over all fractional covers g while the
minimization on the right hand side is over all q-covers h.

Let us fix a q and let h be the q-cover achieving the minimum on the right hand side.
Let U be the multiset of those subsets of V (G) that are assigned a positive value by h
and let the multiplicity of U ∈ V (G) in U be h(U).

Fixing any natural number n denote by Un the multiset of all n-fold Cartesian products
of sets from U . (The multiplicity of some A = U1 × U2 × . . .× Un ∈ Un is thus given by
h(U1) · h(U2) · . . . · h(Un).)

We consider a maximum size symmetric clique K in Gn and observe that

qn|K| ≤
∑

×n
i=1

Ui∈Un

ωs(G
n[×n

i=1Ui]).
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Each summand in this last inequality satisfies by Lemma 2.3.21

ωs(G
n[×n

i=1Ui]) = ωs(
n

∏

i=1

G[Ui]) ≤
n

∏

i=1

ψ∗d(G[Ui]).

Substituting this into the previous inequality we get

qn|K| ≤
∑

×n
i=1

Ui∈Un

n
∏

i=1

ψ∗d(G[Ui]) =

[

∑

Ui∈U

ψ∗d(G[Ui])

]n

,

where the summations are meant with multiplicities.
Since K is a maximum size symmetric clique of Gn and the multiplicity of Ui in U is

h(Ui), we obtained

ωs(G
n) ≤ 1

qn





∑

U⊆V (G)

h(U)ψ∗d(G[U ])





n

.

This implies

σ(G) ≤ inf
q

1

q





∑

U⊆V (G)

h(U)ψ∗d(G[U ])



 = min
g

∑

U⊆V (G)

g(U)ψ∗d(G[U ]),

where the minimization is over all fractional covers g of V (G), i.e., we arrived at the
statement. �

To illustrate that the bound of Theorem 2.3.17 may indeed give an improvement over
that of Theorem 2.3.10 (or, in fact, over that of Corollary 2.3.11) consider the following
digraph G. Let V (G) = {1, 2, . . . , 2k + 1, a, b} and E(G) = E(C→2k+1) ∪ {(a, i), (i, b) :
i ∈ {1, . . . , 2k + 1}}, where C→2k+1 is an arbitrary non-alternatingly oriented cycle on
2k + 1 vertices. It is easy to check that ψ∗d(G) = 3 + 1

k
(and also ψ∗d(Grev) = 3 + 1

k
),

i.e., Theorem 2.3.10 gives σ(G) ≤ 3 + 1
k

only, while Theorem 2.3.17 gives σ(G) ≤ 3.
Indeed, using the fractional cover (which is also an integer cover) g(V1) = g(V2) = 1,
where V1 = {1, 2, . . . , 2k + 1}, V2 = {a, b} (and g(U) = 0 for all other U ⊆ V (G)) we get
σ(G) ≤ ψ∗d(C

→
2k+1) + ψ∗d(K̄2) ≤ ψd(C

→
2k+1) + 1 = 3. This bound is sharp since G contains

transitive triangles.

Acknowledgment: Thanks are due to Attila Sali for helpful conversations and in par-
ticular, for writing the computer program mentioned in Subsection 2.3.5.
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Chapter 3

Graph Colorings

3.1 Local chromatic number, Ky Fan’s theorem, and

circular colorings

In this section we will further investigate the local chromatic number of a graph that was
introduced in [47]. As we have seen in the last section of the previous chapter it is in
between the chromatic and fractional chromatic numbers. This motivates the study of
the local chromatic number of graphs for which the former two quantities are far apart.
Such graphs include Kneser graphs, their vertex color-critical subgraphs, the Schrijver (or
stable Kneser) graphs; Mycielski graphs, and their generalizations; and Borsuk graphs.
We give more or less tight bounds for the local chromatic number of many of these graphs.

We use an old topological result of Ky Fan [52] which generalizes the Borsuk-Ulam
theorem. It implies the existence of a multicolored copy of the complete bipartite graph
K⌈t/2⌉,⌊t/2⌋ in every proper coloring of many graphs whose chromatic number t is deter-
mined via a topological argument. (This was in particular noted for Kneser graphs by
Ky Fan [53].) This yields a lower bound of ⌈t/2⌉ + 1 for the local chromatic number of
these graphs. We show this bound to be tight or almost tight in many cases.

As another consequence of the above we prove that the graphs considered here have
equal circular and ordinary chromatic numbers if the latter is even. This partially proves
a conjecture of Johnson, Holroyd, and Stahl [81] and was independently attained by
F. Meunier [121] for some of the most important special cases. We also show that odd
chromatic Schrijver graphs behave differently, their circular chromatic number can be
arbitrarily close to the other extreme.

This section is based on the joint paper [144] with Gábor Tardos.

3.1.1 Introduction

Recall that the local chromatic number ψ(G) of a graph G is defined in [47] as the mini-
mum number of colors that must appear within distance 1 of a vertex, see Definition 25
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in the previous chapter (page 55). (When referring to the neighbors of a vertex v in
graph G we will use the notation N(v) = NG(v). If c is a coloring of the vertices, then
c(N(v)) will denote the set of those colors that appear on some vertex in N(v), i.e.,
c(N(v)) = {c(u) : u ∈ N(v)}.)

Also recall the fact, that the local chromatic number of a graph G cannot be more
than the chromatic number χ(G). If G is properly colored with χ(G) colors then each
color class must contain a vertex, whose neighborhood contains all other colors. Thus a
value ψ(G) < χ(G) can only be attained with a coloring in which more than χ(G) colors
are used. Therefore it is somewhat surprising, that the local chromatic number can be
arbitrarily less than the chromatic number, cf. [47], [57].

On the other hand, it was shown in [97] (see Theorem 2.3.7 in the previous chapter)
that

ψ(G) ≥ χ∗(G)

holds for any graph G, where, as before, χ∗(G) denotes the fractional chromatic number
of G.

This suggests to investigate the local chromatic number of graphs for which the chro-
matic number and the fractional chromatic number are far apart. This is our main goal
in this section.

Prime examples of graphs with a large gap between the chromatic and the fractional
chromatic numbers are Kneser graphs and Mycielski graphs, cf. [133]. Other, closely
related examples are provided by Schrijver graphs, that are vertex color-critical induced
subgraphs of Kneser graphs, and many of the so-called generalized Mycielski graphs. In
this introductory subsection we focus on Kneser graphs and Schrijver graphs, Mycielski
graphs and generalized Mycielski graphs will be treated in detail in Subsection 3.1.4.

We recall that the Kneser graph KG(n, k) is defined for parameters n ≥ 2k as the
graph with all k-subsets of an n-set as vertices where two such vertices are connected if
they represent disjoint k-sets. It is a celebrated result of Lovász [108] (see also [11, 69])
proving the earlier conjecture of Kneser [86], that χ(KG(n, k)) = n − 2k + 2. For the
fractional chromatic number one has χ∗(KG(n, k)) = n/k as easily follows from the vertex-
transitivity of KG(n, k) via the Erdős-Ko-Rado theorem, see [133, 68].

Bárány’s proof [11] of the Lovász-Kneser theorem was generalized by Schrijver [134]
who found a fascinating family of subgraphs of Kneser graphs that are vertex-critical with
respect to the chromatic number.

Let [n] denote again the set {1, 2, . . . , n}.

Definition 33 ([134]) The stable Kneser graph or Schrijver graph SG(n, k) is defined as
follows.

V (SG(n, k)) = {A ⊆ [n] : |A| = k, ∀i : {i, i+ 1} * A and {1, n} * A},
E(SG(n, k)) = {{A,B} : A ∩B = ∅}.

Thus SG(n, k) is the subgraph induced by those vertices of KG(n, k) that contain
no neighboring elements in the cyclically arranged basic set {1, 2, . . . , n}. These are
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sometimes called stable k-subsets. The result of Schrijver in [134] is that χ(SG(n, k)) =
n − 2k + 2(= χ(KG(n, k)), but deleting any vertex of SG(n, k) the chromatic number
drops, i.e., SG(n, k) is vertex-critical with respect to the chromatic number. Recently
Talbot [151] proved an Erdős-Ko-Rado type result, conjectured by Holroyd and Johnson
[78], which implies that the ratio of the number of vertices and the independence number
in SG(n, k) is n/k. This gives n/k ≤ χ∗(SG(n, k)) and equality follows by χ∗(SG(n, k)) ≤
χ∗(KG(n, k)) = n/k. Notice that SG(n, k) is not vertex-transitive in general. See more
on Schrijver graphs in [22, 105, 116, 151, 160].

Concerning the local chromatic number it was observed by several people [58, 90],
that ψ(KG(n, k)) ≥ n− 3k + 3 holds, since the neighborhood of any vertex in KG(n, k)
induces a KG(n− k, k) with chromatic number n− 3k+ 2. Thus for n/k fixed but larger
than 3, ψ(G) goes to infinity with n and k. In fact, the results of [47] have a similar
implication also for 2 < n/k ≤ 3. Namely, it follows from those results, that if a series of
graphs G1, . . . , Gi, . . . is such that ψ(Gi) is bounded, while χ(Gi) goes to infinity, then the
number of colors to be used in colorings attaining the local chromatic number grows at
least doubly exponentially in the chromatic number. However, Kneser graphs with n/k
fixed and n (therefore also the chromatic number n − 2k + 2) going to infinity cannot
satisfy this, since the total number of vertices grows simply exponentially in the chromatic
number.

The estimates mentioned in the previous paragraph are elementary. On the other
hand, all known proofs for χ(KG(n, k)) ≥ n − 2k + 2 use topology or at least have a
topological flavor (see [108, 11, 69, 117] to mention just a few such proofs). They use (or
at least, are inspired by) the Borsuk-Ulam theorem.

Here we use a stronger topological result due to Ky Fan [52] to establish that all
proper colorings of a t-chromatic Kneser, Schrijver or generalized Mycielski graph contain
a multicolored copy of a balanced complete bipartite graph. This was noticed by Ky Fan
for Kneser graphs [53]. We also show that the implied lower bound of ⌈t/2⌉ + 1 on the
local chromatic number is tight or almost tight for many Schrijver graphs and generalized
Mycielski graphs.

In the following subsection we summarize our main results in more detail.

3.1.2 Results

In this subsection we summarize our results without introducing the topological notions
needed to state the results in their full generality. We will introduce the phrase that a
graph G is topologically t-chromatic meaning that χ(G) ≥ t and this fact can be shown
by a specific topological method, see Definition 34 in Subsection 3.1.3 (page 79). Here
we use this phrase only to emphasize the generality of the corresponding statements,
but the reader can always substitute the phrase “a topologically t-chromatic graph” by
“a t-chromatic Kneser graph” or “a t-chromatic Schrijver graph” or by “a generalized
Mycielski graph of chromatic number t”.

Our general lower bound for the local chromatic number proven in Subsection 3.1.3 is

73



the following.

Theorem 3.1.1 If G is topologically t-chromatic for some t ≥ 2, then

ψ(G) ≥
⌈

t

2

⌉

+ 1.

This result on the local chromatic number is the immediate consequence of the Zig-zag
theorem in Subsection 3.1.3 that we state here in a somewhat weaker form:

Theorem 3.1.2 Let G be a topologically t-chromatic graph and let c be a proper coloring
of G with an arbitrary number of colors. Then there exists a complete bipartite subgraph
K⌈ t

2
⌉,⌊ t

2
⌋ of G all vertices of which receive a different color in c.

We use Ky Fan’s generalization of the Borsuk-Ulam theorem [52] for the proof. The
Zig-zag theorem was previously established for Kneser graphs by Ky Fan [53].

We remark that János Körner [90] suggested to introduce a graph invariant b(G) which
is the size (number of points) of the largest completely multicolored complete bipartite
graph that should appear in any proper coloring of graph G. It is obvious from the
definition that this parameter is bounded from above by χ(G) and bounded from below
by the local chromatic number ψ(G). An obvious consequence of Theorem 3.1.2 is that
if G is topologically t-chromatic, then b(G) ≥ t.

In Subsection 3.1.4 we show that Theorem 3.1.1 is essentially tight for several Schrijver
and generalized Mycielski graphs. In particular, this is always the case for a topologically
t-chromatic graph that has a wide t-coloring as defined in Definition 35 in Subsection 3.1.4
(page 82).

As the first application of our result on wide colorings we show, that if the chro-
matic number is fixed and odd, and the size of the Schrijver graph is large enough, then
Theorem 3.1.1 is exactly tight:

Theorem 3.1.3 If t = n− 2k + 2 > 2 is odd and n ≥ 4t2 − 7t then

ψ(SG(n, k)) =

⌈

t

2

⌉

+ 1.

See Remark 3.4 in Subsection 3.1.4 for a relaxed bound on n. The proof of Theo-
rem 3.1.3 is combinatorial. It will also show that the claimed value of ψ(SG(n, k)) can
be attained with a coloring using t + 1 colors and avoiding the appearance of a totally
multicolored K⌈ t

2
⌉,⌈ t

2
⌉. To appreciate the latter property, cf. Theorem 3.1.2.

Since SG(n, k) is an induced subgraph of SG(n + 1, k) Theorem 3.1.3 immediately
implies that for every fixed even t = n− 2k + 2 and n, k large enough

ψ(SG(n, k)) ∈
{

t

2
+ 1,

t

2
+ 2

}

.

To demonstrate that requiring large n and k in Theorem 3.1.3 is crucial we prove the
following statement.
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Proposition 3.1.4 ψ(SG(n, 2)) = n− 2 = χ(SG(n, 2)) for every n ≥ 4.

As a second application of wide colorings we prove in Subsection 3.1.4 that Theo-
rem 3.1.1 is also tight for several generalized Mycielski graphs. These graphs will be
denoted by M

(d)
r (K2) where r = (r1, . . . , rd) is a vector of positive integers. See Subsec-

tion 3.1.4 for the definition. Informally, d is the number of iterations and ri is the number
of “levels” in iteration i of the generalized Mycielski construction. M

(d)
r (K2) is proven to

be (d+ 2)-chromatic “because of a topological reason” by Stiebitz [149]. This topological
reason implies that these graphs are topologically (d+ 2)-chromatic. Thus Theorem 3.1.1
applies and gives the lower bound part of the following result.

Theorem 3.1.5 If r = (r1, . . . , rd), d is odd, and ri ≥ 7 for all i, then

ψ(M (d)
r

(K2)) =

⌈

d

2

⌉

+ 2.

It will be shown in Theorem 3.1.17 that relaxing the ri ≥ 7 condition to ri ≥ 4
an only slightly weaker upper bound is still valid. As a counterpart we also show (see
Proposition 3.1.13 in Subsection 3.1.4) that for the ordinary Mycielski construction, which
is the special case of r = (2, . . . , 2), the local chromatic number behaves just like the
chromatic number.

The Borsuk-Ulam Theorem in topology is known to be equivalent (see Lovász [111])
to the validity of a tight lower bound on the chromatic number of graphs defined on
the n-dimensional sphere, called Borsuk graphs. In Subsection 3.1.4 we prove that the
local chromatic number of Borsuk graphs behaves similarly as that of the graphs already
mentioned above. In this subsection we also formulate a topological consequence of our
results on the tightness of Ky Fan’s theorem [52]. We also give a direct proof for the same
tightness result.

The circular chromatic number χc(G) of a graph G was introduced by Vince [157],
see Definition 38 in Subsection 3.1.5 (page 95). It satisfies χ(G) − 1 < χc(G) ≤ χ(G). In
Subsection 3.1.5 we prove the following result using the Zig-zag theorem.

Theorem 3.1.6 If G is topologically t-chromatic and t is even, then χc(G) ≥ t.

This theorem implies that χc(G) = χ(G) if the chromatic number is even for Kneser
graphs, Schrijver graphs, generalized Mycielski graphs, and certain Borsuk graphs. The
result on Kneser and Schrijver graphs gives a partial solution of a conjecture by Johnson,
Holroyd, and Stahl [81] and a partial answer to a question of Hajiabolhassan and Zhu [73].
These results were independently obtained by Meunier [121]. The result on generalized
Mycielski graphs answers a question of Chang, Huang, and Zhu [29] and partially solves
a conjecture of theirs.

We will also discuss the circular chromatic number of odd chromatic Borsuk and
Schrijver graphs showing that they can be close to one less than the chromatic number.
We will use a a similar result for generalized Mycielski graphs proven by Lam, Lin, Gu,
and Song [102].
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3.1.3 Lower bound

Topological preliminaries

The following is a brief overview of some of the topological concepts we need. We refer to
[21, 75] and [116] for basic concepts and also for a more detailed discussion of the notions
and facts given below.

A Z2-space (or involution space) is a pair (T, ν) of a topological space T and the involution
ν : T → T , which is continuous and satisfies that ν2 is the identity map. The points x ∈ T
and ν(x) are called antipodal. The involution ν and the Z2-space (T, ν) are free if ν(x) 6= x
for all points x of T . If the involution is understood from the context we speak about T
rather than the pair (T, ν). This is the case, in particular, for the unit sphere Sd in Rd+1

with the involution given by the central reflection x 7→ −x. A continuous map f : S → T
between Z2-spaces (S, ν) and (T, π) is a Z2-map (or an equivariant map) if it respects the
respective involutions, that is f ◦ ν = π ◦ f . If such a map exists we write (S, ν) → (T, π).
If (S, ν) → (T, π) does not hold we write (S, ν) 6→ (T, π). If both S → T and T → S we
call the Z2-spaces S and T Z2-equivalent and write S ↔ T .

We try to avoid using homotopy equivalence and Z2-homotopy equivalence (i.e., ho-
motopy equivalence given by Z2-maps), but we will have to use two simple observations.
First, if the Z2-spaces S and T are Z2-homotopy equivalent, then S ↔ T . Second, if the
space S is homotopy equivalent to a sphere Sh (this relation is between topological spaces,
not Z2-spaces), then for any involution ν we have Sh → (S, ν).

The Z2-index of a Z2-space (T, ν) is defined (see e.g. [118, 116]) as

ind(T, ν) := min{d ≥ 0 : (T, ν) → Sd},

where ind(T, ν) is set to be ∞ if (T, ν) 6→ Sd for all d.

The Z2-coindex of a Z2-space (T, ν) is defined as

coind(T, ν) := max{d ≥ 0 : Sd → (T, ν)}.

If such a map exists for all d, then we set coind(T, ν) = ∞. Notice that if (T, ν) is not
free, we have ind(T, ν) = coind(T, ν) = ∞.

Note that S → T implies ind(S) ≤ ind(T ) and coind(S) ≤ coind(T ). In particular,
Z2-equivalent spaces have equal index and also equal coindex.

The celebrated Borsuk-Ulam Theorem can be stated in many equivalent forms. Here
we state three of them. For more equivalent versions and several proofs we refer to [116].
Here (i) and (ii) are standard forms of the Borsuk-Ulam Theorem, while (iii) is clearly
equivalent to (ii).

Borsuk-Ulam Theorem.

(i) (Lyusternik-Shnirel’man version) Let d ≥ 0 and let H be a collection of open (or
closed) sets covering Sd with no H ∈ H containing a pair of antipodal points. Then
|H| ≥ d+ 2.
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(ii) Sd+1 6→ Sd for any d ≥ 0.

(iii) For a Z2-space T we have ind(T ) ≥ coind(T ).

The suspension susp(S) of a topological space S is defined as the factor of the space
S × [−1, 1] that identifies all the points in S × {−1} and identifies also the points in
S × {1}. If S is a Z2-space with the involution ν, then the suspension susp(S) is also
a Z2-space with the involution (x, t) 7→ (ν(x),−t). Any Z2-map f : S → T naturally
extends to a Z2-map susp(f) : susp(S) → susp(T ) given by (x, t) 7→ (f(x), t). We have
susp(Sn) ∼= Sn+1 with a Z2-homeomorphism. These observations show the well known
inequalities below.

Lemma 3.1.7 For any Z2-space S ind(susp(S)) ≤ ind(S) + 1 and coind(susp(S)) ≥
coind(S) + 1.

A(n abstract) simplicial complex K is a non-empty, hereditary set system. That is,
F ∈ K, F ′ ⊆ F implies F ′ ∈ K and we have ∅ ∈ K. In this work we consider only
finite simplicial complexes. The non-empty sets in K are called simplices. We call the set
V (K) = {x : {x} ∈ K} the set of vertices of K. In a geometric realization of K a vertex x
corresponds to a point ||x|| in a Euclidean space, a simplex σ corresponds to its body, the
convex hull of its vertices: ||σ|| = conv({||x|| : x ∈ σ}). We assume that the points ||x||
for x ∈ σ are affine independent, and so ||σ|| is a geometric simplex. We also assume that
disjoint simplices have disjoint bodies. The body of the complex K is ||K|| = ∪σ∈K ||σ||,
it is determined up to homeomorphism by K. Any point in p ∈ ||K|| has a unique
representation as a convex combination p =

∑

x∈V (K) αx||x|| such that {x : αx > 0} ∈ K.

A map f : V (K) → V (L) is called simplicial if it maps simplices to simplices, that
is σ ∈ K implies f(σ) ∈ L. In this case we define ||f || : ||K|| → ||L|| by setting
||f ||(||x||) = ||f(x)|| for vertices x ∈ V (K) and taking an affine extension of this function
to the bodies of each of the simplices in K. If ||K|| and ||L|| are Z2-spaces (usually with
an involution also given by simplicial maps), then we say that f is a Z2-map if ||f || is a
Z2-map. If ||K|| is a Z2-space we use ind(K) and coind(K) for ind(||K||) and coind(||K||),
respectively.

Following the papers [5, 101, 118] we introduce the box complex B0(G) for any finite graph
G. See [118] for several similar complexes. We define B0(G) to be a simplicial complex on
the vertices V (G)×{1, 2}. For subsets S, T ⊆ V (G) we denote the set S ×{1}∪ T ×{2}
by S ⊎ T , following the convention of [116, 118]. For v ∈ V (G) we denote by +v the
vertex (v, 1) ∈ {v}⊎ ∅ and −v denotes the vertex (v, 2) ∈ ∅⊎ {v}. We set S ⊎ T ∈ B0(G)
if S ∩ T = ∅ and the complete bipartite graph with sides S and T is a subgraph of G.
Note that V (G) ⊎ ∅ and ∅ ⊎ V (G) are simplices of B0(G).

The Z2-map S ⊎ T 7→ T ⊎ S acts simplicially on B0(G). It makes the body of the
complex a free Z2-space.
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We define the hom space H(G) of G to be the subspace consisting of those points
p ∈ ||B0(G)|| that, when written as a convex combination p =

∑

x∈V (B0(G)) αx||x|| with

{x : αx > 0} ∈ B0(G) give
∑

x∈V (G)⊎∅ αx = 1/2.

Notice that H(G) can also be obtained as the body of a cell complex Hom(K2, G), see
[9], or of a simplicial complex Bchain(G), see [118].

A useful connection between B0(G) and H(G) follows from a combination of results
of Csorba [39] and Matoušek and Ziegler [118].

Proposition 3.1.8 ||B0(G)|| ↔ susp(H(G))

Proof. Csorba [39] proves the Z2-homotopy equivalence of ||B0(G)|| and the suspension
of the body of yet another box complex B(G) of G. As we mentioned, Z2-homotopy
equivalence implies Z2-equivalence. Matoušek and Ziegler [118] prove the Z2-equivalence
of ||B(G)|| and H(G). Finally for Z2-spaces S and T if S → T , then susp(S) → susp(T ),
therefore ||B(G)|| ↔ H(G) implies susp(||B(G)||) ↔ susp(H(G)). �

Note that Csorba [39] proves, cf. also Živaljević [161], the Z2-homotopy equivalence
of ||B(G)|| and H(G), and therefore we could also claim Z2-homotopy equivalence in
Proposition 3.1.8.

Some earlier topological bounds

Recall that a graph homomorphism is an edge preserving map from the vertex set of
a graph F to the vertex set of another graph G. If there is a homomorphism f from
F to G, then it generates a simplicial map from B0(F ) to B0(G) in the natural way.
This map is a Z2-map and thus it shows ||B0(F )|| → ||B0(G)||. One can often prove
||B0(F )|| 6→ ||B0(G)|| using the indexes or coindexes of these complexes and this relation
implies the non-existence of a homomorphism from F to G. A similar argument applies
with the spaces H(·) in place of ||B0(·)||.

Coloring a graph G with m colors can be considered as a graph homomorphism
from G to the complete graph Km. The box complex B0(Km) is the boundary com-
plex of the m-dimensional cross-polytope (i.e., the convex hull of the basis vectors
and their negatives in Rm), thus ||B0(Km)|| ∼= Sm−1 with a Z2-homeomorphism and
coind(B0(G)) ≤ ind(B0(G)) ≤ m − 1 is necessary for G being m-colorable. Similarly,
coind(H(G)) ≤ ind(H(G)) ≤ m− 2 is also necessary for χ(G) ≤ m since H(Km) can be
obtained from intersecting the boundary of the m-dimensional cross-polytope with the hy-
perplane

∑

xi = 0, and therefore H(Km) ∼= Sm−2 with a Z2-homeomorphism. These four
lower bounds on χ(G) can be arranged in a single line of inequalities using Lemma 3.1.7
and Proposition 3.1.8:

χ(G) ≥ ind(H(G)) + 2 ≥ ind(B0(G)) + 1 ≥ coind(B0(G)) + 1 ≥ coind(H(G)) + 2 (3.1)

In fact, many of the known proofs of Kneser’s conjecture can be interpreted as a
proof of an appropriate lower bound on the (co)index of one of the above complexes. In
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particular, Bárány’s simple proof [11] exhibits a map showing Sn−2k → H(KG(n, k)) to
conclude that coind(H(KG(n, k))) ≥ n − 2k and thus χ(KG(n, k)) ≥ n − 2k + 2. The
even simpler proof of Greene [69] exhibits a map showing Sn−2k+1 → B0(KG(n, k)) to
conclude that coind(B0(KG(n, k))) ≥ n − 2k + 1 and thus χ(KG(n, k)) ≥ n − 2k + 2.
Schrijver’s proof [134] of χ(SG(n, k)) ≥ n− 2k + 2 is a generalization of Bárány’s and it
also can be interpreted as a proof of Sn−2k → H(SG(n, k)). We remark that the same
kind of technique is used with other complexes related to graphs, too. In particular,
Lovász’s original proof [108] can also be considered as exhibiting a Z2-map from Sn−2k

to such a complex, different from the ones we consider here. For a detailed discussion of
several such complexes and their usefulness in bounding the chromatic number we refer
the reader to [118].

The above discussion gives several possible “topological reasons” that can force a graph
to be at least t-chromatic. Here we single out two such reasons. We would like to stress
that these two reasons are just two out of many and refer to the paper [8] for some that
are not even mentioned above. In this sense, our terminology is somewhat arbitrary. The
statement of our results in Subsection 3.1.2 becomes precise by applying the conventions
given by the following definition.

Definition 34 We say that a graph G is topologically t-chromatic if

coind(B0(G)) ≥ t− 1.

We say that a graph G is strongly topologically t-chromatic if

coind(H(G)) ≥ t− 2.

By inequality (3.1) if a graph is strongly topologically t-chromatic, then it is topolog-
ically t-chromatic, and if G is topologically t-chromatic, then χ(G) ≥ t.

The notion that a graph is (strongly) topologically t-chromatic is useful, as it applies
to many widely studied classes of graphs. As we mentioned above, Bárány [11] and Schri-
jver [134] establish this for t-chromatic Kneser and Schrijver graphs. For the reader’s
convenience we recall the proof here. See the analogous statement for generalized Myciel-
ski graphs and (certain finite subgraphs of the) Borsuk graphs after we introduce those
graphs.

Proposition 3.1.9 (Bárány; Schrijver) The t-chromatic Kneser and Schrijver graphs are
strongly topologically t-chromatic.

Proof. We need to prove that SG(n, k) is strongly topologically (n− 2k + 2)-chromatic,
i.e., that coind(H(SG(n, k))) ≥ n − 2k. The statement for Kneser graphs follows. For
x ∈ Sn−2k letHx denote the open hemisphere in Sn−2k around x. Consider an arrangement
of the elements of [n] on Sn−2k so that each open hemisphere contains a stable k-subset,
i.e., a vertex of SG(n, k). It is not hard to check that identifying i ∈ [n] with vi/|vi|
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for vi = (−1)i(1, i, i2, . . . , in−2k) ∈ Rn−2k+1 provides such an arrangement. (See [134]
or [116] for details of this.) For each vertex v of SG(n, k) and x ∈ Sn−2k let Dv(x)
denote the smallest distance of a point in v from the set Sn−2k \ Hx and let D(x) =
∑

v∈V (SG(n,k))Dv(x). Note that Dv(x) > 0 if v is contained in Hx and therefore D(x) > 0

for all x. Let f(x) := 1
2D(x)

∑

v∈V (SG(n,k))Dv(x)||+v||+ 1
2D(−x)

∑

v∈V (SG(n,k))Dv(−x)||−v||.
This f is a Z2-map Sn−2k → H(SG(n, k)) proving the proposition. �

Ky Fan’s result on covers of spheres and the Zig-Zag theorem

The following result of Ky Fan [52] implies the Lyusternik-Shnirel’man version of the
Borsuk-Ulam theorem. Here we state two equivalent versions of the result, both in terms
of sets covering the sphere. See the original paper for another version generalizing another
standard form of the Borsuk-Ulam theorem.

Ky Fan’s Theorem.

(i) Let A be a system of open (or a finite system of closed) subsets of Sk covering the
entire sphere. Assume a linear order < is given on A and all sets A ∈ A satisfy
A ∩ (−A) = ∅. Then there are sets A1 < A2 < . . . < Ak+2 of A and a point x ∈ Sk

such that (−1)ix ∈ Ai for all i = 1, . . . , k + 2.

(ii) Let A be a system of open (or a finite system of closed) subsets of Sk such that
∪A∈A(A ∪ (−A)) = Sk. Assume a linear order < is given on A and all sets A ∈ A
satisfy A ∩ (−A) = ∅. Then there are sets A1 < A2 < . . . < Ak+1 of A and a point
x ∈ Sk such that (−1)ix ∈ Ai for all i = 1, . . . , k + 1.

The Borsuk-Ulam theorem is easily seen to be implied by version (i), that shows in
particular, that |A| ≥ k + 2. We remark that [52] contains the above statements only for
closed sets. The statements on open sets can be deduced by a standard argument using
the compactness of the sphere. We also remark that version (ii) is formulated a little
differently in [52]. A place where one finds exactly the above formulation (for closed sets,
but for any Z2-space) is Bacon’s paper [10].

Zig-zag Theorem Let G be a topologically t-chromatic finite graph and let c be an ar-
bitrary proper coloring of G by an arbitrary number of colors. We assume the colors are
linearly ordered. Then G contains a complete bipartite subgraph K⌈ t

2
⌉,⌊ t

2
⌋ such that c as-

signs distinct colors to all t vertices of this subgraph and these colors appear alternating
on the two sides of the bipartite subgraph with respect to their order.

Proof. We have coind(B0(G)) ≥ t−1, so there exists a Z2-map f : St−1 → ||B0(G)||. For
any color i we define a set Ai ⊂ St−1 letting x ∈ Ai if and only if for the minimal simplex
Ux ⊎ Vx containing f(x) there exists a vertex z ∈ Ux with c(z) = i. These sets are open,
but they do not necessarily cover the entire sphere St−1. Notice that −Ai consists of the
points x ∈ St−1 with −x ∈ Ai, which happens if and only if there exists a vertex z ∈ U−x
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with c(z) = i. Here U−x = Vx. For every x ∈ St−1 either Ux or Vx is not empty, therefore
we have ∪i(Ai ∪ (−Ai)) = St−1. Assume for a contradiction that for a color i we have
Ai ∩ (−Ai) 6= ∅ and let x be a point in the intersection. We have a vertex z ∈ Ux and a
vertex z′ ∈ Vx with c(z) = c(z′) = i. By the definition of B0(G) the vertices z and z′ are
connected in G. This contradicts the choice of c as a proper coloring. The contradiction
shows that Ai ∩ (−Ai) = ∅ for all colors i.

Applying version (ii) of Ky Fan’s theorem we get that for some colors i1 < i2 < . . . < it
and a point x ∈ St−1 we have (−1)jx ∈ Aij for j = 1, 2, . . . t. This implies the existence
of vertices zj ∈ U(−1)jx with c(zj) = ij . Now U(−1)jx = Ux for even j and U(−1)jx = Vx for
odd j. Therefore the complete bipartite graph with sides {zj |j is odd} and {zj |j is even}
is a subgraph of G with the required properties. �

This result was previously established for Kneser graphs in [53].

Remark 3.1. Since for any fixed coloring we are allowed to order the colors in an arbitrary
manner, the Zig-zag theorem implies the existence of several totally multicolored copies
of K⌈ t

2
⌉,⌊ t

2
⌋. For a uniform random order any fixed totally multicolored K⌈ t

2
⌉,⌊ t

2
⌋ satisfies

the zig-zag rule with probability 1/
(

t
⌊t/2⌋

)

if t is odd and with probability 2/
(

t
t/2

)

if t is
even. Thus the Zig-zag theorem implies the existence of many differently colored totally
multicolored subgraphs K⌈ t

2
⌉,⌊ t

2
⌋ in G:

(

t
⌊t/2⌋

)

copies for odd t and
(

t
t/2

)

/2 copies for even
t.

If the coloring uses only t colors we get a totally multicolored K⌈ t
2
⌉,⌊ t

2
⌋ subgraph with

all possible colorings, and the number of these different subgraphs is exactly the lower
bound stated. ♦

Proof of Theorems 3.1.1 and 3.1.2.
Theorems 3.1.1 and 3.1.2 are direct consequences of the Zig-zag theorem. For Theo-

rem 3.1.2 this is obvious. To prove Theorem 3.1.1 consider any vertex of the ⌊t/2⌋ side
of a multicolored complete bipartite graph. It has ⌈t/2⌉ differently colored neighbors on
the other side, thus at least ⌈t/2⌉ different colors in its neighborhood. �

Remark 3.2. Theorem 3.1.1 gives tight lower bounds for the local chromatic number of
topologically t-chromatic graphs for odd t as several examples of the next subsection will
show. In [146] we present examples that show that the situation is similar for even values
of t. However, the graphs establishing this fact are not strongly topologically t-chromatic,
whereas the graphs showing tightness of Theorem 3.1.1 for odd t are. This leaves open the
question whether ψ(G) ≥ t/2 + 2 holds for all strongly topologically t-chromatic graphs
G and even t ≥ 4. While we prove this statement in [146] for t = 4 we do not know the
answer for higher values of t. ♦

3.1.4 Upper bound

In this subsection we present the combinatorial constructions that prove Theorems 3.1.3
and 3.1.5. In both cases general observations on wide colorings (to be defined below)
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prove useful. The upper bound in either of Theorems 3.1.3 or 3.1.5 implies the existence
of certain open covers of spheres. These topological consequences and the local chromatic
number of Borsuk graphs are discussed in the last part of this subsection.

Wide colorings

We start here with a general method to alter a t-coloring and get a (t+1)-coloring showing
that ψ ≤ t/2 + 2. It works if the original coloring was wide as defined below.

Definition 35 A vertex coloring of a graph is called wide if the end vertices of all walks
of length 5 receive different colors.

Note that any wide coloring is proper, furthermore any pair of vertices of distance 3
or 5 receive distinct colors. Moreover, if a graph has a wide coloring it does not contain
a cycle of length 3 or 5. For graphs that do not have cycles of length 3, 5, 7, or 9
any coloring is wide that assigns different colors to vertices of distance 1, 3 or 5 apart.
Another equivalent definition (considered in [72]) is that a proper coloring is wide if the
neighborhood of any color class is an independent set and so is the second neighborhood.

Lemma 3.1.10 If a graph G has a wide coloring using t colors, then ψ(G) ≤ ⌊t/2⌋ + 2.

Proof. Let c0 be the wide t-coloring of G. We alter this coloring by switching the color
of the neighbors of the troublesome vertices to a new color. We define a vertex x to be
troublesome if |c0(N(x))| > t/2. Assume the color β is not used in the coloring c0. For
x ∈ V (G) we let

c(x) =

{

β if x has a troublesome neighbor
c0(x) otherwise.

The color class β in c is the union of the neighborhoods of troublesome vertices. To
see that this is an independent set consider any two vertices z and z′ of color β. Let y be
a troublesome neighbor of z and let y′ be a troublesome neighbor of z′. Both c0(N(y))
and c0(N(y′)) contain more than half of the t colors in c0, therefore these sets are not
disjoint. We have a neighbor x of y and a neighbor x′ of y′ satisfying c0(x) = c0(x

′). This
shows that z and z′ are not connected, as otherwise the walk xyzz′y′x′ of length 5 would
have two end vertices in the same color class.

All other color classes of c are subsets of the corresponding color classes in c0, and are
therefore independent. Thus c is a proper coloring.

Any troublesome vertex x has now all its neighbors recolored, therefore c(N(x)) = {β}.
For the vertices of G that are not troublesome one has |c0(N(x))| ≤ t/2 and c(N(x)) ⊆
c0(N(x)) ∪ {β}, therefore |c(N(x))| ≤ t/2 + 1. Thus the coloring c shows ψ(G) ≤ t/2 + 2
as claimed. �

We note that the coloring c found in the proof uses t + 1 colors and any vertex that
sees the maximal number ⌊t/2⌋+1 of the colors in its neighborhood must have a neighbor
of color β. In particular, for odd t one will always find two vertices of the same color in
any K(t+1)/2,(t+1)/2 subgraph.
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Schrijver graphs

Here we prove Theorem 3.1.3 which shows that the local chromatic number of Schrijver
graphs with certain parameters are as low as allowed by Theorem 3.1.1. We also prove
Proposition 3.1.4 to show that for some other Schrijver graphs the local chromatic number
agrees with the chromatic number.

For the proof of Theorem 3.1.3 we will use the following simple lemma.

Lemma 3.1.11 Let u, v ⊆ [n] be two vertices of SG(n, k). If there is a walk of length 2s
between u and v in SG(n, k) then |v \ u| ≤ s(t− 2), where t = n− 2k + 2 = χ(SG(n, k)).

Proof. Let xyz be a 2-length walk in SG(n, k). Since y is disjoint from x, it contains all
but n− 2k = t− 2 elements of [n] \ x. As z is disjoint from y it can contain at most t− 2
elements not contained in x. This proves the statement for s = 1.

Now let x0x1 . . . x2s be a 2s-length walk between u = x0 and v = x2s and assume the
statement is true for s− 1. Since |v \u| ≤ |v \x2s−2|+ |x2s−2 \u| ≤ (t− 2) + (s− 1)(t− 2)
we can complete the proof by induction. �

We remark that Lemma 3.1.11 remains true for KG(n, k) with literally the same proof,
but we will need it for SG(n, k), this is why it is stated that way.

Theorem 3.1.3 (restated) If t = n− 2k + 2 > 2 is odd and n ≥ 4t2 − 7t, then

ψ(SG(n, k)) =

⌈

t

2

⌉

+ 1.

Proof. We need to show that ψ(SG(n, k)) = (t+ 3)/2. Note that the t = 3 case is trivial
as all 3-chromatic graphs have local chromatic number 3. The lower bound for the local
chromatic number follows from Theorem 3.1.1 and Proposition 3.1.9.

We define a wide coloring c0 of SG(n, k) using t colors. From this Lemma 3.1.10 gives
the upper bound on ψ(SG(n, k)).

Let [n] = {1, . . . , n} be partitioned into t sets, each containing an odd number of
consecutive elements of [n]. More formally, [n] is partitioned into disjoint sets A1, . . . , At,
where each Ai contains consecutive elements and |Ai| = 2pi − 1. We need pi ≥ 2t− 3 for
the proof, this is possible as long as n ≥ t(4t− 7) as assumed.

Notice, that
∑t

i=1(pi − 1) = k − 1, and therefore any k-element subset x of [n] must
contain more than half (i.e., at least pi) of the elements in some Ai. We define our coloring
c0 by arbitrarily choosing such an index i as the color c0(x). This is a proper coloring
even for the graph KG(n, k) since if two sets x and y both contain more than half of the
elements of Ai, then they are not disjoint.

As a coloring of KG(n, k) the coloring c0 is not wide. We need to show that the
coloring c0 becomes wide if we restrict it to the subgraph SG(n, k).

The main observation is the following: Ai contains a single subset of cardinality pi
that does not contain two consecutive elements. Let Ci be this set consisting of the first,
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third, etc. elements of Ai. A vertex of SG(n, k) has no two consecutive elements, thus a
vertex x of SG(n, k) of color i must contain Ci.

Consider a walk x0x1 . . . x5 of length 5 in SG(n, k) and let i = c0(x0). Thus the set
x0 contains Ci. By Lemma 3.1.11 |x4 \ x0| ≤ 2(t − 2). In particular, x4 contains all but
at most 2t − 4 elements of Ci. As pi = |Ci| ≥ 2t − 3, this means x4 ∩ Ci 6= ∅. Thus the
set x5, which is disjoint from x4, cannot contain all elements of Ci, showing c0(x5) 6= i.
This proves that the coloring c0 is wide, thus Lemma 3.1.10 completes the proof of the
theorem. �

Note that the smallest Schrijver graph for which the above proof gives ψ(SG(n, k)) <
χ(SG(n, k)) is G = SG(65, 31) with χ(G) = 5 and ψ(G) = 4. In Remark 3.4 below we
show how the lower bound on n can be lowered somewhat. After that we show that some
lower bound is needed as ψ(SG(n, 2)) = χ(SG(n, 2)) for every n.

Remark 3.3. In the previous chapter (cf. Definition 29) we have already seen the universal
graphs U(m, r) defined in [47] for which it is shown that a graph G can be colored with m
colors such that the neighborhood of every vertex contains fewer than r colors if and only
if a homomorphism from G to U(m, r) exists. The proof of Theorem 3.1.3 gives, for odd t,
a (t+1)-coloring of SG(n, k) (for appropriately large n and k that give chromatic number
t) for which no neighborhood contains more than (t + 1)/2 colors, thus establishing the
existence of a homomorphism from SG(n, k) to U(t + 1, (t + 3)/2). This, in particular,
proves that χ(U(t+1, (t+3)/2)) ≥ t, which is a special case of Theorem 2.6 in [47]. It is not
hard to see that this inequality is actually an equality. Further, by the composition of the
appropriate maps, the existence of this homomorphism also proves that U(t+1, (t+3)/2)
is strongly topologically t-chromatic. ♦

Remark 3.4. For the price of letting the proof be a bit more complicated one can improve
upon the bound given on n in Theorem 3.1.3. In particular, one can show that the
same conclusion holds for odd t and n ≥ 2t2 − 4t + 3. More generally, we can show
ψ(SG(n, k)) ≤ χ(SG(n, k)) −m = n − 2k + 2 −m provided that χ(SG(n, k)) ≥ 2m + 3
and n ≥ 8m2 + 16m + 9 or χ(SG(n, k)) ≥ 4m + 3 and n ≥ 20m + 9. The smallest
Schrijver graph for which we can prove that the local chromatic number is smaller than
the ordinary chromatic number is SG(33, 15) with 1496 vertices and χ = 5 but ψ = 4. (In
general, one has |V (SG(n, k))| = n

k

(

n−k−1
k−1

)

, cf. Lemma 1 in [151].) The smallest n and k
for which we can prove ψ(SG(n, k)) < χ(SG(n, k)) is for the graph SG(29, 12) for which
χ = 7 but ψ ≤ 6.

We only sketch the proof. For a similar and more detailed proof see Theorem 3.1.17.
The idea is again to take a basic coloring c0 of SG(n, k) and obtain a new coloring c
by recoloring to a new color some neighbors of those vertices v for which |c0(N(v))| is
too large. The novelty is that now we do not recolor all such neighbors, just enough of
them, and also the definition of the basic coloring c0 is a bit different. Partition [n] into
t = n−2k+2 intervals A1, . . . , At, each of odd length as in the proof of Theorem 3.1.3 and
also define Ci similarly to be the unique largest subset of Ai not containing consecutive
elements. For a vertex x we define c0(x) to be the smallest i for which Ci ⊆ x. Note that
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such an i must exist. Now we define when to recolor a vertex to the new color β if our goal
is to prove ψ(SG(n, k)) ≤ b := t−m, where m > 0. We let c(y) = β iff y is the neighbor
of a vertex x having at least b− 2 different colors smaller than c0(y) in its neighborhood.
Otherwise, c(y) = c0(y). It is clear that |c(N(x))| ≤ b − 1 is satisfied, the only problem
we face is that c may not be a proper coloring. To avoid this problem we only need that
the recolored vertices form an independent set. For each vertex v define the index set
I(v) := {j : v ∩ Cj = ∅}. If y and y′ are recolored vertices then they are neighbors of
some x and x′, respectively, where I(x) contains c0(y) and at least b − 2 indices smaller
than c0(y) and I(x′) contains c0(y

′) and at least b − 2 indices smaller than c0(y
′). Since

|[n] \ (x ∪ y)| = t − 2, there are at most t − 2 elements in ∪j∈I(x)Cj not contained in y.
The definition of c0 also implies that at least one element of Cj is missing from y for every
j < c0(y). Similarly, there are at most t−2 elements in ∪j∈I(x′)Cj not contained in y′ and
at least one element of Cj is missing from y′ for every j < c0(y′). These conditions lead to
y∩y′ 6= ∅ if the sizes |Ai| = 2|Ci|−1 are appropriately chosen. In particular, if t ≥ 2m+3
and |At| ≥ 1, |At−1| ≥ 2m + 3, |At−2| ≥ . . . ≥ |At−(2m+2)| ≥ 4m + 5, or t ≥ 4m + 3 and
|At| ≥ 1, |At−1| ≥ 3, |At−2| ≥ . . . ≥ |At−(4m+2)| ≥ 5, then the above argument leads to
a proof of ψ(SG(n, k)) ≤ t − m. (It takes some further but simple argument why the
last two intervals Ai can be chosen smaller than the previous ones.) These two possible
choices of the interval sizes give the two general bounds on n we claimed sufficient for
attaining ψ(SG(n, k)) ≤ t −m. The strengthening of Theorem 3.1.3 is obtained by the
m = (t− 3)/2 special case of the first bound. ♦

Proposition 3.1.4 (restated) ψ(SG(n, 2)) = n− 2 = χ(SG(n, 2)) for every n ≥ 4.

Proof. In the n = 4 case SG(n, 2) consists of a single edge and the statement of the
proposition is trivial. Assume for a contradiction that ψ(SG(n, 2)) ≤ n−3 for some n ≥ 5
and let c be a proper coloring of SG(n, 2) showing this with the minimal number of colors.
As χ(SG(n, 2)) = n−2 and a coloring of a graph G with exactly χ(G) colors cannot show
ψ(G) < χ(G) the coloring c uses at least n− 1 colors.

It is worth visualizing the vertices of SG(n, 2) as diagonals of an n-gon (cf. [22]).
In other words, SG(n, 2) is the complement of the line graph of Dn, where Dn is the
complement of the cycle Cn. The color classes are independent sets in SG(n, 2), so they
are either stars or triangles in Dn.

We say that a vertex x sees the color classes of its neighbors. By our assumption every
vertex sees at most n− 4 color classes.

Assume a color class consists of a single vertex x. As x sees at most n − 4 of the
at least n − 1 color classes we can choose a different color for x. The resulting coloring
attains the same local chromatic number with fewer colors. This contradicts the choice
of c and shows that no color class is a singleton.

A triangle color class is seen by all other edges of Dn. A star color class with center
i and at least three elements is seen by all vertices that, as edges of Dn, are not incident
to i. For star color classes of two edges there can be one additional vertex not seeing the
class. So every color class is seen by all but at most n− 2 vertices. We double count the
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pairs of a vertex x and a color class C seen by x. On one hand every vertex sees at most
n−4 classes. On the other hand all the color classes are seen by at least

((

n
2

)

− n
)

−(n−2)
vertices. We have

(n− 1)

((

n

2

)

− 2n + 2

)

≤
((

n

2

)

− n

)

(n− 4),

and this contradicts our n ≥ 5 assumption. The contradiction proves the statement.
�

Generalized Mycielski graphs

Another class of graphs for which the chromatic number is known only via the topological
method is formed by generalized Mycielski graphs, see [72, 116, 149]. They are interesting
for us also for another reason: there is a big gap between their fractional and ordinary
chromatic numbers (see [103, 152]), therefore the local chromatic number can take its
value from a large interval.

Recall that the Mycielskian M(G) of a graphG is the graph defined on ({0, 1}×V (G))∪
{z} with edge set E(M(G)) = {{(0, v), (i, w)} : {v, w} ∈ E(G), i ∈ {0, 1}} ∪ {{(1, v), z} :
v ∈ V (G)}. Mycielski [123] used this construction to increase the chromatic number of a
graph while keeping the clique number fixed: χ(M(G)) = χ(G)+1 and ω(M(G)) = ω(G).

Following Tardif [152], the same construction can also be described as the direct (also
called categorical) product of G with a path on three vertices having a loop at one end and
then identifying all vertices that have the other end of the path as their first coordinate.
Recall that the direct product of F and G is a graph on V (F )×V (G) with an edge between
(u, v) and (u′, v′) if and only if {u, u′} ∈ E(F ) and {v, v′} ∈ E(G). The generalized
Mycielskian of G (called a cone over G by Tardif [152]) Mr(G) is then defined by taking
the direct product of P and G, where P is a path on r + 1 vertices having a loop at
one end, and then identifying all the vertices in the product with the loopless end of the
path as their first coordinate. With this notation M(G) = M2(G). These graphs were
considered by Stiebitz [149], who proved that if G is k-chromatic “for a topological reason”
then Mr(G) is (k + 1)-chromatic for a similar reason. (Gyárfás, Jensen, and Stiebitz [72]
also consider these graphs and quote Stiebitz’s argument a special case of which is also
presented in [116].) The topological reason of Stiebitz is in different terms than those we
use in this work but using results of [9] they imply strong topological (t+d)-chromaticity
for graphs obtained by d iterations of the generalized Mycielski construction starting, e.g,
from Kt or from a t-chromatic Schrijver graph. More precisely, Stiebitz proved that the
body of the so-called neighborhood complex N (Mr(G)) of Mr(G), introduced in [108] by
Lovász, is homotopy equivalent to the suspension of ||N (G)||. Since susp(Sn) ∼= Sn+1 this
implies that whenever ||N (G)|| is homotopy equivalent to an n-dimensional sphere, then
||N (Mr(G))|| is homotopy equivalent to the (n + 1)-dimensional sphere. This happens,
for example, if G is a complete graph, or an odd cycle. By a recent result of Björner and
de Longueville [22] we also have a similar situation if G is isomorphic to any Schrijver
graph SG(n, k). Notice that the latter include complete graphs and odd cycles.
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It is known, that ||N (F )|| is homotopy equivalent to H(F ) for every graph F , see
Proposition 4.2 in [9]. All this implies that coind(H(Mr(G))) = coind(H(G))+1 whenever
H(G) is homotopy equivalent to a sphere, in particular, whenever G is a complete graph
or an odd cycle, or, more generally, a Schrijver graph. In the first version of the paper this
section is based on we wrote that it is very likely that Stiebitz’s proof can be generalized to
show that H(Mr(G)) ↔ susp(H(G)) and therefore coind(H(Mr(G))) ≥ coind(H(G)) + 1
always holds. Since then Csorba [40, 41] succeeded to prove this generalization. In fact,
he proved Z2-homotopy equivalence of H(Mr(G)) and susp(H(G)). Nevertheless, here we
restrict attention to graphs G with H(G) homotopy equivalent to a sphere.

For an integer vector r = (r1, . . . , rd) with ri ≥ 1 for all i we let M
(d)
r (G) =

Mrd(Mrd−1
(. . .Mr1(G) . . .)) denote the graph obtained by a d-fold application of the gen-

eralized Mycielski construction with respective parameters r1, . . . , rd. Now we state Stieb-
itz’s result with this notation for later reference.

Proposition 3.1.12 (Stiebitz) If G is a graph for which H(G) is homotopy equivalent
to a sphere Sh with h = χ(G) − 2 (in particular, G is a complete graph or an odd cycle,

or, more generally, a Schrijver graph) and r = (r1, . . . , rd) is arbitrary, then M
(d)
r (G) is

strongly topologically t-chromatic for t = χ(M
(d)
r (G)) = χ(G) + d. �

It is interesting to remark that χ(Mr(G)) > χ(G) does not hold in general if r ≥ 3, e.g.,
for C7, the complement of the 7-cycle, one has χ(M3(C7)) = χ(C7) = 4 (cf. [152]). Still,

the result of Stiebitz implies that the sequence {χ(M
(d)
r (G))}∞d=1 may avoid to increase

only a finite number of times.

The fractional chromatic number of Mycielski graphs were determined by Larsen,
Propp, and Ullman [103], who proved that χ∗(M(G)) = χ∗(G) + 1

χ∗(G)
holds for every G.

This already shows that there is a large gap between the chromatic and the fractional
chromatic numbers of M

(d)
r (G) if d is large enough and ri ≥ 2 for all i, since obviously,

χ∗(Mr(F )) ≤ χ∗(M(F )) holds if r ≥ 2. The previous result was generalized by Tardif
[152] who showed that χ∗(Mr(G)) can also be expressed by χ∗(G) as χ∗(G)+ 1

Pr−1
i=0

(χ∗(G)−1)i

whenever G has at least one edge.

First we show that for the original Mycielski construction the local chromatic number
behaves similarly to the chromatic number.

Proposition 3.1.13 For any graph G we have

ψ(M(G)) = ψ(G) + 1.

Proof. We proceed similarly as one does in the proof of χ(M(G)) = χ(G) + 1. Recall
that V (M(G)) = {0, 1} × V (G) ∪ {z}.

For the upper bound consider a coloring c′ of G establishing its local chromatic number
and let α and β be two colors not used by c′. We define c((0, x)) = c′(x), c((1, x)) = α
and c(z) = β. This proper coloring shows ψ(M(G)) ≤ ψ(G) + 1.
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For the lower bound consider an arbitrary proper coloring c of M(G). We have to
show that some vertex must see at least ψ(G) different colors in its neighborhood.

We define the coloring c′ of G as follows:

c′(x) =

{

c((0, x)) if c((0, x)) 6= c(z)
c((1, x)) otherwise.

It follows from the construction that c′ is a proper coloring of G. Note that c′ does not
use the color c(z).

By the definition of ψ(G), there is some vertex x of G that has at least ψ(G) − 1
different colors in its neighborhood NG(x). If c′(y) = c(0, y) for all vertices y ∈ NG(x),
then the vertex (1, x) has all these colors in its neighborhood, and also the additional
color c(z). If however c′(y) 6= c(0, y) for a neighbor y of x, then the vertex (0, x) sees
all the colors in c′(NG(x)) in its neighborhood NM(G)(0, x), and also the additional color
c(0, y) = c(z). In both cases a vertex has ψ(G) different colors in its neighborhood as
claimed. �

We remark that M1(G) is simply the graph G with a new vertex connected to every
vertex of G, therefore the following trivially holds.

Proposition 3.1.14 For any graph G we have

ψ(M1(G)) = χ(G) + 1.

�

For our first upper bound we apply Lemma 3.1.10. We use the following result of
Gyárfás, Jensen, and Stiebitz [72]. The lemma below is an immediate generalization of
the l = 2 special case of Theorem 4.1 in [72]. We reproduce the simple proof from [72]
for the sake of completeness.

Lemma 3.1.15 ([72]) If G has a wide coloring with t colors and r ≥ 7, then Mr(G) has
a wide coloring with t + 1 colors.

Proof. As there is a homomorphism from Mr(G) to M7(G) if r > 7 it is enough to give
the coloring for r = 7. We fix a wide t-coloring c0 of G and use the additional color γ.
The coloring of M7(G) is given as

c((v, x)) =

{

γ if v is the vertex at distance 3, 5 or 7 from the loop
c0(x) otherwise.

It is straightforward to check that c is a wide coloring. �

We can apply the results of Stiebitz and Gyárfás et al. recursively to give tight or
almost tight bounds for the local chromatic number of the graphs M

(d)
r (G) in many cases:
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Corollary 3.1.16 If G has a wide t-coloring and r = (r1, . . . , rd) with ri ≥ 7 for all i,

then ψ(M
(d)
r (G)) ≤ t+d

2
+ 2.

If H(G) is homotopy equivalent to a sphere Sh, then ψ(M
(d)
r (G)) ≥ h+d

2
+ 2.

Proof. For the first statement we apply Lemma 3.1.15 recursively to show that M
(d)
r (G)

has a wide (t+ d)-coloring and then apply Lemma 3.1.10.
For the second statement we apply the result of Stiebitz recursively to show that

H(M
(d)
r (G)) is homotopy equivalent to Sh+d. As noted in the preliminaries of the present

subsection this implies coind(H(M
(d)
r (G))) ≥ h + d. By Theorem 3.1.1 the statement

follows. �

Theorem 3.1.5 (restated) If r = (r1, . . . , rd), d is odd, and ri ≥ 7 for all i, then

ψ(M (d)
r

(K2)) =

⌈

d

2

⌉

+ 2.

Proof. Notice that for r = (r1, . . . , rd) with d odd and ri ≥ 7 for all i the lower and
upper bounds of Corollary 3.1.16 give the exact value for the local chromatic number
ψ(M

(d)
r (K2)) = (d+ 5)/2. This proves the theorem. �

Notice that a similar argument gives the exact value of ψ(G) for the more complicated

graph G = M
(d)
r (SG(n, k)) whenever n + d is odd, ri ≥ 7 for all i, and n ≥ 4t2 − 7t for

t = n−2k+2. This follows from Corollary 3.1.16 via the wide colorability of SG(n, k) for
n ≥ 4t2 − 7t shown in the proof of Theorem 3.1.3 and Björner and de Longueville’s result
[22] about the homotopy equivalence of H(SG(n, k)) to Sn−2k. (Instead of the latter we
can also use Csorba’s result [40, 41] mentioned above and refer to the strong topological
t-chromaticity of SG(n, k).)

We summarize our knowledge on ψ(M
(d)
r (K2)) after proving the following theorem,

which shows that almost the same upper bound as in Corollary 3.1.16 is implied from the
relaxed condition ri ≥ 4.

Theorem 3.1.17 For r = (r1, . . . , rd) with ri ≥ 4 for all i one has

ψ(M (d)
r

(G)) ≤ ψ(G) +

⌊

d

2

⌋

+ 2.

Moreover, for G ∼= K2, the following slightly sharper bound holds:

ψ(M (d)
r

(K2)) ≤
⌈

d

2

⌉

+ 3.
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Proof. We denote the vertices of Y := M
(d)
r (G) in accordance to the description of

the generalized Mycielski construction via graph products. That is, a vertex of Y is a
sequence a1a2 . . . adu of length (d+1), where ∀i : ai ∈ {0, 1, . . . , ri}∪{∗}, u ∈ V (G)∪{∗}
and if ai = ri for some i then necessarily u = ∗ and aj = ∗ for every j > i, and this is the

only way ∗ can appear in a sequence. To define adjacency we denote by P̂ri+1 the path
on {0, 1, . . . , ri} where the edges are of the form {i − 1, i}, i ∈ {1, . . . , ri} and there is a
loop at vertex 0. Two vertices a1a2 . . . adu and a′1a

′
2 . . . a

′
du
′ are adjacent in Y if and only

if
u = ∗ or u′ = ∗ or {u, u′} ∈ E(G) and

∀i : ai = ∗ or a′i = ∗ or {ai, a′i} ∈ E(P̂ri+1).

Our strategy is similar to that used in Remark 3.4. Namely, we give an original coloring
c0, identify the set of “troublesome” vertices for this coloring, and recolor most of the
neighbors of these vertices to a new color.

Let us fix a coloring cG of G with at most ψ(G) − 1 colors in the neighborhood of a
vertex. Let the colors we use in this coloring be called 0,−1,−2, etc. Now we define c0
as follows.

c0(a1 . . . adu) =







cG(u) if ∀i : ai ≤ 2
i if ai ≥ 3 is odd and aj ≤ 2 for all j < i
0 if ∃i : ai ≥ 4 is even and aj ≤ 2 for all j < i

It is clear that vertices having the same color form independent sets, i.e., c0 is a proper
coloring. Notice that if a vertex has neighbors of many different “positive” colors, then it
must have many coordinates that are equal to 2. Now we recolor most of the neighbors
of these vertices.

Let β be a color not used by c0 and set c(a1 . . . adu) = β if |{i : ai is odd}| > d/2.
(In fact, it would be enough to give color β only to those of the above vertices, for which
the first ⌊d

2
⌋ odd coordinates are equal to 1. We recolor more vertices for the sake of

simplicity.) Otherwise, let c(a1 . . . adu) = c0(a1 . . . adu).
First, we have to show that c is proper. To this end we only have to show that no

pair of vertices getting color β can be adjacent. If two vertices, x = x1 . . . xdvx and
y = y1 . . . ydvy are colored β then both have more than d/2 odd coordinates (among their
first d coordinates). Thus there is some common coordinate i for which xi and yi are both
odd. This implies that x and y are not adjacent.

Now we show that for any vertex a we have |c(N(a)) ∩ {1, . . . , d}| ≤ d/2. Indeed, if
|c0(N(a))∩{1, . . . , d}| > d/2 then we have a = a1 . . . adu with more than d/2 coordinates
ai that are even and positive. Furthermore, the first ⌊d/2⌋ of these coordinates should
be 2. Let I be the set of indices of these first ⌊d/2⌋ even and positive coordinates. We
claim that c(N(a))∩{1, . . . , d} ⊆ I. This is so, since if a neighbor has an odd coordinate
somewhere outside I, then it cannot have ∗ at the positions of I, therefore it has more
than d/2 odd coordinates and it is recolored by c to the color β.
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It is also clear that no vertex can see more than ψ(G) − 1 “negative” colors in its
neighborhood in either coloring c0 or c. Thus the neighborhood of any vertex can contain
at most ⌊d/2⌋ + (ψ(G) − 1) + 2 colors, where the last 2 is added because of the possible
appearance of colors β and 0 in the neighborhood. This proves ψ(Y ) ≤ d/2 + ψ(G) + 2
proving the first statement in the theorem.

For G ∼= K2 the above gives ψ(M
(d)
r (K2)) ≤ ⌊d/2⌋ + 4 which implies the second

statement for odd d. For even d the bound of the second statement is 1 less. We can gain
1 as follows. When defining c let us recolor to β those vertices a = a1 . . . adu, too, for
which the number of odd coordinates ai is exactly d

2
and cG(u) = −1. The proof proceeds

similarly as before but we gain 1 by observing that those vertices who see −1 can see only
d
2
− 1 “positive” colors. �

We collect the implications of Theorems 3.1.5, 3.1.17 and Propositions 3.1.13 and
3.1.14. It would be interesting to estimate the value ψ(M

(d)
r (K2)) for the missing case

r = (3, . . . , 3). What we know then is ⌈d/2⌉ + 2 ≤ ψ ≤ d+ 2.

Corollary 3.1.18 For r = (r1, . . . , rd) we have

ψ(M (d)
r

(K2)) =







(d+ 5)/2 if d is odd and ∀i : ri ≥ 7
⌈d/2⌉ + 2 or ⌈d/2⌉ + 3 if ∀i : ri ≥ 4
d+ 2 if rd = 1 or ∀i : ri = 2.

�

Remark 3.5. The improvement for even d given in the last paragraph of the proof of
Theorem 3.1.17 can also be obtained in a different way we explain here. Instead of
changing the rule for recoloring, we can enforce that a vertex can see only ψ(G) − 2
negative colors. This can be achieved by setting the starting graph G to be M4(K2) ∼= C9

instead of K2 itself and coloring this C9 with the pattern −1, 0,−1,−2, 0,−2,−3, 0,−3
along the cycle. One can readily check that every vertex can see only one non-0 color in
its neighborhood.

The same trick can be used also if the starting graph is not K2 or C9, but some
large enough Schrijver graph of odd chromatic number. Coloring it as in the proof of
Lemma 3.1.10 (using the wide coloring as given in the proof of Theorem 3.1.3), we arrive
to the same phenomenon if we let the new color (of the proof of Lemma 3.1.10) be 0. ♦

Remark 3.6. Gyárfás, Jensen, and Stiebitz [72] use generalized Mycielski graphs to show
that another graph they denote by Gk is k-chromatic. The way they prove it is that they
exhibit a homomorphism from M

(k−2)
r (K2) to Gk for r = (4, . . . , 4). The existence of

this homomorphism implies that Gk is strongly topologically k-chromatic, thus its local
chromatic number is at least k/2 + 1. We do not know any non-trivial upper bound
for ψ(Gk). Also note that [72] gives universal graphs for the property of having a wide
t-coloring. By Lemma 3.1.10 this graph has ψ ≤ t/2 + 2. On the other hand, since any
graph with a wide t-coloring admits a homomorphism to this graph, and we have seen
the wide t-colorability of some strongly topologically t-chromatic graphs, it is strongly
topologically t-chromatic, as well. This gives ψ ≥ t/2 + 1. ♦
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Borsuk graphs and the tightness of Ky Fan’s theorem

The following definition goes back to Erdős and Hajnal [48], see also [111].

Definition 36 The Borsuk graph B(n, α) of parameters n and 0 < α < 2 is the infinite
graph whose vertices are the points of the unit sphere in Rn (i.e., Sn−1) and its edges
connect the pairs of points with distance at least α.

The Borsuk-Ulam theorem implies that χ(B(n, α)) ≥ n + 1, and, as Lovász [111]
remarks, these two statements are in fact equivalent. For α large enough (depending
on n) this lower bound on the chromatic number is sharp as shown by the standard
(n + 1)-coloring of the sphere Sn−1 (see [111, 116] or cf. the proof of Corollary 3.1.20
below).

The local chromatic number of Borsuk graphs for large enough α (and n even) can
also be determined by our methods. First we want to argue that Theorem 3.1.1 is ap-
plicable for this infinite graph. Lovász gives in [111] for any n and α a finite graph
GP = GP (n, α) ⊆ B(n, α) which has the property that its neighborhood complex N (GP )
is homotopy equivalent to Sn−1. Now we can continue the argument the same way as in
the previous subsection: Proposition 4.2 in [9] states that N (F ) is homotopy equivalent
to H(F ) for every graph F , thus coind(H(GP )) ≥ n− 1, i.e., GP is strongly topologically
(n + 1)-chromatic. As GP ⊆ B(n, α) we have ⌈n+3

2
⌉ ≤ ψ(GP ) ≤ ψ(B(n, α)) by Theorem

3.1.1.
The following lemma shows the special role of Borsuk graphs among strongly topo-

logically t-chromatic graphs. It will also show that our earlier upper bounds on the local
chromatic number have direct implications for Borsuk graphs.

Lemma 3.1.19 A finite graph G is strongly topologically (n + 1)-chromatic if and only
if for some α < 2 there is a graph homomorphism from B(n, α) to G.

Proof. For the if part consider the finite graph GP ⊆ B(n, α) given by Lovász [111]
satisfying coind(H(GP )) ≥ n − 1. If there is a homomorphism from B(n, α) to G, it
clearly gives a homomorphism also from GP to G which further generates a Z2-map from
H(GP ) to H(G). This proves coind(H(G)) ≥ n− 1.

For the only if part, let f : Sn−1 → H(G) be a Z2-map. For a point x ∈ Sn−1

write f(x) ∈ H(G) as the convex combination f(x) =
∑

αv(x)||+v|| +
∑

βv(x)||−v|| of
the vertices of ||B0(G)||. Here the summations are for the vertices v of G,

∑

αv(x) =
∑

βv(x) = 1/2, and {v : αv(x) > 0} ⊎ {v : βv(x) > 0} ∈ B0(G). Note that αv and
βv are continuous as f is continuous and βv(x) = αv(−x) by the equivariance of f . Set
ε = 1/(2|V (G)|). For x ∈ Sn−1 select an arbitrary vertex v = g(x) of G with αv ≥ ε. We
claim that g is a graph homomorphism from B(n, α) to G if α is close enough to 2. By
compactness it is enough to prove that if we have vertices v and w of G and sequences
xi → x and yi → −x of points in Sn−1 with g(xi) = v and g(yi) = w for all i, then v
and w are connected in G. But since αv is continuous we have αv(x) ≥ ε and similarly
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βw(x) = αw(−x) ≥ ε and so +v and −w are contained in the smallest simplex of B0(G)
containing f(x) proving that v and w are connected. �

By Lemma 3.1.19 either of Theorems 3.1.3 or 3.1.5 implies that the above given lower
bound on ψ(B(n, α)) is tight whenever χ(B(n, α)) is odd, that is, n is even, and α < 2 is
close enough to 2. In the following corollary we give an explicit bound on α by proving
for that value of α that the standard coloring is wide.

Corollary 3.1.20 If n is even and 2 cos
(

arcsin(n+2)−1/2

5

)

< α < 2, then

ψ(B(n, α)) =
n

2
+ 2.

Proof. The lower bound on ψ(B(n, α)) follows from the discussion preceding
Lemma 3.1.19. The upper bound follows from Lemma 3.1.10 as long as we can give
a wide (n+ 1)-coloring of the graph B(n, α).

To this end we use the standard (n + 1)-coloring of B(n, α) (see, e.g., [111, 116]).
Consider a regular simplex R inscribed into the unit sphere Sn−1 and color a point x ∈
Sn−1 by the facet of R intersected by the segment from the origin to x. If this segment
meets a lower dimensional face then we arbitrarily choose a facet containing this face.
To see for what α gives this a proper coloring we have to find the maximal distance α0

between pairs of points that we can color the same. Calculation shows that projections
from the origin of the middle points of two disjoint (n/2 − 1)-dimensional faces of R are
farthest apart, thus α0 = 2

√

1 − 1/(n+ 2). (Notice that [111] gives a different treshold
value for α. We were informed by László Lovász [113], however, that it was noticed by
several researchers that the correct value is larger than the one given in [111].)

We let ϕ = 2 arccos(α/2). Clearly, x and y is connected if and only if the length of the
shortest arc on Sn−1 connecting −x and y is at most ϕ. Therefore x and y are connected
by a walk of length 5 if and only if the length of this same minimal arc is at most 5ϕ. For
the standard coloring the length of the shortest arc between −x and y for two vertices
x and y colored with the same color is at least 2 arccos(α0/2) = 2 arcsin(n + 2)−1/2.

Therefore the standard coloring is wide as long as α > 2 cos
(

arcsin(n+2)−1/2

5

)

. �

Our investigations of the local chromatic number led us to consider the following
function Q(h). The question of its values was independently asked by Micha Perles
motivated by a related question of Matatyahu Rubin1.

Definition 37 For a nonnegative integer parameter h let Q(h) denote the minimum l for
which Sh can be covered by open sets in such a way that no point of the sphere is contained
in more than l of these sets and none of the covering sets contains an antipodal pair of
points.

1We thank Imre Bárány [12] and Gil Kalai [84] for this information.
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Ky Fan’s theorem implies Q(h) ≥ h
2

+ 1. Either of Theorems 3.1.3 or 3.1.5 implies the
upper bound Q(h) ≤ h

2
+ 2. Using the concepts of Corollary 3.1.20 and Lemma 3.1.10

one can give an explicit covering of the sphere S2l−3 by open subsets where no point is
contained in more than l of the sets and no set contains an antipodal pair of points. In
fact, the covering we give satisfies a stronger requirement and proves that version (ii) of
Ky Fan’s theorem is tight, while version (i) is almost tight.

Corollary 3.1.21 There is a configuration A of k + 2 open (closed) sets such that
∪A∈A(A ∪ (−A)) = Sk, all sets A ∈ A satisfy A ∩ (−A) = ∅, and no x ∈ Sk is con-
tained in more than

⌈

k+1
2

⌉

of these sets.
Furthermore, for every x the number of sets in A containing either x or −x is at

most k + 1.

Proof. First we construct closed sets. Consider the unit sphere Sk in Rk+1. Let R be
a regular simplex inscribed in the sphere. Let B1, . . . , Bk+2 be the subsets of the sphere
obtained by the central projection of the facets of R. These closed sets cover Sk. Let C0

be the set of points covered by at least
⌈

k+3
2

⌉

of the sets Bi. Notice that C0 is the union of
the central projections of the ⌊k−1

2
⌋-dimensional faces of R. For odd k let C = C0, while

for even k let C = C0 ∪C1, where C1 is the set of points in B1 covered by exactly k/2 + 1
of the sets Bi. Thus C1 is the union of the central projections of the k

2
-dimensional faces

of a facet of R. Observe that C ∩ (−C) = ∅. Take 0 < δ < dist(C,−C)/2 and let D be
the open δ-neighborhood of C in Sk. For 1 ≤ i ≤ k+ 2 let Ai = Bi \D. These closed sets
cover Sk \D and none of them contains a pair of antipodal points. As D ∩ (−D) = ∅ we
have ∪k+2

i=1 (Ai ∪ (−Ai)) = Sk. It is clear that every point of the sphere is covered by at
most

⌈

k+1
2

⌉

of the sets Ai proving the first statement of the corollary.
For the second statement note that if each set Bi contains at least one of a pair of

antipodal points, then one of these points belongs to C and is therefore not covered by
any of the sets Ai. Note also, that for odd k the second statement follows also from the
first.

To construct open sets as required we can simply take the open ε-neighborhoods of
Ai. For small enough ε > 0 they maintain the properties required in the corollary. �

Corollary 3.1.22 There is a configuration of k + 3 open (closed) sets covering Sk none
of which contains a pair of antipodal points, such that no x ∈ Sk is contained in more
than ⌈k+3

2
⌉ of these sets and for every x ∈ Sk the number of sets that contain one of x

and −x is at most k + 2.

Proof. For closed sets consider the sets Ai in the proof of Corollary 3.1.21 together
with the closure of D. For open sets consider the open ε-neighborhoods of these sets for
suitably small ε > 0. �

Note that covering with k + 3 sets is optimal in Corollary 3.1.22 if k ≥ 3. By the
Borsuk-Ulam Theorem (form (i)) fewer than k + 2 open (or closed) sets not containing
antipodal pairs of points is not enough to cover Sk. If we cover with k + 2 sets (open or
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closed), then it gives rise to a proper coloring of B(k+1, α) for large enough α in a natural
way. This coloring uses the optimal number k+ 2 of colors, therefore it has a vertex with
k + 1 different colors in its neighborhood. A compactness argument establishes from this
that there is a point in Sk covered by k + 1 sets. A similar argument gives that k + 2 in
Corollary 3.1.21 is also optimal if k ≥ 3.

Corollary 3.1.23
h

2
+ 1 ≤ Q(h) ≤ h

2
+ 2.

Proof. The lower bound is implied by Ky Fan’s theorem. The upper bound follows from
Corollary 3.1.22. �

Notice that for odd h Corollary 3.1.23 gives the exact value Q(h) = h+3
2

. For h even
we either have Q(h) = h

2
+ 1 or Q(h) = h

2
+ 2. It is trivial that Q(0) = 1. In [146] we

show Q(2) = 3. This was independently proved by Imre Bárány [12]. For h > 2 even it
remains open whether the lower or the upper bound of Corollary 3.1.23 is tight.

3.1.5 Circular colorings

In this subsection we show an application of the Zig-zag theorem for the circular chromatic
number of graphs. This will result in the partial solution of a conjecture by Johnson,
Holroyd, and Stahl [81] and in a partial answer to a question of Hajiabolhassan and Zhu
[73] concerning the circular chromatic number of Kneser graphs and Schrijver graphs,
respectively. We also answer a question of Chang, Huang, and Zhu [29] concerning the
circular chromatic number of iterated Mycielskians of complete graphs.

The circular chromatic number of a graph was introduced by Vince [157] under the
name star chromatic number as follows.

Definition 38 For positive integers p and q a coloring c : V (G) → [p] of a graph G is
called a (p, q)-coloring if for all adjacent vertices u and v one has q ≤ |c(u)−c(v)| ≤ p−q.
The circular chromatic number of G is defined as

χc(G) = inf

{

p

q
: there is a (p, q)-coloring of G

}

.

It is known that the above infimum is always attained for finite graphs. An alternative
description of χc(G), explaining its name, is that it is the minimum length of the perimeter
of a circle on which we can represent the vertices of G by arcs of length 1 in such a way
that arcs belonging to adjacent vertices do not overlap. For a proof of this equivalence
and for an extensive bibliography on the circular chromatic number we refer to Zhu’s
survey article [159].

It is known that for every graph G one has χ(G) − 1 < χc(G) ≤ χ(G). Thus χc(G)
determines the value of χ(G) while this is not true the other way round. Therefore the
circular chromatic number can be considered as a refinement of the chromatic number.
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Our main result on the circular chromatic number is Theorem 3.1.6. Here we restate
the theorem with the explicit meaning of being topologically t-chromatic.

Theorem 3.1.6 (restated) For a finite graph G we have χc(G) ≥ coind(B0(G)) + 1 if
coind(B0(G)) is odd.

Proof. Let t = coind(B0(G)) + 1 be an even number and let c be a (p, q)-coloring of G.
By the Zig-zag theorem there is a K t

2
, t
2

in G which is completely multicolored by colors
appearing in an alternating manner in its two sides. Let these colors be c1 < c2 < . . . < ct.
Since the vertex colored ci is adjacent to that colored ci+1, we have ci+1 ≥ ci + q and
ct ≥ c1 +(t−1)q. Since t is even, the vertices colored c1 and ct are also adjacent, therefore
we must have ct − c1 ≤ p− q. The last two inequalities give p/q ≥ t as needed. �

This result has been independently obtained by Meunier [121] for Schrijver graphs.

Circular chromatic number of even chromatic Kneser and Schrijver graphs

Johnson, Holroyd, and Stahl [81] considered the circular chromatic number of Kneser
graphs and formulated the following conjecture. (See also as Conjecture 7.1 and Question
8.27 in [159].)

Conjecture (Johnson, Holroyd, Stahl [81]): For any n ≥ 2k

χc(KG(n, k)) = χ(KG(n, k)).

It is proven in [81] that the above conjecture holds if k = 2 or n = 2k + 1 or n = 2k + 2.
Lih and Liu [105] investigated the circular chromatic number of Schrijver graphs and

proved that χc(SG(n, 2)) = n − 2 = χ(SG(n, 2)) whenever n 6= 5. (For n = 2k + 1 one
always has χc(SG(2k + 1, k)) = 2 + 1

k
.) It was conjectured in [105] and proved in [73]

that for every fixed k there is a threshold l(k) for which n ≥ l(k) implies χc(SG(n, k)) =
χ(SG(n, k)). This clearly implies the analogous statement for Kneser graphs, for which
the explicit threshold l(k) = 2k2(k − 1) is given in [73]. At the end of their paper
[73] Hajiabolhassan and Zhu ask what is the minimum l(k) for which n ≥ l(k) implies
χc(SG(n, k)) = χ(SG(n, k)). We show that no such threshold is needed if n is even.

Corollary 3.1.24 The Johnson-Holroyd-Stahl conjecture holds for every even n. More-
over, if n is even, then the stronger equality

χc(SG(n, k)) = χ(SG(n, k))

also holds.

Proof. As t-chromatic Kneser graphs and Schrijver graphs are topologically t-chromatic,
Theorem 3.1.6 implies the statement of the corollary. �

As mentioned above this result has been obtained independently by Meunier [121].

Later, in Theorem 3.1.27 we show that for odd n the situation is different.
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Circular chromatic number of Mycielski graphs and Borsuk graphs

The circular chromatic number of Mycielski graphs was also studied extensively, cf. [29,
51, 74, 159]. Chang, Huang, and Zhu [29] formulated the conjecture that χc(M

d(Kn)) =
χ(Md(Kn)) = n + d whenever n ≥ d + 2. Here Md(G) denotes the d-fold iterated
Mycielskian of graph G, i.e., using the notation of Subsection 3.1.4 we have Md(G) =

M
(d)
r (G) with r = (2, . . . , 2). The above conjecture was verified for the special cases

d = 1, 2 in [29], where it was also shown that χc(M
d(G)) ≤ χ(Md(G)) − 1/2 if χ(G) =

d + 1. A simpler proof for the above special cases of the conjecture was given (for d = 2
with the extra condition n ≥ 5) in [51]. Recently Hajiabolhassan and Zhu [74] proved
that n ≥ 2d + 2 implies χc(M

d(Kn)) = χ(Md(Kn)) = n + d. Our results show that
χc(M

d(Kn)) = χ(Md(Kn)) = n + d always holds if n + d is even. This also answers the
question of Chang, Huang, and Zhu asking the value of χc(M

n(Kn)) (Question 2 in [29]).
The stated equality is given by the following immediate consequence of Theorem 3.1.6.

Corollary 3.1.25 If H(G) is homotopy equivalent to the sphere Sh, r is a vector of

positive integers, and h+ d is even, then χc(M
(d)
r (G)) ≥ d+ h + 2.

In particular, χc(M
(d)
r (Kn)) = n+ d whenever n + d is even.

Proof. The condition on G implies coind(H(M
(d)
r (G))) = h + d by Stiebitz’s result

[149] (cf. the discussion and Proposition 3.1.12 in Subsection 3.1.4), which further implies

coind(B0(M
(d)
r (G))) = h+ d+ 1. This gives the conclusion by Theorem 3.1.6.

The second statement follows by the homotopy equivalence of H(Kn) with Sn−2 and

the chromatic number of M
(d)
r (Kn) being n+ d. �

The above mentioned conjecture of Chang, Huang, and Zhu for n + d even is a special
case with r = (2, 2, . . . , 2) and n ≥ d + 2. Since n + n is always even, the answer
χc(M

n(Kn)) = 2n to their question also follows.

Corollary 3.1.25 also implies a recent result of Lam, Lin, Gu, and Song [102] who proved
that for the generalized Mycielskian of odd order complete graphs χc(Mr(K2m−1)) = 2m.

Lam, Lin, Gu, and Song [102] also determined the circular chromatic number of the
generalized Mycielskian of even order complete graphs. They proved χc(Mr(K2m)) =
2m + 1/(⌊(r − 1)/m⌋ + 1). This result can be used to bound the circular chromatic
number of the Borsuk graph B(2s, α) from above.

Theorem 3.1.26 For the Borsuk graph B(n, α) we have

(i) χc(B(n, α)) = n+ 1 if n is odd and α is large enough;

(ii) χc(B(n, α)) → n as α → 2 if n is even.

97



Proof. The lower bound of part (i) immediately follows from Theorem 3.1.6 considering
again the finite subgraph GP of B(n, α) defined in [111] and already mentioned in the
proof of Lemma 3.1.19. The matching upper bound is provided by χ(B(n, α)) = n + 1
for large enough α, see [111] and Subsection 3.1.4.

For (ii) we have χc(B(n, α)) > χ(B(n, α)) − 1 ≥ n. For an upper bound we use that
χc(Mr(Kn)) → n if r goes to infinity by the result of Lam, Lin, Gu, and Song [102] quoted
above. By the result of Stiebitz [149] and Lemma 3.1.19 we have a graph homomorphism
from B(n, α) to Mr(Kn) for any r and large enough α. As (p, q)-colorings can be defined
in terms of graph homomorphisms (see [25]), we have χc(G) ≤ χc(H) if there exists a
graph homomorphism from G to H . This completes the proof of part (ii) of the theorem.
�

Circular chromatic number of odd chromatic Schrijver graphs

In this subsection we show that the parity condition on χ(SG(n, k)) in Corollary 3.1.24
is relevant, for odd chromatic Schrijver graphs the circular chromatic number can be
arbitrarily close to its lower bound.

Theorem 3.1.27 For every ε > 0 and every odd t ≥ 3 if n ≥ t3/ε and t = n − 2k + 2,
then

1 − ε < χ(SG(n, k)) − χc(SG(n, k)) < 1.

The second inequality is well-known and holds for any graph. We included it only for
completeness. To prove the first inequality we need some preparation. We remark that
the bound on n in the theorem is not best possible. Our method proves χ(SG(n, k)) −
χc(SG(n, k)) ≥ 1 − 1/i if i is a positive integer and n ≥ 6(i− 1)

(

t
3

)

+ t.
First we extend our notion of wide coloring.

Definition 39 For a positive integer s we call a vertex coloring of a graph s-wide if the
two end vertices of any walk of length 2s− 1 receive different colors.

Our original wide colorings are 3-wide, while 1-wide simply means proper. Gyárfás,
Jensen, and Stiebitz [72] investigated s-wide colorings (in different terms) and mention
(referring to a referee in the s > 2 case) the existence of homomorphism universal graphs
for s-wide colorability with t colors. We give a somewhat different family of such universal
graphs. (These graphs were later independently found by Baum and Stiebitz [13].) In
the s = 2 case the color-criticality of the given universal graph is proven in [72] implying
its minimality among graphs admitting 2-wide t-colorings. Later in Subsection 3.1.6 we
generalize this result showing that the members of our family are color-critical for every
s. (This result was also independently obtained later by Baum and Stiebitz [13].) Thus
they must be minimal and therefore isomorphic to a retract of the corresponding graphs
given in [72].
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Definition 40 Let Hs be the path on the vertices 0, 1, 2, . . . , s (i and i− 1 connected for
1 ≤ i ≤ s) with a loop at s. We define W (s, t) to be the graph with

V (W (s, t)) = {(x1 . . . xt) : ∀i xi ∈ {0, 1, . . . , s}, ∃!i xi = 0, ∃j xj = 1},

E(W (s, t)) = {{x1 . . . xt, y1 . . . yt} : ∀i {xi, yi} ∈ E(Hs)}.

Note that W (s, t) is an induced subgraph of the direct power H t
s (cf. the introduction

of the generalized Mycielski construction in Subsection 3.1.4).

Proposition 3.1.28 A graph G admits an s-wide coloring with t colors if and only if
there is a homomorphism from G to W (s, t).

Proof. For the if part color vertex x = x1 . . . xt of W (s, t) with c(x) = i if xi = 0. Any
walk between two vertices colored i either has even length or contains two vertices y and
z with yi = zi = s. These y and z are both at least at distance s apart from both ends
of the walk, thus our coloring of W (s, t) with t colors is s-wide. Any graph admitting a
homomorphism ϕ to W (s, t) is s-widely colored with t colors by cG(v) := c(ϕ(v)).

For the only if part assume c is an s-wide t-coloring of G with colors 1, . . . , t. Let ϕ(v)
be an arbitrary vertex of W (s, t) if v is an isolated vertex of G. For a non-isolated vertex
v of G let ϕ(v) = x = x1 . . . xt with xi = min(s, di(v)), where di(v) is the distance of color
class i from v. It is clear that xi = 0 for i = c(v) and for no other i, while xi = 1 for the
colors of the neighbors of v in G. Thus the image of ϕ is indeed in V (W (s, t)). It takes
an easy checking that ϕ is a homomorphism. �

The following lemma is a straightforward extension of the argument given in the proof
of Theorem 3.1.3.

Lemma 3.1.29 If t = n − 2k + 2 and n ≥ (2s − 2)t2 − (4s − 5)t then SG(n, k) admits
an s-wide t-coloring.

Proof. We use the notation introduced in the proof of Theorem 3.1.3.
Let n ≥ t(2(s−1)(t−2)+1) as in the statement and let c0 be the coloring defined in the

mentioned proof. The lower bound on n now allows to assume that |Ci| ≥ (s−1)(t−2)+1.
We show that c0 is s-wide.

Consider a walk x0x1 . . . x2s−1 of length (2s− 1) in SG(n, k) and let i = c0(x0). Then
Ci ⊆ x0. By Lemma 3.1.11 |x0 \ x2s−2| ≤ (s− 1)(t− 2) < |Ci|. Thus x2s−2 is not disjoint
from Ci. As x2s−1 is disjoint from x2s−2, it does not contain Ci and thus its color is not
i. �

Lemma 3.1.30 W (s, t) admits a homomorphism to Ms(Kt−1).
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Proof. Recall our notation for the (iterated) generalized Mycielskians from Subsection
3.1.4.

We define the following mapping from V (W (s, t)) to V (Ms(Kt−1)).

ϕ(x1 . . . xt) :=

{

(s− xt, i) if xt 6= xi = 0
(s, ∗) if xt = 0.

One can easily check that ϕ is indeed a homomorphism. �

Proof of Theorem 3.1.27. By Lemma 3.1.29, if n ≥ (2s − 2)t2 − (4s − 5)t, then
SG(n, k) has an s-wide t-coloring, thus by Proposition 3.1.28 it admits a homomorphism to
W (s, t). Composing this with the homomorphism given by Lemma 3.1.30 we conclude that
SG(n, k) admits a homomorphism to Ms(Kt−1), implying χc(SG(n, k)) ≤ χc(Ms(Kt−1)).

We continue by using Lam, Lin, Gu, and Song’s result [102], who proved, as already
quoted earlier, that χc(Ms(Kt−1)) = t − 1 + 1

⌊ 2s−2

t−1 ⌋+1
if t is odd. Thus, for odd t and

i > 0 integer we choose s = (t − 1)(i − 1)/2 + 1 and χ(SG(n, k)) − χc(SG(n, k)) =
t− χc(SG(n, k)) ≥ 1 − 1/i follows from the n ≥ 6(i− 1)

(

t
3

)

+ t bound.
To get the form of the statement claimed in the theorem we choose i = ⌊1/ε⌋ + 1. �

Remark 3.7. It is not hard to see that the graphs Ms(Kt−1) can also be interpreted as
homomorphism universal graphs for a property related to wide colorings. Namely, a graph
admits a homomorphism into Ms(Kt−1) if and only if it can be colored with t colors so
that there is no walk of length 2s− 1 connecting two (not necessarily different) points of
one particular color class, say, color class t. Realizing this, the statement of Lemma 3.1.30
is immediate. ♦

3.1.6 Further remarks

Color-criticality of W (s, t)

In this subsection we prove the edge color-criticality of the graphs W (s, t) introduced in
the previous subsection. This generalizes Theorem 2.3 in [72], see Remark 3.8 after the
proof. (As we already mentioned, this result was later independently obtained also by
Baum and Stiebitz [13].)

Theorem 3.1.31 For every integer s ≥ 1 and t ≥ 2 the graph W (s, t) has chromatic
number t, but deleting any of its edges the resulting graph is (t− 1)-chromatic.

Proof. χ(W (s, t)) ≥ t follows from the fact that some t-chromatic Schrijver graphs admit
a homomorphism to W (s, t) which is implied by Lemma 3.1.29 and Proposition 3.1.28.
The coloring giving vertex x = x1 . . . xt of W (s, t) color i iff xi = 0 is proper proving
χ(W (s, t)) ≤ t.

We prove edge-criticality by induction on t. For t = 2 the statement is trivial as
W (s, t) is isomorphic to K2. Assume that t ≥ 3 and edge-criticality holds for t − 1. Let
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{x1 . . . xt, y1 . . . yt} be an edge of W (s, t) and W ′ be the graph remaining after removal of
this edge. We need to give a proper (t− 1)-coloring c of W ′.

Let i and j be the coordinates for which xi = yj = 0. We have xj = yi = 1, in
particular, i 6= j. Let r be a coordinate different from both i and j. We may assume
without loss of generality that r = 1, and also that y1 ≥ x1. Coordinates i and j make sure
that x2x3 . . . xt and y2y3 . . . yt are vertices of W (s, t− 1), and in fact, they are connected
by an edge e.

A proper (t−2)-coloring of the graph W (s, t−1)\e exists by the induction hypothesis.
Let c0 be such a coloring. Let α be a color of c0 and β a color that does not appear in c0.
We define the coloring c of W ′ as follows:

c(z1z2 . . . zt) =























α if z1 < x1, x1 − z1 is even
β if z1 < x1, x1 − z1 is odd
α if z1 = x1 = 1, zi 6= 1 for i > 1
β if z1 > x1, zi = xi for i > 1
c0(z2z3 . . . zt) otherwise.

It takes a straightforward case analysis to check that c is a proper (t− 1)-coloring of
W ′. �

Remark 3.8. Gyárfás, Jensen, and Stiebitz [72] proved the s = 2 version of the previous
theorem using a homomorphism from their universal graph with parameter t to a gener-
alized Mycielskian of the same type of graph with parameter t − 1. In fact, our proof is
a direct generalization of theirs using very similar ideas. Behind the coloring we gave is
the recognition of a homomorphism from W (s, t) to M3s−2(W (s, t− 1)). ♦

Hadwiger’s conjecture and the Zig-zag theorem

Hadwiger’s conjecture, one of the most famous open problems in graph theory, states that
if a graph G contains no Kr+1 minor, then χ(G) ≤ r. For detailed information on the
history and status of this conjecture we refer to Toft’s survey [154]. We only mention that
even χ(G) = O(r) is not known to be implied by the hypothesis for general r.

As a fractional and linear approximation version, Reed and Seymour [129] proved that
if G has no Kr+1 minor then χ∗(G) ≤ 2r. This means that graphs with χ∗(G) and χ(G)
appropriately close and not containing a Kr+1 minor satisfy χ(G) = O(r).

We know that the main examples of graphs in [133] for χ∗(G) << χ(G) (Kneser
graphs, Mycielski graphs), as well as many other graphs studied in this section, satisfy
the hypothesis of the Zig-zag theorem, therefore their t-chromatic versions must contain
K⌈ t

2
⌉,⌊ t

2
⌋ subgraphs. (We mention that for strongly topologically t-chromatic graphs this

consequence, in fact, the containment of Ka,b for every a, b satisfying a + b = t, was
proven by Csorba, Lange, Schurr, and Waßmer [42].) However, a K⌈ t

2
⌉,⌊ t

2
⌋ subgraph

contains a K⌊ t
2
⌋+1 minor (just take a matching of size ⌊ t−2

2
⌋ plus one point from each side

of the bipartite graph) proving the following statement which shows that the same kind
of approximation is valid for these graphs, too.
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Corollary 3.1.32 If a topologically t-chromatic graph contains no Kr+1 minor, then t <
2r.

�

Acknowledgments: We thank Imre Bárány, Péter Csorba, Gábor Elek, László Fehér,
László Lovász, Jǐŕı Matoušek, and Gábor Moussong for many fruitful conversations that
helped us to better understand the topological concepts used in our work.
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3.2 Colorful subgraphs in Kneser-like graphs

In this section we combine Ky Fan’s theorem with ideas of Greene and Matoušek to
prove a generalization of Dol’nikov’s theorem. Using another variant of the Borsuk-Ulam
theorem due to Tucker and Bacon, we also prove the presence of all possible completely
multicolored t-vertex complete bipartite graphs in t-colored t-chromatic Kneser graphs
and in several of their relatives. In particular, this implies a generalization of a recent
result of G. Spencer and F. E. Su.

This section is based on the joint paper [145] with Gábor Tardos.

3.2.1 Introduction

The solution of Kneser’s conjecture in 1978 by László Lovász [108] opened up a new area
of combinatorics that is usually referred to as topological combinatorics [43], [21]. Many
results of this area, including the first one by Lovász, belong to one of its by now most
developed branches that applies the celebrated Borsuk-Ulam theorem to graph coloring
problems. An account of such results and other applications of the Borsuk-Ulam theorem
in combinatorics is given in the excellent book of Matoušek [116].

Recently it turned out that a generalization of the Borsuk-Ulam theorem found by
Ky Fan [52] in 1952 can give useful generalizations and variants of the Lovász-Kneser
theorem. Examples of such results can be found in [121, 144, 147, 148], cf. also the
previous section.

In this section our aim is twofold. In Subsection 3.2.2 we show a further application
of Ky Fan’s theorem. More precisely, we give a generalization of Dol’nikov’s theorem,
which is itself a generalization of the Lovász-Kneser theorem. The proof will be a simple
combination of Ky Fan’s result with the simple proof of Dol’nikov’s theorem given by
Matoušek in [116] that was inspired by Greene’s recent proof [69] of the Lovász-Kneser
theorem.

In Section 3.2.3 we use another variant of the Borsuk-Ulam theorem due to Tucker
[153] and Bacon [10] to show a property of optimal colorings of certain t-chromatic graphs,
including Kneser graphs, Schrijver graphs, Mycielski graphs, Borsuk graphs, odd chro-
matic rational complete graphs, and two other types of graphs we have already seen in
the previous section. The claimed property (in a somewhat weakened form) is that all
the complete bipartite graphs Kl,m with l + m = t will have totally multicolored copies
in proper t-colorings of the above graphs.

When applied to rational complete graphs this implies a somewhat different proof of
Theorem 3.1.6 of the previous section.

When applied to Kneser graphs the above property implies a generalization of a re-
cent result due to G. Spencer and F. E. Su [147, 148] which we will present in the last
subsection.
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3.2.2 A generalization of Dol’nikov’s theorem

We recall some concepts and notations from [116]. For any family F of subsets of a fixed
finite set we define the general Kneser graph KG(F) by

V (KG(F)) = F ,
E(KG(F)) = {{F, F ′} : F, F ′ ∈ F , F ∩ F ′ = ∅}.

When we refer to a Kneser graph (without the adjective “general”) we mean the “usual”
Kneser graph KG(n, k) that is identical to the general Kneser graph of a set system
consisting of all k-subsets of an n-set.

A hypergraph H is m-colorable, if its vertices can be colored by (at most) m colors
so that no hyperedge becomes monochromatic. As isolated vertices (not contained in any
hyperedge) play no role we may identify hypergraphs with the set of their edges as done
in the following definition. The m-colorability defect of a set system ∅ /∈ F is

cdm(F) := min {|Y | : {F ∈ F : F ∩ Y = ∅} is m-colorable} .

Dol’nikov’s theorem ([46]) For any finite set system ∅ /∈ F , the inequality

cd2(F) ≤ χ(KG(F))

holds.

This theorem generalizes the Lovász-Kneser theorem, as it is easy to check that if F
consists of all the k-subsets of an n-set with k ≤ n/2, then cd2(F) = n − 2k + 2 which
is the true value of χ(KG(F)) in this case. On the other hand, as also noted in [116],
equality between cd2(F) and χ(KG(F)) does not hold in general.

Recently Greene [69] found a very simple new proof of the Lovász-Kneser theorem.
In [116] Matoušek observed that one can generalize Greene’s proof so that it also gives
Dol’nikov’s theorem. Here we combine this proof with Ky Fan’s theorem to obtain the
following generalization.

Theorem 3.2.1 Let F be a finite family of sets, ∅ /∈ F and KG(F) its general Kneser
graph. Let r = cd2(F). Then any proper coloring of KG(F) with colors 1, . . . , m (m
arbitrary) must contain a completely multicolored complete bipartite graph K⌈r/2⌉,⌊r/2⌋ such
that the r different colors occur alternating on the two sides of the bipartite graph with
respect to their natural order.

This theorem generalizes Dol’nikov’s theorem, because it implies that any proper
coloring must use at least cd2(F) different colors.

Remark 3.9. Theorem 3.2.1 is clearly in the spirit of the Zig-zag theorem of [144] (see in the
previous subsection) the special case of which for Kneser graphs was already established
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by Ky Fan in [53]. Recall that this theorem claims that if coind(B0(G)) + 1 ≥ t, then the
graph must contain a completely multicolored K⌈t/2⌉,⌊t/2⌋ where the colors also alternate
on the two sides with respect to their natural order. As we will show in Remark 3.10 the
proof below can be modified to show that coind(B0(G))+1 is at least cd2(F) for any G =
KG(F). We mention that the slightly weaker inequality ind(B0(KG(F))) + 1 ≥ cd2(F)
is shown in [118]. ♦

To prove the theorem we first recall (form (ii) of) Ky Fan’s theorem [52] already
stated in the previous section. We repeat its statement for easier reference (with slight
differences in the notation). As we already mentioned, it is formulated a little differently
in [52], while this form can be found in [10]. Recall that for a set A on the unit sphere Sh

we denote by −A its antipodal set, i.e., −A = {−x : x ∈ A}.

Ky Fan’s theorem ([52]) Let A1, . . . , Am be open subsets of the h-dimensional sphere Sh

satisfying that none of them contains antipodal points (i.e., ∀i (−Ai) ∩ Ai = ∅) and that
at least one of x and −x is contained in ∪mi=1Ai for all x ∈ Sh.

Then there exists an x ∈ Sh and h + 1 distinct indices i1 < . . . < ih+1 such that
x ∈ Ai1 ∩ (−Ai2) ∩ . . . ∩ ((−1)hAih+1

).

Proof of Theorem 3.2.1. Let h = cd2(F) − 1 and consider the sphere Sh. We assume
without loss of generality that the base set X := ∪F is finite and identify its elements
with points of Sh in general position, i.e., so that at most h of them can be on a common
hyperplane through the origin. Consider an arbitrary fixed proper coloring of KG(F) with
colors 1, . . . , m. For every x ∈ Sh let H(x) denote the open hemisphere centered at x.
Define the sets A1, . . . , Am as follows. Set Ai will contain exactly those points x ∈ Sh that
have the property that H(x) contains the points of some F ∈ F which is colored by color
i in the coloring of KG(F) considered. The sets Ai are all open. None of them contains
an antipodal pair of points, otherwise there would be two disjoint open hemispheres both
of which contain some element of F that is colored i. But these two elements of F would
be disjoint contradicting the assumption that the coloring was proper. Now we show that
there is no x ∈ Sh for which neither x nor −x is in ∪mi=1Ai. Color the points in X ∩H(x)
red, the points in X ∩H(−x) blue and delete the points of X not colored, i.e., those on
the “equator” between H(x) and H(−x). Since at most h < cd2(F) points are deleted
there exists some F ∈ F which became completely red or completely blue. All points of
F are either in H(x) or in H(−x). This implies that x or −x should belong to Ai where
i is the color of F in our fixed coloring of KG(F).

Thus our sets A1, . . . , Am satisfy the conditions and therefore also the conclusion of
Ky Fan’s theorem. Let Fij ∈ F be the set responsible for x ∈ Aij for j odd and for
−x ∈ Aij for j even in the conclusion of Ky Fan’s theorem. Then all the Fij ’s with odd
j must be disjoint from all the Fij ’s with even j. Thus they form the complete bipartite
graph claimed. �

Remark 3.10. Our claim in Remark 3.9 was that the proof of Theorem 3.2.1 implies
coind(B0(KG(F))) ≥ cd2(F)− 1 for any F not containing the empty set. Here we sketch
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the proof of this claim which is similar to the proof of Proposition 3.1.9 in the previous
section. Assume again without loss of generality that X = ∪F is finite and identify
its elements with points of Sh in general position as in the proof of Theorem 3.2.1 with
h = cd2(F) − 1. For each vertex v of KG(F) and x ∈ Sh let Dv(x) be the smallest
distance of a point in v (this point is an element of X) from the set Sh \ H(x). Notice
that Dv(x) > 0 iff H(x) contains all points of v. Set D(x) :=

∑

v∈F(Dv(x) + Dv(−x)).
The argument in the proof of Theorem 3.2.1 implies D(x) > 0. Therefore the map
f(x) = (1/D(x))(

∑

vDv(x)||(v, 1)|| +
∑

vDv(−x)||(v, 2)||) is a Z2-map from Sh to
||B0(KG(F))||, thus coind(B0(KG(F))) ≥ h as claimed. (With this formulation the proof
of Theorem 3.2.1 can be completed by applying the the Zig-zag theorem.) ♦

An example

We would like to point out that Theorem 3.2.1 is really stronger than Dol’nikov’s theorem,
especially if looked at as an upper bound for cd2(F). It is shown in [118] that every graph
G is isomorphic to the general Kneser graph KG(F) of some set system F .

Consider the graphs U(m, r) of Definition 29 we have alreday dealt with in Sub-
section 2.3.6 and again in Remark 3.3. Let F(m, r) denote a set system for which
U(m, r) ∼= KG(F(m, r)). It follows from results in [47] that if r ≥ 3 is fixed and m
goes to infinity then χ(U(m, r)) also grows above all limits. Thus Dol’nikov’s theorem
would not give any finite upper bound for cd2(F(m, r)) if r ≥ 3 is fixed and m goes to
infinity. The same is true if we consider only the size (and not the coloring) of largest
complete bipartite subgraphs in U(m, r) which, due to combination of results in [42] and
[118] can also provide an upper bound for cd2(F(m, r)). (Indeed, it is easy to check that
U(m, r) contains K(m−2

r−2 ),(m−2

r−2 ) subgraphs.) In contrast, consider the proper coloring given

as (x,A) 7→ x. One easily checks that the largest balanced completely multicolored com-
plete bipartite subgraph in this coloring is Kr−1,r−1, from which Theorem 3.2.1 gives the
upper bound 2r − 2 on cd2(F(m, r)), which is independent of m.

3.2.3 Applying a theorem of Tucker and Bacon

Preliminaries

We will use again the topological concepts already introduced in Subsection 3.1.3.
Recall that in applications of the topological method one often associates box com-

plexes to graphs. These give rise to topological spaces the index and coindex of which
can serve to obtain lower bounds for the chromatic number of the graph. Following ideas
in earlier works by Alon, Frankl, Lovász [5] and others, the paper [118] introduces several
box complexes. We extensively used the box complex B0(G) in the previous section and
referred to it again in the previous subsection, too. We briefly mentioned once (see the
proof of Proposition 3.1.8) another box complex B(G) the definition of which we make
explicit below. As also mentioned after the proof of Proposition 3.1.8 ||B(G)|| is known
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to be Z2-homotopy equivalent to H(G) (see its definition right before Proposition 3.1.8)
by a result of Csorba [39], cf. also [161] and [118].

Definition 41 The box complex B(G) is a simplicial complex on the vertices V (G) ×
{1, 2}. For subsets S, T ⊆ V (G) the set S ⊎ T := S × {1} ∪ T × {2} forms a simplex if
and only if S ∩ T = ∅, the vertices in S have at least one common neighbor, the same is
true for T , and the complete bipartite graph with sides S and T is a subgraph of G. The
Z2-map S⊎T 7→ T ⊎S acts simplicially on B(G) making the body ||B(G)|| of the complex
a free Z2-space.

Thus the difference between B(G) and B0(G) is that the former does not contain those
simplices ∅⊎T and S⊎∅ where the vertices in T , respectively in S, do not have a common
neighbor.

Note that B(G) is also a functor like B0(G) and using the Z2-homotopy equivalence
of ||B(G)|| and H(G) the inequality (3.1) can also be written in the following form.

χ(G) ≥ ind(B(G)) + 2 ≥ ind(B0(G)) + 1 ≥ coind(B0(G)) + 1 ≥ coind(B(G)) + 2 (3.2)

We have already seen in the previous section that there are several interesting graph
families the members of which satisfy the inequalities in (3.2) with equality. These include,
for example, Kneser graphs, and a longer list is given in Corollary 3.2.4 below. (We note
that some of the graphs in Corollary 3.2.4 give equality only in the first three of the above
inequalities, cf. what is said below about the homomorphism universal graphs for local
colorings.)

A colorful Kl.m-theorem

In their recent paper [42] Csorba, Lange, Schurr, and Waßmer proved that if ind(B(G)) =
l+m−2 then Gmust contain the complete bipartite graphKl,m as a subgraph. They called
this “the Kl,m-theorem”. In case of those graphs that satisfy coind(B0(G)) + 1 = χ(G)
(see Corollary 3.2.4), the following statement generalizes their result. We use again the
notation [t] := {1, . . . , t}.

Theorem 3.2.2 Let G be a graph for which χ(G) = coind(B0(G)) + 1 = t. Let c :
V (G) → [t] be a proper coloring of G and let A,B ⊆ [t] form a bipartition of the color
set, i.e., A ∪ B = [t] and A ∩ B = ∅.

Then there exists a complete bipartite subgraph Kl,m of G with sides L,M such that
|L| = l = |A|, |M | = m = |B|, {c(v) : v ∈ L} = A, and {c(v) : v ∈ M} = B. In
particular, all vertices of this Kl,m receive different colors at c.

For the proof we will use a modified version of the following theorem.

Tucker-Bacon theorem ([153, 10]) If C1, . . . , Ch+2 are closed subsets of Sh,

∪h+2
i=1Ci = Sh, ∀i : Ci ∩ (−Ci) = ∅,
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and j ∈ {1, . . . , h+ 1}, then there is an x ∈ Sh such that

x ∈ ∩ji=1Ci, and − x ∈ ∩h+2
i=j+1Ci.

Tucker proved the above theorem in the 2-dimensional case and remarked that it is
also true in the higher dimensional cases. Bacon [10] shows that this theorem is equivalent
to 14 other statements that include standard forms of the Borsuk-Ulam theorem, and also
Ky Fan’s theorem.

It is a routine matter to see that the Tucker-Bacon theorem also holds for open sets
Ci. (One can simply use the fact that for a collection of open sets Ci covering Sh one can
define closed sets C ′i so that C ′i ⊆ Ci for all i and ∪h+2

i=1 C
′
i = ∪h+2

i=1Ci = Sh. Cf. [1], Satz
VII, p. 73, quoted also in [10].)

The modified version we need is the following.

Tucker-Bacon theorem, second form. If C1, . . . , Ch+1 are open subsets of Sh,

∪h+1
i=1 (Ci ∪ (−Ci)) = Sh, ∀i : Ci ∩ (−Ci) = ∅,

and j ∈ {0, . . . , h+ 1}, then there is an x ∈ Sh such that

x ∈ Ci for i ≤ j and − x ∈ Ci for i > j.

Proof. Let Dh+2 = Sh \
(

∪h+1
i=1Ci

)

. Then Dh+2 ∩ (−Dh+2) = ∅ by the first condition on
the sets Ci. Since Dh+2 is closed there is some ε > 0 bounding the distance of any pair
of points x ∈ Dh+2 and y ∈ −Dh+2 from below. Let Ch+2 be the open ε

2
-neighborhood

of Dh+2. Then the open sets C1, . . . , Ch+2 satisfy the conditions (of the open set version)
of the Tucker-Bacon theorem. Therefore its conclusion holds. Neglecting the set Ch+2 in
this conclusion the proof is completed for j > 0. To see the statement for j = 0 one can
take the negative of the value x guaranteed for j = h+ 1. �

Remark 3.11. Frédéric Meunier [122] noted that the second form of the Tucker-Bacon
theorem can also be deduced directly from the above given form of Ky Fan’s theorem
(applied for m = h + 1) by exchanging some of the given open sets with their antipodal
set (separately for each possible value of j) and indexing appropriately. ♦

Proof of Theorem 3.2.2. Let G be a graph with χ(G) = coind(B0(G)) + 1 = t and fix
an arbitrary proper t-coloring c : V (G) → [t]. Let g : St−1 → ||B0(G)|| be a Z2-map that
exists by coind(B0(G)) = t− 1.

We define for each color i ∈ [t] an open set Ci on St−1. For x ∈ St−1 we let x be an
element of Ci iff the minimal simplex Sx ⊎ Tx ∈ B0(G) whose body contains g(x) has a
vertex v ∈ Sx for which c(v) = i. These Ci’s are open. If an x ∈ St−1 is not covered by
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any Ci then Sx must be empty, which also implies Tx 6= ∅. Since S−x = Tx this further
implies −x ∈ ∪ti=1Ci, thus ∪ti=1(Ci ∪ (−Ci)) = St−1 follows.

If a set Ci contained an antipodal pair x and −x then S−x = Tx would contain an
i-colored vertex u, while Sx would contain an i-colored vertex v. Since Sx⊎Tx is a simplex
of B0(G) u and v must be adjacent, contradicting that c is a proper coloring. Thus the
Ci’s satisfy the conditions of (the second form of) the Tucker-Bacon theorem.

Let j = |A| = l and relabel the colors so that colors 1, . . . , j be in A, and the others be
in B. The indices of the Ci’s are relabelled accordingly. We apply the second form of the
Tucker-Bacon theorem with h = t−1. It guarantees the existence of an x ∈ St−1 with the
property x ∈ Ci for i ∈ A and −x ∈ Ci for i ∈ B. Then Sx contains vertices u1, . . . , ul
with c(ui) = i for all i ∈ A and S−x = Tx contains vertices v1, . . . , vm with c(vi) = l+ i for
all (l+ i) ∈ B. Since all vertices of Sx are connected to all vertices in Tx by the definition
of B0(G), they give the required completely multicolored Kl,m subgraph. �

Graphs that are subject of the colorful Kl,m theorem

Let us put the statement of Theorem 3.2.2 into the perspective of our earlier work in [144]
presented in the previous section. There we investigated the local chromatic number of
graphs that is defined in [47], see Definition 25 in Subsection 2.3.1 (page 55).

With similar techniques to those applied in this section we have shown using Ky Fan’s
theorem that coind(B0(G)) ≥ t−1 implies that G must contain a completely multicolored
K⌈t/2⌉,⌊t/2⌋ subgraph in any proper coloring with the colors alternating with respect to
their natural order on the two sides of this complete bipartite graph. This is the Zig-zag
theorem in [144] we already referred to in Remark 3.9 and we have seen in the previous
section. The Zig-zag theorem implies that any graph satisfying its condition must have
ψ(G) ≥ ⌈t/2⌉+ 1. In [144], i.e., in the previous section, we have shown for several graphs
G for which χ(G) = coind(B0(G))+1 = t that it can be colored with t+1 colors so that no
vertex has more than ⌊t/2⌋+1 colors on its neighbors. When t is odd, this established the
exact value ψ(G) = ⌈t/2⌉+1 for these graphs. For odd t this also means that the only type
of Kl,m subgraph with l + m = t that must appear completely multicolored when using
t+ 1 colors is the K⌈t/2⌉,⌊t/2⌋ subgraph guaranteed by the Zig-zag theorem (apart from the
empty graph Kt,0). (In principle completely multicolored K t+1

2
, t+1

2
subgraphs could still

appear without increasing ψ(G), but it is explained after the proof of Lemma 3.1.10 why
they do actually not occur.) If we use only t colors, however, then the situation is quite
different. It is true for any graph F that if it is properly colored with χ(F ) colors then
each color class must contain a vertex that sees all other colors on the vertices adjacent
to it. If it were not so, we could completely eliminate a color class by recoloring each of
its vertices to a color which is not present on any of its neighbors. In the context of local
chromaticity this means (as already mentioned in Subsection 3.1.1) that if ψ(F ) < χ(F )
then it can only be attained by a coloring that uses strictly more than χ(F ) colors. Now
Theorem 3.2.2 says that if G satisfies χ(G) = coind(B0(G))+1 = t then all t-colorings give
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rise not only to completely multicolored K⌈t/2⌉,⌊t/2⌋’s that are guaranteed by the Zig-zag
theorem, and K1,t−1’s that must appear in any optimal coloring (with all possible choices
of the color being on the single vertex side), but to all possible completely multicolored
complete bipartite graphs on t vertices.

To conclude this subsection we list explicitly some classes of graphs G that satisfy
the χ(G) = coind(B0(G)) + 1 condition of Theorem 3.2.2. We recall that in the previous
section we used the term topologically t-chromatic for graphs G with coind(B0(G)) ≥ t−1.
With this notation we are listing graphs G that are topologically χ(G)-chromatic, i.e., for
which this specific lower bound on their chromatic number is tight.

Standard examples

For the following graph families it is well known that they (or their appropriate members)
satisfy the condition in Theorem 3.2.2. For a detailed discussion we refer to [116] and the
previous section.

Kneser graphs. The argument presented in Remark 3.10 proves that the general
Kneser graph G = KG(F) satisfies χ(G) = coind(B0(G)) + 1 as long as χ(KG(F)) =
cd2(F). This family includes the graphs KG(n, k).

Schrijver graphs. The graph denoted by SG(n, k) is just the general Kneser graph
KG(F) for the set system F consisting of exactly those k-subsets of [n] that contain neither
a pair {i, i + 1}, nor {1, n} (cf. Definition 33 on page 72). Though χ(KG(F)) 6= cd2(F)
for this F if k > 1, all graphs SG(n, k) satisfy the condition in Theorem 3.2.2.

Borsuk graphs. The graph B(n, α) has Sn−1 as its vertex set and two vertices are
adjacent if their distance is at least α < 2, see Definition 36 on page 92 and cf. [48, 111].
If α is close enough to 2, then the chromatic number of these graphs is n+ 1. The paper
[111] shows that some finite subgraphs of B(n, α) also have the required properties.

Mycielski and generalized Mycielski graphs. We discussed these graphs (and
the above ones as well) in more detail in Subsection 3.1.4. Below we recall some of their
relevant properties.

When applying the generalized Mycielski construction to an arbitrary graph, the clique
number does not increase (except in the trivial case when r = 1) while the chromatic
number may or may not increase. If it does it increases by 1. Generalizing Stiebitz’s
result [149] (see also in [72, 116]) Csorba [40, 41] proved that B(Mr(G)) is Z2-homotopy
equivalent to the suspension of B(G) for every graph G. (Csorba’s result is in terms of
the so-called homomorphism complex Hom(K2, G) but this is known to be Z2-homotopy
equivalent to B(G) by results in [39, 118, 161].) Together with Csorba’s already mentioned
other result in [39] stating the Z2-homotopy equivalence of B0(G) and the suspension of
B(G), the foregoing implies that if a graph G satisfies χ(G) = coind(B0(G)) + 1, then
the analogous equality will also hold for the graph Mr(G). In this case the chromatic
number does increase by 1. Thus iterating the construction d times (perhaps with varying
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parameters r) we arrive to a graph which has chromatic number χ(G)+d and still satisfies
that its chromatic number is equal to its third (in fact, for d > 0 also the fourth) lower
bound given in (3.2).

In the following paragraphs we list three more families of graphs that satisfy the
condition in Theorem 3.2.2. Members of the third family are well-known graphs but
probably not in the present context. The other two families are less known, though we
have already met them in the previous section where it was proven that they belong here.

Homomorphism universal graphs for local colorings

Recall Definition 29 of the graphs U(m, r) (we used the letter k in place of r there) the
vertices and edges of which are given by

V (U(m, r)) = {(i, A) : i ∈ [m], A ⊆ [m], |A| = r − 1, i /∈ A}
E(U(m, r)) = {{(i, A), (j, B)} : i ∈ B, j ∈ A}

Recall that it is shown in [47] that these graphs characterize local colorability in
the following sense: a graph G has an m-coloring attaining ψ(G) ≤ r if and only if G
admits a homomorphism to U(m, r). As already mentioned above, for all odd t ≥ 3 we
showed in the previous section for several t-chromatic graphs satisfying the conditions of
Theorem 3.2.2 that their local chromatic number is ⌈t/2⌉ + 1 and it is attained with a
coloring using t + 1 colors. It follows that for odd t the t-chromatic graph U(t + 1, t+3

2
)

also satisfies the conditions of Theorem 3.2.2. (Indeed, by the functoriality of B0(G),
coind(B0(F )) ≥ t − 1 and the existence of a homomorphism F → G implies St−1 →
||B0(F )|| → ||B0(G)|| and thus coind(B0(G)) ≥ t−1, cf. also Remark 3.3 in Section 3.1.)

The graphs U(t + 1, t+2
2

) with t even also belong here. It is proven in [146] that
coind(B0(U(t+1, t+2

2
)) = t−1, but the proof is rather different than the previous argument

above. The t-colorability of these graphs is also easy to check. We also mention the result
from [146] according to which the fourth lower bound on the chromatic number in (3.2)
is not tight for these graphs (while it is for the graphs of the previous paragraphs). This
shows that Theorem 3.2.2 in its present form is somewhat stronger than it would be with
the stronger requirement χ(G) = coind(B(G)) + 2 in place of χ(G) = coind(B0(G)) + 1.
We needed the second form of the Tucker-Bacon theorem for obtaining this stronger form.

We mention that χ(U(t + 1, ⌊ t+3
2
⌋)) = t is a special case of Theorem 2.6 in [47].

Homomorphism universal graphs for wide colorings

Recall the definition of graphs W (s, t) in Definition 40.
The graphs W (2, t) are defined in [72] in somewhat different terms. It is shown there

that a graph can be colored properly with t colors so that the neighborhood of each color
class is an independent set if and only if it admits a homomorphism into W (2, t). The
described property is equivalent to having a t coloring where no walk of length 3 can
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connect vertices of the same color. Similarly, a graph F admits a homomorphism into
W (s, t) if and only if it can be colored with t colors so that no walk of length 2s − 1
can connect vertices of the same color. Such colorings were called s-wide in the previous
section. Other graphs having the mentioned property of W (s, t) are also defined in [72].
The graphs W (s, t) are defined and shown to be minimal with respect to the above
property in [144] (see Theorem 3.1.31) and independently also in [13]. The t-colorability
of W (s, t) is obvious: c(x1 . . . xt) = i if xi = 0 gives a proper coloring. It was also
shown in the previous section, that several of the above mentioned t-chromatic graphs
(e.g., B(t − 1, α) for α close enough to 2 and SG(n, k) with n − 2k + 2 = t and n, k
large enough with respect to s and t) admit a homomorphism to W (s, t). This implies
coind(B0(W (s, t))) ≥ t − 1 (with equality, since χ(W (s, t)) = t, cf. also Remark 3.6 in
Subsection 3.1.4).

Rational complete graphs

Our last example of a graph family satisfying the conditions of Theorem 3.2.2 consists
of certain rational (or circular) complete graphs Kp/q, as they are called, for example, in
[77]. The graph Kp/q is defined for positive integers p ≥ 2q on vertex set {0, . . . , p − 1}
with {i, j} being an edge if and only if q ≤ |i − j| ≤ p − q. The widely investigated
chromatic parameter χc(G), the circular chromatic number of graphG (cf. [159], or Section
6.1 in [77]) can be defined as the infimum of those values p/q for which G admits a
homomorphism to Kp/q (cf. Definition 38 on page 95). Recall that χ(G) − 1 < χc(G) ≤
χ(G) for every graph G. In [102] it is shown that certain odd-chromatic generalized
Mycielski graphs can have their circular chromatic number arbitrarily close to the above
lower bound. Building on this we showed similar results also for odd chromatic Schrijver
graphs and Borsuk graphs in the previous section. As it is also known that Kp/q admits a
homomorphism into Kr/s whenever r/s ≥ p/q (see, e.g., as Theorem 6.3 in [77]), the above
and the functoriality of B0(G) together imply that coind(B0(Kp/q))+1 = χ(Kp/q) = ⌈p/q⌉
whenever ⌈p/q⌉ is odd.

We remark that the oddness condition is crucial here. It also follows from results in
the previous section (see Theorem 3.1.6 and cf. also [121] for some special cases) that
the graphs Kp/q with ⌈p/q⌉ even and p/q not integral do not satisfy the conditions of
Theorem 3.2.2. Here we state more: the conclusion of Theorem 3.2.2 does not hold for
these graphs. Indeed, let us color vertex i with the color ⌊i/q⌋ + 1. This is a proper
coloring with the minimal number ⌈p/q⌉ of colors, but it does not contain a complete
bipartite graph with all the even colors on one side and all the odd colors on the other.
(The remaining case of p/q even and integral is not especially interesting as Kp/q with p/q
integral is homomorphic equivalent to the complete graph on p/q vertices and therefore
trivially satisfies the χ(G) = coind(B0(G)) + 1 condition.)

Taking the contrapositive in the above observation we obtain another proof of Theo-
rem 3.1.6 the special case of which for Kneser graphs and Schrijver graphs was indepen-
dently obtained by Meunier [121].
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Corollary 3.2.3 (See as Theorem 3.1.6 in the previous section, cf. also [121]) If
coind(B0(G)) is odd for a graph G, then χc(G) ≥ coind(B0(G)) + 1. In particular, if
G satisfies χ(G) = coind(B0(G)) + 1 and this number is even, then χc(G) = χ(G). �

Proof. If a graph G has χc(G) = p/q, then G admits a homomorphism to Kp/q, thus
by the functoriality of B0(G) we have coind(B0(Kp/q)) ≥ coind(B0(G)). Then ⌈p/q⌉ =
χ(Kp/q) ≥ coind(B0(Kp/q))+1 ≥ coind(B0(G))+1. If in addition coind(B0(G))+1 > p/q,
then all the previous inequalities hold with equality by the integrality of the coindex. Then
Kp/q satisfies the conditions of Theorem 3.2.2, thus it must satisfy its conclusion. But
we just have seen that this is not so if ⌈p/q⌉ is even and p/q is not integral. Thus
coind(B0(G)) + 1 cannot be even in this case. �

The proof of Corollary 3.2.3 in the previous section and also the proof in [121] relies on
Ky Fan’s theorem. The above argument shows that Ky Fan’s theorem can be substituted
by (the second form of) the Tucker-Bacon theorem in obtaining this result. Nevertheless,
it may be worth noting, that the missing bipartite graph in the above optimal coloring of
an even-chromatic Kp/q is one the presence of which would also be required by the Zig-zag
theorem. In this sense the above proof is not that much different from the earlier one.

The entire collection

Our examples are collected in the following corollary.

Corollary 3.2.4 For any proper t-coloring of any member of the following t-chromatic
families of graphs the property described as the conclusion of Theorem 3.2.2 holds.

(i) Kneser graphs KG(n, k) with t = n− 2k + 2,

(ii) Schrijver graphs SG(n, k) with t = n− 2k + 2,

(iii) Borsuk graphs B(t−1, α) with large enough α < 2 and some of their finite subgraphs,

(iv) U(t + 1, ⌊ t+3
2
⌋), for any t ≥ 2,

(v) W (s, t) for every s ≥ 1, t ≥ 2,

(vi) rational complete graphs Kp/q for t = ⌈p/q⌉ odd,

(vii) the t-chromatic graphs obtained by 1 ≤ d ≤ t − 2 iterations of the generalized My-
cielski construction starting with a (t−d)-chromatic version of any graph appearing
on the list above.

�
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Generalization of Spencer and Su’s result

Recently Gwen Spencer and Francis Edward Su [147, 148] found an interesting conse-
quence of Ky Fan’s theorem. They prove that if the Kneser graph KG(n, k) is colored
optimally, that is, with t = n−2k+ 2 colors, but otherwise arbitrarily, then the following
holds. Given any bipartition of the color set [t] into partition classes B1 and B2 = [t] \B1

with |B1| = ⌊t/2⌋, there exists a bipartition of the ground set [n] into E1 and E2, such
that, the k-subsets of Ei as vertices of KG(n, k) are all colored with colors from Bi and
every color in Bi does occur (i=1,2).

Theorem 3.2.2 implies an analogous statement where no special requirement is needed
about the sizes of B1 and B2. It can also be obtained by simply replacing Ky Fan’s
theorem by the Tucker-Bacon theorem in Spencer and Su’s argument.

Corollary 3.2.5 Let t = n−2k+2 and fix an arbitrary proper t-coloring c of the Kneser
graph KG(n, k) with colors from the color set [t]. Let B1 and B2 form a bipartition of [t],
i.e., B1 ∪ B2 = [t] and B1 ∩ B2 = ∅. Then there exists a bipartition (E1, E2) of [n] such
that for i = 1, 2 we have {c(v) : v ∈ V (KG(n, k)), v ⊆ Ei} = Bi.

Proof. Set A = B1 and B = B2 and consider the complete bipartite graph Theorem 3.2.2
returns for this bipartition of the color set. Let the vertices on the two sides of this
bipartite graph be u1, . . . , u|A| and v1, . . . , v|B|. All vertices ui and vj are subsets of [n].

Since ui is adjacent to vj for every i, j we have that E ′1 := ∪|A|i=1ui and E ′2 := ∪|B|j=1vj are
disjoint. If there are elements of [n] that are neither in E ′1 nor in E ′2 then put each such
element into either one of the sets E ′i thus forming the sets E1 and E2. We show that
these sets Ei satisfy our requirements. It follows from the construction that E1 ∩E2 = ∅
and E1 ∪ E2 = [n]. It is also clear that all colors from B1 appear as the color of some
k-subset of E1, namely, the k-subsets u1, . . . , u|A|. Since E2 is disjoint from E1 no k-subset
of E2 can be colored by any of the colors from B1. Thus each k-subset of E2 is colored
by a color from B2, and all these colors appear on some k-subset of E2 by the presence of
v1, . . . , v|B|. Exchanging the role of E1 and E2 we get that all k-subsets of E1 are colored
with some color of B1 and the proof is complete. �

Remark 3.12. The same argument proves a similar statement for the general Kneser graph
KG(F) in place of KG(n, k) as long as we have t = χ(KG(F)) = coind(B0(KG(F))) + 1.
Such graphs include the Schrijver graphs SG(n, k) with t = n − 2k + 2 and (by the
argument presented in Remark 3.10) the graphs KG(F) with a family ∅ /∈ F satisfying
t = χ(KG(F)) = cd2(F). ♦
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