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Prologue

. . . the determination of the value of an item must not be based on its price, but rather on
the utility it yields. The price of the item is dependent only on the thing itself and is equal
for everyone; the utility, however, is dependent on the particular circumstances of the person
making the estimate. Thus there is no doubt that a gain of one thousand ducats is more
significant to a pauper than to a rich man though both gain the same amount.

(Daniel Bernoulli, [9])

This dissertation is based on the articles [72, 23, 78, 21, 22, 74, 76, 47]. I have included

most of the proofs. Tedious, but standard arguments of advanced measure theory are some-

times omitted, I refer to the original papers instead. The purpose of the present work is

to explain in detail certain novel results on optimal investment. This required a thorough

rewriting of the material in the above mentioned articles so as to unify notation, to highlight

the internal relationships between the dissertation’s topics, to provide as streamlined a pre-

sentation as possible, and to explain the most important underlying ideas in detail. Some

proofs of the earlier articles could be simplified using later developments. Some results were

stated in greater generality than in the papers while in some cases I opted for a less gen-

eral version for reasons of simplicity. I hope I managed to give an overview that pleases the

gentle readers. In the sequel I shall employ the plural that is usual in scientific texts: “we

present. . . ”, “we shall prove. . . ”, etc.

We deal with decisions under risk and consider investors acting in a financial market

who wish to find the best available portfolio. Investors may have diverse preferences. The

prevailing, classical approach in economic theory is to model preferences of an individual by

a utility funcion u which assigns a numerical value to each possible level of wealth, and to

rank investments by comparing the expectations of the their future utility. Furthermore, u is

usually assumed concave to express investors’ aversion of risk. More recent theories, based

on the observed behaviour of investors, drop concavity of u and calculate expectations using

distorted probabilities. Mathematics have not yet caught up with these new developments.

In our present work we report progress in this direction.

Our main results (Theorem 2.1, Corollary 2.20, Theorems 3.4, 3.16, 4.16, 4.18 and 5.12)

establish the existence of optimal strategies in various classes of financial market models.

These theorems (and some related counterexamples) delineate the types of utilities which

are promising candidates for future applications and they also foreshadow the difficulties

for finding efficient optimization algorithms. We significantly surpass previously available

results: we investigate what happens if u fails to be concave (Chapter 2); we treat illiquid

markets where securities cannot be traded at fixed prices in arbitrarily large volumes (Chap-

ter 5); moreover, investment problems with distorted probabilities will be addressed both

in discrete- (Chapter 3) and in continuous-time (Chapter 4) models. The Appendix collects

auxiliary results. Necessary concepts and notations will be defined along the way. Earlier

chapters are prerequisites for later ones.

The author is eager to receive comments and to engage in scientific discussions on the

topics treated here. The gentle readers are encouraged either to write an e-mail to

the author’s surname@renyi.mta.hu

or to call

+36309535194.

Gödöllő, 2nd December, 2015.
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1 Fundamental concepts

In this introductory chapter we first briefly explain standard notions of expected utility

theory and indicate their rôle in subsequent chapters. We define the mathematical models of

financial markets in discrete and in continuous time which we will study in Chapters 1–4.

1.1 Expected utility theory

An agent is to choose between two gambles with random payoffs X and Y . Which one

should (s)he prefer ? The simplest approach is to compare their expectations EX and EY but

this was found to be unsatisfactory already back in the 17th century. Daniel Bernoulli in [9],

motivated partly by what is known as the “St. Petersburg paradox” (see [32]), proposed to

compare Eu(X) and Eu(Y ) instead, with an appropriate function u : R → R. Going back to

[31], the quantity Eu(X) had been called the “moral value/expectation” of X up to the second

half of the 20th century when the term “expected utility” became standard usage, u being

called the investor’s utility function.

Bernoulli’s ideas fertilized economic theory following the works [64, 102] and led to im-

pressive developments in understanding market equilibria, see [4]. Expected utility theory

(EUT) became a major subject of investigation in mathematical finance as well. Starting

with [65, 89], a vast literature on optimal investment problems sprang where Eu(X) needed

to be maximised over the possible portfolio values X of the given investor. Expected utilities

Eu(X) with various choices of u are major tools for measuring the risk of a financial position

X and also for derivative pricing, see [26].

In mainstream economics, two properties of u are universally accepted: u should be in-

creasing and concave. Monotonicity is explained by preferring more money to less. Concavity

is customarily justified by the following argument: when the investor has x > 0 pounds,

(s)he is made less happy by earning one more pound than in the case where (s)he has y > x
pounds, i.e. the derivative u′ (if exists) should be decreasing. Similarly, losing one more

pound is less painful for someone with a loss of x < 0 than for someone with a loss of y < x.

The concavity property of u is called risk aversion in the economics literature since Jensen’s

inequality Eu(X) ≤ u(EX) implies that the expectation of X (a deterministic number, the

“riskless equivalent” of X) is preferred to the random payoff X itself. Analogously, convexity

of u (perhaps only on a subset) is referred to as a risk-seeking attitude.

Concavity of u has unquestionable mathematical advantages: a unique optimiser is found

in most cases of maximising expected utility and it can often be calculated in an efficient way.

The arguments for concavity presented above, however, are not entirely convincing: one can

easily imagine that an investor below a desired wealth level w is willing to take risks in order

to ameliorate his/her position (and thus u may be convex below w) and at w his/her attitude

may switch to risk aversion (u being concave above w). It has been demonstrated in [58, 101]

(see also the references therein) that psychological experiments contradict the hypothesis of

a concave u in human decision-making.

In Chapter 2 we shall prove the existence of optimal strategies for investors maximising

their expected utility from terminal wealth with possibly non-concave u, in a discrete-time

model of a frictionless financial market. Two standard ways for proving such existence the-

orems are the Banach-Saks theorem (and its variants, e.g. the Komlós theorem, see [93])

and an indirect approach through the dual convex optimisation problem (which is easier to

treat, see [57, 91]). For u non-concave both methods fail but dynamic programming and direct

estimates will save the day.

An even more deadly blow to EUT is the observation that investors tend to have distorted

views of their chances, they exaggerate the probabilities of unlikely events, see [58, 71, 101].

In the mathematical theory this leads to nonlinear expectations which cannot be handled

by the machinery of dynamic programming. Here we need an entirely different approach,

see Chapters 3 and 4 for our results in this direction. In Chapter 5 we return to concave u
but investigate what happens in the presence of market illiquidity (i.e. when trading speed

influences prices).
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1.2 Market model in discrete time

We now expound the standard model for a market where trading takes place at finitely

many time instants, see e.g. [44, 54]. We shall stay in the setting of the present section

throughout Chapters 2 and 3 and also in Section 4.4.

The concatenation xy of two vectors x, y ∈ Rn of equal dimension denotes scalar product,

|x| denotes the Euclidean norm of x. Let us fix a probability space (Ω,F , P ) and a time horizon

T ∈ N \ {0}. Let Ft, t = 0, . . . , T be a growing sequence of sub-sigma-algebras of F , that is, a

discrete-time filtration. Every sigma-algebra on Ω appearing in this dissertation is assumed

to contain all sets of outer P -measure zero. For a probability measure Q on (Ω,F) we will use

EQX to denote the expectation under Q. When Q = P we shall write EX instead of EPX in

most cases.

We denote by Ξnt the set of Rn-valued Ft-measurable random variables. For x ∈ R we set

x+ := max{x, 0} and x− := max{−x, 0}. Similarly, for a real-valued function f(·), f+(x) (resp.

f−(x)) will denote the positive (resp. negative) part of f(x).
For some d ∈ N \ {0}, let St, t = 0, . . . , T be a d-dimensional stochastic process adapted to

the given filtration, describing the prices of d risky securities in the given economy. For the

validity of the results below we do not need to assume positivity of the prices and in certain

cases (e.g. investments with possible losses) this would not be a reasonable restriction either.

We also suppose that there is a riskless asset (bond or bank account) with constant price

S0
t := 1, for all t. Incorporating a nonzero interest rate could be done in a trivial way, [44], but

we refrain from doing so as it would only obscure the simplicity of the trading mechanism.

We consider an investor who has initial capital z ∈ R at time 0 in the riskless asset

(and zero positions in the risky assets). His/her portfolio is rebalanced at the time moments

t = 1, . . . , T . Mathematically speaking, a portfolio strategy φt, t = 1, . . . , T is defined to be

a d-dimensional process, representing the portfolio position taken in the d risky assets at

time t. As the investment decision is assumed to be taken before new prices are revealed, we

assume that φ is a predictable process, i.e. φt is Ft−1-measurable for t = 1, . . . , T . We denote

by Φ the family of all portfolio strategies. A negative coordinate φit < 0 means selling short1

−φit > 0 units of asset i. We introduce the adapted process φ0t , t = 1, . . . , T which describes

the position in the riskless asset at time t. We allow borrowing money (i.e. φ0t < 0). We do not

require the φit to be integers and do not put any bound on the available supply in the assets

so they can be bought and sold in arbitrary quantities for the respective prices Sit at time t,
for t = 0, . . . , T − 1 and i = 1, . . . , d.

The value process of the portfolio is defined to be Xz,φ
0 := z and

Xz,φ
t := φtSt + φ0tS

0
t = φtSt + φ0t

for t ≥ 1. A frictionless trading mechanism is assumed: there are no transaction fees, taxes

or liquidity costs. Only self-financing portfolios are considered, where no capital is injected or

withdrawn during the trading period and hence the portfolio value changes uniquely because

of price fluctuations and changes in the investor’s positions. Mathematically speaking, we

assume that, when the initial capital is z and strategy φ ∈ Φ is pursued,

Xz,φ
t −Xz,φ

t−1 = φt(St − St−1) + φ0t (S
0
t − S0

t−1) = φt(St − St−1), t = 1, . . . T.

In other words,

Xz,φ
t = z +

t∑

j=1

φj∆Sj , (1)

where we denote ∆Sj := Sj − Sj−1, j = 1, . . . , T . This means that the portfolio value is

uniquely determined by z and φ ∈ Φ and so is the position φ0t = Xz,φ
t − φtSt in the riskless

asset. Hence we do not need to bother with the positions φ0t , t = 1, . . . , T at all in what follows.

1“Short-selling” means to sell a stock without actually posessing it at the given moment. When the stock needs
to be delivered phisically, it can be bought in the market. Some of the financial markets allow short-selling. In
theoretical works short-selling is usually permitted as it makes the mathematical models more tractable.
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An investor with utility function u : R → R is considered. We assume that u is non-

decreasing (more money is preferred to less) and that it is continuous (small change in wealth

causes a small change in satisfaction level). Investors are often required to meet certain pay-

ment obligations (e.g. delivering the value of a derivative product at the end of the trading

period). Let B be a FT -measurable scalar random variable representing this payment obliga-

tion (negative B means receiving a payment −B). The investor with initial capital z seeks to

attain the highest possible expected utility from terminal wealth, ū(z), where

ū(z) := sup
φ∈Φ(u,z,B)

Eu(Xz,φ
T −B) (2)

and Φ(u, z,B) := {φ ∈ Φ : Eu−(Xz,φ
T − B) < ∞}. We will drop u and B in the notation

and will simply write Φ(z) henceforth. By definition of Φ(z), the expectations in (2) exist but

may take the value +∞. The quantity ū(z) defines the indirect utility of z when investment

opportunities in the given market are taken into account.

Remark 1.1. The quantity B admits an alternative interpretation: it may be a reference

point (a “benchmark”) to which the given investor compares his/her performance. For exam-

ple, B may be the terminal value of the portfolio of another investor (perhaps trading in a

different market as well) or some functional of economic factors (such as market indices). In

this case Eu(Xz,φ
T − B) is a measure of portfolio performance relative to the benchmark B,

see Chapter 3 below for more on this viewpoint.

When ū(z) = ∞ the investor may attain unlimited satisfaction which looks unrealistic, so

we say that the optimal investment problem (2) is well-posed if ū(z) < ∞. It is also desirable

that the domain of optimisation Φ(z) should be non-empty.

Our main concern will be to find an optimal strategy φ∗ = φ∗(z) ∈ Φ(z) such that

sup
φ∈Φ(z)

Eu(Xz,φ
T −B) = Eu(Xz,φ∗

T −B). (3)

Remark 1.2. For z ≥ 0, one may also consider (3) with Φ(z) replaced by Φ+(z) := {φ ∈ Φ(z) :

Xz,φ
t ≥ 0 a.s., t = 0, . . . , T}. This means that portfolios are constrained to have a non-negative

value all over the trading period. As one of the main motivations for studying optimal in-

vestment problems is risk management, one should be able to analyse the possibility of (big)

losses as well and in such a context the constraint in Φ+(z) is unfortunate. We remark that op-

timisation over Φ+(z) can be performed by methods which are similar to those of the present

dissertation but considerably simpler, due to a convenient compactness property (Lemma 2.1

of [79]). We refer to the papers [79, 24, 77] which are not reviewed in the present dissertation

due to volume limits.

Remark 1.3. One may object that it is always possible to find, for all n ∈ N, a strategy

φ(n) with ū(z) − 1/n < Eu(X
z,φ(n)
T ) and, for n large enough, φ(n) should be satisfactory in

practice. This argument ignores the deeper problems behind. The non-existence often comes

from a lack of compactness: φ(n) may show an extreme and economically meaningless be-

haviour (e.g. it tends to infinity), hence the practical value of φ(n) for large n is questionable.

Also, some kind of compactness is a prerequisite for any numerical scheme to calculate (an

approximation of) an optimiser.

Another (less common) reason for the non-existence of φ∗ is the lack of closedness of {Xz,φ
T :

φ ∈ Φ} in some appropriate topology. This reveals another possible pathology of the given

setting: a limit point of investment payoffs not being an investment payoff itself, which is not

only mathematically inconvenient but also contradicts common sense.

To sum up: if no φ∗ exists then near-optimal strategies tend to be unintuitive. On the

contrary, existence of φ∗ normally goes together with compactness and closedness proper-

ties which look necessary for constructing numerical schemes leading to reasonable (near)-

optimal strategies. We will see concrete examples of the phenomena described in this remark

in Example 2.11 and in Section 3.3 below.

The next notion we discuss is arbitrage (riskless profit), a central concept of economic

theory. Formally, φ ∈ Φ is an arbitrage strategy if X0,φ ≥ 0 a.s. and P (X0,φ
T > 0) > 0.
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Definition 1.4. We say that there is no arbitrage (NA) if, for all φ ∈ Φ, X0,φ
T ≥ 0 a.s. implies

X0,φ
T = 0 a.s.

The usual justification for (NA) is that investors cannot make something out of nothing

since such an opportunity would be heavily exploited, which would move prices and eventu-

ally terminate the opportunity. There is a general consensus that (NA) holds in an efficient

market, [41]. The following result shows that, in the optimisation context, (NA) is a necessity,

too.

Proposition 1.5. Let u be strictly increasing. If (NA) fails then there exists no strategy φ∗ ∈ Φ
satisfying (3).

Proof. If an optimal strategy φ∗ ∈ Φ(z) existed for the problem (2) then φ∗ + φ ∈ Φ(z) and

Eu(Xz,φ∗

T ) < Eu(Xz,φ∗+φ
T ) for any φ violating (NA), a contradiction with the optimality of

φ∗.

We now address the issue of redundancy of assets. Let Dt(ω) denote the affine hull of the

support of P (∆St ∈ ·|Ft−1)(ω), where we take a regular version for the conditional law, see

[36]. For a topological spaceX we will denote by B(X) the corresponding Borel sigma-algebra.

By Proposition A.1 of [78] one may assume that {(ω, x) ∈ Ω× Rd : x ∈ Dt(ω)} ∈ Ft−1 ⊗ B(Rd)
and, under (NA), Dt(ω) is a subspace for a.e. ω (see Theorem 3 of [51]).

Intuitively, Dt(ω) 6= Rd means that some of the risky assets are redundant and could

be substituted by a linear combination of the other risky assets. Indeed, introduce for each

ξ ∈ Ξdt−1 the mapping ξ̂ : Ω → Rd where ξ̂(ω) is the projection of ξ(ω) on Dt(ω). By Proposition

4.6 of [78], ξ̂ is an Ft−1-measurable random variable and P ((ξ − ξ̂)∆St = 0|Ft−1) = 1 a.s. by

the definition of orthogonal projections, so

P (ξ∆St = ξ̂∆St) = 1. (4)

This means that we may always replace the strategy φt at time t by its orthogonal projection

onDt. Define Φ̂ := {φ ∈ Φ : φt ∈ Dt a.s.} and set Φ̂(z) := Φ̂∩Φ(z). By (4), we may alternatively

take the supremum over Φ̂(z) in (2).

Now we present a useful characterization of (NA). Define Ξ̂dt := {ξ ∈ Ξdt : ξ ∈ Dt+1 a.s.},

for t = 0, . . . , T − 1.

Proposition 1.6. (NA) holds iff there exist νt, κt ∈ Ξ1
t with νt, κt > 0 a.s. such that for all

ξ ∈ Ξ̂dt :
P (ξ∆St+1 ≤ −νt|ξ||Ft) ≥ κt (5)

holds almost surely; for all 0 ≤ t ≤ T − 1.

Proof. Proposition 3.3 of [78] states that (NA) holds iff, on the event G := {Dt+1 6= {0}},

P (ζ∆St+1 ≤ −νt|Ft) ≥ κt

for all ζ ∈ Ξdt with |ζ| = 1 a.s. Applying this to ζ := ξ/|ξ| onG∩{ξ 6= 0} we get (5) onG∩{ξ 6= 0}.

As (5) is trivial on the complement of G and on that of {ξ 6= 0}, the proof is completed.

Remark 1.7. Note that if Q ∼ P then (5) above implies that

Q(ξ∆St+1 ≤ −νt|ξ||Ft) ≥ κQt ,

for some κQt > 0 a.s. At some point we will switch measures often and then this observation

will be convenient. Note also that we may assume κt, νt ≤ 1 in (5).

From Proposition 1.6 we see that (NA) holds iff, at any time t, each one-step portfolio of

unit length (i.e. |ξ| = 1) and without redundancy (i.e. ξ ∈ Dt) may lead to losses of at least a

prescribed size νt with (conditional) probability at least κt. This is a “quantitative” expression

of the intuitive content of (NA): at any time t every one-step portfolio (with 0 initial capital)

should lead to a loss with positive probability.
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We close this section with a more famous characterization of the (NA) property which

stands at the origin of spectacular developments in financial mathematics in the 1990s. We

denote by L∞ the set of (equivalence classes of) a.s. bounded random variables and by M the

set of probabilities Q ∼ P under which S is a martingale (with respect to the filtration F·).

Elements of M are called risk-neutral probabilities or equivalent martingale measures.

Theorem 1.8. Condition (NA) holds iff M is non-empty. Moreover, if (NA) holds then one can

always choose Q ∈ M such that dQ/dP ∈ L∞. ✷

The above result was well-known for finite Ω since [48]. However, the passage to infinite

Ω proved to be rather challenging and was first achieved in [33]. This spawned efforts to find

simpler proofs ([90, 83, 55]) and also led to major advances in the continuous-time theory of

arbitrage. It is outside the scope of the present dissertation to review these developments,

we refer to [35]. Besides, the particular technology of the proof in [33] has had several deep

applications, we only mention [43, 56, 29].

It is highly non-trivial that one can always get dQ/dP ∈ L∞ in Theorem 1.8, continuous-

time models generically fail this property. We will elaborate on related issues in Section 2.7

below.

1.3 Market model in continuous time

We now describe the standard model for frictionless markets in continuous time, see [35]

for more details. On a probability space (Ω,F , P ), let a continuous-time filtration Ft, t ∈ [0, T ]
be given. We assume that this filtration is right-continuous and F0 contains P -zero sets.

A process with right-continuous trajectories that admit left-hand limits is called càdlàg (a

French acronym, standard in the literature).

Let St, t ∈ [0, T ] be an Rd-valued càdlàg adapted process, representing the price of d risky

securities. Let ϕt, t ∈ [0, T ] be an Rd-valued stochastic process showing the position of the

investor in the given assets. The value process of the portfolio ϕ is defined by the continuous-

time analogue of (1),

Xz,ϕ
t := z +

∫ t

0

ϕudSu, t ∈ [0, T ], (6)

where z is the investor’s initial capital and, in order that the stochastic integral exists, we as-

sume that S is a semimartingale (w.r.t. the given filtration) and ϕ is an S-integrable process,

in particular, it is predictable2. The set of S-integrable processes is denoted by Φ.

It turns out that, without restricting the set of admissible portfolio strategies further,

there are arbitrage opportunities even in the simplest models (such as the Black-Scholes

model), by the result of e.g. [39]. To avoid these, the standard class to use is Φb, the set of

ϕ ∈ Φ whose value process X satisfies Xz,ϕ
t ≥ −c a.s. for all t for some constant c (which may

depend on ϕ but not on t). In other words, these are the strategies with a finite credit line.

As in the discrete-time setting, M denotes the family of probabilities equivalent to P
under which S is a martingale. A suitable strengthening of (NA) is essentially equivalent

to M 6= ∅ in the present, continuous-time setting, we do not enter into the rather technical

details, see [35]. One would thus be led, in the utility maximisation context, to seek ϕ∗ ∈ Φb
with

sup
ϕ∈Φb

Eu(Xz,ϕ
T ) = Eu(Xz,ϕ∗

T ).

Unfortunately, this would be a vain enterprise to pursue as the set Xz,ϕ
T , ϕ ∈ Φb is not closed

in any reasonable topology and a maximiser in the class Φb often fails to exist, see [91].

Various other classes of admissible strategies Φa ⊂ Φ have been proposed. If Φa is chosen

too large (e.g. Φa := Φ) then arbitrage opportunities appear. If Φa is not large enough (e.g.

Φa := Φb) then it doesn’t contain the optimiser ϕ∗. A reasonable compromise is the following

choice: assume M 6= ∅, fix Q ∈ M and define

Φa := Φa(Q) := {ϕ ∈ Φ : X0,φ
· is a Q-martingale}.

2The predictable sigma-algebra P on Ω × [0, T ] is the one defined by adapted left-continuous processes. A pre-
dictable process is one that is measurable w.r.t. P.
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There is some arbitrariness in the choice of Q but in the case of complete markets (see below)

Q will be unique. In a large class of standard optimisation problems the maximiser is indeed

in Φa for a natural choice of Q, see [57, 92]

Hence we shall be looking for ϕ∗ ∈ Φa satisfying

sup
ϕ∈Φa

Eu(Xz,ϕ
T ) = Eu(Xz,ϕ∗

T ). (7)

A more general objective function will be considered in Chapter 4.

We introduce market completeness at this stage. An FT -measurable random variable B
is said to be replicable if there exists Q ∈ M, ϕ ∈ Φa(Q) and z ∈ R such that Xz,φ

T = B a.s.

We call a financial market model complete if all bounded FT -measurable B are replicable.

Remark 1.9. Proposition 2.1 of [98] states that B ∈ L∞ is replicable iff it is replicable with

some ϕQ ∈ Φa(Q), for all Q ∈ M.

See Section 4.6 below for the textbook example of a complete market. We remark that

though complete models are unrealistic they serve as an important model class on which new

ideas are to be tested first.

Completeness is characterized by the following result which follows from [50]. A proof

with the financial mathematics setting in mind comes trivially from Proposition 2.1 of [98]

and Théorème 3.2 in [3].

Theorem 1.10. Assume M 6= ∅. Then the market is complete iff M is a singleton. ✷

For 1 ≤ p < ∞ we denote by Lp(Q) the usual Banach space of of random variables with

finite pth moment under Q. If Q = P we simply write Lp. We fix Q ∈ M and Φa = Φa(Q).

Lemma 1.11. Let B ∈ L1(Q) such that, for all n, Bn := B ∧ n ∨ (−n) is replicable. Then so

is B. In particular, if in a complete market model Q is the unique element of M then each

B ∈ L1(Q) is replicable.

Proof. Let zn := EQBn. By the definition of replicability and by Remark 1.9, there is ϕn ∈
Φa(Q) such thatBn = Xzn,ϕn

T a.s. Clearly, Bn tend toB in L1(Q) and then also zn → z := EQB,

n → ∞. It follows that the terminal values of the martingales
∫ ·

0
ϕn(u)dSu converge to B − z

in L1(Q). By Yor’s theorem (see [104]) there is ϕ ∈ Φa such that B − z =
∫ T
0
ϕ(u)dSu and the

result follows.

We mention that problems of the form (7) are usually tackled using duality methods: an

appropriate convex conjugate functional is minimised over M from which a maximiser for (7)

is subsequently derived, see [57, 93]. It is clear that in our setting, where u fails to be concave,

one cannot pursue this route and different methods need to be developed, see Chapter 4 below.

In Chapter 5 we will consider a continuous-time model of a financial market with frictions

due to illiquidity where the dynamics of the portfolio value process differs from (6).
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2 Optimal investment under expected utility criteria

We remain in the setting of Section 1.2. We shall prove the existence of an optimiser for

(3) when u is not necessarily concave. No such results are available in multistep discrete-time

markets. One-step models were treated in [49, 12]. First we assume u to be bounded above

then we also investigate the case of unbounded u.

This chapter is based on the papers [72, 78, 21, 23].

2.1 A look on the case of bounded above utility

To get a flavour of the techniques we use, we shall first treat the case where u is bounded

above by a constant. This assumption allows for simpler arguments and leads to the following

clear-cut result which will be proved in Section 2.3 below.

Theorem 2.1. Assume (NA). Let u : R → R be a nondecreasing and continuous function which

is bounded above by a constant C ≥ 0 and satisfies

lim
x→−∞

u(x) = −∞. (8)

Let B be an arbitrary real-valued random variable with

Eu(z −B) > −∞ for all z ∈ R. (9)

Then for all z ∈ R there exists a strategy φ∗ = φ∗(z) ∈ Φ such that

ū(z) = sup
φ∈Φ

Eu(Xz,φ
T −B) = Eu(Xz,φ∗

T −B). (10)

Furthermore, ū is continuous on R.

Note that, as u is bounded above, the expectations Eu(Xz,φ
T − B) exist for all φ ∈ Φ hence

we may use Φ instead of Φ(z) as the domain of optimization.

Continuity of u is a natural requirement. Theorem 2.1 guarantees that the indirect utility

ū inherits the continuity property of u. Condition (8) means that infinite losses lead to an

infinite dissatisfaction of the agent.

Remark 2.2. Most studies require u to be smooth in addition to being concave. We do not

need such a restriction and hence we can accomodate various loss functions: let ℓ : R+ → R+

be increasing and continuous with ℓ(0) = 0, ℓ(∞) = ∞. Set u(x) := −ℓ(−x) for x ≥ 0 and

u(x) = 0 for x > 0. Maximising Eu(Xz,φ
T − B) in the present context means minimising

shortfall risk (i.e. risk of performing under the benchmark B), as quantified by ℓ.

Remark 2.3. Let us take u bounded above, continuously differentiable and define S0 = 0,

S1 = ±1 with probabilities 1/2− 1/2. If

u′(φ)− u′(−φ) ≥ 0 for all φ > 0 and u′(φ)− u′(−φ) > 0 for φ > 0 large enough, (11)

(in this case u(−∞) > −∞, as easily seen) then φ→ Eu(φ∆S1) is nondecreasing in |φ| and for

large enough |φ| it is strictly increasing, which excludes the existence of an optimiser φ∗ for

(10). One may take, e.g. u(x) = 1− e−αx, x ≥ N , u(x) = eβx− 1, x ≤ −N and u continuous and

linear on [−N,N ]. For any β > α > 0 and for N large enough u satisfies (11).

This highlights the importance of condition (8): even for very simple specifications of the

price process S the failure of (8) may easily cause that there is no optimizer.

2.2 One-step case for u bounded above

In this section we consider a function V : Ω × R → R such that, for every x, V (ω, x) is a

random variable and for a.e. ω ∈ Ω, the functions x→ V (ω, x) are non-decreasing, continuous

and satisfy limx→−∞ V (ω, x) = −∞ and V (ω, x) ≤ C for all x ∈ R, with some fixed constant

C ≥ 0.
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Let H ⊂ F be a sigma-algebra. We assume that there is a family of real-valued random

variables M(n), n ∈ Z such that V (n) ≥ M(n) holds a.s., for all n and m(n) := E(M(n)|H) >
−∞ a.s. We may and will assume M(n) ≤ 0.

Let Y be an Rd-valued random variable. Take a regular version of P (Y ∈ ·|H)(ω). Define,

for a.e. ω, the multifunction ω → D(ω) ⊂ Rd where D(ω) is the affine hull of the support

of P (Y ∈ ·|H)(ω). Clearly, D can also be viewed as a subset of Ω × Rd and we can choose

D ∈ H ⊗ B(Rd), see Proposition A.1 of [78].

The notation Ξn will be used for the class of Rn-valued H-measurable random variables.

For ξ ∈ Ξd we will denote by ξ̂(ω) the orthogonal projection of ξ(ω) on D(ω). The function

ω → ξ̂(ω) is then H-measurable, by Proposition 4.6 of [78]. Define Ξ̂d := {ξ ∈ Ξd : ξ ∈ D a.s.}.

Remark 2.4. Notice that P ((ξ − ξ̂)Y = 0|H) = 1 a.s., hence P (ξY = ξ̂Y ) = 1 which means

that we may always replace ξ by ξ̂ when maximising E(V (x+ ξY )|H) in ξ.

We assume that there exist H-measurable κ, ν > 0 such that for all ξ ∈ Ξ̂d we have

P (ξY ≤ −ν|ξ| |H) ≥ κ a.s., (12)

this is our “one-step no arbitrage” condition, compare to Proposition 1.6.

The next lemma allows us to work with strategies admitting a fixed bound. We denote by

1A the indicator function of an event A ∈ F and by ess. supi∈I fi the essential supremum of a

family of real-valued random variables fi, i ∈ I.

Lemma 2.5. There exists v : Ω× R → R such that, for all x, v(ω, x) is a version of

ess. sup
ξ∈Ξd

E(V (x+ ξY )|H)

and, for a.e. ω ∈ Ω, the functions x→ v(ω, x) are non-decreasing, right-continuous, they satisfy

limx→−∞ v(ω, x) = −∞ and v(ω, x) ≤ C, for all x ∈ R. There exist random variables K(n) ≥ 0,

n ∈ Z such that for all x ∈ R and ξ ∈ Ξ̂d,

E(V (x+ ξY )|H) ≤ E(V (x+ 1{|ξ|≤K(⌊x⌋)}ξY )|H), (13)

where ⌊x⌋ denotes the largest integer k with k ≤ x. We have m(n) ≤ v(n) a.s., for all n.

Proof. We assume that D 6= {0} as (13) is trivial on the event {D = {0}}.

Fix n ∈ Z. Since V (y) → −∞ a.s. when y → −∞, for each 0 ≤ L ∈ Ξ1 there is GL ∈ Ξ1

such that P (V (−GL) ≤ −L|H) ≥ 1− κ/2 a.s. Since for all x ∈ [n, n+ 1),

E(V (x+ ξY )|H) ≤ C + E(V (n+ 1− |ξ|ν)1{ξY≤−|ξ|ν, V (−GL)≤−L}|H)

and, by (12), P (ξY ≤ −ν|ξ| |H) ≥ κ a.s., we get that whenever ν|ξ| ≥ GL + n+ 1, we have

E(V (x+ ξY )|H) ≤ C − Lκ/2.

Choose L := 2(C −m(n))/κ, then K(n) := (GL + n+ 1)/ν is such that for |ξ| ≥ K(n),

E(V (x+ ξY )|H) ≤ m(n) ≤ E(V (x)|H)

holds a.s., providing a suitable function K(·).
Now for each x, let F (x) be an arbitrary version of the essential supremum in consid-

eration. We may and will assume that F (x) ≤ C for all ω and x. Outside a negligible set

N ⊂ Ω, q → F (q) is non-decreasing on Q. Define v(x) := infq>x,q∈Q F (q). This function is

non-decreasing and right-continuous outside N .

Fix x ∈ R. Since F (x) ≤ F (q) a.s. for x ≤ q, we clearly have F (x) ≤ v(x) a.s. We claim we

can take ξk ∈ Ξd with

F (qk)− 1/k ≤ E(V (qk + ξkY )|H),

a.s. where x < qk < x+ 1 and qk ∈ Q decrease to x as k → ∞.
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Indeed, as E(V (y+ξY )|H), ξ ∈ Ξd is easily seen to be directed upwards, there is a sequence

ζn ∈ Ξd such that E(V (y + ζnY )|H) is a.s. nondecreasing and converges a.s. to F (y). We can

define ξk := ζl(k) where

l(k)(ω) := min{l : E(V (y + ζlY )|H)(ω) ≥ F (ω, y)− 1/k}.

Applying this to y := qk we have verified our previous claim. Remark 2.4 and (13) imply

F (qk)− 1/k ≤ E(V (qk + ξ̄kY )|H),

where ξ̄k := ξ̂k1{|ξ̂k|≤K(⌊x⌋)+K(⌊x+1⌋)}, k ∈ N. By Lemma 6.8 below, there is an H-measurable

random subsequence kn, n → ∞ such that ξ̄kn → ξ′ a.s. with some ξ′ ∈ Ξ̂d. The Fatou lemma

and continuity of V imply that

v(x) = lim
n→∞

(F (qnk
)− 1/nk) ≤ E(V (x+ ξ′Y )|H) ≤ F (x)

a.s., showing that v(x) is indeed a version of F (x).
Finally we claim that v(x) → −∞, x → −∞ a.s. For each L(n) := n there is GL(n) ∈ Ξ1

with P (V (−GL(n)) ≤ −L(n)|H) ≥ 1− κ/2. Let us notice that, by (12),

E(V (−GL(n) + ξY )|H) ≤ E(V (−GL(n))1{ξY≤0, V (−GL(n))≤−L(n)}|H) + C ≤ −nκ/2 + C,

which is a bound independent of ξ and it tends to −∞ a.s. as n → −∞, so v(−GL(n)) → −∞.

By the monotonicity of v this implies that a.s. limx→−∞ v(x) = −∞. Hence our claim follows.

The last statement of this lemma is trivial.

Lemma 2.6. Let H ∈ Ξ1. Then v(H) is a version of ess. supξ∈Ξd E(V (H + ξY )|H).

Proof. Working separately on the events {H ∈ [n, n + 1)} we may and will assume that H ∈
[n, n+ 1) for a fixed n. The statement is clearly true for constant H by Lemma 2.5 and hence

also for countable step functions H. For general H, let us take step functions Hk ∈ [n, n+ 1),
Hk ∈ Ξ1 decreasing to H as k → ∞. v(Hk) → v(H) a.s. by right-continuity. It is also clear

that, for all ξ ∈ Ξd, E(V (H + ξY )|H) ≤ E(V (Hk + ξY )|H) ≤ v(Hk) a.s. for all k, hence

ess. sup
ξ∈Ξd

E(V (H + ξY )|H) ≤ v(H).

Choose ξk withE(V (Hk+ξkY )|H) > v(Hk)−1/k and note that ξ̄k := ξ̂k1{|ξ̂k|≤K(n)} also satisfies

E(V (Hk + ξ̄kY )|H) > v(Hk)− 1/k by Remark 2.4 and Lemma 2.5.

By Lemma 6.8 we can take an H-measurable random subsequence kl, l → ∞ such that

ξ̄kl → ξ† a.s., l → ∞. Fatou’s lemma and continuity of V imply

v(H) = lim
l→∞

[v(Hkl)− 1/kl] ≤ lim sup
l→∞

E(V (Hkl + ξ̄klY )|H) ≤ E(V (H + ξ†Y )|H),

completing the proof since E(V (H+ξ†Y )|H) ≤ ess. supξ∈Ξd E(V (H+ξY )|H) holds trivially.

Lemma 2.7. Outside a negligible set, the trajectories x→ v(x, ω) are continuous.

Proof. Arguing by contradiction, let us suppose that the projection A ∈ H of the set

E := {(x, ω) : v(x, ω) > ε+ sup
q<x,q∈Q

v(q, ω)} ∈ B(R)⊗H

on Ω has positive probability for some ε > 0. Let H : Ω → R be a measurable selector of E
(which exists by III. 44-45. of [36]) on A and let it be 0 outside A. Let H > Hk, k ∈ N be

Q-valued H-measurable step functions increasing to H and choose ζl such that v(H) − 1/l ≤
E(V (H + ζlY )|H) for each l ∈ N. On A we have

lim sup
k→∞

E(V (Hk + ζlY )|H) ≤ lim sup
k→∞

v(Hk) ≤ v(H)− ε.

On the other hand, monotone convergence ensures limk→∞E(V (Hk + ζlY )|H) = E(V (H +
ζlY )|H) ≥ v(H)− 1/l, for all l. This leads to a contradiction for l large enough.
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Lemma 2.8. For each H ∈ Ξ1 there exists ξ∗H ∈ Ξ̂d such that E(V (H + ξ∗HY )|H) = v(H) a.s.

Proof. The set E(V (H + ξY )|H), ξ ∈ Ξd is directed upwards hence there is a sequence ξk ∈ Ξd

such that E(V (H + ξkY )|H) increases to ess. supξ∈Ξd E(V (H + ξY )|H) = v(H), recall Lemma

2.6. Define the random variable Z :=
∑
n∈ZK(n)1H∈[n,n+1). By Remark 2.4 and Lemma 2.5,

for ξ̄k := ξ̂k1{|ξ̂k|≤Z},

E(V (H + ξkY )|H) ≤ E(V (H + ξ̄kY )|H)

a.s. for all k. Since |ξ̄k| ≤ Z a.s., by Lemma 6.8 an H-measurable random subsequence kn
exists such that ξ̄kn → ξ∗ a.s., n→ ∞ for some ξ∗ ∈ Ξ̂d, and Fatou’s lemma guarantees that

E(V (H + ξ∗Y )|H) ≥ lim sup
n→∞

E(V (H + ξ̄knY )|H) ≥ lim
n→∞

E(V (H + ξnY )|H) = v(H),

hence ξ∗H := ξ∗ is as required.

2.3 The multi-step case for u bounded above

In this section all the assumptions of Theorem 2.1 will be in force. Set

UT (x, ω) := u(x−B(ω)) for (ω, x) ∈ Ω× Rd.

Lemma 2.9. For t = 0, . . . , T − 1, there exist Ut : Ω × R → R such that, for all x, Ut(ω, x) is a

version of ess. supξ∈Ξd E(Ut+1(x + ξ∆St+1)|Ft) and, for a.e. ω ∈ Ω, the functions x → Ut(ω, x)
are non-decreasing, continuous, they satisfy limx→−∞ Ut(ω, x) = −∞ and Ut(ω, x) ≤ C for all

x ∈ R. For each Ft-measurable Ht there exists ξ̃t(Ht) ∈ Ξ̂dt such that

E(Ut+1(Ht + ξ̃t(Ht)∆St+1)|Ft) = ess. sup
ξ∈Ξd

E(Ut+1(Ht + ξ∆St+1)|Ft).

Proof. Proceeding by backward induction, we will show the statements of this Lemma to-

gether with the existence of Mt(n) ≤ Ut(n), n ∈ Z with EMt(n) > −∞. First apply Lemmata

2.5, 2.6, 2.7 and 2.8 to H := FT−1, Y := ∆ST , V := UT , D := DT and M(n) := MT (n) :=
UT (n − B) (the hypotheses of Section 2.2 follow from those of Theorem 2.1) and we get the

statements for T − 1. Note that (NA) implies (12) for Y by Proposition 1.6. Also, defining

MT−1(n) := E(MT (n)|FT−1), this satisfies EMT−1(n) > −∞ by (9).

Assume that this lemma has been shown for t + 1. Apply Lemmata 2.5, 2.6, 2.7 and 2.8

with the choice H := Ft, Y := ∆St+1, V := Ut+1, D := Dt+1 and M(n) := Mt+1(n) to get the

statements for t (the conditions of Section 2.2 now hold by the induction hypotheses), noting

that Mt(n) := m(n) = E(Mt+1(n)|Ft) = E(UT (n)|Ft) so EMt(n) > −∞, by (9).

Proof of Theorem 2.1. Using the previous Lemma, define recursively φ∗1 := ξ̃1(z) and φ∗t+1 :=

ξ̃t+1(X
z,φ∗

t ). For any φ ∈ Φ:

Eu(Xz,φ
T −B) = EE(UT (X

z,φ
T−1 + φT∆ST )|FT−1) ≤ EUT−1(X

z,φ
T−1)

≤ . . . ≤ EU0(z)

by the definition of Ut, t = 0, . . . , T . Notice that there are equalities everywhere for φ =
φ∗. This finishes the proof except the continuity of ū. Note that U0 is continuous outside a

negligible set by Lemma 2.9. Clearly, ū(x) = EU0(x). Let xk, k ∈ N converge to x and let n ∈ Z

be such that n ≤ infk xk. Then U0(xk) → U(x) a.s. and M0(n) ≤ U0(xk) ≤ C. Since M0(n) is

integrable, dominated convergence finishes the proof. ✷
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2.4 The case of possibly unbounded u

If u doesn’t admit an upper bound, problem (3) may easily become ill-posed.

Example 2.10. Assume that

u(x) =

{
xα, x ≥ 0
−|x|β , x < 0,

with α, β > 0. Assume that S0 = 0, ∆S1 = ±1 with probabilities p, 1 − p for some 0 < p < 1.

Then one gets

Eu(n∆S1) = pnα − (1− p)nβ .

If α ≥ β then choose p > 1/2 and E(U(n∆S1)) goes to ∞ as n → ∞. So in order to have a

well-posed problem for z = 0 one needs to assume β > α. We will see later that this is indeed

sufficient under further hypotheses, see Corollary 2.20 below.

We now show that the existence of the optimiser φ∗ in (3) may fail even if (NA) holds, u is

concave and the supremum in (3) is finite.

Example 2.11. Define a strictly increasing concave function u by setting u(0) = 0,

u′(x) := 1 + 1/n2, x ∈ (n− 1, n], n ≥ 1, u′(x) := 3− 1/n2, x ∈ (n, n+ 1], n ≤ −1.

for n ∈ Z. Take S0 := 0, P (S1 = 1) = 3/4, P (S1 = −1) = 1/4. One can calculate the expected

utility of the strategy φ1 := n for some n ∈ Z with initial capital z = 0:

Eu(nS1) =
3u(n) + u(−n)

4
=

n∑

j=1

1/j2, n ≥ 0;

Eu(nS1) =

−n∑

j=1

1/j2 + 2n, n < 0.

This utility tends to
∑∞
i=1 1/i

2 = π2/6 in an increasing way as n→ ∞. In fact, it is easy to

see that the function φ1 → Eu(φ1S1), φ1 ∈ R is increasing in φ1, so we may conclude that the

supremum of the expected utilities is π2/6, but it is not attained by any strategy φ∗1.

Remark 2.12. In this remark we assume u concave, nondecreasing and continuously differ-

entiable. It is not known what are the precise necessary and sufficient conditions on a u that

guarantee the existence of φ∗ in (3) for a reasonably large class of market models. In terms

of the asymptotic elasticities AE± introduced in Section 6.3 below, the standard sufficient

condition in general, continuous-time models is

AE+(u) < 1 < AE−(u), (14)

and this seems close to necessary as well, see [91, 68]. Note that, for u non-constant with

u(∞) > 0 one always has 0 ≤ AE+(u) ≤ 1, AE−(u) ≥ 1 (see Lemma 6.1 of [61] and Proposition

4.1 of [91]). We shall see in Remark 2.14 below that in discrete-time models (14) can be

relaxed to AE+(u) < AE−(u), i.e. to either AE+(u) < 1 or AE−(u) > 1, as already noticed in

[78].

We now present conditions on u which allow to assert the existence of an optimal strategy.

The main novelty with respect to previous studies is that we do not require concavity of u.

Assumption 2.13. The function u : R → R is non-decreasing, continuous and there exist

c ≥ 0, x > 0, x > 0, α, β > 0 such that α < β and for any λ ≥ 1,

u(λx) ≤ λαu(x) + c for x ≥ x, (15)

u(λx) ≤ λβu(x) for x ≤ −x, (16)

u(−x) < 0, u(x) ≥ 0. (17)
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A typical u satisfying Assumption 2.13 is that of Example 2.10 with α < β.

Remark 2.14. As explained in Section 6.3, AE±(u) can be defined for nonconcave and nons-

mooth u as well.

If c = 0 then (15) and (16) together are equivalent to AE+(u) < AE−(u), see Section

6.3. Hence Assumption 2.13 is a logical generalization of the condition of [78] to the non-

concave case, see Remark 2.12 above. A positive c allows to incorporate bounded above utility

functions as well. Note, however, that we have already obtained existence results for such

u in Theorem 2.1 above. That result is sharper for u bounded above than Theorem 2.18

below since Assumption 2.13 implies that u(x) ≤ (|x|/x)βu(−x) for x ≤ −x which entails the

convergence of u(x) to −∞ at a polynomial speed as x → −∞ while no such assumption is

needed in Theorem 2.1: we may have e.g. u(x) ∼ − ln(−x) or u(x) ∼ − ln ln(−x) near −∞.

Since for the u in Example 2.10 one trivially has AE+(u) = α and AE−(u) = β, the argu-

ment of Example 2.10 shows that the condition α < β in Assumption 2.13 is needed in order

to get existence in a reasonably broad class of models, showing that Theorem 2.18 below is

fairly sharp.

We will use a dynamic programming procedure and, to this end, we have to prove that the

associated random functions are well-defined and a.s. finite under appropriate integrability

conditions. Let B be the FT -measurable random variable appearing in (3).

Proposition 2.15. Let u : R → R be non-decreasing and left-continuous. Assume that for all

1 ≤ t ≤ T , x ∈ R and y ∈ Rd

E(u−(x+ y∆St −B)|Ft−1) < +∞ (18)

holds true a.s. for all t = 1, . . . , T . Then the following random functions are well-defined

recursively, for all x ∈ R (we omit dependence on ω ∈ Ω in the notation):

UT (x) := u(x−B), (19)

Ut−1(x) := ess sup
ξ∈Ξt−1

E(Ut(x+ ξ∆St)|Ft−1) for 1 ≤ t ≤ T, (20)

and one can choose (−∞,+∞]-valued versions which are non-decreasing and left-continuous

in x, a.s. In particular, each Ut is Ft ⊗ B(R)-measurable. Moreover, for all 0 ≤ t ≤ T , almost

surely for all x ∈ R, we have:

Ut(x) ≥ E(u(x−B)|Ft) > −∞ (21)

where the right-hand side of ≥ also has an a.s. left-continuous and non-decreasing version

G(ω, x) satisfying

G(H) = E(u(H −B)|Ft) a.s. (22)

for every Ft-measurable random variable H as well.

Proof. At t = T , (21) holds true by definition of UT and

UT (x) = E(u(x−B)|FT ) = u(x−B)

clearly admit a regular version by our assumptions on u.

Assume now that the statements hold true for t + 1. For x ∈ R, let F (x) be an arbitrary

version of ess sup
ξ∈Ξ

E(Ut+1(x+ξ∆St+1)|Ft). Fix any pairs of real numbers x1 ≤ x2. As for almost

all ω, Ut+1(ω, ·) is a nondecreasing, we get that that F (x1) ≤ F (x2) almost surely. Hence there

is a negligible set N ⊂ Ω outside which F (ω, ·) is non-decreasing over Q.

For ω ∈ Ω \ N , let us define the following left-continuous function on R (possibly taking

the value ∞): for each x ∈ R let Ut(ω, x) := supr<x,r∈Q F (ω, r). For ω ∈ N , define F (ω, x) = 0
for all x ∈ R. Let ri, i ∈ N be an enumeration of Q. Then Ut(ω, x) = supn∈N[F (ω, rn)1{rn<x} +
(−∞)1{rn≥x}] for all x and for all ω ∈ Ω \ N , hence Ut is clearly an Ft ⊗ B(R)-measurable

function. It remains to show that, for each fixed x ∈ R, Ut(x) is a version of F (x).
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Take Q ∋ rn ↑ x, rn < x, n → ∞. Then F (rn) ≤ F (x) a.s. and Ut(x) = limn F (rn) ≤ F (x)
a.s. On the other hand, for each k ≥ 1, there is ξk ∈ Ξ such that

F (x)− 1/k = ess sup
ξ∈Ξ

E(Ut+1(x+ ξ∆St+1)|Ft)− 1/k ≤ E(Ut+1(x+ ξk∆St+1)|Ft) a.s.

By definition, F (rn) ≥ E(Ut+1(rn+ ξkY )|Ft) a.s. for all n. We argue over the sets Am(k) :=
{ω : m − 1 ≤ |ξk(ω)| < m}, m ≥ 1 separately and fix m. Provided that we can apply Fatou’s

lemma, we get

Ut(x) = lim
n
F (rn) = lim inf

n
F (rn) ≥ E(Ut+1(x+ ξk∆St+1)|Ft) a.s. on Am(k),

using left-continuity of Ut+1. It follows that Ut(x) ≥ F (x) − 1/k a.s. for all k, hence Ut(x) ≥
F (x) a.s. showing our claim.

For each function i ∈W := {−1,+1}d let us introduce the vector

θi := (i(1)
√
d, . . . , i(d)

√
d). (23)

Fatou’s lemma works above because of (22) for t+ 1 and the estimate

U−
t+1(x+ ξk∆St+1) ≤ max

i∈W
U−
t+1(x−mθi∆St+1) ≤

∑

i∈W

U−
t+1(x−mθi∆St+1) a.s.,

which holds on Am(k), for each m, k.

A similar but simpler argument provides a suitable version G of E(u(x−B)|Ft). Equation

(22) for step functions H follows trivially and taking increasing step-function approximations

Hk of an arbitrary Ft-measurable H we get (22) for H using left-continuity of G and monotone

convergence.

From now on we work with these versions of Ut, E(u(x − B)|Ft). Choosing ξ = 0, we get

that, for all x ∈ R,

Ut(x) ≥ E(Ut+1(x)|Ft) ≥ E(u(x−B)|Ft) > −∞ a.s.

where the second inequality holds by the induction hypothesis (21). Due to the left-continuous

versions, Ut(x) ≥ E(u(x−B)|Ft) then holds for all x simultaneously, outside a fixed negligible

set, see Lemma 6.6.

In order to have a well-posed problem, we impose Assumption 2.16 below.

Assumption 2.16. Let u be non-decreasing and left-continuous. For all 1 ≤ t ≤ T , x ∈ R and

y ∈ Rd we assume that

Eu−(x−B) <∞ (24)

E(u−(x+ y∆St −B)|Ft−1) < ∞ a.s., (25)

EU0(x) < ∞. (26)

Note that by, Proposition 2.15, one can state (26): U0 is well-defined under (25).

Remark 2.17. In Assumption 2.16, condition (26) is not easy to verify. We propose in Corol-

laries 2.20 and 2.22 fairly general set-ups where it is valid. In contrast, (24) and (25) are

straightforward integrability conditions on S and B. For instance, if u(x) ≥ −m(1 + |x|p) for

some p,m > 0, E(B+)p <∞ and E|∆St|p <∞ for all t ≥ 1 then (25) and (24) hold.

We are now able to state a theorem asserting the existence of optimal strategies.

Theorem 2.18. Let u satisfy Assumption 2.13 and S satisfy the (NA) condition. Let Assump-

tion 2.16 hold withB bounded below. Then one can choose non-decreasing, continuous in x ∈ R

and Ft-measurable in ω ∈ Ω versions of the random functions Ut defined in (19) and (20). Fur-

thermore, there exists a Ft−1 ⊗ B(Rd)-measurable “one-step optimal” strategy ξ̃t : Ω × R → R

satisfying, for all t = 1, . . . , T , and for each x ∈ R,

E(Ut(x+ ξ̃t(x)∆St)|Ft−1) = Ut−1(x) a.s.
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Using these ξ̃·(·), we define recursively:

φ∗1 := ξ̃1(z), φ∗t := ξ̃t


z +

t−1∑

j=1

φ∗j∆Sj


 , 1 ≤ t ≤ T.

If, furthermore, Eu(Xz,φ∗

T −B) exists then φ∗ ∈ Φ(z), φ∗ is an optimiser for problem (3) and

ū(z) := sup
φ∈Φ(z)

Eu(Xz,φ
T −B)

is continuous.

Condition (26) and the existence of Eu(Xz,φ∗

T −B) are difficult to check (unless u is bounded

above, but this case has already been covered in greater generality in Theorem 2.1 above).

Hence, at first sight, the above theorem looks useless: for which S does it apply if u is un-

bounded ? We now state two corollaries whose proofs follow the scheme of the proof of Theo-

rem 2.18 and which give concrete, easily verifiable conditions on S.

Let W denote the set of R-valued random variables Y such that E|Y |p < ∞ for all p > 0.

This family is clearly closed under addition, multiplication and taking conditional expecta-

tion. With a slight abuse of notation, for a d-dimensional random variable Y , we write Y ∈ W
when we indeed mean |Y | ∈ W.

Assumption 2.19. For all t ≥ 1, ∆St ∈ W. Furthermore, for 0 ≤ t ≤ T − 1, there exist

κt, νt ∈ Ξ1
t positive, satisfying 1/κt, 1/νt ∈ W such that

ess. inf
ξ∈Ξd

t

P (ξ∆St+1 ≤ −νt|ξ||Ft) ≥ κt a.s. (27)

Corollary 2.20. Let Assumptions 2.13, 2.19 hold and assume that

u(x) ≥ −m(|x|p + 1) for all x ∈ R, (28)

holds with some m, p > 0. Let B ∈ W be bounded below. Then there exists an optimiser

φ∗ ∈ Φ(z) for problem (3) with φ∗t ∈ W for 1 ≤ t ≤ T .

Remark 2.21. In the light of Proposition 1.6, 1/νt, 1/κt ∈ W for 0 ≤ t ≤ T − 1 is a certain

strong form of no-arbitrage. When S has independent increments and (NA) holds, then one

can choose κt = κ and νt = ν in Proposition 1.6 with deterministic constants κ, ν > 0. See

Section 3.6 for other concrete examples where 1/νt, 1/κt ∈ W is verified.

The assumption that ∆St+1, 1/νt, 1/κt ∈ W for 0 ≤ t ≤ T − 1 could be weakened to the

existence of the Nth moment for N large enough but this would lead to complicated book-

keeping with no essential gain in generality, which we prefer to avoid.

We provide one more result in the spirit of Corollary 2.20.

Corollary 2.22. Let Assumption 2.13 hold with B ∈ L∞ and let ∆St, 1 ≤ t ≤ T be a bounded

process. Let (NA) hold with νt, κt of Proposition 1.6 being constant. Then there exists a solution

φ∗ ∈ Φ(z) of problem (3) which is a bounded process.

It will be clear from the proofs of the above corollaries that one could accomodate a larger

class of u at the price of stronger assumptions on S. For instance, if u behaves like −e−x for x
near −∞ then well-posedness and existence holds provided that certain iterated exponential

functions of St, 1/κt, 1/νt are integrable. Such extensions do not seem to be of any practical

use hence we refrain from chasing a greater generality here.

We will present the proofs of Theorem 2.18 and Corollaries 2.20, 2.22 in Section 2.6.

Remark 2.23. If u is concave then (16) is automatic for β = 1, with some x. Hence in this

case one can replace Assumption 2.13 in Theorem 2.18 and in Corollaries 2.20, 2.22 by (15)

with α < 1 and with some x > 0.

Similarly, for u concave, Assumption 2.13 can also be replaced by (16) with β > 1, since

(15) is automatic for α = 1.
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Remark 2.24. Theorem 2.18 as well as the ensuing two corollaries continue to hold if, instead

of stipulating that B is bounded below, we assume only the existence of ψ ∈ Φ and y ∈ R with

Xy,ψ
T ≤ B. (29)

The proofs work in the same way but instead of |ξ| for ξ ∈ Ξdt one needs to estimate |ξ−ψt+1|.
We opted for the above less general versions for the sake of a simple presentation.

Condition (29) has a clear economic interpretation: it means that B can be sub-hedged

by some portfolio, i.e. the losses incurred (B−) are controlled by some loss realizable by the

portfolio ψ. In particular, if B can be replicated by a portfolio then (29) holds.

2.5 Existence of an optimal strategy for the one-step case

First we prove the existence of an optimal strategy in the case of a one-step model. Let Y
be a d-dimensional random variable, H ⊂ F a sigma-algebra and a function V : Ω × R → R

satisfying the hypotheses that will be presented below.

Let Ξn denote the family of H-measurable n-dimensional random variables. The aim of

this section is to study ess. supξ∈Ξd E(V (x+ ξY )|H). For each x, let us fix an arbitrary version

v(x) = v(ω, x) of this essential supremum.

We prove in Proposition 2.38 that, under suitable assumptions, there is an optimiser ξ̃(x)
which attains the essential supremum in the definition of v(x), i.e.

v(x) = E(V (x+ ξ̃(x)Y )|H). (30)

In Proposition 2.38, we even prove that the same optimal solution ξ̃(H) applies if we

replace x by any H ∈ Ξ1 in (30).

This setting will be applied in Section 2.6 with the choice H = Ft−1, Y = ∆St; V (x) will be

the maximal conditional expected utility from capital x if trading begins at time t, i.e. V = Ut.
In this case, the function v(x) will represent the maximal expected utility from capital x if

trading begins at time t− 1, i.e. v = Ut−1.

We start with a useful little lemma.

Lemma 2.25. Let V (ω, x) be a F ⊗ B(R)-measurable function from Ω × R to R such that, for

all ω, V (ω, ·) is a nondecreasing function. The following conditions are equivalent :

1a. E(V +(x+ yY )|H) <∞ a.s., for all x ∈ R, y ∈ Rd.

2a. E(V +(x+ |y||Y |)|H) <∞ a.s., for all x, y ∈ R.

3a. E(V +(H + ξY )|H) <∞ a.s., for all H ∈ Ξ1, ξ ∈ Ξd.

The following conditions are also equivalent :

1b. E(V −(x+ yY )|H) <∞ a.s., for all x ∈ R, y ∈ Rd.

2b. E(V −(x− |y||Y |)|H) <∞ a.s., for all x, y ∈ R.

3b. E(V −(H + ξY )|H) <∞ a.s., for all H ∈ Ξ1, ξ ∈ Ξd.

Proof. We only prove the equivalences for V + since the ones for V − are similar. We start with

1a. implies 2a. Let x, y ∈ R. We can conclude since

V +(x+ |y||Y |) ≤ max
i∈W

V +(x+ |y|θiY ) ≤
∑

i∈W

V +(x+ |y|θiY ),

by |Y | ≤
√
d(|Y 1| + . . . + |Y d|) (recall (23) for the definition of W, θi). Next we prove that 2a.

implies 3a. Let H, ξ be H-measurable random variables, define Am := {|H| < m, |ξ| < m} for

m ≥ 1. Clearly,

V +(H + ξY )1Am
≤ V +(m+m|Y |)1Am

and the H-conditional expectation of the latter is finite by 2a. Hence 3a. follows from Lemma

6.1. Now 3a. trivially implies 1a.
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Assumption 2.26. V (ω, x) is a function from Ω× R to R such that for almost all ω, V (ω, ·) is

a nondecreasing, finite-valued, continuous function and V (·, x) is F-measurable for each fixed

x. For all x, y ∈ R,

E(V −(x− |y||Y |)|H) < +∞ a.s., (31)

E(V +(x+ |y||Y |)|H) < +∞ a.s.. (32)

Remark 2.27. Let H, ξ be arbitrary H-measurable random variables. Then, from Lemma

2.25, under Assumption 2.26 above, E(V (H + ξY )|H) exists and it is a.s. finite.

Let us recall from Section 2.2 the random set D ∈ H ⊗ B(Rd) such that for a.e. ω ∈ Ω,

D(ω) := {x ∈ Rd : (ω, x) ∈ D} is the smallest affine subspace containing the support of the

conditional distribution of Y with respect to H.

Let us denote Ξ̂d := {ξ ∈ Ξd : ξ ∈ D a.s.} and recall Remark 2.4 which shows that the

essential supremum in (30) can be equivalently taken over Ξd or Ξ̂d.

Assumption 2.28. There exist H-measurable random variables with 0 < κ, ν ≤ 1 a.s. such

that for all ξ ∈ Ξ̂d:

P (ξY ≤ −ν|ξ||H) ≥ κ. (33)

As easily seen, (33) implies that D(·) is a.s. a linear space.

We finally impose the following growth conditions on V .

Assumption 2.29. There exist constants C, g ≥ 0, β > α > 0 such that

V (λx) ≤ λαV (x+ g) + Cλα, (34)

V (λx) ≤ λβV (x+ g) + Cλβ , (35)

both hold for all x, ω and λ ≥ 1. There exists an H-measurable random variable N ≥ 0 such

that

P

(
V (−N) ≤ −2C

κ
− 1

∣∣∣∣H
)

≥ 1− κ/2 a.s. (36)

where κ is as in Assumption 2.28 and C as in (34).

Remark 2.30. There is no misprint here, it is crucial that the above inequalities hold with

both α and β: for x near −∞ we will need (35) while for x near ∞ we will need (34). In order

to prove that these properties are preserved by dynamic programming, we will need to verify

both properties for all x, see (66), (67) in Section 2.6.

In the sequel when we say that a function f : Rn → R is polynomial then we mean that

there exist k,C ≥ 0 such that

f(x1, . . . , xn) ≤ C[1 + |x1|k + . . .+ |xn|k].

We will often use the following facts without mention: for all x, y ∈ R, one has

|x+ y|η ≤ |x|η + |y|η, for 0 < η ≤ 1,

|x+ y|η ≤ 2η−1(|x|η + |y|η), for η > 1.

Lemma 2.31. Let Assumptions 2.28, 2.26 and 2.29 hold. Let η be such that 0 < η < 1 and

α < ηβ (recall that α < β). Define

L = E(V +(1 + |Y |+ g)|H), (37)

K1(x) = max

(
1, x+,

(
x+ +N + g

ν

) 1
1−η

,
x+ +N

ν
,

(
6L

κ

) 1
ηβ−α

,

(
6C

κ

) 1
ηβ−α

)
, (38)

K2(x) =

(
6[E(V (x)|H)]−

κ

) 1
ηβ

, (39)

K̃(x) = max{K1(⌊x⌋+ 1),K2(⌊x⌋)}. (40)
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All these random variables are H-measurable and a.s. finite-valued. K1(ω, x) (resp. K2(ω, x))
is non-decreasing (resp. non-increasing) in x, K̃(·) is H ⊗ B(R)-measurable and a.s. constant

on intervals of the form [n, n+ 1), n ∈ Z.

For ξ ∈ Ξ̂d with |ξ| ≥ K̃(x), we have almost surely:

E(V (x+ ξY )|H) ≤ E(V (x)|H). (41)

Assume that there exist m, p > 0 and 0 ≤ R ∈ Ξ1 such that V (x) ≥ −m(1 + |x|p +R) a.s. for all

x ≤ 0. Then there exists a non-negative, a.s. finite-valued H-measurable random variable M
and some number θ > 0 such that, for a.e. ω,

K̃(x) ≤ M(|x|θ + 1), for all x, (42)

and M is a polynomial function of N, 1/ν, 1/κ, R and L. We have

−∞ < v(x) = ess. sup
ξ∈Ξd,|ξ|≤K̃(x)

E(V (x+ ξY )|H) <∞ a.s. (43)

For any positive I ∈ Ξ1 there exists a positive N ′ ∈ Ξ1 such that v(−N ′) ≤ −I a.s. More

precisely, N ′ is a polynomial function of 1
κ , N , I, R and E(V +(K̄|Y |)|H), where

K̄ := max

(
1,
N + g

ν
,

(
N

ν

) 1
1−η

,

(
8L

κ

) 1
ηβ−α

,

(
8C

κ

) 1
ηβ−α

)
. (44)

It follows directly from (41) that E(V (x+ ξ1{|ξ|>K̃(x)}Y )|H) ≤ E(V (x)|H) a.s. for all ξ ∈ Ξ̂d,

so we get that

E(V (x+ ξ1|ξ|≤K̃(x)Y )|H) ≥ E(V (x+ ξY )|H) a.s. (45)

Proof of Lemma 2.31. Fix some x ∈ R and take ξ ∈ Ξ̂d with |ξ| ≥ max(1, x+). By (34), we have

the following estimation:

V (x+ ξY ) = V (x+ ξY )1{V (x+ξY )≥0} + V (x+ ξY )1{V (x+ξY )<0}

≤ 1{V (x+ξY )≥0}

(
|ξ|αV

(
x+

|ξ| +
ξ

|ξ|Y + g

)
+ C|ξ|α

)
+ V (x+ ξY )1{V (x+ξY )<0} a.s.

Note that the random variable L (recall (37)) is finite by (32). As V is nondecreasing,

E

(
1{V (x+ξY )≥0}V

(
x+

|ξ| +
ξ

|ξ|Y + g

)∣∣∣∣H
)

≤ E

(
V +

(
1 +

ξ

|ξ|Y + g

)∣∣∣∣H
)

≤ L.

For the estimation of the negative part, we introduce the event

B :=

{
V (x+ ξY ) < 0,

ξ

|ξ|Y ≤ −ν, V (−N) ≤ −2C

κ
− 1

}
. (46)

Then, using (35), we obtain that a.s.

−V (x+ ξY )1{V (x+ξY )<0} ≥ −V (x+ ξY )1B

≥ −1B

(
|ξ|ηβV

(
x+

|ξ|η +
ξ

|ξ|Y |ξ|1−η + g

)
+ C|ξ|ηβ

)
.

Now, from Assumption 2.28 and (36), we have

P

(
ξ

|ξ|Y ≤ −ν, V (−N) ≤ −2C

κ
− 1

∣∣∣∣H
)

≥ κ/2. (47)

It is clear that B contains
{
x+ − ν|ξ| ≤ −N, ξ

|ξ|Y ≤ −ν, V (−N) ≤ −2C

κ
− 1

}
.
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Thus if we assume that x+ − ν|ξ| ≤ −N , we get that P (B|H) ≥ κ/2 a.s. Now assume

that both x+ − ν|ξ| ≤ −N and x+

|ξ|η − |ξ|1−ην + g ≤ −N hold. This is true if |ξ| ≥ K0(x) :=

max(1, x+,
(
x++N+g

ν

) 1
1−η

, x
++N
ν ). Then we have

E(V (x+ ξY )1{V (x+ξY )<0}|H) ≤ |ξ|ηβE(1BV (−N)|H) + C|ξ|ηβE(1B |H)

≤ −κ
2
|ξ|ηβ , (48)

by (36). Putting together our estimations, for |ξ| ≥ K0(x) we have a.s.

E(V (x+ ξY )|H) ≤ |ξ|αL+ C|ξ|α − κ

2
|ξ|ηβ . (49)

In order to get (41), it is enough to have, a.s.,

|ξ|αL− κ

6
|ξ|ηβ ≤ 0, C|ξ|α − κ

6
|ξ|ηβ ≤ 0, −κ

6
|ξ|ηβ − E(V (x)|H) ≤ 0. (50)

Since α < ηβ < β, the first two inequalities will be satisfied as soon as |ξ| ≥ K1(x) (recall

(38)) and the last one as soon as |ξ| ≥ K2(x) (recall (39)). Clearly, K1(x),K2(x) ∈ Ξ1. It is also

clear that K1(x) is non-decreasing in x and K2(x) is non-increasing in x. As [E(V (x)|H)]− ≤
E(V −(x)|H) (see Corollary 6.5), by (31) K2(x) is a.s. finite valued.

Let K̂(x) := max(K1(x),K2(x)). Then (41) is satisfied if |ξ| ≥ K̂(x). From the monotonicity

property of K1(·) and K2(·), we get that K̃(x) ≥ K̂(x). Thus (41) is also satisfied as soon as

|ξ| ≥ K̃(x). The random function K̃(·) is trivially H⊗ B(R)-measurable.

By (37)-(40), K̃(x) is dominated by a polynomial function of (⌊x⌋ + 1)+, N, 1/ν, 1/κ, L and

[E(V (⌊x⌋)|H)]−. When V (x) ≥ −m(1 + |x|p + R), we have [E(V (⌊x⌋)|H)]− ≤ m(1 + |⌊x⌋|p +
E(R|H)) a.s. So K̃(x) satisfies K̃(x) ≤ M(|x|θ + 1) a.s. for some θ > 0 and for some random

variable M which is a polynomial function of N, 1/ν, 1/κ, E(R|H) and L.

Equality in (43) follows immediately from (45). We now show that v is finite. Let ξ ∈ Ξ̂d,
|ξ| ≤ K̃(x),

−E(V −(−|x| − K̃(x)|Y |)|H) ≤ E(V (x+ ξY )|H) ≤ E(V +(|x|+ K̃(x)|Y |)|H) a.s.

and we conclude by Assumption 2.26.

Looking carefully at the estimations (48), (49) above we find that, if x ≤ 0 and

|ξ| ≥ max

(
1,

(
N + g

ν

) 1
1−η

,
N

ν

)

then

E(1{V (x+ξY )≥0}V (x+ ξY )|H) +
1

2
E(1{V (x+ξY )<0}V (x+ ξY )|H) ≤ 0 a.s. (51)

provided that L|ξ|α + C|ξ|α − κ
4 |ξ|ηβ ≤ 0. So (51) holds true provided that L|ξ|α − κ

8 |ξ|ηβ ≤ 0,

and C|ξ|α − κ
8 |ξ|ηβ ≤ 0, i.e.

|ξ| ≥ max

(
1,
N

ν
,

(
N + g

ν

) 1
1−η

,

(
8L

κ

) 1
ηβ−α

,

(
8C

κ

) 1
ηβ−α

)
= K̄.

Let 0 ≤ I ∈ Ξ1. It remains to show that there exists 0 ≤ N ′ ∈ Ξ1 satisfying v(−N ′) ≤ −I
a.s. From now on we work on the event {x ≤ −N}.

−E(1{V (x+ξY )<0}V (x+ ξY )|H) ≥ −E
(
1{ ξ

|ξ|
Y≤−ν, V (−N)≤− 2C

κ −1}V (x)|H
)

≥
((

1 +
2C

κ

)(
x

−N

)β
− C

(
x

−N

)β)
κ

2

≥ κ

2

(
x

−N

)β
,
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where we used (35), (47) and the fact that κ ≤ 1 (see Assumption 2.28). Thus, if |ξ| ≤ K̄, we

obtain on {x ≤ −N},

E(V (x+ ξY )|H) ≤ E(V +(K̄|Y |)|H)− κ

2

(
x

−N

)β
a.s. (52)

Recall the definition of K̄ and (51): if |ξ| ≥ K̄ then we get that

E(V (x+ ξY )|H) ≤ 1

2
E(1{V (x+ξY )<0}V (x+ ξY )|H) ≤ −κ

4

(
x

−N

)β
a.s. (53)

The right-hand sides of both (52) and (53) are smaller than −I if

(
x

−N

)β
≥ 4

κ

(
I + E(V +(K̄|Y |)|H)

)
a.s. (54)

We may and will assume that I ≥ 1/4 which implies 4I/κ ≥ 1. So there exists an H-

measurable random variable

N ′ := N

(
4

κ

(
I + E(V +(K̄|Y |)|H)

)) 1
β

≥ N a.s., (55)

such that, as soon as x ≤ −N ′, E(V (x+ ξY )|H) ≤ −I a.s. and, taking the supremum over all

ξ, v(x) ≤ −I a.s. holds. From (55), one can see that N ′ is a polynomial function of 1
κ , N , I and

E(V +(K̄|Y |)|H).

Remark 2.32. A predecessor of Lemma 2.31 above is Lemma 4.8 of [78] whose arguments,

however, are considerably simpler since V is assumed concave in [78]. We remark that most

of the literature on the case of concave u proves the existence of the maximiser through the

dual problem. The only papers using a direct approach are [94, 95, 96, 78]. In the present

context, due to the non-concavity of u, a dual approach does not look feasible and we are

forced to take the primal route which has the advantage of providing explicit bounds on the

optimal strategies via Lemma 2.31.

Lemma 2.33. Let Assumption 2.26 hold. There exists a versionG(ω, x, y) ofE(V (x+yY )|H)(ω)
for (ω, x, y) ∈ Ω× R× Rd such that

(i) for a.e ω ∈ Ω, (x, y) → G(ω, x, y) is continuous and nondecreasing in x;

(ii) for all (x, y) ∈ R× Rd, the function ω → G(ω, x, y) is H-measurable;

(iii) for each X ∈ Ξ1 and for each ξ ∈ Ξd,

G(·, X, ξ) = E(V (X + ξY )|H), a.s. (56)

Remark 2.34. Note that, in particular, G is H⊗ B(Rd+1)-measurable.

Proof of Lemma 2.33. It is enough to construct G(ω, x, y) for (x, y) ∈ [−N,N ]d+1 for each N ∈
N. Let us fixN and note that, sup(q,r)∈[−N,N ]d+1 |V (q+rY )| ≤ V −(−N−N |Y |)+V +(N+N |Y |) =:
O and there are Aj ∈ H, j ∈ N such that E(1Aj

O) <∞, by (31), (32). It is enough to carry out

this construction on each Aj separately, so we may and will assume E(O) <∞.

Since V (ω, ·, ·) is in the separable Banach space C([−N,N ]d+1) and it is integrable by

EO <∞, Lemma 6.12 implies the existence of G : Ω → C([−N,N ]d+1) such that, for each x, y,

G(ω, x, y) is a version of E(V (x + yY )|H). For each y, G(ω, ·, y) is clearly a.s. non-decreasing

on Q and this extends to R by continuity of G. As for assertion (iii), (56) is clear for H-

measurable step functions and we may assumeX, ξ bounded. Now (X, ξ) can be approximated

by a (bounded) sequence of H-measurable step functions (Xn, ςn) and we can conclude using

continuity of G and the conditional Lebesgue theorem. A more tedious but direct proof can

also be given, see [23].
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Lemma 2.35. Let Assumptions 2.26, 2.28 and 2.29 hold. Define

A(ω, x) = sup
y∈Qd

G(ω, x, y), B(ω, x) := sup
y∈Qd,|y|≤K̃(ω,x)

G(ω, x, y)

for (ω, x) ∈ Ω× R where K̃(ω, x) is defined in (40). Then we get that, on a set of full measure,

(i) the function x→ B(ω, x), x ∈ R is non-decreasing and continuous,

(ii) B(ω, x) = A(ω, x) for all x ∈ R.

(iii) For each x ∈ R, v(x) = A(x) a.s.

Remark 2.36. By (iii) above, for each x, A(x) is a version of v(x) and hence, from this point

on we may choose this version replacing v(·) by A(·): by (i) and (ii), we will work with a non-

decreasing and continuous v(ω, ·) for a.e. ω. Notice also that if V (ω, ·) is concave for a.e. ω
then so are G(ω, ·, ·) and v(ω, ·).

Proof of Lemma 2.35. It is enough to prove this for x ∈ [ℓ, ℓ + 1) for some fixed ℓ ∈ Z. We

remark that B(ω, x), A(ω, x) are H⊗ B(R)-measurable.

We argue ω-wise and fix ω ∈ Ω where Ω is a full measure seton which conclusions of

Lemma 2.33 hold. Fix also some x ∈ R such that ℓ ≤ x < ℓ+1. Let xn ∈ [ℓ, ℓ+1) be a sequence

of real numbers converging to x.

By definition of B, for all k, there exists some yk(ω, x) ∈ Qd, |yk(ω, x)| ≤ K̃(ℓ)(ω) and

G(ω, x, yk(ω, x)) ≥ B(ω, x)− 1/k. Moreover, one has that B(ω, xn) ≥ G(ω, xn, yk(ω, x)) for all n,

and

lim inf
n

B(ω, xn) ≥ G(ω, x, yk(ω, x)) ≥ B(ω, x)− 1/k,

and letting k go to infinity,

lim inf
n

B(ω, xn) ≥ B(ω, x).

Note that B(ω, xn) is defined as a supremum over a precompact set. Thus there exists

y∗n(ω) ∈ Rd, |y∗n(ω)| ≤ K̃(ℓ)(ω) and B(ω, xn) = G(ω, xn, y
∗
n(ω)). By compactness, there ex-

ists some y∗(ω) such that some subsequence y∗nk
(ω) of y∗n(ω) goes to y∗(ω), k → ∞, and

lim supnB(ω, xn) = limk B(ω, xnk
). By Lemma 2.33 (i), one gets

lim sup
n

B(ω, xn) = G(ω, x, y∗(ω)) ≤ B(ω, x).

We claim that A is monotone on Ω. Indeed, let r1 ≤ r2 with r1, r2 ∈ [ℓ, ℓ+1). AsG(ω, r1, y) ≤
G(ω, r2, y) for each y, also A(ω, r1) ≤ A(ω, r2).

Applying Lemma 6.7 to F (ω, y) = G(ω, x, y) and K = K̃(ℓ) for some ℓ ≤ x < ℓ+1 we obtain

that, almost surely,

sup
y∈Qd,|y|≤K(ℓ)(ω)

G(ω, x, y) = ess. sup
ξ∈Ξd,|ξ|≤K(ℓ)

G(ω, x, ξ(ω))

Now applying the same Lemma 6.7 to F (ω, y) = G(ω, x, y) and K = ∞, we obtain that, almost

surely,

sup
y∈Qd

G(ω, x, y) = ess. sup
ξ∈Ξd

G(ω, x, ξ(ω)).

Now from the definition of v, A and (56) we obtain for each x ∈ R,

v(x) = ess. sup
ξ∈Ξd

E(V (x+ ξY )|H) = ess. sup
ξ∈Ξd

G(·, x, ξ) = A(x) a.s.

and (iii) is proved for all x ∈ R. Using (56) and the definition of B, we obtain for each

ℓ ≤ x < ℓ+ 1,

v(x) = ess. sup
ξ∈Ξd,|ξ|≤K(ℓ)

E(V (x+ ξY )|H) = ess. sup
ξ∈Ξd,|ξ|≤K(ℓ)

G(·, x, ξ) = B(x) a.s.
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Our considerations so far imply that the set {A(·, q) = B(·, q) for all q ∈ Q ∩ [ℓ, ℓ + 1)}
has probability one. Fix some ω0 in the intersection of this set with the one where A is non-

decreasing. For any x ∈ [ℓ, ℓ + 1), there exist some sequences rn, qn ∈ Q, n ∈ N such that

qn ր x and rn ց x, n→ ∞. By definition of ω0,

lim
qnրx

A(ω0, qn) = A(ω0, x−) and lim
rnցx

A(ω0, rn) = A(ω0, x+).

As B is continuous on [ℓ, ℓ+ 1),

lim
qnրx

B(ω0, qn) = lim
rnցx

B(ω0, rn) = B(ω0, x).

So by choice of ω0, A(ω0, x−) = B(ω0, x) = A(ω0, x+) hence

ω0 ∈ A := {A(·, x) = B(·, x) for all x ∈ [ℓ, ℓ+ 1)}.

Thus P (A) = 1 (in particular, A is measurable, which was not a priori clear).

Lemma 2.37. Let Assumptions 2.26, 2.28 and 2.29 hold. There is a set of full measure Ω̂ and

an H⊗ B(R)-measurable sequence ξn(ω, x) such that for all ω ∈ Ω̂ and x ∈ R,

ξn(ω, x) ∈ D(ω),

|ξn(ω, x)| ≤ K̃(ω, x),

G(ω, x, ξn(ω, x)) → A(ω, x), n→ ∞,

see (40) for the definition of K̃(·). Moreover, for (ω, x) ∈ Ω̂× R define

En(ω, x) := |G(ω, x, ξn(ω, x))−A(ω, x)|. (57)

For all N > 0 and for all ω ∈ Ω̂, sup|x|≤N En(ω, x) → 0, n→ ∞.

Proof. Choose Ω̃ such that all the conclusions of Lemma 2.35 hold on this set. Let qk, k ∈ N

be an enumeration of Qd. Define Dn := {l/2n : l ∈ Z}.

For all k, consider the projection Qk(ω) of qk on D(ω). By Proposition 4.6 of [78], Qk is

H-measurable. Moreover, from Remark 2.4, qkY = QkY a.s. for all k hence

G(ω, x,Qk(ω)) = E(V (x+Qk(ω)Y )|H)

= E(V (x+ qkY )|H) = G(ω, x, qk)

almost surely for each x ∈ Q so, by path regularity of G, for all x simultaneously.

We denote by Ω̂ the intersection of Ω̃ with

∩k∈N{G(x,Qk(ω)) = G(x, qk)},

it is again a set of full measure.

Let Cn1 = {(ω, x) ∈ Ω̂ × Dn : |q1| ≤ K̃(ω, x) and |G(ω, x, q1) − A(ω, x)| < 1/n} and for all

k ≥ 2, define Cnk recursively by

Cnk = {(ω, x) ∈ Ω̂× Dn : |qk| ≤ K̃(ω, x) and |G(ω, x, qk)−A(ω, x)| < 1/n} \ ∪l=1,...,k−1C
n
l .

Since, from Lemma 2.31, K̃ is H ⊗ B(R)-measurable, Cnk is in H ⊗ B(R) (recall also Remark

2.34). As from Lemma 2.35, A(ω, x) = B(ω, x) = supqk,|qk|≤K̃(ω,x)G(ω, x, qk), one has ∪kCnk =

Ω̂× Dn. Define for (ω, x) ∈ Ω̂× R

ξn(ω, x) =
∞∑

k=1

∞∑

l=−∞

Qk(ω)1{(ω,l/2n)∈Cn
k }(ω)1{l/2n≤x<(l+1)/2n}(x). (58)

Obviously, ξn is H⊗ B(R)-measurable. We thus have for all n and (ω, x) ∈ Cnk

|ξn(ω, x)| = |Qk(ω)| ≤ |qk| ≤ K̃(ω, x),

|G(ω, x, ξn(ω, x))−A(ω, x)| < 1/n.
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Fix any integer N > 0, we will prove that for all ω ∈ Ω̂, sup|x|≤N En(ω, x) goes to zero.

Define K(x, y) := max{K1(y),K2(x)}, recalling (38), (39). We argue for each fixed ω ∈ Ω̂.

As x → A(ω, x) is continuous from Lemma 2.35, it is uniformly continuous on [−N,N ]. The

same argument applies to G(ω, x, y) on [−N,N ] × [−K(−N,N + 1),K(−N,N + 1)]d (see (i) in

Lemma 2.33). Hence for each ǫ > 0 there is η(ω) > 0 such that |A(ω, x) − A(ω, x0)| < ǫ/3
and |G(ω, x, y) − G(ω, x0, y0)| < ǫ/3 if |x − x0| + |y − y0| < η(ω) and x, x0 ∈ [−N,N ], y, y0 ∈
[−K(−N,N + 1),K(−N,N + 1)]d. Now let dn(x) denote the element of Dn such that dn(x) ≤
x < dn(x) + (1/2n). Then ξn(ω, dn(x)) = ξn(ω, x). Since |ξn(·, x)| ≤ K̃(x) ≤ K(−N,N + 1) for

all x ∈ [−N,N ], we have

|G(ω, x, ξn(ω, x))−A(ω, x)| ≤ |G(ω, x, ξn(ω, x))−G(ω, dn(x), ξn(ω, dn(x))|+
|G(ω, dn(x), ξn(ω, dn(x))−A(ω, dn(x))|+
|A(ω, dn(x))−A(ω, x)|

≤ ǫ/3 + 1/n+ ǫ/3 < ǫ,

if n is chosen so large that both 1/2n < η(ω) and 1/n < ǫ/3.

These preparations allow us to prove the existence of an optimal strategy.

Proposition 2.38. Let Assumptions 2.26, 2.28 and 2.29 hold. Then there exists an H⊗B(R)-
measurable ξ̃(ω, x) ∈ D(ω) such that a.s., simultaneously for all x ∈ R,

A(ω, x) = G(ω, x, ξ̃(x)). (59)

Recall the definition of K̃(x) from (40). We have

|ξ̃(ω, x)| ≤ K̃(ω, x) for all x ∈ R and ω ∈ Ω. (60)

The ξ̃ constructed satisfies

A(ω,H) = E(V (H + ξ̃(H)Y )|H) = ess. sup
ξ∈Ξ

E(V (H + ξY )|H) a.s., (61)

for each H ∈ Ξ1.

Proof. From Lemma 2.37, there exists a sequence ξn(ω, x) ∈ D such that G(ω, x, ξn(ω, x))

converges to A(ω, x) for all ω ∈ Ω̂ for some Ω̂ of full measure and for all x ∈ R. Note that

|ξn(x)| is bounded by K̃(x) for all x ∈ R and ω ∈ Ω̂.

Using Lemma 6.8, we can find a random subsequence ξ̃k(ω, x) := ξnk
(ω, x) of ξn(ω, x) con-

verging to some ξ̃(ω, x) for all x and ω ∈ Ω̂. On the set Ω \ Ω̂ we define ξ̃(ω, x) := 0 for all x.

Note that this ensures |ξ̃(ω, x)| ≤ K̃(x) for all x ∈ R and ω ∈ Ω and (60) is proved.

Here ξ̃k(ω, x) = ξnk
(ω, x) =

∑
l≥k ξl(ω, x)1B̃(l,k), with B̃(l, k) = {(ω, x) : nk(ω, x) = l} ∈ H ⊗

B(R) and ∪l≥kB̃(l, k) = Ω̂×R. Fix x ∈ R and ω ∈ Ω̂. Define B(l, k) := {ω : (ω, x) ∈ B̃(l, k)} ∈ H.

Then we have that a.s.

G(ω, x, ξ̃k(x)) =
∑

l≥k

1B(l,k)G(ω, x, ξl(x))

≥
∑

l≥k

1B(l,k)(A(ω, x)− El(ω, x))

≥
∑

l≥k

1B(l,k)(A(ω, x)− sup
m≥k

Em(ω, x)) = A(ω, x)− sup
m≥k

Em(ω, x).

The first inequality follows from the definition of ξl.
Note that Em(ω, x) → 0, m → ∞ (see Lemma 2.37) also implies supm≥k Em(ω, x) → 0,

k → ∞. By the continuity of G, we get G(ω, x, ξ̃(x)) ≥ A(ω, x). Thus (59) is proved for each x
since A(x) ≥ G(ω, x, ξ̃(x)) is trivial.
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Equation (56) implies

A(ω,H) = E(V (H + ξ̃(H)Y )|H) a.s. (62)

so it remains to show

E(V (H + ξY )|H) ≤ A(ω,H) a.s. (63)

for each fixed ξ ∈ Ξd but this is true by (56) and by the definition of A.

Remark 2.39. For the proof of Theorem 2.18 it would suffice to construct, for all H ∈ Ξ1,

some ξH ∈ Ξd satisfying E(V (H + ξHY )|H) = A(H), as we did in the case of u bounded above

in Lemma 2.8. We have obtained a much sharper result which we shall need in Section 2.7:

there is ξ̃ : Ω × R → R such that one can choose ξH := ξ̃(H). This requires the above careful

(and rather tedious) construction for ξ.

2.6 Dynamic programming

So as to perform a dynamic programming procedure, we need to establish that some cru-

cial properties of u are true for Ut as well, i.e. they are preserved by dynamic programming.

In particular, the “asymptotic elasticity”-type conditions (66) and (67), see below.

Proposition 2.40. Assume that u satisfies Assumption 2.13. Then there is a constant C ≥ 0
such that for all x ∈ R and λ ≥ 1,

u(λx) ≤ λαu(x) + Cλα, (64)

u(λx) ≤ λβu(x) + Cλβ . (65)

Proof. Let C := max(u(x),−u(−x)) + c + |u(0)|. Obviously, (64) holds true for x ≥ x by (15).

For 0 ≤ x ≤ x, as u is nondecreasing, we get

u(λx) ≤ u(λx) ≤ λαu(x) + c = λαu(x) + c+ λα(u(x)− u(x))

≤ λαu(x) + c+ λα(u(x) + |u(0)|),

from (15) and (64) holds true. Now, for −x < x ≤ 0, u(λx) ≤ u(0) and

u(0) ≤ λαu(−x) + Cλα ≤ λαu(x) + Cλα,

so (64) holds true.

If x ≤ −x then u(x) ≤ 0, see Assumption 2.13. By (16) and α < β, one has

u(λx) ≤ λβu(x) ≤ λαu(x) ≤ λαu(x) + λαC.

We now turn to the proof of (65). For x ≥ x, using (64), α < β and u(x) ≥ 0:

u(λx) ≤ λαu(x) + Cλα ≤ λβu(x) + Cλβ .

For 0 ≤ x ≤ x,

u(λx) ≤ u(λx) ≤ λαu(x) + c =

λβu(x)− λβu(x) + λαu(x) + c ≤ λβu(x) + λβ |u(0)|+ λβ [u(x) + c].

For −x < x ≤ 0
u(λx) ≤ u(0) ≤ λβu(−x) + Cλβ ≤ λβu(x) + Cλβ .

Finally, (65) for x ≤ −x follows directly from (16).

Now we establish similar estimates for UT (x) = u(x−B).
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Proposition 2.41. Let B be bounded below. Then there exist g, C ≥ 0 such that

UT (λx) ≤ λαUT (x+ g) + Cλα, (66)

UT (λx) ≤ λβUT (x+ g) + Cλβ . (67)

Proof. Let g ≥ 0 be such that B− ≤ g. Then

UT (λx) ≤ λαu(x−B/λ) + Cλα ≤ λαu(x+ g) + Cλα.

The verification of (67) is analogous.

Proposition 2.42. If Assumption 2.16 holds true then for all 1 ≤ t ≤ T and ξ ∈ Ξdt−1 we have

for all x,

E(Ut(x+ ξ∆St)|Ft−1) ≤ Ut−1(x) < +∞ a.s. (68)

E(U+
t (x+ ξ∆St)|Ft−1) < +∞ a.s. (69)

Proof. By (21) and Assumption 2.16, EUj(x) exists for all j. Choosing the strategy equal to

zero at the dates 1, . . . , t− 1, we get

E(U0(x)) ≥ E(E(U1(x)|F0)) = E(U1(x)) ≥ . . . ≥ E(E(Ut−1(x)|Ft−2)) = E(Ut−1(x))

As E(U0(x)) < ∞, we obtain that E(Ut−1(x)) < ∞. Statements (68) and (69) are trivial from

this.

Proposition 2.43. Assume that S satisfies the (NA) condition and that Assumptions 2.13

and 2.16 hold true. One can choose versions of the random functions Ut, 0 ≤ t ≤ T , which are

almost surely nondecreasing, continuous, finite and satisfy, outside a fixed negligible set,

Ut(λx) ≤ λαUt(x+ g) + Cλα, (70)

Ut(λx) ≤ λβUt(x+ g) + Cλβ , (71)

for all λ ≥ 1 and x ∈ R. Moreover, there exist positive Nt−1 ∈ Ξ1
t−1 such that:

P

(
Ut(−Nt−1) ≤ − 2C

κt−1
− 1

∣∣∣∣Ft−1

)
≥ 1− κt−1/2, (72)

here C is the same constant as in (70) and (71) above and κt−1 is as in (5). Finally, there exist

Ft ⊗ B(R)-measurable functions ξ̃t+1, taking values in Dt+1, 0 ≤ t ≤ T − 1 such that, for all

H ∈ Ξ1
t , almost surely,

Ut(H) = E(Ut+1(H + ξ̃t+1(H)∆St+1)|Ft). (73)

Proof. Using backward induction from T to 0, we will apply Lemmata 2.31 and 2.35 and

Proposition 2.38 with the choice V := Ut, H = Ft−1, D := Dt, Y := ∆St, v = Ut−1. Then for

each x ∈ R, we will choose the random function Ut−1(x) to be A(x) which provides an almost

surely nondecreasing and continuous version of Ut−1(x) (see Lemma 2.35 and Remark 2.36).

We need to verify that Assumptions 2.28, 2.26 and 2.29 hold true.

We start by the ones which can be verified directly for all t. The price process S satisfies

the (NA) condition. So by Proposition 1.6, Assumption 2.28 holds true with ν = νt−1 and

κ = κt−1. Now, by Propositions 2.15 and 2.42, (68) and (21) are valid thus (31), (32) hold true

for V = Ut, Y = ∆St and H = Ft−1.

We will prove the cases t = T and t = T−1 only since the latter is identical to the induction

step. The function UT is continuous and non-decreasing by Assumption 2.13. Inequalities (34)

and (35) for V = UT follow from Proposition 2.41.

Let g be an upper bound for B−. Inequality (36) (and hence also (72) for t = T ) is satisfied

because for any x ≥ x+ g,

UT (−x) ≤ u(−x+ g) ≤
(−x+ g

−x

)β
u(−x)
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from (16), u(−x) < 0 by (17), so we may choose

NT−1 := max

{
x

(−(2C/κT−1)− 1

u(−x)

) 1
β

+ g, x+ g

}
.

Now we are able to use Proposition 2.38 and there exists a function ξ̃T with values in DT

such that (73) holds for t = T − 1. Moreover, by Lemma 2.35, we can chose for UT−1(ω, ·) an

almost surely nondecreasing and continuous version.

We now prove that Assumption 2.29 holds for V = UT−1. For some fixed x ∈ R and λ ≥ 1,

almost surely

UT−1(λx) = E(UT (λx+ ξ̃T (λx)∆ST )|FT−1)

≤ λα(E(UT (x+ (ξ̃T (λx)/λ)∆ST + g)|FT−1) + C) ≤ λα(UT−1(x+ g) + C),

where the first inequality follows from (70) for t = T . Clearly, there is a common zero-

probability set outside which this holds for all rational x, λ. Using continuity of UT−1 this

extends to all λ, x. Thus (70) holds for t = T − 1. By the same argument, (71) also holds for

t = T − 1.

It remains to show that (72) holds for t = T − 1 and then Assumption 2.29 will be proved

for V = UT−1. Choose IT−1 = 2C/κT−1 + 1 which is a.s. finite-valued and invoke Lemma 2.31

(with V = UT ) to get some non-negative, finite valued and FT−1-measurable random variable

N ′ such that UT−1(−N ′) ≤ −IT−1 a.s. Let us define the FT−2-measurable events

Am := {ω : P (N ′ ≤ m|FT−2)(ω) ≥ 1− κt−2(ω)/2}, m ∈ N.

As P (N ′ ≤ m|FT−2) trivially tends to 1 when m → ∞, the union of the sets Am cover a full

measure set hence, after defining recursively the partition

B1 := A1, Bm+1 := Am+1 \
(
∪mj=1Aj

)
,

we can construct the non-negative, FT−2-measurable random variable

NT−2 :=

∞∑

m=1

m1Bm

such that P (N ′ ≤ NT−2|FT−2) ≥ 1− κt−2/2 a.s. Then a.s.

P (UT−1(−NT−2) < −IT−1|FT−2) ≥ P (N ′ ≤ NT−2|FT−2) ≥ 1− κT−2/2.

Applying Proposition 2.38 to UT−1, (73) follows for t = T − 2. We can continue the procedure

of dynamic programming in an analogous way and get the statements of this proposition.

Proof of Theorem 2.18. We use the results of Proposition 2.43. Set φ∗1 := ξ̃1(z) and define

inductively:

φ∗t := ξ̃t


z +

t−1∑

j=1

φ∗j∆Sj


 , 1 ≤ t ≤ T.

Joint measurability of ξ̃t ensures that φ∗ is a predictable process with respect to the given

filtration. Proposition 2.43 implies that, for t = 1, . . . , T a.s.,

E(Ut(X
z,φ∗

t )|Ft−1) = Ut−1(X
z,φ∗

t−1 ). (74)

We will now show that if Eu(Xz,φ∗

T −B) exists then φ∗ ∈ Φ(z) and for any strategy φ ∈ Φ(z),

E(u(Xz,φ
T −B)) ≤ E(u(Xz,φ∗

T −B)). (75)

This will complete the proof.
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Let us consider first the case where Eu+(Xz,φ∗

T − B) < ∞. Then by (74) and the (condi-

tional) Jensen inequality (see Corollary 6.5),

U+
T−1(X

z,φ∗

T−1) ≤ E(U+
T (Xz,φ∗

T )|FT−1) a.s.

Thus E[U+
T−1(X

z,φ∗

T−1)] <∞ and, repeating the argument, E[U+
t (Xz,φ∗

t )] <∞ for all t.

Now let us turn to the case where Eu−(Xz,φ∗

T − B) < ∞. The same argument as above

with negative parts instead of positive parts shows E[U−
t (Xz,φ∗

t )] <∞ for all t.

It follows that, for all t, EUt(X
z,φ∗

t ) exists and so does E(Ut(X
z,φ∗

t )|Ft−1), satisfying

E(E(Ut(X
z,φ∗

t )|Ft−1)) = EUt(X
z,φ∗

t ),

see Lemma 6.2. Hence

E(UT (X
z,φ∗

T )) = E(E(UT (X
z,φ∗

T )|FT−1)) = E(UT−1(X
z,φ∗

T−1)) = . . . = E(U0(z)). (76)

By (21) and (24), −∞ < Eu(z −B) ≤ EU0(z), hence φ∗ ∈ Φ(z) follows.

Let φ ∈ Φ(z), then E(UT (X
z,φ
T )) exists and it is finite by definition of Φ(z) so for all t,

E(UT (X
z,φ
T )|Ft) exists and E(E(UT (X

z,φ
T )|Ft)) = E(UT (X

z,φ
T )).

We prove by induction that E(UT (X
z,φ
T )|Ft) ≤ Ut(X

z,φ
t ) a.s. For t = T , this is trivial.

Assume that it holds true for t+ 1.

As we saw during the proof of Proposition 2.43, E(Ut+1(X
z,φ
t + φt+1∆St+1)|Ft) exists and

it is finite. So, by the induction hypothesis, Proposition 2.38 and (73),

E(UT (X
z,φ
T )|Ft) ≤ E(Ut+1(X

z,φ
t + φt+1∆St+1)|Ft) ≤

E(Ut+1(X
z,φ
t + ξ̃t+1(X

z,φ
t )∆St+1)|Ft) = Ut(X

z,φ
t ).

Applying this result at t = 0, we obtain that E(UT (X
z,φ
T )|F0) ≤ U0(z) hence also

E(u(Xz,φ
T −B)) ≤ E(U0(z)). (77)

Putting (76) and (77) together, we get the optimality of φ∗.

To see continuity of ū, let xk → x, k → ∞ with y1 ≤ infk xk ≤ supk xk ≤ y2. By continuity

of U0, we have U0(xk) → U0(x) a.s. Lebesgue’s theorem now shows ū(xk) → ū(x), noting that

ū(z) = EU0(z), E(u(y1−B)|F0) ≤ U0(xk) ≤ U0(y2) and Eu(y1−B) > −∞, EU0(y2) <∞ by our

hypotheses.

Proof of Corollary 2.20. We follow the proof of Proposition 2.43 but with certain refinements.

Claim : We have Nt−1 ∈ W, where Nt−1 equals N in (36) for the choice V = Ut, H := Ft−1

and there exist non-negative, adapted random variables Ct, Jt−1, Mt−1, Rt belonging to W
(i.e. Ct, Rt are Ft-measurable and Jt−1 and Mt−1 are Ft−1-measurable) and numbers θ, m̃ > 0
such that, for a.e. ω,

Ut(x) ≥ −m̃(|x|p +Rt + 1), for all x (78)

U+
t (x) ≤ Ct(|x|α + 1), for all x, (79)

K̃t−1(x) ≤ Mt−1(|x|θ + 1) for all x. (80)

In addition, for all x, y ∈ R,

E(U+
t (x+ |y||∆St|)|Ft−1) ≤ Jt−1(|x|α + |y|α + 1) <∞, a.s. (81)

where the Ft−1-measurable random variable K̃t−1(x) is just K̃(x) defined in (40) for the choice
V = Ut, Y = ∆St and H := Ft−1.

Inequality (78) is trivial from (21) for all t with Rt := E(|B|p|Ft) (we may and will assume

p ≥ 1) thus (31) follows from (28) and (21).
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We proceed by backward induction starting at t = T . We will only do steps t = T and

t = T − 1 since the induction step is identical to the latter. Choosing

NT−1 := max

{
x

(−(2C/κT−1)− 1

u(−x)

) 1
β

+ g, x+ g

}
,

just like in the proof of Proposition 2.43, we can see that NT−1 ∈ W.

We estimate, using Assumption 2.13,

UT (x) ≤ u(x+ g) ≤ |x+ g|α
xα

u(x) + c+ u(x+ g) ≤ CT (|x|α + 1), (82)

for all x, with some deterministic constant CT . It is clear that (82) also holds true for U+
T and

thus (79) holds true. We obtain

E(U+
T (x+ |y||∆ST |)|FT−1) ≤ E(CT |FT−1)(2

α|x|α + 1) + 2α|y|αE(CT |∆ST |α|FT−1)

≤ JT−1(|x|α + |y|α + 1) <∞,

with JT−1 := 2αE(CT + CT |∆ST |α|FT−1).
It is clear that JT−1 belongs to W (recall ∆ST ∈ W) and that JT−1 is FT−1-measurable.

Thus (81) holds true (for V = UT ). To finish with the step t = T , it remains to prove (80). As

(28) holds true, we can use (42) in Lemma 2.31 and we just have to prove that MT−1 ∈ W
where MT−1 equals the M of Lemma 2.31 when V = UT . From Lemma 2.31, MT−1 is a

polynomial function of 1/νT−1, 1/κT−1, NT−1 and LT , where Lt denotes L from Lemma 2.31

corresponding to V = Ut. As LT = E(U+
T (1 + |∆ST |)|FT−1) ≤ 3JT−1 we get that LT ∈ W and

MT−1 ∈ W indeed.

Let us now turn to step t = T − 1. Recall that UT−1 satisfies (70) by the argument of

Proposition 2.43. Hence we get

UT−1(x) ≤ UT−1(|x|) ≤ |x|α[UT−1(1 + g) + C] ≤ (83)

|x|α[E(UT (1 + g + K̃T−1(1 + g)|∆ST |)|FT−1) + C] ≤ CT−1(|x|α + 1)

a.s. for each x with some positive FT−1-measurable CT−1, recalling (79) and (80). Thus

also U+
T−1(x) ≤ CT−1(|x|α + 1) a.s. As both U+

T−1 and x → CT−1(|x|α + 1) are continuous,

U+
T−1(x) ≤ CT−1(|x|α+1) holds for all x simultaneously, outside a fixed negligible set and (79)

is satisfied. As MT−1 and CT belong to W, CT−1 also belongs to W. Furthermore, for all x, y,

a.s.

E(U+
T−1(x+ |y||∆ST−1|)|FT−2) ≤ E(CT−1|FT−2)(2

α|x|α + 1) + 2α|y|αE(CT−1|∆ST−1|α|FT−2)

≤ JT−2(|x|α + |y|α + 1) <∞,

with JT−2 := 2αE(CT−1 + CT−1|∆ST−1|α|FT−2).
As JT−2 clearly belongs to W and JT−2 is FT−2-measurable, (81) is proved.

We now establish the existence of NT−2 ∈ W such that (36) holds true with N = NT−2 and

V = UT−1. Let us take the random variable N ′ constructed in the proof of Lemma 2.31 for

V = UT which is such that UT−1(−N ′) ≤ −IT−1, where IT−1 := (2C/κT−1) + 1. By (55), N ′

is a polynomial function of 1/κT−1, NT−1 (which belong to W) and E(U+
T (K̄T−1|∆ST |)|FT−1),

where K̄T−1 is defined as K̄ (see (44)) when V = UT . As K̄T−1 is a polynomial function of

NT−1, 1/νT−1, 1/κT−1 and LT , we have K̄T−1 ∈ W (recall from the end of step t = T that

LT ∈ W). As E(U+
T (K̄T−1|∆ST |)|FT−1) is bounded by JT−1(0+ K̄α

T−1 +1) by (81) for t = T , we

conclude that N ′ belongs to M. Let us now set

NT−2 :=
2E(N ′|FT−2)

κT−2
∈ W.

The (conditional) Markov inequality implies that a.s.

P (N ′ > NT−2|FT−2) ≤
E(N ′|FT−2)

NT−2
=
κT−2

2
.
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As in the proof of Proposition 2.43, a.s.

P (UT−1(−NT−2) ≤ −IT−1|FT−2) ≥ P (N ′ ≤ NT−2|FT−2) ≥ 1− κT−2/2,

showing (36) for V = UT−1.

We now turn to (80). By (78), one can apply (42) in Lemma 2.31 (with V = UT−1) and

(80) is satisfied with some MT−2 which is a polynomial function of 1/νT−2, 1/κT−2, NT−2 and

LT−1. So we just have to prove that MT−2 ∈ W. As

LT−1 = E(U+
T−1(1 + |∆ST−1|)|FT−2) ≤ 3JT−2,

we get that LT−1 ∈ W and MT−2 ∈ W as well. This concludes the step t = T − 1. Continuing

this inductive procedure in an analogous way, the claim is proved.

Now, since by (79),

EU0(x) ≤ EU+
0 (x) ≤ (|x|α + 1)EC0 <∞,

(26) holds true and thus Assumption 2.16 is satisfied.

Defining φ∗ as in the proof of Theorem 2.18, a straightforward induction shows that φ∗t ∈
W and Xz,φ∗

t ∈ W for all t (and thus φ∗ ∈ Φ(z)).

We get the optimality of φ∗ as in Proposition 2.43 noting that Eu(Xz,φ∗

T −B) is finite. This

completes the proof.

Proof of Corollary 2.22. In this case we note that

u(x−B) ≥ −u−(x− g), for all x ∈ R

holds instead of (28) where g is a bound for |B| and u−(·−g) is a continuous, hence also locally

bounded non-negative function. Thus in Lemma 2.31, assuming that V (x) ≥ −u−(x − g) we

obtain that K̃(x) (see (40)) can be chosen a non-random locally bounded function of x and

u−(⌊x⌋ − g). Similarly, K̄ (see (44)) is a (non-random) constant. So one can imitate the proof

of Corollary 2.20 with Ct, Jt−1, Mt−1, Nt−1 non-random. We get that the ξ̃t(·) are also locally

bounded. Hence, for z fixed, Xz,φ∗

t and φ∗t will also be bounded for all t by a trivial induction

argument and we can conclude.

Remark 2.44. One may try to prove a result similar to Theorem 2.18 in continuous-time

models. In the light of Proposition 4.8 below (see also Theorem 3.2 of [52]), however, serious

limitations are encountered soon. If we look at the particular case of no distortion there (i.e.

δ = 1, which corresponds to the setting of this chapter), Proposition 4.8 implies that taking

U(x) = xα, x > 0 and U(x) = −(−x)β , x ≤ 0 with 0 < α, β ≤ 1 the utility maximisation

problem becomes ill-posed even in the simplest Black and Scholes model.

This shows that discrete-time models behave differently from their continuous-time coun-

terparts as far as well-posedness is concerned. In discrete-time models the terminal values of

admissible portfolios form a relatively small family of random variables hence ill-posedness

does not occur even in cases where it does in the continuous-time setting, where the set of

attainable payoffs is much richer.

Consequently, there is a fairly limited scope for the extension of our results in the present

chapter to continuous-time market models unless the set of strategies is severely restricted

(as in [11], [18] and [25]). This underlines the versatility and power of discrete-time modeling.

The advantageous properties present in the discrete-time setting do not always carry over to

the continuous-time case which is only an idealization of the real trading mechanism. Consult

Chapter 4 for more on continuous-time models.

2.7 On equivalent martingale measures

The present section is concerned with the construction of Q ∈ M with desirable integra-

bility properties for both dQ/dP and dP/dQ, under additional assumptions on S. Our tool is

the following proposition, a slight extension of Proposition 7.1 in [78].
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Proposition 2.45. Let u be concave, continuously differentiable and strictly increasing. Let

Assumptions 2.13 and 2.19 be in force (see Remark 2.23) and assume

u′(x) ≤ K(|x|k + 1), x ∈ R, (84)

for some k,K ≥ 0. Assume B = 0.

Then problem (3) is well-posed; for every initial endowment z there exists strategy φ∗(z)
such that φ∗t ∈ W, t = 1, . . . , T ,

ū(z) = Eu(Xz,φ∗

T )

and
dQ

dP
:=

u′(Xz,φ∗

T )

Eu′(Xz,φ∗

T )
, (85)

defines an element of M.

Proof. We first remark that (84) clearly implies

|u(x)| ≤ K ′(|x|k+1 + 1), x ≤ 0, (86)

for some K ′ > 0.

The assumptions of Proposition 2.43 hold by (86), hence we follow the proof of that result.

However, we also verify, by backward induction that, for all t = 0, . . . , T :

Ut is continuously differentiable and concave, (87)

U ′
t(H) = E(U ′

t+1(H + ξ̃t+1(H)∆St+1)|Ft), (88)

E(U ′
t+1(H + ξ̃t+1(H)∆St+1)∆St+1|Ft) = 0, (89)

for all H ∈ Ξ1
t .

Suppose that the above statements are true for t + 1 and proceed by the induction step

(the case t = T follows similarly). We apply Proposition 6.13 with the choice V := Ut+1 and

H := Ft. We only need to check that

sup
(x,y)∈[−N,N ]d+1

U ′
t+1(x+ y∆St+1)|∆St+1|.

is integrable. For any W ∈ Ξ1
t+1, U ′

t+1(W ) = E(U ′
t+2(W + ξ̃t+2(W )∆St+2)|Ft+1) for some

(random) function ξ̃t+2(x) which is polynomial in x, involving random constants in W. It-

erating this observation and (88), we get that U ′
t+1(W ) = E(u′(W + p(W ))|Ft+1) where p(x)

is a polynomial function of x and of elements in W which proves the required integrability,

noting (84). It remains to notice that, as φ∗t ,∆St ∈ W for all t (see Proposition 2.43), we

also have u′(Xz,φ∗

T ) ∈ W by (84), in particular, dQ/dP defines an equivalent probability. Now

EQ(∆St|Ft−1) is just a Ft−1-measurable function times E(u′(Xz,φ∗

T )∆St|Ft−1), and the latter

is equal (by repeated applications of (88)) to

E(U ′
T (X

z,φ∗

T )∆St|Ft−1) = . . . = E(U ′
t(X

z,φ∗

t )∆St|Ft−1) =

E(U ′
t(X

z,φ∗

t−1 + ξ̃(Xz,φ∗

t−1 )∆St)∆St|Ft−1) = 0,

using (89). This attests Q ∈ M.

Analogous arguments show the following.

Proposition 2.46. Let u be concave, continuously differentiable and strictly increasing. Let

Assumption 2.13 be in force and let B = 0. Furthermore, assume that for all 0 ≤ t ≤ T , ∆St is

bounded and (NA) holds such that νt, κt of Proposition 1.6 are deterministic for 0 ≤ t ≤ T − 1.

Then problem (3) is well-posed; for every initial endowment z there exists a bounded strat-

egy φ∗(z) such that

ū(z) = Eu(Xz,φ∗

T )
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and
dQ

dP
:=

u′(Xz,φ∗

T )

Eu′(Xz,φ∗

T )
, (90)

defines an element of M. ✷

Corollary 2.47. Under the conditions of Proposition 2.45 there exists Q1 ∈ M with dQ1/dP ∈
L∞ and dP/dQ1 ∈ W. There exists also Q2 ∈ M with dP/dQ2 ∈ L∞ and dQ2/dP ∈ W. Under

the conditions of Proposition 2.46 there exists Q3 ∈ M with dQ3/dP, dP/dQ3 ∈ L∞.

Proof. First define u1(x) = 2
√
x+ 1 − 2 for x ≥ 0 and u1(x) = x for x < 0. This clearly

satisfies the conditions of Proposition 2.45, hence we get Q1 from (85) with dQ1/dP bounded

above since u′1 is bounded above by 1. Since Xz,φ∗

T ∈ W and 1/u′1(x) is bounded by constant

times
√
x+ 1 for x ≥ 0, we get dP/dQ1 ∈ W. Similarly, defining u2(x) := x for x ≥ 0 and

u2(x) := 1/2 − (1/2)(x − 1)2 for x < 0 we get Q2 with dQ2/dP bounded below. As u′2(x) is

bounded by constant times |x| + 1 for x < 0, we also get dQ2/dP ∈ W. To construct Q3, we

invoke Proposition 2.46 with u equal to either u1 or u2, and remember that Xz,φ∗

T is bounded

in this case.

The idea of constructing Q ∈ M via (85) was first proposed in [34] and it has become a

standard technique in mathematical finance since. Nonetheless Corollary 2.47 above is the

only result we know of that provides integrability conditions for dQ/dP , dP/dQ under suitable

hypotheses which can be directly checked on S. The only reference with similar results seems

to be [85] where Q ∈ M with various constraints on dP/dQ is constructed under restrictive

hypotheses (in particular, T = 1 or S is bounded). It seems that the standard functional

analytic approach of e.g. [86] leads to “abstract” conditions which cannot be easily checked

on S, one needs the finer analysis of the present chapter. We will utilize Corollary 2.47 later,

in the proof of Theorem 4.16.

Remark 2.48. Formula (85) suggests that an optimal strategy φ∗ could perhaps be charac-

terized by the property that, for some Q ∈ M, we have

(u′)−1(y∗(dQ/dP )) = Xz,φ∗

T (91)

with some constant y∗ > 0. This can indeed be made precise under appropriate assumptions,

providing various versions of an “abstract verification theorem” in this context: (under fur-

ther hypotheses) (91) implies the optimality of a given φ∗, see [91, 46]. We shall see a similar

result later (Theorem 5.18), in the context of illiquid markets.

2.8 Further applications

The above techniques can also be applied to studying continuity properties of strategies

with respect to preferences. The following result is Theorem 2.1 from [21].

Theorem 2.49. Let un, n ∈ N, u be continuously differentiable, strictly concave, increasing

functions for which (15) holds (with the same α, x, c) such that un(x) → u(x) for all x ∈ R.

Assume that Dt := Rd a.s. for all t; F0 is trivial; B is bounded; S is a bounded process and

(NA) holds with νt, κt of Proposition 1.6 being constant. Then, for all z, there exist unique

optimal strategies φ∗n(z), φ
∗(z) satisfying

ūn(z) := sup
φ∈Φ(z)

Eun(X
z,φ
T −B) = Eun(X

z,φ∗
n(z)

T −B) <∞,

ū(z) := sup
φ∈Φ(z)

Eu(Xz,φ
T −B) = Eu(X

z,φ∗(z)
T −B) <∞.

As n → ∞ the convergence (φ∗n(z))t → (φ∗(z))t takes place almost surely for t = 1, . . . , T and

ūn(z) → ū(z), for all z ∈ R. ✷
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One can also use utility maximisation to price derivative financial products via (85) or

by other related techniques (“utility indifference pricing”), see e.g. [34, 44, 26]. The prices

corresponding to un are also shown to converge to those corresponding to u, see Theorems 2.3

and 2.4 in [21]. Under stronger assumptions even the convergence rate of un is inherited by

φ∗n and ūn, see Theorems 2.2 and 2.3 in [21].

The risk aversion function rn(x) of an investor with utility function un(x) can be defined

for un concave, n ∈ N. In [19, 20] it is shown (using techniques of the present chapter)

that, if rn(x) tends to infinity then the so-called “utility indifference price” corresponding to

un converges to the superreplication cost of the given derivative product. This is intuitive:

infinitely risk-averse agents take no risk.

Finally, [79, 24, 77] show the existence of optimal portfolios in a setting where u is defined

on (0,∞) only. This corresponds to an investor for whom creating losses is prohibited. The

arguments of [79, 24] are in the spirit of this chapter but they are somewhat simpler. Hence

we chose not to review these papers but rather to focus on the case u : R → R.
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3 Cumulative prospect theory in multistep models

EUT has been accepted by mainstream economics as a mathematically convenient and

intellectually satisfying framework for investors’ decision-making, and it served as the foun-

dation of the theory of microeconomic equilibrium, see [4].

Regardless of the general enthousiasm about EUT, dissenting views emerged from rather

early on. It was demonstrated in [1] that EUT fails in human experiments. In [101, 58],

Daniel Kahneman and Amos Tversky suggested an alternative: cumulative prospect theory

(CPT), supported by empirical evidence. Kahneman received the Nobel prize in economics3

in 2002 for “having integrated insights from psychological research into economic science,

especially concerning human judgment and decision-making under uncertainty”, see [105].

While highly regarded by many, this theory is still subject of debates in economist circles.

Since we are interested in its mathematical aspects we do not discuss arguments for and

against in this dissertation. Our purpose is to present CPT assumptions and then to intro-

duce new mathematical tools for tackling optimal investment problems for agents with such

preferences.

Economics literature on CPT is vast (see the references of [52, 25]) but it stays mostly at

the rather elementary level of one-step financial markets. More complex models appeared in

[52, 25, 11, 18, 81], but all these papers assumed that the financial market in consideration

was complete, i.e. any reasonable payoff could be replicated by dynamic trading (see Section

1.3). Most prominent examples of such markets are the binary tree (Cox-Ross-Rubinstein

model) and geometric Brownian motion (Black-Scholes model), see e.g. [15]. Though they

provide excellent textbook material, complete market models perform poorly in practice.

Most papers also make assumptions on the portfolio losses: [25] allows only portfolios

whose attainable wealth is bounded from below by 0. In [52] the portfolio may admit losses,

but this loss must be bounded from below by a constant (which may depend on the chosen

strategy). Recall, however, that when the (concave) utility function u is defined on the whole

real line, standard utility maximisation problems usually admit optimal solutions that are

not bounded from below, see [91].

It is thus desirable to investigate models which are incomplete and which allow portfolio

losses that can be unbounded from below. In [12] and [49], a single period model is studied.

Our research concentrated on multistep discrete-time models. These are generically incom-

plete4 and they form a broad enough class to match arbitrary empirical data. In addition,

the real trading mechanism is discrete. Our principal results (Theorems 3.4 and 3.16 below)

assert the existence of optimal strategies for CPT investors in a substantial class of relevant

incomplete discrete-time market models. See Chapter 4 for continuous-time models.

We remark that other theories substituting EUT have been proposed: rank-dependent

utility [71] and acceptability indices [28], for instance. It seems that optimisation under such

preferences can also be treated using the tools we have developed for CPT. This is not pursued

in the present work.

The standard (concave) EUT machinery provides powerful tools for risk management as

well as for pricing in incomplete markets, see e.g. [26]. We hope that our present results

are not only of theoretical interest but also contribute to the future development of a similar

framework for CPT investors.

This chapter is based on [72, 22].

3.1 Investors with CPT preferences

The main tenets of CPT can be summarized as follows. First, agents analyze their gains

or losses with respect to a given stochastic reference point B. Second, potential losses are

taken into account more than potential gains. So agents behave differently on gains, i.e. on

(X − B)+ (where X runs over possible values of admissible portfolios) and on losses, i.e. on

3More precisely, the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel.
4Unless Ω is a union of finitely many atoms, a discrete-time market model of Section 1.2 is always incomplete, see

Theorem 1.40 of [44]. Actually, one needs a very specific structure in order to get a complete model in finite discrete
time, see [51] for details.
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−(X − B)−. Third, agents overweight events with small probabilities (like extreme events)

and underweight the ones with large probabilities, i.e. they distort the probability measure

using some transformation functions.

Translated into mathematics: we assume that u± : R+ → R+ and w± : [0, 1] → [0, 1] are

continuous functions such that u±(0) = 0, w±(0) = 0 and w±(1) = 1. u+ will express the

agent’s satisfaction of gains while u− expresses his/her dissatisfaction of losses. We fix B,

a scalar-valued random variable. The agent’s utility function will be ũ(x) := u+(x), x ≥ 0,

ũ(x) := −u−(−x), x < 0. The functions w+ (resp. w−) will represent probability distortions

applied to gains (resp. losses) of the investor.

Remark 3.1. In the seminal paper [58] the authors furthermore assumed that u± are both

concave, resulting in an S-shaped ũ. They also stipulated that u− is steeper at 0 than u+
and that the functions w± are “inverse S-shaped”, i.e. concave up to a certain point and then

convex. While these features are relevant in an adequate description of investors’ behaviour,

they have no importance in the mathematical analysis, only the behaviour of u± (resp. w±)

near ∞ (resp. near 0) matters, hence we do not impose these additional assumptions here.

Ours is the first mathematical treatment of discrete-time multiperiod incomplete models

in the literature. We allow for a possibly stochastic reference point B. More interestingly,

we need no concavity or even monotonicity assumptions on u+, u− (see Assumption 3.11 and

Theorem 3.16 below). Note that in e.g. [52] and [25] the functions u+, u− are assumed to

be concave and the reference point is easily incorporated: as the market is complete any

stochastic reference point can be replicated. This is no longer so in our incomplete setting.

In Theorems 3.4 and 3.16 below we manage to provide intuitive and easily verifiable con-

ditions which apply to a broad class of functions u+, u− and of probability distortions (see

Assumptions 3.11, 3.12 and Remark 3.13) as soon as appropriate moment conditions hold for

the price process. We also provide examples highlighting the kind of parameter restrictions

which are necessary for well-posedness in a multiperiod context, see Section 3.4. It turns out

that multiple trading periods exhibit phenomena which are absent in the one-step case.

We define, for θ ∈ Φ,

V+(θ, z) :=

∫ ∞

0

w+

(
P

(
u+

([
Xθ,z
T −B

]+)
≥ y

))
dy, (92)

and

V−(θ, z) :=

∫ ∞

0

w−

(
P

(
u−

([
Xθ,z
T −B

]−)
≥ y

))
dy. (93)

Denote by A(z) the set of θ for which V−(θ, z) <∞. Set

V (θ, z) := V+(θ, z)− V−(θ, z), (94)

for θ ∈ A(z).
We aim to find θ∗ ∈ A(z) with

V (θ∗, z) = sup
θ∈A(z)

V (θ, z). (95)

Note that if w±(p) = p (that is, there is no distortion) then we have V (θ, z) = Eũ(Xz,φ
T −B).

This shows that problem (10) is a subcase of problem (95) hence it can be expected that we

shall need more stringent assumptions on S in order to get existence results for the more

general class of optimisation problems (95).

In particular, we shall need the following technical condition on S and on the information

flow Ft, t = 0, . . . , T . The sigma-algebra generated by a random variable X will be denoted

σ(X).

Assumption 3.2. Let F0 coincide with the family of P -zero sets and let Ft be the P -completion

of σ(Z1, . . . , Zt) for t = 1, . . . , T , where the Zi, i = 1, . . . , T are RN -valued independent random
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variables for some N ∈ N, Y0 is constant and Y1 = f1(Z1), Yt = ft(Y1, . . . , Yt−1, Zt), t = 2, . . . , T
for some continuous functions ft : RN+(t−1)L → RL for some L ∈ N. We assume that B =
g(Y1, . . . , YT ) for some continuous g and that Sit = Y it , i = 1, . . . , d for some 1 ≤ d ≤ L and for

all t = 0, . . . , T .

Furthermore, for t = 1, . . . , T there exists an Ft-measurable uniformly distributed random

variable Ut which is independent of Ft−1 ∨ σ(Yt).
We think of the L-dimensional process Y as the economic factors present in the given

market. Its first d coordinates equal S and they represent the prices of d risky assets while

the rest of the coordinates are other variables (inflation, unemployment rate, exchange rates,

assets in a different market, etc.).

Remark 3.3. Stipulating the existence of the “innovations” Zt might look restrictive but it

can be weakened to (Z1, . . . , ZT ) having a nice enough density w.r.t. the respective Lebesgue

measure, see Proposition 6.4 of [22]. In addition to the continuity conditions, the above As-

sumption requires that the information filtration is “large enough”: at each time t, there

should exist some randomness which is independent of both the past (Ft−1) and of the present

value of the economic factors in consideration (Yt). Since real markets are perceived as highly

incomplete and noisy, this looks a mild requirement. See Section 3.6 for models satisfying As-

sumption 3.2.

As in the case of EUT, we first look at the case where u is bounded above. Note that in

this case we may work on Φ instead of A(z). The following result will be shown in Section 3.2

below.

Theorem 3.4. Assume that u+ is bounded above, u−, w− are nondecreasing with w−(x) > 0
for x > 0, u−(∞) = ∞ (that is, ũ(−∞) = −∞) and

V−(0, z) <∞. (96)

Under Assumption 3.2 and (NA), there is θ∗ = θ∗(z) ∈ Φ satisfying

V (θ∗, z) = sup
θ∈Φ

V (θ, z) > −∞. (97)

Remark 3.5. The case of bounded above u+ is investigated in [75] in complete continuous-

time models. It turns out that u−(∞) = ∞ is insufficient for the existence of a strategy in

that setting and the distortion needs to satisfy

lim inf
x→0+

w−(x)u−(1/x) > 0. (98)

Condition (98) is also essentially sufficient under additional assumptions, see [75] for details.

3.2 CPT with bounded above utility

We begin with a multistep extension of Proposition 1.6.

Lemma 3.6. For all t = 0, . . . , T − 1, there exist πt ∈ Ξ1
t , πt > 0 a.s., t = 0, . . . , T − 1, such that,

for all θ ∈ Φ̂ (recall the definition of Φ̂ in Section 1.2),

P (θt+1∆St+1 ≤ −νt|θt+1|, θn∆Sn ≤ 0, n = t+ 2, . . . , T |Ft) ≥ πt.

Proof. Define the events

At+1 := {θt+1∆St+1 ≤ −νt|θt+1|},
An := {θn∆Sn ≤ 0}, t+ 2 ≤ n ≤ T.

We will prove, by induction on m = t + 1, . . . , T , that for all Q ∼ P , there is πQt (m) > 0 a.s.

such that

EQ(1At+1
. . . 1Am

|Ft) ≥ πQt (m). (99)
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For m = t + 1 this is trivial for P = Q by Proposition 1.6 and it follows for all Q ∼ P by

Remark 1.7.

Let us assume that (99) has been shown for m− 1, we will establish it for m.

EQ(1Am
. . . 1At+1

|Ft) = EQ(EQ(1Am
|Fm−1)1Am−1

. . . 1At+1
|Ft)

≥ EQ(κ
Q
m−11Am−1

. . . 1At+1
|Ft).

Now define R ∼ P by dR/dP := κQm−1/Eκ
Q
m−1. It follows that

EQ(κ
Q
m−11Am−1

. . . 1At+1
|Ft) = EQ(κ

Q
m−1)ER(1Am−1

. . . 1At+1
|Ft)EQ(dR/dQ|Ft)

≥ EQ(κ
Q
m−1)EQ(dR/dQ|Ft)πRt (m− 1) > 0 a.s.

showing the induction step. Finally, one can set πt := πPt (T ).

Lemma 3.7. Under the conditions of Theorem 3.4, let θ(n) ∈ Φ̂, n ∈ N such that V (z, θ(n)) ≥
−c for some c ∈ R, for all n. Then the sequence of the laws of (θ1(n), . . . , θT (n)) is tight.

Proof. It suffices to show, by induction on m = 1, . . . , T , that we have, for all m,

P (|θm(n)| ≥ cn) → 0, n→ ∞,

for every sequence cn → ∞, n → ∞, see e.g. Lemma 4.9 on p. 66 of [59]. The first step is

similar to the induction step, so we omit it. Let us assume that the above statement has been

shown for m = 1, . . . , k, we will show it for k + 1.

Define the right-continuous and non-decreasing function

w†
−(q) := max{p ∈ [0, 1] : w−(p) = q}, q ∈ [0, 1],

(note the continuity of w−). Clearly, w†
−(q) → 0, q → 0.

Since u+ and hence also V +(θ(n), z) are bounded above by a fixed constant C, V (θ(n), z) ≥
−c implies V−(θ(n), z) ≤ c + C for all n. From (93) we get w−(P ((u−(X

z,θ(n)
T − B)−) ≥ y)) ≤

(c+C)/y hence also P (u−((X
z,θ(n)
T −B)−) ≥ y) ≤ w†

−((c+C)/y), for all y > 0. This shows that

P ((X
z,θ(n)
T −B)− ≥ cn) ≤ P (u−((X

z,θ(n)
T −B)−)) ≥ u−(cn)) ≤ w†

−((c+ C)/u−(cn)) → 0,

as n→ ∞, since u−(x) → ∞, x→ ∞ and w†
−(q) → 0, q → 0.

We claim that, for all 1 ≤ j ≤ k, P (|θj(n)∆Sj | ≥ cn) → 0, n→ ∞ for any sequence cn → ∞,

n→ ∞. Indeed, fix ε > 0. P (|∆Sj | ≤ s) ≥ 1− ε/2 for s large enough. Also, for n large enough,

P (|θj(n)| ≤ cn/s) ≥ 1 − ε/2, by the induction hypothesis. Hence P (|θj(n)∆Sj | ≥ cn) ≤ ε for n
large enough, as claimed. It follows that also

l(n) := P (|Xz,θ(n)
k | ≥ cn/3) ≤

k∑

j=1

P (|θj(n)∆Sj | ≥ cn/(3k)) → 0, n→ ∞.

Clearly, the inclusion

{(
T∑

j=k+1

θj(n)∆Sj)− ≥ cn} ⊂ {|B| ≥ cn/3} ∪ {|Xz,θ(n)
k | ≥ cn/3} ∪ {(Xz,θ(n)

T −B)− ≥ cn/3}

holds, which implies

P (|B| ≥ cn/3) + l(n) + P ((X
z,θ(n)
T −B)− ≥ cn/3) ≥

P ((

T∑

j=k+1

θj(n)∆Sj)− ≥ cn) ≥

P (θk+1(n)∆Sk+1 ≤ −κk|θk+1(n)|, θj(n)∆Sj ≤ 0, k + 2 ≤ j ≤ T,

|θk+1(n)| ≥ cn/κk) ≥
E[1|θk+1(n)|≥cn/κk

πk],

37

dc_1138_15

Powered by TCPDF (www.tcpdf.org)



so E[1|θk+1(n)|≥cn/κk
πk] → 0, n → ∞. Define Q ∼ P by dQ/dP := πk/Eπk. It follows that

Q(|θk+1(n)| ≥ cn/κk) → 0, n → ∞, which implies Q(|θk+1(n)| ≥ cn) → 0 and hence also

P (|θk+1(n)| ≥ cn) → 0, n→ ∞. The induction step is completed.

Proof of Theorem 3.4. Let θ(j) ∈ Φ be such that V (θ(j), z) ≥ supθ∈Φ V (θ, z) − 1/j, j ∈ N. As

V (z − B) > −∞, this supremum is > −∞. By Remark 2.4 we may and will suppose that

θ(j) ∈ Φ̂ for all j. By (96), the supremum is at least V (0, z) > −∞ so infj V (θ(j), z) > −∞,

hence Lemma 3.7 shows the tightness of the sequence of random variables (θ1(j), . . . , θT (j)),
j ∈ N. Then the sequence

Ij := (Y1, . . . , YT , θ1(j), . . . , θT (j)), j ∈ N

is also tight so a subsequence (still denoted by j) converges weakly to some probability law

µ on B(RT (d+L)). We will also use the notation I
(k)
j := (S1, . . . , Sk, θ1(j), . . . , θk(j)) and denote

its law on B(Rk(d+L)) by µk(j). Let us take M to be a T (d + L)-dimensional random variable

with law µ. Let µk be the law of

(M1, . . . ,MkL,MTL+1, . . . ,MTL+kd)

on B(Rk(d+L)). Obviously, µk(j) weakly converges to µk, j → ∞.

We shall construct, recursively, θ∗i , i = 1, . . . , T such that Fk := (Y1, . . . , Yk, θ
∗
1 , . . . , θ

∗
k) has

law µk for all k = 1, . . . , T , and θ∗ = (θ∗1 , . . . , θ
∗
T ) is a trading strategy.

As θ1(j) are deterministic numbers, weak convergence implies that they converge to some

(deterministic) θ∗1 which is then F0-measurable. Clearly, (Y1, θ
∗
1) has law µ1.

Carrying on, let us assume that we have found θ∗i , i = 1, . . . , k such that Fk has law µk and

θ∗j is Fj−1-measurable for j = 1, . . . , k.

We now apply Lemma 6.16 with N1 = d, N2 = k(d + L), E = Uk and Y = Fk to get G
such that (Fk, G(Fk, Uk)) has the same law as (M1, . . . ,MkL,MTd+1,MTd+(k+1)L), we denote

this law by µ̄k henceforth (note that, by Assumption 3.2, Uk is independent of Fk). Define

θ∗k+1 := G(Fk, Uk), this is clearly Fk-measurable. It remains to show that Fk+1 has law µk+1.

As µk+1 is the weak limit of LawI
(k+1)
j , it is enough to prove that the latter is Fk+1. We first

decompose the laws of I
(k+1)
j and Fk+1 by means of conditioning.

By Assumption 3.2 one can write Yk+1 = fk+1(Y1, . . . , Yk, Zk+1) with some continuous func-

tion fk+1. Notice that the law of the (k + 1)(d+ L)-dimensional random variable Fk+1 is

µk+1(dx) = µ̄k(dσ1, . . . , dσk, dτ1, . . . , dτk+1)ρ(dσk+1|σ1, . . . , σk, τ1, . . . , τk+1)

where we write

dx = (dx1, . . . , dx(k+1)(L+d)) = (dσ1, . . . , dσk+1, dτ1, . . . , dτk+1), dσj = (dx(j−1)L+1, . . . , dxjL)

for j = 1, . . . , k + 1 and dτi = (dx(k+1)L+(i−1)d+1, . . . , dx(k+1)L+id) for i = 1, . . . , k + 1. The

probabilistic kernel ρ is defined by

ρ(A|σ1, . . . , σk, τ1, . . . , τk+1) := P (Yk+1 ∈ A|Y1 = σ1, . . . , Yk = σk, θ
∗
1 = τ1, . . . , θ

∗
k+1 = τk+1) =

P (fk+1(σ1, . . . , σk, Zk+1) ∈ A|Y1 = σ1, . . . , Yk = σk, θ
∗
1 = τ1, . . . , θ

∗
k+1 = τk+1) =

P (fk+1(σ1, . . . , σk, Zk+1) ∈ A),

for A ∈ B(Rd), (σ1, . . . , σk) ∈ RkL, (τ1, . . . , τk+1) ∈ R(k+1)d, by independence of Zk+1 from Fk.

The crucial observation here is that ρ does not depend on (τ1, . . . , τk+1).

It follows in the same way that, for all j, the law of I
(k+1)
j is

µk+1(j)(dx) = µ̄k(j)(dσ1, . . . , dσk, dτ1, . . . , dτk+1)ρ(dσk+1|σ1, . . . , σk, τ1, . . . , τk+1),

where µ̄k(j) is the law of (Y1, . . . , Yk, θ1(j), . . . , θk+1(j)).
Clearly, the weak convergence of Law(Ij) to µ implies that their marginals µ̄k(j) converge

weakly to µ̄k, for each k. To conclude the proof, we have to show that this implies also

µk+1(j)(dx) = µ̄k(j)(dσ1, . . . , dσk, dτ1, . . . , dτk+1)ρ(dσk+1|σ1, . . . , σk, τ1, . . . , τk+1) →
µk+1(dx) = µ̄k(dσ1, . . . , dσk, dτ1, . . . , dτk+1)ρ(dσk+1|σ1, . . . , σk, τ1, . . . , τk+1) (100)
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weakly as j → ∞.

First notice that, for any sequence vn → v in Rk(d+L)+d, ρ(·|vn) tends to ρ(·|v) weakly.

Indeed, taking any continuous and bounded h on RL, we have

∫

RL

h(σ)ρ(dσ|vn) = Eh(fk+1(v
1
n, . . . , v

Lk
n , Zk+1)) →

Eh(fk+1(v
1, . . . , vLk, Zk+1)) =

∫

RL

h(σ)ρ(dσ|v)

by continuity of h, fk+1, boundedness of h and Lebesgue’s theorem.

Now take any uniformly continuous and bounded g : R(k+1)(d+L) → R. Define

ḡ(v) :=

∫

RL

g(v, σ)ρ(dσ|v), v ∈ Rk(d+L)+d.

We claim that ḡ is continuous. Indeed, let vn → v. Then

|ḡ(vn)− ḡ(v)| ≤
∣∣∣∣
∫

RL

g(vn, σ)ρ(dσ|vn)−
∫

RL

g(v, σ)ρ(dσ|vn)
∣∣∣∣+

+

∣∣∣∣
∫

RL

g(v, σ)ρ(dσ|vn)−
∫

RL

g(v, σ)ρ(dσ|v)
∣∣∣∣ .

Here the first term tends to zero by uniform continuity, the second term tends to zero by the

weak convergence of ρ(·|vn) to ρ(·|v). This shows the continuity of ḡ.

As µ̄k(j) converge weakly to µ̄k, it follows that

∫

Rk(d+L)+d

ḡ(σ1, . . . , σk, τ1, . . . , τk+1)µ̄k(j)(dσ1, . . . , dσk, dτ1, . . . , dτk+1) →
∫

Rk(d+L)+d

ḡ(σ1, . . . , σk, τ1, . . . , τk+1)µ̄k(dσ1, . . . , dσk, dτ1, . . . , dτk+1),

as j → ∞. This implies that

∫

R(k+1)(d+L)

g(σ1, . . . , σk, τ1, . . . , τk+1, σk+1)ρ(dσk+1|σ1, . . . , σk, τ1, . . . , τk+1)µ̄k(j)(dσ1, . . .)

tends to
∫

R(k+1)(d+L)

g(σ1, . . . , σk, τ1, . . . , τk+1, σk+1)ρ(dσk+1|σ1, . . . , σk, τ1, . . . , τk+1)µ̄k(dσ1, . . .),

showing that (100) holds (recall that, in order to check weak convergence, it is enough to use

uniformly continuous bounded functions, see Theorem 1.1.1 of [100]) and the induction step

is completed. We finally arrive at (Y1, . . . , YT , θ
∗
1 , . . . , θ

∗
T ) with law µT = µ.

As u±, w± are continuous, w±(P (u±([X
θ(j),z −B]±) ≥ y)) tend to w±(P (u±([X

θ∗,z −B]±) ≥
y)) outside the discontinuity points of the cumulative distribution functions of u±([X

θ∗,z −
B]±), in particular, for Lebesgue-a.e. y. Note that w+(P (u+([X

z,φ(j)
T − B]+) ≥ y) ≤ 1[0,C]

where C is an upper bound for u+. Fatou’s lemma implies

lim sup
j→∞

V (θ(j), z) ≤ V (θ∗, z),

which shows that θ∗ satisfies (95). ✷

3.3 A surprising example

Take z = 0. Let us define P := {Law(X0,φ
T ) : φ ∈ Φ}. The proof of Theorem 3.4 consisted

of two steps: first, the relative compactness of the sequence of optimisers (for the weak con-

vergence of probability measures) was shown using Lemma 3.7; second, it was established
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that for a tight sequence of strategies φ(n), n ∈ N one may always find a limit point of (a

subsequence of) Law(X
0,φ(n)
T ), n ∈ N in P, under Assumption 3.2.

In this section we provide an example which shows that the latter property can easily fail

and P is not closed for weak convergence unless additional assumptions (such as Assumption

3.2 above or Assumption 6.1 of [22]) are made. This fact is surprising since the set {X0,φ
T : φ ∈

Φ} is closed in probability, even without (NA), see Proposition 2 of [99] and Proposition 6.8.1

of [35]. In the sequel Leb refers to the Lebesgue measure on [0, 1].
Our example will be a one-step model with one risky asset and a non-trivial initial sigma-

algebra. Let U be uniform on [0, 1] and let Y be a Z-valued random variable, independent of

U , with P (Y = −1) = 1/2, P (Y = k) = 1/2k+1, k ≥ 1. Define F0 := σ(U), F1 := σ(U, Y ).
Set S0 = 0, S1 = ∆S1 := −1 if Y = −1 and ∆S1 = fk(U) if Y = k, k ≥ 1 where fk(x) :=
3k + 1/2 + qk(x), x ∈ [0, 1] and qk is a complete orthogonal system in the Hilbert space

{h ∈ L2([0, 1],B([0, 1]),Leb) :
∫ 1

0

h(x)dx = 0}

such that each qk is continuous and |qk(x)| ≤ 1/2, x ∈ [0, 1]. Such a system can easily be

constructed e.g. from the trigonometric system. This model clearly satisfies (NA) but we

claim that

P = {Law(φ∆S1) : φ is F0-measurable}
is not closed for weak convergence.

We first construct a certain limit point for a sequence in P. A “creation of more random-

ness” takes place in the next lemma.

Lemma 3.8. Define gn(x) := n(x−k/n), k/n ≤ x < (k+1)/n, k = 0, . . . , n−1 and set gn(1) = 1,

for n ∈ N. We claim that µn := Law(U, gn(U)) converges weakly to µ∞ := Law(U, V ), n → ∞,

where V is uniform on [0, 1] and it is independent of U .

Proof. It suffices to prove that, for all 0 ≤ a, b ≤ 1, we have µn([0, a]× [0, b]) → µ∞([0, a]× [0, b]),
see Theorem 29.1 in [14]. Fix a, b and define, for all n, l(n) as the largest integer with l(n)/n ≤
a. By the definition of gn, we have that, for all n ∈ N ∪ {∞},

µn([0, l(n)/n]× [0, b]) = bl(n)/n.

It is also clear that µn([0, a] × [0, b]) − µn([0, l(n)/n] × [0, b]) ≤ 1/n holds for all n ∈ N and also

µ∞([0, a] × [0, b]) − µ∞([0, l(n)/n] × [0, b]) ≤ 1/n, hence µn([0, a] × [0, b]) → µ∞([0, a] × [0, b]),
n→ ∞.

Define φn := gn(U) + 1, n ∈ N. It follows that the sequence of triplets (U, Y, φn), n ∈ N

converges to (U, Y,W ) in law, where W is uniform on [1, 2] and independent of (U, Y ). Define

φ̄ := W . Note that equipping Z with the discrete topology, ∆S1 is a continuous function of

(U, Y ), hence, by the continuous mapping theorem, Law(φn∆S1) converges weakly to ν :=
Law(φ̄∆S1). We claim, however, that ν /∈ P.

Arguing by contradiction, let us suppose the existence of a Borel-function g such that

with φ := g(U) one has ν = µ := Law(φ∆S1). Let s denote the support of the law of φ. If

s ∩ (−∞, 0) 6= ∅ then the support of µ would be unbounded from below hence it cannot be

equal to ν. Hence φ ≥ 0 a.s. and then −s = supp(ν) ∩ (−∞, 0] = [−2,−1], so s = [1, 2].
This implies that the following (a.s.) equalities hold between events:

Ak := {φ∆S1 ∈ [3k, 2× 3k + 2]} = {Y = k} = {φ̄∆S1 ∈ [3k, 2× 3k + 2]},

for all k ≥ 1. Then, by independence of U from Y and W of (U, Y ),

E[φ∆S11Ak
] = P (Y = k)E[g(U)fk(U)] = (1/2k+1)

∫ 1

0

g(x)fk(x)dx =

E[φ̄∆S11Ak
] = (1/2k+1)EWEfk(U) = (1/2k+1)(3/2)(3k + 1/2).
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It follows that, for all k,

ck :=

∫ 1

0

g(x)qk(x)dx = E[g(U)(fk(U)− 3k − 1/2)] = [3/2− Eg(U)](3k + 1/2).

Since the qk are orthogonal and uniformly bounded, necessarily
∑∞
k=1 c

2
k < ∞, so ck = 0 for

all k. This implies Eg(U) = 3/2. By the completeness of the sequence qk we also get that g is

a.s. constant, so φ = 3/2. This contradiction with s = [1, 2] shows our claim.

3.4 A first look at well-posedness

Well-posedness is trivial for u+ bounded above. We will thus concentrate on the case of

unbounded u+ in this section.

Example 3.9. A typical choice for u±, w± (going back to [101]) is taking

u+(x) = xα, u−(x) = kxβ

for some k > 0 and setting

w+(p) =
pγ

(pγ + (1− p)γ)1/γ
, w−(p) =

pδ

(pδ + (1− p)δ)1/δ
,

with constants 0 < α, β, γ, δ ≤ 1. This is still one of the most commonly used specifications of

u±, w± in the literature.

Requiring that 0 < α, β ≤ 1, we ensure that both u+ and u− are concave. Moreover,

assuming γ, δ ≤ 1, we get that the probability distortions are “inverse S-shaped” and that

w±(x) ≥ x holds for all x close to 0. This latter property captures the fact that a behavioural

agent overweights small probabilities.

We are concerned with maximizing V (θ, z) over θ ∈ A(z) in the case where u is not neces-

sarily bounded above. We seek to find conditions ensuring well-posedness, i.e.

sup
θ∈A(z)

V (θ, z) <∞, (101)

and the existence of θ∗ ∈ A(z) attaining this supremum.

Remark 3.10. One may wonder whether the set A(z) is rich enough. Assume that u−(x) ≤
c(1 + xβ) for some c, β > 0; B ∈ W and w−(p) ≤ Cpδ for some δ, C > 0. Then Lemma 6.14

below implies that the strategy θt = 0, t = 1, . . . , T is in A(z), in particular, the latter set is

non-empty. If, furthermore, ∆St ∈ W for all t then θ ∈ A(z) whenever θt ∈ W, t = 1, . . . , T .

This remark applies, in particular, to u− and w− in Example 3.9 above.

In the rest of this section we will find parameter restrictions that need to hold in order

to have a well-posed problem in the setting of e.g. Example 3.9. The discussion below sheds

light on the assumptions we will make later in Section 3.5.

For simplicity, we assume that u+(x) = xα and u−(x) = xβ for some α, β > 0; the distortion

functions are w+(p) = pγ , w−(p) = pδ for some γ, δ > 0. The example given below applies also

to w± with a power-like behavior near 0 such as those in Example 3.9 above.

Let us consider a two-step market model with S0 = 0, ∆S1 uniform on [−1, 1], P (∆S2 =
±1) = 1/2 and ∆S2 is independent of ∆S1. Let F0,F1,F2 be the natural filtration of S0, S1, S2.

It is easy to check that (NA) holds for this model.

Let us choose initial capital z = 0 and reference point B = 0. We consider the strategy

θ ∈ Φ given by θ1 = 0 and θ2 = g(∆S1) with g : [−1, 1) → [1,∞) defined by g(x) = ( 2
1−x )

1/ℓ,

where ℓ > 0 will be chosen later. Then the distribution function of θ2 is given by

F (y) = 0, y < 1, F (y) = 1− 1

yℓ
, y ≥ 1.
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It follows that

V+(θ, 0) =

∫ ∞

0

P γ((θ2∆S2)
α
+ ≥ y)dy =

∫ ∞

1

1

2γ
1

yℓγ/α
dy,

and

V−(θ, 0) =

∫ ∞

0

P δ((θ2∆S2)
β
− ≥ y)dy =

∫ ∞

1

1

2δ
1

yℓδ/β
dy.

If we have α/γ > β/δ then there is ℓ > 0 such that

ℓγ

α
< 1 <

ℓδ

β
,

which entails V−(θ, 0) <∞ (so indeed θ ∈ A(0)) and V+(θ, 0) = ∞, n → ∞ so the optimization

problem becomes ill-posed.

One may wonder whether this phenomenon could be ruled out by restricting the set of

strategies e.g. to bounded ones. The answer is no. Considering θ1(n) := 0, θ2(n) := min{θ2, n}
for n ∈ N we obtain easily that θ(n) ∈ Ψ(0) and V+(θ(n), 0) → ∞, V−(θ(n), 0) → V−(θ, 0) < ∞
by monotone convergence, which shows that we still have

sup
ψ
V (ψ, 0) = ∞,

where ψ ranges over the family of bounded strategies in A(0) only. This shows that the ill-

posedness phenomenon is not just a pathology but it comes from the multi-periodic setting:

one may use the information available at time 1 when choosing the investment strategy θ2.

We mention another case of ill-posedness which is present already in one-step models, as

noticed in [49] and [12], see also Example 2.10 above. We slightly change the previous setting:

we allow general distortions, assuming only that w+(y) > 0 for y > 0. The market is defined

by S0 = 0, ∆S1 = ±1 with probabilities p, 1 − p for some 0 < p < 1 and F0,F1 the natural

filtration of S0, S1. Now the set A(z) can be identified with R. Take z = B = 0 and θ1(n) := n,

n ∈ N, then V+(θ(n), 0) = w+(p)n
α and V−(θ(n), 0) = w−(1 − p)nβ . If α > β then, whatever

w+, w− are, we have V (θ(n), 0) → ∞, n→ ∞. Hence, in order to get a well-posed problem one

needs to have α ≤ β, as already observed in [12] and [49].

We add a comment on the case α = β: whatever w+, w− are, we may easily choose p such

that the problem becomes ill-posed: indeed, it happens if w+(p) > w−(1−p) (note the assumed

continuity of w±).

Since it would be difficult to dismiss the simple models of this section based on economic

grounds we are led to the conclusion that, in order to get a mathematically meaningful opti-

mization problem for a reasonably wide range of price processes, one needs to assume both

α < β and α/γ ≤ β/δ. (102)

We conjecture that (102) (with < instead of ≤) is sufficient for well-posedness and for the

existence of optimisers but this is still an open problem.

In the following section we propose an easily verifiable sufficient condition. Roughly

speaking, what we require is α/γ < β, see (107) below. This is stronger than (102) but it

is still reasonably general. If w−(p) = p (i.e. δ = 1, no distortion on loss probabilities) then

(107) below is essentially sharp, as the present section highlights. See Theorem 4.16 in Sec-

tion 4 for another partial result.

3.5 Unbounded utilities in CPT

Basically, we will require below that u± are comparable to power functions at infinity and

that w± do likewise in the neighborhood of 0. We stress that no concavity or monotonicity

assumptions are made on u±, unlike in all the related papers.

42

dc_1138_15

Powered by TCPDF (www.tcpdf.org)



Assumption 3.11. We assume that u± : R+ → R+ and w± : [0, 1] → [0, 1] are continuous

functions such that u±(0) = 0, w±(0) = 0 and w±(1) = 1. They satisfy

u+(x) ≤ k+(x
α + 1), (103)

k−(x
β − 1) ≤ u−(x), (104)

w+(p) ≤ g+p
γ , (105)

w−(p) ≥ g−p
δ, (106)

with 0 < α, β, γ, δ, k±, g± fixed constants.

Assumption 3.12. Let δ ≤ 1 and let either

γ ≤ 1,
α

γ
< β, (107)

or

γ > 1, α < β (108)

hold.

Assumption 3.12 allows us to fix λ > 0 such that λγ > 1 and λα < β. If γ > 1 then we may

and will choose λ = 1. Note that if γ > 1 then α/γ < β is implied by α < β. Similarly, for

γ ≤ 1, α < β is implied by α/γ < β. In other words, under either (107) or (108), both α < β
and α/γ < β hold.

Remark 3.13. As already described at the beginning of the present chapter, according to

CPT one should have α, β, γ, δ ≤ 1 (since u± should be concave and w±(p) should exceed p for

small p). Our results, however, apply to a more general setting, as reflected by Assumption

3.11.

Condition (107) has already been mentioned in the previous section. It has a rather

straightforward interpretation: the investor takes losses more seriously than gains. The

distortion function w+, being majorized by a power function of order γ, exaggerates the prob-

abilities of rare events. In particular, the probability of large portfolio returns is exaggerated.

In this way, for large portfolio values, the distortion counteracts the risk-aversion expressed

by u+, which is majorized by a concave power function of order α. These observations explain

the meaning of the term α/γ in (107) as “risk aversion of the agent on large gains modulated

by his/her distortion function”. Note that the agent will have a maximal risk aversion in the

modified sense if either α is high, i.e. close to 1 or γ is low i.e. close to 0 (for small value of γ
the agent distorts a lot the probability of rare events and, in particular, of large gains). Thus

in (107) we stipulate that this modulated risk-aversion parameter should still be outbalanced

by the loss aversion of the investor (as represented by parameter β coming from (104)).

A similar interpretation for the term β/δ in (102) can be given. The case (108) can also

easily be explained if the agent is “pessimistic” (or very cautious) and underestimates the

probabilities of rare events, say, large gains (i.e. γ > 1). We also note that the functions in

Example 3.9 satisfy Assumption 3.11.

Assumption 3.14. Let B ∈ W with b ≤ B for some b ∈ R.

Remark 3.15. One can weaken this assumption to B ∈ W and to the existence of y ∈ R,

ψ ∈ Φ such that

Xy,ψ
T ≤ B,

just like in the case of expected utility, see Remark 2.24 above.

The main result of the present chapter is the following.

Theorem 3.16. Under Assumptions 2.19, 3.11, 3.12 and 3.14, for all z ∈ R,

sup
θ∈A(z)

V (θ, z) <∞.

If, furthermore, Assumption 3.2 holds and V−(z −B) <∞ then there exists θ∗ ∈ A(z) with

−∞ < sup
θ∈A(z)

V (θ, z) = V (θ∗, z).
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Lemma 3.17. Let Assumptions 3.11 and 3.12 hold. There exist constants k̃± > 0, such that

for all z ∈ R and θ ∈ Φ:

V+(θ, z) ≤ k̃+E
(
1 + ([Xz,θ

T −B]+)
λα
)
,

V−(θ, z) ≥ k̃−

(
E([Xz,θ

T −B]−)
β − 1

)
.

It follows that, for θ ∈ A(z),

V (θ, z) ≤ Eu(Xz,θ
T −B), (109)

where

u(x) := k + kxαλ, x ≥ 0, u(x) := k − k̃−|x|β , x < 0, (110)

and k := max{k̃+, k̃−}.

Proof. First we assume γ ≤ 1. We get, using (105) and Markov’s inequality:

V +(θ, z) ≤ 1 + g+

∫ ∞

1

Eγ
(
uλ+([X

z,θ
T −B]+)

)

yλγ
dy. (111)

Evaluating the integral and using (103) we continue the estimation as

V +(θ, z) ≤ 1 +
g+

λγ − 1
Eγ
(
2λ−1kλ+[X

z,θ
T −B]λα+ + 2λ−1kλ+

)

≤ C1 + C2E[Xz,θ
T −B]λα+ ,

for some C1, C2 > 0, using the rough estimate xγ ≤ x+ 1, x ≥ 0.

If γ > 1 then w+(P (·)) ≤ g+P (·) and hence

V +(θ, z) ≤ g+

(
k+ + k+E[Xz,θ

T −B]α+

)
,

recall that now λα = λ. Note that, by (104), (106) and δ ≤ 1 (see Assumption 3.12),

V −(θ, z) ≥ g−

∫ ∞

0

P
(
u−([X

z,θ
T −B]−) ≥ y

)
dy

= g−Eu−([X
z,θ
T −B]−) ≥ g−k−E[Xz,θ

T −B]β− − g−k−.

Choosing k̃± as these estimates suggest we get V (θ, z) ≤ Eu(Xz,θ
T −B), as claimed.

Proof of well-posedness in Theorem 3.16. Note that the u defined in Lemma 3.17 satisfies As-

sumption 2.13. Clearly, Φ(z) of Chapter 2 corresponding to u contains A(z), hence

sup
θ∈A(z)

V (θ, z) ≤ sup
θ∈Φ(z)

Eu(Xz,θ
T −B) <∞

since Corollary 2.20 applies to the optimization problem involving u and the given market

model.

For the subsequent developments we need to extend and refine the arguments of Corollary

2.20. The next, innocent-looking lemma is the heart of the matter. Let Ut, t = T, . . . , 0 be

defined as in the proof of Corollary 2.20 for the function u of (110).

Lemma 3.18. Let Assumptions 2.19, 3.11, 3.12 and 3.14 be in force. Fix c ∈ R and ι, o
satisfying λα < ι < o < β. Let Ht ∈ Ξ1

t with E|Ht|o <∞ and let θt+1 ∈ Ξ̂dt (recall the definition

of Ξ̂dt from Section 1.2) such that

EUt+1(Ht + θt+1∆St+1) ≥ c (112)

holds. Then there exists a constant Kt such that

E|θt+1|ι ≤ Kt[E|Ht|o + 1],

where Kt does not depend either on Ht or on θt+1.
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Proof. Fix χ satisfying λα < χ < ι. By Assumption 2.19, the event

A := {θt+1∆St+1 ≤ −νt|θt+1|}

satisfies P (A|Ft) ≥ κt with 1/κt ∈ W. Define also

F :=

{ |θt+1|νt
2

≥ |Ht|+Nt

}
∈ Ft, (113)

recall νt from Proposition 1.6 and Nt from the proof of Corollary 2.20.

By estimations of Lemma 2.31 and Corollary 2.20,

E[Ut+1(Ht + θt+1∆St+1)|Ft] ≤ E[Ct+1(1 + |Ht|λα + |θt+1|λα)1[A∩F ]c |Ft] +

E

[
Ut+1

(
−Nt −

νt|θt+1|
2

)
1A∩F

∣∣∣∣Ft
]
, (114)

with Ct+1 ∈ W. Using (71) and (72), the last term can be estimated as

E

[(
Nt + νt|θt+1|/2

Nt

)β
Ut+1(−Nt)1A + C

(
Nt + νt|θt+1|/2

Nt

)β
1A

∣∣∣∣∣Ft
]
1F ≤

−
(
Nt + νt|θt+1|/2

Nt

)β
κt
2
1F ≤ −

(
νt|θt+1|

2

)β
κ̃t1F , (115)

where we set κ̃t := κt/2N
β
t . We thus get

c ≤ EUt+1(Ht + θt+1∆St+1) ≤ ECt+1(1 + |Ht|λα + |θt+1|λα)−

E

(
1F

( |θt+1|νt
2

)β
κ̃t

)
. (116)

We now push further the latter estimation.

We estimate, using the Hölder inequality for p = β/o and its conjugate q,

E

(
1F

( |θt+1|νt
2

)β
κ̃t

)
≥
Ep
(
1F (|θt+1|νt/2)o κ̃1/pt κ̃

−1/p
t

)

Ep/q
(
κ̃
−q/p
t

) .

Now let us note the trivial fact that for random variables X,Y ≥ 0 such that EY o ≥ 2EXo

one has E[1{Y≥X}Y
o] ≥ 1

2EY
o.

It follows that if

E (|θt+1|νt/2)o ≥ 2E(|Ht|+Nt)
o (117)

holds true then, applying the trivial x ≤ xp + 1, x ≥ 0,

Ep (1F (|θt+1|νt/2)o)
Ep/q

(
κ̃
−q/p
t

) ≥ Ep ((|θt+1|νt/2)o)
2pEp/q

(
κ̃
−q/p
t

)

≥ E (|θt+1|νt/2)o − 1

2pEp/q
(
κ̃
−q/p
t

) = c1E(|θt+1|νt)o − c2

with suitable c1, c2 > 0. Using again Hölder’s inequality with p = o/ι and its conjugate q,

E(|θt+1|νt)o ≥ Ep|θt+1|ι

Ep/q
(
ν−ιqt

) ≥ E|θt+1|ι − 1

Ep/q
(
ν−ιqt

) . (118)

With suitable c′1, c
′
2 > 0, we get, whenever (117) holds, that

E

(
1F

( |θt+1|νt
2

)β
κ̃t

)
≥ c′1E|θt+1|ι − c′2. (119)
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Estimate also, with p := χ/(λα) and its conjugate q,

E
(
Ct+1(1 + |Ht|λα + |θt+1|λα)

)
≤ E1/q[Cqt+1][1 + E1/p|Ht|χ + E1/p|θt+1|χ]
≤ E1/q[Cqt+1][3 + E|Ht|χ + E|θt+1|χ]
≤ c̃[1 + E|Ht|o + E|θt+1|χ], (120)

with some c̃ > 0, using that x1/p ≤ x+ 1, xχ ≤ xo + 1. Furthermore, Jensen’s inequality gives

E|θt+1|χ ≤ Eχ/ι|θt+1|ι.

Clearly, whenever

(E|θt+1|ι)1−χ/ι ≥
2c̃

c′1
, (121)

one also has

c̃E|θt+1|χ ≤ c′1
2
E|θt+1|ι. (122)

Finally, consider the condition

c′1
2
E|θt+1|ι ≥ c̃[1 + E|Ht|o] + (c′2 − c+ 1). (123)

It is easy to see that we can find some Kt, large enough, such that

E|θt+1|ι ≥ Kt[E|Ht|o + 1] (124)

implies (117) (recall (118)), (121) and (123). In this case we have, from (116), (120), (122),

(119) and (123),

EUt+1(Ht + θt+1∆St+1) ≤ c̃[1 + E|Ht|o] +
c′1
2
E|θt+1|ι

−c′1E|θt+1|ι + c′2 ≤ c− 1 < c.

This shows that (112) cannot hold when (124) does so the statement of this lemma follows.

Lemma 3.19. Let Assumptions 2.19, 3.11, 3.12 and 3.14 be in force. Fix c ∈ R and τ with

λα < τ < β. Then there exist constants Gt, t = 0, . . . , T − 1 such that

E|θt+1|τ ≤ Gt[E|z|β + 1] for t = 0, . . . , T − 1

for any θ ∈ A(z) ∩ Φ̂ satisfying

Eu(Xz,θ
T −B) ≥ c,

where the constants Gt, t = 0, . . . , T − 1 do not depend either on z or on θ.

Proof. Take τ =: αT < αT−1 < . . . < α1 < α0 := β. We first prove, by induction on t, that

Ht := z +
∑t
j=1 θj∆Sj , t ≥ 0 satisfy

E|Ht|αt ≤ Ot[|z|β + 1],

for suitable constants Ot > 0. For t = 0 this is trivial. Assuming it for t we will show it for

t+ 1. We first remark that

c ≤ Eu(Xz,θ
T −B) ≤ EUt+1(X

z,θ
t + θt+1∆St+1)

and that, by the induction hypothesis, E|Ht|αt <∞ holds.
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Thus Lemma 3.18 applies with the choice ι := (αt+1 + αt)/2 and o := αt, and we can

estimate, using Hölder’s inequality with p := ι/αt+1 (and its conjugate number q), plugging

in the induction hypothesis:

E|Ht+1|αt+1 = E|Ht + θt+1∆St+1|αt+1

≤ 2αt+1 [E|Ht|αt+1 + E|θt+1∆St+1|αt+1 ]

≤ 2αt+1 [E|Ht|αt + 1 + E1/p|θt+1|ιE1/q|∆St+1|qαt+1 ]

≤ C̃[E|Ht|αt + 1] + C̃ (E|θt+1|ι + 1)

≤ C̃[E|Ht|αt + 1] + C̃ (Kt(E|Ht|αt + 1) + 1)

≤ (C̃ + C̃Kt)Ot
(
|z|β + 1

)
+ C̃ + C̃Kt + C̃,

with C̃ := 2αt+1 [1 + E1/q|∆St+1|qαt+1 ], this proves the induction hypothesis for t+ 1.

Now let us observe that, by Lemma 3.18 (with ι = αt+1, o = αt), with some constants K ′
t,

E|θt+1|τ ≤ E|θt+1|αt+1 + 1

≤ K ′
t[E|Ht|αt + 1] + 1 ≤ K ′

t[Ot(|z|β + 1) + 1] + 1,

completing the proof by setting Gt := K ′
tOt +K ′

t + 1.

Proof of Theorem 3.16. Take θ(j) ∈ A(z) ∩ Φ̂, j ∈ N such that

lim
j→∞

V (θ(j), z) = sup
θ∈A(z)

V (θ, z).

We can fix c such that −∞ < c < infj V (θ(j), z). By Lemma 3.17 this implies that, for all j,

Eu(X
z,θ(j)
T −B) > c.

Apply Lemma 3.19 for some τ such that λα < τ < β to get

sup
j,t

E|θt(j)|τ <∞.

It follows that the sequence of T (d+ L)-dimensional random variables

Ij := (Y1, . . . , YT , θ1(j), . . . , θT (j))

are bounded in Lτ so the sequence of the laws of Ij is tight, admitting a subsequence (which

we continue to denote by j) weakly convergent to some probability law µ on B(RT (d+L)).
Now, following verbatim the proof of Theorem 3.4, we get θ∗i , i = 1, . . . , T such that µ =
Law(Y1, . . . , YT , θ

∗
1 , . . . , θ

∗
T ).

We will now show that

V (θ∗, z) ≥ lim supj→∞V (θ(j), z), (125)

which will complete the proof.

Indeed, Hj := z +
∑T
t=1 θt(j)∆St −B clearly converges in law to H := z +

∑T
t=1 θ

∗
t∆St −B,

j → ∞ (note that B is a continuous function of Y1, . . . , YT ). By continuity of u+, u− also

u±([Hj ]±) tend to u±([H]±) in law which entails that P (u±([Hj ]±) ≥ y) → P (u±([H]±) ≥ y)
for all y outside a countable set (the points of discontinuities of the cumulative distribution

functions of u±([H]±)).
It suffices thus to find a measurable function h(y) with w+(P (u+[Hj ]+ ≥ y)) ≤ h(y), j ≥ 1

and
∫∞

0
h(y)dy < ∞ and then Fatou’s lemma will imply (125). If γ ≤ 1 we get, just like in

Lemma 3.17, using Markov’s inequality, Assumption 3.14, (103) and (105), for y ≥ 1:

w+(P (u+[Hj ]+ ≥ y)) ≤ C
1 + |z|λα +

∑T
t=1E

(
|θt(j)|λα|∆St|λα

)

yλγ

≤ C

yλγ

(
1 + |z|λα +

T∑

t=1

E1/p|θt(j)|τE1/q|∆St|λαq
)
,
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for some constant C > 0, using Hölder’s inequality with p := τ/(λα) and its conjugate q
(recall that ∆St ∈ W). We know from the construction that supj,tE|θt(j)|τ <∞. Thus we can

find some constant C ′ > 0 such that w+(P (u+[Hj ]+ ≥ y)) ≤ C ′/yλγ , for all j. Now trivially

w+(P (u+[Hj ]+ ≥ y)) ≤ w+(1) = 1 for 0 ≤ y ≤ 1. Setting h(y) := 1 for 0 ≤ y ≤ 1 and

h(y) := C ′/yλγ for y > 1, we conclude since λγ > 1 and thus 1/yλγ is integrable on [1,∞). The

case of γ > 1 follows similarly.

3.6 Examples

In this section we present some classical market models where Assumptions 2.19 and 3.2

hold true and hence Theorems 3.4 and 3.7 apply.

Example 3.20. Fix d ≤ L ≤ N . Take Y0 ∈ RL constant and define Yt by the difference

equation

Yt+1 − Yt = µ(Yt) + ρ(Yt)Zt+1,

where µ : RL → RL and ρ : RL → RL×N are bounded and measurable. We assume that there

is h > 0 such that

vT ρ(x)ρT (x)v ≥ hvT v, v ∈ RL, (126)

for all x ∈ RL; Zt ∈ W, t = 1, . . . , T are independent with supp(Law(Zt)) = RN .

Thus Yt can be chosen to be e.g. the Euler approximation of a non-degenerate diffusion

process. We may think that Yt represent the evolution of L economic factors. Take F0 trivial

and Ft := σ(Zj , j ≤ t), t ≥ 1.

We claim that Yt satisfies Assumption 2.19 with respect to Ft. Indeed, Yt ∈ W is trivial

and we will show that (27) holds with κt, νt constants.

Take v ∈ RL. By the Markov property of Y w.r.t. F·,

P (v(Yt+1 − Yt) ≤ −|v||Ft) = P (v(Yt+1 − Yt) ≤ −|v||Yt).

It is thus enough to show for each t = 1, . . . , T that there is c > 0 such that for each unit

vector v ∈ RL and for each x ∈ RL

P (v(µ(x) + ρ(x)Zt) ≤ −1) ≥ c.

Denoting by m an upper bound for |µ(x)|, x ∈ RL, we may write

P (v(µ(x) + ρ(x)Zt) ≤ −1) ≥ P (v(ρ(x)Zt) ≤ −(m+ 1)).

Here y = vT ρ(x) is a vector of length at least
√
h, hence the absolute value of one of its

components is at least
√
h/N . Thus we have

P (vT ρ(x)Zt ≤ −(m+ 1)) ≥ min

(
min
i,ki

P (
√
h/NZit ≤ −(m+ 1), ki(j)Z

j
t ≤ 0, j 6= i),

min
i,ki

P (
√
h/NZit ≥ (m+ 1), ki(j)Z

j
t ≤ 0, j 6= i)

)
(127)

where i ranges over 1, . . . , N and ki ranges over the (finite) set of all functions from {1, 2, . . . , i−
1, i+1, . . . , N} to {1,−1} (representing all the possible configurations for the signs of yj , j 6= i).
This minimum is positive by our assumption on the support of Zt.

Now we can take Sit := Y it , i = 1, . . . , d for some d ≤ L. When L > d, we may think that

the Yj , d < j ≤ L are not prices of some traded assets but other relevant economic variables

that influence the market. It is trivial to check that Assumption 2.19 holds for St, too, with

respect to Ft.

Example 3.21. Take Ỹt := exp(Yt) where Yt is as in the above example. Let Zt, t = 1, . . . , T
be such that for all ζ > 0,

Eeζ|Zt| <∞.
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Set Sit := Ỹ it , i = 1, . . . , d. We claim that Assumption 2.19 holds true for St with respect to the

filtration Ft.
We prove this only for the case N = L = d = 1, for simplicity. We choose κt := St/2.

Clearly, 1/κt ∈ W and ∆St ∈ W, t ≥ 1. It suffices to prove that 1/P (St+1 −St ≤ −St/2|Ft) and

1/P (St+1 − St ≥ St/2|Ft) belong to W. We shall show only the second containment, the first

one being similar. This amounts to checking

1/P (exp{Yt+1 − Yt} ≥ 3/2|Yt) ∈ W.

We may and will assume ρ(x) ≥ h > 0, x ∈ R. Let us notice that

P (exp{Yt+1 − Yt} ≥ 3/2|Yt) = P (µ(Yt) + ρ(Yt)Zt+1 ≥ ln(3/2)|Yt)

= P

(
Zt+1 ≥ ln(3/2)− µ(Yt)

ρ(Yt)
|Yt
)

≥ P

(
Zt+1 ≥ ln(3/2) +m√

h

)
,

which is a deterministic positive constant, by the assumption on the support of Zt+1. Exam-

ples 3.20 and 3.21 are pertinent, in particular, when the Zt are Gaussian.

We now show that, if d ≤ L < N then Assumption 3.2 holds for both Examples above and

hence Theorems 3.4 and 3.7 apply to them.

Example 3.22. Let us consider the setting of Example 3.20 with d ≤ L < N . This corresponds

to the case when an incomplete diffusion market model has been discretized (the number of

driving processes, N , exceeds the number L of economic variables).

Let us furthermore assume that for all t, the law of Zt has a density w.r.t. the N -

dimensional Lebesgue measure (when we say “density” from now on we will always mean

density w.r.t. a Lebesgue measure of appropriate dimension) and that µ, ρ are continuous.

It is clear that in this case Yt+1 = ft+1(Y1, . . . , Yt, Zt+1) for some continuous function ft+1.

It remains to construct Ut+1 as required in Assumption 3.2.

We will denote by ρi(x) the ith row of ρ(x), i = 1, . . . , d. First let us notice that (126) implies

that ρ(x) has full rank for all x and hence the ρi(x), i = 1, . . . , d are linearly independent for

all x.

It follows that the set {(ω,w) ∈ Ω × RN : ρi(Yt)w = 0, i = 1, . . . , d, |w| = 1} has full

projection on Ω and it is easily seen to be in Ft⊗B(RN ). It follows by measurable selection (see

e.g. Proposition III.44 of [36]) that there is a Ft-measurable N -dimensional random variable

ξd+1 such that ξd+1 has unit length and it is a.s. orthogonal to ρi(Yt), i = 1, . . . , d. Continuing

in a similar way we get ξd+1, . . . , ξN such that they have unit length, they are a.s. orthogonal

to each other as well as to the ρi(Yt). Let Σ denote the RN×N -valued Ft-measurable random

variable whose rows are ρ1(Yt), . . . , ρd(Yt), ξd+1, . . . , ξN . Note that Σ is a.s. nonsingular (by

(126) and by construction).

Σ is Ft-measurable, so Σ = Ψ(Z1, . . . , Zt) with some (measurable) Ψ. For any (z1, . . . , zt) ∈
RtN , the conditional law of ΣZt+1 knowing {Z1 = z1, . . . , Zt = zt} equals the law of the random

variable Ψ(z1, . . . , zt)Zt+1. Recall that Zt+1 has a density w.r.t. the N -dimensional Lebesgue

measure thus Ψ(z1, . . . , zt)Zt+1, and (a.s.) the conditional law of ΣZt+1 knowing Ft, has a

density.

As (ρ(Yt)Zt+1, ξd+1Zt+1) is the first d + 1 coordinates of ΣZt+1, using Fubini’s theorem,

the conditional law of (ρ(Yt)Zt+1, ξd+1Zt+1) knowing Ft also has a density. It follows that the

random variable (Yt+1, ξd+1Zt+1) has a Ft-conditional density. This implies that ξd+1Zt+1 has

an Ft ∨ σ(Yt+1)-conditional density and, a fortiori, its conditional law is atomless.

Lemma 6.17 with the choice X := ξd+1Zt+1 and W := (Z1, . . . , Zt, Yt+1) provides a uniform

Ut+1 = G(ξd+1Zt+1, Z1, . . . , Zt, Yt+1) independent of σ(Z1, . . . , Zt, Yt+1) = Ft ∨ σ(Yt) but Ft+1-

measurable. Clearly, the same considerations apply to Example 3.21 as well.

Example 3.23. Let Z ′
1, . . . , Z

′
T be independent N -dimensional random variables and let the

random variables (ε1, . . . , εT ) be independent of the Z ′ with uniform law on [0, 1]T . Let Y0 =
S0 ∈ Rd and Yt+1 = St+1 := ft+1(S0, . . . , St, Z

′
t+1) with some continuous ft+1 : R(t+1)d+N → Rd.
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Define Zt := (Z ′
t, εt), t = 1, . . . , T . This market model clearly satisfies Assumption 3.2 with

Ut := εt and with F0 trivial, Ft := σ(Z1, . . . , Zt), t ≥ 1.

The interpretation of this example is that the investor randomizes his/her strategy at each

time t using εt (“throwing a dice”), which is independent of the assets’ driving noise Z ′. In the

case of EUT such a randomization cannot increase satisfaction but when distortions appear

it may indeed be advantageous to gamble, see Section 6 of [22] for a detailed discussion.
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4 Continuous-time models in CPT

In the present chapter we study investors whose preferences are as in Assumption 3.11

above but this time trading is assumed continuous. The results presented here pioneer in

finding an explicit necessary and sufficient condition for well-posedness on the parameters

that applies to the class of distortions proposed by [101], see Example 3.9 and Assumption

3.11.

In continuous time only a very narrow class of models have been tractable up to now

(complete markets and some incomplete markets of a very particular structure, see [74] and

Chapter 4 of [80]). Results of the present chapter also provide the first ingredient for eventual

extensions to incomplete models: the tightness estimates of Section 4.3.

Under rather stringent conditions (almost market completeness, see Assumption 4.4) we

will prove the existence of an optimal strategy as well. All these results apply, in particular,

to the well-known Black-Scholes model. They could be extended to other complete financial

markets using techniques of [80].

The problem of optimal investment assuming a complete continuous-time market arose

also in [52]. Existence results in [52], however, are provided under conditions that are not

easily verifiable and whose economic interpretation is unclear. Note also that concavity of u±
is essential in [52] while we do not need this property. Some related investigations have been

carried out in [17], but they use the risk-neutral (instead of the physical) probability in the

definition of the objective function, which leads to a problem that is entirely different from

ours.

The more realistic case of incomplete markets is yet unexplored territory. Our results

on well-posedness and tightness carry over to this case without any modification but for the

existence we need Assumption 4.4 below which is only slightly less than completeness. See

also [74] and Chapter 4 of [80] for some other ad hoc methods which, however, cover only few

models. Results covering a new class of continuous-time incomplete models appear in [77]

but we will not review them in the present dissertation due to volume constraints. See also

[75] for the case where u+ is bounded above.

This chapter is based on [74, 76].

4.1 Model description

We stay in the setting of Section 1.3 and Assumption 3.11 above. We fix a scalar-valued

FT -measurable random variable B which will serve as our reference point. Let us introduce

the following technical assumptions.

Assumption 4.1. Let M 6= ∅ and fix Q ∈ M with ρ := dQ/dP .

Assumption 4.2. The cumulative distribution function (CDF) of ρ under Q, denoted by FQρ ,

is continuous.

Assumption 4.3. Both ρ and 1/ρ belong to W.

Assumption 4.4. There exists an FT -measurable random variable U∗ such that, under P , U∗

has uniform distribution on (0, 1) and it is independent of ρ. We have B ∈ L1(Q). Furthermore,

B and all σ(ρ, U∗)-measurable random variables in L1(Q) are replicable, i.e. they are equal to

Xz,φ
T for some z and φ ∈ Φa(Q).

Just as in Assumption 3.2 above, the existence of U∗ means that there is enough “noise”

in the market model. Such an assumption seems valid in practice. The condition of being

replicable is a kind of completeness hypothesis, although for a certain type of claims only. In

complete markets every X ∈ L1(Q) is replicable, by Lemma 1.11 above.

In the present chapter it is more convenient to work with a slightly different form of the

functionals V+, V−, V . Define, for all random variables X ≥ 0,

V+(X) :=

∫ ∞

0

w+ (P (X ≥ y)) dy,
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and

V−(X) :=

∫ ∞

0

w− (P (X ≥ y)) dy.

For an arbitrary random variable X we set V (X) := V+(X
+) − V−(X

−) whenever V−(X
−) <

∞.

Under Assumption 4.1, we define A(z), the set of feasible strategies from initial capital z
as

A(z) := {φ ∈ Φa : V−([X
z,φ
T −B]−) <∞}, (128)

where Φa = Φa(Q). Note that, unlike in Chapter 3 above, this definition requires the mar-

tingale property for the process Xz,φ
· . The continuous-time portfolio choice problem for an

investor with CPT preferences then consists in maximising the expected distorted payoff

functional V
(
Xz,φ
T −B

)
over A(z), that is, finding φ∗ ∈ A(z) satisfying

sup
φ∈A(z)

V (Xz,φ
T −B) = V (Xz,φ∗

T −B). (129)

If V (z −B) > −∞ then A(z) is nonempty: it contains the identically zero strategy.

We end this short discussion by fixing the convention that, whenever X is a random vari-

able admitting a replicating portfolio that belongs to the set A(z), by abuse of language we

may write “X is in A(z)”.

4.2 Well-posedness

We are concerned with seeking conditions on the parameters under which the portfolio

problem is a well-posed one. We fix u+(x) = xα, u−(x) = xβ , x ∈ R+, w+(p) = pγ and

w−(p) = pδ, p ∈ [0, 1], for some α, β, γ, δ > 0. Our results apply, with trivial modifications,

to u±, w± as in Example 3.9. Inspired by Chapter 3, we start by proving that, as in the

incomplete discrete-time multiperiod case, we need to assume α < β in order to obtain a

well-posed optimisation problem.

Proposition 4.5. Under Assumptions 4.1, 4.2 and 4.4, if α > β, then the problem (129) is

ill-posed for any initial capital z and B = 0.

Proof. Suppose that α > β and let U be the random variable given by U := FQρ (ρ). By Lemma

6.15, U has uniform distribution on (0, 1) under Q.

For each n ∈ N, we define Yn := n 1A, with A :=
{
ω ∈ Ω : U(ω) ≥ 1

2

}
. Then EQ[Yn] =

nQ(A) = n
2 and

V+(Yn) =

∫ +∞

0

P (Y αn > y)
γ
dy =

∫ nα

0

P (Y αn > y)
γ
dy = nα P (A)

γ
.

Now set Zn := (n− 2z) 1Ac , for every n ∈ N, where Ac denotes the complement of A (in Ω).

Clearly, we have that EQ[Zn] = (n− 2z)Q(Ac) = n
2 − z, so EQ[Yn]−EQ[Zn] = z. Furthermore,

V−
(
Z+
n

)
=

∫ +∞

0

P
((
Z+
n

)β
> y
)δ
dy =

(
[n− 2z]

+
)β

P (Ac)
δ
.

Finally, since 2z ≤ n0 for some n0 ∈ N, let us define for each n ∈ N the random variable

Xn := Yn0+n−Zn0+n, which is clearly σ(ρ)-measurable and bounded from below by 2z−n0−n.

Also X+
n = Yn0+n and X−

n = Zn0+n, so EQ[Xn] = z. Therefore, for each n the r.v. Xn is in A(z),
however, the sequence

V (Xn) = (n0 + n)
α
P (A)

γ − (n0 + n− 2z)
β
P (Ac)

δ

goes to infinity as n → +∞ (we recall that P (A) > 0 because P and Q are equivalent mea-

sures), hence supφ∈A (z) V
(
Xz,φ
T

)
= +∞.
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Remark 4.6. Suppose that there exists an event A ∈ σ(ρ), with Q(A) = 1/2, for which

P (A)
γ
> [1− P (A)]

δ
also holds true. Then even in the case where α = β,

V (Xn) = nα
[(

1 +
n0
n

)α
P (A)

γ −
(
1 +

n0 − 2z

n

)α
P (Ac)

δ

]
→ ∞, n→ ∞,

shows us that the optimisation problem (129) is ill-posed.

We shall now provide a very simple example of a financial market model in which such an

event can be found. First, let us define the function f(p) , pγ − (1− p)
δ

for p ∈ [0, 1]. Clearly,

there exists some ǫ > 0 such that f(x) > 0 for all x ∈ (1− ǫ, 1] . On the other hand, choosing

µ > 0 to be sufficiently large, we have that

∫ −µ

−∞

1√
2π
e−x

2/2 dx < ǫ. (130)

Set T := 1, let W be a one-dimensional Brownian motion on a probability space (Ω,F , P )
with its natural filtration Ft, t ≥ 0 (augmented by P -zero sets). Let the price process of the

risky asset be given by

dSt = µStdt+ StdWt, S0 = s > 0,

for all t ∈ [0, 1]. This is a paticular example of the standard Black-Scholes model, see [15].

Thus, setting ρ := exp
{
−µW1 − µ2

2

}
, it is well-known that the probability measure Q given

by dQ/dP = ρ is the unique element of M, Assumptions 4.2 and 4.4 also hold true and the

process W̃ =
{
W̃t; 0 ≤ t ≤ 1

}
defined by

W̃t :=Wt + µt

is a Q-Wiener process. Now take A :=
{
W̃1 > 0

}
. Clearly Q(A) = 1/2 and

P (A) = P (W1 + µ > 0) = 1− P (W1 ≤ −µ) > 1− ǫ,

which then guarantees that P (A)
γ− [1− P (A)]

δ
> 0, as intended, and the problem is ill-posed

provided that µ is large enough to satisfy (130).

Let us now mention the following auxiliary lemma, which will be used later. The proof is

easy.

Lemma 4.7. Let X be a random variable such that X ≥ 0 a.s. and E[X] = +∞. Then for each

nonnegative real number b, there exists some a = a(b) ∈ [b,+∞) such that b = E[X ∧ a].

In view of Proposition 4.5 and Remark 4.6 above, it is now evident that we must impose

α < β as a necessary condition if we wish to have well-posedness for a reasonably large class

of models. However, this is not enough to rule out ill-posedness, as shown by the next two

propositions.

Proposition 4.8. Under Assumptions 4.1, 4.2, 4.3 and 4.4, if β/δ < 1, then problem (129) is

ill-posed.

Proof. There exists some χ such that β
δ < χ < 1 so we can choose p ∈

(
1, δχβ

)
. Also, fix

0 < ξ < α
γ . In particular, this implies that q := α

γξ > 1. We define the nonnegative random

variables

Y :=

{
1

U1/ξ , if U < 1
2 ,

0, if U ≥ 1
2 ,

and Z :=

{
0, if U < 1

2 ,
1

(1−U)1/χ
, if U ≥ 1

2 ,

with U given in the proof of the Proposition 4.5. Then, since 1
χ > 1, we obtain

EQ[Z] =

∫ 1

0

1

(1− u)
1/χ

1[ 12 ,1]
(u) du =

∫ 1
2

0

1

u1/χ
du = +∞.
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In addition, using the Hölder inequality we conclude that

∫ +∞

0

P(Y α > y)γdy =

∫ +∞

0

EγQ

[
1

ρ
1{Y α>y}

]
dy

≥ C1

∫ +∞

0

Q(Y α > y)
γq
dy ≥ C1

∫ +∞

2
α
ξ

1

y
γqξ
α

dy = +∞, (131)

where C1 := 1/E
γ(q−1)
Q

[
ρ1/(q−1)

]
> 0, and the last inequality follows from the fact that

Q(Y α > y) = Q

(
U <

1

yξ/α

)

for all y ≥ 2α/ξ. Analogously,

∫ +∞

0

P
(
Zβ > y

)δ
dy ≤ C2

∫ +∞

0

Q
(
Zβ > y

) δ
p dy

≤ 2
β
χC2 + C2

∫ +∞

2
β
χ

1

y
δχ
βp

dy < +∞, (132)

with C2 := E
δ p−1

p

Q

[
1

ρ1/(p−1)

]
< ∞ since Q

(
Zβ > y

)
= Q

(
U > 1− 1

yχ/β

)
for all y ≥ 2β/χ, and

δχ
βp > 1.

Now we set Yn := Y ∧n for each n ∈ N. It follows from Lemma 4.7 that EQ[Yn] = EQ[Z ∧ an]
for some an. Let us define Zn := Z ∧ an for every n. Then each Zn is a nonnegative random

variable satisfying V−(Zn) ≤ V−(Z) < +∞.

Finally, we consider the sequence of σ(ρ)-measurable random variables Xn, n ∈ N, with

Xn := Yn−Zn. It is clear, by the way it was constructed, that EQ[Xn] = 0, X+
n = Yn, X−

n = Zn,

and Xn ≥ −an, for all n. Also, V−(X
−
n ) = V−(Zn) < +∞, so Xn is in A(z). Consequently, the

problem is ill-posed because we get

V (Xn) = V+(Yn)− V−(Zn) → V+(Y )− V−(Z) = +∞, n→ ∞,

using monotone convergence, (131) and (132).

Proposition 4.9. Under Assumptions 4.1, 4.2, 4.3 and 4.4, if α/γ > 1, then the problem (129)

is ill-posed.

Proof. Let U be as in Proposition 4.8. Denoting by Y the nonnegative random variable given

by

Y :=

{
1

U1/ξ , if U < 1
2 ,

0, if U ≥ 1
2 ,

where ξ is chosen in such a way that 1 < ξ < α
γ , we see that

EQ[Y ] =

∫ 1
2

0

1

u1/ξ
du < +∞. (133)

Moreover, applying Hölder’s inequality as in the proof of Proposition 4.8 with q := α
γξ > 1,

V+(Y ) =

∫ +∞

0

P (Y α > y)
γ
dy ≥ C

∫ +∞

2
α
ξ

1

yξqγ/α
dy = +∞, (134)

follows, where C = 1/E
γ(q−1)
Q

[
ρ1/(q−1)

]
. Finally, for each n ∈ N, we define Yn := Y ∧ n and set

Cn := EQ[Yn]. Then, for Zn = 2Cn 1{U≥ 1
2}, we have that V−(Zn) = (2Cn)

β
P
(
U ≥ 1

2

)δ
, for all

n. We note further that Cn → EQ[Y ], n→ ∞.
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Now take Xn := Yn − Zn. It is clear that X+
n = Yn and X−

n = Zn. Additionally, being σ(ρ)-
measurable, bounded from below by −2Cn, and satisfyingEQ[Xn] = EQ[Yn]−2CnQ

(
U ≥ 1

2

)
=

0, as well as V−(X
−
n ) < +∞, each Xn is in A(z). However, because of (133) and (134),

V (Xn) = V+(Yn)− (2Cn)
β
P

(
U ≥ 1

2

)δ

→ V+(Y )− (2EQ[Y ])
β
P

(
U ≥ 1

2

)δ
= +∞

as n→ +∞, which completes the proof.

Remark 4.10. It was proved in [82], using a different argument, that ill-posedness happens

in any of the cases α = γ and β = δ as well. Hence the problem (129) is well-posed (in a

reasonably large class of models) only if

α < β and
α

γ
< 1 <

β

δ
. (135)

Remark 4.11. In the particular case where δ = 1 (no distortion on the negative side), it fol-

lows from Proposition 4.8 that the problem is ill-posed for all β ∈ (0, 1]. Hence, a probability

distortion on losses is a necessary condition for the well-posedness of (129), which is a phe-

nomenon in line with Theorem 3.2 of [52]. We stress, however, that under the assumptions

of Theorem 2.18, and regardless of the fact that there is a probability distortion on losses or

not, the optimal portfolio problem in a multiperiod discrete-time financial market model can

be well-posed. Ill-posedness in our continuous-time model is due to the richness of attainable

payoffs, see Remark 2.44 above.

The rest of this chapter is devoted to the proof of well-posedness and existence under (135).

This requires that we present some auxiliary lemmata first.

Lemma 4.12. If a, b, s > 0 satisfy b
sa > 1 then there exists D ≥ 0 (depending on a, b and s)

such that

EP [X
s] ≤ 1 +D

(∫ ∞

0

P
(
Xb > y

)a
dy

) 1
a

, (136)

for all random variables X ≥ 0.

Proof. Let t > 0 be arbitrary. Then

∫ +∞

0

P
(
Xb > y

)a
dy =

∫ +∞

0

P
(
(Xs)

b
s > y

)a
dy ≥

∫ t
b
s

0

P
(
(Xs)

b
s > y

)a
dy

≥
∫ t

b
s

0

P
(
(Xs)

b
s > t

b
s

)a
dy = t

b
sP (Xs > t)

a
,

where the last inequality follows from the inclusion
{
(Xs)

b
s > t

b
s

}
⊆
{
(Xs)

b
s > y

}
for all

0 ≤ y ≤ t
b
s . Hence

P (Xs > t) ≤ 1

t
b
sa

(∫ +∞

0

P
(
Xb > y

)a
dy

) 1
a

,

EP [X
s] =

∫ ∞

0

P (Xs > t) dt ≤ 1 +

(∫ ∞

0

P
(
Xb > y

)a
dy

) 1
a
∫ +∞

1

1

t
b
sa

dt,

and we can conclude recalling that b
sa > 1 by hypothesis.
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Lemma 4.13. Fix m ∈ R. Let Assumptions 4.1, 4.3 be in force. Let 0 < α < β, 0 < γ, δ and
α
γ < 1 < β

δ . Then there is some η > 0 satisfying α < η < β, and there exists a constant L such

that ∫ +∞

0

P
((
X+
)α

> y
)γ
dy ≤ L+ L

∫ +∞

0

P
((
X−
)η
> y

)δ
dy, (137)

for all random variables X with EQ[X] = m.

Proof. We start by noticing that the hypothesis α < γ implies that 1
γ < 1

α . Moreover, since

α < β and δ < β, there exists η such that max {α, δ} < η < β. In particular, we deduce that
η
α > 1, and thus η

αγ > 1
γ . We choose λ such that 1

γ < λ < min
{

1
α ,

η
αγ

}
. Then, given that

1
λα > 1, there exists some p satisfying 1 < p < 1

λα . Finally, we note that 1 < η
δ and αλγ

δ < η
δ

(because λ < η
αγ , that is, αγλ < η), so we can take q such that max

{
1, αλγδ

}
< q < η

δ .

Since for all y ≥ 1 we have P
(
(X+)

α
> y

)
≤ EP

[
(X+)

αλ
]

yλ
by Markov’s inequality,

∫ +∞

0

P
((
X+
)α

> y
)γ
dy ≤ 1 + C1E

γ
P

[(
X+
)αλ]

,

with C1 :=
∫ +∞

1
1/yλγdy <∞ (we recall that λγ > 1). Applying Hölder’s inequality yields

EP

[(
X+
)αλ]

= EP

[
1

ρ1/p
ρ1/p

(
X+
)αλ
]
≤ C2E

1
p

P

[
ρ
(
X+
)αλp]

= C2E
1
p

Q

[(
X+
)αλp]

,

where C2 := E
p−1
p

P

[
1

ρ1/(p−1)

]
<∞ Thus, from Jensen’s inequality,

EγP

[(
X+
)αλ] ≤ C3E

γ
p

Q

[(
X+
)αλp] ≤ C3E

αλγ
Q

[
X+
]

= C3

(
m+ EQ

[
X−
])αλγ ≤ C4 + C4E

αλγ
Q

[
X−
]
. (138)

Now, we again use Hölder’s inequality to see that EαλγQ [X−] ≤ C5E
αλγ
q

P

[
(X−)

q]
(here C5 :=

E
αλγ(q−1)/q
P

[
ρq/(q−1)

]
). Moreover, since αλγ

q < δ, we have E
αλγ
q

P

[
(X−)

q] ≤ 1 + EδP
[
(X−)

q]
.

Therefore, these inequalities combined with (138) yield

EγP

[(
X+
)αλ] ≤ C6 + C6E

δ
P

[(
X−
)q]

≤ C7 + C7

[
1 +D

(∫ +∞

0

P
((
X−
)η
> y

)δ
dy

) 1
δ

]δ

≤ C8 + C8

∫ +∞

0

P
((
X−

)η
> y
)δ
dy, (139)

where we apply Lemma 4.12 above with s = q, b = η, a = δ (note that η
δq > 1). Hence,

∫ +∞

0

P
((
X+
)α

> y
)γ
dy ≤ L+ L

∫ +∞

0

P
((
X−
)η
> y

)δ
dy,

with L that does not depend on X (only on the parameters), as intended.

Lemma 4.14. Let a, b, s > 0 such that s < a < b and s ≤ 1. Then there exist 0 < ζ < 1 and a

constant R ≥ 0 such that

∫ +∞

0

P (Xa > y)
s
dy ≤ R+R

(∫ +∞

0

P
(
Xb > y

)s
dy

)ζ
(140)
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for all random variables X ≥ 0. In particular, this implies that we have

∫ +∞

0

P
(
Xb
n > y

)s
dy → +∞, n→ ∞,

whenever ∫ +∞

0

P (Xa
n > y)

s
dy → +∞, n→ ∞,

for any sequence Xn, n ∈ N of nonnegative random variables.

Proof. We start by fixing some χ satisfying 1
s < χ < b

sa . We also note that, because χa < b
s ,

we can choose ξ so that χa < ξ < b
s .

Since b
sξ > 1, we know from Lemma 4.12 that EP

[
Xξ
]
≤ 1+D

(∫ +∞

0
P
(
Xb > y

)s
dy
)1/s

for

some D. Therefore, recalling that s ≤ 1, it follows that

EsP
[
Xξ
]
≤ 1 + C1

∫ +∞

0

P
(
Xb > y

)s
dy, (141)

with C1 := Ds. Now, by Jensen’s inequality (note that aχ
ξ < 1), we obtain

EP [X
aχ] = EP

[(
Xξ
) aχ

ξ

]
≤ E

aχ
ξ

P

[
Xξ
]
. (142)

Moreover, using Markov’s inequality, we get

∫ +∞

0

P (Xa > y)
s
dy ≤ 1 + C2E

s
P [X

aχ] , (143)

with C2 :=
∫ +∞

1
1
ysχ dy (note that sχ > 1).

Thus, combining inequalities (141), (142) and (143) yields

∫ +∞

0

P (Xa > y)
s
dy ≤ 1 + C2

(
EsP
[
Xξ
]) aχ

ξ

≤ 1 + C2

(
1 + C1

∫ +∞

0

P
(
Xb > y

)s
dy

) aχ
ξ

≤ R+R

(∫ +∞

0

P
(
Xb > y

)s
dy

) aχ
ξ

where R depends only on the parameters. Setting ζ = aχ
ξ completes the proof.

4.3 Tightness

Fix z ∈ R. Define

V ∗ := sup
φ∈A(z)

V
(
Xz,φ
T −B

)
. (144)

The following result shows that (135) is sufficient for well-posedness; it even provides a

crucial compactness property.

Theorem 4.15. Suppose that Assumptions 3.11, 4.1 and 4.3 hold, V−(z −B) <∞,

α < β and
α

γ
< 1 <

β

γ
. (145)

Then the optimisation problem (129) is well-posed, i.e. V ∗ < ∞. Furthermore, if φn is a

sequence of feasible strategies with V (Xz,φn

T − B) → V ∗ then supnE|Xz,φn

T |τ < ∞ for some

τ > 0, a fortiori, the sequence Law(Xz,φn

T ), n ∈ N is tight.
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Proof. For the sake of convenience we shall henceforth set Xn := Xz,φn

T . By contradiction, let

us suppose that the optimisation problem is ill-posed. Then we have V+([Xn −B]+) → +∞
as n→ ∞. Note that, for any X ≥ 0,

V+(X) 6

∫ ∞

0

g+P (X
α > (y/k+)− 1)γdy ≤

∫ ∞

0

g+k+P (X
α > t)γdt+ g+k+,

using the change of variable t := y/k+ − 1. Thus it follows from Lemma 4.13 (with the choice

m := z − EQ[B]) that

lim
n→+∞

∫ +∞

0

P
(
([Xn −B]−)η > y

)δ
dy = +∞

for some η satisfying α < η < β. Notice that

V−(X) >

∫ ∞

0

g−P (k−X
β − k− > y)δdy ≥

∫ ∞

1

g−k−P (X
β > t)δdt. (146)

Consequently, we can apply Lemma 4.14 to conclude that also

lim
n→+∞

V−
(
[Xn −B]−

)
= +∞.

Therefore, using Lemmata 4.13, 4.14 and (146) (recalling 0 < ζ < 1),

V (Xn −B) ≤ g+k+

[
1 + L+ L

∫ +∞

0

P
(
([Xn −B]−)η > y

)δ
dy

]
− V−

(
[Xn −B]−

)
≤

g+k+

(
1 + L+ LR+ LR

[
V−([Xn −B]−)

g−k−
+ 1

]ζ)
− V−

(
[Xn −B]−

)
→ −∞, (147)

as n→ ∞, which is absurd. Hence, as claimed, the problem is well-posed.

Let λ > 0 be as in the proof of Lemma 4.13. We first show that

sup
n∈N

EP

[(
[Xn −B]+

)αλ]
< +∞. (148)

Assume by contradiction that this supremum is ∞. Then we can take a subsequence nl

such that EP

[
([Xnl

−B]+)
αλ
]
→ +∞ as l → +∞. By (139) in the proof of Lemma 4.13, we

conclude that
∫ +∞

0
P
(
([Xnl

−B]−)
η
> y
)δ
dy → +∞, l → ∞. Therefore, using Lemma 4.14 we

also obtain that

V−
(
[Xnl

−B]−
)
=

∫ +∞

0

P

((
[Xnl

−B]
−
)β

> y

)δ
dy → ∞,

and hence V (Xnl
−B) → −∞ as in (147) above, which is nonsense.

Clearly, (147) implies

sup
n∈N

V−
(
[Xn −B]−

)
< +∞

as well.

Recalling that β
δ > 1, we can choose ξ ∈

(
1, βδ

)
. Therefore β

δξ > 1, and it follows from

Lemma 4.12 that there exists D ≥ 0 such that

EP

[(
[Xn −B]−

)ξ] ≤ 1 +D
(
V−
(
[Xn −B]−

)) 1
δ ,

for all n ∈ N, which implies that

sup
n∈N

EP

[(
[Xn −B]−

)ξ]
< +∞. (149)
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We set τ = αλ ∈ (0, 1). A straightforward application of Jensen’s inequality gives

EP [|Xn −B|τ ] ≤ EP
[(
[Xn −B]+

)τ ]
+ EP

[(
[Xn −B]−

)τ ]

≤ EP
[(
[Xn −B]+

)τ ]
+ E

τ
ξ

P

[(
[Xn −B]−

)ξ]
,

hence supn∈NEP [|Xn|τ ] < +∞ follows from (148), (149) and EP |B|τ ≤ C ′EQ|B| < ∞ (with

some C ′, this is a consequence of dQ/dP ∈ W).

4.4 A digression – back to discrete time

Using the arguments for continuous-time markets it is possible to prove a complement

to Theorem 3.16: we can replace Assumption 3.12 by (135). During this brief section we get

back to the discrete-time setting of Chapter 3.

Theorem 4.16. Let Assumptions 2.19, 3.2 and 3.11 be in force. Let furthermore B ∈ L1(P ),
V−(z −B) <∞, u−, w− non-decreasing and

α < β,
α

γ
< 1 <

β

δ

hold. Then

sup
θ∈A(z)

V (θ, z) <∞.

and there exists θ∗ ∈ A(z) with

sup
θ∈A(z)

V (θ, z) = V (θ∗, z).

Proof. Corollary 2.47 provides Q ∈ M with dQ/dP ∈ L∞, dP/dQ ∈ W. Clearly, B ∈ L1(Q).

We claim that for each θ ∈ A(z) := {θ ∈ Φ : V−(θ, z) < ∞} we also have Xz,θ
T ∈ L1(Q), i.e.

the strategy θ is also in A(z) as defined in (128) of the present chapter (this explains why we

did not seek new notation). Indeed, V−([X
z,θ
T − B]−) < ∞ and Lemma 4.12 with s := 1 < β/δ

imply that EP [[X
z,θ
T − B]−] < ∞ hence also EP ([X

z,θ
T ]−) < ∞. By dQ/dP ∈ L∞ we also have

EQ([X
z,θ
T ]−) <∞. Proposition 5.3.2 of [54] (see also its proof) entails that Xz,θ

t , t = 0, . . . , T is

a Q-martingale, in particular, Xz,θ
T ∈ L1(Q).

Then the argument for proving Theorem 4.15 implies that supn→∞ V−([Xn−B]−) <∞ for

any maximising sequence Xn = X
z,φ(n)
T . Notice that w−(x) > 0, x > 0 by Assumption 3.11

hence, by the proof of Lemma 3.7, we get that (φ1(n), . . . , φT (n)) is a tight sequence. Now

we can conclude just like in the proofs of Theorems 3.4 and 3.16 above, using Assumption

3.2.

Remark 4.17. It is interesting to note that the proofs of tightness in Theorems 3.16 and

4.16 follow entirely different ideas. In Theorem 3.16 we manage to find an EUT optimal

investment problem whose value function is above that of the CPT problem. In Theorem 4.16

we use Q to find estimates for Xz,θ
T which then translate into estimates for (φ1(n), . . . , φT (n)).

4.5 Existence

We return to the setting of Theorem 4.15. Let νn denote the joint law of the random vector

(ρ,Xn). As a consequence of Theorem 4.15, the sequence {νn; n ∈ N} is also tight. and we

can extract a weakly convergent subsequence {νnk
; k ∈ N} with limit π for some probability

measure π on R2.

We recall that a mapping K from R × B(R) into [ 0,+∞) is called a transition probability

kernel on a probability space (R,B(R) , µ) if the mapping x 7→ K(x,B) is measurable for every

set B ∈ B(R), and the mapping B 7→ K(x,B) is a probability measure for µ-a.e. x ∈ R.

By the disintegration theorem (see e.g. [36]) there exists a probability measure λ on R and

a transition probability kernel K on (R,B(R) , λ) such that π(A1 ×A2) =
∫
A1
K(x,A2) dλ (x)

for all A1, A2 ∈ B(R).Clearly, λ(A) = P (ρ ∈ A) for all Borel sets A ⊆ R.
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Theorem 4.18. Under Assumptions 3.11, 4.1, 4.2, 4.3, 4.4 and V−(z−B) <∞ there exists an

optimal trading strategy φ∗ = φ∗(z) for (129).

Proof. As B is replicable by Assumption 4.4 with a replicating portfolio, say, ψ, we may re-

place φn by φn − ψ and assume B = 0.

Let us set X∗ := G(ρ, U∗), where G is the measurable function given by Lemma 6.16 ap-

plied with δ := λ, ν := K and Y := ρ. Clearly, the random variable X∗ is σ(ρ, U∗)-measurable.

Moreover, the subsequence of random variables Xnk
, k ∈ N converges in law to X∗ as

k → +∞. So
{
u+
(
X+
nk

)}
k∈N

also converges in law to u+(X
+
∗ ). Hence, limk P

(
u+
(
X+
nk

)
> y
)
=

P (u+(X
+
∗ ) > y) for every y ∈ R at which the cumulative distribution function of u+(X

+
∗ ) is

continuous (i.e. outside a countable set). Analogously, we conclude that P
(
u−
(
X−
nk

)
> y
)
→

P (u−(X
−
∗ ) > y) as k → +∞ for all y outside a countable set.

We start by showing that V±(X
±
∗ ) < +∞. The distortion functions being continuous, it is

obvious that w±

(
P
(
u±
(
X±
nk

)
> y
))

→ w±(P (u±(X
±
∗ ) > y)) for Lebesgue a.e. y, n → ∞. Thus,

applying Fatou’s lemma we get

V±
(
X±

∗

)
=

∫ +∞

0

w±

(
P
(
u±
(
X±

∗

)
> y

))
dy

≤ lim inf
k

∫ +∞

0

w±

(
P
(
u±
(
X±
nk

)
> y
))
dy = lim inf

k
V±
(
X±
nk

)
. (150)

But lim infk V±
(
X±
nk

)
≤ supk∈N V±

(
X±
nk

)
≤ supn∈N V±(X

±
n ), and we know from the proof of

Theorem 4.15 that supn∈N V±(X
±
n ) < +∞, so we have the intended result.

Secondly, we prove that the inequality V (X∗) ≥ V ∗ holds. We already know, from the

previous step, that V−(X
−
∗ ) ≤ lim infk V−

(
X−
nk

)
. We note further that, by the proof of The-

orem 4.15, supk∈NEP

[(
X+
nk

)αλ]
< ∞, for some λ > 0 such that αλ < 1 < γλ. Therefore,

defining g(y) := 1 for y ∈ [0, 1] and

g(y) := g+

(
supn∈N k+EP

[
(X+

n )
αλ
]
+ k+

)γ

yγλ

for y > 1, we see that g is an integrable function on [ 0,+∞) . It follows from Markov’s inequal-

ity that w+

(
P
(
u+
(
X+
nk

)
> y
))

≤ g(y) for all y ≥ 0 and for all k ∈ N. Hence Fatou’s lemma

gives

V+
(
X+

∗

)
≥ lim sup

k

∫ +∞

0

w+

(
P
(
u+
(
X+
nk

)
> y
))
dy = lim sup

k
V+
(
X+
nk

)
.

Combining the previous inequalities then yields

V (X∗) = V+
(
X+

∗

)
− V−

(
X−

∗

)

≥ lim sup
k

{
V+
(
X+
nk

)
− V−

(
X−
nk

)}
= V ∗.

Lastly, we check that EQ[X∗] ≤ z. To see this, we start by noting that, since (ρ,Xnk
)

tends to (ρ,X∗) in law, we have ρXnk
→ ρX∗ in law. Thus, we can use Skorohod’s theorem to

find real-valued random variables Y and Yk, with k ∈ N, on some auxiliary probability space(
Ω̂, F̂ , Q̂

)
, such that each Yk has the same law as ρXnk

, Y has the same law as ρX∗, and

Yk → Y Q̂-a.s., as n → ∞. It is then clear that EQ[Xnk
] = EP [ρXnk

] = EQ̂[Yk] for every k ∈ N.

We know from the proof of Theorem 4.15 that supk∈NEP

[(
X−
nk

)ξ]
< +∞, for some 1 < ξ < β

δ .

Consequently, we can choose ϑ > 1 such that ϑ < ξ, and using Hölder’s inequality we obtain

EQ̂

[(
Y −
k

)ϑ]
= EP

[(
ρX−

nk

)ϑ] ≤ EP

[
ρ

ϑξ
ξ−ϑ

] ξ−ϑ
ξ

EP

[(
X−
nk

)ξ]ϑ
ξ

,

for every k ∈ N, which implies that supk∈NEQ̂

[(
Y −
k

)ϑ]
< +∞. Hence, by the de la Vallée-

Poussin criterion, the family Y −
k , k ∈ N is uniformly integrable and thus

lim
k∈N

EQ̂
[
Y −
k

]
= EQ̂

[
Y −
]
< +∞. (151)
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Furthermore, using Fatou’s lemma we get the inequality EQ̂[Y
+] ≤ lim infk EQ̂

[
Y +
k

]
. Combin-

ing these observations yields

EQ[X∗] = EQ̂[Y ] ≤ lim inf
k

EQ̂[Yk] = lim inf
k

EQ[Xnk
] = z

and (151) yields EQ|X∗| < ∞, that is, X∗ ∈ L1(Q). Hence, by Assumption 4.4, X∗ admits a

replicating portfolio φ∗ ∈ Φa(Q) from initial capital EQX∗.

Let us define the FT -measurable random variable Z∗ := X∗ + c, where the constant c is

given by c := z − EQ[X∗] ≥ 0. Then it is trivial that Z∗ is replicable by φ∗ ∈ A(z) since

V−(Z∗) ≤ V−(X∗) < ∞ by (150) above. Besides, V ∗ ≤ V (X∗) ≤ V (Z∗) so necessarily V ∗ =
V (Z∗) must hold, by the definition of V ∗. The proof is complete.

4.6 Examples

Let Wt, t ≥ 0 be a standard k-dimensional Brownian motion with its natural filtra-

tion (P -zero sets added) Ft, t ≥ 0. The dynamics of the price process of the ith stock

Si =
{
Sit ; 0 ≤ t ≤ T

}
is described, under the measure P , by

dSit = µi(t)Sitdt+

k∑

j=1

σij(t)SitdW
j
t , Si0 = si > 0, (152)

for any i ∈ {1, . . . , d}, with µi, σij deterministic measurable functions on [0, T ] satisfying∫ T
0

∣∣µi(t)
∣∣ dt+

∫ T
0

∑k
j=1

∣∣σij(t)
∣∣2 dt < +∞. We assume that σ(t)σ(t)T is non-singular for Leb-a.e.

t ∈ [0, T ] (this implies, in particular, k ≥ d).

Let us suppose that there are as many risky assets as sources of randomness, that is,

k = d. Then it is trivial that there exists a uniquely determined d-dimensional, deterministic

process θ =
{
θ(t) =

(
θ1(t) , . . . , θd(t)

)⊤
; 0 ≤ t ≤ T

}
such that

−µi(t) =
d∑

j=1

σij(t) θj(t) , for Lebesgue a.e. t ∈ [0, T ] ,

holds simultaneously for all i ∈ {1, . . . , d}. If we assume, in addition, that the condition

0 <
∫ T
0

∑d
i=1

∣∣θi(t)
∣∣2 dt < +∞ is satisfied, then

dQ/dP = exp

{
d∑

i=1

∫ T

0

θi(s) dW i
s −

1

2

∫ T

0

d∑

i=1

∣∣θi(s)
∣∣2 ds

}
, (153)

defines the unique element Q ∈ M. It is straightforward to check that ρT is lognormally

distributed both under P and under Q. In particular, ρT , 1/ρT ∈ W, so Assumptions 4.1, 4.2

and 4.3 hold.

Any contingent claim in L1(Q) is replicable by the martingale representation theorem. It

is trivial to see that there must be some 0 < t̂ < T for which

0 <

∫ t̂

0

d∑

i=1

∣∣θi(s)
∣∣2 ds <

∫ T

0

d∑

i=1

∣∣θi(s)
∣∣2 ds

holds true, so the vector

(
d∑

i=1

∫ t̂

0

θi(s) dW i
s ,

d∑

i=1

∫ T

0

θi(s) dW i
s

)

has a non-degenerate joint normal distribution. It is easy to see that

G∗ :=

∫ T
0

∑d
i=1

∣∣θi(s)
∣∣2 ds

∫ t̂
0

∑d
i=1 |θi(s)|

2
ds

d∑

i=1

∫ t̂

0

θi(s) dW i
s −

d∑

i=1

∫ T

0

θi(s) dW i
s
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is an FT -measurable and non-degenerate Gaussian random variable which is independent of∑d
i=1

∫ T
0
θi(s) dW i

s and hence of ρT . Lemma 6.15 provides a uniform U∗ independent of ρT ,

that is, satisfying Assumption 4.4. When d = 1, σ 6= 0, µ ∈ R constants then we get the

Black-Scholes model, see e.g. [15].

Remark 4.19. In [80] a new method for constructing X∗ in Theorem 4.18 was found which

applies to all complete markets (see Section 1.3) and it allows to construct X∗ which is a

function of ρ only. Hence, in the case of complete markets, the existence requirement of U∗

can be dropped in Assumption 4.4.

There are also examples of incomplete markets satisfying Assumption 4.4 where Theo-

rem 4.18 applies. However, the class of such models is rather narrow. We refer to [74] and

[80].

Extending results of the present chapter to larger classes of incomplete models is a chal-

lenge. Some progress in this direction has been made in [77].
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5 Illiquid markets

In financial practice, trading moves prices against the trader: buying faster increases ex-

ecution prices, and selling faster decreases them. This aspect of liquidity, known as market

depth [16] or price-impact, is widely documented empirically [40, 30], and has received in-

creasing attention, see [62, 10, 2, 97, 84, 45]. These models depart from the literature on

frictionless markets, where prices are the same for any amount traded.

The growing interest in price-impact has also highlighted a shortage of effective theoret-

ical tools. In discrete time, several researchers have studied these fundamental questions,

[5, 70, 38, 69], but extensions to continuous time have proved challenging. In this chapter

we shall prove an existence theorem for optimal strategies in a very general continuous-time

model under the assumption that trading costs are superlinear functions of the trading speed.

This assumption is consistent with empirical data, see [30].

Superlinear frictions in the sense of the present dissertation entail that execution prices

become arbitrarily unfavorable as traded quantities per unit of time grow: buying or selling

too fast becomes impossible. As a result, trading is feasible only at finite rates – the number of

shares ϕt will be assumed absolutely continuous. This feature sets apart superlinear frictions

from frictionless markets, in which the number of shares is merely predictable, see Sections

1.3 and 5.1.

This chapter is based on [47].

5.1 Model

For a finite time horizon T > 0, consider a continuous-time filtered probability space

(Ω,F , (Ft)t∈[0,T ], P ) where the filtration is right-continuous and F0 coincides with the fam-

ily of P -zero sets. O denotes the optional sigma-field on Ω × [0, T ], that is, the sigma-field

generated by the family of càdlàg adapted processes. The market includes a riskless and per-

fectly liquid asset S0 with S0
t ≡ 1, t ∈ [0, T ], and d risky assets, described by càdlàg, adapted

processes (Sit)
1≤i≤d
t∈[0,T ]. Henceforth S denotes the d-dimensional process with components Si,

1 ≤ i ≤ d. The components of a (d+ 1)-dimensional vector x are denoted by x0, . . . , xd.
The next definition identifies those strategies for which the number of shares changes over

time at some finite rate.

Definition 5.1. A feasible strategy is a process φ in the class

A :=

{
φ : φ is an Rd-valued, O-measurable process,

∫ T

0

|φu|du <∞ a.s.

}
. (154)

In this definition, the process φ represents the trading rate, that is, the speed at which the

number of shares in each asset changes over time, and the condition
∫ T
0
|φu|du < ∞ means

that absolute turnover (the cumulative number of shares bought or sold) remains finite in

finite time. Define, for each φ ∈ A,

ϕt :=

∫ t

0

φudu, t ∈ [0, T ],

the number of stock in the portfolio at time t in the respective assets (integration is meant

componentwise).

The above definition significantly differs from the one of admissible strategies in friction-

less markets in Section 1.3: this definition restricts the number of shares to be (absolutely)

continuous, while usual admissible strategies have an arbitrarily irregular number of shares.

Note also that the definition of feasibility does not involve the asset price at all.

Assume S to be a semimartingale and recall Section 1.3. Note that ϕ above is a pre-

dictable, locally bounded process, hence it is S-integrable.

In the absence of frictions the value of a self-financing portfolio at time T is

z0 +

∫ T

0

ϕtdSt,
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where z0 represents the initial capital, see (6). Note that the investor holds ϕT units of stock

at the terminal date which is worth ϕTST . Hence the value of his/her cash (bank account)

position at the terminal date is

z0 +

∫ T

0

ϕtdSt − ϕTST = z0 −
∫ T

0

Stφtdt, (155)

where we performed, formally, an integration by parts and recalled ϕ0 = 0 as well. Notice,

however, that the right-hand side of (155) makes sense for any càdlàg S and not only for

semimartingales. Indeed, by the càdlàg property the function St(ω), t ∈ [0, T ] is bounded

for almost every ω ∈ Ω, hence the integral in question is finite a.s. for each φ satisfying∫ T
0
|φt|dt <∞ a.s.

Now we look at how (155) changes in the presence of illiquidity. For a given trading

strategy φ, frictions reduce the cash position, by making purchases more expensive, and sales

less profitable. We model this effect by introducing a function G, which summarizes the

impact of frictions on the execution price at different trading rates:

Assumption 5.2. Let G : Ω× [0, T ]×Rd → R+ be a O⊗B(Rd)-measurable function, such that

G(ω, t, ·) is convex with G(ω, t, x) ≥ G(ω, t, 0) for all ω, t, x. Henceforth, set Gt(x) := G(ω, t, x),
i.e. the dependence on ω is omitted, and t is used as a subscript.

Taking price-impact into accout, for a given strategy φ ∈ A and an initial asset position

z ∈ Rd+1, the resulting positions at time t ∈ [0, T ] in the risky and safe assets are defined as:

Xi
t = Xi

t(z, φ) :=z
i +

∫ t

0

φiudu 1 ≤ i ≤ d, (156)

X0
t = X0

t (z, φ) :=z
0 −

∫ t

0

φuSudu−
∫ t

0

Gu(φu)du. (157)

The first equation merely says that the cumulative number of shares Xi
t in the i-th asset is

given by the initial number of shares, plus subsequent flows. The second equation, compared

to (155), contains a new term involving the friction G, which summarizes the impact of trad-

ing on execution prices. The condition G(ω, t, x) ≥ G(ω, t, 0) means that inactivity is always

cheaper than any trading activity. Most models in the literature assumeG(ω, t, 0) = 0, but the

above definition allows for G(ω, t, 0) > 0, which is interpreted as a cost of participation in the

market, such as the fees charged by exchanges to trading firms. The convexity of x 7→ Gt(x)
implies that trading twice as fast for half the time locally increases execution costs – speed

is expensive. Indeed, let g(x) = G(ω, t, x), i.e. focus on a local effect. Then, by convexity,

g(x) ≤ (1 − 1/k)g(0) + (1/k)g(kx) for k > 1, and therefore (g(kx) − g(0))T/k ≥ (g(x) − g(0))T ,

which means that increasing trading speed by a factor of k and reducing trading time by the

same factor implies higher trading costs, excluding the participation cost captured by g(0).
Finally note that, in general, X0

t may take the value −∞ for some (unwise) strategies.

With a single risky asset and with G(ω, t, 0) = 0, the above specification is equivalent to

assuming that a trading rate of φt 6= 0 implies an instantaneous execution price equal to

S̃t = St +Gt(φt)/φt (158)

which is (by positivity of G) higher than St when buying, and lower when selling. Thus,

G ≡ 0 boils down to a frictionless market, while proportional transaction costs correspond

to Gt(x) = εSt|x| with some ε > 0. Yet, we focus on neither of these settings, which entail

either zero or linear costs, but rather on superlinear frictions, defined as those that satisfy

the following conditions. Note that we require a strong form of superlinearity here (i.e. the

cost functional grows at least as a superlinear power of the traded volume).
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Assumption 5.3. There is α > 1 and a càdlàg process H such that

inf
t∈[0,T ]

Ht > 0 a.s., (159)

Gt(x) ≥ Ht|x|α, for all t, x; a.s. (160)
∫ T

0

(
sup

|x|≤N

Gt(x)

)
dt <∞ a.s. for all N > 0. (161)

Condition (160) is the central superlinearity assumption. Condition (159) requires that

frictions never disappear, and (161) says that they remain finite in finite time for uniformly

bounded trading rates. In summary, these conditions characterize nontrivial, finite, super-

linear frictions. Note that (160) implies that S̃t in (158) becomes arbitrarily negative as φt
becomes negative enough, i.e. when selling too fast.

Remark 5.4. Although we can treat a general S, the most important case is where S has

non-negative components, and therefore a positive number of units of risky positions has

positive value. Otherwise, if S can take negative values, a larger number of units does not

imply a position with higher value, but only a larger exposure to default.

Assume in the rest of this remark that S is non-negative and one-dimensional (for sim-

plicity). Take φ ∈ A and consider the (optional) set A := {(ω, t) : φt(ω) < 0, St(ω) +
G(ω, t, φt(ω))/φt(ω) ≥ 0}, which identifies the times at which execution prices are positive.

Clearly, Xi
T (z, φ

′) ≥ Xi
T (z, φ), i = 1, 2 for φ′t(ω) := φt(ω)1A. Hence one may always replace the

set of strategies A by

A+ := {φ ∈ A : St(ω) +G(ω, t, φt(ω))/φt(ω) ≥ 0 when φt(ω) < 0},
without losing any “good” investment. In other words, we may restrict ourselves to trading

strategies with positive execution prices at all times, because any other strategy is dominated

pointwise by a strategy that trades at the same rate when the execution price is positive, and

otherwise does not trade. The class A+ may be economically more appealing as it excludes the

unintended consequence of (160) that St(ω) + G(ω, t, φt(ω))/φt(ω) → −∞ whenever φt(ω) →
−∞.

The most common example in the literature is, with one risky asset, the friction

Gt(x) := Λ|x|α for some Λ > 0, α > 1

(see e.g. [38]). Another possibility is Gt(x) := ΛSt|x|α. In multiasset models the friction

Gt(x) := xTΛx for some symmetric, positive-definite, d × d matrix Λ has been suggested in

[45].

Remark 5.5. Our results remain valid assuming that (160) holds for |x| ≥ M only, with

some M > 0. Such an extension requires only minor modifications of the proofs, and may

accommodate models for which a low trading rate incurs, for instance, either zero or linear

costs.

5.2 Bounds for the market and for the trading volume

Superlinear frictions in the sense of Assumption 5.3 lead to a striking boundedness prop-

erty: for a fixed initial position, all payoffs of feasible strategies are bounded above by a single

random variable W <∞, the market bound, which depends on the friction G and on the price

S, but not on the strategy. This property clearly fails in frictionless markets, where any payoff

with zero initial capital can be scaled arbitrarily, and therefore admits no uniform bound. In

such markets, a much weaker boundedness property holds: Corollary 9.3. of [35] shows that

the set of payoff of x-admissible strategies is bounded in L0 if the market is arbitrage-free in

a certain strong sense.

A central tool in this analysis is the function G∗, the Fenchel-Legendre conjugate of G. Its

importance was first recognized by [38]. G∗ is defined as

G∗
t (y) := sup

x∈Rd

(xy −Gt(x)), y ∈ Rd, t ∈ [0, T ] .
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Note that the supremum can be taken over Qd, hence G∗ is O⊗B(Rd)-measurable. Note also

that, under Assumption 5.3, G∗
t (·) is a finite (see the proof of Lemma 5.7), convex function.

The typical case d = 1, Gt(x) = Λ|x|α leads to G∗
t (y) =

α−1
α α

1
1−αΛ

1
1−α |y| α

α−1 (in particular,

G∗
t (y) = y2/(4Λ) for α = 2). The key observation is the following:

Lemma 5.6. Under Assumption 5.3, any φ ∈ A satisfies

X0
T (z, φ) ≤ z0 +

∫ T

0

G∗
t (−St)dt <∞ a.s.

Proof. Indeed, this follows from (157), the definition of G∗
t , and Lemma 5.7 below.

Lemma 5.7. Under Assumption 5.3, the random variable W :=
∫ T
0
G∗
t (−St)dt is finite almost

surely.

Proof. Consider first the case d = 1. Then, by direct calculation,

G∗
t (y) ≤ sup

r∈R

(ry −Ht|r|α) =
α− 1

α
α

1
1−αH

1
1−α

t |y| α
α−1 .

Noting that supt∈[0,T ] |St| is finite a.s. by the càdlàg property of S, and inft∈[0,T ]Ht is a positive

random variable, it follows that

sup
t∈[0,T ]

G∗
t (−St) <∞ a.s.,

which clearly implies the statement. If d > 1 then note that

G∗
t (y) ≤ sup

r∈Rd

(
d∑

i=1

riyi −Ht|r|α
)

≤
d∑

i=1

sup
r∈Rd

(
riyi − (Ht/d)|r|α

)
≤

d∑

i=1

sup
x∈R

(
xyi − (Ht/d)|x|α

)

and the conclusion follows from the scalar case.

Since W < ∞ a.s, it is impossible to achieve a scalable arbitrage: though a trading strat-

egy may realize an a.s. positive terminal value, one cannot get an arbitrarily large profit

by scaling the trading strategy (i.e. by multiplying it with large positive constants) since

bigger trading values also enlarge costs. Even if an arbitrage exists, amplifying it too much

backfires, because the superlinear friction eventually overrides profits. Yet, arbitrage oppor-

tunities can exist in limited size.

For Q ∼ P , denote by L1(Q) the Banach space of (d+1)-dimensional, Q-integrable random

variables; given a subset A of a Euclidean space, L0(A) denotes the set of (P -a.s. equivalence

classes of) A-valued random variables, equipped with the topology of convergence in proba-

bility. Fix 1 < β < α, where α is as in Assumption 5.3. Let γ be the conjugate number of β,

defined by
1

β
+

1

γ
= 1.

The next definition identifies a class of reference probability measures with integrability

properties that fit the friction G and the price process S well.

Definition 5.8. P denotes the set of probabilities Q ∼ P such that

EQ

∫ T

0

H
β/(β−α)
t (1 + |St|)βα/(α−β)dt <∞.

P̃ denotes the set of probability measures Q ∈ P such that

EQ

∫ T

0

|St|dt <∞.
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Under Assumption 5.3, note that P̃ 6= ∅ by Lemma 6.9. The next lemma shows that, if

a payoff has a finite negative part under some probability in P, then its trading rate must

also be (suitably) integrable. There is no analogue to such a result in frictionless markets.

The intuition is that, with frictions, excessive trading causes unbounded losses. Hence, a

bound on losses translates into one for trading volume. Lemma 5.9 is crucial to establish the

closedness of the set of attainable payoffs (Proposition 5.10 below).

We recall that x− denotes the negative part of x ∈ R.

Lemma 5.9. Let Q ∈ P and φ ∈ A be such that EQξ− <∞, where

ξ := −
∫ T

0

Stφtdt−
∫ T

0

Gt(φt)dt.

Then

EQ

∫ T

0

|φt|β(1 + |St|)βdt <∞.

Proof. For simplicity, set T := 1. Define φt(n) := φt1{|φt|≤n} ∈ A, n ∈ N. As n → ∞, clearly

φt(n) → φt for all t and ω ∈ Ω, and the random variables

ξn := −
∫ 1

0

Stφt(n)dt−
∫ 1

0

Gt(φt(n))dt =

−
d∑

i=1

∫ 1

0

Sitφ
i
t(n)[1{Si

t≤0,φi
t≤0} + 1{Si

t>0,φi
t≤0} + 1{Si

t≤0,φi
t>0} + 1{Si

t>0,φi
t>0}]dt

−
∫ 1

0

Gt(φt(n))dt

converge to ξ a.s. by monotone convergence. (Note that each of the terms with an indicator

converges monotonically, and that Gt(0) ≤ Gt(x) for all x.) Hölder’s inequality yields

∫ 1

0

|φt(n)|β(1 + |St|)βdt =
∫ 1

0

|φt(n)|βHβ/α
t

1

H
β/α
t

(1 + |St|)βdt ≤ (162)

[∫ 1

0

|φt(n)|αHtdt

]β/α 

∫ 1

0

(
1

H
β/α
t

(1 + |St|)β
)α/(α−β)

dt



(α−β)/α

≤

[∫ 1

0

Gt(φt(n))dt

]β/α 

∫ 1

0

(
1

H
β/α
t

(1 + |St|)β
)α/(α−β)

dt



(α−β)/α

.

All these integrals are finite by Assumption 5.3 and the càdlàg property of S. Now, set

m :=



∫ 1

0

(
1

H
β/α
t

(1 + |St|)β
)α/(α−β)

dt



(α−β)/α

,

and note that, by Jensen’s inequality,

∣∣∣∣
∫ 1

0

Stφt(n)dt

∣∣∣∣ ≤
∫ 1

0

|φt(n)|(1 + |St|)dt ≤
[∫ 1

0

|φt(n)|β(1 + |St|)βdt
]1/β

.

Note also that if x ≥ 1 and x ≥ 2
β

α−βm
α

α−β then x1/β − (x/m)α/β ≤ x − 2x = −x. This

observation, applied to

x :=

∫ 1

0

|φt(n)|β(1 + |St|)βdt,
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implies that ξn ≤ −x on the event {x ≥ 2
β

α−βm
α

(α−β) + 1}. Thus,

∫ 1

0

|φt(n)|β(1 + |St|)βdt ≤ (ξn)− + 2
β

α−βm
α

(α−β) + 1, a.s.

Letting n tend to ∞, it follows that

∫ 1

0

|φt|β(1 + |St|)βdt ≤ ξ− + 2
β

α−βm
α

(α−β) + 1, (163)

which implies the claim, since EQξ− <∞ by assumption, and EQm
α

α−β <∞ from Q ∈ P.

5.3 Closed payoff space

The central implication of the previous result is that the class of multivariate payoffs that

are dominated by the terminal value of a feasible portfolio, defined as C := [{XT (0, φ) : φ ∈
A} − L0(Rd+1

+ )] ∩ L0(Rd+1), is closed in a rather strong sense; recall the componentwise defi-

nition of the (d+ 1)-dimensional random variable XT (0, φ) in (156) and (157). Note also that

X0
T may well be −∞ hence the intersection with L0(Rd+1) in the definition of C is reasonable.

Closedness is the key property for establishing Theorem 5.12 below.

Proposition 5.10. Under Assumption 5.3, the set C ∩ L1(Q) is closed in L1(Q) for all Q ∈ P̃.

Proof. Take T = 1 for simplicity, and assume that ρn := ξn − ηn → ρ in L1(Q) where ηn ∈
L0(Rd+1

+ ) and ξn = X1(0, ψ(n)) for some ψ(n) ∈ A with ρn ∈ L1(Q). Up to passing to a

subsequence, this convergence takes place a.s. as well.

Lemma 5.9 implies that EQ
∫ 1

0
|ψt(n)|β(1 + |St|)βdt must be finite for all n since (ξn)− ≤

(ρn)− and the latter is in L1(Q). Applying (163) with the choice φ := ψ(n) yields

∫ 1

0

|ψt(n)|β(1 + |St|)βdt ≤ (ρn)− + 2
β

α−βm
α

(α−β) + 1.

Now, since Q ∈ P, and the sequence ρn is bounded in L1(Q), it follows that

sup
n≥1

EQ

∫ 1

0

|ψt(n)|β(1 + |St|)βdt <∞. (164)

Consider L := L1(Ω,F , Q;B), the Banach space of B-valued integrable functions, see Sec-

tion 6.2, where B := Lβ([0, 1],B([0, 1]), Leb) is a separable and reflexive Banach space. The

functions ψ·(n) : Ω → B are easily seen to be measurable in the sense of Section 6.2. By (164),

the sequence ψ·(n) is bounded in L, so Lemma 6.11 yields convex combinations

ψ̃·(n) =

M(n)∑

j=n

αj(n)ψ·(n)

which converge to some ψ̃· ∈ L a.s. in B-norm.

At this point, however, it is not yet clear that ψ̃ has an O-measurable version. By the

bound in (164), supnEQ
∫ 1

0
|φt(n)|(1 + |St|)dt < ∞. Now apply Lemma 6.10 to the sequence

ψ̃·(n) in the space of d-dimensional integrable functions L1(Ω × [0, 1],O, ν), where ν is the

measure defined by

ν(A) :=

∫

Ω×[0,1]

1A(ω, t)(1 + |St|)dtdQ(ω)

for A ∈ O (ν is finite by Q ∈ P̃ ). This lemma yields convex combinations ψ̂·(n) of the ψ̃·(n)

such that ψ̂·(n) converges to some ψ· ∈ L1(Ω × [0, 1],O, ν) ν-a.e., and hence P × Leb-a.e. This

shows that ψ· is O-measurable.

Since ψ̃·(n) converge a.s. in B-norm, also ψ̂·(n) → ψ̃ a.s. in B-norm, so ψ = ψ̃, P × Leb-a.e.

and ψ̃·(n) tends to ψ· in B-norm a.e.
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Define ξ̃n :=
∑M(n)
j=n αj(n)ξj and η̃n :=

∑M(n)
j=n αj(n)ηj . Convergence in B-norm implies that

limn→∞

∫ 1

0
ψ̃t(n)Stdt =

∫ 1

0
ψtStdt almost surely, and also

lim
n→∞

ξ̃in = lim
n→∞

∫ 1

0

ψ̃it(n)dt =

∫ 1

0

ψitdt a.s. for i = 1, . . . , d.

Hence, η̃in → ηi a.s. with ηi :=
∫ T
0
ψitdt− ρi ∈ L0(R+), i = 1, . . . , d. By the convexity of Gt,

ρ0 = lim
n→∞

(ξ̃0n − η̃0n) = lim
n→∞

−



M(n)∑

j=n

αj(n)

∫ 1

0

[ψt(j)St +Gt(ψt(j))] dt


− η̃0n

≤ lim sup
n→∞

[
−
∫ 1

0

ψ̃t(n)Stdt−
∫ 1

0

Gt(ψ̃t(n))dt− η̃0n

]

= lim sup
n→∞

[
−
∫ 1

0

ψ̃t(n)Stdt−
∫ 1

0

Gt(ψt)dt−
∫ 1

0

Gt(ψ̃t(n))dt+

∫ 1

0

Gt(ψt)dt− η̃0n

]

= −
∫ 1

0

ψtStdt−
∫ 1

0

Gt(ψt)dt+ lim sup
n→∞

[
−
∫ 1

0

Gt(ψ̃t(n))dt+

∫ 1

0

Gt(ψt)dt− η̃0n

]
.

Now Fatou’s lemma, Gt(x) ≥ 0 and η̃n ∈ L0(Rd+1
+ ) imply that the limit superior is in −L0(R+)

(note that Gt(·) is continuous by convexity), hence there is η0 ∈ L0(R+) such that

ρ0 = −
∫ 1

0

ψtStdt−
∫ 1

0

Gt(ψt)dt− η0,

which proves the proposition.

Corollary 5.11. Under Assumption 5.3, the set C is closed in probability.

Proof. Let ρn ∈ C tend to ρ in probability. Up to a subsequence, convergence also holds almost

surely. There exists Q ∈ P̃ such that ρ, supn |ρ − ρn| are Q-integrable, see Lemma 6.9. Then

ρn → ρ in L1(Q) as well and Proposition 5.10 implies ρ ∈ C.

5.4 Utility maximisation

This section discusses utility maximization in the model of Section 5.1. The first result

(Theorem 5.12 below) shows that optimal strategies exist under a simple integrability as-

sumption, which is easy to check. In particular, optimal strategies exist regardless of arbi-

trage (compare to Proposition 1.5 above), since such opportunities are necessarily limited.

Put differently, the budget equation is nonlinear. Therefore one cannot add to an optimal

strategy an arbitrage opportunity, and expect the resulting wealth to be the sum.

Importantly, these results consider only utilities defined on the real line. This setting is

consistent with the definition of feasible strategies, which do not constrain wealth to remain

positive. Since the focus is on utility functions defined on a single variable, and with price

impact there is no scalar notion of portfolio value, the results below assume for simplicity

that all strategies begin and end with cash only.

Let B be an arbitrary real-valued random variable (representing a random payoff) and

c ∈ R the investor’s initial capital. For any x ∈ R let x̌ ∈ Rd+1 be defined as x̌0 = x and x̌i = 0,

i = 1, . . . , d.

Theorem 5.12. Let u : R → R be concave and nondecreasing, and let

Eu(c−B +W ) <∞ (165)

hold for the market bound W of Lemma 5.7. Under Assumption 5.3, there is φ∗ ∈ A′(u, c) such

that

Eu(X0
T (č, φ

∗)−B) = sup
φ∈A′(u,c)

Eu(X0
T (č, φ)−B),

provided that A′(u, c) := {φ ∈ A : Xi
T (č, φ) = 0, i = 1, . . . , d, Eu−(X

0
T (č, φ) − B) < ∞} is not

empty.
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Remark 5.13. If Gt(0) ≡ 0 then for u and B bounded above condition (165) holds and

A′(u, c) 6= ∅ hence Theorem 5.12 applies.

Proof. Corollary 5.11 implies that

C ′ := č+
(
C ∩ {X : Xi = 0 a.s., i = 1, . . . , d}

)
⊂ L0(Rd+1)

is closed in probability. Let φ(n) be a sequence in A′(u, c) with

lim
n→∞

Eu(X0
T (č, φ(n))−B) = sup

φ∈A′(u,c)

Eu(X0
T (č, φ)−B).

Since X0
T (č, φ(n)) ≤ c +W a.s. for all n, by Lemma 6.10 there are convex combinations such

that
∑M(n)
j=n αj(n)X

0
T (č, φ(j)) → X a.s. for some [−∞, c +W ]-valued random variable X. By

convexity of G, we have that for φ̃(n) :=
∑M(n)
j=n αj(n)φ(j),

X0
T (č, φ̃(n)) ≥

M(n)∑

j=n

αj(n)X
0
T (č, φ(j)),

so
∑M(n)
j=n αj(n)XT (č, φ(j)) ∈ C ′ for each n. By concavity of u,

Eu



M(n)∑

j=n

αj(n)X
0
T (č, φ(j))−B


 ≥

M(n)∑

j=n

αj(n)Eu(X
0
T (č, φ(j))−B).

Fatou’s lemma applies because of (165) and it implies that

Eu(X −B) ≥ sup
φ∈A′(u,c)

Eu(X0
T (č, φ)−B),

in particular, X is finite-valued a.s. and hence X̌ ∈ C ′ by the closedness of C ′. It follows that

X = X0
T (č, φ

∗)− Y 0 for some φ∗ ∈ A′(u, c) and Y ∈ L0(Rd+1
+ ). Clearly,

Eu(X0
T (č, φ

∗)−B − Y 0) = sup
φ∈A′(u,c)

Eu(X0
T (č, φ)−B),

and necessarily Eu(X0
T (č, φ

∗)−B) = supφ∈A′(u,c)Eu(X
0
T (č, φ)−B) as well. This completes the

proof. Note that u may be constant on an interval hence Y 0 6= 0 is possible.

Remark 5.14. Theorem 5.12 is the first existence result of its kind in a general, continuous-

time setting. In the discrete time case similar results were obtained in [27, 69].

Remark 5.15. Theorem 5.12 can also be proved with

A′′(u, c) = {φ ∈ A : Xi
T (č, φ) ≥ 0, i = 1, . . . , d, Eu−(X

0
T (č, φ)−B) <∞}

in lieu of A′(u, c). Note that the two optimization problems are not equivalent, due to illiq-

uidity.

Remark 5.16. Let us assume that S is non-negative and one-dimensional. We may equiva-

lently use either A′′(u, c) or

A′′
+(u, c) :={φ ∈ A : St(ω) +G(ω, t, φt(ω))/φt(ω) ≥ 0 when φt(ω) < 0,

X1
T (č, φ) ≥ 0, Eu−(X

0
T (č, φ)−B) <∞},

that is, we may restrict our class of strategies to those for which the instantaneous execution

price is non-negative, as in Remark 5.4 above.

Remark 5.17. The proofs of Theorem 5.12 and Proposition 5.10 use Lemmata 6.11 and 6.10.

They could be replaced, at the price of minor modifications, with Komlós’s theorem [60] and

its extensions [6, 103].
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While the previous result asserts the existence of optimal strategies, the next theorem

provides a kind of verification theorem for a strategy’s optimality, compare to Remark 2.48.

Theorem 5.18. Set d := 1. Let Assumption 5.3 hold,

a) let u be concave, continuously differentiable, with u′ strictly decreasing, and

u(x) ≤ −C|x|δ, x ≤ 0, (166)

for some C > 0 and δ > 1;

b) denoting by ũ the convex conjugate function of u, i.e.

ũ(y) := sup
x∈R

(u(x)− xy) , y > 0,

assume that ũ′ exists and it is strictly increasing;

c) let B be a bounded random variable;

d) let Q ∈ P be such that

dQ/dP ∈ Lη, (167)

where (1/η) + (1/δ) = 1;

e) letGt(·) be P×Leb-a.s. continuously differentiable in x and letG′
t(·) be strictly increasing;

f) let Z be a càdlàg process with ZT ∈ Lγ
′

for some γ′ > γ and let φ∗ be a feasible strategy

such that, for some y∗ > 0, the following conditions hold:

i) Z is a Q-martingale;

ii) u′(X0
T (x, φ

∗)−B) = y∗(dQ/dP ) a.s.;

iii) Zt = St +G′
t(φ

∗
t ), P × Leb-a.s.

Then the strategy φ∗ is optimal for the problem

max
φ∈A′(u,x)

Eu(X0
T (x, φ)−B). (168)

Proof. Let Zt be as in the statement of the Theorem, and rewrite the final payoff for some

φ ∈ A′(u, x) as:

X0
T (x, φ) =x−

∫ T

0

Ztφtdt+

∫ T

0

(Zt − St)φtdt−
∫ T

0

Gt(φt)dt.

By definition of G∗
t it follows that:

X0
T (x, φ) ≤ x−

∫ T

0

Ztφtdt+

∫ T

0

G∗
t (Zt − St)dt, (169)

and equality holds if Zt − St = G′
t(φt), P × Leb-a.s., that is, when iii) holds.

It follows from Lemma 5.19 that

0 ≤ EQ

[(
x−X0

T (x, φ) +

∫ T

0

G∗
t (Zt − St)dt

)]
. (170)

Thus, for any φ ∈ A′(u, φ) and for any y > 0 the following holds:

Eu(X0
T (x, φ)−B) ≤Eu(X0

T (x, φ)−B) + Ey(dQ/dP )

(
x−X0

T (x, φ) +

∫ T

0

G∗
t (Zt − St)dt

)

≤Eũ(y(dQ/dP )) + Ey(dQ/dP )

(∫ T

0

G∗
t (Zt − St)dt−B

)
+ yx. (171)
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Notice that, by b), ũ(y) = u([u′]−1(y)) − y[u′]−1(y). If iii) is satisfied then there is equality in

(169) above for φ = φ∗. If, in addition, i), ii) are satisfied then both inequalities in (171) are

equalities for y = y∗. Thus, if conditions i), ii) and iii) hold for φ∗ then, by (171),

Eu(X0
T (x, φ

∗)−B) = Eũ(y∗(dQ/dP )) + Ey∗(dQ/dP )

(∫ T

0

G∗
t (Zt − St)dt−B

)
+ y∗x.

For all φ ∈ A′(u, c),

Eu(X0
T (x, φ)−B) ≤ Eũ(y∗(dQ/dP )) + Ey∗(dQ/dP )

(∫ T

0

G∗
t (Zt − St)dt−B

)
+ y∗x,

by (171). Hence the strategy φ∗ is indeed optimal.

Lemma 5.19. Under the assumptions of Theorem 5.18, any φ ∈ A′(u, x) satisfies

EQ

∫ T

0

φtZtdt = 0.

Proof. Assume T = 1. Define

Φt :=

∫ t

0

φ+s ds, Ψt :=

∫ t

0

φ−s ds, t ∈ [0, 1].

We will show EQ
∫ 1

0
ZtdΦt − EQ

∫ 1

0
ZtdΨt = 0.

Since φ ∈ A′(U, x), (166), (167) and Hölder’s inequality imply that EQ[X
0
1 (x, φ)]− < ∞,

hence Lemma 5.9 shows

EQ

∫ 1

0

|φt|β(1 + |St|)βdt <∞,

a fortiori,

EQ(Φ1)
β = EQ

(∫ 1

0

φ+t dt

)β
<∞. (172)

Define Φt(n) := Φkn(t) where

kn(t) := max{i ∈ N :
i

n
≤ t}/n.

and observe that dΦt(n) → dΦt a.s., n→ ∞ in the sense of the weak convergence of measures

on B([0, 1]). As Zt is a.s. càdlàg, its trajectories have at most countably many points of

discontinuity (a.s.). By dΦ ≪ Leb, this implies

Y +
n :=

∫ 1

0

ZtdΦt(n) →
∫ 1

0

ZtdΦt =: Y +,

almost surely. Furthermore,

∣∣∣∣
∫ 1

0

ZtdΦt(n)

∣∣∣∣ =
∣∣∣∣∣

n∑

k=1

Zk/n[Φk/n(n)− Φ(k−1)/n(n)]

∣∣∣∣∣ ≤ sup
t

|Zt|Φ1 (173)

where supt∈[0,T ] |Zt| ∈ Lγ
′

(Q) by assumption and Φ1 ∈ Lβ(Q) by (172). It follows by Hölder’s

inequality that the sequence Y +
n is Q-uniformly integrable, so EQY

+
n → EQY

+, n→ ∞. From

(173) we get, noting that Φ0(n) = 0,

EQY
+
n = EQ

[
n−1∑

l=0

(Zl/n − Z(l+1)/n)Φl/n(n)

]
+ EQZ1Φ1(n) = EQZ1Φ1(n), (174)

72

dc_1138_15

Powered by TCPDF (www.tcpdf.org)



by the Q-martingale property of Z. Analogously, as n→ ∞,

EQY
−
n = EQZ1Ψ1(n) → EQY

−,

where Y −
n ,Ψ·(n) are defined analogously to Y +

n ,Φ·(n) using Ψ instead of Φ and

Y − :=

∫ 1

0

ZtdΨt.

Since Φ1(n)−Ψ1(n) = Φ1 −Ψ1 = 0, (174) implies that EQ(Y
+
n −Y −

n ) = 0 for all n, whence also

EQ(Y
+ − Y −) = EQ

∫ T

0

φtZtdt = 0,

completing the proof.

Remark 5.20. The paper [47] did not only deal with utility maximisation but also with the-

orems on superreplication and on the characterisation of arbitrage. As these latter topics

are only loosely connected to the main themes of this dissertation, we confined ourselves to

optimal investment here.
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6 Appendix

We collect results of an auxiliary nature which have been relegated here for reasons of a

smooth presentation.

6.1 Generalized conditional expectation

Let W be a non-negative random variable on the probability space (Ω,F , P ). Let H ⊂ F
be a sigma-algebra. Define (as in e.g. [36]), the generalized conditional expectation by

E(W |H) := lim
n→∞

E(W ∧ n|H),

where the limit a.s. exists by monotonicity (but may be +∞). In particular, EW is defined

(finite or infinite). Note that if EW < +∞, then the generalized and the usual conditional

expectations of W coincide.

Lemma 6.1. For all A ∈ H and all non-negative random variables W , the following equalities

hold a.s.:

E(1AE(W |H)) = E(W1A) (175)

E(W1A|H) = E(W |H)1A. (176)

Furthermore, E(W |H) < +∞ a.s. if and only if there is a sequence Am ∈ H, m ∈ N such

that E(W1Am
) < ∞ for all m and ∪mAm = Ω. In this case, E(W |H) is the Radon-Nykodim

derivative of the sigma-finite measure µ(A) := E(W1A), A ∈ H with respect to P on (Ω,H).

Proof. Most of these facts are stated in section II.39 on page 33 of [36]. We nevertheless give

a quick proof. Let A ∈ H arbitrary. Then

E(1AE(W |H)) = lim
n→∞

E(1AE(W ∧ n|H))

= lim
n→∞

E((W ∧ n)1A) = E(W1A)

by monotone convergence and by the properties of ordinary conditional expectations. Simi-

larly, (176) is satisfied by monotone convergence and by the properties of ordinary conditional

expectations.

Now, if Am is a sequence as in the statement of Lemma 6.1, then µ is indeed sigma-finite

and (175) implies that E(W |H) is the Radon-Nykodim derivative of µ with respect to P on

(Ω,H) and as such, it is a.s. finite.

Conversely, if E(W |H) < +∞ a.s. then define Am := {E(W |H) ≤ m}. We have, by (175),

E(W1Am
) = E(1Am

E(W |H)) ≤ m <∞,

showing the existence of a suitable sequence Am.

For a real-valued random variable Z we may define, if either E(Z+|H) < ∞ a.s. or

E(Z−|H) <∞ a.s.,

E(Z|H) := E(Z+|H)− E(Z−|H).

In particular, E(Z) is defined if either E(Z+) < +∞ or E(Z−) < +∞.

Lemma 6.2. If E(Z) is defined then so is E(Z|H) a.s. and E(Z) = E(E(Z|H)).

Proof. We may suppose that e.g. E(Z+) < ∞. Then E(Z+|H) exists (in the ordinary sense as

well) and is finite, so E(Z|H) exists a.s. Then, by (175), we have E(Z±) = E(E(Z±|H)).

Corollary 6.3. Let Z be a random variable and let W be an H-measurable random variable.

Assume that there is a sequence Am ∈ H, m ∈ N such that ∪mAm = Ω and E(Z1Am
|H) exists

and it is finite a.s. for all m. Then

(i) E(Z|H) exists and it is finite a.s.

(ii) If W1Am
≤ E(Z1Am

|H) a.s. for all m then W ≤ E(Z|H) a.s.

(iii) If W1Am
= E(Z1Am

|H) a.s. for all m then W = E(Z|H) a.s.
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Proof. Fix some m such that E(Z1Am
|H) exists and it is finite a.s., then E(|Z|1Am

|H) is

also finite a.s. and by Lemma 6.1 there exists a sequence (Bmj )j such that ∪jBmj = Ω and

E(|Z|1Am
1Bm

j
) <∞ for all j.

Then the sets C(m, j) := Am ∩ Bmj are such that ∪m,jC(m, j) = Ω. Let Cn, n ∈ N be the

enumeration of all the sets C(m, j). We clearly have E(|Z|1Cn
) < ∞ for all n. Hence, by

Lemma 6.1, E(|Z||H) <∞ and thus E(Z|H) exists and is finite a.s.

Suppose that, e.g., {W > E(Z|H)} on a set of positive measure. Then there is n such that

G := Cn ∩ {W > E(Z|H)} has positive measure. There is also m such that Cn ⊂ Am. Then

E(|Z|1G) ≤ E(|Z|1Cn
) <∞ and

E(E(Z|H)1G) = E(E(Z1Am
|H)1G) ≥ E(W1Am

1G) = E(W1G),

but this contradicts the choice of G, showing W ≤ E(Z|H) a.s. Arguing similarly for {W <
E(Z|H)} we can get (iii) as well.

Lemma 6.4. Let Zn be a sequence of random variables with |Zn| ≤ W a.s., n ∈ N converging

to Z a.s. If E(W |H) <∞ a.s. then E(Zn|H) → E(Z|H) a.s.

Proof. Let Am ∈ H be a partition of Ω such that E(W1Am
) < ∞ for all m. Fixing m, the

statement follows on Am by the ordinary conditional Lebesgue theorem. Since the Am form a

partition, it holds a.s. on Ω.

Corollary 6.5. Let g : R → R be convex and bounded from below. Let E(Z|H) exist and be

finite a.s. Then

E(g(Z)|H) ≥ g(E(Z|H)) a.s.

Proof. We may and will assume g(0) = 0. Define B := {E(g(Z)|H) < ∞}. The inequality is

trivial on the complement of B.

As E(|Z||H) < ∞ a.s. and E(|g(Z)|1B |H) < ∞ a.s. (recall that g is bounded from below),

from Lemma 6.1, one can find a sequence Am such that ∪mAm = Ω and both E(|Z|1Am
) <

∞ and E(|g(Z)|1Am
1B) < ∞ hold true for all m. From the ordinary (conditional) Jensen

inequality we clearly have

1BE(g(Z)1Am
|H) = E(g(Z1Am

1B)|H) ≥ g(E(Z1Am
1B |H)) = g(E(Z|H))1Am

1B , a.s.

for all m, and the statement follows if we can apply Corollary 6.3, i.e. if E(g(Z)1Am
|H) exists

and it is finite a.s. This holds true by the choice of Am.

Lemma 6.6. Let (Ω,F , P ) be a probability space. Let U and V from Ω×R to R such that for all

x ∈ R, U(·, x), V (·, x) are F-measurable. Assume that for a.e. ω, U(ω, ·) and V (ω, ·) are either

both right-continuous or both left-continuous.

(i) If U(·, q) ≤ V (·, q) holds simultaneously for all q ∈ Q, a.s. then U(·, x) ≤ V (·, x) holds for

all x, a.s.

(ii) If U(·, q) = V (·, q) holds simultaneously for all q ∈ Q, a.s. then U(·, x) = V (·, x) holds

for all x, a.s.

Proof. Obvious.

Lemma 6.7. Let (Ω,H, P ) be a complete probability space. Let Ξd be the set of H-measurable

d-dimensional random variables. Let F : Ω × Rd → R be a function such that for almost all

ω ∈ Ω, F (ω, ·) is continuous and for each y ∈ Rd, F (·, y) is H-measurable. Let K > 0 be an

H-measurable random variable.

Set f(ω) = ess. supξ∈Ξd,|ξ|≤K F (ω, ξ(ω)). Then, for almost all ω,

f(ω) = sup
y∈Rd,|y|≤K(ω)

F (ω, y). (177)

75

dc_1138_15

Powered by TCPDF (www.tcpdf.org)



Proof. F is easily seen to be H⊗ B(Rd)-measurable and so is

sup
y∈Rd,|y|≤K(ω)

F (ω, y) = sup
y∈Qd,|y|≤K(ω)

F (ω, y).

Hence supy∈Rd,|y|≤K(ω) F (ω, y) ≥ f(ω) a.s. by the definition of essential supremum. Assume

that the inequality is strict with positive probability. Then for some ε > 0 the set

A = {(ω, y) ∈ Ω× Rd : |y| ≤ K(ω); F (ω, y)− f(ω) ≥ ε}

has a projection A′ on Ω with P (A′) > 0. Recall that ω → F (ω, ξ(ω)) is H-measurable for

ξ ∈ Ξd. By definition of the essential supremum, f is H-measurable and hence A ∈ H⊗B(Rd).
The measurable selection theorem (see Proposition III.44 in [36]) applies and there exists

η ∈ Ξd such that (ω, η(ω)) ∈ A for ω ∈ A′ (and η(ω) = 0 on the complement of A′). This

leads to a contradiction since for all ω ∈ A′, f(ω) < F (ω, η(ω)) by the construction of η and

f(ω) ≥ F (ω, η(ω)) a.s. by the definition of f .

6.2 Compactness and integrability in Banach spaces

Lemma 6.8. Let H ⊂ F be a sigma-algebra. Let Xn be a sequence of H-measurable d-

dimensional random variables such that

lim inf
n→∞

|Xn| <∞ (178)

almost surely. Then there exist H-measurable random variables nk : Ω → N, k ∈ N with

nk(ω) < nk+1(ω) for all ω ∈ Ω and k ∈ N and an H-measurable random variable X such that

Xnk
→ X a.s. In such a case we write that there exists an H-measurable random subsequence.

Proof. This is Lemma 2 of [55]. Its proof also shows that when (178) holds for all ω ∈ Ω then

convergence takes place for all ω ∈ Ω.

Lemma 6.9. Let Yn, n = 1, . . . ,M be random variables. Then there existsQ ∼ P with dQ/dP ∈
L∞ such that, for all n = 1, . . . ,M , EQ|Yn| <∞.

Proof. Indeed, take dQ/dP := e−
∑M

n=1 |Yn|/Ee−
∑M

n=1 |Yn|. Interestingly, the result remains

true for a countable sequence Yn, n ∈ N as well, see page 266 of [37].

Lemma 6.10. Let fn be a sequence of [0,∞)-valued random variables. Then there existM(n) ≥
n and αj(n) ≥ 0, j = n, . . . ,M(n) with

∑M(n)
j=n αj(n) = 1 such that gn :=

∑M(n)
j=n αj(n)fj , n ∈ N

satisfy gn → g, n→ ∞ a.s., where g is a [0,∞]-valued random variable.

If fn are R-valued random variables with supnE|fn| <∞ then the conclusion holds with a

real-valued g satisfying E|g| <∞.

Proof. See Lemma 9.8.1 in [35]. Clearly, the same statement is true also in the case where

(Ω,F , P ) is a measure space with P a finite measure.

Let B be a separable Banach space. The norm of B is denoted by || · ||B. We call a mapping

f : Ω → B measurable if g ◦ f is measurable for all g ∈ B′ where B′ is the dual space of B.

For a measurable f satisfying

‖f‖L :=

∫

Ω

‖f(ω)‖BP (dω) <∞ (179)

one can simply define the B-valued integral
∫
Ω
f(ω)P (dω), see e.g. Chapter 5 of [67]. We

denote by L := L1(Ω,F , P ;B) the space of (equivalence classes of) measurable functions f
satisfying (179), this is a Banach space with the norm ‖ · ‖L defined above. One can construct

such (Bochner) integral for non-separable B as well but we do not need this in the present

dissertation.
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Lemma 6.11. If B is a reflexive Banach space and fn, n ∈ N is a bounded sequence in L then

there are M(n) ≥ n and αj(n) ≥ 0, j = n, . . . ,M(n) with
∑M(n)
j=n αj(n) = 1 such that

gn :=

M(n)∑

j=n

αj(n)fj satisfies ||gn − g||B → 0, n→ ∞

for a.e. ω, with some g ∈ L.

Proof. See Theorem 15.2.6 in [35].

Lemma 6.12. Let H ⊂ F be a sigma-algebra. Define K := [−N,N ]n. Let L : Ω ×K → Rm be

such that for a.e. ω ∈ Ω, L(ω, ·) is continuous and for all x ∈ K, L(·, x) is measurable such that

supz∈K |L(ω, z)| is integrable. Then there is l : Ω ×K → Rm such that for a.e. ω ∈ Ω, l(ω, ·) is

continuous and for all k ∈ K, E(L(k)|H) = l(k) a.s.

Proof. Consider the separable Banach space B := C([−N,N ]n) with the supremum norm.

Clearly, L : Ω → B and for all µ ∈ B′ (which can be represented as a Borel signed measure),

µ(L) =
∫
K
L(ω, x)µ(dx) is a measurable function on (Ω,F): indeed, this is clear for µ with

finite support and then follows for general µ by approximation. Note that, for each k ∈ K, the

linear functional fk(x) := x(k), x ∈ B is continuous (w.r.t. the norm of B) so fk ∈ B′. Now it

follows from Proposition V.2.5. of [67] that there is a measurable l : Ω → B such that

l(k) = fk(l) = E(fk(L)|H) = E(L(k)|H),

for each k ∈ K, as claimed.

6.3 Asymptotic elasticity

When u is concave and differentiable, the asymptotic elasticities of u at ±∞ are defined as

AE+(u) = lim sup
x→∞

u′(x)x

u(x)
, (180)

AE−(u) = lim inf
x→−∞

u′(x)x

u(x)
, (181)

see [61], [91] and the references therein.

It is shown in Lemma 6.3 of [61] that, when u(∞) > 0, AE+(u) equals5 the infimum of

those α for which there is x > 0 s.t.

u(λx) ≤ λαu(x) for x ≥ x, λ ≥ 1. (182)

Similarly, AE−(u) equals the supremum of those β for which there is x > 0 such that

u(λx) ≤ λβu(x) for x ≤ −x, λ ≥ 1. (183)

Note that the proof of the equivalence (180)⇔(182) in Lemma 6.3 of [61] does not use the

concavity of u. So if u is nondecreasing and continuously differentiable then (180) makes

sense and it is equivalent to (182) in the above sense. Similarly, (181) is equivalent to (183).

It thus seems reasonable to extend the definitions of AE+(u) (resp. AE−(u)) to possibly

non-concave and non-differentiable u as the infimum (resp. supremum) of α (resp. β) such

that (182) (resp. (183)) holds. Doing so we see (looking at Assumption 2.13) that in Chapter

2 we assert the existence of an optimal strategy whenever AE+(u) < AE−(u).

5More precisely, in that Lemma (182) is assumed with < instead of ≤ and with λ > 1 instead of λ ≥ 1. A careful
inspection of the proof reveals that this is equivalent to our formulation (182).
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6.4 Continuously differentiable versions

We return to the setting and notation of Section 2.5. We assume that, for a.e. ω ∈ Ω,

x→ V (ω, x) is continuously differentiable, concave, nondecreasing and, for each N > 0,

sup
(x,y)∈[−N,N ]d+1

|V ′(x+ yY )|(1 + |Y |) (184)

is integrable.

Proposition 6.13. The function

(x, y) → E(V (x+ yY )|H)

has a version G(x, y, ω) which is continuously differentiable in (x, y) ∈ Rd+1,

∂iG(x, y, ω) = E(V ′(x+ yY )Y i|H), 1 ≤ i ≤ d, (185)

where ∂i is the derivative with respect to yi,

∂xG(x, y, ω) = E(V ′(x+ yY )|H). (186)

Furthermore, for any ξ ∈ Ξd and X ∈ Ξ1,

G(X, ξ, ω) = E(V (X + ξY )|H), (187)

∂iG(X, ξ, ω) = E(V ′(X + ξY )Y i|H), 1 ≤ i ≤ d, (188)

∂xG(X, ξ, ω) = E(V ′(X + ξY )|H). (189)

The function

x→ ess. sup
ξ∈Ξ

E(V (x+ ξY )|H)

has a version A(ω, x) which is almost surely concave, continuously differentiable and (a.s.)

A(X) = ess. sup
ξ∈Ξ

E(V (X + ξY )|H). (190)

Also,

E(V ′(X + ξ̃(X)Y )Y i|H) = 0 a.s., 1 ≤ i ≤ d,

where ξ̃ is the function constructed in Proposition 2.38.

Proof. It is enough to construct G for (x, y) ∈ [−N,N ]d+1, for all N ∈ N (we mean that G is

differentiable in (x, y) ∈ (−N,N)d+1 and its derivative extends as a continuous function to

[−N,N ]d+1). Fix N . By (184), as in Proposition 2.33, Lemma 6.12 implies the existence of H :
Ω → C([−N,N ]d+1;Rd+1) such that, for each x, y, H(ω, x, y)i is a version of E(V ′(x+yY )Y i|H)
for i = 1, . . . , d and H(ω, x, y)0 is a version of E(V ′(x+yY )|H). Let W be and arbitrary version

of E(V (0)|H).
Since

V (x+ yY ) = V (0) +

d∑

j=1

∫ yj

0

V ′(ujY
j +

j−1∑

l=1

ylY l)duj +

∫ x

0

V ′(w + yY ) dw,

applications of Fubini’s theorem show that the expression

G(ω, x, y) :=W +
d∑

j=1

∫ yj

0

Hj(ω, 0, y1, . . . , yj−1, uj , 0, . . .)duj ++

∫ x

0

H0(ω,w, y1, . . . , yd)dw

defines a version G(ω, x, y) of E(V (x+ yY )|H), it is a.s. continuously differentiable and satis-

fies (185) and (186). This version can be used throughout the arguments of Section 2.5.
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It is enough to show (187), (188) and (189) for (X, ξ) ∈ [−N,N ]d+1 for each N fixed.

It is clear for step functions and taking (uniformly bounded) step-function approximations

(Xm, ξm), m ∈ N of (X, ξ) we get

Hi(Xm, ξm) = ∂iG(Xm, ξm) → ∂iG(X, ξ) = Hi(X, ξ)

by continuity of H and

E(V ′(Xn + ξnY )Y i|H) → E(V ′(X + ξY )Y i|H)

by (184) and the (conditional) Lebesgue theorem, for i = 1, . . . , d. A similar argument works

for ∂xG.

Take A as constructed in Proposition 2.35 (using the G just obtained). Now we borrow a

trick from Theorem 4.13 of [95]. Outside a null set, for all x and for any h ∈ N

h(A(x± 1/h)−A(x)) ≥ h(G(x± 1/h, ξ̃(x))−G(x, ξ̃(x))). (191)

The left- and right-handed derivatives of A exist by concavity and A′(x+) ≤ A′(x−). Letting

h→ ∞ in (191) we find that

∂xG(x, ξ̃(x)) ≥ A′(x−) ≥ A′(x+) ≥ ∂xG(x, ξ̃(x)),

so A is indeed smooth almost everywhere. (190) for general X follows from Proposition 2.38.

Outside a P -zero set, for all x ∈ R,

G(ω, x, ξ̃(x)) = A(ω, x). (192)

From the definition of A,

G(ω, x, y) ≤ A(ω, x) for all x, y, (193)

outside a P -zero-set. Now the last assertion follows from (192) and (193): as G(ω, x, ξ̃(x)) is

a local maximum of y → G(ω, x, y) we get that ∂iG(ω, x, ξ̃(x)) = 0, i = 1, . . . , d simultaneously

for all x, a.s. This completes the proof, remembering (188).

6.5 Further auxiliary results

Lemma 6.14. If Y ∈ W then ∫ ∞

0

P δ(Y ≥ y)dy <∞,

for all δ > 0.

Proof. By Markov’s inequality,

P (Y ≥ y) ≤M(N)y−N , y > 0,

for all N > 0, with a constant M(N) := EY N <∞. We can now choose N so large that Nδ > 1,

showing that the integral in question is finite.

Lemma 6.15 below is folklore and its proof is omitted.

Lemma 6.15. Let X be a real-valued random variable with atomless law. Let F (x) := P (X ≤
x) denote its cumulative distribution function. Then F (X) has uniform law on [0, 1]. ✷

The following Lemmata should be fairly standard. We nonetheless included their proofs

since we could not find an appropriate reference.

Lemma 6.16. Let µ(dy, dz) = ν(y, dz)δ(dy) be a probability on RN2 × RN1 such that δ(dy) is a

probability on RN2 and ν(y, dz) is a probabilistic kernel. Assume that Y has law δ(dy) and E
is independent of Y and uniformly distributed on [0, 1]. Then there is a measurable function

G : RN2 × [0, 1] → RN1 such that (Y,G(Y,E)) has law µ(dy, dz).
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Proof. We first recall that if Y1,Y2 are uncountable Polish spaces then they are Borel isomor-

phic, i.e. there is a bijection ψ : Y1 → Y2 such that ψ,ψ−1 are measurable (with respect to the

respective Borel fields); see e.g. page 159 of [36].

Fix a Borel isomorphism ψ : R → RN1 . Consider the measure on RN2 × R defined by

µ̃(A × B) :=
∫
A
ν(y, ψ(B))δ(dy), A ∈ B(RN2), B ∈ B(R). For δ-almost every y, ν(y, ψ(·)) is a

probability measure on R. Let F (y, z) := ν(y, ψ((−∞, z]))) denote its cumulative distribution

function and define

F †(y, u) := inf{q ∈ Q : F (y, q) ≥ u}, u ∈ (0, 1),

this is easily seen to be B(RN2) ⊗ B([0, 1])-measurable. Then, for δ-almost every y, F †(y,E)
has law ν(y, ψ(·)). Hence (Y, F †(Y,E)) has law µ̃. Consequently, (Y, ψ(F †(Y,E))) has law µ
and we may conclude setting G(y, u) := ψ(F †(y, u)). The idea of this proof is well-known, see

e.g. page 228 of [13].

Lemma 6.17. Let (X,W ) be an (n + m)-dimensional random variable such that the condi-

tional law of X w.r.t. σ(W ) is a.s. atomless. Then there is a measurable G : Rn+m → R such

that G(X,W ) is independent of W with uniform law on [0, 1].

Proof. Let us fix a Borel-isomorphism ψ : Rn → R. Note that ψ(X) also has an a.s. atomless

conditional law w.r.t. σ(W ). Define (using a regular version of the conditional law),

H(x,w) := P (ψ(X) ≤ x|W = w), (x,w) ∈ R× Rm,

this is B(R)⊗ B(Rm)-measurable (using the fact that H is continuous in x a.s. by hypothesis

and measurable for each fixed w since we took a regular version of the conditional law). It

follows that the conditional law of H(ψ(X),W ) w.r.t. σ(W ) is a.s. uniform on [0, 1] (see Lemma

6.15) which means that it is independent of W . Hence we may define G(x,w) := H(ψ(x), w),
which is measurable since H and ψ are.
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7 Present and future work

In Chapter 3 it was found that the parameter restrictions α < β and α/γ ≤ β/δ are neces-

sary for well-posedness of the optimal investment problem of a CPT investor in a multistep

discrete-time model. Are these restrictions also sufficient ? Theorems 3.16 and 4.16 cover a

substantial proportion of this parameter range, but not all of it. It would also be nice to unify

the arguments of these two theorems and to simplify/generalize the proof of Theorem 3.4.

A desirable, but challenging research direction is to extend the results of Chapter 4 to

relevant classes of incomplete continuous-time markets. [77] is a first step into this direction.

Let u be concave (as in Chapter 5 and in Section 2.7) but let the market contain a countably

infinite number of risky assets. Such “large financial markets” were proposed already in [87]

and their systematic study began in [53]. Optimal investment in this context leads to an

interesting infinite dimensional optimization problem, see [73].

Finally, [7] proposes a model for price impact which is fundamentally different from that of

Chapter 5: the “market makers” create prices by seeking a microeconomic equilibrium and a

large investor is moving these prices by his/her actions. This leads to a complicated, nonlinear

dynamics and hence it is intriguing how to pose and solve optimal investment problems for

the large investor in this setting.
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Epilógus

Két dolog fontos: a művészet és a szerelem.
(Marton Éva, [63])

Sokan vannak, akiknek erőfeszı́tései hozzájárultak ahhoz, hogy ez a disszertáció elkészül-

hessen és akikre hálával gondolok: tanáraim, társszerzőim, munkatársaim, barátaim.

Most elsősorban Feleségemnek és Lányaimnak mondok köszönetet: öröm egy ennyire jó

csapatban játszani. Köszönöm Szüleimnek, hogy felébresztették bennem a szellemi dolgok

iránti érdeklődést és mindig segı́tettek tanulmányaimban. Köszönöm Keresztanyámnak,

Nővéremnek és Családjának támogatását, Vancsó Imréné tanárnőnek pedig azt, hogy meg-

szerettette velem a matematikát.

Itt köszönök el az eddig kitartó kedves olvasóktól.
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