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Abstract

This thesis deals with the development of semi-layerwise models for the mechanical anal-
ysis of delaminated composite plates. The first-, second- and third-order laminated plate
theories were applied to capture the mechanical fields in delaminated composite plates with
material orthotropy. The methods of two and four equivalent single layers were proposed and
a general third-order displacement field was utilized in each layer. The kinematic continuity
between the layers was established by the system of exact kinematic conditions. Apart from
the continuity of the in-plane displacements between the interfaces of the layers even the
continuity of shear strains, their first and second derivatives was imposed. A so-called shear
strain control condition was also introduced, which means that the shear strains at two or
more points located along the thickness were imposed to be the same. Using these conditions
a modified displacement field was developed by introducing the vector of primary parameters
and the displacement multiplicator matrix. Based on the principle of virtual work the invari-
ant form of the equilibrium equations were derived for the delaminated and undelaminated
regions of the plate. The system of partial differential equations were reduced to system of
ordinary differential equations through the Lévy plate formulation. The state-space model
of the delaminated and undelaminated region was developed, the continuity and boundary
conditions of the boundary value problem were also derived. The theorem of autocontinuity
was introduced, which is essentially related to the continuity conditions between the delam-
inated and undelaminated parts. Delaminated plates with different geometrical parameters
were solved as examples. The stress and displacement fields as well as the J-integral were
determined in the examples and compared to results by 3D finite element calculations. The
results indicate that the proposed semi-layerwise technique is very useful, moreover, the best
solution can be obtained by the second-order plate theory for the problems investigated in
this thesis. Moreover, the second-order theory can be the basis for the development of a
plate/shell finite element.
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1
Introduction

1.1 Application of laminated composite materials in engi-
neering structures

Composites are heterogeneous materials, wherein the high stiffness is provided by the com-
bination of fibres and the matrix material. In many applications the low weight is very
important beside the high stiffness and strength. Typical examples are shown in Figures
1.1 and 1.2 discussed briefly in the sequel. The examples were searched and found by using
Google.

The first example in Figure 1.1 is the bicycle: the frame and even the wheel is made
mostly from carbon composites for professional cyclers. The construction in Figure 1.1a
enables some elastic deformation for the point of the saddle in contrast with constructions
made of metals. The second example is the racing car/bodywork construction (Figure 1.1b).
Formula one cars are constructed by the racing teams themselves by carbon-fibre and other
ultra-weight materials. Example 3 in Figure 1.1c is the airplane. The materials used in
the Boeing 747 are 50% composites, fiberglass and carbon sandwich materials. Pressure
vessels (Figure 1.1d) are manufactured from carbon and glass fiber composites by different
technologies. The most important advantage of composite materials over metals in this field
is the chemical resistance (Phillips (1989)). Figure 1.1 ends in the helicopters (Figure 1.1e),
where lightweight and whisper quiet ride provided by composite materials is very important.

The examples are continued in Figure 1.2 with boats (Figure 1.2a) that are made out of
many type of composites. Glass reinforced (polyester and vinylester) plastics have become
the most prevalent composites in boatbuilding providing resistance against aggressive marine
environment. Helmets (Figure 1.2b) are equally used in sports and military industry. Open
and full face helmets are typically manufactured from carbon composites. The excellent
shock resistance of composite materials should be highlighted again. Pole vault is one of
the most technical of athletic events (Figure 1.2c). The vaulting poles are made out of
combination of different materials. The most commonly used are carbon-fibre (CFRP) and
glass-fibre reinforced plastics (GFRP). The pole has a diameter of about 50 mm and it is
bent to a radius of curvature of about 1 m. The strength of the glass fiber composites is
about 2-3 GPa. The key feature in the vaulting pole is the absence of large flaws and the

1
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CHAPTER 1. INTRODUCTION

a. bicycles

c. airplanes

e. helicoptersd. pressure vessels

b. racing cars/bodywork

Figure 1.1: Application examples of composite materials in the engineering life - Part 1.

high toughness providing excellent resistance to fracture. In the field of submarines (Figure
1.2d) the benefits of composite materials - beside resistance against marine environment
- are weight reduction, acoustic transparency, damping, thermal insulation and the fact
that there is no magnetic signature which makes it very difficult to locate the submarine’s
position. The manufacturing technologies of wind turbine blades (Figure 1.2e) has evolved

2
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1.1. APPLICATION OF LAMINATED COMPOSITE MATERIALS IN
ENGINEERING STRUCTURES

a. boats

c. vaulter poles

e. wind turbines

g. carbon crossbows

f. fuel tanks

b. helmets

d. submarines

Figure 1.2: Application examples of composite materials in the engineering life - Part 2.

over the past twenty years. Lightweight construction is a keyword again in this field. The
last two examples are: fuel tanks (Figure 1.2f) and carbon crossbows (Figure 1.2g), wherein
the lightweight construction and accurate manufacturing is important again.

Beside the many advantages, composite materials are susceptible to various damage
modes such as fiber breakage, matrix failure, fiber pull-out (Adams et al. (2000); Phillips

3
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CHAPTER 1. INTRODUCTION

(1989)) and among others interlaminar fracture or delamination, which is the main object
of this thesis.

1.2 Delamination in composite structures

As it can be seen in Figures 1.1 and 1.2 the basic application area of composite ma-
terials is thin- and thick-walled structures, like beams, plates and shells. Delamina-
tion fracture in this kind of structures (Kiani et al. (2013); Marat-Mendes and de Freitas
(2013); Zhou et al. (2013)) can take place e.g. as the result of low velocity impact
(Burlayenko and Sadowski (2012); Christoforou et al. (2008); Ganapathy and Rao (1998);
Goodmiller and TerMaath (2014); Rizov et al. (2005); Wang et al. (2012); Zammit et al.
(2011)), manufacturing defects (Zhang and Fox (2007); Zhou et al. (2013)) and free edge
effect (Ahn et al. (2013); Sarvestani and Sarvestani (2012)). The resistance to delamina-
tion is characterized by experimental tests under different fracture modes. The main pa-
rameters of linear elastic fracture mechanics (LEFM) are the stress intensity factor (SIF)
(Anderson (2005); Cherepanov (1997); Hills et al. (1996)) and energy release rate (ERR)
(Adams et al. (2000); Anderson (2005)), respectively. The three basic fracture modes are
shown in Figure 1.3. The fracture tests are carried out on different type of delamination
specimens including mode-I (Hamed et al. (2006); Islam and Kapania (2011); Jumel et al.
(2011a); Kim et al. (2011); Peng et al. (2011); Romhany and Szebenyi (2012); Salem et al.
(2013); Sorensen et al. (2007)), mode-II (Argüelles et al. (2011); Arrese et al. (2010);
Budzik et al. (2013); Jumel et al. (2013); Kutnar et al. (2008); Mladensky and Rizov
(2013b); Rizov and Mladensky (2012)), mixed-mode I/II (Bennati et al. (2009, 2013a,b);
Fernández et al. (2013); Jumel et al. (2011b); Kenane et al. (2010); Nikbakht and Choupani
(2008); da Silva et al. (2011); Szekrényes (2007); Yoshihara and Satoh (2009)), mode-
III (Johnston et al. (2012); Marat-Mendes and Freitas (2009); Mehrabadi and Khosravan
(2013); de Morais and Pereira (2009); de Morais et al. (2011); de Moura et al. (2009);
Pereira et al. (2011); Rizov et al. (2006); Suemasu and Tanikado (2012); Szekrényes
(2009a)), mixed-mode I/III (Pereira and de Morais (2009); Szekrényes (2009b)) mixed-
mode II/III (Ho and Tay (2011); Kondo et al. (2011, 2010); Mehrabadi (2013); Miura et al.
(2012); Mladensky and Rizov (2013a); de Morais and Pereira (2008); Nikbakht et al.
(2010); Suemasu et al. (2010); Suemasu and Tanikado (2012); Szekrényes (2007);
Szekrényes (2012)) and mixed-mode I/II/III (Davidson and Sediles (2011); Davidson et al.
(2010); Szekrényes (2011)) tests, respectively. In the former works beam and plate speci-
mens were applied. While for beams the closed-form solutions for the ERRs are available,
for plates similar solutions exist only for some relatively simple systems including special or
in-plane loads (Lee and Tu (1993); Saeedi et al. (2012a,b)).

The plate theories of laminated materials are originated to the classical theories shown in
Figure 1.4, which are based on an assumed displacement field. The displacement vector field

is: u =
(
u v w

)T
. In the sequel small displacements and rotations are assumed. The

simplest plate theory is the classical laminated plate theory (CLPT) (Kollár and Springer
(2003); Kumar and Lal (2012); Reddy (2004)), which is based on the Kirchhoff hypothesis:

u(x, y, z) = u0(x, y)− z
∂w

∂x
, v(x, y, z) = v0(x, y)− z

∂w

∂y
, w(x, y) = w0(x, y), (1.1)

where there are three independent parameters: u0, v0 are the membrane displacements
and w is the transverse deflection, moreover z is the thickness coordinate. The cross sec-
tion rotations are approximated by the derivatives of the deflection. The first-order shear
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1.2. DELAMINATION IN COMPOSITE STRUCTURES
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Figure 1.3: Basic fracture modes in linear elastic fracture mechanics.

deformable plate theory (FSDT or Reissner-Mindlin theory) (Ovesy et al. (2015); Reddy
(2004); Thai and Choi (2013)) assumes independent rotations (θy and θx) about the x and
y axes:

u(x, y, z) = u0(x, y)+θ(x)(x, y)z, v(x, y, z) = v0(x, y)+θ(y)(x, y)z, w(x, y, z) = w0(x, y).

CLPT
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Figure 1.4: The deformation of a material line of a laminated plate on the x − z plane in
accordance with the different plate theories.
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CHAPTER 1. INTRODUCTION

(1.2)

The higher-order plate theories can be obtained by the generalization of the FSDT displace-
ment field even in the thickness direction:

u(x, y, z) = u0(x, y) + θ(x)(x, y)z + φ(x)(x, y)z
2 + λ(x)(x, y)z

3 + . . . ,

v(x, y, z) = v0(x, y) + θ(y)(x, y)z + φ(y)(x, y)z
2 + λ(y)(x, y)z

3 + . . . ,

w(x, y, z) = w0(x, y) + θ(z)(x, y)z + φ(z)(x, y)z
2 + λ(z)(x, y)z

3 + . . . ,

(1.3)

where θ(m) means the angle of rotation (or first-order term), φ(m) is the second-order, λ(m)

(m = x, y, z) is the third-order displacement term. Moreover, the second-order shear de-
formable plate theory (SSDT) (Izadi and Tahani (2010);Szekrényes (2013b, 2015)) is ob-
tained if we consider the terms in the displacement field upto z2, a general third-order
plate theory (TSDT) means that each component is approximated by a cubic function
(Panda and Singh (2011); Singh and Panda (2014);Szekrényes (2014d)). If even the normal
deformation is taken into account then the approach means a shear and normal deformable
theory (Sahoo et al. (2016)). Among these approaches the Reddy third-order shear de-
formable theory should be mentioned (Reddy (2004)). This theory satisfies the dynamic
boundary condition at the top and bottom plate surfaces (traction-free surfaces). The orig-
inal idea is related to the name of Levinson (1980), who applied the concept to isotropic
materials. Later, Reddy extended this theory to laminated composites. The displacement
field of Reddy TSDT takes the form of:

u(x, y, z) = u0(x, y) + θ(x)(x, y)z −
4

3t2

(
θ(x) +

∂w0

∂x

)
z3,

v(x, y, z) = v0(x, y) + θ(y)(x, y)z −
4

3t2

(
θ(y) +

∂w0

∂y

)
z3,

w(x, y) = w0(x, y),

(1.4)

where t is the plate thickness and it is conspicuous that the second-order terms are missing.
These are the so-called equivalent single-layer theories (ESL), in which a heterogeneous

laminated plate is treated as a statically equivalent single layer having a complex constitutive
behavior Reddy (2004). Within an ESL the displacement field is approximated by a given
set of functions. An important aspect of these approaches is that if the normal deformability
is not taken into account, then plane stress condition is assumed, therefore the transverse
normal stress σz does not appear in the equations. The literature also offers the 3D elas-
ticity solution and the layerwise or multilayer approaches (Batista (2012); Ferreira et al.
(2011); Reddy (2004); Saeedi et al. (2012a,b)) (3D solutions), which can further improve
the accuracy of the solution. In the book of Reddy (2004) and Kollár and Springer (2003)
the application of the ESL theories to perfect plates (no imperfections and material defects)
is well-documented and many examples are presented. It is important to note that Reddy
(2004) concluded that the contribution of the higher-order theories to the solution of the
plate bending problems compared to the CLPT and FSDT is not meaningful, however these
are computationally significantly more expensive and sometimes it is absolutely sufficient to
apply the CLPT or FSDT.

This paper puts emphasis essentially on the application of plate theories in fracture
mechanics under mixed-mode II/III condition. In this respect the work by Davidson et al.
(2000) is noteworthy, wherein the ERRs in delaminated plates were calculated by using
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1.3. MAIN AIMS AND ANALYSIS METHODS

Mindlin-type plate finite elements (FSDT). The results were compared to 3D FE calculations,
but the agreement was not satisfactory in all cases. One of the reasons for that could be the
lack of higher-order plate finite elements in the commercial FE packages. A similar work
was published by (Sankar and Sonik (1995)), as well. Some late works investigated the same
problem (Bruno et al. (2003, 2005)) with the aid of interface and contact elements providing
accurate results, however, the formulation was quite complicated and difficult to implement
in commercial FE packages. Other formulations are available in the field, however, each
is based on the FSDT and the virtual crack closure concept (Qing et al. (2011); Zou et al.
(2001)).

1.3 Main aims and analysis methods

In delaminated plates and shells the presence of the delamination tips means a perturbation
in the mechanical fields and a more accurate description could be necessary for a fracture
mechanical analysis than those provided by CLPT and FSDT. The main aim of this thesis
is to solve the most essential plate bending problems in that case when the plate contains
a through-width delamination using higher-order plate theories. To the best of the author’s
knowledge these examples are not yet documented in the literature. A successful assessment
of plate theories can be the basis for the development of plate and shell finite elements for
the modeling of delaminations.

This thesis is organized as follows. In Chapter 2 the basic equations of laminated third-
order plates is presented. This chapter is based on the system of exact kinematic conditions.
A modified third-order displacement field and the displacement multiplicator matrix is de-
veloped and the principle of virtual work is utilized to derive the equilibrium equations of
delaminated plates. The formulation is valid for laminated composite plates made out of any
materials (e.g. polymer matrix composite) that behave as linear elastic material. Chapter
3 describes the method of 2ESLs and the general equations are derived for FSDT, SSDT
and Reddy TSDT. It has to be mentioned that the CLPT was found to be inappropriate to
capture the problems discussed in this thesis with an acceptable accuracy (Szekrényes (2012,
2013a, 2014a)). An important part of Chapter 3 is the introduction of the equivalent stress
resultants. Chapter 4 contains the details of the method of 4ESLs, wherein four subplates
are applied over the thickness of the plate. In this chapter the FSDT, SSDT and TSDT
equations are given. In Chapter 5 two examples are solved by using the Lévy plate formula-
tion. The state-space model of the plate system is derived separately for the undelaminated
and delaminated regions, respectively. At the same time the generalized continuity condi-
tions are given by parameter sets, even the boundary conditions are described for simply
supported, built-in and free edges. Chapter 6 presents the results for the displacement and
stress fields and a comparison is made to 3D FE results. In Chapter 7 the 3D J-integral
is applied using the higher-order plate theories and analytical expressions are developed for
the calculation of the mode-II and mode-III energy release rates. In the same chapter the
distribution of the J-integrals along the delamination front of delaminated composite plates
is presented and compared to the result of the 3D FE analysis. The methods of 2ESLs and
4ESLs are also compared to each other and the ranking of the different theories is made.
Chapter 8 summarizes the main results and presents the novel scientific results in the form
of theses. Finally, the possible application areas of the results are briefly given.

7

dc_1254_16

Powered by TCPDF (www.tcpdf.org)



2
The basic equations of delaminated composite

plates

top plate
top plate

bottom platebottom plate

top plate

bottom plate

Figure 2.1: Plate elements with orthotropic plies and the position of the delamination over
the plate thickness, cases I, II, III and IV.

In this chapter the basic equations of delaminated plates are presented. The formulation
is based on the semi-layerwise modeling technique. The concept is shown in Figure 2.1
indicating plate elements with an interfacial delamination. The delamination divides the
plate into a top and a bottom subplate. The top and the bottom subplates are further
divided into equivalent single layers. In Figure 2.1 the method of 4ESLs is presented, i.e.
the top and bottom plates are captured by two ESLs (altogether 4ESLs are applied).
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Definition:semi-layerwise plate model. If a laminated plate with Nl number of layers is
modeled by NESL number of equivalent single layers and NESL < Nl then the model is called
semi-layerwise plate model. In this case the stiffness parameters and matrices of each ESL
has to be determined with respect to the local reference planes of the ESLs. The interface
planes between the neighboring ESLs are the perturbation planes. If NESL = Nl then the
model is a standard layerwise model.

Figure 2.2: Cross sections and deformation of the top and bottom plate elements of a
delaminated plate in the X-Z plane (a). Distribution of the transverse shear strains by
FSDT, SSDT and TSDT (b).

Figure 2.2 shows the section of the transition between the delaminated and undelaminated
regions of the layered plate element in the X −Z plane, while in Figure 2.3 the Y −Z plane
is shown. The two coordinate systems are to show the displacement parameters in the
undelaminated and delaminated parts. The elements contain an interfacial delamination
(delaminated portion) parallel to the Y axis, i.e. it goes across the entire plate width (refer
to Figure 2.1). The general case involves k number of ESLs applied through the whole
thickness. The transverse splitting means that the undelaminated and delaminated regions
are captured by different mathematical models. In accordance with the literature review
the ESLs can be captured by different plate theories. In this chapter we apply the FSDT,
SSDT and TSDT theories. The general third-order Taylor series expansion of the in-plane
displacement functions results in the following displacement field (Panda and Singh (2009,
2011); Singh and Panda (2014); Talha and Singh (2010)):

u(i)(x, y, z
(i)) = u0(x, y) + u0i(x, y) + θ(x)i(x, y)z

(i) + φ(x)i(x, y)[z
(i)]2 + λ(x)i(x, y)[z

(i)]3,

v(i)(x, y, z
(i)) = v0(x, y) + v0i(x, y) + θ(y)i(x, y)z

(i) + φ(y)i(x, y)[z
(i)]2 + λ(y)i(x, y)[z

(i)]3,

w(i)(x, y) = w(x, y),

(2.1)
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CHAPTER 2. THE BASIC EQUATIONS OF DELAMINATED COMPOSITE
PLATES

Figure 2.3: Cross sections and deformation of the top and bottom plate elements of a
delaminated plate in the Y -Z plane (a). Distribution of the transverse shear strains by
FSDT, SSDT and TSDT (b).

where i is the index of the actual ESL, z(i) is the local through thickness coordinate of the ith

ESL and always coincides with the local midplane, u0 and v0 are the global, u0i and v0i are the
local membrane displacements, moreover, θ means the rotations of the cross sections about
the X and Y axes (refer to Figure 2.1), φ denotes the second-order, λ represents the third-
order terms in the displacement functions. Finally w(i) is the transverse deflection function.
Eq.(2.1) will be applied equally to the undelaminated and delaminated portions and the
continuity between these parts will be established. In this thesis only shear deformable plate
models are developed, in other words the deflection is inextensible in the through-thickness
direction involving that w(i)(x, y) = w(x, y). The displacement functions of FSDT and SSDT
can be obtained by reducing Eq.(2.1) and taking φ(x)i = φ(y)i = 0 and λ(x)i = λ(y)i = 0,
respectively (Izadi and Tahani (2010); Petrolito (2014)). The displacement field given by
Eq.(2.1) is associated to each ESL.

2.1 The system of exact kinematic conditions

The displacement vector field for the ith ESL is u(i) =
(
u(i) v(i) w(i)

)T
. The kinematic

continuity between the displacement fields of adjacent ESLs is established by the system of
exact kinematic conditions (SEKC), which was originally developed by Szekrényes (2013c,
2014c, 2015, 2016a,b). The first set of conditions formulates the continuity of the in-plane
and transverse displacements between the neighboring plies as (refer to Figures 2.2 and 2.3):

(u(i), v(i), w(i))
∣∣
z(i)=ti/2

= (u(i+1), v(i+1), w(i+1))
∣∣
z(i+1)=−ti+1/2

, (2.2)

where ti is the thickness of the specified layer. It has to be noted that the result of Eq.(2.2)
was applied by Davidson et al. (2000) and Zou et al. (2001), however their equations are
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2.1. THE SYSTEM OF EXACT KINEMATIC CONDITIONS

valid only for the FSDT. On the contrary, Eq.(2.2) is more general and applicable to any
plate theory. Moreover, there are large number of works referred to in the book of Reddy
(2004) applying displacement continuity between the layers. Those works apply full layerwise
models to perfect plates, in contrast with this thesis, which deals with the semi-layerwise
analysis of delaminated plates. The second set of conditions defines the global membrane
displacements (u0, v0) at the reference plane of the actual region. If the coordinate of the

global reference plane is z
(i)
R and is located in the ith layer, then the conditions become:

u(i)
∣∣
z(i)=z

(i)
R

− u0 = 0, v(i)
∣∣
z(i)=z

(i)
R

− v0 = 0. (2.3)

The two sets of conditions given by Eqs.(2.2)-(2.3) are sufficient to develop semi-layerwise
models using the FSDT. If the SSDT or TSDT is applied, then we can impose the shear
strain continuity at the interface (or perturbation) planes. In accordance with Figures 2.2b
and 2.3b these conditions are formulated as:

(γxz(i), γyz(i))
∣∣
z(i)=ti/2

= (γxz(i+1), γyz(i+1))
∣∣
z(i+1)=−ti+1/2

. (2.4)

It has to be mentioned that in general layerwise models assume continuous shear stresses
at the interfaces (Reddy (2004)). For the TSDT theory two more sets of conditions are
reasonable to introduce. The imposition of continuity of the first and second derivatives of
the shear strain (Szekrényes (2016b)) prevents the unwanted oscillations (and the too large
compliance) in the shear stress distributions (see Figures 2.2b and 2.3b):

(
∂γxz(i)
∂z(i)

,
∂γyz(i)
∂z(i)

)∣∣∣∣
z(i)=ti/2

=

(
∂γxz(i+1)

∂z(i+1)
,
∂γyz(i+1)

∂z(i+1)

)∣∣∣∣
z(i+1)=−ti+1/2

, (2.5)

and:

(
∂2γxz(i)
∂(z(i))2

,
∂2γyz(i)
∂(z(i))2

)∣∣∣∣
z(i)=ti/2

=

(
∂2γxz(i+1)

∂(z(i+1))2
,
∂2γyz(i+1)

∂(z(i+1))2

)∣∣∣∣
z(i+1)=−ti+1/2

. (2.6)

An important addition to Eqs.(2.2)-(2.6) is the so-called shear strain control condition
(SSCC, Szekrényes (2016a)). The set of conditions applied is:

(γxz(l), γyz(l))
∣∣
z(l)=−tl/2

= (γxz(m), γyz(m))
∣∣
z(m)=tm/2

, (2.7)

where l andm denote ESLs at the boundaries, where the shear strains are equal to each other
and m > l always. In accordance with Reddy theory (Reddy (2004)) the top and bottom
surfaces of the plate are traction-free (zero shear stresses). If the system is modeled by
4ESLs the traction-free conditions leads to overconstraining (or stiffening) of the model and
wrong results are obtained. Therefore, instead of imposing zero stresses at the free surfaces
we impose the identical shear strain values at the boundary planes by Eq.(2.7). Essentially,
the SSCC is applicable only if at least 4ELSs and the SDDT or TSDT are applied.

Based on the linear elasticity and assuming transversely inextensible deflection in
each ESL, the SEKC formulates conditions using the in-plane displacement functions:
∂n(u(i),v(i))

∂(z(i))n
, n = 0, 1, 2, 3, where n = 0 means condition against in-plane displacement, n = 1

means condition for shear strain, if n = 2 and n = 3 then a condition for the shear strain’s
first and second derivative is formulated. The SEKC conditions can be applied equally to
the undelaminated and delaminated portions of the plate. Moreover these conditions can be
implemented into any plate theory.
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CHAPTER 2. THE BASIC EQUATIONS OF DELAMINATED COMPOSITE
PLATES

2.2 Kinematically admissible displacement fields

In Eq.(2.1) the displacement functions are modified in order to satisfy Eqs.(2.2)-(2.7). In the
general sense, by applying the FSDT, SSDT and TSDT theories the in-pane displacement
functions can be written as:

u(i) = u0 +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = 1..k,

v(i) = v0 +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = 1..k,

(2.8)

where Kij is the displacement multiplicator matrix and related exclusively to the geometry
(ESL thicknesses), i refers to the ESL number, the summation index j defines the component
in ψ, which is the vector of primary parameters (see later), finally w(i)(x, y) = w(x, y) for each
ESLs, i.e. the transverse normal of each ESL is inextensible (Reddy (2004)). Eq.(2.8) can be
obtained by parameter elimination. It is important to note that the size and the elements of
ψ depend on the applied theory, the number of ESLs and the number of conditions applied.

Definition: Parameter elimination, primary and secondary parameters. Certain param-
eters of the in-plane displacement functions can be eliminated using the SEKC requirements.
The remaining (or primary) parameters are untouched, the parameters to be eliminated are
the secondary parameters. The local membrane displacements are typically secondary pa-
rameters, the global membrane displacements are primary parameters, the rotations, second-
and third-order parameters are mixed (either primary or secondary) parameters.

In the subsequent sections the undelaminated and delaminated regions are discussed
separately. First, the TSDT is considered and the SSDT and FSDT field equations are
obtained by the reduction of TSDT model.

2.3 Virtual work principle and constitutive equations

The strain field in an elastic body in terms of the displacement field is obtained by the
following equation (assuming small displacements and strains) (Chou and Pagano (1967)):

εpq =
1

2
(up,q + uq,p), p, q = 1, 2 or 3, (2.9)

where εpq is the strain tensor, up is the displacement vector field and the comma means
differentiation with respect to the index right after. By assuming plane stress state (σz(i) = 0)
in the plate and using Eqs.(2.1)-(2.9) the vector of in-plane strains becomes (Reddy (2004)):

⎛
⎝ εx

εy
γxy

⎞
⎠

(i)

=

⎛
⎜⎝ ε

(0)
x

ε
(0)
y

γ
(0)
xy

⎞
⎟⎠

(i)

+z(i)·

⎛
⎜⎝ ε

(1)
x

ε
(1)
y

γ
(1)
xy

⎞
⎟⎠

(i)

+
[
z(i)
]2·
⎛
⎜⎝ ε

(2)
x

ε
(2)
y

γ
(2)
xy

⎞
⎟⎠

(i)

+
[
z(i)

]3·
⎛
⎜⎝ ε

(3)
x

ε
(3)
y

γ
(3)
xy

⎞
⎟⎠

(i)

, (2.10)

or {ε}(i) =
{
ε(0)

}
(i)

+ z(i) ·
{
ε(1)

}
(i)

+
[
z(i)

]2 · {ε(2)}
(i)

+
[
z(i)

]3 · {ε(3)}
(i)

which is third-order

in terms of the through-thickness coordinate, z(i). The vector of transverse shear strains is:

(
γxz
γyz

)
(i)

=

(
γ
(0)
xz

γ
(0)
yz

)
(i)

+ z(i) ·
(
γ
(1)
xz

γ
(1)
yz

)
(i)

+
[
z(i)

]2 ·
(
γ
(2)
xz

γ
(2)
yz

)
(i)

, (2.11)
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2.3. VIRTUAL WORK PRINCIPLE AND CONSTITUTIVE EQUATIONS

or in a compact form: {γ}(i) =
{
γ(0)

}
(i)

+ z(i) ·
{
γ(1)

}
(i)

+
[
z(i)

]2 · {γ(2)}
(i)
, which is second-

order in terms of z(i). To derive the governing equations of the plate system we apply the
virtual work principle (Reddy (2004)):

T1∫
T0

(δU − δWF )dt = 0, δU =
∑
i

δU(i), δWF =
∑
i

δWF (i), (2.12)

where U is the strain energy, WF is the work of external forces and t is the time (L = U−WF
is the Lagrange function). The virtual strain energy for the ith ESL of the plate system
including the delaminated and undelaminated regions is (Reddy (2004)):

δU(i) =

∫
V

σ(i) : δε(i)dV =

∫
Ω0

⎧⎪⎨
⎪⎩

ti/2∫
−ti/2

(
σx(i)δεx(i) + σy(i)δεy(i) + τxy(i)δγxy(i) + τxz(i)δγxz(i) + τyz(i)δγyz(i)

)
dz(i)

⎫⎪⎬
⎪⎭dxdy,
(2.13)

where σ(i) is the stress tensor, δε(i) is the virtual strain tensor of the ith ESL, Ω0 denotes the
surface domain of the plate in the global X − Y (or x− y) plane. The double dot product
means: σ(i) : δε(i) = σij(i)δεij(i). The virtual work of the external forces for a single ESL is:

δWF (i) =

∫
Ω0

(
qb(i)(x, y)δw(x, y,−ti/2) + qt(i)(x, y)δw(x, y, ti/2)

)
dxdy

+

∫
Γσ(i)

⎧⎪⎨
⎪⎩

ti/2∫
−ti/2

(
σ̄n(i)δun(i) + τ̄ns(i)δus(i) + τ̄nz(i)δw(i)

)
dz(i)

⎫⎪⎬
⎪⎭ds,

(2.14)

where qb and qt are the surface loads on the top and bottom plane of the ith ESL. The second
term in the expression above is related to the virtual work of the imposed stress components
(σ̄n(i), τ̄ns(i) and τ̄nz(i)) acting on the curved edge boundary denoted by Γσ(i), moreover s
and n are the tangential and normal directions (Reddy (2004)). Taking back the strain field
(Eqs.(2.10)-(2.11)) into Eq.(2.13) we obtain:

δU(i) =

∫
Ω0

⎧⎪⎨
⎪⎩

ti/2∫
−ti/2

[
σx(i)

(
δε

(0)
x(i) + z(i)δε

(1)
x(i) + (z(i))2δε

(2)
x(i) + (z(i))3δε

(3)
x(i)

)
+σy(i)

(
δε

(0)
y(i) + z(i)δε

(1)
y(i) + (z(i))2δε

(2)
y(i) + (z(i))3δε

(3)
y(i)

)
+τxy(i)

(
δγ

(0)
xy(i) + z(i)δγ

(1)
xy(i) + (z(i))2δγ

(2)
xy(i) + (z(i))3δγ

(3)
xy(i)

)
+τxz(i)

(
δγ

(0)
xz(i) + z(i)δγ

(1)
xz(i) + (z(i))2δγ

(2)
xz(i)

)
+τyz(i)

(
δγ

(0)
yz(i) + z(i)δγ

(1)
yz(i) + (z(i))2δγ

(2)
yz(i)

)]
dz(i)

}
dxdy.

(2.15)
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CHAPTER 2. THE BASIC EQUATIONS OF DELAMINATED COMPOSITE
PLATES

The third-order displacement field component in Eq.(2.8) can be written as: up(i) = u
(0)
p(i) +

z(i)u
(1)
p(i) + [z(i)]2u

(2)
p(i) + [z(i)]3u

(3)
p(i), where p = s or n. Taking its virtual form, the virtual work

of external forces becomes:

δWF (i) =

∫
Ω0

(
qb(i)(x, y)δw(x, y,−ti/2) + qt(i)(x, y)δw(x, y, ti/2)

)
dxdy

+

∫
Γσ(i)

⎧⎪⎨
⎪⎩

ti/2∫
−ti/2

(
σn(i)

[
δu

(0)
n(i) + z(i)δu

(1)
n(i) + (z(i))2δu

(2)
n(i) + (z(i))3δu

(3)
n(i)

]

+τns(i)

[
δu

(0)
s(i) + z(i)δu

(1)
s(i) + (z(i))2δu

(2)
s(i) + (z(i))3δu

(3)
s(i)

]
+ τnz(i)δw(i)

)
dz(i)

}
ds.

(2.16)

To derive δU(i) and δWF (i) in terms of the stress resultants and the virtual displacement
parameters of the plate system we use the constitutive equation. The constitutive equation

for orthotropic materials under plane stress state is σ
(m)
(i) = C

(m)

(i) ε
(m) (Kollár and Springer

(2003); Reddy (2004)), which expands to:

⎛
⎜⎜⎜⎜⎝

σx
σy
τyz
τxz
τxy

⎞
⎟⎟⎟⎟⎠

(m)

(i)

=

⎛
⎜⎜⎜⎜⎝

C11 C12 0 0 0
C12 C22 0 0 0
0 0 C44 0 0
0 0 0 C55 0
0 0 0 0 C66

⎞
⎟⎟⎟⎟⎠

(m)

(i)

⎛
⎜⎜⎜⎜⎝

εx
εy
γyz
γxz
γxy

⎞
⎟⎟⎟⎟⎠

(i)

, (2.17)

where C
(m)

(i) is the stiffness matrix of the mth layer within the ith ESL. By using the con-
stitutive equations the stress resultants are calculated by integrating the stresses over the
thicknesses of each ESL:

⎛
⎜⎜⎝

Nαβ

Mαβ

Lαβ

Pαβ

⎞
⎟⎟⎠

(i)

=

ti/2∫
−ti/2

σαβ

⎛
⎜⎜⎝

1
z
z2

z3

⎞
⎟⎟⎠

(i)

dz(i),

⎛
⎝ Qα

Rα

Sα

⎞
⎠

(i)

=

ti/2∫
−ti/2

ταz

⎛
⎝ 1

z
z2

⎞
⎠

(i)

dz(i), (2.18)

where α and β takes x or y. The relationship between the strain field and the stress resultants
can be determined by taking back Eqs.(2.17) and (2.10)-(2.11) resulting in the following:
(Szekrényes (2014c)):

⎛
⎜⎜⎝

{ N}
{ M}
{ L}
{ P}

⎞
⎟⎟⎠

(i)

=

⎡
⎢⎢⎣

[A] [B] [D] [E]
[B] [D] [E] [F ]
[D] [E] [F ] [G]
[E] [F ] [G] [H]

⎤
⎥⎥⎦
(i)

⎛
⎜⎜⎝

{ ε(0)}
{ ε(1)}
{ ε(2)}
{ ε(3)}

⎞
⎟⎟⎠

(i)

, (2.19)

⎛
⎝ {Q}

{R}
{S}

⎞
⎠

(i)

=

⎡
⎣ [A] [B] [D]

[B] [D] [E]
[D] [E] [F ]

⎤
⎦
(i)

⎛
⎝ { γ(0)}

{ γ(1)}
{ γ(2)}

⎞
⎠

(i)

, (2.20)
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2.3. VIRTUAL WORK PRINCIPLE AND CONSTITUTIVE EQUATIONS

where: { N} T
(i) = { Nx Ny Nxy } (i) is the vector of in-plane plate forces,

{ M} T
(i) = { Mx My Mxy } (i) is the vector of bending and twisting moments,

{ Q} T
(i) = { Qx Qy } (i) is the vector of transverse shear forces, and finally { L} T

(i) =

{ Lx Ly Lxy } (i) , { P}
T
(i) = { Px Py Pxy } (i) and { R} T

(i) = { Rx Ry } (i), { S}
T
(i) =

{ Sx Sy } (i) are the vectors of higher-order stress resultants. In Eqs.(2.19)-(2.20) Apq is
the extensional, Bpq is coupling, Dpq is the bending, Epq, Fpq, Gpq and Hpq are higher-order
stiffnesses defined as (Szekrényes (2014c)):

(Apq, Bpq,Dpq, Epq, Fpq, Gpq,Hpq)(i) =

Nl(i)∑
m=1

z
(i)
m+1∫

z
(i)
m

C
(m)
pq (1, z, z2, z3, z4, z5, z6)(i)dz(i), (2.21)

where Nl(i) is the number of layers in the ith ESL. The stiffnesses above have to be calculated
with respect to the local reference planes (midplanes) for each ESL. This leads to:

Apq(i) =
∑

m=1..Nl(i)

C̄
(m)
pq (z

(i)
m+1 − z

(i)
m ), Bpq(i) =

1
2

∑
m=1..Nl(i)

C̄
(m)
pq ((z

(i)
m+1)

2 − (z
(i)
m )2),

Dpq(i) =
1
3

∑
m=1..Nl(i)

C̄
(m)
pq ((z

(i)
m+1)

3 − (z
(i)
m )3), Epq(i) =

1
4

∑
m=1..Nl(i)

C̄
(m)
pq ((z

(i)
m+1)

4 − (z
(i)
m )4),

Fpq(i) =
1
5

∑
m=1..Nl(i)

C̄
(m)
pq ((z

(i)
m+1)

5 − (z
(i)
m )5), Gpq(i) =

1
6

∑
m=1..Nl(i)

C̄
(m)
pq ((z

(i)
m+1)

6 − (z
(i)
m )6),

Hpq(i) =
1
7

∑
m=1..Nl(i)

C̄
(m)
pq ((z

(i)
m+1)

7 − (z
(i)
m )7),

(2.22)

where z
(i)
m+1 and z

(i)
m are the local top and bottom coordinates of the mth layer in the ith ESL.

By using the stress resultants by Eqs.(2.19)-(2.20) and the virtual strains the virtual strain
energy of the ith ESL becomes:

δU(i) =

∫
Ω0

{
Nx(i)δε

(0)
x(i) +Mx(i)δε

(1)
x(i) + Lx(i)δε

(2)
x(i) + Px(i)δε

(3)
x(i)

+Ny(i)δε
(0)
y(i) +My(i)δε

(1)
y(i) + Ly(i)δε

(2)
y(i) + Py(i)δε

(3)
y(i)

+Nxy(i)δγ
(0)
xy(i) +Mxy(i)δγ

(1)
xy(i) + Lxy(i)δγ

(2)
xy(i) + Lxy(i)δγ

(3)
xy(i)

+Qx(i)δγ
(0)
xz(i) +Rx(i)δγ

(1)
xz(i) + Sx(i)δγ

(2)
xz(i)

+Qy(i)δγ
(0)
yz(i) +Ry(i)δγ

(1)
yz(i) + Sy(i)δγ

(2)
yz(i)

}
dxdy,

(2.23)

moreover, the work done on the ith ESL is:

δWF (i) =

∫
Ω0

(
qb(i)(x, y)δw(x, y,−ti/2) + qt(i)(x, y)δw(x, y, ti/2)

)
dxdy

+

∫
Γσ(i)

{
N̄n(i)δu

(0)
n(i) + M̄n(i)δu

(1)
n(i) + L̄n(i)δu

(2)
n(i) + P̄n(i)δu

(3)
n(i)

+ N̄ns(i)δu
(0)
s(i) + M̄ns(i)δu

(1)
s(i) + L̄ns(i)δu

(2)
s(i) + P̄ns(i)δu

(3)
s(i) + Q̄n(i)δw(i)

}
ds,

(2.24)

where the overline means imposed loads at the curved boundary, viz. N̄n(i) and N̄ns(i) are
imposed forces, Q̄n(i) is the imposed shear force, M̄n(i) and M̄ns(i) are imposed moments, L̄n(i),
L̄ns(i), P̄n(i) and P̄ns(i) are imposed higher-order forces and moments. By using Eq.(2.8) we
arrive the following expression:
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δWF (i) =

∫
Ω0

(
qb(i)(x, y)δw(x, y,−ti/2) + qt(i)(x, y)δw(x, y, ti/2)

)
dxdy

+

∫
Γσ(i)

{
N̄n(i)δu

(0)
n(i) + (N̄n(i)K

(0)
ij + M̄n(i)K

(1)
ij + L̄n(i)K

(2)
ij + P̄n(i)K

(3)
ij )δψ(n)j

+ (N̄ns(i)K
(0)
ij + M̄ns(i)K

(1)
ij + L̄ns(i)K

(2)
ij + P̄ns(i)K

(3)
ij )δψ(s)j + Q̄n(i)δw(i)

}
ds,

(2.25)

where δψ(n)j and δψ(s)j are the components of the virtual vector of primary parameters
in the coordinate system of the curved boundary of the plate. To determine the virtual
strain components in Eq.(2.23) in terms of the virtual displacement parameters, we apply

the virtual form of Eq.(2.9) resulting in δε
(0)
x(i) = ∂(δu0+K

(0)
ij δψ(x)j)/∂x, ...etc., for each ESL.

To transform Eq.(2.23) we apply the chain rule and the divergence theorem (Reddy (2004)):

Nx
∂(δu0)

∂x
=
∂(Nxδu0)

∂x
− ∂Nx

∂x
δu0...,

∫
Ω

∂(Nxδu0)

∂x
dΩ =

∮
Γ
nx(Nxδu0)ds..., etc. (2.26)

Thus, we have:

δU(i) =

∫
Ω0

{
−(Nx(i),x +Nxy(i),y)δu0 − (Nxy(i),x +Ny(i),y)δv0

−(Nx(i),x +Nxy(i),y)K
(0)
ij δψ(x)j − (Nxy(i),x +Ny(i),y)K

(0)
ij δψ(y)j

−(Mx(i),x +Mxy(i),y)K
(1)
ij δψ(x)j − (Mxy(i),x +My(i),y)K

(1)
ij δψ(y)j

−(Lx(i),x + Lxy(i),y)K
(2)
ij δψ(x)j − (Lxy(i),x + Ly(i),y)K

(2)
ij δψ(y)j

−(Px(i),x + Pxy(i),y)K
(3)
ij δψ(x)j − (Pxy(i),x + Py(i),y)K

(3)
ij δψ(y)j

+Qx(i)K
(1)
ij δψ(x)j −Qx(i),xδw +Rx(i)K

(2)
ij δψ(x)j + Sx(i)K

(3)
ij δψ(x)j

+Qy(i)K
(1)
ij δψ(y)j −Qy(i),yδw +Ry(i)K

(2)
ij δψ(y)j + Sy(i)K

(3)
ij δψ(y)j

}
dxdy

+

∫
Γσ

[
(Nx(i)nx(i) +Nxy(i)ny(i))δu0 + (Nxy(i)nx(i) +Ny(i)ny(i))δv0

+(Nx(i)nx(i) +Nxy(i)ny(i))K
(0)
ij δψ(x)j + (Nxy(i)nx(i) +Ny(i)ny(i))K

(0)
ij δψ(y)j

+(Mx(i)nx(i) +Mxy(i)ny(i))K
(1)
ij δψ(x)j + (Mxy(i)nx(i) +My(i)ny(i))K

(1)
ij δψ(y)j

+(Lx(i)nx(i) + Lxy(i)ny(i))K
(2)
ij δψ(x)j + (Lxy(i)nx(i) + Ly(i)ny(i))K

(2)
ij δψ(y)j

+(Px(i)nx(i) + Pxy(i)ny(i))K
(3)
ij δψ(x)j + (Pxy(i)nx(i) + Py(i)ny(i))K

(3)
ij δψ(y)j

+(Qx(i)nx(i) +Qy(i)ny(i))δw
]
ds,

(2.27)

where the comma means differentiation. The first term in Eq.(2.27) is the virtual strain
energy related to the volume domain of the ESL, the second term is an expression related
to the boundary. By utilizing the simple transformation equations below it is possible to
transform the boundary expression in Eq.(2.27) to the same form as that in Eq.(2.24):

u0 = nxu0n − nyu0s, v0 = nyu0n + nxu0s,

ψ(x)j = nxψ(n)j − nyψ(s)j , ψ(y)j = nyψ(n)j + nxψ(s)j ,
(2.28)

where u0n and u0s are the membrane displacements, ψ(n)j and ψ(s)j are the vectors of primary
parameters in the coordinate system of the curved edge of the plate. The equilibrium equa-
tions and the natural boundary conditions can be obtained by setting the coefficients of the
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2.4. EQUILIBRIUM EQUATIONS - INVARIANT FORM

virtual displacement parameters in the virtual work expression (Eq.(2.12)) using Eqs.(2.27)
and (2.24) on the domains Ω0 and Γσ (Reddy (2004)). The equilibrium equations are detailed
in the next section.

2.4 Equilibrium equations - Invariant form

To derive the equilibrium equations of the plate system in a compact and invariant form we
define the following vectors:

N
(x,xy)
i =

(
Nx Nxy

)T
(i)
, N

(xy,y)
i =

(
Nxy Ny

)T
(i)
,

M
(x,xy)
i =

(
Mx Mxy

)T
(i)
, M

(xy,y)
i =

(
Mxy My

)T
(i)
.

(2.29)

The vectors of higher-order stress resultants become:

L
(x,xy)
i =

(
Lx Lxy

)T
(i)
, L

(xy,y)
i =

(
Lxy Ly

)T
(i)
,

P
(x,xy)
i =

(
Px Pxy

)T
(i)
, P

(xy,y)
i =

(
Pxy Py

)T
(i)
.

(2.30)

Finally, the vectors of shear and higher-order forces become:

Qi =
(
Qx Qy

)T
(i)
, Ri =

(
Rx Ry

)T
(i)
, Si =

(
Sx Sy

)T
(i)
. (2.31)

In the sequel the equilibrium equations are derived separately for the undelaminated and
delaminated regions.

2.4.1 Undelaminated region

By setting the sum of coefficients for the virtual membrane displacements (δu0, δv0), primary
parameters (δψ(x)j , δψ(y)j) and the deflection (δw) in Eq.(2.12) (using Eqs.(2.27) and (2.25))
to zero leads to three sets of equations. The equilibrium of the in-plane forces involves the
equations above independently of the applied theory (FSDT, SSDT or TSDT):

δu0 :
k∑

i=1

∇ ·N(x,xy)
i = 0, δv0 :

k∑
i=1

∇ ·N(xy,x)
i = 0, (2.32)

where ∇ = ∂
∂x
i+ ∂

∂y
j is the Hamilton differential operator (Chou and Pagano (1967)) and k

is the total number of ESLs. In the general sense (using FSDT, SSDT or TSDT) the number
of primary parameters (ignoring the global membrane displacements) in the displacement
field is r, which is equal to the number of elements in ψ(p) and j = 1..r. By collecting the
coefficients of the virtual primary displacement parameters in Eq.(2.12) and equating the
result to zero we have the following equations:

δψ(x)j :

δψ(y)j :

} k∑
i=1

K
(0)
ij

(
∇ ·N(x,xy)

i

∇ ·N(xy,y)
i

)
+K

(1)
ij

(
∇ ·M(x,xy)

i

∇ ·M(xy,y)
i

)
+K

(2)
ij

(
∇ · L(x,xy)

i

∇ · L(xy,y)
i

)
+

K
(3)
ij

(
∇ ·P(x,xy)

i

∇ ·P(xy,y)
i

)
−K

(1)
ij

(
Qx(i)

Qy(i)

)
− 2K

(2)
ij

(
Rx(i)

Ry(i)

)
− 3K

(3)
ij

(
Sx(i)
Sy(i)

)
=

(
0
0

)
,
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(2.33)

where ψ(x)j and ψ(y)j denote the primary parameters. By collecting the coefficients of the
δw(x, y) plate deflection and setting their sum to zero in Eq.(2.12) leads to:

δw :
k∑

i=1

∇ · Q̂i + q = 0, (2.34)

where q is the the external surface load:

q =

k∑
i=1

(qb(i) + qt(i)), (2.35)

moreover Q̂ is the effective shear force in the case of Reddy’s third-order theory (see later)
and Q̂ = Q for the other theories. Eqs.(2.32)-(2.34) define the invariant form of the equi-
librium equations, because independently of the applied theory these equations have the
same form. Apparently, the differences among the equilibrium equations of FSDT, SSDT
and TSDT are the Kij displacement multiplicator matrix elements and the ψ(p) vector of
primary parameters.

2.4.2 Delaminated region

The delaminated region consists of a top and a bottom plate (refer to Figures 2.1, 2.2 and
2.3). Each subplate is modeled by further ESLs. The most essential difference between the
delaminated and undelaminated plate regions is that in the delaminated region the in-plane
displacements are not coupled at the delamination plane. Therefore, the global membrane
displacements u0, v0 are replaced by u0b, v0b for ESLs of the bottom plate, moreover by u0t,
v0t for the ESLs of the top plate in Eq.(2.8) in accordance with Figures 2.2 and 2.3:

u(i) = u0b +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = 1..h,

v(i) = v0b +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = 1..h,

(2.36)

u(i) = u0t +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = h + 1..k,

v(i) = v0t +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = h+ 1..k,

(2.37)

where h is the number of ESLs in the bottom plate and j is a summation index, furthermore
w(i)(x, y) = w(x, y). Thus, the equilibrium equations of in-plane forces take the form below:

δu0b :
h∑

i=1

∇ ·N(x,xy)
i = 0, δu0t :

k∑
i=h+1

∇ ·N(x,xy)
i = 0,

δv0b :
h∑

i=1

∇ ·N(xy,x)
i = 0, δv0t :

k∑
i=h+1

∇ ·N(xy,x)
i = 0.

(2.38)

The form of the other equilibrium equations are the same as those given by Eqs.(2.33)-(2.34).
Finally, it is time to denote that the fundamental solutions of LEFM are singular for

problems including cracks (Anderson (2005); Hills et al. (1996)). On the contrary, Eq.(2.8)
and Eqs.(2.36)-(2.37) do not contain any singular terms, thus the solutions in this work are
essentially nonsingular for all of the mechanical fields.
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3
The method of two equivalent single layers

FSDT
FSDT

discontinuous
shear strain

continuous
shear strain

SSDT
SSDT

Reddy TSDT

Reddy TSDT

zero shear strain

undelam. delam.

(1)

(1)
1

( )1x

( )2x

(1)

2

(2)

(2)
(2)

1

t /22

t /21

Figure 3.1: Cross sections and deformation of the top (ESL2) and bottom (ESL1) plate
elements of a delaminated plate in the Y -Z plane (a). Distribution of the transverse shear
strains by FSDT, SSDT and Reddy TSDT (b).

In the case of the method of 2ESLs the plate is divided into two parts by the plane of the
delamination. These parts are further divided into two halves along the delamination front
perpendicularly to the plane of the plate midsurface resulting in the undelaminated and
delaminated portions. This latter fact is represented by the transverse splitting in Figures
3.1. and 3.2 The SEKC is applied to the problem in accordance with Figures 3.1 and
3.2. Using the SEKC defined by Eqs.(2.2)-(2.6) we can eliminate certain parameters from
Eq.(2.1), which involves 18 parameters altogether plus the deflections (w(i)(x, y) = w(x, y)).
This step is called parameter elimination (defined in Section 2.2). The parameters to be
eliminated are chosen in order to obtain a system of equations, which consists of linearly
independent equations. In the subsequent sections the undelaminated and delaminated
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FSDT

discontinuous
shear strain

SSDT Reddy TSDT

zero shear strain

undelam. delam.FSDT

SSDT

Reddy TSDT

continuous
shear strain

(1)

(1)
(1)

(1)

2

1

( )2y

( )1y

(2)
(2)

(2)

t /22

t /21

Figure 3.2: Cross sections and deformation of the top (ESL2) and bottom (ESL1) plate
elements of a delaminated plate in the Y -Z plane (a). Distribution of the transverse shear
strains by FSDT, SSDT and Reddy TSDT (b).

regions are discussed separately. In the first step, the Reddy TSDT displacement field is
presented (Szekrényes (2014c)), then in the subsequent steps the SSDT (Szekrényes (2015))
and FSDT (Szekrényes (2013c)) fields are obtained by the reduction of the Reddy TSDT
equations.

3.1 Undelaminated region

The transition zone around the delamination front in the X − Z plane of the composite
plate is shown in Figure 3.1a. The through-thickness distribution of the in-plane displace-
ment functions is piecewise cubic for the Reddy TSDT, piecewise quadratic in the case of
the SSDT and piecewise linear for FSDT. The corresponding shear strain distributions are
shown in Figure 3.1b: it is piecewise quadratic by Reddy TSDT, piecewise linear by SSDT
and piecewise constant by FSDT. In Figure 3.2 the Y − Z plane is shown. In accordance
with Figures 3.1a and 3.2a, the following conditions are formulated between the two ESLs
(continuity of in-plane displacement at the interface planes):

(u(1), v(1), w(1))
∣∣
z(1)=t1/2

= (u(2), v(2), w(2))
∣∣
z(2)=−t2/2

. (3.1)

The reference plane belongs to the first ESL, therefore, the following condition is imposed:

(u(1), v(1))
∣∣
z(1)=z

(1)
R

= (u0(x, y), v0(x, y)), (3.2)

where the z
(1)
R = t2/2, zR = 1/2(t1 + t2) in accordance with Figure 3.1a and actually zR

coincides with the global midplane of the model (Reddy (2004)). The next set of conditions
impose continuous shear strains at the interface plane:

(γxz(1), γyz(1))
∣∣
z(1)=t1/2

= (γxz(2), γyz(2))
∣∣
z(2)=−t2/2

. (3.3)
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3.1. UNDELAMINATED REGION

Finally, in accordance with the basic concept of Reddy plate theory (Reddy (2004)) we
impose traction-free bottom and top surfaces by (refer to Figures 3.1b and 3.2b):

(γxz(1), γyz(1))
∣∣
z(1)=−t1/2

= (γxz(2), γyz(2))
∣∣
z(2)=t2/2

= 0. (3.4)

In Eq.(2.1) the displacement functions are modified in order to satisfy Eqs.(3.1)-(3.4). In
the case of the method of 2ESLs (i = 1..2), by applying the FSDT, SSDT and Reddy TSDT
theories the in-pane displacement functions can be written as:

u(i) = u0 +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = 1..2,

v(i) = v0 +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = 1..2,

w(i) = w(x, y), i = 1..2,

(3.5)

where the matrices denoted by Kij are related to the geometry (ESL thicknesses), i refers
to the ESL number, the summation index j defines the component in ψ, which is the vector
of primary parameters, finally w(i)(x, y) = w(x, y) for each ESL.

3.1.1 Reddy’s third-order plate theory

Using the conditions above (Eqs.(3.1)-(3.4)) we can eliminate ten parameters from Eq.(2.1),
the secondary parameters are: u0i, v0i, θ(x)2, θ(y)2, φ(x)i, φ(y)i for i = 1, 2. The vector of
primary parameters is:

ψ(p) =

(
θ(p)1 λ(p)2 λ(p)1

∂w
∂p

)T

, p=x or y, (3.6)

where the elements highlighted by the circles are the so-called autocontinuity parameters
(see later in Chapter 4.). The calculation of elements of the matrices K

(0)
ij , K

(1)
ij , K

(2)
ij and

K
(3)
ij are defined in Appendix A.1. The equilibrium equations of Reddy TSDT based on

Eq.(3.6) and (2.33) are:

δu0 :

2∑
i=1

∂Nx(i)

∂x
+
∂Nxy(i)

∂y
= 0, δv0 :

2∑
i=1

∂Nxy(i)

∂x
+
∂Ny(i)

∂y
= 0, (3.7)

for the membrane displacements and:

δψ(x)j :
2∑

i=1

K
(0)
ij

(
∂Nx(i)

∂x
+
∂Nxy(i)

∂y

)
+K

(1)
ij

(
∂Mx(i)

∂x
+
∂Mxy(i)

∂y

)
+K

(2)
ij

(
∂Lx(i)

∂x
+
∂Lxy(i)

∂y

)

+K
(3)
ij

(
∂Px(i)

∂x
+
∂Pxy(i)

∂y

)
−K

(1)
ij Qx(i) − 2K

(2)
ij Rx(i) − 3K

(3)
ij Sx(i) = 0, j = 1..3,

δψ(y)j :
2∑

i=1

K
(0)
ij

(
∂Nxy(i)

∂x
+
∂Ny(i)

∂y

)
+K

(1)
ij

(
∂Mxy(i)

∂x
+
∂My(i)

∂y

)
+K

(2)
ij

(
∂Lxy(i)

∂x
+
∂Ly(i)

∂y

)

+K
(3)
ij

(
∂Pxy(i)

∂x
+
∂Py(i)

∂y

)
−K

(1)
ij Qy(i) − 2K

(2)
ij Ry(i) − 3K

(3)
ij Sy(i) = 0, j = 1..3,
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CHAPTER 3. THE METHOD OF TWO EQUIVALENT SINGLE LAYERS

(3.8)

with respect to the primary parameters, furthermore the following equation is obtained based
on the deflection:

δw :

2∑
i=1

(
∂Q̂x(i)

∂x
+
∂Q̂y(i)

∂y

)
+ q = 0, (3.9)

where Q̂x and Q̂y are the equivalent shear forces:

Q̂x(i) = −K(0)
i4

(
∂Nx(i)

∂x
+
∂Nxy(i)

∂y

)
−K

(1)
i4

(
∂Mx(i)

∂x
+
∂Mxy(i)

∂y

)
−K

(2)
i4

(
∂Lx(i)

∂x
+
∂Lxy(i)

∂y

)

−K(3)
i4

(
∂Px(i)

∂x
+
∂Pxy(i)

∂y

)
+Qx(i) + 2K

(2)
i4 Rx(i) + 3K

(3)
i4 Sx(i),

Q̂y(i) = −K(0)
i4

(
∂Nxy(i)

∂x
+
∂Ny(i)

∂y

)
−K

(1)
i4

(
∂Mxy(i)

∂x
+
∂My(i)

∂y

)
−K

(2)
i4

(
∂Lxy(i)

∂x
+
∂Ly(i)

∂y

)

−K(3)
i4

(
∂Pxy(i)

∂x
+
∂Py(i)

∂y

)
+Qy(i) + 2K

(2)
i4 Ry(i) + 3K

(3)
i4 Sy(i).

(3.10)

The first in Eq.(3.8) states the moment equilibrium (because the fisrt parameter in Eq.(3.6) is
a rotation), moreover Eq.(3.9) is the equilibrium equation of equivalent shear forces (deriva-
tives). By taking back the Kij constants into Eqs.(3.8) and the first of (3.9) (with respect
to ψ(x)1 = θ(x)1 and ψ(y)1 = θ(y)1), and subtracting the equivalent shear forces from Eq.(3.8)
it is possible to calculate the equivalent bending moments of the undelaminated region:

⎛
⎝ M̂x

M̂y

M̂xy

⎞
⎠

(i)

=

⎛
⎝ Mx

My

Mxy

⎞
⎠

(i)

+(K
(0)
i1 −K(0)

i4 )

⎛
⎝ Nx

Ny

Nxy

⎞
⎠

(i)

, (K
(0)
i1 −K(0)

i4 ) =

{ −1
2
t2 if i = 1,

1
2
t1 if i = 2.

(3.11)

Eq.(3.11) is important, because the continuity and boundary conditions can be imposed by
using the equivalent bending moments, or stress resultants. The equations of δψ(x)1 and
δψ(y)1 in Eq.(3.8) can be rewritten as:

δψ(x)1 :
2∑

i=1

∂M̂x(i)

∂x
+
∂M̂xy(i)

∂y
− Q̂x(i) = 0, δψ(y)1 :

2∑
i=1

∂M̂y(i)

∂y
+
∂M̂xy(i)

∂x
− Q̂y(i) = 0.

(3.12)

3.1.2 Second-order plate theory

In this case λ(x)i = 0 and λ(y)i = 0 in Eq.(2.1). Eqs.(3.1)-(3.2) apply, however Eqs.(3.3)-
(3.4) are omitted. It should be mentioned that although it is possible to impose the shear
strain continuity even in this case, this was not applied in this thesis (Szekrényes (2015)).
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3.1. UNDELAMINATED REGION

Therefore we can eliminate four parameters from Eq.(2.1), the secondary parameters are:
u0i, v0i for i = 1, 2. The vector of primary parameters becomes:

ψ(p) =
(
θ(p)1 φ(p)1 θ(p)2 φ(p)2

)T
, p = x or y. (3.13)

The elements of the matrices K
(0)
ij , K

(1)
ij and K

(2)
ij are defined in Appendix A.2. Obviously

K
(3)
ij = 0 in this case. The equilibrium of in-plane forces (equations for δu0 and δv0) are

given by Eq.(3.7). The equilibrium equations with respect to the primary parameters take
the forms of:

δψ(x)j :

2∑
i=1

K
(0)
ij

(
∂Nx(i)

∂x
+
∂Nxy(i)

∂y

)
+K

(1)
ij

(
∂Mx(i)

∂x
+
∂Mxy(i)

∂y

)
+K

(2)
ij

(
∂Lx(i)

∂x
+
∂Lxy(i)

∂y

)
−K(1)

ij Qx(i) − 2K
(2)
ij Rx(i) = 0, j = 1..4,

δψ(y)j :

2∑
i=1

K
(0)
ij

(
∂Nxy(i)

∂x
+
∂Ny(i)

∂y

)
+K

(1)
ij

(
∂Mxy(i)

∂x
+
∂My(i)

∂y

)
+K

(2)
ij

(
∂Lxy(i)

∂x
+
∂Ly(i)

∂y

)
−K(1)

ij Qy(i) − 2K
(2)
ij Ry(i) = 0, j = 1..4.

(3.14)

The last equation becomes:

δw :

2∑
i=1

(
∂Qx(i)

∂x
+
∂Qy(i)

∂y

)
+ q = 0. (3.15)

Because of the fact that the first and third parameters in ψ (Eq.(3.13)) are rotations, the
equations for j = 1, 3 state the moment equilibrium. Summing the first (j = 1) and third
(j = 3) equations in Eq.(3.14) and taking back the Kij constants in Appendix A.1 results
in:

2∑
i=1

∂M̂x(i)

∂x
+
∂M̂xy(i)

∂y
−Qx(i) = 0,

2∑
i=1

∂M̂y(i)

∂y
+
∂M̂xy(i)

∂x
−Qy(i) = 0, (3.16)

where the only difference compared to Eq.(3.12) is that in this case there are no effective
shear forces, only equivalent moments that become the same as those by Eq.(3.11):

⎛
⎝ M̂x

M̂y

M̂xy

⎞
⎠

(i)

=

⎛
⎝ Mx

My

Mxy

⎞
⎠

(i)

+(K
(0)
i1 +K

(0)
i3 )

⎛
⎝ Nx

Ny

Nxy

⎞
⎠

(i)

, (K
(0)
i1 +K

(0)
i3 ) =

{ −1
2
t2 if i = 1,

1
2
t1 if i = 2.

(3.17)

The physical meaning of Eq.(3.17) is that the equivalent moments are equal to the sum
of the standard bending/twisting moments and the moment of the in-plane normal/shear
forces, where the arm of the forces is calculated as the distance between the local and global
reference plane of the plate (Szekrényes (2014d)).
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CHAPTER 3. THE METHOD OF TWO EQUIVALENT SINGLE LAYERS

3.1.3 First-order plate theory

In this case φ(x)i = φ(y)i = 0, λ(x)i = λ(y)i = 0 in Eq.(2.1). Eqs.(3.1)-(3.2) apply, however
Eqs.(3.3)-(3.4) are omitted again (shear strain continuity at the interface plane is not possible
to ensure because of the piecewise constant distributions, refer to Figure 3.1b). Thus, we
can eliminate only four parameters from Eq.(2.1), the secondary parameters are: u0i, v0i for
i = 1, 2. The vector of primary parameters is:

ψ(p) =
(
θ(p)1 θ(p)2

)T
, p = x or y. (3.18)

The elements of the matrices K
(0)
ij and K

(1)
ij are defined in Appendix A.3. Apparently

K
(2)
ij = K

(3)
ij = 0 in this case. The in-plane equilibrium is defined by Eq.(3.7). The mo-

ment equilibrium equations are:

δψ(x)j :

2∑
i=1

K
(0)
ij

(
∂Nx(i)

∂x
+
∂Nxy(i)

∂y

)
+K

(1)
ij

(
∂Mx(i)

∂x
+
∂Mxy(i)

∂y

)
−K

(1)
ij Qx(i) = 0, j = 1..2,

δψ(y)j :

2∑
i=1

K
(0)
ij

(
∂Nxy(i)

∂x
+
∂Ny(i)

∂y

)
+K

(1)
ij

(
∂Mxy(i)

∂x
+
∂My(i)

∂y

)
−K

(1)
ij Qy(i) = 0, j = 1..2.

(3.19)

The equation for δw is equivalent to Eq.(3.15). The equivalent moments can be obtained
by taking back the Kij constants given by Appendix A.3 into Eq.(3.19) and subtracting the
shear forces:

⎛
⎝ M̂x

M̂y

M̂xy

⎞
⎠

(i)

=

⎛
⎝ Mx

My

Mxy

⎞
⎠

(i)

+(K
(0)
i1 +K

(0)
i2 )

⎛
⎝ Nx

Ny

Nxy

⎞
⎠

(i)

, (K
(0)
i1 +K

(0)
i2 ) =

{
−1

2t2 if i = 1,
1
2t1 if i = 2,

(3.20)

that have an important role in the assignment of the boundary and continuity conditions.

3.2 Delaminated region

In the delaminated region (refer to Figures 3.1b and 3.2b) the top and bottom plates are
captured by independent ESLs, and thus these plates are modeled by traditional first-,
second-order plates and third-order Reddy plates. The displacement field can be given by:

u(i) = u0b +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = 1,

v(i) = v0b +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = 1,

u(i) = u0t +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = 2,

v(i) = v0t +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = 2,

w(i) = w(x, y), i = 1..2,

(3.21)
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3.2. DELAMINATED REGION

viz., the global membrane displacement components are zero in this case and j is a summation
index. It is important to note that in accordance with Eq.(3.21) the transverse deflections of
the top and bottom plates of the delaminated region are identical (constrained mode model,
(Szekrényes (2014c))). In other words, the crack opening is eliminated in the plate, and
the problem provides essentially mixed-mode II/III fracture without the presence of mode-I
(refer to Figure 1.3). The aim is to predict the mechanical fields in the plate as accurately as
possible compared to FE calculations. If this is done for mixed-mode II/III, then the model
can be extended to general mixed-mode I/II/III case in the course of further research work.

3.2.1 Reddy’s third-order plate theory

In this theory the top and bottom plates are traction-free at the top and bottom boundaries
(Reddy (2004), refer to Figures 3.1b and 3.2b), thus, from Eq.(3.4) we have:

(γxz(1), γyz(1))
∣∣
z(1)=±t1/2

= (γxz(2), γyz(2))
∣∣
z(2)=±t2/2

= 0, (3.22)

meaning eight conditions. The secondary parameters are: φ(x)i, φ(y)i, λ(x)i, λ(y)i for i = 1..2.
The modified displacement field has the same form as that given by Eq.(3.21), the coefficients
denoted by Kij are placed in Appendix A.1. The vector of primary parameters becomes:

ψ(p) =

(
θ(p)1 θ(p)2

∂w
∂p

)T

, p = x or y, (3.23)

where θ(p)2 is an autocontinuity parameter. The equilibrium equations with respect to the
membrane displacements are:

δu0(i) :
∂Nx(i)

∂x
+
∂Nxy(i)

∂y
= 0, δv0(i) :

∂Nxy(i)

∂x
+
∂Ny(i)

∂y
= 0, i = 1(= b), 2(= t). (3.24)

The equilibrium equations for the bending and twisting moments are:

δψ(x)j :
∂M̂x(j)

∂x
+
∂M̂xy(j)

∂y
− Q̂x(j) = 0, δψ(y)j :

∂M̂y(j)

∂y
+
∂M̂xy(j)

∂x
− Q̂y(j) = 0, j = 1, 2.

(3.25)

Finally, the equation with respect to δw in accordance with Reddy (2004) is:

δw :
2∑

i=1

{
∂Q̂x(i)

∂x
+
∂Q̂y(i)

∂y
−K

(3)
i1

(
∂2Px(i)

∂x2
+ 2

∂2Pxy(i)

∂x∂y
+
∂2Py(i)

∂y2

)}
+ q = 0, (3.26)

where the equivalent shear forces are defined as (Reddy (2004)):

Q̂x(i) = Qx(i) + 3K
(3)
i3 Sx(i), Q̂y(i) = Qy(i) + 3K

(3)
i3 Sy(i), i = 1, 2. (3.27)

Finally, the equivalent bending moments become:

⎛
⎝ M̂x

M̂y

M̂xy

⎞
⎠

(i)

=

⎛
⎝ Mx

My

Mxy

⎞
⎠

(i)

+K
(3)
i1

⎛
⎝ Px

Py

Pxy

⎞
⎠

(i)

, i = 1, 2. (3.28)
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CHAPTER 3. THE METHOD OF TWO EQUIVALENT SINGLE LAYERS

3.2.2 Second-order plate theory

In this case λ(x)i = 0 and λ(y)i = 0 in Eq.(2.1). No conditions are imposed against the
displacement field, and so there are only primary parameters in Eq.(3.21), the vector of
primary parameters takes the form below:

ψ(p) =
(
θ(p)1 φ(p)1 θ(p)2 φ(p)2

)T
, p = x or y. (3.29)

The elements of the matrices K
(0)
ij , K

(1)
ij and K

(2)
ij are defined in Appendix A.2. Apparently

K
(3)
ij = 0 in this case. The membrane force equilibrium is given by Eq.(3.24), the other

equilibrium equations are:

δθ(x)i :
∂Mx(i)

∂x
+
∂Mxy(i)

∂y
−Qx(i) = 0, i = 1, 2,

δθ(y)i :
∂Mxy(i)

∂x
+
∂My(i)

∂y
−Qy(i) = 0, i = 1, 2,

(3.30)

δφ(x)i :
∂Lx(i)

∂x
+
∂Lxy(i)

∂y
− 2Rx(i) = 0, i = 1, 2,

δφ(y)i :
∂Lxy(i)

∂x
+
∂Ly(i)

∂y
− 2Ry(i) = 0, i = 1, 2.

(3.31)

Finally, the shear force equilibrium involves:

δw :

2∑
i=1

(
∂Qx(i)

∂x
+
∂Qy(i)

∂y

)
+ q = 0. (3.32)

3.2.3 First-order plate theory

For the FSDT φ(x)i = 0, φ(y)i = 0, λ(x)i = 0 and λ(y)i = 0 in Eq.(2.1). Obviously, there are
only primary parameters in Eq.(3.21): u0i, v0i, θ(x)i, θ(y)i for i = 1, 2. The vector of primary
parameters is:

ψ(p) =
(
θ(p)1 θ(p)2

)T
, p = x or y. (3.33)

The elements of the matrices K
(0)
ij and K

(1)
ij are defined in Appendix A.3. In this case

K
(2)
ij = K

(3)
ij = 0. The in-plane force equilibrium involves Eq.(3.24), the moment and shear

force equilibrium leads to:

δθ(x)i :
∂Mx(i)

∂x
+
∂Mxy(i)

∂y
−Qx(i) = 0, i = 1, 2,

δθ(y)i :
∂Mxy(i)

∂x
+
∂My(i)

∂y
−Qy(i) = 0, i = 1, 2,

(3.34)
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3.2. DELAMINATED REGION

dx
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dy
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X Y
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Figure 3.3: Equilibrium of stress resultants of the FSDT (a), SSDT (b) and TSDT (c) for
an equivalent single layer.

δw :
2∑

i=1

(
∂Qx(i)

∂x
+
∂Qy(i)

∂y

)
+ q = 0. (3.35)

The equilibrium equations of ESL theories can be obtained by using differential plate
elements assuming differential changes of the stress resultants going from one boundary to
the other. This scheme is very simple in the case of FSDT as it is shown by Figure 3.3a.
For the SSDT Figure 3.3a (moment and shear force equilibrium) should be complemented
with Figure 3.3b showing the possible interpretation of the higher-order stress resultants (L
and R). Finally, Figure 3.3a, b and c should be considered together if the general TSDT
is applied (L, P , R and S), although the equilibrium equations of this theory were not
presented, these are documented by Szekrényes (2014d).
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4
The method of four equivalent single layers

The concept of the method of 4ESLs (developed recently by Szekrényes (2016a,b)) is shown
in Figures 4.1a and 4.2a. The bottom and top plates are modeled by two ESLs, and thus it is
a refinement compared to the method of 2ESLs. It will be shown later that in certain cases
it is not enough to apply 2ESLs. The SEKC is applied to the problem shown in Figures
4.1a and 4.2a. Using the conditions defined by Eqs.(2.2)-(2.6) we can eliminate certain
parameters from Eq.(2.1), which (for 4 ESLs) involves 34 parameters altogether plus the
deflections (w(i)(x, y) = w(x, y)). The parameter elimination is carried out similarly to that
of the method of 2ESLs. In the subsequent sections the undelaminated and delaminated
regions are discussed separately. In the first step, the general TSDT displacement field is
presented, then in the subsequent steps the SSDT and FSDT fields are obtained by the
reduction of the TSDT equations. The meaning of the transverse splitting in Figure 4.1a

Figure 4.1: Cross sections and deformation of the top (ESL3 and ESL4) and bottom (ESL1
and ESL2) plate elements of a delaminated plate in the X-Z plane (a). Distribution of the
transverse shear strains by FSDT, SSDT and TSDT (b).
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4.1. UNDELAMINATED REGION

is that different mathematical models are applied in the undelaminated and delaminated
regions.

Figure 4.2: Cross sections and deformation of the top (ESL3 and ESL4) and bottom (ESL1
and ESL2) plate elements of a delaminated plate in the Y -Z plane (a). Distribution of the
transverse shear strains by FSDT, SSDT and TSDT (b).

4.1 Undelaminated region

The transition zone around the delamination front in the X − Z plane of the composite
plate is shown in Figure 4.1a. The distribution of the in-plane displacement functions is
piecewise linear by FSDT, quadratic in the case of the SSDT and cubic for the TSDT. The
corresponding shear strain distributions are shown in Figure 4.1b: it is piecewise constant
by FSDT, piecewise linear by SSDT and piecewise quadratic by TSDT with continuous
derivatives and curvatures in the latter case at the perturbation planes. The Y −Z plane is
shown in Figure 4.2. In accordance with Figures 4.1a and 4.2a and Eq.(2.2), the following
conditions are formulated between the four ESLs (continuity of in-plane displacements at
the interface planes):

(u(1), v(1), w(1))
∣∣
z(1)=t1/2

= (u(2), v(2), w(2))
∣∣
z(2)=−t2/2

,

(u(2), v(2), w(2))
∣∣
z(2)=t2/2

= (u(3), v(3), w(3))
∣∣
z(3)=−t3/2

,

(u(3), v(3), w(3))
∣∣
z(3)=t3/2

= (u(4), v(4), w(4))
∣∣
z(4)=−t4/2

.

(4.1)

The reference plane belongs to the second ESL (see Figures 4.1a and 4.2b), therefore, the
following condition is imposed (refer to Eq.(2.3)):

(u(2), v(2))
∣∣
z(2)=z

(2)
R

= (u0(x, y), v0(x, y)), (4.2)
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CHAPTER 4. THE METHOD OF FOUR EQUIVALENT SINGLE LAYERS

where z
(2)
R = 1/2(t3 + t4 − t1) in accordance with Figure 4.1a and it gives the position of the

global midplane of the model with respect to ESL2. The next set of conditions imposes the
continuous shear strains at the interface planes using Eq.(2.4):

(γxz(1), γyz(1))
∣∣
z(1)=t1/2

= (γxz(2), γyz(2))
∣∣
z(2)=−t2/2

,

(γxz(2), γyz(2))
∣∣
z(2)=t2/2

= (γxz(3), γyz(3))
∣∣
z(3)=−t3/2

,

(γxz(3), γyz(3))
∣∣
z(3)=t3/2

= (γxz(4), γyz(4))
∣∣
z(4)=−t4/2

.

(4.3)

As discussed previously, the oscillations in the shear strain distribution can be reduced by
ensuring continuous shear strain derivatives at interface planes 1-2 and 3-4 (Eq.(2.5)):

(
∂γxz(1)
∂z(1)

,
∂γyz(1)
∂z(1)

)∣∣∣∣
z(1)=t1/2

=

(
∂γxz(2)
∂z(2)

,
∂γyz(2)
∂z(2)

)∣∣∣∣
z(2)=−t2/2

,(
∂γxz(3)
∂z(3)

,
∂γyz(3)
∂z(3)

)∣∣∣∣
z(3)=t3/2

=

(
∂γxz(4)
∂z(4)

,
∂γyz(4)
∂z(4)

)∣∣∣∣
z(4)=−t4/2

,

(4.4)

furthermore, by imposing continuous second derivatives of shear strains in the same planes
by using the conditions below (Eq.(2.6)):

(
∂2γxz(1)
∂(z(1))2

,
∂2γyz(1)
∂(z(1))2

)∣∣∣∣
z(1)=t1/2

=

(
∂2γxz(2)
∂(z(2))2

,
∂2γyz(2)
∂(z(2))2

)∣∣∣∣
z(2)=−t2/2

,(
∂2γxz(3)
∂(z(3))2

,
∂2γyz(3)
∂(z(3))2

)∣∣∣∣
z(3)=t3/2

=

(
∂2γxz(4)
∂(z(4))2

,
∂2γyz(4)
∂(z(4))2

)∣∣∣∣
z(4)=−t4/2

.

(4.5)

To further reduce the number of parameters in the displacement field and to obtain more
accurate results, the SSCC is applied at the top and bottom boundaries (Eq.(2.7)):

(γxz(1), γyz(1))
∣∣
z(1)=−t1/2

= (γxz(4), γyz(4))
∣∣
z(4)=t4/2

. (4.6)

The concept of the shear strain control condition (SSCC) is shown in Figure 4.3, where in
the undelaminated portion at two points in each cross section the shear strain is identical.
Although the SSCC is applicable even in the case of the TSDT it leads to large oscillations
in the transverse shear strains (Szekrényes (2016b)), therefore it is applied only to the SSDT
solution. It is also important to note that the large oscillations in the shear strain distribution
take place even if the SSDT solution without the SSCC is applied (Szekrényes (2016a)).

In Eq.(2.1) the displacement functions are modified in order to satisfy Eqs.(4.1)-(4.6).
In the general sense, by applying the FSDT, SSDT and TSDT theories the displacement
functions can be written as:

u(i) = u0 +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = 1..4,

v(i) = v0 +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = 1..4,

w(i) = w(x, y), i = 1..4,

(4.7)

where the matrices denoted by Kij are related to the geometry (ESL thicknesses), i refers to
the ESL number, the summation index j defines the component in ψ, which is the vector of
primary parameters, finally w(x, y) is the transverse deflection and identical for each ESL.
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4.1. UNDELAMINATED REGION

Figure 4.3: The concept of controlled shear strain distribution on the X-Z plane (a) and Y -Z
plane (b) in the undelaminated and delaminated regions of the SSDT and TSDT solutions.

4.1.1 Third-order plate theory

Using the conditions above (Eqs.(4.1)-(4.5)) we can eliminate twentytwo parameters from
Eq.(2.1), the secondary parameters are: u0i, v0i, φ(x)i, φ(y)i for i = 1..4, λ(x)i, λ(y)i for i = 1, 2
and 4. The vector of primary parameters is:

ψ(p) =
(
θ(p)1 θ(p)2 θ(p)3 θ(p)4 λ(p)3

)T
, p = x or y. (4.8)

The elements of the matrices K
(0)
ij , K

(1)
ij , K

(2)
ij and K

(3)
ij in Eq.(4.7) are defined in Appendix

B.1. The equilibrium equations can be obtained by using Eqs.(2.32)-(2.35) and Eq.(4.8):

δu0 :
4∑

i=1

∂Nx(i)

∂x
+
∂Nxy(i)

∂y
= 0,

δv0 :

4∑
i=1

∂Nxy(i)

∂x
+
∂Ny(i)

∂y
= 0,

(4.9)

δψ(x)j :
4∑

i=1

K
(0)
ij

(
∂Nx(i)

∂x
+
∂Nxy(i)

∂y

)
+K

(1)
ij

(
∂Mx(i)

∂x
+
∂Mxy(i)

∂y

)
+K

(2)
ij

(
∂Lx(i)

∂x
+
∂Lxy(i)

∂y

)

+K
(3)
ij

(
∂Px(i)

∂x
+
∂Pxy(i)

∂y

)
−K

(1)
ij Qx(i) − 2K

(2)
ij Rx(i) − 3K

(3)
ij Sx(i) = 0, j = 1..5,

δψ(y)j :
4∑

i=1

K
(0)
ij

(
∂Nxy(i)

∂x
+
∂Ny(i)

∂y

)
+K

(1)
ij

(
∂Mxy(i)

∂x
+
∂My(i)

∂y

)
+K

(2)
ij

(
∂Lxy(i)

∂x
+
∂Ly(i)

∂y

)

+K
(3)
ij

(
∂Pxy(i)

∂x
+
∂Py(i)

∂y

)
−K

(1)
ij Qy(i) − 2K

(2)
ij Ry(i) − 3K

(3)
ij Sy(i) = 0, j = 1..5,
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CHAPTER 4. THE METHOD OF FOUR EQUIVALENT SINGLE LAYERS

(4.10)

δw :
4∑

i=1

(
∂Qx(i)

∂x
+
∂Qy(i)

∂y

)
+ q = 0. (4.11)

The first four parameters in ψ(p) are rotations, viz. for each ESL we have a single mo-
ment equilibrium equation. By summing the moment equilibrium equations (the first four
in Eq.(4.10)) and separating the terms of the stress resultants for each ESL using the con-
stants in Appendix B.1 it is possible to obtain the following equivalent bending and twisting
moments:

M̂
(x,y)

i = M
(x,y)
i +

4∑
j=1

K
(0)
ij N

(x,y)
i ,

4∑
j=1

K
(0)
ij =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2
(t2 + t3 + t4) if i = 1,

1
2
(t1 − t3 − t4) if i = 2,

1
2
(t1 + t2 − t4) if i = 3,

1
2
(t1 + t2 + t3) if i = 4.

(4.12)

The fifth parameter in ψ(p) is λ(p)3, which is a parameter related to the third-order dis-
placement field term, therefore from the corresponding equilibrium equation it is possible to
obtain the equivalent P stress resultants:

P̂
(x,xy)

3 =
4∑

i=1

K
(3)
i5 P

(x,xy)
i +

4∑
i=1

K
(2)
i5 L

(x,xy)
i +

4∑
i=1

K
(0)
i5 N

(x,xy)
i . (4.13)

It is surprising that neither Eq.(4.11) nor (4.13) contains the standard and higher-order shear
forces. The reason for that is Q, R and S are related to the shear strains in accordance with
Eq.(2.20), which are always continuous across the transition between the delaminated and

undelaminated regions. Note that K
(1)
i5 = 0, i = 1..4 (see Appendix B.1), and that is why

P̂
(x,xy)

3 is independent of the bending and twisting moments.

4.1.2 Second-order plate theory

In this case λ(x)i = 0 and λ(y)i = 0 in Eq.(2.1). Eqs.(4.1)-(4.2) apply together with Eq.(4.3)
(shear strain continuity), however Eqs.(4.4)-(4.5) are omitted. However, Eq.(4.6) is taken
into account (SSCC). Thus, we can eliminate sixteen parameters from Eq.(2.1), the secondary
parameters are: u0i, v0i for i=1..4, θ(x)i, θ(y)i, φ(x)i, φ(y)i for i = 1 and 3. The vector of primary
parameters becomes:

ψ(p) =

(
θ(p)2 φ(p)2 θ(p)4 φ(p)4

)T

, p = x or y, (4.14)

where φ(p)2 is an autocontinuity parameter. The elements of the matrices K
(0)
ij , K

(1)
ij and K

(2)
ij

are defined in Appendix B.2. Obviously K
(3)
ij = 0 in this case. The equilibrium equations

take the same form as Eq.(4.9)-(4.11) but j = 1..4. In accordance with Eq.(4.14) we have a
single rotation for the bottom (θ(p)2) and top (θ(p)4) plates, and therefore the first and third
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4.2. DELAMINATED REGION

equilibrium equations in Eq.(4.10) contain the following equivalent bending moments of the
undelaminated region 2 :

M̂
(x,xy)

12 =
∑
i=1,2

(
(K

(0)
i1 +K

(0)
i3 )N

(x,xy)
i + (K

(1)
i1 +K

(1)
i3 )M

(x,xy)
i + (K

(2)
i1 +K

(2)
i3 )L

(x,xy)
i

)
,

M̂
(x,xy)

34 =
∑
i=3,4

(
(K

(0)
i1 +K

(0)
i3 )N

(x,xy)
i + (K

(1)
i1 +K

(1)
i3 )M

(x,xy)
i + (K

(2)
i1 +K

(2)
i3 )L

(x,xy)
i

)
.
(4.15)

Using the Kij constants given in Appendix B.2 Eq.(4.15) reduces to:

M̂
(x,xy)

12 = M
(x,xy)
1 − 1

2
(t2 + t3 + t4)N

(x,xy)
1 +M

(x,xy)
2 +

1

2
(t1 − t3 − t4)N

(x,xy)
2 ,

M̂
(x,xy)

34 = M
(x,xy)
3 − 1

2
(t1 + t2 − t4)N

(x,xy)
3 +M

(x,xy)
4 +

1

2
(t1 + t2 + t3)N

(x,xy)
4 .

(4.16)

Comparing Eq.(4.16) to Eq.(4.12) it becomes clear that M̂12 is the sum of M̂1 and M̂2,
moreover M̂34 is the sum of M̂3 and M̂4. The equivalent L stress resultants can be obtained
similarly, by taking the second and fourth equations in Eq.(4.10):

L̂
(x,xy)

12 =
∑
i=1,2

(
(K

(0)
i2 +K

(0)
i4 )N

(x,xy)
i + (K

(1)
i2 +K

(1)
i4 )M

(x,xy)
i + (K

(2)
i2 +K

(2)
i4 )L

(x,xy)
i

)
,

L̂
(x,xy)

34 =
∑
i=3,4

(
(K

(0)
i2 +K

(0)
i4 )N

(x,xy)
i + (K

(1)
i2 +K

(1)
i4 )M

(x,xy)
i + (K

(2)
i2 +K

(2)
i4 )L

(x,xy)
i

)
.
(4.17)

4.1.3 First-order plate theory

If the FSDT is applied then φ(x)i = 0, φ(y)i = 0, λ(x)i = 0 and λ(y)i = 0 in Eq.(2.1). Only
Eq.(4.1) is utilized together with Eq.(4.2). The continuity of shear strains cannot be imposed,
neither the SSCC. Thus, we can eliminate eight parameters from Eq.(2.1), the secondary
parameters are: u0i and v0i for i = 1..4, The primary parameters are: u0 and v0 and θ(x)i,
θ(y)i for i = 1..4. The vector of primary parameters is:

ψ(p) =
(
θ(p)1 θ(p)2 θ(p)3 θ(p)4

)T
, p = x or y. (4.18)

The elements of K
(0)
ij and K

(1)
ij are defined in Appendix B.3. K

(2)
ij = 0 and K

(3)
ij = 0 in this

case. Eqs.(4.9)-(4.11) are valid even for the FSDT, the equivalent moments are given by
Eq.(4.12).

4.2 Delaminated region

In the delaminated region (refer to Figures 4.1a and 4.2a) the top and bottom plates are
equally modeled by two ESLs, and thus the first and third of Eq.(4.1) still hold in each
theory. In accordance with Eq.(4.1) the transverse deflections of the top and bottom plates
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CHAPTER 4. THE METHOD OF FOUR EQUIVALENT SINGLE LAYERS

of the delaminated region are identical (constrained mode model, (Szekrényes (2014c))).
The definition of the top and bottom reference planes involve:

(u(1), v(1))
∣∣
z(1)=t2/2

= (u0b(x, y), v0b(x, y)),

(u(3), v(3))
∣∣
z(3)=t4/2

= (u0t(x, y), v0t(x, y)),
(4.19)

where u0b and u0t are the global membrane displacements of the bottom and top plates in
accordance with Figures 4.1a and 4.2a. Furthermore, the first and third of Eq.(4.3) apply
again, as well as Eqs.(4.4)-(4.5). Three more equations are formulated by using the shear
strain control conditions (Eq.(2.6)):

(γxz(1), γyz(1))
∣∣
z(1)=−t1/2

= (γxz(2), γyz(2))
∣∣
z(2)=t2/2

,

(γxz(3), γyz(3))
∣∣
z(3)=−t3/2

= (γxz(4), γyz(4))
∣∣
z(4)=t4/2

,

(γxz(1), γyz(1))
∣∣
z(1)=−t1/2

= (γxz(4), γyz(4))
∣∣
z(4)=t4/2

,

(4.20)

i.e., instead of imposing traction-free boundaries (as it was done in Section 3.1 using Reddy
TSDT) we control the strain distribution by having identical values at the boundaries leading
to nine equation sets altogether. The displacement field is given by the following equations:

u(i) = u0b +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = 1..2,

v(i) = v0b +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = 1..2,

u(i) = u0t +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = 3..4,

v(i) = v0t +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = 3..4,

w(i) = w(x, y), i = 1..4,

(4.21)

where j is a summation index. The concept of the analysis is to start with the TSDT and
to give the SSDT and FSDT equations by the reduction of the TSDT equations.

4.2.1 Third-order plate theory

The first and third in Eq.(4.1) hold, moreover Eq.(4.19) is implied, again the first and third
of Eq.(4.3) are utilized together with Eqs.(4.4)-(4.5) leading to 20 conditions altogether. The
SSCC by Eq.(4.20) is not implied in this case. The secondary parameters are: u0i, v0i, φ(x)i,
φ(y)i for i = 1..4, λ(x)i, λ(y)i for i = 2 and 4. The modified displacement field is given by
Eq.(4.21) wherein the vector of primary parameters is:

ψ(p) =

(
θ(p)1 θ(p)2 θ(p)3 θ(p)4 λ(p)1 λ(p)3

)T

, p = x or y, (4.22)

where λ(p)1 is the autocontinuity parameter. The coefficients denoted by Kij are placed in
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4.2. DELAMINATED REGION

Appendix B.1. The equilibrium equations become:

δu0b :

2∑
i=1

∂Nx(i)

∂x
+
∂Nxy(i)

∂y
= 0, δv0b :

2∑
i=1

∂Nxy(i)

∂x
+
∂Ny(i)

∂y
= 0,

δu0t :

4∑
i=3

∂Nx(i)

∂x
+
∂Nxy(i)

∂y
= 0, δv0t :

4∑
i=3

∂Nxy(i)

∂x
+
∂Ny(i)

∂y
= 0,

(4.23)

δψ(x)j :
4∑

i=1

K
(0)
ij

(
∂Nx(i)

∂x
+
∂Nxy(i)

∂y

)
+K

(1)
ij

(
∂Mx(i)

∂x
+
∂Mxy(i)

∂y

)
+K

(2)
ij

(
∂Lx(i)

∂x
+
∂Lxy(i)

∂y

)

+K
(3)
ij

(
∂Px(i)

∂x
+
∂Pxy(i)

∂y

)
−K

(1)
ij Qx(i) − 2K

(2)
ij Rx(i) − 3K

(3)
ij Sx(i) = 0, j = 1..6,

δψ(y)j :
4∑

i=1

K
(0)
ij

(
∂Nxy(i)

∂x
+
∂Ny(i)

∂y

)
+K

(1)
ij

(
∂Mxy(i)

∂x
+
∂My(i)

∂y

)
+K

(2)
ij

(
∂Lxy(i)

∂x
+
∂Ly(i)

∂y

)

+K
(3)
ij

(
∂Pxy(i)

∂x
+
∂Py(i)

∂y

)
−K

(1)
ij Qy(i) − 2K

(2)
ij Ry(i) − 3K

(3)
ij Sy(i) = 0, j = 1..6,

(4.24)

δw :
4∑

i=1

(
∂Qx(i)

∂x
+
∂Qy(i)

∂y

)
+ q = 0. (4.25)

The equivalent moments are obtained by summing the first four in Eq.(4.24):

M̂
(x,y)

i = M
(x,y)
i +

4∑
j=1

K
(0)
ij N

(x,y)
i ,

4∑
j=1

K
(0)
ij =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2
t2 if i = 1,

1
2
t1 if i = 2,

− 1
2
t4 if i = 3,

1
2
t3 if i = 4.

(4.26)

The last two parameters in Eq.(4.22) are λ(p)1 and λ(p)3, the equivalent P stress resultants
can be defined as:

P̂
(x,y)

1 =

4∑
i=1

K
(3)
i5 P

(x,y)
i +

4∑
i=1

K
(2)
i5 L

(x,y)
i +

4∑
i=1

K
(0)
i5 N

(x,y)
i ,

P̂
(x,y)

3 =

4∑
i=1

K
(3)
i6 P

(x,y)
i +

4∑
i=1

K
(2)
i6 L

(x,y)
i +

4∑
i=1

K
(0)
i6 N

(x,y)
i ,

(4.27)

that will be utilized by imposing the continuity conditions. It is important to note that
K

(1)
i5 = K

(1)
i6 = 0, i = 1..4.

4.2.2 Second-order plate theory

In this case λ(x)i = 0 and λ(y)i = 0 in Eq.(2.1). The first and third in Eq.(4.1) hold, moreover
Eq.(4.19) is implied, again the first and third of Eq.(4.3) is utilized, however Eqs.(4.4)-
(4.5) are omitted. The SSCC (Eq.(4.20)) is employed to obtain the modified displacement
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CHAPTER 4. THE METHOD OF FOUR EQUIVALENT SINGLE LAYERS

field. Therefore we can eliminate eighteen parameters from Eqs.(2.36)-(2.37), the secondary
parameters are: u0i, v0i for i = 1..4, θ(x)i, θ(y)i for i = 1, 3 and φ(x)i, φ(y)i for i = 1, 2 and 3,
The vector of primary parameters takes the form of:

ψ(p) =
(
θ(p)2 θ(p)4 φ(p)4

)T
, p = x or y. (4.28)

The elements of the matrices K
(0)
ij , K

(1)
ij and K

(2)
ij are defined in Appendix B.2. Apparently

K
(3)
ij = 0 in this case. Eqs.(4.23)-(4.25) are valid for j = 1..3. The equivalent moments are

obtained from the first and second of Eq.(4.24):

M̂
(x,xy)

12 =
∑
i=1,2

(
(K

(0)
i1 +K

(0)
i2 )N

(x,xy)
i + (K

(1)
i1 +K

(1)
i2 )M

(x,xy)
i + (K

(2)
i1 +K

(2)
i2 )L

(x,xy)
i

)
,

M̂
(x,xy)

34 =
∑
i=3,4

(
(K

(0)
i1 +K

(0)
i2 )N

(x,xy)
i + (K

(1)
i1 +K

(1)
i2 )M

(x,xy)
i + (K

(2)
i1 +K

(2)
i2 )L

(x,xy)
i

)
,
(4.29)

furthermore, by using the Kij constants we obtain:

M̂
(x,xy)

12 = M
(x,xy)
1 − 1

2
t2N

(x,xy)
1 +M

(x,xy)
2 +

1

2
t1N

(x,xy)
2 ,

M̂
(x,xy)

34 = M
(x,xy)
3 − 1

2
t4N

(x,xy)
3 +M

(x,xy)
4 +

1

2
t3N

(x,xy)
4 ,

(4.30)

which can be obtained by summing the corresponding moments in Eq.(4.26). The equivalent
L stress resultant is obtained by the third (j = 3) in Eq.(4.24):

L̂
(x,xy)

1234 =
∑
i=1..4

(
K

(0)
i3 N

(x,xy)
i +K

(1)
i3 M

(x,xy)
i +K

(2)
i3 L

(x,xy)
i

)
, (4.31)

which plays a key role in the assignment of the continuity and boundary conditions.

4.2.3 First-order plate theory

Similarly to the undelaminated portion we have: φ(x)i = 0, φ(y)i = 0, λ(x)i = 0 and λ(y)i = 0
in Eq.(2.1) and Eqs.(2.36)-(2.37). Only the first and third of Eq.(4.1) apply together with
Eq.(4.19). The shear strains are approximated by constant distributions in all four ESLs.
Thus we can eliminate only eight parameters (u0i, v0i for i = 1..4) from Eqs.(2.36)-(2.37).
The vector of primary parameters is:

ψ(p) =
(
θ(p)1 θ(p)2 θ(p)3 θ(p)4

)T
, p = x or y. (4.32)

The K
(0)
ij and K

(1)
ij elements are defined in Appendix B.3, moreover K

(2)
ij = K

(3)
ij = 0 in this

case. The equilibrium equations are given by Eqs.(4.23)-(4.25) for j = 1..4. The equivalent
moments are defined by Eq.(4.26).
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5
Exact solutions for delaminated Lévy plates by

state-space formulation

Figure 5.1: Simply supported delaminated composite plates subjected to a concentrated
force.

In this chapter exact analytical solutions are developed for laminated orthotropic plates
with an asymmetric delamination (i.e., the delamination is not in the midplane) shown
in Figures 5.1a and b. The governing equations in terms of the displacement parame-
ters are obtained by using the equilibrium equations developed in Chapters 3 and 4. The
plates are loaded by a concentrated force. In accordance with Lévy plate formulation
(Bodaghi and Saidi (2010); Hosseini-Hashemi et al. (2011); Kapuria and Kumari (2012);
Thai and Kim (2012)) at least two opposite edges of the plates should be simply supported.
The other two (opposite) edges can be free, built-in or simply supported ones. The basic
idea of Lévy plate formulation is that the primary displacement parameters, the external
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CHAPTER 5. EXACT SOLUTIONS FOR DELAMINATED LÉVY PLATES BY
STATE-SPACE FORMULATION

load parameter, q in Eq.(2.1), the deflection, w(x, y) and the membrane displacements are
expressed by trial functions in the form of:

{
ψ(x)i(x, y)

ψ(y)i(x, y)

}
=

∞∑
n=1

{
Φ(x)in(x) sin βy

Φ(y)in(x) cos βy

}
,

⎧⎪⎪⎨
⎪⎪⎩

u(x, y)
v(x, y)
q(x, y)
w(x, y)

⎫⎪⎪⎬
⎪⎪⎭ =

∞∑
n=1

⎧⎪⎪⎨
⎪⎪⎩

Un(x) sin βy
Vn(x) cos βy
Qn(x) sin βy
Wn(x) sin βy

⎫⎪⎪⎬
⎪⎪⎭. (5.1)

Considering the parameters in Eq.(5.1) the trial functions for any ESL in the plate including
the undelaminated and delaminated portions are:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ(x)(x, y)

θ(y)(x, y)

φ(x)(x, y)

φ(y)(x, y)

λ(x)(x, y)

λ(y)(x, y)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

∞∑
n=1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xn(x) sin βy
Yn(x) cos βy
Txn(x) sin βy
Tyn(x) cos βy
Zxn(x) sin βy
Zyn(x) cos βy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u0(x, y)
v0(x, y)
u0δ(x, y)
v0δ(x, y)
q(x, y)
w(x, y)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

∞∑
n=1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U0n(x) sin βy
V0n(x) cos βy
U0δn(x) sin βy
V0δn(x) cos βy
Qn(x) sin βy
Wn(x) sin βy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, (5.2)

where β = nπ/b, b is the plate width and δ = t for the top plate, δ = b for the bottom
plate, respectively. By taking back the solution in Eq.(5.2) into the strain field (Eq.(2.10)-
(2.11)), then by expressing the stress resultants in accordance with Eqs.(2.19)-(2.20) we can
utilize the equilibrium equations given by Eqs.(2.32)-(2.34) and (2.38) to reduce the system
of PDEs to system of ODEs, which can be solved by the state-space approach (Jianqiao
(2003)). The state-space model of the plate system takes the form below (Jianqiao (2003);
Reddy (2004)):

Z′ = TZ+F, (5.3)

where Z is the state vector, T is the system matrix, F is the vector of particular solutions,
the comma means differentiation with respect to x. The general solution of Eq.(5.3) becomes
(Jianqiao (2003)):

Z(x) = eTx

⎛
⎝K+

x∫
x∗

e−TξF(ξ)dξ

⎞
⎠ = G(x)K+H(x), (5.4)

where K is the vector of constants, x∗ is the lower integration bound and for problems a
and b in Figures 5.1a and 5.1b is given by:

x∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xQ + d0

xQ − d0

0

−c

for 1a

for 1q

for 1

for 2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

problem a , x∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

−(xQ − d0)

−(xQ + d0)

−c

for 1

for 2

for 2q

for 2c

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

problem b ,

(5.5)

where xQ and d0 are given in Figure 5.1. The concept is to substitute the concentrated force
with a line load distributed on a small length with 2d0. The parameters of the state vector
can be expressed through:

Z
(d)
i =

r∑
j=1

G
(d)
ij K

(d)
j +H

(d)
j , Z

(ud)
i =

s∑
j=1

G
(ud)
ij K

(ud)
j +H

(ud)
j , (5.6)
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5.1. GENERALIZED CONTINUITY CONDITIONS

where subscript (d) refers to the delaminated, while (ud) refers the undelaminated plate
portion, r and s are the size of vectors and matrices of these parts, respectively. The state-
space models are discussed in the sequel for the method of 2ESLs and 4ESLs and in each
case the FSDT, SSDT and TSDT quantities are given.

5.1 Generalized continuity conditions

The generalized continuity conditions between regions 1 and 2 in Figures 5.1a and 5.1b
can be written as:

⎛
⎜⎜⎜⎜⎝

gα
hα
mα

nα
pα

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

(1)

x=+0

=

⎛
⎜⎜⎜⎜⎝

gα
hα
mα

nα
pα

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

(2)

x=−0

, (5.7)

where g, h,m, n and p denote parameter sets or functions defined in the sequel.

• The continuity of deflection, its derivatives and the primary parameters can be defined
by a parameter set:

g(l)α = (w,
∂w

∂x
, ....., ψ(p)j ; j = 1..Min(ql)), (5.8)

where l is the actual region ( 1 or 2 ) and ql is the number of parameters in ψ(p)j

in both regions. We note that ql is the total number of parameters in ψ(p)j . As an
example, for the TSDT model in Eq.(4.8) there are five parameters, on the other hand
in Eq.(4.22) we have six, and thus for the TSDT theory with 4ESLs Min(ql) = 5.

• The continuity condition of membrane displacement parameters can be imposed by
using the following functions:

h(1)α =

(
u0b
v0b

)
+

q1∑
j=1

K
(0)
1j

(
ψ(x)j

ψ(y)j

)∣∣∣∣∣∣
(1)

, h(2)α =

(
u0
v0

)
+

q2∑
j=1

K
(0)
1j

(
ψ(x)j

ψ(y)j

)∣∣∣∣∣∣
(2)

,

m(1)
α =

(
u0t
v0t

)
+

q1∑
j=1

K
(0)
λj

(
ψ(x)j

ψ(y)j

)∣∣∣∣∣∣
(1)

,m(2)
α =

(
u0
v0

)
+

q2∑
j=1

K
(0)
λj

(
ψ(x)j

ψ(y)j

)∣∣∣∣∣∣
(2)

,

(5.9)

where λ = ω
2
+ 1 and ω is even number.

It will be shown later that the membrane displacement continuity requires the impo-
sition of the conditions above for a single layer in the bottom and a single one in the
top plate.

• Since ql is not always the same number for the delaminated and undelaminated parts
of the plate, it is required to define the so-called autocontinuity condition (see later)
by:

n(l)
α =

ql∑
j=1

K
(ϑ)
κj

(
ψ(x)j

ψ(y)j

)∣∣∣∣∣
(l)

, (5.10)
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CHAPTER 5. EXACT SOLUTIONS FOR DELAMINATED LÉVY PLATES BY
STATE-SPACE FORMULATION

where ϑ = 1, 2, 3 depending on the vector of primary parameters (see later).

• The continuity conditions of stress resultants can be defined by:

p(l)α =

(∑
i=1..k

N
(x,xy)
i ,M̂

(x,xy)

1 ..., L̂
(x,xy)

1 ..., P̂
(x,y)

1 , ...

)∣∣∣∣∣
(l)

. (5.11)

The continuity conditions between regions 1 - 1q and 1q - 1a for problem a in Figure

5.1a are imposed by :

g
(1)
β

∣∣∣
x=xQ−d0

= g
(1q)
β

∣∣∣
x=xQ−d0

, g
(1)
γ

∣∣∣
x=xQ−d0

= g
(1q)
γ

∣∣∣
x=xQ−d0

,

g
(1q)
β

∣∣∣
x=xQ+d0

= g
(1a)
β

∣∣∣
x=xQ+d0

, g
(1q)
γ

∣∣∣
x=xQ+d0

= g
(1a)
γ

∣∣∣
x=xQ+d0

,
(5.12)

where the parameter sets are:

g
(l)
β = (w,

∂w

∂x
, ....., u0b, u0t, v0b, v0t, ψ(p)j ; j = 1..ql), p = x, y

g(l)γ =

⎛
⎝ ∑

i=1..k/2

N
(x,xy)
i ,

∑
i=k/2+1..k

N
(x,xy)
i ,M

(x,xy)
i ...,L

(x,xy)
i ...,P

(x,xy)
i ...

⎞
⎠
∣∣∣∣∣∣
(l)

, i = 1..k.

(5.13)

For problem b in Figure 5.1b the continuity conditions can be imposed in a similar way by
using Eqs.(5.7)-(5.12) and changing the evaluation bounds.

5.2 Method of 2ESLs - Reddy TSDT

5.2.1 Undelaminated region

In the case of the Reddy TSDT the state vector contains the parameters of vector ψ (refer
to Subsection 3.1.1), the global membrane parameters u0 and v0 and the first derivatives of
all these parameters, finally the deflection w and its first three derivatives leading to (and
using the Lévy solution by Eq.(5.2)):

Z(ud) =
(
U0nU

′
0nV0nV

′
0nX1nX

′
1nY1nY

′
1nZx2nZ

′
x2nZy2nZ

′
y2nZx1nZ

′
x1nZy1nZ

′
y1nWnW

′
nW

′′
nW

′′′
n

)T
,

(5.14)

i.e. the vector Z(ud) contains 20 elements, moreover the system matrix size is 20×20, matrix
T is placed in Appendix C.1.1 to show its structure and the fact that it contains 90 constants.
In the sequel the constants in the system matrix of the undelaminated part are denoted by
the ”˜”. The vector F in Eq.(5.3) is:

F(ud) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃91 ·Qn

)T
, (5.15)

where S̃91 is a constant and can be determined based on the governing equation for δw
(Eq.(3.9)). In accordance with Figure 5.1, for problem a Qn = 0 because there is no
external load in region 2 . For problem b in Figure 5.1 Qn = 2 q0

b
sin βy0 (Reddy (2004)),

where q0 = Q0/(2d0), Q0 is the value of the concentrated force.
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5.2. METHOD OF 2ESLS - REDDY TSDT

5.2.2 Delaminated region

The state vector of the Reddy TSDT model of the delaminated part contains the following
elements:

Z(d) =
(
U0tnU

′
0tnV0tnV

′
0tnX2nX

′
2nY2nY

′
2nU0bnU

′
0bnV0bnV

′
0bnX1nX

′
1nY1nY

′
1nWnW

′
nW

′′
nW

′′′
n

)T
,

(5.16)

viz. the size of vector Z(d) is 20, the system matrix size is 20×20 (similarly to the undelami-
nated portion). It contains 58 constants, which are denoted by the ” ” symbol. The system
matrix can be found in Appendix C.1.1, its structure differs from that of the undelaminated
part. Vector F is:

F(d) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̄59 ·Qn

)T
, (5.17)

where S̄59 is a constant and can be determined based on the governing equation for δw
(Eq.(3.26)). In accordance with Figure 5.1a, for problem a Qn = 2 q0

b
sin βy0 in region 1q ,

where q0 = Q0/(2d0), Q0 is the value of the concentrated force. For problem b in Figure
5.1 Qn = 0.

5.2.3 Boundary conditions

The number of B.C.s is always equal to half of the size of the state vector in Eq.(5.3). Only
the conditions for problem a in Figure 5.1a are given, for problem b the conditions can be
derived in a similar way. The B.C.s can be classified as simply supported, built-in and free

edge conditions. For the delaminated region 1a we have:

simply sup.:

{
(w, ∂

2w
∂x2 , v0b, v0t, θ(y)1, θ(y)2,Mx(1),Mx(2), Nx(1), Nx(2))

∣∣∣(1a)
x=a

= 0 ,

built-in:
{
(w, ∂w

∂x
, u0b, u0t, v0b, v0t, θ(x)1, θ(y)1, θ(x)2, θ(y)2)

∣∣(1a)
x=a

= 0 ,

free edge:

{
(N

(x,xy)
1 ,N

(x,xy)
2 ,M

(x,xy)
1 ,M

(x,xy)
2 )

∣∣∣(1a)
x=a

= 0, (∂
3w

∂x3 ,
2∑

i=1

Qx(i))

∣∣∣∣(1a)
x=a

= 0 .

(5.18)

For the undelaminated region 2 we have:

simply sup.:
{
(w, v0, θ(y)1, λ(y)1, λ(y)2,Mx(1),Mx(2), Nx(1) +Nx(2), Px(1), Px(2))

∣∣(2)
x=−c

= 0,

built-in:

{
(w, ∂w

∂x
,
∑

i=1..2

Nx(i),
∑

i=1..2

Nxy(i), θ(x)1, θ(y)1, λ(x)1, λ(y)1, λ(x)2, λ(y)2)

∣∣∣∣(2)
x=−c

= 0,

free edge:

⎧⎨
⎩(

∑
i=1..2

N
(x,xy)
i ,M

(x,xy)
1 ,P

(x,xy)
1 ,P

(x,xy)
2 )

∣∣∣∣(2)
x=−c

= 0, (∂
3w

∂x3 ,
2∑

i=1

Qx(i))

∣∣∣∣∣
(2)

x=−c

= 0.

(5.19)

As it can be seen, at each boundary and each case there are ten conditions, which is exactly
the half of the system matrix size of the TSDT model.
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CHAPTER 5. EXACT SOLUTIONS FOR DELAMINATED LÉVY PLATES BY
STATE-SPACE FORMULATION

5.2.4 Continuity conditions

The parameter sets in Eq.(5.7) for the continuity conditions are defined below.

• The set of deflection, its derivatives and the mutual primary parameters in Eqs.(3.6)
and (3.23) is:

gα = (w,
∂w

∂x
,
∂2w

∂x2
,
∂3w

∂x3
, θ(x)1, θ(y)1). (5.20)

• For the h
(l)
α and m

(l)
α parameter sets in Eq.(5.9) q1 = 3, q2 = 4 (refer to Eqs.(3.6) and

(3.23)) and λ = 2 (ω = 2, continuity of membrane displacements).

• The sets of the so-called autocontinuity condition are:

n(2)
α =

(
λ(p)1
λ(p)2

)∣∣∣∣(2) , n(1)
α =

3∑
j=1

K
(3)
1j

(
ψ(p)j

ψ(p)j

)∣∣∣∣∣
(1)

, (5.21)

where λp(1) and λp(2) are the autocontinuity parameters (refer to Eqs.(3.6) and (3.23)).
Taking back the Kij constants given in Appendix A.1 into the condition above yields
the following:

(
λ(p)1
λ(p)2

)∣∣∣∣(2)
x=−0

= −4

3

(
1
t21
(θ(p)1 +

∂w
∂p
)

1
t22
(θ(p)2 +

∂w
∂p
)

)∣∣∣∣∣
(1)

x=+0

. (5.22)

It is clear that there is a parameter in Eq.(3.23) that no conditions are imposed against,
and this is θ(p)2. The autocontinuity means that by imposing Eq.(5.22) the continuity
of θ(p)2 is satisfied automatically. This can be proven by taking the linear parts in
Eq.(2.1) and (2.8) and taking back the Kij constants of the Reddy TSDT solution of
the undelaminated region (Appendix A.1):

θ(p)2
∣∣(2)
x=−0

=
4∑

j=1

K
(1)
1j ψ(p)j

∣∣∣∣∣
(2)

x=−0

=

(
1 · θ(p)1 −

3

4
t22λ(p)2 +

3

4
t21λ(p)1 + 0 · ∂w

∂p

)∣∣∣∣(2)
x=−0

.

(5.23)

Substituting Eq.(5.22) yields:

θ(p)2
∣∣(2)
x=−0

= θ(p)2
∣∣(1)
x=+0

. (5.24)

In a similar way, by taking the quadratic parts in Eq.(2.1) and (2.8) and taking back
the Kij constants we have:

φ(p)2

∣∣(2)
x=−0

=
4∑

j=1

K
(2)
1j ψ(p)j

∣∣∣∣∣
(2)

x=−0

=

(
1

t1
θ(p)1 + 0 · λ(p)2 +

3

4
t1λ(p)1 +

1

t1

∂w

∂p

)∣∣∣∣(2)
x=−0

.
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5.3. METHOD OF 2ESLS - SECOND-ORDER PLATE THEORY

(5.25)

Taking back again Eq.(5.22) results in:

φ(p)2

∣∣(2)
x=−0

= 0. (5.26)

Because of the fact that the K
(2)
ij constants are zero for the delaminated region (see

Appendix A.1) we obtain:

φ(p)1

∣∣(1) = 3∑
j=1

K
(2)
1j ψ(p)j

∣∣∣∣∣
(1)

= 0, (5.27)

i.e. the autocontinuity is satisfied against the quadratic terms, as well.

• The continuity of stress resultants is ensured by the parameter set below:

p(l)α =

(∑
i=1..2

N
(x,xy)
i , M̂

(x,xy)
i

)
, i = 1..2. (5.28)

• The parameter sets for the continuity between the regions 1 - 1q and 1a - 1q are:

gβ =

(
w,
∂w

∂x
,
∂2w

∂x2
,
∂3w

∂x3
, u0b, u0t, v0b, v0t, θ(x)1, θ(y)1, θ(x)2, θ(y)2

)
,

gγ =
(
N

(x,xy)
1 ,N

(x,xy)
2 ,M

(x,xy)
1 ,M

(x,xy)
2

)
,

(5.29)

totaling 20 conditions.

5.3 Method of 2ESLs - Second-order plate theory

5.3.1 Undelaminated region

In the case of the SSDT the state vector of the undelaminated part contains the parameters
of vector ψ (refer to Subsection 3.1.2), the global membrane parameters u0 and v0, the
deflection w and the first derivatives of all these parameters leading to 22 elements:

Z(ud) =
(
U0nU

′
0nV0nV

′
0nX2nX

′
2nY2nY

′
2nZx2nZ

′
x2nZy2nZ

′
y2nX1nX

′
1nY1nY

′
1nZx1nZ

′
x1nZy1nZ

′
y1nWnW

′
n

)T
.

(5.30)

The size of system matrix is 22 × 22 and it contains 121 constants, it can be found in
Appendix C.1.2. Vector F becomes:

F(ud) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R̃122 ·Qn

)T
,

(5.31)

where R̃122 is a constant determined based on Eq.(3.15) and Qn is calculated exactly in the
same way as that for the Reddy TSDT.
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5.3.2 Delaminated region

In the delaminated region the number of parameters in Z is 26:

Z(d) =
(
U0tn U

′
0tn V0tn V

′
0tn X2n X

′
2n Y2n Y

′
2n Tx2n T

′
x2n Ty2n T

′
y2n

U0bn U
′
0bn V0bn V

′
0bn X1n X

′
1n Y1n Y

′
1n Tx1n T

′
x1n Ty1n T

′
y1n Wn W

′
n

)T
.

(5.32)

The structure of matrix T is shown in Appendix C.1.2, the number of constants is 93. The
vector F is calculated as:

F(d) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R̄94 ·Qn

)T
, (5.33)

where R̄94 is a constant based on the governing equation of the SSDT solution by Eq.(3.32).

5.3.3 Boundary conditions

The B.C.s for the delaminated region 1a are:

simply sup.:

{
(w, v0b, v0t, θ(y)1, θ(y)2, φ(y)1, φ(y)2, )

∣∣(1a)
x=a

= 0,

(Nx(1), Nx(2),Mx(1),Mx(2), Lx(1), Lx(2))
∣∣(1a)
x=a

= 0,

built-in:

{
(w, u0b, u0t, θ(x)1, θ(x)2, φ(x)1, φ(x)2)

∣∣(1a)
x=a

= 0,

(v0b, v0t, θ(y)1, θ(y)2, φ(y)1, φ(y)2)
∣∣(1a)
x=a

= 0,

free edge:

{
(N

(x,xy)
1 ,N

(x,xy)
2 ,M

(x,xy)
1 ,M

(x,xy)
2 ,L

(x,xy)
1 ,L

(x,xy)
2 )

∣∣∣(1a)
x=a

= 0,
2∑

i=1

Qx(i))

∣∣∣∣(1a)
x=a

= 0 ,

(5.34)

where in each case there are thirteen conditions. At the same time, for the undelaminated
region 2 we have:

simply sup.:

⎧⎪⎨
⎪⎩

(w, v0, θ(y)1, θ(y)2, φ(y)1, φ(y)2)
∣∣(2)
x=−c

= 0,

(
∑

i=1..2

Nx(i), M̂x(1), M̂x(2), L̂x(1), L̂x(2))

∣∣∣∣(2)
x=−c

= 0,

built-in:

{
(w,

2∑
i=1

Nx(i),
2∑

i=1

Nxy(i), θ(x)1, θ(y)1, θ(x)2, θ(y)2, φ(x)1, φ(y)1, φ(x)2, φ(y)2)

∣∣∣∣(2)
x=−c

= 0 ,

free edge:

{
(
∑

i=1..2

N
(x,xy)
i , M̂

(x,xy)

1 , M̂
(x,xy)

2 , L̂
(x,xy)

1 , L̂
(x,xy)

2 )

∣∣∣∣(2)
x=−c

= 0,
2∑

i=1

Qx(i)

∣∣∣∣(2)
x=−c

= 0 ,

(5.35)

defining eleven conditions in each case.

5.3.4 Continuity conditions

• The parameter set in order to ensure the continuity of displacement parameters is:

gα = (w,
∂w

∂x
, θ(x)1, θ(y)1, θ(x)2, θ(y)2, φ(x)1, φ(y)1, φ(x)2, φ(y)2). (5.36)
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5.4. METHOD OF 2ESLS - FIRST-ORDER PLATE THEORY

• To satisfy the continuity of membrane displacements the h
(l)
α and m

(l)
α parameter sets

in Eq.(5.9) involve q1 = q2 = 4 (refer to Eqs.(3.13) and (3.29)) and λ = 2 (ω = 2).

• The continuity of stress resultants is imposed by the following set:

p(l)α =

(∑
i=1..2

N
(x,xy)
i , M̂

(x,xy)
i , L̂

(x,xy)
i

)
, i = 1, 2. (5.37)

• The continuity between the 1 - 1q and 1a - 1q regions are ensured by the parameter

sets of:

gβ =

(
w,

∂w

∂x
, u0b, u0t, v0b, v0t, θ(x)1, θ(y)1, θ(x)2, θ(y)2, φ(x)1, φ(y)1, φ(x)2, φ(y)2

)
,

gγ =
(
N

(x,xy)
1 ,N

(x,xy)
2 ,M

(x,xy)
1 ,M

(x,xy)
2 ,L

(x,xy)
1 ,L

(x,xy)
2

)
.

(5.38)

5.4 Method of 2ESLs - First-order plate theory

5.4.1 Undelaminated region

According to the parameters of vector ψ in Subsection 3.1.3 the state vector becomes:

Z(ud) =
(
U0n U

′
0n V0n V

′
0n X2n X

′
2n Y2n Y

′
2n X1n X

′
1n Y1n Y

′
1n Wn W

′
n

)T
, (5.39)

viz. the vector Z contains 14 elements, the system matrix size is 14 × 14 and can be found
in Appendix C.1.3. The number of constants in T is 49. The vector F is:

F(ud) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 Q̃50 ·Qn

)T
, (5.40)

where Q̃50 is a constant determined on the base of Eq.(3.15) and Qn is calculated as it is
given in Subsection 5.2.1.

5.4.2 Delaminated region

On the base of Subsection 3.2.3 the state vector takes the form of:

Z(d) =
(
U0tn U

′
0tn V0tn V

′
0tnX2nX

′
2n Y2n Y

′
2n U0bn U

′
0bn V0bn V

′
0bnX1nX

′
1n Y1n Y

′
1nWnW

′
n

)T
,

(5.41)

as it is seen the vector Z contains 18 elements, consequently the system matrix size is 18×18
with the structure shown in Appendix C.1.3 and 45 constants. The vector F is given below:

F(d) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q̄46 ·Qn

)T
, (5.42)

where Q̄46 is a constant determined by Eq.(3.35) and Qn was given in Subsection 5.2.2.
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5.4.3 Boundary conditions

In the delaminated part 1a the B.C.s of FSDT are defined as (nine conditions):

simply supported:
{
(w, v0b, v0t, θ(y)1, θ(y)2, Nx(1), Nx(2),Mx(1),Mx(2))

∣∣(1a)
x=a

= 0 ,

built-in:
{
(w, u0b, u0t, v0b, v0t, θ(x)1, θ(y)1, θ(x)2, θ(y)2)

∣∣(1a)
x=a

= 0 ,

free edge:

{
(N

(x,xy)
1 ,N

(x,xy)
2 ,M

(x,xy)
1 ,M

(x,xy)
2

∣∣∣(1a)
x=a

= 0,
2∑

i=1

Qx(i))

∣∣∣∣(1a)
x=a

= 0 .

(5.43)

On the other hand, for the undelaminated region 2 we have seven conditions:

simply supported:

{
(w, v0, θ(y)1, θ(y)2, Nx(1) +Nx(2), M̂x(1), M̂x(2))

∣∣∣(2)
x=−c

= 0 ,

built-in:

{
(w,

∑
i=1..2

Nx(i),
∑

i=1..2

Nxy(i), θ(x)1, θ(y)1, θ(x)2, θy2)

∣∣∣∣(2)
x=−c

= 0 ,

free edge:

⎧⎨
⎩(

∑
i=1..2

N
(x,xy)
i , M̂

(x,xy)

1 , M̂
(x,xy)

2

∣∣∣∣(2)
x=−c

= 0,
2∑

i=1

Qx(i))

∣∣∣∣∣
(2)

x=−c

= 0 .

(5.44)

5.4.4 Continuity conditions

The parameter set in accordance with Eq.(5.8), Eq.(3.18) and (3.33) is:

gα = (w,
∂w

∂x
, θ(x)1, θ(y)1, θ(x)2, θ(y)2). (5.45)

For the h
(l)
α and m

(l)
α sets in Eq.(5.9) q1 = q2 = 2 and λ = 2 (ω = 2) (continuity of membrane

displacements). The set p
(l)
α is the same as Eq.(5.28), and finally the sets for Eq.(5.13) are:

gβ =

(
w,
∂w

∂x
, u0b, u0t, v0b, v0t, θ(x)1, θ(y)1, θ(x)2, θ(y)2

)
,

gγ =
(
N

(x,xy)
1 ,N

(x,xy)
2 ,M

(x,xy)
1 ,M

(x,xy)
2

)
.

(5.46)

5.5 Method of 4ESLs - Third-order plate theory

In the case of the method 4ESLs the number of parameters is in general higher than in the
case of the 2ESLs, especially for the TSDT. However, the accuracy of the model is expected
to be much better compared to that of the 2ESLs method.

5.5.1 Undelaminated region

According to Eq.(4.7) and Subsection 4.1.1 the state vector of TSDT solution contains 26
elements and becomes:

Z(ud) =
(
U0n U ′

0n V0n V ′
0n X1n X ′

1n Y1n Y ′
1n X2n X ′

2n Y2n Y ′
2n

X3n X ′
3n Y3n Y ′

3n X4n X ′
4n Y4n Y ′

4n Tx3n T ′
x3n Ty3n T ′

y3n Wn W ′
n

)T
.
(5.47)

46

dc_1254_16

Powered by TCPDF (www.tcpdf.org)



5.5. METHOD OF 4ESLS - THIRD-ORDER PLATE THEORY

The system matrix dimension is 26 × 26 and placed in Appendix C.2.1. The number of
constant in T is 89. The vector of external loads takes the following form:

F(ud) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃90 ·Qn

)T
, (5.48)

where S̃90 is a constant based on Eq.(4.11) and Qn is defined in Subsection 5.2.1.

5.5.2 Delaminated region

In Eq.(4.22) there are twelve parameters, the state vector can be given as:

Z(d) =
(
U0bn U

′
0bn V0bn V

′
0bn X1nX

′
1n Y1n Y

′
1n X2n X

′
2n Y2n Y

′
2n Tx1n T

′
x1n Ty1n T

′
y1n

U0tn U
′
0tn V0tn V

′
0tn X3nX

′
3n Y3n Y

′
3n X4n X

′
4n Y4n Y

′
4n Tx3n T

′
x3n Ty3n T

′
y3nWn W

′
n

)T
,
(5.49)

i.e. the system matrix dimension is 34× 34, its structure involving 85 constants is shown in
Appendix C.2.1. The vector of external loads takes the form of:

F(d) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̄86 ·Qn

)T
, (5.50)

where S̄86 is a constant based on TSDT (Eq.(4.25)). Qn is given in Subsection 5.2.2.

5.5.3 Boundary conditions

The B.C.s of the problem in Figure 5.1a are determined through the displacement parameters

and stress resultants in accordance with the following for the delaminated region 1a :

- simply sup.:

⎧⎪⎨
⎪⎩

(w, v0b, v0t, θ(y)1, θ(y)2, θ(y)3, θ(y)4, λ(y)1, λ(y)3)
∣∣(1a)
x=a

= 0,

(
2∑

i=1
Nx(i),

4∑
i=3

Nx(i),Mx(1),Mx(2),Mx(3),Mx(4), Px(1), Px(3))

∣∣∣∣(1a)
x=a

= 0,

- built-in:

{
(w, u0b, u0t, θ(x)1, θ(x)2, θ(x)3, θ(x)4, λ(x)1, λ(x)3)

∣∣(1a)
x=a

= 0,

(v0b, v0t, θ(y)1, θ(y)2, θ(y)3, θ(y)4, λ(y)1, λ(y)3)
∣∣(1a)
x=a

= 0,

- free edge:

⎧⎪⎪⎨
⎪⎪⎩

(M̂
(x,xy)
1 ,M̂

(x,xy)
2 ,M̂

(x,xy)
3 ,M̂

(x,xy)
4 , P̂

(x,y)
1 , P̂

(x,y)
3 )

∣∣∣(1a)
x=a

= 0,

(
∑

i=1..2
N

(x,xy)
i ,

∑
i=3..4

N
(x,xy)
i )

∣∣∣∣(1)
x=a

= 0,
∑

i=1..4
Qx(i)

∣∣∣∣(1a)
x=a

= 0,

(5.51)

and for the undelaminated region 2 :

- simply sup.:

⎧⎪⎨
⎪⎩

(w, v0, θ(y)1, θ(y)2, θ(y)3, θ(y)4, λ(y)3)
∣∣(2)
x=−c

= 0,

(
4∑

i=1
Nx(i),Mx(1),Mx(2),Mx(3),Mx(4), Px(3))

∣∣∣∣(2)
x=−c

= 0,

- built-in:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(w,
∑

i=1..4
Nx(i), θ(x)1, θ(x)2, θ(x)3, θ(x)4, λ(x)3)

∣∣∣∣(2)
x=−c

= 0,

(
∑

i=1..4
Nxy(i), θ(y)1, θ(y)2, θ(y)3, θ(y)4, λ(y)3)

∣∣∣∣(2)
x=−c

= 0,

- free edge:

⎧⎪⎪⎨
⎪⎪⎩

(M̂
(x,xy)
1 ,M̂

(x,xy)
2 ,M̂

(x,xy)
3 ,M̂

(x,xy)
4 , P̂

(x,y)
3 )

∣∣∣(2)
x=−c

= 0,

∑
i=1..4

N
(x,xy)
i

∣∣∣∣(2)
x=−c

= 0,
∑

i=1..4
Qx(i)

∣∣∣∣(2)
x=−c

= 0.

(5.52)
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5.5.4 Continuity conditions between regions (1) and (2)

The conditions between regions 1 and 2 (refer to Figure 5.1a) involve the continuity
of the displacement parameters and stress resultants. In the sequel, the continuity of the
displacement field and stress resultants are discussed separately using the parameter sets in
Eq.(5.7).

5.5.4.1 Continuity of displacement parameters

In the case of the general TSDT the continuity of the in-plane displacement is ensured only if
the constant, linear, quadratic and cubic terms in Eqs.(2.8) and (2.36)-(2.37) are exactly the
same in the delamination front (x = 0) in each ESL. Because of the parameter elimination
based on the SEKC it is not possible to match directly the constant, quadratic and cubic
terms in the displacement function from layer by layer. Only the continuity of primary
parameters can be defined between each ESL. In spite of that the continuity of the remaining
membrane, linear, quadratic and cubic terms can be ensured indirectly (automatically) if
certain conditions are met. In fact this feature of the problem has already been shown in
Subsection 5.2.4 in the course of the Reddy TSDT, however, here a more general description
is given. The requirements of automatic continuity are formulated in the form of a theorem.
We define the following set of parameters to satisfy the first in Eq.(5.7):

gα = (w,
∂w

∂x
, θ(x)1, θ(y)1, θ(x)2, θ(y)2, θ(x)3, θ(y)3, θ(x)4, θ(y)4λ(x)3, λ(y)3), (5.53)

which contains the deflection, slope and the mutual primary parameters in Eq.(4.8) and
(4.22) as a necessary condition. However the first in Eq.(5.7) is not a sufficient condition.
The sufficient conditions are presented through a theorem.

5.5.4.2 The theorem of autocontinuity (AC theorem)

AC theorem: If the displacement fields in the form of Eqs.(2.8) and (2.36)-(2.37) in a
laminated plate with delamination is developed by using the SEKC requirements and Nd ∈ N

and Nud ∈ N are the numbers of eliminated parameters in the delaminated and undelami-
nated parts, respectively, and Nd �= Nud, then the total continuity of the first-, second- and
third-order terms in the in-plane displacement functions of each ESL in the delaminated
and undelaminated plate parts - apart from those imposed by the first of Eq.(5.7) (mutual
primary parameters) - can be ensured by imposing the continuity of |Nd −Nud| ∈ N number
of parameters. These parameters are the autocontinuity (or simply AC ) parameters, which
are at the same time primary parameters too. The autocontinuity is satisfied only if along
the interface planes (interface planes 1− 2 and 3− 4 in Figures 4.1 and 4.2) except for the
delamination plane (Figures 2.2 and 2.3) the same conditions are imposed in the delaminated
and undelaminated regions. Along the delamination plane (interface 2 − 3 in Figures 4.1
and 4.2) different conditions can be applied. Figure 5.2a shows a case when the autoconti-
nuity between the delaminated and undelaminated parts is satisfied, Figure 5.2b indicates
a case when dissimilar conditions are imposed at interface 3-4 leading to a discontinuous
displacement field in the top plates.

Proof: In the case of the TSDT model Nd = 20, Nud = 22 (refer to Subsections 4.1.1
and 4.2.1), so the number of AC parameters is |Nd −Nud| = 2. The AC parameters can be
assigned based on the vector of primary parameters: the comparison of the ψ(p) vectors in
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5.5. METHOD OF 4ESLS - THIRD-ORDER PLATE THEORY

Figure 5.2: Illustration of the theorem of autocontinuity: similar (a) and dissimilar (b)
conditions are imposed at interface planes 1-2 and 3-4 of the delaminated and undelaminated
parts.

Subsections 4.1.1 and 4.2.1 (Eqs.(4.8) and (4.22)) reveals that the AC parameters are λ(x)1
and λ(y)1 in the delaminated region. The comparison of the displacement field (Eqs.(4.7) and
(4.21)) for the undelaminated and delaminated regions using the Kij constants in Appendix
B.1 results in the following sufficient conditions:

λ(p)1
∣∣(1)
x=+0

=
∑
j=1..5

K
(3)
3j ψ(p)j

∣∣∣(2)
x=−0

, p = x, y. (5.54)

The former conditions ensure the continuity of the cubic terms in the displacement fields of
regions 1 and 2 at x = 0 (Figure 5.2a). Considering the fact that the parameters in gα by
Eq.(5.53) are continuous between regions 1 and 2 and by using the matrix elements given
in Appendix B.1 (TSDT) it is possible to have the following expression for λ(p)1 at x = +0:

λ(p)1
∣∣(1)
x=+0

=
4

3

(
1

t1 + t2

[
θ(p)1

t1 + 2t2
−
θ(p)2

t2

]
+

(2t3 + t4)θ(p)3 − t3θ(p)4

t2(t3 + t4)(t1 + 2t2)

)
+
(2t3 + t4)t3λ(p)3

t2(t1 + 2t2)

∣∣∣∣(2)
x=−0

.

(5.55)

Taking the former condition back into the quadratic part of the displacement field given by
Eq.(4.7) of each ESL of the undelaminated part 2 yields the following at x = −0:

∑
j=1..5

(
K

(2)
1j ψ(p)j

)∣∣∣∣∣∣
(2)

x=−0

=

(
1

(t1 + t2)

[
−
(3t2 + 2t1)θ(p)1

(t1 + 2t2)
+

(t1 + 2t2)θ(p)2

t2

]

−
(2t3 + t4)θ(p)3 − t3θ(p)4

t2(t3 + t4)(t1 + 2t2)

)
+
(2t3 + t4)t3λ(p)3

t2(t1 + 2t2)

∣∣∣∣(2)
x=−0

,

(5.56)
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∑
j=1..5

(
K

(2)
2j ψ(p)j

)∣∣∣∣∣
(2)

x=−0

=

(
−1

(t1 + t2)

[
t2θ(p)1

(t1 + 2t2)
+
t1θ(p)2
t2

]
+

+
(t1 + t2)((2t3 + t4)θ(p)3 − t3θ(p)4)

t2(t3 + t4)(t1 + 2t2)

)
+

3

4

(2t3 + t4)(t1 + t2)t3λ(p)3
t2(t1 + 2t2)

∣∣∣∣(2)
x=−0

,

(5.57)

∑
j=1..5

(
K

(2)
3j ψ(p)j

)∣∣∣∣∣
(2)

x=−0

=
−θ(p)3 + θ(p)4

(t3 + t4)
− 3

4
(t3 + t4)λ(p)3

∣∣∣∣∣∣
(2)

x=−0

, (5.58)

∑
j=1..5

(
K

(2)
4j ψ(p)j

)∣∣∣∣∣
(2)

x=−0

=
−θ(p)3 + θp(4)

(t3 + t4)
+

3

4
(t3 + t4)λ(p)3

∣∣∣∣∣∣
(2)

x=−0

. (5.59)

Simultaneously, by taking back Eq.(5.55) into the displacement functions of every ESLs of
the delaminated part 1 defined by Eq.(4.21) we have at x = +0:

∑
j=1..6

(
K

(2)
1j ψ(p)j

)∣∣∣∣∣∣
(1)

x=+0

=

(
1

(t1 + t2)

[
−
(3t2 + 2t1)θ(p)1

(t1 + 2t2)
+

(t1 + 2t2)θ(p)2

t2

]

−
(2t3 + t4)θ(p)3 − t3θ(p)4

t2(t3 + t4)(t1 + 2t2)

)
+
(2t3 + t4)t3λ(p)3

t2(t1 + 2t2)

∣∣∣∣(1)
x=+0

,

(5.60)

∑
j=1..6

(
K

(2)
2j ψ(p)j

)∣∣∣∣∣∣
(1)

x=+0

=

(
−1

(t1 + t2)

[
t2θ(p)1

(t1 + 2t2)
+
t1θ(p)2

t2

]
+

+
(t1 + t2)((2t3 + t4)θ(p)3 − t3θ(p)4)

t2(t3 + t4)(t1 + 2t2)

)
+

3

4

(2t3 + t4)(t1 + t2)t3λ(p)3

t2(t1 + 2t2)

∣∣∣∣(1)
x=+0

,

(5.61)

∑
j=1..6

(
K

(2)
3j ψ(p)j

)∣∣∣∣∣∣
(1)

x=−0

=
−θ(p)3 + θ(p)4

(t3 + t4)
− 3

4
(t3 + t4)λ(p)3

∣∣∣∣∣∣∣
(1)

x=−0

, (5.62)

∑
j=1..6

(
K

(2)
4j ψ(p)j

)∣∣∣∣∣∣
(1)

x=+0

=
−θ(p)3 + θ(p)4

(t3 + t4)
+

3

4
(t3 + t4)λ(p)3

∣∣∣∣∣∣∣
(1)

x=+0

. (5.63)

Obviously, the right-hand sides of Eqs.(5.56)-(5.59) and Eqs.(5.60)-(5.63) in pairs are the
same. Considering the continuity of the parameters in Eq.(5.53) by the first of Eq.(5.7) it
can be seen that the continuity of the quadratic term in the displacement functions of regions
1 and 2 is automatically satisfied. The same proof has been given for the Reddy TSDT
in Subsection 5.2.4. We note that in accordance with Subsections 3.1.1 and 3.2.1 Nud = 8
and Nd = 4, and so four conditions were imposed by Eq.(5.22). Despite there are more
autocontinuity parameters than |Nd −Nud|, only |Nd −Nud| number of conditions should be
imposed. In other words, out of λ(p)2, λ(p)1, θ(p)2 (6 conditions) we have to choose four.
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5.5. METHOD OF 4ESLS - THIRD-ORDER PLATE THEORY

Consequence (of the AC theorem): If the continuity of linear terms (rotations) in
the displacement field in each ESL given by Eqs.(2.8) and (2.36)-(2.37) are continuous be-
tween region 1 and 2 , moreover the continuity of quadratic and cubic terms of each ESL is
imposed using the AC parameters (Eq.(5.54)), then the continuity of the membrane displace-
ment components between the top plates (as well as the bottom plates) of the delaminated
and undelaminated regions can be ensured by imposing the equality between the membrane
(constant) displacement terms of only a single ESL in the delaminated part 1 and a single
one in the undelaminated part 2 , but not every ESLs. The ESLs can be chosen optionally,
however the chosen ESLs should be in the same through-thickness position in the delami-
nated and undelaminated plate regions. In this case the continuity of the membrane parts
in the other ESLs is satisfied automatically. The consequence of the theorem is expressed by
Eq.(5.9). In the TSDT we choose the first (in the bottom layer) and third (in top layer, i.e.
λ = 3 and ω = 4 in Eq.(5.9) ) ESLs to impose the continuity of the membrane displacements
using the equations below:(

u0b
v0b

)
+

∑
j=1..6

K
(0)
1j

(
ψ(x)j

ψ(y)j

)∣∣∣∣∣∣
(1)

x=+0

=

(
u0
v0

)
+

∑
j=1..5

K
(0)
1j

(
ψ(x)j

ψ(y)j

)∣∣∣∣∣∣
(2)

x=−0

,

(
u0t
v0t

)
+

∑
j=1..6

K
(0)
3j

(
ψ(x)j

ψ(y)j

)∣∣∣∣∣∣
(1)

x=+0

=

(
u0
v0

)
+

∑
j=1..5

K
(0)
3j

(
ψ(x)j

ψ(y)j

)∣∣∣∣∣∣
(2)

x=−0

.

(5.64)

Eq.(5.64) is the fourth condition in Eq.(5.7) (h
(l)
α and m

(l)
α ). The autocontinuity theorem is

also valid for the SSDT. The only difference is that the K
(3)
ij constants are zero.

5.5.4.3 Continuity of stress resultants

The continuity conditions can be defined based on the equivalent stress resultants by
Eqs.(4.12)-(4.13) and by Eqs.(4.26)-(4.27):

p(l)α = (
∑
i=1..4

N
(x,xy)
i , M̂

(x,xy)
i , P̂

(x,y)
3 ) | (l), i = 1..4. (5.65)

5.5.5 Continuity between regions (1)-(1q) and (1q)-(1a)

The continuity between regions 1 - 1q and 1q - 1a (see Figure 5.1a) can be imposed by

defining the sets of parameters below:

gβ = (u0b, u0t, v0b, v0t, w,
∂w

∂x
, θ(x)i, θ(y)i, λ(x)1, λ(y)1, λ(x)3, λ(y)3), i = 1..4,

gγ =

(∑
i=1..2

N
(x,xy)
i ,

∑
i=3..4

N
(x,xy)
i , M̂

(x,xy)

i ,P
(x,xy)
1 ,P

(x,xy)
3

)
, i = 1..4.

(5.66)

The summary of the equations results in: Eq.(5.51)-(5.52) means 30 B.C.s, Eqs.(5.53),
(5.54), (5.64) and (5.65) yield 30 conditions between regions 1 and 2 . Eq.(5.66) provides
2× 34 conditions. That means 30+30+34+34=128 conditions altogether in the case of the
TSDT solution of problem a in Figure 5.1a. Problem b in Figure 5.1b can be solved
similarly, therefore the details are not given. The B.C.s and the C.C.s for the FSDT and
SSDT models can be defined similarly, these are discussed in the sequel.
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Definition: Over-constrained plate model. If the displacement fields given by Eqs.(2.8)
and (2.36)-(2.37) are developed by using the SEKC requirements and the resulting equilib-
rium equations by the basic theory of elasticity, as well as the solution of the corresponding
boundary value problem do not make it possible to provide the continuity of the equivalent
bending (M̂x) and twisting moments (M̂xy), between each ESL, moreover the sum of in-plane
normal (Nx) and shear forces (Nxy) of the delaminated and undelaminated plate regions,
then the model becomes over-constrained. The result of the over-constraining is the bad
estimation of the displacement, strain and stress fields.

Definition: Well-constrained plate model. If the solution of the boundary value prob-
lem (the number of constants in the solutions functions) makes it possible to provide the
continuity of the of the equivalent bending (M̂x) and twisting moments (M̂xy) between each
ESL, moreover the sum of in-plane normal (Nx) and shear forces (Nxy) of the delaminated
and undelaminated plate regions, then the model is well-constrained.

The models proposed in this thesis are well-constrained models. If we impose even the
dynamic B.C.s (Szekrényes (2014c)), then in the delaminated portion there are four traction-
free surfaces, leading to eight further conditions. Moreover in the undelaminated part, there
are two traction-free surfaces involving four dynamic B.C.s. Due to these conditions the
number of parameters that should be eliminated from Eqs.(4.7) and (4.21) leads to an over-
constrained model with incorrect results (similar to the locking phenomenon (Reddy (2004))),
although the autocontinuity is satisfied even in this case. These aspects are also true for
the SSDT solution. That is the reason for why the dynamic boundary conditions are not
imposed at the traction-free surfaces of the plate.

5.6 Method of 4ESLs - Second-order plate theory

5.6.1 Undelaminated region

According to Eq.(4.14) the state vector of SSDT solution contains the following 22 elements:

Z(ud) =
(
U0nU

′
0nV0nV

′
0nX2nX

′
2nY2nY

′
2nTx2nT

′
x2nTy2nT

′
y2nX4nX

′
4nY4nY

′
4nTx4nT

′
x4nTy4nT

′
y4nWnW

′
n

)T
.

(5.67)

The vector of external loads takes the following form:

F(ud) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R̃122 ·Qn

)T
, (5.68)

where R̃122 is a constant determined by (Eq.(4.11)) and Qn is defined in Subsection 5.2.1.
The system matrix T(ud) is a 22× 22 one and its structure is exactly the same as that of the
SSDT with 2ESLs, placed in Appendix C.1.2.

5.6.2 Delaminated region

In Eq.(4.28) there are six parameters, considering the membrane displacements and the
deflection as further parameters, the state vector can be defined as:

Z(d) =
(
U0bnU

′
0bnV0bnV

′
0bnX2nX

′
2nY2nY

′
2nTx2nT

′
x2nTy2nT

′
y2nU0tnU

′
0tnV0tnV

′
0tnX4nX

′
4nY4nY

′
4nWnW

′
n

)T
.
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(5.69)

The vector of external loads takes the form of:

F(d) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃90 ·Qn

)T
, (5.70)

where S̄90 is a constant based on the state space model of the SSDT solution (using
Eq.(4.25)). It can be seen that in this case the size of the system matrices is the same
for the undelaminated part as the delaminated one (T(d), 22 × 22), even the structures are
the same (see the matrix of the undelaminated part for the 2ESLs solution in Appendix
C.1.2).

5.6.3 Boundary conditions

The B.C.s of the SSDT solution can be determined based on Subsection 4.2.2 and are sum-
marized as follows in the delaminated part 1a (refer to Figure 5.1a):

simply supported:

⎧⎨
⎩

(w, v0b, v0t, θ(y)2, θ(y)4, φ(y)4)
∣∣(1a)
x=a

= 0,

(
2∑

i=1

Nx(i),
4∑

i=3

Nx(i), M̂x(12), M̂x(34), Lx(4))
(1a)

∣∣∣∣
x=a

= 0,

built-in:

{
(w, u0b, u0t, θ(x)2, θ(x)4, φ(x)4)

∣∣(1a)
x=a

= 0,

(v0b, v0t, θ(y)2, θ(y)4, φ(y)4)
∣∣(1a)
x=a

= 0,

free edge:

⎧⎪⎪⎨
⎪⎪⎩

(M̂
(x,xy)

12 , M̂
(x,xy)

34 , L̂
(x,y)

1234 )
∣∣∣(1a)
x=a

= 0,

(
∑

i=1..2

N
(x,xy)
i ,

∑
i=3..4

N
(x,xy)
i )

∣∣∣∣(1)
x=a

= 0,
∑

i=1..4

Qx(i)

∣∣∣∣(1a)
x=a

= 0.

(5.71)

According to Subsection 4.1.2 the B.C.s of the undelaminated part 2 are (Figure 5.1a):

simply supported:

⎧⎪⎨
⎪⎩

(w, v0, θ(y)2, φ(y)2, θ(y)4, φ(y)4)
∣∣(2)
x=−c

= 0,

(
4∑

i=1

Nx(i), M̂x(12), M̂x(34), Lx(2), Lx(4))
(2)

∣∣∣∣
x=−c

= 0,

built-in:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(w,
∑

i=1..4

Nx(i), θ(x)2, φ(x)2, θ(x)4, φ(x)4)

∣∣∣∣(2)
x=−c

= 0,

(
∑

i=1..4

Nxy(i), θ(y)2, φ(y)2, θ(y)4, φ(y)4)

∣∣∣∣(2)
x=−c

= 0,

free edge:

⎧⎪⎪⎨
⎪⎪⎩

(M̂
(x,xy)

12 , M̂
(x,xy)

34 , L̂
(x,y)

12 , L̂
(x,y)

34 )
∣∣∣(2)
x=−c

= 0,

∑
i=1..4

N
(x,xy)
i

∣∣∣∣(2)
x=−c

= 0,
∑

i=1..4

Qx(i)

∣∣∣∣(2)
x=−c

= 0.

(5.72)

5.6.4 Continuity conditions

The parameter sets for Eq.(5.7) based on Eqs.(4.14)-(4.17) become:

g(l)α = (w,
∂w

∂x
, θ(x)2, θ(y)2, φ(x)2, φ(y)2, θ(x)4, θ(y)4)|(l),

p(l)α = (M̂
(x,xy)
12 , M̂

(x,xy)
34 , L̂

(x,y)
1234 ,

∑
i=1..4

N
(x,xy)
i ) | (l).

(5.73)
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The continuity of the membrane displacement is imposed by Eq.(5.9), wherein q1 = 3 and
q2 = 4 and λ = 3 (ω = 4). Moreover, the continuity of the second-order terms is imposed by
(autocontinuity condition):

φ(p)2

∣∣(2)
x=−0

=
∑
j=1..3

K
(2)
2j ψ(p)j

∣∣∣(1)
x=+0

, p = x, y. (5.74)

The continuity between regions 1 - 1q and 1q - 1a (see Figure 5.1a) can be imposed by

defining the sets of parameters below:

gβ = (u0b, u0t, v0b, v0t, w,
∂w

∂x
, θ(x)2, θ(y)2, θ(x)4, θ(y)4, φ(x)4, φ(y)4),

g(l)γ = (M̂
(x,xy)
12 , M̂

(x,xy)
34 , L̂

(x,y)
1234 ,

∑
i=1..2

N
(x,xy)
i ,

∑
i=3..4

N
(x,xy)
i ) | (l),

(5.75)

where L̂
(x,y)
1234 = L̂

(x,y)
12 + L̂

(x,y)
34 in accordance with Eq.(4.17).

5.7 Method of 4ESLs - First-order plate theory

5.7.1 Undelaminated region

According to Eq.(4.18) and Subsection 4.1.3 the state vector of the FSDT solution contains
22 elements and becomes:

Z(ud) =
(
U0nU

′
0nV0nV

′
0nX1nX

′
1nY1nY

′
1nX2nX

′
2nY2nY

′
2nX3nX

′
3nY3nY

′
3nX4nX

′
4nY4nY

′
4nWnW

′
n

)T
.

(5.76)

The vector of external loads takes the following form:

F(ud) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R̃122 ·Qn

)T
, (5.77)

where R̃122 is a constant based on Eq.(4.11) and Qn is defined in Subsection 5.2.1. The
system matrix T(ud) has the same structure and size (22 × 22) as the one for the SSDT
solution by the method of 2ESLs. This matrix is placed in Appendix C.1.2.

5.7.2 Delaminated region

In Eq.(4.32) there are eight parameters, considering the membrane displacements and the
deflection as further parameters, the state vector can be defined as:

Z(d) =
(
U0bn U ′

0bn V0bn V ′
0bn X1n X ′

1n Y1n Y ′
1n X2n X ′

2n Y2n Y ′
2n

U0tn U ′
0tn V0tn V ′

0tn X3n X ′
3n Y3n Y ′

3n X4n X ′
4n Y4n Y ′

4n Wn W ′
n

)T
,
(5.78)

The vector of external loads takes the form of:

F(d) =
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R̄94 ·Qn

)T
, (5.79)

where R̄94 is a constant based on the state space model of the TSDT solution (Eq.(4.25)).
The matrix T(d) has again the same structure and size (26 × 26) as the one for the SSDT
and can be found in Appendix C.1.2.
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5.7.3 Boundary conditions

The B.C.s of the FSDT model can be determined based on Subsection 4.2.3 and are sum-
marized as follows in the delaminated part 1a (refer to Figure 5.1a):

simply supported:

⎧⎨
⎩

(w, v0b, v0t, θ(y)1, θ(y)2, θ(y)3, θ(y)4)
∣∣(1a)
x=a

= 0,

(
2∑

i=1

Nx(i),
4∑

i=3

Nx(i),Mx(1),Mx(2),Mx(3),Mx(4))
(1a)

∣∣∣∣
x=a

= 0,

built-in:

{
(w, u0b, u0t, θ(x)1, θ(x)2, θ(x)3, θ(x)4)

∣∣(1a)
x=a

= 0,

(v0b, v0t, θ(y)1, θ(y)2, θ(y)3, θ(y)4)
∣∣(1a)
x=a

= 0,

free edge:

⎧⎪⎪⎨
⎪⎪⎩

(M̂
(x,xy)

1 , M̂
(x,xy)

2 , M̂
(x,xy)

3 , M̂
(x,xy)

4 )
∣∣∣(1a)
x=a

= 0,

(
∑

i=1..2

N
(x,xy)
i ,

∑
i=3..4

N
(x,xy)
i )

∣∣∣∣(1a)
x=a

= 0,
∑

i=1..4

Qx(i)

∣∣∣∣(1a)
x=a

= 0.

(5.80)

In accordance with Subsection 4.1.3 the B.C.s of the undelaminated part 2 are (Figure
5.1a):

simply supported:

⎧⎪⎨
⎪⎩

(w, v0, θ(y)1, θ(y)2, θ(y)3, θ(y)4)
∣∣(2)
x=−c

= 0,

(
4∑

i=1

Nx(i),Mx(1),Mx(2),Mx(3),Mx(4))
(2)

∣∣∣∣
x=−c

= 0,

built-in:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(w,
∑

i=1..4

Nx(i), θ(x)1, θ(x)2, θ(x)3, θ(x)4)

∣∣∣∣(2)
x=−c

= 0,

(
∑

i=1..4

Nxy(i), θ(y)1, θ(y)2, θ(y)3, θ(y)4)

∣∣∣∣(2)
x=−c

= 0,

free edge:

⎧⎪⎪⎨
⎪⎪⎩

(M̂
(x,xy)

1 , M̂
(x,xy)

2 , M̂
(x,xy)

3 , M̂
(x,xy)

4 )
∣∣∣(2)
x=−c

= 0,

∑
i=1..4

N
(x,xy)
i

∣∣∣∣(2)
x=−c

= 0,
∑

i=1..4

Qx(i)

∣∣∣∣(2)
x=−c

= 0.

(5.81)

5.7.4 Continuity conditions

The parameter set for Eq.(5.7) based on Eqs.(4.18) and (4.32) becomes:

gα = (w,
∂w

∂x
, θ(x)1, θ(y)1, θ(x)2, θ(y)2, θ(x)3, θ(y)3, θ(x)4, θ(y)4),

p(l)α = (M̂
(x,xy)
i ,

∑
i=1..4

N
(x,xy)
i ) | (l), i = 1..4.

(5.82)

The continuity of the membrane displacements is satisfied through Eq.(5.9), wherein for the
FSDT solution q1 = q2 = 4 and λ = 3 (ω = 4). Finally, the continuity between regions

1 - 1q and 1q - 1a (see Figure 5.1a) can be imposed by:

gβ = (u0b, u0t, v0b, v0t, w,
∂w

∂x
, θ(x)i, θ(y)i), i = 1..4,

gγ =

(
M̂xi,

∑
i=1..2

Nxi,
∑
i=3..4

Nxi, M̂xyi,
∑
i=1..2

Nxyi,
∑
i=3..4

Nxyi

)
, i = 1..4.

(5.83)
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6
Results - displacement and stress

6.1 Geometry, material, load and finite element model

In this section laminated orthotropic composite plates with simply supported B.C.s and
two different geometries are analyzed in accordance with Figures 5.1a and 5.1b. The data
of problem a depicted in Figure 5.1a are: a = 105 mm (delamination length), c = 45
mm (undelaminated length), b = 100 and 160 mm (plate widths), tt + tb = 4.5 mm (plate
thickness), Q0 = 1000 N, xQ = 31 mm, yQ = 50 mm and yQ = 80 mm (point of action
coordinates of Q0), d0 = 1 mm. For problem b in Figure 5.1b the data are: a = 55 mm
(delamination length), c = 35 mm (undelaminated length), b = 60 and 90 mm (plate widths),
tt + tb = 4.5 mm (plate thickness), Q0 = 10000 N, xQ = 11 mm, yQ = 30 mm and yQ = 45
mm (point of action coordinates of Q0), d0 = 1 mm. The problem was solved by replacing
the concentrated load by distributed force on the distance of 2d0. The plate is made out
of a carbon/epoxy material, the lay-up of the undelaminated part was [±45f/0/ ± 45f2/0̄]S
(superscript f means that the ply is woven fabric). A single layer was 0.5 mm thick, refer to
Figure 2.1. The properties (moduli and Poisson’s ratios) of the individual laminae are given
by Table 6.1 (Kollár and Springer (2003)). Four different positions of the delamination
was studied, these were assigned as cases I, II, III and IV and are shown in Figure 2.1.
The computation was performed in the code MAPLE (Garvan (2002); Kamerich (2011))
in accordance with the following points. The stiffness matrices of each single layer of the
plate were determined based on the elastic properties of the laminae given in Table 6.1 using
Eq.(2.22). The problems in Figures 5.1a and 5.1b were solved by varying the number of terms
(N) in the trial function by creating a for-do cycle. Based on the displacement parameters
the stress resultants and the stresses were calculated. The convergence of the results was
analyzed and it was found that after the 13th trial function term there was no change in the
displacement field, stresses, forces and energy release rates.

In order to verify the analytical results finite element (FE) analyses were carried out.
The 3D finite element models of the plate with different delamination positions were created
in the code ANSYS 12 using 8 node linear SOLID elements. The model for problem b is
shown in Figure 6.1. The global element size was 2 mm × 2 mm × 0.5 mm. In the vicinity
of the crack tip a refined mesh was constructed including trapezoid shape elements. The
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6.1. GEOMETRY, MATERIAL, LOAD AND FINITE ELEMENT MODEL

Table 6.1: Elastic properties of single carbon/epoxy composite laminates.

Ex Ey Ez Gyz Gxz Gxy νyz νxz νxy
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [-] [-] [-]

±45f 16.39 16.39 16.4 5.46 5.46 16.4 0.5 0.5 0.3
0 148 9.65 9.65 4.91 4.66 3.71 0.27 0.25 0.3

Z displacements of the contact nodes over the delaminated surface were imposed to be the
same. The displacements in the Z direction were constrained at the edges of the model, the
X and Y displacements were constrained in order to eliminate the rigid body motion of the
model. The enlarged views in the vicinity of the delamination front are also shown in Figure
6.1. The position of the delamination was varied in the through thickness direction, these
were assigned as cases I, II, III and IV. The mode-II and mode-III ERRs were calculated
by the virtual crack closure technique (VCCT) (e.g.: Bonhomme et al. (2010); Raju et al.
(1988)). The scheme and the relevant equations can be found in Appendix D. The size
of the crack tip elements were Δx = 0.25 mm, Δy = 2.0 mm and Δz = 0.25 mm. The
delamination tip elements and the global mesh resolution were chosen in accordance with
recommendations of the literature (Johnston et al. (2014); Mehrabadi (2014); Raju et al.
(1988)). The main aspect is that Δx and Δz should be between the one quarter and one

case I.

1

case II.

case III.

case IV.

delamination

Z

X

Y

delamination
front

1

1

a

c

b

Figure 6.1: 3D FE model of a delaminated composite plate (problem b in Figure 5.1b).
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CHAPTER 6. RESULTS - DISPLACEMENT AND STRESS

half of the thickness of a single layer (0.5 mm, refer to Figure 2.1 and Figure D.1). In this
case convergent results can be expected for the ERRs. For the determination of GII and
GIII along the delamination front a so-called MACRO was written in the ANSYS Design
and Parametric Language (ADPL). The MACRO gets the nodal forces and displacements
at the crack tip and at each pair of nodes, respectively. Then by defining the size of crack
tip elements it determines and plots the ERRs at each node along the delamination front.

6.2 Method of 2ESLs

6.2.1 Solution of problem (a)

case I, =160b

case II, =100b

-40
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problem a
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Figure 6.2: Comparison of deflections at Y = b/2 calculated from FE analysis, FSDT, SSDT
and Reddy TSDT using 2ESLs for problem a and b in Figure 5.1 (Compare to Fig. 6.21).

In this subsection the analytical and numerical results are compared to each other. The
analyses were carried out by using the present TSDT (Reddy), SSDT and FSDT solutions,
respectively. Four cases were investigated (cases I-IV, refer to Figure 2.1), simultaneously
two different plate widths were applied. The corresponding geometry and lay-up are always
indicated in the legend of the subsequent figures.

In Figure 6.2 the deflections calculated by the FE model and the FSDT, SSDT and Reddy
TSDT are plotted. The displacements were determined along the middle line (Y = b/2, refer
to Figure 5.1) of the plates. For problem a it is seen that the Reddy TSDT involves a little
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6.2. METHOD OF 2ESLS

Reddy

Figure 6.3: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem a in Figure 5.1, case I, b = 160 mm (Compare to Fig. 6.22).

Reddy

Figure 6.4: Distribution of the shear stresses (τxz, τyz) over the thickness, problem a in
Figure 5.1, case I, b = 160 mm. Solution by constitutive equations (Compare to Fig. 6.23).

stiffnening (i.e. locking) and the displacements are below those by FE solution, on the
contrary the FSDT and SSDT solutions agree well with the numerical set of points.

Figure 6.3 depicts further results for case I with b=160 mm. The in-plane displacements
and the stresses were evaluated at cross sections located on the delamination front (refer to
the legends again). It can be seen in Figure 6.3 that the displacement distributions agree
very well, in contrast the stress distributions by the Reddy TSDT, SSDT and FSDT do
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CHAPTER 6. RESULTS - DISPLACEMENT AND STRESS

Reddy

Figure 6.5: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem a in Figure 5.1, case II, b = 100 mm (Compare to Fig. 6.24).

Reddy

�12 �10 �8 �6 �4 �2 0 2

Figure 6.6: Distribution of the shear stresses (τxz, τyz) over the thickness, problem a in
Figure 5.1, case II, b = 100 mm. Solution by constitutive equations (Compare to Fig. 6.25).

not contain a so significant peak than that the FE solution gives. This aspect takes place
in each case and can be explained by the singular nature of the FE stress field around
the delamination tip: it is well-known that by increasing the mesh resolution the stresses
become higher and higher. On the contrary the analytical solution is nonsingular and can
be considered as a better solution than the FE one. An immediate observation in Figure
6.3 is that there is a misalignment between the numerically and analytically determined u
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6.2. METHOD OF 2ESLS

Reddy

Figure 6.7: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem a in Figure 5.1, case III, b = 160 mm (Compare to Fig. 6.26).

Reddy

Figure 6.8: Distribution of the shear stresses (τxz, τyz) over the thickness, problem a in
Figure 5.1, case III, b = 160 mm. Solution by constitutive equations (Compare to Fig.6.27).

and v displacement distributions, more clearly, the intersection point of the displacement
distributions by FEM are not the same as that of the analytical solution. It has to be
mentioned that we can compare only the slope of the solutions, because the intersection
point with the horizontal axis slightly depends upon the boundary conditions related to
the in-plane displacements. The rigid body motion of the plate in the X − Y plane (refer
to Figure 6.1) can be eliminated in several different ways, e.g. in the present analysis the
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Reddy

�50 �40 �30 �20 �10 0 10 20 30

�0.05 �0.025 0 0.025 0.05

Figure 6.9: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem a in Figure 5.1, case IV, b = 100 mm (Compare to Fig. 6.28).

�5 �4 �3 �2 �1 0 1 2 3 4 5 6 7 �40 �30 �20 �10 0

Reddy

Figure 6.10: Distribution of the shear stresses (τxz, τyz) over the thickness, problem a in
Figure 5.1, case IV, b = 100 mm. Solution by constitutive equations (Compare to Fig. 6.29).

following conditions were imposed: X = a, Y = 0, Z = −(tt + tb)/2 : u = 0, v = 0 and
X = a, Y = b, Z = −(tt + tb)/2 : u = 0. In the case of the normal stresses σx and σy the
average stress was calculated, which means that the stress in region 1 at x = +0 and the
one in region 2 at x = −0 were added and divided by two. For σx the FE solution indicates
a peak in the plane of the delamination, the peak by Reddy TSDT solution is significantly
less. The FSDT approximation is quite similar to the Reddy TSDT for case I. For σy each
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Figure 6.11: Distribution of the shear strains γxz ((a) and (b)) and γyz ((c) and (d)) by Reddy
TSDT at the transition between the delaminated and undelaminated regions at Y=b/2 and
Y=0 (case I, b=100 mm), ΩD is the delamination plane (Compare to Fig. 6.30).

solution agrees more or less.

The approximation of shear stresses is again very contradictory as it is shown in Figure
6.4. This solution was obtained by the analytical models directly, called as the solution by
constitutive equations. The FE solution shows a peak in the delamination plane. The major
difference between the analytical solutions is that the shear stress by FSDT and SSDT does
not vanish at the top and bottom boundaries (the traction-free condition is violated). In
contrast, the Reddy TSDT does satisfy the dynamic boundary conditions, the shear strains
(and so the stresses) vanish even at the delamination tip. Although there are differences,
the area under the curves is approximately the same, which is in fact proportional to the
shear force.

The further cases (II, III and IV) are presented in Figures 6.5-6.10. In Figure 6.5 the
three analytical solutions agree very well with respect to each field in case II. The shear
stresses by constitutive equations are plotted in Figure 6.6. The conclusions are similar to
those for case I. Apparently, the shear stresses are better approximated by Reddy TSDT
than by SSDT and FSDT and it is the only solution that satisfies the dynamic conditions.

In case III (Figure 6.7) the displacements and the normal stresses agree well again,
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(1)
1 1

(1)
1 1

(2)
2 2

(2)
2 2

Figure 6.12: Distribution of the interlaminar shear stress by Reddy TSDT for case I, b=160
mm, τ

(2)
xz (a), τ

(1)
xz (b), τ

(2)
yz (c) and τ

(1)
yz (d) (Compare to Fig. 6.31).

however in Figure 6.8 the direction of τxz from Reddy TSDT, SSDT and FSDT in the top
plate does not agree with the FE result. The stiffening effect in Reddy TSDT is clearly seen
in Figure 6.9 regarding u and v, even the stresses are better predicted by the FDST and
SSDT theories. Apart from that in case IV (Figure 6.10) the shear stresses are a little bit
overpredicted in the top plate again by each theory.

Figure 6.11 plots the distribution of the shear strains by Reddy TSDT in the neigh-
borhood of the delamination tip in case I if b = 100 mm. As expected the shear strains
change suddenly at the transition between the delaminated and undelaminated plate por-
tions. It has to be mentioned that the condition of shear strain continuity (Eq.(3.3)) in the
delamination plane of the undelaminated part is very important to obtain accurate ERR
distributions (see later). In the case of the FSDT the shear strains (and so the stresses)
are discontinuous in the through-thickness direction, this leads to significant errors if the
delamination gets closer to the top boundary surface of the plate. The results are similar in
case III (see Appendix E), as well. The distributions of the interlaminar shear stresses (τxz
and τyz) calculated by Reddy TSDT in the delamination plane of the undelaminated region
are plotted in Figure 6.12 for case I with b=160 mm. Satisfying the basic concepts of Reddy
plates the shear stresses vanish along the delamination tip, which is followed by a sudden
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Reddy

�0.04 0.0�0.02 0.02 0.04 �3000 0�2000 1000�1000

Figure 6.13: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem b in Figure 5.1, case I, b = 60 mm (Compare to Fig. 6.32).

Reddy

�200 0�150 50�100�100 2000 300100 400 �50

Figure 6.14: Distribution of the shear stresses (τxz, τyz) over the thickness, problem b in
Figure 5.1, case I, b = 60 mm. Solution by constitutive equations (Compare to Fig. 6.33).

increase and a subsequent decay. Although it is possible to obtain these distributions by
the FE model too, the post-processing (plotting) would be a lengthy process, the analytical
solution is more reasonable in this case, especially because of the singular (and so the not
invariant) nature of the FE solution.
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0.0-0.02 0.02 0.04 0�2000 1000�1000

0�600 200�200�400 400 600

0.06 2000

Reddy

90
90
90

90

Figure 6.15: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem b in Figure 5.1, case II, b = 90 mm (Compare to Fig. 6.34).

�80 0�60 60�402000 300100 400 �20

Reddy
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90
90

90

�200 �100 4020

Figure 6.16: Distribution of the shear stresses (τxz, τyz) over the thickness, problem b in
Figure 5.1, case II, b = 90 mm. Solution by constitutive equations (Compare to Fig. 6.35).

6.2.2 Solution of problem (b)

The problem b in Figure 5.1b is also solved by the present analytical models. For problem
a the FSDT and SSDT analytical solution agreed very well with the FE solution, the Reddy
TSDT showed some stiffening. The main aim to solve problem b is to assess the accuracy
of the models for a plate with smaller size and shorter delamination, respectively. Since each
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Reddy

0.0-0.06 0.02 0.04 0.06-0.04-0.02 0.08 0.10 0�1000 500�500

0�600 200�200�400 400 600

1000 1500

Figure 6.17: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem b in Figure 5.1, case III, b = 60 mm (Compare to Fig. 6.36).

Reddy

0�150 50�100�100 2001000 500 �50200 200 600

Figure 6.18: Distribution of the shear stresses (τxz, τyz) over the thickness, problem b in
Figure 5.1, case III, b = 60 mm. Solution by constitutive equations (Compare to Fig. 6.37).

theory is capable to model thick plates it is expected to find them suitable even for problem
b .

For problem b the deflections are plotted in Figure 6.2b: the locking phenomenon is
significant in the case of Reddy TSDT, especially for case IV. The FSDT and SSDT solu-
tions seem to be more reliable. Figure 6.13 presents the displacements and stresses in case
I. It is clear that the perturbation because of the delamination is significantly stronger than
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-2000 -1000 0 1000

�0.3 �0.2 0 0.2 0.3

Reddy

90
90
90

90

�0.1 0.1

�0.15 �0.10 0 0.10 0.15�0.05 0.05

0 200-400 -200 400

Figure 6.19: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem b in Figure 5.1, case IV, b = 90 mm (Compare to Fig. 6.38).
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Figure 6.20: Distribution of the shear stresses (τxz, τyz) over the thickness, problem b in
Figure 5.1, case IV, b = 90 mm. Solution by constitutive equations (Compare to Fig. 6.39).

in problem a . The SSDT is the best in approximating the shape of the FE solution for
u, however, the curve obtained by Reddy theory approximates better the values of the FE
solution over the whole plate thickness. Similarly to problem a , the v displacement com-
ponent is well approximated by the analytical models. The difference between the stresses
by analytical models is not significant, the FE model provides a peak in the plane of the
delamination.
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The shear stress distributions from constitutive equations are plotted in Figure 6.14 for
case I. Similarly to problem a each theory provides a good prediction of both shear stress
components. The major conclusions for cases II-IV are the following. In case II (Figure 6.15)
and cases III (Figure 6.17) the perturbation of the u displacement is significant, however it
decreases significantly in case IV (Figure 6.19). The v component is excellently approximated
by each theory, it can also be observed that Reddy TSDT becomes a little bit inaccurate in
cases III and IV for u. Considering the normal stresses the peak appears in the plane of the
delamination in accordance with the FE model, however each theory predicts more or less
similar distributions. Regarding the shear stresses (Figures 6.16, 6.18 and 6.20), it is evident
that the analytical solutions approximate the area under the curve of the FE solution but
not the aspect of the FE distribution. It is the peak stress and the mesh resolution that
governs the distribution by the FE solution.
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Figure 6.21: Comparison of deflections at Y = b/2 calculated from FE analysis, FSDT,
SSDT and TSDT using 4ESLs for problem a and b in Figure 5.1 (Compare to Fig. 6.2).

6.3 Method of 4ESLs

6.3.1 Solution of problem (a)

The deflections calculated by using the method of 4ESLs for problem a are shown in Figure
6.21a. In each case the result of the SSDT and TSDT agrees excellently with the FE
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Figure 6.22: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem a in Figure 5.1a, case I, b = 160 mm (Compare to Fig. 6.3).

�35 �30 �25 �20 �15 �10 �5 0 105�15 �10 �5 0 105
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„triangle“ solution
(SSDT)

Figure 6.23: Distribution of the shear stresses (τxz, τyz) over the thickness, problem a in
Figure 5.1, case I, b = 160 mm. Solution by constitutive equations (Compare to Fig. 6.4).

solution. It is surprising, but in this case it is the FSDT solution that involves some locking
phenomenon, especially in case I.

Figure 6.22 shows the distribution of the in-plane displacements u and v and normal
stresses σx, σy at specified cross sections at the delamination front for case I, when the
delamination is nearby the midplane. The results of the FSDT, SSDT, TSDT and FE
solutions are presented applying the method of 4ESLs. The displacement curves show very
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�60 �40 �20 0 20 40 60 80

Figure 6.24: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem a in Figure 5.1, case II, b = 100 mm (Compare to Fig. 6.5).
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Figure 6.25: Distribution of the shear stresses (τxz, τyz) over the thickness, problem a in
Figure 5.1, case II, b = 100 mm. Solution by constitutive equations (Compare to Fig. 6.6).

moderate nonlinearity, it can be seen that considering both components the TSDT and SSDT
provide the best fit to the numerical results. In contrast it is the SSDT that approximates
the normal stresses (σx and σy) in the best way, especially the peak in the plane of the
delamination. Regarding the shear stresses in Figure 6.23 the TSDT provides the highest
accuracy in τyz compared to the FE results. For τxz the SSDT is definitely the best. It
has to be mentioned that the SSDT solution becomes overperturbated without the SSCC,
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�30 �20 �10 0 10 20 30

Figure 6.26: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem a in Figure 5.1, case III, b = 160 mm (Compare to Fig. 6.7).
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Figure 6.27: Distribution of the shear stresses (τxz, τyz) over the thickness, problem a in
Figure 5.1, case III, b = 160 mm. Solution by constitutive equations (Compare to Fig. 6.8).

i.e. large fluctuations can take place in the through thickness distribution of τxz and τyz
(Szekrényes (2016b)). In the case of the shear stresses, each theory approximates well the
area under the distribution by FEM. The SSDT solution with SSCC is called the ”triangle”
solution because the shear strain distributions are triangles in the delaminated region (refer
to Figure 6.30).

The distributions of case II are presented in Figure 6.24. Again, the TSDT and SSDT
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Figure 6.28: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem a in Figure 5.1, case IV, b = 100 mm (Compare to Fig. 6.9).
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Figure 6.29: Distribution of the shear stresses (τxz, τyz) over the thickness, problem a in
Figure 5.1, case IV, b = 100 mm. Solution by constitutive equations (Compare to Fig. 6.10).

provide the best fit to the displacement distributions by FEM. However, this time it is FSDT
that fits the normal stresses in the best way. The TSDT and FSDT approximate the shear
stresses in Figure 6.25 well, the SSDT result is also good.

Cases III and IV - when the delamination is located closer to the top surface of the plate
- are demonstrated through Figures 6.26-6.29. Briefly summarizing the results, it can be
seen that the SSDT provides very similar results for the shear stresses to those calculated
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Figure 6.30: Distribution of the shear strains γxz ((a) and (b)) and γyz ((c) and (d)) by
SSDT at the transition between the delaminated and undelaminated regions at Y=b/2 and
Y=0 (case I, b=100 mm), ΩD is the delamination plane (Compare to Fig. 6.11).

by Reddy TSDT plotted in Figures 6.8 and 6.10. On the other hand the FSDT and TSDT
are still very reasonable to approximate the mechanical fields. Overall, the most accurate
results are obtained by the TSDT and SSDT models.

In Figure 6.30 the shear strain distributions in the transition between regions 1 and 2
are plotted. Case I is investigated with the plate width of b = 100 mm, and so the results
are comparable to those presented in Figure 6.11 by using the Reddy TSDT and the method
of 2ESLs. Based on Figure 6.30 it is concluded that the SSCC is in fact the alternative of
the dynamic boundary conditions, without the appearance of the stiffening in the deflection
(refer to Figures 6.2 and 6.21). The SSDT without the SSCC was utilized by Szekrényes
(2016b) and in cases III and IV large oscillations in the mechanical fields were observed,
thus the SSCC has a key role in this respect. The distribution of the interlaminar shear
stresses at the interface plane between ESL2 and ESL3 is shown in Figure 6.31 for case I
and b = 160 mm. Again, the comparison with Figure 6.12 (calculated by Reddy TSDT,
method of 2ESLs) reveals that the two approximations predict different stress values, even
though the distributions are similar. For case III the shear strain and interlaminar stress
distributions are presented in Appendix E.
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Figure 6.31: Distribution of the interlaminar shear stress by SSDT for case I, b=160 mm,
τ
(3)
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(3)
yz (c) and τ

(2)
yz (d) (Compare to Fig. 6.12).

6.3.2 Solution of problem (b)

The results of problem b in Figure 5.1b are shown in Figures 6.32-6.39. It is shown that
in this example because of the smaller plate dimensions and the shorter crack length the
perturbation in the mechanical fields is significantly more intense than in problem a . The
results in case I are displayed in Figure 6.32. An immediate observation is that the u
displacement by FEM is inaccurately predicted by all of the theories, or neither one of the
theories capture well the FE solution. Nevertheless, it has to be emphasized that the load
of problem b is Q0=10000 N, i.e. ten times higher than that of problem a . Thus, smaller
displacements and - as Figure 6.32 shows - significantly higher stresses are obtained. In
case I the normal stress, σy is again better predicted by the SSDT than FSDT and TSDT,
however for σx the FSDT is the best. Moreover with respect to the shear stress τxz plotted
in Figure 6.33 the FSDT seems to be the best, the TSDT and SSDT give also reasonable
results. On the contrary τyz is badly estimated by both (SSDT, TSDT) theories. The higher
perturbation of the system is the reason for the latter discrepancy compared to the FE results.
The subsequent cases II, III and IV are presented in Figures 6.34-6.39. The conclusions are
in fact the same as those for problem a . It can be stated that considering both problems
and all the four cases it is not to easy to choose an optimal solution. The FSDT provides
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�0.04 0.0�0.02 0.02 0.04

Figure 6.32: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem b in Figure 5.1, case I, b = 60 mm (Compare to Fig. 6.13).
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Figure 6.33: Distribution of the shear stresses (τxz, τyz) over the thickness, problem b in
Figure 5.1, case I, b = 60 mm. Solution by constitutive equations (Compare to Fig. 6.14).

the highest error in the approximation of the deflection (Figure 6.21), at the same time
the SSDT and TSDT perform excellently in this respect. The in-plane displacements and
stresses are similar by all the three theories. The results of the method of 2ESLs and 4ESLs
can be compared to each other based on the figure captions: each caption refers to the ”pair”
of the actual solution.

It is important to highlight the basic differences among the FE and the higher-order
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0.0-0.02 0.02 0.04 0.06

Figure 6.34: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem b in Figure 5.1, case II, b = 90 mm (Compare to Fig. 6.15).

�200 0 200100 �20 40�40�60�300 300 500 �80�100 �20�100 400 0

Figure 6.35: Distribution of the shear stresses (τxz, τyz) over the thickness, problem b in
Figure 5.1, case II, b = 90 mm. Solution by constitutive equations (Compare to Fig. 6.16).

plate models. The FE model is based on the 3D approximation of the original continuum
mechanics problem. The solution is directly obtained for the nodal displacements based
on the stiffness equation. On the contrary the plate models are based on the equilibrium
of the stress resultants (and their derivatives), that are calculated by integrating the stress
distributions over the thickness. Eventually, the latter is a 2D approximation. On the base
of the solution for the displacement parameters we calculate back the through-thickness

77

dc_1254_16

Powered by TCPDF (www.tcpdf.org)



CHAPTER 6. RESULTS - DISPLACEMENT AND STRESS
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Figure 6.36: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem b in Figure 5.1, case III, b = 60 mm (Compare to Fig. 6.17).
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Figure 6.37: Distribution of the shear stresses (τxz, τyz) over the thickness, problem b in
Figure 5.1, case III, b = 60 mm. Solution by constitutive equations (Compare to Fig. 6.18).

distributions, that depend on the SEKC conditions. However, based on the results of problem
b (i.e., when the plate dimensions are relatively small) the perturbation because of the
delamination can lead to significant differences between the numerically and analytically
calculated u displacements and shear stress distributions. In spite of that the distributions
of the other quantities (v, σx, σy) are well approximated. However, to choose a suitable
analytical model that can be the candidate for development of a plate/shell finite element it
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Figure 6.38: Distribution of the in-plane displacements (u, v) and normal stresses (σx, σy)
over the thickness, problem b in Figure 5.1, case IV, b = 90 mm (Compare to Fig. 6.19).
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Figure 6.39: Distribution of the shear stresses (τxz, τyz) over the thickness, problem b in
Figure 5.1, case IV, b = 60 mm. Solution by constitutive equations (Compare to Fig. 6.20).

is required to assess the accuracy in approximating the energy release rates, as well. This is
carried out in the next chapter.
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7
Energy release rates and mode mixity

7.1 J-integral calculation in delaminated composite plates
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Figure 7.1: Reference system and parameters for the 3D J-integral (a). The stress resultants
by FSDT (method of 2ESLs) in regions 1 and 2 in the case of a zero-area path (b).

The J-integral was originally developed by Cherepanov (1967) and Rice (1968) to charac-
terize strain concentrations in plane problems including cracks and notches. For 2D fracture
problems the J-integral was applied recently in several papers (Mladensky and Rizov (2014,
2013b); Rizov and Mladensky (2015, 2016)). Earlier, it was extended to three dimensional
problems too. The general definition of the 3D J-integral is (Rigby and Aliabadi (1998);
Shivakumar and Raju (1992)):

Jm =

∫
C

(Wnm − σijui,mnj)ds+

∫
A

(Wδm3 − σi3ui,m),3dA, m = 1, 2, 3, (7.1)
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7.1. J-INTEGRAL CALCULATION IN DELAMINATED COMPOSITE PLATES

where in accordance with Figure 7.1a C is a closed contour containing the delamination tip,
W is the strain energy density, nm is the outward normal vector, σij is the stress tensor,
ui is the displacement vector, s is the arc length coordinate along contour C, δij is the
Kronecker symbol and A is the area enclosed by contour C. The strain energy density for
shear deformable plates (refer to Eq.(2.17)) can be written as (Reddy (2004)):

W =
1

2

εij∫
0

σijdεij =
1

2
(σxεx + σyεy + τxyγxy + τxzγxz + τyzγyz). (7.2)

We calculate the J-integrals for a delaminated composite plate by applying a zero-area path,
i.e. in Eq.(7.1) the area A becomes zero, and so the last term vanishes. Since the J-integral is
path independent (Rice (1968)) this gives the same result as any other appropriate contour.
The zero-area path is shown in Figure 7.1b together with the stress resultants acting on
both sides of the delamination if the FSDT is applied using the method of 2ESLs. In our
case x1 = x, x2 = z(i) and x3 = y. It is also important to highlight that because of the zero
area-path vector n is always parallel to the X axis in Figure 7.1b, thus J1 is the only nonzero
term and J2 = J3 = 0. We calculate the first term in Eq.(7.1) by integrating between k
number of ESLs. By using Eqs.(2.10)-(2.11) we have:

∫
C

Wn1ds =
1

2

k∑
i=1

−ti/2∫
ti/2

{σ x1(i) (ε
(0)
x1(i) + ε

(1)
x1(i)z

(i) + ε
(2)
x1(i)[z

(i)]2 + ε
(3)
x1(i)[z

(i)]3)+

σy1(i)(ε
(0)
y1(i) + ε

(1)
y1(i)z

(i) + ε
(2)
y1(i)[z

(i)]2 + ε
(3)
y1(i)[z

(i)]3)

τxy1(i)(γ
(0)
xy1(i) + γ

(2)
xy1(i)z

(i) + γ
(2)
xy1(i)[z

(i)]2 + γ
(3)
xy1(i)[z

(i)]3)+

τxz1(i)(γ
(0)
xz1(i) + γ

(2)
xz1(i)z

(i) + γ
(2)
xz1(i)[z

(i)]2)+

τyz1(i)(γ
(0)
yz1(i) + γ

(2)
yz1(i)z

(i) + γ
(2)
yz1(i)[z

(i)]2 )} dz(i)
∣∣
x=+0

+
1

2

k∑
i=1

ti/2∫
−ti/2

{σ x2(i) (ε
(0)
x2(i) + ε

(1)
x2(i)z

(i) + ε
(2)
x2(i)[z

(i)]2 + ε
(3)
x2(i)[z

(i)]3)+

σy2(i)(ε
(0)
y2(i) + ε

(1)
y2(i)z

(i) + ε
(2)
y2(i)[z

(i)]2 + ε
(3)
y2(i)[z

(i)]3)

τxy2(i)(γ
(0)
xy2(i) + γ

(2)
xy2(i)z

(i) + γ
(2)
xy2(i)[z

(i)]2 + γ
(3)
xy2(i)[z

(i)]3)+

τxz2(i)(γ
(0)
xz2(i) + γ

(2)
xz2(i)z

(i) + γ
(2)
xz2(i)[z

(i)]2)+

τyz2(i)(γ
(0)
yz2(i) + γ

(2)
yz2(i)z

(i) + γ
(2)
yz2(i)[z

(i)]2 )} dz(i)
∣∣
x=−0

,

(7.3)

where subscript 1 and 2 refers to the delaminated region 1 and undelaminated region 2
and the stresses are calculated in accordance with Eq.(2.17). For the second term in Eq.(7.1)
we apply the following displacement field for the ith ESL:

up(i) = u
(0)
p(i) + u

(1)
p(i)z

(i) + u
(2)
p(i)[z

(i)]2 + u
(3)
p(i)[z

(i)]3,

vp(i) = v
(0)
p(i) + v

(1)
p(i)z

(i) + v
(2)
p(i)[z

(i)]2 + v
(3)
p(i)[z

(i)]3,

wp(i) = w,

(7.4)

where the different terms can be identified based on Eq.(2.8) for the undelaminated part
2 (p = 2) and based on Eqs.(2.36)-(2.37) for the delaminated part 1 (p = 1). Thus, the
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CHAPTER 7. ENERGY RELEASE RATES AND MODE MIXITY

second term in Eq.(7.1) becomes:

∫
C

(σijui,1nj)ds =

∫
C

(σx
∂u

∂x
+ τxy

∂v

∂x
+ τxz

∂w

∂x
)ds =

k∑
i=1

−ti/2∫
ti/2

{σ x1(i) (
∂u

(0)
1(i)

∂x
+
∂u

(1)
1(i)

∂x
z(i) +

∂u
(2)
1(i)

∂x
[z(i)]2 +

∂u
(3)
1(i)

∂x
[z(i)]3)+

τxy1(i)(
∂v

(0)
1(i)

∂x
+
∂v

(1)
1(i)

∂x
z(i) +

∂v
(2)
1(i)

∂x
[z(i)]2 +

∂v
(3)
1(i)

∂x
[z(i)]3) + τxz1(i)

∂w1

∂x

}
dz(i)

∣∣∣
x=+0

+
k∑

i=1

ti/2∫
−ti/2

{σ x2(i) (
∂u

(0)
2(i)

∂x
+
∂u

(1)
2(i)

∂x
z(i) +

∂u
(2)
2(i)

∂x
[z(i)]2 +

∂u
(3)
2(i)

∂x
[z(i)]3)+

τxy2(i)(
∂v

(0)
2(i)

∂x
+
∂v

(1)
2(i)

∂x
z(i) +

∂v
(2)
2(i)

∂x
[z(i)]2 +

∂v
(3)
2(i)

∂x
[z(i)]3) + τxz2(i)

∂w2

∂x

}
dz(i)

∣∣∣
x=−0

.

(7.5)

By applying Eq.(2.9) to Eq.(7.4) and taking back Eqs.(7.3) and (7.5) into Eq.(7.1) yields:

J1 =
1

2

k∑
i=1

−ti/2∫
ti/2

{−σ x1(i) (ε
(0)
x1(i) + ε

(1)
x1(i)z

(i) + ε
(2)
x1(i)[z

(i)]2 + ε
(3)
x1(i)[z

(i)]3)+

σy1(i)(ε
(0)
y1(i) + ε

(1)
y1(i)z

(i) + ε
(2)
y1(i)[z

(i)]2 + ε
(3)
y1(i)[z

(i)]3)+

τxy1(i)(

⎛
⎝∂u

(0)
1(i)

∂y
−
∂v

(0)
1(i)

∂x

⎞
⎠+

⎛
⎝∂u

(1)
1(i)

∂y
−
∂v

(1)
1(i)

∂x

⎞
⎠ z(i)+

⎛
⎝∂u

(2)
1(i)

∂y
−
∂v

(2)
1(i)

∂x

⎞
⎠ [z(i)]2 +

⎛
⎝∂u

(3)
1(i)

∂y
−
∂v

(3)
1(i)

∂x

⎞
⎠ [z(i)]3)+

τxz1(i)(γ
(0)
xz1(i) + γ

(2)
xz1(i)z

(i) + γ
(2)
xz1(i)[z

(i)]2 − 2
∂w1

∂x
)+

τyz1(i)(γ
(0)
yz1(i) + γ

(2)
yz1(i)z

(i) + γ
(2)
yz1(i)[z

(i)]2 )} dz(i)
∣∣∣
x=+0

+
1

2

k∑
i=1

ti/2∫
−ti/2

{−σ x2(i) (ε
(0)
x2(i) + ε

(1)
x2(i)z

(i) + ε
(2)
x2(i)[z
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⎝∂u

(0)
2(i)

∂y
−
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(0)
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∣∣∣
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.

(7.6)
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7.2. MODE PARTITIONING OF THE TOTAL J-INTEGRAL IN LÉVY PLATES

Utilizing the definition of stress resultants by Eq.(2.18) and considering that the plate is
modeled by k number of ESLs leads to the following:

J1 =
1
2

k∑
i=1

{(Nx1(i) ε
(0)
x1(i)

∣∣∣
x=+0

−Nx2(i) ε
(0)
x2(i)

∣∣∣
x=−0

) −(Ny1(i) ε
(0)
y1(i)

∣∣∣
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−Ny2(i) ε
(0)
y2(i)

∣∣∣
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)+
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∣∣∣
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) −(My1(i) ε
(1)
y1(i)

∣∣∣
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∣∣∣
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∣∣∣
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(2)
y1(i)

∣∣∣
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∣∣∣
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(3)
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∣∣∣
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∣∣∣
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∣∣∣
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∣∣∣
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∣∣∣
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∣∣∣
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∣∣∣
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(1)
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∣∣∣
x=−0

)+
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(2)
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∣∣∣
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∣∣∣
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∣∣∣
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∣∣∣
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(7.7)

7.2 Mode partitioning of the total J-integral in Lévy plates

Considering the fact that we applied a zero-area path and the shear forces (Qx, Qy), higher-
order stress resultants (Rx, Ry, Sx and Sy), the corresponding shear strains and the first
derivative of the deflection are continuous at the transition between regions 1 and 2 (refer
to Eq.(5.53)) the J-integral can be simplified significantly. The result can be written in the
form of:

J1 = JII + JIII , (7.8)

where JII is the mode-II, JIII is the mode-III J-integral (refer to Figure 1.3). The task of
mode separation can be carried out very simply for Lévy plates by taking back the solutions
by Eq.(5.2) into the strain components by Eqs.(2.10)-(2.11) and the stress resultants by
Eqs.(2.19)-(2.20). This leads to terms related to sin2(βy) and cos2(βy), respectively. Mode
separation in this special case is very simple: terms containing sin2(βy) contribute to the
mode-II, terms containing cos2(βy) are associated to the mode-III J-integral. Thus, we have:

JII =
1
2

k∑
i=1

{ (Nx1(i) ε
(0)
x1(i)

∣∣∣
x=+0

−Nx2(i) ε
(0)
x2(i)

∣∣∣
x=−0

)−(Ny1(i) ε
(0)
y1(i)

∣∣∣
x=+0

−Ny2(i) ε
(0)
y2(i)

∣∣∣
x=−0

)+

(Mx1(i) ε
(1)
x1(i)

∣∣∣
x=+0

−Mx2(i) ε
(1)
x2(i)

∣∣∣
x=−0

)−(My1(i) ε
(1)
y1(i)

∣∣∣
x=+0

−My2(i) ε
(2)
y2(i)

∣∣∣
x=−0

)+

(Lx1(i) ε
(2)
x1(i)

∣∣∣
x=+0

−Lx2(i) ε
(2)
x2(i)

∣∣∣
x=−0

) −(Ly1(i) ε
(2)
y1(i)

∣∣∣
x=+0

−Ly2(i) ε
(2)
y2(i)

∣∣∣
x=−0

)+

(Px1(i) ε
(3)
x1(i)

∣∣∣
x=+0

−Px2(i) ε
(3)
x2(i)

∣∣∣
x=−0

) −(Py1(i) ε
(3)
y1(i)

∣∣∣
x=+0

−Py2(i) ε
(3)
y2(i)

∣∣∣
x=−0

)

}
,

(7.9)

JIII = −1
2

k∑
i=1

{ (Nxy1(i) γ̂
(0)
xy1(i)

∣∣∣
x=+0

−Nxy2(i) γ̂
(0)
xy2(i)

∣∣∣
x=−0

)+

(Mxy1(i) γ̂
(1)
xy1(i)

∣∣∣
x=+0

−Mxy2(i) γ̂
(1)
xy2(i)

∣∣∣
x=−0

)+

(Lxy1(i) γ̂
(2)
xy1(i)

∣∣∣
x=+0

−Lxy2(i) γ̂
(2)
xy2(i)

∣∣∣
x=−0

)+

(Pxy1(i) γ̂
(3)
xy1(i)

∣∣∣
x=+0

− Pxy2(i) γ̂
(3)
xy2(i)

∣∣∣
x=−0

)

}
,

(7.10)
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where:

γ̂
(q)
xyp(i) =

∂u
(q)
p(i)

∂y
−
∂v

(q)
p(i)

∂x
, p = 1 or 2, q = 0, 1, 2, 3, (7.11)

are the so-called conjugate shear strains. In Eqs.(7.9)-(7.10) k = 2 for the method of 2ESLs,
and k = 4 for the method of 4ESLs. Eqs.(7.9)-(7.10) are valid upto third-order plates,
however, it is easy to generalize for nth order plates. It is important to note that Eqs.(7.9)-
(7.10) agree with the concept of Rigby and Aliabadi (1998). As it can be seen the mode-II
J-integral is contributed by Nx, Ny, Mx, My, Lx, Ly, Px and Py, on the other hand the
mode-III J-integral contains Nxy, Mxy, Lxy and Pxy. In the sequel the results of the method
of 2ESLs (FSDT, SSDT, Reddy TSDT) and 4ESLs (FSDT, SSDT, TSDT) are presented and
compared to the results of FE analysis obtained by using the VCCT method (Appendix D).
It is important to note that although the code ANSYS is capable to determine the J-integral
numerically, it is not available for orthotropic materials. Therefore, the only alternative
to calculate the ERRs in ANSYS is the VCCT using the models described in Section 6.1
(Figure 6.1). It is well-known that under static conditions and for a linear elastic material
the J-integral is equivalent to the energy release rate, i.e.: GII = JII and GIII = JIII .

7.3 J-integrals and mode mixity by the method of 2ESLs

Reddy

Reddy

Reddy

Reddy

a.

b.

Figure 7.2: Distribution of the ERRs and mode mixity along the delamination front, problem
a in Figure 5.1, case I. Plate widths: b=100 mm (a), b=160 mm (b) (Compare to Fig. 7.10).

The ERR and the mode mixity are presented through Figures 7.2 and 7.5 for problem
a in Figure 5.1a and through Figures 7.6-7.9 for problem b in Figure 5.1b. In each figure
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Reddy

Reddy

Reddy

Reddy

a.

b.

Figure 7.3: Distribution of the ERRs and mode mixity along the delamination front, problem
a in Figure 5.1, case II. Plate widths: b=100 mm (a), b=160 mm (b) (Compare to Fig. 7.11).

Reddy

Reddy

Reddy

Reddy

a.

b.

Figure 7.4: Distribution of the ERRs and mode mixity along the delamination front, problem
a in Figure 5.1, case III. Plate widths: b=100 mm (a), b=160 mm (b) (Compare to Fig.7.12).
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Reddy

Reddy

Reddy

Reddy

a.

b.

Figure 7.5: Distribution of the ERRs and mode mixity along the delamination front, problem
a in Figure 5.1, case IV. Plate widths: b=100 mm (a), b=160 mm (b) (Compare to Fig.7.13).

Reddy

Reddy

Reddy

Reddy

a.

b.

Figure 7.6: Distribution of the ERRs and mode mixity along the delamination front, problem
b in Figure 5.1, case I. Plate widths: b=60 mm (a), b=90 mm (b) (Compare to Fig. 7.14).
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Reddy

Reddy

Reddy

Reddy

a.

b.

Figure 7.7: Distribution of the ERRs and mode mixity along the delamination front, problem
b in Figure 5.1, case II. Plate widths: b=60 mm (a), b=90 mm (b) (Compare to Fig. 7.15).

Reddy

Reddy

Reddy

Reddy

a.

b.

Figure 7.8: Distribution of the ERRs and mode mixity along the delamination front, problem
b in Figure 5.1, case III. Plate widths: b=60 mm (a), b=90 mm (b) (Compare to Fig. 7.16).
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Reddy

Reddy
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a.

b.

Figure 7.9: Distribution of the ERRs and mode mixity along the delamination front, problem
b in Figure 5.1, case IV. Plate widths: b=60 mm (a), b=90 mm (b) (Compare to Fig. 7.17).

GT = GII + GIII is the total ERR. The solution by the VCCT, Reddy TSDT (Szekrényes
(2014c)), SSDT (Szekrényes (2015)) and the corresponding FSDT (Szekrényes (2013c))
results are compared to each other. The material is the same as that in Chapter 6 (Table
6.1). In Figure 7.2a it can be seen that for case I the FSDT and SSDT solutions underpredict
GII , moreover the FSDT agrees quite well with the Reddy TSDT in the case of GIII , in this
respect the SSDT is worst if b = 100 mm. On the contrary, the Reddy TSDT agrees
excellently with the numerical results for both components. Figure 7.2b presents the results
for the wider plate, this time the SSDT performs better, even though the Reddy TSDT and
FSDT provide good agreement, as well. It is important to highlight that the agreement
between analysis and numerical calculation is the worst at and nearby the edges (if y = 0 or
y = b), it is clear that the analytical models do not take the edge effects into account. So
the agreement is investigated along the delamination front except for the edge regions. In
case II, presented in Figure 7.3, the same conclusions hold. Based on Figures 7.4 and 7.5
for cases III and IV (i.e. when the bottom plate thickness is larger) it is shown that the
FSDT overpredicts, the SSDT underpredicts/overpredicts significantly the mode-III ERR,
simultaneously, the mode-II ERR by Reddy TSDT agrees better with the numerical results.
The major difference between the FSDT, SSDT and Reddy TSDT solutions is the shear
strain continuity at the interface plane and the satisfaction of the dynamic B.C. in the latter
case. That is the reason for the differences presented in Figures 7.4 and 7.5. In accordance
with Figures 7.4 and 7.5, the FSDT seems to be inaccurate in cases III and IV for both plate
widths. Eventually, the SSDT and especially the Reddy TSDT approach quite well both
ERR components for each plate width in case III (Figure 7.4), but if b=160 mm, then the
mode-II ERR is dissimilar to the FE solution at the edges. Compared to the VCCT results,
the mode-III ERR is approximated very well by Reddy TSDT, on the contrary the SSDT
solution becomes inaccurate in case IV (Figure 7.5). The fracture is mode-III dominated in
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problem a .
Figures 7.6-7.9 demonstrate the ERR and mode mixity distributions for problem b .

Similar results were obtained to those presented in Figures 7.2-7.5, however the fracture
is mode-II dominated, and so the mode-II ERR agrees better with the numerical results.
Running through on cases I, II, III and IV, the conlusions are that the FSDT gives correct
results only in cases I and II, in case III the overprediction of the mode-III ERR becomes
moderate, while in case IV the estimation of GIII is not acceptable. The SSDT and Reddy
TSDT perform very well compared to the FSDT. Considering all of the cases the Reddy
TSDT is definitely the best solution for problem a with b = 100 mm, however if b = 160
mm the overall performance of the SSDT solution is better.

The final conclusion is that the FSDT is applicable only to those cases, when the delam-
ination is not far from the midplane of the plate. The SSDT solves the problem better in
case IV than Reddy TSDT, however, considering all of the cases the Reddy TSDT would
be the best choice among the models based on the method of 2ESLs. However, we should
not forget about the locking effect taking place in the deflection and shown in Figure 6.2.
Also, it is clear, that the presence of the delamination induces complex deformations along
the delamination front, which could be better captured by higher-order plate theories than
FSDT. This consequence has already been confirmed in recent papers (Szekrényes (2013b,
2014b,d)). It can be seen based on the results, that case IV is the critical case, when the
accuracy of the method of 2ESLs is not satisfactory. Therefore in the sequel the results of
the method of 4ESLs are presented.

7.4 J-integrals and mode mixity by the method of 4ESLs

a.

b.

Figure 7.10: Distribution of the ERRs and mode mixity along the delamination front, prob-
lem a in Figure 5.1, case I. Plate widths: b=100 mm(a), b=160 mm(b) (Compare to Fig.7.2).
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a.

b.

Figure 7.11: Distribution of the ERRs and mode mixity along the delamination front, prob-
lem a in Figure 5.1, case II. Plate widths: b=100 mm(a), b=160 mm(b)(Compare to Fig.7.3).

a.

b.

Figure 7.12: Distribution of the ERRs and mode mixity along the delamination front, prob-
lem a in Figure 5.1, case III. Plate widths: b=100 mm(a),b=160 mm(b)(Compare to Fig.7.4).
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a.

b.

Figure 7.13: Distribution of the ERRs and mode mixity along the delamination front, prob-
lem a in Figure 5.1, case IV. Plate widths: b=100 mm(a),b=160 mm(b)(Compare to Fig.7.5).

a.

b.

Figure 7.14: Distribution of the ERRs and mode mixity along the delamination front, prob-
lem b in Figure 5.1, case I. Plate widths: b=60 mm(a), b=90 mm(b)(Compare to Fig.7.6).
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a.

b.

Figure 7.15: Distribution of the ERRs and mode mixity along the delamination front, prob-
lem b in Figure 5.1, case II. Plate widths: b=60 mm(a), b=90 mm(b)(Compare to Fig.7.7).

a.

b.

Figure 7.16: Distribution of the ERRs and mode mixity along the delamination front, prob-
lem b in Figure 5.1, case III. Plate widths: b=60 mm(a), b=90 mm(b)(Compare to Fig.7.8).
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a.

b.

Figure 7.17: Distribution of the ERRs and mode mixity along the delamination front, prob-
lem b in Figure 5.1, case IV. Plate widths: b=60 mm(a), b=90 mm(b)(Compare to Fig.7.9).

The ERR (GII = JII , GIII = JIII) and mode mixity distributions are plotted in Figures
7.10-7.13 for problem a in Figure 5.1 using the method of 4ESLs. In Figures 7.10 and
7.11 cases I and II are presented for both plate widths (b = 100 and b = 160 mm). The
symbols show the results of the FE calculations by the VCCT (Bonhomme et al. (2010);
Mehrabadi (2014)), the curves represent the analytical solutions. The results of case I show
that compared to the FE model the mode-II ERR is underpredicted by the FSDT and TSDT
models if b = 100 mm. Although the SSDT still shows underprediction, it is obvious that
it provides the best agreement with the numerical model. The mode-III ERR is captured
better by the TSDT and SSDT than by FSDT. The mode mixities (GT = GII + GIII) are
well predicted by each theory (b = 100 mm). If the plate width is b = 160 mm then again the
SSDT and TSDT are definitely the best choices, although the FSDT theory also performs
well. In case II (Figure 7.11) it is shown that the FSDT performs better than the other
two theories for both plate widths. Figure 7.12 shows the results in case III for both plate
widths. In case III (top half of Figure 7.12) if b = 100 mm the three theories provide similar
distributions compared to the FE results. For b = 160 mm the FSDT follows better the
ERRs and the mode mixity than the SSDT and TSDT. In case IV (Figure 7.13) it is the
FSDT that can be ranked as the best solution for both plate widths, at the same time the
SSDT and TSDT theories provide similar accuracy. It is again surprising that in case IV
the FSDT is slightly better than the TSDT in the estimation of the ERRs, even the mode
ratios are better predicted by FSDT. Considering all of the cases (I-IV) in Figures 7.10 and
7.13 (problem a ) it is concluded that the FSDT approximates the numerical results with
the highest accuracy among the three theories considered.

The results for problem b in Figure 5.1 are displayed in Figures 7.14-7.17. It has to be
mentioned that the perturbation of the displacement and stress fields is significantly more
intense than in the case of problem a , even the size of the plate is smaller. Therefore the
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agreement with the FE results is expected to be worst than in problem a . The layout of
these figures is the same as that for Figures 7.10-7.13. Briefly speaking, in case I (Figure
7.14) the SSDT overestimates slightly the mode-III ERR for both plate widths (b = 60 mm
and b = 90 mm), while the FSDT and TSDT perform with similar accuracy. Nevertheless
each theory overpredicts the mode-III ERR a little. In case II (Figure 7.15) the performance
of all three theories is similar, but the FSDT seems to be the best. Figures 7.16 and 7.17
show the results for cases III and IV. In case III (Figure 7.16) the FSDT theory seems to
be the best choice, while in case IV the SSDT and TSDT are definitely better than FSDT
in approximating GII . Obviously each theory is suitable to calculate the ERRs and mode
ratios. The results of the method of 2ESLs and 4ESLs are comparable based on the figure
captions.

Based on the results obtained it can be concluded that the accurate description of the
displacement and stress fields is very important to obtain ERR and mode mixity distributions
with high accuracy. Moreover each theory gives finite stresses, that is why the stress field
is nonsingular in each cases. The comparison of the shear stress distributions in Figures
6.23, 6.25, 6.27, 6.29, 6.33, 6.35, 6.37 and 6.39 to the ERR and mode mixity distributions in
Figures 7.10-7.17 indicates that the better the approximation of shear stresses is, the higher
the accuracy of the approximation of the ERRs is. Although it is also noteworthy that the
J-integrals do not depend directly on the shear and higher-order forces (Q, R and S, refer to
Eqs.(7.9)- (7.10)), only indirectly through the equilibrium equations. The final conclusion is
that for problem a the FSDT theory gives the best approximation of the numerical results,
however the inaccurate approximation of the deflections should be kept in mind, shown in
Figure 6.2. In contrast, for problem b the FSDT and TSDT theories should be highlighted,
especially in case IV. However, the approximation of the deflection by FSDT plotted in
Figure 6.21 involves more significant errors than those appearing for problem a .

Table 7.1: Ranking of the results of the applied plate theories for GII and GIII with respect
to the agreement with the VCCT results for problem a .

B.C.s: simply supported 2ESLs 4ESLs
Theory FSDT SSDT Reddy Figure FSDT SSDT TSDT Figure

Size of T(d) case 18× 18 26× 26 20× 20 26× 26 22× 22 34× 34

Size of T(ud) 14× 14 22× 22 20× 20 22× 22 22× 22 26× 26

Problem a

GII

I. 2. 3. 1. 7.2 3. 1. 2. 7.10

b=100 mm

II. 2. 2. 1. 7.3 1. 2. 3. 7.11

III. 2. 3. 1. 7.4 2. 1. 3. 7.12

IV. 2. 3. 1. 7.5 3. 2. 1. 7.13

GIII

I. 1. 3. 2. 7.2 3. 2. 1. 7.10

II. 2. 3. 1. 7.3 1. 3. 2. 7.11

III. 3. 2. 1. 7.4 1. 2. 3. 7.12

IV. 3. 2. 1. 7.5 1. 2. 3. 7.13

Problem a

GII

I. 3. 2. 1. 7.2 3. 1. 2. 7.10

b=160 mm

II. 3. 2. 1. 7.3 1. 3. 2. 7.11

III. 2. 1. 3. 7.4 1. 2. 3. 7.12

IV. 1. 3. 2. 7.5 2. 1. 3. 7.13

GIII

I. 3. 1. 2. 7.2 3. 2. 1. 7.10

II. 3. 1. 2. 7.3 1. 2. 3. 7.11

III. 3. 1. 2. 7.4 1. 2. 3. 7.12

IV. 3. 2. 1. 7.5 1. 2. 3. 7.13
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7.5 Ranking of the applied plate theories

The performance of the developed analytical models with respect to the agreement with the
ERRs by the VCCT results for problems a and b are ranked in Tables 7.1 and 7.2. The
main viewpont of ranking is the degree of agreement of the results by the actual theory
with the results of the VCCT for GII and GIII along the whole delamination front of the
plates. In Table 7.1 the results of problem a are ranked, the relevant figures are also referred
to. The best one is the Reddy TSDT (method of 2ESLs) if b = 100 mm and the SSDT if
b = 160 mm. Considering the slightly inaccurate deflections by Reddy TSDT in Figure 6.2
the overall winner is the SSDT using the method of 2ESLs. The results of the method of
4ESLs in Table 7.1 shows that the FSDT provides the best approximation, however as it
was mentioned before, the deflections in Figure 6.21 are better captured by the SSDT and
TSDT. Considering this fact and the system matrix sizes shown by Table 7.1 in each case,
the SSDT is declared as the winner for the solution of problem a .

Table 7.2: Ranking of the results of the applied plate theories for GII and GIII with respect
to the agreement with the VCCT results for problem b .

B.C.s: simply supported 2ESLs 4ESLs
Theory case FSDT SSDT Reddy TSDT Figure FSDT SSDT TSDT Figure

Problem b

GII

I. 2. 1. 3. 7.6 3. 2. 1. 7.14

b=60 mm

II. 3. 2. 1. 7.7 1. 3. 2. 7.15

III. 2. 3. 1. 7.8 1. 3. 2. 7.16

IV. 2. 1. 3. 7.9 3. 1. 2. 7.17

GIII

I. 3. 2. 1. 7.6 1. 3. 2. 7.14

II. 1. 2. 3. 7.7 2. 3. 1. 7.15

III. 1. 2. 3. 7.8 2. 3. 1. 7.16

IV. 3. 1. 2. 7.9 2. 3. 1. 7.17

Problem b

GII

I. 3. 1. 2. 7.6 3. 2. 1. 7.14

b=90 mm

II. 3. 2. 1. 7.7 1. 3. 2. 7.15

III. 1. 3. 2. 7.8 1. 3. 2. 7.16

IV. 1. 2. 3. 7.9 3. 2. 1. 7.17

GIII

I. 3. 2. 1. 7.6 1. 3. 2. 7.14

II. 3. 2. 1. 7.7 1. 2. 3. 7.15

III. 1. 2. 3. 7.8 1. 3. 2. 7.16

IV. 3. 1. 2. 7.9 3. 2. 1. 7.17

For problem b the ranking is presented in Table 7.2. If the method of 2ESLs is applied,
then the Reddy TSDT would be the best, however, the approximation of the deflection is
even worst than in the case of problem a (see Figure 6.2). Even though the FSDT has more
1st ranks than the SSDT, the FSDT has more 3rd places as well. Thus for both plate widths
the SSDT is the optimal solution. Based on a similar logical concept if the method of 4ESLs
is applied again it is the SSDT that can be declared as the best solution based on Table
7.2. It has to be mentioned that the TSDT has more 1st places than the SSDT, but the
difference between the SSDT and TSDT is marginal, moreover the system matrix sizes are
significantly higher for the TSDT as it is highlighted in Table 7.1. Thus, the overall winner
is the SSDT theory for both the method of 2ESLs and 4ESLs and for problem a and b
as well. Therefore, the SSDT model can be recommended to develop plate and shell finite
elements for the nonsingular delamination modeling in laminated composite plates.
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8
Summary

In this thesis the delamination in composite plates was investigated assuming mixed-mode
II/III fracture conditions and straight delamination fronts. Based on these assumptions the
general equations of delaminated orthotropic composite plates were presented. The so-called
semi-layerwise technique was developed for the modeling of plates with optional number of
layers. The in-plane displacement functions in each equivalent single layer were captured
by general third-order functions, at the same time the transverse deflection was captured
by a single term, i.e. the plates were assumed to be shear deformable, but transversely
inextensible. The kinematic continuity between the equivalent single layers was established
by the system of exact kinematic conditions. The basic aspect is that the set of conditions are
related to the through-thickness direction. This set of conditions includes the continuity of in-
plane displacements, the location of the global reference plane, the continuity of shear strains,
their first and second derivatives, and finally the so-called shear strain control condition.
The latter condition is an alternative of the dynamic boundary condition against the shear
stresses, however, the shear strain is not zero at the traction-free surfaces, but at several (at
least two) points the value of the shear strain is imposed to be the same.

With the aid of the kinematic conditions the number of parameters in the displace-
ment functions was reduced significantly. A general expression was defined for the modified
displacement field by introducing the vector of primary parameters and the displacement
multiplicator matrix containing constants. The strain and stress fields were derived based
on the modified displacement field and by using the basic equations of elasticity. The equi-
librium equations of the delaminated and undelaminated parts were derived by means of
the principle of virtual work. Using the general description the method of two equivalent
single layers was developed. In accordance with this approximation the delaminated plate is
divided into two subplates (top and bottom) by the plane of the delamination. Three theo-
ries were utilized in order to show the performance of the model: the first- and second-order
shear deformable plate theories and Reddy third-order theory. In each case the equilibrium
equations were derived for the undelaminated and delaminated regions of the plate based on
the vector of primary parameters. The so-called equivalent stress resultants were derived,
as well. As a next step the method of four equivalent single layers was proposed, which is
a refinement compared to the method of two equivalent single layers. In this respect the
first-, second- and third-order plate theories were applied. The whole plate was divided into
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four parts, so apart from the delamination plane further two interface planes (or perturba-
tion planes) were generated. The vector of primary parameters, equilibrium equations and
equivalent stress resultants were derived even in this case.

To exemplify the performance of the developed models layered simply supported plates
subjected to a concentrated load were considered. The problems were solved by developing
the system of governing partial differential equations by the Lévy plate formulation. The
mathematical solution was obtained by the state-space approach. For the method of two
equivalent single layers the boundary and continuity conditions were given. It was shown
that for the Reddy third-order theory the number of parameters that continuity conditions
are required against is not the same for the undelaminated as for the delaminated part.
Therefore, the so-called autocontinuity condition was defined. The boundary and continu-
ity conditions were also documented for the method of four equivalent single layers. The
autocontinuity condition was given in the form of a theorem and even the proof and conse-
quence of the theorem was provided. The continuity conditions were formulated in a general
way, through different parameter sets. These sets included the continuity of the deflection,
its derivatives and the primary parameters, the continuity of membrane displacements, the
autocontinuity condition and finally the stress resultants. The sets were defined for each
theory. Even the state space models were detailed together with the structure of the state
vector, the vector of external loads and the system matrix.

In the results section composite plates with nine layers and four cases were investigated
with respect to the position of the delamination in the transverse direction. The deflection,
in-plane displacements, the normal and shear stresses were evaluated and were compared to
each other and to the results of 3D finite element analysis. It was shown that the Reddy third-
order theory involves some stiffening in the deflection, although the in-plane displacements
and the stresses are accurately described by this theory. On the other hand the method of
four equivalent single layers showed that some stiffening takes place in the deflection by the
first-order plate theory, in spite of that the other functions are reasonably approximated.

Considering the fracture mechanical point of view the 3D J-integral was applied to the
mixed-mode II/III problem and the total J-integral was separated into mode-II and mode-
III components. It was shown that the J-integral can be calculated by the stress resultants
and the strain field components by applying a zero-area path around the delamination tip.
Eventually, the distribution of JII and JIII was determined along the delamination front.
The results of the analytical models were compared to those by the virtual crack closure
technique. The agreement among the analytical models and the numerical results were
assessed and in each case the models were ranked, as well. It was concluded that considering
all the fields and the J-integrals the SSDT theory is the optimal choice for the delamination
modeling of composite plates. This conclusion holds equally in the case of the methods of
two and four equivalent layers. Even though it is reasonable to apply rather the method
of four equivalent single layers because it provides a better description of the mechanical
fields than the method of two equivalent single layers. The theses related to this work are
summarized as follows.

8.1 Novel scientific results - Theses

Thesis 1.

a. I have given the definition of the semi-layerwise plate model for delaminated plates.
The concept is that a laminated composite plate consisting of Nl number of layers is modeled
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by NESL number of equivalent single layers and NESL < Nl. The planes between the adjacent
equivalent single layers are the interface or perturbation planes. Out of the perturbation
planes a single one has to be located in the plane of the delamination.

b. I have formulated the system of exact kinematic conditions for the modeling of
delaminated composite plates built-up by NESL number of third-order equivalent single
layers. The system of exact kinematic conditions is the set of conditions related to the
kinematic continuity in the transverse direction between the equivalent single layers of a
semi-layerwise plate model. The set of conditions consists of the following elements:

• continuity of in-plane and transverse displacement components,
• the definition of the global membrane displacement components at the reference plane,
• continuity of transverse shear strains and their first and second derivatives at the
interface planes,

• the shear strain control condition.

The system of exact kinematic conditions can be implemented into any plate theory. For
shear deformable but transversely inextensible plates the system of exact kinematic con-
ditions is the set of conditions against the in-plane displacement components, their first,
second and third derivatives with respect to the local transverse coordinates.

• Related publications: Szekrényes (2013b,c, 2016a).

Thesis 2.

I have shown that the displacement field satisfying the system of exact kinematic
conditions in the ith equivalent single layer of a semi-layerwise plate model can be given as:

u(i) = u∗0 +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(x)j , i = q..s,

v(i) = v∗0 +
(
K

(0)
ij +K

(1)
ij z

(i) +K
(2)
ij [z(i)]2 +K

(3)
ij [z(i)]3

)
ψ(y)j , i = q..s,

w(i) = w, i = 1..k.

where in the third-order functions ψ(p)j (p = x or y) is the vector of primary parameters,
Kij is the displacement multiplicator matrix, moreover the following hold for the

undelaminated region
delaminated region, bottom plate
delaminated region, top plate

⎫⎬
⎭⇒

⎧⎨
⎩

(u∗0, v
∗
0) = (u0, v0) , q = 1, s = k,

(u∗0, v
∗
0) = (u0b, v0b) , q = 1, s = h,

(u∗0, v
∗
0) = (u0t, v0t) , q = h+ 1, s = k,

where k is the total number of equivalent single layers, h is the number of equivalent single
layers in the bottom plate. The membrane displacements u0 v0, u0b, v0b, u0t, v0t and the w
deflection are typically primary parameters. The further primary parameters of the system
can be chosen in order to have a system of algebraic equations based on the system of exact
kinematic conditions built-up by linearly independent equations. Based on the principle
of virtual work I have derived the invariant form the equilibrium equations for third-order
plates. I have shown the form of the equilibrium equations if the method of two and four
equivalent single layers is applied. I have shown that by summing the convenient equilibrium
equations it is possible to derive the vectors of equivalent stress resultants, like equivalent

moments M̂
(x,xy)

, equivalent L̂
(x,xy)

and P̂
(x,xy)

stress resultants. The equivalent stress resul-
tants play a key role in assigning the boundary and continuity conditions of the boundary
value problems.

• Related publications: Szekrényes (2014b, 2016a,b).
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Thesis 3.

a. I have shown that the generalized continuity conditions between the delaminated
(1) and undelaminated (2) regions of third-order orthotropic composite Lévy plates can be
written as:

⎛
⎜⎜⎜⎜⎝

gα
hα
mα

nα

pα

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

(1)

x=+0

=

⎛
⎜⎜⎜⎜⎝

gα
hα
mα

nα

pα

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

(2)

x=−0

,

where gα is a parameter set containing the deflection, its derivatives depending on the applied
theory, and the components of ψ(p)j , hα and mα are parameter sets for the membrane part
of the displacement field, nα is the set of autocontinuity condition and pα is a parameter set
containing the standard and equivalent stress resultants.

b. I have derived the theorem of autocontinuity. The autocontinuity theorem states
that the total continuity of the displacement field of the delaminated and undelaminated
regions at the mutual cross section of third-order orthotropic composite Lévy plates apart
from the continuity of the gα, hα, mα and pα sets can be ensured by imposing the continuity
of |Nd −Nud| ∈ N number of parameters, where Nd and Nud are the numbers of eliminated
parameters in the delaminated and undelaminated regions. The former parameters are
the autocontinuity parameters, that are at the same time primary parameters too. The
autocontinuity is satisfied only if along the interfaces between the equivalent single layers
the same conditions are imposed in the delaminated and undelaminated regions. Along
the delamination plane different conditions can be applied. I have given a proof of the
autocontinuity theorem for the third-order plate model with the method of four equivalent
single layers and the Reddy third-order theory including the method of two equivalent single
layers. The consequence of the theorem has also been given resulting in the reduction of the
number of continuity conditions against the membrane parts of the displacement fields.

• Related publications: Szekrényes (2015, 2016a,b).

Thesis 4.

I have determined the closed-from expressions for the 3D J-integral in third-order
delaminated composite Lévy plates under mixed-mode II/III fracture condition consisting of
optional (k) number of equivalent single layers. I have shown that the general expression can
be reduced by applying a zero-area path containing the delamination tip. It was shown that
the J-integral can be calculated by using the stress resultants and the strain field components
calculated at the mutual section of the undelaminated and delaminated regions of the plate.
I have decomposed the total J-integral into JII (mode-II) and JIII (mode-III) components in
delaminated orthotropic Lévy plates. Moreover, I have shown that the mode-II J-integral is
contributed by Nx, Ny (in-plane plate forces), Mx, My (bending moments), Lx, Ly, Px and
Py (higher-order stress resultants), on the other hand the mode-III J-integral contains Nxy

(in-plane shear force), Mxy (twisting moment), Lxy and Pxy (higher-order stress resultants).
This result is in agreement with the basic concept published in the literature. I have also
defined the so-called conjugate shear strain. The expressions of JII and JIII have been
applied to simply supported delaminated first,- second- and third-order delaminated plates.

• Related publications: Szekrényes (2014a,c,d).
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Thesis 5.

a. I have applied the method of two equivalent single layers to problems involving
the bending of simply supported orthotropic composite plates containing a through-width
delamination with straight front. The solution was obtained by the first-, second-order and
third-order Reddy theories. I have determined the mechanical fields in simply supported
delaminated plates with different geometrical parameters and I have compared the results
of the analytical models to those by 3D finite element analysis. I have shown that the
Reddy third-order theory involves some stiffening (locking) leading to inaccuracies in the
approximation of the plate deflection. I have also applied the method of four equivalent
single layers to the plate problems mentioned before using the first-, second- and third-order
plate theories. The stiffening effect in the first-order plate model was shown.

b. Considering the results for the mechanical fields and the J-integral by the methods
of two and four equivalent single layers I have made the ranking of the different plate theories
regarding their accuracy. The primary viewpoint was the agreement of the transverse deflec-
tion and the distribution of the J-integral over the delamination front with the finite element
results. The agreement of the in-plane displacement and the stress distributions compared
to the finite element results was only a secondary viewpoint. Based on the ranking of the
plate theories I have concluded that considering the accuracy and the model size the opti-
mal solution of the problems discussed is the second-order plate theory, which can be the
candidate to develop a plate/shell finite element for the modeling of laminated composites
with delamination.

• Related publications: Szekrényes (2013b, 2014d, 2016a).

8.2 Application possibilities of the results

The results presented in this thesis can be applied equally in the field of experimental and
research engineering according to the following.

• The models presented can be used to develop beam, plate and shell finite elements or
can be implemented into isogeometric analysis, which can replace the computationally
expensive 3D modeling of cracks and delaminations in laminated composite thin- and
thick-walled structures.

• The models can be applied to fracture mechanical plate specimens (e.g. the edge
cracked torsion (ECT, Marat-Mendes and Freitas (2009)) or the 4-point bending plate
(4PBP, Mehrabadi (2014))) to derive analytical (closed-form) solutions.

• The method of 2ESLs and 4ESLs can be applied to free vibration problem of delam-
inated beams, plates and shells. The significance of the novel formulations is that
it is possible to determine the stress resultants in the top and bottom plates sepa-
rately. Recently it was shown that the free vibration in delaminated composite beams
(Szekrényes (2014, 2015)) and plates (Szekrényes (2015)) is the source of paramet-
ric excitation. The models can also be applied to the stability (buckling) analysis of
laminated structures with delaminations.

• The models can be complemented with the effect of normal deformation in order to
improve the accuracy. Instead of using shear strain continuity between the interface
plane shear stress continuity can be employed.

• The developments can implemented into sandwich and functionally graded beam, plate
and shell theories including delaminations and cracks.
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Szekrényes, A., 2007. Delamination fracture analysis in the GII-GIII plane using prestressed
composite beams. International Journal of Solids and Structures 44, 3359–3378.
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Szekrényes, A., 2013a. Interface crack between isotropic Kirchhoff plates. Meccanica 48,
507–526.
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A
Matrix elements (Kij) - Method of 2ESLs

A.1 Reddy’s third-order plate theory

In this Appendix the Kij constants of the model presented in Subections 3.1.1 and 3.2.1 are
listed.

A.1.1 Undelaminated region

The displacement components in the x direction for the Reddy TSDT are:

u(1) = u0 + u01 + θ(x)1z
(1) + φ(x)1

[
z(1)

]2
+ λ(x)1

[
z(1)

]3
,

u(2) = u0 + u02 + θ(x)2z
(2) + φ(x)2

[
z(2)

]2
+ λ(x)2

[
z(2)

]3
,

(A.1)

The shear strains by Eq.(2.9) are:

γxz(1) =
∂u(1)
∂z(1)

+
∂w

∂x
= θ(x)1 + 2φ(x)1z

(1) + 3λ(x)1
[
z(1)

]2
+
∂w

∂x
,

γxz(2) =
∂u(2)
∂z(2)

+
∂w

∂x
= θ(x)2 + 2φ(x)2z

(2) + 3λ(x)2
[
z(2)

]2
+
∂w

∂x
.

(A.2)

We apply the SEKC to the displacement functions and shear strains. It is important that
the conditions are the same for the v displacement component, as well. Thus, the condition
by Eq.(3.1) results in:

u0+u01+
1

2
θ(x)1t1+

1

4
φ(x)1t

2
1+

1

8
λ(x)1t

3
1 = u0+u02−

1

2
θ(x)2t2+

1

4
φ(x)2t

2
2−

1

8
λ(x)2t

3
2. (A.3)

The application of Eq.(3.2) provides:

u01 + θ(x)1z
(1)
R + φ(x)1

[
z
(1)
R

]2
+ λ(x)1

[
z
(1)
R

]3
= 0. (A.4)
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The shear strain continuity imposed by Eq.(3.3) yields:

θ(x)2 − φ(x)2t2 +
3

4
λ(x)2t

2
2 +

∂w

∂x
= θ(x)1 + φ(x)1t1 +

3

4
λ(x)1t

2
1 +

∂w

∂x
= 0. (A.5)

Finally, based on Eq.(3.4) the traction-free bottom and top surfaces involve:

θ(x)1 − φ(x)1t1 +
3

4
λ(x)1t

2
1 +

∂w

∂x
= 0,

θ(x)2 + φ(x)2t2 +
3

4
λ(x)2t

2
2 +

∂w

∂x
= 0.

(A.6)

Eqs.(A.3)-(A.6) mean a linear algebraic system of equations, wherein the unknowns are: u01,
u02, θ(x)2, φ(x)1 and φ(x)2, i.e. the secondary parameters. The solution for these parameters
in terms of the primary parameters is:

u01 = −z
(1)
R

tb
(t1 + z

(1)
R )︸ ︷︷ ︸

K
(0)
11

θ(x)1 −

(
z
(1)
R

)2

4
(3t1 + 4z

(1)
R )︸ ︷︷ ︸

K
(0)
13

λ(x)1−

(
z
(1)
R

)2

t1︸ ︷︷ ︸
K

(0)
14

∂w

∂x
, (A.7)

u02 =
1

4t1
(3t1(t1 + t2)− 4z

(1)
R (z

(1)
R + t1))︸ ︷︷ ︸

K
(0)
21

θ(x)1 −
1

4
t32︸ ︷︷ ︸

K
(0)
22

λ(x)2+

{
1

16
(5t31 + 9t2t

2
1)−

(
z
(1)
R

)2

(
3

4
t1 − z

(1)
R )

}
︸ ︷︷ ︸

K
(0)
23

λ(x)1 +
1

4t1
(t21 + t2t1 − 4

(
z
(1)
R

)2

)︸ ︷︷ ︸
K

(0)
24

∂w

∂x
,
(A.8)

θ(x)2 = 1︸︷︷︸
K

(1)
21

·θ(x)1 −
3

4
t22︸ ︷︷ ︸

K
(1)
22

λ(x)2 +
3

4
t21︸︷︷︸

K
(1)
23

λ(x)1, (A.9)

φ(x)1 =
1

t1︸︷︷︸
K

(2)
11

θ(x)1 +
3

4
t1︸︷︷︸

K
(2)
13

λ(x)1 +
1

t1︸︷︷︸
K

(2)
14

∂w

∂x
, (A.10)

φ(x)2 = − 1

t2︸︷︷︸
K

(2)
21

θ(x)1 −
3

4

t21
t2︸ ︷︷ ︸

K
(2)
23

λ(x)1 −
1

t2︸︷︷︸
K

(2)
24

∂w

∂x
. (A.11)

The Kij coefficients in Eq.(3.5) can be determined by applying Eq.(2.1) for two ESLs and
taking back the results of Eqs.(A.7)-(A.11), and finally making a comparison to Eq.(3.5).
The coefficients denoted Kij are collected based on the vector of primary parameters defined
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A.2. SECOND-ORDER PLATE THEORY

by Eq.(3.6), some of the coefficients are also indicated within Eqs.(A.7)-(A.11). Therefore,
the coefficients for the Reddy TSDT are:

K
(0)
11 = −z

(1)
R

t1
(t1 + z

(1)
R ), K

(0)
12 = 0, K

(0)
13 = −

(
z
(1)
R

)2
4

(3t1 + 4z
(1)
R ), K

(0)
14 = −

(
z
(1)
R

)2
t1

,

(A.12)

K
(0)
21 =

1

4t1
(3t1(t1 + t2)− 4z

(1)
R (z

(1)
R + t1)), K

(0)
22 = −1

4
t32, (A.13)

K
(0)
23 =

1

16
(5t31 + 9t2t

2
1)−

(
z
(1)
R

)2
(
3

4
t1 + z

(1)
R ), K

(0)
24 =

1

4t1
(t21 + t2t1 − 4

(
z
(1)
R

)2
) (A.14)

K
(1)
11 = 1, K

(1)
12 = K1

13 = K1
14 = 0, K

(1)
21 = 1, K

(1)
22 = −3

4
t22, K

(1)
23 =

3

4
t21, K

(1)
24 = 0,

(A.15)

K
(2)
11 =

1

t1
, K

(2)
12 = 0, K

(2)
13 =

3

4
t1, K

(2)
14 =

1

t1
, K

(2)
21 = − 1

t2
, K

(2)
22 = 0, (A.16)

K
(2)
23 = −3t21

4t2
, K

(2)
24 = − 1

t2
, K

(3)
11 = K

(3)
12 = 0, K

(3)
13 = 1, K

(3)
14 = 0, (A.17)

K
(3)
21 = 0, K

(3)
22 = 1, K

(3)
23 = K

(3)
24 = 0, (A.18)

where z
(1)
R = t2/2. The determination of the Kij coefficients for the delaminated part and

for the other theories works in the same way, and therefore only the results are given.

A.1.2 Delaminated region

K
(0)
11 = K

(0)
12 = K

(0)
13 = K

(0)
21 = K

(0)
22 = K

(0)
23 = 0, (A.19)

K
(1)
11 = 1, K

(1)
12 = K

(1)
13 = K

(1)
21 = 0, K

(1)
22 = 1, K

(1)
23 = 0, (A.20)

K
(2)
11 = K

(2)
12 = K

(2)
13 = K

(2)
21 = K

(2)
22 = K

(2)
23 = 0, (A.21)

K
(3)
11 = − 4

3t21
,K

(3)
12 = 0, K

(3)
13 = − 4

3t21
, K

(3)
21 = 0, K

(3)
22 = − 4

3t22
, K

(3)
23 = − 4

3t22
. (A.22)

A.2 Second-order plate theory

In this Appendix the Kij constants of the SSDT model presented in Subsections 3.1.2 and
3.2.2 are given.

A.2.1 Undelaminated region

K
(0)
11 = −z(1)R , K

(0)
12 = −

(
z
(1)
R

)2
, K

(0)
13 = K

(0)
14 = 0, (A.23)

K
(0)
21 = −z(1)R − 1

2
t1, K

(0)
22 =

1

4
(t1 − 2z

(1)
R )(t1 + 2z

(1)
R ), K

(0)
23 = −1

2
t2, K

(0)
24 = −1

4
t22,

(A.24)

K
(1)
11 = 1, K

(1)
12 = K

(1)
13 = K

(1)
14 = 0, K

(1)
21 = K

(1)
22 = 0, K

(1)
23 = 1, K

(1)
24 = 0, (A.25)

K
(2)
11 = 0, K

(2)
12 = 1, K

(2)
13 = K

(2)
14 = 0, K

(2)
21 = K

(2)
22 = K

(2)
23 = 0, K

(2)
24 = 1. (A.26)
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A.2.2 Delaminated region

K
(0)
11 = K

(0)
12 = K

(0)
13 = K

(0)
14 = K

(0)
21 = K

(0)
22 = K

(0)
23 = K

(0)
24 = 0, (A.27)

K
(1)
11 = 1, K

(1)
12 = K

(1)
13 = K

(1)
14 = 0 = K

(1)
21 = K

(1)
22 = 0,K

(1)
23 = 1, K

(1)
24 = 0, (A.28)

K
(2)
11 = 0, K

(2)
12 = 1, K

(2)
13 = K

(2)
14 = K

(2)
21 = K

(2)
22 = K

(2)
23 = 0, K

(2)
24 = 1. (A.29)

A.3 First-order plate theory

This Appendix contains the Kij constants of the FSDT model presented in Subsections 3.1.3
and 3.2.3.

A.3.1 Undelaminated region

K
(0)
11 = −1

2
t1, K

(0)
12 = −z(1)R − 1

2
t2, K

(0)
21 = 0, K

(0)
22 = −z(1)R , (A.30)

K
(1)
11 = 1, K

(1)
12 = K

(1)
21 = 0, K

(1)
22 = 1. (A.31)

A.3.2 Delaminated region

K
(0)
11 = K

(0)
12 = K

(0)
21 = K

(0)
22 = 0, K

(1)
11 = 1, K

(1)
12 = K

(1)
21 = 0, K

(1)
22 = 1. (A.32)
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B
Matrix elements (Kij) - Method of 4ESLs

B.1 Third-order plate theory

This Appendix collects the Kij matrix elements for the third-order plate theory presented
in Subsections 4.1.1 and 4.2.1.

B.1.1 Undelaminated region

K
(0)
11 = − 1

12

(t1 + t2 + 2z
(2)
R )(5t22 + 7t1t2 − 10z

(2)
R t2 + 8(z

(2)
R )2 + 2t21 − 4z

(2)
R t1)

(t1 + 2t2)(t1 + t2)
, (B.1)

K
(0)
12 = − 1

12

(t1 + t2 + 2z
(2)
R )2(t1 + 4t2 − 4z

(2)
R )2

t2(t1 + t2)
, (B.2)

K
(0)
13 =

1

12

(t1 + t2 + 2z
(2)
R )2(t1 + t2 − 4z

(2)
R )(2t3 + t4)

t2(t1 + 2t2)(t3 + t4)
, (B.3)

K
(0)
14 = − 1

12

(t1 + t2 + 2z
(2)
R )2(t1 + t2 − 4z

(2)
R )t3

t2(t1 + 2t2)(t3 + t4)
, (B.4)

K
(0)
15 =

1

16

(t1 + t2 + 2z
(2)
R )2(t1 + t2 − 4z

(2)
R )t3(2t3 + t4)

t2(t1 + 2t2)
, (B.5)

K
(0)
21 =

1

3

(3t2 − 4z
(2)
R )(z

(2)
R )2

(t1 + 2t2)(t1 + t2)
, K

(0)
22 = −1

3

(3t1t2 − 3t1z
(2)
R − 4(z

(2)
R )2 + 3t22)z

(2)
R

t2(t1 + t2)
, (B.6)
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K
(0)
23 = −1
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(2t3 + t4)(3t1 + 3t2 + 4z
(2)
R )(z

(2)
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t2(t3 + t4)(t1 + 2t2)
, K

(0)
24 =

1

3
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R )t3(z
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K
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4
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t2(t1 + 2t2)
, (B.8)

K
(0)
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12

(t2 + 4z
(2)
R )(t2 − 2z

(2)
R )2

(t1 + 2t2)(t1 + t2)
, K

(0)
32 =

1

12

(t2 − 2z
(2)
R )2(3t1 + 4t2 + 4z

(2)
R )

t2(t1 + 2t2)
, (B.9)

K
(0)
33 =

(10t3 + 5t4)t
3
2 + (3t1t4 + 6t1t3 + 12t4t3 + 18t23)t

2
2 + (−(12t4 + 24t3)(z

(2)
R )2

12t2(t3 + t4)(t1 + 2t2)

+
(6t1t4t3 + 9t1t

2
3)t2 − 4(z

(2)
R )2(2t1 + t2)(3t1 + z

(2)
R )

12t2(t3 + t4)(t1 + 2t2)
,

(B.10)

K
(0)
34 = − t3

12

(5t32 + (3t1 + 6t3)t
2
2 + (3t1t3 − 12(z

(2)
R )2)t2 − 4(z

(2)
R )2(4z

(2)
R + 3t1)

t2(t1 + 2t2)(t3 + t4)
, (B.11)

K
(0)
35 =

t3
16

(
(10t3 + 5t4)t

3
2 + (6t1t3 + 10t23 + 3t1t4 + 6t4t3)t

2
2 + (−(12t4 + 24t3)(z

(2)
R )2

t2(t3 + t4)(t1 + 2t2)

+
3t1t4t3 + 5t1t

2
3)t2 − 4(z

(2)
R )2(2t3 + t4)(3t1 + 4z

(2)
R )

t2(t3 + t4)(t1 + 2t2)

)
,

(B.12)

K
(0)
41 = − 1

12

(t2 + 4z
(2)
R )(t2 − 2z

(2)
R )2

(t1 + 2t2)(t1 + t2)
,K

(0)
42 =

1

12

(4t2 + 3t1 + 4z
(2)
R )(t2 − 4z

(2)
R )2

t2(t1 + t2)
, (B.13)

K
(0)
43 =

(2t3 + t4)(5t
3
2 + 3(4t3 + t1 + 2t4)t

2
2 + 3(t1t4 + t1t3 − 4(z

(2)
R )2)t2 − 4(z

(2)
R )2(4z

(2)
R + 3t1)

12t2(t1 + 2t2)(t3 + t4)
,

(B.14)

K
(0)
44 = − 1

12

5t32t3 + 3(t1t3 − 4t4t3 − 2t24)t
2
2 + 3(−t1t24 − 2t1t3t4 − 4t3(z

(2)
R )2)t2

t2(t1 + 2t2)(t3 + t4)

− 1

12

4t3(z
(2)
R )2(4z

(2)
R + 3t1)

t2(t1 + 2t2)(t3 + t4)
,

(B.15)

K
(0)
45 =

(2t3 + t4)(5t
3
2t3 + (3t1t3 − 2t3t4 + 4t23 − 2t24)t

2
2

16t2(t1 + 2t2)
+

+
(2t1t

2
3 − t1t3t4 − 12t3(z

(2)
R )2 − t1t

2
4)t2 − 4t3(z

(2)
R )2(4z

(2)
R + 3t1)

16t2(t1 + 2t2)
,

(B.16)

K
(1)
11 = 1,K

(1)
12 = K

(1)
13 = K

(1)
14 = K

(1)
15 = 0,K

(1)
21 = 0,K

(1)
22 = 1,K

(1)
23 = K

(1)
24 = K

(1)
25 = 0,

K
(1)
31 = K

(1)
32 = 0,K

(1)
33 = 1,K

(1)
34 = K

(1)
35 = 0,K

(1)
41 = K

(1)
42 = K

(1)
43 = 0,K

(1)
44 = 1,K

(1)
45 = 0,

(B.17)

K
(2)
11 = − (3t2 + 2t1)

(t1 + 2t2)(t1 + t2)
,K

(2)
12 = − (t1 + 2t2)

t2(t1 + t2)
,K

(2)
13 = − (2t3 + t4)(t1 + t2)

t2(t3 + t4)(t1 + 2t2)
, (B.18)

K
(2)
14 = − (t1 + t2)t3

t2(t1 + 2t2)(t3 + t4)
,K

(2)
15 = −3

4

t3(2t3 + t4)(t1 + t2)

t2(t1 + 2t2)
, (B.19)
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B.1. THIRD-ORDER PLATE THEORY

K
(2)
21 = − t2

(t1 + 2t2)(t1 + t2)
, K

(2)
22 = − t1

t2(t1 + t2)
, (B.20)

K
(2)
23 = −K(2)

13 , K
(2)
24 = −K(2)

14 , K
(2)
25 = −K(2)

15 , (B.21)

K
(2)
33 = − 1

(t3 + t4)
, K

(2)
34 =

1

(t3 + t4)
, K

(2)
35 = −3

4
(t3 + t4), (B.22)

K
(2)
43 = K

(2)
33 , K

(2)
44 = K

(2)
34 , K

(2)
45 = −K(2)

35 , (B.23)

K
(3)
11 = K

(3)
21 =

4

3(t1 + 2t2)(t1 + t2)
, K

(3)
12 = K

(3)
22 = − 4

3t2(t1 + t2)
, (B.24)

K
(3)
13 = K

(3)
23 =

4

3

2t3 + t4
t2(t1 + 2t2)(t3 + t4)

, K
(3)
14 = K

(3)
24 = −4

3

t3
t2(t1 + 2t2)(t3 + t4)

, (B.25)

K
(3)
15 = K

(3)
25 =

(2t3 + t4)t3
t2(t1 + 2t2)

, K
(3)
35 = K

(3)
45 = 1, (B.26)

where z
(2)
R = 1/2(t3 + t4 − t1) is the coordinate of the global reference plane in the local

coordinate system of ESL2 (refer to Figure 4.1).

B.1.2 Delaminated region

K
(0)
11 = −1

4

t2(2t1 + t2)

(t1 + t2)
, K

(0)
12 = −1

4

t22
(t1 + t2)

, (B.27)

K
(0)
13 = K

(0)
14 = 0, K

(0)
15 =

1

16
(3t1 + t2)t

2
2, K

(0)
16 = 0, (B.28)

K
(0)
21 =

1

4

t21
(t1 + t2)

, K
(0)
22 =

1

4

t1(t1 + 2t2)

(t1 + t2)
, (B.29)

K
(0)
23 = K

(0)
24 = 0, K

(0)
25 = − 1

16
(t1 + 3t2)t

2
1, K

(0)
26 = 0, (B.30)

K
(0)
31 = K

(0)
32 = 0, K

(0)
33 = −1

4

t4(2t3 + t4)

(t3 + t4)
, K

(0)
34 = −1

4

t24
(t3 + t4)

, (B.31)

K
(0)
35 =, K

(0)
36 =

1

16
(3t3 + t4)t

2
4, (B.32)

K
(0)
41 = K

(0)
42 = 0, K

(0)
43 =

1

4

t23
(t3 + t4)

, K
(0)
44 =

1

4

t3(t3 + 2t4)

(t3 + t4)
, (B.33)

K
(0)
45 = 0, K

(0)
46 = − 1

16
(t3 + 3t4)t

2
2, (B.34)

K
(1)
11 = 1, K

(1)
12 = K

(1)
13 = K

(1)
14 = K

(1)
15 = K

(1)
16 = 0, (B.35)

K
(1)
21 = 0, K

(1)
22 = 1, K

(1)
23 = K

(1)
24 = K

(1)
25 = K

(1)
26 = 0, (B.36)

K
(1)
31 = K

(1)
32 = 0, K

(1)
33 = 1, K

(1)
34 = K

(1)
35 = K

(1)
36 = 0, (B.37)

K
(1)
41 = K

(1)
42 = K

(1)
43 = 0, K

(1)
44 = 1, K

(1)
45 = K

(1)
46 = 0, (B.38)
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K
(2)
11 = K

(2)
21 = − 1

(t1 + t2)
, K

(2)
12 = K

(2)
22 =

1

(t1 + t2)
, (B.39)

K
(2)
15 = −K(2)

25 = −3

4
(t1 + t2), K

(2)
16 = 0, (B.40)

K
(2)
33 = K

(2)
43 = − 1

(t3 + t4)
, K

(2)
34 = K

(2)
44 =

1

(t3 + t4)
, (B.41)

K
(2)
36 = −K(2)

46 = −3

4
(t3 + t4), K

(2)
26 = 0, (B.42)

K
(2)
13 = K

(2)
31 = K

(2)
14 = K

(2)
41 = K

(2)
23 = K

(2)
32 = K

(2)
24 = K

(2)
42 = 0, (B.43)

K
(3)
11 = K

(3)
12 = K

(3)
13 = K

(3)
14 = 0, K

(3)
15 = 1, K

(3)
16 = 0, (B.44)

K
(3)
21 = K

(3)
22 = K

(3)
23 = K

(3)
24 = 0, K

(3)
25 = 1, K

(3)
26 = 0, (B.45)

K
(3)
31 = K

(3)
32 = K

(3)
33 = K

(3)
34 = K

(3)
35 = 0, K

(3)
36 = 1, (B.46)

K
(3)
41 = K

(3)
42 = K

(3)
43 = K

(3)
44 = K

(3)
45 = 0, K

(3)
46 = 1. (B.47)

B.2 Second-order plate theory

In this Appendix the Kij matrix elements for the second-order plate theory presented in
Subsections 4.1.2 and 4.2.2 are listed.

B.2.1 Undelaminated region

K
(0)
31 =

3

8
t3 − z

(2)
R +

1

2
t2,K

(0)
32 =

3

8
t3t2 − (z

(2)
R )2 +

1

4
t22,K

(0)
33 =

1

8
t3,K

(0)
34 = −1

8
t3t4, (B.48)

K
(0)
41 =

1

2
t3 − z

(2)
R +

1

2
t2,K

(0)
42 =

1

2
t3t2 − (z

(2)
R )2 +

1

4
t22, (B.49)

K
(0)
43 =

1

2
t3 +

1

2
t4,K

(0)
44 = −1

4
t4(t4 + 2t3), (B.50)

K
(1)
11 =

1

2
,K

(1)
12 = −1

2
t2,K

(1)
13 =

1

2
,K

(1)
14 =

1

4
t4,K

(1)
21 = 1,K

(1)
22 = 0,K

(1)
23 = 0,K

(1)
24 = 0,

(B.51)

K
(1)
31 =

1

2
,K

(1)
32 =

1

2
t2,K

(1)
33 =

1

2
,K

(1)
34 = −1

4
t4,K

(1)
41 = 0,K

(1)
42 = 0,K

(1)
43 = 1,K

(1)
44 = 0,

(B.52)

K
(2)
11 =

1

2t1
, K

(2)
12 = −1

2

t2
t1
, K

(2)
13 = − 1

2t1
, K

(2)
14 = −1

2

t4
t1
, K

(2)
21 = 0, K

(2)
22 = 1, (B.53)

K
(2)
23 = 0, K

(2)
24 = 0, K

(2)
31 = − 1

2t3
, K

(2)
32 = −1

2

t2
t3
, K

(2)
33 =

1

2t3
, K

(2)
34 = −1

2

t4
t3
, (B.54)

K
(2)
41 = 0, K

(2)
42 = 0, K

(2)
43 = 0, K

(2)
44 = 1. (B.55)
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B.2.2 Delaminated region

K
(0)
11 = −1

4

t2(2t1 + t2)

t1
,K

(0)
32 =

1

4

t22
t1
,K

(0)
33 =

1

4

t22t4
t1
,K

(0)
21 =

1

4

(3t21 − t22 + t1t2)

t1
, (B.56)

K
(0)
22 = −1

4

(t21 − t22 + t1t2)

t1
,K

(0)
23 = −1

4

t4(t
2
1 − t22 + t1t2)

t1
,K

(0)
31 = 0,K

(0)
32 = −1

2
t4, (B.57)

K
(0)
33 =

1

4

t34
t3
,K

(0)
41 = 0,K

(0)
42 =

1

2
t3,K

(0)
43 = −1

4

t4(t
2
3 − t24 + t3t4)

t3
, (B.58)

K
(1)
11 = 1,K

(1)
12 = K

(1)
13 = 0,K

(1)
21 = 1,K

(1)
22 = K

(1)
23 = 0, (B.59)

K
(1)
31 = 0,K

(1)
32 = 1,K

(1)
33 = 0,K

(1)
41 = 0,K

(1)
42 = 1,K

(1)
43 = 0, (B.60)

K
(2)
11 =

1

t1
,K

(2)
12 = − 1

t1
,K

(2)
13 = − t4

t1
,K

(2)
21 = − 1

t2
,K

(2)
22 =

1

t2
,K

(2)
23 =

t4
t2
, (B.61)

K
(2)
31 = 0,K

(2)
32 = 0,K

(2)
33 = − t4

t3
,K

(2)
41 = 0,K

(2)
42 = 0,K

(2)
43 = 1. (B.62)

B.3 First-order plate theory

This Appendix collects theKij matrix elements of the FSDT solution detailed in Subsections
4.1.3 and 4.2.3.

B.3.1 Undelaminated region

K
(0)
11 = −1

2
t1,K

(0)
12 = −z(2)R − 1

2
t2,K

(0)
13 = K

(0)
14 = K

(0)
21 = 0,K

(0)
22 = −z(2)R ,K

(0)
23 = K

(0)
24 = 0,

(B.63)

K
(0)
31 = 0,K

(0)
32 = −z(2)R +

1

2
t2,K

(0)
33 =

1

2
t3,K

(0)
34 = 0, (B.64)

K
(0)
41 = 0,K

(0)
42 = −z(2)R +

1

2
t2,K

(0)
43 = t3,K

(0)
44 =

1

2
t3, (B.65)

K
(0)
41 = 0,K

(0)
42 = −z(2)R +

1

2
t2,K

(0)
43 = t3,K

(0)
44 =

1

2
t4, (B.66)

K
(1)
11 = 1,K

(1)
12 = K

(1)
13 = K

(1)
14 = 0,K

(1)
21 = 0,K

(1)
22 = 1,K

(1)
23 = K

(1)
24 = 0, (B.67)

K
(1)
31 = K

(1)
32 = 0,K

(1)
33 = 1,K

(1)
34 = 0,K

(1)
41 = K

(1)
42 = K

(1)
43 = 0,K

(1)
44 = 1. (B.68)

B.3.2 Delaminated region

K
(0)
11 = −1

2
t2,K

(0)
12 = K

(0)
13 = K

(0)
14 = 0,K

(0)
21 =

1

2
(t1 − t2),K

(0)
22 =

1

2
t2,K

(0)
23 = K

(0)
24 = 0,

(B.69)

K
(0)
31 = K

(0)
32 = 0,K

(0)
33 = −1

2
t4,K

(0)
34 = 0,K

(0)
41 = K

(0)
42 = 0,K

(0)
43 =

1

2
(t3 − t4),K

(0)
44 =

1

2
t4,

(B.70)
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K
(1)
11 = 1,K

(1)
12 = K

(1)
13 = K

(1)
14 = 0,K

(1)
21 = 0,K

(1)
22 = 1,K

(1)
23 = K

(1)
24 = 0, (B.71)

K
(1)
31 = K

(1)
32 = 0,K

(1)
33 = 1,K

(1)
34 = 0,K

(1)
41 = K

(1)
42 = K

(1)
43 = 0,K

(1)
44 = 1. (B.72)
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C
System matrices of the state space models

C.1 Method of 2ESLs

C.1.1 Reddy’s third-order plate theory

In this Appendix the system matrix of the Reddy TSDT presented in Sections 5.2 is shown.
The matrix elements are quite lengthy, and therefore these are not detailed an this thesis.

C.1.1.1 Undelaminated region

T(ud) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S̃1 0 0 S̃2 S̃3 0 0 S̃4 S̃5 0 0 S̃6 S̃7 0 0 S̃8 0 S̃9 0 S̃10

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 S̃11 S̃12 0 0 S̃13 S̃14 0 0 S̃15 S̃16 0 0 S̃17 S̃18 0 S̃19 0 S̃20 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S̃21 0 0 S̃22 S̃23 0 0 S̃24 S̃25 0 0 S̃26 S̃27 0 0 S̃28 0 S̃29 0 S̃30

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 S̃31 S̃32 0 0 S̃33 S̃34 0 0 S̃35 S̃36 0 0 S̃37 S̃38 0 S̃39 0 S̃40 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

S̃41 0 0 S̃42 S̃43 0 0 S̃44 S̃45 0 0 S̃46 S̃47 0 0 S̃48 0 S̃49 0 S̃50

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 S̃51 S̃52 0 0 S̃53 S̃54 0 0 S̃55 S̃56 0 0 S̃57 S̃58 0 S̃59 0 S̃60 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

S̃61 0 0 S̃62 S̃63 0 0 S̃64 S̃65 0 0 S̃66 S̃67 0 0 S̃68 0 S̃69 0 S̃70

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 S̃71 S̃72 0 0 S̃73 S̃74 0 0 S̃75 S̃76 0 0 S̃77 S̃78 0 S̃79 0 S̃80 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 S̃81 S̃82 0 0 S̃83 S̃84 0 0 S̃85 S̃86 0 0 S̃87 S̃88 0 S̃89 0 S̃90 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C.1)

where the parameters denoted by S̃ are constants and can be found in Szekrényes (2014c).
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C.1.1.2 Delaminated region

T(d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S̄1 0 0 S̄2 S̄3 0 0 S̄4 0 0 0 0 0 0 0 0 0 S̄5 0 S̄6

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 S̄7 S̄8 0 0 S̄9 S̄10 0 0 0 0 0 0 0 0 0 S̄11 0 S̄12 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S̄13 0 0 S̄14 S̄15 0 0 S̄16 0 0 0 0 0 0 0 0 0 S̄17 0 S̄18

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 S̄19 S̄20 0 0 S̄21 S̄22 0 0 0 0 0 0 0 0 0 S̄23 0 S̄24 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 S̄25 0 0 S̄26 S̄27 0 0 S̄28 0 S̄29 0 S̄30

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 S̄31 S̄32 0 0 S̄33 S̄34 0 S̄35 0 S̄36 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 S̄37 0 0 S̄38 S̄39 0 0 S̄40 0 S̄41 0 S̄42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 S̄43 S̄44 0 0 S̄45 S̄46 0 S̄47 0 S̄48 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 S̄49 S̄50 0 0 S̄51 S̄52 0 0 S̄53 S̄54 0 0 S̄55 S̄56 0 S̄57 0 S̄58 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.2)

C.1.2 Second-order plate theory

In this Appendix the system matrices of the SSDT solution can be found. The state space
models were developed in Section 5.3.

C.1.2.1 Undelaminated region

T(ud) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R̃1 0 0 R̃2 R̃3 0 0 R̃4 R̃5 0 0 R̃6 R̃7 0 0 R̃8 R̃9 0 0 R̃10 0 R̃11

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 R̃12 R̃13 0 0 R̃14 R̃15 0 0 R̃16 R̃17 0 0 R̃18 R̃19 0 0 R̃20 R̃21 0 R̃22 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R̃23 0 0 R̃24R̃25 0 0 R̃26R̃27 0 0 R̃28R̃29 0 0 R̃30R̃31 0 0 R̃32 0 R̃33

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 R̃34 R̃35 0 0 R̃36 R̃37 0 0 R̃38 R̃39 0 0 R̃40 R̃41 0 0 R̃42 R̃43 0 R̃44 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

R̃45 0 0 R̃46R̃47 0 0 R̃48R̃49 0 0 R̃50R̃51 0 0 R̃52R̃53 0 0 R̃54 0 R̃55

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 R̃56 R̃57 0 0 R̃58 R̃59 0 0 R̃60 R̃61 0 0 R̃62 R̃63 0 0 R̃64 R̃65 0 R̃66 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

R̃67 0 0 R̃68R̃69 0 0 R̃70R̃71 0 0 R̃72R̃73 0 0 R̃74R̃75 0 0 R̃76 0 R̃77

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 R̃78 R̃79 0 0 R̃80 R̃81 0 0 R̃82 R̃83 0 0 R̃84 R̃85 0 0 R̃86 R̃87 0 R̃88 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

R̃89 0 0 R̃90R̃91 0 0 R̃92R̃93 0 0 R̃94R̃95 0 0 R̃96R̃97 0 0 R̃98 0 R̃99

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 R̃100R̃101 0 0 R̃102R̃103 0 0 R̃104R̃105 0 0 R̃106R̃107 0 0 R̃108R̃109 0 R̃110 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 R̃111R̃112 0 0 R̃113R̃114 0 0 R̃115R̃116 0 0 R̃117R̃118 0 0 R̃119R̃120 0 R̃121 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(C.3)
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C.1. METHOD OF 2ESLS

C.1.2.2 Delaminated region

T(d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R̄1 0 0 R̄2 R̄3 0 0 R̄4 R̄5 0 0 R̄6 0 0 0 0 0 0 0 0 0 0 0 0 0 R̄7

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 R̄8 R̄9 0 0 R̄10R̄11 0 0 R̄12R̄13 0 0 0 0 0 0 0 0 0 0 0 0 0 R̄14 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R̄15 0 0 R̄16R̄17 0 0 R̄18R̄19 0 0 R̄20 0 0 0 0 0 0 0 0 0 0 0 0 0 R̄21

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 R̄22R̄23 0 0 R̄24R̄25 0 0 R̄26R̄27 0 0 0 0 0 0 0 0 0 0 0 0 0 R̄28 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R̄29 0 0 R̄30R̄31 0 0 R̄32R̄33 0 0 R̄34 0 0 0 0 0 0 0 0 0 0 0 0 0 R̄35

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 R̄36R̄37 0 0 R̄38R̄39 0 0 R̄40R̄41 0 0 0 0 0 0 0 0 0 0 0 0 0 R̄42 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 R̄43 0 0 R̄44R̄45 0 0 R̄46R̄47 0 0 R̄48 0 R̄49

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 R̄50R̄51 0 0 R̄52R̄53 0 0 R̄54R̄55 0 R̄56 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 R̄57 0 0 R̄58R̄59 0 0 R̄60R̄61 0 0 R̄62 0 R̄63

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 R̄64R̄65 0 0 R̄66R̄67 0 0 R̄68R̄69 0 R̄70 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 R̄71 0 0 R̄72R̄73 0 0 R̄74R̄75 0 0 R̄76 0 R̄77

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 R̄78R̄79 0 0 R̄80R̄81 0 0 R̄82R̄83 0 R̄84 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 R̄85R̄86 0 0 R̄87R̄88 0 0 0 0 0 0 R̄89R̄90 0 0 R̄91R̄92 0 R̄93 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(C.4)

C.1.3 First-order plate theory

This Appendix contains the system matrices of the FSDT model detailed in Section 5.4.

C.1.3.1 Undelaminated region

T(ud) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0

Q̃1 0 0 Q̃2 Q̃3 0 0 Q̃4 Q̃5 0 0 Q̃6 0 Q̃7

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 Q̃8 Q̃9 0 0 Q̃10 Q̃11 0 0 Q̃12 Q̃13 0 Q̃14 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0

Q̃15 0 0 Q̃16 Q̃17 0 0 Q̃18 Q̃19 0 0 Q̃20 0 Q̃21

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 Q̃22 Q̃23 0 0 Q̃24 Q̃25 0 0 Q̃26 Q̃27 0 Q̃28 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0

Q̃29 0 0 Q̃30 Q̃31 0 0 Q̃32 Q̃33 0 0 Q̃34 0 Q̃35

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 Q̃36 Q̃37 0 0 Q̃38 Q̃39 0 0 Q̃40 Q̃41 0 Q̃42 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 Q̃43 Q̃44 0 0 Q̃45 Q̃46 0 0 Q̃47 Q̃48 0 Q̃49 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.5)
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APPENDIX C. SYSTEM MATRICES OF THE STATE SPACE MODELS

C.1.3.2 Delaminated region

T(d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q̄1 0 0 Q̄2 Q̄3 0 0 Q̄4 0 0 0 0 0 0 0 0 0 Q̄5

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 Q̄6 Q̄7 0 0 Q̄8 Q̄9 0 0 0 0 0 0 0 0 0 Q̄10 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Q̄11 0 0 Q̄12 Q̄13 0 0 Q̄14 0 0 0 0 0 0 0 0 0 Q̄15

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 Q̄16 Q̄17 0 0 Q̄18 Q̄19 0 0 0 0 0 0 0 0 0 Q̄20 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Q̄21 0 0 Q̄22 Q̄23 0 0 Q̄24 0 Q̄25

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Q̄26 Q̄27 0 0 Q̄28 Q̄29 0 Q̄30 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 Q̄31 0 0 Q̄32 Q̄33 0 0 Q̄34 0 Q̄35

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Q̄36 Q̄37 0 0 Q̄38 Q̄39 0 Q̄40 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 Q̄41 Q̄42 0 0 0 0 0 0 Q̄43 Q̄44 0 Q̄45 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.6)

C.2 Method of 4ESLs

C.2.1 Third-order plate theory

This Appendix presents the system matrices of the TSDT model detailed in Section 5.5.

C.2.1.1 Undelaminated region

T(ud) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S̃1 0 0 S̃2 S̃3 0 0 S̃4 S̃5 0 0 S̃6 S̃7 0 0 S̃8 S̃9 0 0 S̃10S̃11 0 0 S̃12 0 S̃13

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 T̃1 T̃2 0 0 T̃3 T̃4 0 0 T̃5 T̃6 0 0 T̃7 T̃8 0 0 T̃9 T̃10 0 0 T̃11 T̃12 0 T̃13 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S̃14 0 0 S̃15S̃16 0 0 S̃17S̃18 0 0 S̃19S̃20 0 0 S̃21S̃22 0 0 S̃23S̃24 0 0 S̃25 0 S̃26

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 T̃14T̃15 0 0 T̃16 T̃17 0 0 T̃18 T̃19 0 0 T̃20 T̃21 0 0 T̃22 T̃23 0 0 T̃24 T̃25 0 T̃26 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S̃27 0 0 S̃28S̃29 0 0 S̃30S̃31 0 0 S̃32S̃33 0 0 S̃34S̃35 0 0 S̃36S̃37 0 0 S̃38 0 S̃39

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 T̃27T̃28 0 0 T̃29 T̃30 0 0 T̃31 T̃32 0 0 T̃33 T̃34 0 0 T̃35 T̃36 0 0 T̃37 T̃38 0 T̃39 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

S̃40 0 0 S̃41S̃42 0 0 S̃43S̃44 0 0 S̃45S̃46 0 0 S̃47S̃48 0 0 S̃49S̃50 0 0 S̃51 0 S̃52

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 T̃40T̃41 0 0 T̃42 T̃43 0 0 T̃44 T̃45 0 0 T̃46 T̃47 0 0 T̃48 T̃49 0 0 T̃50 T̃51 0 T̃52 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

S̃53 0 0 S̃54S̃55 0 0 S̃56S̃57 0 0 S̃58S̃59 0 0 S̃60S̃61 0 0 S̃62S̃63 0 0 S̃64 0 S̃65

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 T̃53T̃54 0 0 T̃55 T̃56 0 0 T̃57 T̃58 0 0 T̃59 T̃60 0 0 T̃61 T̃62 0 0 T̃63 T̃64 0 T̃65 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

S̃66 0 0 S̃67S̃68 0 0 S̃69S̃70 0 0 S̃71S̃72 0 0 S̃73S̃74 0 0 S̃75S̃76 0 0 S̃77 0 S̃78

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 T̃66T̃67 0 0 T̃68 T̃69 0 0 T̃70 T̃71 0 0 T̃72 T̃73 0 0 T̃74 T̃75 0 0 T̃76 T̃77 0 T̃78 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 S̃79S̃80 0 0 S̃81S̃82 0 0 S̃83S̃84 0 0 S̃85S̃86 0 0 S̃87S̃88 0 S̃89 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.7)
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C.2. METHOD OF 4ESLS

C.2.1.2 Delaminated region

T
(d
)
=

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝0
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D
The virtual crack closure technique
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Figure D.1: Reference system and parameters of the virtual crack closure technique (VCCT).

In accordance with the VCCT the ERRs in a 3D FE model can be calculated as:

GI =
1

2ΔxΔy
Fz1(w2−w3), GII =

1

2ΔxΔy
Fy1(v2−v3), GIII =

1

2ΔxΔy
Fx1(u2−u3), (D.1)

where Fx1, Fy1 and Fz1 are the sum of positive nodal forces coming from those corner of the
neighboring elements, that coincide with node 1 , u2, u3, v2, v3, w2 and w3 are the nodal
displacements at nodes 2 and 3 in Figure D.1.
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E
3D distributions of shear strains and

interlaminar stresses
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APPENDIX E. 3D DISTRIBUTIONS OF SHEAR STRAINS AND INTERLAMINAR
STRESSES

ESL
1

ESL
1

ESL
2

ESL
2
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1
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1
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2

ESL
2

1 2

1 2

Figure E.1: Distribution of the shear strains γxz ((a) and (b)) and γyz ((c) and (d)) by Reddy
TSDT at the transition between the delaminated and undelaminated regions at Y=b/2 and
Y=0 (case III, b=100 mm), ΩD is the delamination plane (method of 2ESLs).
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Figure E.2: Distribution of the interlaminar shear stress by Reddy TSDT for case III, b=160
mm, τ

(2)
xz (a), τ

(1)
xz (b), τ

(2)
yz (c) and τ

(1)
yz (d) (method of 2ESLs).
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APPENDIX E. 3D DISTRIBUTIONS OF SHEAR STRAINS AND INTERLAMINAR
STRESSES
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Figure E.3: Distribution of the shear strains γxz ((a) and (b)) and γyz ((c) and (d)) by SSDT
at the transition between the delaminated and undelaminated regions at Y=b/2 and Y=0
(case III, b=100 mm), ΩD is the delamination plane (method of 4ESLs).
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Figure E.4: Distribution of the interlaminar shear stress by SSDT for case III, b=160 mm,
τ
(3)
xz (a), τ

(2)
xz (b), τ

(3)
yz (c) and τ

(2)
yz (d) (method of 4ESLs).
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