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Introduction

Spectral clustering is a relatively new notion of the 1990s for methods that aim at finding
clusters of data points or vertices of a graph by means of the eigenvalues and eigenvectors of
a conveniently constructed matrix based on the data or graph. If one reads the tutorial [Lux]
or looks for spectral clustering in Wikipedia, finds that the eigenvalues of a similarity matrix
assigned to the data are used to perform dimension reduction, and also finds a collection
of algorithms, which roughly give the following recipe: if you have data points, build a
similarity graph on them; if you have the graph, take the adjacency or Laplacian matrix,
occasionally some normalized versions of them, and for a given integer k, find the top or
bottom k eigenvalues together with eigenvectors; then apply the k-means algorithm to the
eigenvectors. They do not tell much about the choice of the best suitable matrix and the
integer k; further about the relation between the so obtained clustering of the vertices and
the measures characterizing a good clustering from the point of view of some reasonable
requirements of those practitioners who really want to find groups in biological or social
networks. Here we try to give answers to these questions in the form of precisely formulated
theorems and practical considerations, while we use the tools of advanced linear algebra,
multivariate statistics, and probability.

In his videotalk, Ravi Kannan (Microsoft Research, India) also pointed out the close
relation between spectral clustering and statistics when making low-dimensional embedding
of high-dimensional data. The abstract of his talk Clustering – Does Theory Help? (Simons
Institute, Berkeley, December 9, 2013) says the following. “Theoretical computer science
has brought to bear powerful ideas to find nearly optimal clusterings, while statistics mixture
models of data have been useful in understanding the structure of data and in developing
clustering algorithms. However, in practice many heuristics (e.g., dimension reduction and
the k-means algorithm) are widely used. The talk will describe some aspects of the theoretical
computer science and statistics approaches, and attempt to answer the question: is there a
happy marriage of these approaches with practice? ” Indeed, graph theoretical optimization
problems are partly considered by theoretical computer scientists (from the point of view of
algorithms and their computational complexity) and partly by statisticians (from the point
of view of mixture models and parameter estimation). In this dissertation, I manage to use
both approaches and reconcile them with the needs of the practitioners.

Spectral clustering is originated in spectral graph theory, which connects linear algebra
and combinatorial graph theory. It was developed by [Biggs] and [Cv], later summarized
in [Chu]. These books mainly consider relations between spectral and structural properties
of graphs, and describe spectra of many well-known graphs. Since non-isomorphic graphs
can have the same spectra, the eigenvectors are also needed to characterize their properties.
Fiedler [Fid73] and Hoffman [Hof69, Hof70, Hof72] use the eigenvector, corresponding to
the smallest positive Laplacian eigenvalue of a connected graph (the famous Fiedler vector),
to find a bipartition of the vertices which approximates the minimum cut problem, see also
Juhász and Mályusz [Juh-Mály]. From the two-clustering point of view, this eigenvector
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becomes important when the corresponding eigenvalue is not separated from the trivial zero
eigenvalue, but it is separated from the second smallest positive Laplacian eigenvalue. On the
contrary, when there is a large spectral gap between the trivial zero and the smallest positive
Laplacian eigenvalue (or equivalently, between the trivial 1 and the second largest positive
eigenvalue of the transition probability matrix in the random walk view), there is no use of
partitioning the vertices, the whole graph forms a highly connected cluster. This case has
frequently been studied since Cheeger [Che], establishing a lot of equivalent or near equivalent
advisable features of these graphs. There are many results about the relation between this
gap and different kinds of expansion constants of the graph (see e.g., [Ho-Lin-Wid]), including
random walk view of [Az-Gh, Dia-Str, Mei-Shi]. Roughly speaking, graphs with a large
spectral gap are good expanders, the random walk goes through them very quickly with a
high mixing rate and short commute time, see Lovász [Lov93] for an overview; they are also
good magnifiers as their vertices have many neighbors; in other words, their vertex subsets
have a large boundary compared to their volumes characterized by the isoperimetric number
of Mohár [Moh88]; equivalently, they have high conductance (see Nash-Williams [Nash]) and
show quasirandom properties discussed in Thomason [Thom87, Thom89], Bollobás [Bo], and
Chung, Graham, Wilson [Chu-G-W, Chu-G]. For these favorable characteristics, they are
indispensable in communication networks.

However, less attention has been paid to graphs with a small spectral gap, when several
cases can occur: among others, the graph can be a bipartite expander of Alon [Alon] or its
vertices can be divided into two sparsely connected clusters, but the clusters themselves can
be good expanders (see [Le-Gh-Trev] and [Ng-Jo-We]). In case of several clusters of vertices
the situation is even more complicated. The pairwise relations between the clusters and the
within-cluster relations of the vertices of the same cluster show a great variety. Depending
on the number and sign of the so-called structural eigenvalues of the normalized modularity
matrix, defined in [Bol11c], we make inferences on the number of the underlying clusters
and the type of connection between them. Furthermore, based on spectral and singular
value decompositions (in the sequel, SD and SVD), we attempt to explore the structure of
the actual data set, by treating graphs and contingency tables as statistical data, which
methods are reminiscent of the classical and modern techniques of multivariate statistical
analysis ; see [Bol81, Bol-Tus85, Boletal98] for new algorithms and applications of SVD. In
the case of large data sets, we also investigate random effects, and explore tendencies in the
spectra and spectral subspaces when the sizes tend to infinity.

I started dealing with this topic at the end of the 1980s, when together with my PhD
advisor, Gábor Tusnády, we used spectral methods for a binary clustering problem, where
the underlying matrix turned out to be the generalization of the graph Laplacian to hyper-
graphs (this framework is throughly discussed in [Bol91]; however, hypergraphs will not be
considered in the present dissertation). Then we defined Laplacian for multigraphs and edge-
weighted graphs; further, we went beyond the expanders by investigating gaps within the
spectrum and used eigenvectors corresponding to some structural eigenvalues to find clusters
of vertices. We also considered minimum multiway cuts with different normalizations that
were later called ratio- and normalized cuts. These results (preliminary version published
in [Bol91]) appeared in [Bol93, Bol-Tus94]. Meanwhile, in the 1990s, spectral clustering
became a fashionable area, a lot of papers in this topic appeared, sometimes redefining or
modifying the above notions, using different notation, sometimes having a numerical fla-
vor and suggesting algorithms without rigorous mathematical explanation. At the turn of
the millennium, thanks to the spreading of the World Wide Web and the human genome
project, a rush started to investigate evolving graphs, microarrays, and random situations
different of the classical Erdős–Rényi one. László Lovász and coauthors considered conver-
gent graph sequences and testable graph parameters, bringing statistical concepts into this
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discrete area. Inspired by this, we investigated noisy graph and contingency table sequences,
and testability of some balanced versions of the already defined minimum multiway cut
densities in [Bol-Ko-Kr12]. In parallel, physicists introduced other measures characterizing
community structure of networks, see Newman [New]. In [Bol11c] we also defined some pe-
nalized versions of the Newman–Girvan modularity that are related to regular cuts. These
are present in situations when the network has clusters of vertices with a homogeneous in-
formation flow within or between them, i.e., clusters with small within- and between-cluster
discrepancies.

The dissertation consists of three strongly intertwining chapters. In the first one, we in-
troduce the optimization problems, in due course of which the graph based matrices emerge,
and the representation theorems (see Theorems 1, 3, 9) follow with simple liner algebra.
Based on these representation theorems, more complicated statements about the relation
between multiway cuts and spectra can easily be proved in one direction, e.g., Theorem 2
and the first part of Theorem 4. In the more complicated other direction, in the second part
of Theorem 4, we also state the converse statement that can be proved by means of analysis
of variance considerations and using the so-called k-variance of the k-dimensional vertex
representatives. In fact, this k-variance is the squared distance between the spectral sub-
space corresponding to the k bottom Laplacian eigenvalues and the subspace of the so-called
partition vectors (they are stepwise constant with respect to the underlying k-partition of
the vertices). In the k = 2 case we are able to directly estimate this 2-variance with the
ratio of the two smallest positive eigenvalues, see Theorem 5. In Theorem 6, we state a
finer version of the backward isoperimetric inequality in the general case of an edge-weighted
graph. The representation theorems are generalized to rectangular arrays and joint distribu-
tions, see Theorems 10, 11, 12 (we follow Alfréd Rényi’s setup for introducing the notion of
maximal correlation), and discussed together with the sequential correlation maximization
task of correspondence analysis. In this way, the biclustering and bifactorization problems
are unified, and in this framework, the application of reproducing kernel Hilbert spaces be-
comes natural and well justified when we want to find non-linear separation between our data
points (we will show how the so-called kernel trick forms the base of the fashionable image
segmentation). Most notions and statements about multiway cuts are to be found in Chapter
1, together with introducing a unified and very general treatment for the factorization and
classification of edge-weighted and directed graphs, or contingency tables. This setup will
also provide the framework to prove testability of certain spectral subspaces in Chapter 3.
Summarizing, in Chapter 1, we want to establish a common outline structure for the con-
tents of each optimization problem and algorithm, with unified notation and principles. We
will use this notation in the statements and proofs of the subsequent chapters. Therefore,
occasionally, the notation here differs from that used in the paper where the original version
was published. Since spectral clustering is a relatively new area, in the related bibliography,
there is no unified wording and notation for most of these concepts, but we will compare our
notation with others’ used in the literature.

Most of the new results are proved in Chapter 2. Here we investigate noisy random
graphs and contingency tables, of which the generalized random graphs of [McSh] are special
cases. In Theorems 13 and 15, we give the spectral characterization of the generalized
random graphs having a k-cluster structure: the noisy matrix has k structural eigenvalues
with eigenvectors based on which the k-variance of the vertex representatives tends to 0
as the cluster sizes tend to infinity, roughly speaking, at the same rate, see Theorems 14
and 16. The results extend to the spectra and spectral subspaces of noisy rectangular
arrays, see Theorems 19, 20, 21, and 22. Some results of Chapter 1 become relevant for
large graphs and contingency tables only. Networks are modeled either by edge-weighted
graphs or contingency tables, and usually subject to random errors due to their evolving
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and flexible nature. Asymptotic properties of SD and SVD of the involved matrices are
discussed when not only the number of the vertices or that of the rows and columns of the
contingency table tend to infinity, but the cluster sizes also grow proportionally with them.
Mostly, perturbation results for the SD and SVD of blown-up matrices burdened with a
Wigner-type error matrix are investigated. If the increasing graph obeys a block model,
then it will have as many structural (large absolute value) eigenvalues as the rank (k) of
the underlying pattern matrix, and the representatives of the vertices form k well separated
clusters in the representation, based on the corresponding eigenvectors. Special structures
are collected in Table 2.1, which makes sense for growing graph sequences. Conversely,
given a weight-matrix or rectangular array of nonnegative entries, we are looking for the
underlying block-structure. In Theorems 18 and 23 we will show that under very general
circumstances, the clusters of a large graph’s vertices and those of the rows and columns of
a large contingency table can be identified with high probability.

In this framework, so-called volume-regular cluster pairs are also considered with ‘small’
within- and between-cluster discrepancies. Here we prove the multiclass generalization of the
expander mixing lemma and its converse. Roughly speaking, Theorem 25, proved in [Bol14b]
estimates the k-way discrepancy of a contingency table in the k-clustering obtained by spec-
tral clustering tools as O(

√
2kS̃k + sk), where sk is the k-th largest singular value of the

normalized table, and S̃k is the squareroot of the sum of the weighted k-variances of the
optimal (k−1)-dimensional row- and column-representatives. Note that, with subspace per-
turbation theory, this is small if there is a large gap between sk−1 and sk. The analogue of
this theorem for weighted graphs is Theorem 27, proved earlier in [Bol14a], that estimates
the k-way discrepancy of an edge-weighted graph in the k-clustering obtained by spectral
clustering tools as O(

√
2kS̃k + |µk|), where µk is the k-th largest absolute value eigenvalues

of the normalized modularity matrix, and S̃k is the squareroot of the weighted k-variance of
the optimal (k−1)-dimensional vertex-representatives. Therefore, when we have a bipartite,
biregular graph, up to a constant factor, Theorem 27 gives the same estimate for the discrep-
ancy between the two independent vertex-sets as Lemma 3.2 of [Ev-Go-Lu]. In the converse
direction, in Theorem 24, we estimate sk by a (near zero) strictly increasing logarithmic
function of the k-way discrepancy, see [Bol16]. We state this theorem for rectangular arrays
of nonnegative entries, but similar results follow for edge-weighted and directed graphs too,
see Theorems 26 and 28.

The message of Theorems 24 and 25 is that the k-way discrepancy, when it is ‘small’
enough, suppresses sk. Conversely, sk together with a ‘small’ enough S̃k also suppresses
the k-way discrepancy. Using perturbation theory of spectral subspaces, in [Bol14a] (in
the framework of edge-weighted graphs), we also discuss that a ‘large’ gap between sk−1

and sk suppresses S̃k. Therefore, if we want to find row–column cluster pairs of ‘small’
discrepancy, we must select a k such that there is a remarkable gap between sk−1 and sk;
further sk is ‘small’ enough. Moreover, by using this k and the construction in the proof of the
forward statement of Theorem 25, we are able to find these clusters with spectral clustering
tools. It makes sense, for example, when we want to find clusters of genes and conditions
simultaneously in microarrays so that genes of the same row-cluster would ‘equally’ influence
conditions of the same column-cluster.

In Chapter 3, some theoretical applications of the results of Chapter 1 and 2, further their
relation to testable graph parameters are discussed, together with some open questions. We
will prove that the increasing noisy graph sequences of Chapter 2 converge in the sense of
Borgs and coauthors [Borgsetal1] too. In Theorems 29 and 30 we prove that for any k, the
leading k singular values and the corresponding eigen-subspaces of the normalized modular-
ity matrix are testable, hence, the weighted k-variance is testable too, see [Bol14a]. Here we
also present some parametric and nonparametric statistical methods to find the underlying
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clusters of a given network. In fact, minimum multiway cuts or bicuts and maximum mod-
ularities of Chapter 1 are nonparametric statistics that are estimated by means of spectral
methods. Algorithms for the representation based spectral clustering are consequences of
Theorems 25 and 27. Recently, we have considered the spectral and discrepancy properties as
so-called generalized quasirandom properties and have realized that the theorems discussed
in Chapter 2 are able to prove implications between them. The relations between spectra,
spectral subspaces, multiway discrepancies, and degree distribution of generalized random
and quasirandom graphs (introduced in [Lov-Sos]) can be regarded as generalized quasiran-
dom properties, since equivalences between them can also be proved for deterministic graph
sequences, irrespective of stochastic models. However, the precise formulation and proof of
Conjecture 1 is not ready yet.

Finally, homogeneous and inhomogeneous probabilistic mixture models are considered,
and it is pointed out how the EM algorithm can be applied to them for the purpose of
simultaneous clustering and parameter estimation when our data form a graph or contingency
table. We chose the number of clusters based on the gaps in the normalized modularity
spectrum. Starting with the spectral clusters, the EM iteration provided a fine-tuning of the
clusters, together with multiscale evaluation (via parameters) of the vertices. At this point,
statistical mixture models are combined with graph theoretical optimization.

Summarizing, I think that my main contributions to spectral clustering are the following:

1. I have extended the notion of the Laplacian and modularity matrix to hypergraphs
and edge-weighted graphs. I have discussed the graph and contingency table based
optimization problems in a unified way, in which framework estimates for different kinds
of multiway cuts are obtained by the SD or SVD of the appropriately selected matrix.
I have also extended the task to joint distributions; hence, generalized the problem
of factor analysis or correspondence analysis, and justified the usage of reproducing
kernel Hilbert spaces in image segmentation problems.

2. I have characterized spectra and spectral subspaces of generalized random graphs;
extended the expander mixing lemma to the k-cluster case and proved its converse
too. These theorems can give a hint for practitioners about the choice of the number
of clusters. The original expander mixing lemma and its converse (for simple, regular
graphs) treat the k = 1 case only, whereas the Szemerédi Regularity Lemma applies
to the worst case scenario: even if there is not an underlying cluster structure, we can
find cluster pairs with small discrepancy with an enormously large k (which does not
depend on the number of vertices, it only depends on the discrepancy to be attained). I
rather treat the intermediate case, and show that a moderate k suffices if our graph has
a hidden k-cluster structure that can be revealed by spectral clustering tools. Under
good clustering I generally understand clusters with small within- and between-cluster
discrepancies.

3. I have proved that the normalized modularity spectra and spectral subspaces of noisy
random graph sequences are testable in the sense of [Borgsetal1]. Based on this, I state
so-called generalized quasirandom properties and can prove some implications between
them, including spectra and the multiway discrepancy introduced for this purpose.

4. I have shown how to apply the EM algorithm to estimate the parameters of the homoge-
neous and inhomogeneous stochastic block models, together with finding the underlying
clusters. Here the data form a graph or contingency table, which is not complete as the
cluster memberships of the graph vertices or rows/columns of the table are missing.
The initial clustering is obtained by spectral tools.
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Chapter 1

Multiway cuts and representations

related to spectra

In this chapter, the optimization problems are introduced, in due course of which the graph
based matrices emerge, and the representation theorems follow with some liner algebra.
Based on these theorems, statements about the lower estimates of multiway cuts by means
of spectra can easily be proved; the more complicated upper estimates include the eigen-
subspaces as well.

Most notions and statements about multiway cuts are to be found in this chapter, together
with introducing a unified and very general treatment for the factorization and classification
of edge-weighted and directed graphs, or contingency tables. This setup will also provide
the framework to prove more sophisticated theorems in Chapters 2 and 3.

Graph spectra are used for almost 50 years to recover the structure of graphs. Different
kinds of spectra are capable of finding multiway cuts corresponding to different optimiza-
tion criteria. While eigenvalues give estimates for the objective functions of the discrete
optimization problems, eigenvectors are used to find clusters of vertices via the k-means
algorithm, which approximately solves the multiway cut problems with some normalization.
The technique is often called spectral relaxation, but these methods are also reminiscent
of some classical methods of multivariate statistical analysis, namely, principal component
analysis (Pearson 1901, Hotelling 1933), factor analysis (Thrustone 1931, Thompson 1939),
canonical correlation analysis (Hotelling 1936), and correspondence analysis (Benzécri et al.
1980, Greenacre 1984, and [Bol87b]). We also generalize the notion of representation for joint
distributions, which technique justifies the way how non-linearities are treated by mapping
the data into a feature space (reproducing kernel Hilbert space).

The technical proofs of most of the theorems in this chapter are omitted (they are to
be found in the paper referred to in parentheses after the numbered theorems, the theo-
rems of other authors are not numbered). However, some short proofs, demonstrating the
representation or kernel techniques are presented.

1.1 Quadratic placement and multiway cut problems for

graphs

Now, our data matrix corresponds to a graph. First, let G = (V,E) be a simple graph on the
vertex-set V and edge-set E with |V | = n and |E| ≤

(
n
2

)
. Thus, the |E| × n data matrix B
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has 0-1 entries, the rows correspond to the edges, the columns to the vertices, and bij is 1 or
0 depending on whether the edge i contains the vertex j as an endpoint or not. The Gram-
matrix C = BTB is the non-centralized covariance matrix based on the data matrix B, and
is both positive definite and a Frobenius type matrix with nonnegative entries. Sometimes
the matrix C is called signless Laplacian (see [Cv-Ro-Si]) and its eigenspaces are used to
compare cospectral graphs. It is easy to see that C = D + A, where A = (aij) is the
usual adjacency matrix of G, while D is the so-called degree-matrix, i.e., diagonal matrix,
containing the vertex-degrees in its main diagonal. A being a Frobenius-type matrix, its
maximum absolute value eigenvalue is positive, it is at most the maximum vertex-degree,
and apart from the trivial case – when there are no edges at all – it is indefinite, as the sum
of its eigenvalues, i.e., the trace of A, is zero.

Instead of the positive definite matrix C, for optimization purposes, as will be derived
below, the Laplacian matrix L = D − A is more suitable, which is positive semidefinite.
This L is sometimes called combinatorial or difference Laplacian, whereas we will introduce
the so-called normalized Laplacian, LD = D−1/2LD−1/2 too. If our graph is regular, then
D = dI (where d is the common degree of the vertices and I is the identity matrix) and the
eigenvalues of C and L are obtained from those of A by adding d to them or subtracting
them from d, respectively.

There are other frequently used matrices, for example, the modularity and normalized
modularity matrices preferred by physicists, latter one closely related to the normalized
Laplacian, akin to the so-called transition probability matrix D−1A or the random walk
Laplacian I − D−1A (these matrices are not symmetric, still they have real eigenvalues).
We will clarify in which situation which of these matrices is the best applicable. The whole
story simplifies if we use edge-weighted graphs, and all these matrices come into existence
naturally, while solving some minimum placement problems. Multiway cut problems also
fit into this framework, since the optima of their objective functions are obtained by taking
the above optima over so-called partition vectors (stepwise constant with respect to the
hidden partition of the vertices), so they can easily be related to the Laplacian or normalized
Laplacian spectra, whereas the precision of the estimates depends on the distance between the
subspaces spanned by the corresponding eigenvectors and partition vectors. By an analysis of
variance argument, this distance is the sum of the inner variances of the underlying clusters,
the objective function of the k-means algorithm.

1.1.1 Representation of edge-weighted graphs

Let G = (V,W ) be an edge-weighted graph, where V = {1, . . . , n} is the vertex-set and the
n×n symmetric edge-weight matrix W has nonnegative real entries and zero diagonal. Here
wij can be thought of as the similarity between vertices i and j, where 0 similarity means no
connection (edge) at all. If G is a simple graph, then W is its adjacency matrix. Since W

is symmetric, the weight of the edge between two vertices does not depend on its direction,
i.e., our graph is undirected. We will mostly treat undirected graphs, except in Section 2.3.4,
where a non-symmetric W corresponds to a directed edge-weighted graph.

The row-sums of W are

di =
n∑

j=1

wij , i = 1, . . . , n

which are called generalized vertex-degrees and collected in the main diagonal of the diagonal
degree-matrix D = diag(d), where d = (d1, . . . , dn)

T is the so-called degree-vector. (Vectors
are always columns, in this chapter have real coordinates, and T stands for the transposition.)
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For a given integer 1 ≤ k ≤ n, we are looking for k-dimensional representatives r1, . . . , rn ∈
Rk of the vertices such that they minimize the objective function

Qk =
∑

i<j

wij‖ri − rj‖2 ≥ 0 (1.1)

subject to
n∑

i=1

rir
T
i = Ik (1.2)

where Ik is the k × k identity matrix. When minimized, the objective function Qk favors
k-dimensional placement of the vertices such that vertices connected with large-weight edges
are close to each other. This is the base of many graph-drawing algorithms.

Let us put both the objective function and the constraint in a more favorable form.
Denote by X the n × k matrix of rows rT1 , . . . , r

T
n . Let x1, . . . ,xk ∈ Rn be the columns of

X, for which fact we use the notation X = (x1, . . . ,xk). Because of the constraint (1.2),
the columns of X form an orthonormal system, hence, X is a suborthogonal matrix, and
the constraint (1.2) can be formulated as XTX = Ik. With this notation, the objective
function (1.1) is rewritten in the symmetrized form

Qk =
1

2

n∑

i=1

n∑

j=1

wij‖ri − rj‖2 =

n∑

i=1

di‖ri‖2 −
n∑

i=1

n∑

j=1

wijr
T
i rj

=
k∑

ℓ=1

xTℓ (D − W )xℓ = tr[XT (D − W )X].

(1.3)

Definition 1 The matrix L = D − W is called the Laplacian corresponding to the edge-
weighted graph G = (V,W ).

For simple graphs, we get back the usual definition of the Laplacian, e.g., [Chu, Moh88].
The Laplacian is always positive semidefinite, since by (1.1), the quadratic form Q1

is nonnegative; and it always has a zero eigenvalue, since its rows sum to zero. It can
be shown, that the multiplicity of 0 as an eigenvalue of L is equal to the number of the
connected components of G = (V,W ), i.e., the maximum number of disjoint subsets of
V such that there are no edges connecting vertices of distinct subsets (no edge means an
edge with zero weight). In terms of W , the number of connected components of G is the
maximum number of the diagonal blocks which can be achieved by the same permutation of
the rows and columns of W . Consequently, if G is connected, then 0 is a single eigenvalue
with corresponding unit-norm eigenvector u0 = 1√

n
1, where 1 denotes the all 1’s vector. In

the sequel, we will assume that G is connected, or equivalently, W is irreducible.
Since our objective function Qk = tr[XTLX] is minimized under XTX = Ik, a simple

linear algebra provides the following theorem.

Theorem 1 ([Bol-Tus94]) Representation theorem for edge-weighted graphs. Let
G = (V,W ) be a connected edge-weighted graph with Laplacian matrix L. Let 0 = λ0 < λ1 ≤
· · · ≤ λn−1 be the eigenvalues of L with corresponding unit-norm eigenvectors u0,u1, . . . ,un−1.
Let k < n be a positive integer such that λk−1 < λk. Then the minimum of (1.1) subject
to (1.2) is

k−1∑

i=0

λi =
k−1∑

i=1

λi

and it is attained with the optimal representatives r∗1, . . . , r
∗
n, the transposes of which are row

vectors of X∗ = (u0,u1, . . . ,uk−1).
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The vectors u0,u1, . . . ,uk−1 are called vector components of the optimal representation. We
remark the following.

• The dimension k does not play an important role here, the vector components can be
included one after the other up to a k such that λk−1 < λk.

• The eigenvectors can be arbitrarily chosen in the eigenspaces corresponding to possible
multiple eigenvalues, under the orthogonality conditions. Further, the representatives
can as well be rotated in Rk. Indeed, nor the objective function, neither the constraint
is changed if we use Rri’s instead of ri’s, or equivalently, XR instead of X, where R

is an arbitrary k × k orthogonal matrix.

• Since the eigenvector u0 has equal coordinates, the same first coordinates of the vertex
representatives do not play an important role in the representation, especially when the
representatives are used for clustering purposes. Therefore, u0 can be disregarded, and
an optimal (k − 1)-dimensional representation is performed based on the eigenvectors
u1, . . . ,uk−1.

• So far, we assumed that W has zero diagonal. We can as well see that in the presence
of possible loops (some or all diagonal entries of W are positive) the objective function
and the Laplacian remains the same, hence, Theorem 1 is applicable to this situation
too.

• Representation of hypergraphs is discussed in [Bol92, Bol93]. In fact, the Laplacian
of the hypergraph H = (V,E) defined there is the same as the Laplacian of the edge-
weighted graph G = (V,W ), with edge-weights

wij =

{ ∑
e∈E

∑
i,j∈e

1
|e| if i 6= j

0 if i = j,

where |e| is the number of vertices contained in the hyper-edge e. Therefore, hyper-
graphs will not be discussed here. Examples for spectra and representation of some
well-known simple graphs are to be found in Section 1.1.3 of [Bol13].

1.1.2 Estimating minimum multiway cuts via spectral relaxation

Clusters (in other words, modules or communities) of graphs are typical (usually, loosely
connected) subsets of vertices that can be identified, for example, with social groups or
interacting enzymes in social or metabolic networks, respectively; they form special partition
classes of the vertices. To measure the performance of a clustering, different kinds of multiway
cuts are introduced and estimated by means of Laplacian spectra. The key motif of these
estimations is that minima and maxima of the quadratic placement problems of Section 1.1
are attained on some appropriate eigenspaces of the Laplacian, while optimal multiway
cuts are special values of the same quadratic objective function realized by step-vectors.
Hence, the optimization problem, formulated in terms of the Laplacian eigenvectors, is the
continuous relaxation of the underlying maximum or minimum multiway cut problem.

For a fixed integer 1 ≤ k ≤ n, let Pk = (V1, . . . , Vk) be a proper k-partition of the vertices,
where the disjoint, non-empty vertex subsets V1, . . . , Vk will be referred to as clusters or
modules. Let Pk denote the set of all k-partitions. Optimization over Pk is usually NP-
complete, except some special classes of graphs.
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Definition 2 The weighted cut between the non-empty vertex-subsets U, T ⊂ V of the edge-
weighted graph G = (V,W ) is

w(U, T ) =
∑

i∈U

∑

j∈T
wij .

The minimum k-way cut of G is

mincutk(G) = min
Pk∈Pk

k−1∑

a=1

k∑

b=a+1

w(Va, Vb). (1.4)

For a simple graph G, Fiedler [Fid73] called the quantity mincut2(G) the edge-connectivity
of G, because it is equal to the minimum number of edges that should be removed to make
G disconnected. He used the notation e(G) for the edge-connectivity of the simple graph
G, and v(G) for its vertex-connectivity (minimum how many vertices should be removed to
make G disconnected). In his breakthrough papers [Fid72, Fid73], Fiedler proved that for
any graph G on n vertices, that differs from the complete graph Kn, the relation

λ1 ≤ v(G) ≤ e(G) (1.5)

holds. In [Fid73], he also provided two lower estimates for λ1 by e(G):

λ1 ≥ 2e(G)(1 − cos
π

n
) (1.6)

and
λ1 ≥ C1e(G) − C2dmax, (1.7)

where C1 = 2(cos πn − cos 2π
n ), C2 = 2 cos πn (1 − cos πn ), and dmax = maxi di is the maximum

vertex-degree. Compared to (1.5), this estimation makes sense in the n ≥ 3 case. The bound
of (1.7) is tighter than that of (1.6) if and only if e(G) ≥ 1

2dmax. The two estimates are equal
and sharp for the path graph Pn with e(G) = 1 and λ1 = 2(1− cos πn ). The path graph can
be split into two clusters by removing any of its edges, however, we would not state that it
has two underlying clusters. The forthcoming ratio cut of Pn is minimized by removing the
middle edge (for even n) or one of the middle edges (for odd n), thus, it provides balanced
clusters.

Because of this two-sided relation between λ1 and e(G), the smallest positive Laplacian
eigenvalue of a connected graph is able to detect the strength of its connectivity; therefore,
Fiedler called λ1 the algebraic connectivity of G. This relation between λ1(G) and e(G) was
also discovered by A. J. Hoffman [Hof70, Hof69], at the same time.

The proof of Fiedler gives us the following hint how to find the optimal 2-partition: the
eigenvector u1 should be close to a step-vector over an appropriate 2-partition of the vertices.
Note that because of its orthogonality to the vector 1, the vector u1 contains both positive
and negative coordinates, and Juhász and Mályusz [Juh-Mály] separated the two clusters
according to the signs. In the sequel, we will use the k-means algorithm for this purpose, in
a more general setup. The vector u1 is frequently called Fiedler-vector.

Even in the simplest k = 2 case, the solution of the minimum cut problem is frequently at-
tained by an uneven 2-partition, for example, if there is an almost isolated vertex (connected
to few other vertices), it may form a cluster itself. To prevent this situation and rather find
real-life loosely connected clusters, we require some balancing for the cluster sizes. For this
purpose, in [Bol91, Bol-Tus94] (even in the preprint version) we defined a type of a weighted
cut that, in addition, penalizes partitions with very unequal cluster sizes. This cut was later
called ratio cut, see, e.g., [Hag-Kah].
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Definition 3 Let G = (V,W ) be an edge-weighted graph and Pk = (V1, . . . , Vk) a k-partition
of its vertices. The k-way ratio cut of G corresponding to the k-partition Pk is

g(Pk, G) =

k−1∑

a=1

k∑

b=a+1

(
1

|Va|
+

1

|Vb|

)
w(Va, Vb) =

k∑

a=1

w(Va, V a)

|Va|

and the minimum k-way ratio cut of G is

gk(G) = min
Pk∈Pk

g(Pk, G).

Assume that G is connected. Let 0 = λ0 < λ1 ≤ · · · ≤ λn−1 denote the eigenvalues
of its Laplacian matrix L with corresponding unit-norm, pairwise orthogonal eigenvectors
u0,u1, . . . ,un−1. Namely, u0 = 1√

n
1.

Theorem 2 ([Bol-Tus94]) For the minimum k-way ratio cut of the connected edge-wighted
graph G = (V,W ) the lower estimate

gk(G) ≥
k−1∑

i=1

λi

holds.

To illustrate the spectral relaxation technique, we describe the short proof here.
Proof. The k-partition Pk is uniquely determined by the n × k balanced partition matrix
Zk = (z1, . . . , zk), where the a-th balanced k-partition vector za = (z1a, . . . , zna)

T is the
following:

zia =

{
1√
|Va|

if i ∈ Va

0 otherwise.
(1.8)

The matrix Zk is trivially suborthogonal, and the set of balanced k-partition matrices is
denoted by ZB

k . With the special representation in which the representatives r̃1, . . . , r̃n ∈ Rk

are row vectors of Zk, the ratio cut of G = (V,W ) corresponding to the k-partition Pk can
be rewritten as

g(Pk, G) =

n−1∑

i=1

n∑

j=i+1

wij‖r̃i − r̃j‖2 =

k∑

a=1

zTaLza = tr(ZT
k LZk). (1.9)

If we minimize it over balanced k-partition matrices Zk ∈ ZB
k , the so obtained minimum

cannot go below the overall minimum
∑k−1

i=0 λi. This finishes the proof. �

Note that equality can be attained only in the k = 1 trivial case, otherwise the eigen-
vectors ui (i = 1, . . . , k − 1) cannot be partition vectors, since their coordinates sum to 0
because of the orthogonality to the u0 vector.

In the case of k = 2, in view of Theorem 2, g2(G) is bounded from below by λ1, akin
to the edge-connectivity of [Fid73]. The proof also suggests that the quality of the above
estimation depends on, how close the k bottom eigenvectors of L are to partition vectors.
The measure of the closeness of the involved subspaces is the k-variance of the k-dimensional
vertex representatives r1, . . . , rn defined as

S2
k(r1, . . . , rn) = min

Pk∈Pk

S2
k(Pk; r1, . . . , rn) = min

Pk=(V1,...,Vk)

k∑

a=1

∑

j∈Va

‖rj − ca‖2 (1.10)
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where ca = 1
|Va|

∑
j∈Va

rj is the center of cluster Va (a = 1, . . . , k). The minimum is obtained
by the k-means algorithm. More precisely, we will apply the k-means algorithm for the
optimal representatives, and if there is a large gap between λk−1 and λk, we may expect
that the optimum, given by the k-means algorithm is not far from that of the minimum k-way
ratio cut. These issues are investigated in [Bol13] thoroughly, together with hypergraph cuts,
here we do not discuss the details. We will rather give similar estimates for the normalized
cut with the normalized Laplacian eigenvalues in the next section.

1.1.3 Normalized Laplacian and normalized cuts

Let G = (V,W ,S) be a weighted graph on the vertex-set V (|V | = n), where both the edges
and vertices have nonnegative weights. The edge-weights are entries of W as in Section 1.1,
whereas the diagonal matrix S = diag(s1, . . . , sn) contains the positive vertex-weights in its
main diagonal. Without loss of generality, we can assume that the entries in W and S both
sum to 1. For the time being, the vertex-weights have nothing to do with the edge-weights.
These individual weights are assigned to the vertices subjectively. For example, in a social
network, the edge-weights are similarities between the vertices based on the strengths of their
pairwise connections (like frequency of co-starring of actors), while vertex-weights embody
the individual strengths of the vertices in the network (like the actors’ individual abilities).
This idea also appears in Borgs and coauthors [Borgsetal1], where they consider edge- and
vertex-weighted graphs.

Now, we look for k-dimensional representatives r1, . . . , rn of the vertices so that they
minimize the objective function Qk =

∑
i<j wij‖ri − rj‖2 subject to

∑n
i=1 sirir

T
i = Ik.

With the notation and considerations of Section 1.1,

min
Pn

i=1 sirir
T
i =Ik

Qk = min
XT SX=Ik

tr(XTLX)

= min
XT SX=Ik

tr[(S1/2X)T (S−1/2LS−1/2)(S1/2X)]

=

k−1∑

i=0

λi(LS) =

k−1∑

i=1

λi(LS)

where LS = S−1/2LS−1/2 is the Laplacian normalized by S, and because of the con-
straints, S1/2X is a suborthogonal matrix. Obviously, LS is also positive semidefinite
with eigenvalues 0 = λ0(LS) ≤ λ1(LS) ≤ · · · ≤ λn−1(LS) and corresponding orthonor-
mal eigenvectors u0,u1, . . . ,un−1. Furthermore, 0 is a single eigenvalue if and only if G is
connected. The optimal k-dimensional representation is obtained by the row vectors of the
matrix S−1/2(u0,u1, . . . ,uk−1).

The special case, when the vertex-weights are the generalized degrees, that is S = D,
has a distinguished importance.

Definition 4 The matrix

LD = D−1/2LD−1/2 = In − D−1/2WD−1/2 = In − WD

is called the normalized Laplacian of the edge-weighted graph G = (V,W ).

In the sequel, assume that
∑n

i=1

∑n
j=1 wij = 1, which will be in accord with the joint

distribution setup of Section 1.3. This is not a serious restriction, since neither the normalized
Laplacian, nor the normalized cut to be introduced are affected by the scaling of the edge-
weights. Some simple statements concerning the normalized Laplacian spectra:
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• In Section 1.3 we will see that the eigenvalues of the normalized edge-weight matrix
WD = D−1/2WD−1/2 are in the [-1,1] interval, since they are special correlations, the
largest one being 1. Consequently, the eigenvalues of LD are in the [0, 2] interval. Let

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2

denote the spectrum of the normalized Laplacian LD.

• Trivially, 0 is a single eigenvalue of LD if and only if G is connected (i.e., W is ir-
reducible), and in this case, the corresponding unit-norm eigenvector is the

√
d :=

(
√
d1, . . . ,

√
dn)T vector. Furthermore, the normalized Laplacian spectrum of a discon-

nected graph is the union of those of its connected components.

• Since
∑n−1

i=0 λi = tr(LD) = n, the following estimates hold:

λ1 = min
i∈{1,...,n−1}

λi ≤
1

n− 1

n−1∑

i=1

λi =
n

n− 1
≤ max

i∈{1,...,n−1}
λi = λn−1.

Note that both of the above inequalities hold with equality at the same time, if and
only if G is the complete graph Kn.

• For a simple graph G, which is not the complete graph Kn, λ1 ≤ 1 holds. Furthermore,
λ1 = 1 if and only if our graph is the complete k-partite graph Kn1,...,nk

with some
1 < k < n. This issue is discussed in [Boletal15] and in Section 1.1.5.

• Provided G is connected, 2 is an eigenvalue of it if and only if G is a bipartite graph.

• For the normalized Laplacian spectra of some well-known simple graphs, see Section
1.3 [Bol13].

Normalized Laplacian was used for spectral clustering in several papers (see, e.g., [Az-Gh,
Mei-Shi]). These results are based on the observation that the SD of LD solves the following
quadratic placement problem.

Theorem 3 ([Bol-Tus94]) Representation theorem for edge- and vertex-weighted

graphs (when the vertex-weights are the generalized degrees). Let G = (V,W ) be a connected
edge-weighted graph with normalized Laplacian LD. Let 0 = λ0 < λ1 ≤ · · · ≤ λn−1 be the
eigenvalues of LD with corresponding unit-norm eigenvectors u0,u1, . . . ,un−1. Let k < n be
a positive integer such that λk−1 < λk. Then the minimum of Qk−1 of (1.1) subject to

n∑

i=1

dirir
T
i = Ik−1 and

n∑

i=1

diri = 0

is
∑k−1

i=1 λi and it is attained with the optimal (k− 1)-dimensional representatives r∗1, . . . , r
∗
n

the transposes of which are row vectors of X∗ = D−1/2(u1, . . . ,uk−1).

The vectors D−1/2u1, . . . ,D
−1/2uk−1 are called vector components of the optimal represen-

tation. Here the second condition excludes the trivial D−1/2u0 = 1 vector.
Now we will use the normalized Laplacian matrix to find so-called minimum normal-

ized cuts of edge-weighted graphs. Normalized cuts also favor balanced partitions, but the
balancing is in terms of the cluster-volumes defined by the generalized degrees.
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Definition 5 Let G = (V,W ) be an edge-weighted graph with generalized degrees d1, . . . , dn
and assume that

∑n
i=1 di = 1. For the vertex-subset U ⊂ V let Vol(U) =

∑
i∈U di denote

the volume of U . The k-way normalized cut of G corresponding to the k-partition Pk =
(V1, . . . , Vk) of V is defined by

f(Pk, G) =
k−1∑

a=1

k∑

b=a+1

(
1

Vol(Va)
+

1

Vol(Vb)

)
w(Va, Vb)

=

k∑

a=1

w(Va, V a)

Vol(Va)
= k −

k∑

a=1

w(Va, Va)

Vol(Va)
.

(1.11)

The minimum k-way normalized cut of G is

fk(G) = min
Pk∈Pk

f(Pk, G). (1.12)

Apparently, fk(G) punishes k-partitions with ‘many’ inter-cluster edges of ‘large’ weights
and with ‘strongly’ differing cluster volumes. The quantity f2(G) was introduced in [Moh89]
for simple graphs and in [Mei-Shi] for edge-weighted graphs; further, for a general k, fk(G)
is discussed in [Az-Gh] and [Bol-Mol02], where we called it k-density of G. Now, fk(G) will
be related to the k smallest normalized Laplacian eigenvalues.

Theorem 4 ([Bol-Mol02]) Assume that G = (V,W ) is connected and let 0 = λ0 < λ1 ≤
· · · ≤ λn−1 ≤ 2 denote the eigenvalues of its normalized Laplacian matrix. Then

fk(G) ≥
k−1∑

i=1

λi (1.13)

and in the case when the optimal k-dimensional representatives of the vertices (see The-
orem 3) can be classified into k well-separated clusters V1, . . . , Vk in such a way that the
maximum cluster diameter ε satisfies the relation ε ≤ min{1/

√
2k,

√
2mini

√
pi}, where

pi = Vol(Vi), i = 1, . . . , k, then

fk(G) ≤ c2
k−1∑

i=1

λi,

where c = 1 + εc′/(
√

2 − εc′) and c′ = 1/mini
√
pi.

Note that the constant c of the upper estimate is greater than 1, and it is the closer to
1, the smaller ε is. The latter requirement is satisfied if there exists a ‘very’ well-separated
k-partition of the k-dimensional Euclidean representatives. From Theorem 4 we can also
conclude that the gap in the spectrum is a necessary but not a sufficient condition of a
good classification. In addition, the Euclidean representatives should be well classified in the
appropriate dimension. When the representatives r1, . . . , rn are endowed with the positive
weights d1, . . . , dn (

∑n
i=1 di = 1 is assumed), then their weighted k-variance is defined as

S̃2
k(r1, . . . , rn) = min

Pk∈Pk

S̃2
k(Pk; r1, . . . , rn) = min

Pk=(V1,...,Vk)

k∑

a=1

∑

j∈Va

dj‖rj − ca‖2 (1.14)

where ca = 1
Vol(Va)

∑
j∈Va

djrj is the weighted center of cluster Va (a = 1, . . . , k). In the
possession of k-dimensional representatives, we look for k clusters. Since the first coordinates
of the representatives are coordinates of the vector D−1/2u0 = 1, they can as well be omitted.
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In [Bol-Tus94], we directly estimated the weighted 2-variance of the optimal vertex rep-
resentatives by the ratio of the two smallest positive normalized Laplacian eigenvalues (the
proof is to be found in the cited papers).

Theorem 5 ([Bol-Tus94, Bol-Tus00]) Let 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1 be the eigen-
values of LD with unit-norm eigenvectors u0,u1, . . . ,un−1 and D be the diagonal degree-
matrix. Then the 2-variance of the optimal 1-dimensional representatives r∗1 , . . . r

∗
n (coordi-

nates of the vector D−1/2u1) can be estimated from above as S̃2
2(r∗1 , . . . , r

∗
n) ≤ λ1/λ2.

Theorem 5 indicates the following two-clustering property of the two smallest positive nor-
malized Laplacian eigenvalues: the greater the gap between them, the better the optimal
representatives of the vertices can be classified into two clusters. This fact, via Theorem 4,
implies that the gap between the eigenvalues λ1 and λ2 of LD is sufficient for the graph to
have a small 2-way normalized cut. Note that this is not the usual spectral gap, which is
between λ0 = 0 and λ1. For k > 2, the situation is more complicated and will be discussed
in Chapter 2.

1.1.4 The isoperimetric number

For k = 2, the normalized cut is the symmetric version of the isoperimetric number (some-
times called Cheeger constant) introduced in the context of Riemannian manifolds and math-
ematical physics, see, e.g., [Che]. There is a wide literature of this topic together with ex-
pander graphs, see , e.g., [Alon, Ho-Lin-Wid, Moh88, Moh89] and [Chu], for a summary. We
just discuss the most important relations of this topic to the normalized cut and clustering.

Definition 6 Let G = (V,W ) be an edge-weighted graph with generalized degrees d1, . . . , dn
and assume that

∑n
i=1 di = 1. The isoperimetric number (Cheeger constant) of G is

h(G) = min
∅6=U⊂V

Vol(U)≤ 1
2

w(U,U)

Vol(U)
. (1.15)

Since Vol(U) is the sum of the weights of edges emanating from U , while w(U,U) is sum of the
weights of those connecting U and U , the relation 0 ≤ h(G) ≤ 1 is trivial. Further, h(G) = 0
if and only if G is disconnected; therefore, only isoperimetric number of a connected graph
is of interest. The isoperimetric number will later be considered as conditional probability,
but first we investigate its relation to the smallest positive normalized Laplacian eigenvalue.
Note that for simple graphs, h(G) is not identical to the combinatorial isoperimetric number
i(G) which uses the cardinality of the subsets instead of their volumes in the denominator
of (1.15), and hence, can exceed 1, see [Moh89] for details.

Intuitively, h(G) is ‘small’ if ‘few low-weight’ edges connect together two disjoint vertex-
subsets (forming a partition of the vertices) with ‘not significantly’ differing volumes; there-
fore, a ‘small’ h(G) is an indication for a sparse cut of G. On the contrary, a ‘large’ h(G)
means that any vertex-subset of G has a large boundary compared to its volume, where the
boundary of U ⊂ V is the weighted cut between U and its complement in V . This is called
good edge-expanding property of G, but here we do not want to give the exact definition of an
expander graph which depends on many parameters and discussed in details (distinguishing
between edge- and vertex-expansion) in many other places, see e.g. [Alon, Ho-Lin-Wid].

Now, a two-sided relation between h(G) and the normalized Laplacian eigenvalue λ1 is
stated for edge-weighted graphs in the following theorem. Similar statements are proved
in [Chu, Moh89] for simple graphs and in [Sin-Jer] for edge-weighted graphs, but without
the upcoming improved upper bound.
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Theorem 6 ([Bol-Mol04]) Improved Cheeger inequality. Let G = (V,W ) be a con-
nected edge-weighted graph with isoperimetric number h(G), and let λ1 denote the smallest
positive eigenvalue of its normalized Laplacian LD. Then

λ1

2
≤ h(G) ≤ min{1,

√
2λ1}

always holds true. Furthermore, provided λ1 ≤ 1, the upper estimate improves to

h(G) ≤
√
λ1(2 − λ1).

Note that λ1 ≤ 1 is not a peculiar requirement. Indeed, Proposition 1 of the forthcoming
Section 1.1.5 implies that λ1 ≤ 1 whenever G is not a soft-core weighted graph, i.e., it has
at least one 0 weight.

An important application of the isoperimetric inequality is related in many aspects to
random walks, see, e.g., [Chu, Lov93, Lux]. In fact, time-reversible Markov chains can be
viewed as random walks on undirected, possibly edge-weighted graphs (W is symmetric).
The walk can be described by a discrete time stochastic process ξ0, ξ1, . . . , ξt, . . . with finite
state space {1, . . . , n}. The transition probabilities

P(ξt+1 = j | ξt = i) =
wij
di

do not depend on t and are entries of the transition probability matrix D−1W . The transition
probability matrix is not symmetric, but its spectrum is the same as that of the symmetric
matrix WD. Therefore, the transition probability matrix has real eigenvalues in the [−1, 1]
interval, they are the numbers 1 − λi, where λi is the i-th largest eigenvalue of LD, and
corresponding eigenvectors which are the vector components of the optimal representation
of Theorem 3. Further, its largest eigenvalue is always 1 with corresponding eigendirection 1,
and the multiplicity of 1 as an eigenvalue is equal to the number of the connected components
of G. The random walk is ergodic if it has a unique stationary distribution. The necessary
and sufficient condition of ergodicity is the irreducibility (λ1 > 0) and aperiodicity (λn−1 <
2). Therefore, the random walk on a connected and non-bipartite graph exhibits a unique
stationary distribution which is just {d1, . . . , dn}. The so-called mixing rate shows how
rapidly the random walk converges to this stationary distribution. By the Cheeger inequality
(Theorem 6) it follows that a relatively large λ1 induces rapid mixing and short cover time
which is the expected number of time to reach every vertex, see [Lov93].

We are rather interested in the case when λ1 is near zero and the random walk cannot
go through quickly the graph because of bottlenecks in it. Such a bottleneck can be the
weighted cut between two disjoint vertex-subsets which gives the minimum in the definition
of h(G). More generally, if there are k− 1 near zero eigenvalues of LD, then we may expect
k clusters such that the random walk stays with high probability within the clusters and
goes through between them with smaller probability.

In this direction, recent progress has been made by Luca Trevisan and coauthors [Gh-Trev,
Le-Gh-Trev] who proved so-called higher order Cheeger inequalities. An important conse-
quence of this type of results is summarized in the abstract of Luca Trevisan’s talk (University
of Illinois at Chicago, November 3, 2014): “If λk−1 is ‘small’ and λk is ‘large’, then the ver-
tices can be partitioned into k subsets such that each subset defines a sparse cut and each
subset induces an expanding subgraph. This points to a rigorous justification for the good
performance of spectral clustering algorithms.” Trevisan [Trev] also considered the upper
end of the normalized Laplacian spectrum and its relation to the so-called bipartiteness ra-
tio of the graph (called dual Cheeger inequality). However, their partitions do not exhaust
necessarily the whole vertex-set.
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In Chapter 2, we will use both ends of the normalized Laplacian spectrum and find
cluster pairs of which ‘sparse’ cuts or ‘dense’ cuts (which do not necessarily exhaust V )
of the aforementioned papers are special cases. Since it is a bit uncomfortable to treat
eigenvalues near 0 or 2, we rather transform the normalized Laplacian matrix into a one
with eigenvalues between −1 and 1, and consider its largest absolute value eigenvalues. For
this purpose, we will introduce the normalized version of the forthcoming modularity matrix.

1.1.5 Modularity matrices and the Newman–Girvan modularity

The modularity matrix M was defined by Newman and Girvan [New-Gir, New] for simple
graphs and naturally extends to edge-weighted graphs (see [Bol11c]) as

M = W − ddT . (1.16)

It is important that the edge-weight matrix W is normalized so that the sum of its entries
is 1. The (i, j) entry of M just measures the deviation of wij (actual connection of vertices
i and j) from didj (their connection under independent attachment with the vertex-degrees
as probabilities). It is easy to see that 0 is always an eigenvalue of M with corresponding
eigendirection 1. However, it is not true that the modularity spectrum of a disconnected
graph is the union of modularity spectra of its components, and sparse cuts are not related
immediately to the eigenvalues of this modularity matrix. In case of simple graphs, M is
usually indefinite, and it is negative semidefinite only for complete or complete multipartite
graphs, see the forthcoming Theorem 8.

In [Bol11c], we also introduced the following normalized version of the modularity matrix,
that will be intensively used in the discrepancy estimations of Chapter 2.

Definition 7 Let G = (V,W ) be an edge-weighted graph with the entries of W summing
up to 1. The matrix

MD = D−1/2MD−1/2 = D−1/2WD−1/2 −
√

d
√

d
T

= WD −
√

d
√

d
T

(1.17)

is called normalized modularity matrix of G, where
√

d = (d1, . . . , dn)
T .

It is easy to see that the eigenvalues of the normalized edge-weight matrix WD = D−1/2WD−1/2

are in the [−1, 1] interval and the largest eigenvalue is always 1 with corresponding unit-norm

eigenvector
√

d. The only non-zero eigenvalue of the rank 1 term
√

d
√

d
T

is also 1 with the
same eigenvector. Therefore, the spectrum of the matrix MD is the same as the spectrum of

WD, with the only exception that – due to the subtraction of the term
√

d
√

d
T

– the eigen-
value 1 of WD becomes an eigenvalue 0 of MD with eigenvector

√
d. Hence, the spectrum

of MD is in [−1, 1] and includes the 0.
These considerations give an exact relation between the normalized Laplacian and the

normalized modularity spectrum. If the eigenvalues of LD are 0 = λ0 ≤ λ1 · · · ≤ λn−1 ≤ 2,
then the spectrum of MD consists of the numbers µi = 1− λi (i = 1, . . . , n− 1) and µn = 0
with corresponding eigenvector

√
d. Further, the multiplicity of 0 is one more than the

multiplicity of the eigenvalue 1 of LD. The multiplicity of 1 is one less than multiplicity of
the eigenvalue 0 of LD; hence, 1 cannot be an eigenvalue of MD if G is connected (W is
irreducible).

In terms of the normalized modularity matrix, the minimization problem of Section 1.1.3
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can be formulated as a maximization task in the following way.

max
XT DX=Ik−1

tr[(D1/2X)TMD(D1/2X)]

= max
XT DX=Ik−1

XT D1=0

tr[(D1/2X)T (D−1/2WD−1/2)(D1/2X)]

=k − 1 − min
XT DX=Ik−1

XT D1=0

tr[(D1/2X)T (In − D−1/2WD−1/2)(D1/2X)]

=k − 1 − min
Pn

i=1 dirir
T
i =Ik−1

Pn
i=1 diri=0

Qk−1.

The maximum is k − 1 −∑k−1
i=1 λi =

∑k−1
i=1 (1 − λi) =

∑k−1
i=1 µi, that is the sum of the k − 1

largest eigenvalues of MD.
The Newman–Girvan modularity directly focuses on modules of higher intra-community

connections than expected based on the model of independent attachment of the vertices
with probabilities proportional to their degrees. To maximize this modularity, many heuristic
algorithms were recommended in the social network literature.

In [Bol11c], we extended the linear algebraic machinery developed for the Laplacian based
spectral clustering to the modularity based community detection; further, introduced the
notions of the balanced and normalized Newman–Girvan modularities. These considerations
gave useful information on the choice of k and on the nature of the community structure in
social networks.

Definition 8 The Newman-Girvan modularity corresponding to the k-partition Pk = (V1, . . . , Vk)
of the vertex-set of the edge-weighted graph G = (V,W ), where the entries of W sum to 1,
is

M(Pk, G) =

k∑

a=1

∑

i,j∈Va

(wij − didj) =

k∑

a=1

[w(Va, Va) − Vol2(Va)].

For given integer 1 ≤ k ≤ n, the k-module Newman-Girvan modularity of the edge-weighted
graph G is

Mk(G) = max
Pk∈Pk

M(Pk, G).

The entries didj of the null-model matrix ddT correspond to the hypothesis of indepen-
dence. In other words, under the null-hypothesis, vertices i and j are connected to each
other independently, with probability didj proportional (actually, because the sum of the
weights is 1, equal) to their generalized degrees (i, j = 1, . . . , n). Hence, for given k, maxi-
mizing M(Pk, G) is equivalent to looking for k modules of the vertices with intra-community
connections higher than expected under the null-hypothesis.

We want to penalize partitions with clusters of extremely different sizes. To measure the
size of cluster Va, either the number of its vertices |Va| or its volume Vol(Va) is used.

Definition 9 The balanced Newman-Girvan modularity corresponding to the k-partition
Pk = (V1, . . . , Vk) of the vertex-set of G = (V,W ) (Vol(V ) = 1) is

BM(Pk, G) =

k∑

a=1

1

|Va|
∑

i,j∈Va

(wij − didj) =

k∑

a=1

[
w(Va, Va)

|Va|
− Vol2(Va)

|Va|

]

and the balanced k-module Newman-Girvan modularity of G is

BMk(G) = max
Pk∈Pk

BM(Pk, G).
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Definition 10 The normalized Newman-Girvan modularity corresponding to the k-partition
Pk = (V1, . . . , Vk) of the vertex-set of G = (V,W ) (Vol(V ) = 1) is

NM(Pk, G) =

k∑

a=1

1

Vol(Va)

∑

i,j∈Va

(wij − didj) =

k∑

a=1

w(Va, Va)

Vol(Va)
− 1

and he normalized k-module Newman-Girvan modularity of G is

NMk(G) = max
Pk∈Pk

NM(Pk, G).

Here we used the fact that
∑k
a=1 Vol(Va) = 1. In view of (1.11), minimizing the normalized

cut of G over k-partitions of its vertices is equivalent to maximizing the normalized Newman–
Girvan modularity.

With similar techniques that we used in the previous sections, in [Bol11c], we maximized
the balanced and the normalized Newman–Girvan modularities via minimizing the k-variance
of the vertex representatives by choosing an appropriate representation, for which we used
the unweighted and weighted k-means algorithm, respectively. Note that for the vertex
representation, the eigenvectors were also multiplied with the squareroot of the absolute
value of the corresponding eigenvalue.

We showed that both BMk(G) and NMk(G) is maximal for k = pos, where pos is the
number of the positive eigenvalues of M and MD (the two matrices have the same inertia).
However, when n is ‘large’, it suffices to select a k ≤ pos such that there is a sudden gap
between the (k − 1)-th and k-th eigenvalues of M or MD, in decreasing order. For this
k, we may say that there is a k-module community structure in the network: the clusters
obtained have high intra- and low inter-cluster relations (higher and lower than expected in
a random graph); for example, groups of strongly linked users or synopses of the brain, and
groups of agents in strategic interaction networks following similar strategies when there are
complementarities between them.

Likewise, both BMk(G) and NMk(G) is minimal for k = neg, where neg is the number of
the negative eigenvalues of M and MD. However, when n is ‘large’, it suffices to select a k ≤
neg such that there is a sudden gap between the k−1-th and k-th eigenvalues of M or MD, in
increasing order. For this k, we may say that there is a k-module anticommunity structure in
the network: the clusters obtained have low intra- and high inter-cluster relations (lower and
higher than expected in a random graph); for example, hub authorities or groups of agents in
strategic interaction networks following similar strategies when there are substitute strategies
between them (there are free-riders who do not buy the same goods as the neighbors, rather
borrow those from them).

In [Bol11c], we showed some real-life examples and calculated the eigenvalues of M

and MD of some special structures that will be further investigated in Chapter 2 (see also
Table 2.1). We experienced that the normalized modularity is best applicable for graphs
which are far not regular (their generalized degrees differ significantly). In summary, the
advantage of the modularity matrix versus the Laplacian is that here 0 is a natural divide,
and the sign and the magnitude of the so-called structural eigenvalues (see Chapter 2) decide
the type of the network modules: large positive eigenvalues of the modularity matrix are
indications of a community, while large absolute value negative ones, of an anticommunity
structure.

Together with Katalin Friedl and BSM students, in [Boletal15], we proved the following
spectral properties of the modularity matrices. The statements are about the modularity
spectra of complete and complete multipartite graphs, and those of their edge-weighted
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analogues. A weighted graph is called soft-core if all its edge-weights are strictly positive
(see, e.g., [Borgsetal1]). Likewise, we call a weighted graph soft-core k-partite with 2 ≤ k ≤ n
clusters V1, . . . , Vk (they form a proper partition of the vertices) if its edge-weights are

wij =

{
positive if ci 6= cj
0 if ci = cj ,

where ci is the cluster membership of vertex i. Here the non-empty, disjoint vertex-subsets
also form maximal independent sets of the vertices with zero-weighted edges within, and
positively weighted edges between them. Note that from some intrinsic point of view (for
example, from the point of view of the rank), only the position of the zeros are important, and
not the exact values of the non-zero entries; see, e.g., [Shie-Pea] about the generic properties
of matrices, which hold for every typical matrix (Lebesgue almost everywhere).

Proposition 1 ([Boletal15]) If the connected weighted graph G = (V,W ) has an indepen-
dent vertex-set of size 1 < k < n, then its µk−1 ≥ 0, where µi’s are the eigenvalues of MD

in non-increasing order.

We enclose the short proof so that to illustrate the application of the minimax principle.
Proof. Without loss of generality, assume that wij = 0 when 1 ≤ i, j ≤ k. Since µk−1 is
the k-th largest eigenvalue (including the trivial µ0 = 1) of D−1/2WD−1/2, the Courant–
Fischer–Weyl minimax principle yields that

µk−1 = max
F⊂Rn

dim(F )=k

min
x∈F
‖x‖=1

xTD−1/2WD−1/2x.

Therefore, to prove that µk−1 ≥ 0, it suffices to find a k-dimensional subspace F ⊂ Rn such
that min x∈F

‖x‖=1
xTD−1/2WD−1/2x = 0. Set F := {x : x = (x1, . . . , xk, 0, . . . , 0) ∈ Rn}.

Clearly, for every x ∈ F : xTD−1/2WD−1/2x = 0, and this also holds true for unit-norm
x’s. Therefore, the above minimum is also 0. This finishes the proof. �

By Proposition 1, the case k = 2 implies that µ1 ≥ 0, or equivalently, λ1 ≤ 1 whenever
G is not a soft-core weighted graph, i.e., it has at least one 0 weight. If this is the case, the
improved Cheeger inequality of Theorem 6 is applicable.

Proposition 2 ([Boletal15]) The modularity spectrum of the complete multipartite graph
Kn1,...,nk

consists of k − 1 strictly negative eigenvalues and zero with multiplicity n− k + 1.

To prove the further statements, we will extensively use the following well-known char-
acterization of the complete multipartite graphs (including the complete graphs): an un-
weighted connected graph is complete multipartite if and only if it has no three-vertex
induced subgraph with exactly one edge. More generally, we are able to give a similar
characterization of weighted soft-core multipartite graphs.

Lemma 1 ([Boletal15]) A weighted graph is soft-core multipartite if and only if it has no
triangle with exactly one positively weighted edge.

Such a triangle is called forbidden pattern.

Theorem 7 ([Boletal15]) If the connected weighted graph G = (V,W ) is not soft-core
multipartite, then the largest eigenvalue of its normalized modularity matrix is strictly posi-
tive.
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We also enclose the short proof so that to illustrate the application of the representation
technique and the minimax principle.
Proof. The largest eigenvalue µ1 of MD is the second largest eigenvalue of WD, whose
largest eigenvalue is 1 with corresponding eigenvector

√
d (this is single if our graph is

connected). Therefore, we think in terms of the two largest eigenvalues of WD. We can
again assume that the first three vertices form the forbidden pattern and so, the upper left
corner of this matrix looks like




0 w12√
d1d2

0
w21√
d1d2

0 0

0 0 0




with w12 = w21 > 0.
Then the Courant–Fischer–Weyl minimax principle yields

µ1 = max
‖x‖=1

xT
√

d=0

xTD−1/2WD−1/2x.

Therefore, to prove that µ1 > 0, it suffices to find an x ∈ Rn that satisfies conditions
‖x‖ = 1, xT

√
d = 0, and for which, xTD−1/2WD−1/2x > 0. (The unit norm condition can

be relaxed here, because x can later be normalized, without changing the sign of the above
quadratic form.)

Indeed, let us look for x of the form x = (x1, x2, x3, 0, . . . , 0)T such that
√
d1x1 +

√
d2x2 +

√
d3x3 = 0. (1.18)

Then the inequality

xTD−1/2WD−1/2x =
2x1x2w12√

d1d2

> 0

can be satisfied with any x = (x1, x2, x3, 0, . . . , 0)T such that x1 and x2 are both positive or
both negative, in which case, due to (1.18),

x3 = −
√
d1x1 +

√
d2x2√

d3

is a good choice, and will have the opposite sign. (Note that all the di’s are positive, since
we deal with connected weighted graphs.) This finishes the proof. �

Since, M and MD have the same inertia, Theorem 7 together with Proposition 2 gives
the following statement of equivalence.

Theorem 8 ([Boletal15]) The modularity and normalized modularity matrix of a simple
connected graph is negative semidefinite if and only if it is complete multipartite.

Note that complete graphs are also understood, since they are complete multipartite with
singleton clusters.

1.2 Biclustering of contingency tables

1.2.1 SVD of normalized contingency tables

Now, more generally, our underlying objects will be rectangular arrays of nonnegative entries.
They may contain frequency counts for the joint distribution of two discrete random variables

24

dc_1249_16

Powered by TCPDF (www.tcpdf.org)



taking on finitely many values (the values can as well be textual, in which case the variables
are called categorical). For example, keyword–document matrices or microarrays are such.
In microarrays, rows correspond to the genes and columns to different conditions, while the
corresponding entries are expression levels of genes under specific conditions (a 0-1 matrix
is a special case of it). Let C be a contingency table on row set Row = {1, . . . ,m}, column
set Col = {1, . . . , n}, where C is m× n rectangular matrix of nonnegative real entries cij ’s.
Without loss of generality, we can assume that there are no identically zero rows or columns
(otherwise they are omitted). Here cij is some kind of association between the objects or
categories corresponding to row i and column j, where 0 means no interaction at all. Usually,
the entries of C are normalized, either with a uniform bound, say 1 (like probabilities), or
the sum of the entries is 1 (reminiscent of a joint distribution). This normalization will
have importance in Section 1.3. Here it has no relevance, since the normalized table to be
introduced is invariant under scaling the entries of C. Let the row-sums of C be

drow,i =

n∑

j=1

cij , i = 1, . . . ,m (1.19)

and the column-sums

dcol,j =

m∑

i=1

cij , j = 1, . . . , n (1.20)

which are collected in the main diagonal of the m×m diagonal matrix Drow and that of the
n× n diagonal matrix Dcol, respectively.

For a given integer 1 ≤ k ≤ min{m,n}, we are looking for k-dimensional representatives
r1, . . . , rm ∈ Rk of the rows and q1, . . . ,qn ∈ Rk of the columns such that they minimize
the objective function

Qk =

m∑

i=1

n∑

j=1

cij‖ri − qj‖2 (1.21)

subject to
m∑

i=1

drow,irir
T
i = Ik and

n∑

j=1

dcol,jqjq
T
j = Ik. (1.22)

When minimized, the objective function Qk favors k-dimensional placement of the rows and
columns such that representatives of highly associated rows and columns are close to each
other. This is equivalent to the problem of correspondence analysis.

Let us put both the objective function and the constraints in a more favorable form. Let
X be the m×k matrix of rows rT1 , . . . , r

T
m, and x1, . . . ,xk ∈ Rn denote the columns of X, for

which fact we use the notation X = (x1, . . . ,xk). Because of the constraint (1.22), the vectors
D

−1/2
row xi (i = 1, . . . , k) form an orthonormal system, hence, D

−1/2
row X is a suborthogonal

matrix. Therefore, the first part of the constraint can be formulated as XTDrowX = Ik.
Likewise, let Y be the n× k matrix of rows qT1 , . . . ,q

T
n , and Y := (y1, . . . ,yk). Hence, the

second part of the constraint (1.22) can be formulated as Y TDcolY = Ik and the matrix

D
−1/2
col Y is also suborthogonal.
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With this notation, the objective function (1.21) is rewritten as

Qk =

m∑

i=1

drow,i‖ri‖2 +

n∑

j=1

dcol,j‖qj‖2 −
m∑

i=1

n∑

j=1

cijr
T
i qj

=

k∑

ℓ=1

xTℓ Drowxℓ +

k∑

ℓ=1

yTℓ Dcolyℓ −
k∑

ℓ=1

xTℓ Cyℓ

= tr(XTDrowX) + tr(Y TDcolY ) − tr(XTCY )

= 2k − tr(XTCY ) = 2k − tr[(D1/2
rowX)TCD(D

1/2
col Y )],

where the matrix CD = D
−1/2
row CD

−1/2
col is called normalized contingency table. Let

CD =

r−1∑

k=0

skvku
T
k (1.23)

be the SVD of CD, where r ≤ min{m,n} is the rank of CD, or equivalently (as there are
no identically zero rows or columns), the rank of C. Here 1 = s0 ≥ s1 ≥ · · · ≥ sr−1 > 0
are the non-zero singular values of CD. They cannot exceed 1, since they are correlations
(see Section 1.3). Furthermore, 1 is a single singular value if CD (or equivalently, C) is
non-degenerate (or non-decomposable, with the wording of [Bol13]), i.e., when CCT (if
m ≤ n) or CTC (if m > n) is irreducible. In this case, v0 = (

√
drow,1, . . . ,

√
drow,m)T and

u0 = (
√
dcol,1, . . . ,

√
dcol,n)

T is the singular vector pair corresponding to s0 = 1.
Note that the singular spectrum of a degenerate contingency table can be composed

from the singular spectra of its non-degenerate parts, as well as their singular vector pairs.
Therefore, in the future, the non-degenerate nature of the underlying contingency table will
be assumed. With some simple linear algebra, the following can be proved.

Theorem 9 ([Bol14b]) Representation theorem for contingency tables. Let C be
a non-degenerate contingency table. Let 1 = s0 > s1 ≥ · · · ≥ sr−1 denote the posi-
tive singular values of the normalized table CD with unit-norm singular vector pairs vi,ui
(i = 0, . . . , r − 1), and k ≤ r be a positive integer such that sk−1 > sk. Then the min-

imum of (1.21) subject to (1.22) is 2k −
∑k−1

i=0 si and it is attained with the optimal k-
dimensional row-representatives r∗1, . . . , r

∗
m and column-representatives q∗

1, . . . ,q
∗
n the trans-

poses of which are row vectors of the matrices X∗ = D
−1/2
row (v0,v1, . . . ,vk−1) and Y ∗ =

D
−1/2
col (u0,u1, . . . ,uk−1), respectively.

We remark the following.

• Provided 1 is a single singular value (when C is non-degenerate), the first columns

of the matrices X∗ and Y ∗ are D
−1/2
row v0 and D

−1/2
col u0, i.e., the constantly 1 vectors

of Rm and Rn, respectively. Therefore they do not contribute to the separation of
the representatives, and the k-dimensional representatives are in a (k− 1)-dimensional
hyperplane of Rm and Rn, respectively.

• Note that the dimension k does not play an important role here, the vector components
can be included successively up to a k such that sk−1 > sk. We remark that the singular
vectors can arbitrarily be chosen in the isotropic subspaces corresponding to possible
multiple singular values, under the orthogonality conditions.
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• As for the joint distribution view (when the rows and columns belong to the cat-
egories of two categorical variables, see [Bol87b]), correspondence analysis uses the
above (k−1)-dimensional row- and column-representatives for simultaneously plotting
the row- and column-categories in Rk−1 (with k = 2, 3 or 4 in most applications), and
hence, the practitioner can draw conclusions from their mutual positions. Indeed, this
representation has the following optimum properties: the closeness of categories of the
same variable reflects the similarity between them, while the closeness of categories
of the two different variables reflects their frequent simultaneous occurrence. For ex-
ample, C being a microarray, the representatives of similar function genes as well as
representatives of similar conditions are close to each other; likewise, representatives of
genes that are responsible for a given condition are close to the representative of that
condition.

• One frequently studied example of a rectangular array is the keyword–document ma-
trix. Here the entries are associations between documents and words. Based on network
data, the entry in the i-th row and j-th column is the relative frequency of word j in
document i. Latent semantic indexing looks for real scores of the documents and key-
words such that the score of a any document be proportional to the total scores of
the keywords occurring in it, and vice versa, the score of any keyword be proportional
to the total scores of the documents containing it. Not surprisingly, the solution is
given by the SVD of the contingency table, where the document- and keyword-scores
are the coordinates of the left and right singular vectors corresponding to its largest
non-trivial singular value which gives the constant of proportionality. This idea can be
generalized in the following way. We can think of the above relation between keywords
and documents as the relation with respect to the most important topic (or context, or
factor). After this, we are looking for another scoring with respect to the second topic,
which is independent of the first one; and so on, up to k (where k is a positive integer
not exceeding the rank of the table). This method is reminiscent of the principal com-
ponent analysis, and in [Bol87b] we proved that the correspondence analysis indeed
solves this factorization problem, together with spacial representations. The solution
is given by the singular vector pairs corresponding to the k largest singular values of
the table. The problem is also related to the Page-rank.

• In another view, a 0-1 contingency table can be considered as part of the adjacency
matrix of a bipartite graph on vertex set Row ∪ Col. However, it would be uncom-
fortable to always distinguish between these two types of vertices, I will rather use the
framework of correspondence analysis, and formulate the statements in terms of the
rows and columns.

1.2.2 Normalized bicuts of contingency tables

We are given an m × n contingency table C on row set Row and column set Col as intro-
duced in the previous section. For a fixed integer k, 0 < k ≤ r = rank(C), we want to
simultaneously partition the rows and columns of C into disjoint, nonempty subsets

Row = R1 ∪ · · · ∪Rk, Col = C1 ∪ · · · ∪Ck

so that the cuts c(Ra, Cb) =
∑

i∈Ra

∑
j∈Cb

cij , a, b = 1, . . . , k between the row-column
cluster pairs be as homogeneous as possible.
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Definition 11 The normalized bicut of the contingency table C with respect to the k-
partitions Prow = (R1, . . . , Rk) and Pcol = (C1, . . . , Ck) of its rows and columns and the
collection of signs σ is defined as follows:

νk(Prow, Pcol, σ) =

k∑

a=1

k∑

b=1

(
1

Vol(Ra)
+

1

Vol(Cb)
+

2σabδab√
Vol(Ra)Vol(Cb)

)
c(Ra, Cb), (1.24)

where

Vol(Ra) =
∑

i∈Ra

drow,i =
∑

i∈Ra

n∑

j=1

cij , Vol(Cb) =
∑

j∈Cb

dcol,j =
∑

j∈Cb

m∑

i=1

cij

are volumes of the clusters (also see formulas (1.19) and (1.20)), δab is the Kronecker delta,
and the sign σab is equal to 1 or -1 (it only has relevance in the a = b case), and σ =
(σ11, . . . , σkk) is the collection of the relevant signs.

The normalized k-way bicut of the contingency table C is the minimum of (1.24) over
all possible k-partitions Prow,k and Pcol,k of its rows and columns, and over all possible
collections of signs σ:

νk(C) = min
Prow ,Pcol,σ

νk(Prow, Pcol, σ).

Note that νk(C) penalizes row- and column clusters of extremely different volumes in the
a 6= b case, whereas in the a = b case σaa moderates the balance between Vol(Ra) and
Vol(Ca).

Theorem 10 ([Bol14b]) Let 1 = s0 ≥ s1 ≥ · · · ≥ sr−1 > 0 be the positive singular values

of the normalized contingency table CD = D
−1/2
row CD

−1/2
col belonging to C. Then for any

positive integer k ≤ r, such that sk−1 > sk,

νk(C) ≥ 2k −
k−1∑

i=0

si.

Observe, that in the case of a symmetric table, we get the same result with the repre-
sentation, based on the eigenvectors corresponding to the largest absolute value eigenvalues
of the normalized modularity matrix. However, νk(Prow, Pcol, σ) cannot always be directly
related to the normalized cut, except in the following two special cases.

• When the k−1 largest absolute value eigenvalues of the normalized modularity matrix
MD are all positive, or equivalently, if the k smallest eigenvalues (including the zero)
of the normalized Laplacian matrix are farther from 1 than any other eigenvalue which
is greater than 1. In this case, the k − 1 largest singular values (apart from the 1)
of CD are identical to the k − 1 largest eigenvalues of MD, and the left and right
singular vectors are identical to the corresponding eigenvector with the same orien-
tation. Consequently, for the k-dimensional (in fact, (k − 1)-dimensional) row- and
column-representatives ri = qi (i = 1, . . . , n = m) holds. With the choice σbb = 1
(b = 1, . . . , k), the corresponding νk(C) is twice the normalized cut of our weighted
graph, where the weights of edges within the clusters do not count. In this special situ-
ation, the normalized bicut also favors k-partitions with low inter-cluster edge-densities
(therefore, intra-cluster densities tend to be large, as they do not count in the objective
function).
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• When the k−1 largest absolute value eigenvalues of MD are all negative, then ri = −qi
for all (k − 1)-dimensional row and column representatives, and any (but only one) of
them can be the corresponding vertex representative. Now νk(C), which is attained
with the choice σbb = −1 (b = 1, . . . , k), differs from the normalized cut in that it also
counts the edge-weights within the clusters. Indeed, in the a = b, Ra = Ca = Va case

‖ri − qj‖2 =
1

Vol(Va)
+

1

Vol(Vb)
+

2√
Vol(Va)Vol(Vb)

=
4

Vol(Va)

if i, j ∈ Va. Here, by minimizing the normalized k-way cut, rather a so-called anti-
community structure (see Section 1.1.5) is detected in that c(Ra, Ca) = c(Va, Va) is
suppressed to compensate for the term 4

Vol(Va) . This fact favors k-partitions of the
vertices with low intra-cluster edge-densities.

In some real-life problems, e.g., clustering genes and conditions of microarrays, we rather
want to find clusters of similarly functioning genes that equally (not especially weakly or
strongly) influence conditions of the same cluster; this issue discussed in details in Chapter 2.
Note that Dhillon [Dhil] also suggests a multipartition algorithm that runs the k-means
algorithm simultaneously for the row- and column representatives, but not with our objective
function behind it.

1.3 Representation of joint distributions

Now we will give an abstract description of the issues discussed in the previous sections in
terms of two-variate distributions. With the help of joint distributions, representation can be
discussed in a more general framework, of which graphs and contingency tables are special
finite cases. This representation is reminiscent of the techniques of multivariate statistical
analysis (principal component, canonical correlation, correspondence analysis). We will use
some parts of this section in Chapter 3 when consider the continuous limit objects as kernels
of integral operators taking conditional expectation with respect to the joint distribution.

1.3.1 General setup

Let (ξ, η) be a pair of real-valued random variables – neither of them being constant with
probability 1 – defined over the product space X × Y having joint distribution W with
marginal distributions P and Q, respectively. Assume that the dependence between ξ and η
is regular, i.e., their joint distribution W is absolutely continuous with respect to the product
measure P×Q, and let w denote the Radon–Nikodym derivative of W with respect to P×Q,
see Rényi [Reny59b] for details.

In the spirit of Breiman and Friedman [Bre-Fri], let H = L2(ξ) and H ′ = L2(η) be the
set of random variables which are functions of ξ and η and have zero expectation and finite
variance with respect to P and Q, respectively. Both H and H ′ are Hilbert spaces with
the covariance as inner product; further, they are embedded as subspaces into the L2-space
defined likewise by the (ξ, η) pair over the product space.

1.3.2 Integral operators

The following linear operators taking conditional expectation between the two margins (with
respect to the joint distribution) will play a crucial role in the future, see also [Bre-Fri]. They
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are integral operators defined as follows:

PX : H ′ → H, ψ = PXφ = E(φ | ξ), ψ(x) =

∫

Y
w(x, y)φ(y) Q(dy)

and

PY : H → H ′, φ = PYψ = E(ψ | η), φ(y) =

∫

X
w(x, y)ψ(x) P(dx).

It is easy to see that P ∗
X = PY and vice versa, because of the relation

〈PXφ, ψ〉H = 〈PYψ, φ〉H′ = CovW(ψ, φ), (1.25)

where 〈., .〉 denotes the (real) inner product, while CovW is the so-called covariance function
with respect to the joint distribution W, defined as

CovW(ψ, φ) =

∫

X×Y
ψ(x)φ(y)W(dx, dy) =

∫

X

∫

Y
ψ(x)φ(y)w(x, y)Q(dy)P(dx).

Assume that ∫

X

∫

Y
w2(x, y)Q(dy)P(dx) <∞. (1.26)

Under this condition PX and PY are Hilbert–Schmidt operators, and therefore compact, with
SVD-like decomposition

PX =
∞∑

i=1

si〈., φi〉H′ψi, PY =
∞∑

i=1

si〈., ψi〉Hφi (1.27)

where for the ‘singular values’ 1 > s1 ≥ s2 ≥ · · · ≥ 0 holds (with the only point of ac-
cumulation 0 if they are countably infinitely many), since the operators PX and PY are
in fact orthogonal projections from one margin onto the other, but the projections are re-
stricted to the subspaces H and H ′, respectively (see [Bol87a] for details). The function
pairs ψi, φi can be chosen (even in case of multiple singular values) so that {ψi}∞i=1 ⊂ H and
{φi}∞i=1 ⊂ H ′ form complete orthonormal systems. Since PX and PY are Hilbert–Schmidt
operators,

∑∞
i=1 s

2
i < ∞. The decompositions of (1.27) are essentially unique (apart from

function pairs corresponding to multiple singular values). We remark that denoting by ψ0

and φ0 the constantly 1 random variables, E(φ0|ξ) = ψ0 and E(ψ0|η) = φ0, however, this
pair is not considered as a function pair with singular value s0 = 1, since they have no zero
expectation. Consequently, we will subtract 1 from the kernel, but with this new kernel, PX
and PY will define the same integral operators. (This resembles the role of the normalized
modularity matrix.)

Especially, if W is symmetric (H and H ′ are isomorphic in terms of the distributions
too), then in view of (1.25), PX = PY is a selfadjoint linear operator, since

〈PXφ, ψ〉H = CovW(φ, ψ) = CovW(ψ, φ) = 〈PYψ, φ〉H′ .

The SD of PX : H ′ → H is

PX =

∞∑

i=1

λi〈., ψ′
i〉H′ψi.

Here for the eigenvalues, |λi| ≤ 1 holds, and the eigenvalue–eigenfunction equation looks like

PXψ
′
i = λiψi

where ψi and ψ′
i are identically distributed, whereas their joint distribution is W (i =

1, 2, . . . ).
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1.3.3 Maximal correlation and optimal representations

From now on, we will intensively use analogues of separation theorems for the singular values
and eigenvalues for matrices, see [Rao]. In view of these, the SVD (1.27) gives the solution
of the following task of maximal correlation, posed by Gebelein [Geb] and Rényi [Reny59a].
We are looking for ψ ∈ H , φ ∈ H ′ such that their correlation is maximum with respect to
their joint distribution W. Using (1.25) and separation theorems,

max
ψ∈H φ∈H′

CorrW(ψ, φ) = max
‖ψ‖=‖φ‖=1

CovW(ψ, φ) = s1

and it is attained on the non-trivial ψ1, φ1 pair. In the finite, symmetric case, maximal
correlation is related to some conditional probabilities in [Bol-Mol02].

The maximal correlation task is equivalent to the following:

min
‖ψ‖=‖φ‖=1

‖ψ − φ‖2 = min
‖ψ‖=‖φ‖=1

(‖ψ‖2 + ‖φ‖2 − 2CovW(ψ, φ)) = 2(1 − s1). (1.28)

Correspondence analysis ([Benz, Green], and [Bol87b]) is on the one hand, a special case
of the problem of maximal correlation being X and Y finite sets, but on the other hand,
it is a generalization in that we are successively finding maximal correlations under some
orthogonality constraints.

The product space is now an m × n contingency table with row set X = {1, . . . ,m}
and column set Y = {1, . . . , n}, whereas the entries wij ≥ 0 (

∑m
i=1

∑n
j=1 wij = 1) embody

the joint distribution over the product space, with row-sums p1, . . . , pm and column-sums
q1, . . . , qn as marginal distributions.

Hence, the effect of PX : H ′ → H , PXφ = ψ is the following:

ψ(i) =
1

pi

n∑

j=1

wijφ(j) =

n∑

j=1

wij
piqj

φ(j)qj , i = 1, . . . ,m. (1.29)

Therefore, PX is an integral operator with kernel Kij =
wij

piqj
(instead of integration, we have

summation with respect to the marginal measure Q).
Consider the SVD

PX =

r−1∑

k=1

sk〈., φk〉H′ψk,

where r is the now finite rank of the contingency table (r ≤ min{n,m}). The singular
value s0 = 1 with the trivial ψ0 = 1, φ0 = 1 factor pair is disregarded as their expectation
is 1 with respect to the P- and Q-measures, respectively; therefore, the summation starts
from 1. If we used the kernel Kij − 1, we could eliminate the trivial factors. Assume
that there is no other singular value 1, i.e., our contingency table is non-degenerate. Then,
by the orthogonality, the subsequent left- and right-hand side singular functions have zero
expectation with respect to the P- and Q-measures, and they solve the following successive
maximal correlation problem. For k = 1, . . . , r−1, in step k we want to find maxCorrW(ψ, φ)
subject to

VarP(ψ) = VarQ(φ) = 1, CovP(ψ, ψi) = CovQ(φ, φi) = 0, i = 0, 1, . . . , k − 1.

(Note that the condition for i = 0 is equivalent to EP(ψ) = EQ(φ) = 0.) By [Bol87b], the
maximum is sk and it is attained on the ψk, φk pair.

Now, we are able to define the joint representation of the general Hilbert-spaces H,H ′ –
introduced in Subsection 1.3.1 – with respect to the joint measure W in the following way.
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Definition 12 We say that the pair (X,Y) of k-dimensional random vectors with compo-
nents in H and H ′, respectively, form a k-dimensional representation of the product space
endowed with the measure W if EPXXT = Ik and EQYYT = Ik (i.e., the components of
X and Y are uncorrelated with zero expectation and unit variance, respectively); and the
joint distribution of Xi and Yi is W (i = 1, . . . , k). Further, the cost of this representation
is defined as

Qk(X,Y) = EW‖X− Y‖2.

The pair (X∗,Y∗) is an optimal representation if it minimizes the above cost.

Analogously to the finite case, the following representation theorem was proved in [Bol13].

Theorem 11 ([Bol13]) Representation theorem for joint distributions. Let W be
a joint distribution with marginal distributions P and Q. Assume that among the singular
values of the conditional expectation operator PX : H ′ → H (see (1.27)) there are at least k
positive ones and denote by 1 > s1 ≥ s2 ≥ · · · ≥ sk > 0 the largest ones. The minimum cost
of a k-dimensional representation is 2

∑k
i=1(1−si) and it is attained with X∗ = (ψ1, . . . , ψk)

and Y∗ = (φ1, . . . , φk), where ψi, φi is the function pair corresponding to the singular value
si (i = 1, . . . , k).

We remark that when X and Y are finite sets, the solution corresponds to the SVD of
the normalized contingency table. Though, this matrix seemingly does not have the same
normalization as the kernel, our numerical algorithm for the SVD of a rectangular matrix is
capable to find orthogonal singular vectors in the usual Euclidean norm, which corresponds
to the Lebesgue measure and not to the P- or Q-measures. This is why, in correspondence
analysis, we use the SVD of the matrix CD, and back-transform the singular vectors so that
to get the representatives. Observe that if we have a non-degenerate contingency table, then
si < 1 (i = 1, . . . , k), therefore the minimum cost is strictly positive.

In the symmetric case, we can also define a representation. Now the X,X′ pair is identi-
cally distributed, but usually not independent; they are connected with the symmetric joint
measure W.

Definition 13 We say that the k-dimensional random vector X with components in H forms
a k-dimensional representation of the product space H × H ′ (H and H ′ are isomorphic)
endowed with the symmetric measure W (and marginal measure P) if EPXXT = Ik (i.e.,
the components of X are uncorrelated with zero expectation and unit variance). Further, the
cost of this representation is defined as

Qk(X) = EW‖X− X′‖2,

where X and X′ are identically distributed and the joint distribution of Xi and X ′
i is W

(i = 1, . . . , k). The random vector X∗ is an optimal representation if it minimizes the above
cost.

Theorem 12 ([Bol13]) Representation theorem for symmetric joint distributions.
Let W be a symmetric joint distribution with marginal P. Assume that among the eigenvalues
of the conditional expectation operator PX : H ′ → H (H and H ′ are isomorphic) there are
at least k positive ones and denote by 1 > λ1 ≥ λ2 ≥ · · · ≥ λk > 0 the largest ones. Then the
minimum cost of a k-dimensional representation is 2

∑k
i=1(1−λi) and it is attained by X∗ =

(ψ1, . . . , ψk) where ψi is the eigenfunction corresponding to the eigenvalue λi (i = 1, . . . k).

In the case of a finite X (vertex set of an edge-weighted graph), we have a weighted
graph with edge-weights wij (

∑n
i=1

∑n
j=1 wij = 1). The operator PX deprived of the trivial
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factor corresponds to its normalized modularity matrix with eigenvalues in the [-1,1] interval
(1 cannot be an eigenvalue if the underlying graph is connected), and eigenfunctions which
are the transformed eigenvectors. As the numerical algorithm gives an orthonormal set of
the eigenvectors in Euclidean norm, some back-transformation is needed to get uncorrelated
components with unit variance, therefore we use the normalized modularity matrix instead
of the kernel Kij =

wij

didj
expected from (1.29), where di =

∑
j∈X wij is the generalized degree

of vertex i (i ∈ X ). We remark that the above formula for the kernel corresponds to the
so-called copula transformation of the joint distribution W into the unit square. This idea
appears when vertex- and edge-weighted graphs are transformed into step-functions over
[0, 1] × [0, 1], see the definition of graphons (e.g., [Borgsetal1]). This transformation can be
performed in the non-symmetric and non-finite cases too. Also observe that neither the kernel
nor the contingency table or graph is changed under measure preserving transformations of
X or Y, by the theory of exchangeable sequences and arrays. In particular, the labeling of
the vertices or rows/columns is immaterial here.

In the framework of joint distributions, the Cheeger constant h(G) can be viewed as a
conditional probability and related to the symmetric maximal correlation in the following
way. The weight matrix W (with sum of its entries 1) defines a discrete symmetric joint
distribution W with the same marginals D = {d1, . . . , dn}. Let H denote the Hilbert space of
V → R random variables taking on at most n different values with probabilities d1, . . . , dn,
and having zero expectation and finite variance. Let us take two identically distributed (i.d.)
copies ψ, ψ′ ∈ H with joint distribution W. Then, obviously,

h(G) = min
B⊂R Borel-set
ψ,ψ′∈H i.d.

PD(ψ∈B)≤1/2

PW(ψ′ ∈ B|ψ ∈ B).

The symmetric maximal correlation, defined by the symmetric joint distribution W, is the
following (it was introduced in [Bol-Mol02]):

r1 = max
ψ,ψ′∈H i.d.

CorrW(ψ, ψ′) = max
ψ,ψ′∈H i.d.
VarDψ=1

CovW(ψ, ψ′).

In view of (1.28) and Theorem 12, r1 = 1 − λ1, provided λ1 ≤ 1.
With this notation, the result of Theorem 6 can be written in the equivalent form as

follows.

Proposition 3 ([Bol-Mol02]) Let W be the symmetric joint distribution of two discrete
random variables taking on at most n different values, where the joint probabilities of W are
the entries of the n× n symmetric weight matrix W . If the symmetric maximal correlation
r1 is nonnegative, then with it, the estimation

1 − r1
2

≤ min
B⊂R Borel-set

ψ,ψ′H i.d.

PD(ψ∈B)≤1/2

PW(ψ′ ∈ B|ψ ∈ B) ≤
√

1 − r21

holds, where we used the previous notation.

Consequently, the symmetric maximal correlation somehow regulates the minimum condi-
tional probability that provided a categorical random variable takes values in a category set
(with probability less than 1/2) then another copy of it (their joint distribution is W) will
take values in the complementary category set. The larger r1, the smaller this minimum con-
ditional probability is. In particular, if r1 is the largest absolute value eigenvalue of I − LD

(apart from the trivial 1), then r1 is the usual maximal correlation of Gebelein and Rényi.
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We also remark that any or both of the starting random variables ξ, η can as well be
random vectors (with real components). For example, if they have p- and q-dimensional
Gaussian distribution respectively, than their maximum correlation is the largest canonical
correlation between them, and it is realized by appropriate linear combinations of the com-
ponents of ξ and η, respectively. Moreover, we can find canonical correlations one after the
other with corresponding function pairs (under some orthogonality constraints), as many as
the rank of the cross-covariance matrix of ξ and η. In fact, the whole decomposition relies on
the SVD of a matrix calculated from this cross-covariance matrix and the individual covari-
ance matrices of ξ and η. Note that this SVD-based treatment of the canonical correlation
analysis was discussed in [Bol83] in details.

1.3.4 Treating nonlinearities via reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces were introduced in the middle of the 20th century by
Aronszajn and Parzen [Ar], but the theory itself is an elegant application of already known
theorems of functional analysis, first of all the Riesz–Fréchet representation theorem and the
theory of integral operators [Ri-SzN], tracing back to the beginning of the 20th century.
Later on, in the last decades of the 20th century and even in our days, reproducing kernel
Hilbert spaces live their renaissance and are applied in modern statistical methods and data
mining, see, e.g., the independent component analysis (ICA) of Bach and Jordan [Bach].
Here I want to discuss their use in data clustering, and resolve the mystery around them.

A popular approach to data clustering (sometimes this is what called spectral clustering)
is the following. Our data points x1, . . . ,xn are already in a metric space, called data space,
but cannot be well classified by the k-means algorithm for no integer 0 < k < n, because
they cannot be linearly separated (for example, there are obviously two clusters of points in
R2, but they are separated by an annulus and the k-means algorithm with k = 2 is not able
to recover them). Though, we can map the points into a usually higher (possibly, infinite)
dimensional, or more abstract space with a non-linear mapping so that the images are already
well clustered in the new, so-called feature space. However, in practical higher-dimensional
problems, when we do not have the faintest idea about the clusters and no visualization is
possible, unfortunately, we cannot give such mappings explicitly. Moreover, the feature space
usually has much higher dimension than the original one, which fact is frequently referred
to as the curse of dimensionality. The main point of the kernel method to be introduced is
that it is not even necessary to perform the mapping, it suffices to select a kernel – based
on the inner product of the original points – that is no longer a linear kernel, but a more
complicated, still admissible kernel (the exact meaning is given in Definition 15), and defines
a new inner product within the feature space. Then we process statistical algorithms that
need only this kernel and nothing else.

Let H be a Hilbert space of functions X → R (where X is an arbitrary set, for the time
being). The evaluation mapping Lx : H → R works on an f ∈ H so that

Lx(f) = f(x). (1.30)

Definition 14 (Reproducing kernel Hilbert space) A Hilbert space H of (real) func-
tions on the set X is a reproducing kernel Hilbert space, briefly RKHS, if the point evaluation
functional Lx of (1.30) exists and is continuous for all x ∈ X .

The name reproducing kernel comes from the fact that – by the Riesz–Fréchet represen-
tation theorem – the result of such a continuous mapping can be written as an inner product.
This theorem states that a Hilbert space (in our case H) and its dual (in our case the set of

34

dc_1249_16

Powered by TCPDF (www.tcpdf.org)



H → R continuous linear functionals, e.g., Lx) are isometrically isomorphic. Therefore, to
any Lx there uniquely corresponds a Kx ∈ H such that

Lx(f) = 〈f,Kx〉H, ∀f ∈ H. (1.31)

Since Kx is itself an X → R function, it can be evaluated at any y ∈ X . We define the
bivariate function K : X × X → R as

K(x, y) := Kx(y) (1.32)

and call it the reproducing kernel for the Hilbert space H. Then using formulas (1.30), (1.31),
and (1.32), we get that on the one hand,

K(x, y) = Kx(y) = Ly(Kx) = 〈Kx,Ky〉H,

and on the other hand,

K(y, x) = Ky(x) = Lx(Ky) = 〈Ky,Kx〉H.

By the symmetry of the (real) inner product it follows that the reproducing kernel is sym-
metric and it is also reproduced as the inner product of special functions in the RKHS:

K(x, y) = 〈Kx,Ky〉H = 〈K(x, .),K(., y)〉H, (1.33)

hence, K is positive definite (for the precise notion see the forthcoming Definition 15). This
is the diabolic kernel trick.

Vice versa, if we are given a positive definite kernel function on X ×X at the beginning,
then there exists an RKHS such that with appropriate elements of it, the inner product
relation (1.33) holds. (In fact, we are not given, we just select an appropriate kernel function.)
The mystery of RKHS just lies in this converse statement.

For this purpose, let us first define the most important types of kernel functions and
discuss how more and more complicated ones can be derived from the simplest ones.

Definition 15 A symmetric two-variate function K : X ×X → R is called positive definite
kernel (equivalently, admissible, valid, or Mercer kernel) if for any n ∈ N and x1, . . . , xn ∈ X ,
the symmetric matrix of entries K(xi, xj) = K(xj , xi) (i, j = 1, . . . n) is positive semidefinite.

We remark that a symmetric real matrix is positive semidefinite if and only if it is a
Gram matrix, and hence, its entries become inner products, but usually not of the entries in
its arguments. However, the simplest kernel function, the so-called linear kernel, does this
job. It is defined as

Klin(x, y) = 〈x, y〉X ,
if X is subset of a Euclidean space.

From a valid kernel, one can get other valid kernels with the following operations:

1. If K1,K2 : X × X → R are positive definite kernels, then the kernel K defined by
K(x, y) = K1(x, y) +K2(x, y) is also positive definite.

2. If K1,K2 : X × X → R are positive definite kernels, then the kernel K defined by
K(x, y) = K1(x, y)K2(x, y) (sometimes called Hadamard or Schur product) is also
positive definite. Especially, if K is a positive definite kernel, then so does cK with
any c > 0.
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Consequently, if h is a polynomial with positive coefficients and K : X ×X → R is a positive
definite kernel, then the kernel Kh : X × X → R defined by

Kh(x, y) = h(K(x, y)) (1.34)

is also positive definite. Since the exponential function can be approximated by polynomials
with positive coefficients and the positive definiteness is closed under pointwise convergence,
the same is true if h is the exponential function: h(x) = ex, perhaps some transformation of
it.

Putting these facts together, though it is known, here we give another short proof for the
admissibility of the so-called Gaussian kernel.

Proposition 4 ([Bol13]) The Gaussian kernel

KGauss(x, y) = e−
‖x−y‖2

2σ2

is positive definite, with every parameter value σ > 0.

Proof. In view of
‖x− y‖2 = 〈x, x〉 + 〈y, y〉 − 2〈x, y〉,

this kernel can be written as the product of two positive definite kernels in the following
way:

KGauss(x, y) = K1(x, y)K2(x, y),

where
K1(x, y) = e−

〈x,x〉+〈y,y〉

2σ2 and K2(x, y) = e
〈x,y〉

σ2 .

Here K2 is positive definite as it is the exponential function of the positive definite kernel
1
σ2Klin. To show that K1 is positive definite, by definition, we have to verify that for any
n ∈ N and x1, . . . , xn ∈ X , the symmetric matrix of entries

K1(xi, xj) = e−
〈xi,xi〉

2σ2 · e−
〈xj,xj〉

2σ2 , i, j = 1, . . . n

is positive semidefinite. But it is a rank 1 matrix, its only non-zero eigenvalue being equal
to its trace, which is positive. This finishes the proof. �

If X = {x1, . . . , xn} and S is an n × n symmetric similarity matrix comprised of the
pairwise similarities between the entries of X , then the kernel K defined by the n× n sym-
metric, positive definite matrix eλS is called diffusion kernel, where 0 < λ < 1 is parameter
(sometimes called decay factor). Let us recapitulate that the eigenvalues of the eλS matrix
are the numbers eλλi (i = 1, . . . , n), where λi’s are real eigenvalues of S. Therefore the
diffusion kernel is always strictly positive definite, even if S is not positive semidefinite.

The following converse theorem is due to Aronszajn [Ar] who attributed it to E. H. Moore.
Theorem (Aronszajn [Ar]) For any positive definite kernel K : X × X → R there exists
a unique, possibly infinite-dimensional Hilbert space H of functions on X , for which K is a
reproducing kernel.

If we want to emphasize that the RKHS corresponds to the kernel K, we will denote it
by HK . We may wish to realize the elements of an RKHS HK in a more straightforward
Hilbert space F . Assume that there is a (usually not linear) map φ : X → F such that when
x ∈ X is mapped into φ(x) ∈ F , then

K(x, y) = 〈φ(x), φ(y)〉F
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is the desired positive definite kernel. At the same time, in view of (1.33),

K(x, y) = 〈Kx,Ky〉HK

where recall that Kx = K(x, .) is an X → R function, hence, cannot be identical to φ(x),
but they can be connected with the following transformation. Let T be a linear operator
from F to the space of functions X → R defined by

(Tf)(y) = 〈f, φ(y)〉F , y ∈ X , f ∈ F .

Then
(Tφ(x))(y) = 〈φ(x), φ(y)〉F = K(x, y) = Kx(y),

therefore
Tφ(x) = Kx, ∀x ∈ X (1.35)

and hence, HK becomes the range of T . This was the informal proof of the more precise
statements about this correspondence.

In practical applications, we usually have a finite sample X = {x1, . . . ,xn). Based on
it, the empirical feature map φ̂ : X → Rn can be constructed in the following way (see
e.g. [Sch-Sm]):

φ̂(x) = K−1/2φn(x) (1.36)

with φn(x) = (K(x,x1), . . . ,K(x,xn))
T , the counterpart of K(x, .) based on the n-element

set X , and the n × n symmetric real matrix K = (Kij) of entries Kij = K(xi,xj), i, j =
1, . . . , n. Assume that K is positive definite, otherwise (if positive semidefinite with at
least one zero eigenvalue) we will use generalized inverse when calculating K−1/2. Let us
apply (1.36) for xi’s. Since

φn(xi) = Kei,

where ei is the i-th unit vector in Rn (it has 0 coordinates, except the i-th one which is equal
to 1), the relation

φ̂(xi) = K−1/2φn(xi) = K1/2ei

holds. Further,

〈φ̂(xi), φ̂(xj)〉 = (K1/2ei)
T (K1/2ej) = eTi Kej = Kij , i, j = 1, . . . , n.

Howsoever we cannot navigate well in the artificially constructed spaces, this whole ab-
straction was not in vain. Observe that for the data points xi’s we need not even calculate
φ̂(xi)’s, the spectral clustering of these images can be done based on their pairwise distances:

‖φ̂(xi) − φ̂(xj)‖2 = 〈φ̂(xi), φ̂(xj)〉 + 〈φ̂(xi), φ̂(xi)〉 − 2〈φ̂(xj), φ̂(xj)〉
= K(xi,xi) +K(xj ,xj) − 2K(xi,xj)

(i, j = 1, . . . , n). Thus, to evaluate the pairwise distances between any pairs of the n features,
merely the kernel values are needed. Sometimes the kernel is some transformation of a
similarity matrix of n objects, even if we do not have them as finite-dimensional points. In
other cases, we have finite dimensional measurements on the objects, but merely the n× n
empirical covariance matrix is stored. If our data are multivariate Gaussian, this matrix
suffices for further processing, in other cases, we can calculate a polynomial or Gaussian
kernel based on it, with the understanding that it may be the true similarity between our
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non-Gaussian data which are, in fact, in an abstract space. For example, the n×n similarity
matrix of the features, applying a Gaussian kernel afterwards, gives matrix entries

KGauss(φ̂(xi), φ̂(xj)) = e−
‖φ̂(xi)−φ̂(xj )‖2

2σ2 = e−
K(xi,xi)+K(xj ,xj)−2K(xi,xj)

2σ2

which can be further processed through Laplacian based clustering, see Section 1.1.2.
In this way, linear methods are applicable in an implicitly constructed space, instead of

having to use non-linear methods in the original one. Here we only use the kernel which is
calculated from the inner products of the data points through several transformations. The
philosophy behind the above techniques is that sometimes sophisticated, composite kernels
are more capable to reveal the structure of our data or to classify them, especially if they are
not from a Gaussian distribution or consist of different type of measurements (e.g. location,
brightness, color, texture of pixels).

But what kind of a kernel should be used? This is the important question. Many authors,
e.g. [Lux, Lux-Be-Bo], recommend the Gaussian kernel. For the data points x1, . . . ,xn to
be classified they construct the Gaussian kernel and the n × n symmetric, positive definite
kernel matrix is considered as weight matrix W of a graph (in [Ng-Jo-We] the authors use
zero diagonal). Then they perform spectral clustering based on the Laplacian or normalized
Laplacian matrix corresponding to W . In this way, applying the k-means algorithm for the
so obtained k-dimensional (in fact, (k − 1)-dimensional) representatives, they obtain nice
clusters. This is because the data points of X are mapped into a feature space F such that
the only implicitly known images φ(xi) (i = 1, . . . , n) define a graph similarity, starting
with which, the usual representation based spectral clustering works well. Hence, the graph
construction is just an intermediate step for the subsequent metric clustering. Even if we
are given a graph in advance, we may calculate the k-dimensional representatives of the
vertices (with a relatively small k, based on the k bottom Laplacian eigenvectors), and then
we classify them using kernel methods (e.g., substitute them into the Gaussian kernel).

The advantage of the Gaussian kernel is that it is translation-invariant, and the infinite
dimensional feature space can be described by Fourier theory. Since the Fourier transforms of
functions in HK decay rapidly, the induced RKHS consists of smooth functions. In this way,
Gaussian kernels may be used as smoothing functions, for example, in the ACE (Alternating
Conditional Expectation) algorithm elaborated for the generalized non-parametric regression
problem, see [Bre-Fri] for details.

If the underlying space X is a probability space of random variables with finite variance,
and the product space is endowed with a joint distribution (see Section 1.3), we may look for
the so-called F -correlation of two random variables which is the largest possible correlation
between their φ-maps in the feature space. In [Bach] it is proved that if F is the feature
space corresponding to the RKHS defined by the Gaussian kernel on R (with any positive
parameter σ), then the F -correlation of two random variables is zero if and only if they are
independent, akin to the maximal correlation of Gebelein and Rényi. Therefore, by mapping
our data into the feature space, usual linear methods – like principal component analysis
or canonical correlation analysis – become non-linear ones, and able to find independent
components instead of uncorrelated ones, which fact has significance if our data come from a
non-Gaussian distribution. This is the base of the so-called independent component analysis
(ICA), see [Bach, Sch-Sm-Mu] for details. Note that with a finite-dimensional feature space,
the F -correlation cannot characterize independence.

We remark that for image segmentation purposes, [Shi-Ma] uses two or more Gaussian
kernels: one contains the Euclidean distances of the pixels, and the others those of their
brightness, color, texture, etc. Eventually, they take the product of the two or more positive
definite kernels. If we multiply kernels (with Hadamard product), it means that entries in the
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Figure 1.1: The original picture and the pixels colored with 3, 4, and 5 different colors
according to their cluster memberships (made by László Nagy).

same position of the kernel matrices are multiplied together. During the whole calculation
for n data points, we only use the n × n symmetric, positive definite, usually sparse kernel
matrix.

As for the normalized modularity matrix, we used the eigenvectors corresponding to
its k − 1 largest eigenvalues to find k clusters of 2304 pixels based on a Gaussian kernel.
More precisely, we assigned the points x1, . . . ,x2304 ∈ R3 to the pixels, the coordinates of
which characterize the spacial location, color, and brightness of the pixels. With the positive

parameter σ, the similarity between pixels i and j was wij = e−
‖xi−xj‖2

2σ2 for i 6= j. Figure 1.1
shows the original picture, and the picture when the pixels were colored according to their
cluster memberships with number of clusters 3,4, and 5. Since the largest absolute value
eigenvalues of the 2304× 2304 normalized modularity matrix are

0.137259, 0.0142548, 0.000925228, −0.000670733, −0.000670674, . . .

and the number of the positive eigenvalues is three, with a gap after the second one, the 3-
or 4-cluster solution seems the most reasonable. It is an intriguing question – unsolved so
far – whether the dimension k of the original data points can be detected in the spectrum
of MD when n is large.
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Chapter 2

Treating randomness in large

networks and clustering with small

discrepancy

Here we apply the results of Chapter 1 for the spectral clustering of large networks. Networks
are modeled either by edge-weighted graphs or contingency tables, and usually subject to
random errors due to their evolving and flexible nature. Asymptotic properties of SD and
SVD of the involved matrices are discussed when not only the number of the graph’s vertices
or that of the rows and columns of the contingency table tend to infinity, but the cluster
sizes also grow proportionally with them. Mostly, perturbation results for the SD and SVD
of blown-up matrices burdened with a Wigner-type error matrix are investigated.

The idea is that if we understand the spectral properties of the noisy blown-up matrices,
it helps us to find similar structures, i.e., clusters with small within- and between-cluster
discrepancies, in large deterministic networks. Theorems 24, 25, 26, 27, 28 give an answer to
this. Since the ideas of many proofs are used later, we present them with unique notation.

2.1 Perturbation results for symmetric block structures

We will use the following very general kind of a random noise.

Definition 16 Let wij (1 ≤ i ≤ j ≤ n) be independent, real-valued random variables defined
on the same probability space, wji = wij , E(wij) = 0 (∀i, j), and the wij’s are uniformly
bounded, i.e., there is a constant K > 0 – that does not depend of n – such that |wij | ≤ K,
∀i, j. Then the n× n real symmetric random matrix Wn = (wij)1≤i,j≤n is called symmetric
Wigner-noise.

This random matrix is the generalization of that introduced by E. Wigner when formulated
his famous semicircle law. Note that the condition of uniform boundedness of the entries
could be relaxed: the entries may have Gaussian distribution or sub-Gaussian moments.
However, most of the subsequent results and the frequently used Theorem of Füredi and
Komlós [Fü-Ko] rely on Definition 16. This theorem implies that for the spectral norm of
an n× n symmetric Wigner noise

‖Wn‖ = max
1≤i≤n

|λi(Wn)| ≤ 2σ
√
n+ O(n1/3 logn) (2.1)
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holds with probability tending to 1 as n → ∞, where σ2 is the uniform bound for the
variances of the wij ’s.

Definition 17 The n × n matrix Bn is a symmetric blown-up matrix if there is a positive
integer k < n, a k × k symmetric probability matrix P with entries pij (0 < pij < 1), and

there are positive integers n1, . . . , nk,
∑k

i=1 ni = n such that – after rearranging its rows and
columns with the same permutation – the matrix Bn can be divided into k2 blocks, where the
block (i, j) is an ni × nj matrix with entries all equal to pij (1 ≤ i, j ≤ k).

Let us fix P , blow it up to an n × n matrix Bn, and consider the noisy matrix An =
Bn+Wn as n1, . . . , nk → ∞, roughly speaking, at the same rate. For this purpose, an exact
growth rate condition is formulated as follows.

Definition 18 Under Growth Rate Condition 1, briefly, GC1, the following is understood:
n =

∑k
i=1 ni → ∞ in such a way that ni

n ≥ c with some constant 0 < c ≤ 1
k .

While perturbing Bn by Wn, assume that for the uniform bound of the entries of Wn the
condition

K ≤ min{ min
i,j∈{1,...,k}

pij , 1 − max
i,j∈{1,...,k}

pij} (2.2)

is satisfied. In this way, the entries of An are in the [0,1] interval, and An defines a random
edge-weighted graph Gn = (V,An) on n vertices.

With an appropriate Wigner-noise we can achieve that the noisy matrix An = Bn + Wn

contains 1’s in the (a, b)-th block with probability pab, and 0’s otherwise. Indeed, for indices
1 ≤ a < b ≤ k and i ∈ Va, j ∈ Vb let

wij :=

{
1 − pab with probability pab
−pab with probability 1 − pab

(2.3)

be independent random variables; further, for a = 1, . . . , k and i, j ∈ Va (i ≤ j) let

wij :=

{
1 − paa with probability paa
−paa with probability 1 − paa

(2.4)

be also independent, otherwise W is symmetric. This W satisfies the conditions of Defini-
tion 16 with uniformly bounded entries of zero expectation and variance bounded by

σ2 = max
1≤i≤j≤k

pij(1 − pij) ≤
1

4
.

So, the noisy weighted graph Gn = (V,An) becomes a generalized random graph on the
planted partition V1, . . . , Vk of the vertices such that vertices of Va and Vb are connected
independently, with probability pab, 1 ≤ a ≤ b ≤ k; see e.g., [Bi-Ch, Co-La, McSh] and
the forthcoming Definition 21. This so-called stochastic block-model was first mentioned
in [Hol-Las-Lei]. Note that this model is the generalization of the classical Erdős–Rényi
random graph (the first random graph of the history, introduced in [Erd-Reny] and also
discussed in [Bo]), which corresponds to the k = 1 case.

Definition 19 Let An be an n × n symmetric matrix and Pn be a property which mostly
depends on the SD of An. Then An can have the property Pn in the two following senses.
If An is the weight matrix of an edge-weighted graph Gn, then we equivalently say that Gn
has the property Pn, and denote this fact by An ∈ Pn or Gn ∈ Pn.
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WP1 The property Pn holds for An with probability tending to 1 if

lim
n→∞

P (An ∈ Pn) = 1.

AS The property Pn holds for An almost surely if

P (∃n0 ∈ N s.t. for n ≥ n0 : An ∈ Pn) = 1.

Here we may assume GC1 of Definition 18 for the growth of n together with the cluster
sizes.

(Note that in combinatorics literature, sometimes WP1 is called AS.) Obviously, AS always
implies WP1. Conversely, if in addition to WP1,

∑∞
n=1 P (An /∈ Pn) <∞ also holds, then,

by the Borel–Cantelli lemma, An has Pn AS.
To established almost sure properties, the following sharp concentration result plays a

crucial role.
Theorem (Alon, Krivelevich, Vu [Al-Kr-Vu]) Let aij (1 ≤ i ≤ j ≤ n) be independent
random variables with absolute value at most 1. Define aij for 1 ≤ j < i ≤ n by aij = aji.
Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the random symmetric matrix A = (aij)

n,n
i,j=1.

Then for every positive integer 1 ≤ i ≤ n
2 , the probability that λi deviates from its median

by more than t is at most e−
t2

32i2 . The same estimate holds for the probability that λn−i+1

deviates from its median by more than t.

The statement – apart from a constant factor in the exponent – remains valid if aij ’s
are uniformly bounded with some constant K. The authors also prove that the eigenvalues
are highly concentrated on their own expectations, since λi and its median are O(i) apart.
Indeed, let mi denote the median of λi. Then

|E(λi) −mi| ≤ E|λi −mi| =

∫ ∞

0

P(|λi −mi| > t) dt

≤
∫ ∞

0

e−
t2

32i2 dt = 8
√

2πi.

Therefore, for all t≫ i we have

P (|λi − E(λi)| > t) ≤ e−
(1−o(1))t2

32i2 if 1 ≤ i ≤ n

2
, (2.5)

and the same estimate holds for the probability P (|λn−i+1 − E(λn−i+1)| > t). The authors
also note that for the adjacency matrix of a random graph, when the entries are in the [0,1]

interval, the estimate of their theorem can be improved to 4e−
t2

8i2 .
In view of (2.5), for the spectral norm, i.e., the largest absolute value eigenvalue, of an

n× n Wigner-noise Wn, the following relation holds with every positive real number t:

P (|‖Wn‖ − E(‖Wn‖)| > t) ≤ exp

(
− (1 − o(1))t2

32K2

)
,

where K is the uniform bound for the entries of Wn.
This inequality and the fact that, in view of (2.1), ‖Wn‖ = O(

√
n) together imply that

E‖Wn‖ = O(
√
n). Therefore, there exist positive constants c1 and c2 such that they do not

depend on n (they only depend on K) that

P
(
‖W ‖ > c1

√
n
)
≤ e−c2n. (2.6)

As the right-hand side of (2.6) is the general term of a convergent series, by the Borel–
Cantelli lemma it follows that the spectral norm of Wn is of order

√
n, AS. This observation

will provide the base of the almost sure results of this chapter.
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2.1.1 General blown-up structures

The spectrum of a symmetric blown-up matrix is characterized as follows.

Proposition 5 ([Bol05]) Under the growth rate condition GC1, all the non-zero eigenval-
ues of the n × n blown-up matrix Bn of the k × k symmetric probability matrix P are of
order n in absolute value.

Proof. As there are at most k linearly independent rows of Bn, r = rank(Bn) ≤ k. Let
β1, . . . , βr > 0 be the non-zero eigenvalues of Bn with corresponding orthonormal eigenvec-
tors u1, . . . ,ur ∈ Rn. For notational convenience, we discard the subscripts: let β 6= 0 be
an eigenvalue with corresponding eigenvector u, ‖u‖ = 1. It is easy to see that u is a step-
vector: it has ni coordinates equal to u(i) (i = 1, . . . , k), where n1, . . . , nk are the blow-up
sizes. Then, with these coordinates, the eigenvalue–eigenvector equation

Bu = βu

has the form
k∑

j=1

njpiju(j) = βu(i), i = 1, . . . , k. (2.7)

With the notation

ũ = (u(1), . . . , u(k))
T
, N = diag(n1, . . . , nk), (2.8)

(2.7) can be rewritten in the form
PN ũ = βũ. (2.9)

Further, introducing the transformation

v = N1/2ũ, (2.10)

Equation (2.9) is equivalent to
N1/2PN1/2v = βv. (2.11)

It is easy to see that the transformation (2.10) results in a unit-norm vector. Furthermore,
applying the transformation (2.10) to the ũi vectors obtained from the ui (i = 1, . . . , r), the
orthogonality is also preserved. Consequently, vi = N1/2ũi is an eigenvector corresponding
to the eigenvalue βi of the k × k matrix N1/2PN1/2, i = 1, . . . , r. With the shrinking

Ñ =
1

n
N , (2.12)

(2.11) is also equivalent to

Ñ1/2PÑ1/2v =
β

n
v,

that is the k×k matrix Ñ1/2PÑ1/2 has nonzero eigenvalues βi

n with orthonormal eigenvec-
tors vi (i = 1, . . . , r).

Now we want to establish relations between the eigenvalues of P and Ñ1/2PÑ1/2. Since
we are interested in the absolute values of the nonzero eigenvalues, we will use singular
values (recall that the singular values of a symmetric matrix are the absolute values of its
real eigenvalues). Also, we are interested only in the first r eigenvalues, where r = rank(B) =

rank(Ñ1/2PÑ1/2), therefore, it suffices to consider vectors x, for which Ñ1/2PÑ1/2x 6= 0
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and apply the Fischer–Courant–Weyl minimax principle to them. In view of this, for i ∈
{1, . . . , r} and an arbitrary i-dimensional subspace H ⊂ Rn:

min
x∈H

‖Ñ1/2PÑ1/2x‖
‖x‖ = min

x∈H
‖Ñ1/2PÑ1/2x‖

‖PÑ1/2x‖
· ‖PÑ1/2x‖

‖Ñ1/2x‖
· ‖Ñ

1/2x‖
‖x‖

≥ sk(Ñ
1/2) · min

x∈H
‖NÑ1/2x‖
‖Ñ1/2x‖

· sk(Ñ1/2) ≥ c · min
x∈H

‖PÑ1/2x‖
‖Ñ1/2x‖

,

with the constant c of the growth rate condition GC1 (see Definition 18). Now taking the
maximum for all possible i-dimensional subspace H , we obtain that |λi(Ñ1/2PÑ1/2)| ≥
c|λi(P )| > 0. On the other hand,

|λi(Ñ1/2PÑ1/2)| ≤ ‖Ñ1/2PÑ1/2‖ ≤ ‖Ñ1/2‖ · ‖P ‖ · ‖Ñ1/2‖ ≤ ‖P ‖ ≤ k.

These together imply that λi(Ñ1/2PÑ1/2) can be bounded from below and from above
with a positive constant that does not depend on n and ni’s, it only depends on c and ‖P ‖.
Hence, because of λi(Ñ1/2PÑ1/2) = βi

n , we obtain that β1, . . . , βr = Θ(n). This finishes
the proof. �

For simplicity, in the sequel, we will assume that rank(P ) = k, consequently, rank(Bn) =
k too.

Theorem 13 ([Bol05]) Let Bn be an n× n blown-up matrix of the k× k symmetric prob-
ability matrix P with non-zero eigenvalues β1, . . . , βk, and Wn be an n × n Wigner-noise.
Then there are k eigenvalues λ1, . . . , λk of the noisy random matrix An = Bn + Wn such
that

|λi − βi| ≤ 2σ
√
n+ O(n1/3 logn), i = 1, . . . , k (2.13)

and for the other n− k eigenvalues

|λj | ≤ 2σ
√
n+ O(n1/3 logn), j = k + 1, . . . , n (2.14)

holds AS as n→ ∞ under GC1.

Proof. The statement immediately follows by applying the Weyl’s perturbation theorem for
the spectrum of the symmetric matrix Bn characterized in Proposition 5, where the spectral
norm of the perturbation Wn is estimated by (2.1). This proves the order of the eigenvalues
WP1. In view of (2.6) and the Borel–Cantelli lemma, it implies that this is an AS property
as well. �

Consequently, taking into consideration the order Θ(n) of the non-zero eigenvalues of
Bn, there is a spectral gap between the k largest absolute value and the other eigenvalues
of An, and this is of order ∆ − 2ε, where

ε = 2σ
√
n+ O(n1/3 logn) and ∆ = min

1≤i≤k
|βi|. (2.15)

In this way, Theorem 13 guarantees the existence of k protruding, so-called structural
eigenvalues of An = Bn + Wn. With the help of this theorem we are also able to estimate
the distances between the corresponding eigen-subspaces of the matrices Bn and An.

Let us denote the unit-norm eigenvectors corresponding to the largest eigenvalues β1, . . . , βk
of Bn by u1, . . . ,uk and those corresponding to the largest eigenvalues λ1, . . . , λk of An by
x1, . . . ,xk. Let F := Span{u1, . . . ,uk} ⊂ Rn be the k-dimensional eigen-subspace, and let
dist(x, F ) denote the Euclidean distance between the vector x ∈ Rn and the subspace F .
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Proposition 6 ([Bol05]) With the above notation, the following estimate holds AS for the
sum of the squared distances between x1, . . . ,xk and F :

k∑

i=1

dist2(xi, F ) ≤ k
ε2

(∆ − ε)2
= O(

1

n
). (2.16)

Proof. Let us choose one of the eigenvectors x1, . . . ,xk of An and denote it simply by x

with corresponding eigenvalue λ. To estimate the distance between x and F , we expand x

in the basis u1, . . . ,un with coefficients t1, . . . , tn ∈ R:

x =

n∑

i=1

tiui.

The eigenvalues β1, . . . , βk of the matrix Bn corresponding to u1, . . . ,uk are of order n (by
Proposition 5), whereas the other eigenvalues are zeros.

Then, on the one hand

Anx = (Bn + Wn)x =

k∑

i=1

tiβiui + Wnx, (2.17)

and on the other hand

Anx = λx =

n∑

i=1

tiλui. (2.18)

Equating the right-hand sides of (2.17) and (2.18) we get that

k∑

i=1

ti(λ− βi)ui +

n∑

i=k+1

tiλui = Wnx.

Then the Pythagorean theorem yields

k∑

i=1

t2i (λ − βi)
2 +

n∑

i=k+1

t2i λ
2 = ‖Wnx‖2 = xTW T

n Wnx ≤ ε2, (2.19)

since ‖x‖ = 1 and the largest eigenvalue of W T
n Wn is ε2.

The squared distance between x and F is dist2(x, F ) =
∑n

i=k+1 t
2
i . In view of |λ| ≥ ∆−ε,

(∆ − ε)2dist2(x, F ) = (∆ − ε)2
n∑

i=k+1

t2i ≤
n∑

i=k+1

t2iλ
2

≤
k∑

i=1

t2i (λ− βi)
2 +

n∑

i=k+1

t2iλ
2 ≤ ε2.

Note that in the last inequality we used (2.19). From here,

dist2(x, F ) ≤ ε2

(∆ − ε)2
= O(

1

n
) (2.20)

where the order of the estimate follows from the order of ε and ∆ of (2.15).

45

dc_1249_16

Powered by TCPDF (www.tcpdf.org)



Applying (2.20) for the eigenvectors x1, . . . ,xk of An, and adding the k inequalities
together, we obtain the same order of magnitude for the sum of the squared distances, which
finishes the proof. �

Let Gn = (V,An) be the random edge-weighted graph on the n-element vertex set and
edge-weight matrix An = Bn+Wn, where for the uniform bound of the entries of Wn (2.2)
is assumed. Denote by V1, . . . , Vk the partition of V with respect to the blow-up of Bn (it
defines a clustering of the vertices). Proposition 6 implies the well-clustering property of the
representatives of the vertices of Gn in the following representation. Let X be the n × k
matrix containing the eigenvectors x1, . . . ,xk of An in its columns. Let the k-dimensional
representatives of the vertices be the row vectors of X and S2

k(Pk; X) denote the k-variance
– see (1.10) – of these representatives in the clustering Pk = (V1, . . . , Vk).

Theorem 14 ([Bol05]) Under the noise condition (2.2), for the k-variance of the above
representation of the noisy weighted graph Gn = (V,An), the relation

S2
k(X) = O(

1

n
)

holds AS as n→ ∞ under GC1.

Proof. Since F consists of step-vectors over the k-partition Pk = (V1, . . . , Vk), by an anal-
ysis of variance argument (see [Bol92]), S2

k(Pk; X) is equal to the left-hand side of (2.16),
therefore, it is O(1/n). This is also inherited to S2

k(X) = minP ′
k
∈Pk

S2
k(P

′
k; X). �

Consequently, the addition of any kind of a Wigner-noise to a weight matrix that has
a blown-up structure will not change the order of its structural eigenvalues, and the block
structure of it can be concluded from the vertex representatives of the noisy matrix, where
the representation is performed by means of the corresponding eigenvectors.

In [Bol08a] we showed that Laplacian spectra cannot be well treated under perturba-
tions: the Laplacian eigenvalues of the above noisy graph Gn are all of order n, except the
single 0. We disregard the cumbersome calculations, but this SD is included in Table 2.1.
Also, Wigner-type perturbations cannot be treated in this case for the following reasons.
Obviously, Laplacians of edge-disjoint simple graphs are added together; moreover, Lapla-
cians of edge-weighted graphs are also added together. Unfortunately, no edge-weighted
graph corresponds to a Wigner-noise, which usually has negative entries, and cannot be the
weight-matrix of an edge-weighted graph. Nonetheless, perturbation results, analogous to
those of Theorem 13 for the adjacency spectrum, can be proved for the normalized Laplacian
spectrum of the noisy graph in the miniature world of the [0, 2] interval.

Proposition 7 ([Bol08a]) Let Bn be the blown-up matrix of the k×k symmetric probability
matrix P of rank k. Under the growth rate condition GC1, there exists a constant δ ∈ (0, 1),
independent of n, such that there are k eigenvalues of the normalized Laplacian of the edge-
weighted graph (V,Bn) within the union of intervals [0, 1− δ] and [1 + δ, 2]; whereas, 1 is an
eigenvalue with multiplicity n−k. Equivalently, there are k−1 eigenvalues of the normalized
modularity matrix of (V,Bn) with absolute values at least δ; whereas, 0 is an eigenvalue with
multiplicity n− k + 1.

This statement, as well as the following results are not proved here, as they are proved
more generally in the next section for normalized contingency tables. In Proposition 12 we
will prove that the normalized matrix D(Bn)

−1/2 ·Bn ·D(Bn)
−1/2 is also a blown-up matrix

and it has k non-zero singular values within the interval [δ, 1]. This implies that it has k
non-zero eigenvalues within [−1,−δ]∪ [δ, 1]. Consequently, In−D(Bn)

−1/2 ·Bn ·D(Bn)
−1/2

has k non-1 eigenvalues within [0, 1 − δ] and [1 + δ, 2].
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Proposition 7 states that the normalized Laplacian eigenvalues of Bn, which are not equal
to 1, are bounded away from 1. Equivalently, the non-zero eigenvalues of the normalized
modularity matrix belonging to the edge-weighted graph (V,Bn) are bounded away from
zero (there are only k−1 such ones, as 1 is not an eigenvalue of this matrix if the underlying
graph is connected, see Section 1.1.3). We claim that this property is inherited to the the
normalized Laplacian or normalized modularity matrix of the noisy graph Gn = (V,An),
where An = Bn + Wn with a Wigner-noise Wn. More precisely, the following statement is
formulated.

Theorem 15 ([Bol08a]) Let Gn = (V,An) be random edge-weighted graph with An =
Bn + Wn, where Bn is the blown-up matrix of the k × k probability matrix P of rank
k, and Wn is a Wigner-noise that satisfies (2.2). Then there exists a positive constant
δ ∈ (0, 1), independent of n, such that for every 0 < τ < 1/2, the following statement holds
AS as n→ ∞ under the growth rate condition GC1: there are exactly k eigenvalues of the
normalized Laplacian of Gn that are located in the union of intervals [0, 1 − δ + n−τ ] and
[1 + δ − n−τ , 2], while all the others are in the interval (1 − n−τ , 1 + n−τ ). Equivalently,
there are exactly k − 1 eigenvalues of the normalized modularity matrix of Gn that are at
least δ − n−τ , while all the others are at most n−τ , in absolute value.

This statement also follows from the the analogous one stated for rectangular matrices.
Here m = n, and hence, the so-called GC2, required there, is automatically satisfied here.
Note that the uniform bound of the entries of Wn guarantees that the random matrix An

has nonnegative entries and its normalized Laplacian spectrum is in the [0, 2] interval.
Now, let u′

0, . . . ,u
′
k−1 be unit-norm, pairwise orthogonal eigenvectors corresponding to

the non-one eigenvalues (including the 0) of the normalized Laplacian of Bn. The n-
dimensional vectors obtained by the transformations

xi = D(Bn)
−1/2

u′
i (i = 0, . . . , k − 1)

(x0 = 1) are vector components of the optimal k-dimensional representation of the weighted
graph (V,Bn), see Theorem 3. The n× k matrix X∗ = (x0, . . . ,xk−1) contains the optimal
vertex representatives in its rows.

Let 0 < τ < 1/2 be arbitrary and ǫ := n−τ . Let us also denote the unit-norm, pairwise
orthogonal eigenvectors corresponding to the k eigenvalues of the normalized Laplacian of
Gn = (V,An), separated from 1, by v0, . . . ,vk−1 ∈ Rn (their existence is guaranteed by
Theorem 15). Note that v1, . . . ,vk−1 also correspond to the k−1 structural (largest absolute
value) eigenvalues of the normalized modularity matrix of Gn. Further, set

F ′ := Span{u′
0, . . . ,u

′
k−1}.

Proposition 8 ([Bol08a]) With the above notation, for the distance between vi and F ′,
the following estimate holds AS as n→ ∞ under GC1:

dist(vi, F ) ≤ ǫ

(δ − ǫ)
=

1

( δǫ − 1)
, i = 0, . . . , k − 1. (2.21)

Observe that the statement is similar to that of Proposition 6 with δ instead of ∆ and
ǫ instead of ε. The right-hand side of (2.21) is of order n−τ that tends to zero, as n → ∞.
For the proof see the upcoming Section 2.2.

Proposition 8 implies the well-clustering property of the vertex representatives by means
of the transformed eigenvectors

yi = D(An)
−1/2

vi, i = 0, . . . , k − 1.
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The optimal k-dimensional representatives of the random edge-weighted graph Gn = (V,An)
are row vectors of the n × k matrix Y ∗ = (y0, . . . ,yk−1). The weighted k-variance of the
representatives, defined by (1.14) of Chapter 1, is S̃2

k(Pk; Y
∗) with respect to the k-partition

Pk = (V1, . . . , Vk) of the vertices corresponding to the blow-up. This is the same as the
weighted k-variance obtained by the (k−1)-dimensional representatives disregarding y0 and
keeping only y1, . . . ,yk−1 in the normalized modularity setup.

Theorem 16 ([Bol05]) With the above notation,

S̃2
k(Y

∗) ≤ k

( δǫ − 1)2

holds AS as n→ ∞ under GC1.

Proof. An easy analysis of variance argument (see [Bol11c]) shows that

S̃2
k(Pk; Y

∗) =

k−1∑

i=0

dist2(vi, F
′)

and hence, S̃2
k(Y

∗) ≤ S̃2
k(Pk; Y

∗) that finishes the proof. �

Spectra and spectral clusters of some generalized random graphs, artificially generated
based on different types of probability matrices are shown in Section 3.1.1 of [Bol13].

We also investigated the following ‘weak link’ structure, which is not a blown up structure,
though has some structural eigenvalues that obey a multivariate Gaussian law.

Let k < n be a fixed positive integer. Now the underlying structure is the following: our
edge-weighted graph consists of k disjoint components on n1, . . . , nk vertices, respectively.
With n =

∑k
i=1 ni, let B denote the n×n symmetric weight matrix, which is block-diagonal:

B = B(1) ⊕ · · ·⊕B(k), where B(i) is an ni×ni symmetric matrix with non-diagonal entries
µi’s and diagonal ones νi’s (µi > 0 and νi are real numbers), i = 1, . . . , k. This means that
within the connected components of the edge-weighted graph (V,B) each pair of vertices is
connected with an edge of the same weight, and loops are also allowed (when νi 6= 0). The
spectrum of B is the union of the spectra of B(i)’s. It is easy to verify that the eigenvalues
of B(i) are (ni − 1)µi + νi with eigen-direction 1ni and νi − µi with multiplicity ni − 1 and
corresponding eigen-subspace 1⊥

ni
∈ Rni (i = 1, . . . , k).

Now B is not a blown-up matrix, unless νi = µi (i = 1, . . . , k). However, keeping µi’s
and νi’s fixed, we can increase the size of B in such a way that n1, . . . , nk → ∞ under
the growth rate condition GC1. In the sequel, we use the notation Bn for the expanding
B. We put a Wigner-noise Wn on Bn. About the spectral properties of the weight matrix
An = Bn + Wn of the random edge-weighted graph Gn = (V,An), the following result can
be stated.

Theorem 17 ([Bol04]) Let Wn be an n× n Wigner-noise (with uniform bound and vari-
ance of the entries K and σ2) and the matrix Bn be defined as above. The numbers k, K,
σ, µi, and νi (i = 1, . . . , k) are kept fixed as n1, . . . , nk tend to infinity under GC1. Then,
for the eigenvalues λ1, . . . , λn of An = Bn + Wn the following inequalities hold AS. There
is an ordering of the k largest absolute value eigenvalues λ1, . . . , λk such that

|λi − [(ni − 1)µi + νi]| ≤ 2σ
√
n+ O(n1/3 logn), i = 1, . . . , k;

among the other eigenvalues, for i = 1, . . . , k there are ni − 1 λj’s with

|λj − [νi − µi]| ≤ 2σ
√
n+ O(n1/3 logn).
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The proof is similar to that of Theorem 13 if we take into consideration the spectrum of Bn,
the Weyl’s perturbation theory and the bound (2.1) for the spectral norm of a Wigner-noise.
The complete proof is found in [Bol04], where asymptotic k-variate normality for the random
vector (λ1, . . . , λk) was also proved with covariance matrix 2σ2Ik, and it was shown that the
k-variance of the vertices of Gn = (V,An) – in the Euclidean representation defined by the
corresponding eigenvectors – is O(1/n).

Theorem 17 implies that the k largest absolute value eigenvalues of this type of a random
matrix An are of order Θ(n), and there must be a spectral gap between them and the
remaining eigenvalues AS as n→ ∞ under GC1. In view of the asymptotic normality, the
k largest eigenvalues are highly concentrated on their expectation of order n, independently,
with finite variance. For instance, such data structures occur, when the n objects come from
k loosely connected strata (k < n). Note that in [Gran], the importance of so-called weak
links between social strata is emphasized. In our model, the weak links correspond to the
entries of the Wigner-noise, see [Bol08b].

The Laplacian spectrum of the graph (V,B) is characterized in [Bol08a], but carries no
important information. The normalized Laplacian spectrum is again the union of those of
the blocks. The normalized Laplacian matrix belonging to the block i is

{[(ni − 1)µi + νi]Ini}−1/2L(B(i)){[(ni − 1)µi + νi]Ini}−1/2

=
1

(ni − 1)µi + νi
L(B(i)), i = 1, . . . , k.

Hence, the normalized Laplacian spectrum of (V,B) is as follows: the zero with multiplicity
k and the numbers niµi

(ni−1)µi+νi
with multiplicity ni − 1, i = 1, . . . , k. Note that the letter

ones tend to 1 as ni → ∞ (i = 1, . . . , k). Here the loops do contribute to the spectrum.
In Table 2.1 we summarize the adjacency, Laplacian, normalized Laplacian and modular-

ity spectra and spectral subspaces of the three main types of block- and blown-up matrices
based on the previous results. Through this table we want to demonstrate that whenever
the rank of the k × k probability matrix P is k, the blown-up matrix (under the usual con-
ditions for the blow-up sizes) will asymptotically have k (or, in the modularity case, k − 1)
structural eigenvalues (separated from the others) with corresponding eigen-subspace such
that the derived vertex-representatives will reveal the k underlying clusters. Latter fact is
based on the piecewise constant structure of the (not necessarily) unique eigenvectors. What
is only important that the eigen-subspace corresponding to the structural eigenvalues has
dimension k (k − 1 in the modularity case) and is separated from the eigen-subspace corre-
sponding to the eigenvalues in the remainder of the spectrum. If the probability matrix has
rank k, whatever small the difference between its entries is (they can even be equal), the
differences between the structural and the other eigenvalues, akin to the spectral subspaces,
are magnified, which results in the separation of the clusters. Of course, the speed of this
separation depends on the relative values of the entries of the probability matrix and that
of the blown-up sizes.
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Graph Adjacency matrix Laplacian matrix Normalized Laplacian Normalized modularity

G = (V,B) B D − B I − D−1/2BD−1/2 D−1/2BD−1/2 −
√

d
√

d
T

B = ⊕ki=1Bi, λi = (ni − 1)µi + νi 0 with multiplicity k 0 with multiplicity k 1 with multiplicity k − 1
where the ni × ni (i = 1, . . . , k) and piecewise constant and stepwise constant and stepwise constant
Bi has diagonal νi with piecewise constant eigenvectors over Vi’s; eigenvectors over Vi’s; eigenvectors over Vi’s;
and off-diagonal µi eigenvectors over Vi’s; niµi with multiplicity niµi

νi+(ni−1)µi
1 − niµi

νi+(ni−1)µi

V = (V1, . . . , Vk) νi − µi with ni − 1, and with multiplicity with multiplicity
|Vi| = ni multiplicity ni − 1, and eigenvectors with 0-sum ni − 1, and ni − 1, and

(i = 1, . . . , k) eigenvectors with 0-sum coordinates over Vi eigenvectors with 0-sum eigenvectors with 0-sum
coordinates over Vi (i = 1, . . . , k) coordinates over Vi coordinates over Vi

(i = 1, . . . , k) (i = 1, . . . , k) (i = 1, . . . , k)
G = Kn1,...,nk

0 with multiplicity n− k 0 single; 0 single;
with independent sets with eigenvectors of n with multiplicity k − 1 1 with multiplicity n− k; 0 with multiplicity n− k;

Vi’s, 0-sum coordinates and piecewise constant k − 1 eigenvalues k − 1 eigenvalues
|Vi| = ni over Vi’s; eigenvectors over Vi’s; in [1 + δ, 2], in [−1,−δ],

(i = 1, . . . , k). the other k n− ni with where δ where δ
w.l.g. assume that eigenvalues are in multiplicity ni − 1 does not depend does not depend
n1 ≤ · · · ≤ nk [−nk,−n1] ∪ [n− nk, n− n1] and eigenvectors on n under on n under
(n =

∑k
i=1 ni) with piecewise constant with 0-sum coordinates ni

n ≥ c ni

n ≥ c
eigenvectors over Vi’s (i = 1, . . . , k) (i = 1, . . . , k)

B is the blown-up 0 with multiplicity n− k 0 single; ∃0 < δ < 1 s.t. ∃0 < δ < 1 s.t.
matrix of P = (pij) with eigenvectors of λ1, . . . , λk−1 = Θ(n) there are k eigenvalues there are k − 1 eigenvalues

(i, j = 1, . . . , k), 0-sum coordinates with piecewise constant (including the 0) (excluding the 1)
with blow-up sizes over Vi’s; eigenvectors over Vi’s; in [0, 1 − δ] ∪ [1 + δ, 2] in [−1,−δ] ∪ [δ, 1)

n1, . . . , nk k non-zero eigenvalues γi =
∑

j 6=i njpij with piecewise constant with piecewise constant
and clusters λ1, . . . , λk = Θ(n) with multiplicity ni − 1 eigenvectors eigenvectors
V1, . . . , Vk; with piecewise constant and zero-sum coordinates over Vi’s, over Vi’s,

|Vi| = ni (n =
∑k

i=1 ni) eigenvectors over Vi (i = 1, . . . , k); and the 1 and the 0
rank(P ) = k, ni

n ≥ c over V1, . . . , Vk
∑k−1

i=1 λi =
∑k

i=1 γi with multiplicity n− k with multiplicity n− k

Table 2.1: Spectra and spectral subspaces of some special block- and blown-up matrices
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2.1.2 Recognizing the structure

In the previous section we investigated how the addition of a completely random Wigner-
noise influences the behavior of the structural eigenvalues of the matrix having a deterministic
structure. Wigner-type matrices became important in quantum mechanics, whereas in case
of real-life matrices they are merely benchmarks of a random noise added to the underlying
linear structure of the edge-weight matrix of communication, social, or biological networks.
Whatever hard is to recognize the structure concealed by the noise, in a number of models
it is possible by means of spectral techniques and large deviation principles. When we
perform spectral clustering, it is a crucial question how many structural eigenvalues – with
corresponding eigenvectors – to retain for the vertex-representation.

Note that numerical algorithms for the SD or SVD of a matrix with size of millions
are not immediately applicable, and some newly developed randomized algorithms are to
be used instead, e.g., [Ac-Mc]. These algorithms exploit the randomness of the underlying
matrix, and rely on the fact that a random noise will not change the order of magnitude of
the structural eigenvalues. Sometimes, instead of depriving the matrix of the noise, rather
a noise is added (by digitalizing the entries of or sparsifying the underlying matrix with an
appropriate randomization) to make the matrix more easily decomposable by means of the
classical methods (e.g., the Lánczos method). These algorithms are only capable to find
a low-rank approximation of the noisy matrix, where this rank cannot exceed the number
of the structural eigenvalues of the original matrix. If there are no such eigenvalues, this
property is also inherited to the randomized matrix, so the worst that can happen: we get
known of the fact that there is no linear structure in our matrix at all, but it is a noise itself.
In all the other cases we obtain a good approximation for the part of the spectrum needed,
exploiting the randomness in our original data.

Both the number of eigenvalues to be retained and algorithmic questions can be analyzed
by means of the results of this section. Also note that Wigner-type noises over a remarkable
structure are not only numerically tractable, but have significance in real-life networks too.
For example, sociologist Granovetter in his paper [Gran] “The strength of weak ties” shows
that sometimes weak ties better help people to find job than strong (historical or family)
relations in which they are stuck.

We investigate the converse question too: what kind of random matrices have a blown-
up matrix as a skeleton, except of a ’small’ perturbation? The following proposition states
that under very general conditions an n × n random symmetric matrix with nonnegative,
uniformly bounded entries (so that it can be the weight matrix of an edge-weighted graph)
has at least one eigenvalue greater than of order

√
n.

Proposition 9 ([Bol05]) Let A be an n×n random symmetric matrix such that 0 ≤ aij ≤ 1
and the entries are independent for i ≤ j. Further, let us assume that there are positive
constants c1 and c2 and 0 < δ ≤ ∆ ≤ 1/2 such that, with the notation Xi =

∑n
j=1 aij,

E(Xi) ≥ c1n
1
2+δ and Var(Xi) ≤ c2n

1
2+∆, i = 1, . . . , n.

Then for every 0 < ε < δ:

lim
n→∞

P

(
λmax(A) ≥ c1n

1
2+ε
)

= 1.

Note that the above conditions automatically hold true if there is a constant 0 < µ0 < 1 such
that E(aij) ≥ µ0 for all i, j pairs. This is the case in the theorems of Füredi–Komlós [Fü-Ko]
and Juhász [Juh81]. In our case there can be a lot of zero entries, we require only that in
each row there are at least c1n1/2+δ entries with expectation greater than or equal to any
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small fixed positive constant µ0. As the matrix is symmetric, this also holds for its columns.
Therefore, among the n2 entries there must be at least Θ(n1+2δ) ones (but not anyhow) with
expectation at least a fixed 0 < µ0 < 1, all the others can be zeros. Also note that by the
Perron–Frobenius theory, the largest eigenvalue of A is always positive.

To prove Proposition 9, the following lemma is needed.

Lemma 2 (Bernstein inequality) LetX1, . . . , Xn be independent random variables, |Xi| ≤
K, X :=

∑n
i=1Xi. Then for every a > 0:

P (|X − E(X)| > a) ≤ e−
a2

2(Var(X)+Ka/3) .

Proof of Proposition 9. As a consequence of the Frobenius theorem, λmax(A) ≥ miniXi,
hence

P

(
λmax(A) ≥ c1n

1
2+ε
)
≥ P

(
min
i
Xi ≥ c1n

1
2 +ε
)
,

and it is enough to prove that the latter probability tends to 1 as n → ∞. We will prove
that the probability of the complementary event tends to 0:

P

(
for at least one i : Xi < c1n

1
2+ε
)
≤ nP

(
for a general i : Xi < c1n

1
2+ε
)
. (2.22)

From now on, we will drop the suffix i and X denotes the sum of the entries in an arbitrary
row of A. As X is the sum of n independent random variables satisfying the conditions of
Lemma 2 with K = 1,

P

(
X < c1n

1
2+ε
)

= P

(
E(X) −X > E(X) − c1n

1
2 +ε
)

≤ P

(
|X − E(X)| > E(X) − c1n

1
2+ε
)

≤ P

(
|X − E(X | > c1n

1
2 (nδ − nε)

)

≤ e
− c21n(nδ−nε)2

2(c2n
1
2
+∆

+n
1
2 (nδ−nε)/3)

≤ e−c3n
1
2

(nδ−nε)2

n∆

= e−c3n
1
2
−∆(nδ−nε)2

with some positive constant c3, in view of the inequalities 0 < ε < δ ≤ ∆ ≤ 1/2. Thus, the
right-hand side of (2.22) can be estimated from above by

n

ec3n
1
2
−∆(nδ−nε)2

≤ n

ec4nγ

with some constants c4 > 0 and γ > 0, because of 0 < ε < δ ≤ ∆ ≤ 1/2. The last term
above tends to 0 as n→ ∞, that finishes the proof. �

Note that the constants δ and ∆ were only responsible for the speed of the convergence.
Now we will use Proposition 9 to deprive a random symmetric matrix of the noise.

Theorem 18 ([Bol05]) Let (An) be a sequence of n×n symmetric matrices with uniformly
bounded, nonnegative entries, where n tends to infinity. Assume that An has exactly k
eigenvalues of order greater than

√
n (k is fixed), and there is a k-partition of the vertices

of Gn = (V,An) such that the k-variance of the representatives – in the representation
with the corresponding eigenvectors – is O(1/n). Then there is an explicit construction
for a symmetric blown-up matrix Bn (on k × k blocks) such that An = Bn + En, with
‖En‖ = O(

√
n).
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Instead of the complete proof, we only describe the construction, since the estimations
are special cases of those performed more generally, for rectangular matrices, when we prove
Theorem 23. First we prove the following lemma which will frequently be used in the sequel.

Lemma 3 ([Bol-Tus94]) Let x1, . . . ,xk ∈ Rn and y1, . . . ,yk ∈ Rn be orthonormal sets
(k ≤ n). Then another orthonormal set of vectors v1, . . . ,vk within F := Span{y1, . . . ,yk}
can be found such that

k∑

i=1

‖xi − vi‖2 ≤ 2

k∑

i=1

dist2(xi, F ).

Proof of the Lemma. We give a construction for such vi’s which are ‘close’ to the
individual xi’s, respectively. Note that X = (x1, . . . ,xk) and Y = (y1, . . . ,yk) are n × k
suborthogonal matrices. Since the vectors vi’s also form an orthonormal set within F , they
can be obtained by applying a rotation (within F ) for the yi’s. That is, we are looking for
a k × k orthogonal matrix R such that (v1, . . . ,vk) = Y R and, with it,

k∑

i=1

‖xi − vi‖2 = tr[(X − Y R)T (X − Y R)] ≤ 2

k∑

i=1

d2(xi, F ) (2.23)

holds. By the properties of the trace operator,

tr[(X − Y R)T (X − Y R)] = tr(XTX) + tr(RTY TY R) − 2tr(XTY R)

= tr(XTX) + tr[(Y TY )(RRT )] − 2tr(XTY R)

= 2[k − tr(XTY R)]

(2.24)

is obtained, where we used that XTX = Y TY = RRT = Ik. The expression in (2.24) is
minimal if and only if tr(XTY R) is maximal as a function of R. At this point, we use a
Proposition of [Bol83], according to which tr[(XTY )R] is maximal if (XTY )R is symmetric,
and the maximum is

∑k
i=1 si, with si’s being the singular values of XTY .

Now, let V SUT be the SVD of XTY , where V and U are k × k orthogonal matrices
and S is k × k diagonal matrix with the singular values in its main diagonal. Note that the
singular values si’s are the cosines of the principal (canonical) angles between the subspaces
Span{x1, . . . ,xk} and F . By the above SVD, (XTY )R = V SUTR is symmetric if UTR =
V T , i.e., R = UV T . Consequently, the minimum that can be attained in (2.24) is equal to

2
k∑

i=1

(1 − si). (2.25)

Eventually, the sum of the squared distances in (2.23) can also be written in terms of the
singular values s1, . . . , sk. Since Y Y T is the matrix of the orthogonal projection onto F ,

k∑

i=1

d2(xi, F ) = tr[(X − Y Y TX)T (X − Y Y TX)] = tr(XTX) − tr(XTY Y TX)

= k −
k∑

i=1

s2i =

k∑

i=1

(1 − s2i ),

(2.26)

where we also used that the k × k symmetric matrix XTY Y TX has eigenvalues s21, . . . , s
2
k.
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Comparing (2.25) and (2.26), it remains to show that
∑k

i=1(1− si) ≤
∑k

i=1(1− s2i ). But
si’s are the singular values of the matrix XTY , therefore denoting by smax(.) the maximum
singular value of the matrix in the argument, we have

si ≤ smax(X
TY ) ≤ smax(X) · smax(Y ) = 1,

since all positive singular values of the suborthogonal matrices X and Y are equal to 1.
Hence, si ≥ s2i implies the desired relation (2.23). �

Construction of Theorem 18. Let x1, . . . ,xk denote the eigenvectors corresponding to
λ1, . . . , λk, the k largest absolute value (of order larger than

√
n) eigenvalues of An. The

representatives – that are row vectors of the n × k matrix X = (x1, . . . ,xk) – by the
assumption of the theorem, form k clusters in Rk with k-variance less than c/n with some
constant c. Let V1, . . . , Vk denote the clusters; properly reordering the rows of X, together
they give the index set V = {1, . . . , n}. Let x1, . . . ,xn ∈ Rk be the Euclidean representatives
of the vertices (the rows of X), and let x̄1, . . . , x̄k denote the cluster centers. Now let us
choose the following representation of the vertices. The representatives are row vectors of the
n× k matrix X̃ such that the first n1 rows of X̃ are equal to x̄1, the next n2 rows of X̃ are
equal to x̄2, . . . , and so on; the last nk rows of X̃ are equal to x̄k. Finally, let y1, . . . ,yk ∈ Rn

be the column vectors of X̃. By an easy (already applied) analysis of variance algorithm,

S2
k(X) =

k∑

i=1

dist2(xi, F ),

where the k-dimensional subspace F is spanned by the vectors y1, . . . ,yk; further, by the
assumption of the theorem, S2

k(X) < c
n .

Then, in view of Lemma 3, a set v1, . . . ,vk of orthonormal vectors within F can be found
such that

k∑

i=1

‖xi − vi‖2 ≤ 2
c

n

holds. It is important that vi’s are also step-vectors over the vertex-clusters V1, . . . , Vk.
Finally, for the matrix An =

∑n
i=1 λixix

T
i , the blown-up matrix Bn =

∑k
i=1 λiviv

T
i is

constructed. Then the spectral norm of the error matrix En = An−Bn is O(
√
n), as it will

be proved more generally, in the rectangular case. �

Theoretically, for any graph on n vertices, the Szemerédi Regularity Lemma (see [Kometal,
Sim-Sos, Szem]) guarantees the existence of an equitable regular partition of the vertices with
‘small’ pairwise discrepancies such that the upper limit for the maximum number of clusters
does not depend on n (it only depends on the discrepancy to be attained).

Definition 20 We say that the disjoint pair Vi, Vj ⊂ V (i 6= j) is ǫ-regular, if for any
A ⊂ Vi, B ⊂ Vj, with |A| > ǫ|Vi|, |B| > ǫ|Vj |,

|ρ(A,B) − ρ(Vi, Vj)| < ǫ

holds, where ρ(A,B) denotes the edge-density between the disjoint vertex-subsets A and B.
More precisely, denoting by e(A,B) the number of cut-edges between A and B,

ρ(A,B) =
e(A,B)

|A| · |B| .
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Theorem (Szemerédi Regularity Lemma [Szem]) For every positive real ǫ and positive
integer m there are positive integers N = N(ǫ,m) and M = M(ǫ,m) with the following
property: for every simple graph G = (V,E) with n ≥ N vertices there is a partition of V
into k + 1 classes V0, V1, . . . , Vk such that

• m ≤ k ≤M ,

• |V0| ≤ ǫn,

• |V1| = |V2| = · · · = |Vk|,

• all but at most ǫk2 of the pairs (Vi, Vj) are ǫ-regular.

If the graph is sparse – the number of edges is e = o(n2) – then k = 1, otherwise k can
be arbitrarily large (but the upper limit for it does not depend on n, it merely depends on
ǫ).

Definition 21 Let n be a natural number and k ≤ n be a positive integer. The graph
Gn(P ,Pk) is a generalized random graph with probability matrix P and proper k-partition
Pk = (V1, . . . , Vk) of the vertices if it satisfies the following. The vertex set is V , |V | = n;
the k × k symmetric matrix P is such that its entries satisfy 0 ≤ pij ≤ 1 (1 ≤ i ≤ j ≤ k).
Then vertices of Vi and Vj are connected independently, with probability pij, 1 ≤ i ≤ j ≤ k.

If our random graph is a generalized random graph, then e(Vi, Vj) is the sum of |Vi| · |Vj |
independent, identically distributed Bernoulli variables with parameter pij (1 ≤ i, j ≤ k),
where pij ’s are entries of the probability matrix P . Hence, e(A,B) is a binomially distributed
random variable with expectation |A| · |B| · pij and variance |A| · |B| · pij(1− pij). Therefore,
by the Bernstein inequality (Lemma 2 with the choice of K = 1) and with A ⊂ Vi, B ⊂ Vj ,
|A| > ǫ|Vi|, |B| > ǫ|Vj | we have that

P (|ρ(A,B) − pij | > ǫ) = P (|e(A,B) − |A| · |B| · pij | > ǫ · |A| · |B|)

≤ e
− ǫ2|A|2|B|2

2[|A||B|pij(1−pij)+ǫ|A||B|/3]

= e
− ǫ2|A||B|

2[pij(1−pij)+ǫ/3]

≤ e
− ǫ4|Vi||Vj |

2[pij(1−pij)+ǫ/3] ,

that tends to 0 as |Vi| = ni → ∞ and |Vj | = nj → ∞. Hence, any pair Vi, Vj is ǫ-regular, AS.
Note that a matrix approximation theorem to derive a constructive version of the Szemerédi
Regularity Lemma is introduced in [Fr-Kan]. Further aspects will be discussed in Section 2.3.

2.2 Noisy contingency tables

In this section, the results of the previous section will be extended to the stability of the
SVD of large noisy contingency tables.

Definition 22 The m× n real matrix Wm×n is a Wigner-noise if its entries wij (1 ≤ i ≤
m, 1 ≤ j ≤ n) are independent random variables, E(wij) = 0, and the wij ’s are uniformly
bounded (i.e., there is a constant K > 0, independently of m and n, such that |wij | ≤ K,
∀i, j).
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Achlioptas and McSherry [Ac-Mc] extended the Füredi–Komlós theorem [Fü-Ko] to rectan-
gular matrices. In view of this, the spectral norm of an m × n Wigner-noise Wm×n is at
most of order

√
m+ n, with probability tending to 1 as n,m→ ∞.

Definition 23 The m×n real matrix Bm×n is a blown-up matrix if there is an a×b so-called
probability matrix P with entries 0 < pij < 1, and there are positive integers m1, . . . ,ma

with
∑a

i=1mi = m and n1, . . . , nb with
∑b
i=1 ni = n such that – after rearranging its rows

and columns – the matrix Bm×n can be divided into a× b blocks, where the block (i, j) is an
mi × nj matrix with entries all equal to pij (1 ≤ i ≤ a, 1 ≤ j ≤ b).

Let us fix P , blow it up to an m × n matrix Bm×n, and consider the noisy matrix
Am×n = Bm×n + Wm×n as m,n → ∞ under one or both of the subsequent growth rate
conditions.

Definition 24 The following growth rate conditions for the growth of the sizes and that of
the cluster sizes of an m× n rectangular array are introduced.

GC1 There exists a constant 0 < c ≤ 1
a such that mi

m ≥ c (i = 1, . . . , a) and a constant
0 < d ≤ 1

b such that ni

n ≥ d (i = 1, . . . , b).

GC2 There exist constants C ≥ 1, D ≥ 1, and C0 > 0, D0 > 0 such that m ≤ C0n
C and

n ≤ D0m
D for sufficiently large m and n.

We remark the following:

• GC1 implies that

c ≤ mk

mi
≤ 1

c
and d ≤ nℓ

nj
≤ 1

d
(2.27)

hold for any pair of indices k, i ∈ {1, . . . , a} and ℓ, j ∈ {1, . . . , b}.

• GC2 implies that for sufficiently large m and n,

(
1

D0
)

1
Dn

1
D ≤ m ≤ C0n

C and (
1

C0
)

1
Cm

1
C ≤ n ≤ D0m

D.

Therefore, GC2 mildly regulates the relation between m and n, but they need not
tend to infinity at the same rate.

While perturbing Bm×n by Wm×n, assume that for the uniform bound of the entries of
Wm×n the condition

K ≤ min{ min
i∈{1,...,a}
j∈{1,...,b}

pij , 1 − max
i∈{1,...,a}
j∈{1,...,b}

pij} (2.28)

is satisfied. In this way, the entries of Am×n = Bm×n + Wm×n are in the [0,1] interval, and
hence, Am×n defines a standardized contingency table. We are interested in the asymptotic
properties of the SVD of this expanding contingency table sequence as n,m→ ∞ under the
growth rate conditions.

With an appropriate Wigner-noise we can again guarantee that the noisy binary table
Am×n contains 1’s in the (a, b)-th block with probability pab, and 0’s otherwise.

Let R1, . . . , Ra and C1, . . . , Cb denote the row- and column clusters induced by the blow-
up. In the random 0-1 contingency table Am×n, the row and column categories of Ri and Cj
are in interaction with probability pij . Such schemes are sought for in microarray analysis
and they called checker-board patterns, see [Klugetal] for details. In terms of microarrays,
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the above property means that genes of the same cluster Ri equally influence conditions of
the cluster Cj .

Analogously to the quadratic case, we define AS and WP1 properties Pm,n for the
rectangular array Am×n. We may assume GC1 and/or GC2 for the simultaneous growth
of m and n. In fact, GC2 will only be used for normalized noisy tables.

To find AS estimate for the spectral norm, i.e., the largest singular value of Wm×n,
the theorem of Alon, Krivelevich, and Vu (see Section 2.1) can be adopted to rectangular
matrices in the following manner. Let Wm×n be a Wigner-noise with entries uniformly
bounded by K. The (m+ n) × (m+ n) symmetric matrix

W̃ =
1

K

(
0 Wm×n

W T
m×n 0

)

satisfies the conditions of this theorem, and its largest and smallest eigenvalues are

λi(W̃ ) = −λn+m−i+1(W̃ ) =
1

K
· si(Wm×n), i = 1, . . . ,min{m,n},

while the others are zeros, where λi(.) and si(.) denote the i-th largest eigenvalue and singular
value of the matrix in the argument, respectively. Therefore,

P (|s1(Wm×n) − E(s1(Wm×n))| > t) ≤ exp

(
− (1 − o(1))t2

32K2

)
. (2.29)

The fact that s1(Wm×n) = ‖Wm×n‖ = O(
√
m+ n) WP1 and inequality (2.29) together

ensure that E(‖W ‖) = O(
√
m+ n). Hence, no matter how E‖Wm×n‖ behaves when m,n→

∞, the following rough estimate holds: there exist positive constants c1 and c2, depending
merely on the common bound K of the entries of Wm×n, such that

P
(
‖Wm×n‖ > c1

√
m+ n

)
≤ e−c2(m+n). (2.30)

Since the right-hand side of (2.30) forms a convergent series, the spectral norm of a Wigner-
noise Wm×n is of order

√
m+ nAS. This observation will provide the base of the subsequent

AS results, which are also WP1 ones.

2.2.1 Singular values of a noisy contingency table

Analogously to the quadratic case, the following is proved for the noisy table.

Proposition 10 ([Bol-Fr-Kr10]) Under GC1, all the non-zero singular values of the blown-
up contingency table Bm×n are of order

√
mn.

Theorem 19 ([Bol-Fr-Kr10]) Let Am×n = Bm×n + Wm×n be an m× n random matrix,
where Bm×n is a blown-up matrix with positive singular values s1, . . . , sr (r = rank(Bm×n))
and Wm×n is a Wigner-noise. Then, under GC1, the matrix Am×n has r singular values
z1, . . . , zr, such that

|zi − si| = O(
√
m+ n), i = 1, . . . , r

and for the other singular values

zj = O(
√
m+ n), j = r + 1, . . . ,min{m,n}

holds, AS.
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Summarizing, with the notation

ε := ‖Wm×n‖ = O(
√
m+ n) and ∆ := min

1≤i≤r
si(Bm×n) = Θ(

√
mn) (2.31)

there is a spectral gap of size ∆ − 2ε between the r largest and the other singular values of
the perturbed matrix Am×n, and this gap is significantly larger than ε.

2.2.2 Clustering the rows and columns via singular vector pairs

Here perturbation results for the corresponding singular vector pairs are established. To
this end, with the help of Theorem 19, we estimate the distances between the corresponding
right- and left-hand side eigenspaces of the matrices Bm×n and Am×n = Bm×n + Wm×n.

Let v1, . . . ,vm ∈ Rm and u1, . . . ,un ∈ Rn be the orthonormal left- and right-hand side
singular vectors of Bm×n. They are step-vectors over the row and column clusters determined
by the blow-up; further, they satisfy

Bm×nui = sivi, i = 1, . . . , r and Bm×nuj = 0, j = r + 1, . . . , n.

Let us also denote the unit-norm, pairwise orthogonal left- and right-hand side singular
vectors corresponding to the r structural singular values z1, . . . , zr of Am×n by y1, . . . ,yr ∈
Rm and x1, . . . ,xr ∈ Rn, respectively. Then, for them Am×nxi = ziyi holds (i = 1, . . . , r).
Let

F := Span{v1, . . . ,vr} and G := Span{u1, . . . ,ur}
denote the spanned linear subspaces of step-vectors in Rm and Rn, respectively.

Proposition 11 ([Bol-Fr-Kr10]) With the above notation, under GC1, the following es-
timate holds AS:

r∑

i=1

dist2(yi, F ) ≤ r
ε2

(∆ − ε)2
= O

(
m+ n

mn

)
, (2.32)

and analogously,
r∑

i=1

dist2(xi, G) ≤ r
ε2

(∆ − ε)2
= O

(
m+ n

mn

)
. (2.33)

By Proposition 11, the individual distances between the original and the perturbed sub-
spaces and also the sum of these distances tend to zero AS as m,n→ ∞ under GC1.

Now let Am×n be a microarray on m genes and n conditions, with aij denoting the
expression level of gene i under condition j. We assume that Am×n is a noisy random matrix
obtained by adding a Wigner-noise Wm×n to the blown-up matrix Bm×n. Let us denote by
R1, . . . , Ra the partition of the genes and by C1, . . . , Cb the partition of the conditions with
respect to the blow-up (they can also be thought of as clusters of the genes and conditions).

Proposition 11 also implies the well-clustering property of the representatives of the
genes and conditions in the following representation. Let Y be the m× r matrix containing
the left-hand side singular vectors y1, . . . ,yr of Am×n in its columns. Likewise, let X be
the n × r matrix containing the right-hand side singular vectors x1, . . . ,xr of Am×n in
its columns. Let the r-dimensional representatives of the genes be the row vectors of Y :
y1, . . . ,ym ∈ Rr, while the r-dimensional representatives of the conditions be the row vectors
of X: x1, . . . ,xn ∈ Rr. Let S2

a(Y ) denote the a-variance, introduced in (1.10) of the genes’
representatives:

S2
a(Y ) = min

{R′
1,...,R

′
a}

a∑

i=1

∑

j∈R′
i

‖yj − ȳi‖2, where ȳi =
1

mi

∑

j∈R′
i

yj ,
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while S2
b (X) denotes the b-variance of the conditions’ representatives:

S2
b (X) = min

{C′
1,...,C

′
b}

b∑

i=1

∑

j∈C′
i

‖xj − x̄i‖2, where x̄i =
1

ni

∑

j∈C′
i

xj ,

when the partitions {R′
1, . . . , R

′
a} and {C′

1, . . . , C
′
b} vary over all a- and b-partitions of the

genes and conditions, respectively.

Theorem 20 ([Bol-Fr-Kr10]) With the above notation, under GC1, for the a- and b-
variances of the representation of the microarray Am×n the relations

S2
a(Y ) = O

(
m+ n

mn

)
and S2

b (X) = O
(
m+ n

mn

)

hold AS.

The proofs are analogous to those of the quadratic case. The message of the above theorem is
that the addition of any kind of a Wigner-noise to a rectangular matrix that has a blown-up
structure Bm×n, will not change the order of the structural singular values, and the block
structure of Bm×n can be reconstructed from the representatives of the row and column
items of the noisy matrix Am×n. So far, we have only used GC1, and no restriction for the
relation between m and n has been made. For noisy normalized contingency tables, GC2 is
also needed.

2.2.3 Perturbation results for noisy normalized contingency tables

Let Bm×n be the blown-up matrix of the a × b probability matrix P of positive entries
and rank r, with blow-up sizes m1, . . . ,ma and n1, . . . , nb. We perform the normalization,
described in Section 1.2, on Bm×n. We are interested in the order of the singular values of
Am×n = Bm×n + Wm×n when the normalization is applied to it. To this end, we introduce
the following notation

DBrow = diag(dBrow,1, . . . , dBrow,m) = diag




n∑

j=1

b1j , . . . ,

n∑

j=1

bmj




DBcol = diag(dBcol,1, . . . , dBcol,n) = diag

(
m∑

i=1

bi1, . . . ,
m∑

i=1

bin

)

DArow = diag(dArow,1, . . . , dArow,m) = diag




n∑

j=1

a1j , . . . ,

n∑

j=1

amj




DAcol = diag(dAcol,1, . . . , dAcol,n) = diag

(
m∑

i=1

ai1, . . . ,

m∑

i=1

ain

)

for the diagonal matrices containing the row- and column-sums of Bm×n and Am×n in their
main diagonals, respectively. For notational convenience, we discard the subscript m × n
and set

BD = D
−1/2
BrowBD

−1/2
Bcol and AD = D

−1/2
ArowAD

−1/2
Acol (2.34)

for the transformed matrices while carrying out the normalization on B and A, respectively.
It is known that the leading singular value of BD is equal to 1, and it is a single singular
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value if B is non-degenerate, which will be assumed from now on. Let 1 > s0 = s1 ≥ · · · ≥
sr−1 denote a non-zero singular values of BD with unit-norm singular vector pairs vi, ui
(i = 0, . . . , r − 1), where r = rank(BD) = rank(B) = rank(P ). With the transformations

vcorr,i = D
−1/2
Browvi and ucorr,i = D

−1/2
Bcol ui (i = 0, 1, . . . , r − 1)

the so-called correspondence vector pairs are obtained. To v0,u0, the trivial (constantly 1)
vector pair corresponds. If the coordinates vcorr,i(j), ucorr,i(ℓ) of such a pair are considered
as possible values of two discrete random variables ψi and φi (often called the i-th corre-
spondence factor pair) taking on values with the marginal distributions, then – akin to the
canonical analysis – their correlation is si, and this is the largest possible correlation under
the condition that they are uncorrelated to the first i−1 correspondence factors within their
own sets, as discussed in Section 1.3.

In Section 1.2, we proved that the row vectors of the matrices vcorr,1, . . . ,vcorr,k−1 and
ucorr,1, . . . ,ucorr,k−1 are optimal (k−1)-dimensional representatives of the rows and columns
of the contingency table (where the trivial 0-index coordinates can as well be included to
obtain a k-dimensional representation). Here we will establish AS properties for the k-
variances of these representatives when also make use of the growth rate condition GC2.

Proposition 12 ([Bol-Fr-Kr10]) Given the m× n blown-up matrix B of the a× b proba-
bility matrix P , under GC1 there exists a constant δ ∈ (0, 1), independent of m and n, such
that all the non-zero singular values of BD are in the interval [δ, 1].

Proof. It is easy to see that BD is the blown-up matrix of the a× b probability matrix P̃

with entries
p̃ij =

pij√
(
∑b

ℓ=1 piℓnℓ)(
∑a

k=1 pkjmk)
.

Likewise as stated in Proposition 10, the blown-up matrix BD has exactly r = rank(P ) =
rank(P̃ ) non-zero singular values that are the singular values of the a × b matrix P ′ =

D
1/2
a P̃D

1/2
b (where Da = diag(m1, . . . ,ma) and Db = diag(n1, . . . , nb)) with entries

p′ij =
pij

√
mi

√
nj√

(
∑b

ℓ=1 piℓnℓ)(
∑a

k=1 pkjmk)
=

pij√
(
∑b

ℓ=1 piℓ
nℓ

nj
)(
∑a

k=1 pkj
mk

mi
)
.

Since the matrix P contains no zero entries, under GC1, the matrix P ′ varies on a compact
set of a×bmatrices determined by the inequalities (2.27). The range of the non-zero singular
values depends continuously on the matrix that does not depend on m and n. Therefore, the
minimum non-zero singular value does not depend on m and n. Because the largest singular
value is 1, this finishes the proof. �

Theorem 21 ([Bol-Fr-Kr10]) Consider the normalized matrix obtained from the noisy
matrix Am×n = Bm×n + Wm×n, see (2.34); r = rankBm×n. Under GC1 and GC2, there
exists a positive constant δ, that does not depend on m and n, such that for every 0 < τ < 1/2
the following statement holds AS: the r largest singular values of the normalized table are
in the interval [δ − max{n−τ ,m−τ}, 1 + max{n−τ ,m−τ}], while all the others are at most
max{n−τ ,m−τ}.

Note that under the condition (2.28), the noisy matrix Am×n has nonnegative entries (it
is a contingency table), and so, the noisy contingency table has largest singular value 1.
Therefore, its r largest singular values are in the interval [δ − max{n−τ ,m−τ}, 1].
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Proof. We will drop the subscript m× n. First notice that

AD = D
−1/2
ArowAD

−1/2
Acol = D

−1/2
ArowBD

−1/2
Acol + D

−1/2
ArowWD

−1/2
Acol . (2.35)

The entries of DBrow and those of DBcol are of order Θ(n) and Θ(m), respectively. Now
we prove that for every i = 1, . . . ,m and j = 1, . . . , n, |dArow,i − dBrow,i| < n · n−τ and
|dAcol,j − dBcol,j| < m ·m−τ hold, AS. To this end, we use the Bernstein inequality for large
deviations (see Lemma 2):

P
(
|dArow i − dBrow i| > n · n−τ) = P



∣∣∣∣∣∣

n∑

j=1

wij

∣∣∣∣∣∣
> n1−τ




< exp

{
− n2−2τ

2(Var(
∑n

j=1 wij) +Kn1−τ/3)

}
≤ exp

{
− n2−2τ

2(nσ2 +Kn1−τ/3)

}

= exp

{
− n1−2τ

2(σ2 +Kn−τ/3)

}
, i = 1, . . . ,m,

where the constant K is the uniform bound for |wij |’s and σ2 is the bound for their variances.
In view of GC2 the following estimate holds with some C0 > 0 and C ≥ 1 (constants of
GC2) and large enough n:

P
(
|dArow,i − dBrow,i| > n1−τ ∀i ∈ {1, . . . ,m}

)

≤ m · exp

{
− n1−2τ

2(σ2 +Kn−τ/3)

}
≤ C0 · nC · exp

{
− n1−2τ

2(σ2 +Kn−τ/3)

}

= exp

{
lnC0 + C lnn− n1−2τ

2(σ2 +Kn−τ/3)

}
.

(2.36)

The estimation of the probability

P
(
|dAcol,j − dBcol,j| > m1−τ ∀j ∈ {1, . . . , n}

)

can be treated analogously (with D0 > 0 and D ≥ 1 of GC2). The right-hand side of (2.36)
forms a convergent series; therefore, by the Borel–Cantelli lemma,

min
i∈{1,...,m}

|dArow,i| = Θ(n), min
j∈{1,...,n}

|dAcol,j | = Θ(m) (2.37)

hold AS.
Now it is straightforward to bound the norm of the second term of (2.35) by

‖D−1/2
Arow‖ · ‖W ‖ · ‖D−1/2

Acol ‖. (2.38)

As by (2.30), ‖W ‖ = O(
√
m+ n) holds AS, the quantity (2.38) is at most of order

√
m+n
mn ,

AS. Hence, it is less than max{n−τ ,m−τ}, AS.
In order to estimate the norm of the first term of (2.35) let us write it in the form

D
−1/2
ArowBD

−1/2
Acol = D

−1/2
BrowBD

−1/2
Bcol +

[
D

−1/2
Arow − D

−1/2
Brow

]
BD

−1/2
Bcol

+ D
−1/2
ArowB

[
D

−1/2
Acol − D

−1/2
Bcol

]
.

(2.39)
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The first term is just BD, so due to Proposition 12, we should prove only that the norms
of both remainder terms are less than max{n−τ ,m−τ}, AS. These two terms have a similar
appearance, therefore it is enough to estimate one of them. For example, the second term
can be bounded by

‖D−1/2
Arow − D

−1/2
Brow‖ · ‖B‖ · ‖D−1/2

Bcol ‖. (2.40)

The estimation of the first factor in (2.40) is as follows:

‖D−1/2
Arow − D

−1/2
Brow‖ = max

i∈{1,...,m}

(
1√

dArow,i
− 1√

dBrow,i

)

= max
i∈{1,...,m}

|dArow,i − dBrow,i|√
dArow,i · dBrow,i(

√
dArow,i +

√
dBrow,i)

≤ max
i∈{1,...,m}

|dArow,i − dBrow,i|√
dArow,i · dBrow,i

· max
i∈{1,...,m}

1

(
√
dArow,i +

√
dBrow,i)

.

(2.41)

By relations (2.37),
√
dArow,i · dBrow,i = Θ(n) for any i = 1, . . . ,m, and hence,

|dArow,i − dBrow,i|√
dArow,i · dBrow,i

≤ n−τ ,

AS; further, maxi∈{1,...,m}
1√

dArow,i+
√
dBrow,i

= Θ( 1√
n
), AS.

Therefore, the left-hand side of (2.41) can be estimated by n−τ−1/2 from above, AS.
For the further factors in (2.40) we obtain ‖B‖ = Θ(

√
mn) (see Proposition 10), while

‖D−1/2
Bcol ‖ = Θ( 1√

m
), AS. These together imply that

n−τ−1/2 · n1/2m1/2 ·m−1/2 ≤ n−τ ≤ max{n−τ ,m−τ}.

This finishes the estimation of the first term in (2.35), and by the Weyl’s perturbation
theorem, the proof too. �

We remark the following. If in the definition of the Wigner-noise we used Gaussian
distributed entries, the large deviation principle could be replaced by the simple estimation
of the Gaussian probabilities with any κ > 0:

P



∣∣∣∣∣∣
1

n

n∑

j=1

wij

∣∣∣∣∣∣
> κ


 < min

(
1,

4σ

κ
√

2πn
exp

{
− n

2σ2
κ2
})

.

Setting κ = n−τ we get an estimate, analogous to (2.36).
Now, we are ready to estimate the k-variances. Recall that the normalized table of a

blown-up matrix is also a blown-up matrix. Therefore, the non-zero singular values of BD

are the numbers 1 = s0 > s1 ≥ · · · ≥ sr−1 > 0 with unit-norm singular vector pairs vi, ui
having piecewise constant structure (i = 0, . . . , r − 1). Set

F := Span{v0, . . . ,vr−1} and G := Span{u0, . . . ,ur−1}.

Let 0 < τ < 1/2 be arbitrary and ǫ := max{n−τ ,m−τ}. Let us also denote the unit-norm,
pairwise orthogonal left- and right-hand side singular vectors corresponding to the singular
values z0, . . . , zr−1 ∈ [δ − ǫ, 1 + ǫ] of AD – guaranteed by Theorem 21 under GC2 – by
y0, . . . ,yr−1 ∈ Rm and x0, . . . ,xr−1 ∈ Rn, respectively.
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Proposition 13 ([Bol-Fr-Kr10]) With the above notation, under GC1 and GC2, the
following estimate holds AS for the distance between yi and F :

dist(yi, F ) ≤ ǫ

(δ − ǫ)
=

1

( δǫ − 1)
i = 0, . . . , r − 1 (2.42)

and analogously, for the distance between xi and G:

dist(xi, G) ≤ ǫ

(δ − ǫ)
=

1

( δǫ − 1)
i = 0, . . . , r − 1. (2.43)

Proof. Follow the method of proving Proposition 11 – under GC1 – with δ instead of ∆
and ǫ instead of ε. Here GC2 is necessary only for AD to have r structural singular values.
�

Note that the left-hand sides of (2.42) and (2.43) are AS of order max{n−τ ,m−τ},
tending to zero as m,n→ ∞ under GC1 and GC2.

Proposition 13 implies the well-clustering property of the representatives of the two dis-
crete variables by means of the noisy correspondence vector pairs

ycorr,i := D
−1/2
Arowyi, xcorr,i := D

−1/2
Acol xi i = 0, . . . , r − 1.

Let Ycorr = (ycorr,0, . . . ,ycorr,r−1) and Xcorr = (xcorr,0, . . . ,xcorr,r−1) be the matrices con-
taining the optimal representatives of the rows and columns of the noisy contingency table
in their columns. Let y1

corr, . . .y
m
corr ∈ Rr and x1

corr, . . .x
n
corr ∈ Rr denote the row vectors

of Ycorr and Xcorr, i.e., the representatives of the genes and conditions, respectively. With
respect to the marginal distributions, the weighted a- and b-variances of these representatives
are defined (see 1.14) by

S̃2
a(Ycorr) = min

{R′
1,...,R

′
a}

a∑

i=1

∑

j∈R′
i

dArow,j‖yjcorr − ȳicorr‖2

and

S̃2
b (Xcorr) = min

{C′
1,...,C

′
b}

b∑

i=1

∑

j∈C′
i

dAcol,j‖xjcorr − x̄icorr‖2,

where {R′
1, . . . , R

′
a} and {C′

1, . . . , C
′
b} are a- and b-partitions of the genes and conditions,

respectively; further,

ȳicorr =
∑

j∈A′
i

dArow,jy
j
corr and x̄icorr =

∑

j∈B′
i

dAcol,jx
j
corr.

Theorem 22 ([Bol-Fr-Kr10]) With the above notation, under GC1 and GC2,

S̃2
a(Ycorr) ≤

r

( δǫ − 1)2
and S̃2

b (Xcorr) ≤
r

( δǫ − 1)2

hold AS, where ǫ = max{n−τ ,m−τ} with every 0 < τ < 1/2.

Proof. With the considerations of the Proof of Theorem 20,

S̃2
a(Ycorr) ≤

a∑

i=1

∑

j∈Ai

dArow,j‖yjcorr − ȳicorr‖2 =

r∑

i=1

dist2(yi, F ),
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and

S̃2
b (Xcorr) ≤

b∑

i=1

∑

j∈Bi

dAcol,j‖x(j)
corr − x̄icorr‖2 =

r∑

i=1

dist2(xi, G),

hence the result of Proposition 13 can be used. �

Under GC1 and GC2, with m,n large enough, Theorem 22 implies that after perform-
ing correspondence analysis on the m × n noisy matrix A, the representation through the
correspondence vectors corresponding to AD will also reveal the block structure behind A.

2.2.4 Finding the blown-up skeleton

One might wonder where the singular values of an m × n matrix A = (aij) are located if
a := maxi,j |aij | is independent of m and n. On the one hand, the maximum singular value

cannot exceed O(
√
mn), as it is at most

√∑m
i=1

∑n
j=1 a

2
ij . On the other hand, let Q be

an m × n random matrix with entries a or −a (independently of each other). Consider the
spectral norm of all such matrices and take the minimum of them: minQ∈{−a,+a}m×n ‖Q‖.
This quantity measures the minimum linear structure that a matrix of the same size and
magnitude as A can possess. As the Frobenius norm of Q is a

√
mn, in view of the inequalities

between the spectral and Frobenius norms, the above minimum is at least a√
2

√
m+ n, which

is exactly the order of the spectral norm of a Wigner-noise. So an m × n random matrix
with independent and uniformly bounded entries under very general circumstances has at
least one singular value of order greater than

√
m+ n. Assume there are k such singular

values and the representatives by means of the corresponding singular vector pairs can be
well classified into k clusters in terms of the k-variances. Under these conditions we can
reconstruct a blown-up structure behind our matrix.

Theorem 23 ([Bol-Fr-Kr10]) Let Am×n be a sequence of m × n matrices of uniformly
bounded, nonnegative entries, where m and n tend to infinity. Assume that Am×n has exactly
k singular values of order greater than

√
m+ n (k is fixed). If there are integers a ≥ k and

b ≥ k such that the a- and b-variances of the optimal row- and column-representatives are
O(m+n

mn ), then there is an explicit construction for a blown-up matrix Bm×n (on a×b blocks)
such that Am×n = Bm×n + Em×n, with ‖Em×n‖ = O(

√
m+ n).

Proof. In the sequel the subscripts m and n will be dropped, for notational convenience.
We will speak in terms of microarrays (genes and conditions). Let y1, . . . ,yk ∈ Rm and
x1, . . . ,xk ∈ Rn denote the left- and right-hand side unit-norm singular vectors corresponding
to z1, . . . , zk, the singular values of A of order larger than

√
m+ n. The k-dimensional

representatives of the genes and conditions – that are row vectors of the m × k matrix
Y = (y1, . . . ,yk) and those of the n × k matrix X = (x1, . . . ,xk), respectively – by the
assumption of the theorem form a and b clusters in Rk, respectively, with sum of inner
variances O(m+n

mn ). Reorder the rows and columns of A according to their respective cluster
memberships. Denote by y1, . . . ,ym ∈ Rk and x1, . . . ,xn ∈ Rk the Euclidean representatives
of the genes and conditions (the rows of the reordered Y and X), and let ȳ1, . . . , ȳa ∈ Rk

and x̄1, . . . , x̄b ∈ Rk denote the cluster centers, respectively. Now let us choose the following
new representation of the genes and conditions. The genes’ representatives are row vectors
of the m× k matrix Ỹ such that the first m1 rows of Ỹ are equal to ȳ1, the next m2 rows
to ȳ2, and so on . . . the last ma rows of Ỹ are equal to ȳa. Then likewise, the conditions’
representatives are row vectors of the n× k matrix X̃ such that the first n1 rows of X̃ are
equal to x̄1, the next n2 rows to x̄2, and so on . . . the last nb rows of X̃ are equal to x̄b.
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By the considerations of Theorem 20 and the assumption for the clusters,

k∑

i=1

dist2(yi, F ) = S2
a(Y ) = O(

m+ n

mn
) (2.44)

and
k∑

i=1

dist2(xi, G) = S2
b (X) = O(

m+ n

mn
) (2.45)

hold respectively, where the k-dimensional subspace F ⊂ Rm is spanned by the column
vectors of Ỹ , and the k-dimensional subspace G ⊂ Rn is spanned by the column vectors of
X̃. We follow the construction given in Lemma 3 of a set v1, . . . ,vk of orthonormal vectors
within F and another set u1, . . . ,uk of orthonormal vectors within G such that

k∑

i=1

‖yi − vi‖2 = min
v′

1,...,v
′
k

k∑

i=1

‖yi − v′
i‖2 ≤ 2

k∑

i=1

dist2(yi, F ) (2.46)

and
k∑

i=1

‖xi − ui‖2 = min
u′

1,...,u
′
k

k∑

i=1

‖xi − u′
i‖2 ≤ 2

k∑

i=1

dist2(xi, G) (2.47)

hold, where the minimum is taken over orthonormal sets of vectors v′
1, . . . ,v

′
k ∈ F and

u′
1, . . . ,u

′
k ∈ G, respectively. The construction of the vectors v1, . . . ,vk is as follows

(u1, . . . ,uk can be constructed in the same way). Let v′
1, . . . ,v

′
k ∈ F be an arbitrary

orthonormal system (obtained, e.g., by the Schmidt orthogonalization method; note that in
the Lemma 3 they were given at the beginning). Let V ′ = (v′

1, . . . ,v
′
k) be an m× k matrix

and
Y TV ′ = QSZT

be SVD, where the matrix S contains the singular values of the k × k matrix Y TV ′ in its
main diagonal and zeros otherwise, while Q and Z are k×k orthogonal matrices (containing
the corresponding unit-norm singular vector pairs in their columns). The orthogonal matrix
R = ZQT will give the convenient orthogonal rotation of the vectors v′

1, . . . ,v
′
k. That is,

the column vectors of the matrix V = V ′R form also an orthonormal set that is the desired
set v1, . . . ,vk. Define the error terms ri and qi, respectively:

ri = yi − vi and qi = xi − ui (i = 1, . . . , k).

In view of (2.44) – (2.47),

k∑

i=1

‖ri‖2 = O(
m+ n

mn
) and

k∑

i=1

‖qi‖2 = O(
m+ n

mn
). (2.48)

Consider the following decomposition:

A =

k∑

i=1

ziyix
T
i +

min{m,n}∑

i=k+1

ziyix
T
i .
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The spectral norm of the second term is at most of order
√
m+ n. Now consider the first

term,
k∑

i=1

ziyix
T
i =

k∑

i=1

zi(vi + ri)(u
T
i + qTi ) =

=

k∑

i=1

ziviu
T
i +

k∑

i=1

ziviq
T
i +

k∑

i=1

ziriu
T
i +

k∑

i=1

ziriq
T
i .

(2.49)

Since v1, . . . ,vk and u1, . . . ,uk are unit vectors, the last three terms in (2.49) can be esti-
mated by means of the relations

‖viuTi ‖ =
√
‖viuTi uiv

T
i ‖ = 1 (i = 1, . . . , k),

‖viqTi ‖ =
√
‖qivTi viq

T
i ‖ = ‖qi‖ (i = 1, . . . , k),

‖riuTi ‖ =
√
‖riuTi uir

T
i ‖ = ‖ri‖ (i = 1, . . . , k),

‖riqTi ‖ =
√
‖riqTi qir

T
i ‖ = ‖qi‖ · ‖ri‖ (i = 1, . . . , k).

Taking into consideration that zi cannot exceed Θ(
√
mn), while k is fixed and, due to (2.48),

we get that the spectral norms of the last three terms in (2.49) – for their finitely many
subterms the triangle inequality is applicable – are at most of order

√
m+ n. Let B be the

first term, i.e.,

B =

k∑

i=1

zivi u
T
i .

Then ‖A − B‖ = O(
√
m+ n).

By their definition, the vectors v1, . . . ,vk and the vectors u1, . . . ,uk are in the subspaces
F and G, respectively. Both spaces consist of step-vectors; thus the matrix B is a blown-up
matrix containing a× b blocks. The noise matrix is

E =

k∑

i=1

ziviq
T
i +

k∑

i=1

ziriu
T
i +

k∑

i=1

ziriq
T
j +

min{m,n}∑

i=k+1

ziyix
T
i

which finishes the proof. �

Then, provided the conditions of Theorem 23 hold, by the construction given in the proof
above, an algorithm can be written that uses several SVD’s and produces the blown-up ma-
trix B. This B can be considered as the best blown-up approximation of the microarray A.
At the same time, clusters of the genes and conditions are also obtained. More precisely, first
we conclude the clusters from the SVD of A, rearrange the rows and columns of A accord-
ingly, and afterwards we use the above construction. If we decide to perform correspondence
analysis on A, then by (2.35) and (2.39), BD will give a good approximation to AD and
likewise, the correspondence vectors obtained by the SVD of AD will give representatives of
the genes and conditions.

Clustering microarray data via the k-means algorithm is also discussed in [Dhil], but with
an other objective function. To find the SVD for large rectangular matrices, randomized
algorithms are favored, e.g., [Ac-Mc]. In case of random matrices with an underlying linear
structure (outstanding singular values), the random noise of the algorithm is just added
to the noise in our data, but their sum is also a Wigner-noise, so it does not change the
effect of our algorithm in finding the clusters. Under the conditions of Theorem 23, the
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separated error matrix is comparable with the noise matrix, and this fact guarantees that
the underlying block structure can be extracted.

2.3 Discrepancy and spectra

Here under clustering we understand partition of the vertex-set into subsets of similar ver-
tices, i.e., members of a cluster behave similarity toward members of each (other or own)
cluster. We will generalize the Laplacian and modularity based spectral clustering methods
to recover so-called regular cluster pairs such that the information flow between the pairs
and within the clusters is as homogeneous as possible. The notion of volume-regularity is
also extended to contingency tables. For this purpose, we take into account both ends of the
normalized Laplacian spectrum, i.e., large absolute value, so-called structural eigenvalues of
the normalized modularity matrix, or the largest singular values of the normalized contin-
gency table. First we introduce the notion of multiway discrepancy for rectangular arrays of
nonnegative entries, of which the quadratic edge-weight matrices are special cases.

2.3.1 Estimating the singular values of normalized contingency ta-

bles by the multiway discrepancy

Definition 25 The multiway discrepancy of the rectangular array C of nonnegative entries
in the proper k-partition R1, . . . , Rk of its rows and C1, . . . , Ck of its columns is

md(C;R1, . . . , Rk, C1, . . . , Ck) = max
1≤a,b≤k

X⊂Ra, Y⊂Cb

|c(X,Y ) − ρ(Ra, Cb)Vol(X)Vol(Y )|√
Vol(X)Vol(Y )

, (2.50)

where c(X,Y ), Vol(X), and Vol(Y ) are defined in Section 1.2.2, whereas ρ(Ra, Cb) = c(Ra,Cb)
Vol(Ra)Vol(Cb)

denotes the relative density between Ra and Cb. The minimum k-way discrepancy of C itself
is

mdk(C) = min
(R1,...,Rk)
(C1,...,Ck)

md(C;R1, . . . , Rk, C1, . . . , Ck).

We will also extend this notion to an edge-weighted graph G and denote it by mdk(G).
In that setup, C plays the role of the edge-weight matrix: symmetric in the undirected;
quadratic, but usually not symmetric in the directed case; and it is the adjacency matrix if
G is a simple graph.

Note that the division by
√

Vol(X)Vol(Y ) ensures that the multiway discrepancy is not
affected by the scaling of the entries of C, akin to the normalized table CD, introduced in
Section 1.2. Therefore, without loss of generality,

∑n
i=1

∑m
j=1 cij = 1 will be assumed.

Observe that md(C;R1, . . . , Rk, C1, . . . , Ck) is the smallest α such that for every Ra, Cb
pair and for every X ⊂ Ra, Y ⊂ Cb,

|c(X,Y ) − ρ(Ra, Cb)Vol(X)Vol(Y )| ≤ α
√

Vol(X)Vol(Y ) (2.51)

holds. Therefore, in the k-partitions of the rows and columns, giving the minimum k-way
discrepancy (say, α∗) of C, every Ra, Cb pair is α∗-regular in terms of the volumes, and α∗ is
the smallest possible discrepancy that can be attained with proper k-partitions. It resembles
the notion of ǫ-regular pairs in the Szemerédi Regularity Lemma [Szem], albeit with given
number of vertex-clusters, which are usually not equitable; further, with volumes, instead of
cardinalities.
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Historically, the notion of discrepancy together with the expander mixing lemma was in-
troduced for simple, regular graphs, see e.g., Alon, Spencer, Hoory, Linial, Widgerson [Al-Sp,
Ho-Lin-Wid], and extended to Hermitian matrices by Bollobás, Nikiforov [Bo-Nik]. In
Chung, Graham, Wilson [Chu-G-W], the authors use the term quasirandom for simple graphs
that satisfy any of some equivalent properties, some of them closely related to discrepancy
and eigenvalue separation. Chung and Graham [Chu-G] prove that for simple graphs ‘small’
discrepancy disc(G) (with our notation, md1(G)) is caused by eigenvalue ‘separation’: the
second largest singular value (which is also the second largest absolute value eigenvalue), s1,
of the normalized adjacency matrix is ‘small’, i.e., separated from the trivial singular value
s0 = 1, which is the edge of the spectrum. More exactly, they prove disc(G) ≤ s1, hence
giving some kind of generalization of the expander mixing lemma for irregular graphs.

In the other direction, for Hermitian matrices, Bollobás and Nikiforov [Bo-Nik] estimate
the second largest singular value of an n×n Hermitian matrix A by Cdisc(A) logn (where C
is an absolute constant), and show that this is best possible up to a multiplicative constant.
Bilu and Linial [Bil-Lin] prove the converse of the expander mixing lemma for simple regular
graphs, but their key Lemma 3.3, producing this statement, goes beyond regular graphs.
In Alon et al. [Aletal], the authors relax the notion of eigenvalue separation to essential
eigenvalue separation (by introducing a parameter for it, and requiring the separation only
for the eigenvalues of a relatively large part of the graph). Then they prove relations between
the constants of this kind of eigenvalue separation and the discrepancy.

For a general rectangular array C of nonnegative entries, Butler [But] proves the following
forward and backward statement in the k = 1 case:

disc(C) ≤ s1 ≤ 150disc(C)(1 − 8 ln disc(C)), (2.52)

where his disc(C) is our md1(C) and, with our notation, s1 is the largest nontrivial singular
value of CD (he denotes is with σ2). Since s1 < 1, the upper estimate makes sense for
very small discrepancy, in particular, for disc(C) ≤ 8.868 × 10−5. The lower estimate of
(2.52) further generalizes the expander mixing lemma to rectangular matrices, but it can be
proved with the same tools as in the quadratic case (see the forthcoming Proposition 14 in
Section 2.3.3).

The above papers consider the overall discrepancy in the sense that disc(C) or disc(G)
measure the largest possible deviation between the actual and expected connectedness of
arbitrary (sometimes disjoint) subsets X,Y , where under expected the hypothesis of inde-
pendence is understood (which corresponds to the rank 1 approximation of the normalized
matrix). Our purpose is, in the multicluster scenario, to find similar relations between the
minimum k-way discrepancy and the SVD of the normalized matrix, for given k. In one
direction, we are able to prove the following.

Theorem 24 ([Bol16]) For every non-degenerate real matrix C of nonnegative entries and
integer 1 ≤ k ≤ rank(C),

sk ≤ 9mdk(C)(k + 2 − 9k ln mdk(C)) (2.53)

holds, provided 0 < mdk(C) < 1, where sk is the k-th largest nontrivial singular value of the
normalized matrix CD of C, defined in (1.23).

Note that mdk(C) = 0 if C has a block structure with k row- and column-blocks, in which
case sk = 0 also holds. Likewise, mdk(C) < 1 is not a peculiar requirement, since in view of
sk < 1, the upper bound of the theorem has relevance only for mdk(C) much smaller than 1;
for example, for md1(C) ≤ 1.866 × 10−3, md2(C) ≤ 8.459× 10−4, md3(C) ≤ 5.329 × 10−4,
etc.

68

dc_1249_16

Powered by TCPDF (www.tcpdf.org)



Before proving the theorem, we encounter some lemmas of other authors that will be
used, possibly with some modifications.

Lemma 3 of Bollobás and Nikiforov [Bo-Nik] is the key to prove their main result. This
lemma states that to every 0 < ε < 1 and vector x ∈ Cn, ‖x‖ = 1, there exists a vector
y ∈ Cn such that its coordinates take no more than

⌈
8π
ε

⌉ ⌈
4
ε log 2n

ε

⌉
distinct values and

‖x − y‖ ≤ ε. We will rather use the construction of the following lemma, which is indeed a
consequence of Lemma 3 of [Bo-Nik].

Lemma 4 (Lemma 3 of Butler [But]) To any vector x ∈ Cn, ‖x‖ = 1 and diagonal
matrix D of positive real diagonal entries, one can construct a step-vector y ∈ Cn such that

‖x − Dy‖ ≤ 1
3 , ‖Dy‖ ≤ 1, and the nonzero entries of y are of the form

(
4
5

)j
e

ℓ
29 2πi with

appropriate integers j (taking on O(log n) distinct values) and ℓ (0 ≤ ℓ ≤ 28).

Note that starting with an x of real coordinates, we do not need all the 29 values of ℓ, only two
of them will show up, as it follows from a better understanding of the construction of [But].
In fact, by the idea of [Bo-Nik], j’s come from dividing the coordinates of D−1x/‖D−1x‖
in decreasing absolute values into groups, where the cut-points are powers of 4

5 . With the
notation x = (xs))

n
s=1, if xs is in the j-th group, then the corresponding coordinate of the

approximating complex vector y = (ys)
n
s=1 is as follows. If xs = 0, then ys = 0, otherwise

ys =
(

4
5

)j
e(⌊

29θ
2π ⌋/29)2πi, where θ is the argument of xs, 0 ≤ θ < 2π, and therefore, ℓ = ⌊ 29θ

2π ⌋
is an integer between 0 and 28. However, when the coordinates of x are real numbers, then
only the values 0 and 14 of ℓ can occur, since θ can take only one of the values 0 or π,
depending on whether xs is positive or negative. We will intensively use this observation in
our proof.

Lemma 5 (Lemma 4 of Butler [But]) Let M be a matrix with largest singular value σ
and corresponding unit-norm singular vector pair v,u. If x and y are vectors such that
‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖v − x‖ ≤ 1

3 , ‖u− y‖ ≤ 1
3 , then σ ≤ 9

2 〈x,My〉.

Lemma 6 (Theorem 3 of Thompson [Thomp]) Let the n × n matrix A have singular
values α1 ≥ · · · ≥ αn and 1 ≤ k ≤ n be a fixed integer. Then an n× n matrix X exists with
rank(X) ≤ k such that B = A + X has singular values β1 ≥ · · · ≥ βn if and only if

αi+k ≤ βi ≤ αi−k, i = 1, . . . , n

with the understanding that αj = +∞ if j ≤ 0 and αj = 0 if j ≥ n.

Proof of Theorem 24. Assume that α∗ = mdk(C) ∈ (0, 1) and it is attained with the
proper k-partition R1, . . . , Rk of the rows and C1, . . . , Ck of the columns of C; i.e., for every
Ra, Cb pair and X ⊂ Ra, Y ⊂ Cb we have

|c(X,Y ) − ρ(Ra, Cb)Vol(X)Vol(Y )| ≤ α∗√Vol(X)Vol(Y ). (2.54)

Our purpose is to put Inequality (2.54) in a matrix form by using indicator vectors and
introducing the m× n auxiliary matrix

F = C − DrowRDcol, (2.55)

where R = (ρ(Ra, Cb)) is the m × n block-matrix of k × k blocks with entries equal to
ρ(Ra, Cb) over the block Ra × Cb. With the indicator vectors 1X and 1Y of X ⊂ Ra and
Y ⊂ Cb, Inequality (2.54) has the following equivalent form:

|〈1X ,F1Y 〉| ≤ α∗√〈1X ,C1n〉〈1m,C1Y 〉, (2.56)
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where 1n denotes the all 1’s vector of size n. At the same time, Equation (2.55) yields

D−1/2
row FD

−1/2
col = D−1/2

row CD
−1/2
col − D1/2

rowRD
1/2
col = CD − D1/2

rowRD
1/2
col .

Since the rank of the matrix D
1/2
rowRD

1/2
col is at most k, by the upper estimate of Lemma 6

(with the rolecast A = D
−1/2
row FD

−1/2
col , B = CD, X = D

1/2
rowRD

1/2
col , and i = k + 1) 1 we

obtain the following upper estimate for sk, that is the (k+1)-th largest (including the trivial
1) singular value of CD:

sk ≤ smax(D
−1/2
row FD

−1/2
col ) = ‖D−1/2

row FD
−1/2
col ‖,

where ‖.‖ denotes the spectral norm.
Let v ∈ Rm be the left and u ∈ Rn be the right unit-norm singular vector corresponding

to the maximal singular value of D
−1/2
row FD

−1/2
col , i.e.,

|〈v, (D−1/2
row FD

−1/2
col )u〉| = ‖D−1/2

row FD
−1/2
col ‖.

In view of Lemma 4, there are step-vectors x ∈ Cm and y ∈ Cn such that ‖v−D
1/2
rowx‖ ≤ 1

3

and ‖u− D
1/2
col y‖ ≤ 1

3 ; further, ‖D1/2
rowx‖ ≤ 1 and ‖D1/2

col y‖ ≤ 1. Then Lemma 5 yields

‖D−1/2
row FD

−1/2
col ‖ ≤ 9

2

∣∣∣〈(D1/2
rowx), (D−1/2

row FD
−1/2
col )(D

1/2
col y)〉

∣∣∣ =
9

2
|〈x,Fy〉|.

Now we will use the construction of the proof of the Lemma 4 in the special case when
the vectors v = (vs))

m
s=1 and u = (us))

n
s=1, to be approximated, have real coordinates.

Therefore, only the following three types of coordinates of the approximating complex vectors
x = (xs))

m
s=1 and y = (ys)

n
s=1 will appear. If vs = 0, then xs = 0; if vs > 0, then xs = (4

5 )j

with some integer j; if vs < 0, then xs = (4
5 )je

28
29πi with some integer j. Likewise, if us = 0,

then ys = 0; if us > 0, then ys = (4
5 )ℓ with some integer ℓ; if us < 0, then ys = (4

5 )ℓe
28
29πi

with some integer ℓ. With these observations, the step-vectors x and y can be written as
the following finite sums with respect to the integers j and ℓ:

x =
∑

j

(
4

5
)jx(j), x(j) =

k∑

a=1

(1Xja1 + e
28
29πi1Xja2), where

Xja1 = {s : vs > 0, s ∈ Ra} and Xja2 = {s : vs < 0, s ∈ Ra};
likewise,

y =
∑

ℓ

(
4

5
)ℓy(ℓ), y(ℓ) =

k∑

b=1

(1Yℓb1
+ e

28
29πi1Yℓb2

), where

Yℓb1 = {s : us > 0, s ∈ Cb} and Yℓb2 = {s : us < 0, s ∈ Cb}.
It is important that the 2k indicator vectors appearing in the decomposition of any x(j) or
y(ℓ) are disjointly supported, and so, all the coordinates of these vectors are of absolute value

1Actually, Lemma 6 is about square matrices, but in the possession of a rectangular one, we can supplement

it with zero rows or columns to make it quadratic; further, the nonzero singular values of the so obtained

square matrix are the same as those of the rectangular one, supplemented with additional zero singular values

that will not alter the shifted interlacing facts.
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1. These considerations give rise to the following estimation.

|〈x(j),Fy(ℓ)〉| ≤
k∑

a=1

2∑

p=1

k∑

b=1

2∑

q=1

∣∣〈1Xjap ,F1Yℓbq
〉
∣∣

(2.56)

≤
k∑

a=1

2∑

p=1

k∑

b=1

2∑

q=1

α∗
√
〈1Xjap ,C1n〉〈1m,C1Yℓbq

〉

≤ α∗2k

√√√√
k∑

a=1

2∑

p=1

k∑

b=1

2∑

q=1

〈1Xjap ,C1n〉〈1m,C1Yℓbq
〉

= 2kα∗

√√√√〈
k∑

a=1

2∑

p=1

1Xjap ,C1n〉〈1m,C
k∑

b=1

2∑

q=1

1Yℓbq
〉

= 2kα∗
√
〈|x(j)|,C1n〉〈1m,C|y(ℓ)|〉,

(2.57)

where in the first inequality we used the triangle inequality and |e 28
29πi| = 1, in the second

one we used (2.56), while in the third one, the Cauchy–Schwarz inequality with 4k2 terms.
In the last step we exploited that the indicator vectors composing x(j) and y(ℓ) are

disjointly supported. We also introduced the notation |z| = (|zs|)ns=1 for the real vector, the
coordinates of which are the absolute values of the corresponding coordinates of the (possibly
complex) vector z. (Note that the so introduced |z| is a vector, unlike ‖z‖ = (

∑n
s=1 |zs|2)1/2.)

In the same spirit, let |M | denote the matrix whose entries are the absolute values of the
corresponding entries of M (we will use this only for real matrices). With this formalism,
this is the right moment to prove the following inequalities that will be used soon to finish
the proof:

∑

ℓ

|〈x(j),Fy(ℓ)〉| ≤ 2〈|x(j)|,C1n〉,
∑

j

|〈x(j),Fy(ℓ)〉| ≤ 2〈1m,C|y(ℓ)|〉. (2.58)

Since the two inequalities are of the same flavor, it suffices to prove only the first one. Note
that it is here, where we use the exact definition of F as follows.

∑

ℓ

|〈x(j),Fy(ℓ)〉| ≤ 〈|x(j)|, |F |
∑

ℓ

|y(ℓ)|〉

≤ 〈|x(j)|, (C + DrowRDcol)1n〉| = 2〈|x(j)|,C1n〉

because |y(ℓ)| is a 0-1 vector and C + DrowRDcol is a (real) matrix of nonnegative entries.
We also used that the i-th coordinate of the vector (C + DrowRDcol)1n for i ∈ Ra is

drow,i

(
1 +

k∑

b=1

ρ(Ra, Cb)Vol(Cb)

)
= 2drow,i

(here we utilized that the sum of the entries of C is 1), and therefore,

(C + DrowRDcol)1n = 2C1n.

Finally, we will finish the proof with similar considerations as in [But]. Let us further
estimate

〈x,Fy〉 =
∑

j

∑

ℓ

〈(4

5
)jx(j),F (

4

5
)ℓy(ℓ)〉.
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Put γ := log4/5 α
∗; in view of α∗ < 1, γ > 0 holds. Then we divide the above summation

into three parts as follows.

|〈x,Fy〉| ≤
∑

j

∑

ℓ

(
4

5
)j+ℓ|〈x(j),Fy(ℓ)〉|

=
∑

|j−ℓ|≤γ
(a)

(
4

5
)j+ℓ|〈x(j),Fy(ℓ)〉| +

∑

j−ℓ>γ
(b)

(
4

5
)j+ℓ|〈x(j),Fy(ℓ)〉| +

∑

j−ℓ<−γ
(c)

(
4

5
)j+ℓ|〈x(j),Fy(ℓ)〉|.

The three terms are estimated separately. Term (a) can be bounded from above as follows:

∑

|j−ℓ|≤γ
(
4

5
)j+ℓ|〈x(j),Fy(ℓ)〉|

(2.57)

≤ 2kα∗ ∑

|j−ℓ|≤γ

√
(
4

5
)2j〈|x(j)|,C1n〉(

4

5
)2ℓ〈1m,C|y(ℓ)|〉

(∗)
≤ kα∗

∑

|j−ℓ|≤γ

[
(
4

5
)2j〈|x(j)|,C1n〉 + (

4

5
)2ℓ〈1m,C|y(ℓ)|〉

]

(∗∗)
≤ kα∗(2γ + 1)


∑

j

(
4

5
)2j〈|x(j)|,C1n〉 +

∑

ℓ

(
4

5
)2ℓ〈1m,C|y(ℓ)|〉


 ,

(∗∗∗)
≤ 2kα∗(2γ + 1),

where in the first inequality, the estimate of (2.57), and in (*), the geometric-arithmetic
mean inequality were used; (**) comes from the fact that in the second line, the first term
depends merely on j, while the second one merely on ℓ, and so, for fixed j or ℓ, any term
can show up at most 2γ + 1 times; (***) is due to the easy observation that

∑

j

(
4

5
)2j〈|x(j)|,C1n〉 = ‖D1/2

rowx‖2 ≤ 1,
∑

ℓ

(
4

5
)2ℓ〈1m,C|y(ℓ)|〉 = ‖D1/2

col y‖2 ≤ 1. (2.59)

Terms (b) and (c) are of similar appearance (the role of j and ℓ is symmetric in them),
therefore, we will estimate only (b). Here j − ℓ > γ, yielding j + ℓ > 2ℓ+ γ. Therefore,

∑

j−ℓ>γ
(
4

5
)j+ℓ|〈x(j),Fy(ℓ)〉| ≤

∑

ℓ

(
4

5
)2ℓ+γ

∑

j

|〈x(j),Fy(ℓ)〉|
(2.58)

≤
∑

ℓ

(
4

5
)2ℓ+γ2〈1m,C|y(ℓ)|〉

= 2(
4

5
)γ
∑

ℓ

(
4

5
)2ℓ〈1m,C|y(ℓ)|〉

(2.59)

≤ 2(
4

5
)γ

where, in the second and third inequalities, (2.58) and (2.59) were used. Consequently, (c)
can also be estimated from above with 2(4

5 )γ .
Collecting the so obtained estimates together, we get

sk ≤ 9

2
|〈x,Fy〉| ≤ 9

2

[
2kα∗(2γ + 1) + 4(

4

5
)γ
]

= 9α∗
[
2k

lnα∗

ln 4
5

+ k + 2

]

≤ 9α∗[2k(−4.5) lnα∗ + k + 2] = 9α∗(k + 2 − 9k lnα∗),

that was to be proved. �

Note that for k = 1, our upper bound is tighter than that of (2.52), see Theorem 2
of [But].
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Observe that for small discrepancies, the right-hand side of (2.53) is a strictly increasing
function of mdk(C) when it is ’small’. Actually, the same function of md(C;R1, . . . , Rk, C1, . . . , Ck)
is also a valid upper estimate for sk whenever the row-partitions R1, . . . , Rk and the column-
partitions C1, . . . , Ck are such that md(C;R1, . . . , Rk, C1, . . . , Ck) < 1 holds. Since the
function f(x) = 9x(k+2− 9k lnx) is strictly increasing near zero, mdk(C) is the best upper
estimate.

2.3.2 Estimating the multiway discrepancy of contingency tables by

the singular values and subspace deviations of the normalized

table

In the forward direction, we did not manage to estimate the k-way discrepancy from above
merely by means of the k-th largest non-trivial singular value of the normalized table, but had
to use the k-variances of the optimal (k−1)-dimensional row- and column-representatives too.
In the proof, we applied a bit different notion of the multiway discrepancy, but at the end,
we will discuss the relation between it and that of Definition 25. Actually, we used a notion
similar to that of the volume regularity introduced in Alon and coauthors [Aletal], where the
authors also give an algorithm that computes a regular partition of a given (possibly sparse)
graph in polynomial time giving some kind of construction for the Szemerédi Regularity
Lemma.

Definition 26 The row–column cluster pair R ⊂ Row, C ⊂ Col of the contingency table C

of total volume 1 is α-volume regular if for every X ⊂ R and Y ⊂ C the relation

|c(X,Y ) − ρ(R,C)Vol(X)Vol(Y )| ≤ α
√

Vol(R)Vol(C) (2.60)

holds, where ρ(R,C) is the relative inter-cluster density of the row–column pair R,C, intro-
duced in Definition 25.

Theorem 25 ([Bol14b]) Let C be a non-degenerate contingency table of m rows and n
columns, with row- and column sums drow,1, . . . , drow,m and dcol,1, . . . , dcol,n, respectively.
Assume that

∑n
i=1

∑m
j=1 cij = 1 and there are no dominant rows and columns: drow,i =

Θ( 1
m ), i = 1, . . . ,m and dcol,j = Θ( 1

n ), j = 1, . . . , n as m,n→ ∞. Let the singular values of
CD be

1 = s0 > s1 ≥ · · · ≥ sk−1 > ε ≥ si, i ≥ k.

The partition (R1, . . . , Rk) of Row and (C1, . . . , Ck) of Col are defined so that they minimize
the weighted k-variances S̃2

k(X) and S̃2
k(Y ) of the optimal row and column representatives

collected in X and Y (defined in Section 1.2). Assume that there are constants 0 < K1,K2 ≤
1
k such that |Ri| ≥ K1n and |Ci| ≥ K2m (i = 1, . . . , k), respectively. Then the Ri, Cj pairs

are O(
√

2k(S̃k(X)S̃k(Y )) + ε)-volume regular (i, j = 1, . . . , k).

For the proof, we need the definition of the cut-norm and the relation between it and the
spectral norm (see also [Fr-Kan, Gh-Trev]).

Definition 27 The cut-norm of the real matrix A with row-set Row and column-set Col is

‖A‖� = max
R⊂Row,C⊂Col

∣∣∣∣∣∣

∑

i∈R

∑

j∈C
aij

∣∣∣∣∣∣
.
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Lemma 7 For the m× n real matrix A,

‖A‖� ≤
√
mn‖A‖,

where the right hand side contains the spectral norm, i.e., the largest singular value of A.

Proof of Lemma 7.

‖A‖� = max
x∈{0,1}m,y∈{0,1}n

|xTAy| = max
x∈{0,1}m,y∈{0,1}n

∣∣∣∣(
x

‖x‖ )TA(
y

‖y‖ )

∣∣∣∣ · ‖x‖ · ‖y‖|

≤
√
mn max

‖x‖=1, ‖y‖=1
|xTAy| =

√
mn‖A‖,

since for x ∈ {0, 1}m, ‖x‖ ≤ √
m, and for y ∈ {0, 1}n, ‖y‖ ≤ √

n, that finishes the proof. �

The definition of the cut-norm and the result of the above lemma naturally extends to
symmetric matrices with m = n. Note that in [Szeg], B. Szegedy estimates the cut-norm of a
graphon from above by the spectral norm of the corresponding compact operator. Since our
normalization is for matrices and not for graphons, the estimate of Lemma 7 does contain
the size of the matrix.
Proof of Theorem 25. Let CD =

∑r−1
i=0 siviu

T
i be SVD, where r = rank(C) = rank(CD).

Recall that provided C is non-degenerate, the largest singular value s0 = 1 of CD is single
with corresponding singular vector pair v0 = D

1/2
row1m and u0 = D

1/2
col 1n, respectively. The

optimal k-dimensional representatives of the rows and columns are row vectors of the matrices
X = (x0, . . . ,xk−1) and Y = (y0, . . . ,yk−1), where xi = D

−1/2
row vi and yi = D

−1/2
col ui,

respectively (i = 0, . . . , k − 1), in view of Theorem 9. (Note that the first columns of
equal coordinates can as well be omitted.) Assume that the minimum weighted k-variance
is attained at the k-partition (R1, . . . , Rk) of the rows and (C1, . . . , Ck) of the columns,
respectively. By the usual analysis of variance argument, it follows that

S̃2
k(X) =

k−1∑

i=0

dist2(vi, F ), S̃2
k(Y ) =

k−1∑

i=0

dist2(ui, G),

where F = Span{D1/2
roww1, . . . ,D

1/2
rowwk} and G = Span{D1/2

col z1, . . . ,D
1/2
col zk} with the so-

called normalized row partition vectors w1, . . . ,wk of coordinates wji = 1√
Vol(Ri)

if j ∈ Ri

and 0, otherwise; and column partition vectors z1, . . . , zk of coordinates zji = 1√
Vol(Ci)

if

j ∈ Ci and 0, otherwise (i = 1, . . . , k). Note that the vectors D
1/2
roww1, . . . ,D

1/2
rowwk and

D
1/2
col z1, . . . ,D

1/2
col zk form orthonormal systems in Rn and Rm, respectively (but they are,

usually, not complete). By Lemma 3, we can find orthonormal systems ṽ0, . . . , ṽk−1 ∈ F
and ũ0, . . . , ũk−1 ∈ G such that

S̃2
k(X) ≤

k−1∑

i=0

‖vi − ṽi‖2 ≤ 2S̃2
k(X), S̃2

k(Y ) ≤
k−1∑

i=0

‖ui − ũi‖2 ≤ 2S̃2
k(Y ). (2.61)

We approximate CD by the rank k matrix
∑k−1

i=0 siṽiũ
T
i with the following accuracy (in

spectral norm):

∥∥∥∥∥

r−1∑

i=0

siviu
T
i −

k−1∑

i=0

siṽiũ
T
i

∥∥∥∥∥ ≤
k−1∑

i=0

si
∥∥viuTi − ṽiũ

T
i

∥∥+

∥∥∥∥∥

r−1∑

i=k

siviu
T
i

∥∥∥∥∥ , (2.62)
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where the spectral norm of the last term is at most ε, and the individual terms of the first
one are estimated from above in the following way.

si‖viuTi − ṽiũ
T
i ‖ ≤ ‖(viuTi − ṽiu

T
i ) + (ṽiu

T
i − ṽiũ

T
i )‖

≤ ‖(vi − ṽi)u
T
i ‖ + ‖ṽi(ui − ũi)

T ‖

=
√
‖(vi − ṽi)uTi ui(vi − ṽi)T ‖ +

√
‖(ui − ũi)ṽTi ṽi(ui − ũi)T ‖

=
√

(vi − ṽi)T (vi − ṽi) +
√

(ui − ũi)T (ui − ũi)

= ‖vi − ṽi‖ + ‖ui − ũi‖

where we exploited that the spectral norm (i.e., the largest singular value) of an m × n
matrix A is equal to either the squareroot of the largest eigenvalue of the matrix AAT

or equivalently, that of ATA. In the above calculations all of these matrices are of rank
1, hence, the largest eigenvalue of the symmetric, positive semidefinite matrix under the
squareroot is the only non-zero eigenvalue of it, therefore, it is equal to its trace; finally, we
used the commutativity of the trace, and in the last line we have the usual vector norm.

Therefore, the first term in (2.62) can be estimated from above with

k−1∑

i=0

‖viuTi − ṽiũ
T
i ‖ ≤

√
k

√√√√
k−1∑

i=0

‖vi − ṽi‖2 +
√
k

√√√√
k−1∑

i=0

‖ui − ũi‖2

≤
√
k(

√
2S̃2

k(X) +

√
2S̃2

k(Y )) =
√

2k(S̃k(X) + S̃k(Y )),

where we also used the upper estimate of (2.61).
Based on these considerations and relation between the cut-norm and the spectral norm,

the densities to be estimated in the defining formula (2.60) of volume regularity can be

written in terms of step-vectors in the following way. The vectors v̂i := D
−1/2
row ṽi are stepwise

constant on the partition (R1, . . . , Rk) of the rows, whereas the vectors ûi := D
−1/2
col ũi are

stepwise constant on the partition (C1, . . . , Ck) of the columns, i = 0, . . . , k− 1. The matrix

k−1∑

i=0

siv̂iû
T
i

is therefore an n×m block-matrix on k×k blocks corresponding to the above partition of the
rows and columns. Let ĉab denote its entries in the ab block (a, b = 1, . . . , k). Using (2.62),
the rank k approximation of the matrix C is performed with the following accuracy of the
perturbation E in spectral norm:

‖E‖ =

∥∥∥∥∥C − Drow(

k−1∑

i=0

siv̂iû
T
i )Dcol

∥∥∥∥∥ =

∥∥∥∥∥D
1/2
row(CD −

k−1∑

i=0

siṽiũ
T
i )D

1/2
col

∥∥∥∥∥ .

Therefore, the entries of C can be decomposed as

cij = drow,idcol,j ĉab + ηij (i ∈ Ra, j ∈ Cb)

where the cut-norm of the n ×m error matrix E = (ηij) restricted to Ra × Cb (otherwise
it contains entries all zeros) and denoted by Eab, is estimated as follows. Making use of
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Lemma 7,

‖Eab‖� ≤
√
mn‖Eab‖ ≤

√
nm · ‖D1/2

row,a‖ · (
√

2k(S̃k(X) + S̃k(Y )) + ε) · ‖D1/2
col,b‖

≤
√
nm

√
c1

Vol(Ra)

|Ra|
·
√
c2

Vol(Cb)

|Cb|
(
√

2k(S̃k(X) + S̃k(Y )) + ε)

=
√
c1c2 ·

√
n

|Ra|
·
√

m

|Cb|
·
√

Vol(Ra)
√

Vol(Cb)(
√

2k(S̃k(X) + S̃k(Y )) + ε)

≤
√

c1c2
K1K2

√
Vol(Ra)

√
Vol(Cb)(

√
2ks+ ε)

= c
√

Vol(Ra)
√

Vol(Cb)(
√

2k(S̃k(X) + S̃k(Y )) + ε)

where the n × n diagonal matrix Drow,a inherits Drow’s diagonal entries over Ra, whereas
the m ×m diagonal matrix Dcol,b inherits Dcol’s diagonal entries over Cb, otherwise they
are zeros. Further, the constants c1, c2 are due to the fact that there are no dominant rows
and columns, while K1,K2 are from the cluster size balancing conditions. Hence,

‖Eab‖� ≤ c
√

Vol(Ra)
√

Vol(Cb)(
√

2k(S̃k(X) + S̃k(Y )) + ε)

where the constant c does not depend on n and m. Consequently, for a, b = 1, . . . , k and
X ⊂ Ra, Y ⊂ Cb,

|c(X,Y ) − ρ(Ra, Cb)Vol(X)Vol(Y )| =
∣∣∣∣∣∣

∑

i∈X

∑

j∈Y
(drow,idcol,j ĉab + ηij) −

Vol(X)Vol(Y )

Vol(Ra)Vol(Cb)

∑

i∈Ra

∑

j∈Cb

(drow,idcol,j ĉab + ηij)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

i∈X

∑

j∈Y
ηij −

Vol(X)Vol(Y )

Vol(Ra)Vol(Cb)

∑

i∈Ra

∑

j∈Cb

ηij

∣∣∣∣∣∣
≤ 2‖Eab‖�

≤ 2c(
√

2k(S̃k(X) + S̃k(Y )) + ε)
√

Vol(Ra)Vol(Cb)

that gives the required statement for a, b = 1, . . . , k, and finishes the proof. �

So we managed to prove the following. Given the m × n contingency table C, con-
sider the spectral clusters R1, . . . , Rk of its rows and C1, . . . , Ck of its columns, obtained
by applying the weighted k-means algorithm to the (k − 1)-dimensional row- and column

representatives, defined as the row vectors of the matrices (D
−1/2
row v1, . . . ,D

−1/2
row vk−1) and

(D
−1/2
col u1, . . . ,D

−1/2
col uk−1), respectively, where vi,ui is the unit norm singular vector pair

corresponding to si (i = 1, . . . , k − 1). In fact, these partitions minimize the weighted k-
variances S̃2

k(X) and S̃2
k(Y ) of these row- and column-representatives. Then, under some

balancing conditions for drow,i’s and dcol,j ’s (there are no dominant rows and columns) and
for the cluster sizes, we proved that md′

k(C) = O(
√

2k(S̃k(X)+S̃k(Y ))+sk), where md′
k(C)

is a somewhat modified version of the k-way discrepancy; the only difference is that in the
definition of md′

k(C) we substitute
√

Vol(Ra)Vol(Cb) for
√

Vol(X)Vol(Y ) in the denomina-
tor of (2.50). In accordance with the original definition of the discrepancy in the Szemerédi
Regularity Lemma [Szem] for simple graphs, in (2.50), we may take the maximum over sub-
sets X ⊂ Va, Y ⊂ Vb such that Vol(X) ≥ ǫVol(Va) and Vol(Y ) ≥ ǫVol(Vb) with some fixed
ǫ > 0. If we impose similar conditions on the row- and column-subsets, our result also implies
that mdk(C) is of order

√
2k(S̃k(X) + S̃k(Y )) + sk.
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The message of Theorems 24 and 25 is that the k-way discrepancy, when it is ‘small’
enough, suppresses sk. Conversely, sk together with ‘small’ enough S̃k(X) and S̃k(Y )
also suppresses the k-way discrepancy. By using perturbation theory of spectral subspaces,
in [Bol14a] (in the framework of edge-weighted graphs), we also discuss that a ‘large’ gap
between sk−1 and sk suppresses S̃k(X) and S̃k(Y ). Therefore, if we want to find row–column
cluster pairs of small discrepancy, we must select a k such that there is a remarkable gap
between sk−1 and sk; further sk is small enough. Moreover, by using this k and the construc-
tion in the proof of the forward statement of Theorem 25, we are able to find these clusters
with spectral clustering tools. It makes sense, for example, when we want to find clusters
of genes and conditions simultaneously in microarrays so that genes of the same row-cluster
would ‘equally’ influence conditions of the same column-cluster.

We also remark the following. When we perform correspondence analysis on a large
m × n contingency table and consider the rank k approximation of it, the entries of this
matrix will not necessarily be positive at all. Nonetheless, the entries ĉij ’s of the block-
matrix constructed in the proof of Theorem 25 will already be positive provided the weighted
k-variances S̃k(X) and S̃k(Y ) are ‘small’ enough. Let us discuss this issue more precisely.

In accord with the notation used in the proof, denote by ab in the lower index if the
matrix is restricted to the Ra × Cb block (otherwise it has zero entries). Then for the
squared Frobenius norm of the rank k approximation of D−1

rowCD−1
col , restricted to the ab

block, we have that
∥∥∥∥∥D

−1
row,aCabD

−1
col,b − (

k−1∑

i=0

siv̂iû
T
i )ab

∥∥∥∥∥

2

2

=
∑

i∈Ra

∑

j∈Cb

(
cij

drow,idcol,j
− ĉab)

2

=
∑

i∈Ra

∑

j∈Cb

(
cij

drow,idcol,j
− c̄ab)

2 + |Ra||Cb|(c̄ab − ĉab)
2

(2.63)

where we used the Steiner equality with the average c̄ab of the entries of D−1
rowCD−1

col in the
ab block. Now we estimate the above Frobenius norm by a constant multiple of the spectral
norm, where for the spectral norm

∥∥∥∥∥D
−1
row,aCabD

−1
col,b − (

k−1∑

i=0

siv̂iû
T
i )ab

∥∥∥∥∥ =

∥∥∥∥∥D
−1/2
row,a(Ccorr −

k−1∑

i=0

siṽiũ
T
i )abD

−1/2
col,b

∥∥∥∥∥

≤ max
i∈Ra

1√
drow,i

· max
j∈Cb

1√
dcol,j

· [
√

2k(S̃k(X) + S̃k(Y )) + ε]

holds. Therefore,
∥∥∥∥∥D

−1
row,aCabD

−1
col,b − (

k−1∑

i=0

siv̂iû
T
i )ab

∥∥∥∥∥

2

2

≤ min{|Ra|, |Cb|} · max
i∈Ra

1

drow,i
· max
j∈Cb

1

dcol,j
· [
√

2k(S̃k(X) + S̃k(Y )) + ε]2.

Consequently, in view of (2.63),

(c̄ab − ĉab)
2 ≤ 1

max{|Ra|, |Cb|}
· max
i∈Ra

1

drow,i
· max
j∈Cb

1

dcol,j
· [
√

2k(S̃k(X) + S̃k(Y )) + ε]2.

But using the conditions on the block sizes and the row- and column-sums of Theorem 25,
provided

√
2k(S̃k(X) + S̃k(Y )) + ε) = O

(
1

(min{m,n}) 1
2 +τ

)
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holds with some ’small’ τ > 0, the relation c̄ab− ĉab → 0 also holds as n,m→ ∞. Therefore,
both ĉab and ĉabdrow,idcol,j are positive over such blocks that are not constantly zero in the
original table if m and n are large enough.

2.3.3 Multiway discrepancy of undirected graphs

The notion of multiway discrepancy naturally extends to edge-weighted graphs.

Definition 28 The multiway discrepancy of the undirected, edge-weighted graph G = (V,W )
in the proper k-partition (V1, . . . , Vk) of its vertices is

md(G;V1, . . . , Vk) = max
1≤a≤b≤k

X⊂Va, Y⊂Vb

|w(X,Y ) − ρ(Va, Vb)Vol(X)Vol(Y )|√
Vol(X)Vol(Y )

.

The minimum k-way discrepancy of the undirected edge-weighted graph G = (V,W ) is

mdk(G) = min
(V1,...,Vk)

md(G;V1, . . . , Vk).

A result, analogous to that of Theorem 24 can now be proved in terms of the normalized
modularity matrix of G.

Theorem 26 ([Bol16]) Let G = (V,W ) be an edge-weighted, undirected graph, W is irre-
ducible. Then for any integer 1 ≤ k < rank(W ),

|µk| ≤ 9mdk(G)(k + 2 − 9k ln mdk(G)) (2.64)

holds, provided 0 < mdk(G) < 1, where µk is the k-th largest absolute value eigenvalue of
the normalized modularity matrix MD of G.

Proof (of Theorem 26). The proof follows the same considerations as the proof of The-
orem 24 with the difference that here we use symmetric matrices. In particular, R =
(ρ(Va, Vb)) is an n×n symmetric block-matrix of k×k blocks corresponding to the partition
V1, . . . , Vk of the vertices for which α∗ = mdk(G) = md(G;V1, . . . , Vk); consequently, the ma-
trix F = W −DRD is also symmetric. Therefore, in accord with (2.56) and Definition 28:
for every Va, Vb pair and X ⊂ Va, Y ⊂ Vb (1 ≤ a ≤ b ≤ k) we have

|〈1X ,F1Y 〉| ≤ α∗√〈1X ,W1n〉〈1n,W1Y 〉. (2.65)

The left and right singular vectors (v,u ∈ Rn) corresponding to the maximal singular value
of the real symmetric matrix D−1/2FD−1/2 satisfy u = ±v (the sign is the same as the
sign of the eigenvalue of the maximal absolute value). If u = v, then Yℓbq = Xℓbq for every
ℓ, b = 1, . . . , k, and q = 1, 2. If u = −v, then Yℓb1 = Xℓb2 and Yℓb2 = Xℓb1 for every ℓ and
b = 1, . . . , k. Consequently, in the estimates of (2.57), when we use the absolute values of the
coordinates of the vectors x(j) and y(ℓ), constructed in the rectangular case, the inequalities
remain valid. Namely,

|〈x(j),Fy(ℓ))〉| ≤
k∑

a=1

2∑

p=1

k∑

b=1

2∑

q=1

∣∣〈1Xjap ,F1Xℓbq
〉
∣∣ .

Here the summation is for every 1 ≤ a, b ≤ k pair. However, if a ≤ b, then by (2.65) we get

∣∣〈1Xjap ,F1Xℓbq
〉
∣∣ ≤ α∗

√
〈1Xjap ,W1n〉〈1n,W1Xℓbq

〉;
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whereas, if a > b, then by the symmetry of F :

∣∣〈1Xjap ,F1Xℓbq
〉
∣∣ =

∣∣〈1Xℓbq
,F1Xjap〉

∣∣ ≤ α∗
√
〈1Xlbq

,W1n〉〈1n,W1Xjap〉

=
√
〈1Xjap ,W1n〉〈1n,W1Xℓbq

〉.

Therefore, for a 6= b, the same term appears twice, and all the subsequent estimates remain
valid by substituting W for C and D for both Drow and Dcol. This completes the proof. �

Recall that Bilu and Linial [Bil-Lin] proved the following converse of the expander mixing
lemma for simple d-regular graphs on n vertices. Assume that for any disjoint vertex-subsets
S, T : |e(S, T ) − |S||T |d

n | ≤ α
√

|S||T |. Then all but the largest adjacency eigenvalue of G are
bounded (in absolute value) by O(α(1+log d

α )). Note that for a d-regular graph the adjacency
eigenvalues are d times larger than the normalized adjacency ones, and the deviation between
e(S, T ) and the one what is expected in a random d-regular graph, is also proportional to
our (1-way) discrepancy in terms of the volumes (note that Vol(S) is also proportional to
|S|). Though they use disjoint subsets S, T , their upper estimate for the absolute value of the
second largest (in absolute value) eigenvalue with the (1-way) discrepancy α is Cα(1−A logα)
with some absolute constants A,C. Hence, the upper estimate of (2.52) or that of (2.64) in
the k = 1 case are reminiscent of this.

In the other direction, for the k = 1 case, a straightforward generalization of the expander
mixing lemma for irregular graphs is the following.

Proposition 14 ([Bol11a])

disc(G) = md1(G) ≤ ‖MD‖ = s1 = |µ1|,

where ‖MD‖ is the spectral norm of the normalized modularity matrix of G.

Though, with different notation sometimes even a stronger version of this statement is proved
in [Bol11a, But, Chu-G], we give another short proof here.
Proof. Via separation theorems for singular values, s1 = |µ1| is the maximum of the bilinear
form vTMDu over the unit sphere. Let X,Y ⊂ V be arbitrary, and denote by 1X ,1Y ∈ Rn

the indicator vectors of them. Then

‖MD‖ = max
‖u‖=‖v‖=1

|vTMDu| ≥
∣∣∣∣∣

(
D1/21X

‖D1/21X‖

)T
MD

(
D1/21Y

‖D1/21Y ‖

)∣∣∣∣∣

=
|1TXM1Y |

‖D1/21X‖ · ‖D1/21Y ‖
=

|w(X,Y ) − Vol(X)Vol(Y )|√
Vol(X)

√
Vol(Y )

.

Taking the maxima on the right-hand side over subsets X,Y ⊂ V , the desired statement
follows. Note that the estimate is also valid if we take maxima over disjoint X,Y pairs only.
�

For an arbitrary integer k, in the range 1 ≤ k < rank(W ), the following analogue of
Theorem 25 for undirected, edge-weighted graphs was proved in [Bol11b, Bol14a].

Theorem 27 ([Bol14a]) Let G = (V,W ) be an edge-weighted graph on n vertices, with
generalized degrees d1, . . . , dn and degree-matrix D. Assume that G is connected, Vol(V ) = 1,
and there are no dominant vertices: di = Θ(1/n), i = 1, . . . , n as n→ ∞. Let the eigenvalues
of the normalized modularity matrix MD of G, enumerated in decreasing absolute values, be

|µ1| ≥ · · · ≥ |µk−1| > ε ≥ |µk| ≥ · · · ≥ |µn| = 0.
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The partition (V1, . . . , Vk) of V is defined so that it minimizes the weighted k-variance S̃2
k(X

∗)
of the optimal vertex representatives obtained as row vectors of the n × (k − 1) matrix X∗

of column vectors D−1/2ui, where ui is the unit-norm eigenvector corresponding to µi (i =
1, . . . , k − 1). Assume that there is a constant 0 < K ≤ 1

k such that |Vi| ≥ Kn, i = 1, . . . , k.

With the notation σk =
√
S̃2
k(X

∗), the (Vi, Vj) pairs are O(
√

2kσk+ε)-volume regular (i 6= j)

and for the clusters Vi (i = 1, . . . , k) the following holds: for all X,Y ⊂ Vi,

|w(X,Y ) − ρ(Vi)Vol(X)Vol(Y )| = O(
√

2kσk + ε)Vol(Vi),

where ρ(Vi) = w(Vi,Vi)
Vol2(Vi)

is the relative intra-cluster density of Vi.

In fact, inspired by Alon et al. [Aletal], in [Bol14a] we used a bit different notation and
concept of α-volume regular pairs, namely, for every X ⊆ Va, Y ⊆ Vb we required

|w(X,Y ) − ρ(Va, Vb)Vol(X)Vol(Y )| ≤ α
√

Vol(Va)Vol(Vb).

In the above formula, the right had side contains the squareroots of the volumes of the
clusters, unlike (2.51), which contains the squareroots of the volumes of X and Y . However,
with the same argument as in the rectangular case: in the spirit of the Szemerédi Regularity
Lemma [Szem], if we require (2.51) to hold only for X,Y ’s satisfying Vol(X) ≥ ǫVol(Vi),
Vol(Y ) ≥ ǫVol(Vj) with some fixed ǫ, then the so modified k-way discrepancy is O(

√
2kσk +

|µk|), and so does mdk(G).
In [Bol14a] we also discuss that, in view of subspace perturbation theorems, the larger the

gap between |µk−1| and |µk|, the smaller σk is. So the message is, that here the eigenvectors
corresponding to the largest absolute value eigenvalues have to be used, unlike usual spectral
clustering methods which automatically use the bottom eigenvalues of the Laplacian or
normalized Laplacian matrix (latter one is just I−WD). The clusters or cluster-pairs of small
discrepancy behave like expanders or bipartite expanders. In another context, they resemble
the generalized random or quasirandom graphs of Lovász, Sós, Simonovits [Lov-Sos, Sim-Sos],
see Section 3 for further details.

Note that in the special two-cluster case, due to Theorem 5, the 2-variance of the optimal
one-dimensional representatives can be directly estimated from above by the gap between
the two largest absolute value eigenvalues of MD, and hence, the statement of Theorem 27
simplifies as follows. The optimal pair (V1, V2) based on minimizing the weighted 2-variance

of the coordinates of u1 is O(
√

1−δ
1−ε )-volume regular, where δ = |µ1| and ε = |µ2|, provided

W is non-degenerate (the underlying graph is connected, but not bipartite). With other
methods, the same estimate is obtained in [Bol11a], where we treat the case when the two
largest absolute value eigenvalues of the normalized modularity matrix are positive, though
it can be adopted to the other situations too; see, for example, the dual Cheeger inequality
of Luca Trevisan [Trev].

For a general k, we can make the following considerations, by using the forthcoming
well-known fact for the perturbation of spectral subspaces, see also [Bol13].

Lemma 8 (Theorem VII.3.2 of [Bhat]) Let A and B be symmetric matrices; S1 and S2

are subsets of R or C such that dist(S1, S2) = δ > 0. Let PA(S1) and PB(S2) be orthogonal
projections onto the subspace spanned by the eigenvectors of the matrix in the lower index,
corresponding to the eigenvalues within the subset in the argument. Then with any unitary
invariant norm:

‖PA(S1)PB(S2)‖un ≤ c1
δ
‖PA(S1)(A − B)PB(S2)‖un ≤ c1

δ
‖A − B‖un

where c1 is a constant.
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Note that, in another context, Szőkefalvy proved that c1 = π/2. When S1 and S2 are
separated by an annulus, then the constant improves to c1 = 1; further, with the Frobenius
norm, c1 = 1 will always do. If PA(S1) and P⊥

B (S2) project onto subspaces of the same
dimension, then either the spectral or the Frobenius norm of PA(S1)PB(S2) can be expressed
in terms of the sines of the so-called canonical (principal) angles between these subspaces
and ‖PA(S1)PB(S2)‖2 is considered as the distance between them. This is why the special
case of Lemma 8, when Frobenius norm is used, is called Davis–Kahan sin(θ) theorem.

Now assume that the normalized modularity spectrum (with decreasing absolute values)
of Gn = (V,W ) satisfies

|µ1| ≥ · · · ≥ |µk−1| ≥ δ > ε ≥ |µk| ≥ · · · ≥ |µn| = 0.

Our purpose is to estimate the k-variance of the optimal representatives with the gap θ :=
δ−ε. We will use the notation of the Proof of Theorem 27 (actually, it is proved in B [Bol13],
but the proof is analogous to that of Theorem 25) and apply Lemma 8 for the perturbation
of spectral subspaces of the symmetric matrices

A =
n−1∑

i=0

µiuiu
T
i and B =

k−1∑

i=0

µiviv
T
i

in the following situation. The subsets S1 = {µk, . . . , µn−1} and S2 = {µ0, . . . , µk−1} of
the eigenvalues of D−1/2WD−1/2 are separated by an annulus, where dist(S1, S2) = θ > 0.
Denote by PA(S1) and PB(S2) the projections onto the spectral subspaces of A and B

spanned by the eigenvectors corresponding to the eigenvalues in S1 and S2, respectively:

PA(S1) =

n−1∑

j=k

uju
T
j , PB(S2) =

k−1∑

i=0

viv
T
i .

Then Lemma 8 implies that

‖PA(S1)PB(S2)‖2 ≤ 1

θ
‖PA(S1)(A − B)PB(S2)‖2, (2.66)

where ‖.‖2 denotes the Frobenius norm.
Since P⊥

A (S1) and PB(S2) project onto subspaces of the same dimension, the non-
zero singular values of PA(S1)PB(S2) are the sines of the the canonical (principal) angles
αi’s between the subspaces Span{u0,u1, . . . ,uk−1} and Span{v0,v1, . . . ,vk−1}. Further,
‖PA(S1)PB(S2)‖2 is the distance between the two above subspaces, where sinα0 = 0.

On the left hand side, ‖PA(S1)PB(S2)‖2 =

√∑k−1
i=0 sin2 αi, and in view of ‖ui − vi‖ =

2 sin αi

2 and the quadratic analogue of (2.61), this is between
√

3
2 σk and σk. On the right

hand side,
PA(S1)APB(S2) − PA(S1)BPB(S2)

=(PA(S1)A)PB(S2) − PA(S1)(PB(S2)B)

=
k−1∑

i=0

n−1∑

j=k

(µj − µi)(u
T
j vi)ujv

T
i

where the Frobenius norm of the rank one matrices ujv
T
i is 1, and the inner product uTj vi is

the ‘smaller’, the vi is the ’closer’ to ui. Therefore, by Inequality (2.66), σk is the ‘smaller’,
θ is the ‘larger’ and the |µj − µi| differences for i = 0, . . . , k− 1; j = k, . . . , n− 1 are ‘closer’
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to δ. If |µk| = ε is ‘small’, then |µ1|, . . . , |µk−1| should be ‘close’ to each other (µ0 = 1 does
not play an important role because of u0 = v0).

In some special cases, σk = 0, and then, mdk(G) ≤ B|µk| = Bsk follows from the above
results. In particular, σk = 0 whenever the vectors D−1/2u1, . . . ,D

−1/2uk−1 are step-vectors
over the same proper k-partition of the vertices. Some examples:

• If k = 1, then the unit-norm eigenvector corresponding to µ0 = 1 is u0 =
√

d, and
D−1/2u0 = 1 is the all 1’s vector. Consequently, the variance of its coordinates is
σ1 = 0. But in this case, by Proposition 14, we already know that disc(G) can be
estimated from above merely by |µ1| = s1.

• If k = 2 and G is bipartite, then µ1 = −1, s1 = 1, and σ2
2 , i.e., the 2-variance of the

coordinates of the transformed eigenvector corresponding to µ1 can be small if |µ2| is
separated from |µ1| = 1 (like the bipartite expanders of Alon [Alon]).

• Let k = 2 and G be bipartite, biregular on the independent vertex-subsets V1, V2.
That is, all the edge-weights within V1 or V2 are zeros, and the 0-1 weights between
vertices of V1 and V2 are such that di = k1 if i ∈ V1 and di = k2 if i ∈ V2 with the
understanding that |V1|k1 = |V2|k2 (both are the total number of edges in G). It is
easy to see that the unit-norm eigenvector corresponding to the eigenvalue µ1 = −1 is
u1 = D1/21V1 − D1/21V2 , and D−1/2u1 = 1V1 − 1V2 . Therefore, the representatives
of vertices of V1 are all 1’s, and those of V2 are −1’s, so σ2

2 = 0. Consequently,
md2(G) ≤ B|µ2|, with some absolute constant B. Up to the constant, this was another
proof of Lemma 3.2 of Evra et al. [Ev-Go-Lu]. They call their result expander mixing
lemma for bipartite graphs, and use cardinalities instead of volumes, but in this special
case, these cardinalities are proportional to the volumes both within V1 and V2.

• Let Gn be a generalized random graph (see Definition 21) over the symmetric k × k
probability matrix P = (pab), i.e., there is a proper k-partition, V1, . . . , Vk, of its
vertices such that |Va| = na (a = 1, . . . , k),

∑k
a=1 na = n, and for any 1 ≤ a ≤ b ≤ k,

vertices i ∈ Va and j ∈ Vb are connected independently, with the same probability
pab. This is the k-cluster generalization of the classical Erdős–Rényi random graph,
see also [Lov-Sos] for their generalized quasirandom counterparts. In [Bol08a] (see also
Chapter 3) we characterize the adjacency and normalized Laplacian spectra of such
graphs, that extends to their normalized modularity spectra as follows: both |µk| = sk
and σ2

k tend to zero almost surely when n → ∞, under some balancing conditions for
the cluster sizes (na

n ≥ c with some constant c, for a = 1, . . . , k). By Theorem 27,
it also holds for the k-way discrepancy in the clustering V1, . . . , Vk. However, this is
not surprising, since this almost sure limit for the k-way discrepancy is easily obtained
with large deviation principles too, see [Bol05] and the considerations made at the end
of Section 2.1.2.

Summarizing, in the k = 1 case: when the second singular value |µ1| = s1 is small
(much smaller than s0 = 1), then the overall discrepancy is small. However, for k > 1,
a small sk is necessary but not sufficient for a small k-way discrepancy. In addition, the
weighted k-variance σ2

k should be small too. With subspace perturbation theorems, it is
small if sk is much smaller than sk−1. Hence, a gap in the normalized modularity spectrum
may be an indication for the number of clusters. The two directions together may give a
hint about the optimal choice of k if a practitioner wants to find a k-clustering of the rows
and columns (or just of the vertices of a graph) with small pairwise discrepancies. If there
does not exist a fairly ‘small’ k with this property, then in the worst case scenario, the
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Szemerédi Regularity Lemma [Szem] with an enormously large number of clusters (which
number only depends on the maximum pairwise discrepancy to be attained, and does not
depend on n) comes into existence. Weak versions of this lemma (where V1, . . . , Vk are not
necessarily equitable) are also available, see e.g., [Borgsetal1, Gh-Trev, Lov-Szeg07]. Even-
tually, note that B. Szegedy [Szeg] and T. Tao (in his blog https://terrytao.wordpress.com/
2012/12/03/the-spectral-proof-of-the-szemeredi-regularity-lemma/) also use the normalized
adjacency eigenvalues in their decreasing absolute values to give a matrix proof of the Sze-
merédi Regularity Lemma.

2.3.4 Multiway discrepancy of directed graphs

A directed edge-weighted graph G = (V,W ) is given by its quadratic, but usually not
symmetric edge-weight matrix W = (wij) of zero diagonal, where wij is the nonnegative
weight of the i → j edge (i 6= j). The row-sums dout,i =

∑n
j=1 wij and column-sums

din,j =
∑n

i=1 wij of W are the out- and in-degrees, while Dout = diag(dout,1, . . . , dout,n) and
Din = diag(din,1, . . . , din,n) are the diagonal out- and in-degree matrices, respectively. Now
Definition 25 can be formulated as follows.

Definition 29 The multiway discrepancy of the directed, weighted graph G = (V,W ) in the
in-clustering (Vin,1, . . . , Vin,k) and out-clustering (Vout,1, . . . , Vout,k) of its vertices is

md(G;Vin,1, . . . , Vin,k, Vout,1, . . . , Vout,k)

= max
1≤a,b≤k

X⊂Vout,a, Y⊂Vin,b

|w(X,Y ) − ρ(Vout,a, Vin,b)Volout(X)Volin(Y )|√
Volout(X)Volin(Y )

,

where w(X,Y ) is the sum of the weights of the X → Y edges, whereas Volout(X) =∑
i∈X dout,i and Volin(Y ) =

∑
j∈Y din,j are the out- and in-volumes, respectively. The

minimum k-way discrepancy of the directed edge-weighted graph G = (V,W ) is

mdk(G) = min
(Vin,1,...,Vin,k)

(Vout,1,...,Vout,k)

md(G;Vin,1, . . . , Vin,k, Vout,1, . . . , Vout,k).

Butler [But1] and Chung and Kenter [Chu-K] treat the k = 1 case, and for a general k,
Theorem 24 implies the following.

Theorem 28 ([Bol16]) Let G = (V,W ) be directed edge-weighted graph, W is non-degenerate.
Then for any integer 1 ≤ k ≤ rank(W ),

sk ≤ 9mdk(G)(k + 2 − 9k ln mdk(G))

holds, provided 0 < mdk(G) < 1, where sk is the k-th largest nontrivial singular value of the

normalized edge-weight matrix WD = D
−1/2
out WD

−1/2
in of G.

Together with BSM students, in 2012 we applied this spectral method to find migration
patterns in the set of 75 countries, and found 3 underlying immigration and emigration trait
clusters. The SVD-based algorithm is the same as the one introduced in the construction of
the proof of Theorem 23 for rectangular matrices of nonnegative entries.
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Chapter 3

Theoretical applications and

further perspectives

We applied the theory of convergent graph sequences (as described in Borgs and coau-
thors [Borgsetal1, Borgsetal2]) for vertex- and edge-weighted graphs and contingency tables.
Roughly speaking, graphs and contingency tables of a convergent sequence become more
and more similar to each other in small details, which fact is made exact in terms of the
convergence of the homomorphism densities when ‘small’ simple graphs or binary tables are
mapped into the ‘large’ graphs or tables constituting the sequence. The convergence can as
well be formulated with the help of the cut-distance, and limit objects are defined. This cut-
distance also makes it possible to classify graphs and contingency tables, or to assign them
to given prototypes, providing classical problems of supervised or unsupervised learning, see
e.g., Hastie et al. [Ha-Ti-Fri].

Testable graph and contingency table parameters are, in fact, nonparametric statistics of
the sample (given in the form of graphs and contingency tables, briefly, networks) that can
be consistently estimated based on a smaller sample, selected with an appropriate random-
ization from the underlying huge network. Indeed, real-world graphs or rectangular arrays of
nonnegative entries are sometimes considered as samples from a large (partly unobservable
and steadily changing) network, and we want to conclude the parameters of the network
from the same parameters of its smaller parts. The theory guarantees that this can be
done if the investigated parameter is testable. In [Bol10] we extended the notion of testable
parameters to contingency tables. In [Bol-Ko-Kr12] we proved that certain balanced mini-
mum multiway cut densities are testable and that the noisy graph sequences of Chapter 2
converge in the sense of [Borgsetal1] too. Since these results are routine adaptations of the
equivalent convergence facts of [Borgsetal2] for weighted graphs, here we only present the
results of [Bol14a] about the testability of the normalized modularity spectra and spectral
subspaces.

Then we will consider generalized random and quasirandom graphs from the point of
view of discrepancy and spectra, and – in the multicluster scenario – define so-called gener-
alized quasirandom properties that large graphs may posses at the same time, irrespective of
stochastic models.

Eventually, we discuss how the EM (Expectation–Maximization) algorithm can be used to
estimate the parameters of the homogeneous and heterogeneous block models. These mixture
models are semiparametric in the sense that we are looking for a convenient clustering of the
vertices (starting with spectral clustering) and, at the same time, we want to estimate the
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parameters of Erdős–Rényi or logit type models corresponding to the subgraphs or bipartite
subgraphs induced by the clustering.

3.1 Convergent weighted graph sequences

3.1.1 Testability of the normalized modularity spectra and spectral

subspaces

Borgs and his coauthors [Borgsetal1] defined the testability of simple graph parameters
and proved equivalent notions of this testability. They also anticipated that their results
remain valid if they consider weighted graph sequences (Gn) with edge-weights βij ’s in
the [0,1] interval and no dominant vertex-weights αi(Gn) > 0 (i = 1, . . . , n) such that
maxi

αi(Gn)
αGn

→ 0 as n → ∞, where αGn =
∑n
i=1 αi(Gn). To this end, in [Bol-Ko-Kr12],

we slightly modified the definition of a testable graph parameter for weighted graphs in the
following way.

Definition 30 A weighted graph parameter f is testable if for every ε > 0 there is a positive

integer m < n such that if Gn satisfies maxi
αi(Gn)
αGn

≤ 1
m , then

P(|f(Gn) − f(η(m,Gn))| > ε) ≤ ε,

where η(m,Gn) is a simple graph on m vertices selected randomly from Gn in the following
manner: m vertices of Gn are chosen with replacement, with respective probabilities propor-
tional to the vertex-weights; given the m-element vertex-set, the edges (in this small graph)
come into existence conditionally independently, with probabilities of the corresponding edge-
weights (in the large graph).

By the above definition, a testable weighted graph parameter can consistently be esti-
mated based on a fairly large sample. Analogously to the results of [Borgsetal1] for simple
graphs, in [Bol-Ko-Kr12] we established equivalent statements of this testability, from among
which here we use the following.

Proposition 15 ([Bol-Ko-Kr12]) Let f be a testable weighted graph parameter. Then for
every convergent weighted graph sequence (Gn), with no dominant vertex-weights, f(Gn) is
also convergent as n→ ∞.

The notion of the convergence of a weighted graph sequence is defined in [Borgsetal1],
where the authors also describe the limit object as a symmetric, measurable function W :
[0, 1] × [0, 1] → [0, 1], called graphon. The so-called cut distance between the graphons W
and U is δ�(W,U) = infν ‖W − Uν‖�, where the cut norm of the graphon W is defined by

‖W‖� = sup
S,T⊂[0,1]

|
∫

S×T
W (x, y) dx dy|,

and the above infimum is taken over all measure preserving bijections ν : [0, 1] → [0, 1], while
Uν denotes the transformed U after performing the same measure preserving bijection ν on
both sides of the unit square. Graphons are considered modulo measure preserving maps,
and under graphon the whole equivalence class is understood. In this way, to a convergent
weighted graph sequence (Gn), there is a unique limit graphon W such that δ�(Gn,W ) → 0
as n → ∞, where δ�(Gn,W ) is defined as δ�(WGn ,W ) with the step-function graphon
WGn assigned to Gn in the following way. The sides of the unit square are divided into
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intervals I1, . . . , In of lengths α1(Gn)/αGn , . . . , αn(Gn)/αGn , and over the rectangle Ii × Ij
the stepfunction takes on the value βij(Gn).

In [Bol-Ko-Kr12], we proved the testability of some normalized and unnormalized bal-
anced multiway cut densities such that we imposed balancing conditions on the cluster
volumes. Under similar conditions, for fixed number of clusters k, the unnormalized and nor-
malized multiway cuts and modularities are also testable, provided our edge-weighted graph
has no dominant vertices. The proofs rely on statistical physics notions of [Borgsetal2], uti-
lizing the fact that the graph convergence implies the convergence of the ground state energy
(minimum of the energy function over the set of k-partitions of vertices). In [Re-Bo], the au-
thors showed that the Newman–Girvan modularity is an energy function (Hamiltonian), and
hence, testability of the maximum or minimum normalized modularities, under appropriate
balancing conditions, can be shown analogously. Here we rather discuss the testability of
spectra and k-variances, because, when using spectral clustering methods, these provide us
with polynomial time algorithms, though only approximate solutions are obtained with this
spectral relaxation technique.

In Theorem 6.6 of [Borgsetal2], the authors prove that the normalized spectrum of a
convergent graph sequence converges in the following sense. Let W be a graphon and (Gn)
be a sequence of weighted graphs with uniformly bounded edge-weights, tending to W .
For simplicity, we assume that |V (Gn)| = n. Let |λn,1| ≥ |λn,2| ≥ · · · ≥ |λn,n| be the
adjacency eigenvalues ofGn indexed by their decreasing absolute values, and let µn,i = λn,i/n
(i = 1, . . . , n) be the normalized eigenvalues. Further, let TW be the L2[0, 1] → L2[0, 1]
integral operator corresponding to W :

TW f(x) =

∫ 1

0

W (x, y)f(y) dy.

It is well-known that this operator is self-adjoint and compact, and hence, it has a discrete
real spectrum, whose only possible point of accumulation is the 0. Let µi(W ) denote the
i-th largest absolute value eigenvalue of TW . Then for every i ≥ 1, µn,i → µi(W ) as
n → ∞. In fact, the authors prove a bit more (see Theorem 6.7 of [Borgsetal2]): if a
sequence Wn of uniformly bounded graphons converges to a graphon W , then for every
i ≥ 1, µi(Wn) → µi(W ) as n → ∞. Note that the spectrum of WG is the normalized
spectrum of G, together with countably infinitely many 0’s. Therefore, the convergence of
the spectrum of (Gn) is the consequence of that of (WGn).

We will prove that in the absence of dominant vertices, the normalized modularity spec-
trum is testable. To this end, both the modularity matrix and the graphon are related to
kernels of special integral operators, described in Section 1.3, and briefly revisited as follows.
Let (ξ, ξ′) be a pair of identically distributed real-valued random variables defined over the
product space X × X having a symmetric joint distribution W with the same marginals P.
Assume that the dependence between ξ and ξ′ is regular, i.e., their joint distribution W

is absolutely continuous with respect to the product measure P × P, and let w denote its
Radon–Nikodym derivative, see Rényi [Reny59b]. Let H = L2(ξ) and H ′ = L2(ξ′) be the
Hilbert spaces of random variables which are functions of ξ and ξ′ and have zero expecta-
tion and finite variance with respect to P. Recall that H and H ′ are isomorphic Hilbert
spaces with the covariance as inner product; further, they are embedded as subspaces into
the L2-space defined similarly over the product space. (Note that here H and H ′ are also
isomorphic in the sense that for any ψ ∈ H there exists a ψ′ ∈ H ′ and vice versa, such that
ψ and ψ′ are identically distributed.)

Consider the linear operator taking conditional expectation between H ′ and H with
respect to the joint distribution. It is an integral operator and will be denoted by PW : H ′ →
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H as it is a projection restricted to H ′ and projects onto H . To ψ′ ∈ H ′, the operator PW

assigns ψ ∈ H such that ψ = EW(ψ′ | ξ), i.e.,

ψ(x) =

∫

Y
w(x, y)ψ′(y) P(dy), x ∈ X ,

so PW is an integral operator with kernel w. If
∫

X

∫

X
w2(x, y)P(dx)P(dy) <∞,

then PW is a Hilbert–Schmidt operator, therefore compact and has spectral decomposition

PW =

∞∑

i=1

λi〈., ψ′
i〉H′ψi,

where for the eigenvalues |λi| ≤ 1 holds. The eigenvalue–eigenfunction equation looks like

PWψ
′
i = λiψi (i = 1, 2, . . . ),

where ψi and ψ′
i are identically distributed, whereas their joint distribution is W. In Sec-

tion 1.3 we saw that PW is self-adjoint and it takes the constantly 1 random variable of
H ′ into the constantly 1 random variable of H ; however, the ψ0 = 1, ψ′

0 = 1 pair is not
considered as a function pair with eigenvalue λ0 = 1, since they have no zero expectation.

In the next theorem, Wn denotes the edge-weight matrix of an edge-weighted graph, and
not a Wigner-noise.

Theorem 29 ([Bol14a]) Let Gn = (Vn,Wn) be the general entry of a convergent sequence
of connected edge-weighted graphs whose edge-weights are in [0,1] and the vertex-weights are
the generalized degrees. Assume that there are no dominant vertices. Let W denote the limit
graphon of the sequence (Gn), and let

|µn,1| ≥ |µn,2| ≥ · · · ≥ |µn,n| = 0

be the normalized modularity spectrum of Gn (the eigenvalues are indexed by their decreasing
absolute values). Further, let µi(PW) be the i-th largest absolute value eigenvalue of the
integral operator PW : L2(ξ′) → L2(ξ) taking conditional expectation with respect to the joint
measure W embodied by the normalized limit graphon W , and ξ, ξ′ are identically distributed
random variables with the marginal distribution of their symmetric joint distribution W.
Then for every i ≥ 1,

µn,i → µi(PW) as n→ ∞.

Proof. In case of a finite X (vertex set) we have an edge-weighted graph, and we will show
that the spectrum of the operator taking conditional expectation with respect to the joint
distribution, determined by the edge-weights, corresponds to the spectrum of its normalized
modularity matrix.

Indeed, let X = V , |V | = n, and Gn = (V,W ) be an edge-weighted graph on the
n × n weight matrix of the edges W with entries Wij ’s; now, they do not necessarily sum
to 1. (For the time being, n is kept fixed, so – for the sake of simplicity – we do not
denote the dependence of W on n). Let the vertices be also weighted with special weights
αi(Gn) :=

∑n
j=1Wij , i = 1, . . . , n. Then the step-function graphon WGn is such that

WGn(x, y) = Wij whenever x ∈ Ii and y ∈ Ij , where the (not necessarily contiguous) intervals
I1, . . . , In form a partition of [0,1] such that the length of Ii is αi(Gn)/αGn (i = 1, . . . , n).
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Let us transform W into a symmetric joint distribution Wn over V × V . The entries
wij = Wij/αGn (i, j = 1, . . . , n) embody this discrete joint distribution of random variables
ξ and ξ′ which are identically distributed with marginal distribution d1, . . . , dn, where di =
αi(Gn)/αGn (i = 1, . . . , n). With the previous notation, H = L2(ξ), H ′ = L2(ξ′), and the
operator PWn : H ′ → H taking conditional expectation is an integral operator with now
discrete kernel Kij =

wij

didj
, see also Section 1.3. The fact that ψ, ψ′ is an eigenfunction pair

of PWn with eigenvalue λ means that

1

di

n∑

j=1

wijψ
′(j) =

n∑

j=1

wij
didj

ψ′(j)dj = λψ(i), (3.1)

where ψ(j) = ψ′(j) denotes the value of ψ or ψ′ taken on with probability dj (recall that
ψ and ψ′ are identically distributed with joint distribution W). The above equation is
equivalent to

n∑

j=1

wij√
di
√
dj

√
djψ(j) = λ

√
diψ(i),

therefore the vector of coordinates
√
diψ(i) (i = 1, . . . , n) is a unit-norm eigenvector of

the normalized modularity matrix with eigenvalue λ (note that the normalized modularity
spectrum does not depend on the scale of the edge-weights, it is the same whether we use
Wij ’s or wij ’s as edge-weights). Consequently, the eigenvalues of the conditional expectation
operator are the same as the eigenvalues of the normalized modularity matrix, and the
possible values taken on by the eigenfunctions of the conditional expectation operator are
the same as the coordinates of the transformed eigenvectors of the normalized modularity
matrix forming the column vectors of the matrix X∗ of the optimal (k − 1)-dimensional
representatives, see Sections 1.1.3 and 1.1.5.

Let f be a stepwise constant function on [0,1], taking on value ψ(i) on Ii. Then Var(ψ) = 1

is equivalent to
∫ 1

0
f2(x) dx = 1. Let KGn be the stepwise constant graphon defined as

KGn(x, y) = Kij for x ∈ Ii and y ∈ Ij . With this, the eigenvalue–eigenvector equation (3.1)
looks like

λf(x) =

∫ 1

0

KGn(x, y)f(y) dy.

The spectrum of KGn is the normalized modularity spectrum of Gn together with count-
ably infinitely many 0’s (it is of finite rank, and therefore, trivially compact), and because
of the convergence of the weighted graph sequence Gn, in lack of dominant vertices, the
sequence of graphons KGn also converges. Indeed, the WGn → W convergence in the cut
metric means the weak convergence of the induced discrete measures Wn’s to the contin-
uous W. Since KGn and K are so-called copula transformations of these distributions, in
lack of dominant vertices (this causes the convergence of the marginals) the convergence in
distribution also holds, which in turn implies the KGn → K convergence in the cut metric.

The limit graphon K of (KGn) is the kernel of the integral operator taking conditional
expectation with respect to the joint distribution W. It is easy to see that this operator
is also a Hilbert–Schmidt operator, and therefore, compact. With these considerations, the
remainder of the proof is analogous to the proof of Theorem 6.7 of [Borgsetal2], where the
authors prove that if the sequence (WGn) of graphons converges to the limit graphonW , then
both ends of the spectra of the integral operators, induced by WGn ’s as kernels, converge to
the ends of the spectrum of the integral operator induced by W as kernel. We apply this
argument for the spectra of the integral operators induced by the kernels KGn ’s and K. This
finishes the proof. �
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Note that in Lovász–Szegedy [Lov-Szeg11], kernel operators are also discussed, but not
with this normalization.

By Proposition 15, provided there are no dominant vertices, Theorem 29 implies that for
any fixed positive integer k, the (k− 1)-tuple of the largest absolute value eigenvalues of the
normalized modularity matrix is testable.

Theorem 30 ([Bol14a]) Assume that there are constants 0 < ε < δ ≤ 1 such that the
normalized modularity spectrum (with decreasing absolute values) of any Gn satisfies

|µn,1| ≥ · · · ≥ |µn,k−1| ≥ δ > ε ≥ |µn,k| ≥ · · · ≥ |µn,n| = 0.

With the notions of Theorem 29, and assuming that there are no dominant vertices of Gn’s,

the subspace spanned by the transformed eigenvectors D
−1/2
n un,1, . . . ,D

−1/2
n un,k−1 belonging

to the k−1 largest absolute value eigenvalues of the normalized modularity matrix of Gn also
converges to the corresponding (k−1)-dimensional subspace of PW. More precisely, if Pn,k−1

denotes the projection onto the subspace spanned by the transformed eigenvectors belonging to
k−1 largest absolute value eigenvalues of the normalized modularity matrix of Gn, and Pk−1

denotes the projection onto the analogous eigen-subspace of PW, then ‖Pn,k−1 − Pk−1‖ → 0
as n→ ∞ (in spectral norm).

Proof. If we apply the convergence fact µn,i → µi(PW) for indices i = k − 1 and k, we get
that there will be a gap of order δ − ε− o(1) between |µk−1(PW)| and |µk(PW)| too.

Let PW,n denote the n-rank approximation of PW (keeping its n largest absolute value
eigenvalues, together with the corresponding eigenfunctions) in spectral norm. The projec-
tion Pk−1 (k < n) operates on the eigen-subspace spanned by the eigenfunctions belonging
to the k − 1 largest absolute value eigenvalues of PW,n in the same way as on the corre-
sponding (k − 1)-dimensional subspace determined by PW. With these considerations, we
apply the perturbation theory of eigen-subspaces with the following unitary invariant norm:
the trace- or Schatten-norm of the Hilbert–Schmidt operator A is ‖A‖tr = (

∑∞
i=1 λ

4
i (A))1/4.

Our argument with the finite (k− 1)-rank projections is the following. Denoting by PWn the
integral operator belonging to the normalized modularity matrix of Gn (with kernel KGn

introduced in the proof of Theorem 29),

‖Pn,k−1 − Pk−1‖ = ‖P⊥
n,k−1Pk−1‖ ≤ ‖P⊥

n,k−1Pk−1‖tr

≤ c

δ − ε− o(1)
‖PWn − PW,n‖tr

with constant c that is at most π/2 (see Lemma 8). But

‖PWn − PW,n‖tr ≤ ‖PWn − PW‖tr + ‖PW − PW,n‖tr

where the last term tends to 0 as n → ∞, since the tail of the spectrum (taking the fourth
power of the eigenvalues) of a Hilbert–Schmidt operator converges. For the convergence of the
first term we use Lemma 7.1 of [Borgsetal1], which states that the trace-norm of an integral
operator can be estimated from above by four times the cut norm of the corresponding
kernel. But the convergence in the cut distance of the corresponding kernels to zero follows
from the considerations made in the proof of Theorem 29. This finishes the proof. �

As the weighted k-variance depends continuously on the above subspaces (see the the
proof of Theorem 27), Theorem 30 implies the testability of the weighted k-variance as well.

The above results suggest that in the absence of dominant vertices, even the normalized
modularity matrix of a smaller part of the underlying weighted graph, selected at random
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with an appropriate procedure, is able to reveal its cluster structure. Hence, the gain re-
garding the computational time of this spectral clustering algorithm is twofold: we only use
a smaller part of the graph and the spectral decomposition of its normalized modularity
matrix runs in polynomial time in the reduced number of the vertices. Under the vertex-
and cluster-balance conditions, this method can give quite good approximations for the mul-
tiway cuts and helps us to find the number of clusters and identify the cluster structure. In
addition, taking into account both the positive and negative, large absolute value eigenvalues
together with eigenvectors, regular cuts can also be detected, as the investigated spectral
characteristics give good estimates for the volume regularity’s constant of the cluster pairs
by Theorem 27. Such regular cuts are looked for in social or biological networks, e.g., if we
want to find equally functioning synopses of the brain.

3.1.2 Noisy graph sequences

Now, we use the above theory for perturbations, showing that special noisy weighted graph
sequences of Chapter 2 converge in the sense of the homomorphism densities too. We consider
edge- and vertex-weighted graphs, where the edge-weights are nonnegative, and normalized
so that they are in the [0,1] interval. Recall that if every edge-weight is positive, then our
graph is called soft-core. The vertex-weights are always positive. Let G denote the set of all
such edge- and vertex-weighted graphs. If the vertex-weights of G ∈ G on n vertices are the
real numbers α1, . . . , αn > 0, then the volume of G is defined by αG =

∑n
i=1 αi, while that

of the vertex-subset S by αS =
∑

i∈S αi. Note that this notion of volume coincides with
that of Chapter 1 only if the vertex-weights are the generalized degrees.

From now on, the vertex-weights are equal (say, equal to 1), and a weighted graph G on n
vertices is determined by its n×n symmetric weighted adjacency matrix A. Let GA denote
the weighted graph with unit vertex-weights and edge-weights that are entries of A. We will
use the notion of a Wigner-noise (Definition 16) and blown-up matrix (Definition 17).

Let us fix the k × k symmetric probability matrix P of entries 0 < pij < 1, and blow it
up to an n×n blown-up matrix Bn of blow-up sizes n1, . . . , nk (note that GBn is a soft-core
graph). Consider the noisy matrix An = Bn + Wn as n1, . . . , nk → ∞ at the same rate,
where Wn is an n × n Wigner-noise. While perturbing Bn by Wn, assume that for the
uniform bound of the entries of Wn the condition (2.2) is satisfied. In this way, the entries of
An are in the [0,1] interval, and hence, GAn ∈ G. We remark that GWn /∈ G, but WGWn

is a
bounded graphon, and the theory applies to it. In Section 2.1 we showed that by adding an
appropriate Wigner-noise to Bn, we can achieve that An becomes a 0-1 matrix: its entries
are equal to 1 with probability pij and 0 otherwise within the block of size ni × nj (after
rearranging its rows and columns). In this case, the corresponding noisy graph GAn is a
generalized random graph of Definition 21.

By routine large deviation techniques, in [Bol-Ko-Kr12] we were able to prove that the
cut-norm of the stepfunction graphon, assigned to a Wigner-noise, tends to zero with prob-
ability 1 as n→ ∞.

Proposition 16 ([Bol-Ko-Kr12]) For any sequence Wn of Wigner-noises

lim
n→∞

‖WGWn
‖� = 0

almost surely.

The main idea of the proof is that the definition of the cut-norm of a stepfunction graphon
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and formulas (7.2), (7.3) of [Borgsetal1] yield

‖WGWn
‖� =

1

n2
max

U,T⊂[n]

∣∣∣∣∣∣

∑

i∈U

∑

j∈T
wij

∣∣∣∣∣∣
≤ 6 max

U⊂[n]

1

n2

∣∣∣∣∣∣

∑

i∈U

∑

j∈[n]\U
wij

∣∣∣∣∣∣
,

where the entries behind the latter double summation are independent random variables.
Hence, the Azuma’s inequality is applicable, and the statement follows by the Borel–Cantelli
lemma. Then Proposition 16 implies the following.

Proposition 17 ([Bol-Ko-Kr12]) Let An := Bn + Wn be the edge-weight matrix of the
general term of the noisy graph sequence (GAn), where Bn is the blown-up matrix of the k×k
symmetric probability matrix P = (pij) with blow-up sizes n1, . . . , nk → ∞ such that that

limn→∞
ni

n = ri (i = 1, . . . , k), n =
∑k

i=1 ni; further, for the uniform bound K of the entries
of the Wigner-noise Wn the condition (2.2) is assumed. Under these conditions, (GAn) ⊂ G
converges almost surely in the δ� metric. The almost sure limit is the stepfunction graphon
WH , where the vertex- and edge-weights of the weighted graph H are

αi(H) = ri (i = 1, . . . , k), βij(H) = pij (i, j = 1, . . . , k).

3.2 Generalized quasirandom properties of expanding graph

sequences

With an appropriate Wigner-noise, the noisy graph sequence (GAn) of Proposition 17 be-
comes a generalized graph sequence on the model graph H , defined in Definition 21 and
characterized from the point of view of discrepancy and spectra. Then we will establish so-
called generalized quasirandom properties of expanding graph sequences, which are closely
related to the properties of the generalized random graphs, and state implications between
them, irrespective of the stochastic model.

3.2.1 Generalized random and quasirandom graphs

For the generalied random graphs, defined in Definition 21, the following can be proved (with
subspace perturbation theorems and large deviations), see [Bol13], Chapter 2, and [Bol-El16].

Proposition 18 Let Gn(P ,Pk) be a generalized random graph on n vertices with vertex-
classes Pk = (C1, . . . , Ck) of sizes n1, . . . nk and k × k symmetric probability matrix P . Let
k be a fixed positive integer and n→ ∞ in such a way that nu

n ≥ c (u = 1, . . . , k) with some
constant 0 < c ≤ 1

k (called balancing condition). Then the following hold almost surely for the

adjacency matrix An = (a
(n)
ij ) and the normalized modularity matrix MD,n of Gn(P ,Pk).

1. An has k structural eigenvalues that are Θ(n) in absolute value, while the remaining
eigenvalues are O(

√
n). Further, the k-variance S2

k,n of the k-dimensional vertex rep-
resentatives, based on the eigenvectors corresponding to the structural eigenvalues of
An (see (1.10)), is O( 1

n ).

2. There exists a positive constant 0 < δ < 1 independent of n (it only depends on
k) such that MD,n has exactly k − 1 structural eigenvalues of absolute value greater
than δ, while all the other eigenvalues are less than n−τ in absolute value, for every
0 < τ < 1

2 . Further, the weighted k-variance S̃2
k,n of the (k − 1)-dimensional vertex

representatives, based on the transformed eigenvectors corresponding to the structural
eigenvalues of MD,n (see (1.14)), is O(n−2τ ), for every 0 < τ < 1

2 .

91

dc_1249_16

Powered by TCPDF (www.tcpdf.org)



3. There exists a constant 0 < θ < 1 independent of n (it only depends on k) such
that disc1(Gn(P ,Pk)) > θ, . . . , disck−1(Gn(P ,Pk)) > θ, and the k-way discrepancy
disck(Gn(P ,Pk);C1, . . . , Ck) is O(n−τ ), for every 0 < τ < 1

2 .

4. For every 1 ≤ u ≤ v ≤ k and i ∈ Cu:

∑

j∈Cv

a
(n)
ij = puvnv + o(n).

For every 1 ≤ u ≤ v ≤ k and i, j ∈ Cu:

∑

t∈Cv

a
(n)
it a

(n)
jt = p2

uvnv + o(n).

Proof. Property 1 follows from Theorems 13 and 14, while Property 2 from Theorems 15
and 16. Property 3 is the consequence of Theorems 26 and 27.

The proof of Property 4 is as follows. Consider the generalized random graph sequence
Gn(P ,Pk), the subgraphs and the bipartite subgraphs of which have the following expected
degrees. We will drop the index n, and use the notation A = (aij) for the entries of its
adjacency matrix. As for the Cu, Cv pair (1 ≤ u ≤ v ≤ k), for any i ∈ Cu, the average
degree of i with regard to Cv is

E(
∑

j∈Cv

aij) = nvpuv,

each vertex in Cu has the same expected number of neighbors in Cv.
Observe that for i ∈ Cu, the sum

∑
j∈Cv

aij has binomial distribution with the above
expectation and variance nvpuv(1− puv). Therefore, by Lemma 2, the within- and between-
cluster average degrees are highly concentrated on their expectations as n → ∞ under the
balancing conditions nu

n ≥ c (u = 1, . . . , k) for the cluster sizes. Indeed, for any 0 < ε < 1:

P(| 1

nv

∑

j∈Cv

aij − puv| > ε) = P(|
∑

j∈Cv

aij − nvpuv| > nvε) ≤ e−
n2

vε2

2(nvpuv(1−puv)+ε/3)

that tends to 0 even with the choice ε = n−τ , 0 < τ < 1
2 . Therefore, it holds almost surely

that
|
∑

j∈Cv

aij − nvpuv| ≤ nvn
−τ =

nv
n
n1−τ = o(n).

This finishes the proof of the first part of 4.
As for every 1 ≤ u ≤ v ≤ k, the number of common neighbors in Cv of any i, j ∈ Cu

(i 6= j) pair has binomial distribution with expectation nvp2
uv and variance nvp2

uv(1 − p2
uv),

with the same calculations as above, we obtain that

|
∑

t∈Cv

aitajt − p2
uvnv| = o(n)

holds almost surely. This finishes the proof of the second part of 4. �

Recall that Proposition 17 implies that Gn(P ,Pk) → WH almost surely when n → ∞,
under the strict balancing condition ni

n → ri (i = 1, . . . , k). In Lovász–Sós [Lov-Sos] the
following definition of a generalized quasirandom graph sequence was given.
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Definition 31 Given a model graph H on k vertices with vertex-weights r1, . . . , rk and edge-
weights puv = pvu, 1 ≤ u ≤ v ≤ k (entries of P ), the sequence (Gn) is H-quasirandom if
Gn → WH as n→ ∞ in term of the homomorphism densities.

The authors of [Lov-Sos] also proved that the vertex set V of a generalized quasirandom graph
Gn can be partitioned into classes C1, . . . , Ck in such a way that |Cu|

n → ru (u = 1, . . . , k) as
n→ ∞, and the subgraph of Gn induced by Cu is the general term of a quasirandom graph
sequence with edge-density tending to puu (u = 1, . . . , k), whereas the bipartite subgraph
between Cu and Cv is the general term of a quasirandom bipartite graph sequence with
edge-density tending to puv (u 6= v) as n→ ∞.

Because of the limit relation in the definition of the generalized quasirandom graphs,
the properties, discussed in Proposition 18, are – with some modification – valid for them.
Actually, the authors in [Borgsetal1] proved that for any k, the k largest absolute value
normalized adjacency eigenvalues of a convergent graph sequence converge (to the corre-
sponding eigenvalues of the limiting graphon). In Section 3.1.1, we proved the same for the
normalized modularity spectra of convergent graph sequences, see Theorem 29. As for the
multiway discrepancies and spectra, we can use Theorems 26 and 27.

However, the order
√
n and n−τ of the non-structural eigenvalues in the adjacency and

normalized modularity spectrum, respectively, is not necessarily valid for the generalized
quasirandom graphs; instead, o(n) and o(1) can be stated for their order. Indeed, in the case
of a generalized random graph we can separate a Wigner-noise, the corresponding graphon
to which tends to zero very quickly. The slower separation in the spectrum is supported by
simulations and the following construction.

Vera T. Sós suggested the following construction of a generalized quasirandom graph
with given k, P , and vertex-weights r1, . . . , rk of the model graph H . Consider the instance
when there are k clusters C1, . . . , Ck of the vertices of sizes n1, . . . , nk such that nu

n = ru
(u = 1, . . . , k). Let us choose the independent irrational numbers αuv (1 ≤ u ≤ v ≤ k). Then
the subgraph on the vertex-set Cu is constructed as follows: i, j ∈ Cu, i < j are connected
if and only if

{(i− j)2αuu} < puu (u = 1, . . . , k),

where {.} denotes the fractional part of a real number. The bipartite subgraph between Cu
and Cv is constructed as follows: i ∈ Cu and j ∈ Cv are connected if and only if

{(i− j)2αuv} < puv (1 ≤ u < v ≤ k).

In the k = 1 case, Bollobás and Erdős [Bo-Erd] recommended this construction, and
Pinch [Pinch] in terms of the codegrees proved that it indeed produces a quasirandom
graph. The analytical number theoretical considerations of [Bo, Kup-Nied] and particularly
of [Pinch] imply that, for any 1 ≤ u ≤ v ≤ k, the sequence

yt := ({(t− i)2αuv}, {(t− j)2αuv})

is well-distributed symmetrically in [0, 1]2, uniformly in i− j. This means that the sequences
(yt+h) are uniformly distributed symmetrically in [0, 1]2 for h ∈ Z. With h =

∑v−1
ℓ=1 nℓ and

the considerations of [Pinch], we get that
∣∣{t ∈ Cv : {(t− i)2αuv} < puv and {(t− j)2αuv} < puv}

∣∣
= p2

uvnv + o(nv) = p2
uvnv + o(n)

for any i, j ∈ Cu (i 6= j) pair, when n → ∞ and nu

n → ru (u = 1, . . . , k). It is important
that the role of i, j is symmetric here: both are in Cu and connected to any t ∈ Cv with the
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same rule. Possibly, it suffices to assume the weaker balancing condition to guarantee that
n1, . . . , nk tend to infinity at the same rate: n→ ∞ in such a way that nu

n ≥ c (u = 1, . . . , k),
with some constant 0 < c ≤ 1

k . This ensures that o(n1) = · · · = o(nk) = o(n).
For more examples of quasirandom graphs in the k = 1 case see [Bo, Thom87]. For an

illustration of generalized random and quasirandom graphs see Figures 3.1, 3.2, 3.3, where
we used the probability matrix

P =




0.7 0.1 0.15 0.2 0.25
0.1 0.75 0.3 0.35 0.4
0.15 0.3 0.8 0.45 0.5
0.2 0.35 0.45 0.85 0.55
0.25 0.4 0.5 0.55 0.9



.

Figure 3.1: Generalized
random graph generated
with k = 5, cluster sizes
60, 80, 100, 120, 140 and prob-
ability matrix P . The first
non-trivial eigenvalues of MD

are 0.304, 0.214, 0.17, 0.153,
− 0.097,−0.094,−0.093,
− 0.092,−0.091, . . . ,
with a gap after the 4th one.

Figure 3.2: Generalized
quasirandom graph con-
structed with k = 5, cluster
sizes 60, 80, 100, 120, 140
and probability matrix
P . The first non-trivial
eigenvalues of MD are
0.318, 0.207, 0.154, 0.115,
− 0.100,−0.099,−0.091,
− 0.090, 0.084, . . . ,
exhibiting decreasing eigen-
values up to the 4th one.

Figure 3.3: The former gener-
alized quasirandom graph af-
ter appropriately permuting
the vertices within the blocks
(made by Ahmed Elbanna).

3.2.2 Generalized quasirandom properties

Some properties similar to those of Proposition 18 are now formulated for expanding deter-
ministic graph sequences.

Conjecture 1 Consider the sequence of graphs Gn with vertex-set Vn, adjacency matrix

An = (a
(n)
ij ), and normalized modularity matrix MD,n. Let k be a fixed positive integer

and |Vn| = n → ∞ in such a way that there are no dominant vertices. Then the following
properties are equivalent:

P0. There exists a vertex- and edge-weighted graph H on k vertices such that Gn → WH

as n→ ∞ in terms of the homomorphism densities.
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PI. An has k structural eigenvalues λ1,n, . . . , λk,n such that the normalized eigenvalues
converge: 1

n |λi,n| → qi as n → ∞ (i = 1, . . . , k) with some positive reals q1, . . . , qk,
and the remaining eigenvalues are o(n) in absolute value. The k-variance S2

k,n of the
k-dimensional vertex representatives, based on the eigenvectors corresponding to the
structural eigenvalues of An, is o(1).

PII. There exists a constant 0 < δ < 1 (independent of n) such that MD,n has k− 1 struc-
tural eigenvalues that are greater than δ in absolute value, while the remaining eigen-
values are o(1). Further, the weighted k-variance S̃2

k,n of the (k−1)-dimensional vertex
representatives, based on the transformed eigenvectors corresponding to the structural
eigenvalues of MD,n, is o(1).

PIII. There are vertex-classes Pk = (C1, . . . , Ck) and a constant 0 < θ < 1 (independent of
n) such that md1(Gn) > θ, . . . ,mdk−1(Gn) > θ, and mdk(Gn;C1, . . . , Ck) = o(1).

PIV. There are vertex-classes Pk = (C1, . . . , Ck) and a k × k symmetric probability matrix
P = (puv) (independent of n), such that every vertex of Cu has asymptotically nvpuv
neighbors in Cv for any 1 ≤ u ≤ v ≤ k pair. Further, for the codegrees (number
of common neighbors) the following holds: every two different vertices i, j ∈ Cu have
asymptotically p2

uvnv common neighbors in Cv for any 1 ≤ u ≤ v ≤ k pair. More
exactly, for every 1 ≤ u ≤ v ≤ k and i, j ∈ Cu

∑

t∈Cv

a
(n)
it = puvnv + o(n)

and ∑

t∈Cv

a
(n)
it a

(n)
jt = p2

uvnv + o(n)

hold, where nv = |Cv|, v = 1, . . . , k.

We will not prove the implications here, but have some remarks about the way how some
implications follow from former results of others and theorems proved in the present dis-
sertation; in particular, from Theorems 13, 14, 15, 16, 18, 26, and 27 of Chapter 2, and
Theorems 29 and 30 of Chapter 3.

P0 is equivalent to PIV, due to the results of [Chu-G-W, Lov-Sos, Sim-Sos, Thom87,
Thom89]. We can use that by [Lov-Sos], the vertex set of the generalized quasirandom
graph Gn can be partitioned into classes C1, . . . , Ck in such a way that |Cu|

|V | → ru (u =

1, . . . , k) and the subgraph of Gn induced by Cu is the general term of a quasirandom graph
sequence with edge-density tending to puu (u = 1, . . . , k), whereas the bipartite subgraph
between Cu and Cv is the general term of a quasirandom bipartite graph sequence with
edge-density tending to puv (u 6= v) as n → ∞. The converse is trivial. Then, with some
modification, theorems of Thomason [Thom87, Thom89] about (p, α)-jumbled graphs are
applicable for the subgraphs and bipartite subgraphs, where p is some puv and α is related
to the k-way discrepancy. Lovász [Lov08] also discusses that quasirandom graphs (as our
subgraphs) are asymptotically regular, while, in view of Thomason [Thom89], the bipartite
quasirandom graphs (as our bipartite subgraphs) are asymptotically biregular. According to
Chung–Graham–Wilson [Chu-G-W], these properties are weaker than the other properties
of quasirandomness, therefore asymptotic behavior of the codegrees should be characterized
too, see [Bo-Erd, Lov-Sos, Thom87, Thom89].

As for the equivalence between P0 and PI, we can use that the convergence of a graph
sequence implies the convergence of its normalized spectrum, see [Borgsetal1]. By the con-
siderations of the proof of Proposition 5, we can relate the eigenvalues of the limiting graphon
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WH to the eigenvalues of a k × k matrix. Since the other eigenvalues of WH are 0, it fol-
lows that |λi,n| = o(n) (i > k). As the spectral subspace corresponding to λ1,n, . . . , λk,n
also converges to that of the step-vectors, S2

k,n = o(n) follows, see Theorem 14. In the
backward direction, the convergence of the spectra usually does not imply the convergence
of the graph or graphon sequence, but in the case of the quasirandom graphs it does as
noted in [Borgsetal1]. Here we use both the separation in the spectrum and the convergence
of the spectral subspaces, i.e., of the k-variances. By Theorem 18 and 23, we are able to
find a blown-up matrix Bn of rank k and an error-matrix En with ‖En‖ = o(n) such that
An = Bn + En. It is important that, provided S2

k,n is ‘small’ enough, the so constructed
Bn can have positive entries (see the considerations after the proof of Theorem 25), so that
it can be the blown-up matrix of a k × k probability matrix.

In the equivalence between PI and PII we use that there are no dominant vertices, and
the ideas of the proof of Theorem 15 and 16 extend to this case.

For the PII–PIII equivalence we plan to use the back and forth statements of Theorems 26
and 27. This equivalence suggest that low discrepancy clusters and cluster pairs can be
obtained by spectral clustering tools, and so, justify the discrepancy minimizing spectral
clustering.

Note that in the k = 1 case, the P0, PI, PIV properties are in accord with some of the
properties of Chung–Graham–Wilson [Chu-G-W] and Simonovts–Sós [Sim-Sos], whereas PII,
PIII rather harmonize with the properties of Chung–Graham [Chu-G] that do not contain
a statement about the leading eigenvalue. As in the case of k = 1 there is only one leading
eigenvalue, this does not make too much difference, but in the k > 1 case the statements
should deal with their asymptotic behavior too, see [Bol15] for some details.

Summarizing, we believe that the P0–>PIV–>PIII–>PII–>PI–>P0 implications can be
proved and so, they close the circle. In view of the above, PIV–>PIII is the only missing
chain. However, we hope that the results of [Thom87, Thom89] can be adopted for the
subgraphs and bipartite subgraphs to estimate the number of common neighbors by means
of discrepancy. In fact, our discrepancy is a bit different of α and our k × k probability
matrix P is a bit different of p (k = 1 case) of the notion of (p, α)-jumbledness.

3.3 Parameter estimation in probabilistic mixture mod-

els

Here we discuss semiarametric models such that the background distribution of the random
graph, given the clusters of vertices, depends on some parameters, and we will use the EM
algorithm to estimate them. We consider two basic types of block models: a homogeneous,
and a heterogeneous one. In the literature, sometimes the multiclass model, consisting of
Erdős–Rényi type homogeneous blocks, is also called heterogeneous. Under heterogeneity, we
understand that – even within the building blocks – the entries heve different expectations,
therefore our random graph is not a noisy one of Chapter 2.

3.3.1 EM algorithm for estimating the parameters of the homoge-

neous block model

The so-called stochastic block model, first introduced in Holland and coauthors [Hol-Las-Lei],
later investigated by Bickel et al.[Bi-Ch] among others, was already discussed in Chapter 2
and Section 3.2.2. In fact, this is a generalized random graph model, but now it is formulated
in terms of probabilistic mixture models. The assumptions of the model are the following.
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Given a simple graph G = (V,A) (|V | = n, with adjacency matrix A) and integer k (1 <
k < n), we are looking for the hidden k-partition (C1, . . . , Ck) of the vertices such that

• vertices are independently assigned to cluster Ca with probability πa, a = 1, . . . , k;∑k
a=1 πa = 1;

• given the cluster memberships, vertices of Ca and Cb are connected independently,
with probability

P(i ∼ j | i ∈ Ca, j ∈ Cb) = pab, 1 ≤ a, b ≤ k.

The parameters are collected in the vector π = (π1, . . . , πk) and the k × k symmetric prob-
ability matrix P of pab’s. We will call this model homogeneous because of the constant
within- and between-cluster edge probabilities. The classical Erdős–Rényi random graph is
the special case of it with k = 1.

Our statistical sample is the n × n symmetric, 0-1 adjacency matrix A = (aij) of G.
There are no loops, so the diagonal entries are zeros. Based on A, we want to estimate the
parameters of the above block model. (It may seem that we have a one-element sample here,
however, there are

(
n
2

)
independent random variables, the adjacencies, in the background.)

Using the theorem of mutually exclusive and exhaustive events, the likelihood function is
constructed by the (within the blocks) i.i.d. Bernoulli distributed entries:

1

2

∑

1≤a,b≤k
πaπb

∏

i∈Va,j∈Vb,i6=j
p
aij

ab (1 − pab)
(1−aij)

=
1

2

∑

1≤a,b≤k
πaπb · peab

ab (1 − pab)
(nab−eab).

This is the mixture of binomial distributions, where eab is the number of edges connecting
vertices of Ca and Cb (a 6= b), while eaa is twice the number of edges with both endpoints
in Va; further,

nab = |Ca| · |Cb| (a 6= b) and naa = |Ca| · (|Ca| − 1) (a = 1, . . . , k)

are the numbers of possible edges between Ca, Cb and within Ca, respectively.
Here A is the incomplete data specification as the cluster memberships are missing.

Therefore, it is straightforward to use the Expectation-Maximization, briefly EM algorithm,
proposed by Dempster–Laird–Rubin [De-La-Ru]. This special application for mixtures is
also related to the collaborative filtering, see e.g., [Ung].

First we complete our data matrix A with latent membership vectors ∆1, . . . ,∆n of the
vertices that are k-dimensional i.i.d. Poly(1,π) (polynomially distributed) random vectors.
More precisely, ∆i = (∆1i, . . . ,∆ki), where ∆ai = 1 if i ∈ Va and zero otherwise. Thus, the
sum of the coordinates of any ∆i is 1, and P(∆ai = 1) = πa.

Based on these, the likelihood function above is

1

2

∑

1≤a,b≤k
πaπb · p

P

i6=j ∆ai∆bjaij

ab · (1 − pab)
P

i6=j ∆ai∆bj(1−aij)

that is maximized in the alternating E and M steps of the EM algorithm.
Note that that the complete likelihood would be the squareroot of

k∏

a=1

n∏

i=1

k∏

b=1

[p
P

j: j 6=i ∆bjaij

ab · (1 − pab)
P

j: j 6=i ∆bj(1−aij)]∆ai (3.2)
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which is valid only in case of known cluster memberships.
Starting with initial parameter values π(0), P (0) and membership vectors ∆

(0)
1 , . . . ,∆

(0)
n ,

the t-th step of the iteration is the following (t = 1, 2, . . . ).

• E-step: we calculate the conditional expectation of each ∆i conditioned on the model
parameters and on the other cluster assignments obtained in step t−1 and collectively
denoted by M (t−1). By the Bayes theorem, the responsibility of vertex i for cluster a
is

π
(t)
ai = E(∆ai |M (t−1)) =

P(M (t−1)|∆ai = 1) · π(t−1)
a∑k

b=1 P(M (t−1)|∆bi = 1) · π(t−1)
b

(a = 1, . . . , k; i = 1, . . . , n). For each i, π(t)
ai is proportional to the numerator, where

P(M (t−1)|∆ai = 1) =

k∏

b=1

(p
(t−1)
ab )

P

j 6=i ∆
(t−1)
bj aij · (1 − p

(t−1)
ab )

P

j 6=i ∆
(t−1)
bj (1−aij)

is the part of the likelihood (3.2) effecting vertex i under the condition ∆ai = 1.

• M-step: we maximize the truncated binomial likelihood

p
P

i6=j π
(t)
ai π

(t)
bj aij

ab · (1 − pab)
P

i6=j π
(t)
ai π

(t)
bj (1−aij)

with respect to the parameter pab, for all a, b pairs separately. Obviously, the maximum
is attained by the following estimators of pab’s comprising the symmetric matrix P (t):

p
(t)
ab =

P

i,j: i6=j π
(t)
ai π

(t)
bj aij

P

i,j: i6=j π
(t)
ai π

(t)
bj

(1 ≤ a ≤ b ≤ k), where edges connecting vertices of clusters

a and b are counted fractionally, multiplied by the membership probabilities of their
endpoints.

The maximum likelihood estimator of π in the t-th step is π(t) of coordinates π(t)
a =

1
n

∑n
i=1 π

(t)
ai (a = 1, . . . , k), while that of the membership vector ∆i is obtained by discrete

maximization: ∆
(t)
ai = 1 if π(t)

ai = maxb∈{1,...,k} π
(t)
bi and 0, otherwise. (In case of ambiguity,

the cluster with the smallest index is selected.) This choice of π will increase (better to
say, not decrease) the likelihood function. Note that it is not necessary to assign vertices
uniquely to the clusters, the responsibility πai of a vertex i can as well be considered as the
intensity of vertex i belonging to cluster a, and it defines a fuzzy clustering.

According to the general theory of the EM algorithm [De-La-Ru], in exponential families
(as in the present case), convergence to a local maximum can be guaranteed (depending on
the starting values), but it runs in polynomial time in the number of vertices n. However, the
speed and limit of the convergence depends on the starting clustering, which can be chosen
by means of preliminary application of some spectral clustering methods of the previous
chapters.

3.3.2 EM algorithm for estimating the parameters of the inhomo-

geneous block model

Loglinear type models to describe contingency tables were proposed, e.g., by [Hol-Lei, Laur]
and widely used in statistics. Together with the Rasch model [Rasch], they give the foun-
dation of our unweighted graph and bipartite graph models, the building blocks of our EM
iteration.
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With different parameterization, Chatterjee et al. [Ch-Dia-Sl] and V. Csiszár et al. [Csetal1]
introduced the following random graph model, where the degree sequence is a sufficient
statistic. We have an unweighted, undirected random graph on n vertices without loops,
such that edges between distinct vertices come into existence independently, but not with
the same probability as in the classical Erdős–Rényi model [Erd-Reny]. This random graph
can uniquely be characterized by its n×n symmetric adjacency matrix A = (Aij) which has
zero diagonal and the entries above the main diagonal are independent Bernoulli random
variables whose parameters pij = P(Aij = 1) obey the following rule. Actually, we formulate
this rule for the pij

1−pij
ratios, the so-called odds :

pij
1 − pij

= αiαj (1 ≤ i < j ≤ n), (3.3)

where the parameters α1, . . . , αn are positive reals. This model is called α model in [Csetal1].
With the parameter transformation βi = lnαi (i = 1, . . . n), it is equivalent to the β model
of [Ch-Dia-Sl] which applies to the logits :

ln
pij

1 − pij
= βi + βj (1 ≤ i < j ≤ n)

with real parameters β1, . . . , βn.
Conversely, the probabilities pij and 1− pij can be expressed in terms of the parameters,

like

pij =
αiαj

1 + αiαj
and 1 − pij =

1

1 + αiαj
.

We are looking for the ML estimate of the parameter vector α = (α1, . . . , αn) or β =
(β1, . . . , βn) based on the observed unweighted, undirected graph as a statistical sample.

Let D = (D1, . . . , Dn) denote the degree-vector of the above random graph, where Di =∑n
j=1Aij (i = 1, . . . n). The random vector D, as a function of the sample entries Aij ’s, is a

sufficient statistic for the parameter α, or equivalently, for β, see [Ch-Dia-Sl, Csetal1]. Let
(aij) be the matrix of the sample realizations (the adjacency entries of the observed graph),
di =

∑n
j=1 aij be the actual degree of vertex i (i = 1, . . . , n) and d = (d1, . . . , dn) be the

observed degree-vector. Since the joint distribution of the entries belongs to the exponential
family, with canonical parameterization [De-La-Ru], the maximum likelihood estimate α̂

(or equivalently, β̂) is derived from the fact that, with it, the observed degree di equals
the expected one, that is E(Di) =

∑n
i=1 pij . Therefore, α̂ is the solution of the following

maximum likelihood equation:

di =

n∑

j 6=i

αiαj
1 + αiαj

(i = 1, . . . , n). (3.4)

The ML estimate β̂ is easily obtained from α̂ via taking the logarithms of its coordinates.
Before discussing the solution of the system of equations (3.4), let us see, what conditions

a sequence of nonnegative integers should satisfy so that it could be realized as the degree
sequence of a graph. The sequence d1, . . . , dn of nonnegative integers is called graphic if
there is an unweighted, undirected graph on n vertices such that its vertex-degrees are the
numbers d1, . . . , dn in some order. Without loss of generality, di’s can be enumerated in
non-increasing order. The Erdős–Gallai theorem [Erd-Gal] gives the following necessary and
sufficient condition for a sequence to be graphic. The sequence d1 ≥ · · · ≥ dn ≥ 0 of integers
is graphic if and only if it satisfies the following two conditions:

∑n
i=1 di is even and

k∑

i=1

di ≤ k(k − 1) +

n∑

i=k+1

min{k, di}, k = 1, . . . , n− 1. (3.5)
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Note that for nonnegative (not necessarily integer) real sequences a continuous analogue
of (3.5) is derived in [Ch-Dia-Sl]. For given n, the convex hull of the possible graphic degree
sequences is a polytope, to be denoted by Dn. Its extreme points are the so-called threshold
graphs [Mah-Pel]. It is interesting that for n = 3 all undirected graphs are threshold, since
there are 8 possible graphs on 3 nodes, and there are also 8 vertices of D3; the n = 2 case is
also not of much interest, therefore we will treat the n > 3 cases only.

The authors of [Ch-Dia-Sl, Csetal1] prove that Dn is the topological closure of the set
of expected degree sequences, and for given n > 3, if d ∈ int(Dn) is an interior point, then
the maximum likelihood equation (3.4) has a unique solution. Later, it turned out that the
converse is also true: in [Rin-Pe-Fi] the authors prove that the ML estimate exists if and only
if the observed degree vector is an inner point of Dn. On the contrary, when the observed
degree vector is a boundary point of Dn, there is at least one 0 or 1 probability pij which
can be obtained only by a parameter vector such that at least one of the βi’s is not finite.
In this case, the likelihood function cannot be maximized with a finite parameter vector, its
supremum is approached with a parameter vector β with at least one coordinate tending to
+∞ or −∞.

V. Csiszár et al. [Csetal1] recommended the following algorithm and proved its conver-
gence to the unique solution of the system (3.4), provided d ∈ int(Dn). To motivate the
iteration, we rewrite (3.4) as

di = αi
∑

j 6=i

1
1
αj

+ αi
(i = 1, . . . , n).

Then starting with initial parameter values α(0)
1 , . . . , α

(0)
n and using the observed degree

sequence d1, . . . , dn, which is an inner point of Dn, the iteration is as follows:

α
(t)
i =

di∑
j 6=i

1
1

α
(t−1)
j

+α
(t−1)
i

(i = 1, . . . , n)

for t = 1, 2, . . . , until convergence.
Now we will discuss the bipartite graph model, which traces back to Haberman [Hab],

Lauritzen [Laur], and Rasch [Rasch] who applied it for psychological and educational mea-
surements. The frequently cited Rasch model involves categorical data, mainly binary vari-
ables, therefore the underlying random object can be thought of as a contingency table.
According to the Rasch model, the entries of an m × n binary table A are independent
Bernoulli random variables, where for the parameter pij of the entry Aij the following holds:

ln
pij

1 − pij
= βi − δj (i = 1, . . .m; j = 1, . . . , n) (3.6)

with real parameters β1, . . . , βm and δ1, . . . , δn. As an example, Rasch [Rasch] investigated
binary tables where the rows corresponded to patients and the columns to items of some
psychological test, whereas the j-th entry of the i-th row was 1 if person i answered test
item j correctly and 0, otherwise. He also gave a description of the parameters: βi was the
ability of person i, while δj the difficulty of test item j. Therefore, in view of the model
equation (3.6), the more intelligent the person and the less difficult the test, the larger the
success to failure ratio was on a logarithmic scale.

Motivated by the Rasch model, given an m × n random binary table A = (Aij), or
equivalently, a bipartite graph, our model is

ln
pij

1 − pij
= βi + γj (i = 1, . . . ,m, j = 1, . . . , n) (3.7)
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with real parameters β1, . . . , βm and γ1, . . . , γn; further, pij = P(Aij = 1). In terms of the
transformed parameters bi = eβi and gj = eγj , the model (3.7) is equivalent to

pij
1 − pij

= bigj (i = 1, . . . ,m, j = 1, . . . , n) (3.8)

where b1, . . . , bm and g1, . . . , gn are positive reals. Conversely, the probabilities can be ex-
pressed in terms of the parameters:

pij =
bigj

1 + bigj
and 1 − pij =

1

1 + bigj
. (3.9)

Observe that if (3.7) holds with the parameters βi’s and γj’s, then it also holds with the
transformed parameters β′

i = βi + c (i = 1, . . . ,m) and γ′j = γj − c (j = 1, . . . , n) with some
c ∈ R. Equivalently, if (3.8) holds with the positive parameters bi’s and gj ’s, then it also
holds with the transformed parameters

b′i = biκ and g′j =
gj
κ

(3.10)

with some κ > 0. Therefore, the parameters bi and gj are arbitrary to within a multiplicative
constant.

Here the row-sums Ri =
∑n
j=1 Aij and the column-sums Cj =

∑m
i=1 Aij are the sufficient

statistics for the parameters collected in b = (b1, . . . , bm) and g = (g1, . . . , gn). Indeed, the
likelihood function is factorized as

Lb,g(A) =

m∏

i=1

n∏

j=1

p
Aij

ij (1 − pij)
1−Aij

=





m∏

i=1

n∏

j=1

(
pij

1 − pij

)Aij





m∏

i=1

n∏

j=1

(1 − pij)

=

{
m∏

i=1

b
Pn

j=1 Aij

i

}


n∏

j=1

g
Pm

i=1Aij

j





m∏

i=1

n∏

j=1

(1 − pij)

=





m∏

i=1

n∏

j=1

1

1 + bigj





{
m∏

i=1

bRi

i

}


n∏

j=1

g
Cj

j



 .

Since the likelihood function depends on A only through its row- and column-sums, by the
Neyman–Fisher factorization theorem, R1, . . . , Rm, C1, . . . , Cn is a sufficient statistic for the
parameters. The first factor (the whole above expression) depends only on the parameters
and the row- and column-sums, whereas the seemingly not present factor – which would
depend merely on A – is constantly 1, indicating that the conditional joint distribution of
the entries, given the row- and column-sums, is uniform in this model. Note that in [Bar1],
the author characterizes random tables sampled uniformly from the set of 0-1 matrices with
fixed margins. Given the margins, the contingency tables coming from the above model are
uniformly distributed, and a typical table of this distribution is produced by the β-γ model
with parameters estimated via the row- and column sums as sufficient statistics. In this way,
here we obtain another view of the typical table of [Bar1].

Based on an observed m × n binary table (aij), since we are in exponential family, the
likelihood equation is obtained by making the expectation of the sufficient statistic equal to its
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sample value. Therefore, with the notation ri =
∑n

j=1 aij (i = 1, . . . ,m) and cj =
∑m

i=1 aij
(j = 1, . . . , n), the following system of likelihood equations is yielded:

ri =
n∑

j=1

bigj
1 + bigj

= bi

n∑

j=1

1
1
gj

+ bi
, i = 1, . . .m;

cj =

m∑

i=1

bigj
1 + bigj

= gj

m∑

i=1

1
1
bi

+ gj
, j = 1, . . . n.

(3.11)

Note that for any sample realization of A,

m∑

i=1

ri =

n∑

j=1

cj (3.12)

holds automatically. Therefore, there is a dependence between the equations of the system
(3.11), indicating that the solution is not unique, in accord with our previous remark about
the arbitrary scaling factor κ > 0 of (3.10). Based on the proofs of [Rin-Pe-Fi], apart from
this scaling, the solution is unique if it exists at all. For our convenience, let (b̃, g̃) denote the
equivalence class of the parameter vector (b,g), which consists of parameter vectors (b′,g′)
satisfying (3.10) with some κ > 0. So that to avoid this indeterminacy, we may impose
conditions on the parameters, for example,

m∑

i=1

βi +
n∑

j=1

γj = 0. (3.13)

Like the graphic sequences, here the following sufficient conditions can be given for the
sequences r1 ≥ · · · ≥ rm > 0 and c1 ≥ · · · ≥ cn > 0 of integers to be row- and column-sums
of an m× n matrix of 0-1 entries (see, e.g., [Bar2]):

k∑

i=1

ri ≤
n∑

j=1

min{cj, k}, k = 1, . . . ,m;

k∑

j=1

cj ≤
m∑

i=1

min{ri, k}, k = 1, . . . , n.

(3.14)

Observe that the k = 1 cases imply r1 ≤ n and c1 ≤ m; whereas the k = m and k = n
cases together imply

∑m
i=1 ri =

∑n
j=1 cj. This statement is the counterpart of the Erdős-

Gallai conditions for bipartite graphs, where – due to (3.12) – the sum of the degrees is
automatically even. In fact, the conditions in (3.14) are redundant: one of the conditions
– either the one for the rows, or the one for the columns – suffices together with (3.12)
and c1 ≤ m or r1 ≤ n. The so obtained necessary and sufficient conditions define bipartite
realizable sequences with the wording of [Ham-Pe-Su].

The convex hull of the bipartite realizable sequences r = (r1, . . . , rm) and c = (c1, . . . , cn)
form a polytope in Rm+n, actually, because of (3.12), in an (m+n−1)-dimensional hyperplane
of it. It is called polytope of bipartite degree sequences and denoted by Pm,n in Hammer et
al. [Ham-Pe-Su]. Analogously to the considerations of the α-β models, and applying the
thoughts of the proofs in [Ch-Dia-Sl, Csetal1, Rin-Pe-Fi], Pm,n is the closure of the set of
the expected row- and column-sum sequences in the above model. In [Ham-Pe-Su] it is
proved that an m×n binary table, or equivalently a bipartite graph on the independent sets
of m and n vertices, is on the boundary of Pm,n if it does not contain two vertex-disjoint
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edges. In this case, the likelihood function cannot be maximized with a finite parameter set,
its supremum is approached with a parameter vector with at least one coordinate βi or γj
tending to +∞ or −∞, or equivalently, with at least one coordinate bi or gj tending to +∞
or 0. Stated as Theorem 6.3 in the supplementary material of [Rin-Pe-Fi], the maximum
likelihood estimate of the parameters of model (3.8) exists if and only if the observed row-
and column-sum sequence (r, c) ∈ ri (Pm,n), the relative interior of Pm,n, satisfying (3.12).
In this case for the probabilities, calculated by the formula (3.9) through the estimated
positive parameter values b̂i’s and ĝj ’s (solutions of(3.11)), 0 < pij < 1 holds ∀i, j.

Under these conditions, we define an algorithm that converges to the unique (up to the
above equivalence) solution of the maximum likelihood equation (3.11). More precisely,
in [Bol-El15] we proved that if (r, c) ∈ ri (Pm,n), then our algorithm gives a unique equiv-
alence class of the parameter vectors as the fixed point of the iteration, which therefore
provides the ML estimate of the parameters.

Starting with positive parameter values b(0)i (i = 1, . . . ,m) and g
(0)
j (j = 1, . . . , n) and

using the observed row- and column-sums, the iteration is as follows:

I. b
(t)
i =

ri∑n
j=1

1
1

g
(t−1)
j

+b
(t−1)
i

, i = 1, . . .m

II. g
(t)
j =

cj∑m
i=1

1
1

b
(t)
i

+g
(t−1)
j

, j = 1, . . . n

for t = 1, 2, . . . , until convergence.
In the several clusters case, we are putting the bricks together, and use the so-called k−β

model, introduced in V. Csiszár et al. [Csetal2]. The above discussed α-β and β-γ models
will be the building blocks of a heterogeneous block model. Here the degree sequences are
not any more sufficient for the whole graph, only for the building blocks of the subgraphs.

Given 1 ≤ k ≤ n, we are looking for k-partition, in other words, clusters C1, . . . , Ck of
the vertices such that

• different vertices are independently assigned to a cluster Cu with probability πu (u =

1, . . . , k), where
∑k

u=1 πu = 1;

• given the cluster memberships, vertices i ∈ Cu and j ∈ Cv are connected independently,
with probability pij such that

ln
pij

1 − pij
= βiv + βju

for any 1 ≤ u, v ≤ k pair. Equivalently,

pij
1 − pij

= bicjbjci

where ci is the cluster membership of vertex i and biv = eβiv .

To estimate the parameters, we again use the EM algorithm. The parameters are collected
in the vector π = (π1, . . . , πk) and the n× k matrix B of biv’s (i ∈ Cu, u, v = 1, . . . , k). The
likelihood function is the following mixture:

∑

1≤u,v≤k
πuπv

∏

i∈Cu,j∈Cv

p
aij

ij (1 − pij)
(1−aij).
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First we complete our data matrix A with latent membership vectors ∆1, . . . ,∆n of the
vertices that are k-dimensional i.i.d. Poly(1,π) (polynomially distributed) random vectors,
as in Section 3.3.2.

Note that, if the cluster memberships where known, then the complete likelihood would
be

k∏

u=1

n∏

i=1

k∏

v=1

n∏

j=1

[p
∆jvaij

ij · (1 − pij)
∆jv(1−aij)]∆iu (3.15)

that is valid only in case of known cluster memberships.
Starting with initial parameter values π(0), B(0) and membership vectors ∆

(0)
1 , . . . ,∆

(0)
n ,

the t-th step of the iteration is as follows (t = 1, 2, . . . ).

• E-step: we calculate the conditional expectation of each ∆i conditioned on the model
parameters and on the other cluster assignments obtained in step t−1, and collectively
denoted by M (t−1).

The responsibility of vertex i for cluster u in the t-th step is defined as the conditional
expectation π(t)

iu = E(∆iu |M (t−1)), and by the Bayes theorem, it is

π
(t)
iu =

P(M (t−1)|∆iu = 1) · π(t−1)
u∑k

v=1 P(M (t−1)|∆iv = 1) · π(t−1)
v

(u = 1, . . . , k; i = 1, . . . , n). For each i, π(t)
iu is proportional to the numerator, therefore

the conditional probabilities P(M (t−1)|∆iu = 1) should be calculated for u = 1, . . . , k.
But this is just the part of the likelihood (3.15) effecting vertex i under the condition
∆iu = 1. Therefore, if i ∈ Cu, then

P(M (t−1)|∆iu = 1) =

k∏

v=1

∏

j∈Cv, j∼i

b
(t−1)
iv b

(t−1)
ju

1 + b
(t−1)
iv b

(t−1)
ju

∏

j∈Cv, j≁i

1

1 + b
(t−1)
iv b

(t−1)
ju

.

• M-step: We update π(t) and ∆(t): π(t)
u := 1

n

∑n
i=1 π

(t)
iu and ∆

(t)
iu = 1 if π(t)

iu = maxv π
(t)
iv

and 0, otherwise (in case of ambiguity, we select the smallest index for the cluster
membership of vertex i).

Then we estimate the parameters in the actual clustering of the vertices. In the within-
cluster scenario, we use the parameter estimation of model (3.3), obtaining estimates
of biu’s (i ∈ Cu) in each cluster separately (u = 1, . . . , k); here biu corresponds to
αi and the number of vertices is |Cu|. In the between-cluster scenario, we use the
bipartite graph model (3.8) in the following way. For u 6= v, edges connecting vertices
of Cu and Cv form a bipartite graph, based on which the parameters biv (i ∈ Cu) and
bju (j ∈ Cv) are estimated with the above algorithm; here biv’s correspond to bi’s,
bju’s correspond to gj’s, and the number of rows and columns of the rectangular array
corresponding to this bipartite subgraph of A is |Cu| and |Cv|, respectively. With the
estimated parameters, collected in the n × k matrix B(t), we go back to the E-step,
etc.

As in the M-step we increase the likelihood in all parts, and in the E-step we relocate each
vertex into the cluster where its likelihood is maximized, the nonnegative likelihood function
is increased in each iteration. Since the likelihood function is bounded from above (unless in
some inner cycle we start from the boundary of a polytope of bipartite realizable sequences),
it must converge to a local maximum.
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Note that here the parameter βiv with ci = u embodies the affinity of vertex i of cluster
Cu towards vertices of cluster Cv; and likewise, βju with cj = v embodies the affinity of
vertex j of cluster Cv towards vertices of cluster Cu. By the model, this affinities are added
together on the level of the logits. This model is applicable to social networks, where attitudes
of individuals in the same social group (say, u) are the same toward members of another
social group (say, v), though, this attitude also depends on the individual in group u. The
model may also be applied to biological networks, where the clusters consist, for example, of
different functioning synopses or other units of the brain.

After normalizing the βiv (i ∈ Cu) and βju (j ∈ Cv) to meet the requirement of (3.13)
for any u 6= v pair, the sum of the parameters will be zero:

∑

i∈Cu

βiv +
∑

j∈Cv

βju = 0,

and the sign and magnitude of them indicates the affinity of nodes of Cu to make ties
with the nodes of Cv, and vice versa. This becomes important when we want to compare
the parameters corresponding to different cluster pairs. For the initial clustering, spectral
clustering tools are to be used.

We applied the algorithm for randomly generated and real-world data, see Figure 3.4 for
some simulation results. We remark that in the case of real-world graphs, while processing
the iteration, we sometimes run into threshold subgraphs or bipartite subgraphs on the
boundary of the polytope of bipartite degree sequences. Even in this case our iteration
converged for most coordinates of the parameter vectors, while some biv coordinates tended
to +∞ or 0 (numerically, when stopping the iteration, they took on a very ‘large’ or ‘small’
value). This means that the affinity of node i towards nodes of the cluster j is infinitely
‘large’ or ‘small’, i.e., this node is liable to always or never make ties with nodes of cluster
j, see [Bol-El15] for details.

When applied to real-world data, our final clusters showed a good agreement with the
spectral clusters; therefore, the algorithm can be considered as a fine-tuning of the spectral
clustering in that it gives estimates of the parameters which provide a local maximum of
the overall likelihood with clusters near to the spectral ones. Unfortunately, without a good
starting, the EM iteration can run into a local maximum with clusters carrying not exact
meaning; however, spectral clustering itself is not capable of parameter estimation. In this
way, spectral clustering provides the initial clusters for our EM iteration that estimates
parameters in the within- and between-cluster scenario, giving a ‘happy marriage’ of these
approaches with practice (see the citation from Ravi Kannan’s talk in the Introduction).
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Figure 3.4: Data were generated based on parameters βiv’s chosen uniformly in different
intervals, k = 3, |C1| = 190, |C2| = 193, |C3| = 197. The estimated versus the original
parameters βiv’s are shown for i ∈ Cu (u, v = 1, . . . , k), where βi1 ∼ U [0, 1] (i ∈ C1), βi1 ∼
U [−0.75, 0.5] (i ∈ C2), βi1 ∼ U [−0.25, 0.75] (i ∈ C3), βi2 ∼ U [−1, 1] (i ∈ C1), βi2 ∼ U [−1, 0]
(i ∈ C2), βi2 ∼ U [−0.25, 0.25] (i ∈ C3), βi3 ∼ U [−1, 0.5] (i ∈ C1), βi3 ∼ U [−0.5, 1] (i ∈ C2),
and βi3 ∼ U [−0.5, 0.5] (i ∈ C3), respectively. MSE=1.14634 (made by Ahmed Elbanna).
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